

EDK II Module Writer's Guide

March 2010

Revision 0.7

ii

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS OR
IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT
AS PROVIDED IN INTEL’S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY
WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL
PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY,
OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. Intel products are not intended
for use in medical, life saving, or life sustaining applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel
reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from
future changes to them.

This Intel® specification may contain design defects or errors known as errata that may cause the product to deviate from
published specifications. Current characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Intel, and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and
other countries.

*Other names and brands may be claimed as the property of others.

Copyright © 2009 - 2010, Intel Corporation. All rights reserved.

 iii

 Contents
1 The Basics of EDK II..1

1.1 Overview ..1
1.1.1 Module, Package and Platform...1
1.1.2 Module Customization ..2
1.1.3 EDK II Development Lifecycle ...2
1.1.4 Build Infrastructure ...4

1.2 Related References...5
1.3 Terms...6
1.4 Target Audience...6

2 An EDK II Package ..7
2.1 Introduction ..7

2.1.1 EDK II Packages ...7
2.1.2 The Package Directory ...7
2.1.3 Package Declaration File...8
2.1.4 Package DSC File ..10

2.2 Manage Package ..11
2.2.1 Create Package...11
2.2.2 Using a Package..12
2.2.3 Updating a Package ...12

3 Module Development ...16
3.1 What is an EDK II module? ..16

3.1.1 Module Type...17
3.2 Creating a Module ..18

3.2.1 Location...18
3.2.2 Sample: Module Meta File - INF...19
3.2.3 Adding a Package Dependency ..21
3.2.4 Adding Source Files ...21
3.2.5 Add Library Class References ..22
3.2.6 Adding PCD References ..23
3.2.7 Referencing a Protocol, PPI, or GUID..25
3.2.8 Adding a Dependency to a Module ...26

3.3 Additional Steps for Library Instances ...26
3.3.1 Define Produced Library Class ...26
3.3.2 Define a Library Constructor (Optional)27
3.3.3 Define a Library Destructor (Optional) ..27

3.4 Additional Steps for Driver...28
3.4.1 Define a Driver Entry Point ...28

3.5 EDK II Common Library Class ..28
3.6 Module using HII..29

3.6.1 Forms..29
3.6.2 Using Unicode Strings ..33

3.7 Building the module..36
3.7.1 Add the module INF in package DSC ..36
3.7.2 Select Library Instances ...37

iv

3.7.3 Configure PCDs...39
3.7.4 Customize Build Options...42
3.7.5 Build module image...44
3.7.6 Build EFI Option Rom image ...46
3.7.7 Common build module breaks ...47

3.8 Debugging a Module ...48
3.8.1 Required steps for debugging a module48
3.8.2 Basic debugging methods ...49

4 UEFI Applications..50
4.1 Begin with INF file ..50
4.2 Write UEFI Application Entry Point ..51
4.3 Get Service Tables..51
4.4 Communicating with a UEFI driver ..52

4.4.1 Protocol ...52
4.4.2 Variable ...52

5 UEFI Drivers ..53
5.1 Begin With INF File ...53
5.2 Write the UEFI Driver entry point..53

5.2.1 Example: APIs in UefiLib ..54
5.2.2 Example: Entry point to the Abc driver54

5.3 Get Service Tables..56
5.4 Communication between UEFI Drivers ...57

5.4.1 Protocol ...57
5.4.2 Variable ...57

6 SEC Module..59
6.1 Beginning to Write the INF File...59
6.2 Setup Pre-Memory Environment ...59
6.3 Prepare for Data PEI Foundation...60

6.3.1 EFI_SEC_PEI_HAND_OFF * SecCoreData60
6.3.2 EFI_PEI_PPI_DESCRIPTOR *PpiList ..61

7 Pre-EFI Initialization Modules..63
7.1 Introduction ..63
7.2 Beginning to Write a PEIM INF File..63
7.3 Defining a PEIM’s entry point ...63
7.4 Get Pei Services ...64
7.5 Communicate between PEIM Modules..64

7.5.1 PPI..64
7.5.2 HOB ..65
7.5.3 PCD ..66

7.6 Communicate with DXE Modules...66
7.6.1 HOB ..66
7.6.2 Variable ...66
7.6.3 PCD ..67

7.7 Boot Mode...67
7.8 Execution in Place PEIMs ...68
7.9 Dependency for PEIMs ..68

8 DXE Drivers: non-UEFI drivers..70

 v

8.1 Beginning with INF File ...70
8.2 Write DXE Driver Entry Point..70
8.3 Obtaining Services Tables..71
8.4 Communication between DXE Drivers..72

8.4.1 Protocol ...72
8.4.2 Variable ...74
8.4.3 Dynamic PCD..75

8.5 Communication with PEIMs..76
8.5.1 HOB ..76
8.5.2 Variable ...78
8.5.3 Dynamic PCD..78

8.6 Dependency Expressions ...78
8.7 Handler for EVT_SIGNAL_EXIT_BOOT_SERVICES......................................79
8.8 DXE Runtime Driver..80

8.8.1 INF File..81
8.8.2 Handler for EVT_SIGNAL_VIRTUAL_ADDRESS_CHANGE................81

8.9 DXE SAL Driver..82
8.9.1 INF File..83
8.9.2 Entry Point ...83

8.10 DXE SMM Driver...83
8.10.1 INF File..84
8.10.2 Constraints...84

Appendix A Dynamic PCD ..87

A.1.1 Class of Dynamic Type...87

A.1.2 When and how to use dynamic PCD...88

Tables

Table 1 EDK II Module Types ..17
Table 2 Recommended name convention for module directory19
Table 3 EDK II supported file extensions ..22
Table 4 INF PCD Section Name ...24
Table 5 PCD access functions..25
Table 6 Commonly use library classes ..28
Table 7 Module Entry Point and Service Table Libraries...29
Table 9 Protocols Used to Separate the Loading and Starting/Stopping of Drivers.....53
Table 10. Table Global Variables ...57
Table 11 Reference to Services Tables for DXE Drivers ...71

Figures

Figure 1 Conceptual workflow ...5
Figure 2 Firmware Volume..16
Figure 3 Temporary Memory Layout...60

vi

 Revision History

Revision
Number

Description Revision
Date

0.01 Initial creation. April 2007.

0.7 Update section 8.10 DXE SMM Driver

Add note for the usage of
PI_SPECIFICATION_VERSION/UEFI_SPECIFICATION_VERSI
ON in module’s INF

Add UEFI_HII_RESOURCE_SECTION usage in INF’s
[Defines] section

Add a limitation of dynamic PCD usage

March 2010.

§

 1

1
The Basics of EDK II

This document is a guideline for new EDK II module developers, and provides detailed
instructions on how to develop and build a new module, and how to release with a
package. For information about developing new modules, start with this document.

1.1 Overview

This chapter also clarifies new concepts introduced with EDK II.

Reference the EDK II User Manual, to understand how to obtain EDK II and how to
build existing modules.

1.1.1 Module, Package and Platform

1.1.1.1 What is a Module?

A module is the smallest piece of separately compile-able code or pre-built binary. It
contains a metadata file (INF) plus source code or binary. The INF file is required by
the EDKII build system to describe a module’s behavior, such as produced or
consumed library classes, ppis, guids, protocols, pcds, and other information.

For example, in $WORKSPACE\MdeModulePkg\Universal\Bus\Pci\UhciDxe, the source
files mentioned and the INF file compose a module.

,Refer to the EDK II Extended INF Specification. for the syntax of the INF file.

1.1.1.2 What is a Package?

A package is a group of zero or more modules. A package must contain a package
metadata file (DEC), and possibly a platform metadata file (DSC).

Functionally, a package is a logical division of a project. Developers depend on
reasonable judgment, such as license or specification compliance, to determine where
to place a module. These metadata files and the module’s INF files are used by the
EDK II build system to automatically generate makefiles and a single module tip or
whole flash tip, according to the build options used.

For information regarding the syntax of DSC and DEC files, please refer to EDK II DSC
File Specification and EDK II DEC File Specification.

2

1.1.1.3 What is a Platform?

A platform is a special type of package with additional metadata files. A package must
contain one DSC file and zero or one FDF file. The FDF is only required if flash output
is required.

Refer to EDK II FDF File Specification for information regarding FDF files..

Refer to the EDK II Platform Port Guide for information about platform porting
between EDK and EDK II.

1.1.2 Module Customization

Use the EDK II User Manual to understand the design purpose of the Library
class/Library instance and PCD mechanisms. These mechanisms provide ways for
developers to customize modules without changing the source code.

1.1.2.1 Library class/Library instance

Developers may choose a proper library instance according to its requirements, such
as from performance, image size, or the limitation of module type.

In $WORKSPACE\MdePkg core package, there are many supported library classes and
corresponding library instances. Browse the $WORKSPACE\MdePkg \include\library
directory for basic information regarding the helper function API provided by these
library classes.

1.1.2.2 PCD

Developers may take advantage of the PCD mechanism to extract information from
outside a module, and control procedure behavior inside a module. The information
may be known at compile time from the platform DSC or the package DEC files, but
some files may arrive at flash image generation time, and some may be determined
during execution.

Example:, in the following chapter, PcdDebugPropertyMask declared in MdePkg.dec
file in $WORKSPACE\MdePkg is used to control DebugLib behavior. This PCD is
FixedAtBuild type, meaning its value is determined at build time. The EDK II build
system converts this pcd to the value configured in DEC or DSC to enable or disable
the print ability.

1.1.3 EDK II Development Lifecycle

The lifecycle of EDK II development is divided into the five phases which follow.

1.1.3.1 Phase 1: Create a package

A package is the container of modules. A developer should first consider where the
module should be placed. As a general rule, modules newly developed by an IHV/IBV
should not be placed into existing EDK II core packages, which include MdePkg,

4BThe Basics of EDK II

 3

MdeModulePkg, IntelFrameworkPkg and IntelFrameworkModulePkg. One reason is
that these packages are published as a base-supported package to facilitate
module/platform development.

Note: These packages are open-source code and compliant with the BSD license. If
the developed module is not intended to be open source, it should not be put into
those core packages.

To create a new package, developers must create the DEC file to define the package’s
interfaces, including:

 include directories for modules from other packages

 the value of GUIDs

 the value of Protocol GUIDs

 the value of PPI GUIDs

 the declaration of the PCD entries published by this package.

1.1.3.2 Phase 2: Create module metadata/Implement basic
functionality.

After the module to be placed into a package is determined, developers must create
an INF file to indicate the module’s behavior, including:

 module type

 required library classes

 required ppi/protocol/guid/PCD

 dependency relationship with other modules.

Note: Dependency relationships may exist or not, depending on various module
types.

Viewing a module’s INF file provides a quick overview to an unfamiliar module.

After finishing the INF file, developers should start writing source code to implement
basic functionality.

Note: In $WORKSPACE\MdePkg\Include\Library directory, there are many library
classes to provide support functions. There are also entry point libraries for
various module types. Developers should browse the header files for details.

1.1.3.3 Phase 3: Create DSC to build

In EDK II, the DSC file describes the build behavior of the package, including:

 modules needed to be built

 chosen library instances for various module type

 the configuration of the PCD entries used by modules.

4

The single platform DSC and each referenced package’s DEC files cooperate to define
a package. These files and the module INF files are required to build all modules in
the package.

1.1.3.4 Phase 4: Tune modules

To tune modules

 use EDK II libraries for code reuse

 use EDK II PCD mechanism for configuration.

The distinction between an EDK module and an EDK II module is that the EDK II
module can be customized either statically or dynamically, as necessary.

 Static customization is preferred to choose the library instance or determine
the value of FeatureFlag/Fixed type of PCD at build time.

 Dynamic customization is preferred for using Patchable/Dynamic type PCD to
control procedure behavior on the fly.

EDK II module developers should consider what logic in the module could be
generalized as early in the development of the module as possible. For example, if
some functionality had been implemented in a library class of a core package, the
developer should replace it by using the library class.

If a segment of logic can be extracted as common logic and shared by various
modules, the developer can create a new library class and instance.

Note: In the EDK II module development, developers are strongly discouraged from
using a conditional macro to control procedure behavior. The PCD mechanism
provides a unified interface, and developers should use it to configure a module’s
behavior.

1.1.4 Build Infrastructure

The EDK II build system is based on Python and portable C code to provide cross-
platform build-ability. Figure 1, developer illustrates the conceptual workflow of the
EDK II build system infrastructure.

4BThe Basics of EDK II

 5

Figure 1 Conceptual workflow

In brief, the EDK II build tool parses the metadata files (DSC, DECs, and INFs) to
generate corresponding one top-level makefile and a separate set of makefile and
autogen.c/autogen.h files for every module.

In the autogen files, the EDK II build tool generates all definitions of guids, protocols,
ppis, and PCDs used by the module, and automatically invokes all of the constructors
of used library instances in the module’s entry point implementations.

1.2 Related References

The following publications and sources of information may be useful or are referred to
by this document:

 Unified Extensible Firmware Interface Specification Version 2.1, Unified EFI,
Inc, 2007, http://www.uefi.org.

 Extensible Firmware Interface Specification Version 1.10, Intel, 2001,
http://developer.intel.com/technology/efi.

 Intel® Platform Innovation Framework for EFI Specifications, Intel, 2006,
http://www.intel.com/technology/framework/.

The following publications are available at edk2.tianocore.org:

 EDK II MDE (Module Development Environment) Package Document, Version
1.00, Intel, 2006.

 EDK II DSC File Specification, Version 0.50, Intel, 2007.

 EDK II DEC File Specification, Version 0.50, Intel, 2007.

 EDK II Extended INF Specification, Version 0.50, Intel, 2007.

http://www.intel.com/technology/framework/�

6

 EDK II FDF (Flash Description File) File Specification, Version 0.50, Intel,
2007.

 EDK II Build Specification, Version 1.00, Intel, 2008.

1.3 Terms

The following terms are used throughout this document to describe varying aspects of
input localization:

EDK

EFI Developer’s kit; the open source project of the Intel Platform
Innovation Framework for EFI that can be found at
http://edk.tianocore.org.

EDK II

A generic term to describe the open source project found at
http://edk2.tianocore.org. In this document, it refers to the new release of
EDK II that supports a build infrastructure that makes use of the Extended
INF, DEC and Extended DSC.

EDK II Module

A generic term to describe a module that is developed using the new
release of EDK II project that supports the library class, library instances,
packaging concept and Extended INF, DEC and Extended DSC files.

1.4 Target Audience

This document is intended for the following readers:

 Developers from IBVs and OEMs who will be implementing UEFI/PI drivers or
other firmware products based on EDK II.

 Developers from IHVs who will be creating UEFI Driver Model drivers for hardware
devices.

 Platform integrators using EDK II components and modules to build platform
firmware.

http://edk.tianocore.org/�
http://edk2.tianocore.org/�

5BAn EDK II Package

 7

2
An EDK II Package

2.1 Introduction

Each EDK II Package is a container that includes a set of modules and their related
definitions. Each Package is an EDK II distribution unit. It can be used to manage and
release the big project to facilitate a user's distribution and reuse. Entire project
sources can be split into different packages to reduce the release granularity. The new
project can also be made from released packages from different sources.

2.1.1 EDK II Packages

A Package is a directory that organizes a group of modules with a single package
declaration file (DEC).

EDK II provides UEFI and PI compliant packages: MdePkg, MdeModulePkg, etc.

The MdePkg contains the complete definitions in EFI1.1, UEFI2.0, UEFI2.1, PI1.0
Specifications and all library classes and instances defined in EDK II MDE (Module
Development Environment) Library Specification. UEFI and PI drivers can be
developed based solely on this package.

The MdeModulePkg contains a group of cross-platform drivers that conform to UEFI
and PI specifications. They can be referred to when developing new UEFI and PI
drivers.

Detailed information of EDK II packages can be found in EDK II User Guide, section
2.2 and in the package specification for each package.

2.1.2 The Package Directory

Each package has a unified directory structure that separate the different source files.
The root directories in each package are: Include, Library, Application and Drivers.

 The include directory contains all public header files that are exposed by this
package and are used by this package and other packages. Below the Include
directory, subdirectories may be created to include Ppi, Protocol, Guid, Industry
Standard and library class header files (when these header files become public).

 The library directory contains directories for each library instance module
included.

 The application directory contains directories for each UEFI applications module
included.

 The driver directory contains directories for each driver group and for each driver.

javascript:void(0)�

8

Each module (library instance, application and driver) has its own directory in which
to group its source files. A module may only depend on files under its directory or on
public header files. A module is not permitted to depend on source files from another
module directory.

2.1.2.1 Sample directories and sub-directories in a package

 Package.dec Package declaration file

 Package.dsc Platform Package build description file

 Include Public header files

o Protocol\ Public Protocol header files

o Ppi\ Public PPI header files

o Guid\ Public GUID header files

o IndustryStandard\ Public Industry Standard header files

o Library\ Public Library class header files

 Library\ Libraries instances

o NameOneLib\ Library instance NameOne source files and INF

o NameTwoLib\ Library instance NameTwo source files and INF

 Application\ Uefi Applications

o NameOneApp\ Application NameOne source files and INF

o NameTwoApp\ Application NameTwo source files and INF

 NameOneDxe\ Dxe Driver NameOne source files and INF.

 NameTwoPei\ Pei Driver NameTwo source files and INF.

If no related source files exist in a package, the corresponding directory may not be
created. For example, if no application is provided in a package, a blank Application
directory is not required.

2.1.3 Package Declaration File

Each package has a single package declaration file (DEC) to define the package’s
public interfaces. The public interfaces are the package’s public header files, GUIDs,
and PCDs.

The DEC has Defines, Includes, LibraryClasses, Guids, Ppis, Protocols and Pcds
sections.

The [Defines] section defines the package name and package GUID.

The [Includes] section must list the root directory of public header file directory.

The [LibraryClasses] section contains every library class header file in the
Package\Include\Library directory.

The [Guids] section specifies the Guid value for each Guid in the
Package\Include\Guid directory.

5BAn EDK II Package

 9

The [Ppis] section specifies the Guid value for each PPI in the Package\Include\Ppi
directory.

The [Protocols] section specifies the Guid for each Protocol in the
Package\Include\Protocol directory.

The PCDs are declared in different PCD sections according to their type (FeatureFlag,
FixedAtBuild, PatchableInModule, Dynamic, and DynamicEx). If a PCD supports
multiple PCD types, it must be declared in all supported type sections. When a PCD is
declared, its data type and default value must also be specified.

The following is a sample DEC file, additional package public information may be
added.

