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ZDSD Manifesto 

1.   Introduction 
 
Zero Defect Software Development (ZDSD) is a results-oriented process that emphasises the 
analysis, testing and reporting of the causality of defects. This process, which has evolved 
from LDRA’s commitment to safety-critical software development and verification, 
supplants the traditional approach of reacting to undesirable effects and treating symptoms while 
attempting to manage verification process using “trend analyses” or simply tracking the 
occurrences of defects. Under ZDSD, the first and most feasible recourse is to map system 
specifications and requirements to design, implementation and verification artefacts and foster 
requirements-based development. This process encourages the prevention and early stage 
detection of defects by facilitating requirements validation and verification, design 
verification and source code standardisation.  The ZDSD advantage is two fold: First, it results 
in higher quality software products; Second, when practiced using ZDSD-appropriate 
development and verification tools, the economic cost of quality is greatly reduced. This paper 
explores the challenges and support mechanisms for successfully utilising ZDSD.        
 
A proposal for ZDSD, or any overarching process of its breadth, must suit current and future 
contexts. The world of embedded systems and applications development is now compelling test 
tool suppliers to focus on the critical domain of requirements definition, allocation and traceability 
and its linkage to the traditional aspects of implementation analysis and verification.  Increasingly, 
organisational and project-specific requirements must be balanced with the more tactical, target-
specific criteria of embedded systems.   At the same time, the target systems architectures and 
their capabilities are becoming increasingly complex.  Emerging from this new focus and its 
inherent challenge is a pronounced need for a verification solution that is: 
 
1.1 Collaborative 
1.2 Global 
1.3 Scalable 
1.4 Analytical 
1.5 Applicable 

1.1 Collaborative  
 
Technology has evolved from the Information Age to a new age of collaboration. The Wikopedia 
model of collaboration has established at a minimum a new compendium of reference 
information. At the same time, it has also provided an expanding universe of verification. The 
resulting value added provides a knowledge base that is both immediately extensible and 
verifiable. Complementing this age of collaboration, is the open source development movement 
which has produced Linux and a myriad of user applications, mostly at lower cost and higher 
quality then those produced by closed processes and arbitrary verifications. The new 
collaborative verification model can encompass widely dispersed teams that examine and 
exercise the system under test and provides an indigenous defect tracking and correction 
mechanism. 

1.2 Global 
 
In order to facilitate the benefits of collaboration, the verification solution must provide access to 
all the players whenever and wherever they interact. Development and verification teams are 
increasingly dispersed and frequently beyond the boundaries of secure corporate networks and 
information “smokestacks”. Notwithstanding the Virtual Private Networks (VPNs) and the like, the 
need for secure web-based access is essential. Verification results can be served from a 
repository that is continually updated by daily events. 

1.3 Scalable 
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The verification solution must be adaptable to any point where a development activity occurs at 
any stage in the development process; moreover it must scale to the system under development, 
(be it a cell phone or long-range stealth bomber) the number of developers & testers or the 
number of requirements allocated. Moreover, all the verification results must be synchronised 
with a larger matrix of requirements and results. 

1.4 Analytical  
 
The verification process of any system encompasses the determination of what it does and a 
measurement of how well it does it. The assumption here is that the system’s development is 
predicated on requirements; these requirements not only dictate what functions are performed but 
necessarily how these functions are implemented. The “what” of a system is defined by functional 
(or high level) requirements. A critical characteristic of these functional requirements as defined, 
is that they be testable. For example, a best practice in Extreme Programming dictates that a test 
case be defined for any given requirement before the source code is written.   
 
Of equal importance to what a system does, is how well it performs, especially with respect to 
customer satisfaction. The determination of software system reliability and robustness is 
accomplished by structural testing. Structural testing necessitates the execution of feasible (or, 
real) paths through the code and therefore a synergy of source code analysis and test case 
automation. Functional and structural testing must be combined to ensure the “goodness” of the 
software system. 
  
1.5 Applicable 
 
The general applicability of a verification solution encompasses several factors including 
minimised dependence on tool chains, portability of verification routines and most importantly the 
repeatability of these routines.  If a verification solution is dependent on the tool chain that 
produced the system under test, its ability to perform independent verification is compromised. As 
architectures (both hardware and software) become more complex or customised, the tool chain 
that produces the software that executes on these architectures becomes increasingly complex 
as well. Consequently, the coupling of the verification tools deployed on these tool chains must 
remain loose, while not precluding further integration at the user or project levels. 
 
