
Legacy Software 
Migration

Legacy code in the security-critical age

Software Technology

Article by Bill StClair Originally published in Military Embedded Systems – July/August 2008 



The cost and convenience advantages of legacy 

code reuse can be diminished or complicated when 

security and safety-critical risks are considered. If 

the legacy code is proven to be functionally correct 

and operationally viable, its acceptance is based 

on an assumption of what is expected to happen. 

However, it is the unexpected that typically causes 

faults, and structural testing provides a means of 

mitigating the unexpected.

Today, the “as built” acceptance 

of legacy software is coming 

under more scrutiny. This 

is due, in both military and 

commercial systems, to an 

increasing emphasis on security 

and safety evaluation criteria. 

With respect to software 

aspects of certification, there 

is a mandatory requirement 

for evidence of a repeatable 

verification process and 

the analysis that supports 

it. Structural testing is a 

mechanism to validate this 

evidence.

 

Although once viewed as an unnecessary cost 

burden, a rigorous, standards-based development 

and verification process comes as a consequence of 

the emerging global perspective on the importance 

of safety in embedded systems industries worldwide. 

This perspective is defined by risks associated 

with activities as diverse as commercial air travel, 

medical equipment product deployments, global 

automotive product development standardization, 

and defense and security. In these applications, the 

liabilities, costs, and mission impacts associated 

with unexpected software and system behaviors are 

considered unacceptable. 

As a member of the FAA’s international working group 

on flight software, which is producing the next version 

of its DO-178 software standard, I have witnessed the 

growing awareness of the use of legacy software in 

flight software systems. The working group has strived 

to ensure that legacy code is properly managed, 

verified, and that it 

does not in fact become 

“dead” or inaccessible 

code where it could 

inadvertently be invoked 

for runtime execution 

without having been 

previously and properly 

tested. Historically, dead 

code has been seen as 

a cause of unexpected 

software behavior and 

poses a significant risk to 

flight safety.

With the emergence of object-oriented applications 

in embedded systems, using languages such as 

C++, Java, and Ada 2005, the working group has also 

realized that the possibilities for reuse of legacy 

code have grown exponentially. Legacy components 

can share member functions with new components, 

and the precise behaviors of these shared functions 

are not actually visible before runtime execution. In 

object-oriented systems, the unexpected has a higher 

probability of occurring.

Legacy code in the
security-critical age 

Bill StClair of LDRA

Legacy code reuse might 
seem like a good idea, but 
what about when security 

and safety-critical risks 
are a factor? Legacy code 

is expected to function 
correctly, but structural 

testing provides a way to 
mitigate the unexpected. 

2



The U.S. military also recognizes the risks associated 

with unexpected software behaviors, especially 

in the context of security vulnerabilities. The Air 

Force Research Laboratory, in cooperation with the 

National Security Agency, Department of Defense 

prime contractors, academia, and software suppliers, 

is managing a Multiple Independent Levels of 

Security/Safety (MILS) program to combine DO-

178B with standards for security. This includes the 

Common Criteria and Director of Central Intelligence 

Directive 6/3, Protecting Sensitive Compartmented 

Information Within Information Systems. Though 

the MILS program does not directly address legacy 

code, many of its objectives are being applied to new 

projects and deployments that incorporate legacy 

software. The software development and verification 

guidance for the MILS program, which comes largely 

from DO-178B, now presents software suppliers and 

system integrators with the enormous challenge 

of implementing repeatable verification processes 

and mitigating the risks associated with unexpected 

software behaviors.

Given the challenges associated with security and 

safety-critical software, we need to identify best 

practices with respect to legacy code and propose 

a way to maintain and update legacy code. Such 

challenges are met through structural testing. 

Structural testing, sometimes described as “software 

testing software,” provides a runtime environment 

in which test cases are auto-generated to exercise 

software behaviors based on a system-wide, path-

level analysis of the code. Although in the past 

structural testing was criticized for not explicitly 

verifying functional correctness, this opinion fails 

to recognize that the goal of structural testing is 

to exercise the entirety of software structures, trap 

exceptions, and measure the resulting code coverage 

- not to explicitly test software functionality.

Unless the “as-built” architecture of legacy software 

is correctly analyzed, the impact of changes cannot 

be predicted nor can changes effectively be applied. 

Fortunately, the static analysis inherent to structural 

testing can also produce graphical representations 

of the architecture including call tree graphs, control 

flow graphs, data coupling tables, and set/used 

tables. These visualizations are especially helpful to 

engineers working with code from multiple origins 

such as modeling tools, hand code, and software 

libraries. Another byproduct of the static analysis 

dimension of structural testing is the automated 

application of coding rules to the source code, 

assuring implementation consistency between legacy 

and new code.

Advances in test technology have spawned a new 

generation of tools, not just another breed. These 

advances have arrived just in time to meet the 

needs of international software standardization, the 

globalization of embedded software markets, and 

the rising emphasis of security and safety-critical 

verification criteria. Now legacy software users can 

squeeze out unexpected software behaviors and help 

keep us safe and secure.

3

Unless the “as-built” architecture 
of legacy software is correctly 

analyzed, the impact of changes 
cannot be predicted nor can 

changes effectively be applied.

www.ldra.com

LDRA Headquarters

Portside, Monks Ferry,
Wirral, CH41 5LH
Tel: +44 (0)151 649 9300
e-mail: info@ldra.com

LDRA Technology Inc. (US)

Lake Amir Office Park
1250 Bayhill Drive Suite # 360
San Bruno CA 94066
Tel: (650) 583 8880

LDRA Technology Inc. (US)

74 Main St
Suite 209
Maynard MA 01754
Tel: (978) 405 3180


