Monday, 21 March 2011

Astronot Muslim Pertama dari Malaysia

يَا مَعْشَرَ الْجِنِّ وَالْإِنسِ إِنِ اسْتَطَعْتُمْ أَن تَنفُذُوا مِنْ أَقْطَارِ السَّمَاوَاتِ وَالْأَرْضِ فَانفُذُوا لَا تَنفُذُونَ إِلَّا بِسُلْطَانٍ
33. Wahai jamaah jin dan manusia, jika kamu sanggup menembus dan melintasi penjuru langit dan bumi, maka tembus dan lintasilah! Kamu tidak akan dapat menembus dan melintasinya kecuali dengan kekuatan.
~Surah Ar-rahman~

Sheikh Muszaphar Shukor Al Masrie bin Sheikh Mustapha (lahir 27 Juli 1972) adalah pakar kesehatan Malaysia dan orang Malaysia pertama yang pergi ke luar angkasa, diumumkan oleh Perdana Menteri Abdullah Badawi pada 25 September 2007.

Ia, bersama Yuri Malenchenko (Rusia) dan Peggy Whitson (AS), telah lepas landas pada 10 Oktober 2007 dengan Soyuz TMA-11 yang diluncurkan menuju Stasiun Luar Angkasa Internasional (ISS) dalam program kerjasama dengan Rusia dan akan kembali ke Bumi bersama Fyodor Yurchikhin dan Oleg Kotov.


Sheikh Muszaphar Shukor
ANGKASA Astronaut
Nationality Malaysian
Status Active
Born July 27, 1972 (1972-07-27) (age 38)
Kuala Lumpur, Malaysia
Other occupation Orthopedic Surgeon
Time in space 10d 21h 14m
Selection 2006 Angkasawan program
Missions Soyuz TMA-11, Soyuz TMA-10
Mission insignia



Soyuz TMA-11 Patch.jpg

Penerbangan luar angkasa dan agama

Karena Sheikh Muszaphar adalah seorang Muslim, dan masa penerbangannya bertepatan dengan bulan Ramadhan, Dewan Fatwa Nasional Malaysia telah mengeluarkan buku panduan untuk Muslim di antariksa. Buku ini mengatur tata cara salat di ruangan tanpa gravitasi, bagaimana mencari kiblat dari ISS, bagaimana menentukan waktu salat, dan bagaimana berpuasa.[9] Selain itu, Sheikh Muszaphar juga akan merayakan hari raya Idul Fitri di luar angkasa. Untuk itu, ia membawa bekal sate dan kue untuk dibagi-bagikan kepada anggota misi yang lain pada hari Sabtu, 13 Oktober untuk merayakan Idul Fitri.[10]


Departemen Agama Malaysia menerbitkan sebuah buku panduan khusus mengenai ibadah di luar angkasa.

Badan Amerika Serikat sedang melakukan pendekatan dengan dunia Islam -- untuk lebih berkontribusi dalam misi perjalanan luar angkasa.

Meski belum seaktif China atau Rusia dalam penjelajahan luar angkasa, peran dunia Islam telah diwakili para astronot muslim.

Siapa saja astronot muslim yang ke luar angkasa?

Sejarah mencatat, pada 17 Juni 1985, Sultan Salman Al Saud menjadi muslim pertama yang ke luar angkasa.

Dia ikut dalam misi ruang angkasa STS-S1G menggunakan pesawat Discovery milik Amerika Serikat.

Dua tahun kemudian, pada 22 Juli 1987, giliran seorang muslim Syria berpangkat kolonel penerbang, Muhammed Faris menaiki pesawat Soyuz buatan Rusia. Dia menjalani misi di stasiun luar angkasa Rusia, Mir selama 7 hari, 23 jam, dan 5 menit.

Lalu, tercatat seorang insinyur bernama Musa Khiramanovich Manarov kelahiran Azerbaijan. Pada 21 Desember 1987 hingga 21 Desember 1988, dia menjadi teknisi pesawat Soyuz TM-4. Saat itu dia tinggal selama 365 hari, 22 jam, dan 38 menit.

Lalu, selama dari 2 Desember 1990 sampai 26 Mei 1991, dia terbang kembali ke luar angkasa menggunakan Soyuz TM-11. Durasinya 175 hari, 1 jam, dan 50 menit -- saat itu dia adalah orang paling lama tinggal di luar Bumi. Total, Manarov tinggal selama 541 hari di angkasa.

Pada 29 Agustus 1988, penerbang Afganistan bernama Abdul Ahad Momand terbang meninggalkan Bumi menuju stasiun Mir. Dia adalah astronot muslim kelima.

