
	

	

FireEye,	Inc.,	1440	McCarthy	Blvd.,	Milpitas,	CA	95035		|		+1	408.321.6300		|		+1	877.FIREEYE	(347.3393)		|		info@FireEye.com		|		www.FireEye.com													1	

FLARE-On	4:	Challenge	3	Solution	–	greek_to_me.exe	

Challenge	Author:	Matt	Williams	(@0xmwilliams)	

greek_to_me.exe	is	a	Windows	x86	executable	whose	strings	reveal	what	is	likely	the	desired	state	
of	the	program	at	virtual	address	0x401101,	shown	in	Figure	1.	

004010F5 push 0 ; flags
004010F7 push 2Bh ; len
004010F9 push offset aCongratulation ; "Congratulations! But wait, where's...”
004010FE push [ebp+s] ; s
00401101 call ds:send

Figure	1	–	Challenge	completion	string	

However,	the	disassembly	preceding	this	address	contains	odd	assembly	instructions,	shown	in	Figure	
2.	

004010A0 icebp
004010A1 push es
004010A2 sbb dword ptr [esi], 1F99C4F0h
004010A8 les edx, [ecx+1D81061Ch]
004010AE out 6, al ; DMA controller, 8237A-5.
004010AE ; channel 3 base address
004010AE ; (also sets current ad

Figure	2	–	Instructions	preceding	desired	end-state	

At	this	stage	you	may	have	correctly	assumed	the	sample	modifies	these	instructions	in	order	to	
properly	reach	0x401101.	If	these	instructions	execute	in	their	current	state	the	program	will	likely	
crash.	Another	indication	of	self-modifying	code	is	found	in	the	sample’s	PE	headers.	The	.text	
section,	where	the	program’s	entry	point	resides,	is	writeable.	From	here	you	may	have	worked	
backward	to	determine	what	causes	the	program	to	take	the	preferred	branch	at	0x401063.	Another	
approach	involves	determining	where	the	socket	was	created.	Let’s	explore	the	latter	approach.	

greek_to_me.exe	contains	a	single	call	to	the	socket	function	at	0x401151,	shown	in	Figure	3.	
Within	the	sub_401121	function	we	observe	the	sample	creating	a	listening	socket	on	TCP	port	
2222	(0x8AE)	using	a	standard	series	of	Windows	API	functions:	socket,	bind,	listen,	and	
accept.		

	

	

FireEye,	Inc.,	1440	McCarthy	Blvd.,	Milpitas,	CA	95035		|		+1	408.321.6300		|		+1	877.FIREEYE	(347.3393)		|		info@FireEye.com		|		www.FireEye.com													2	

	
Figure	3	–	Socket	creation	

The	sample	waits	for	a	connection	on	the	listening	port	before	attempting	to	receive	a	maximum	of	
four	bytes	from	the	connected	client.	Received	bytes	are	stored	in	a	buffer	passed	into	sub_401121	
as	its	single	argument.	If	at	least	one	byte	is	received,	the	function	returns	a	socket	handle	without	
tearing	down	the	established	connection.	Note	this	socket	handle	may	be	used	later	in	the	program’s	
execution	at	0x401071	or	0x401101.	

Execution	continues	if	sub_401121	returns	a	valid	socket	handle,	otherwise	the	sample	exits.	The	
next	basic	block	shown	in	Figure	4	populates	registers	used	in	the	sample’s	decoding	loop:		

00401029 mov ecx, offset loc_40107C
0040102E add ecx, 79h
00401031 mov eax, offset loc_40107C
00401036 mov dl, [ebp+buf]

	

	

FireEye,	Inc.,	1440	McCarthy	Blvd.,	Milpitas,	CA	95035		|		+1	408.321.6300		|		+1	877.FIREEYE	(347.3393)		|		info@FireEye.com		|		www.FireEye.com													3	

Figure	4	–	Populating	registers	prior	to	the	loop	

First,	an	address	of	executable	code	in	the	.text	section	(0x40107C)	is	moved	into	the	ECX	register	
and	a	constant	value	(0x79)	is	added	to	it.	This	reflects	the	“stop”	address	for	the	decoding	loop	
described	below.	The	address	0x40107C	is	moved	into	the	EAX	register,	representing	the	start	
address	for	the	decoding	loop.	At	0x401036,	the	first	byte	from	the	recv	buffer	is	moved	into	the	
lower	eight	bits	of	the	EDX	register.		

