
EDK II Performance Optimization
Guide

February, 2010
Revision 1.0

Acknowledgements

THIS SPECIFICATION IS PROVIDED "AS IS" WITH NO WARRANTIES WHATSOEVER, INCLUDING ANY
WARRANTY OF MERCHANTABILITY, NONINFRINGEMENT, FITNESS FOR ANY PARTICULAR PURPOSE, OR
ANY WARRANTY OTHERWISE ARISING OUT OF ANY PROPOSAL, SPECIFICATION OR SAMPLE. Intel products
are not intended for use in medical, life saving, or life sustaining applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or
"undefined." Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or
incompatibilities arising from future changes to them.

A license is hereby granted to copy and reproduce this specification for internal use only.

No other license, express or implied, by estoppel or otherwise, to any other intellectual property rights is granted
herein.

Intel disclaims all liability, including liability for infringement of any proprietary rights, relating to use of information in
this specification. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted
herein.

Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United
States and other countries.

*Other names and brands may be claimed as the property of others.

Copyright © 2009 - 2010, Intel Corporation. All rights reserved.

Revision History

Revision Revision History Date

0.1 Initial draft - Measurement Methodologies. June 2009

0.3.3 Incorporate Review comments January 2010

1.0 First Release February 2010
i February, 2010 Version 1.0

Performance Optimization
ii February, 2010 Version 1.0

CONTENTS

1
Introduction... 1
1.1 Overview ... 1
1.2 Target Audience.. 2
1.3 Document Organization .. 2
1.4 Related Information... 3
1.5 Terms.. 3
1.6 Conventions Used in this Document... 7

1.6.1 Pseudo-Code Conventions ... 7
1.6.2 Typographic Conventions ... 7

2
Measurement Methodologies .. 9
2.1 Software-Based Measurement ... 9

2.1.1 Tracing .. 9
2.1.2 Statistical Profiling (SW).. 10
2.1.3 Measured Profiling .. 10

2.2 Hardware-Based Measurements .. 10
2.2.1 Statistical Profiling (HW) ... 10
2.2.2 Logic Analyzers... 11
2.2.3 Elapsed Time Counters... 11
2.2.4 JTAG Based Debuggers ... 11

3
EDK II Facilities... 13
3.1 Overview ... 13
3.2 Trace Instrumentation ... 13
3.3 Profiling Instrumentation ... 14
3.4 Instrumenting the Phases ... 16

3.4.1 SEC... 16
3.4.2 PEI .. 16
3.4.3 DXE... 17
3.4.4 BDS... 17
3.4.5 EFI Applications .. 17
3.4.6 OS Load and S3 Resume ... 17

4
Dp Reporting Utility.. 19
4.1 Description .. 19
4.2 Report Structure.. 19
4.3 Common Report Features .. 20

4.3.1 Options.. 20
4.3.2 Report Heading ... 20
4.3.3 Statistics.. 21

4.4 Grouped Reports .. 21
iii February, 2010 Version 1.0

Performance Optimization
4.4.1 Major Phases .. 21
4.4.2 Drivers by Handles.. 21
4.4.3 PEIMs.. 22
4.4.4 General ... 23
4.4.5 Cumulative .. 23

4.5 Sequential Trace Reports ... 23
4.6 Raw Trace Reports ... 24

5
Instrumenting the Code ... 27
5.1 Establishing a Build Target ... 27
5.2 Editing the DSC file... 27
5.3 Synchronize DP’s Timer Library ... 28
5.4 Editing a Module’s INF file .. 29
5.5 Adding Instrumentation ... 29
5.6 Controlling the Instrumentation ... 31

6
EDK II Performance Infrastructure.. 33
6.1 PCD Entries .. 33
6.2 Library Classes ... 33

6.2.1 PerformanceLib... 33
6.2.2 TimerLib .. 34
6.2.3 ProfileLib ... 35

7
Strategies .. 37
7.1 Establish Goals ... 38
7.2 Measure Performance .. 38

7.2.1 What to Measure... 38
7.2.2 Instrumenting the Code... 39
7.2.3 Gathering Statistics ... 39

7.3 Analyze Results .. 39

8
Lessons Learned .. 41
8.1 Lessons by Phase... 41

8.1.1 SEC Phase.. 41
8.1.2 PEI Phase ... 41
8.1.3 DXE Phase.. 42
8.1.4 BDS Phase.. 42

8.2 Cache.. 42
8.2.1 Enable code cache for boot block ... 42
8.2.2 Configure C,D,E,F segments as WP... 43
8.2.3 Enable Caching of Flash ... 43

8.3 Flash ... 43
8.3.1 Be careful of all Flash-access operations ... 43
8.3.2 Do things in memory rather than in Flash ... 44
iv February, 2010 Version 1.0

8.3.3 S3 Resume: Access NV Storage as Little as Possible in Pre-Mem.................... 44
8.3.4 Enable SPI prefetching ... 44
8.3.5 Decompress FvMain block in memory .. 44

8.4 Drivers... 44
8.4.1 Avoid Legacy drivers/devices whenever possible... 44
8.4.2 BiosVideo Driver Enhancement .. 44
8.4.3 Keyboard Driver Enhancement ... 45

8.5 Memory ... 45
8.5.1 Memory operation algorithms.. 45
8.5.2 S3 Resume: Memory-related Operations.. 46
8.5.3 BKMs to choose proper algorithms ... 46
8.5.4 Shadow PEIMs after Memory Discovered .. 47
8.5.5 Shadow the PEI core .. 47
8.5.6 Run More Code in Post-Mem than in Pre-Mem .. 48

8.6 HOBs .. 48
8.6.1 Reduce the number of FV Hobs.. 48
8.6.2 Report CPU BIST as a Hob .. 48

8.7 Boot Mode Utilization .. 48
8.7.1 Minimal Configuration Path for Fast Boot ... 48
8.7.2 S3 Resume Boot Path... 49
8.7.3 PEI Dependency Expressions... 50
8.7.4 Avoid PEG Training in S3 ... 51

8.8 Debug Output.. 51
8.8.1 PeiReportStatusCode ... 51

8.9 MP Configuration .. 51
8.9.1 Use CPU number for synchronization... 51

8.10 General Coding Issues ... 52
8.10.1 Code Alignment Issue ... 52
8.10.2 Predicate Expressions .. 53
8.10.3 Structure Member Alignment .. 54

A Sample Grouped Report ... 55

B Sample Sequential Report ... 59

C Sample Raw Report .. 61

D Pre-defined Measurements .. 63
v February, 2010 Version 1.0

Performance Optimization
vi February, 2010 Version 1.0

vii February, 2010 Version 1.0

Figures

Figure 1. Report Heading 20
Figure 2. Statistics Report Sample 21
Figure 3. Major Phases Report Sample 21
Figure 4. Drivers by Handle Report Sample 22
Figure 5. PEIMs Report Sample 22
Figure 6. General Section Report Sample 23
Figure 7. Cumulative Report Sample 23
Figure 8. Temporal Relationships 24
Figure 9. Measurement Hierarchy 24
Figure 10. Raw Trace Excerpt 25
Figure 11. Minimal Configuration Path 49

Performance Optimization

viii February, 2010 Version 1.0

Tables

Table 1. C,D,E,F segments Caching Impact .. 45
Table 2. Recommended Memory Operation Algorithms .. 46
Table 3. MdeModulePkg Measurement Points .. 63
Table 4. IntelFrameworkModulePkg Measurement Points... 64

Introduction
1
Introduction

Failure caused by poor performance renders a system just as useless as failure caused
by functional errors, and can be even more expensive to correct. This paper focuses on
techniques and methodologies which can be used to characterize and optimize the
performance of EDK II based firmware.

Performance Optimization, within the context of this paper, consists of those
procedures and techniques needed to identify and remediate problems contributing to
excessive boot and execution times.

In order to identify problem areas, one must be able to measure initial performance as
well as performance during and after optimization. Depending upon the type of code
being measured -- execution phases, device drivers, library routines, etc. -- several
different measurement methodologies may be needed.

Once the measurements have been gathered, it is necessary to interpret the data and
gain an understanding of what sections of the code are consuming excessive amounts
of time. Suspect code must be examined and understood in order to determine if it is,
in fact, taking too much time. Often, it will be necessary to take additional
measurements, with finer granularity, as one narrows in on the problem.

When the problematic areas of the firmware have been identified, various processes
and techniques are employed to reduce the execution time.

This is a highly iterative process, as described in Chapter 7, Strategies, consisting of
two major loops:

1. Measure - Analyze; the inner loop which narrows in on the problem
2. Measure - Analyze - Optimize; the outer loop used to validate optimizations and

measure the real improvement.

Once an area meets its performance goals, the focus can move to the next most
valuable optimization candidate.

1.1 Overview
Within this paper; measurement methodologies, analysis techniques, and firmware
optimization strategies will be discussed. Performance measurement tools provided by
EDK II will be described as well as how to interpret their output. Finally, a number of
Best Known Methods (BKMs) for optimization will be provided.

Factors such as CPU speed, overall system design, FLASH device performance, or other
hardware artifacts can affect measured performance as much as algorithm selection
and firmware implementation quality. These factors will be discussed further in
Chapter 7, Strategies.

This version of the EDK II Performance Optimization Guide describes the state-of-the-
art of performance measurement in EDK II and introduces the EDK II performance
display and reporting utility, “Dp”.
1 February, 2010 Version 1.0

Performance Optimization
The code base referenced by this document is based upon subversion revision 9680
from the EDK II repository on www.tianocore.org.

1.2 Target Audience
This document is intended for persons doing EFI firmware development and support,
using EDK II, as well as development and support for distributable modules. In addition
to general information applicable to all developers, specifically targeted information is
provided for:

 Silicon Vendors in order to assist with making performance related hardware design
trade-offs as well as producing performance optimized drivers.

 Firmware Vendors and development Engineers to help ensure that their products
meet performance goals.

 Operating System Vendors to provide visibility into how the firmware affects OS
performance and to facilitate the optimization of OS loaders and interactions with
EFI Runtime services.

1.3 Document Organization
There are three major parts of this guide: Overview, Infrastructure, and Strategies.
Part one, Overview, is composed of Chapter 1 and Chapter 2. These chapters define
the scope of the paper as well as providing important background information required
for performance measurement or optimization of any firmware system.

Infrastructure, Part two, includes Chapters 3 through 5 and describes the facilities
present within the EDK II firmware which facilitate performance measurement and
analysis. After describing EDK II’s instrumentation features and their relationship to
the firmware’s execution chronology; the Performance Reporting utility, Dp, is
described. Part 2 concludes with a discussion of EDK II’s internal constructs relating to
performance.

The third and final part of this paper is made up of Chapters 6, 7, and 8; which cover
strategies and Best Known Methods for performance measurement and optimization
within EDK II.

Chapter 1, Introduction, provides the background information needed to understand
key concepts within the remainder of this paper as well as the EDK II firmware. It lays
out the scope of information to be presented, and continues with basic definitions. The
various firmware and software development roles that the paper targets are then
described. Chapter 1 finishes with a description of the typographic conventions which
will be encountered throughout the paper.

Chapter 2, Measurement Methodologies, outlines several techniques used for various
types of performance measurements.

Chapter 3, EDK II Facilities, describes features provided by EDK II for instrumenting
one’s code and gathering performance statistics.

Chapter 4, Dp Reporting Utility, is EDK II’s performance reporting facility. Dp is
described along with general methods for interpreting its output.

Chapter 5, Instrumenting the Code, provides guidance for the changes necessary to
add performance instrumentation to existing EDK II based code.
2 February, 2010 Version 1.0

http://edk2.tianocore.org/

Introduction
Chapter 6, EDK II Performance Infrastructure, provides an overview of EDK II’s low-
level performance measurement implementation.

Chapter 7, Strategies, begins by describing the general process for performance
optimization. Next, strategies for specific scenarios are provided.

Chapter 8, Lessons Learned, is a collection of techniques developed and used during
the development of EDK I which may have applicability to EDK II.

Appendix A, Sample Grouped Report, provides a complete report generated by the Dp
utility on a sample platform.

Appendix B, Sample Sequential Report, shows a sequential report with the default
interest threshold, -t, and record number, -n, limits.

Appendix C, Sample Raw Report, illustrates a default raw report. This report type
shows the actual values recorded for each measurement record.

Appendix D, Pre-defined Measurements, describes the instrumentation that already
exists in the standard EDK II release.

1.4 Related Information
The following publications and sources of information may be useful to you or are
referred to by this specification:

 Unified Extensible Firmware Interface Specification, Version 2.1, Unified EFI, Inc,
2006, http://www.uefi.org.

 Platform Initialization Specification, Version 1.1, Unified EFI, Inc., 2008, http://
www.uefi.org.

The following publications are available at www.TianoCore.org:

 EDK II Module Writers Guide, Intel, 2009
 EDK II Module Development Environment Package Library Specification, Intel,

2009.
 EDK II Platform Configuration Database Architecture Specification, Intel, 2006.
 EDK II C Coding Standards Specification, Intel, 2009.
 EDK II DEC File Specification, Intel, 2008.
 EDK II DSC File Specification, Intel, 2008.
 EDK II Build Specification, Intel, 2008.
 EDK II User's Guide, Intel, 2008.

Code documentation for the MdePkg, MdeModulePkg, IntelFrameworkPkg, and
IntelFrameworkModulePkg packages, in CHM format, is available in the EDK II Docs and
Files repository under the Releases category. http://sourceforge.net/projects/edk2/
files/

1.5 Terms
The following terms are used throughout this document:

BDS
Framework Boot Device Selection phase.
3 February, 2010 Version 1.0

http://www.tianocore.org
http://www.uefi.org/
http://www.uefi.org/
http://www.uefi.org/
http://sourceforge.net/projects/edk2/files/
http://sourceforge.net/projects/edk2/files/
http://sourceforge.net/projects/edk2/files/
http://sourceforge.net/projects/edk2/files/

Performance Optimization
BNF
BNF is an acronym for “Backus Naur Form.” John Backus and Peter Naur introduced, for the
first time, a formal notation to describe the syntax of a given language.

Component
An executable image. Components defined in this specification support one of the defined
module types.

DXE
Framework Driver Execution Environment phase.

DXE SAL
A special class of DXE module that produces SAL Runtime Services. DXE SAL modules differ
from DXE Runtime modules in that the DXE Runtime modules support Virtual mode OS calls
at OS runtime and DXE SAL modules support intermixing Virtual or Physical mode OS calls.

DXE SMM
A special class of DXE module that is loaded into the System Management Mode memory.

DXE Runtime
Special class of DXE module that provides Runtime Services

EBNF
Extended “Backus-Naur Form” meta-syntax notation with the following additional
constructs: square brackets “[…]” surround optional items, suffix “*” for a sequence of zero
or more of an item, suffix “+” for one or more of an item, suffix “?” for zero or one of an
item, curly braces “{…}” enclosing a list of alternatives and super/subscripts indicating
between n and m occurrences.

EDK Compatibility Package (ECP)
The EDK Compatibility Package (ECP) provides libraries that will permit using most existing
EDK drivers with the EDK II build environment and EDK II platforms.

EFI
Generic term that refers to one of the versions of the EFI specification: EFI 1.02, EFI 1.10,
UEFI 2.0 or UEFI 2.1.

Framework
Intel® Platform Innovation Framework for EFI consists of the Foundation, plus other
modular components that characterize the portability surface for modular components
designed to work on any implementation of the Tiano architecture.

GUID
Globally Unique Identifier. A 128-bit value used to name entities uniquely. A unique GUID
can be generated by an individual without the help of a centralized authority. This allows
the generation of names that will never conflict, even among multiple, unrelated parties.
GUID values can be registry format (8-4-4-4-12) or C data structure format.

Library Class
A library class defines the API or interface set for a library. The consumer of the library is
coded to the library class definition. Library classes are defined via a library class .h file that
is published by a package.

Library Instance
An implementation of one or more library classes.

Module
A module is either an executable image or a library instance. For a list of module types
supported by this package, see module type.
4 February, 2010 Version 1.0

Introduction
Module Type
All libraries and components belong to one of the following module types: BASE, SEC,
PEI_CORE, PEIM, DXE_CORE, DXE_DRIVER, DXE_RUNTIME_DRIVER, DXE_SMM_DRIVER,
DXE_SAL_DRIVER, UEFI_DRIVER, or UEFI_APPLICATION. These definitions provide a
framework that is consistent with a similar set of requirements. A module that is of module
type BASE, depends only on headers and libraries provided in the MDE, while a module that
is of module type DXE_DRIVER depends on common DXE components. For a definition of
the various module types, see module type.

