

Using Dynamic Software Analysis
to Support Medical Device Approval
Mark Pitchford, Field Application Engineer, LDRA
Chris Ault, Product Marketing Manager, Medical, QNX Software Systems
mark.pitchford@ldra.com, cault@qnx.com

"Beware of bugs in the above code; I have only proved it correct, not tried it".
—Donald Knuth

Introduction
Manufacturers of medical devices that include software face the same challenges as
everyone building complex systems: time, quality, size (number and complexity of
features), and cost. To these must be added approval by the FDA, MDD, MHRA,
Health Canada and their counterparts in
every jurisdiction where the devices will
be used.

In this paper, we look at a) how
dynamic code analysis can support
demonstrations of compliance with
safety requirements, and b) key
capabilities we should look for in
dynamic analysis tools. We then present
in appendices, to help with tool
selection, tables mapping development
activities with requirements in the
IEC 62304 standard: and, to help with
OS selection, a short description of OS
characteristics that can facilitate the
design, development and approval of
safety-related software.

Demonstrating
dependability
To ensure that their devices receive
regulatory agency approvals,
manufacturers must demonstrate that
the devices meet their safety
specifications. For the device software,
this means demonstrating that the
software meets required standards of
dependability (reliability and
availability). Whether reliability or
availability is more important depends

Expertise and Process

Expertise and good development
processes are not guarantees that a
system will meet its required level of
dependability, or even that the system
will be a good one. However, they do
vastly improve the chances that this will
be the case.

Great expertise is needed to produce a
design of the simplicity required for a
safety-critical system. A comprehensive
understanding of software validation
methods, the software being evaluated,
and the context in which it is evaluated
(including validations of similar systems)
is required to demonstrate that the
software system in question meets its
safety requirements.

It is no accident that IEC 62304 focuses
on the development process.
Considering this, we would do well, not
only to develop our software in an
environment that meets the most
exacting quality management standards,
but also to use tools that both help
ensure we maintain these standards and
provide evidence of this for auditors and
regulatory agencies.

 Using Dynamic Analysis to Support Medical Device Software Approval

LDRA and QNX 2

on how the system will be used. Carefully limited claims and precise dependability
requirements provide a defined context and accurate measures in and against which
we can validate a software system’s dependability.1

Defining acceptable risk
No software system is absolutely dependable, and even if a system were absolutely
dependable, we would have no way of proving this. The techniques available to us
can never prove that the system will never fail. They can only help us find faults and
eliminate them, and estimate the probability of failure. A software system is thus
deemed “safe” when its probability of failure is sufficiently low as not to present an
unacceptable risk. Precisely what “unacceptable risk” or, rather “acceptable risk”
means differs between industries and jurisdictions. Methods include:

ALARP (As Low as Reasonably Practical): the potential hazards and associated risks
are identified and classified as a) clearly unacceptable, b) tolerable if the cost of
removing them would be prohibitive and c) acceptable. All unacceptable risks
must be removed, but the tolerable risks are removed only if the cost and time
can be justified.

GAMAB (globalement au moins aussi bon) or GAME (globalement au moins
équivalent): the total risk in the new system must not exceed the total risk in
comparable existing systems.

MEM (Minimum Endogenous Mortality): the risk from the new system must not
exceed one tenth of the natural expected annual human mortality in the area
where the device is to be deployed. For example, for people in their mid-20s in
western countries this value is about 0.0002.

All these techniques must be then adjusted depending on the number of people that
could be simultaneously affected by a dangerous failure of the equipment.

With ALARP, in order to decide which risks are unacceptable, tolerable, and
acceptable, we need to determine numerical values for the maximum allowed
probability of dangerous failure for each risk. With GAMAB and MEM we will need to
determine this numerical value globally.

Techniques for proving software dependability
No single technique available to us is sufficient for proving that a software system
meets its dependability requirements. Our demonstration of dependability must,
therefore, be built using a complete arsenal that combines strategies and
techniques. This arsenal can include but is not be limited to:

• a development environment that complies with IEC 62304 or another
comparable standard

• requirements tracing matrices to ensure that all safety-related requirements are
addressed

• formal design methods and tools, which can provide mathematical proofs of
design correctness

• fault-tree analysis using methods such as Bayesian Belief Networks

1 See Chris Hobbs, et al. “Building Functional Safety into Complex Software Systems”, Parts I

and II. QNX Software Systems, 2011. www.qnx.com.

