Sunday, 28 June 2009

How Indonesian People Get Nobel Prize in The Future

Central for Research and Development for Winning


Nobel Prize in Physics at Indonesia

Nobel Fisika Indonesia


(Belajar Kepada Professor Charles Edouard Guillau)

The Nobel Prize in Physics 1920

"in recognition of the service he has rendered to precision measurements in Physics by his discovery of anomalies in nickel steel alloys"
"dalam pengakuan terhadap sumbangan ukuran presisi dalam fisika dengan penemuan anomali dalam logam campuran baja nikel"
Charles Édouard Guillaume

Born 15 February 1861(1861-02-15)
Fleurier, Switzerland
Died 13 May 1938(1938-05-13) (aged 77)
Sèvres, France
Nationality Swiss
Fields Physics
Institutions Bureau International des Poids et Mesures, Sèvres
Alma mater ETH Zurich
Known for Invar and Elinvar
Notable awards John Scott Medal (1914)
Nobel Prize in Physics (1920)

Charles Édouard Guillaume (15 February 1861, Fleurier, Switzerland – 13 May 1938, Sèvres, France) was a Swiss physicist who received the Nobel Prize in Physics in 1920 in recognition of the service he had rendered to precision measurements in physics by his discovery of anomalies in nickel steel alloys.

Guillaume is known for his discovery of nickel-steel alloys he named invar and elinvar. Invar has a near-zero coefficient of thermal expansion, making it useful in constructing precision instruments whose dimensions need to remain constant in spite of varying temperature. Elinvar has a near-zero thermal coefficient of the modulus of elasticity, making it useful in constructing instruments with springs that need to be unaffected by varying temperature, such as the marine chronometer. Elinvar is also non-magnetic, which is a secondary useful property for antimagnetic watches.

As the son of a Swiss horologist Guillaume took an interest in marine chronometers. For use as the compensation balance he developed a slight variation of the invar alloy which had a negative quadratic coefficient of expansion. The purpose of doing this was to eliminate the "middle temperature" error of the balance wheel.[1]

Guillaume was head of the International Bureau of Weights and Measures.[1] He worked with Kristian Birkeland, serving at the Observatoire de Paris—Section de Meudon. He conducted several experiments with thermostatic measurements at the observatory. He was the first to determine accurately the temperature of space.

Guillaume was married in 1888 to A.M. Taufflieb, with whom he had three children.

Biografi

Tahun-tahun awal

Charles-Edouard Guillaume lahir di Fleurier, di Swiss-Jura, pada 15 Februari 1861. Kakeknya telah meninggalkan Prancis untuk alasan politik selama Revolusi dan mendirikan bisnis pembuatan arloji di London. Bisnis tersebut dilanjutkan oleh ketiga anaknya tetapi ayah Charles, Édouard, secepatnya kembali untuk mengatur di Fleurier.

Karier

Guillaume menerima pendidikan awalnya di Neuchâtel sebelum pergi ke Zurich Polytechnic di mana ia menerima gelar doktornya. Ia menghabiskan waktu yang singkat sebagai petugas di artileri sebelum masuk ke Kantor Internasional Pengukuran dan Berat, sebagai asisten, tahun 1883. Ia menjadi Direktur Asosiat tahun 1902 dan dari tahun 1915 sampai kepensiunannya tahun 1936, ia menjadi Direktur di Bureau. Ia tetap sebagai Direktur Kehormatan dari tahun 1936 sampai kematiannya.

Selama karier singkat kemiliterannya, Guillaume belajar mekanika dan balistik tetapi penyelidikan paling awalnya di Kantor adalah dengan termometri. Ia melakukan penyelidikan penting mengenai perbaikan raksa dalam tabung termometer dan ia bertanggung jawab untuk kalibrasi detail termometer yang digunakan di Kantor dalam membangun ekspensi tetap pada standar panjang. Ia fokus dalam kerja awal di International Metre dan mengerjakan penentuan volume satu kilogram air dengan metode kontak.

Suatu kesempatan penyelidikan oleh Guillaume pada koefisien muai campuran besi nikel yang memepelopori untuk penyelidikan sistematis suatu rangkaian campuran dan menemukan invar, suatu campuran dengan koefisien muai yang sangat rendah; elinvar, yang mana koefisien termoelestis pada kenyataannya nol, yaitu tetapan modulus Young, di atas suatu cakupan temperatur yang ditentukan; bersama dengan campuran yang sangat berguna lainnya. Penerapan invar secara cepat diakui dan bahan tersebut digunakan dalam metode cepat untuk pengukuran garis garis dasar geodetis. Campuran tersebut secara luas digunakan dalam instrumen yang tepat, seperti termostat dan pendulum jam astronomi. Saldo imbalan total Guillaume untuk jam yang berkualitas tinggi dan kronometer, yang menghapus kesalahan sekunder, telah disempurnakan oleh hair spring elinvar.

Guillaume bekerja dengan Kristian Birkeland. Ia bertugas di Observatoire de Paris—Section de Meudon. Ia melakukan sejumlah eksperimen dengan pengukuran termostatis di observatorium. Ia yang pertama yang menentukan secara akurat temperatur ruang angkasa.

Kerja Guillaume disimpan dalam beberapa paper yang diterbitkan oleh Kantor Bureau dan ia telah menulis, di antara kerjanya yang lain, Études thermométriques (Studi pada Termometri, 1886), Traité de thermométrie (Risalah pada Termometri, 1889), Unités et Étalons (Unit dan Standar, 1894), Les rayons X (Sinar-X, 1896), Recherches sur le nickel et ses alliages (Penyelidikan pada Nikel dan Campurannya, 1898), La vie de la matière (Kehidupan Materi, 1899), La Convention du Mètre et le Bureau international des Poids et Mesures (Konvensi Metris dan Kantor Internasional Pengukuran danm Berat, 1902), Les applications des aciers au nickel (Penerapan Baja Nikel, 1904), Des états de la matière (Keadaan Materi, 1907), Les récent progrès du système métrique (Kemajuan Terbaru dalam Sistem Metris, 1907, 1913). Bukunya Initiation à la Mécanique (Pengenalan pada Mekanika) telah diterjemahkan ke dalam beberapa bahasa.

Hadiah dan penghormatan

Ia diangkat menjadi Pegawai Besar Legiun Kehormatan dan menerima gelar Doktor Sains kehormatan dari Universitas Geneva, Neuchatel dan Paris. Ia menjadi Presiden di Société Française de Physique dan menjadi anggota, anggota kehormatan atau anggota ppersahabatan lebih dari seorang dozen pada akademi sains terkemuka di Eropa.

Kehidupan pribadi

Charles-Édouard Guillaume menikahi Mlle. A.M. Taufflieb tahun 1888. Mereka memiliki tiga anak. Ia meninggal pada 13 Mei 1938.

Charles Edouard Guillaume







Sumber:
1. Wikipedia
2. Nobel Prize Org.

Ucapan Terima Kasih:

1. DEPDIKNAS Republik Indonesia
2. Kementrian Riset dan Teknologi Indonesia
3. Lembaga Ilmu Pengetahuan Indonesia (LIPI)
4. Akademi Ilmu Pengetahuan Indonesia
5. Tim Olimpiade Fisika Indonesia
Disusun Ulang Oleh: 
Arip Nurahman

Pendidikan Fisika, FPMIPA, Universitas Pendidikan Indonesia
&
Follower Open Course Ware at MIT-Harvard University, USA.
Semoga Bermanfaat dan Terima Kasih

    Monday, 22 June 2009

    How Indonesian People Get Nobel Prize in The Future


    Central for Research and Development for Winning


    Nobel Prize in Physics at Indonesia

    Nobel Fisika Indonesia


    (Belajar Kepada Professor Johannes Stark)
     
    "for his discovery of the Doppler effect in canal rays and the splitting of spectral lines in electric fields"

    "Untuk penemuan efek Doppler dalam sinar saluran dan pemisahan jalur spektral di bidang listrik." 
    Johannes Stark

    Born 15 April 1874(1874-04-15)
    Schickenhof, German Empire
    Died 21 June 1957(1957-06-21) (aged 83)
    Traunstein, West Germany
    Nationality Germany
    Fields Physics
    Institutions University of Göttingen
    Technische Hochschule, Hannover
    Technische Hochschule, Aachen
    University of Greifswald
    University of Würzburg
    Alma mater University of Munich
    Doctoral advisor Eugen von Lommel
    Known for Stark effect
    Notable awards Nobel Prize in Physics (1919)


    Johannes Stark (lahir 15 April 1874 – meninggal 21 Juni 1957 pada umur 83 tahun) adalah seorang fisikawan Jerman yang pada 1913 menunjukkan bahwa sebuah medan listrik yang kuat akan menyebabkan garis spectrum tunggal terpecah ke dalam komponen-komponen yang berbeda. Efek Stark analog dengan pemisahan di sebuah medan magnet, yang dikenal sebagai efek Zeeman. Untuk menjelaskan efek Stark, maka perlu mengadakan dugaan baru atas mekanika kuantum. Stark menerima Penghargaan Nobel dalam Fisika 1919 untuk penemuan efek ini.

    Career

    Stark worked in various positions at the Physics Institute of his alma mater until 1900, when he became an unsalaried lecturer at the University of Göttingen. An extraordinary professor at Hanover by 1906, in 1908 he became professor at the RWTH Aachen University. He worked and researched at physics departments of several universities, including the University of Greifswald, until 1922. In 1919, he won the Nobel Prize in Physics for his "discovery of the Doppler effect in canal rays and the splitting of spectral lines in electric fields" (the latter is known as the Stark effect). From 1933 until his retirement in 1939, Stark was elected President of the Physikalisch-Technische Bundesanstalt, while also President of the Deutsche Forschungsgemeinschaft.

    It was Stark who, as the editor of Jahrbuch der Radioaktivität und Elektronik asked in 1907 the then still rather unknown Albert Einstein to write a review article on the principle of relativity. While working on this article, Einstein began a line of thought that would eventually lead to his generalized theory of relativity, which in turn became (after its confirmation) the start of Einstein's worldwide fame. This is heavily ironic, given Stark's later work as an anti-Einstein and anti-relativity propagandist in the Deutsche Physik movement.[2]

    Stark published more than 300 papers, mainly regarding electricity and other such topics. He received various awards including the Nobel Prize, the Baumgartner Prize of the Vienna Academy of Sciences (1910), the Vahlbruch Prize of the Göttingen Academy of Sciences (1914), and the Matteucci Medal of the Rome Academy. Probably his best known contribution to the field of physics is the Stark effect, which he discovered in 1913.
    He married Luise Uepler, and they had five children. His hobbies were the cultivation of fruit trees and forestry. He worked in his private laboratory on his country estate in Upper Bavaria after the war. There he studied the deflection of light in an electric field.[3]

    Presentation Speech

    Presentation Speech by Dr. Å.G. Ekstrand, President of the Royal Swedish Academy of Sciences, on June 1, 1920
    Ladies and Gentlemen.*

    The Royal Academy of Sciences has decided to award the Nobel Prize in Physics for 1919 to Dr. Johannes Stark, professor in the University of Greifswald, for his discovery of the Doppler effect in canal rays and of the splitting of spectral lines in electric fields.

    It is only rarely that the study of a physical phenomenon has led to such a brilliant series of important discoveries as that which follows the conducting of an electrical current through a rarefied gas. As long ago as 1869 Hittorf discovered that if a low pressure is set up in a discharge tube, rays are emitted from the negative electrode, the so-called cathode. Although invisible to the eye, they can nevertheless be observed through certain effects peculiar to them. The continued study of these cathode rays, in which Lenard in particular earned great merit, showed that they are composed of a stream of negatively charged particles, the mass of which amounts only to 1/1,800 of the mass of the hydrogen atom. We call these minute particles electrons, and gradually one of the principal theories of modern physics grew from the study of the properties of electrons and of their relationship with matter. The electron theory with its concept of the constitution of matter has become of radical importance to both physics and chemistry.