2.1.3.1 Example: Package.dec
[Defines]
 DEC_SPECIFICATION = 0x00010005
 PACKAGE_NAME = PackageName
 PACKAGE_GUID = xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx
 PACKAGE_VERSION = 0.1

[Includes]
 Include #Package Include directory

[LibraryClasses]
 ## Library class name is same to library header file name
 OneClassLib|Include/Library/OneClassLib.h

[Guids]
 #GuidCName = {xxxxxxxx,xxxx,xxxx,{xx,xx,xx,xx,xx,xx,xx,xx}},

[Ppis]
 #PpiGuidCName = {xxxxxxxx,xxxx,xxxx,{xx,xx,xx,xx,xx,xx,xx,xx}},

[Protocols]
 #ProtocolGuidCName = {xxxxxxxx,xxxx,xxxx,{xx,xx,xx,xx,xx,xx,xx,xx}},
[PcdsFeatureFlag]
 #FeatureFlag PCD is BOOLEAN type, the value is TRUR or FALSE.
 #PcdTokenSpaceCGuidName.PcdName|TRUE|BOOLEAN|TokenNumber
 #PcdTokenSpaceCGuidName.PcdName|FALSE|BOOLEAN|TokenNumber

[PcdsFixedAtBuild]
 #PcdTokenSpaceCGuidName.PcdName|DefaultValue|DataType|TokenNumber

[PcdsPatchableInModule]
 #PcdTokenSpaceCGuidName.PcdName|DefaultValue|DataType|TokenNumber

[PcdsDynamic]
 #PcdTokenSpaceCGuidName.PcdName|DefaultValue|DataType|TokenNumber

[PcdsDynamicEx]
 #PcdTokenSpaceCGuidName.PcdName|DefaultValue|DataType|TokenNumber

Refer to the EDK II DEC File Specification for a detailed description of the DEC file
format.

10

2.1.4 Package DSC File

Each package usually creates another build description file (DSC). All modules can be
added into DSC to be compiled and verified. DSC has the following sections:

 Defines

 LibraryClass

 PCD

 Components.

The [Defines] section sets build related information, such as the build output
directory, build target, Guid, and build ARCHs.

The [Components] section lists all modules (Drivers, Application, and Library
Instances) in the platform.

The [LibraryClasses] section specifies the chosen library instance for every library
class, which is consumed by the drivers and applications in the [Components] section.

The [PCDs] section configures PCD type and value for those PCDs used by the
modules in the [Components] section. If the PCD value is same as the default value in
DEC, and the PCD type has no specific requirement, the PCD may not be configured in
the DSC. Its value and type will be the default setting in DEC. If all PCDs are not
required in the DSC file, the [PCDs] section may be not created.

Note: Only the DSC file for the active platform is used in a build.

The following is a sample DSC file. More modules may be added.

5BAn EDK II Package

 11

2.1.4.1 Example: Package.dsc
[Defines]
 PLATFORM_NAME = PacakgeName
 PLATFORM_GUID = xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx
 PLATFORM_VERSION = 0.1
 DSC_SPECIFICATION = 0x00010005
 OUTPUT_DIRECTORY = Build/PackageName
 SUPPORTED_ARCHITECTURES = IA32|IPF|X64|EBC
 BUILD_TARGETS = DEBUG|RELEASE
 SKUID_IDENTIFIER = DEFAULT

[SkuIds]
 0|DEFAULT #The entry: 0|DEFAULT is reserved and required.

[LibraryClasses]
More library instances need to be added if more library classes are
used
by the components in the following [Components] section.
library class name | library instance INF file path from package
 DebugLib | MdePkg/Library/UefiDebugLibStdErr/UefiDebugLibStdErr.inf
 BaseLib | MdePkg/Library/BaseLib/BaseLib.inf
 BaseMemoryLib | MdePkg/Library/BaseMemoryLib/BaseMemoryLib.inf
 ……

##PCDs sections are not specified.
##All PCDs value are from their Default value in DEC.
##[PcdsFeatureFlag]
##[PcdsFixedAtBuild]

[Components]
All libraries, drivers and applications are added here to be compiled
Module INF file path are specified from package directory.
 PackageNamePkg/Library/NameOneLib/NameOneLib.inf
 PackageNamePkg/NameOneDxe/NameOneDxe.inf
 PackageNamePkg/NameTwoPei/NameTwoPei.inf

A detailed description of the DSC file form is given in the DSC Specification.

2.2 Manage Package

2.2.1 Create Package

When current packages do not satisfy a requirement, or the original code base is split
into EDK II packages, new packages need to be created. Following are the
recommended rules for defining the new package:

 All modules related to the same functionality should go in the same package.
For example, different packages should be created for different chipsets.

 Generic modules shared between different platforms should be in another
package. For example, the MdePkg and MdeModulePkg are shared.

 Modules should go in packages according to their release requirements. If
modules are released only to specific customers, they should go in specific
packages.

Note: There is no limitation for source files in a new package. Even if only one file is
in a package, this package will be valid.

12

According to the rules given immediately above, the EDK II project provides several
packages for user reference.

When a new package is added, the following steps are used to create it.

 Give the meaningful package name as the package directory name and create
a package directory, such PackageNamePkg.

 Create package DEC and DSC files in the package root directory to describe
this package.

 Create package sub-directories to contain the different source files.

2.2.2 Using a Package

A package provides public header files, library classes, PCDs and modules, which are
required to develop other modules and platforms.

A module is dependent on the package that it resides in and may be dependent on
other packages.

A platform is made from the modules contained in its own package, and from other
packages.

The EDK II package is the basic development unit. It can be used to configure the
development workspace. According to development requirements, the workspace can
integrate different packages from the EDK II project and other sources. To develop a
module or a platform, their dependent packages need to be integrated into the
workspace. For example, to develop UEFI and PI driver, the MdePkg, which contains
all UEFI/PI definitions, is required in the workspace.

The following show how to develop modules and platforms based on packages.

 Each package DEC file and Include directory lists package public header files,
library classes and PCDs. When a new module is developed, it can include
information from the DECs of all packages in current workspaces If it needs
information from a package that is not in the current workspace, this package
needs to be added.

 Each package DSC file lists all modules provided by this package. The
developer can search the DSCs of all packages in the current workspace to
obtain the required modules (and move their information into the platform
DSC file). Then it specifies those modules in the platform DSC and FDF file. If
a new platform still requires the modules from a packages that are not in the
current workspace, this package needs to be added.

2.2.3 Updating a Package

The package DEC and DSC files describe the package capability, which should be
created according to source files of this package. If source files are changed,
removed, or added, the package DEC and DSC file must be updated to match their
change.

All changes to source code that affect the DEC and DSC file are introduced one by
one.

5BAn EDK II Package

 13

2.2.3.1 Updating Package Include Directories

When a package Include directory is changed, added, or removed, the [Includes] a
section of the DEC must be updated.

2.2.3.1.1 Example: Include section of Package.dec

[Includes]
 Include # Package Include path
 LocalInclude # Add new include path

2.2.3.2 Updating Guids/Ppis/Protocols

When a Guid value or Guid global CName defined in the package public Guid header
file changes, the [Guids] section of the DEC must be updated to the new Guid value or
Guid CName. If a public Guid header file is removed, the Guid defined in this file must
be removed from the [Guids] section of the DEC. If a new guid header file is added in
the package public include directory, the new declared Guid and its value must be
added to the [Guids] section of the DEC. Like the Guid header file, any change to
Guid values defined in the Ppi and Protocol header files also requires the [Ppis] or the
[Protocols] section to be updated.

2.2.3.2.1 Example: Guid section of Package.dec

[Guids]
 #gGuidCName = {00000000,0000,0000,{00,00,00,00,00,00,00,00}}
 #updated to
 gNewGuidCName = {00000000,0000,0000,{00,00,00,00,00,00,00,01}}

2.2.3.3 Updating Library Classes

When the library class name is changed, the library class header file name needs to
update the [LibraryClasses] section of the DEC to map the new library class name to
the (new?) header file. The change to the library class name will also require the
[LibraryClasses] section (of the DSC to be updated) to map the new library class
name and the library instance. When a new library class is introduced, its name and
its header file will be specified in the DEC [LibraryClasses] section.

2.2.3.3.1 Example: LibraryClasses section of Package.dsc
[LibraryClasses]
 #OneClassLib|Include/Library/OneClassLib.inf updated to
 BaseMemoryLib|MdePkg/Library/BaseMemoryLib/BaseMemoryLib.inf

2.2.3.4 Updating PCDs

PCDs are declared in the package DEC and are not related to any header file.
However, module source files use them. If a PCD does not exist in any module, its
declaration should be removed from the DEC file. The setting for this PCD in DSC file
should also be removed.

14

When a module requires a new PCD, it needs to define this PCD in the DEC file for the
package where the module is located. Then the DEC file will specify the PCD type and
default value.

2.2.3.4.1 Example: Package.dec

[PcdsFixedAtBuild]
 #Add new FixedAtBuild PCD
 #PcdTokenSpaceCGuidName.PcdName|DefaultValue|DataType|TokenNumber
 gEfiMdeModulePkgTokenSpaceGuid.PcdHelloWorldTimes|1|UINT32|0x40000005

2.2.3.5 Updating Modules

Changes to modules (Library instance, drivers and applications) cause the dependent
header file, library class and PCDs be modified, which requires the DSC file to be
updated.

If a module INF file name is changed, the DSC files that refer to this module are
updated to new file name. If a module is completely removed, it will not be compiled
any more, and is removed from the package DSC. When a new module is added to a
package, it should be added to the package DSC to be compiled and verified.

2.2.3.5.1 Example: Package.dsc

[Components]
#Module INF file path are specified from package directory.
 #PackageNamePkg/NameTwoPei/NameTwoDxe.inf #updated to
 MdeModulePkg/Application/HelloWorld/HelloWorld.inf

5BAn EDK II Package

 15

 16

3
Module Development

3.1 What is an EDK II module?

An EDK II module consists of source files or binary files and a module definition file
(INF file). An INF file describes a module’s basic information and interfaces such as
consumed/produced library class/PCD/Protocol/Ppi/Guid. (Please refer to the EDK II
Extended INF Specification

A typical EDK II module is a firmware component that is built, put in an FFS file and
then put into a FV image. The component may be:

 A driver or application which is built to *.efi binary file and put into FFS file as
EFI_PE_SECTION:

Figure 2 Firmware Volume

 Raw data binary. For example, $(WORKSPACE)\MdeModulePkg\Logo\Logo.inf
is a raw binary module which contains logo bitmap image.

 An option ROM driver that is put into a device’s option ROM.

 A standalone UEFI driver

 A standalone UEFI application.

 A library instance that is built to a library object file (.lib) and statically linked
to another module.

Note: A module can be released in source code or in EFI binary format.

Firmware File 2

…………..

EFI_PE_SECTION
section contains .EFI
binary

Firmware File 1

Firmware Volume

 17

3.1.1 Module Type

EDK II defines many module types. The module type is used to:

 Indicate the lifecycle for different types of modules. For example, PEIM is
dispatched in PEI phase and DXE_DRIVER orUEFI_DRIVER is dispatched at
DXE phase;

 Indicate the binary image generation for different types of modules. For
example, a PEIM/DXE_DRIVER type module can have “depex” section in .efi
binary image; a UEFI_DRIVER can have .ui or .ver section in .efi binary
image;

 Indicate the suitable library instance for different types of modules. A library
instance will point out what module types are supported in INF file.

Table 1 EDK II Module Types

MODULE_TYPE Description

SEC Modules of this type are designed to start execution at the
reset vector of a CPU. They are responsible for preparing the
platform for the PEI Phase. Since there are no standard
services defined for SEC, modules of this type follow the same
rules as modules of type Base and typically include some
amount of CPU specific assembly code to establish temporary
memory for a stack. Modules of this type may optionally
produce services that are passed to the PEI Phase in HOBs and
those services must be compliant with the PI specification.

PEI_CORE This module type is used by PEI Core implementations that are
complaint with the PI specification.

PEIM This module type is used by PEIMs that are compliant with the
PI specification.

DXE_CORE This module type is used by DXE Core implementations that
are compliant with the PI specification.

DXE_DRIVER This module type is used by DXE Drivers that are complaint
with the PI specification. These modules only execute in the
boot services environment and are destroyed when
ExitBootServices() is called.

DXE_RUNTIME_DRIVER This module type is used by DXE Drivers that are complaint
with the PI specification. These modules execute in both boot
services and runtime services environments. This means the
services that these modules produce are available after
ExitBootServices() is called. If SetVirtualAddressMap() is
called, then modules of this type are relocated according to
virtual address map provided by the operating system.

DXE_SAL_DRIVER This module type is used by DXE Drivers that can be called in
physical mode before SetVirtualAddressMap() is called and
either physical mode or virtual mode after
SetVirtualAddressMap() is called. This module type is only
available to IPF CPUs. This means the services that these
modules produce are available after ExitBootServices().

18

DXE_SMM_DRIVER This module type is used by DXE Drivers that are loaded into
SMRAM. As a result, this module type is only available for IA-
32 and x64 CPUs. These modules only execute in physical
mode, and are never destroyed. This means the services that
these modules produce are available after ExitBootServices().

UEFI_DRIVER This module type is used by UEFI Drivers that are compliant
with the UEFI Specification. These modules provide services in
the boot services execution environment. UEFI Drivers that
return EFI_SUCCESS are not unloaded from memory. UEFI
Drivers that return an error are unloaded from memory.

UEFI_APPLICATION This module type is used by UEFI Applications that are
compliant with the UEFI Specification. UEFI Applications are
always unloaded when they exit.

3.2 Creating a Module

Driver and Library modules follows similar steps for creation:

1. Create or select the package in which the module will be located.

2. Create a directory for the module and put the INF file in the directory.

3. Add package dependencies to the INF file.

4. Add PPI,.Protocol, Guid, PCD,or Library Class dependencies to the INF file.

5. Add [depex] section to the INF file if this module depends on a PPI, Protocol,
or Guid and the module type supports this section.

6. Create source file(s) and add relative path of source file(s) to the INF file

3.2.1 Location

A module is released and distributed within a package, so creating or selecting the
appropriate package for the new module is the first step.

3.2.1.1 Choosing the Package

A Package in EDK II is used to contain similar definitions and modules. The “similar” is
recommended to be determined by following rules:

Industry standard

For example, MdePkg package contains the definitions from PIWG, UEFI,
SMBIOS, USB, PCI, etc, which are all industry standards.

Similar technology

For example, OptionRomPkg groups the definitions and modules related to
Option Rom technology.

 19

Business reason

For example, IntelFrameworkPkg groups the definitions and modules for
Intel framework implementation.

Platform

For example, Nt32Pkg groups the definitions and modules required by
Nt32 platform. In addition, a platform package also will provide a DSC and
FDF file for platform building.

At the beginning of developing a module, the module developers need to consider the
purpose and release process for the module to select the appropriate package.

Note: The packages in https://edk2.tianocore.org are basic core packages.
Generally, a new module should not be created in them.

3.2.1.2 Adding a Module Directory

A module directory should be added to the proper package with the following
recommendations:

 Put a library module to “<Package Root Path>/Library” directory.

 Put PROTOCOL, PPI, GUID, or Library Class definitions in “<Package Root
Path>/Include/Protocol” or “<Package Root Path>/Include/Ppi” or “<Package
Root Path>/Include/Guid” or “<Package Root Path>/Include/Library” directory
respectively.

 Put a driver module in “<Package Root Path>” directory.

 Put an application module in “<Package Root Path>/Application” directory

 Use recommend directory name for module as follows:

 Table 2 Recommended name convention for module directory

Recommended directory name convention Module Type

XxxPei PEIM, PEI_CORE

XxxDxe DXE_DRIVER, UEFI_DRIVER

XxxRuntimeDxe DXE_RUNTIME_DRIVER

XxxxDxeSal DXE_SAL_DRIVER

XxxxLib Library Instance

3.2.2 Sample: Module Meta File - INF

Each module requires a module INF file in the root directory of the module.

A module is INF file (sometimes referred to as the module meta-file) includes the
following items:

 The module's basic information, such as name, GUID, module type, etc.

https://edk2.tianocore.org/�

20

 The path to any packages the module is dependent on.

 The path to binary files or source files included in the module.

 A list of all interfaces required by the module, i.e. Protocol, Ppi, Guid.

 A list of all PCDs and Library classes required by the module.

 Others, such as dependency section depending on the module type.

3.2.2.1 Example: Application Module INF

[Defines]
 INF_VERSION = 0x00010005
 BASE_NAME = HelloWorld
 FILE_GUID = XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX
 MODULE_TYPE = UEFI_APPLICATION
 VERSION_STRING = 1.0
 UEFI_SPECIFICATION_VERSION = 0x0002001E

 ENTRY_POINT = UefiMain

The following information is for reference only and not required by the
#build tools.

VALID_ARCHITECTURES = IA32 X64 IPF EBC

[Sources.common]
 HelloWorld.c

[Packages]
 MdePkg/MdePkg.dec

[LibraryClasses]
 UefiBootServicesTableLib
 UefiApplicationEntryPoint
 UefiLib
 DebugLib

3.2.2.2 Example: Library Module INF

Following is a sample INF file for PeiSevicesTablePointerLib.inf library instance:

 21

[Defines]
 INF_VERSION = 0x00010005
 BASE_NAME = PeiServicesTablePointerLib
 FILE_GUID = XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX
 MODULE_TYPE = PEIM
 VERSION_STRING = 1.0
 LIBRARY_CLASS = PeiServicesTablePointerLib|PEIM
PEI_CORE SEC

 CONSTRUCTOR = PeiServicesTablePointerLibConstructor

VALID_ARCHITECTURES = IA32 X64 IPF EBC (EBC is for build
#only)

[Sources.common]
 PeiServicesTablePointer.c

[Packages]
 MdePkg/MdePkg.dec

[LibraryClasses]
 DebugLib

3.2.3 Adding a Package Dependency

The [Packages] section of the INF file describes all packages dependencies of this
module. The EDK II relative path of dependent package DEC file is described in INF’s
[Packages] section as follows:

[Packages]
 MdePkg/MdePkg.dec
 IntelFrameworkPkg/IntelFrameworkPkg.dec

Note: The path is from the root of the $workspace, not from the module directory.

A module should use the following rules for determining package dependency:

 The MdePkg package is required for all modules

 If using definitions from Intel framework specification, dependency on the
IntelFrameworkPkg is required.

 Beyond the preceding rules, more package dependencies are introduced by
referencing or using surface items, such as Protocol, Ppi, Guid, PCD, Library
Class, etc. For example, if a module uses definitions or interfaces from the
library class “HiiLib” that is defined in MdeModulePkg package, it would need
to be dependent on the MdeModulePkg.

3.2.4 Adding Source Files

All module source code is described in the INF [sources] section, and is based on
following rules:

Note: The UNIX-style path separator “/” should be used, not the Windows*-style “\”.

22

 Different architecture sources are put in different source sections.
[Sources.common] # source in this section is suitable for all arch
 CheckSum.c
...

[Sources.Ia32] # source in this section is suitable for IA32 arch
 Ia32/Wbinvd.c | MSFT
 ...
 Ia32/WriteMm7.S | GCC
 ...

[Sources.X64] # source in this section is suitable for X64 arch
 X64/Thunk16.asm
 ...