The	next	basic	block,	shown	in	Figure	5,	contains	a	loop	that	performs	the	following	operations:	

1) Extract	a	single	byte	at	the	address	stored	in	EAX	(0x40107C)	
2) XOR	the	extracted	byte	with	the	first	byte	received	over	the	listening	socket	
3) Add	0x22	to	the	result	of	the	XOR	operation	
4) Use	the	resulting	byte	to	overwrite	the	byte	extracted	in	Step	1	

00401039 loc_401039:
00401039 mov bl, [eax]
0040103B xor bl, dl
0040103D add bl, 22h
00401040 mov [eax], bl
00401042 inc eax
00401043 cmp eax, ecx
00401045 jl short loc_401039

Figure	5	–	Self-modifying	code	

The	address	stored	in	EAX	is	incremented	by	one	and	compared	to	the	maximum	address	stored	in	
ECX.	The	loop	continues	until	EAX	matches	the	maximum	address	(0x4010F5).	The	next	basic	block,	
shown	in	Figure	6,	passes	the	start	address	of	the	modified	code	(0x40107C)	and	the	length	value	
(0x79)	as	arguments	to	sub_4011E6.	Without	diving	into	this	function,	we	see	the	lower	16	bits	
(AX)	of	its	return	value	are	moved	into	the	EAX	register	and	compared	to	the	hard-coded	value	
0xFB5E.		

	

	

FireEye,	Inc.,	1440	McCarthy	Blvd.,	Milpitas,	CA	95035		|		+1	408.321.6300		|		+1	877.FIREEYE	(347.3393)		|		info@FireEye.com		|		www.FireEye.com													4	

00401047 mov eax, offset loc_40107C
0040104C mov [ebp+var_C], eax
0040104F push 79h
00401051 push [ebp+var_C]
00401054 call sub_4011E6
00401059 pop ecx
0040105A pop ecx
0040105B movzx eax, ax
0040105E cmp eax, 0FB5Eh
00401063 jz short loc_40107C

Figure	6	–	Testing	the	checksum	result	

The	result	of	this	comparison	determines	if	the	program	jumps	to	the	modified	code	at	0x40107C	or	
falls	through	to	a	failure	message	shown	in	Figure	7:	

00401065 push 0 ; flags
00401067 push 14h ; len
00401069 push offset buf ; "Nope, that's not it."
0040106E push [ebp+s] ; s
00401071 call ds:send

Figure	7	–	FAIL	

Given	this	information,	one	might	correctly	assume	sub_4011E6	is	used	to	calculate	a	verification	or	
checksum	value	for	the	bytes	modified	by	the	instructions	in	Figure	5.		

At	this	stage	we’ve	determined	a	single-byte	value	received	over	the	socket	is	used	as	an	XOR	key	to	
modify	the	sample’s	own	code	between	0x40107C	and	0x4010F4.	The	modified	code	is	then	
verified	using	a	hard-coded	checksum	value.	Given	the	key	is	only	a	single	byte,	a	simple	brute-forcer	
would	help	us	determine	the	expected	byte	value.		

To	determine	the	brute-forcer’s	success,	we	might	assume	the	modified	code	executes	properly	and	
the	“Congratulations”	string	is	returned	over	the	socket.	Based	on	that	assumption,	a	simple	
Python	script	like	the	one	shown	in	Figure	8	would	print	the	correct	byte	value.	The	script	works	by	
starting	and	connecting	to	an	instance	of	greek_to_me.exe,	sending	a	single-byte	value,	and	
determining	if	the	“Congratulations”	string	is	returned	over	the	socket.	This	operation	is	
performed	in	a	loop	that	sends	all	possible	single-byte	values	to	the	program.		