The portability of verification solution must occur across an increasingly distributed, variable and 
embedded systems space. This systems space necessitates that the verification solution should 
not carry “baggage”; instead it needs to make transparent usage of resources on the host or 
target systems. 
 
Finally, the hallmark of applicability in a verification solution is repeatability. This requires that all 
elements of the verification routine be contained in a framework that is self referential and self 
contained. 
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2. The ZDSD Context Model 
 
Depicted in Figure 1 is a context model for the verification solution being proposed. This model 
encompasses five essential levels in embedded systems development projects, though these 
levels may vary significantly with respect to process and project/corporate goals, artefacts 
generated and overall productivity. 

Level 1 
 
Level 1 is what should be a definitive statement of the system to be developed and the functional 
criteria it must meet, which is called High-Level Requirements.  This level may or may not be 
elaborated, and its definition may be left to designers on Level 2 or even implementers of the 
system indicated on Level 3. Level 1, High Level Requirements may also be called System, 
Customer, Product requirements or something equivalent. These requirements may reside in a 
database such as Telelogic DOORS or exist as text in a format such as a Microsoft Word 
document. 

Level 2 
 
Level 2, Design, contains a representation of the design of the system characterised by Level 1. 
This level, in many contexts referred to as Low Level Requirements, must foremost establish links 
or traceability with Level 1. This linkage constitutes what is called a Requirements Traceability 
Matrix (RTM). The RTM is shared, either explicitly or implicitly, by all levels in the contextual 
model in Figure 1. 

 
Level 2 typically is manifested by one of three design process categories. Specifically, Level 2 
may consist of design model such as Unified Modelling Language (UML) or proprietary modelling 
systems such as Mathworks Simulink or National Instrument’s Lab View. Alternatively, Level 2 
may be realised by a design specification that delineates the physical characteristics of the 
software to be developed as well as the details of the interfaces that comprise the software 
system. Also, in more rapid prototyping or ad hoc contexts, the Architectural Concepts may be 
formed in meetings with key stakeholders in a project without the elaboration of more formal 
definitions. 
 
Figure 1: ZDSD Context Model 
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Level 3 
 
Level 3, Implementation, includes the production of source code or assembly code in accordance 
with Level 2 dictates. In the case of source code generated by a modelling tool, the linkage 
between Level 3 and Level 2 can be automated, assuring requirements traceability between the 
two levels. Frequently, however, embedded implementations are “hand coded” using the 
Integrated Development Environment (IDE) provided by an embedded operating system supplier, 
such as Green Hills or Wind River or LynxOS.  
 
Level 3 is where verification activities typically begin. The most effective way to prevent run time 
errors is to preclude them. The first step in precluding runtime errors, as well as other 
implementation defects, is to systematically apply coding rules to the implementation. Coding 
rules such as MISRA or High Integrity C++ have been developed by industry leaders to analyse 
many aspects of source code implementation such as pointer usage, memory management and 
syntax. The results of these code reviews, as well as critical quality checks such as code 
complexity and maintainability, including overall data flow analyses, must be accomplished prior 
to proceeding to verification in Levels 4 and 5. Moreover, to effectively manage this first level of 
verification, non-conformances (as established by coding rules and project-specific quality 
models) must be recorded, tracked and resolved using a defect tracking system that is integral to 
the overall RTM. 
 
A difficult challenge at Level 3 is the mapping of requirements, either high-level or low level, to the 
code. This linkage demands an understanding of the code, at least at the functional level, as well 
as documentation required to evidence this linkage. Moreover, in order to effectively perform the 
verification tasks in Levels 4 and 5, this requirement to link source code must be integrated into 
the RTM.    

Level 4 
 
Level 4 is the first level dedicated to verification. At this level embedded software can be tested 
as functional and structural entities. Test strategies are adopted, such as top-down, bottom up or 
some combination of these two strategies. This level may include simulators, software stimulation 
techniques as well as automated test harnesses and test case generators. Structural testing 
requires extended use of the analyses and predicates Formal Methods are performed at Level 3, 
if the testing of real paths is to be accomplished. Without analysis techniques the causality of 
defects can not be effectively exposed.  
 