Talgat Amangeldyuly Musabayev, muslim asal Kazakhstan bahkan tiga kali mencicipi perjalanan ke luar angkasa. Yang terakhir, dia memimpin misi perjalanan Soyuz TM-32 pada 6 Mei 2001. Pada 2007 dia masuk jajaran 30 kosmonot terbaik.

Pada 20 Januari 1998, giliran Salizhan Shakirovich Sharipov menjadi muslim yang ke luar angkasa. Dia dua kali terbang ke luar angkasa.

Kemudia menyusul Anousheh Ansari asal Iran. Dia adalah wanita muslim pertama yang terbang ke luar angkasa.

Pada 18 September 2006, beberapa hari setelah ulang tahunnya ke 40, dia terbang ke angkasa. Hebatnya, dia membiayai sendiri perjalanannya ke luar angkasa.

Yang terakhir adalah Sheikh Muszaphar Shukor, ahli bedah ortopedi asal Malaysia menaiki pesawat Soyuz milik Rusia pada 10 Oktober 2007.

Friday, 18 March 2011

Laboratorium Astrofisika

"Anda tidak boleh bernegosiasi dengan impian anda. Bernegosiasilah dengan apa yang harus anda lakukan untuk mencapainya. "

– Mario Teguh -

Astrophysics Laboratory

 


 
Harvard-Smithsonian Center for Astrophysics
60 Garden Street, Cambridge, MA 02138
Study of Galactic Rotation and Molecular Clouds with a CO Telescope
 

Instructors: Thomas Dame and Patrick Thaddeus
 
The 1.2 meter millimeter-wave telescope on the roof of building D at the CfA is ideal in size for the study of large molecular clouds and the kinematics of the Galaxy. Its beamwidth at 115 GHz, the frequency of the fundamental rotational transition of CO, is only 8', which is four times better than the resolution with which the classical Dutch and Australian 21 cm surveys of the Galaxy were conducted. Its cryogenic receiver, with a superconducting SIS mixer (see experiment above) is about as sensitive as that of most large millimeter-wave instruments. The system is quite "user-friendly," and students should be able to master its operation during the first few sessions of the course.

Students will then design more or less from first principles an experiment to determine the rotation curve of the Galaxy with a reasonable amount of observations - one session at the telescope of 4-5 hours should be enough. Analysis of the data will essentially consist of determining the terminal velocity as a function of longitude along the Galactic plane; quite good results can be obtained by classical methods without a great deal of numerical analysis. Students will then use their derived rotation curve with the same data to determine both the molecular mass and the total gravitational mass of the Galaxy, as well as some gross properties of the Galactic molecular cloud distribution. In the process they will obtain a good introduction to the techniques of millimeter-wave astronomy and a liberal education in studies of Galactic structure.



Laboratory Astrophysics
Science is successful because the physical laws we discover on Earth work everywhere and every when. We use laboratory experiments to expand our understanding of physical processes and then apply these results to the processes throughout the Universe. In some cases laboratory experiments can reproduce similar physics. For example, highly charged plasmas can be created in the laboratory to study the collisions between electrons and ions that occur in the hot solar corona. In other cases, such as in the extreme environments of black holes, we cannot reproduce the conditions. However, even in those cases, the pattern of observed spectral signatures allows us to identify the species and determine some of the physical conditions and processes. Spectral features observed in the solar corona are also observed from black hole sources.  

Useful Link

Thursday, 17 March 2011

Indonesian Space Force Command


Indonesian Space Force Command   

 Komando Untuk Keamanan Luar Angkasa 

Dari Angkatan Antariksa Indonesia

"Kami Menjelajahi Alam Raya untuk Menemukan Keagungan Sang Maha Kuasa"

 ~Gen. Arip Nurahman~

 

 

 

(Komando Pasukan Khusus Angkatan Antariksa Indonesia)

 

(Korps Pasukan Khas Angkatan Udara)

 

Jet-powered fighters

It has become common in the aviation community to classify jet fighters by "generations" for historical purposes. There are no official definitions of these generations; rather, they represent the notion that there are stages in the development of fighter design approaches, performance capabilities, and technological evolution.

The timeframes associated with each generation are inexact and are only indicative of the period during which their design philosophies and technology employment enjoyed a prevailing influence on fighter design and development. These timeframes also encompass the peak period of service entry for such aircraft.