    When cathode rays strike an object, this becomes the source of a new radiation, namely that discovered by Röntgen in 1895 and named by him X-rays, the study of which has led to so many important results for major branches of science, not only within physics. Through von Laue's discovery of the diffraction of X-rays in crystals it was demonstrated that these rays are light waves of very short wavelength. It is now even possible to photograph the spectra of these rays, and science has by this been enriched with a means of research the implications of which cannot yet be fully realized.

    Von Laue's discovery also occasioned important discoveries in the field of crystallography. It is possible, now that W.H. Bragg and his son have worked out theoretic and experimental methods for that purpose, to determine the positions of the atoms in crystals. By these methods a whole new world has been opened up, and has already been partly explored.

    Of not less importance was Barkla's discovery in the year 1906 that every chemical element when irradiated with X-rays emits an X-ray spectrum, characteristic of the element in question. This discovery has become of outstanding importance for the theoretical study of the structure of the atom.

    In the year 1886 Goldstein discovered a new kind of rays in discharge tubes containing rarefied gas, the study of which has become extremely important to our knowledge of the physical properties of atoms and molecules. In view of the manner of their formation Goldstein called them canal rays. It was proved by the research of W. Wien and J.J. Thomson that the majority of these are composed of positively charged atoms of the gas in the discharge tube, which move along the beam at a very high velocity.

    In their course along the beam these canal-ray particles are continually colliding with the gas molecules which are contained in the tube, and thus it may be expected that light is emitted, if the kinetic energy is sufficiently great. As long ago as 1902 Stark predicted that the moving canal-ray particles thus become luminous, and that consequently the lines in the spectrum emitted by them must be displaced to the violet end of the spectrum if the rays are sighted approaching the observer. This takes place in the same way as the displacement of the lines in the spectra of those stars which are moving towards us, and as this displacement, the so-called Doppler effect, increases with the velocity of the light source, it must thus also be possible to determine the velocity of the canal-ray particles.

    In 1905 Stark succeeded for the first time in detecting this phenomenon in a canal-ray tube containing hydrogen.

    Beside each of the single hydrogen lines belonging to the familiar, so called Balmer series, a new, broader line appeared, which lay beside the original line, on the violet side of the spectrum if the canal rays were observed approaching the observer, but on the red side of the spectrum if observed from behind. The effect mentioned here has been established for the canal rays of all chemical elements which, in addition to hydrogen, have been investigated in this respect.

    This discovery, by which a Doppler effect was recorded for the first time in the case of a terrestrial light source, was instrumental in the proof that canal-ray particles are luminous atoms, or atomic ions. The further study of the Doppler effect in their spectra, which has been pursued principally by Stark and his pupils, has led to extremely important results, not only concerning the canal rays themselves, their formation, etc., but also concerning the nature of the different spectra which one and the same chemical element can emit in different circumstances.

    In the course of an investigation of canal rays in a tube containing hydrogen gas, which passed through a strong electric field, Stark observed, in 1913, a broadening of the lines in the spectrum of the hydrogen. A more thorough examination of this broadening showed that the lines decomposed into several components with characteristic polarization conditions. Although this splitting can best be observed in canal rays, it has nevertheless nothing to do with the movement of the atoms, but depends solely on the fact that these are present in an extremely strong electric field.

    In this, a discovery was made analogous to Zeeman's discovery of the splitting of serial lines by means of an extremely strong magnetic field, which was also in its time crowned with the Nobel Prize by this Academy.

    This splitting of lines in electric fields has been detected and measured by Stark in the line spectrum not only of hydrogen, but also of that of a great number of other substances, and the result of these investigations was that (the effect named after him turned out to be in several respects quite different from the Zeeman effect, and that thus) the optical dynamics of the atoms alters, under the influence of an electric field, in a manner quite different from that under the influence of a magnetic field.

    The effect discovered by Stark has become extraordinarily significant for modern research into the structure of atoms, and has opened up new fields for the study of the effect of atomic ions on each other and on molecules. The extremely complicated conditions which this effect manifests in the spectral series of hydrogen and of helium were successfully explained by a theory which forms one of the strongest pillars on which the modern concept of the internal structure of the atom rests.

    In view of the great significance which Stark's work so obviously has for physical research within various fields of great importance, the Royal Academy of Sciences considers it well warranted that the Nobel Prize in Physics for 1919 should be bestowed on this scientist.

    Professor Stark. Our Academy of Sciences has awarded you the Nobel Prize in Physics for 1919 in recognition of your epoch-making research into the so-called Doppler effect in canal rays, which has given us an insight into the reality of the internal structure of atoms and molecules. The Nobel Prize relates also to your discovery of the splitting of spectral lines in electric fields - a discovery which is of the greatest scientific importance.

    I ask you now, Professor, to receive the Nobel Prize from the President of the Nobel Foundation.

    * Owing to the sudden decease of the Royal Princess, no member of the Royal Family was present at the ceremony.
    From Nobel Lectures, Physics 1901-1921, Elsevier Publishing Company, Amsterdam, 1967

    Copyright © The Nobel Foundation 1919




    Sumber:
    1. Wikipedia
    2. Nobel Prize Org.

    Ucapan Terima Kasih:

    1. DEPDIKNAS Republik Indonesia
    2. Kementrian Riset dan Teknologi Indonesia
    3. Lembaga Ilmu Pengetahuan Indonesia (LIPI)
    4. Akademi Ilmu Pengetahuan Indonesia
    5. Tim Olimpiade Fisika Indonesia
    Disusun Ulang Oleh: 
    Arip Nurahman

    Pendidikan Fisika, FPMIPA, Universitas Pendidikan Indonesia
    &
    Follower Open Course Ware at MIT-Harvard University, USA.
    Semoga Bermanfaat dan Terima Kasih

    Thursday, 18 June 2009

    Bertafakur dengan Astrofisika

    Bagian Ke-1

    Tulisan Berseri Menyambut Tahun Astronomi Dunia (2009)


    Oleh:
    Anton Timur Jaelani*
    (www.banjarastrophysics.co.cc)

    Arip Nurahman*
    (www.banjarcyberschool.co.cc)

    Shareer Zahan*
    (zahanshahreer@live.com)

    Penelaah:

    Bpk. Muhammad Arief, M.Sc., Ph.D. (Fisika UPI)
    Bpk. Endang Jaenudin, S.Pd. (SMAN 1 Banjar)
    http://fisikamudahmenyenangkan.blogspot.com/
    Bpk. Itam Kistamaji, S.Si. (SMAN 1 Banjar)

    Ar-rahman; 33
    Hai jamaah jin dan manusia,jika kamu sanggup menembus (melintasi) penjuru langit dan bumi, maka lintasilah, kamu tidak dapat menembusnya kecuali dengan kekuatan. (QS. 55:33)


    "Berapa sering lagi kita harus mengagumi karya Tuhan yang luar biasa, yang menciptakan langit dan bumi dari sebuah hakikat primat dari sebuah rincian yang demikian indah sehingga dengannya Ia dapat menciptakan otak dan pikiran yang bernyala dengan berkah kemampuan meramal yang ilahiah untuk menerobos misteri ciptaan-Nya sendiri. Jika pikiran dari seorang Bohr atau Einstein membuat kita terkagum-kagum dengan kekuatannya, bagaimana kita mulai memuja keagungan Tuhan yang menciptakannya?"

    “-Banesh Hoffmann-“


    Abstract

    Astrophysics is the branch of astronomy that deals with the physics of the universe, including the physical properties (luminosity, density, temperature, and chemical composition) of celestial objects such as stars, galaxies, and the interstellar medium, as well as their interactions. The study of cosmology is theoretical astrophysics at scales much larger than the size of particular gravitationally-bound objects in the universe.

    Because astrophysics is a very broad subject, astrophysicists typically apply many disciplines of physics, including mechanics, electromagnetism, statistical mechanics, thermodynamics, quantum mechanics, relativity, nuclear and particle physics, and atomic and molecular physics. In practice, modern astronomical research involves a substantial amount of physics. The name of a university's department ("astrophysics" or "astronomy") often has to do more with the department's history than with the contents of the programs. Astrophysics can be studied at the bachelors, masters, and Ph.D. levels in aerospace engineering, physics, or astronomy departments at many universities.

    Introduction.

    Theoretical astrophysicists use a wide variety of tools which include analytical models (for example, polytropes to approximate the behaviors of a star) and computational numerical simulations. Each has some advantages. Analytical models of a process are generally better for giving insight into the heart of what is going on. Numerical models can reveal the existence of phenomena and effects that would otherwise not be seen.

    Theorists in astrophysics endeavor to create theoretical models and figure out the observational consequences of those models. This helps allow observers to look for data that can refute a model or help in choosing between several alternate or conflicting models.

    Theorists also try to generate or modify models to take into account new data. In the case of an inconsistency, the general tendency is to try to make minimal modifications to the model to fit the data. In some cases, a large amount of inconsistent data over time may lead to total abandonment of a model.

    Topics studied by theoretical astrophysicists include: stellar dynamics and evolution; galaxy formation; large-scale structure of matter in the Universe; origin of cosmic rays; general relativity and physical cosmology, including string cosmology and astroparticle physics. Astrophysical relativity serves as a tool to gauge the properties of large scale structures for which gravitation plays a significant role in physical phenomena investigated and as the basis for black hole (astro)physics and the study of gravitational waves.

    Some widely accepted and studied theories and models in astrophysics, now included in the Lambda-CDM model are the Big Bang, Cosmic inflation, dark matter, dark energy and fundamental theories of physics.


    Contents

    Dalam bentuk standarnya, teori Dentuman Besar (Big Bang) mengasumsikan bahwa semua bagian jagat raya mulai mengembang secara serentak. Namun bagaimana semua bagian jagat raya yang berbeda bisa menyelaraskan awal pengembangan mereka?. Siapa yang memberikan perintah ? (Andre Linde, Profesor Kosmologi).

    Seabad yang lalu, penciptaan alam semesta adalah sebuah konsep yang diabaikan para ahli astronomi. Alasannya adalah penerimaan umum atas gagasan bahwa alam semesta telah ada sejak waktu tak terbatas. Dalam mengkaji alam semesta, ilmuwan beranggapan bahwa jagat raya hanyalah akumulasi materi dan tidak mempunyai awal.
    Tidak ada momen "penciptaan", yakni momen ketika alam semesta dan segala isinya muncul.

    Gagasan "keberadaan abadi" ini sesuai dengan pandangan orang Eropa yang berasal dari filsafat materialisme. Filsafat ini, yang awalnya dikembangkan di dunia Yunani kuno, menyatakan bahwa materi adalah satu-satunya yang ada di jagat raya dan jagat raya ada sejak waktu tak terbatas dan akan ada selamanya. Filsafat ini bertahan dalam bentuk-bentuk berbeda selama zaman Romawi, namun pada akhir kekaisaran Romawi dan Abad Pertengahan, materialisme mulai mengalami kemunduran karena pengaruh filsafat gereja Katolik dan Kristen.

    Setelah Renaisans, materialisme kembali mendapatkan penerimaan luas di antara pelajar dan ilmuwan Eropa, sebagian besar karena kesetiaan mereka terhadap filsafat Yunani kuno. Filsuf Jerman, Immanuel Kant adalah orang pertama yang mengajukan pernyataan "alam semesta tanpa batas" pada Zaman Baru. Tetapi penemuan ilmiah menggugurkan pernyataan Kant.

    Immanuel Kant-lah yang pada masa Pencerahan Eropa, menyatakan dan mendukung kembali materialisme. Kant menyatakan bahwa alam semesta ada selamanya dan bahwa setiap probabilitas, betapapun mustahil, harus dianggap mungkin. Pengikut Kant terus mempertahankan gagasannya tentang alam semesta tanpa batas beserta materialisme.

    Pada awal abad ke-19, gagasan bahwa alam semesta tidak mempunyai awal - bahwa tidak pernah ada momen ketika jagat raya diciptakan - secara luas diterima. Pandangan ini dibawa ke abad ke-20 melalui karya-karya materialis dialektik seperti Karl Marx dan Friedrich Engels.