With respect to functional testing, a key success criterion for the verification tasks to be 
performed is that the functional testing performed at Level 4 be repeatable at Level 5, the 
embedded target. Without this host to target compatibility, verification traceability is more difficult 
to maintain. 
 
At Level 4 the RTM gets fully extended to include verification artefacts such as test case 
identifiers, test specifications and test results. The test results must be augmented by defect 
reports if non-conformances are to be corrected. The emphasis in Level 4 is to correct defects at 
this level prior to target execution and system integration testing. Host-based testing is typically 
the least cost option, as it best accommodates the earliest testing and provides optimal access to 
most low-level functionality independent of the target platform.  

Level 5 
 
Verification for embedded software, especially safety critical software, typically is completed at 
Level 5. However, at this level, functionality frequently crosses hardware/software boundaries 
making defect resolution more challenging than at Level 4. Many of the host-based testing 
facilities such as run time libraries are impractical and become infeasible in multi-partioned 
operating systems. Another layer of traceability, going from source code to object code must also 
be covered. 
 
Functional testing predominates at Level 5. In addition, structural coverage is used to measure 
the final traceability between functional requirements and the implementation. (i.e., is code left 
uncovered by functional test? If so, then why is the code there?).  All of the test artefacts used at 
Level 4 are also relevant at Level 5.   
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3. The ZDSD Solution 
 
The ZDSD Solution offered by LDRA fully meets the demands of the ZDSD contextual model 
described in the previous section. The ZDSD Solution is shown in Figure 2 in the context of a V 
model for software development. TBreq provides the RTM described above across all five levels 
of the ZDSD context model. TBreq supports the importation of requirements from any source 
including Telelogic DOORS or Microsoft Word and the mapping of requirements to the source 
code. Alternatively, TBreq facilitates the coupling requirements mapped into a design modelling 
tool such as Telelogic Rhapsody or Mathwork’s Simulink. The TBreq integration with LDRA 
Testbed facilitates the Code Review and Quality Review described at Level 2 (Implementation), 
as well as externally performed system test code coverage analysis. Additionally the TBreq 
integration with LDRA TBrun (unit test tool) supports the software testing described at Levels 4 
and 5 using the TBrun. 
 
The critical requirements traceability and verification capabilities are performed in conjunction 
with TBmanager. TBmanager and TBreq operations are shown in Figure 3. As indicated by (1), 
TBreq you can capture requirements from requirements management tools such as Telelogic 
DOORS, IBM Rational RequisitePro or from a document or spreadsheet. TBreq acts as a 
gateway to these requirement sources for TBmanager.  The requirements are made available to 
TBmanager (via a LDRA Testbed Project) for traceability and verification tasks. Indicated by (2), 
traceability and requirements mapping are performed directly in LDRA Testbed; information is 
captured from the Design Review analysis of source code files loaded into the LDRA Testbed 
project. This review includes the application of Formal Methods and a Real Path analysis of the 
source code, providing the basis for code and quality assessments and structural testing 
(eXtreme testing) in TBrun. Indicated by (3), verification results, including unit test case and code 
coverage results from TBrun, as well as analysis results, including Code Review, Quality Review 
and Dynamic Analysis from externally executed test cases, are returned to TBmanager. Also 
returned are defect reports from requirement non-conformances. Finally, as indicated by (4), all 
traceability and verification are put into the overall Requirements Traceability Matrix Verification 
results and traceability information can be uploaded into the requirement repositories. 
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Figure 2 – V Model for Software Development   

 

 
Figure 3 – TBreq and TBmanager Operations   
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4. The Formal Methods Techniques 
 
Traditionally, formal methods are regarded as the use of mathematically-based models in some 
specification or design notation, such as Z or finite state machines (FSMs). In recent times the 
use of various modelling techniques have also become associated with the term formal methods 
and it is this relationship which is relevant to ZDSD. In the current context, there are two 
underlying models which form the principal basis for most of the techniques to be described; 
these are the control flow model and the data flow model. 
 
Control flow modelling. The tool constructs a graphical control flow model in which the nodes 
are basic blocks and the arcs are control flow jumps and branches. This model handles programs 
regardless of structure, including many types of interrupt and exception handling methods, 
recursion (self recursion and multi-procedural recursion) and multiple file representation. The 
model is produced system wide, i.e. for the entire program, and has an elaborate set of display, 
navigation and reproduction facilities. The model can be reduced to yield an annotated call graph 
or annotated flow graph. The representation is capable of handling procedural and label 
parameters, arrays of pointers-to-procedures and polymorphism. 
 