Fifth generation jet fighters (2005 to the present)

The fifth generation was ushered in by the Lockheed Martin/Boeing F-22 Raptor in late 2005. Currently the cutting edge of fighter design, fifth-generation fighters are characterized by being designed from the start to operate in a network-centric combat environment, and to feature extremely low, all-aspect, multi-spectral signatures employing advanced materials and shaping techniques. They have multifunction AESA radars with high-bandwidth, low-probability of intercept (LPI) data transmission capabilities. The Infra-red search and track sensors incorporated for air-to-air combat as well as for air-to-ground weapons delivery in the 4.5th generation fighters are now fused in with other sensors for Situational Awareness IRST or SAIRST, which constantly tracks all targets of interest around the aircraft so the pilot need not guess when he glances. (Requires software upgrade on the F-22.)

These sensors, along with advanced avionics, glass cockpits, helmet-mounted sights (not available on F-22), and improved secure, jamming-resistant LPI datalinks are highly integrated to provide multi-platform, multi-sensor data fusion for vastly improved situational awareness while easing the pilot's workload.[9] Avionics suites rely on extensive use of very high-speed integrated circuit (VHSIC) technology, common modules, and high-speed data buses. Overall, the integration of all these elements is claimed to provide fifth-generation fighters with a "first-look, first-shot, first-kill capability".

The AESA radar offers unique capabilities for fighters (and it is also quickly becoming a sine qua non for Generation 4.5 aircraft designs, as well as being retrofitted onto some fourth-generation aircraft). In addition to its high resistance to ECM and LPI features, it enables the fighter to function as a sort of "mini-AWACS," providing high-gain electronic support measures (ESM) and electronic warfare (EW) jamming functions.

Other technologies common to this latest generation of fighters includes integrated electronic warfare system (INEWS) technology, integrated communications, navigation, and identification (CNI) avionics technology, centralized "vehicle health monitoring" systems for ease of maintenance, fiber optics data transmission, and stealth technology.
Maneuver performance remains important and is enhanced by thrust-vectoring, which also helps reduce takeoff and landing distances. Supercruise may or may not be featured; it permits flight at supersonic speeds without the use of the afterburner – a device that significantly increases IR signature when used in full military power.

A key attribute of fifth-generation fighters is very-low-observables stealth. Great care has been taken in designing its layout and internal structure to minimize RCS over a broad bandwidth of detection and tracking radar frequencies; furthermore, to maintain its VLO signature during combat operations, primary weapons are carried in internal weapon bays that are only briefly opened to permit weapon launch. Furthermore, stealth technology has advanced to the point where it can be employed without a tradeoff with aerodynamics performance, in contrast to previous stealth efforts. Some attention has also been paid to reducing IR signatures, especially on the F-22. Detailed information on these signature-reduction techniques is classified, but in general includes special shaping approaches, thermoset and thermoplastic materials, extensive structural use of advanced composites, conformal sensors, heat-resistant coatings, low-observable wire meshes to cover intake and cooling vents, heat ablating tiles on the exhaust troughs (seen on the Northrop YF-23), and coating internal and external metal areas with radar-absorbent materials and paint (RAM/RAP).



The expense of developing such sophisticated aircraft is as high as their capabilities. The U.S. Air Force had originally planned to acquire 650 F-22s, but it now appears that only 187 will be built. As a result, its unit flyaway cost (FAC) is reported to be around $140 million. To spread the development costs – and production base – more broadly, the Joint Strike Fighter (JSF) program enrolls eight other countries as cost- and risk-sharing partners. Altogether, the nine partner nations anticipate procuring over 3000 Lockheed Martin F-35 Lightning II fighters at an anticipated average FAC of $80–85 million.

The F-35, however, is designed to be a family of three aircraft, a conventional take-off and landing (CTOL) fighter, a short take-off and vertical landing (STOVL) fighter, and a Catapult Assisted Take Off But Arrested Recovery (CATOBAR) fighter, each of which has a different unit price and slightly varying specifications in terms of fuel capacity (and therefore range), size and payload.

Other countries have initiated fifth-generation fighter development projects, with Russia's Sukhoi PAK-FA anticipated to enter service circa 2012–2015. In October 2007, Russia and India signed an agreement for joint participation in a Fifth-Generation Fighter Aircraft Program (FGFA), which will give India responsibility for development of a two-seat model of the PAK-FA. India is also developing its own indigenous fifth generation aircraft named Medium Combat Aircraft. China is reported to be pursuing multiple fifth-generation projects under the westernJ-XX, while Japan is exploring their technical feasibility to produce fifth-generation fighters.
See also: List of fifth generation jet fighters



Powered By:
Tentara Nasional Indonesia Angkatan Darat (Indonesian Army)
 


Tentara Nasional Indonesia Angkatan Laut (Indonesian Navy)

Tentara Nasional Indonesia Angkatan Udara (Indonesian Air Force)

Kepolisian Negara Republik Indonesia (Indonesian Police)



 
Sumber: Wikipedia

Monday, 14 March 2011

Kapal Luar Angkasa dalam Seni

The Mare Nostrum Spaceship is the central element of the Space art group El Club de los Astronautas.