    Pandangan tentang alam semesta tanpa batas sangat sesuai dengan ateisme. Tidak sulit melihat alasannya. Untuk meyakini bahwa alam semesta mempunyai permulaan, bisa berarti bahwa ia diciptakan dan itu berarti, tentu saja, memerlukan pencipta, yaitu Tuhan. Jauh lebih mudah dan aman untuk menghindari isu ini dengan mengajukan gagasan bahwa "alam semesta ada selamanya", meskipun tidak ada dasar ilmiah sekecil apa pun untuk membuat klaim seperti itu.

    Georges Politzer, yang mendukung dan mempertahankan gagasan ini dalam buku-bukunya yang diterbitkan pada awal abad ke-20, adalah pendukung setia Marxisme dan Materialisme. Dengan mempercayai kebenaran model "jagat raya tanpa batas",
    Politzer menolak gagasan penciptaan dalam bukunya Principes Fondamentaux de Philosophie ketika dia menulis:

    "Alam semesta bukanlah objek yang diciptakan, jika memang demikian, maka jagat raya harus diciptakan secara seketika oleh Tuhan dan muncul dari ketiadaan. Untuk mengakui penciptaan, orang harus mengakui, sejak awal, keberadaan momen ketika alam semesta tidak ada, dan bahwa sesuatu muncul dari ketiadaan.Ini pandangan yang tidak bisa diterima sains."

    Politzer menganggap sains berada di pihaknya dalam pembelaannya terhadap gagasan alam semesta tanpa batas. Kenyataannya, sains merupakan bukti bahwa jagat raya sungguh-sungguh mempunyai permulaan. Dan seperti yang dinyatakan Politzer sendiri, jika ada penciptaan maka harus ada penciptanya.

    Pengembangan Alam Semesta dan Penemuan Dentuman Besar Tahun 1920-an adalah tahun yang penting dalam perkembangan astronomi modern.

    Pada tahun 1922, ahli fisika Rusia, Alexandra Friedman, menghasilkan perhitungan yang menunjukkan bahwa struktur alam semesta tidaklah statis dan bahwa impuls kecil pun mungkin cukup untuk menyebabkan struktur keseluruhan mengembang atau mengerut menurut Teori Relativitas Einstein.

    George Lemaitre adalah orang pertama yang menyadari apa arti perhitungan Friedman. Berdasarkan perhitungan ini, astronomer Belgia, Lemaitre, menyatakan bahwa alam semesta mempunyai permulaan dan bahwa ia mengembang sebagai akibat dari sesuatu yang telah memicunya. Dia juga menyatakan bahwa tingkat radiasi (rate of radiation) dapat digunakan sebagai ukuran akibat (aftermath) dari "sesuatu" itu.

    Edwin Hubble menemukan bahwa alam semesta mengembang.
    Pada akhirnya dia menemukan bukti "Ledakan Besar", peristiwa besar yang penemuannya memaksa ilmuwan meninggalkan anggapan alam semesta tanpa batas dan abadi.

    Pemikiran teoretis kedua ilmuwan ini tidak menarik banyak perhatian dan barangkali akan terabaikan kalau saja tidak ditemukan bukti pengamatan baru yang mengguncangkan dunia ilmiah pada tahun 1929. Pada tahun itu, astronomer Amerika, Edwin Hubble, yang bekerja di Observatorium Mount Wilson California, membuat penemuan paling penting dalam sejarah astronomi.

    Ketika mengamati sejumlah bintang melalui teleskop raksasanya, dia menemukan bahwa cahaya bintang-bintang itu bergeser ke arah ujung merah spektrum, dan bahwa pergeseran itu berkaitan langsung dengan jarak bintang-bintang dari bumi.

    Penemuan ini mengguncangkan landasan model alam semesta yang dipercaya saat itu. Menurut aturan fisika yang diketahui, spektrum berkas cahaya yang mendekati titik observasi cenderung ke arah ungu, sementara spektrum berkas cahaya yang menjauhi titik observasi cenderung ke arah merah. (Seperti suara peluit kereta yang semakin samar ketika kereta semakin jauh dari pengamat).

    Pengamatan Hubble menunjukkan bahwa menurut hukum ini, benda-benda luar angkasa menjauh dari kita.

    Tidak lama kemudian, Hubble membuat penemuan penting lagi; bintang-bintang tidak hanya menjauh dari bumi; mereka juga menjauhi satu sama lain. Satu-satunya kesimpulan yang bisa diturunkan dari alam semesta di mana segala sesuatunya saling menjauh adalah bahwa alam semesta dengan konstan "mengembang".

    Hubble menemukan buktipengamatan untuk sesuatu yang telah "diramalkan" George Lamaitre sebelumnya, dan salah satu pemikir terbesar zaman kita telah menyadari ini hampir lima belas tahun lebih awal.

    Pada tahun 1915, Albert Einstein telah menyimpulkan bahwa alam semesta tidak mungkin statis dengan perhitungan-perhitungan berdasarkan teori relativitas yang baru di temukannya (yang mengantisipasi kesimpulan Friedman dan Lemaitre).

    Terkejut oleh temuannya, Einstein menambahkan "konstanta kosmologis" pada persamaannya agar muncul "jawaban yang benar", karena para ahli astronomi meyakinkan dia bahwa alam semesta itu statis dan tidak ada cara lain untuk membuat persamaannya sesuai dengan model seperti itu. Beberapa tahun kemudian, Einstein mengakui bahwa konstanta kosmologis ini adalah kesalahan terbesar dalam karirnya.

    TO BE CONTINUED:

    Penulis:
    1. Mahasiswa Astronomi ITB, Juara Mojang Jajaka Kota Banjar 2008
    2. Mahasiswa Pendidikan Fisika UPI
    & Open Course Ware at Harvard-MIT, Cambridge Massachusetts, USA.
    3. Siswa di St. Joseph Higher Secondary, Dhaka. Bangladesh.

    Acknowledgments:

    Prof. Adnan Oktar (Harun Yahya)
    Atas Karya-karyanya yang luar biasa.(Mimar Sinan University)
    http://www.harunyahya.com

    Terimakasih Atas Materi perkuliahan onlinenya:

    Prof. Barton Zwiebach (MIT)
    Email: zwiebach@mit.edu
    Phone: (617) 253-4839
    Fax: (617) 253-8674

    Prof. Alan Guth (MIT)
    Email: guth@ctp.mit.edu
    Phone: (617) 253-6265



    Bagian Ke-2

    Tulisan Berseri Menyambut Tahun Astronomi Dunia (2009)

    Disusun Oleh: Anton Timur Jaelani*
    http://www.banjarastrophysics.co.cc

    Arip Nurahman*
    http://www.banjarcyberschool.co.cc

    Wael Alghamdi* ( Saudi Arabia. Department of Mathematics at MIT, USA.)
    (www_333_www@hotmail.com)

    Shareer Zahan* (Dhaka, Bangladesh) (zahanshahreer@live.com)

    Pembina:
    Bpk. Muhammad Arief, S.Pd., M.Sc., Ph.D. (Dosen Fisika UPI)

    Bpk. Endang Jaenudin, S.Pd. (SMAN 1 Banjar) http://fisikamudahmenyenangkan.blogspot.com/

    Bpk. Itam Kistamaji, S.Si. (SMAN 1 Banjar)

    Negeri akhirat itu, Kami jadikan untuk orang-orang yang tidak ingin menyombongkan diri dan berbuat kerusakan di (muka) bumi. Dan kesudahan (yang baik) itu adalah bagi orang-orang yang bertakwa. (QS Al-Qashash: 83)

    "Mengapa alam ini begitu cerdas ? bahkan mungkin ada yang berkata dengan curiga ? begitu bersahabat dengan kehidupan? Mengapa hukum-hukum fisika begitu penduli terhadap kehidupan dan kesadaran sehingga hukum-hukum ini bersekongkol untuk membuat jagat raya yang nyaman dihuni? Ini hampir seolah Perancang Maha Hebat telah melakukan semuanya."

    ~Prof. Paul Davies, Ph.D.~

    "Perang adalah hasil dari sistem penalaran yang menganggap bahwa perkelahian dan pertumpahan darah adalah hukum alam yang penting. Bahkan setelah perang berakhir, filsafat ini (Materialisme) masih tetap hidup. Karena tidak mati, filsafat ini terus menanamkan benih perang yang bahkan lebih besar dan lebih mengerikan."

    -Harun Yahya-


    Mega Death diakibatkan oleh Pengingkaran adanya Penciptaan.

    "Communism has been the greatest social engineering experiment we have ever seen. It failed utterly and in doing so it killed over 100,000,000 men, women, and children, not to mention the near 30,000,000 of its subjects that died in its often aggressive wars and the rebellions it provoked. But there is a larger lesson to be learned from this horrendous sacrifice to one ideology. That is that no one can be trusted with power. The more power the center has to impose the beliefs of an ideological or religious elite or impose the whims of a dictator, the more likely human lives are to be sacrificed. This is but one reason, but perhaps the most important one, for fostering liberal democracy." (R.J. Rummel )

    Sambungan dari bagian Pertama.

    Penemuan Hubble bahwa alam semesta mengembang memunculkan model lain yang tidak membutuhkan tipuan untuk menghasilkan persamaan sesuai dengan keinginan. Jika alam semesta semakin besar sejalan dengan waktu, mundur ke masa lalu berarti alam semesta semakin kecil; dan jika seseorang bisa mundur cukup jauh, segala sesuatunya akan mengerut dan bertemu pada satu titik. Kesimpulan yang harus diturunkan dari model ini adalah bahwa pada suatu saat, semua materi di alam semesta ini terpadatkan dalam massa satu titik yang mempunyai "volume nol" karena gaya gravitasinya yang sangat besar. Alam semesta kita muncul dari hasil ledakan massa yang mempunyai volume nol ini.

    Ledakan ini mendapat sebutan "Dentuman Besar" dan keberadaannya telah berulang-ulang ditegaskan dengan bukti pengamatan. Ada kebenaran lain yang ditunjukkan Dentuman Besar ini. Untuk mengatakan bahwa sesuatu mempunyai volume nol adalah sama saja dengan mengatakan sesuatu itu "tidak ada". Seluruh alam semesta diciptakan dari "ketidakadaan" ini. Dan lebih jauh, alam semesta mempunyai permulaan, berlawanan dengan pendapat materialisme, yang mengatakan bahwa "alam semesta sudah ada selamanya".

    Hipotesis "Keadaan-Stabil" Teori Dentuman Besar dengan cepat diterima luas oleh dunia ilmiah karena bukti-bukti yang jelas. Namun, para ahli astronomi yang memihak materialisme dan setia pada gagasan alam semesta tanpa batas yang dituntut paham ini menentang Dentuman Besar dalam usaha mereka mempertahankan doktrin fundamental ideologi mereka. Alasan mereka dijelaskan oleh ahli astronomi Inggris, Arthur Eddington, yang berkata, "Secara filosofis, pendapat tentang permulaan yang tiba-tiba dari keteraturan alam sekarang ini bertentangan denganku".

    Ahli astronomi lain yang menentang teori Dentuman Besar adalah Fred Hoyle. Sekitar pertengahan abad ke-20 dia mengemukakan sebuah model baru yang disebutnya "keadaan-stabil", yang tak lebih suatu perpanjangan gagasan abad ke-19 tentang alam semesta tanpa batas. Dengan menerima bukti-bukti yang tidak bisa disangkal bahwa jagat raya mengembang, dia berpendapat bahwa alam semesta tak terbatas, baik dalam dimensi maupun waktu.

    Menurut model ini, ketika jagat raya mengembang, materi baru terus-menerus muncul dengan sendirinya dalam jumlah yang tepat sehingga alam semesta tetap berada dalam "keadaan-stabil". Dengan satu tujuan jelas mendukung dogma "materi sudah ada sejak waktu tak terbatas", yang merupakan basis filsafat materialis, teori ini mutlak bertentangan dengan "teori Dentuman Besar", yang menyatakan bahwa alam semesta mempunyai permulaan.