Package
A package is a container. It can hold a collection of files for any given set of modules.
Packages may contain Source Modules, containing all source files and descriptions of a
module; or Binary Modules, containing PI FFS Sections and a description file specific to
linking and binary editing of features and attributes or both Binary and Source modules.
Multiple modules can also be combined into a package. Multiple Packages can also be
Bundled into a single Distribution Package.

Protocol
An API named by a GUID as defined by the EFI specification.

PCD
Platform Configuration Database.

PCD C Name
The symbolic name for a PCD Token that follows the ANSI C naming conventions for the
name of a variable.

PCD Element
A single configurable element within the Platform Configuration Database, uniquely
identified by a Token Space GUID and Token Number.

PCD Token Space GUID
The GUID value associated with a group of PCD Tokens. Using a GUID allows vendors to
allocate their own Token Numbers for configuration elements that apply to their own
modules, libraries or platforms without a centralized allocator. Within the Distribution
Description file, a PCD Token Space GUID is referred to using the PCD Token Space GUID C
Name.

PCD Token Space GUID C Name
A symbolic name for a PCD Token Space GUID value that follows the ANSI C naming
conventions for the name of a variable.

PEI
Pre-EFI Initialization Phase.

Platform Configuration Database (PCD)
The collection of PCD elements that can be configured when building modules, libraries, or
platform firmware images. These elements are identified by a Token Space GUID and
Token Number. PCD elements are declared in packages by Package Developers. Modules
Developers use PCD elements in the design of their modules to increase the portability of
their modules to a wider array of platform targets. Platform Integrators set the values of
PCD elements based on specific platform requirements. A Platform Integrator has many
options when configuring PCDs for a specific platform. They may configure PCD elements to
be set to static values at build time. They may also configure PCD elements so the binary
image of a Module may be patched prior to integration into platform firmware images. They
may also configure PCD elements so the binary image of platform firmware may be
patched. They may also configure PCD elements so they can be accessed at runtime
through the PCD services described in the PI 1.2 Specification.
5 February, 2010 Version 1.0

Performance Optimization
PPI
A PEIM-to-PEIM Interface that is named by a GUID as defined by the PEI CIS.

Runtime Services
Interfaces that provide access to underlying platform-specific hardware that might be
useful during OS runtime, such as time and date services. These services become active
during the boot process but also persist after the OS loader terminates boot services.

SEC
Security Phase is the code that contains the processor reset vector and launches PEI. This
phase is separate from PEI because some security schemes require ownership of the reset
vector.

UEFI Application
An application that follows the UEFI specification. The only difference between a UEFI
application and a UEFI driver is that an application is unloaded from memory when it exits
regardless of return status, while a driver that returns a successful return status is not
unloaded when its entry point exits.

UEFI
Unified Extensible Firmware Interface

UEFI Driver
A driver that follows the UEFI specification.

UEFI Specification
The UEFI Specification describes an interface between the operating system (OS) and the
platform firmware. UEFI was preceded by the Extensible Firmware Interface Specification
1.10 (EFI). This specification is released by the Unified EFI Forum.
This document references the UEFI Specification 2.1, with errata.

UEFI Platform Initialization Specification
This specification defines the core code and services that are required for an
implementation of UEFI compliant firmware. The Platform Initialization Specification is
divided into volumes to enable logical organization, future growth, and printing
convenience. The Platform Initialization Specification consists of the following volumes:

• VOLUME 1: Pre-EFI Initialization Core Interface, defines the core code and services
that are required for an implementation of the Pre-EFI Initialization (PEI) phase of the
Platform Initialization (PI) specifications (hereafter referred to as the “PI Architecture”).

• VOLUME 2: Driver Execution Environment Core Interface, defines the core code and
services that are required for an implementation of the driver execution environment
(DXE) phase of the Unified Extensible Firmware Interface (UEFI) Foundation.

• VOLUME 3: Shared Architectural Elements, describes the basic concepts behind Plat-
form Initialization (PI) firmware storage and Hand-Off Blocks implementation.

• VOLUME 4: System Management Mode, describes the optional SMM phase, which
starts during the DXE phase and runs in parallel with the other PI Architecture phases
into runtime.

• VOLUME 5: Standards, define the core code and services that are required for an
implementation of the System Management Bus (SMBus) Host Controller Protocol and
System Management Bus (SMBus) PEIM-to-PEIM Interface (PPI).

Each volume should be viewed in the context of all other volumes, and readers are strongly
encouraged to consult the entire specification when researching areas of interest.
This document references UEFI PI Specification 1.1.

Unified EFI Forum
A non-profit collaborative trade organization formed to promote and manage the UEFI
standard. For more information, see www.uefi.org.
6 February, 2010 Version 1.0

http://www.uefi.org

Introduction
1.6 Conventions Used in this Document
This document uses the typographic and illustrative conventions described below.

1.6.1 Pseudo-Code Conventions
Pseudo code is presented to describe algorithms in a more concise form. None of the
algorithms in this document are intended to be compiled directly. The code is presented
at a level corresponding to the surrounding text.

In describing variables, a list is an unordered collection of homogeneous objects. A
queue is an ordered list of homogeneous objects. Unless otherwise noted, the ordering
is assumed to be FIFO.

Pseudo code is presented in a C-like format, using C conventions where appropriate.
The coding style, particularly the indentation style, is used for readability and does not
necessarily comply with an implementation of the UEFI Specification.

1.6.2 Typographic Conventions
This document uses the typographic and illustrative conventions described below:

Plain text The normal text typeface is used for the vast majority of the descriptive
text in a specification.

Plain text (blue) Any plain text that is underlined and in blue indicates an active link to
the cross-reference. Click on the word to follow the hyperlink.

Bold In text, a Bold typeface identifies a processor register name. In other
instances, a Bold typeface can be used as a running head within a
paragraph.

Italic In text, an Italic typeface can be used as emphasis to introduce a new
term or to indicate a manual or specification name.

BOLD Monospace Computer code, example code segments, and all prototype code
segments use a BOLD Monospace typeface with a dark red color. These
code listings normally appear in one or more separate paragraphs,
though words or segments can also be embedded in a normal text
paragraph.

Bold Monospace Words in a Bold Monospace typeface, that is underlined and in
blue, indicate an active hyperlink to the code definition for that function
or type definition. Click on the word to follow the hyperlink.

Italic Monospace In code or in text, words in Italic Monospace indicate placeholder
names for variable information that must be supplied (i.e., arguments).

$(VAR) The symbol VAR defined by the utility or input files.

The following typographic conventions are used in this document to illustrate the
Extended Backus-Naur Form.

[item] Square brackets denote the enclosed item is optional.

{item} Curly braces denote a choice or selection item, only one of which may
occur on a given line.

<item> Angle brackets denote a name for an item.

(range-range) Parenthesis with characters and dash characters denote ranges of
values, for example, (a-zA-Z0-9) indicates a single alphanumeric
character, while (0-9) indicates a single digit.
7 February, 2010 Version 1.0

Performance Optimization
“item” Characters within quotation marks are the exact content of an item, as
they must appear in the output text file.

? The question mark denotes zero or one occurrences of an item.

* The star character denotes zero or more occurrences of an item.

+ The plus character denotes one or more occurrences of an item.

item{n} A superscript number, n, is the number of occurrences of the item that
must be used. Example: (0-9)8 indicates that there must be exactly
eight digits, so 01234567 is valid, while 1234567 is not valid.

item{n,} A superscript number n, followed by a comma “,” and within curly
braces, indicates the minimum number of occurrences of item, with no
maximum number of occurrences.

item{,n} A superscript number, n, preceded by a comma “,” and within curly
braces, indicates a maximum number of occurrences of item.

item{n,m} A super script number, n, followed by a comma “,“ and a number, m,
with both enclosed within curly braces, indicates that the number of
occurrences can be from n to m occurrences of item, inclusive.
8 February, 2010 Version 1.0

Measurement Methodologies
2
Measurement Methodologies

There is no sense being precise about something
when you do not even know what you are talking about.

John von Neumann

Before one can begin actual firmware optimization, it is necessary to know which areas
of the code are consuming unreasonable amounts of time. In order to do this, the
system’s performance must be measured. The various techniques used to take these
measurements are referred to as measurement methodologies.

The following seven questions are critical to ensuring the validity of one’s measurement
data:

1. Who collected these data? (Hopefully people who are trained in proper data
collection techniques, or who have at least read this paper.)

2. How were the data collected? (Hopefully by automated means and at the same
phase of the process.)

3. When were the data collected? (Hopefully all at the same time on the same day
or at the same time in the process.)

4. What do the values presented mean? (Have you changed the process recently?
Do these values really tell you what you want or need to know?)

5. How were these values computed from raw inputs? (Have you computed the
data to arrive at the results you want, or to accurately depict the true voice of
the process?)

6. What formulas were used? (Are they measuring what we need to measure? Are
they working? Are they still relevant?)

7. Are we collecting the right data, and are we collecting the data right? (The data
collected should be consistent, and the way data are collected should be
consistent. Do the data contain the correct information for analysis?)

This chapter provides the basis for answering the first six questions. Question 7 is
addressed in Chapter 7, Strategies.

The primary focus of this document will be Software-Based Measurement.

2.1 Software-Based Measurement
Software-based measurement methodologies add specialized software to the code
base. This software is then used to instrument the code and gather performance data.
There are two main types of software-based performance measurement: Tracing and
Profiling. The two predominant types of profiling are Statistical Profiling and Measured
Profiling.

2.1.1 Tracing
Tracing produces a new record for each invocation of the measured code. It can
provide chronological, context-specific, information about execution times of measured
code regions, whereas profiling collects information for each measured region which is
9 February, 2010 Version 1.0

Performance Optimization
an aggregate of all invocations of the measured region.

Tracing can potentially consume significant resources depending upon the number of
measurement points and how many times each measurement point is invoked.

2.1.2 Statistical Profiling (SW)
Software based statistical profiling uses a periodic interrupt to periodically sample the
processor state in order to determine where the processor is executing. That
information is then correlated with firmware load maps to identify routines and
modules. An advantage of this method is that once the sampling infrastructure is in
place, it is not necessary to further modify the code in order to gather information. This
allows measurements to be made post-production. Disadvantages include the coarse
granularity of both measurement locality and times as well as the necessity of having
access to load maps in order for the measurements to be meaningful.

2.1.3 Measured Profiling
Measured profiling relies upon code, inserted at strategic locations within the firmware,
which gathers performance information at runtime. Fine grained measurements can be
achieved, within the limits of the time source, and correlation of measurements to
source code is exact. Two variants of measured profiling are discussed here:
Cumulative Profiling, and Min-Max Profiling.

2.1.3.1 Cumulative Profiling

In Cumulative Profiling, a name, cumulative time and invocation count is kept for each
profiled region. Upon entry to the region, a time stamp is collected. When the region is
exited, a new time stamp is collected, the starting time subtracted from it, and the
remainder added to the cumulative execution time for the named region. For each
execution of the region, the invocation count is incremented.

The invocation count allows one to extract two important pieces of information: total
time and average time spent executing the measured code.

2.1.3.2 Min-Max Profiling

Min-Max profiling adds Minimum and Maximum time recording to the Cumulative
Profiling operations. This type of profiling is suitable for measurement of operations
that (may) take a variable amount of time to execute depending upon external factors
– e.g. table lookup, device drivers for mechanical devices, …

2.2 Hardware-Based Measurements
Some activities may require greater precision or finer time granularity than the internal
timers can provide. In this case there are several techniques that can be used to
facilitate time measurements using hardware devices.

2.2.1 Statistical Profiling (HW)
Hardware based statistical profiling uses external hardware to periodically sample the
10 February, 2010 Version 1.0

Measurement Methodologies
processor state in order to determine where the processor is executing. That
information is then correlated with firmware load maps to identify routines and
modules. An advantage of this method is that it is not necessary to modify the code in
order to gather information. This allows measurements to be made post-production.
Disadvantages include the coarse granularity of both measurement locality and times
as well as the necessity of having access to load maps in order for the measurements to
be meaningful. These disadvantages are mitigated by certain emulator and debug
hardware which can display time information alongside source code listings.

Logic Analyzers and JTAG Based Debuggers are among the most popular tools for
hardware based Statistical Profiling.

2.2.2 Logic Analyzers
A logic analyzer, if it can be connected to the correct signals, can be an extremely
flexible and useful tool. It can be set up to measure between addresses or almost any
other event. The drawback is that all of the address, control, and data lines necessary
to recognize the event must be accessible so that the logic analyzer can be connected
to them. Logic analyzers also have a relatively limited number of events they can
record before new data starts pushing out the old.

In order to make the logic analyzer more selective, it is possible to embed instructions
within the code which toggle an easily accessible signal. By measuring or accumulating
the duration of each toggle the execution time of the target code can be determined.
Drawbacks to this method include the necessity to embed the instructions beforehand;
availability of an easily accessible output port, or bit, for this use; and the need to use a
different signal for each region to be measured.

The toggled signal can also be used as a trigger input to the logic analyzer. This allows
data acquisition to be limited to specific points in time which permits much more
relevant data to be stored in the analyzer.

2.2.3 Elapsed Time Counters
Instead of using a logic analyzer, it is possible to use an event or elapsed time counter
to measure the duration of the bit toggle. This equipment is easier to manage and set
up than a logic analyzer but does not have the same flexibility.

2.2.4 JTAG Based Debuggers
JTAG based debugging solutions can be used to make several different types of timing
measurements. Each debugger provides different capabilities ranging from time
annotated source code traces to measurement of the time spent executing between two
addresses or resource accesses. Some debuggers have provision for external trigger
inputs allowing targeted measurement capabilities similar to that provided by Logic
Analyzers or Elapsed Time Counters.
11 February, 2010 Version 1.0

Performance Optimization
12 February, 2010 Version 1.0

EDK II Facilities
3
EDK II Facilities

3.1 Overview
The EDK II firmware provides both tracing and measured profiling capabilities, each
accessed via two macros; one for starting measurement and one for ending the
measurement. The start and end times, in timer ticks, for the region between the two
macros is then saved in a list in memory which records the measurement’s name and
times. Each invocation of the pair of trace macros creates a new record in the list, thus
providing a chronological record of invocation and associated timing. Invocations of the
profiling macros result in the cumulative time being updated in a single record
associated with that measurement.

Use of the trace macros can impose a relatively high overhead during the DXE phase
due to the process of searching and managing the list of measurement records. For
coarse-grain measurements of code regions that are not executed frequently – tens of
invocations as opposed to hundreds or thousands – the overhead is negligible.

Overhead imposed by the profiling macros is less than that of the trace macros,
primarily due to a reduction in processing required for each measurement.

The time stamps are taken at the end of the START and beginning of the END macros
which minimizes the amount of overhead that is included within the measurement.

Tracing macros, functions, and structures are declared in
MdeModulePkg\Include\Guid\Performance.h, and
MdePkg\Include\Library\PerformanceLib.h. Profiling macros, functions, and structures
are declared in PerformancePkg\Include\Guid\Profile.h, and
PerformancePkg\Include\Library\ProfileLib.h. Declarations for the Timer Library are
contained within MdePkg\Include\Library\TimerLib.h.

Detailed documentation on these files, functions, macros, and other elements can be
found using the resources detailed in Section 1.4.

Subsequent sections of this chapter will describe the instrumentation macros in detail.
The Phases of Execution, and their impact on instrumentation and system performance
are then described.

3.2 Trace Instrumentation
Trace Instrumentation is added to the code by application of two performance
measurement macros: PERF_START and PERF_END. These macros work as a pair with
PERF_START creating a new, open, measurement record and PERF_END closing the
measurement record. If the PERF_END macro is invoked for a previously closed record,
it will return a NOT_FOUND status.

Though optional, it is recommended that one always provide an identifying string for
Token. This will make it easier to differentiate between the measurement records
13 February, 2010 Version 1.0

Performance Optimization
when they are analyzed. Use the Module parameter to provide additional identifying
information so that each macro pair is uniquely identified. When the macro pair occurs
inside a loop, such as one of the dispatchers, the Handle parameter can be used to
provide further differentiation between measurements.

When instrumenting within PEI, the Token and Module strings are limited to seven
significant characters each; more than that will be discarded. This is due to the limited
memory resources during PEI before main memory has been initialized.

PEI also places a fixed limit on the number of measurement records that may be
collected during that phase. The PCD entry, PcdMaxPeiPerformanceLogEntries,
controls the number of measurement records collected during PEI.

During DXE, BDS, or later phases, the Token and Module strings may contain up to 31
characters, each.

The trace instrumentation code is designed to minimize the instrumentation overhead
included within each measurement. The overhead incurred by the instrumentation
code in order to search tens of thousands of trace records, which occurs on some
modern platforms, has a noticeable effect on total execution time. For example, by the
time the 27000th trace measurement is added, a minimum of 365 million comparisons
have been done for the PERF_END macro alone.

