

LDRA Ltd. 1 TBreq v2.1.1

TBreq™:

An Integrated Solution for
Requirements-Based Testing

www.ldra.com

http://www.ldra.com

LDRA Ltd. 2 TBreq v2.1.1

Key Challenges

A common request from LDRA customers, including aerospace, defense, medical,
telcom and many other market sectors, entails the production of an automated solution
for requirements traceability. The need for requirements traceability is typically imposed
on our customers as a contractual requirement. Though now, with increasing frequency,
our customers are recognising that requirements-based testing is an essential element
of successful software development projects in general. As a contract deliverable, or
more generally, as a work product, the requirements traceability task produces a Test
Verification Matrix (TVM). The TVM is an artifact that is painfully wrought, consuming
valuable resources that are frequently diverted from other more productive activities.

The truly onerous nature of a TVM does not become apparent until our customers
attempt to maintain the TVM through testing, integration and deployment phases of their
projects. The inherently brittle nature of the TVM and the manual processes it
encapsulates are exposed as defects occur which are attributed to requirements
management (including requirements validation, allocation and correct implementation).
In fact, records indicate that up to 70% of such defects are classified as requirements
management related!

The assessment (or reassessment) of the TVM encompasses what are called Impact
and Gap analyses; Impact analysis determines the impact of requirement change on a
system. This assumes a hierarchy (or association) of requirements that must be traced
in order for change to be properly managed. Gap analysis determines where the
mapping of requirements is incomplete or inconsistent. Our customers have learned that
these types of analyses are very difficult and expensive to perform when predicated on a
manually generated and maintained TVM.

The next challenge is to produce a requirements traceability solution that is dedicated to
development and test teams. Our customers stipulate that this solution must operate in
the context of existing tools and processes. Currently, most customers have a
requirements database or flat file capability where they define and maintain system or
high-level requirements. Some customers map these high-level requirements to top-level
design; even fewer map these requirements to the as-built design and source code. In
the main customers at least map requirements to the test cases that verify these
requirements. However, the possibility of erroneous mappings are very high when
customers wait until testing, especially system testing, to perform requirements
traceability.

The reason why this very late requirements mapping occurs is the operational
constraints imposed by a requirements database located in a project manager’s office
and the testing environment existing on a developer’s workstation or on a target system
in a lab. Or perhaps the testing is being performed by a subcontractor in a remote
location. At a minimum these operational constraints dictate that a level of integration
occur between the requirements database and the test environment in order for an
automated solution to be introduced.

A more effective process, and one that is frequently required of our customers, is to map
requirements at least to the as-built (or detailed) design and the embodied source code.
Mapping to the as-built system is part of test qualification or the test readiness process
that determines the proper correlation of requirements to code; a corollary to this review

LDRA Ltd. 3 TBreq v2.1.1

is the elimination of dead (unreachable) code from the source code listings. Moreover, I
would argue, that infeasible code, or code that cannot be exercised under any
combination of test data, should also be remedied or purged as a prerequisite for test
readiness.1

The traceability of requirements through the as-built design is further compelled by the
existence of low-level and derived requirements. These requirements are commonly
defined by the development team in the course of system requirements elaboration (or
prototyping) and the construction of a workable and testable system. This pattern of
product evolution is most pronounced in the development of software for embedded
targets.

The prevalence and the context of low-level requirements present another significant
challenge for traceability. These requirements are not considered system or “customer”
requirements; they address the “how” of a software system in contrast with customer
requirements that define “what” a system shall do. Consequently, low-level and derived
requirements are frequently maintained separately from system requirements. This
presents yet another data management demand.

A critical aspect of low-level requirements management, traceability and verification is
the dissemination of these requirements to developers and testers. The developer needs
to be fully informed of the interface specifications for the code he or she will implement
and the procedures this code will call. These specifications must be explicitly coupled to
the associated high-level requirements in order for the developers to properly
understand the context of the implementation. Properly informed, the developer can
design for testability and consider the functionality that must be exercised at multiple
levels of testing.

1 The optimal solution for requirements traceability includes the mapping of system requirements to the top-level design

as a first step, advisably performed while utilizing a design modelling tool. This option is described in another LDRA white

paper called LDRA Tool Suite/ Telelogic I-logix Rhapsody Integration).

LDRA Ltd. 4 TBreq v2.1.1

Standards Compliance for Critical Software

Critical software has many applications across government and commercial sectors of
the global economy. There are safety critical, mission critical and business critical
applications, to name a few. A common grouping of such applications is presented in
Figure 1: Critical Software Applications.