 Using Dynamic Analysis to Support Medical Device Software Approval

LDRA and QNX 3

• retrospective design validation, which evaluates system design based on what
has actually been built

• static analysis using methods such as model checking and data flow analysis

• testing using direct fault detection techniques such as dynamic analysis to
identify faults through the errors and failures they cause

Figure 1. Different analysis techniques and the relevant sections in IEC 62304 shown over a
traditional “V” development model. None of the techniques shown is process dependant.
A similar representation could be made for any other development process model:
waterfall, iterative, agile, etc.

IEC 62304
IEC 62304 is becoming the de facto global standard for medical device software life
cycle processes. The FDA has driven its development, and it is being harmonized
with EU standard 93/42 EWG (MDD)2.

Like the other standards shown in Figure 1, IEC 62304 draws on established
industry-specific practices to complement the principles of IEC 61508. For example,
unlike ISO 26262 or even IEC 61508 itself, IEC 62304 does not define common
numerical values for acceptable failure rates (a Safety Integrity Level (SIL) rating).
Instead, it defines safety classifications according to the level of harm a failure could
cause to a patient, operator or other person. These classifications are analogous to the
FDA classifications of medical devices: A (no possible injury or damage to health), B
(possibility of non-serious injury or harm) and C (possibility of serious injury or harm,
or death).

For the most part, the standards derived from IEC 61508 are similar in that they set
out the processes (including a risk management process), activities and tasks
required throughout the software lifecycle, stipulating that this cycle does not end
with product release, but continues through maintenance and problem resolution as
long as the software is operational. Ultimately, regardless of how they specify the

2 Cristoph Gerber, “Introduction into software lifecycle for medical devices”, Stryker Navigation:

Presentation (4 Sept. 2008)

 Using Dynamic Analysis to Support Medical Device Software Approval

LDRA and QNX 4

level of acceptable or unacceptable risk, IEC 62304, IEC 61508 and other like
standards provide guides and measures which we must use to demonstrate that our
system meets its safety requirements.

Figure 2. IEC 62304 is derived from IEC 61508 and hence shares its roots with other industry
specific standards. Note that IEC 62304 expressly states that it does not depend on
IEC 61508, but that IEC 61508 can be consulted for tools and techniques3.

Dynamic analysis
Dynamic analysis is used to examine execution of the compiled source code, either
in its entirety or on a piecemeal basis. Since dynamic analysis executes code, it tests
not only the source code, but also the compiler, the linker, the development
environment and, potentially, the target hardware. Dynamic analysis generally
involves structural (code) coverage analysis and unit testing, which together can
provide not only a very effective means for detecting errors in the software, but also
evidence showing what software has been exercised and how this software has been
exercised.

Structural coverage analysis is fundamental in the aviation industry standard DO-
178B/C. While aviation accidents are dramatic and often tragic, and hence tend to
make the news more often than do accidents with medical devices, the aviation
industry does have an exemplary safety record. Mile for mile, flying is one of the
safest modes of transport.

Structural coverage analysis
Dynamic analysis tools use either intrusive probes or non-intrusive probes. An
intrusive probe system puts software probes (counts or procedure calls) into the
code being analysed (high level language or assembler). These probes record
information about the execution process and produce execution histories.

Intrusive and non-intrusive probes
When using intrusive probes, demonstrating that the probes do not change the
functionality of the instrumented code is essential to the validity of the analysis. In
addition to proving that intrusive probes do not affect the source code, such a
demonstration usually requires showing that the probes themselves introduce
nothing which would expose weaknesses in the compiler. This can be achieved by
using a Compiler Validation Suite (a set of source code artefacts designed to confirm

3 Annex C.

 Using Dynamic Analysis to Support Medical Device Software Approval

LDRA and QNX 5

that a compiler performs correct computations) to show that compiler validation is
not affected by the instrumentation process.