[Sources.IPF] # source in this section is suitable for IPF arch
 Ipf/AsmCpuMisc.s
...

[Sources.EBC] # source in this section is suitable for EBC arch
 Synchronization.c
...

 Tool Tags are used describe the sources for different tool chains.

[Sources.Ia32]
 Ia32/Wbinvd.c | MSFT # source is built when MSFT tool is used
 ...
 Ia32/WriteMm7.S | GCC # source is built when GCC tool is used
 ...
 "$(CC)" -o ${dst} $(CC_FLAGS) $(INC) ${src}

 All files should be put under the module’s main folder. Do not use “. /”

 All C include files should also be listed in the sources section.

3.2.4.1 Supported Tool Tag

The following tool tag name is supported by edk2.

Table 3 EDK II supported file extensions

Tool Tag Description

MSFT Microsoft Family Tool Chain

INTEL INTEL Tool Chain

GCC GCC Tool Chain

3.2.5 Add Library Class References

The library class abstracts some macro or structure definitions and function
declarations. The library instance, which is the implementation of a given library class,
can be different for different platform or for different phases (SEC ,PEI, DXE) in one
platform. Therefore, a module will be dependent on a library class for platform or
phase specific behavior.

The steps of using a library class in a module are:

1. Add a dependency for the package containing the library class in INF file

 23

2. Add a dependency for the library class in the INF file

3. Include the library class header file in source code.

To include the library class header in C source code use the following syntax:
#include <Library/OemHookStatusCodeLib.h>

The header including path is relative to the package’s public include path, which is
defined in the package (containing the library class, not necessarily the module) DEC’s
[include] section.

Note: Rememberr to use “/” for the path separator.

3.2.6 Adding PCD References

MACRO and global variables are widely used to make modules customizable in
different architectures and different platforms. The EDK II introduces the PCD concept
to replace these methods. For example, a “FeatureFlag” type PCD is similar to a
project MACRO in that some feature or functionality will be enabled if the PCD’s value
is TRUE, and vice versa.

A PCD entry is defined by the PCD’s Token Space Guid C name, followed by a period
“.” character and the PCD’s C name. In one PCD’s token space, each PCD’s C name is
unique.

For example, for PCD gEfiMdePkgTokenSpaceGuid.PcdDebugPrintErrorLevel,
gEfiMdePkgTokenSpaceGuid is the token space name and PcdDebugPrintErrorLevel is
the PCD name, and gEfiMdePkgTokenSpaceGuid is mapped to a GUID defined in
MdePkg:

gEfiMdePkgTokenSpaceGuid = { 0x914AEBE7, 0x4635, 0x459b, { 0xAA,
0x1C, 0x11, 0xE2, 0x19, 0xB0, 0x3A, 0x10 }}

3.2.6.1 PCD Types

EDK II provides the following types of PCDs:

Feature flag type PCD

This PCD type replaces a switch MACRO to enable or disable a feature.
This is a Boolean value, and is either TRUE or FALSE.

Fixed at build type PCD

This PCD type replaces a macro that produced a customizable value, such
as the PCI Express base address. The value of this PCD type is determined
at build time and is stored in the code section of a module’s PE image.

Patchable in module type PCD

This PCD type is very similar to the fixed at build PCD type, but the value
is stored in the data section, rather than the code section, of the module’s
PE image.

24

Dynamic type PCD

This PCD type is different from the other PCD types listed. The value is
assigned by one module and is accessed by other modules in execution
time. The PEIM PcdPeim and the DXE Driver PcdDXE each maintain a PCD
database that contains all dynamic PCD information used by platform in
their respective phase.

3.2.6.2 Add the Package Dependency

When using a PCD in a module, package dependencies must be added to INF’s
[Packages] section. Two packages are required: the package containing the PCD being
used, and the MdePkg. The MdePkg is required because the library class “PcdLib” in
MdePkg provides PCD accessing functions and macros.

3.2.6.3 Adding PCDs to module’s INF file

To reference a PCD entry, the token space guid name and PCD name must be added
into the INF’s [PCD] section:

[PCD.common]
 gEfiMdePkgTokenSpaceGuid.PcdMaximumLinkedListLength
 gEfiMdePkgTokenSpaceGuid.PcdMaximumAsciiStringLength
 gEfiMdePkgTokenSpaceGuid.PcdMaximumUnicodeStringLength

We recommended using a general type “PCD” in the module’s INF, so that it allows
platform integrators to choose any PCD type for different usage cases. For example, in
a desktop platform, memory length can be designated as a “Dynamic” PCD, and its
value is produced by the memory discovery driver. However, in some special
embedded systems, memory length is designed as a “FixedAtBuild” type PCD, and its
value is always fixed.

There are limitations for selecting PCD types:

 If a PCD value is used as constant value such as array’s length, this PCD’s
type should be “FixedPcd”. For example:

UINT8 MySampleArray[FixedPcdGet16(PcdArrayLength)] = {0};

Note: Avoid using “FixedPcd” in the library instance modules, because the library
instance can link to different modules, and the same PCD may have a different
value in different modules.

Note: In a single module, avoid using two PCDs with same name but in different
token spaces.

Table 4 INF PCD Section Name

PCD Type INF File Section Name

General type that can
be mapped in any PCD
type

PCD

Feature Flag FeaturePcd

 25

Fixed At Build FixedPcd

Patchable In Module PatchPcd

Dynamic PCD

3.2.6.4 Accessing a PCD value from C source code

To obtain or set a PCD’s value from source code, the following steps should be taken:

1. Add the dependency for PcdLib to the module INF file.

2. Add the dependency for MdePkg.

3. Add the include for <Library/PcdLib.h> in source code.

4. Use the PcdLib interface to access the PCD’s value.

Table 5 PCD access functions

Function name INF PCD Section Name

PcdGetx()/PcdSetx() Common get/set function for all PCDs type

FeaturePcdGet()/FeaturePcdSet() Get/set function for “FeaturePcd”

FixedPcdGetx() Get function for “FixedPcd”

PatchPcdGetx()/PatchPcdSetx Get/Set function for “PatchPcd”

For example, the PcdGet32 macro is used to obtain the 32-bit value for all types of
PCDs:

 //
 // Check driver debug mask value and global mask
 //
 if ((ErrorLevel & PcdGet32(PcdDebugPrintErrorLevel)) == 0) {
 return;
 }

3.2.7 Referencing a Protocol, PPI, or GUID

A Protocol, PPI, or a Guid is a UEFI architecture interface item and abstract firmware
component’s interface. This section introduces how to reference one of these
interfaces from a module.

3.2.7.1 Adding Protocol, PPI, or GUID to INF file

The name of Protocol, PPI, or GUID must be added into the corresponding section in
the module INF file: [Protocol], [Ppi], and [Guid]. For example:

26

[Protocol]
gEfiSampleProtocol

3.2.7.2 Including the header file in source code

The Protocol, PPI, or GUID header file may define related structures. Use the following
procedure to find the header file path:

 The header file for a Ppi is in <PackagePath>\Include\Ppi.

 The header file for a Protocol is in <PackagePath>\Include\Protocol.

 The header file for a Guid is in <PackagePath>\Include\Guid.

Header files must be explicitly included in the module source code. For example:

#include <Protocol/DeviceIo.h>
#include <Ppi/Reset.h>
#include <Guid/GlobalVariable.h>

3.2.8 Adding a Dependency to a Module

The dependency expression gives the conditions for executing or dispatching a driver’s
entry point. This helps determine the dispatch order for PEIM and DXE modules.

An expression consists of one or more Protocol, PPI, or GUID with operators such as
“AND”, “OR”, “TRUE”, “FALSE”, “NOT” etc.

The Platform Initialization Specification gives detailed syntax for PEIM’s dependency
expression in the “Dependency Expressions” chapter, and details for the DXE module’s
dependency expression in the “Dependency Expression Grammar” chapter.

The expression should be put in the INF’s depex section as follows:

[depex]
 gEfiSampleGuid AND gEfiSamplePpiGuid

3.3 Additional Steps for Library Instances

3.3.1 Define Produced Library Class

A library instance is always related to a single library class and implements all
interfaces defined in the library class. Therefore, the library class name must be
specified in the [Defines] section of the library instance INF file as follows:

[Defines]
 LIBRARY_CLASS = UefiDriverEntryPoint|DXE_DRIVER DXE_RUNTIME_DRIVER

In above sample, UefiDriverEntryPoint is the library class name produced by the
library instance. In addition, following “DXE_DRIVER DXE_RUNTIME_DRIVER” are the
type of modules to the library instance supports.

 27

3.3.2 Define a Library Constructor (Optional)

The library instance module can define a library constructor function that is invoked
by the entry point of each linked module. In a library constructor function, some
initialization work can be done before any library interface is used:

[Defines]
 ……
 CONSTRUCTOR = HobLibConstructor

3.3.2.1 Types of library constructor functions

There are three types of library constructor functions, according to the different
module type of library instance:

 Library instance in BASE module type:
EFI_STATUS
EFIAPI
BaseConstructor (
 VOID
)

 Library instance in PEIM, PEI_CORE module type:
EFI_STATUS
EFIAPI
PeiServicesTablePointerLibConstructor (
 IN EFI_PEI_FILE_HANDLE FileHandle,
 IN CONST EFI_PEI_SERVICES **PeiServices
)

 Library instance in DXE_DRIVER, DXE_CORE, DXE_RUNTIME_DRIVER,
UEFI_APPLICATION, UEFI_DRIVER module type:

EFI_STATUS
EFIAPI
DxeCorePerformanceLibConstructor (
 IN EFI_HANDLE ImageHandle,
 IN EFI_SYSTEM_TABLE *SystemTable
)

3.3.3 Define a Library Destructor (Optional)

The library instance module can define a library destructor function that is invoked by
ExitDriver() for DXE_DRIVER, UEFI_DRIVER etc. In a library destructor function,
some un-initialization works can be done.

The destructor function should be declared in an INF file explicitly, as follows:

[Defines]
……
DESTRUCTOR = HobLibDestructor

The prototype of the destructor function is the same as the constructor function
mentioned above.

28

3.4 Additional Steps for Driver

3.4.1 Define a Driver Entry Point

PEIM or DXE drivers expose the entry point function, which is defined in the INF file
[Defines] section as follows:

[Defines]
……
ENTRY_POINT = PcdDxeInit

The prototype of the module entry point function differs according to module type.
See Table 7 for details.

3.5 EDK II Common Library Class

The MdePkg provides many library classes for developing firmware components based
on the UEFI and PI specifications. These library classes are often used in module
development and detailed in the MdePkg documentation.

Table 6 Commonly use library classes

Library Name Concept Description

BaseLib Base Library Provides string functions, linked list functions, math functions,
and CPU architecture specific functions.

SynchronizationLib Synchronization Library Provides synchronization functions

PrintLib Print Library Provides services to print a formatted string to a buffer. All
combinations of Unicode and ASCII strings are supported.

BaseMemoryLib Base Memory Library Provides copy memory, fill memory, zero memory, and GUID
functions.

MemoryAllocationL
ib

Memory Allocation
Library

Provides services to allocate and free memory buffers of various
memory types and alignments.

DebugLib Debug Library Provides ser vices to print debug and assert messages to a debug
output device.

PostCodeLib Post Code Library Provides services to send progress/error codes to a POST card.

StatusCodeLib Report Status Code
Library

Provides services to log status code records

IoLib I/O Library Provide services to access I/O Ports and MMIO registers.

PciExpressLib PCI Express Library Provides services to access PCI Configuration Space using the
MMIO PCI Express window.

PciLib PCI Library Provides services to access PCI Configuration Space.

TimerLib Timer Library Provides calibrated delay and performance counter services.

PcdLib PCD Library Provides library services to get and set Platform Configuration
Database entries.

 29

Table 7 Module Entry Point and Service Table Libraries

Concept Description

PEIM Entry Point Library Module entry point library for PEIM.

UEFI Driver Entry Point Library Module entry point library for UEFI drivers, DXE Drivers, DXE Runtime
Drivers, and DXE SMM Drivers.

UEFI Application Entry Point Library Module entry point library for UEFI Applications.

PEI Services Table Pointer Library Provides a service to retrieve a pointer to the PEI Services Table.

UEFI Boot Services Table Library Provides a service to retrieve a pointer to the EFI Boot Services Table.
Only available to DXE and UEFI module types.

UEFI Runtime Services Table Library Provides a service to retrieve a pointer to the EFI Runtime Services Table.
Only available to DXE and UEFI module types.

DXE Services Table Library Provides a service to retrieve a pointer to the DXE Services Table. Only
available to DXE module types.

3.6 Module using HII

DXE Modules can publish or update the following resources used in the browser during
the BDS phase:

Forms

Describes what type of content needs to be displayed to the user.

Strings

 The text-based (UCS-2 encoded) representations of the information
typically being referenced by the forms.

Font/Image

The contents rendered on a local system.

Please refer to the UEFI Specification, Chapter 27, Human Interface Infrastructure
Overview.

3.6.1 Forms

3.6.1.1 Create VFR resource file

The VFR file is used to describe form resources, per the example below. A VFR file is
put into a module’s directory and referenced in the INF file [Sources] section, just as
with other source code.

30

Example: VFR file
#define FORMSET_GUID { 0x9e0c30bc, 0x3f06, 0x4ba6, 0x82, 0x88, 0x9,
0x17, 0x9b, 0x85, 0x5d, 0xbe }

#define FRONT_PAGE_CLASS 0x0000
#define FRONT_PAGE_SUBCLASS 0x0002

#define FRONT_PAGE_FORM_ID 0x1000

#define FRONT_PAGE_ITEM_ONE 0x0001
#define FRONT_PAGE_ITEM_TWO 0x0002
#define FRONT_PAGE_ITEM_THREE 0x0003
#define FRONT_PAGE_ITEM_FOUR 0x0004
#define FRONT_PAGE_ITEM_FIVE 0x0005

#define FRONT_PAGE_KEY_CONTINUE 0x1000
#define FRONT_PAGE_KEY_LANGUAGE 0x1234
#define FRONT_PAGE_KEY_BOOT_MANAGER 0x1064
#define FRONT_PAGE_KEY_DEVICE_MANAGER 0x8567
#define FRONT_PAGE_KEY_BOOT_MAINTAIN 0x9876

#define LABEL_SELECT_LANGUAGE 0x1000
#define LABEL_TIMEOUT 0x2000
#define LABEL_END 0xffff

formset
 guid = FORMSET_GUID,
 title = STRING_TOKEN(STR_FRONT_PAGE_TITLE),
 help = STRING_TOKEN(STR_NULL_STRING),
 classguid = EFI_HII_PLATFORM_SETUP_FORMSET_GUID,

 form formid = FRONT_PAGE_FORM_ID,
 title = STRING_TOKEN(STR_FRONT_PAGE_TITLE);

 banner
 title = STRING_TOKEN(STR_FRONT_PAGE_COMPUTER_MODEL),
 line 0,
 align left;

 banner
 title = STRING_TOKEN(STR_FRONT_PAGE_CPU_MODEL),
 line 1,
 align left;

 31

 banner
 title = STRING_TOKEN(STR_FRONT_PAGE_CPU_SPEED),
 line 1,
 align right;

 banner
 title = STRING_TOKEN(STR_FRONT_PAGE_BIOS_VERSION),
 line 2,
 align left;

 banner
 title = STRING_TOKEN(STR_FRONT_PAGE_MEMORY_SIZE),
 line 2,
 align right;

 goto FRONT_PAGE_ITEM_ONE,
 prompt = STRING_TOKEN(STR_CONTINUE_PROMPT),
 help = STRING_TOKEN(STR_CONTINUE_HELP),
 flags = INTERACTIVE,
 key = FRONT_PAGE_KEY_CONTINUE;

 label LABEL_SELECT_LANGUAGE;
 //
 // This is where we will dynamically add a OneOf type op-code to
select
 // Languages from the currently available choices
 //
 label LABEL_END;

 goto FRONT_PAGE_ITEM_THREE,
 prompt = STRING_TOKEN(STR_BOOT_MANAGER),
 help = STRING_TOKEN(STR_BOOT_MANAGER_HELP),
 flags = INTERACTIVE,
 key = FRONT_PAGE_KEY_BOOT_MANAGER;

 goto FRONT_PAGE_ITEM_FOUR,
 prompt = STRING_TOKEN(STR_DEVICE_MANAGER),
 help = STRING_TOKEN(STR_DEVICE_MANAGER_HELP),
 flags = INTERACTIVE,
 key = FRONT_PAGE_KEY_DEVICE_MANAGER;

 goto FRONT_PAGE_ITEM_FIVE,
 prompt = STRING_TOKEN(STR_BOOT_MAINT_MANAGER),
 help = STRING_TOKEN(STR_BOOT_MAINT_MANAGER_HELP),
 flags = INTERACTIVE,
 key = FRONT_PAGE_KEY_BOOT_MAINTAIN;

 endform;

endformset;

3.6.1.2 Publish the Form data

When building, VfrCompile will “build” a .vfr file into the IFR binary as a global array
variable in the module image. The name of the global array variable is <VfrFileName>
+ Bin.

For example, the content of Inventory.vfr in the
MdeModulePkg\Universal\DriverSampleDxe driver is compiled into the global array
variable InventoryBin.

32

Module developers should use the following code to publish the VFR global array
variable into the HII database:
 //
 // Create HII driver handle, paramter DriverHandle will hold the
 // returned new handle.
 // HiiLibCreateHiiDriverHandle defined in UefiHiiLib library class.
 //
 Status = HiiLibCreateHiiDriverHandle(&DriverHandle);

 //
 // Prepare HII package list, parameter InventoryBin is the VFR form
data
 // HiiLibPreparePackageList defined in UefiHiiLib library class
 //
 PackageList = HiiLibPreparePackageList (2,
 &mInventoryGuid,
 InventoryBin,
 DriverSampleStrings);
 ASSERT (PackageList != NULL);

 //
 // Create package into HII database via EFI_HII_PROTOCOL-
>NewPackageList
 //
 Status = gHiiDatabase->NewPackageList (
 gHiiDatabase,
 PackageList,
 DriverHandle,
 &HiiHandle
);

When a driver only produces one formset in a VFR file, the IFR binary could be put
into a driver’s binary as a PE resource section by setting
UEFI_HII_RESOURCE_SECTION to TRUE in the driver’s INF file:
[Defines]
 INF_VERSION = 0x00010005
 BASE_NAME = HiiResourcesSample
 FILE_GUID = D49D2EB0-44D5-4621-9FD6-1A92C9109B99
 MODULE_TYPE = UEFI_DRIVER
 VERSION_STRING = 1.0
 ENTRY_POINT = HiiResourcesSampleInit
 UNLOAD_IMAGE = HiiResourcesSampleUnload

This flag specifies whether HII resource section is generated into PE
image.

