Saturday, September 11, 2021

Arduino Nano RP2040 Connect (Arduino Framework) + ST7789 SPI LCD, using Adafruit ST7735 and ST7789 Library.

This video show how to install "Adafruit ST7735 and ST7789 Library" on Arduino IDE, tested with Arduino Nano RP2040 Connect to display on 1.54 inch 240x240 and 2 inch 240x320 ST7789 SPI LCD, using hardware SPI and software SPI.

Connection:

Connection between ST7789 SPI to Arduino Nano RP2040 Connect,
using HARDWARE SPI.

ST7789 SPI	Arduino Nano RP2040 Connect
GND		GND
VCC		3V3
SCL		13
SDA		11
RES		9
DC		8
CS		10
BLK		3V3


Connection between ST7789 SPI to Arduino Nano RP2040 Connect,
using SOFTWARE SPI.

ST7789 SPI	Arduino Nano RP2040 Connect
GND		GND
VCC		3V3
SCL		6
SDA		7
RES		9
DC		8
CS		10
BLK		3V3

graphicstest_NanoRP2040_ST7789_240x320_softSPI.ino, modified from graphicstest, to work on Arduino Nano RP2040 Connect, display on 240x320 ST7789 SPI LCD using software SPI.
/**************************************************************************
  This is a library for several Adafruit displays based on ST77* drivers.

  Works with the Adafruit 1.8" TFT Breakout w/SD card
    ----> http://www.adafruit.com/products/358
  The 1.8" TFT shield
    ----> https://www.adafruit.com/product/802
  The 1.44" TFT breakout
    ----> https://www.adafruit.com/product/2088
  The 1.14" TFT breakout
  ----> https://www.adafruit.com/product/4383
  The 1.3" TFT breakout
  ----> https://www.adafruit.com/product/4313
  The 1.54" TFT breakout
    ----> https://www.adafruit.com/product/3787
  The 1.69" TFT breakout
    ----> https://www.adafruit.com/product/5206
  The 2.0" TFT breakout
    ----> https://www.adafruit.com/product/4311
  as well as Adafruit raw 1.8" TFT display
    ----> http://www.adafruit.com/products/618

  Check out the links above for our tutorials and wiring diagrams.
  These displays use SPI to communicate, 4 or 5 pins are required to
  interface (RST is optional).

  Adafruit invests time and resources providing this open source code,
  please support Adafruit and open-source hardware by purchasing
  products from Adafruit!

  Written by Limor Fried/Ladyada for Adafruit Industries.
  MIT license, all text above must be included in any redistribution
 **************************************************************************/

#include <Adafruit_GFX.h>    // Core graphics library
#include <Adafruit_ST7735.h> // Hardware-specific library for ST7735
#include <Adafruit_ST7789.h> // Hardware-specific library for ST7789
#include <SPI.h>

#if defined(ARDUINO_FEATHER_ESP32) // Feather Huzzah32
  #define TFT_CS         14
  #define TFT_RST        15
  #define TFT_DC         32

#elif defined(ESP8266)
  #define TFT_CS         4
  #define TFT_RST        16                                            
  #define TFT_DC         5

#else
  // For the breakout board, you can use any 2 or 3 pins.
  // These pins will also work for the 1.8" TFT shield.
  #define TFT_CS        10
  #define TFT_RST        9 // Or set to -1 and connect to Arduino RESET pin
  #define TFT_DC         8
#endif

// OPTION 1 (recommended) is to use the HARDWARE SPI pins, which are unique
// to each board and not reassignable. For Arduino Uno: MOSI = pin 11 and
// SCLK = pin 13. This is the fastest mode of operation and is required if
// using the breakout board's microSD card.

// For 1.44" and 1.8" TFT with ST7735 use:
//Adafruit_ST7735 tft = Adafruit_ST7735(TFT_CS, TFT_DC, TFT_RST);

// For 1.14", 1.3", 1.54", 1.69", and 2.0" TFT with ST7789:
//Adafruit_ST7789 tft = Adafruit_ST7789(TFT_CS, TFT_DC, TFT_RST);


// OPTION 2 lets you interface the display using ANY TWO or THREE PINS,
// tradeoff being that performance is not as fast as hardware SPI above.
#define TFT_MOSI 7  // Data out
#define TFT_SCLK 6  // Clock out

// For ST7735-based displays, we will use this call
//Adafruit_ST7735 tft = Adafruit_ST7735(TFT_CS, TFT_DC, TFT_MOSI, TFT_SCLK, TFT_RST);

// OR for the ST7789-based displays, we will use this call
Adafruit_ST7789 tft = Adafruit_ST7789(TFT_CS, TFT_DC, TFT_MOSI, TFT_SCLK, TFT_RST);


float p = 3.1415926;

void setup(void) {
  Serial.begin(9600);
  Serial.print(F("Hello! ST77xx TFT Test"));