A non-intrusive system obtains the same or similar information as does an intrusive
system, but directly from the processor, and the dynamic analysis tool then relates
this low-level information back to the original representation (high-level language or
assembler). Unfortunately, for various reasons (such as the effects of compiler
optimization) it is not always possible to establish this relationship unambiguously.

Note that, as with all testing, in a complex software system it is never possible to
demonstrate with absolute certainty that the probes associated with structural
coverage analysis do not affect the behaviour of the code. For instance, by definition
Heisenbugs are irreproducible; usually considered to be caused by subtle timing
conditions, they may be corrected (or even introduced!) by any changes to the code,
including instrumentation.

Figure 3. In screen captures from an LDRA code coverage tool, colour-coded graphical
information clearly identifies unexercised code.

Evidence for the dependability estimate
The trick, then, is not to prove the absence of bugs (a formal impossibility), but to
gather evidence that we can include in our estimate of the software’s dependability.
In particular, if we use SOUP (Software Of Unknown Pedigree) in our system,
structural coverage analysis can help show that there is no unused or superfluous
code, in compliance with, for instance, ANSI/AAMI/IEC TIR80002-1:20094, table
B.2: “Use only the SOUP features required: remove all others”.

Unit testing
Unit testing verifies small units, making it relatively simple to observe incorrect
behaviour and hence to detect faults. With unit testing, procedures or collections of

4 Guidance on the application of ISO 14971 to medical device software

 Using Dynamic Analysis to Support Medical Device Software Approval

LDRA and QNX 6

procedures are tested in isolation from the complete system in order to establish that
they satisfy specific requirements.

Typically, these requirements are more comprehensive than those of the project, so
that, for example, boundary conditions can be tested: a test for rendering a screen
display of 750 x 1,000 pixels may test up to, say, 1,200 x 1,600 pixels. The interface
to each procedure is tested for input values that may be excluded by higher-level
procedures, exploring generality—that procedures always behave as required.

Unit testing provides access for the exploration of housekeeping code, and otherwise
infeasible, protective code components can similarly be tested. Some instances of
coincidental correctness can be removed; for instance, in the bigger system, a
procedure may be called when it should not be or vice versa and yet leave the
observer with the impression that all is well. Because we are dealing with a smaller
component, it is easier to observe incorrect behavior and hence detect faults,

The issue of how to handle procedures called by the unit under test is dependent of
the purpose of the particular test in question. Indeed, unit testing traditionally
employs a bottom-up testing strategy (sometimes called module or integration
testing), where units are tested then integrated with other test units. Where called
functions are excluded from the tests they can be replaced by “stubs”.

Figure 4. Performing structural coverage analysis on the whole or a subset of the system
provides great flexibility.

When combined with structural coverage analysis, the flexibility of being able to
include as much or as little of a call tree as desired in the tests facilitates achieving
the coverage required from the most demanding qualification and certification
authorities.

Structural coverage metrics
One of the most difficult steps to take when validating any system is deciding when
to stop testing. This decision should be made in the context of the system’s
dependability requirements, and ultimately it depends on the IEC 62304 and
regulatory agency safety classifications of the medical device using our system.

Coverage metrics can help gauge how much has been achieved by dynamic testing,
and can be used to inform the decisions about how much testing remains to be
done. These metrics include:

 Using Dynamic Analysis to Support Medical Device Software Approval

LDRA and QNX 7

• Statement Coverage: the most basic metric, which consists of the proportion of
statements in the system that have been executed.

• Branch/Decision Coverage: the proportion of control flow branches covered. On
average, each statement and each procedure call is executed twice as often as
for statement coverage alone.

• LCSAJ Coverage: a path-related metric, LCSAJ (linear code sequence and jump)
coverage is more demanding than branch/decision coverage and is potentially
useful in the most critical parts of the application. It is available with the more
sophisticated tools on the market.

• Modified Condition/Decision Coverage: full MC/DC coverage is achieved when
every point of entry and exit in the program has been invoked at least once,
every condition in a decision in the program has taken on all possible outcomes
at least once, and each condition has been shown to affect that decision
outcome independently.