 UEFI_HII_RESOURCE_SECTION = TRUE

Module developers should use the following code to publish HII package data into the
HII database:

 33

 //
 // Retrieve HII package list from ImageHandle
 //
 Status = gBS->OpenProtocol (
 ImageHandle,
 &gEfiHiiPackageListProtocolGuid,
 (VOID **) &PackageList,
 ImageHandle,
 NULL,
 EFI_OPEN_PROTOCOL_GET_PROTOCOL
);
 if (EFI_ERROR (Status)) {
 return Status;
 }

 //
 // Publish sample Fromset
 //
 Status = gBS->InstallProtocolInterface (
 &mDriverHandle,
 &gEfiDevicePathProtocolGuid,
 EFI_NATIVE_INTERFACE,
 &mHiiVendorDevicePath
);
 if (EFI_ERROR (Status)) {
 return Status;
 }

 //
 // Publish HII package list to HII Database.
 //
 Status = gHiiDatabase->NewPackageList (
 gHiiDatabase,
 PackageList,
 mDriverHandle,
 &mHiiHandle
);
 if (EFI_ERROR (Status)) {
 return Status;
 }

3.6.2 Using Unicode Strings

3.6.2.1 Create .uni file

The Unicode strings are put into the .uni file and referenced in the module’s INF
[Sources] section like others C files. The .uni file is encoding UCS-2 with a 0xFFFE
BOM header. For example:

34

/=#

#langdef en-US "English"
#langdef fr-FR "Francais"

#string STR_INV_FORM_SET_TITLE #language en-US "Network
Controller Information"
 #language fr-FR "Mi motor Español
de arreglo"
#string STR_INV_FORM_SET_HELP #language en-US "The ABC Network
Controller version information, which includes Firmware versions as well
as supported characteristics"
 #language fr-FR "The ABC Network
Controller version information, which includes Firmware versions as well
as supported characteristics"
#string STR_INV_FORM1_TITLE #language en-US "ABC Network
Controller Version Data"
 #language fr-FR "Mi Primero
Arreglo Página"
#string STR_INV_VERSION_TEXT #language en-US "Firmware
Revision Date: 02/03/2002"
 #language fr-FR "Firmware
Revision Date: 02/03/2002"
#string STR_INV_VERSION_HELP #language en-US "The date of the
revision of the Firmware being used."
 #language fr-FR "The date of the
revision of the Firmware being used."

3.6.2.2 Publish the Unicode String file

The file content in .uni file will be parsed and compiled by build tool to a binary string
package array for a module. The name of binary array is constructed as
<ModuleName> + “Strings”. For example, the inventorystring.uni defined in
MdeModulePkg\Universal\DriverSampleDxe is compiled to binary array:
extern UINT8 DriverSampleStrings[];

Module developers should use the following codes to publish the strings array variable
into the HII database:

 35

 //
 // Create HII driver handle, paramter DriverHandle will hold the
 // returned new handle.
 // HiiLibCreateHiiDriverHandle defined in UefiHiiLib library class.
 //
 Status = HiiLibCreateHiiDriverHandle(&DriverHandle);

 //
 // Prepare HII package list, parameter DriverSampleStrings is the
 // strings binary data.
 // HiiLibPreparePackageList defined in UefiHiiLib library class
 //
 PackageList = HiiLibPreparePackageList (
 2,
 &mFormSetGuid,
 DriverSampleStrings,
 VfrBin
);
 if (PackageList == NULL) {
 return EFI_OUT_OF_RESOURCES;
 }

 //
 // Create package into HII database via EFI_HII_PROTOCOL-
>NewPackageList
 //
 Status = HiiDatabase->NewPackageList (
 HiiDatabase,
 PackageList,
 DriverHandle[0],
 &HiiHandle[0]
);

As with other types HII resources, if a module publishs the HII data into a PE resource
section, UEFI_HII_RESOURCE_SECTION is set to TRUE in the module’s INF file and
the following code is used:

36

 //
 // Retrieve HII package list from ImageHandle
 //
 Status = gBS->OpenProtocol (
 ImageHandle,
 &gEfiHiiPackageListProtocolGuid,
 (VOID **) &PackageList,
 ImageHandle,
 NULL,
 EFI_OPEN_PROTOCOL_GET_PROTOCOL
);
 if (EFI_ERROR (Status)) {
 return Status;
 }

 //
 // Publish sample Fromset
 //
 Status = gBS->InstallProtocolInterface (
 &mDriverHandle,
 &gEfiDevicePathProtocolGuid,
 EFI_NATIVE_INTERFACE,
 &mHiiVendorDevicePath
);
 if (EFI_ERROR (Status)) {
 return Status;
 }

 //
 // Publish HII package list to HII Database.
 //
 Status = gHiiDatabase->NewPackageList (
 gHiiDatabase,
 PackageList,
 mDriverHandle,
 &mHiiHandle
);
 if (EFI_ERROR (Status)) {
 return Status;
 }

3.7 Building the module

After the module source is finished, the module INF is added into the DSC file to be
built to the expected binary image. Library, EFI and OptionRom images are supported
by the EDK II build system.

3.7.1 Add the module INF in package DSC

To build a module, the module INF file is specified in DSC [Components] section. Its
relative file path from the workspace (beginning from the package directory), up to
and including the INF file name, is added per the following example. Some module
may be required to be built for the specific ARCH.

The DSC [Defines] section lists all supported architectures for this platform. The
[Components.ARCH] section lists the modules for this architecture. The ARCH must be
on the list of all ARCHs from the [Defines] section. The separate [Components]
section can be created for the modules that support the different architectures.

 37

3.7.1.1 Example: Package.dsc Components
[Defines]
 ……
 SUPPORTED_ARCHITECTURES = IA32|IPF|X64|EBC
 ……
[Components]
All libraries, drivers and applications may be added here to be built.
this library will be built to the IA32, IPF, X64 and EBC arch version.
 PackageNamePkg/Library/NameOneLib/NameOneLib.inf

[Components.IA32]
This PEI driver will be built to the IA32 arch version.
 PackageNamePkg/NameTwoPei/NameTwoPei.inf

[Components.X64, Components.EBC]
This DXE driver will be built to the X64 and EBC arch version.
 PackageNamePkg/NameOneDxe/NameOneDxe.inf

3.7.2 Select Library Instances

Note: Skip this step if the module is a library instance.

For drivers and applications, a library instance for each library class dependency must
be selected and linked to its binary EFI image.

The module INF [LibraryClasses] section lists all required library classes, which are
produced by library instances.

Library instances are implemented for the different purposes. Most of them abstract
the generic logic as the common interfaces for the crossing platform modules. Some
are for performance and size optimization.

For example, in the MdePkg the BaseMemoryLibOptDxe instances produce the “good
performance” BaseMemory library class implementation based on the registers to
perform a memory operation. Another example, in the MdePkg the PeiIoLibCpuIo
library instance implements the Io library class by using the services of CpuIo PPI to
reduce code size.

Depending on platform requirements, different library instances can be set in the DSC
[LibraryClasses] section. In the initial development, the generic library instances
without any optimization are often used to reduce the development risk. After the
module basic functionality is finished, it can be further tuned for size and
performance.

The EDK II MdePkg provides many common library instances for user selection. The
details for each library instance are found in its INF file or in the MdePkg specification.
The following example lists the most basic library instances.

38

3.7.2.1 Example Package.dsc LibraryClasses

3.7.2.1.1 Example 1: Generic library instances
[LibraryClasses]
Basic Library
BaseLib|MdePkg/Library/BaseLib/BaseLib.inf
DebugLib|MdePkg/Library/BaseDebugLibNull/BaseDebugLibNull.inf
SynchronizationLib|MdePkg/Library/BaseSynchronizationLib/BaseSynchronizat
ionLib.inf
CpuLib|MdePkg/Library/BaseCpuLib/BaseCpuLib.inf
BaseMemoryLib|MdePkg/Library/BaseMemoryLib/BaseMemoryLib.inf
PrintLib|MdePkg/Library/BasePrintLib/BasePrintLib.inf
PcdLib|MdePkg/Library/BasePcdLibNull/BasePcdLibNull.inf

Pci Library
PciCf8Lib|MdePkg/Library/BasePciCf8Lib/BasePciCf8Lib.inf
PciExpressLib|MdePkg/Library/BasePciExpressLib/BasePciExpressLib.inf
PciLib|MdePkg/Library/BasePciLibCf8/BasePciLibCf8.inf

Entry Point Library
PeimEntryPoint|MdePkg/Library/PeimEntryPoint/PeimEntryPoint.inf
UefiDriverEntryPoint|MdePkg/Library/UefiDriverEntryPoint/UefiDriverEntryP
oint.inf
UefiApplicationEntryPoint|MdePkg/Library/UefiApplicationEntryPoint/UefiAp
plicationEntryPoint.inf

PEI service library
PeiServicesLib|MdePkg/Library/PeiServicesLib/PeiServicesLib.inf
PeiServicesTablePointerLib|MdePkg/Library/PeiServicesTablePointerLib/PeiS
ervicesTablePointerLib.inf

UEFI and DXE service library
UefiBootServicesTableLib|MdePkg/Library/UefiBootServicesTableLib/UefiBoot
ServicesTableLib.inf
DxeServicesTableLib|MdePkg/Library/DxeServicesTableLib/DxeServicesTableLi
b.inf
UefiRuntimeServicesTableLib|MdePkg/Library/UefiRuntimeServicesTableLib/Ue
fiRuntimeServicesTableLib.inf

DxeServicesLib|MdePkg/Library/DxeServicesLib/DxeServicesLib.inf
UefiRuntimeLib|MdePkg/Library/UefiRuntimeLib/UefiRuntimeLib.inf
UefiLib|MdePkg/Library/UefiLib/UefiLib.inf
DevicePathLib|MdePkg/Library/UefiDevicePathLib/UefiDevicePathLib.inf

This library instance should be provide by chipset.
TimerLib|MdePkg/Library/BaseTimerLibNullTemplate/BaseTimerLibNullTemplate
.inf

The library instances given above are generic ones for use in all drivers. However,
according to the module type and CPU architecture, more suitable library instances
can be added into [LibraryClass.ARCHs.ModuleType] section to override the common
setting, per the following example:

 39

3.7.2.1.2 Example 2: library instances per module type and CPU architecture
[Defines]
 ……

[LibraryClasses]
 ……

[LibraryClasses.IA32, LibraryClasses.X64]

these two optimized library istances only for X86 arch.
they will override the above common base memory instance.

MdePkg/Library/BaseMemoryLibOptDxe/BaseMemoryLibOptDxe.inf
MdePkg/Library/BaseMemoryLibOptPei/BaseMemoryLibOptPei.inf

[LibraryClasses.common.UEFI_DRIVER]

these two library intances are set for UEFI driver type module.
Debug library instance will override the above NULL instance.

MemoryAllocationLib|MdePkg/Library/UefiMemoryAllocationLib/UefiMemoryAllo
cationLib.inf
DebugLib|MdePkg/Library/UefiDebugLibConOut/UefiDebugLibConOut.inf

For the specific requirement, a driver may select its library instances to override all
library instances specified in the [LibraryClasses] section. This chosen library instance
is set only for this driver. Such usage is also supported in the DSC as follows:

3.7.2.1.3 Example 3: library instances for a specific driver
[Defines]
 ……

[LibraryClasses]
 ……

[Components]

For NameOnDxe driver, its linked PCD library instance is DxePcdLib,
not
the above BasePcdLibNull instance.

PackageNamePkg/NameOneDxe/NameOneDxe.inf {
 <LibraryClasses>
 PcdLib|MdePkg/Library/DxePcdLib/DxePcdLib.inf
 }

3.7.3 Configure PCDs

Note: Skip this step for library modules

Modules that consume PCDs (including those consumed by linked libraries) need to
have those PCDs configured in the DSC. The configured PCDs will be applied both to
the module and to its linked library instances. PCDs are declared in package DEC file.
When the PCD’s value is the same as the default value defined in the DEC, those PCDs
need not be specified in DSC again.

In the DSC, the PCD type and value can be configured according to the platform
requirements. The PCD type must be set to single type in a DSC file. If not specified in

40

DSC, the PCD type will be same as its declaration PCD type in the package DEC file. If
a PCD is declared to support multiple PCD types, the default PCD type is a fixed PCD.

The PCD value may set the different values for the different drivers. If its value is not
specified, the value will be from its declaration default value to the chosen PCD type in
the package DEC file.

3.7.3.1 PCD types

 PcdsFeatureFlag,

 PcdsFixedAtBuild,

 PcdsPatchableInModule,

 PcdsDynamic.

3.7.3.2 Feature Flag PCD

If a PCD is declared as PcdsFeatureFlag, it must be of the FeatureFlag PCD type and
BOOLEAN data type. When this type of PCD is used in a module, it must be specified
in the [FeaturePcd] section of the module INF.

Note: Only FeaturePcdGet API can access this PCD type.

3.7.3.3 Fixed PCD

If a PCD value is decided during the build time, its type can be set to
PcdsFixedAtBuild. When this PCD type is used in module, it can be specified in the
[FixedPcd] or [PCD] section of the module INF. In addition, FixedPcdGet and PcdGet
API can be used to access this type PCD in the module source code.

When FixedPcdGet API is used, this type PCD can be used as the array index in a
driver.

Note: For a library, no such usage is supported.

3.7.3.4 Patchable PCD

If the PCD value needs to be modified in the binary image, its type will be
PcdsPatchableInModule. When this type PCD is used in module, it can be specified in
the [FatchPcd] or [PCD] section of the module INF. In addition,
PatchPcdGet/PatchPcdSet and PcdGet/PcdSet API can be used to access this type PCD
in the module source code.

3.7.3.5 Dynamic PCD

If PCD value is obtained from the runtime environment, its type must be Dynamic. If
a dynamic PCD is from a PCD database that shares data between drives, its type will
be PcdsDynamicDefault. If a dynamic PCD is related to a UEFI variable, its type will be
PcdsDynamicHII.

 41

When this type PCD is used in a module, it must be specified in the [PCD] section of
the module INF. Only PcdGet/PcdSet API can be used to access this type PCD in
module source code.

Dynamic type PCDs must be configured in the DSC file to set the dynamic type and
the initial value for the whole platform, which cannot inherit from its declaration DEC
file and cannot be overridden by a driver.

The following example gives each type of PCD setting:

3.7.3.5.1 Package.dsc PCDs showing each type of PCD setting
[PcdsFeatureFlag]
#PcdName | Pcdvalue
gEfiMdeModulePkgTokenSpaceGuid.PcdHelloWorldPrintEnable|TRUE

[PcdsFixedAtBuild]
#StringPcdName | StringValue| StringType| StringMaxSize
gEfiMdeModulePkgTokenSpaceGuid.PcdHelloWorldPrintString |L"UEFI Hello
World!\n"|VOID*|100

[PcdsPatchableInModule]
#Pring level can be modifed in binary image
gEfiMdePkgTokenSpaceGuid.PcdDebugPrintErrorLevel|0x80000046

[PcdsDynamicDefault]
#Default print times is 1, its can be modifed in runtime.
gEfiMdeModulePkgTokenSpaceGuid.PcdHelloWorldPrintTimes|0x1

[PcdsDynamicHii]
#time out
#PcdName | Uefi Variable name | Uefi Variable Guid | Offset | Default
value
gEfiIntelFrameworkModulePkgTokenSpaceGuid.PcdPlatformBootTimeOut|L"Timeou
t"|gEfiGlobalVariableGuid|0x0|5

PCD section also supports ARCH option to set PCDs value only for a specific ARCH
image. It can be set in [PcdsType.ARCHs] section. For example:

3.7.3.5.2 Example: Package.dsc PCDs for a specific ARCH image

[PcdsFixedAtBuild.IPF]
 gEfiMdePkgTokenSpaceGuid.PcdIoBlockBaseAddressForIpf|0x0ffffc000000

PCD value can be also set only for a driver to override the PCD section setting.
However, Dynamic type PCD must be set as the global value, which cannot be
overridden by a driver. Such usage is also supported in DSC like:

42

3.7.3.5.3 Example: Package.dsc dynamic PCDs

[Components]
For NameOnDxe driver, its print level PCD value is 0x80000000, not same
to
the above setting 0x80000046.
PackageNamePkg/NameOneDxe/NameOneDxe.inf {
 <PcdsPatchableInModule>
 gEfiMdePkgTokenSpaceGuid.PcdDebugPrintErrorLevel|0x80000000
 }

3.7.4 Customize Build Options

Build options are the different compiler options to build the image under the different
tool chain. They are defined in $(WORKSPACE)/Conf/tools_def.txt file. This file
provides the common compiler options for each tool chain tag. The compiler options
are grouped into two main types: compile option and link option. The full option list
can refer to tools_def.txt and EDK II Build Specification.

The following example lists the usual compiler and link option.

3.7.4.1 Example: Tools_def.txt

When the common build options in tools_def.txt do not satisfy the development
requirement, they can be extended or replaced.

Build option syntax
TARGET_TOOLCHAIN_ARCH_COMMANDTYPE_ATTRIBUTE = build option

TARGET is RELEASE or DEBUG
TOOLCHAIN is tool tag name, MYTOOLS is a tag with VS2005 tool chain
ARCH is the tool cpu family architecture.
COMMANDTYPE is the build option name. CC is compile, DLINK is link.
ATTRIBUTE is FLAGS for the build option.

Debug related options of VS2005 compiler
DEBUG_MYTOOLS_IA32_CC_FLAGS = ... /Zi /Gm
DEBUG_MYTOOLS_IA32_DLINK_FLAGS = ... /DEBUG

The EDK II build system provides four levels of override mechanisms to customize the
compiler options. The options override each other in the order given.

3.7.4.2 Modifying Tools_def.txt

Directly modify build options in tool_def.txt, which changes the compiler options and
affects all modules and platforms in same workspace.

3.7.4.3 Modifying an INF file

Add the additional compiler option in module INF [BuildOptions], which applies for this
module to be built in any build DSC.

 43

3.7.4.3.1 Example: Module.inf

[BuildOptions]

Tool Chain Family: MSFT, INTEL, GCC for the different compiler tools.
The different compiler tools have the different compiler options.
* is not specific TARGET, TOOLTAGNAME, ARCHs.

‘=’ append the additional option to the tail.
Append /FAsc compile option only for this module

MSFT:*_*_*_CC_FLAGS = /FAsc

‘==’ replace all options by using new setting

MSFT:*_*_*_DLINK_FLAGS == /DEBUG

3.7.4.4 Modifying DSC platform options

Add the additional compiler option in build DSC [BuildOptions] section, which will
update the compiler options for all modules described in same DSC.

3.7.4.4.1 Example: Package.dsc BuildOptions –compler options for all modules

[BuildOptions]

Append /Od Compile option in DSC to disable optimiaztion for all
modules

MSFT:*_*_*_CC_FLAGS = /Od

3.7.4.5 Modifying a DSC for a single module

Add the additional compiler option in the build DSC [Components] section for a
module, which applies for it only in this build DSC.

