
All About All About MonoidsMonoids
Edward Kmett

OverviewOverview

 Monoids (definition, examples)

 Reducers

 Generators

 Benefits of Monoidal Parsing
◦ Incremental Parsing (FingerTrees)

◦ Parallel Parsing (Associativity)

◦ Composing Parsers (Products, Layering)

◦ Compressive Parsing (LZ78, Bentley-McIlroy)

 Going Deeper (Seminearrings)

What is a What is a MonoidMonoid??

 A Monoid is any associative binary
operation with a unit.

 Associative: (a + b) + c = a + (b + c)

 Unit: (a + 0) = a = (0 + a)

 Examples:

◦ ((*),1), ((+),0), (max, minBound), ((.),id), ...

MonoidsMonoids as a as a TypeclassTypeclass

 (from Data.Monoid)

 class Monoid m where

◦ mempty :: m

◦ mappend :: m -> m -> m

◦ mconcat :: [m] -> m

◦ mconcat = foldr mappend mempty

BuiltBuilt--in in monoidmonoid examplesexamples

newtype Sum a = Sum a

instance Num a => Monoid (Sum a) where
mempty = Sum 0

Sum a `mappend` Sum b = Sum (a + b)

newtype Endo a = Endo (a -> a)

instance Monoid (Endo a) where

mempty = id
Endo f `mappend` Endo g = Endo (f . g)

So how can we use them?So how can we use them?

 Data.Foldable provides fold and foldMap

class Functor t => Foldable t where

...

fold :: Monoid m => t m -> m

foldMap :: Monoid m => (a -> m) -> t a -> m

fold = foldMap id

MonoidsMonoids allow succinct definitionsallow succinct definitions

instance Monoid [a] where

mempty = []

mappend = (++)

concat :: [[a]] -> [a]

concat = fold

concatMap :: (a -> [b]) -> [a] -> [b]

concatMap = foldMap

MonoidsMonoids are Compositionalare Compositional

instance (Monoid m, Monoid n) => Monoid (m,n) where

mempty = (mempty,mempty)

(a,b) `mappend` (c,d) = (a `mappend` c, b `mappend` d)

AssociativityAssociativity allows Flexibilityallows Flexibility

We can:

 foldr: a+(b+(c+...))

 foldl: ((a+b)+c)+ ...

 or even consume chunks in parallel:

(.+.+.+.+.+.)+(.+.+.+.+.+.)+(.+.+.+.+.+)+...

 or in a tree like fashion:

((.+.)+(.+.))+((.+.)+(.+0))

 ...

But we always pay full priceBut we always pay full price

 Containers are Monoid-oblivious
 Monoids are Container-oblivious

Can we fix that and admit optimized folds?
(Reducers)
◦ (:) is faster than (++) . return

And what about non-Functorial containers?
(Generators)
◦ Strict and Lazy ByteString, IntSet, etc...

Foldable doesn’t help us here.

MonoidMonoid--specific efficient foldsspecific efficient folds

(from Data.Monoid.Reducer)

class Monoid m => Reducer c m where

unit :: c -> m

snoc :: m -> c -> m

cons :: c -> m -> m

c `cons` m = unit c `mappend` m

m `snoc` c = m `mappend` unit c

Reducers enable faster foldsReducers enable faster folds

 reduceList :: (c `Reducer` m) => [c] -> m

 reduceList = foldr cons mempty

 reduceText :: (Char `Reducer` m) => Text -> m

 reduceText = Text.foldl’ snoc mempty

 (We’ll come back and generalize the
containers later)

Simple ReducersSimple Reducers

 instance Reducer a [a] where

◦ unit a = [a]

◦ cons = (:)

instance Num a => Reducer a (Sum a) where

unit = Sum

instance Reducer (a -> a) (Endo a) where

unit = Endo

NonNon--Trivial Trivial MonoidsMonoids/Reducers/Reducers

 Tracking Accumulated File Position Info

 FingerTree Concatenation

 Delimiting Words

 Parsing UTF8 Bytes into Chars

 Parsing Regular Expressions

 Recognizing Haskell Layout

 Parsing attributed PEG, CFG, and TAG
Grammars

Example: File Position InfoExample: File Position Info

-- we track the delta of column #s

data SourcePosition = Cols Int | ...

instance Monoid SourcePosition where

mempty = Cols 0

Cols x `mappend` Cols y = Cols (x + y)

instance Reducer SourcePosition where

unit _ = Cols 1

-- but what about newlines?