    Pendukung teori keadaan-stabil Hoyle tetap berkeras menentang Dentuman Besar selama bertahun-tahun. Namun, sains menyangkal mereka. Kemenangan Dentuman Besar Pada tahun 1948, George Gamov mengembangkan perhitungan George Lemaitre lebih jauh dan menghasilkan gagasan baru mengenai Dentuman Besar. Jika alam semesta terbentuk dalam sebuah ledakan besar yang tiba-tiba, maka harus ada sejumlah tertentu radiasi yang ditinggalkan dari ledakan tersebut. Radiasi ini harus bisa dideteksi, dan lebih jauh, harus sama di seluruh alam semesta.

    Pernyataan Sir Arthur Eddington bahwa "pendapat tentang permulaan yang tiba-tiba dari keteraturan alam sekarang ini bertentangan denganku," adalah pengakuan bahwa Ledakan Besar telah menimbulkan keresahan di kalangan materialis. Dalam dua dekade, bukti pengamatan dugaan Gamov diperoleh.

    Pada tahun 1965, dua peneliti bernama Arno Penzias dan Robert Wilson menemukan sebentuk radiasi yang selama ini tidak teramati. Disebut "radiasi latar belakang kosmik", radiasi ini tidak seperti apa pun yang berasal dari seluruh alam semesta karena luar biasa seragam. Radiasi ini tidak dibatasi, juga tidak mempunyai sumber tertentu; alih-alih, radiasi ini tersebar merata di seluruh jagat raya.

    Segera disadari bahwa radiasi ini adalah gema Dentuman Besar, yang masih menggema balik sejak momen pertama ledakan besar tersebut. Gamov telah mengamati bahwa frekuensi radiasi hampir mempunyai nilai yang sama dengan yang telah diperkirakan oleh para ilmuwan sebelumnya. Penzias dan Wilson dianugerahi hadiah Nobel untuk penemuan mereka. Pada tahun 1989, George Smoot dan tim NASA-nya meluncurkan sebuah satelit ke luar angkasa. Sebuah instrumen sensitif yang disebut "Cosmic Background Emission Explorer" (COBE) di dalam satelit itu hanya memerlukan delapan menit untuk mendeteksi dan menegaskan tingkat radiasi yang dilaporkan Penzias dan Wilson.

    Hasil ini secara pasti menunjukkan keberadaan bentuk rapat dan panas sisa dari ledakan yang menghasilkan alam semesta. Kebanyakan ilmuwan mengakui bahwa COBE telah berhasil menangkap sisa-sisa Dentuman Besar. Radiasi Latar Belakang Kosmik yang ditemukan oleh Penzias dan Wilson dianggap sebagai bukti Ledakan Besar yang tak terbantahkan oleh dunia ilmiah.

    Ada lagi bukti-bukti yang muncul untuk Dentuman Besar. Salah satunya berhubungan dengan jumlah relatif hidrogen dan helium di alam semesta. Pengamatan menunjukkan bahwa campuran kedua unsur ini di alam semesta sesuai dengan perhitungan teoretis dari apa yang seharusnya tersisa setelah Dentuman Besar. Bukti itu memberikan tusukan lagi ke jantung teori keadaan-stabil karena jika jagat raya sudah ada selamanya dan tidak mempunyai permulaan, semua hidrogennya telah terbakar menjadi helium. Dihadapkan pada bukti seperti itu, Dentuman Besar memperoleh persetujuan dunia ilmiah nyaris sepenuhnya.

    Dalam sebuah artikel edisi Oktober 1994, Scientific American menyatakan bahwa model Dentuman Besar adalah satu-satunya yang dapat menjelaskan pengembangan terus menerus alam semesta dan hasil-hasil pengamatan lainnya. Setelah mempertahankan teori Keadaan-Stabil bersama Fred Hoyle, Dennis Sciama menggambarkan dilemma mereka di hadapan bukti Dentuman Besar. Dia berkata bahwa semula dia mendukung Hoyle, namun setelah bukti mulai menumpuk, dia harus mengakui bahwa pertempuran telah usai dan bahwa teori keadaan-stabil harus ditinggalkan.

    Siapa yang Menciptakan Alam Semesta dari Ketiadaan ? Dengan kemenangan Dentuman Besar, tesis "alam semesta tanpa batas", yang membentuk basis bagi dogma materialis, dibuang ke tumpukan sampah sejarah. Namun bagi materialis, muncul pula dua pertanyaan yang tidak mengenakkan : Apa yang sudah ada sebelum Dentuman Besar ?. Dan kekuatan apa yang telah menyebabkan Dentuman Besar sehingga memunculkan alam semesta yang tidak ada sebelumnya ?.

    Materialis seperti Arthur Eddington menyadari bahwa jawaban untuk pertanyaan-pertanyaan ini dapat mengarah pada keberadaan pencipta agung dan itu tidak mereka sukai.

    Filsuf ateis, Anthony Flew, mengomentari masalah ini :

    “Jelas sekali, pengakuan itu baik bagi jiwa. Oleh karena itu, saya akan mulai dengan mengakui bahwa penganut ateis Stratonis harus merasa malu dengan konsensus kosmologis dewasa ini. Karena tampaknya para ahli kosmologi menyediakan bukti ilmiah untuk apa yang dianggap St. Thomas tidak terbukti secara filosofis; yaitu, bahwa alam semesta mempunyai permulaan. Selama alam semesta dapat dengan mudah dianggap tidak hanya tanpa akhir, namun juga tanpa permulaan, akan tetap mudah untuk mendesak bahwa keberadaannya yang tiba-tiba, dan apa pun yang ditemukan menjadi ciri-cirinya yang paling mendasar, harus diterima sebagai penjelasan akhir. Meskipun saya mempercayai bahwa teori itu (alam semesta tanpa batas) masih benar, tentu saja tidak mudah atau nyaman untuk mempertahankan posisi ini di hadapan kisah Dentuman Besar.”

    To Be Continued (Ke Bagian ke 3)

    Penulis:
    1. Mahasiswa Astronomi ITB, Juara Mojang Jajaka Kota Banjar 2008
    2. Mahasiswa Pendidikan Fisika Universitas Pendidikan Indonesia
    & Open Course Ware at MIT-Harvard University, Cambridge Massachusetts, USA.
    3. Mahasiswa Department of Mathematics at Massachusessts Institute of Technology
    4. Siswa di St. Joseph Higher Secondary, Dhaka. Bangladesh.







    Acknowledgments:

    1. Prof. Adnan Oktar (Harun Yahya) Atas Karya-karyanya yang luar biasa.
    (Mimar Sinan University)
    http://www.harunyahya.com

    Terimakasih Atas Materi Perkuliahan Onlinenya:

    1. Prof. George Smoot III, Ph.D.
    Winner of the 2006 Nobel Prize in physics (University of California at Berkley)
    Research: Astrophysics Campus Office: 437 Old LeConte Hall Phone: (510) 642-9389
    Fax: (510) 486-7149
    Email: gfsmoot@lbl.gov
    My Research: http://www.physics.berkeley.edu/research/faculty/smoot.html
    Group Site: http://aether.lbl.gov

    2. Prof. Frank WILCZEK, Ph.D. (Massachusetts Institute of Technology)
    E-mail: wilczek@mit.edu
    Web-Site: http://frankwilczek.com/
    (2004 Nobel Laureate in Physics at MIT)

    3. Prof. Barton Zwiebach, Ph.D. (Massachusetts Institute of Technology)
    Email: zwiebach@mit.edu
    Phone: (617) 253-4839 Fax: (617) 253-8674

    4. Prof. Alan Guth, Ph.D. (Massachusetts Institute of Technology)
    Email: guth@ctp.mit.edu
    Phone: (617) 253-6265

    Mohon maaf apabila ada kesalahan penulisan. -Salam pendidikan untuk Peradaban-




    Bagian Ke-3
    .

    Tulisan Berseri Menyambut Tahun Astronomi Dunia (2009)


    Disusun Oleh:

    Anton Timur Jaelani*
    http://www.banjarastrophysics.co.cc

    Arip Nurahman*
    http://www.banjarcyberschool.co.cc

    Wael Alghamdi* ( Saudi Arabia. Department of Mathematics at MIT, USA.)
    (www_333_www@hotmail.com)

    Shareer Zahan* (Dhaka, Bangladesh) (zahanshahreer@live.com)



    Banyak ilmuwan yang tidak mau memaksakan diri menjadi ateis menerima dan mendukung keberadaan pencipta yang mempunyai kekuatan tak terbatas. Misalnya, ahli astrofisika Amerika, Hugh Ross, menyatakan Pencipta jagat raya, yang berada di atas segala dimensi fisik, sebagai :

    “Secara definisi, waktu adalah dimensi di mana fenomena sebab-dan-akibat terjadi. Tidak ada waktu, tidak ada sebab dan akibat. Jika permulaan waktu sama dengan permulaan alam semesta, seperti yang dikatakan teorema ruang-waktu, maka sebab alam semesta haruslah entitas yang bekerja dalam dimensi waktu yang sepenuhnya mandiri dan hadir lebih dulu daripada dimensi waktu kosmos... ini berarti bahwa Pencipta itu transenden, bekerja di luar batasan-batasan dimensi alam semesta. Ini berarti bahwa Tuhan bukan alam semesta itu sendiri, dan Tuhan juga tidak berada di dalamalam semesta. Penolakan terhadap Penciptaan dan Mengapa Teori-Teori Itu Bercacat Sangat jelas bahwa Dentuman Besar berarti penciptaan alam semesta dari ketiadaan dan ini pasti bukti keberadaan pencipta yang berkehendak.”

    Mengenai fakta ini, beberapa ahli astronomi dan fisika materialis telah mencoba mengemukakan penjelasan alternative untuk membantah kenyataan ini. Rujukan sudah dibuat dari teori keadaan-stabil dan ditunjukkan ke mana kaitannya, oleh mereka yang tidak merasa nyaman dengan pendapat "penciptaan dari ketiadaan" meskipun bukti berbicara lain, sebagai usaha mempertahankan filsafat mereka.

    Ada pula sejumlah model yang telah dikemukakan oleh materialis yang menerima teori Dentuman Besar namun mencoba melepaskannya dari gagasan penciptaan. Salah satunya adalah model alam semesta "berosilasi"; dan yang lainnya adalah "model alam semesta kuantum". Mari kita kaji teori-teori ini dan melihat mengapa keduanya tidak berdasar.

    Model alam semesta berosilasi dikemukakan oleh para ahli astronomi yang tidak menyukai gagasan bahwa Dentuman Besar adalah permulaan alam semesta. Dalam model ini, dinyatakan bahwa pengembangan alam semesta sekarang ini pada akhirnya akan membalik pada suatu waktu dan mulai mengerut.

    Pengerutan ini akan menyebabkan segala sesuatu runtuh ke dalam satu titik tunggal yang kemudian akan meledak lagi, memulai pengembangan babak baru. Proses ini, kata mereka, berulang dalam waktu tak terbatas.

    Model ini juga menyatakan bahwa alam semesta sudah mengalami transformasi ini tak terhingga kali dan akan terus demikian selamanya. Dengan kata lain, alam semesta ada selamanya namun mengembang dan runtuh pada interval berbeda dengan ledakan besar menandai setiap siklusnya. Alam semesta tempat kita tinggal merupakan salah satu alam semesta tanpa batas itu yang sedang melalui siklus yang sama. Ini tak lebih dari usaha lemah untuk menyelaraskan fakta Dentuman Besar terhadap pandangan tentang alam semesta tanpa batas.

    Skenario tersebut tidak didukung oleh hasil-hasil riset ilmiah selama 15-20 tahun terakhir, yang menunjukkan bahwa alam semesta yang berosilasi seperti itu tidak mungkin terjadi. Lebih jauh, hukum-hukum fisika tidak bisa menerangkan mengapa alam semesta yang mengerut harus meledak lagi setelah runtuh ke dalam satu titik tunggal :

    ia harus tetap seperti apa adanya. Hukum-hukum fisika juga tidak bisa menerangkan mengapa alam semesta yang mengembang harus mulai mengerut lagi.