Regardless of execution phase, the performance tracing code can be turned on or off
with the use of the PcdPerformanceLibraryPropertyMask PCD entry, described in
Section 7. In addition to global control of performance tracing, this PCD entry can be
used to limit tracing to specific modules. This will allow the number of active trace
measurements to be minimized, reducing the total time required by the
instrumentation code.

3.3 Profiling Instrumentation
Profiling Instrumentation is added to the code by application of two performance
measurement macros: PROF_START and PROF_END. These macros work as a pair with
PROF_START starting a new measurement and PROF_END completing the
measurement. If PROF_START is called for a new measurement, a new record is
created. Subsequent PROF_END or PROF_START invocations which use the same
Token will update the record.

For example:

MyFunction(void)
{
 PROF_START(“MyFunction”, 0);
 // Body of the function
 PROF_END(“MyFunction”, 0);
 return; // The single point of return
}

will count the number of times MyFunction is executed and accumulate the time spent
in each invocation of the function.
14 February, 2010 Version 1.0

EDK II Facilities
Each profiling measurement will record:

 The number of times the measurement is invoked
 The accumulated duration, in timer ticks, of each invocation
 The shortest duration of all invocations
 The longest duration of all invocations

 invocations without an intervening PROF_END, when for the same measurement, will
result in the second and subsequent PROF_START invocations for that measurement
being ignored. The number of PROF_START invocations is counted with a matching
number of PROF_END invocations required. Each PROF_END will extend the duration of
that measurement until a matching number have been encountered.

For example:

PROF_START(“Foo”, 1);
PROF_END(“Foo”, 10);
...
PROF_START(“Foo”, 21);
PROF_END(“Foo”, 30);

will result in two measurements totaling 18 timer ticks being added to measurement
“Foo”. The following example:

PROF_START(“Foo”, 2);
PROF_START(“Foo”, 3);
PROF_START(“Foo”, 5);
PROF_END(“Foo”, 6);
PROF_START(“Bar”, 8);
PROF_END(“Bar”, 10);
PROF_END(“Foo”, 11);
PROF_END(“Foo”, 19);
...
PROF_START(“Foo”, 29);
PROF_END(“Foo”, 30);

also results in two measurements totaling 18 ticks being added to measurement “Foo”.
The measurement, “Bar”, is valid and does not affect measurement “Foo”.

Unlike the tracing macros, the Token argument is not optional for profiling. The Token
value is the only means of identifying a profiling measurement.

For performance reasons, profiling uses fixed size databases in which to store profiling
measurements. There are separate databases for PEI and for DXE and subsequent
phases. The PEI and DXE database sizes are specified with the
PcdMaxPeiProfileLogEntries and PcdMaxDxeProfileLogEntries PCD entries
respectively.

Similar to performance tracing, profiling code can be turned on or off by use of the
PcdProfileLibraryPropertyMask PCD entry.
15 February, 2010 Version 1.0

Performance Optimization
3.4 Instrumenting the Phases
Effective performance instrumentation requires knowledge of the interaction between
the instrumentation macros and the firmware’s execution phase at the time the
instrumented code is executed. The following sections cover these interactions and
identify considerations so that the researcher may select the best instrumentation
points and methodologies to meet their goals.

3.4.1 SEC
This phase contains the first code executed after power-on or reset. Not only have
peripherals not been initialized, but memory may not be available. The SEC phase is
not particularly suitable for software-based performance measurement.

Techniques described in section 2.2, Hardware-Based Measurements, are well suited
for the SEC phase.

For most platforms, SEC’s total elapsed time can be determined by measuring from
“the beginning of time” to the start of PEI. This is the mechanism used by EDK II.

3.4.2 PEI
The PEI phase actually consists of two sub-phases: PreMem and PostMem. PreMem is
the state before main memory is available for use and PostMem refers to the state after
main memory is usable.

After SEC phase transitions to PEI phase, the firmware is in the PreMem state. At this
point, some temporary memory is usually available. On some IA platforms the
temporary memory is actually a portion of the processor’s cache that has been placed
in a special mode. While operating in this special mode a number of restrictions exist:

 Temporary memory may only be used for data storage, not instruction execution.
 The size of temporary memory is usually small
 Temporary memory will not survive enabling of caching
 Initialized external or static variables can not be used since they will reside within

the read-only firmware device, not temporary memory. Global constants can be
used, but they must be declared as CONST and treated as read-only.

In order to store performance tracing measurements made during the PreMem portion
of PEI, a HOB, with space for PcdMaxPeiPerformanceLogEntries measurement
records, is dynamically created in temporary memory. A HOB is also created for
profiling measurements with space for PcdMaxPeiProfileLogEntries measurement
records.

As soon as memory has been initialized and is ready for use, these HOBs, and other PEI
data stored in temporary memory, are copied into main memory and the PEI phase
continues on in the PostMem state.

Due to memory restrictions during the PreMem state, some differences exist between
performance measurements made during PEI and measurements made later.

 The Token and Module strings are limited to seven significant characters in trace
records. Profiling records always allow up to 15 significant characters for the Token
string.
16 February, 2010 Version 1.0

EDK II Facilities
 Only a fixed number of tracing measurements, specified by the
PcdMaxPeiPerformanceLogEntries PCD entry, may be made.

 The PcdMaxPeiProfileLogEntries PCD entry specifies the number of profiling
measurements that may be made.

3.4.3 DXE
One of the first things done after PEI transitions into DXE phase is to copy the PEI
Performance tracing HOB into the DXE performance tracing list. As part of the copying
operation, the PEI measurement records in the Performance HOB are translated into
DXE measurement records within the dynamic DXE measurement list.

The PEI Performance profiling HOB is used to initialize the DXE profiling database. This
database is created large enough to contain PcdMaxPeiProfileLogEntries +
PcdMaxDxeProfileLogEntries profiling measurement records.

The differences between PEI and DXE performance measurements include:

 DXE allows tracing measurements to have Token and Module strings up to 31
significant characters in length.

 Profiling records always allow up to 15 significant characters for the Token string.
 The number of performance tracing measurements is limited by the amount of

memory available and not by an arbitrary pre-defined number.
 There are (PcdMaxPeiProfileLogEntries + PcdMaxDxeProfileLogEntries)

- <actual number of PEI profile measurements> profiling records allowed.

3.4.4 BDS
The instrumentation facilities work the same during the BDS phase as they worked
during DXE. The main difference between BDS and DXE, from a performance
measurement standpoint, is that a larger number of decisions are made as to which
devices to connect and use for the boot process.

BDS may also invoke a Setup Browser which is used to set and change configuration
and boot options. There are human interface related delays associated with the Setup
Browser that can significantly affect performance.

3.4.5 EFI Applications
EFI Applications, of which the EFI Shell is the most commonly known, may also gather
performance information. Even if the application itself is not instrumented, the services
provided by the firmware may be and will produce additional measurement records as
they are accessed.

Instrumenting an EFI Application is no different than instrumenting the DXE or BDS
phases.

3.4.6 OS Load and S3 Resume
An OS Loader is a special type of EFI Application. Unlike most applications, an OS
loader is expected to eventually call the firmware’s ExitBootServices() service.
Unless something special is done, calling ExitBootServices() will result in the loss
of the performance measurement services and data. For this reason, EDK II stores a
17 February, 2010 Version 1.0

Performance Optimization
portion of the trace performance data in a reserved memory area. Unless changed, this
area is 16,384 bytes long and begins at the address recorded in EFI variable
“PerfDataMemAddr” under Vendor GUID PERFORMANCE_PROTOCOL_GUID.

An S3 Resume is, from a performance measurement standpoint, similar to booting
through an OS Loader. The same mechanism is used, as described above, to allow
performance data to persist from the firmware into the OS environment. The EDK II
firmware, internally, follows a different execution path for an S3 Resume than it does
for a normal boot. When adding instrumentation, it is necessary to ensure that the
correct code path is instrumented.

Not all performance measurement records are saved for the OS. First, all completed
measurement records with a handle value matching one recorded in the handle
database are copied into the reserved memory area. Next, completed records with a
handle value of zero are copied. Due to the limited size of the storage area, only the
first N records are saved. At the time of this writing, N is 460.

Performance measurement records transferred to the OS using this mechanism consist
of a 28 character, NULL terminated, ASCII string and a 32-bit, unsigned, duration in
milliseconds. Note that measurements with durations less than 1 millisecond are
treated specially based upon the handle value: measurements with a handle value of
zero are copied with a duration of zero while measurements with a non-zero handle
value are not copied at all.

The techniques described in chapter 5, Instrumenting the Code, show how to restrict
performance measurements to specific modules. It is strongly recommended that
these techniques be used for both S3 resume and OS Loader measurements in order to
ensure that only relevant measurements are made.

An operating system loader, utility, or driver may retrieve the performance data by first
reading EFI variable “PerfDataMemAddr” to get the physical address of the saved
data, then reading from that address to retrieve the saved performance data. The
structure of this data is declared in Include/Guid/Performance.h in
MdeModulePkg. The first item is a header, as declared by PERF_HEADER. The header
is followed by N measurement records where each measurement record is declared by
PERF_DATA. N is 460, as described above, and calculated by taking the size of the
reserved region, subtracting the size of the header, then dividing by the size of
PERF_DATA. Unless the EDK II code is modified, this is the same as (16384 - 1644)/
32, which produces 460 with a few bytes left over.
18 February, 2010 Version 1.0

Dp Reporting Utility
4
Dp Reporting Utility

4.1 Description
Dp is a Shell application that generates performance reports based upon the
performance data recorded by the EDK II performance infrastructure. It will dump all
data contained in the performance measurement list, for all phases of execution from
PEI through DXE and BDS. The performance infrastructure is responsible for preserving
performance data across execution phase boundaries and ensuring that a single
measurement record format is used for all records in the performance list.

The Dp application dumps the performance data for:

 Each completed execution phase (SEC, PEI, DXE, BDS, Shell)
 Each completed PEI module, DXE and BDS driver
 Other instrumented code.

Invoking Dp with the ‘-?’ or ‘-h’ option displays the following help information.

Display Performance metrics
dp [-b] [-v] [-x] [-s | -A | -R] [-t value] [-n count] [-h | -?]
 -b display on multiple pages
 -v display additional information
 -x prevent display of individual measurements for cumulative items.
 -s display summary information only
 -A display all measurements in a list
 -R display all measurements in raw format
 -t VALUE Set display threshold to VALUE microseconds
 -n COUNT Limit display to COUNT lines in All and Raw modes
 -? display dp help information

The most common usage is to invoke Dp without any options or parameters. The
default behavior, if no command line options are provided, is to produce a Grouped
report with a minimum elapsed time of 1ms.

4.2 Report Structure
Dp produces three types of reports: Grouped, Sequential, and Raw. The Grouped
report is the default. A Sequential report is selected with the ‘-A’ command line option
and the Raw report is selected with ‘-R’. See Appendix A for an example of a Grouped
report. Appendix B provides a sample of a Sequential report and Appendix C provides a
sample of a Raw report.

The Dp utility outputs a line of the form “==[name]==” to mark the beginning of
each new section. Possible values for “name” are:

Major Phases Drivers by Handle PEIMs

General Cumulative Statistics

Sequential Trace Records RAW Trace
19 February, 2010 Version 1.0

Performance Optimization
4.3 Common Report Features
All reports track both complete and incomplete measurements. Incomplete
measurements are usually major phase measurements where that phase has not
completed; such as the Shell phase. Since Dp is a shell application, the shell is still
active while Dp is running. For this reason, it is normal for there to be two incomplete
measurements. If there are more than two, there may be an error in instrumentation
where the measured region exited without encountering an END macro.

There are several report sections and options that are relevant for all report types.
These are detailed below.

4.3.1 Options

The -v, -x, and -t options affect the output of all reports.

-v Verbose When present, this option causes extra information to be
displayed. The specific information displayed is covered in the
following descriptions for the individual report sections.

-x eXclude Specifying this option excludes the individual records for
cumulative measurements from the report. Accumulated values
for these measurements are still given in the Cumulative
section.

-t Threshold The -t option must be followed, after one or more spaces, by a
number. The number specifies the minimum elapsed time, in
microseconds, required for a record to be included in the report.
This option is useful for filtering out measurements that are too
small to be relevant to the current activity.

4.3.2 Report Heading
All reports begin with the same two lines which identify the version of Dp being run and
the frequency of the performance timer used to make the measurements.

If the ‘-v’ command line option was specified, additional lines will be displayed
specifying the count range of the performance timer as well as the minimum elapsed
time value used to filter out measurements too small to be “interesting”.
Note that counters can count in two directions, UP or DOWN. This affects the relative
magnitude of time stamps, and elapsed time calculations.

DP Build Version: 2.2
System Performance Timer Frequency: 2,267,684 (KHz)
System Performance Timer counts UP from 0x0 to 0xFFFFFFFFFFFFFFFF
Measurements less than 1,000 microseconds are not displayed.

Figure 1. Report Heading

Dp uses the characteristics of the counter to ensure that elapsed time calculations are
done correctly for the type of counter being used.
20 February, 2010 Version 1.0

Dp Reporting Utility
4.3.3 Statistics
The Statistics section is displayed if either the ‘-v’ or ‘-s’ option is given.

==[Statistics]========
There were 26389 measurements taken, of which:
 2 are incomplete.
 4 are major execution phases.
 26,319 have non-NULL handles, 70 are NULL.
 15 are PEIMs.
 66 are global measurements.

Figure 2. Statistics Report Sample

The values displayed are a summary of all recorded trace measurements, both
complete and incomplete.

4.4 Grouped Reports
Grouped Reports are the default reporting format for Dp. As long as the -A or -R
command line options are not specified, a Grouped report will be generated.

The -s, or Summary, option results in a report containing only the Major Phases and
Statistics sections. If -s is present, the Statistics section will be included regardless of
whether -v was specified or not.

4.4.1 Major Phases
EDK II comes with measurement code in place to gather performance metrics for the
major phases of execution: SEC, PEI, DXE, BDS, and SHELL. If the duration of the
phase is non-zero, the phase duration information is included in the report.

==[Major Phases]========
 SEC Phase Duration: 174589 (us)
 PEI Phase Duration: 2910 (ms)
 DXE Phase Duration: 10050 (ms)
 BDS Phase Duration: 12926 (ms)
Total Duration: 26060 (ms)

Figure 3. Major Phases Report Sample

Note that the duration for the SEC phase is given in microseconds, us, while other times
are in milliseconds, ms. This is because the SEC phase may vary between less than
and greater than one ms. Since it’s time is still significant, the time is presented in
microseconds to allow greater accuracy.
This section is included in all Grouped Reports. Its contents are not affected by any
option.

4.4.2 Drivers by Handles
For this section, each measurement with a handle value is compared to the firmware’s
handle database. If a match is found a report entry is generated that includes:

1. Index of the matching measurement record
21 February, 2010 Version 1.0

Performance Optimization
2. Handle from the handle database matching the handle in the measurement
record

3. Name of the driver the handle is associated with. This name comes from the
Pdb file name which is only included for DEBUG builds. If you want this
information included, make sure that you build with “-b DEBUG” or set “TARGET
= DEBUG” in the target.txt file.
If the Pdb file name can not be resolved, “Unknown Driver Name” will be
displayed instead.

4. A description which is the value of the Token parameter from the associated
performance macros.

5. The elapsed time for this measurement, in microseconds.

==[Drivers by Handle]========
Index: Handle Driver Name Description Time(us)

 1091: [AC] LegacyBiosDxe StartImage: 15850
 2355: [B0] PciBusDxe DB:Start: 9955
 3431: [B5] UsbKbDxe DB:Start: 10650
25924: [123] LoadImage: 3567
25925: [123] StartImage: 544666

Figure 4. Drivers by Handle Report Sample

For example, the third line in Figure 4 is interpreted as meaning:

 Measurement 3431
 is for a driver with handle B5
 which is the USB Keyboard Dxe driver.
 The measurement is of the Start method of the driver’s Driver Binding Protocol

(DB)
 which took 10.65 milliseconds to execute.

The -x command-line option has a significant effect in this section since the majority of
measurements reported here are covered by the Cumulative section.

4.4.3 PEIMs
Every measurement with a Token value of “PEIM” and a non-zero ending time is listed
in the PEIM section of the report. Instead of a handle value, the physical address of the
PEIM being measured is displayed.