	

	

FireEye,	Inc.,	1440	McCarthy	Blvd.,	Milpitas,	CA	95035		|		+1	408.321.6300		|		+1	877.FIREEYE	(347.3393)		|		info@FireEye.com		|		www.FireEye.com													5	

import sys
import os
import time
import socket

TCP_IP = '127.0.0.1'
TCP_PORT = 2222
BUFFER_SIZE = 1024

for i in range (0,256):
 os.startfile(sys.argv[1])
 time.sleep(0.1)

 s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
 s.connect((TCP_IP, TCP_PORT))
 s.send(chr(i))
 data = s.recv(BUFFER_SIZE)
 s.close()

 if 'Congratulations' in data:
 print "Key found: %x" % i
 break

Figure	8	–	Python	socket	brute-forcer	

But	what	if	we	didn’t	want	to	operate	under	the	assumption	the	decoded	bytes	execute	properly	and	
instead	confirm	the	expected	checksum	value	matches?	Rather	than	reverse	engineer	the	checksum	
algorithm,	let’s	use	this	as	an	opportunity	to	explore	an	interesting	malware	analysis	technique:	
emulation.	

To	begin,	let’s	extract	the	opcode	bytes	present	in	the	checksum	function	sub_4011E6.	Our	only	
concern	is	the	return	value	stored	in	AX	after	the	instruction	at	0x401265	is	executed,	as	shown	in	
Figure	9.	Thus,	there’s	no	need	to	extract	the	function	epilogue	bytes.	

	

	

	

FireEye,	Inc.,	1440	McCarthy	Blvd.,	Milpitas,	CA	95035		|		+1	408.321.6300		|		+1	877.FIREEYE	(347.3393)		|		info@FireEye.com		|		www.FireEye.com													6	

Figure	9	–	End	of	checksum	function	

We’ll	also	extract	the	0x79	encoded	bytes	beginning	at	0x40107C.	Both	sets	of	extracted	bytes	are	
shown	in	the	initial	Python	snippet	for	our	emulation	brute-forcer	solution,	as	seen	in	Figure	10:	

import binascii
import struct
from unicorn import *
from unicorn.x86_const import *
from capstone import *

CHECKSUM_CODE = binascii.unhexlify(
 '55 8B EC 51 8B 55 0C B9 FF 00 00 00 89 4D FC 85 D2 74 51 53 8B 5D 08 56 57 '
 '6A 14 58 66 8B 7D FC 3B D0 8B F2 0F 47 F0 2B D6 0F B6 03 66 03 F8 66 89 7D '
 'FC 03 4D FC 43 83 EE 01 75 ED 0F B6 45 FC 66 C1 EF 08 66 03 C7 0F B7 C0 89 '
 '45 FC 0F B6 C1 66 C1 E9 08 66 03 C1 0F B7 C8 6A 14 58 85 D2 75 BB 5F 5E 5B '
 '0F B6 55 FC 8B C1 C1 E1 08 25 00 FF 00 00 03 C1 66 8B 4D FC 66 C1 E9 08 66 '
 '03 D1 66 0B C2'.replace(' ', ''))

ENCODED_BYTES = binascii.unhexlify(
 '33 E1 C4 99 11 06 81 16 F0 32 9F C4 91 17 06 81 14 F0 06 81 15 F1 C4 91 1A '
 '06 81 1B E2 06 81 18 F2 06 81 19 F1 06 81 1E F0 C4 99 1F C4 91 1C 06 81 1D '
 'E6 06 81 62 EF 06 81 63 F2 06 81 60 E3 C4 99 61 06 81 66 BC 06 81 67 E6 06 '
 '81 64 E8 06 81 65 9D 06 81 6A F2 C4 99 6B 06 81 68 A9 06 81 69 EF 06 81 6E '
 'EE 06 81 6F AE 06 81 6C E3 06 81 6D EF 06 81 72 E9 06 81 73 7C'.replace(' ',
''))