Data flow modelling. The data flow model consists of an enhanced version of the control flow 
model annotated with operations on the program variables and constants.  It performs the 
aliasing operations across procedure boundaries and other more specific aliasing operations 
(pointers and references, etc.). The model is again system wide. The model can be accessed to 
obtain the set of operations on specific variables, or collections of variables. 
 
The basic models are, in essence, reverse engineered from the program code. They are then 
used to provide the basis for a number of specific algorithms which concentrate on discovering 
particular kinds of program defects and properties. 

4.1 Data Flow Analysis 
 
The data flow model, annotated with the variables and operations performed on them, is the basis 
for this technique [3]. Powerful graph theoretic algorithms are applied to the system-wide control 
flow model to yield a number of different types of analysis. 
 
Defects detected include: 
 
• References to uninitialised variables; 
• Wasted computations on variables; 
• Variables which do not contribute to outputs; 
• Parameter mismatches of various types. 
 
The technique is valid for all paths and handles recursion [4] and some types of interrupts and 
exceptions. The analysis is performed bottom up and proceeds across procedure boundaries with 
the corresponding multiple aliasing handled explicitly.  Multiple file problems are handled by firstly 
predicting an appropriate compilation order and then performing the analysis of the procedures in 
this order. The precise interface, i.e. the one in use and not necessarily the one declared, is 
documented for user convenience and reference. The mismatch between the actual interface and 
declared interface is often the source of serious errors. 

4.2 File Handling Analysis 
 
Olender and Osterweil [5, 6] were among the first to realise that traditional data flow analysis of 
variables could be adapted to analyse the sequence of operations on files (i.e. open, read, write, 
close). When files are opened within a program and the program subsequently exits with some 
files not closed, there can be unfortunate side effects, for example, computer lock-up. By 
searching the system-wide control flow graph, annotated with file operations (over all files and all 
procedure boundaries), this algorithm checks that any file that is opened is subsequently closed 
on all exit paths. It also reports any possibility that a ‘write’ operation could be made to any 
unopened file. This can occur if there is any path from the start point of the program to the 
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specific ‘write’ statement. The technique is able to utilise some knowledge about infeasible paths 
[7] to reduce false positive messages. 

4.3 Pointer Analysis 
 
Pointer analysis is a much-studied problem [8, 9]. A pointer is a program variable in its own right 
and hence must obey the usual data flow rules as applied to ordinary variables. In addition, 
however, it can be dereferenced which means that operations are performed on the entity to 
which the pointer points. 
 
In the LDRA Testbed, pointer assignments, dereferences and uses are superimposed on the data 
flow model of the entire system. This permits data flow analysis to take into account assignments 
and other uses made by dereferencing pointers. Every pointer dereference is both a use of the 
pointer itself and of the variable or location to which it points. In general, dereference is a dynamic 
issue because a given pointer may, at various times, point to many different locations. However, 
there are a number of static analysis representations which can detect many, but not all, possible 
defects. The algorithm implemented works with a ‘last assigned value’ approach except for 
procedural pointers in which it uses an ‘all possibilities’ approach. The latter is not used for 
pointers in general, due to the possible combinatorial explosion. 

4.4 Null Pointer Checking 
 
When assignments to pointer variables are made with function return values, other pointer values 
or explicit null values, it is important to check that these pointer variables have sensible values 
before they are used. This technique searches the data flow model annotated with the pointer 
operations and function calls, together with any conditional operations at splitter nodes, to ensure 
that every pointer which is assigned a value is checked (for null say) on all paths involving a use 
(i.e. a def-use path) of that pointer. This can detect most troublesome program pointer problems 
because it works over the complete control flow graph. It cannot detect cases when the wrong 
valid pointer value is used. 

4.5 Divide-by-Zero Analysis 
 
This analysis is performed by searching the data flow model annotated with values and 
operations, to check when variables, which might have a zero value, are used as a denominator. 
The algorithm does not attempt to compute the set of values achieved by the variables; rather, it 
examines the constructs to predict when a variable might have a zero value. In this way, a fast 
algorithm is obtained which produces a minimum of false positive results. 