==[PEIMs]========
Index Pointer Value Instance Information Token ET (us)

 12: 0x0000000000000000 Unknown Driver Name PEIM 4236
 15: 0x0000000000000000 Unknown Driver Name PEIM 2338678

Figure 5. PEIMs Report Sample

Because there is currently no mechanism in place for determining the human-readable
name of a PEIM, one may use the Handle parameter of the performance tracing macros
to record identifying information. The Dp utility assumes that the physical address of
the PEIM is passed in this parameter.
22 February, 2010 Version 1.0

Dp Reporting Utility
4.4.4 General
The General section lists measurements that:

 Are not execution phases
 Have NULL Handles
 Are complete: Both Start and End times are non-zero

Logically, this section displays all remaining measurements that weren’t displayed in
the preceding sections.

==[General]========
Index Name(GUID) Description Time(us)

 3: PreMem 2377641
 16: PostMem 525775
 23: DxeMain CoreDispatcher 9544115
 2274: BDS PlatformBds 12905937

Figure 6. General Section Report Sample

The Module and Token fields of the performance tracing macros provide the values for
the Name and Description fields, respectively, of this report section.

4.4.5 Cumulative
Several measurements are taken hundreds or thousands of times. It is useful to be
able to see the overall effect that these measurements have instead of examining each
instance. The Cumulative section facilitates this by accumulating statistics from these
measurements and presenting each measurement type along with its cumulative
values.

==[Cumulative]========
(Times in microsec.) Cumulative Average Shortest Longest
 Name Count Duration Duration Duration Duration

 LoadImage: 131 39072 298 5 3819
 StartImage: 119 14460491 121516 1 8465003
 DB:Start: 118 11049390 93638 0 5552333
 DB:Support: 25965 11298 0 0 99

Figure 7. Cumulative Report Sample

Only complete measurements are accumulated. Be aware that many DB:Start:
measurements occur as part of the StartImage: measurement. Because of this, the
sum of Cumulative Durations will usually be larger than the total elapsed time. The
Raw Trace Report, described in Section 4.6, can be used to determine the temporal
relationships between each trace measurement by comparing the start and end counts
of the measurements of interest.

4.5 Sequential Trace Reports
There is no direct temporal relationship between groups in a Grouped report, only
between the individual measurements within a particular group. Sequential Trace
Reports are used when the temporal relationship between measurements is desired,
23 February, 2010 Version 1.0

Performance Optimization
regardless of group. Each measurement displayed starts after measurements with a
lower index number and before measurements with a higher index number. Only the
starting relationship is shown, not the duration. There are some measurements which
overlap others. For example, the following report excerpt shows measurements during
the PEI phase.

==[Sequential Trace Records]========

Index Handle Module Token ET (us)

 2: 0x00000000 PEI 2913812
 3: 0x00000000 PreMem 2382889
 4: 0x00000000 PEIM 1592
 14: 0x00000000 PEIM 598
 15: 0x00000000 PEIM 2343782
 16: 0x00000000 PostMem 524321
 17: 0x00000000 DisMem 26343
 19: 0x00000000 PEIM 1064
 21: 0x00000000 DXE 3322102

Figure 8. Temporal Relationships

The measurements in Figure 8 could be visualized as shown in Figure 9 in order to
represent hierarchy.

+-- PEI 2913812
 +-- PreMem 2382889
 +-- PEIM
 +-- PEIM
 +-- PEIM
 +-- PostMem 524321
 +-- DisMem
 +-- PEIM
+-- DXE

Figure 9. Measurement Hierarchy

This shows that the PEI phase was divided into two main measured units: PreMem and
PostMem. Each of these units are comprised of other measurements.

Note that there are approximately 6 ms. unaccounted for between the sum of the
PreMem and PostMem measurements and the PEI phase duration. This is because
there are two unmeasured time periods: one is between the end of the PreMem
measurement and the start of the PostMem measurement, the other is between the
end of the PostMem measurement and the end of the PEI measurement.

4.6 Raw Trace Reports
Whether for debugging new measurements or determining fine-grained relationships
between measurements, it is desirable to be able to see exactly what is contained in the
measurement records. The Raw Trace Report, selected by the -R option, is used for
this purpose.

The Raw Trace Report can be used to determine the source of the 6 ms. discrepancy
described in Section 4.5.
24 February, 2010 Version 1.0

Dp Reporting Utility
==[RAW Trace]========

Index Start Count End Count Module

 2: 0000000017992819 00000001A0EE3DE5 PEI
 3: 0000000017992819 0000000158F89595 PreMem
 16: 0000000158FB0CD1 00000001A00BFDD5 PostMem
 21: 00000001A0EE4041 00000006EF701A95 DXE

Figure 10. Raw Trace Excerpt

Figure 10, above, presents a compressed form of the relevant measurements from the
full report in Appendix C. From this report the unmeasured times during the PEI
measurement become clear.

Based upon this information, we see that the unmeasured times account for
14,989,132 counts. Dividing this by the timer frequency in KHz; 2,266,956; gives us
the elapsed time in milliseconds, 6. This matches the discrepancy.
25 February, 2010 Version 1.0

Performance Optimization
26 February, 2010 Version 1.0

Instrumenting the Code
5
Instrumenting the Code

This chapter describes the process of adding performance instrumentation to existing
EDK II projects. In section 5.1, Establishing a Build Target, the steps for adding
performance measurement capabilities to the project’s configuration, INF and DSC files
are described.

For illustrative purposes, the examples assume that x86 processors are being used.
Feel free to modify the examples appropriately to support the intended architecture.

5.1 Establishing a Build Target
Start with a copy of a firmware source tree that you know you can successfully build
running firmware from. This will give you a stable base for troubleshooting in case
subsequent modifications cause problems.

Create a new directory within your target platform package. This document assumes
“Profile” is used. Ex: MyPlatformPkg/Profile

Copy the build files used for your target platform into the new directory. At a
minimum, this is the DSC file. You might also include the FDF file if you intend to
modify it.

Rename the build files. ex: MyPlatformPkgProduction to MyPlatformPkgProfile

5.2 Editing the DSC file
Edit the [Defines] section of the DSC file to match the new target. While this is not
absolutely necessary, it makes it much easier to keep the profiling builds separate from
others. Key areas to focus on are:

PLATFORM_NAME = MyPlatformPkgProfile
PLATFORM_GUID = 12345678-9012-3456-7890-123456789012
OUTPUT_DIRECTORY = Build/MyPlatformPkgProfile
FLASH_DEFINITION = MyPlatformPkg/MyPlatformPkg.fdf

Before continuing, verify that the firmware can still be built using the build target that
was just created. In case of problems, double-check the OUTPUT_DIRECTORY and
FLASH_DEFINITION definitions.

build -b DEBUG -a IA32 -a X64 -p MyPlatformPkg/Profile/MyPlatformPkgProfile.dsc

Note: The build target, -b, and architecture, -a, options may have already been specified
within the source tree’s target.txt configuration file. If that is the case, the above
example would not have had to include them. It is also possible to edit the
target.txt file to point to the desired build target which will eliminate the need for
the -p option.

Still within the DSC file, edit entries within the appropriate [LibraryClasses]
27 February, 2010 Version 1.0

Performance Optimization
sections to ensure that the correct timer and Performance libraries are used.

 Keep BasePerformanceLibNull for the PerformanceLib instance in
[LibraryClasses.common]. This will take care of any cases where it is not
explicitly overridden.

 Add instances of PeiPerformanceLib to
[LibraryClasses.common.PEI_CORE] and [LibraryClasses.common.PEIM]

 Add an instance of DxeCorePerformanceLib to
[LibraryClasses.common.DXE_CORE]

 Add instances of DxePerformanceLib to
[LibraryClasses.common.DXE_DRIVER],
[LibraryClasses.common.DXE_SMM_DRIVER],
[LibraryClasses.common.UEFI_DRIVER] and to
[LibraryClasses.common.DXE_RUNTIME_DRIVER] and
[LibraryClasses.common.UEFI_APPLICATION] if either of those areas are
applicable.

 Determine which area(s) you wish to profile. Ensure that the Timer Library for
that area is appropriate. Not all Timer Libraries work for all phases.

NOTE: It is necessary to ensure that all performance measurements are made
using the same TimerLib instance.

More detailed information about the PerformanceLib and TimerLib instances is provided
in chapter 6, EDK II Performance Infrastructure.

If Measured Profiling is to be used, edit the [LibraryClasses] sections again to
select the correct ProfileLib instances: ProfileLibNull, PeiProfileLib, DxeCoreProfileLib, and
DxeProfileLib.

Edit the [PcdsFixedAtBuild] sections to ensure that
PcdMaxPeiPerformanceLogEntries is sufficient (40 recommended)1,
PcdPerformanceLibraryPropertyMask is 1 and PcdProfileLibraryPropertyMask is 1. The
PropertyMask entries are necessary to enable the tracing and profiling capabilities.

Detailed information on all of the relevant PCD entries is provided in chapter 6. These
include settings for controlling debug output as well as entries which can be set to
improve performance by removing run-time bounds checking.

At this point you may wish to verify that you can still build functional firmware. If
problems do occur, their cause is most likely within the single DSC file that has been
edited so far.

5.3 Synchronize DP’s Timer Library
Since a timer library has been selected, now is a good time to edit the [LibraryClasses]
section of the DP utility’s DSC file, PerformancePkg.dsc, so that it uses the same timer
library instance as the platform firmware.

1. 40 is a recommended starting value because that is sufficient for all default PEI measurements with room
for a few more before the PCD entry needs to be changed. The author uses multiples of 10 for storage
sizes in order to allow room for growth.
28 February, 2010 Version 1.0

Instrumenting the Code
5.4 Editing a Module’s INF file
A module that has not previously been instrumented for performance measurements
will probably not have the necessary references in its INF file. The necessary
information includes the Packages referenced, Library Classes used, and PCD entries
used.

The [Packages] section lists the DEC files for the various packages containing libraries
or components used by the module. The trace facility, implemented in the
PerformanceLib, is entirely contained within the MdePkg and MdeModulePkg packages.
The profiling facility is provided by the PerformancePkg while the various timer libraries
will either be provided by one of these packages or possibly other packages depending
upon the target platform.

Edit the [Packages] section of the module’s INF file, if necessary, to add the relative
paths to the required package’s DEC files.

[Packages]
 MdePkg/MdePkg.dec
 MdeModulePkg/MdeModulePkg.dec
 PerformancePkg/PerformancePkg.dec

The [LibraryClasses] section of the INF file may need to have entries added for
TimerLib, PerformanceLib, or ProfileLib.

[LibraryClasses]
 BaseMemoryLib
 BaseLib
 UefiLib
 MemoryAllocationLib
 UefiBootServicesTableLib
 PerformanceLib
 ProfileLib
 TimerLib

When these steps are complete, we are ready to begin instrumenting the module’s
code.

5.5 Adding Instrumentation
With few exceptions, instrumenting the code consists of surrounding the code to be
measured with the appropriate START and END macros as described in chapter 3, EDK
II Facilities. One must take care that all code paths are covered so that the measured
section can not be exited without encountering an END macro. If a measured section
should be exited without encountering a matching END macro, the measurement will be
incomplete and will not contribute to the final recorded performance data. Incomplete
measurements contribute to inaccurate readings.

An example of instrumentation where the measurement start and stop times are
specified can be found in the first measurements made by EDK II. The PeiCore function
in MdeModulePkg/Core/Pei/PeiMain contains code similar to the following.
29 February, 2010 Version 1.0

Performance Optimization
 0 if (OldCoreData == NULL) {
 1 Tick = GetPerformanceCounter ();
 2 //
 3 // Report Status Code EFI_SW_PC_INIT
 4 //
 5 REPORT_STATUS_CODE (
 6 EFI_PROGRESS_CODE,
 7 FixedPcdGet32 (PcdStatusCodeValuePeiCoreEntry)
 8);
 9
10 PERF_START (NULL, "SEC", NULL, 1);
11 PERF_END (NULL, "SEC", NULL, Tick);
12
13 PERF_START (NULL,"PEI", NULL, Tick);
14 //
15 // If first pass, start performance measurement.
16 //
17 PERF_START (NULL,"PreMem", NULL, Tick);
18
19 //
20 // If SEC provided any PPI services to PEI, install them.
21 //
22 if (PpiList != NULL) {
23 Status = PeiServicesInstallPpi (PpiList);
24 ASSERT_EFI_ERROR (Status);
25 }
26 }

If OldCoreData is NULL, this is the first pass, or PreMem, phase of PEI. In line 1 we
get the current count from the performance counter. This is done as soon as possible
since we will use its value as the starting time for PEI. Lines 10 and 11 are used to
determine the time spent in SEC. The tick value of 1 in line 10 specifies that SEC
started at “the beginning of time”. The value 1 is used for this because 0 is used to
request that the current value of the performance counter be used. Line 11 ends the
SEC measurement at the time collected to indicate the beginning of PEI. Thus, the
duration of the SEC phase is from processor start until the beginning of PEI.

Line 13 begins the measurement of the PEI phase duration and line 17 starts measuring
the PreMem phase of PEI at the same time.

A common use of the performance instrumentation is to measure the duration of a
complex function. An example of this can be found in DxeMain where the duration of
the DXE CoreDispatcher is measured.
30 February, 2010 Version 1.0

Instrumenting the Code
 1 //
 2 // Invoke the DXE Dispatcher
 3 //
 4 PERF_START (NULL, "CoreDispatcher", "DxeMain", 0);
 5 CoreDispatcher ();
 6 PERF_END (NULL, "CoreDispatcher", "DxeMain", 0);

In both cases, a tick value of 0 is used which starts the measurement just before the
call to CoreDispatcher and ends the measurement just after CoreDispatcher returns.
Note that the Token and Module strings combine to unambiguously identify the
measurement.

5.6 Controlling the Instrumentation
It is possible to specify the desired performance, profiling, or timer libraries for
individual modules by editing their entries within the [Components] sections of the
project’s DSC file. The following example shows how this may be done.

[Components]
 MdeModulePkg/Universal/Network/Tcp4Dxe/Tcp4Dxe.inf {
 <PcdsFixedAtBuild>
 gEfiMdePkgTokenSpaceGuid.PcdPerformanceLibraryPropertyMask|0
 gPerformancePkgTokenSpaceGuid.PcdProfileLibraryPropertyMask|0x01
 <LibraryClasses>
 TimerLib|PerformancePkg/Library/TscTimerLib/TscTimerLib.inf
 }

In this example, performance tracing is disabled, measured profiling is enabled, and the
TSC Timer is used for performance measurements within the Tcp4Dxe module.

If all other instances of PcdProfileLibraryPropertyMask set the value to 0, for example,
then only this single module will provide profiling information.

Note that it is required for tracing or profiling to be enabled in DXE_CORE in order to
use the associated performance measurement facility. If not enabled in DXE_CORE,
the necessary performance infrastructure will not be instantiated and no measurements
will be recorded by any module. The migration of performance measurements from the
PEI phase is also performed by the performance infrastructure in DXE_CORE. Thus,
even PEI performance information will not be available if the appropriate tracing or
profiling Property Mask value for DXE_CORE is zero, disabling that type of performance
measurement.
31 February, 2010 Version 1.0

Performance Optimization
32 February, 2010 Version 1.0

EDK II Performance Infrastructure
6
EDK II Performance Infrastructure

In this chapter, the elements of the EDK II performance infrastructure used for
performance instrumentation are summarized. Detailed documentation for these items
is available from uefi.org or tianocore.org. See “Related Information” on page 3.

6.1 PCD Entries
A number of PCD entries are used to control and tune performance measurement.

PcdPerformanceLibraryPropertyMask
Set to ZERO to disable performance tracing measurement code. Value definitions are in
PerformanceLib.h.

PcdMaxPeiPerformanceLogEntries
Maximum number of performance trace log entries during PEI phase.

PcdProfileLibraryPropertyMask
Set to ZERO to disable performance profiling measurement code. Value definitions are in
ProfileLib.h.

PcdMaxPeiProfileLogEntries
Maximum number of performance profiling records during PEI phase.

PcdMaxDxeProfileLogEntries
Maximum number of performance profiling records during DXE phase.

6.2 Library Classes
All instances of a particular library class must provide the same public information and
methods. A library class instance does not have to be valid in all execution phases, nor
the same phases as other instances of the same class.

6.2.1 PerformanceLib
Performance library instances provide implementations of methods to start, end, and
retrieve performance tracing measurements as well as to determine if performance
tracing measurements are enabled.

These methods are used by the performance tracing macros, described in Chapter 3. It
is intended that the developer use the macros defined in PerformanceLib.h instead of
calling the defined methods directly. A brief summary of the performance library
instances provided by EDK II follow. See the documentation referenced in Section 1.4
for more detail.

BasePerformanceLibNull

An instance of the Performance Library implementing stub functions that can be used
as a template for the implementation of a full performance library instance.
33 February, 2010 Version 1.0

Performance Optimization
PeiPerformanceLib
This library implements the performance tracing library class for the PEI phase. It
is valid for PEI_CORE as well as PEIMs or any other time during PEI phase.