3.7.4.5.1 Example: Package.dsc BuildOptions—single module compiler options

[Components]

Append the debug compile option only to NameOneDxe driver

PackageNamePkg/NameOneDxe/NameOneDxe.inf {
 <BuildOptions>
 MSFT:*_*_*_CC_FLAGS = /Od
 }

The higher-level setting will append new options in the tail or replace all options. The
four methods work together meet the platform build requirements.

Note: The last two usages are recommended. Both only modify the DSC file.

44

3.7.5 Build module image

After the settings given above, the EDK II build command can be called to build the
module to the binary image. It has many build configurations to support the differing
build requirements. The usual used build options are introduced in the following
manner:

3.7.5.1 Example: Build option

Build –p Package.dsc –m Module.inf –a ARCH –b TARGET –t TOOLTAG

3.7.5.2 Build Package (-p option)

All modules in the [Components] section of the specified package DSC will be built if
the build module option is not added. If specified more than once on the command
line, the final selection is used.

3.7.5.2.1 Example: Build –p option
Build all modules in PackageOne DSC
Build –p PackageOne\PackageOne.dsc

Build all modules in PackageTwo DSC
Build –p PackageOne\PackageOne.dsc –p PackageTwo\PackageTwo.dsc

3.7.5.3 Build Module (-m option)

When a single specified module is built, it must be in the [Components] section of the
specified DSC. If this option is not added, all modules in the DSC will be built. If
specified more than once on the command line, the final selection is used.

3.7.5.3.1 Example: Build –m option
Build single module One in PacakgeOne DSC
Build –p PackageOne\PackageOne.dsc –m PackageOne\One\One.inf

Build single module Two in PackageOne DSC
Build –p PackageOne\PackageOne.dsc –m PackageOne\One\One.inf –m
PackageOne\Two\Two.inf

3.7.5.4 Build ARCH (-a option)

The supported ARCH option is IA32, X64, IPF and EBC. New arch types may be added
in the future. The module with the settings given above will be built to the specified
ARCH. If specified more than once on the command line, each ARCH is built
sequentially.

 45

3.7.5.4.1 Example: Build –a option
Build all modules in PacakgeOne DSC to IA32 arch
Build –p PackageOne\PackageOne.dsc –a IA32

Build all modules in packageOne DSC to IA32 and X64 arch both
Build –p PackageOne\PackageOne.dsc –a IA32 –a X64

3.7.5.5 Build Target (-b option)

The supported target is DEBUG and RELEASE, which are for the different compiler
option settings. The module will be built under the specified target. If specified more
than once on the command line, each Target is built sequentially.

3.7.5.5.1 Example: Build –b option
Build all modules in PacakgeOne to IA32 arch
Build –p PackageOne\PackageOne.dsc –b DEBUG

Build all modules in packageOne to IA32 and X64 arch both
Build –p PackageOne\PackageOne.dsc –b DEBUG –b RELEASE

3.7.5.6 Build Tool Tag Name (-t option)

Tool tag name are defined in Conf\Tools_def.txt file to represent a compiler tool chain.
For example, MYTOOLS is a default tool tag name to Microsoft VS2005 tool chain. The
module will be built by the specified tool chain. If specified more than once on the
command line, each used tool chain is used sequentially.

3.7.5.6.1 Example: Build –t option
Build all modules in PacakgeOne by MYTOOLS tool chain
Build –p PackageOne\PackageOne.dsc –t MYTOOLS

Build all modules in packageOne by MYTOOLS and ICC tool chain
Build –p PackageOne\PackageOne.dsc –t MYTOOLS –t ICC

If the options given above are not specified with the build command, their default
settings will be from Conf\target.txt file. Details of build command are referenced in
the EDK II User Manual 3.2.2 section.

After applying the settings and build given above, the library and EFI image can be
generated into the build output directory. The build output directory is introduced in
detail in EDK II User Manual, section 3.3. The library is generated into the OUTPUT
directory, and the EFI image is generated into the DEBUG directory.

46

3.7.5.7 Example: Build HelloWorld
Build –p MdeModulePkg/MdeModulePkg.dsc –m
MdeModulePkg/Application/HelloWorld/HelloWorld.inf –a IA32 –b DEBUG –t
MYTOOLS

HelloWorld.efi will be generated in DEBUG directory:

$(WORKSAPCE)/Build/MdeModulePkg/DEBUG_MYTOOLS/IA32/MdeModulePkg/Applicati
on/HelloWorld/HelloWorld/DEBUG, OUTPUT

In the build DEBUG directory, the following files are created: the EFI image,
intermediate files, AutoGen.h, AutopGen.c and the Module.map file.

AutoGen.h and AutopGen.c files are generated for each module by the EDK II build
tool based on the required module information. They declare the dependent PCDs,
Guid Values and include the module entry point related functions. Those AutoGen
functions are referred to in the ModuleEntryPoint library instance. For each module,
the entry point function first calls AutoGen code, then enters into module functions.

Module.map is generated by a compiler tool to list all functions and their relative
addresses in this module. They can be used to locate the module function address at
run time.

3.7.6 Build EFI Option Rom image

An EFI Option Rom image is a standard EFI image. It can be built by the build module
command mentioned in the section given above. The only difference is that its INF
includes the related PCI option in [Defines] section. When PCI option is set in the
module INF, this module will be built to both EFI and Option Rom images. In the build
DEBUG directory, ModuleName.efi and ModuleName.rom will be generated.

The following example contains all PCI options required to create the EFI option rom
image.

 47

3.7.6.1 Example: OptionRom INF—all PCI options
[Defines]
 INF_VERSION = 0x00010005
 BASE_NAME = OptionRomOne
 FILE_GUID = XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX
 MODULE_TYPE = UEFI_DRIVER
 ENTRY_POINT = UefiMain

PCI option for VendorId, DeviceId, ClassCode and Revision
PCI option is used to create PCI option rom image.
 PCI_VENDOR_ID = 0x8086
 PCI_DEVICE_ID = 0x29c2
 PCI_CLASS_CODE = 0x030000
 PCI_REVISION = 0x1000

[Sources.common]
 OptionRom.c

[Packages]
 MdePkg/MdePkg.dec

[LibraryClasses]
 UefiBootServicesTableLib
 UefiDriverEntryPoint
 UefiLib
 DebugLib

Of the PCI options, VendorId, DeviceId and ClassCode are required.The PCI revision is
optional. If the PCI revision is not specified, the default revision is 0x0.

3.7.7 Common build module breaks

The following lists the common build module breaks and their fixes.

error 4000: Value of Guid [gCNameGuid] is not found under [Guids] section
in MdePkg\MdePkg.dec

The module INF is missing a package in the [Packages] section. The same
error can happen for any Guid, Ppi, Protocol, LibraryClass and PCD used
by this module. The package DEC that declares them must be added to
the [Packages] section of this module INF.

error LNK2001: unresolved external symbol _gCNameGuid

The module INF is missing a Guid in the [Guids] section. The same error
can happen for any Guid, Ppi, Protocol, LibraryClass and PCD used by this
module. The Guid, Ppi, or Protocol) CName needs to be added into the
[Guids], [Ppis], or [Protocols] sections, respectively.

error LNK2001: unresolved external symbol _LibraryFunctionName

The module INF is missing a library class in the [LibraryClasses] section.
This prevents the library instance from being linked to the module. The
library class that includes LibraryFunctionName must be added into the
[LibraryClasses] section of this module INF.

48

warning C4013: 'FeaturePcdGet' undefined; assuming extern returning int

PcdLib.h is missing in the module source code. When a PCD is used in a
module, PcdLib APIs are referenced to access the PCD. The PcdLib header
file must included in this module source code.

error 0010: File name case mismatch

 MdeModulePkg\Application\Helloworld\HelloWorld.inf

 MdeModulePkg\Application\HelloWorld\HelloWorld.inf [in file system]

Note: Lower case ‘w’ in’ Helloworld’, in the first path

The module INF file path specified in the DSC is not same as its file path
in the file system. The same error may occur for the source file path
specified in the [Source] section of a module INF. According to the error
information, the file path in the DSC or INF needs to be corrected to its
file path in file system. All files must have their name and case set the
same in the metadata files as in the file system.

error 4000: Instance of library class [NameOneLib] is not found consumed by
module [MdeModulePkg\Application\HelloWorld\HelloWorld.inf]

The DSC file is missing a library class to library instance mapping for the
given library. If the module does not depend on the library class, the
unused library class can be removed from the [LibraryClasses] section of
module INF to fix this error. If the module requires this library class, the
corresponding library instance mapping must be added into the
[LibraryClasses] section of the DSC file.

3.8 Debugging a Module

3.8.1 Required steps for debugging a module

The following steps are required before starting to debug a module.

 “Build –b DEBUG” command

EDK II supports generating DEBUG/RELEASE target. A different target
causes different build options. The "BuildTarget" field in target.txt works
with the “ToolChain” field to determine the actual path of the compiler
tool-chain and build option. Developers can directly open
$(WORKSPACE)\Conf\target.txt and change "TARGET = DEBUG" for the
debug tip. Developers also can use the command line to override this
value, such as "build -b DEBUG" for debug tip.

 Choose the proper DebugLib library instance

 49

For the DebugLib library class, MdePkg and IntelFrameworkModulePkg
core packages provide several library instances, which include
BaseDebugLibNull, BaseDebugLibSerialPort, UefiDebugLibConOut,
UefiDebugLibStdErr, and PeiDxeDebugLibReportStatusCode.

Developers can choose proper DebugLib library instance in the package
DSC file according to the actual requirements.

 Configure the Pcds consumed by DebugLib

The DebugLib library class header defines two PCDs to be used for debug
library configuration.

The PCDs related to debug ability include PcdDebugPropertyMask and
PcdDebugPrintErrorLevel. The former is used to control enable/disable

print/assert abilities, and determines if the ASSERT macro is implemented
through CpuDeadLoop or BreakPoint. For the latter, developers can set
various values to control if the error information should be printed or
filtered.

 Change build option

Developers can modify or override the module build option. For example,
a developer can use the “/Od” option for the Microsoft* compiler to disable
the optimization of the compiler and avoid disordered instructions. The
debug tip can also use the “/FAsc” option for the Microsoft* compiler to
generate a source and assembly (.cod) file to help debug.

3.8.2 Basic debugging methods

Following are three basic methods for debugging:

 Using DEBUG print statement.

In EDK II project, there is a set of PCD to enable/disable debug capability.
Developer can turn on the functionality when starting to debug. Therefore,
the DEBUG print statements can be used to get information desired.

 CpuDeadLoop()

Developers can use an API to halt control flow, which is helpful to find the
location of an issue quickly.

 Module’s Map file

Currently, EDK II generates a corresponding FV map file for every module.
Developers can depend on the base address of a loaded module and map
file to calculate the memory address of functions.

50

4
UEFI Applications

UEFI Application is an EFI image of the type
EFI_IMAGE_SUBSYSTEM_EFI_APPLICATION. This image is executed and automatically
unloaded when the image exits or returns from its entry point.

OS loader is a special type of application that normally does not return or exit.
Instead, it calls the EFI Boot Service gBS->ExitBootServices() to transfer control of
the platform from the firmware to an operating system.

The EFI Shell is a special EFI application that provides the user with a command-line
interface.

4.1 Begin with INF file

The following is an example of the INF file of an application named SampleApplication.
For UEFI Application, the MODULE_TYPE entry should be UEFI_APPLICATION. The
difference compared to Pei/Dxe/Uefi driver is that UEFI_APPLICATON has no
dependency relationship section.
 [Defines]
 INF_VERSION = 0x00010005
 BASE_NAME = SampleApplication
 FILE_GUID = XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX
 MODULE_TYPE = UEFI_APPLICATION
 ENTRY_POINT = SampleApplicationEntryPoint
 UEFI_SPECIFICATION_VERSION = 0x0002001E

[Sources]
 Sample.c

[Packages]
 MdePkg/MdePkg.dec

[LibraryClasses]
 UefiApplicationEntryPoint
 DebugLib

[protocol]
 gSampleProtocolGuid

[Guids]
 gSampleGuid

Note: If a module is dependent on the new definitions or features in
EFI_BOOT_SERVICES or UEFI_RUNTIME_SERVICES—defined in UEFI specifications
from version 2.1 forward—the hex version needs to be given in INF file [Defines]
section’s UEFI_SPECFIICATION_VERSION field.

 51

4.2 Write UEFI Application Entry Point

Developers must focus on specifying the entry point of UEFI application in the
[Defines] section of INF file.

Its prototype is list below:
EFI_STATUS
EFIAPI
UefiMain (
 IN EFI_HANDLE ImageHandle,
 IN EFI_SYSTEM_TABLE *SystemTable
);

As can be seen, there are two parameters for UEFI application entry point,
ImageHandle and SystemTable. ImageHandle refers to the image handle of the UEFI
application. SystemTable is the pointer to the EFI System Table.

The following is a full UEFI_APPLICATION example located at
$WORKSPACE\MdeModulePkg\Application\HelloWorld. It shows how to print a "UEFI
Hello World!" string to console.

Note: This application uses several pcds to demonstrate the usage of PCD. Readers
can obtain the default value of these pcds from the
$WORKSPACE\MdeModulePkg\MdeModulePkg.dec file.

EFI_STATUS
EFIAPI
UefiMain (
 IN EFI_HANDLE ImageHandle,
 IN EFI_SYSTEM_TABLE *SystemTable
)
{
 UINT32 Index;
 Index = 0;

 //
 // Three PCD type (FeatureFlag, UINT32 and String) are used as the
 // sample.
 //
 if (FeaturePcdGet (PcdHelloWorldPrintEnable)) {
 for (Index = 0; Index < PcdGet32 (PcdHelloWorldPrintTimes); Index ++)
{
 //
 // Use UefiLib Print API to print string to UEFI console
 //
 Print ((CHAR16*)PcdGetPtr (PcdHelloWorldPrintString));
 }
 }

 return EFI_SUCCESS;
}

4.3 Get Service Tables

UEFI Application may consume the UEFI Boot Services, UEFI Runtime Services and
UEFI System Table.

52

Refer to UEFI Specification for definitions and detailed descriptions of UEFI Boot
Services, UEFI Runtime Services, and UEFI System Table.

EDK II provides UefiBootServicesTableLib, UefiBootServicesTableLib and
UefiRuntimeServicesTableLib to facilitate developer in accessing those services. The
following table lists the global symbol provided by those libraries.
Table 8 Global Symbol can be used by UEFI Application

 Global Variable Library Class

UEFI System Table gST UefiBootServicesTableLib

UEFI Boot Services Table gBS UefiBootServicesTableLib

UEFI Runtime Services Table gRT UefiRuntimeServicesTableLib

4.4 Communicating with a UEFI driver

4.4.1 Protocol

Uefi Application can use the following protocol service to access the protocol interfaces
produced by UEFI drivers.

Services to retrieve the protocol:

 LocateProtocol()

 HandleProtocol()

 OpenProtocol()

Note: Uefi Application cannot use the InstallProcotol service or corresponding
Libraries to install the protocol. This is because the UEFI application is unloaded
after returning from the entry point. Therefore, it is meaningless to install this
protocol.

4.4.2 Variable

Variables are defined as key/value pairs that consist of identifying information plus
the attributes (the key) and arbitrary data (the value). Variables are intended for use
as a means to store data that is passed between the EFI environment implemented in
the platform and EFI OS loaders and other applications that run in the EFI
environment.

UEFI application can read and write variable via UEFI Runtime Services
GetVariable() and SetVariable(). Because UEFI application must run after the
Dxe/UEFI driver, Variable Arch protocol must be installed.

 53

5
UEFI Drivers

The UEFI Specification defines the UEFI Driver Model. Drivers that follow the UEFI
Driver Model are UEFI drivers. The driver initialization routine of a UEFI driver is not
allowed to touch any hardware. Instead, it installs an instance of the
EFI_DRIVER_BINDING_PROTOCOL on the ImageHandle of the UEFI driver.

Later on, the driver may get calls through the EFI_DRIVER_BINDING_PROTOCOL to test
for support of a given piece of hardware. The test to determine if a driver supports a
given controller must be performed in as little time as possible without causing any
side effects on any of the controllers it is testing. Most of the controller initialization is
done in the start and stop services of the EFI_DRIVER_BINDING_PROTOCOL.

5.1 Begin With INF File

The [Defines] section of the INF must set MODULE_TYPE to UEFI_DRIVER. Example:.

[Defines]
 INF_VERSION = 0x00010005
 BASE_NAME = SampleDriverDxe
 FILE_GUID = XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX
 MODULE_TYPE = UEFI_DRIVER

 ENTRY_POINT = SampleDriverEntryPoint

Note: A UEFI driver has no [depex] section in the INF file. It always depends on all
dxe architectural protocols. To force this, the UEFI driver entry point library
instance appends all dxe architectural protocol dependency relationships into the
depex section of the module image.

Note: If module dependent on the new definitions/features in
EFI_BOOT_SERVICES/UEFI_RUNTIME_SERVICES—defined in UEFI specifications
from version 2.1 forward—the hex version need to be given in INF file [Defines]
section’s UEFI_SPECFIICATION_VERSION field.

5.2 Write the UEFI Driver entry point

The following table lists the most common protocols used in UEFI driver entry point.

Table 9 Protocols Used to Separate the Loading and Starting/Stopping of
Drivers

Protocol Description

54

Driver Binding Protocol Provides functions for starting and stopping the driver, as
well as a function for determining if the driver can manage a
particular controller. The UEFI Driver Model requires this
protocol.

Component Name Protocol Provides functions for retrieving a human-readable name of a
driver and the controllers that a driver is managing. While
the UEFI Specification lists this protocol as optional, the
Developer’s Interface Guide for 64-bit Intel Architecture-
based Servers (hereafter referred to as “DIG64 specification”
or “DIG64”) lists this protocol as required for Itanium-based
platforms.

Driver Diagnostics Protocol Provides functions for executing diagnostic functions on the
devices that a driver is managing. While the UEFI
Specification lists this protocol as optional, DIG64 lists this
protocol as required for Itanium-based platforms.

The UefiLib library class is provided to simplify the driver entry point of a UEFI driver.