    Bahkan kalaupun kita menerima bahwa mekanisme yang membuat siklus mengerut-meledak-mengembang ini benar-benar ada, satu hal penting adalah bahwa siklus ini tidak bisa berlanjut selamanya, seperti anggapan mereka. Perhitungan untuk model ini menunjukkan bahwa setiap alam semesta akan mentransfer sejumlah entropi kepada alam semesta berikutnya. Dengan kata lain, jumlah energi berguna yang tersedia menjadi berkurang setiap kali, dan setiap alam semesta akan terbuka lebih lambat dan mempunyai diameter lebih besar. Ini akan menyebabkan alam semesta yang terbentuk pada babak berikutnya menjadi lebih kecil dan begitulah seterusnya, sampai pada akhirnya menghilang menjadi ketiadaan.

    Bahkan jika alam semesta "buka dan tutup" ini dapat terjadi, mereka tidak bertahan selamanya. Pada satu titik, akan diperlukan "sesuatu" untuk diciptakan dari "ketiadaan". Singkatnya, model alam semesta "berosilasi" merupakan fantasi tanpa harapan yang realitas fisiknya tidak mungkin.

    "Model alam semesta kuantum" adalah usaha lain untuk membersihkan teori Dentuman Besar dari implikasi penciptaannya. Pendukung model ini mendasarkannya pada observasi fisika kuantum (subatomik). Dalam fisika kuantum, diamati bahwa partikel-partikel subatomik muncul dan menghilang secara spontan dalam ruang hampa.

    Menginterpretasikan pengamatan ini sebagai "materi dapat muncul pada tingkat kuantum, ini merupakan sebuah sifat yang berkenaan dengan materi", beberapa ahli fisika mencoba menjelaskan asal materi dari ketiadaan selama penciptaan alam semesta sebagai "sifat yang berkenaan dengan materi" dan menyatakannya sebagai bagian dari hukum-hukum alam.

    Dalam model ini, alam semesta kita diinterpretasikan sebagai partikel subatomik di dalam partikel yang lebih besar. Akan tetapi, silogisme ini sama sekali tidak mungkin dan bagaimanapun tidak bisa menjelaskan bagaimana alam semesta terjadi.

    William Lane Craig, penulis The Big Bang : Theism and Atheism, menjelaskan alasannya : Ruang hampa mekanis kuantum yang menghasilkan partikel materi adalah jauh dari gagasan umum tentang "ruang hampa" (yang berarti tidak ada apa-apa). Melainkan, ruang hampa kuantum adalah lautan partikel yang terus-menerus terbentuk dan menghilang, yang meminjam energi dari ruang hampa untuk keberadaan mereka yang singkat. Ini bukan "ketiadaan", sehingga partikel materi tidak muncul dari "ketiadaan".

    Jadi, dalam fisika kuantum, materi "tidak ada kalau sebelumnya tidak ada". Yang terjadi adalah bahwa energi lingkungan tiba-tiba menjadi materi dan tiba-tiba pula menghilang menjadi energi lagi. Singkatnya, tidak ada kondisi "keberadaan dari ketiadaan" seperti klaim mereka. Dalam fisika, tidak lebih sedikit daripada yang terdapat dalam cabang-cabang ilmu alam lain, terdapat ilmuwan-ilmuwan ateis yang tidak ragu menyamarkan kebenaran dengan mengabaikan titik-titik kritis dan detail-detail dalam usaha mereka mendukung pandangan materialis dan mencapai tujuan mereka. Bagi mereka, jauh lebih penting mempertahankan materialisme dan ateisme daripada mengungkapkan fakta-fakta dan kenyataan ilmiah.

    Dihadapkan pada realitas yang disebutkan di atas, kebanyakan ilmuwan membuang model alam semesta kuantum. C.J Isham menjelaskan bahwa "model ini tidak diterima secara luas karena kesulitan-kesulitan yang dibawanya". Bahkan sebagian pencetus gagasan ini, seperti Brout dan Spindel, telah meninggalkannya.




    Bagian ke-4

    Tulisan Berseri Menyambut Tahun Astronomi Dunia (2009)

    Disusun Oleh:

    Anton Timur Jaelani*
    http://www.banjarastrophysics.co.cc

    Arip Nurahman*
    http://www.banjarcyberschool.co.cc

    Wael Alghamdi* ( Saudi Arabia. Department of Mathematics at MIT, USA.)
    (www_333_www@hotmail.com)

    Shareer Zahan* (Dhaka, Bangladesh) (zahanshahreer@live.com)


    Sebuah versi terbaru yang dipublikasikan lebih luas dari model alam semesta kuantum diajukan oleh ahli fisika, Stephen Hawking. Dalam bukunya, A Brief History of Time, Hawking menyatakan bahwa Dentuman Besar tidak harus berarti keberadaan dari ketiadaan. Alih-alih "tiada waktu" sebelum Dentuman Besar, Hawking mengajukan konsep "waktu imajiner". Menurut Hawking, hanya ada selang waktu imajiner 10^-43 detik sebelum Dentuman Besar terjadi dan waktu "nyata" terbentuk setelah itu.

    Harapan Hawking hanyalah untuk mengabaikan kenyataan "ketiadaan waktu" (timelessness) sebelum Dentuman Besar dengan gagasan waktu "imajiner" ini. Stephen Hawking juga mencoba mengajukan penjelasan berbeda untuk Ledakan Besar selain Penciptaan seperti yang dilakukan ilmuwan materialis lainnya dengan mengandalkan kontradiksi dan konsep keliru. Sebagai sebuah konsep, "waktu imajiner" sama saja dengan nol atau seperti "tidak ada"nya jumlah imajiner orang dalam ruangan atau jumlah imajiner mobil di jalan.

    Di sini Hawking hanya bermain dengan kata-kata. Dia menyatakan bahwa persamaan itu benar kalau mereka dihubungkan dengan waktu imajiner, namun kenyataannya ini tidak ada artinya. Ahli matematika, Sir Herbert Dingle, menyebut kemungkinan memalsukan hal-hal imajiner sebagai hal nyata dalam matematika sebagai :

    "Dalam bahasa matematika, kita bisa mengatakan kebohongan di samping kebenaran, dan dalam cakupan matematika sendiri, tidak ada cara yang mungkin untuk membedakan satu dengan lainnya. Kita dapat membedakan keduanya hanya dengan pengalaman atau dengan penalaran di luar matematika, yang diterapkan pada hubungan yang mungkin antara solusi matematika dan korelasi fisiknya."

    Singkatnya, solusi imajiner atau teoretis matematika tidak perlu mengandung konsekuensi benar atau nyata. Menggunakan sifat yang hanya dimiliki matematika, Hawking menghasilkan hipotesis yang tidak berkaitan dengan kenyataan. Namun apa alasan yang mendorongnya melakukan ini ?.

    Hawking mengakui bahwa dia lebih menyukai model alam semesta selain dari Dentuman Besar karena yang terakhir ini "mengisyaratkan penciptaan ilahiah", dan model-model seperti itu dirancang untuk ditentang.

    Semua ini menunjukkan bahwa model alternatif dari Dentuman Besar, seperti keadaan-stabil, model alam semesta berosilasi, dan model alam semesta kuantum, kenyataannya timbul dari prasangka filosofis materialis. Penemuan-penemuan ilmiah telah menunjukkan realitas Dentuman Besar dan bahkan dapat menjelaskan "keberadaan dari ketiadaan". Dan ini merupakan bukti sangat kuat bahwa alam semesta diciptakan oleh Allah, satu hal yang mentah-mentah ditolak materialis.

    Sebuah contoh penolakan Dentuman Besar bisa ditemukan dalam esai oleh John Maddox, editor majalah Nature (majalah materialis), yang muncul pada tahun 1989. Dalam "Down with the Big Bang", Maddox menyatakan Dentuman Besar tidak dapat diterima secara filosofis karena teori ini membantu teologis dengan menyediakan dukungan kuat untuk gagasan-gagasan mereka. Penulis itu juga meramalkan bahwa Dentuman Besar akan runtuh dan bahwa dukungan untuknya akan menghilang dalam satu dekade. Maddox hanya bisa merasa semakin resah karena penemuanpenemuan selama sepuluh tahun berikutnya memberikan bukti semakin kuat akan keberadaan Dentuman Besar.

    Sebagian materialis bertindak dengan lebih menggunakan akal sehat mengenai hal ini. Materialis Inggris, H.P. Lipson menerima kebenaran penciptaan, meskipun "tidak dengan senang hati", ketika dia berkata : Jika materi hidup bukan disebabkan oleh interaksi atom-atom, kekuatan alam, dan radiasi, bagaimana dia muncul ?.

    Namun saya pikir, kita harus mengakui bahwa satu-satunya penjelasan yang bisa diterima adalah penciptaan. Saya tahu bahwa ini sangat dibenci para ahli fisika, demikian pula saya, namun kita tidak boleh menolak apa yang tidak kita sukai jika bukti eksperimental mendukungnya.

    Sebagai kesimpulan, kebenaran yang terungkap oleh ilmu alam adalah :

    Materi dan waktu telah dimunculkan menjadi ada oleh pemilik kekuatan besar yang mandiri, oleh Pencipta. Allah, Pemilik kekuatan, pengetahuan, dan kecerdasan mutlak, telah menciptakan alam semesta tempat tinggal kita.


    Bagian ke-5

    Tulisan Berseri Menyambut Tahun Astronomi Dunia (2009)


    Disusun Oleh:

    Anton Timur Jaelani*
    http://www.banjarastrophysics.co.cc

    Arip Nurahman*
    http://www.banjarcyberschool.co.cc

    Wael Alghamdi* ( Saudi Arabia. Department of Mathematics at MIT, USA.)
    (www_333_www@hotmail.com)

    Shareer Zahan* (Dhaka, Bangladesh) (zahanshahreer@live.com)


    Tanda-Tanda Al Quran Selain menjelaskan alam semesta, model Dentuman Besar mempunyai implikasi penting lain. Seperti yang ditunjukkan dalam kutipan dari Anthony Flew di atas, ilmu alam telah membuktikan pandangan yang selama ini hanya didukung oleh sumber-sumber agama. Kebenaran yang dipertahankan oleh sumber-sumber agama adalah realitas penciptaan dari ketiadaan. Ini telah dinyatakan dalam kitab-kitab suci yang telah berfungsi sebagai penunjuk jalan bagi manusia selama ribuan tahun.

    Dalam semua kitab suci seperti Perjanjian Lama, Perjanjian Baru, dan Al Quran, dinyatakan bahwa alam semesta dan segala isinya diciptakan dari ketiadaan oleh Allah. Dalam satu-satunya kitab yang diturunkan Allah yang telah bertahan sepenuhnya utuh, Al Quran, ada pernyataan tentang penciptaan alam semesta dari ketiadaan, disamping bagaimana kemunculannya sesuai dengan ilmu pengetahuan abad ke-20, meskipun diungkapkan 14 abad yang lalu.

    Pertama, penciptaan alam semesta dari ketiadaan diungkapkan dalam Al Quran sebagai berikut :
    "Dia pencipta langit dan bumi. Bagaimana Dia mempunyai anak padahal Dia tidak mempunyai istri. Dia menciptakan segala sesuatu dan Dia mengetahui segala sesuatu" (QS. Al An'aam, 6: 101).

    Aspek penting lain yang diungkapkan dalam Al Quran empat belas abad sebelum penemuan modern Dentuman Besar dan temuan-temuan yang berkaitan dengannya adalah bahwa ketika diciptakan, alam semesta menempati volume yang sangat kecil :

    "Dan apakah orang-orang kafir tidak mengetahui bahwasanya langit dan bumi itu keduanya dahulu adalah suatu yang padu, kemudian Kami pisahkan antara keduanya. Dan daripada air Kami jadikan segala sesuatu yang hidup. Maka mengapakah mereka tiada juga beriman ?" (QS. Al Anbiyaa', 21: 30).