DxeCorePerformanceLib
This library provides infrastructure enabling within DxeCore to log performance
trace data. This library instance must be used in DxeCore if one wishes to retrieve
performance tracing measurements, regardless of the phase they were taken in.

DxePerformanceLib

This library provides infrastructure for a DXE driver to log performance tracing data
by using the services of the performance protocol.

6.2.2 TimerLib
Timer library instances provide implementations of methods to pause for a specified
period of time, retrieve the current count from a timer, and get information about that
timer. The TimerLib methods and instances are summarized below.

6.2.2.1 TimerLib Methods
MicroSecondDelay

Stalls the CPU for at least the given number of microseconds.

NanoSecondDelay
Stalls the CPU for at least the given number of nanoseconds.

GetPerformanceCounter
Retrieves the current value of a 64-bit free running performance counter.

GetPerformanceCounterProperties
Retrieves the 64-bit counting frequency of the counter, in Hz, and the range of performance
counter values.

6.2.2.2 TimerLib Instances

There are a number of Timer Library instances that take advantage of the different
counters provided by a platform. The implementations present in EDK II are
summarized below.

BaseTimerLibNull
A non-functional instance of the Timer Library that can be used as a template for the
implementation of a functional timer library instance. This library instance can also be used
to test the build DXE Runtime, DXE SAL, and DXE SMM modules that require timer services
as well as EBC modules that require timer services.

SecPeiDxeTimerLibCpu
Timer Library that only uses CPU resources to provide calibrated delays on IA-32, x64, and
IPF.

TscTimerLib
This is an implementation of the Timer Library that uses the TimeStamp Counter (TSC) in
Intel Ia32 and X64 CPUs to provide precision time measurements. Beginning with Pentium-
4, the TSC in Intel CPUs count at a constant rate regardless of power management state.
The only time the counter stops is during reset or when the processor is put into a Deep
Sleep state.
34 February, 2010 Version 1.0

EDK II Performance Infrastructure
6.2.3 ProfileLib
Profiling library instances provide implementations of methods to start, end, and
retrieve performance profiling measurements as well as to determine if performance
profiling measurements are enabled.

These methods are used by the performance profiling macros, described in Chapter 3.
It is intended that the developer use the macros defined in ProfileLib.h in preference to
calling the defined methods directly.

BaseProfileLibNull

An instance of the Profile Library implementing stub functions that can be used as a
template for the implementation of a full profile library instance.

PeiProfileLib

This library implements the performance Profiling library class for the PEI phase.
It is valid for PEI_CORE as well as PEIMs or any other time during PEI phase.

DxeCoreProfileLib
This library provides infrastructure enabling within DxeCore to log performance
profiling data. This library instance must be used in DxeCore if one wishes to
retrieve performance profiling measurements, regardless of the phase they were
taken in.

DxeProfileLib

This library provides infrastructure for a Dxe driver to log performance profiling data
by using the services of the profiling protocol.
35 February, 2010 Version 1.0

Performance Optimization
36 February, 2010 Version 1.0

Strategies
Yes

Establish Goals.

Problem Area
Identif ied?

!Optimize Code.

Measure
Performance.

Analyze Results.

!Finished.

Performance Goals
Met?

No

7
Strategies

The general strategy employed in this document is one of successive refinement: start
with the most general investigation and coarsest measurements then successively
identify and narrow in on problem areas. Once the problem area is identified, analysis
of the code can be performed to discover potential optimizations. Performance is then
re-measured and the results analyzed to determine how effective the optimizations
were. If needed, more optimizations are performed and the whole process is repeated
as many times as needed to achieve the desired results.

This highly iterative process is illustrated by the figure on the left. Subsequent sections
will describe the components of this process and how they apply to Performance
Optimization in EDK II.
37 February, 2010 Version 1.0

Performance Optimization
7.1 Establish Goals
Factors such as CPU speed, overall system design, FLASH device performance, or other
hardware artifacts can affect measured performance as much as algorithm selection
and firmware implementation quality. Performance optimization goals will determine
which of these factors will be addressed.

It is crucial that a systematic approach be taken where only one thing changes between
any two performance measurement runs. If more than one thing changes, it is difficult
to determine which change affected the measurement and by how much.

7.2 Measure Performance
Measuring performance consists of:

1. Identifying what to measure.
2. Instrumenting the code.
3. Gathering the results.

Each of these activities is explained in detail below.

7.2.1 What to Measure
Determining what to measure is at first guided by goals, as established in Section 7.1.
The code is then instrumented so that the desired statistics can be gathered.
Determining what to measure, though, requires an understanding of the modular
structure of EDK II.

 Phases of Execution: SEC, PEI, DXE, BDS, OS Loaders.
Total elapsed time of the phase. Phases are sequential, only executed once, and
mutually exclusive.

 Major functional units: dispatchers, module startup, …
These functional units have some relatively well defined rules for when they are
invoked and their roles within a particular phase – within the context of the specific
implementation being instrumented. Measurement is relatively coarse grained with
recording and reporting expectations similar to that for the Phases of Execution.

 Boot & Runtime Services
Services can be invoked many times from diverse locations. Both single execution
and cumulative measurements are significant.

 Measure the time to perform the instrumented service. Need one or more of:
 Minimum time through the service
 Maximum time through the service
 Average time for the service
 Number of times executed
 Cumulative time for all invocations

 Library functionality
Library functions can be invoked many times from diverse locations. Both single
execution and cumulative measurements are significant.

 Measure the time to perform the instrumented routine. Need one or more of:
 Minimum time through the routine
 Maximum time through the routine
38 February, 2010 Version 1.0

Strategies
 Average time for the routine
 Number of times routine
 Cumulative time for all invocations

 PPI and Protocol methods
Protocol methods can be invoked many times from diverse locations. Both single
execution and cumulative measurements are significant.

 Measure the time to perform the instrumented routine. Need one or more of:
 Minimum time through the routine
 Maximum time through the routine
 Average time for the routine
 Number of times routine
 Cumulative time for all invocations

 Driver execution: disk read, console out, …

7.2.2 Instrumenting the Code
Even though one uses the same firmware image each time, the path through the
firmware will vary depending upon the firmware’s execution mode. These modes
include:

 First boot with a new firmware image.
 Boot after power-on.
 Boot after a reset.
 Warm Boot
 Normal boot.
 Resume from S3.
 Resume from S4.

One must be aware of these different boot paths when selecting instrumentation points.

The PCD capability of EDK II can be leveraged to allow relatively fine-grained control of
Data Collection. At a minimum, this allows collection or measurement to be selectively
enabled or disabled for each Phase of Execution.

7.2.3 Gathering Statistics
Once the code has been instrumented, new firmware is built following guidelines given
in Chapter 5. When executed, the firmware will then generate statistics which can be
reported by the Dp utility.

7.3 Analyze Results
After the instrumented firmware has been executed and all the measurement data
collected, an analysis is performed with the goal of deriving detailed interpretations of
the collected data. The analysis is performed by one or more firmware engineers that
are familiar with the code base. As a first step, the collected data is assessed for
reasonableness and correctness. If any problems regarding the validity of the data are
found, the reason has to be determined.
39 February, 2010 Version 1.0

Performance Optimization
Note: Any interrupts; such as SMI, PMI, Machine Checks, etc., that occur while a measurement is in
progress will add the interrupt handler’s time to the measurement. One must be aware of the
possibility of this event and take it into account during any analysis.

Depending on the identified reason, either the planning or the instrumentation may
have to be revisited and performed again resulting in new measurement data. Once the
validity of the collected data has been confirmed, the initially planned analyses are
conducted. The results are interpreted to identify and understand problems in the
investigated component. Based on the analysis results, preliminary conclusions and
improvement suggestions are derived. If it is necessary, for example to gain confidence
in the results or to draw sound conclusions, additional measurement and analyses
passes are conducted. This might also include improving measurement definitions, data
collection procedures, and analysis techniques as needed to ensure meaningful results
that support measurement goals. To prevent misunderstandings of the analysis results
and rework, initial and final results should be reviewed with all relevant stakeholders.
Once the final analysis results are available, relevant stakeholders should be assisted in
understanding and interpreting the results.
40 February, 2010 Version 1.0

Lessons Learned
8
Lessons Learned

This chapter contains a summary of lessons learned and Best Known Methods (BKMs)
acquired during boot performance optimization tuning work on platforms using Intel
processors. The performance data mentioned is for normal, minimal and S3 boot
modes, not the full configuration boot mode.

8.1 Lessons by Phase

8.1.1 SEC Phase
SEC is a platform-specific phase. On some platforms, SEC does an optional early
microcode update for all CPUs, collects BIST of all CPUs, sets MTRR for BSP and enables
temporary memory.

SEC operates the same during normal and S3 Resume boot paths.

Relevant sections are:

 8.2.1, Enable code cache for boot block
 8.3.4, Enable SPI prefetching
 8.9.1, Use CPU number for synchronization
 8.10.1, Code Alignment Issue

8.1.2 PEI Phase
PEI phase is composed of three sub-phases: Pre-Mem (before memory available),
Mem-Dis (during memory detection), and Post-Mem (after memory available). The
code in Pre-Mem phase and Mem-Dis runs out of the FD device, usually Flash.

If the CPU can’t support code cache or the cache size is not large enough, it is
recommended to shadow the code to memory in Post-Mem to speed up execution.
Sections, 8.5.4 and 8.5.5, describe this performance impact.

It’s recommended to cache the entire FV in Post-Mem phase to speed up the FLASH
access and copy FvMain to memory (or decompress FvMainCompact).

Sections relevant to PEI are:

 8.2.2, Configure C,D,E,F segments as WP
 8.2.3, Enable Caching of Flash
 8.3.5, Decompress FvMain block in memory
 8.5.1, Memory operation algorithms
 8.5.4, Shadow PEIMs after Memory Discovered
 8.5.5, Shadow the PEI core
 8.5.6, Run More Code in Post-Mem than in Pre-Mem
 8.6.1, Reduce the number of FV Hobs
 8.6.2, Report CPU BIST as a Hob
41 February, 2010 Version 1.0

Performance Optimization
 8.8.1, PeiReportStatusCode
 8.9.1, Use CPU number for synchronization

8.1.3 DXE Phase
Lessons relevant to the DXE phase are:

 8.4, Drivers
 8.4.1, Avoid Legacy drivers/devices whenever possible
 8.5.1, Memory operation algorithms
 8.8.1, PeiReportStatusCode
 8.9.1, Use CPU number for synchronization

8.1.4 BDS Phase
BDS phase lessons are:

 8.4.2, BiosVideo Driver Enhancement
 8.4.3, Keyboard Driver Enhancement
 8.5, Memory
 8.7.1, Minimal Configuration Path for Fast Boot
 8.8.1, PeiReportStatusCode

8.2 Cache
CPU cache is the fastest memory bank in the system. To make good use of CPU cache is
critical for boot performance. For UEFI-compliant firmware development on IA
platforms, setting MTRRs is the only way to properly use CPU cache.

It’s valuable to check the MTRR settings in each phase to look for potential
enhancements.

8.2.1 Enable code cache for boot block
Relevant for SEC Phase and S3 Resume.

When configuring MTRRs, the boot block can be set as WP to enhance the PEI
performance.

Note: The WP mode, in IA processors, does not protect memory from writes. Instead, caching is
enabled for reads while writes go directly to memory and the corresponding cache line (if any) is
invalidated.

One should check the CPU type (using cpuid for example) before enabling the code
cache. Until recently, IA processors could not support code cache while using Non-
Eviction Mode (NEM). If it is supported, enabling the code cache is highly
recommended. This can greatly enhance execution performance prior to memory
initialization.

Below is the code sample to enable code cache in SEC.
42 February, 2010 Version 1.0

Lessons Learned
To enable code cache for 2-block FvRecovery (64KB for one block):

mov eax, 0FFFE0000h OR MTRR_MEMORY_TYPE_WP
xor edx, edx
mov ecx, CODE_CACHE_MTRR_PHYS_BASE
wrmsr
mov eax, NOT(20000h-1) OR MTRR_PHYSMASK_VALID
mov edx, 0Fh
mov ecx, CODE_CACHE_MTRR_PHYS_MASK
wrmsr

To enable code cache for 3-block FvRecovery (64KB for one block):

mov eax, 0FFFC0000h OR MTRR_MEMORY_TYPE_WP
xor edx, edx
mov ecx, CODE_CACHE_MTRR_PHYS_BASE_1
wrmsr
mov eax, NOT(40000h-1) OR MTRR_PHYSMASK_VALID
mov edx, 0Fh
mov ecx, CODE_CACHE_MTRR_PHYS_MASK_1
wrmsr
mov eax, 0FFFC0000h OR MTRR_MEMORY_TYPE_UC
xor edx, edx
mov ecx, CODE_CACHE_MTRR_PHYS_BASE_2
wrmsr
mov eax, NOT(10000h-1) OR MTRR_PHYSMASK_VALID
mov edx, 0Fh
mov ecx, CODE_CACHE_MTRR_PHYS_MASK_2
wrmsr

8.2.2 Configure C,D,E,F segments as WP
Relevant during PEI phase.

In order to speed up some legacy drivers like BiosVideo, configure the C,D,E,F
segments, in the 0xC0000 to 0xFFFFF memory range, as Write Protected (WP).

8.2.3 Enable Caching of Flash
Relevant during PEI phase.

Enabling caching of the FLASH area, for example: 0xFFF0000 – 0xFFFFFFFF, will result
in a significant improvement in pre-memory execution. On IA processors, use the
MTRRs to select a cache mode such as WP.

8.3 Flash

8.3.1 Be careful of all Flash-access operations
As the access to the Flash device is slow, attention should be paid to all Flash-access
operations. Two guidelines might be helpful:

 Never read FVs that we never use.
43 February, 2010 Version 1.0

Performance Optimization
 Never read the same FV twice from Flash device.

Sections 8.6.1 and 8.4 have more details.

8.3.2 Do things in memory rather than in Flash
The experiment shows that to read data or execute code in Flash is much slower than
the operations on memory. It’s worthwhile to shadow the content from Flash to Memory
after the memory is available.

 We can move PEI services to memory by shadowing PEI core. (See Section 8.5.5)
 We can improve the PPI performance by shadowing PEIM to memory. (See

Section 8.5.4)
 We can improve the decompression of FvMain by copying the compressed FvMain

from Flash to Memory before decompressing. (See Section 8.3.5)

8.3.3 S3 Resume: Access NV Storage as Little as Possible in Pre-Mem
The reason is the same for the code execution. Cache dominates the speed.

8.3.4 Enable SPI prefetching
Relevant during SEC phase.

If the flash chip is SPI, SPI prefetching can be enabled in SEC. (For ICH8, Bus 0, Dev
31, Func 0, Register BIOS_CNTL[3:2]=10b)

8.3.5 Decompress FvMain block in memory
Relevant during PEI phase.

On desktop, FvMain block is compressed as FvMainCompact FV and is decompressed in
DxeIpl PEIM. The decompression on Flash is slower than the decompression in memory.
So it’s recommended to copy the FvMainCompact FV to memory first and then do
decompression. If the flash chip is SPI and SPI prefetching is enabled, the performance
gap is not that big, but this trick is general for all types of flash chip and chip’s
configurations.

8.4 Drivers

8.4.1 Avoid Legacy drivers/devices whenever possible
Legacy Option ROMs use 16-bit code and need thunking from and to 32-bit or 64-bit
mode resulting in poor performance for these drivers. Native drivers are thus preferred
over legacy drivers.

For similar reasons, EFI boot is preferred over Legacy boot.

8.4.2 BiosVideo Driver Enhancement
Relevant during BDS phase.
44 February, 2010 Version 1.0

Lessons Learned
As was mentioned in Section 8.2.2, if we configure C,D,E,F segments as WP in PEI,
some legacy drivers will get improved performance. For BiosVideo, C segment is used
for VideoRom and we saw a big improvement on an Integrated Graphics Device (IGD)
and also some improvement with an external graphics card.

8.4.3 Keyboard Driver Enhancement
Relevant during BDS phase.

Do not do a full reset when calling EFI_SIMPLE_TEXT_IN_PROTOCOL.Reset() by
setting the second parameter to FALSE. This will save about 400ms.

Note: This optimization might leave some keyboards in an abnormal state after initialization.

8.5 Memory
Memory routines (copy, set and zero) are used in many places in the firmware code.
There are several commonly used memory operation algorithms, and the performance
analysis shows that different algorithms have different performance results depending
upon the boot phase.