The group has worked out a utopian plan for the spacecraft and they are going to adopt and actualize the plan over time as technologies will develop to turn the plan into reality.



Mare Nostrum represents a series of projects in the scientific, social and economic world that are building the foundation to its construction.


Saturday, 12 March 2011

Dark Energy and Quintessence

Quintessence


Main article: Quintessence (physics)

In quintessence models of dark energy, the observed acceleration of the scale factor is caused by the potential energy of a dynamical field, referred to as quintessence field. Quintessence differs from the cosmological constant in that it can vary in space and time. In order for it not to clump and form structure like matter, the field must be very light so that it has a large Compton wavelength.

No evidence of quintessence is yet available, but it has not been ruled out either. It generally predicts a slightly slower acceleration of the expansion of the universe than the cosmological constant. Some scientists think that the best evidence for quintessence would come from violations of Einstein's equivalence principle and variation of the fundamental constants in space or time. Scalar fields are predicted by the standard model and string theory, but an analogous problem to the cosmological constant problem (or the problem of constructing models of cosmic inflation) occurs: renormalization theory predicts that scalar fields should acquire large masses.

The cosmic coincidence problem asks why the cosmic acceleration began when it did. If cosmic acceleration began earlier in the universe, structures such as galaxies would never have had time to form and life, at least as we know it, would never have had a chance to exist. Proponents of the anthropic principle view this as support for their arguments. 

However, many models of quintessence have a so-called tracker behavior, which solves this problem. In these models, the quintessence field has a density which closely tracks (but is less than) the radiation density until matter-radiation equality, which triggers quintessence to start behaving as dark energy, eventually dominating the universe. This naturally sets the low energy scale of the dark energy.

Some special cases of quintessence are phantom energy, in which the energy density of quintessence actually increases with time, and k-essence (short for kinetic quintessence) which has a non-standard form of kinetic energy. They can have unusual properties: phantom energy, for example, can cause a Big Rip.

Friday, 11 March 2011

“Super Moon” Hanya Wacana Astrologi, Bulan Terdekat ke Bumi Tidak Menyebabkan Bencana

"The distance between the earth and her satellite is a mere trifle, and undeserving of serious consideration. I am convinced that before twenty years are over one-half of our earth will have paid a visit to the moon."
— Jules Verne, From Earth to the Moon, 1890.


Oleh: Prof. T. Djamaluddin, D.Sc.


Profesor Riset Astronomi Astrofisika, LAPAN



(Animasi dari http://hrcst.org.uk/wp/index.php/weather/)

Beberapa media massa memberitakan ramalan astrologi bahwa  “super moon” atau ”extreme super moon” bakal menyebabkan bencana. Kabarnya, Sabtu 19 Maret 2011 bulan akan berada pada posisi terdekat dengan bumi (disebut perigee), hampir bersamaan dengan saat puncak purnama. Itulah yang dinamakan ”super moon” pada saat perigee, dan bila diperkuat kondisi purnama dinamakan ”extreme super moon”. Istilah itu hanya dikenal dalam astrologi, tidak dikenal dalam astronomi. Kita harus faham perbedaan astrologi dan astronomi. Astrologi adalah pemahaman bahwa posisi benda-benda langit berpengaruh pada nasib kehidupan manusia di bumi. Astrologi bukanlah cabang sains. Sedangkan astronomi adalah cabang sains atau ilmu pengetahuan yang mempelajari gerakan dan kondisi fisik benda-benda langit.

Menurut ramalan astrologi, kondisi ”super moon” pada 19 Maret 2011 akan mengakibatkan banyak bencana di bumi. Benarkah? Astronomi membantah ramalan bencana, walau membenarkan bahwa pada tanggal itu bulan berada pada jarak terdekatnya dengan bumi hampir bersamaan dengan puncak purnama. Data astronomi menunjukkan pada 19 Maret 2011 pukul 19:10 GMT/UT (20 Maret pukul 02:10 WIB) bulan berada pada jarak terdekat dengan bumi, pada jarak 356.577 km. Itu berdekatan dengan puncak purnama pada 19 Maret pukul 18:11 GMT/UT (20 Maret pukul 01:11 WIB).