    Terjemahan ayat di atas mengandung pemilihan kata yang sangat penting dalam bahasa aslinya, bahasa Arab. Kata ratk diterjemahkan sebagai "suatu yang padu" yang berarti "bercampur, bersatu" dalam kamus bahasa Arab. Kata itu digunakan untuk merujuk dua zat berbeda yang menjadi satu. Frasa "Kami pisahkan" diterjemahkan dari kata kerja bahasa Arab, fatk yang mengandung makna bahwa sesuatu terjadi dengan memisahkan atau menghancurkan struktur ratk. Tumbuhnya biji dari tanah adalah salah satu tindakan yang menggunakan kata kerja ini. Mari kita tinjau lagi ayat tersebut dengan pengetahuan ini di benak kita.

    Dalam ayat itu, langit dan bumi pada mulanya berstatus ratk. Mereka dipisahkan (fatk) dengan satu muncul dari yang lainnya. Menariknya, para ahli kosmologi berbicara tentang "telur kosmik" yang mengandung semua materi di alam semesta sebelum Dentuman Besar.

    Dengan kata lain, semua langit dan bumi terkandung dalam telur ini dalam kondisi ratk. Telur kosmik ini meledak dengan dahsyat menyebabkan materinya menjadi fatk dan dalam proses itu terciptalah struktur keseluruhan alam semesta.

    Kebenaran lain yang terungkap dalam Al Quran adalah pengembangan jagat raya yang ditemukan pada akhir tahun 1920-an. Penemuan Hubble tentang pergeseran merah dalam spektrum cahaya bintang diungkapkan dalam Al Quran sebagai berikut :

    "Dan langit itu Kami bangun dengan kekuasaan (Kami) dan sesungguhnya Kami benar-benar mengembangkannya" (QS. Adz-Dzaariyat, 51: 47).

    Singkatnya, temuan-temuan ilmu alam modern mendukung kebenaran yang dinyatakan dalam Al Quran dan bukan dogma materialis. Materialis boleh saja menyatakan bahwa semua itu "kebetulan", namun fakta yang jelas adalah bahwa alam semesta terjadi sebagai hasil penciptaan dari pihak Allah dan satu-satunya pengetahuan yang benar tentang asal mula alam semesta ditemukan dalam firman Allah yang diturunkan kepada kita.

    Energi ledakan alam semesta mengimbangi gaya gravitasinya dengan ketepatan yang nyaris tak dapat dipercaya. Dentuman Besar jelas bukanlah sembarang ledakan di masa lalu, namun ledakan dengan kekuatan yang dirancang begitu indah. (Paul Davies, Profesor Fisika Teoretis) Dalam bab pertama, kita mempelajari penciptaan alam semesta dari ketiadaan sebagai hasil ledakan dahsyat. Mari kita kaji implikasi dari kenyataan ini. Para ilmuwan memperkirakan di seluruh alam semesta terdapat 300 miliar galaksi.

    Galaksi-galaksi ini memiliki beberapa bentuk berbeda (spiral, elips, dan lain-lain) dan masing-masing memiliki bintang kira-kira sebanyak jumlah galaksi di alam semesta. Salah satu bintang ini, Matahari, memiliki sembilan planet utama yang mengitarinya dalam keserasian yang luar biasa. Seluruh manusia hidup di planet ketiga dihitung dari matahari.

    Perhatikan sekitar Anda : Apakah yang Anda lihat tampak seperti sebaran materi yang berserakan tidak karuan ?. Tentu saja tidak.

    Namun, bagaimana materi membentuk galaksi-galaksi yang teratur seandainya materi itu tersebar secara acak ?.

    Mengapa materi berkumpul di satu titik dan membentuk bintang ?.

    Bagaimana keseimbangan yang begitu indah pada tata surya dapat muncul dari ledakan yang dahsyat ?.

    Ini adalah pertanyaan-pertanyaan penting dan menuntun kita pada pertanyaan yang sesungguhnya yaitu bagaimana alam semesta tersusun setelah Dentuman Besar.

    Jika Dentuman Besar benar-benar ledakan yang maha menghancurkan, maka masuk akal untuk memperkirakan bahwa materi akan tersebar ke segala penjuru secara acak. Namun ternyata tidak demikian. Materi hasil Dentuman Besar tersusun menjadi planet, bintang, galaksi, kluster, dan superkluster.

    Seolah-olah sebuah bom meledak dalam lumbung dan menjadikan seluruh gandum terisikan ke dalam karung, dan tersusun rapi di atas truk, siap untuk dikirimkan, bukannya tersebar acak-acakan ke seluruh penjuru. Fred Hoyle, penentang setia teori Dentuman Besar, mengemukakan keterkejutannya sendiri akan keteraturan ini :

    Teori Dentuman Besar menyatakan alam semesta dimulai dengan ledakan tunggal. Namun seperti terlihat pada bagian berikut, sebuah ledakan hanya akan membuat materi terlontar secara acak, namun Dentuman Besar secara misterius memberikan hasil berlawanan dengan materi terkumpul dalam bentuk galaksi-galaksi. Bahwa materi yang dihasilkan Dentuman Besar membentuk susunan yang begitu rapi dan teratur memang suatu hal yang luar biasa.

    Terbentuknya keserasian yang luar biasa tersebut menuntun kita kepada kenyataan bahwa alam semesta merupakan ciptaan sempurna Allah.


    Closing

    Ar-rahman; 18
    Maka Nikmat Tuhan Manakah yang akan eungkau dustakan? (QS. 55:18)

    Which then, of the favours of your Lord will you twain deny?

    Ar-rahman; 33
    Hai jamaah jin dan manusia,jika kamu sanggup menembus (melintasi) penjuru langit dan bumi, maka lintasilah, kamu tidak dapat menembusnya kecuali dengan kekuatan. (QS. 55:33)

    'O Company of Jinn and men, if you can that you may go out of the boundaries of the heavens and the earth then do go. Wherever you will go, His is the Kingdom.

    References
    Harun Yahya (www.harunyahya.com)
    Banjar Astro Physics Association (http://astrophysicsblogs.blogspot.com)

    • ^ Lucio Russo, Flussi e riflussi, Feltrinelli, Milano, 2003, ISBN 88-07-10349-4.

    • ^ Bartel Leendert van der Waerden (1987). "The Heliocentric System in Greek, Persian and Hindu Astronomy", Annals of the New York Academy of Sciences 500 (1), 525–545 [527].

    • ^ Bartel Leendert van der Waerden (1987). "The Heliocentric System in Greek, Persian and Hindu Astronomy", Annals of the New York Academy of Sciences 500 (1), 525–545 [527-529].

    • ^ B. L. van der Waerden (1970), Das heliozentrische System in der griechischen,persischen und indischen Astronomie, Naturforschenden Gesellschaft in Zürich, Zürich: Kommissionsverlag Leeman AG. (cf. Noel Swerdlow (June 1973), "Review: A Lost Monument of Indian Astronomy", Isis 64 (2), p. 239-243.)

    • ^ B. L. van der Waerden (1987), "The heliocentric system in Greek, Persian, and Indian astronomy", in "From deferent to equant: a volume of studies in the history of science in the ancient and medieval near east in honor of E. S. Kennedy", New York Academy of Sciences 500, p. 525-546. (cf. Dennis Duke (2005), "The Equant in India: The Mathematical Basis of Ancient Indian Planetary Models", Archive for History of Exact Sciences 59, p. 563–576.).

    • ^ Thurston, Hugh (1994), Early Astronomy, Springer-Verlag, New York. ISBN 0-387-94107-X, p. 188:
    "Not only did Aryabhata believe that the earth rotates, but there are glimmerings in his system (and other similar systems) of a possible underlying theory in which the earth (and the planets) orbits the sun, rather than the sun orbiting the earth. The evidence is that the basic planetary periods are relative to the sun."

    • ^ Lucio Russo (2004), The Forgotten Revolution: How Science Was Born in 300 BC and Why It Had To Be Reborn, Springer, Berlin, ISBN 978-3-540-20396-4. (cf. Dennis Duke (2005), "The Equant in India: The Mathematical Basis of Ancient Indian Planetary Models", Archive for History of Exact Sciences 59, p. 563–576.)

    • ^ Bartel Leendert van der Waerden (1987). "The Heliocentric System in Greek, Persian and Hindu Astronomy", Annals of the New York Academy of Sciences 500 (1), 525–545 [534-537].

    • ^ Saliba, George (1994a), "Early Arabic Critique of Ptolemaic Cosmology: A Ninth-Century Text on the Motion of the Celestial Spheres", Journal for the History of Astronomy 25: 115-141 [116]


    Perbaikan:

    Ke-1= 11-11-2009

    Sunday, 14 June 2009

    How Indonesian People Get Nobel Prize in The Future

    Central for Research and Development for Winning


    Nobel Prize in Physics at Indonesia

    Nobel Fisika Indonesia


    (Belajar Kepada Dua Profesor Planck)

    "in recognition of the services he rendered to the advancement of Physics by his discovery of energy quanta"

    "Dalam pengakuannya pada sumbangan untuk kemajuan fisika dengan menemukan energi quanta."


    Max Karl Ernst Ludwig Planck (lahir di Kiel, 23 April 1858 – meninggal di Goettingen, 4 Oktober 1947 pada umur 89 tahun) adalah seorang fisikawan Jerman yang banyak dilihat sebagai penemu teori kuantum.
    Lahir di Kiel, Planck memulai karier fisikanya di Universitas München di tahun 1874, lulus pada tahun 1879 di Berlin. Dia kembali ke München pada tahun 1880 untuk mengajar di universitas itu, dan pindah ke Kiel pada 1885. Di sana ia menikahi Marie Mack pada tahun 1886. Pada tahun 1889, dia pindah ke Berlin, di mana sejak 1892 dia menduduki jabatan teori fisika.

    Pada 1899, dia menemukan sebuah konstanta dasar, yang dinamakan konstanta Planck, dan, sebagai contoh, digunakan untuk menghitung energi foton. Juga pada tahun itu, dia menjelaskan unit Planck yang merupakan unit pengukuran berdasarkan konstanta fisika dasar. Satu tahun kemudian, dia menemukan hukum radiasi panas, yang dinamakan Hukum radiasi badan hitam Planck. Hukum ini menjadi dasar teori kuantum, yang muncul sepuluh tahun kemudian dalam kerja samanya dengan Albert Einstein dan Niels Bohr.

    Dari tahun 1905 sampai 1909, Planck berlaku sebagai kepala Perkumpulan Fisikawan Jerman (Deutsche Physikalische Gesellschaft).

    Istrinya meninggal pada tahun 1909, dan satu tahun kemudian dia menikahi Marga von Hoesslin. Pada tahun 1913, dia menjadi kepala Universitas Berlin. Untuk dasar dari fisika kuantum, dia diberikan penghargaan Nobel bidan fisika pada tahun 1918. Sejak tahun 1930 sampai 1937, Planck adalah kepala Kaiser-Wilhelm-Gesellschaft zur Förderung der Wissenschaften (KWG, Persatuan-Kaisar-Wilhelm untuk peningkatan dalam sains).

    Selama Perang Dunia II, Planck mencoba meyakinkan Adolf Hitler untuk mengampuni ilmuwan Yahudi. Anak Planck, Erwin, dihukum mati pada 20 Juli, 1944, karena pengkhianatan dalam hubungan dengan pencobaan pembunuhan Hitler. Setelah kematian Planck pada 4 Oktober 1947 di Göttingen, KWG diubah namanya menjadi Max-Planck-Gesellschaft zur Förderung der Wissenschaften (MPG, Persatuan-Max-Planck untuk Peningkatan dalam Sains).