8.5.1 Memory operation algorithms

8.5.1.1 MMX

This algorithm uses MMX registers in the processor. The Intel MMX technology was
introduced into the IA-32 architecture in the Pentium II processor family and Pentium
processor with MMX technology. The registers are 64-bit wide so the data transaction
unit is 64-bit (8 bytes).

8.5.1.2 XMM (SSE2)

The streaming SIMD extensions 2 (SSE2) were introduced into the IA-32 architecture in
the Pentium 4 and Intel Xeon processors. The registers are 128-bit wide so the data
transaction unit is 128-bit (16 bytes).

Table 1. C,D,E,F segments Caching Impact

Video
Card

C seg UC (ms) C seg WP (ms) Overall
Enhancement

(ms)ROM
Dispatch

BiosVideoChild
HandleInstall

ROM
Dispatch

BiosVideoChild
HandleInstall

IGD 2726 244 487 227 2256

GeForce2
MX400
PCI

4431 921 4308 846 188

Asus
PCIe

599 822 453 677 291
45 February, 2010 Version 1.0

Performance Optimization
Note: XMM feature must be enabled by setting the OSFXSR (CR0[9]) and OSXMMEXCPT (CR0[10])
bits.

8.5.1.3 REPSTR

The REPSTR algorithms use MOVS or STOS instruction with REP prefix. There are two
versions of implementations for REPSTR in regards with the data size. The first version
is to move one byte at a time until all data are transferred. The second version is to
move N bytes at a time until there are less than N bytes left and to move one byte at a
time for the left bytes. The N here could be 2 or 4 bytes on 32-bit mode and 2, 4 or 8
bytes on 64-bit mode. We use REPSTRN to represent the algorithm with N bytes
transaction unit.

8.5.2 S3 Resume: Memory-related Operations

8.5.2.1 Problem

The original algorithm used for memory operations uses MMX which is slow in Pre-Mem
phase without code cache.

8.5.2.2 Solution

Per investigation result, REPSTR1 is used for memory copy and REPSTR4 is used for
memory set and zero memory. This saves about 40ms.

8.5.3 BKMs to choose proper algorithms
Table 2 lists the BKMs summarized from the performance analysis for each phase. The
analysis is based on Processor E6850. The algorithm set is described as X (X1) / Y (Y1)
where X is the best algorithm for memory copy and X1 is the second best one, Y is the
best algorithm for memory set and zero memory, Y1 is the second best one.

NOTE:

1. The cache configurations that are marked as N/A cannot be mapped to a
particular usage model in Pre-boot environment.

2. The configurations are for Pre-Mem PEI phase.
3. The configuration is for DXE/BDS phase.
4. The configuration is for FvMainCompact shadowing (in DxeIpl) and frame buffer

operations.

Table 2. Recommended Memory Operation Algorithms

Code Uncached Code Cached

SPI FWH Memory SPI FWH Memory

Data
Uncached

N/A1 N/A1 REPSTR45 N/A1 N/A1 XMM
(MMX)4

Data
Cached

REPSTR1
(REPSTR4)
/ REPSTR4
(REPSTR1)2

REPSTR1
(REPSTR4)
/ REPSTR1
(REPSTR4)2

N/A1 REPSTR4
(MMX) /
REPSTR1
(REPSTR4)2

REPSTR1
(MMX) /
MMX
(REPSTR4)2

XMM
(REPSTR1)
/ REPSTR4
(XMM)3
46 February, 2010 Version 1.0

Lessons Learned
5. The configuration is for PEI core shadowing.

8.5.4 Shadow PEIMs after Memory Discovered
If a PEIM will be used after memory is discovered, it is better to be shadowed.

Note: Make sure that PEIMs are NOT shadowed in S3 boot path to avoid S3 failure.

8.5.4.1 PEIM shadowing without PI support

8.5.4.1.1 PEIM that is loaded after memory available

If the PEIM is ensured to be loaded after memory is available, a private PPI can be
installed as a sign indicating whether the PEIM is shadowed.

Please refer to the function PeimInitializeDxeIpl() in
Edk\Sample\Universal\DxeIpl\Pei\DxeLoad.c or
Edk\Sample\Universal\DxeIpl\Pei\DxeLoadX64.c for implementation details.

8.5.4.1.2 PEIM that is loaded before memory available

If the PEIM is loaded before memory is available, a callback can be registered for the
installation of PEI FV File Loader PPI (GUID is EFI_PEI_FV_FILE_LOADER_GUID). DxeIpl
will install this PPI so memory is available on callback.

8.5.4.2 PEIM shadowing with PI support

With the advent of PI support, the shadowing of PEIM is quite straight-forward. A new
PEI service is provided for this purpose: RegisterForShadow(). Assume the entry
point of PEIM is MyPeimInit().

EFI_STATUS
EFIAPI
MyPeimInit (
IN EFI_FFS_FILE_HEADER *FfsHeader,
IN EFI_PEI_SERVICES **PeiServices
);

Inside the MyPeimInit(), the PEIM can be shadowed like this:

(**PeiServices).RegisterForShadow ((EFI_PEI_FILE_HANDLE) FfsHeader);

Then when the memory is available, PEI core will shadow the PEIM automatically.

8.5.5 Shadow the PEI core

Note: PEI core shadowing is implemented in PI-compliant PEI but is not available in non-PI PEI. Also
make sure that PEI core is NOT shadowed in S3 boot path to avoid S3 failures.

As all PEI services are implemented in PEI core, if PEI core is not shadowed, the code of
PEI services will still be located on Flash after memory is installed. This will greatly
impact the Post-memory performance.
47 February, 2010 Version 1.0

Performance Optimization
8.5.6 Run More Code in Post-Mem than in Pre-Mem
S3 Resume

In S3 boot path, the code cache will be turned on after the memory is installed. Code
will run much faster in Post-Mem.

If the PEIM is dispatched in Post-Mem phase, nothing needs changing as all the code in
this PEIM will be executed on cache.

If the PEIM is dispatched in Pre-Mem phase, the simplest way to schedule a piece of
code to run in Post-Mem phase is to register a callback notification of
MemoryDiscovered PPI.

8.6 HOBs

8.6.1 Reduce the number of FV Hobs
PEI

The FV hob is created in some platform PEIMs and transfers the discovered FV’s
information to DXE phase. DXE core searches DXE drivers in the FV reported in this FV
hob list. It wastes time to search something in FV on Flash, so it is worth to only put
necessary Flash-FV into FV hob list or put memory-FV into FV host list.

There are two possible enhancements.

 Only build FV HOBs with FVs that contain DXE drivers. As the Recovery FV and
NVStorage FV contains no DXE drivers, Dozens of milliseconds can be saved by
removing FvRecovery & NVStorage from the HOB.

 Don’t generate FvMainCompact FV or mark it as EFI_HOB_TYPE_UNUSED. As it has
already been decompressed and put into memory. This prevents FvMainCompact FV
from being decompressed again in DXE, saving hundreds of milliseconds.

PIWG specification gives a chance. It introduce a new protocol
EFI_FIRMWARE_VOLUME2_PROTOCOL which contains GetInfo() interface to get Fv
detail information. So the long term solution is that in PEI phase, all FV in flash are
reported to Fv hob list but DXE core only search DXE driver in memory based FV in FV
hob list by judging EFI_FIRMWARE_VOLUME2_PROTOCOL.GetInfo().

8.6.2 Report CPU BIST as a Hob
The CPU BIST info is collected in SEC and passed to PEI. We can build this hob and pass
to DXE so that MpCpu Driver doesn’t need to re-calculate the CPU number and can
depend on the CPU number to do synchronization.

8.7 Boot Mode Utilization

8.7.1 Minimal Configuration Path for Fast Boot
Relevant during BDS phase.
48 February, 2010 Version 1.0

Lessons Learned
To make a quick boot, not all devices need to be started. The basic idea of minimal
configuration path enhancement is to only start devices that are necessary for booting.
For example, during the EFI boot to HD, only the HD, console input and console output
devices need to be started even if the USB, CDROM or other devices are also connected
to board. Figure 11 shows the minimal configuration path.

The minimal configuration path solution will greatly speed up the boot, especially EFI
boot. For example, a test platform with one HD and one USB disk connected was two
seconds faster using a minimal configuration as compared with the full configuration
boot path.

Figure 11. Minimal Configuration Path

8.7.2 S3 Resume Boot Path
The S3 resume boot path is a special boot path that causes the Firmware to take
actions different from those in the normal boot path. In this special path, the Firmware
derives pre-saved data about the platform’s configuration from persistent storage and
configures the platform before jumping to the operating system’s waking vector.

Platform initialization can be viewed as a flow of the following:

 I/O operations
 Memory operations
49 February, 2010 Version 1.0

Performance Optimization
 Accessing to the PCI configuration space
 A collection of platform-specific actions that can be abstracted by Pre-EFI

Initialization Module (PEIM) PEIM-to-PEIM Interface (PPIs)

The goal of an S3 resume is to restore the platform to its pre-boot configuration.

8.7.2.1 PEI Phase in S3 Resume Boot Path
The PEI phase initializes the platform with the minimum configuration that is needed to
enable the execution of DXE phase. During the S3 resume boot path, the Firmware still
needs to restore the PEI portion of configuration.

PEIMs can use the GetBootMode() PEI service function to become aware of what the
current boot path is. This awareness enables the platform to restore more efficiently
because the same PEIM can save the configuration during a normal boot path and take
advantage of that configuration in the S3 resume boot path.

8.7.2.2 DXE Phase in S3 Resume Boot Path
DXE phase in S3 resume boot path is not actually a DXE. In consideration of efficiency, the I/O
and memory operations, the PCI configuration space access and SMBus configurations are saved
as EFI Boot Script in normal boot path, retrieved and executed in S3 boot path. The Boot Scripts
are executed in S3Resume PEIM.

8.7.3 PEI Dependency Expressions
S3 Resume, PEI

8.7.3.0.1 Problem

Before dispatching each PEIM, the core dispatcher checks whether the prerequisite PPIs
have been installed. This procedure provides a sound architecture, however, it burdens
S3 resume time if the dependency expression is already satisfied.

8.7.3.0.2 Solution

The PI specification provides a way to impose a dispatching order of PEIMs in PEI
phase. An apriori file can be added to the firmware to specify the exact order PEIMs are
dispatched as is defined in the PI specification volume 1:

The PEI apriori file is a special file that may optionally be present in a firmware
volume, and its main purpose is to provide a greater degree of flexibility in the
firmware design of a platform. Specifically, the apriori file complements the
dependency expression mechanism of PEI by stipulating a series of modules
which need be dispatched in a prescribed order.

Note: Use extreme care when listing PEIMs in the apriori file since these files will NOT have their
dependencies checked. This could potentially result in PEIMs being started that have not had
their dependencies satisfied.

Non-PI builds don’t have this feature so PI builds are recommended for performance
considerations.
50 February, 2010 Version 1.0

Lessons Learned
8.7.4 Avoid PEG Training in S3

8.7.4.1 Problem

On some platforms, it is mandatory to poll more than 200ms before MRC to train a PEG.
But this is not necessary in S3 resume boot path as no hardware changes occur during
S3 from the last normal boot.

8.7.4.2 Solution
 Save the state of PEG, IGD and PCI video card (whether they exist and their mode

etc.) in normal boot path to NV storage and retrieve it in S3.
 As there’s no restriction for the graphics initialization’s execution before MRC, we

can put the code to Post-Mem in S3.

8.8 Debug Output

8.8.1 PeiReportStatusCode

8.8.1.1 Problem

This is only for debug purpose and could be removed for production tip.

8.8.1.2 Solution

Disable PEI_REPORT_STATUS_CODE in Config.env.

8.9 MP Configuration

8.9.1 Use CPU number for synchronization
Relevant during SEC, PEI, and DXE phases.

In order to execute the microcode update and collect BIST info, SEC needs to
synchronize among all CPUs. We recommend that CPU number is used for
synchronization wherever possible. The sequence could be:

 BSP updates microcode
 BSP wakes up all APs to update microcode and collect CPU number at the same time
 BSP busy waits a constant amount of time (~10ms) for APs to finish
 BSP enables Temporary Memory (which will be used for store BIST)
 BSP wakes up all APs to collect BIST info
 BSP uses CPU number for synchronization
51 February, 2010 Version 1.0

Performance Optimization
8.10 General Coding Issues

8.10.1 Code Alignment Issue

8.10.1.1 Problem

The execution performance of code on SPI FLASH chip without code cache is very
sensitive to the code alignment. And it is still unknown how to align the code to make
the execution faster.

8.10.1.2 Solution

The loop code is normally a hotspot and more sensitive to alignment issue because it
will be executed several times. NOP instructions can be put before the code to adjust
the alignment to see if the performance is better.

To avoid writing code with loops is another option but it might enlarge the image size.

A technique to globally adjust the alignment is by putting the APRIORI file list FFS to
the top of all PEIMS and declaring APRIORI property for PEIMs in build DSC file. This
only applies to PI build tips though. The background is that the size of APRIORI file list
FFS depends on the number of PEIMs that have the APRIORI property so the alignment
of PEIMs after this FFS varies with the different size of APRIORI file list FFS or the
number of PEIMs that have the APRIORI property. More or less APRIORI properties can
be put to PEIMs to see if the Pre-Mem phase is faster or not. Normally all PEIMs before
MemoryInit PEIM should be declared with APRIORI property and the PEIMs after
MemoryInit PEIM could be used for alignment tuning.

The example below shows the way to tune the alignment by adding/removing APRIORI
property to the PEIMs. The directory prefix is removed for convenience. Here is the
initial declaration in a DSC.

AprioriList.inf FV=FvRecovery
PEIM1.inf APRIORI=FvRecovery:1
MemoryInit.inf APRIORI=FvRecovery:2
PEIM2.inf
PEIM3.inf

Now we try to add more APRIORIs to PEIMs after MemoryInit PEIM.

AprioriList.inf FV=FvRecovery
PEIM1.inf APRIORI=FvRecovery:1
MemoryInit.inf APRIORI=FvRecovery:2
PEIM2.inf APRIORI=FvRecovery:3
PEIM3.inf

We assume that it is faster and try to add more.

AprioriList.inf FV=FvRecovery
PEIM1.inf APRIORI=FvRecovery:1
MemoryInit.inf APRIORI=FvRecovery:2
PEIM2.inf APRIORI=FvRecovery:3
PEIM3.inf APRIORI=FvRecovery:4

We stop at the former configuration if it is slower or we continue the process until we
find it slower.
52 February, 2010 Version 1.0

Lessons Learned
8.10.2 Predicate Expressions
The ordering of terms in predicate expressions can have a significant impact on
performance. This is because only enough of the expression has to be evaluated to
determine the outcome. For example, the first term in an OR expression that evaluates
to TRUE is sufficient to determine that the entire OR expression will be TRUE.

The following code sample consists of a predicate expression within a for loop. The
predicate expression is a compound AND expression with four terms. Each term is itself
a simple predicate expression.

This is a real example from a previous version of the EDK II code and was used in the
implementation of the PERF_END functionality. It finds the first open (EndTimeStamp
is zero) performance trace record matching the Handle, Token, and Module parameters
of a PERF_END invocation.

for (Index = 0; Index < NumberOfEntries; Index++) {
 if ((LogEntryArray[Index].Handle == (EFI_PHYSICAL_ADDRESS) (UINTN) Handle) &&
 AsciiStrnCmp (LogEntryArray[Index].Token, Token, PEI_PERFORMANCE_STRING_LENGTH) == 0 &&
 AsciiStrnCmp (LogEntryArray[Index].Module, Module, PEI_PERFORMANCE_STRING_LENGTH) == 0 &&
 LogEntryArray[Index].EndTimeStamp == 0
) {
 break;
 }
}

While there is nothing really wrong with this code, a little knowledge of the data it will
be working on will allow us to significantly speed things up. Again taking from a real-
world example:

1. NumberOfEntries = 25,172
2. Target entry is at Index 25,159
3. There are 532 completed measurement records with the same Handle, Token,

and Module values prior to the target.
4. There are 6 measurement records with the same Handle and different Token and

Module values prior to the target.
5. There are 25,157 completed entries prior to the target.