5.2.1 Example: APIs in UefiLib

The two APIs in UefiLib are shown below:

EFI_STATUS
EfiLibInstallDriverBinding (
 IN CONST EFI_HANDLE ImageHandle,
 IN CONST EFI_SYSTEM_TABLE *SystemTable,
 IN EFI_DRIVER_BINDING_PROTOCOL *DriverBinding,
 IN EFI_HANDLE DriverBindingHandle
);

EFI_STATUS
EfiLibInstallAllDriverProtocols2 (
 IN CONST EFI_HANDLE ImageHandle,
 IN CONST EFI_SYSTEM_TABLE *SystemTable,
 IN EFI_DRIVER_BINDING_PROTOCOL *DriverBinding,
 IN EFI_HANDLE DriverBindingHandle,
 IN CONST EFI_COMPONENT_NAME_PROTOCOL *ComponentName, OPTIONAL
 IN CONST EFI_COMPONENT_NAME2_PROTOCOL *ComponentName2, OPTIONAL
 IN CONST EFI_DRIVER_CONFIGURATION_PROTOCOL *DriverConfiguration,
OPTIONAL
 IN CONST EFI_DRIVER_CONFIGURATION2_PROTOCOL *DriverConfiguration2,
OPTIONAL
 IN CONST EFI_DRIVER_DIAGNOSTICS_PROTOCOL *DriverDiagnostics,
OPTIONAL
 IN CONST EFI_DRIVER_DIAGNOSTICS2_PROTOCOL *DriverDiagnostics2
OPTIONAL
);

5.2.2 Example: Entry point to the Abc driver

The following shows an example of the entry point to the Abc driver that installs the
Driver Binding Protocol gAbcDriverBindingProtocol, the Component Name Protocol
gAbcComponentName, the Component Name2 Protocol gAbcComponentName2, the
Diagnostic Protocol gAbcDriverDiagnostics and the Diagnostic2 Protocol

 55

gAbcDriverDiagnostics2 onto the Abc driver’s image handle. This driver simply
returns the status from the UefiLib function EfiLibInstallAllDriverProtocols2().

56

EFI_DRIVER_BINDING_PROTOCOL gAbcDriverBinding = {
 AbcDriverBindingSupported,
 AbcDriverBindingStart,
 AbcDriverBindingStop,
 0xa,
 NULL,
 NULL
};

EFI_COMPONENT_NAME_PROTOCOL gAbcComponentName = {
 AbcComponentNameGetDriverName,
 AbcComponentNameGetControllerName,
 "eng"
};

EFI_COMPONENT_NAME2_PROTOCOL gAbcComponentName2 = {
 (EFI_COMPONENT_NAME2_GET_DRIVER_NAME) AbcComponentNameGetDriverName,
 (EFI_COMPONENT_NAME2_GET_CONTROLLER_NAME)
AbcComponentNameGetControllerName,
 "en"
};

EFI_DRIVER_DIAGNOSTICS_PROTOCOL gAbcDriverDiagnostics = {
 AbcDriverDiagnosticsRunDiagnostics,
 "eng"
};

EFI_DRIVER_DIAGNOSTICS2_PROTOCOL gAbcDriverDiagnostics2 = {
 (EFI_DRIVER_DIAGNOSTICS2_RUN_DIAGNOSTICS)
gAbcDriverDiagnosticsRunDiagnostics,
 "en"
};

EFI_STATUS
EFIAPI
AbcDriverEntryPoint (
 IN EFI_HANDLE ImageHandle,
 IN EFI_SYSTEM_TABLE *SystemTable
)
{
 //
 // Initialize a simple EFI driver that follows the EFI Driver Model
 //
 return EfiLibInstallAllDriverProtocols (
 ImageHandle, // Driver’s image handle
 SystemTable, // EFI System Table Pointer
 &gAbcDriverBinding, // Required parameters
 ImageHandle, // Handle for driver-related protocols
 &gAbcComponentName, // Component Name Procol. May be NULL.
 &gAbcComponentName2, // Component Name2 Procol. May be
NULL.
 NULL, // Configuration Protocol. May be
NULL.
 NULL // Configuration Protocol2. May be
NULL.
 &gAbcDriverDiagnostics, // Diagnostics Protocol. May be NULL.
 &gAbcDriverDiagnostics2,// Diagnostics Protocol2. May be NULL.
);
}

5.3 Get Service Tables

UEFI drivers may consume the UEFI Boot Services, UEFI Runtime Services, and UEFI
System Tables that are defined in the UEFI Specification.

 57

EDK II provides the UefiBootServicesTableLib and UefiRuntimeServicesTableLib
libraries to facilitate developer to access those services. The following table lists the
global variables provided by those libraries.

Table 10. Table Global Variables

 Global variable Library Class

UEFI System Table gST UefiBootServicesTableLib

UEFI Boot Services Table gBS

UEFI Runtime Services Table gRT UefiRuntimeServicesTableLib

5.4 Communication between UEFI Drivers

This section describes the communication methods used by UEFI drivers.

5.4.1 Protocol

UEFI drivers can use protocol services to access protocol interfaces produced by other
modules.

The UEFI Specification defines a group of boot services to handle protocols, including:

Services to install protocols:

 InstallProtocolInterface()

 ReInstallProtocolInterface()

 InstallMultipleProtocolInterfaces()

Services to retrieve protocols:

 LocateProtocol()

 HandleProtocol()

 OpenProtocol()

Section 8.4.1 provides an example of usage.

5.4.2 Variable

UEFI drivers can read and write variables via the UEFI Runtime Services
GetVariable() and SetVariable().

When using this service, the distinction between a UEFI driver and a Dxe driver is that
a Dxe driver must explicitly point out the dependency relationship for
EFI_VARIABLE_ARCH_PROTOCOL and EFI_VARIABLE_WRITE_ARCH_PROTOCOL in the
[depex] section of the Dxe driver’s INF file, but a UEFI driver does not have this
section in the UEFI driver’s INF file

58

Note: For UEFI drivers, the EDK II build system will automatically append the
dependency information inherited from the UefiEntryPointLib into the image
section. This causes UEFI drivers to run after all Dxe architectural protocols are
installed.

Section 8.4.2, provides an example of usage.

 59

6
SEC Module

The SEC module is the first module executed after power-on. It is responsible for
configuring the PEI environment’s memory call stack. In addition, this module
discovers and passes control to PEI Core and hands information to the PEI Foundation.

6.1 Beginning to Write the INF File

The following is a sample for [Defines] section of the SEC module:

[Defines]
 INF_VERSION = 0x00010005
 BASE_NAME = SampleSec
 FILE_GUID = XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX
 MODULE_TYPE = SEC
 VERSION_STRING = 1.0

 ENTRY_POINT = _ModuleEntryPoint

For a physical platform, MODULE_TYPE must be set to SEC. For an Emulation Platform,
the SEC module’s MODULE_TYPE must be set to SEC or USER_DEFINED.

For IA-32 Intel Architecture _ModuleEntryPoint is the default entry point for the SEC
module.

For Itanium Processor Family platform, the entry point is configurable, such as
SAMPLE_ENTRY. Nevertheless, this entry point should be added in [BuildOptions]
section as following,
[Defines]
 ENTRY_POINT = SAMPLE_ENTRY

[BuildOptions]
 INTEL:*_*_IPF_DLINK_FLAGS = /ENTRY: SAMPLE _ENTRY
 MSFT:*_*_IPF_DLINK_FLAGS = /ENTRY: SAMPLE _ENTRY
 GCC:*_*_IPF_PP_FLAGS = --entry _ SAMPLE _ENTRY

The implementation of the SEC entry point is commonly in the assembly language.

6.2 Setup Pre-Memory Environment

For IA-32, the main tasks of the SEC module are to:

5. Populate Reset Vector Data structure

6. Save BIST status

7. Enable protected mode

60

8. Configure temporary RAM (not only limited in processor cache) by using MTRR
to configure CAR.

For Itanium Processor Family, the main tasks of the SEC module are to:

1. Save INIT, MCA and RESET vectors.

2. Configure temporary RAM (not only limited in processor cache) by using MTRR
to configure CAR.

After enabling temporary RAM, the SEC module must configure Stack and Heap in the
temporary memory, so that C code can be run later.

6.3 Prepare for Data PEI Foundation

Upon completion, SEC will call the PEI Foundation entry point and transfer control to
it.

The PEI foundation Entry Point is defined as,
typedef
VOID
EFIAPI
(*EFI_PEI_CORE_ENTRY_POINT)(
 IN CONST EFI_SEC_PEI_HAND_OFF *SecCoreData,
 IN CONST EFI_PEI_PPI_DESCRIPTOR *PpiList
);

6.3.1 EFI_SEC_PEI_HAND_OFF * SecCoreData

SEC conveys the following handoff information to the PEI Foundation,

 State of the platform.

 Location and size of the Boot Firmware Volume (BFV).

 Location and size of the temporary RAM.

 Location and size of the stack.

The format is defined as the EFI_SEC_PEI_HAND_OFF structure.

An example of, the temporary memory layout from Nt32Pkg is shown below:

 |-----------| <---- TemporaryRamBase + TemporaryRamSize
 | Heap |
 | |
 |-----------| <---- StackBase / PeiTemporaryMemoryBase
 | |
 | Stack |
|-----------| <---- TemporaryRamBase

Figure 3 Temporary Memory Layout

 61

The EFI_SEC_PEI_HAND_OFF data structure is populated as follows:

 SecCoreData->DataSize = sizeof(EFI_SEC_PEI_HAND_OFF);
 SecCoreData->BootFirmwareVolumeBase = (VOID*)BootFirmwareVolumeBase;
 SecCoreData->BootFirmwareVolumeSize = PcdWinNtFirmwareFdSize;
 SecCoreData->TemporaryRamBase = (VOID*)(UINTN)LargestRegion;
 SecCoreData->TemporaryRamSize = STACK_SIZE;
 SecCoreData->StackBase = SecCoreData->TemporaryRamBase;
 SecCoreData->StackSize = PeiStackSize;
 SecCoreData->PeiTemporaryRamBase = (VOID*) ((UINTN)
 SecCoreData->TemporaryRamBase + PeiStackSize);
 SecCoreData->PeiTemporaryRamSize = STACK_SIZE - PeiStackSize;

6.3.2 EFI_PEI_PPI_DESCRIPTOR *PpiList

Besides the EFI_SEC_PEI_HAND_OFF data structure, SEC may transfer one additional
PpiList to the PEIM Foundation. For example, PpiList may include
TEMPORARY_RAM_SUPPORT_PPI and SEC_PLATFORM_INFORMAITON_PPI.

 TEMPORARY_RAM_SUPPORT_PPI

This service may be published by the SEC as part of the SEC-to-PEI handoff. If so, it
moves the Temporary RAM contents into Permanent RAM.

 SEC_PLATFORM_INFORMAITON_PPI

This service abstracts platform-specific information. It is necessary to convey this
information to the PEI Foundation so that it can locate the PEIM dispatch order. In
addition, it contains the maximum stack capabilities of this platform.

62

 63

7
Pre-EFI Initialization Modules

The Pre-EFI Initialization Modules (PEIMs) provide a standards-based platform
initialization. The PEI Phase is responsible for initializing enough of the system to
provide a stable base for the follow-on phases.

7.1 Introduction

It is strongly recommended that PEIMs perform only the minimum work to meet the
requirements of the subsequence phase.

The PEI Foundation establishes the PEI Services Table that is usable by all PEIMs.

The PEI phase allows C-codes PEIMs to be executed prior to the availability of main
memory. This is accomplished via configuring the on-CPU resources, such as the CPU
data cache to be used as a memory call stack.

7.2 Beginning to Write a PEIM INF File

Following is a sample for [Defines] section of one PEIM:
[Defines]
 INF_VERSION = 0x00010005
 BASE_NAME = SamplePei
 FILE_GUID = XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX
 MODULE_TYPE = PEIM
 VERSION_STRING = 1.0

 ENTRY_POINT = PeimSampleInitialize

The MODULE_TYPE must be set to PEIM for all PEIMs.

Note: If PEIM dependent on the new definitions and features in
PEI_SERVICES_TABLE—defined in PI specification from versions1.2 forward—the
hex version 0x0001000A needs to be given in INF file [Defines] section’s
PI_SPECFIICATION_VERSION field.

7.3 Defining a PEIM’s entry point

In the sample given above, ENTRY_POINT is set to PeimSampleInitialize. The entry
point value is the name of the entry point function.

Following is the prototype of the PEIMs’ entry point.

64

EFI_STATUS
EFIAPI
 PeimSampleInitialize (
 IN EFI_PEI_FILE_HANDLE FileHandle,
 IN CONST EFI_PEI_SERVICES **PeiServices
);

Parameters:

 FileHandle

The handle of the file being invoked.

 PeiServices

An indirect pointer to the PEI Services Table.

If a PEIM is dispatched successfully, PeimSampleInitialize() is invoked. The
parameters FileHandle and PeiServices may be used in this function.

7.4 Get Pei Services

EDK II provides all Pei Services APIs in the Pei Services Library class. Developers can
use the Pei Services Library directly to invoke PEI services.

EDK II provides PEI Services Table Library to obtain the pointer of the Pei Service
Table for PEIMs. Aside from obtaining the PEI Services Table pointer from an input
parameter in the PEIM entry point, EDK II also allows using the
GetPeiServicesTablePointer() defined in Pei Service Table Pointer Library.

7.5 Communicate between PEIM Modules

There are three methods for PEIMs to communicate with each other: PPIs, HOBs and
dynamic PCDs.

7.5.1 PPI

PEIM modules can communicate with each other using a structure called a PEIM-to-
PEIM Interface (PPI). Each PPI has one GUID. The Pei Service Table provides some Pei
services to access the PPI database.

In EDK II, one PEIM module can invoke PeiServicesInstallPpi() to publish its PPI
services into the PPI database by GUID. Another PEIM module can invoke
PeiServicesLocatePpi()to locate PPI services from the PPI database by GUID.

7.5.1.1 Installing a PPI

For example, if Module A wants to publish one Template PPI service (including three
APIs: Interface2, Interface2 and Interface3), it can install the Template PPI by
using PeiServicesInstallPpi. For example:

 65

//
// Template PPI
//
EFI_PEI_TEMPLATE_PPI gEfiTemplatePpi = {
 Interface1,
 Interface2,
 Interface3
};

EFI_PEI_PPI_DESCRIPTOR gPpiListTemplatePpi = {
 (EFI_PEI_PPI_DESCRIPTOR_PPI | EFI_PEI_PPI_DESCRIPTOR_TERMINATE_LIST),
 &gEfiTemplateGuid,
 &gEfiTemplatePpi
};

EFI_STATUS
PeimEntryPoint (
 IN EFI_FFS_FILE_HEADER *FfsHeader,
 IN EFI_PEI_SERVICES **PeiServices
)
{
 EFI_STATUS Status;

 //
 // Publish Template PPI.
 //
 Status = PeiServicesInstallPpi (&gPpiListTemplatePpi);

 return Status;
}

7.5.1.2 Locating a PPI

If Module B needs to invoke Interface2() provided by Template PPI, it can locate
Template PPI by using the following code:
 //
 // Get Template PPI
 //
 Status = PeiServicesLocatePpi (
 &gEfiTemplateGuid,
 0,
 NULL,
 (VOID **)&TemplatePpi
);
 ASSERT_EFI_ERROR (Status);

 //
 // Invoke Interface2()
 //
 Status = TemplatePpi->Interface2 (...);
 ASSERT_EFI_ERROR (Status);

7.5.2 HOB

PEIM modules can build a Hand-Off Block (HOB) to pass some information to the DXE
Foundation and DXE modules. In addition, other PEIMs can obtain similar information
from a HOB by using the HOB services in the Pei Service Table.

66

In EDK II, the Hob Library provides the generic interfaces to access HOBs for PEIMs
and DXE drivers.

7.5.3 PCD

A PEIM can communicate with other PEIMs through dynamic PCDs. As with HOBs, only
PEIMs can obtain dynamic PCDs values, which were previously set by DXE drivers. The
usage of getting PCDs is introduced in Appendix A, Dynamic PCD.

7.6 Communicate with DXE Modules

There are three methods for PEIMs to communicate with each other: PPIs, HOBs and
PCDs.

7.6.1 HOB

PEIMs can pass some information to the DXE Foundation and DXE modules, such as
the information of a memory bank discovered in PEI phase, by using a Hand-Off Block
(HOB).

In EDK II, the Hob Library provides a set of interfaces to help to build Hobs, such as
BuildGuidHob(). For example:
 EFI_MEMINIT_CONFIG_DATA *ConfigData;
 EFI_PEI_HOB_POINTERS Hob;
 UINTN BufferSize;

 BufferSize = sizeof (EFI_MEMINIT_CONFIG_DATA);

 Hob.Raw = BuildGuidHob (
 &gEfiMemoryConfigDataGuid,
 BufferSize
);
 ASSERT (Hob.Raw);

 ConfigData = (EFI_MEMINIT_CONFIG_DATA *) Hob.Raw;

 CopyMem (
 ConfigData->SpdData,
 SpdData,
 sizeof (MEMINIT_SPD_DATA) * MAX_SOCKETS
);

In EDK II, the Hob Library also provides a set of APIs to locate HOBs for PEIMs and
DXE drivers.

7.6.2 Variable

PEIMs can read variables previously assigned by DXE drivers. PEIMs cannot write
variables.

PEIMs can use ReadOnlyVariable2 PPI to obtain variables. Follow these steps:

1. Locate ReadOnlyVariable2 PPI.

 67

2. Invoke GetVariable() with size is 0, to get variable’s actual size.

3. Allocate memory for variable.

4. Invoke GetVariable(), again with actual size to get the variable.

The following is one example of how to obtain the variable.
 Status = PeiServicesLocatePpi (
 &gEfiPeiReadOnlyVariable2PpiGuid,
 0,
 NULL,
 (VOID **) &VariablePpi);
 ASSERT_EFI_ERROR (Status);

 Size = 0;
 Status = VariablePpi->GetVariable (
 VariablePpi,
 VariableName,
 (EFI_GUID *) VariableGuid,
 NULL,
 &Size,
 NULL
);

 if (Status == EFI_BUFFER_TOO_SMALL) {
 Status = PeiServicesAllocatePool (Size, &Buffer);
 ASSERT_EFI_ERROR (Status);

 Status = VariablePpi->GetVariable (
 VariablePpi,
 (UINT16 *) VariableName,
 (EFI_GUID *) VariableGuid,
 NULL,
 &Size,
 Buffer
);
 ASSERT_EFI_ERROR (Status);

 *VariableSize = Size;
 *VariableData = Buffer;
 }

7.6.3 PCD

PEIMs can communicate with DXE drivers through dynamic PCDs. As with variables,
PEIMs can get dynamic PCDs values that were previously set by DXE drivers. The
usage for obtaining PCDs is covered in Appendix A .

7.7 Boot Mode

Sometime, PEIMs need to determine the boot mode (e.g. S3, S5, normal boot,
diagnostics, etc.) and take appropriate actions depending on it. For example, the
VariablePei module will not install EFI ReadOnlyVariable2Ppi in the recovery boot path.

The Pei Service Table provides one pair of services to Set or Get the mode.
Accordingly, the Pei Service Library APIs are: SetBootMode() and GetBootMode().

The following is one example of how to get boot mode:

68

 //
 // Check if this is recovery boot path. If no, publish the variable
 // access capability to other modules. If yes, the content of variable
 // area is not reliable. Therefore, in this case we should not provide
 // variable service to other pei modules.
 //
 Status = PeiServicesGetBootMode (&BootMode);
 ASSERT_EFI_ERROR (Status);

 if (BootMode == BOOT_IN_RECOVERY_MODE) {
 return EFI_UNSUPPORTED;
 }

 Status = PeiServicesInstallPpi (&mPpiListVariable);

Note: The PI Specification lists all possible boot modes.