4.6 Array Bounds Checking 
 
Array bounds checking using techniques based on data flow has been extensively studied [10]. 
However, in addition to statically checking array bounds by suitable scanning of the data flow 
model, the LDRA Testbed also permits dynamic checking by means of instrumentation. Both 
techniques work on a system-wide basis projecting the bounds down to lower levels where the 
language fails to provide these details. 

4.7 Storage Analysis 
 
One of the major sources of faults in the execution of software in some languages is the 
exhaustion of available storage. Often this is caused by the programmer allocating memory and 
then omitting to free it subsequently. The control flow model is searched for uses of those 
constructs which explicitly allocate and free memory to ensure that all allocated memory is 
correctly freed on all exit paths. The algorithm also checks for the potential release of unallocated 
memory. 

4.8 Dead Code Analysis 
 
The flow graph, annotated with variables and operations is scanned to detect the case when 
specific computations do not lead to any changes in any outputs. Such computations can be 
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safely removed from the code. Categories reported include unreachable, infeasible and 
ineffective code. The unreachable code can be identified by checking reachability from the 
program start point (or other points if required), and detecting infeasible branches of various 
types. 
 
Additionally, variables declared and never used, and variables used only once are identified for 
removal. It is also possible to detect infeasible branches during the dynamic analysis phase. The 
main purpose in detecting these defects in the static analysis phase is that it is cheaper to 
remove these defects before commencing dynamic analysis. 

4.9 Exact Semantic Analysis 
 
The validation process can be substantially enhanced if the user can provide a tool with 
information which is either hard to obtain by analysis or is from the application domain. 
Traditionally, this is supplied in the form of comments (usually referred to as annotations) which 
can be transformed automatically into allegations or assertions [11]. 
 
In the tool, assertions in the form of annotations are compared with the actual computations in 
order to detect violations. These annotations can be pre- and post conditions, loop invariants, etc. 
 
The tool uses annotations in two modes: static analysis mode, and dynamic analysis mode. With 
the former, the technique becomes approximate semantic analysis and with the latter, it becomes 
exact semantic analysis because the annotations are checked in the actual execution 
environment. In the static case, the engine which checks the annotations is software based and in 
the dynamic case, it is the run-time system. Clearly, checking semantic issues in the actual 
environment is more accurate than in a simulated environment. 

4.10 Information Flow Analysis 
 
Information flow analysis aims to discover the relationships between input variables and output 
variables [12]. This is performed in the LDRA Testbed by scanning the system-wide control and 
data flow graphs to discover such relationships. In practice, other dependencies such as those 
introduced by design artefacts are also discovered. The relationships are explored in detail to find 
possible sources of faults. In fact, when used in the basic mode of identifying the relationships, 
very few general classes of obvious fault can be identified. 
 
However, the technique does become extremely powerful when combined with some knowledge 
of the application. The application knowledge can be encapsulated in the form of annotations 
describing the required relationships either system wide or for each procedure. The actual results 
can be compared automatically with those predicted from the requirements leading to a fast and 
powerful facility. These annotations are usually obtained by the application of formal methods to 
the requirements analysis and design which leads to accurate predictions of the required 
relationships. 

4.11 Side Effect Analysis 
 
The use of functions in complex expressions can be a source of error if the functions concerned 
have side effects. In particular, the result can be affected by the compiler’s order of evaluation. 
Frequently, compilers utilise any freedom permitted in the language definition of the order of 
execution to perform optimisation.  
 
The side effects which the tool identifies are classified as: 
 
• Parameter side effects; 
• Global variable side effects; 
• I/O side effects, both file and volatile location based; 
• Class member side effects. 
 
Class member side effects are distinguished from global variable side effects purely because 
exponents of class-based languages need to feel that these languages are significantly different 
from others. As far as the tool is concerned, they are the same.  All uses of such functions in 
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positions where there could be evaluation problems are reported so that the relevant code can be 
restructured. 

4.12 Data Coupling Analysis 
 
This technique investigates the way in which procedures interact with data items which are not 
local to that procedure. The two mechanisms by means of which procedures acquire external 
data items are parameters and global variables. The term ‘global variable’ in this context covers 
all items visible inside a procedure and declared externally, so that class members can fall into 
this category. 
 
The task is to ensure that there are no possibilities of dangerous defects arising from the various 
aliasing mechanisms possible in many languages; for example, a global variable when passed as 
a parameter in a call then has two access mechanisms inside the procedure. The danger arises 
firstly from the programmer failing to appreciate this fact and thinking they are distinct and 
secondly from a compiler treating them as distinct when the programmer thinks they are the 
same. These problems can become quite subtle when a system has a complex hierarchy and the 
locations are treated in alternate ways as they filter down that hierarchy. The use of pointers in 
such a scenario adds further complexity, to the point where it is usually beyond humans to 
comprehend.  
 