The breadth of these software applications is even greater if one considers “Consumer
Equipments” as including ATM machines and gaming machines (especially if it’s your
money!). Most of these applications are developed for industries and governmental

Figure 1: Critical Software Applications

organisations that define and publish their own software development and testing
standards. The following list is representative of these standards.

• FDA General principles of software validation, 5.2.5 “Testing

by the software developer”

• IEC 60880 Software for computers important to safety for nuclear

 power plants. Part 2, “Software aspects of defense
against common cause failures and use of software tools”

• EN 50128 Railway applications, “Software for railway control and

protection systems”

• RTCA DO-178B Software considerations in airborne systems and
equipment certification requirements, 6.x “Software
Verification Process”

LDRA Ltd. 5 TBreq v2.1.1

• Def Stan 00-55 Requirements for safety related software in
 (Part2) defense equipment, Section 5 “Testing and integration”

• MIL STD 498 Software Development and Documentation, 5.7 + 5.11

“Software Testing”

• MISRA Development Guidelines for Vehicle Based Software, 3.6

“Testing”

• IEEE 1008 Standard for software unit testing

• IEEE 1012 Standard for software verification and validation

• IEEE 829 Standard for software test documentation

• IEC 61508 Functional safety of electrical/electronic/programmable

safety-related systems

A common thread among all these standards is an enunciated need to perform
requirements based testing. Prominent among these standards is the standard for
airborne systems, DO-178B. This standard identifies two primary activities of
requirements based testing as functional or Black Box testing (as shown in Figure 2:
Testing Activities) and structural coverage or White Box testing.

Figure 2: Testing Activities

The functional testing activity requires that the developer or tester have access to the
software requirements that specify the behaviour of the code under test. More explicitly,
the developer (or test engineer) must define the input values and conditions together
with the outputs or expected results in order to create the test specification. This test
specification may result in the formation of one or more test cases in order to fully
exercise the requirements. The structural coverage or White Box activities help to

BLACK-BOX
TESTING

ACTIVITIES

LDRA Ltd. 6 TBreq v2.1.1

validate the completeness of the Black Box testing. Structural coverage will also help
determine the correctness of the as-built design; for example, if required software
functionality is exercised and yet there is still uncovered code, then the purpose of the
additional code comes into question, as does the predictability of the code’s run time
behaviour.

Requirements based testing, and its inherent process of requirements traceability and
verification, is also widely viewed as a Best Practice that is promulgated in corporate
standards, such as the Capability Maturity Model® Integration. CMMI is a process
improvement approach that provides organizations with the essential elements of
effective processes. It can be used to guide process improvement across a project, a
division, or an entire organisation. The benefits of CMMI have been established for
critical as well as non-critical software as shown in Appendix A.2

As shown in Figure 3: Engineering Process Areas, CMMI is predicted on the principals
of requirements management (REQM) and requirements development (RD).

Figure 3: Engineering Process Areas

The Technical Solution (TS) is the elaboration of the requirements into prototypes or
components. The Verification process area (VER) ensures that selected work products
meet the specified requirements. The Validation process area (VAL) incrementally

2 The terms “Critical software” as defined in this paper applies to software developed for standards that dictate levels of

criticality for testing purposes, only.

3 Capability Maturity Model® Integration (CMMISM), Version 1.1, CMMISM for Systems Engineering, Software

Engineering, Integrated Product and Process Development, and Supplier Sourcing (CMMI-SE/SW/IPPD/SS, V1.1), 2002

RD PI

VAL

CustomerTS

VER

REQM Requirements

Customer needs

Product and product
component requirements

Product components, work products,
verification and validation reports

Product
components

Alternative
solutions

Require-
ments

Product

LDRA Ltd. 7 TBreq v2.1.1

validates products against the customer’s needs. Validation may be performed in the
operational environment or a simulated operational environment.3

Finally, from the programming standards perspective, processes such as Extreme
Programming, requirements based development and testing are integral to all
development activities. As illustrated in Figure 4: Extreme Programming Project, User
Stories (i.e. use cases) are prepared (in co-operation with the customer) as the pretext
for the Test Scenarios before the code is developed (Iteration).