Choosing a software analysis tool
All software tool vendors are keen to sell their wares and, understandably, few
vendors are particularly keen on advertising what their tools might not do. The
following are a list of key points to consider when evaluating a software analysis tool.

Fault reporting

• Does the tool produce many false positive reports; that is, does it report faults
that are not in fact present?

• Does the tool produce false negative reports; that is, does it fail to report defects
that are in fact present?

Project compatibility

• Does the tool take too long when viewed against the overall benefits of the
information it generates? The time a tool takes to run is not usually an issue, but
this should still be a consideration in case it is excessive and hence becomes a
problem for the project.

• Does the tool support the preferred dialect for the project where it is to be used?
Most compilers implement their own version of the language in which the code
to be analyzed is written. It is essential, therefore, to ensure that analysis tools
support the language variant used in the project.

• How readily can the tool be incorporated into the development process? A tool is
of little use if it requires a disproportionate effort to integrate into the project.

Capabilities and limitations

• Does the tool work across the complete system? This is an important question
because some faults can only be detected when the whole system is analyzed.

• Is the tool capable of accommodating inter-procedural recursion? Even in a
single file, inter-procedural recursion is important if a procedure can only be
analyzed fully once another procedure has been analyzed.

• What are the tool’s limitations? All tools have limitations, including the amount of
code they can analyze, the depth of blocks they can handle, the bracket nested

 Using Dynamic Analysis to Support Medical Device Software Approval

LDRA and QNX 8

depth they permit, their symbol table size, etc. These limitations and their
implications for the project should be noted and understood.

Conclusion
With complex software systems at the heart of so many medical devices, the success
of these devices is increasingly dependent on the manufacturer’s ability to
demonstrate that these systems meet required levels of dependability. While
regulatory agencies such as the FDA, MDD and MHRA approve the entire device
and not its parts for market, the evidence presented to demonstrate the
dependability of the device software (the software Safety Case) are essential for
device approval. Hence, close attention to design and development practices, and a
careful choice of validation techniques and the tools used to implement these are
essential to the success of any medical device project that involves software.

 Using Dynamic Analysis to Support Medical Device Software Approval

LDRA and QNX 9

Appendix A: IEC 62304 and development activities
The tables in this section map paragraphs in IEC 62304 with software design,
development and validation activities. Adherence to IEC 62304 doesn’t guarantee
that the software will meet sufficient dependability requirements or that agency
approvals will be forthcoming. However, it will help ensure that the project follows
good processes, that requirements are clear at all levels, and that a Safety Case can
be built for the completed product.

Legend

“+” The method is recommended for this Class.
“✔” Software test tools are likely to aid test effectiveness and efficiency.

5.2 Software requirements analysis
Class

A B B

5.2.1
Define and document software requirements from SYSTEM
requirements

+
✔

+
✔

+
✔

5.2.2 Software requirements content
+
✔

+
✔

+
✔

5.2.3 Include RISK CONTROL measures in software requirements
+
✔

+
✔

5.2.4 Re-EVALUATE MEDICAL DEVICE RISK ANALYSIS
+
✔

+
✔

+
✔

5.2.5 Update SYSTEM requirements
+
✔

+
✔

+
✔

5.2.6 Verify software requirements
+
✔

+
✔

+
✔

Table A1. Test tool capabilities mapped to IEC 62304 section 5.2 Software requirement
analysis

5.5 Software unit implementation and verif icat ion
Class

A B C

5.5.1 Implement each software unit SOFTWARE UNIT + ✔ + ✔ + ✔

5.5.2 Establish SOFTWARE UNIT VERIFICATION PROCESS + ✔ + ✔

5.5.3 SOFTWARE UNIT acceptance criteria + ✔ + ✔

5.5.4 Additional SOFTWARE UNIT acceptance criteria + ✔

5.5.5 SOFTWARE UNIT VERIFICATION + ✔ + ✔

Table A2. Test tool capabilities mapped to IEC 62304 section 5.5 Software unit
implementation and verification