Handling NewlinesHandling Newlines

data SourcePosition = Cols Int | Lines Int Int

instance Monoid SourcePosition where

Lines l _ `mappend` Lines l’ c’ = Lines (l + l’) c’

Cols _ `mappend` Lines l’ c’ = Lines l c’

Lines l c `mappend` Cols c’ = Lines l (c + c’)

...

instance Reducer SourcePosition where

unit ‘\n’ = Lines 1 1

unit _ = Cols 1

-- but what about tabs?

Handling TabsHandling Tabs
data SourcePosition = ...| Tabs Int Int

nextTab :: Int -> Int

nextTab !x = x + (8 – (x – 1) `mod` 8)

instance Monoid SourcePosition where

...

Lines l c `mappend` Tab x y = Lines l (nextTab (c + x) + y)

Tab{} `mappend` l@Lines{} = l

Cols x `mappend` Tab x’ y = Tab (x + x’) y

Tab x y `mappend` Cols y’ = Tab x (y + y’)

Tab x y `mappend` Tab x’ y’ = Tab x (nextTab (y + x’) + y’)

instance Reducer Char SourcePosition where

unit ‘\t’ = Tab 0 0

unit ‘\n’ = Line 1 1

unit _ = Cols 1

#line #line pragmaspragmas and start of fileand start of file

data SourcePosition file =

= Pos file !Int !Int

| Line !Int !Int

| Col !Int

| Tab !Int !Int

Example: Parsing UTF8Example: Parsing UTF8

 Valid UTF8 encoded Chars have the form:
◦ [0x00...0x7F]

◦ [0xC0...0xDF] extra

◦ [0xE0...0xEF] extra extra

◦ [0xF0...0xF4] extra extra extra

◦ where extra = [0x80...0xBF] contains 6 bits of
info in the LSBs and the only valid
representation is the shortest one for each
symbol.

UTF8 as a Reducer TransformerUTF8 as a Reducer Transformer

data UTF8 m = ...

instance (Char `Reducer` m) => Monoid (UTF8 m)

where ...

instance (Char `Reducer` m) => (Byte `Reducer` UTF8 m)
where ...

Given 7 bytes we must have seen a Char.

We only track up to 3 bytes on either side.

NonNon--FunctorialFunctorial ContainersContainers

class Generator c where

type Elem c :: *

mapReduce :: (e `Reducer` m) => (Elem c -> e) -> c -> m

...

reduce :: (Generator c, Elem c `Reducer` m) => c -> m

reduce = mapReduce id

instance Generator [a] where

type Elem [a] = a

mapReduce f = foldr (cons . f) mempty

Now we can use containerNow we can use container--specific specific
foldsfolds
instance Generator Strict.ByteString where

type Elem Strict.ByteString = Word8

mapReduce f = Strict.foldl’ (\a b -> snoc a (f b)) mempty

instance Generator IntSet where

type Elem IntSet = Int

mapReduce f = mapReduce f . IntSet.toList

instance Generator (Set a) where

type Elem (Set a) = a

mapReduce f = mapReduce f . Set.toList

Chunking Lazy Chunking Lazy ByteStringsByteStrings

instance Generator Lazy.ByteString where

mapReduce f =

fold .

parMap rwhnf (mapReduce f) .

Lazy.toChunks

An aside: Dodging An aside: Dodging memptymempty

-- Fleshing out Generator

class Generator c where

type Elem c :: *

mapReduce :: (e `Reducer` m) => (Elem c -> e) -> c -> m

mapTo :: (e `Reducer` m) => (Elem c -> e) -> m -> c -> m

mapFrom :: (e `Reducer` m) => (Elem c -> e) -> c -> m -> m

mapReduce f = mapTo f mempty

mapTo f m = mappend m . mapReduce f

mapFrom f = mappend . mapReduce f

-- minimal definition mapReduce or mapTo

Dodging Dodging memptymempty

instance Generator [c] where

type Elem [c] = c

mapFrom f = foldr (cons . f)

mapReduce f = foldr (cons . f) mempty

instance Generator Strict.ByteString where

type Elem Strict.ByteString = Word8

mapTo f = Strict.foldl’ (\a b -> snoc a (f b))

This avoids some spurious ‘mappend mempty’ cases when
reducing generators of generators.