7.8 Execution in Place PEIMs

Most PEIMs are Execution in Place (XIP) and not compressible as they run prior to
permanent memory. There is a tradeoff between the space-complexity of the code and
the time complexity of the modules: that is, keeping modules small versus keeping
the code paths short.

Minimizing the amount and complexity of code in PEIM should be standard procedure.
For example, a big loop needs to be avoided for those codes running on flash.

When a PEIM attempts to load itself into system memory and run twice, it can use
RegisterForShadow()to do it. RegisterForShadow() is in the Pei Service Table.

7.9 Dependency for PEIMs

A PEIM must have a dependency section. The PEIM is dispatched after all conditions in
the dependency section are met.

If a PEIM has a dependency section TRUE, it can be dispatched immediately. In an
extended INF file, a dependency section is contained in the [Depex] section. PPI
dependency is defined by the GUID of the PPI.

For example:

[Depex]
 gEfiPeiReadOnlyVariable2PpiGuid AND gEfiPeiCachePpiGuid AND
gPeiCapsulePpiGuid

This module may be dispatched only after Read Only Variable2 Ppi, CachePpi and
CapsultPpi are all installed successfully.

In the preceding example, the expression opcode AND is used to show the logical
relationship between GUIDs. See the EDK II Extended INF Specification for complete
details.

Note: A PEIM inherits dependency expressions from all library instances it links with.
The dependency expression listed in module INF is a subset of the dependency
section in the PE32+ image built from this module.

 69

The PI specification also defines a generic rule to decide the dispatch order for PEIMs:
the apriori file. It complements the dependency expression mechanism of the PEI
Phase by stipulating a series of modules that must be dispatched in a prescribed
order. The [depex] sections for these modules are ignored.

70

8
DXE Drivers: non-UEFI drivers

DXE driver refers to drivers compliant with the PI Specification, which classifies DXE
drivers into two classes: UEFI driver model driver, and non-UEFI driver model drivers.
The focus of this chapter is the non-UEFI drivers.

Non-UEFI Driver Model drivers are executed early in the DXE phase. These drivers are
the prerequisites for the DXE Foundation to produce all required services.

The DXE drivers must be designed so that unavailable services are not required. Given
this restriction, all possible work should be deferred to the UEFI drivers.

8.1 Beginning with INF File

Each DXE Driver requires an Extended INF file. For basic introduction of INF file,
please refer to Section 3.2.2.

The [Defines] section for DXE driver should be modeled after the following.

Note: The MODULE_TYPE entry must be DXE_DRIVER.

[Defines]
 INF_VERSION = 0x00010005
 BASE_NAME = SampleDriverDxe
 FILE_GUID = XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX
 MODULE_TYPE = DXE_DRIVER

 ENTRY_POINT = SampleDriverEntryPoint

[Depex]
 gSampleProtocolGuid

Note: If DXE module dependent on the new definitions/features in
DXE_SERVICES_TABLE—defined in PI specifications from version 1.2 forward—
the hex version 0x0001000A needs to be given in INF file [Defines] section’s
PI_SPECFIICATION_VERSION field.

Note: If module dependent on the new definitions/features in
EFI_BOOT_SERVICES/UEFI_RUNTIME_SERVICES— defined in UEFI specifications
from version 2.1 forward—the hex version need to be given in INF file [Defines]
section’s UEFI_SPECFIICATION_VERSION field.

8.2 Write DXE Driver Entry Point

The [Defines] section of the INF file defines the entry point of the DXE driver.

 71

Unlike the UEFI driver entry point, which is only allowed to install protocol instances
onto its own image handle and may not touch any hardware, a DXE driver entry point
has no such restriction. It may install any protocol into the system and perform
necessary hardware and software initializations.

In the following example (from the WatchDogTimerDxe driver in the MdeModulePkg)
the DXE driver entry point installs its Architectural Protocol if the protocol is not yet
installed.

EFI_STATUS
EFIAPI
WatchdogTimerDriverInitialize(
 IN EFI_HANDLE ImageHandle,
 IN EFI_SYSTEM_TABLE *SystemTable
)
{
 EFI_STATUS Status;

 //
 // Make sure the Watchdog Timer Architectural Protocol has not been
 // installed in the system yet.
 //
 ASSERT_PROTOCOL_ALREADY_INSTALLED(
 NULL,
 &gEfiWatchdogTimerArchProtocolGuid
);

 //
 // Create the timer event to implement a simple watchdog timer
 //
 Status = gBS->CreateEvent (
 EVT_TIMER | EVT_NOTIFY_SIGNAL,
 TPL_NOTIFY,
 WatchdogTimerDriverExpires,
 NULL,
 &mWatchdogTimerEvent
);
 ASSERT_EFI_ERROR (Status);

The two parameters for the DXE driver entry point are ImageHandle and
SystemTable. ImageHandle refers to the image handle of the DXE driver.
SystemTable points to the EFI System Table.

8.3 Obtaining Services Tables

DXE drivers may consume the UEFI Boot Services, UEFI Runtime Services, and DXE
Services. In addition, a DXE driver can also refer to UEFI System Table.

UEFI Boot Services, UEFI Runtime Services, and UEFI System Table are defined in the
UEFI Specification. DXE Services are defined in the PI Specification.

DXE driver can retrieve these tables via global variables provided by the following
library classes:

Table 11 Reference to Services Tables for DXE Drivers

 Global Variable Library Class

72

UEFI System Table gST UefiBootServicesTableLib

UEFI Boot Services Table gBS UefiBootServicesTableLib

UEFI Runtime Services Table gRT UefiRuntimeServicesTableLib

DXE Services Table gDS DxeServicesTableLib

8.4 Communication between DXE Drivers

This section introduces communication channels between DXE drivers, including
protocol, variable, and PCD.

8.4.1 Protocol

This section will introduce how to produce and consume protocols. The UEFI
Specification defines a group of boot services to handle protocols, including:

Services to install protocols

 InstallProtocolInterface()

 ReInstallProtocolInterface()

 InstallMultipleProtocolInterfaces()

Services to retrieve protocols

 LocateProtocol()

 OpenProtocol()

First, to make use of it, the module writer must declare the protocols for the module
in the INF and then write code to use the protocols.

The following example demonstrates how a DXE driver produces a protocol:

 73

//
// Handle for new protocol instance. Since it’s NULL now, its value will
// be assigned by Boot Service InstallMultipleProtocolInterfaces()
//
EFI_HANDLE mNewHandle = NULL;

//
// The Sample Protocol instance produced by this driver
//
EFI_SAMPLE_PROTOCOL mSampleProtocol = {
 SampleProtocolApi
 //
 // More APIs can be added here
 //
};

//
// This is just a NULL function with no parameters. Necessary parameters
// and code can be added.
//
EFI_STATUS
EFIAPI
SampleProtocolApi(
 VOID
)
{
 return EFI_SUCCESS;
}

EFI_STATUS
EFIAPI
SampleDriverInitialize (
 IN EFI_HANDLE ImageHandle,
 IN EFI_SYSTEM_TABLE *SystemTable
)
{
 EFI_STATUS Status;

 //
 // More initialization can be added here.
 //

 //
 // Install the Sample Protocol onto a new handle
 //
 Status = gBS->InstallMultipleProtocolInterfaces (
 &mNewHandle,
 &gEfiSampleProtocolGuid,
 &mSampleProtocol,
 NULL
);
 ASSERT_EFI_ERROR (Status);

 return EFI_SUCCESS;
}

The following example demonstrates how a DXE driver retrieves a protocol and
invokes the API:

74

EFI_STATUS
SampleFunction (
 VOID
)
{
 EFI_STATUS Status;
 EFI_SAMPLE_PROTOCOL *SampleProtocol;

 //
 // Locates the Sample Protocol from system.
 //
 Status = gBS->LocateProtocol (
 &gEfiSampleProtocolGuid,
 NULL,
 (VOID **) &SampleProtocol
);
 if (EFI_ERROR (Status)) {
 return Status;
 }

 Status = SampleProtocol->SampleProtocolApi();
 return Status;
}

8.4.2 Variable

Variables are defined as key/value pairs that consist of identifying information plus
attributes (the key) and arbitrary data (the value). Variables are intended for use as a
means to store data that is passed between the EFI environment implemented in the
platform and EFI OS loaders and other applications that run in the EFI environment.

A DXE driver can read and write variables via the UEFI Runtime Services
GetVariable() and SetVariable().

Note: These services are not available at the beginning of the DXE phase . The PI
Specification defines two architectural protocols to indicate the readiness of
read/write access to variables: EFI_VARIABLE_ARCH_PROTOCOL and
EFI_VARIABLE_WRITE_ARCH_PROTOCOL.

DXE drivers that require read-only access or read/write access to volatile environment
variables must have EFI_VARIABLE_ARCH_PROTOCOL in their dependency expressions.

DXE drivers that require write access to nonvolatile environment variables must have
the EFI_VARIABLE_WRITE_ARCH_PROTOCOL in their dependency expressions.

The full complement of environment variable services is not available until both
EFI_VARIABLE_ARCH_PROTOCOL and EFI_VARIABLE_WRITE_ARCH_PROTOCOL are
installed.

Sample code to read and write variables is as follows:

 75

EFI_STATUS
ReadAndWriteVariable (
 IN CHAR16 *Name,
 IN EFI_GUID *VendorGuid,
)
{
 EFI_STATUS Status;
 UINTN BufferSize;
 VOID *Buffer;

 Buffer = NULL;

 //
 // Pass in a zero-size buffer to find the required buffer size.
 //
 BufferSize = 0;
 Status = gRT->GetVariable (Name, VendorGuid, NULL, &BufferSize,
Buffer);
 //
 // If variable exists, the Status should be EFI_BUFFER_TOO_SMALL and
 // BufferSize has been updated.
 //
 if (Status != EFI_BUFFER_TOO_SMALL) {
 return Status;
 }

 //
 // Allocate the buffer according to updated BufferSize.
 //
 Buffer = AllocateZeroPool (BufferSize);
 ASSERT (Buffer != NULL);
 //
 // Read variable into the allocated buffer.
 //
 Status = gRT->GetVariable (Name, VendorGuid, NULL, &BufferSize,
Buffer);
 if (EFI_ERROR (Status)) {
 BufferSize = 0;
 }
 //
 // TODO: Process of retrieved variable can be added here.
 //

 //
 // Now write back the processed variable.
 //
 Status = gRT->SetVariable (
 Name,
 VendorGuid,
 EFI_VARIABLE_BOOTSERVICE_ACCESS |
 EFI_VARIABLE_RUNTIME_ACCESS |
 EFI_VARIABLE_NON_VOLATILE,
 BufferSize,
 Buffer
);
 ASSERT_EFI_ERROR (Status);

 return EFI_SUCCESS;
}

8.4.3 Dynamic PCD

76

EDK II provides dynamic PCDs as a high-level mechanism for communication between
modules. See Appendix A for details.

8.5 Communication with PEIMs

This section introduces communication channels between DXE driver and PEIM,
including HOB, variable, and PCD.

8.5.1 HOB

A HOB is a one-way channel to pass data from PEI to DXE. The HOB list is provided
during the PEI phase, and must be treated as a read-only data structure in the DXE
phase. It conveys the state of the system at the time the DXE Foundation is started.
The DXE drivers must not modify the contents of the HOB list.

HobLib provides a set of APIs to build and parse a HOB list. Since DXE drivers only
read the HOB list, module writers of DXE drivers can focus on the APIs to parse HOB
list.

Several typical usage types are shown in examples below:

 77

8.5.1.1 Traversing all HOBs in the HOB list
 EFI_HOB_GENERIC_HEADER *Hob;
 UINT16 HobType;
 UINT16 HobLength;

 for(Hob = GetHobList();!END_OF_HOB_LIST(Hob);Hob = GET_NEXT_HOB(Hob)) {
 HobType = GET_HOB_TYPE (Hob);
 HobLength = GET_HOB_LENGTH (Hob);
 //
 // Further operation on the HOB can be added
 //
 }

8.5.1.2 Retrieving only the first HOB of a specific type in the HOB list
(CPU HOB type example)
 EFI_HOB_CPU *CpuHob;

 CpuHob = GetFirstHob (EFI_HOB_TYPE_CPU);
 if (CpuHob != NULL) {
 //
 // Operation on the HOB can be added here.
 //
 }

8.5.1.3 Traversing specific types of HOBs in the HOB list (CPU HOB
type example)
 EFI_HOB_CPU *Hob;

 Hob = GetHobList ();
 while ((Hob = GetNextHob (EFI_HOB_TYPE_CPU, Hob)) != NULL) {
 //
 // Operation on the HOB can be added here.
 //
 // At the end of loop, GET_NEXT_HOB must be added here.
 // GetNextHob(HobType, HobStart) does not skip the HOB passed by
 // parameter HobStart. It returns HobStart back if HobStart itself
 // meets the requirement. So it is required to use GET_NEXT_HOB() to
 // skip current HOB. Otherwise, it would be in dead loop.
 //
 Hob = GET_NEXT_HOB (Hob);
 }

8.5.1.4 Retrieving only the first GUIDed HOB with a specific GUID in
the HOB list
 EFI_HOB_GENERIC_HEADER *Hob;
 VOID *HobData;
 UINTN HobDataSize;

 Hob = GetFirstGuidHob (&gAbcGuid);
 if (Hob != NULL) {
 HobData = GET_GUID_HOB_DATA (Hob);
 HobDataSize = GET_GUID_HOB_DATA_SIZE (Hob);
 //
 // Operation on the HOB can be added here.
 //
 }

78

8.5.1.5 Traversing GUIDed HOBs with a specific GUID in the HOB list
 EFI_HOB_GENERIC_HEADER *Hob;
 VOID *HobData;
 UINTN HobDataSize;

 Hob = GetHobList ();
 while ((Hob = GetNextGuidHob (&gAbcGuid, Hob)) != NULL) {
 HobData = GET_GUID_HOB_DATA (Hob);
 HobDataSize = GET_GUID_HOB_DATA_SIZE (Hob);
 //
 // Operation on the HOB can be added here.
 //
 // At the end of loop, GET_NEXT_HOB must be added here.
 // GetNextHob(HobType, HobStart) does not skip the HOB passed by
 // parameter HobStart. It returns HobStart back if HobStart itself
 // meets the requirement. So it is required to use GET_NEXT_HOB() to
 // skip current HOB. Otherwise, it would be in dead loop.
 //
 Hob = GET_NEXT_HOB (Hob);
 }

8.5.2 Variable

A non-volatile variable can serve as a channel to pass data from DXE to PEI. Because
only a DXE driver can write a variable, and PEIM can only read variables, this channel
from DXE to PEI is also a one-way channel.

8.5.3 Dynamic PCD

A non-volatile dynamic PCD is also a high-level mechanism for communication
between a DXE driver and a PEIM.

Please refer to in Appendix A.

8.6 Dependency Expressions

A dependency expression specifies the protocols that the DXE driver requires to
execute. In EDK II, it is specified in the [Depex] section of INF file.

Note: The PI Specification also defines an a priori file as an arbitrary way for a
firmware volume to specify driver execution order. Dependency expressions for
drivers covered by the apriori file are ignored.

Following is an example of a [Depex] section:
[Depex]
gEfiSimpleTextOutProtocolGuid AND
gEfiHiiDatabaseProtocolGuid AND
gEfiVariableArchProtocolGuid AND
gEfiVariableWriteArchProtocolGuid

The example specifies that this driver can be executed only after all the four protocols
listed have been installed.

 79

Note: The four protocols in this example are necessary conditions, not sufficient
conditions. More dependency requirement smay be inherited. Details follows.

Module writers must pay special attention to two points on dependency expressions.

 A DXE driver inherits dependency expressions from all library instances it links
with. The dependency expression listed in the module INF is a subset of the
dependency section in the PE32+ image built from this module. Linked library
instances are specified in DSC file.

or

 A “non-UEFI driver model” driver’s INF must have a dependency section. If
TRUE is in INF’s dependency section, because of inheritance, the generated
dependency expression maybe not the TRUE.

The EDK II build tool would wipe out the dependency section in PE32+ image when it
has exactly all architectural protocols.

8.7 Handler for EVT_SIGNAL_EXIT_BOOT_SERVICES

Some DXE drivers need to place their controllers in a quiescent state or perform other
controller-specific actions at the time that an operating system is about to take full
control of the platform. In this case, the DXE driver should create a signal type event
that is notified when gBS->ExitBootServices() is called by the EFI OS Loader.

Note: The notification function for this event is not allowed to use the Memory
Allocation Services, or call any functions that use the Memory Allocation Services,
and should only call functions that are known not to use Memory Allocation
Services, because these services modify the current memory map.

The template code for the notification function and event registration is as follows:

80

VOID
EFIAPI
NotifyExitBootServices (
 IN EFI_EVENT Event,
 IN VOID *Context
)
{
 //
 // Put driver-specific actions here.
 // No UEFI Memory Service may be used directly or indirectly.
 //
}

EFI_STATUS
EFIAPI
SampleDriverInitialize (
 IN EFI_HANDLE ImageHandle,
 IN EFI_SYSTEM_TABLE *SystemTable
)
{
 EFI_STATUS Status;
 EFI_EVENT ExitBootServicesEvent;

 //
 // TODO: Other initialization of entry point can be added here.
 //

 //
 // Here is just the sample of registration of
 // EVT_SIGNAL_EXIT_BOOT_SERVICES
 //
 Status = gBS->CreateEventEx (
 EVT_NOTIFY_SIGNAL,
 TPL_CALLBACK,
 NotifyExitBootServices,
 NULL, // Parameter Context can be passed here
 &gEfiEventExitBootServicesGuid,
 &ExitBootServicesEvent
);
 ASSERT_EFI_STATUS (Status);
}

8.8 DXE Runtime Driver

A DXE runtime driver executes in both boot services and runtime services
environments. This means the services that these modules produce are available
before and after ExitBootServices() is called, including the time that an operating
system is running. If SetVirtualAddressMap() is called, then modules of this type
are relocated according to virtual address map provided by the operating system.

The DXE Foundation is considered a boot service component, so the DXE Foundation is
also released when ExitBootServices() is called. As a result, runtime drivers may
not use any of the UEFI Boot Services, DXE Services, or services produced by boot
service drivers after ExitBootServices() is called.

A DXE runtime driver defines MODULE_TYPE as DXE_RUNTIME_DRIVER in the INF file. In
addition, because the DXE runtime driver encounters SetVirtualAddressMap()

 81

during its life cycle, it may need to register an event handler for the event
EVT_SIGNAL_VIRTUAL_ADDRESS_CHANGE.

8.8.1 INF File

Following is the example of [Defines] section for a driver named
SampleDriverRuntimeDxe. For DXE runtime driver, the MODULE_TYPE entry should be
DXE_RUNTIME_DRIVER.