Figure	10	–	Extracted	checksum	function	bytes	and	encoded	bytes	

The	code	in	Figure	11	defines	a	function	that	performs	the	sample’s	decoding	routine	given	a	byte	
value	between	0x00	and	0xFF:	

def decode_bytes(i):
 decoded_bytes = ""
 for byte in ENCODED_BYTES:
 decoded_bytes += chr(((ord(byte) ^ i) + 0x22) & 0xFF)

 return decoded_bytes

Figure	11	–	Python	implementation	of	decoding	loop	

Next,	we’ll	define	a	function	that	utilizes	the	Unicorn1	framework	to	emulate	the	checksum	function	
given	a	set	of	decoded	bytes:	

																																																								
1	http://www.unicorn-engine.org/docs/	

	

	

FireEye,	Inc.,	1440	McCarthy	Blvd.,	Milpitas,	CA	95035		|		+1	408.321.6300		|		+1	877.FIREEYE	(347.3393)		|		info@FireEye.com		|		www.FireEye.com													7	

def emulate_checksum(decoded_bytes):
 # establish memory addresses for checksum code, stack, and decoded bytes
 address = 0x400000
 stack_addr = 0x410000
 dec_bytes_addr = 0x420000

 # write checksum code and decoded bytes into memory
 mu = Uc(UC_ARCH_X86, UC_MODE_32)
 mu.mem_map(address, 2 * 1024 * 1024)
 mu.mem_write(address, CHECKSUM_CODE)
 mu.mem_write(dec_bytes_addr, decoded_bytes)

Figure	12	–	Unicorn	emulation	environment	setup	

The	code	in	Figure	12	initializes	an	x86	emulator	in	32-bit	mode	and	creates	a	2MiB	memory	range	
used	to	store	the	checksum	function	code,	a	stack	for	use	within	the	function,	and	the	decoded	bytes.	
The	checksum	code	and	decoded	bytes	are	written	to	arbitrary	locations	within	the	memory	range.	

The	checksum	function	receives	two	arguments	that	are	pushed	onto	the	stack	prior	to	the	function	
call	at	0x401054:	the	address	of	the	decoded	bytes	(0x40107C)	and	the	number	of	bytes	(0x79).	
Figure	13	illustrates	the	state	of	the	program	stack	after	the	checksum	function	is	called:	

ESP Return	address	
ESP+4 Address	of	decoded	bytes	(0x40107C)	
ESP+8 Size	of	decoded	bytes	(0x79)	

Figure	13	–	Stack	layout	after	checksum	function	call	

For	the	checksum	function	to	emulate	properly,	we	setup	the	stack	to	match	the	layout	in	Figure	13	
and	populate	the	ESP	register.	After	emulation,	we	can	return	the	calculated	checksum	from	the	
emulate_checksum	function	as	shown	in	Figure	14.	

 # place the address of decoded bytes and size on the stack
 mu.reg_write(UC_X86_REG_ESP, stack_addr)
 mu.mem_write(stack_addr + 4, struct.pack('<I', dec_bytes_addr))
 mu.mem_write(stack_addr + 8, struct.pack('<I', 0x79))

 # emulate and read result in AX
 mu.emu_start(address, address + len(CHECKSUM_CODE))
 checksum = mu.reg_read(UC_X86_REG_AX)

 return checksum

Figure	14	–	Stack	setup	and	emulation	

Now	the	easy	part!	We	iterate	through	all	the	possible	single-byte	values	as	XOR	keys,	decode	the	

	

	

FireEye,	Inc.,	1440	McCarthy	Blvd.,	Milpitas,	CA	95035		|		+1	408.321.6300		|		+1	877.FIREEYE	(347.3393)		|		info@FireEye.com		|		www.FireEye.com													8	

bytes,	emulate	the	checksum,	and	determine	which	byte	results	in	the	expected	checksum	value.	This	
is	shown	in	the	script	fragment	in	Figure	15:	

for i in range(0, 256):
 decoded_bytes = decode_bytes(i)
 checksum = emulate_checksum(decoded_bytes)
 if checksum == 0xFB5E:
 print 'Checksum matched with byte %X' % i

Figure	15	–	Attempting	each	single-byte	value	

Running	the	script	prints	the	single-byte	value	the	sample	expects	to	receive	over	the	socket:	0xA2.	
However,	we	still	don’t	understand	the	nature	of	what	we	assume	are	decoded	instructions	at	
0x40107C.	Let’s	attempt	to	disassemble	the	instructions	using	the	Capstone2	disassembler	and	
complete	the	for	loop	we	initiated	in	Figure	15.	The	result	is	shown	in	Figure	16.	