Generator Generator CombinatorsCombinators
mapM_ :: (Generator c, Monad m) => (Elem c -> m b) -> c -> m ()

forM_ :: (Generator c, Monad m) => c -> (Elem c -> m b) -> m ()

msum :: (Generator c, MonadPlus m, m a ~ Elem c) => c -> m a

traverse_ :: (Generator c, Applicative f) => (Elem c -> f b) -> c -> f ()

for_ :: (Generator c, Applicative f) => c -> (Elem c -> f b) -> f ()

asum :: (Generator c, Alternative f, f a ~ Elem c) => c -> f a

and :: (Generator c, Elem c ~ Bool) => c -> Bool

or :: (Generator c, Elem c ~ Bool) => c -> Bool

any :: Generator c => (Elem c -> Bool) -> c -> Bool

all :: Generator c => (Elem c -> Bool) -> c -> Bool

foldMap :: (Monoid m, Generator c) => (Elem c -> m) -> c -> m

fold :: (Monoid m, Generator c, Elem c ~ m) => c -> m

toList :: Generator c => c -> [Elem c]

concatMap :: Generator c => (Elem c -> [b]) -> c -> [b]

elem :: (Generator c, Eq (Elem c)) => Elem c -> c -> Bool

filter :: (Generator c, Reducer (Elem c) m) => (Elem c -> Bool) -> c -> m

filterWith :: (Generator c, Reducer (Elem c) m) => (m -> n) -> (Elem c -> Bool) -> c -> n

find :: Generator c => (Elem c -> Bool) -> c -> Maybe (Elem c)

sum :: (Generator c, Num (Elem c)) => c -> Elem c

product :: (Generator c, Num (Elem c)) => c -> Elem c

notElem :: (Generator c, Eq (Elem c)) => Elem c -> c -> Bool

Generator Generator CombinatorsCombinators

 Most generator combinators just use mapReduce
or reduce on an appropriate monoid.

reduceWith f = f . reduce
mapReduceWith f g = f . mapReduce g

sum = reduceWith getSum
and = reduceWith getAll
any = mapReduceWith getAny
toList = reduce
mapM_ = mapReduceWith getAction
...

Putting the pieces together so farPutting the pieces together so far

We can:

 Parse a file as a Lazy ByteString,

 Ignore alignment of the chunks and parse
UTF8, automatically cleaning up the ends
as needed when we glue the reductions
of our chunks together.

 We can feed that into a complicated Char
`Reducer` that uses modular components
like SourcePosition.

Compressive ParsingCompressive Parsing

 LZ78 decompression never compares values
in the dictionary. Decompress in the
monoid, caching the results.

 Unlike later refinements (LZW, LZSS, etc.)
LZ78 doesn’t require every value to initialize
the dictionary permitting infinite alphabets
(i.e. Integers)

 We can compress chunkwise, permitting
parallelism

 Decompression fits on a slide.

Compressive ParsingCompressive Parsing

newtype LZ78 a = LZ78 [Token a]

data Token a = Token a !Int

instance Generator (LZ78 a) where

type Elem (LZ78 a) = a

mapTo f m (LZ78 xs) = mapTo’ f m (Seq.singleton mempty) xs

mapTo' :: (e `Reducer` m) => (a -> e) -> m -> Seq m -> [Token a] -> m

mapTo' _ m _ [] = m

mapTo' f m s (Token c w:ws) = m `mappend` mapTo' f v (s |> v) ws

where v = Seq.index s w `snoc` f c

Other Compressive ParsersOther Compressive Parsers

 The dictionary size in the previous
example can be bounded, so we can
provide reuse of common monoids up to
a given size or within a given window.

 Other extensions to LZW (i.e. LZAP) can
be adapted to LZ78, and work even better
over monoids than normal!

 Bentley-McIlroy (the basis of bmdiff and
open-vcdiff) can be used to reuse all
common submonoids over a given size.

I Want More Structure!I Want More Structure!

A Monoid is to an Applicative as a Right
Seminearring is to an Alternative.

If you throw away the argument of an
Applicative, you get a Monoid, if you throw
away the argument of an Alternative you get
a RightSemiNearRing.

In fact any Applicative wrapped around any
Monoid forms a Monoid, and any
Alternative wrapped around a Monoid forms
a RightSemiNearring.