Figure 4: Extreme Programming Project

LDRA Ltd. 8 TBreq v2.1.1

Introduction to TBreq

TBreq, through its integration with the LDRA tool suite which includes LDRA Testbed
and TBrun (unit testing component), is a unique solution that can help your team
overcome the challenges of mapping test specifications, unit test scenarios, test data
and code coverage verification with your high level and design requirements. TBreq
interfaces directly with your management tool (DOORS, ReqPro, Word or Excel) to
ensure traceability across your software lifecycle and the completeness of your
requirements coverage. Refer to Figure 5: TBreq Integration.

Within the LDRA tool suite, TBreq creates test specifications and executable test cases
directly from requirements. Test results are automatically returned to the requirements
management tool to provide “round-trip requirements traceability verification.”

Figure 5: TBreq Integration

DOORSTM,
ReqPro, RTMTM

,…
Text Processing

& Office files

CM Tools,
Bug tracking

LDRA
TBreq

 LDRA
 Testbed LDRA

TBrun

LDRA Ltd. 9 TBreq v2.1.1

TBreq Operations

TBreq operations are depicted in Figure 6. Requirements can be captured from
requirements management tools such as DOORS or ReqPro or from a document or
spreadsheet. TBreq acts as a gateway to these requirement sources for the LDRA
Testbed® Test Manager Dashboard. TBreq interfaces directly with a LDRA Testbed
Project and its underlying project directories.

TBreq performs two basic types of workflow. The first includes requirements traceability
and test verification through low-level requirements and the as-built Design Review. The
Test Manager supports the mapping of requirements with source code procedures or
methods. These mapped requirements are subsequently made available to the
developer or tester for the purposes of test specification creation and test verification.
Test Manager will also facilitate the automatic creation of test cases from these test
specifications. (Subsequent releases of TBreq will support the automated input of test
values from data tables or specifications.) The results of this workflow can then be
mapped back to the requirements sources.

Figure 6: TBreq Operations

Legend:

(1) Requirements are captured from any source. They are made available to Test
Manager (via a LDRA Testbed Project for traceability and verification).

(2)

(2)

(2)

(2)

Requirements

Ldra
Testbed
Design
Review

Code in
Testbed
Project (.tbp)

TBrun Tests

(1)

(2)

TBreq

(2)

Test Manager

LDRA Testbed
Project (.tbp)

(3)

LDRA Ltd. 10 TBreq v2.1.1

(2) Traceability and Requirements mapping are performed directly in LDRA Testbed;
information is captured from Design Review,sSource code files and TBrun.

(3) Verification results and traceability information can be uploaded into repositories.

A second type of workflow includes the mapping of requirements directly to test cases
created in TBrun. In this workflow process, requirements are mapped to previously
created test cases and source code mappings are implicit. This process defers
requirements traceability to later in the development cycle and can not utilise the
automated test speciation capabilities of TBreq.

TBreq can also be used for test verification without TBrun. In this workflow scenario,
LDRA Testbed is used to instrument source code that is executed by a customer-
provided test harness.

This paper will provide an example of the TBreq integration with DOORS. However, to
better understand the specifics of this example a short discussion on a key TBreq
architectural feature is in order.

TBreq utilises a mechanism called a Requirements Descriptor Thread (or, Thread) to
facilitate its agile traceability and verification capabilities. The properties of the thread
are:

Requirements Descriptors Thread (RDT)

• File Specification

– Source Code or Skeleton file name
• Requirement Nomenclature

– Requirement Name & Number
– Requirement Source Document

• Requirement Body
– Requirement text

• Test Configuration
– Associated Test Case/Sequence
– Coverage Levels
– Test Case/Sequence Verification Status

• Test Specification
– Procedure(s) or Class Interface(s)
– Test Data

• Test Management
– Project Manager Name
– Developer/Tester Name
– Thread Type (RV or DV)

A thread is created for each high-level (system) requirement and for each low-level
(design) requirement. The former thread type is called a Requirement Verification (RV)
thread; the latter is called a Design Verification (DV) thread. A thread contains the
requirement name and number as well as the requirement body (text). A thread contains
the mapping information including the source code’s File Specification and the
associated procedure prototype (Test Specification); the associated test case mapping is
provided under Test Configuration as well as the required Coverage Level (e.g.
Statement 100%, Branch 80%).

LDRA Ltd. 11 TBreq v2.1.1

Access to a thread is role based. A Project Manager accesses the Test Management
properties (and thereby allocates requirements to a Developer/Tester.) The Project
Manager can also set the Coverage Levels for the Developer/Tester. The
Developer/Tester completes the Test Specification; this role also indicates the Test
Case/Sequence Verification Status.

Operational Scenario
Selection of the DOORS Module

In the Project Editor of TBreq, select a type of analysis based on DOORS, click in the
File field and on the Browse button.