 [Defines]
 INF_VERSION = 0x00010005
 BASE_NAME = SampleDriverRuntimeDxe
 FILE_GUID = XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX
 MODULE_TYPE = DXE_RUNTIME_DRIVER

 ENTRY_POINT = SampleRuntimeDriverEntryPoint

[Depex]
 gSampleProtocolGuid

Note: If module dependent on the new definitions and features in
EFI_BOOT_SERVICES/UEFI_RUNTIME_SERVICES—defined in UEFI specifications
from version 2.1 forward—the hex version need to be given in INF file [Defines]
section’s UEFI_SPECFIICATION_VERSION field.

8.8.2 Handler for EVT_SIGNAL_VIRTUAL_ADDRESS_CHANGE

DXE runtime drivers may need to be notified when the operating system calls
SetVirtualAddressMap(). In this case, the DXE runtime driver must create a signal
type event that is notified when SetVirtualAddressMap() is called by the operating
system. This call allows the DXE runtime driver to convert pointers from physical
addresses to virtual addresses.

The notification function for this type of event is not allowed to use any of the UEFI
Boot Services, UEFI Console Services, or UEFI Protocol Services either directly or
indirectly because those services are no longer available when
SetVirtualAddressMap() is called.

Instead, this type of notification function typically uses ConvertPointer() to convert
pointers within data structures that are managed by the DXE runtime driver from
physical addresses to virtual addresses.

Template code for notification function and event registration is as follows:

82

//
// This is the global pointer which needs converting
//
VOID *gGlobalPointer;

VOID
EFIAPI
NotifySetVirtualAddressMap (
IN EFI_EVENT Event,
IN VOID *Context
)
{
 gRT->ConvertPointer (
 EFI_OPTIONAL_POINTER,
 (VOID **)&gGlobalPointer
);
}

EFI_STATUS
EFIAPI
SampleRuntimeDriverInitialize (
 IN EFI_HANDLE ImageHandle,
 IN EFI_SYSTEM_TABLE *SystemTable
)
{
 EFI_STATUS Status;
 EFI_EVENT SetVirtualAddressMapEvent;

 //
 // TODO: Other initialization of entry point can be added here.
 //

 //
 // Here is just the sample of registration of
 // EVT_SIGNAL_VIRTUAL_ADDRESS_CHANGE
 //
 Status = gBS->CreateEventEx (
 EVT_NOTIFY_SIGNAL,
 TPL_CALLBACK,
 NotifySetVirtualAddressMap,
 NULL, // Parameter Context can be passed here
 &gEfiEventVirtualAddressChangeGuid,
 &SetVirtualAddressMapEvent
);
 ASSERT_EFI_STATUS (Status);
}

8.9 DXE SAL Driver

The module type of DXE SAL Driver is only available to the IPF architecture. This
module type is used by DXE Drivers that can be called in physical mode before
SetVirtualAddressMap() is called, and either physical mode or virtual mode after
SetVirtualAddressMap() is called. This means the services that these modules
produce are available after ExitBootServices().

A DXE SAL driver defines MODULE_TYPE as DXE_SAL_DRIVER in the INF file. In
addition, a DXE SAL driver registers SAL Services for the system.

Because a DXE SAL Driver is available after ExitBootServices(), it may also need to
register an event handler for EVT_SIGNAL_VIRTUAL_ADDRESS_CHANGE.

 83

8.9.1 INF File

Following is the example of a [Defines] section for a driver named
SampleDriverDxeSal. For DXE SAL driver, the MODULE_TYPE entry should be as
follows:

 DXE_SAL_DRIVER.

 [Defines]
 INF_VERSION = 0x00010005
 BASE_NAME = SampleDriverDxeSal
 FILE_GUID = XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX
 MODULE_TYPE = DXE_SAL_DRIVER

 ENTRY_POINT = SampleDxeSalDriverEntryPoint

[Depex]
 gSampleProtocolGuid

8.9.2 Entry Point

The entry point of DXE SAL Driver must register the SAL services it produces. The
template code is as follows.

Note: EDK II does not specify a detailed way for DXE SAL Drivers to produce and
register SAL services.

EFI_STATUS
EFIAPI
SampleDxeSalDriverEntryPoint (
 IN EFI_HANDLE ImageHandle,
 IN EFI_SYSTEM_TABLE *SystemTable
)
{
 //
 // More initialization can be added here.
 //

 //
 // Event creation for EVT_SIGNAL_VIRTUAL_ADDRESS_CHANGE can be added
 // here.
 //

 //
 // Register SAL services
 //

 return EFI_SUCCESS;
}

8.10 DXE SMM Driver

This module type is used by SMM Drivers that are loaded into SMRAM. As a result, this
module type is only available for IA-32 and x64 CPUs. These modules are dispatched
by SMM Foundation and are never destroyed. This means the services that these
modules produce are available after ExitBootServices().

84

The lifecycle of SMM drivers can be divided into two phases, which have different
constraints.

SMM Initialization:

This is the phase of SMM Driver initialization that starts with the call to the
driver’s entry point and ends with the return from the driver’s entry point.

SMM Runtime:

This is the phase of SMM Driver initialization that starts after the return
from the driver’s entry point.

8.10.1 INF File

Following is the example of [Defines] section for a driver named
SampleDriverDxeSmm. For a SMM driver, the MODULE_TYPE is DXE_SMM_DRIVER.

 [Defines]
 INF_VERSION = 0x00010005
 BASE_NAME = SampleDriverDxeSmm
 FILE_GUID = XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX
 MODULE_TYPE = DXE_SMM_DRIVER
 PI_SPECIFICATION_VERSION = 0x0001000A
 ENTRY_POINT = SampleDxeSmmDriverEntryPoint

[Depex]
 gSampleProtocolGuid

Note: PI_SPECIFICATION_VERSION should be definitely set to 0x0001000A for PI
1.1 compliant SMM drivers.

8.10.2 Constraints

The SMM driver model has constraints similar to those of DXE Runtime Drivers.

Inside of SMM Runtime, the drivers may not be able to use core protocol services.
There are SMST-based services, which the drivers can access, but the UEFI System
Table and other protocols installed during boot services may not necessarily be
available.

Inside of SMM Initialization, the full collection of UEFI Boot Services, UEFI Runtime
Services and SMST-based services are available.

8.10.2.1 SMM Driver Initialization

An SMM Driver’s initialization phase begins when the driver is loaded into SMRAM, and
its entry point is called. An SMM Driver’s initialization phase ends when the entry point
returns.

During SMM Driver initialization, SMM Drivers have access to two sets of protocols:
UEFI protocols and SMM protocols.

 85

 UEFI protocols are those installed and discovered using UEFI Boot Services. UEFI
protocols can be located and used by SMM drivers only during SMM Initialization.

SMM protocols are those installed and discovered using the System Management
Services Table (SMST). SMM protocols can be discovered by SMM drivers during
initialization phase and SMM runtime phase.

SMM Drivers must not use the UEFI Boot Services Exit() and ExitBootServices()
during SMM Driver Initialization.

8.10.2.2 SMM Driver Runtime

During SMM Driver runtime, SMM drivers only have access to SMST-based services. In
addition, depending on the platform architecture, memory areas outside of SMRAM
may not be accessible to SMM Drivers. Likewise, memory areas inside of SMRAM may
not be accessible to UEFI drivers.

These SMM Driver Runtime characteristics lead to several restrictions regarding the
usage of UEFI services:

 UEFI interfaces and services located during SMM Driver Initialization must not
be called or referenced during SMM Driver Runtime. This includes the EFI
System Table, the UEFI Boot Services, and the UEFI Runtime Services.

 Events created during SMM Driver Initialization must be closed before exiting
the driver entry point.

86

 87

Appendix A
Dynamic PCD

The dynamic type PCD is used for a configuration/setting whose value is to be
determined dynamic. In contrast, the value of static type PCD (FeatureFlag, FixedPcd,
PatchablePcd) is fixed in the final generated FD image during build time.

The "dynamic" determination means one of three things:

 The PCD setting value is produced and consumed by drivers during execution.

 The PCD setting value is user configurable from setup.

 The PCD setting value is produced by the platform OEM vendor in a specified
area.

A.1.1 Class of Dynamic Type

According to module distribution way, dynamic PCD could be classified as:

Dynamic:

If module is released in source code and will be built with platform DSC,
the dynamic PCD used by this module can be accessed as:

 PcdGetxx(PcdSampleDynamicPcd);

In building platform, the build tools translate PcdSampleDynamicPcd to the
parameters Token Space Guid: Token Number for this PCD.

DynamicEx:

If a module is released as binary and is not included in the platform build,
the dynamic PCD used by this module must be accessed as:

 PcdGetxxEx(gEfiMyTokenspaceGuid, PcdSampleDynamicPcd)

Note: Developers need to explicitly pass Token SpaceGuid and TokenNumber as the
parameters.

According to PCD value's storage method, dynamic PCD may be classified three ways:

Default Storage:

The PCD value is stored in PCD database maintained by PCD driver in
boot-time memory.

88

This type is used for communication between PEIM/DXE drivers and
DXE/DXE drivers. All set/get value are lost after boot-time memory is turn
off.

[PcdsDynamicDefault] is used as the section name for this type of PCD in
the platform DSC file.

[PcdsDynamicExDefault] is used for dynamicEx types of PCDs.

Variable Storage:

The PCD value is stored in a variable area. As the default storage type,
this type of PCD could be used for PEI/DXE driver communication. Beside
that, this type PCD could also be used to store the value associate with a
HII setting via variable interface.

In PEI phase, the PCD value can be obtained but not set because the
variable area is read only.

[PcdsDynamicHii] is used as section name for this type of PCD in the
platform DSC file.

[PcdsDynamicExHii] is for the dynamicEx type of PCD.

OEM specified storage area:

The PCD value is stored in an OEM-specified area whose base address is
specified by the FixedAtBuild PCD setting PcdVpdBaseAddress.

The area is read only for PEI and DXE phases.

[PcdsDynamicVpd] is used as section name for this type PCD in the
platform DSC file.

[PcdsDynamicExVpd] is for a dynamicex type of PCD.

A.1.2 When and how to use dynamic PCD

Module developers do not care if the PCD is dynamic or static when writing source
code/INF. Dynamic PCD and dynamic type are indicated by the platform integrator in
the platform DSC file.

	Contents
	Tables
	Figures
	Revision History
	1 The Basics of EDK II
	1.1 Overview
	1.1.1 Module, Package and Platform
	1.1.1.1 What is a Module?
	1.1.1.2 What is a Package?
	1.1.1.3 What is a Platform?

	1.1.2 Module Customization
	1.1.2.1 Library class/Library instance
	1.1.2.2 PCD

	1.1.3 EDK II Development Lifecycle
	1.1.3.1 Phase 1: Create a package
	1.1.3.2 Phase 2: Create module metadata/Implement basic functionality.
	1.1.3.3 Phase 3: Create DSC to build
	1.1.3.4 Phase 4: Tune modules

	1.1.4 Build Infrastructure

	1.2 Related References
	1.3 Terms
	1.4 Target Audience

	2 An EDK II Package
	2.1 Introduction
	2.1.1 EDK II Packages
	2.1.2 The Package Directory
	2.1.2.1 Sample directories and sub-directories in a package

	2.1.3 Package Declaration File
	2.1.3.1 Example: Package.dec

	2.1.4 Package DSC File
	2.1.4.1 Example: Package.dsc

	2.2 Manage Package
	2.2.1 Create Package
	2.2.2 Using a Package
	2.2.3 Updating a Package
	2.2.3.1 Updating Package Include Directories
	2.2.3.1.1 Example: Include section of Package.dec

	2.2.3.2 Updating Guids/Ppis/Protocols
	2.2.3.2.1 Example: Guid section of Package.dec

	2.2.3.3 Updating Library Classes
	2.2.3.3.1 Example: LibraryClasses section of Package.dsc

	2.2.3.4 Updating PCDs
	2.2.3.4.1 Example: Package.dec

	2.2.3.5 Updating Modules
	2.2.3.5.1 Example: Package.dsc

	3 Module Development
	3.1 What is an EDK II module?
	3.1.1 Module Type

	3.2 Creating a Module
	3.2.1 Location
	3.2.1.1 Choosing the Package
	3.2.1.2 Adding a Module Directory

	3.2.2 Sample: Module Meta File - INF
	3.2.2.1 Example: Application Module INF
	3.2.2.2 Example: Library Module INF

	3.2.3 Adding a Package Dependency
	3.2.4 Adding Source Files
	3.2.4.1 Supported Tool Tag

	3.2.5 Add Library Class References
	3.2.6 Adding PCD References
	3.2.6.1 PCD Types
	3.2.6.2 Add the Package Dependency
	3.2.6.3 Adding PCDs to module’s INF file
	3.2.6.4 Accessing a PCD value from C source code

	3.2.7 Referencing a Protocol, PPI, or GUID
	3.2.7.1 Adding Protocol, PPI, or GUID to INF file
	3.2.7.2 Including the header file in source code

	3.2.8 Adding a Dependency to a Module

	3.3 Additional Steps for Library Instances
	3.3.1 Define Produced Library Class
	3.3.2 Define a Library Constructor (Optional)
	3.3.2.1 Types of library constructor functions

	3.3.3 Define a Library Destructor (Optional)

	3.4 Additional Steps for Driver
	3.4.1 Define a Driver Entry Point

	3.5 EDK II Common Library Class
	3.6 Module using HII
	3.6.1 Forms
	3.6.1.1 Create VFR resource file
	3.6.1.2 Publish the Form data

	3.6.2 Using Unicode Strings
	3.6.2.1 Create .uni file
	3.6.2.2 Publish the Unicode String file

	3.7 Building the module
	3.7.1 Add the module INF in package DSC
	3.7.1.1 Example: Package.dsc Components

	3.7.2 Select Library Instances
	3.7.2.1 Example Package.dsc LibraryClasses
	3.7.2.1.1 Example 1: Generic library instances
	3.7.2.1.2 Example 2: library instances per module type and CPU architecture
	3.7.2.1.3 Example 3: library instances for a specific driver

	3.7.3 Configure PCDs
	3.7.3.1 PCD types
	3.7.3.2 Feature Flag PCD
	3.7.3.3 Fixed PCD
	3.7.3.4 Patchable PCD
	3.7.3.5 Dynamic PCD
	3.7.3.5.1 Package.dsc PCDs showing each type of PCD setting
	3.7.3.5.2 Example: Package.dsc PCDs for a specific ARCH image
	3.7.3.5.3 Example: Package.dsc dynamic PCDs

	3.7.4 Customize Build Options
	3.7.4.1 Example: Tools_def.txt
	3.7.4.2 Modifying Tools_def.txt
	3.7.4.3 Modifying an INF file
	3.7.4.3.1 Example: Module.inf

	3.7.4.4 Modifying DSC platform options
	3.7.4.4.1 Example: Package.dsc BuildOptions –compler options for all modules

	3.7.4.5 Modifying a DSC for a single module
	3.7.4.5.1 Example: Package.dsc BuildOptions—single module compiler options

	3.7.5 Build module image
	3.7.5.1 Example: Build option
	3.7.5.2 Build Package (-p option)
	3.7.5.2.1 Example: Build –p option

	3.7.5.3 Build Module (-m option)
	3.7.5.3.1 Example: Build –m option

	3.7.5.4 Build ARCH (-a option)
	3.7.5.4.1 Example: Build –a option

	3.7.5.5 Build Target (-b option)
	3.7.5.5.1 Example: Build –b option

	3.7.5.6 Build Tool Tag Name (-t option)
	3.7.5.6.1 Example: Build –t option

	3.7.5.7 Example: Build HelloWorld

	3.7.6 Build EFI Option Rom image
	3.7.6.1 Example: OptionRom INF—all PCI options

	3.7.7 Common build module breaks

	3.8 Debugging a Module
	3.8.1 Required steps for debugging a module
	3.8.2 Basic debugging methods

	4 UEFI Applications
	4.1 Begin with INF file
	4.2 Write UEFI Application Entry Point
	4.3 Get Service Tables
	4.4 Communicating with a UEFI driver
	4.4.1 Protocol
	4.4.2 Variable

	5 UEFI Drivers
	5.1 Begin With INF File
	5.2 Write the UEFI Driver entry point
	5.2.1 Example: APIs in UefiLib
	5.2.2 Example: Entry point to the Abc driver

	5.3 Get Service Tables
	5.4 Communication between UEFI Drivers
	5.4.1 Protocol
	5.4.2 Variable

	6 SEC Module
	6.1 Beginning to Write the INF File
	6.2 Setup Pre-Memory Environment
	6.3 Prepare for Data PEI Foundation
	6.3.1 EFI_SEC_PEI_HAND_OFF * SecCoreData
	6.3.2 EFI_PEI_PPI_DESCRIPTOR *PpiList

	7 Pre-EFI Initialization Modules
	7.1 Introduction
	7.2 Beginning to Write a PEIM INF File
	7.3 Defining a PEIM’s entry point
	7.4 Get Pei Services
	7.5 Communicate between PEIM Modules
	7.5.1 PPI
	7.5.1.1 Installing a PPI
	7.5.1.2 Locating a PPI

	7.5.2 HOB
	7.5.3 PCD

	7.6 Communicate with DXE Modules
	7.6.1 HOB
	7.6.2 Variable
	7.6.3 PCD

	7.7 Boot Mode
	7.8 Execution in Place PEIMs
	7.9 Dependency for PEIMs

	8 DXE Drivers: non-UEFI drivers
	8.1 Beginning with INF File
	8.2 Write DXE Driver Entry Point
	8.3 Obtaining Services Tables
	8.4 Communication between DXE Drivers
	8.4.1 Protocol
	8.4.2 Variable
	8.4.3 Dynamic PCD

	8.5 Communication with PEIMs
	8.5.1 HOB
	8.5.1.1 Traversing all HOBs in the HOB list
	8.5.1.2 Retrieving only the first HOB of a specific type in the HOB list (CPU HOB type example)
	8.5.1.3 Traversing specific types of HOBs in the HOB list (CPU HOB type example)
	8.5.1.4 Retrieving only the first GUIDed HOB with a specific GUID in the HOB list
	8.5.1.5 Traversing GUIDed HOBs with a specific GUID in the HOB list

	8.5.2 Variable
	8.5.3 Dynamic PCD

	8.6 Dependency Expressions
	8.7 Handler for EVT_SIGNAL_EXIT_BOOT_SERVICES
	8.8 DXE Runtime Driver
	8.8.1 INF File
	8.8.2 Handler for EVT_SIGNAL_VIRTUAL_ADDRESS_CHANGE

	8.9 DXE SAL Driver
	8.9.1 INF File
	8.9.2 Entry Point

	8.10 DXE SMM Driver
	8.10.1 INF File
	8.10.2 Constraints
	8.10.2.1 SMM Driver Initialization
	8.10.2.2 SMM Driver Runtime