    The Genesis and Present State of Development of the Quantum Theory

    If I take it correctly that the duty imposed upon me today is to give a public lecture on my writings, then I believe that this task, the importance of which I am well aware through the gratitude felt towards the noble-minded founder of our Foundation, cannot be more suitably fulfilled than by my trying to give you the story of the origin of the quantum theory in broad outlines and to couple with this, a picture in a small frame, of the development of this theory up to now, and its present-day significance for physics.

    When I look back to the time, already twenty years ago, when the concept and magnitude of the physical quantum of action began, for the first time, to unfold from the mass of experimental facts, and again, to the long and ever tortuous path which led, finally, to its disclosure, the whole development seems to me to provide a fresh illustration of the long-since proved saying of Goethe's that man errs as long as he strives. And the whole strenuous intellectual work of an industrious research worker would appear, after all, in vain and hopeless, if he were not occasionally through some striking facts to find that he had, at the end of all his criss-cross journeys, at last accomplished at least one step which was conclusively nearer the truth. An indispensable hypothesis, even though still far from being a guarantee of success, is however the pursuit of a specific aim, whose lighted beacon, even by initial failures, is not betrayed.

    For many years, such an aim for me was to find the solution to the problem of the distribution of energy in the normal spectrum of radiating heat. Since Gustav Kirchhoff has shown that the state of the heat radiation which takes place in a cavity bounded by any emitting and absorbing substances of uniform temperature is entirely independent upon the nature of the substances, a universal function was demonstrated which was dependent only upon temperature and wavelength, but in no way upon the properties of any substance. And the discovery of this remarkable function promised deeper insight into the connection between energy and temperature which is, in fact, the major problem in thermodynamics and thus in the whole of molecular physics. To attain this there was no other way but to seek out from all the different substances existing in Nature one of known emissive and absorptive power, and to calculate the properties of the heat radiation in stationary energy exchange with it. According to Kirchhoff's Law, this would have to prove independent of the nature of the body.

    Heinrich Hertz's linear oscillator, whose laws of emission, for a given frequency, Hertz had just previously completely developed, seemed to me to be a particularly suitable device for this purpose. If a number of such Hertzian oscillators are set up within a cavity surrounded by a sphere of reflecting walls, then by analogy with audio oscillators and resonators, energy will be exchanged between them by the output and absorption of electromagnetic waves, and finally stationary radiation corresponding to Kirchhoff's Law, the so-called black-body radiation, should be set up within the cavity. I was filled at that time with what would be thought today naively charming and agreeable expectations, that the laws of classical electrodynamics would, if approached in a sufficiently general manner with the avoidance of special hypotheses, be sufficient to enable us to grasp the most significant part of the process to be expected, and thus to achieve the desired aim. I, therefore, developed first the laws of emission and absorption of a linear resonator on the most general basis, in fact I proceeded on such a detour which could well have been avoided had I made use of the existing electron theory of H.A. Lorentz, already basically complete. But since I did not quite trust the electron hypothesis, I preferred to observe that energy which flowed in and out through an enclosing spherical surface around the resonator at a suitable distance from it. By this method, only processes in a pure vacuum came into account, but a knowledge of these was sufficient to draw the necessary conclusions however, about the energy changes in the resonator.

    The fruit of this long series of investigations, of which some, by comparison with existing observations, mainly the vapour measurements by V. Bjerknes, were susceptible to checking, and were thereby confirmed, was the establishment of the general connection between the energy of a resonator of specific natural period of vibration and the energy radiation of the corresponding spectral region in the surrounding field under conditions of stationary energy exchange. The noteworthy result was found that this connection was in no way dependent upon the nature of the resonator, particularly its attenuation constants - a circumstance which I welcomed happily since the whole problem thus became simpler, for instead of the energy of radiation, the energy of the resonator could be taken and, thereby, a complex system, composed of many degrees of freedom, could be replaced by a simple system of one degree of freedom.

    Nevertheless, the result meant no more than a preparatory step towards the initial onslaught on the particular problem which now towered with all its fearsome height even steeper before me. The first attempt upon it went wrong, for my original secret hope that the radiation emitted from the resonator can be in some characteristic way or other distinguished from the absorbed radiation and thereby allow a differential equation to be set up, from the integration of which one could gain some special condition for the properties of stationary radiation, proved false. The resonator reacted only to those rays which it also emitted, and was not in the slightest bit sensitive to the adjacent spectral regions.

    Furthermore, my hypothesis that the resonator could exercise a unilateral, i.e. irreversible, effect upon the energy in the surrounding radiation field, was strongly contested by Ludwig Boltzmann, who, with his riper experience in these problems, proved that according to the laws of classical dynamics each of the processes observed by me can proceed in exactly the opposite direction, in such a way, that a spherical wave emitted from the resonator, returns and contracts in steadily diminishing concentric spherical surfaces inwards to the resonator, and is again absorbed by it, thereby allowing the formerly absorbed energy to be re-transmitted into space in the direction from which it came. And when I excluded this kind of singular process, such as an inwardly directed wave, by means of the introduction of a limiting definition, the hypothesis of natural radiation, all these analyses still showed ever more clearly that an important connecting element or term, essential for the complete grasp of the core of the problem, must be missing.

    So there was nothing left for me but to tackle the problem from the opposite side, that of thermodynamics, in which field I felt, moreover, more confident. In fact my earlier studies of the Second Law of Heat Theory stood me in good stead, so that from the start I tried to get a connection, not between the temperature but rather the entropy of the resonator and its energy, and in fact, not its entropy exactly but the second derivative with respect to the energy since this has a direct physical meaning for the irreversibility of the energy exchange between resonator and radiation. Since I was, however, at that time still too far oriented towards the phenomenological aspect to come to closer quarters with the connection between entropy and probability, I saw myself, at first, relying solely upon the existing results of experience. In the foreground of interest at that time, in 1899, was the energy distribution law established by W. Wien shortly before, whose experimental proof was taken up, on the one hand, by F. Paschen at the Technische Hochschule in Hannover, and, on the other hand, by O. Lummer and E. Pringsheim at the State Institution in Charlottenburg. This law brought out the dependence of the radiation intensity on the temperature, representing it by an exponential function. If one calculates the connection between the entropy and the energy of a resonator, determined by the above law, the remarkable result is obtained that the reciprocal value of the above-mentioned differential coefficient, which I will call R, is proportional to the energy. This extremely simple relationship can be considered as the completely adequate expression of Wien's energy distribution law; for with the dependence upon the energy, the dependence upon the wavelength is always directly given through the general, well-established displacement law by Wien.

    Since the whole problem concerned a universal law of Nature, and since at that time, as still today, I held the unshakeable opinion that the simpler the presentation of a particular law of Nature, the more general it is - though at the same time, which formula to take as the simpler, is a problem which cannot always be confidently and finally decided - I believed for a long time that the law that the quantity R is proportional to the energy, should be looked upon as the basis for the whole energy distribution law. This concept could not be maintained for long in the face of fresh measurements. Whilst for small values of the energy and for short waves, Wien's law was satisfactorily confirmed, noteworthy deviations for larger wavelengths were found, first by O. Lummer and E. Pringsheim, and finally by H. Rubens and F. Kurlbaum, whose measurements on the infrared residual rays of fluorite and rock salt revealed a totally different, though still extremely simple relationship, characterized by the fact that the quantity R is not proportional to the energy, but to the square of the energy, and in fact this holds with increasing accuracy for greater energies and wavelengths.

    So, through direct experiment, two simple limits were determined for the function R: for small energies, proportionality with the energy; for greater energies, proportionality with the square of the energy. There was no better alternative but to make, for the general case, the quantity R equal to the sum of two terms, one of the first power, and one of the second power of the energy, so that for small energies the first is predominant, whilst for the greater energies the second is dominant. Thus the new radiation formula was found, which, in the face of its experimental proof, has stood firm to a reasonable extent until now. Even today, admittedly, we cannot talk of final exact confirmation. In fact, a fresh attempt at proof is urgently required.

    However, even if the radiation formula should prove itself to be absolutely accurate, it would still only have, within the significance of a happily chosen interpolation formula, a strictly limited value. For this reason, I busied myself, from then on, that is, from the day of its establishment, with the task of elucidating a true physical character for the formula, and this problem led me automatically to a consideration of the connection between entropy and probability, that is, Boltzmann's trend of ideas; until after some weeks of the most strenuous work of my life, light came into the darkness, and a new undreamed-of perspective opened up before me.

    I must make a small intercalation at this point. According to Boltzmann, entropy is a measure for physical probability, and the nature and essence of the Second Law of Heat Theory is that in Nature a state occurs more frequently, the more probable it is. Now one always measures in Nature the difference in entropies, never the entropy itself, and to this extent one cannot speak of the absolute entropy of a state, without a certain arbitrariness. Nevertheless, it is useful to introduce the suitably defined absolute value of entropy, namely for the reason that with its help certain general laws can be particularly easily formulated. The case seems to be parallel, as I see it, with that of energy. Energy itself cannot be measured, only its difference. For that reason one used to deal, not with energy, but with work, and even Ernst Mach, who had so much to do with the Law of Conservation of Energy, and who in principle kept away from all speculations beyond the field of observation, has always avoided speaking of energy itself. Likewise, in thermochemistry, one has always stuck to the thermal effect, that is, to energy differences, until Wilhelm Ostwald in particular emphatically showed that many detailed considerations could be significantly abbreviated if one dealt with energy itself instead of with calorimetric numbers. The additive constant which was at first still undetermined in the expression for energy, has later been finally determined through the relativistic law of the proportionality between energy and inertia.

    In a similar way to that for energy, an absolute value can be defined also for entropy and, as a result thereof, for the physical probability too, e.g. by so fixing the additive constant that energy and entropy disappear together. On the basis of a consideration of this kind a specific, relatively simple combinatorial method was obtained for the calculation of the physical probability of a specified energy distribution in a system of resonators, which led exactly to that entropy expression determined by the radiation law, and it brought me much-valued satisfaction for the many disappointments when Ludwig Boltzmann, in the letter returning my essay, expressed his interest and basic agreement with the train of thoughts expounded in it.

    For the numerical treatment of the indicated consideration of probability, knowledge of two universal constants is required, both of which have an independent physical meaning, and whose subsequent evaluation from the law of radiation must provide proof as to whether the whole method is to be looked upon as a mere artifice for calculation, or whether it has an inherent real physical sense and interpretation. The first constant is of a more formal nature and is connected with the definition of temperature. If temperature were to be defined as the average kinetic energy of a molecule in an ideal gas, that is, as a tiny, little quantity, then the constant would have the value 2/3. In conventional temperature measure, on the contrary, the constant has an extremely small value which stands, naturally, in close association with the energy of a single molecule, and an exact knowledge of which leads, therefore, to the calculation of the mass of a molecule and those parameters related to it. This constant is often referred to as Boltzmann's constant, although, to my knowledge, Boltzmann himself never introduced it - a peculiar state of affairs, which can be explained by the fact that Boltzmann, as appears from his occasional utterances, never gave thought to the possibility of carrying out an exact measurement of the constant. Nothing can better illustrate the positive and hectic pace of progress which the art of experimenters has made over the past twenty years, than the fact that since that time, not only one, but a great number of methods have been discovered for measuring the mass of a molecule with practically the same accuracy as that attained for a planet.

    At the time when I carried out the corresponding calculation from the radiation law, an exact proof of the number obtained was quite impossible, and not much more could be done than to determine the order of magnitude which was admissible. It was shortly afterward that E. Rutherford and H. Geiger succeeded in determining, by direct counting of the alpha particles, the value of the electrical elementary charge, which they found to be 4.65 x 10-10 electrostatic units; and the agreement of this figure with the number calculated by me, 4.69 x 10-10, could be taken as decisive confirmation of the usefulness of my theory. Since then, more sophisticated methods have led to a slightly higher value, these measurements being carried out by E. Regener, R.A. Millikan, and others.