TBreq then presents you with a view of the DOORS database, allowing the selection of
the formal module you want to import.

Provide valid login information (User + Password) for DOORS and click OK. (Figure 7)
This login and subsequent steps are performed as a Project Manager.

Figure 7: DOORS Login

A depiction of the coupling of TBreq with DOORS is provided in Figure 8. After a
successful login, choose the appropriate module from the DOORS database. Create a
DOORS requirements document in TBreq and then create an LDRA Testbed project.
Associate the LDRA Testbed project with the DOORS requirement and thereby allocate
the requirements in the DOORS module to the LDRA Testbed project. All Requirements
Traceability and Test Verification activities will be traced by TBreq.

LDRA Ltd. 12 TBreq v2.1.1

Figure 8: TBreq and DOORS Coupling

Module Selection
in TBreq

DOORS information
 in TBreq

Requirements traceability managed
by TBreq

Module Selection
in TBreq

DOORS information
 in TBreq

Requirements traceability managed
by TBreq

LDRA Ltd. 13 TBreq v2.1.1

From the Test Manager Dashboard (Dashboard) the Project Manager opens the LDRA
Testbed project. The Dashboard prompts for a Login

Because this is a new LDRA Testbed project, the Project Manager is prompted to
complete a template that will be used to initialise each thread created.

The Project Manager saves the template and the requirements allocated to the project
appear in the Project View.

LDRA Ltd. 14 TBreq v2.1.1

The Project Manager now allocates requirements to individual Developers/Testers. First
they select the requirement to be allocated as the Current Requirement and then select
the Requirements Properties tab. In this tab they enter the name of the
Developer/Tester. (Notice that the Project Manager role is identified by the Test Manger
Dashboard in the upper left hand corner.)

LDRA Ltd. 15 TBreq v2.1.1

After allocating all requirements to Developers/Testers, the Project Manager creates the
Subprojects. A Subproject is the LDRA Testbed workspace for the Developer/Tester.

Selecting “Create Sub-Projects” automatically creates Sub-project folders.

Now the Developer/Tester can open his or her Sub-project. Again, an optional login is
provided. In this example, Sally Overstreet has opened her Sub-project.

LDRA Ltd. 16 TBreq v2.1.1

Sally adds her source code to the Sub-project and analyses the procedures. Next, she
maps the Current Requirement to the highlighted procedure.

LDRA Ltd. 17 TBreq v2.1.1

Sally next defines a Test Specification for the mapped procedure. In this snapshot she is
defining a range of 0.00 to 190.00, with a step function of 10 for the input parameter,
dPrice. The Coverage requirements were inherited from the Thread Template created by
the Project Manager. The Test Specification can be used by Sally to automatically create
test cases in TBrun.

Having completed her Test Specification, Sally next proceeds to launch LDRA
Testbed/TBrun to build and execute the test cases that will be automatically created for
her.

LDRA Ltd. 18 TBreq v2.1.1

LDRA Testbed then prompts Sally to ensure that the Analysis Scope (macros and
includes) are properly defined for testing purposes.

Finally, Sally views the results of the automatically generated test cases in TBrun. The
requirement information is available for her inspection. Her selection of “OK” indicates
that the requirement has been verified and the verification status in the thread changes
to “Pass”. This requirement verification status is then updated in DOORS.

LDRA Ltd. 19 TBreq v2.1.1

Appendix A CMMI Results

Results (reported as of 15 December 2005)

You can view examples of CMMI performance results by organization or by performance
category.

The following table contains a summary of the performance results:

Performance Category Median
Number
of Data
Points

 Low High

Cost 20% 21 3% 87%

Schedule 37% 19 2% 90%

Productivity 62% 17 9% 255%

Quality 50% 20 7% 132%

Customer Satisfaction 14% 6 -4% 55%

Return on Investment 4.7 : 1 16 2 : 1 27.7 : 1

This table summarises quantitative information from 25 organisations that have reported
results that can be expressed as performance changes over time. Additional qualitative
results from 5 other organisations are available when you view examples by organisation
or performance category.

Contact Details:

LDRA Headquarters
Portside, Monks Ferry,
Wirral, CH41 5LH, UK
Tel: +44 (0)151 649 9300

LDRA Technology Inc. (US)
Lake Amir Office Park,
1250 Bayhill Drive, Suite # 360,
San Bruno, CA, 94066
Tel: 650-583-8880

E-mail: info@ldra.com

mailto:info@ldra.com