The tool has algorithms to detect problems of this type. They are again based on the data flow 
model, are system wide and handle the aliasing complications of cross procedure boundaries and 
the use of pointers. 

4.13 Real Path (LCSAJ) Analysis 
 
The set of ‘linear code sequence and jump’ (LCSAJ) subpaths forms a basis set for the 
generation of program paths [13, 14]. As such, LCSAJs are a powerful vehicle for analysing path 
structure and generating targeted test data. The tool produces a test case plan targeted to the 
achievement of testing all the LCSAJs.  
 
The LCSAJ test case planning component is particularly important to users who wish to achieve a 
high level of test coverage at minimum cost. Essentially, the tool generates a spanning tree of the 
LCSAJs which can then be optimised in order to perform specific minimisations, such as 
construction of a set of paths (connected LCSAJs) to cover all the LCSAJs. The set of conditions 
which achieves this is then the input criterion for test case generation. 

4.14 MC/DC Test Case Planning 
 
Modified condition decision coverage (MC/DC) requires testing of decisions in a program such 
that changing the truth value of each individual condition within the decision forces a 
consequence on the overall decision’s outcome [15]. This is another area where use of 
mathematics is required. The problem is that an expression containing N conditions combined 
with the logical and and or operators, leads to 2N test combinations, of which only a set of N + 1 
tests is actually needed to satisfy MC/DC. 
 
In addition, there may be a number of different test data sets that satisfy MCDC and most 
programmers involved in this work cannot perform the necessary analysis manually. The tool 
therefore provides a test case planner which either guides testers through the process from start 
to finish or rescues them when they are part way through and have lost track of what to do next. 
 
The need for such a tool has increased as the avionics industry has moved to ever more complex 
conditional expressions, many of which have interdependent sub conditions.  It is not uncommon 
to have well in excess of 20 sub conditions. 

4.15 eXtreme Testing 
 
The automatic generation of test data for the purpose of unit testing is one of the most important 
features of the LDRA Testbed. The analysis involved is able to handle recursive procedures, 
groups of mutually recursive procedures, and code distributed across files. The technique which 
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is application independent is based around the relationships of literal values and associated 
constraints which are observed in association with the variables involved in the units under test. 
This has been implemented largely under pressure from experienced users who find that dark-
corner testing is usually hard because the actual test data is not obvious but can be inferred from 
the presence of these program literals and their context. Surprisingly high coverage rates have 
been achieved for some classes of software. The user still has to provide the assurance that the 
actual outputs are correct. 

4.16 Exception Handling Analysis 
 
In languages like C++ it is possible for users to raise exceptions at any point in their programs. 
This leaves open the question as to whether there is an appropriate exception handler in scope. 
In Exception analysis the system wide control flow graph is annotated with the points where 
exceptions are explicitly thrown and where the handlers are declared. Cases where there are no 
handler are on any path to the raised exception are reported. 

4.17 Timing Analysis 
 
This is a dynamic analysis feature in which the time taken to execute specific procedures can be 
recorded and reported to the user.   
 
Suitable hooks are provided at user request during the instrumentation phase. The options are: 
 
• No performance timing 
• Performance timing only (no coverage instrumentation) 
• Performance timing plus coverage. 
 
When performance timing is requested calls to two routines are planted in each function: 
 
• At the start of the function 
• At each return point or end of the function. 
 
Both functions take a single parameter that provides the procedure number which identifies the 
procedure to LDRA Testbed. 
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5. Conclusion 
 
ZDSD is a largely automated yet agile process that links all the stakeholders (customers, 
development and verification teams and business operations) in a cohesive entity focused 
on measurable results. ZDSD maintains that intentionality (requirements) must be 
thoroughly and consistently verified in order to minimise, if not eradicate defects while 
producing software products that add demonstrable value at the lowest possible cost over 
a product’s lifecycle. The obverse of this conclusion is that software “accidents” rarely 
accrue to a customer’s (or supplier’s) benefit. In fact, the software accident has always 
been the nemesis of safety critical software and presents the greatest risk to all other 
software development disciplines. 
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