    The explanation of the second universal constant of the radiation law was not so easy. Because it represents the product of energy and time (according to the first calculation it was 6.55 x 10-27 erg sec), I described it as the elementary quantum of action. Whilst it was completely indispensable for obtaining the correct expression for entropy - since only with its help could the magnitude of the "elementary regions" or "free rooms for action" of the probability, decisive for the assigned probability consideration, be determined - it proved elusive and resistant to all efforts to fit it into the framework of classical theory. As long as it was looked upon as infinitely small, that is, for large energies or long periods of time, everything went well; but in the general case, however, a gap yawned open in some place or other, which was the more striking, the weaker and faster the vibrations that were considered. The foundering of all efforts to bridge the chasm soon left little doubt. Either the quantum of action was a fictional quantity, then the whole deduction of the radiation law was in the main illusory and represented nothing more than an empty non-significant play on formulae, or the derivation of the radiation law was based on a sound physical conception. In this case the quantum of action must play a fundamental role in physics, and here was something entirely new, never before heard of, which seemed called upon to basically revise all our physical thinking, built as this was, since the establishment of the infinitesimal calculus by Leibniz and Newton, upon the acceptance of the continuity of all causative connections.

    Experiment has decided for the second alternative. That the decision could be made so soon and so definitely was due not to the proving of the energy distribution law of heat radiation, still less to the special derivation of that law devised by me, but rather should it be attributed to the restless forwardthrusting work of those research workers who used the quantum of action to help them in their own investigations and experiments. The first impact in this field was made by A. Einstein who, on the one hand, pointed out that the introduction of the energy quanta, determined by the quantum of action, appeared suitable for obtaining a simple explanation for a series of noteworthy observations during the action of light, such as Stokes' Law, electron emission, and gas ionization, and, on the other hand, derived a formula for the specific heat of a solid body through the identification of the expression for the energy of a system of resonators with that of the energy of a solid body, and this formula expresses, more or less correctly, the changes in specific heat, particularly its reduction with falling temperature. The result was the emergence, in all directions, of a number of problems whose more accurate and extensive elaboration in the course of time brought to light a mass of valuable material. I cannot give here even an approximate report on the abundance of the work carried out. Only the most important and characteristic steps along the path of progressive knowledge can be high-lighted here.

    First come thermal and chemical processes. As far as the specific heat of solid bodies is concerned, Einstein's theory, which rested upon the assumption of a single natural vibration of the atom, was extended by M. Born and Th. von Kármán to the case of various kinds of natural vibrations, which approached more nearly to the truth. P. Debye succeeded, by means of a bold simplification of the stipulations for the character of natural vibrations, in producing a relatively simple formula for the specific heat of solid bodies which, particularly for low temperatures, not only satisfactorily reproduces the measurements obtained by W. Nernst and his pupils, but is also compatible with the elastic and optical properties of these substances. The quantum of action also comes to the fore in considering the specific heat of gases. W. Nernst had earlier suggested that to the quantum of energy of a vibration there must also correspond a quantum of energy of a rotation, and accordingly it was to be expected that the rotational energy of the gas molecules would disappear with falling temperature. The measurements by A. Eucken on the specific heat of hydrogen confirmed this conclusion, and if the calculations of A. Einstein and O. Stern, P. Ehrenfest and others have not until now afforded any completely satisfactory agreement, this lies understandably in our, as yet, incomplete knowledge of the model of a hydrogen molecule. The fact that the rotations of the gas molecules, as specified by quantum conditions, do really exist in Nature, can no longer be doubted in view of the work on absorption bands in the infrared by N. Bjerrum, E. von Bahr, H. Rubens, G. Hetmer and others, even though it has not been possible to give an all-round exhaustive explanation of this remarkable rotation spectra up to now.

    Since, ultimately, all affinity properties of a substance are determined by its entropy, the quantum-theoretical calculation of the entropy opens up the way to all the problems of chemical relationships. The Nemst chemical constant, which O. Sackur calculated directly through a combinatorial method as applied to oscillators, is characteristic for the absolute value of the entropy of a gas. H. Tetrode, in close association with the data to be obtained by measurement, determined the difference in entropy values between vapour and solid state by studying an evaporation process.

    Whilst in the cases so far considered, states of thermodynamic equilibrium are concerned, for which therefore the measurements can only yield statistically average values relating to many particles and lengthy periods of time, the observation of electron impacts leads directly to the dynamic details of the process under examination. Thus the determination of the so-called resonance potential carried out by J. Franck and G. Hertz, or that concerning the critical velocity is the minimum an electron must possess in order to cause emission of a light quantum or photon by impact with a neutral atom, supplied a method of measuring the quantum of action which was as direct as could be wished for. The experiments by D.L. Webster and E. Wagner and others resulted in the development of methods suitable for the Röntgen spectrum which also gave completely compatible results.

    The production of photons by electron impact appears as the reverse process to that of electron emission through irradiation by light-, Röntgen-, or gamma-rays and again here, the energy quanta, determined by the quantum of action and by the vibration frequency, play a characteristic role, as could be recognized, already at an early time, from the striking fact that the velocity of the emitted electrons is not determined by the intensity of radiation, but only by the colour of the light incident upon the substance. Also from the quantitative aspect, Einstein's equations with respect to the light quantum have proved true in every way, as established by R.A. Millikan, in particular, by measurements of the escape velocity of emitted electrons, whilst the significance of the photon for the initiation of photochemical reactions was discovered by E. Warburg.
    If the various experiments and experiences gathered together by me up to now, from the different fields of physics, provide impressive proof in favour of the existence of the quantum of action, the quantum hypothesis has, nevertheless, its greatest support from the establishment and development of the atom theory by Niels Bohr. For it fell to this theory to discover, in the quantum of action, the long-sought key to the entrance gate into the wonderland of spectroscopy, which since the discovery of spectral analysis had obstinately defied all efforts to breach it. And now that the way was opened, a sudden flood of new-won knowledge poured out over the whole field including the neighbouring fields in physics and chemistry. The first brilliant acquisition was the derivation of Balmer's series formula for hydrogen and helium including the reduction of the universal Rydberg constant to merely known numerical quantities, whereby even the small discrepancies for hydrogen and helium were recognized as essentially determined by the weak motion of the heavy atom nucleus. Investigation then turned to other series in the optical and the Röntgen spectrum using the extremely fruitful Ritz combination principle, which was at last revealed clearly in all its fundamental significance.

    Whoever, in view of the numerous agreements which in the case of the special accuracy of spectroscopic measurements could lay claim to particularly striking confirmatory power, might have been still inclined to feel that it was all attributable to the play of chance, would been forced, finally, to discard even his last doubt, as A. Sommerfeld showed that from a logical extension of the laws of quantum distribution in systems with several degrees of freedom, and out of consideration of the variability of the inertial mass in accordance with the relativity theory, that magic formula arose before which both the hydrogen and the helium spectrum had to reveal the riddle of their fine structure, to such an extent that the finest present-day measurements, those of F. Paschen, could be explained generally through it - an achievement fully comparable with that of the famous discovery of the planet Neptune whose existence and orbit was calculated by Leverrier before the human eye had seen it. Progressing further along the same path, P. Epstein succeeded in fully explaining the Stark effect of the electrical splitting up of the spectral lines, P. Debye produced a simple explanation of the K-series of the Röntgen spectrum, which had been investigated by Manne Siegbahn, and now followed a great number of further experiments, which illuminated with more or less success the dark secrets of the construction of the atom.

    After all these results, towards whose complete establishment still many reputable names ought essentially to have been mentioned here, there is no other decision left for a critic who does not intend to resist the facts, than to award to the quantum of action, which by each different process in the colourful show of processes, has ever-again yielded the same result, namely, 6.52 x 10-27 erg sec, for its magnitude, full citizenship in the system of universal physical constants. It must certainly appear a unique coincidence that just in that time when the ideas of general relativity have broken through, and have led to fantastic results, Nature should have revealed an "absolute" in a place where it could be least expected, an invariable unit, in fact, by means of which the action quantity, contained in a space-time element, can be represented by a completely definite non-arbitrary number, and thereby divested itself of its (until now) relative character.

    To be sure, the introduction of the quantum of action has not yet produced a genuine quantum theory. In fact, the path the research worker must yet tread to it is not less than that from the discovery of the velocity of light by Olaf Römer to the establishment of Maxwell's theory of light. The difficulties which the introduction of the quantum of action into the well-tried classical theory has posed right from the start have already been mentioned by me. During the course of the years they have increased rather than diminished, and if, in the meantime, the impetuous forward-driving research has passed to the order of the day for some of these, temporarily, the gaps left behind, awaiting subsequent filling, react even harder upon the conscientious systematologist. What serves in Bohr's theory as a basis to build up the laws of action, is assembled out of specific hypotheses which, up to a generation ago, would undoubtedly have been flatly rejected altogether by every physicist. The fact that in the atom, certain quite definite quantum-selected orbits play a special role, might be taken still as acceptable, less easily however, that the electrons, circulating in these orbits with definite acceleration, radiate no energy at all. The fact that the quite sharply defined frequency of an emitted photon should be different from the frequency of the emitting electron must seem to a theoretical physicist, brought up in the classical school, at first sight to be a monstrous and, for the purpose of a mental picture, a practically intolerable demand.

    But numbers decide, and the result is that the roles, compared with earlier times, have gradually changed. What initially was a problem of fitting a new and strange element, with more or less gentle pressure, into what was generally regarded as a fixed frame has become a question of coping with an intruder who, after appropriating an assured place, has gone over to the offensive; and today it has become obvious that the old framework must somehow or other be burst asunder. It is merely a question of where and to what degree. If one may make a conjecture about the expected escape from this tight comer, then one could remark that all the signs suggest that the main principles of thermodynamics from the classical theory will not only rule unchallenged but will more probably become correspondingly extended. What the armchair experiments meant for the foundation of classical thermodynamics, the adiabatic hypothesis of P. Ehrenfest means, provisionally, to the quantum theory; and in the same way as R. Clausius, as a starting point for the measurement of entropy, introduced the principle that, when treated appropriately, any two states of a material system can, by a reversible process, undergo a transition from one to the other, now the new ideas of Bohr's open up a very similar path into the interior of a wonderland hitherto hidden from him.

    There is in particular one problem whose exhaustive solution could provide considerable elucidation. What becomes of the energy of a photon after complete emission? Does it spread out in all directions with further propagation in the sense of Huygens' wave theory, so constantly taking up more space, in boundless progressive attenuation? Or does it fly out like a projectile in one direction in the sense of Newton's emanation theory? In the first case, the quantum would no longer be in the position to concentrate energy upon a single point in space in such a way as to release an electron from its atomic bond, and in the second case, the main triumph of the Maxwell theory - the continuity between the static and the dynamic fields and, with it, the complete understanding we have enjoyed, until now, of the fully investigated interference phenomena - would have to be sacrificed, both being very unhappy consequences for today's theoreticians.

    Be that as it may, in any case no doubt can arise that science will master the dilemma, serious as it is, and that which appears today so unsatisfactory will in fact eventually, seen from a higher vantage point, be distinguished by its special harmony and simplicity. Until this aim is achieved, the problem of the quantum of action will not cease to inspire research and fructify it, and the greater the difficulties which oppose its solution, the more significant it finally will show itself to be for the broadening and deepening of our whole knowledge in physics.
    From Nobel Lectures, Physics 1901-1921, Elsevier Publishing Company, Amsterdam, 1967

    Copyright © The Nobel Foundation 1918

    Sumber:
    1. Wikipedia
    2. Nobel Prize Org.

    Ucapan Terima Kasih:

    1. DEPDIKNAS Republik Indonesia
    2. Kementrian Riset dan Teknologi Indonesia
    3. Lembaga Ilmu Pengetahuan Indonesia (LIPI)
    4. Akademi Ilmu Pengetahuan Indonesia
    5. Tim Olimpiade Fisika Indonesia
    Disusun Ulang Oleh: 
    Arip Nurahman

    Pendidikan Fisika, FPMIPA, Universitas Pendidikan Indonesia
    &
    Follower Open Course Ware at MIT-Harvard University, USA.
    Semoga Bermanfaat dan Terima Kasih