  // Use this initializer if using a 1.8" TFT screen:
  //tft.initR(INITR_BLACKTAB);      // Init ST7735S chip, black tab

  // OR use this initializer if using a 1.8" TFT screen with offset such as WaveShare:
  // tft.initR(INITR_GREENTAB);      // Init ST7735S chip, green tab

  // OR use this initializer (uncomment) if using a 1.44" TFT:
  //tft.initR(INITR_144GREENTAB); // Init ST7735R chip, green tab

  // OR use this initializer (uncomment) if using a 0.96" 160x80 TFT:
  //tft.initR(INITR_MINI160x80);  // Init ST7735S mini display

  // OR use this initializer (uncomment) if using a 1.3" or 1.54" 240x240 TFT:
  //tft.init(240, 240);           // Init ST7789 240x240

  // OR use this initializer (uncomment) if using a 1.69" 280x240 TFT:
  //tft.init(240, 280);           // Init ST7789 280x240

  // OR use this initializer (uncomment) if using a 2.0" 320x240 TFT:
  tft.init(240, 320);           // Init ST7789 320x240

  // OR use this initializer (uncomment) if using a 1.14" 240x135 TFT:
  //tft.init(135, 240);           // Init ST7789 240x135
  
  // SPI speed defaults to SPI_DEFAULT_FREQ defined in the library, you can override it here
  // Note that speed allowable depends on chip and quality of wiring, if you go too fast, you
  // may end up with a black screen some times, or all the time.
  //tft.setSPISpeed(40000000);

  Serial.println(F("Initialized"));

  uint16_t time = millis();
  tft.fillScreen(ST77XX_BLACK);
  time = millis() - time;

  Serial.println(time, DEC);
  delay(500);

  // large block of text
  tft.fillScreen(ST77XX_BLACK);
  testdrawtext("Lorem ipsum dolor sit amet, consectetur adipiscing elit. Curabitur adipiscing ante sed nibh tincidunt feugiat. Maecenas enim massa, fringilla sed malesuada et, malesuada sit amet turpis. Sed porttitor neque ut ante pretium vitae malesuada nunc bibendum. Nullam aliquet ultrices massa eu hendrerit. Ut sed nisi lorem. In vestibulum purus a tortor imperdiet posuere. ", ST77XX_WHITE);
  delay(1000);

  // tft print function!
  tftPrintTest();
  delay(4000);

  // a single pixel
  tft.drawPixel(tft.width()/2, tft.height()/2, ST77XX_GREEN);
  delay(500);

  // line draw test
  testlines(ST77XX_YELLOW);
  delay(500);

  // optimized lines
  testfastlines(ST77XX_RED, ST77XX_BLUE);
  delay(500);

  testdrawrects(ST77XX_GREEN);
  delay(500);

  testfillrects(ST77XX_YELLOW, ST77XX_MAGENTA);
  delay(500);

  tft.fillScreen(ST77XX_BLACK);
  testfillcircles(10, ST77XX_BLUE);
  testdrawcircles(10, ST77XX_WHITE);
  delay(500);

  testroundrects();
  delay(500);

  testtriangles();
  delay(500);

  mediabuttons();
  delay(500);

  Serial.println("done");
  delay(1000);
}

void loop() {
  tft.invertDisplay(true);
  delay(500);
  tft.invertDisplay(false);
  delay(500);
}

void testlines(uint16_t color) {
  tft.fillScreen(ST77XX_BLACK);
  for (int16_t x=0; x < tft.width(); x+=6) {
    tft.drawLine(0, 0, x, tft.height()-1, color);
    delay(0);
  }
  for (int16_t y=0; y < tft.height(); y+=6) {
    tft.drawLine(0, 0, tft.width()-1, y, color);
    delay(0);
  }

  tft.fillScreen(ST77XX_BLACK);
  for (int16_t x=0; x < tft.width(); x+=6) {
    tft.drawLine(tft.width()-1, 0, x, tft.height()-1, color);
    delay(0);
  }
  for (int16_t y=0; y < tft.height(); y+=6) {
    tft.drawLine(tft.width()-1, 0, 0, y, color);
    delay(0);
  }

  tft.fillScreen(ST77XX_BLACK);
  for (int16_t x=0; x < tft.width(); x+=6) {
    tft.drawLine(0, tft.height()-1, x, 0, color);
    delay(0);
  }
  for (int16_t y=0; y < tft.height(); y+=6) {
    tft.drawLine(0, tft.height()-1, tft.width()-1, y, color);
    delay(0);
  }

  tft.fillScreen(ST77XX_BLACK);
  for (int16_t x=0; x < tft.width(); x+=6) {
    tft.drawLine(tft.width()-1, tft.height()-1, x, 0, color);
    delay(0);
  }
  for (int16_t y=0; y < tft.height(); y+=6) {
    tft.drawLine(tft.width()-1, tft.height()-1, 0, y, color);
    delay(0);
  }
}