 Using Dynamic Analysis to Support Medical Device Software Approval

LDRA and QNX 10

5.5.4 Addit ional SOFTWARE UNIT acceptance criter ia Class C

a) proper event sequence +
b) data and control flow + ✔

c) planned resource allocation +
d) fault handling (error definition, isolation, and recovery) +
e) initialisation of variables + ✔
f) self-diagnostics +

g) memory management and memory overflows + ✔

h) boundary conditions + ✔

Table A3. Test tool capabilities mapped to IEC 62304 section 5.5.4 Additional SOFTWARE
UNIT acceptance criteria

5.7 Software SYSTEM test ing
Class

A B C

5.7.1 Establish tests for software requirements + ✔ + ✔

5.7.2 Use software problem resolution PROCESS + ✔ + ✔

5.7.3 Retest after changes + ✔ + ✔
5.7.4 Verify SOFTWARE SYSTEM testing + ✔ + ✔

5.7.5 SOFTWARE SYSTEM test record contents + ✔ + ✔

Table A4. Test tool capabilities mapped to IEC 62304 section 5.5.4 software system testing

 Using Dynamic Analysis to Support Medical Device Software Approval

LDRA and QNX 11

Appendix B: the operating system
No matter how good the validation tools, ultimately it is the device and its software
that must receive approval. In any system that uses software, everything above the
silicon depends on the OS. This means that any medical device that includes a
software component can only be as dependable as its OS. This OS must be able to
support the claims we make about the device’s safety.

A comprehensive discussion of requirements for OSs used in safe systems would fill
more than a few library shelves. It is, nevertheless, worth noting, at a very high level,
some key OS requirements we should look for when selecting the OS for our safe
system.

Real-time guarantees
Only a real-time operating system (RTOS) is designed to ensure the timely responses
required for the dependability that is fundamental to any safe software system.

Architecture
A failure in a real-time executive or monolithic OS usually requires a device reboot,
compromising system availability. With a microkernel RTOS, applications, device
drivers, file systems, and networking stacks all reside outside the kernel in separate
address spaces, and are thus isolated from both the kernel and each other. A fault in
one component will not bring down the entire system.

Memory protection
The OS architecture should separate
applications and critical processes in
their own memory spaces so that a fault
cannot propagate across the system.

Priority inheritance
To protect against priority inversions the
RTOS should support assigning, until
the blocking task completes, the priority
of a blocked higher-priority task to the
lower-priority thread doing the blocking.

Partitioning
To guarantee availability, the RTOS
should support fixed or, preferably,
adaptive partitioning, which enforces
resource budgets but uses a dynamic
scheduling algorithm to reassign CPU
cycles from partitions that are not using
them to partitions that can benefit from extra processing time.

High availability
A self-starting software watchdog should monitor, stop and, if safety can be assured,
restart processes without requiring a system reset. If a restart is not a safe alternative,
then the watchdog should set the system to its design safe state.

Figure 5. In a microkernel RTOS, system
services run as standard, user-space
processes. A failure in one user-space is
isolated to that space; the microkernel
and other user-spaces are protected.

 Using Dynamic Analysis to Support Medical Device Software Approval

LDRA and QNX 12

References
Center for Devices and Radiological Health, U.S. Food and Drug Administration. “Infusion

Pump Improvement Initiative”. Washington, April 2010.
<http://www.fda.gov/MedicalDevices/Productsand
MedicalProcedures/GeneralHospitalDevicesandSupplies/InfusionPumps/ucm205424.htm>

Gerber, Cristoph. “Introduction into software lifecycle for medical devices”. Freiburg,
Germany: Stryker Navigation. Presentation (4 Sept. 2008).

Green, Blake. “Understanding Software Development from a Regulatory Viewpoint”. Journal of
Medical Device Regulation, 6:1 (Feb. 2009), pp. 14-23.

Hall, Ken and StypeTriteq. “Developing Medical Device Software to IEC 62304”. European
Medical Device Technology. 1 June 2010.
<http://www.emdt.co.uk/article/developing-medical-device-software-iso-62304>

Heneghan, Carl, et aI. “Medical-device recalls in the UK and the device-regulation process:
retrospective review of safety notices and alerts”. BMJ Open, 15 May 2011.
<http://bmjopen.bmj.com/content/early/2011/05/12/bmjopen-2011-000155.full>

Hobbs, Chris. “Clear SOUP and COTS Software for Medical Device Development”. QNX, 2011.
<http://www.qnx.com/download/feature.html?programid=22793>

Hobbs, Chris, et al. “Building Functional Safety into Complex Software Systems, Part I”. QNX
Software Systems, 2011. www.qnx.com.