 print 'Decoded bytes disassembly:'
 md = Cs(CS_ARCH_X86, CS_MODE_32)
 for j in md.disasm(decoded_bytes, 0x40107C):
 print "0x%x:\t%s\t%s" % (j.address, j.mnemonic, j.op_str)
 break

Figure	16	–	Disassembling	the	decoded	bytes	

Running	our	script	provides	some	interesting	disassembly,	as	shown	in	Figure	17:	

																																																								
2	http://www.capstone-engine.org/lang_python.html	

	

	

FireEye,	Inc.,	1440	McCarthy	Blvd.,	Milpitas,	CA	95035		|		+1	408.321.6300		|		+1	877.FIREEYE	(347.3393)		|		info@FireEye.com		|		www.FireEye.com													9	

Success with byte A2
Decoded bytes disassembly:
0x40107c: mov bl, 0x65
0x40107e: mov byte ptr [ebp - 0x2b], bl
0x401081: mov byte ptr [ebp - 0x2a], 0x74
0x401085: mov dl, 0x5f
0x401087: mov byte ptr [ebp - 0x29], dl
0x40108a: mov byte ptr [ebp - 0x28], 0x74
0x40108e: mov byte ptr [ebp - 0x27], 0x75
0x401092: mov byte ptr [ebp - 0x26], dl
0x401095: mov byte ptr [ebp - 0x25], 0x62
0x401099: mov byte ptr [ebp - 0x24], 0x72
0x40109d: mov byte ptr [ebp - 0x23], 0x75
0x4010a1: mov byte ptr [ebp - 0x22], 0x74
0x4010a5: mov byte ptr [ebp - 0x21], bl
0x4010a8: mov byte ptr [ebp - 0x20], dl
0x4010ab: mov byte ptr [ebp - 0x1f], 0x66
0x4010af: mov byte ptr [ebp - 0x1e], 0x6f
0x4010b3: mov byte ptr [ebp - 0x1d], 0x72
0x4010b7: mov byte ptr [ebp - 0x1c], 0x63
0x4010bb: mov byte ptr [ebp - 0x1b], bl
0x4010be: mov byte ptr [ebp - 0x1a], 0x40
0x4010c2: mov byte ptr [ebp - 0x19], 0x66
0x4010c6: mov byte ptr [ebp - 0x18], 0x6c
0x4010ca: mov byte ptr [ebp - 0x17], 0x61
0x4010ce: mov byte ptr [ebp - 0x16], 0x72
0x4010d2: mov byte ptr [ebp - 0x15], bl
0x4010d5: mov byte ptr [ebp - 0x14], 0x2d
0x4010d9: mov byte ptr [ebp - 0x13], 0x6f
0x4010dd: mov byte ptr [ebp - 0x12], 0x6e
0x4010e1: mov byte ptr [ebp - 0x11], 0x2e
0x4010e5: mov byte ptr [ebp - 0x10], 0x63
0x4010e9: mov byte ptr [ebp - 0xf], 0x6f
0x4010ed: mov byte ptr [ebp - 0xe], 0x6d
0x4010f1: mov byte ptr [ebp - 0xd], 0

Figure	17	–	Script	results	

For	those	new	to	reverse	engineering,	two	aspects	of	the	Figure	17	disassembly	should	stand	out.	First,	
a	stack	string3	is	being	populated.	Second,	the	constant	hex	values	being	moved	onto	the	stack	fall	
within	the	range	of	printable	characters	(0x20-0x7E).	Extracting	these	printable	characters	in	the	
order	they	are	moved	onto	the	stack	or	by	viewing	the	stack	in	a	debugger	after	providing	the	correct	
byte	yields	the	challenge	solution:	

	
et_tu_brute_force@flare-on.com

																																																								
3	https://www.fireeye.com/blog/threat-research/2016/06/automatically-extracting-obfuscated-strings.html	

	

	