Astronomi membantah ramalan bencana, karena kejadian jarak bulan terdekat dengan bumi (perigee) adalah peristiwa bulanan, walau bervariasi. Periodenya perigee sekitar 27,3 hari. Sedangkan peristiwa purnama juga kejadian bulanan dengan periode sekitar 29,5 hari. Karena perbedaan periode ini, perigee tidak selalu bersamaan dengan purnama. Peristiwa perigee bersamaan dengan purnama baru akan berulang lagi setelah 18 tahun, yaitu kelipatan 241 x 27,3 hari yang sama dengan 223 x 29,5 hari. Tidak ada bukti ilmiah yang mengaitkan peristiwa perigee bersamaan dengan purnama dengan bencana 18 tahun lalu, Maret 1993 atau sebelumnya.

Adakah dampak perigee bersamaan dengan purnama? Ya, ada, tetapi belum tentu berarti bencana. Bulan pada posisi paling dekat dengan bumi berdampak makin menguatnya efek pasang surut di bumi, terutama pada air laut. Air laut akan makin tinggi dalam kondisi ini. Bila itu bersamaan dengan purnama, ada efek penguatan juga dari gaya pasang surut matahari, sehingga efek pasang surut cenderung paling kuat.
Keberulangan perigee dan purnama selama tahun 2011



Jarak Bumi-Bulan dan Fase Bulan selama Maret 2011



Keberulangan perigee dan purnama selama tahun 1993. Periode 18 tahun tampak dengan kemiripan data 1993 dengan 2011.



Potensi bencana tetap harus diwaspadai bila ada efek penguatan dengan faktor lain, baik faktor cuaca maupun faktor geologis. Bila cuaca buruk di laut dan wilayah pantai diperkuat dengan efek pasang maksimum saat perigee dan purnama, harus diwaspadai potensi bahaya di wilayah pantai yang mungkin saja menyebabkan banjir pasang (rob) yang lebih besar dari biasanya.

Demikian juga bila penumpukan energi di wilayah rentan gempa dan gunung meletus, efek penguatan pasang surut bulan mungkin berpotensi menjadi pemicu pelepasan energi. Tetapi kondisi perigee bulan bersamaan dengan purnama bukan sebagai sebab utama bencana, tetapi bisa menjadi pemicu efek penguatan faktor lain.

Artinya, kalau tidak ada indikasi cuaca buruk di wilayah pantai atau tidak ada penumpukan energi di wilayah rawan gempa dan wilayah rawan gunung meletus, maka tak ada yang perlu dikhawatirkan dengan posisi perigee bulan bersamaan dengan purnama.

Tautan terkait:
1. http://tdjamaluddin.wordpress.com/2010/07/01/superkonjungsi-bedakan-astronomi-dan-astrologi/
2.http://tdjamaluddin.wordpress.com/2010/11/05/faktor-kosmogenik-waspadai-potensi-bencana-sekitar-bulan-baru-dan-purnama/

"Bulan akan segera menjadi tempat tinggal peradaban manusia"
~Arip~

Tuesday, 1 March 2011

Structures and Materials: Shuttle Tiles Educator Guides

Audience: Educators
Grades: 2-12


 
The space shuttle has made space exploration history over the past 30 years by regularly traveling through extreme temperature fluctuations. Scientists and engineers collaborated to develop unique materials to withstand extreme temperatures. This led to the development of the unique "skin" of shuttle tiles.

NASA is offering space shuttle tiles to schools on a first-come, first-served, one-per-institution basis. The Structure and Materials Shuttle Tile Educator Guides contain mathematics- and science-related activities for using the tiles.

Schools may request a tile at NASA Space Programs -- Historic Artifacts Prescreening website. Additional information on tiles is available at the website as well as recommendations for curriculum and science lab projects. Directions for requesting artifacts are available on the website.
›  NASA Space Programs -- Historic Artifacts Prescreening website  →

For more information about the shuttle artifact donation program, read the feature article "Hands-on History."

Questions about this program should be directed to Jerry Phillips at Jerome.Phillips@nasa.gov.

Shuttle Tiles (Grades 2-4)
Students observe the shuttle tile and determine characteristics and requirements of thermal insulating materials. Next, students calculate the cost of launching the shuttle tiles into space.

Shuttle Tiles (Grades 5-8)
Students discuss the characteristics of the shuttle tile, first by determining the density of the tile, and then by investigating the thermal properties of materials. Students learn that engineers must consider many factors when choosing and manufacturing materials. The students design an experiment to compare the insulating capacities of paper and Styrofoam cups.

Shuttle Tiles (Grades 9-12)
Students observe the properties of a space shuttle tile and consider how these properties relate to the threats imposed on the shuttle by space debris. The students will use a tissue-paper-covered box to represent the tile as they experiment to determine the amount of energy required to penetrate the tissue paper.