From this information, we can see that the terms, in order of importance, are:

1. EndTimeStamp
2. Handle
3. Module
4. Token

We also can determine that this ordering is valid for any measurement. Re-ordering
the predicate expression using this information produces:

for (Index = 0; Index < NumberOfEntries; Index++) {
 if (LogEntryArray[Index].EndTimeStamp == 0 &&
 LogEntryArray[Index].Handle == (EFI_PHYSICAL_ADDRESS) (UINTN) Handle &&
 AsciiStrnCmp (LogEntryArray[Index].Module, Module, PEI_PERFORMANCE_STRING_LENGTH) == 0 &&
 AsciiStrnCmp (LogEntryArray[Index].Token, Token, PEI_PERFORMANCE_STRING_LENGTH) == 0
) {
 break;
 }
}

The new ordering results in 531 fewer 64-bit integer comparisons and 1,069 fewer
string comparisons for this single PERF_END invocation. Considering that there will be
25,170 PERF_END invocations one can see how the savings add up to a sizable amount.
53 February, 2010 Version 1.0

Performance Optimization
8.10.3 Structure Member Alignment
The way structure members are organized can affect both execution performance and
code size. Unaligned data accesses incur a performance penalty. Alignment rules can
result in additional space, padding, added between members. When data is properly
organized there is no performance penalty in accessing it and code is smaller.

By applying some simple rules during the design of data structures, alignment can be
maintained and memory use minimized.

The following rules apply to most modern microprocessors. It is easy to add rules for
data types not covered here. In particular, pay attention to pointers which may change
in length for different processor architectures.

1. Group members by the size of their base type: largest to smallest.
2. Pointers should follow integer members that are the same size, or larger, than

the largest size of pointers. For example: on Intel Architecture processors
pointers are either 64 bits or 32 bits in length. By placing pointers after INT64
members and before INT32 members the same structure will maintain
alignment whether compiled for IA32, X64, or IPF; without wasted space due to
padding.

An example of a structure following these rules follows. Any member can be removed
and alignment will be maintained without padding. If the rules are followed while
adding members, alignment will also be maintained without padding.

struct AnExample {
 INT64 BigNum;
 INT64 BigArray[5];
 UCHAR *CharPtr; // May be 64 or 32 bit
 INT32 MediumNum;
 INT32 MediumArray[7];
 INT16 ShortNum;
 INT16 ShortArray[9];
 INT8 ByteNum;
 INT8 ByteArray[33];
};

Instances of this structure will maintain alignment, without padding.
54 February, 2010 Version 1.0

Appendix A: Sample Grouped Report
Shell> dp -v -t 2000

DP Build Version: 2.2
System Performance Timer Frequency: 2,267,684 (KHz)
System Performance Timer counts UP from 0x0 to 0xFFFFFFFFFFFFFFFF
Measurements less than 1,000 microseconds are not displayed.

==[Major Phases]========
 SEC Phase Duration: 174589 (us)
 PEI Phase Duration: 2910 (ms)
 DXE Phase Duration: 10050 (ms)
 BDS Phase Duration: 12926 (ms)
Total Duration: 26060 (ms)

==[Drivers by Handle]========
Index: Handle Driver Name Description Time(us)

 81: [45] FwBlockService StartImage: 4949
 94: [4E] MiscSubclass StartImage: 559927
 97: [4F] FtwLite StartImage: 36132
 101: [51] VariableRuntimeDxe StartImage: 28974
 109: [55] MonotonicCounterRuntimeDxe StartImage: 31615
 121: [123] StartImage: 8465003
 124: [5B] Platform StartImage: 8491
 148: [69] MemorySubClass StartImage: 98715
 155: [6C] MpCpu StartImage: 33989
 163: [70] GenericMemoryTestDxe StartImage: 175475
 179: [78] SmmBase StartImage: 4434
 1091: [AC] LegacyBiosDxe StartImage: 15850
 2355: [B0] PciBusDxe DB:Start: 9955
 2442: [93] BiosVideoDxe DB:Start: 5552333
 2464: [9E] GraphicsConsoleDxe DB:Start: 1522423
 2480: [95] ConPlatformDxe DB:Start: 8394
 2499: [99] ConSplitterDxe DB:Start: 1801058
 2796: [9F] TerminalDxe DB:Start: 5517
 2854: [94] ConPlatformDxe DB:Start: 4842
 2869: [95] ConPlatformDxe DB:Start: 3780
 2901: [99] ConSplitterDxe DB:Start: 420482
 3035: [B4] EhciDxe DB:Start: 23926
 3071: [B9] UsbBusDxe DB:Start: 23964
 3118: [B4] EhciDxe DB:Start: 23924
 3154: [B9] UsbBusDxe DB:Start: 346304
 3235: [B9] UsbBusDxe DB:Start: 59998
 3316: [B9] UsbBusDxe DB:Start: 59999
 3397: [B9] UsbBusDxe DB:Start: 287169
 3431: [B5] UsbKbDxe DB:Start: 10650
 3628: [B9] UsbBusDxe DB:Start: 60002
 3709: [B9] UsbBusDxe DB:Start: 60003
 7277: [80] Unknown Driver Name DB:Start: 149014
 7355: [82] SnpDxe DB:Start: 147272
 7400: [85] Ip4Dxe DB:Start: 2019
 7442: [8C] IScsiDxe DB:Start: 5861
55 February, 2010 Version 1.0

Performance Optimization
 8313: [80] Unknown Driver Name DB:Start: 149030
 8391: [82] SnpDxe DB:Start: 147277
 8436: [85] Ip4Dxe DB:Start: 2021
 8478: [8C] IScsiDxe DB:Start: 5875
10876: [B9] UsbBusDxe DB:Start: 19080
10928: [A2] Fat DB:Start: 2105
10956: [AF] PartitionDxe DB:Start: 2895
11046: [A2] Fat DB:Start: 5030
11162: [AF] PartitionDxe DB:Start: 2898
11749: [A6] IdeBusDxe DB:Start: 43068
11911: [A6] IdeBusDxe DB:Start: 43072
21329: [B9] UsbBusDxe DB:Start: 2894
21819: [AF] PartitionDxe DB:Start: 2863
22362: [A6] IdeBusDxe DB:Start: 2005
22477: [A6] IdeBusDxe DB:Start: 2007
23196: [AF] PartitionDxe DB:Start: 2895
23949: [B9] UsbBusDxe DB:Start: 3261
24332: [120] Shell LoadImage: 3819
25700: [123] LoadImage: 3532
25701: [123] StartImage: 18024
25924: [123] LoadImage: 3567
25925: [123] StartImage: 544666
25972: [123] LoadImage: 3583
25973: [123] StartImage: 4015088
26020: [123] LoadImage: 3570
26021: [123] StartImage: 110776
26068: [123] LoadImage: 3582
26069: [123] StartImage: 76964
26116: [123] LoadImage: 3592
26117: [123] StartImage: 78441
26164: [123] LoadImage: 3599
26165: [123] StartImage: 78486
26388: [122] Unknown Driver Name LoadImage: 3623

==[PEIMs]========
Index Pointer Value Instance Information Token ET (us)

 12: 0x0000000000000000 Unknown Driver Name PEIM 4236
 15: 0x0000000000000000 Unknown Driver Name PEIM 2338678

==[General]========
Index Name(GUID) Description Time(us)

 3: PreMem 2377641
 12: PEIM 4236
 15: PEIM 2338678
 16: PostMem 525775
 17: DisMem 26528
 22: DxeMain CoreInitializeDispatcher 506277
 23: DxeMain CoreDispatcher 9544115
 2274: BDS PlatformBds 12905937
 2275: PlatformBdsPolicyBehavior PlatformBds 12889607
 2276: Full Config PBPB BootMode 12886240
 2277: PlatformBdsConnectConsole 10416684
 2278: PlatformBdsForceActiveVga ConnectConsole 8904134
56 February, 2010 Version 1.0

 2279: Top ForceActiveVga 15844
 2399: GetGopDevicePath ForceActiveVga 8885326
 2400: Top GetGopDevicePath 8885314
 2541: Bottom ForceActiveVga 2947
 2586: ConnectAllDefaultConsoles ConnectConsole 1449801
 2986: BDS ConOut 22564156
 3823: Diagnostics & Connect Seq. Full Config 2205635
 3912: BDS ConOut 24136123
11750: IDE DiscoverIdeDevice 20481
11752: IDE DiscoverIdeDevice 20480
11754: IDE Finish IDE detection 25021144
11912: IDE DiscoverIdeDevice 20480
11914: IDE DiscoverIdeDevice 20480
11916: IDE Finish IDE detection 25070295
22363: IDE Finish IDE detection 25634842
22478: IDE Finish IDE detection 25644830
23548: BDS ConOut 25725097
24197: PlatformBdsEnterFrontPage Full Config 249482
24199: Zero Timeout Full Config 14296

==[Cumulative]========
(Times in microsec.) Cumulative Average Shortest Longest
 Name Count Duration Duration Duration Duration

 LoadImage: 131 39072 298 5 3819
 StartImage: 119 14460491 121516 1 8465003
 DB:Start: 118 11049390 93638 0 5552333
 DB:Support: 25965 11298 0 0 99

==[Statistics]========
There were 26389 measurements taken, of which:
 2 are incomplete.
 4 are major execution phases.
 26,319 have non-NULL handles, 70 are NULL.
 15 are PEIMs.
 66 are global measurements.
57 February, 2010 Version 1.0

Performance Optimization
58 February, 2010 Version 1.0

Appendix B: Sample Sequential Report
Shell> dp -A

DP Build Version: 2.2
System Performance Timer Frequency: 2,266,972 (KHz)

==[Sequential Trace Records]========

Index Handle Module Token ET (us)

 1: 0x00000000 SEC 174644
 2: 0x00000000 PEI 2910941
 3: 0x00000000 PreMem 2378388
 4: 0x00000000 PEIM 1592
 5: 0x00000000 PEIM 1281
 6: 0x00000000 PEIM 1250
 7: 0x00000000 PEIM 1313
 8: 0x00000000 PEIM 1312
 9: 0x00000000 PEIM 31
 10: 0x00000000 PEIM 1247
 11: 0x00000000 PEIM 279
 12: 0x00000000 PEIM 4238
 13: 0x00000000 PEIM 1406
 14: 0x00000000 PEIM 597
 15: 0x00000000 PEIM 2339412
 16: 0x00000000 PostMem 525940
 17: 0x00000000 DisMem 26537
 19: 0x00000000 PEIM 1064
 21: 0x00000000 DXE 10053926
 22: 0x00000000 DxeMain CoreInitializeDisp 506436
 23: 0x00000000 DxeMain CoreDispatcher 9547112
 24: 0xBE90FF98 PcdDxe LoadImage: 10
 25: 0xBE90FF98 PcdDxe StartImage: 1005
 26: 0xBE90F898 DxeStatusCode LoadImage: 9
 27: 0xBE90F898 DxeStatusCode StartImage: 1036
 28: 0xBE90F318 SectionExtractionDxe LoadImage: 6
 29: 0xBE90F318 SectionExtractionDxe StartImage: 1003
 30: 0xBE8BED98 FvToFv2Thunk LoadImage: 6
 31: 0xBE8BED98 FvToFv2Thunk StartImage: 1004
 32: 0xBE8BE498 CpuIoDxe LoadImage: 6
 33: 0xBE8BE498 CpuIoDxe StartImage: 1003
 34: 0xBE8BCF18 HiiDatabase LoadImage: 24
 35: 0xBE8BCF18 HiiDatabase StartImage: 1005
 36: 0xBE8BC598 DataHubDxe LoadImage: 6
 37: 0xBE8BC598 DataHubDxe StartImage: 1003
 38: 0xBE8BC018 Legacy8259 LoadImage: 6
 39: 0xBE8BC018 Legacy8259 StartImage: 1021
 40: 0xBE8A9A98 RuntimeDxe LoadImage: 6
 41: 0xBE8A9A98 RuntimeDxe StartImage: 1086
 42: 0xBE8A9598 MemoryEccInit LoadImage: 6
 43: 0xBE8A9598 MemoryEccInit StartImage: 1
 44: 0xBE8A9198 SecurityStubDxe LoadImage: 5
 45: 0xBE8A9198 SecurityStubDxe StartImage: 4
59 February, 2010 Version 1.0

Performance Optimization
 46: 0xBE8A6C98 DpcDxe LoadImage: 7
 47: 0xBE8A6C98 DpcDxe StartImage: 1003
 48: 0xBE8A6718 DevicePathDxe LoadImage: 19
 49: 0xBE8A6718 DevicePathDxe StartImage: 1004
 50: 0xBE87DF98 LoadImage: 8
 51: 0xBE87DF98 StartImage: 20
 52: 0xBE87DF18 IchSpi LoadImage: 10
60 February, 2010 Version 1.0

6
1

Fe
b
ru

ar
y,

 2
0
1
0

V
er

si
o
n
 1

.0

-
-
-
-
-
-
-
-
-

D
x
e
M
a
i
n

D
x
e
M
a
i
n

A
p

p
en

d
ix

 C
:

S
am

p
le

 R
aw

 R
ep

o
rt

S
h
e
l
l
>

d
p

-
R

D
P

B
u
i
l
d

V
e
r
s
i
o
n
:

2
.
2

S
y
s
t
e
m

P
e
r
f
o
r
m
a
n
c
e

T
i
m
e
r

F
r
e
q
u
e
n
c
y
:

2
,
2
6
6
,
9
5
6

(
K
H
z
)

=
=
[

R
A
W

T
r
a
c
e

]
=
=
=
=
=
=
=
=

I
n
d
e
x

H
a
n
d
l
e

S
t
a
r
t

C
o
u
n
t

E
n
d

C
o
u
n
t

T
o
k
e
n

M
o
d
u
l
e

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

1
:

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
1
7
9
9
2
8
1
9

S
E
C

2
:

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
1
7
9
9
2
8
1
9

0
0
0
0
0
0
0
1
A
0
E
E
3
D
E
5

P
E
I

3
:

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
1
7
9
9
2
8
1
9

0
0
0
0
0
0
0
1
5
8
F
8
9
5
9
5

P
r
e
M
e
m

4
:

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
1
8
5
9
E
B
C
1

0
0
0
0
0
0
0
0
1
8
9
1
0
0
A
D

P
E
I
M

5
:

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
1
8
9
C
D
A
C
1

0
0
0
0
0
0
0
0
1
8
C
9
2
F
8
D

P
E
I
M

6
:

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
1
8
D
1
D
3
4
9

0
0
0
0
0
0
0
0
1
8
F
D
1
2
B
1

P
E
I
M

7
:

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
1
9
0
1
6
8
0
1

0
0
0
0
0
0
0
0
1
9
2
E
D
3
7
1

P
E
I
M

8
:

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
1
9
3
5
4
D
C
D

0
0
0
0
0
0
0
0
1
9
6
2
B
1
4
5

P
E
I
M

9
:

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
1
9
6
8
1
B
E
1

0
0
0
0
0
0
0
0
1
9
6
9
3
1
B
D

P
E
I
M

1
0
:

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
1
9
6
F
A
A
4
D

0
0
0
0
0
0
0
0
1
9
9
A
C
D
8
1

P
E
I
M

1
1
:

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
1
9
9
C
F
B
1
9

0
0
0
0
0
0
0
0
1
9
A
6
A
A
6
1

P
E
I
M

1
2
:

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
1
9
A
A
F
F
1
D

0
0
0
0
0
0
0
0
1
A
3
D
9
9
2
5

P
E
I
M

1
3
:

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
1
A
4
3
0
4
A
1

0
0
0
0
0
0
0
0
1
A
7
3
A
9
8
5

P
E
I
M

1
4
:

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
1
A
7
9
0
E
2
1

0
0
0
0
0
0
0
0
1
A
8
D
B
D
1
D

P
E
I
M

1
5
:

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
1
A
9
4
3
5
A
5

0
0
0
0
0
0
0
1
5
6
A
F
6
A
1
D

P
E
I
M

1
6
:

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
1
5
8
F
B
0
C
D
1

0
0
0
0
0
0
0
1
A
0
0
B
F
D
D
5

P
o
s
t
M
e
m

1
7
:

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
1
5
8
F
C
1
B
F
5

0
0
0
0
0
0
0
1
5
C
9
2
1
0
3
1

D
i
s
M
e
m

1
9
:

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
1
5
D
F
E
7
B
F
D

0
0
0
0
0
0
0
1
5
E
2
3
5
1
5
1

P
E
I
M

2
1
:

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
1
A
0
E
E
4
0
4
1

0
0
0
0
0
0
0
6
E
F
7
0
1
A
9
5

D
X
E

2
2
:

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
1
A
0
F
B
3
D
8
D

0
0
0
0
0
0
0
1
E
5
6
9
7
F
D
1

C
o
r
e
I
n
i
t
i
a
l
i
z
e
D
i
s
p
a
t
c
h
e
r

2
3
:

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
1
E
5
6
9
8
6
6
9

0
0
0
0
0
0
0
6
E
F
7
0
1
2
B
1

C
o
r
e
D
i
s
p
a
t
c
h
e
r

2
4
:

0
0
0
0
0
0
0
0
B
E
9
0
F
F
9
8

0
0
0
0
0
0
0
1
E
5
6
B
2
4
1
5

0
0
0
0
0
0
0
1
E
5
6
B
8
4
A
5

L
o
a
d
I
m
a
g
e
:

2
5
:

0
0
0
0
0
0
0
0
B
E
9
0
F
F
9
8

0
0
0
0
0
0
0
1
E
5
6
B
8
7
C
1

0
0
0
0
0
0
0
1
E
5
8
E
5
3
7
9

S
t
a
r
t
I
m
a
g
e
:

2
6
:

0
0
0
0
0
0
0
0
B
E
9
0
F
8
9
8

0
0
0
0
0
0
0
1
E
5
8
E
5
4
9
1

0
0
0
0
0
0
0
1
E
5
8
E
A
5
5
D

L
o
a
d
I
m
a
g
e
:

2
7
:

0
0
0
0
0
0
0
0
B
E
9
0
F
8
9
8

0
0
0
0
0
0
0
1
E
5
8
E
A
8
1
5

0
0
0
0
0
0
0
1
E
5
B
2
8
4
9
9

S
t
a
r
t
I
m
a
g
e
:

2
8
:

0
0
0
0
0
0
0
0
B
E
9
0
F
3
1
8

0
0
0
0
0
0
0
1
E
5
B
2
8
5
A
D

0
0
0
0
0
0
0
1
E
5
B
2
C
1
1
1

L
o
a
d
I
m
a
g
e
:

2
9
:

0
0
0
0
0
0
0
0
B
E
9
0
F
3
1
8

0
0
0
0
0
0
0
1
E
5
B
2
C
3
7
1

0
0
0
0
0
0
0
1
E
5
D
5
7
A
B
1

S
t
a
r
t
I
m
a
g
e
:

3
0
:

0
0
0
0
0
0
0
0
B
E
8
B
E
D
9
8

0
0
0
0
0
0
0
1
E
5
D
5
7
B
A
1

0
0
0
0
0
0
0
1
E
5
D
5
B
1
A
1

L
o
a
d
I
m
a
g
e
:

3
1
:

0
0
0
0
0
0
0
0
B
E
8
B
E
D
9
8

0
0
0
0
0
0
0
1
E
5
D
5
B
3
B
5

0
0
0
0
0
0
0
1
E
5
F
8
7
4
C
9

S
t
a
r
t
I
m
a
g
e
:

3
2
:

0
0
0
0
0
0
0
0
B
E
8
B
E
4
9
8

0
0
0
0
0
0
0
1
E
5
F
8
7
5
9
9

0
0
0
0
0
0
0
1
E
5
F
8
B
0
0
9

L
o
a
d
I
m
a
g
e
:

3
3
:

0
0
0
0
0
0
0
0
B
E
8
B
E
4
9
8

0
0
0
0
0
0
0
1
E
5
F
8
B
2
8
9

0
0
0
0
0
0
0
1
E
6
1
B
6
9
B
1

S
t
a
r
t
I
m
a
g
e
:

3
4
:

0
0
0
0
0
0
0
0
B
E
8
B
C
F
1
8

0
0
0
0
0
0
0
1
E
6
1
B
6
A
A
D

0
0
0
0
0
0
0
1
E
6
1
C
4
4
B
1

L
o
a
d
I
m
a
g
e
:

3
5
:

0
0
0
0
0
0
0
0
B
E
8
B
C
F
1
8

0
0
0
0
0
0
0
1
E
6
1
C
4
7
8
D

0
0
0
0
0
0
0
1
E
6
3
F
0
B
C
5

S
t
a
r
t
I
m
a
g
e
:

3
6
:

0
0
0
0
0
0
0
0
B
E
8
B
C
5
9
8

0
0
0
0
0
0
0
1
E
6
3
F
0
C
9
5

0
0
0
0
0
0
0
1
E
6
3
F
4
9
4
9

L
o
a
d
I
m
a
g
e
:

3
7
:

0
0
0
0
0
0
0
0
B
E
8
B
C
5
9
8

0
0
0
0
0
0
0
1
E
6
3
F
4
B
A
1

0
0
0
0
0
0
0
1
E
6
6
2
0
1
F
1

S
t
a
r
t
I
m
a
g
e
:

3
8
:

0
0
0
0
0
0
0
0
B
E
8
B
C
0
1
8

0
0
0
0
0
0
0
1
E
6
6
2
0
2
C
D

0
0
0
0
0
0
0
1
E
6
6
2
3
E
D
1

L
o
a
d
I
m
a
g
e
:

3
9
:

0
0
0
0
0
0
0
0
B
E
8
B
C
0
1
8

0
0
0
0
0
0
0
1
E
6
6
2
4
1
3
5

0
0
0
0
0
0
0
1
E
6
8
5
9
A
A
1

S
t
a
r
t
I
m
a
g
e
:

4
0
:

0
0
0
0
0
0
0
0
B
E
8
A
9
A
9
8

0
0
0
0
0
0
0
1
E
6
8
5
9
B
7
D

0
0
0
0
0
0
0
1
E
6
8
5
D
9
6
D

L
o
a
d
I
m
a
g
e
:

4
1
:

0
0
0
0
0
0
0
0
B
E
8
A
9
A
9
8

0
0
0
0
0
0
0
1
E
6
8
5
D
C
2
D

0
0
0
0
0
0
0
1
E
6
A
B
6
D
5
D

S
t
a
r
t
I
m
a
g
e
:

4
2
:

0
0
0
0
0
0
0
0
B
E
8
A
9
5
9
8

0
0
0
0
0
0
0
1
E
6
A
B
6
E
7
5

0
0
0
0
0
0
0
1
E
6
A
B
A
3
A
9

L
o
a
d
I
m
a
g
e
:

4
3
:

0
0
0
0
0
0
0
0
B
E
8
A
9
5
9
8

0
0
0
0
0
0
0
1
E
6
A
B
A
6
8
9

0
0
0
0
0
0
0
1
E
6
A
B
B
6
E
9

S
t
a
r
t
I
m
a
g
e
:

4
4
:

0
0
0
0
0
0
0
0
B
E
8
A
9
1
9
8

0
0
0
0
0
0
0
1
E
6
A
B
B
7
D
1

0
0
0
0
0
0
0
1
E
6
A
B
E
8
C
D

L
o
a
d
I
m
a
g
e
:

6
2

Fe
b
ru

ar
y,

 2
0
1
0

V
er

si
o
n
 1

.0

4
5
:

0
0
0
0
0
0
0
0
B
E
8
A
9
1
9
8

0
0
0
0
0
0
0
1
E
6
A
B
F
1
C
5

0
0
0
0
0
0
0
1
E
6
A
C
1
7
6
1

S
t
a
r
t
I
m
a
g
e
:

4
6
:

0
0
0
0
0
0
0
0
B
E
8
A
6
C
9
8

0
0
0
0
0
0
0
1
E
6
A
C
1
8
B
1

0
0
0
0
0
0
0
1
E
6
A
C
5
A
4
D

L
o
a
d
I
m
a
g
e
:

4
7
:

0
0
0
0
0
0
0
0
B
E
8
A
6
C
9
8

0
0
0
0
0
0
0
1
E
6
A
C
5
D
2
5

0
0
0
0
0
0
0
1
E
6
C
F
1
4
0
1

S
t
a
r
t
I
m
a
g
e
:

4
8
:

0
0
0
0
0
0
0
0
B
E
8
A
6
7
1
8

0
0
0
0
0
0
0
1
E
6
C
F
1
5
0
9

0
0
0
0
0
0
0
1
E
6
C
F
B
D
6
5

L
o
a
d
I
m
a
g
e
:

4
9
:

0
0
0
0
0
0
0
0
B
E
8
A
6
7
1
8

0
0
0
0
0
0
0
1
E
6
C
F
C
0
6
D

0
0
0
0
0
0
0
1
E
6
F
2
7
B
D
9

S
t
a
r
t
I
m
a
g
e
:

5
0
:

0
0
0
0
0
0
0
0
B
E
8
7
D
F
9
8

0
0
0
0
0
0
0
1
E
6
F
2
7
C
D
D

0
0
0
0
0
0
0
1
E
6
F
2
C
9
1
1

L
o
a
d
I
m
a
g
e
:

5
1
:

0
0
0
0
0
0
0
0
B
E
8
7
D
F
9
8

0
0
0
0
0
0
0
1
E
6
F
2
C
C
1
9

0
0
0
0
0
0
0
1
E
6
F
3
8
4
C
9

S
t
a
r
t
I
m
a
g
e
:

5
2
:

0
0
0
0
0
0
0
0
B
E
8
7
D
F
1
8

0
0
0
0
0
0
0
1
E
6
F
3
8
6
2
D

0
0
0
0
0
0
0
1
E
6
F
3
E
5
C
D

L
o
a
d
I
m
a
g
e
:

Appendix D: Pre-defined Measurements

The following tables list, by package, the measurement points which are pre-defined in
EDK II. Platform-specific measurement points may also be present depending upon the
codebase being used and are beyond the scope of this document.

Table 3. MdeModulePkg Measurement Points

Token Module Description

Core/Dxe/DxeMain.c

PEI The end of the PEI phase, and beginning of the DXE
phase is in the DxeMain function following the point
where all PEI data has been copied into Dxe and all of the
Library constructors have been called.

DXE

CoreInitializeDispatcher DxeMain In the DxeMain function, the duration of the call to
CoreInitializeDispatcher is measured.

CoreDispatcher DxeMain In the DxeMain function, the duration of the call to
CoreDispatcher is measured.

Core/Dxe/Hand/DriverSupport.c

DB:Support Measurement from within the
CoreConnectSingleController function of the duration of
the call to DriverBinding-->Supported()

DB:Start Measurement from within the
CoreConnectSingleController function of the duration of
the call to DriverBinding-->Start()

Core/Dxe/Image/Image.c

LoadImage: Duration of the CoreLoadImageCommon() call from
CoreLoadImage()

StartImage: CoreStartImage() duration, minus the time for the call to
CoreLoadedImageInfo() at the beginning. There are two
PERF_END macros used for this measurement in order to
cover both the successful and failure returns.

Core/Pei/Dispatcher/Dispatcher.c

PEIM Shadow PEIM’s entry point duration when the PEIM is shadowed
into main memory.

PEIM Dispatch PEIM’s entry point duration when the PEIM is dispatched
due to a satisfied dependency expression.

PEIM PeimFileHandle PEIM’s entry point duration when the PEIM is dispatched
due to a processing of notifies.

Core/Pei/PeiMain/PeiMain.c

PreMem Duration of the first invocation of PeiCore(), before main
memory has been discovered and configured.
63 February, 2010 Version 1.0

Performance Optimization
PostMem Duration of the second invocation of PeiCore(), after
main memory has been discovered and configured.

DisMem Time, during the second invocation of PeiCore(), to install
the MemoryDiscoveredPpi and alert listeners that main
memory is available.

SEC Duration of the SEC phase. Measured from the beginning
of time to the start of PeiCore().

PEI Duration of the PEI phase. Measured from the start of
PeiCore() to the start of DxeMain().

Table 4. IntelFrameworkModulePkg Measurement Points

Token Module Description

Bus/Pci/IdeBusDxe/IdeBus.c

DiscoverIdeDevice IDE Duration of the DiscoverIdeDevice() call from within
IDEBusDriverBindingStart().

Finish IDE detection IDE Time from system start to the end of the
IDEBusDriverBindingStart() function.

Library/GenericBdsLib/BdsConsole.c

ConOut BDS Time from system start until the console is connected in
the BdsLibConnectConsoleVariable() function when called
by BdsLibConnectAllDefaultConsoles().

Universal/BdsDxe/BdsEntry.c

DXE Duration of the DXE phase. Measured from the
beginning of DxeMain() to the beginning of BdsEntry().

BDS Measurement of the duration of the BDS phase begins at
the beginning of BdsEntry().

PlatformBds BDS Platform portion of BDS as measured from
PlatformBdsInit() until after PlatformBdsPolicyBehavior()
but before BdsBootDeviceSelect().

Library/GenericBdsLib/BdsBoot.c

BDS Duration of the BDS phase. Measured from the
beginning of BdsEntry() to the beginning of
BdsLibBootViaBootOption().

Universal/BdsDxe/FrontPage.c

BdsTimeOut BDS The time from entry to PlatformBdsEnterFrontPage()
until exit. The PERF_END macro is only executed upon
Auto Boot.

Table 3. MdeModulePkg Measurement Points

Token Module Description
64 February, 2010 Version 1.0

	EDK II Performance Optimization Guide
	Acknowledgements
	Revision History
	CONTENTS
	Figures
	Tables

	1 Introduction
	1.1 Overview
	1.2 Target Audience
	1.3 Document Organization
	1.4 Related Information
	1.5 Terms
	1.6 Conventions Used in this Document
	1.6.1 Pseudo-Code Conventions
	1.6.2 Typographic Conventions

	2 Measurement Methodologies
	2.1 Software-Based Measurement
	2.1.1 Tracing
	2.1.2 Statistical Profiling (SW)
	2.1.3 Measured Profiling

	2.2 Hardware-Based Measurements
	2.2.1 Statistical Profiling (HW)
	2.2.2 Logic Analyzers
	2.2.3 Elapsed Time Counters
	2.2.4 JTAG Based Debuggers

	3 EDK II Facilities
	3.1 Overview
	3.2 Trace Instrumentation
	3.3 Profiling Instrumentation
	3.4 Instrumenting the Phases
	3.4.1 SEC
	3.4.2 PEI
	3.4.3 DXE
	3.4.4 BDS
	3.4.5 EFI Applications
	3.4.6 OS Load and S3 Resume

	4 Dp Reporting Utility
	4.1 Description
	4.2 Report Structure
	4.3 Common Report Features
	4.3.1 Options
	4.3.2 Report Heading
	4.3.3 Statistics

	4.4 Grouped Reports
	4.4.1 Major Phases
	4.4.2 Drivers by Handles
	4.4.3 PEIMs
	4.4.4 General
	4.4.5 Cumulative

	4.5 Sequential Trace Reports
	4.6 Raw Trace Reports

	5 Instrumenting the Code
	5.1 Establishing a Build Target
	5.2 Editing the DSC file
	5.3 Synchronize DP’s Timer Library
	5.4 Editing a Module’s INF file
	5.5 Adding Instrumentation
	5.6 Controlling the Instrumentation

	6 EDK II Performance Infrastructure
	6.1 PCD Entries
	6.2 Library Classes
	6.2.1 PerformanceLib
	6.2.2 TimerLib
	6.2.3 ProfileLib

	7 Strategies
	7.1 Establish Goals
	7.2 Measure Performance
	7.2.1 What to Measure
	7.2.2 Instrumenting the Code
	7.2.3 Gathering Statistics

	7.3 Analyze Results

	8 Lessons Learned
	8.1 Lessons by Phase
	8.1.1 SEC Phase
	8.1.2 PEI Phase
	8.1.3 DXE Phase
	8.1.4 BDS Phase

	8.2 Cache
	8.2.1 Enable code cache for boot block
	8.2.2 Configure C,D,E,F segments as WP
	8.2.3 Enable Caching of Flash

	8.3 Flash
	8.3.1 Be careful of all Flash-access operations
	8.3.2 Do things in memory rather than in Flash
	8.3.3 S3 Resume: Access NV Storage as Little as Possible in Pre-Mem
	8.3.4 Enable SPI prefetching
	8.3.5 Decompress FvMain block in memory

	8.4 Drivers
	8.4.1 Avoid Legacy drivers/devices whenever possible
	8.4.2 BiosVideo Driver Enhancement
	8.4.3 Keyboard Driver Enhancement

	8.5 Memory
	8.5.1 Memory operation algorithms
	8.5.2 S3 Resume: Memory-related Operations
	8.5.3 BKMs to choose proper algorithms
	8.5.4 Shadow PEIMs after Memory Discovered
	8.5.5 Shadow the PEI core
	8.5.6 Run More Code in Post-Mem than in Pre-Mem

	8.6 HOBs
	8.6.1 Reduce the number of FV Hobs
	8.6.2 Report CPU BIST as a Hob

	8.7 Boot Mode Utilization
	8.7.1 Minimal Configuration Path for Fast Boot
	8.7.2 S3 Resume Boot Path
	8.7.3 PEI Dependency Expressions
	8.7.4 Avoid PEG Training in S3

	8.8 Debug Output
	8.8.1 PeiReportStatusCode

	8.9 MP Configuration
	8.9.1 Use CPU number for synchronization

	8.10 General Coding Issues
	8.10.1 Code Alignment Issue
	8.10.2 Predicate Expressions
	8.10.3 Structure Member Alignment

	Appendix A: Sample Grouped Report
	Appendix B: Sample Sequential Report
	Appendix C: Sample Raw Report
	Appendix D: Pre-defined Measurements