______. “Building Functional Safety into Complex Software Systems, Part II”. QNX Software
Systems, 2011. www.qnx.com.

International Electrotechnical Commission. IEC 62304: Medical Device Software–Software
Lifecycle Processes. First edition, 2005-2006. Geneva: International Electrotechnical
Commission, 2006.

Jackson, Daniel et al., eds. Software for Dependable Systems: Sufficient Evidence?
Washington: National Academies Press, 2007.

Jackson, Daniel et al., eds. Sufficient Evidence: A Briefing of the National Academies Study
Software for Dependable Systems. <cstb.org/pub_dependable>

Kumar, Anil. “Easing the IEC 62304 Compliance Journey for Developers to Certify Medical
Devices”. Medical Electronic Device Solutions. 20 June 2011.
<www.medsmagazine.com/articles/view/118>

LDRA. “Implementing IEC 62304 with the LDRA tool suite”. Liverpool: LDRA Ltd., 2011.
<www.ldra.com>

McCabe, T. A complexity measure. IEEE Transactions on Software Engineering, 2(4):308–320,
1976.

Moore, Janet. “Study calls for more FDA scrutiny of medical devices”. Star Tribune. 16 Feb.
2011. <http://www.startribune.com/business/116203594.html>

U.S. Food and Drug Administration. General Principles of Software Validation; Final Guidance
for Industry and FDA Staff. 11 Jan. 2002.
<www.fda.gov/MedicalDevices/DeviceRegulationandGuidance/GuidanceDocuments/
ucm085281.htm>

U.S. Food and Drug Administration. Research Project: Static Analysis of Medical Device
Software, updated 11 Feb. 2011.
<www.fda.gov/MedicalDevices/ScienceandResearch/ucm243156.htm>

Winstein, Keith J. “Medical Devices Face New Scrutiny from FDA”. The Wall Street Journal. 8
April 2009. <http://online.wsj.com/article/SB123920937438601763.html>

Wood, Jonathan, “Medical Devices Under Scrutiny”. Oxford Science Blog. University of
Oxford. 17 May 2001. <http://www.ox.ac.uk/media/science_blog/110517.html>

 Using Dynamic Analysis to Support Medical Device Software Approval

About LDRA
For more than 40 years, LDRA has developed and driven the market for software that
automates code analysis and software testing for safety-, mission-, security- and business-
critical markets. Working with clients to achieve early error identification and full
compliance with industry standards, LDRA traces requirements through static and
dynamic analysis to unit testing and verification for a wide variety of hardware and software
platforms. Boasting a worldwide presence, LDRA is headquartered in the UK with
subsidiaries in the United States and an extensive distributor network. For more
information on the LDRA tool suite, please visit www.ldra.com.

About QNX Software Systems
QNX Software Systems Limited, a subsidiary of Research In Motion Limited (RIM)
(NASDAQ:RIMM; TSX:RIM), is a leading vendor of operating systems, middleware,
development tools, and professional services for the embedded systems market. Global
leaders such as Audi, Cisco, General Electric, Lockheed Martin, and Siemens depend on
QNX technology for vehicle telematics units, network routers, medical devices, industrial
control systems, security and defense systems, and other mission- or life-critical applications.
Founded in 1980, QNX Software Systems Limited is headquartered in Ottawa, Canada; its
products are distributed in over 100 countries worldwide. Visit www.qnx.com.

© 2012 LDRA Ltd. and QNX Software Systems Limited, a subsidiary of Research In Motion
Ltd. All rights reserved. QNX, Momentics, Neutrino, Aviage, Photon and Photon microGUI
are trademarks of QNX Software Systems Limited, which are registered trademarks and/or
used in certain jurisdictions. All other trademarks belong to their respective owners. 302210
MC411.106