FireEye,	Inc.,	1440	McCarthy	Blvd.,	Milpitas,	CA	95035		|		+1	408.321.6300		|		+1	877.FIREEYE	(347.3393)		|		info@FireEye.com		|		www.FireEye.com													10	

Appendix	A:	Python	Emulation	Script	
import binascii
import struct
from unicorn import *
from unicorn.x86_const import *
from capstone import *

CHECKSUM_CODE = binascii.unhexlify(
 '55 8B EC 51 8B 55 0C B9 FF 00 00 00 89 4D FC 85 D2 74 51 53 8B 5D 08 56 57 '
 '6A 14 58 66 8B 7D FC 3B D0 8B F2 0F 47 F0 2B D6 0F B6 03 66 03 F8 66 89 7D '
 'FC 03 4D FC 43 83 EE 01 75 ED 0F B6 45 FC 66 C1 EF 08 66 03 C7 0F B7 C0 89 '
 '45 FC 0F B6 C1 66 C1 E9 08 66 03 C1 0F B7 C8 6A 14 58 85 D2 75 BB 5F 5E 5B '
 '0F B6 55 FC 8B C1 C1 E1 08 25 00 FF 00 00 03 C1 66 8B 4D FC 66 C1 E9 08 66 '
 '03 D1 66 0B C2'.replace(' ', ''))
ENCODED_BYTES = binascii.unhexlify(
 '33 E1 C4 99 11 06 81 16 F0 32 9F C4 91 17 06 81 14 F0 06 81 15 F1 C4 91 1A '
 '06 81 1B E2 06 81 18 F2 06 81 19 F1 06 81 1E F0 C4 99 1F C4 91 1C 06 81 1D '
 'E6 06 81 62 EF 06 81 63 F2 06 81 60 E3 C4 99 61 06 81 66 BC 06 81 67 E6 06 '
 '81 64 E8 06 81 65 9D 06 81 6A F2 C4 99 6B 06 81 68 A9 06 81 69 EF 06 81 6E '
 'EE 06 81 6F AE 06 81 6C E3 06 81 6D EF 06 81 72 E9 06 81 73 7C'.replace(' ',
''))

def decode_bytes(i):
 decoded_bytes = ""
 for byte in ENCODED_BYTES:
 decoded_bytes += chr(((ord(byte) ^ i) + 0x22) & 0xFF)

 return decoded_bytes

def emulate_checksum(decoded_bytes):
 # establish memory addresses for checksum code, stack, and decoded bytes
 address = 0x400000
 stack_addr = 0x410000
 dec_bytes_addr = 0x420000

 # write checksum code and decoded bytes into memory
 mu = Uc(UC_ARCH_X86, UC_MODE_32)
 mu.mem_map(address, 2 * 1024 * 1024)
 mu.mem_write(address, CHECKSUM_CODE)
 mu.mem_write(dec_bytes_addr, decoded_bytes)

 # place the address of decoded bytes and size on the stack
 mu.reg_write(UC_X86_REG_ESP, stack_addr)
 mu.mem_write(stack_addr + 4, struct.pack('<I', dec_bytes_addr))
 mu.mem_write(stack_addr + 8, struct.pack('<I', 0x79))

	

	

FireEye,	Inc.,	1440	McCarthy	Blvd.,	Milpitas,	CA	95035		|		+1	408.321.6300		|		+1	877.FIREEYE	(347.3393)		|		info@FireEye.com		|		www.FireEye.com													11	

 # emulate and read result in AX
 mu.emu_start(address, address + len(CHECKSUM_CODE))
 checksum = mu.reg_read(UC_X86_REG_AX)

 return checksum

for i in range(0, 256):
 decoded_bytes = decode_bytes(i)
 checksum = emulate_checksum(decoded_bytes)
 if checksum == 0xFB5E:
 print 'Checksum matched with byte %X' % i
 print 'Decoded bytes disassembly:'
 md = Cs(CS_ARCH_X86, CS_MODE_32)
 for j in md.disasm(decoded_bytes, 0x40107C):
 print "0x%x:\t%s\t%s" % (j.address, j.mnemonic, j.op_str)
 break

	