void testdrawtext(char *text, uint16_t color) {
  tft.setCursor(0, 0);
  tft.setTextColor(color);
  tft.setTextWrap(true);
  tft.print(text);
}

void testfastlines(uint16_t color1, uint16_t color2) {
  tft.fillScreen(ST77XX_BLACK);
  for (int16_t y=0; y < tft.height(); y+=5) {
    tft.drawFastHLine(0, y, tft.width(), color1);
  }
  for (int16_t x=0; x < tft.width(); x+=5) {
    tft.drawFastVLine(x, 0, tft.height(), color2);
  }
}

void testdrawrects(uint16_t color) {
  tft.fillScreen(ST77XX_BLACK);
  for (int16_t x=0; x < tft.width(); x+=6) {
    tft.drawRect(tft.width()/2 -x/2, tft.height()/2 -x/2 , x, x, color);
  }
}

void testfillrects(uint16_t color1, uint16_t color2) {
  tft.fillScreen(ST77XX_BLACK);
  for (int16_t x=tft.width()-1; x > 6; x-=6) {
    tft.fillRect(tft.width()/2 -x/2, tft.height()/2 -x/2 , x, x, color1);
    tft.drawRect(tft.width()/2 -x/2, tft.height()/2 -x/2 , x, x, color2);
  }
}

void testfillcircles(uint8_t radius, uint16_t color) {
  for (int16_t x=radius; x < tft.width(); x+=radius*2) {
    for (int16_t y=radius; y < tft.height(); y+=radius*2) {
      tft.fillCircle(x, y, radius, color);
    }
  }
}

void testdrawcircles(uint8_t radius, uint16_t color) {
  for (int16_t x=0; x < tft.width()+radius; x+=radius*2) {
    for (int16_t y=0; y < tft.height()+radius; y+=radius*2) {
      tft.drawCircle(x, y, radius, color);
    }
  }
}

void testtriangles() {
  tft.fillScreen(ST77XX_BLACK);
  uint16_t color = 0xF800;
  int t;
  int w = tft.width()/2;
  int x = tft.height()-1;
  int y = 0;
  int z = tft.width();
  for(t = 0 ; t <= 15; t++) {
    tft.drawTriangle(w, y, y, x, z, x, color);
    x-=4;
    y+=4;
    z-=4;
    color+=100;
  }
}

void testroundrects() {
  tft.fillScreen(ST77XX_BLACK);
  uint16_t color = 100;
  int i;
  int t;
  for(t = 0 ; t <= 4; t+=1) {
    int x = 0;
    int y = 0;
    int w = tft.width()-2;
    int h = tft.height()-2;
    for(i = 0 ; i <= 16; i+=1) {
      tft.drawRoundRect(x, y, w, h, 5, color);
      x+=2;
      y+=3;
      w-=4;
      h-=6;
      color+=1100;
    }
    color+=100;
  }
}

void tftPrintTest() {
  tft.setTextWrap(false);
  tft.fillScreen(ST77XX_BLACK);
  tft.setCursor(0, 30);
  tft.setTextColor(ST77XX_RED);
  tft.setTextSize(1);
  tft.println("Hello World!");
  tft.setTextColor(ST77XX_YELLOW);
  tft.setTextSize(2);
  tft.println("Hello World!");
  tft.setTextColor(ST77XX_GREEN);
  tft.setTextSize(3);
  tft.println("Hello World!");
  tft.setTextColor(ST77XX_BLUE);
  tft.setTextSize(4);
  tft.print(1234.567);
  delay(1500);
  tft.setCursor(0, 0);
  tft.fillScreen(ST77XX_BLACK);
  tft.setTextColor(ST77XX_WHITE);
  tft.setTextSize(0);
  tft.println("Hello World!");
  tft.setTextSize(1);
  tft.setTextColor(ST77XX_GREEN);
  tft.print(p, 6);
  tft.println(" Want pi?");
  tft.println(" ");
  tft.print(8675309, HEX); // print 8,675,309 out in HEX!
  tft.println(" Print HEX!");
  tft.println(" ");
  tft.setTextColor(ST77XX_WHITE);
  tft.println("Sketch has been");
  tft.println("running for: ");
  tft.setTextColor(ST77XX_MAGENTA);
  tft.print(millis() / 1000);
  tft.setTextColor(ST77XX_WHITE);
  tft.print(" seconds.");
}

void mediabuttons() {
  // play
  tft.fillScreen(ST77XX_BLACK);
  tft.fillRoundRect(25, 10, 78, 60, 8, ST77XX_WHITE);
  tft.fillTriangle(42, 20, 42, 60, 90, 40, ST77XX_RED);
  delay(500);
  // pause
  tft.fillRoundRect(25, 90, 78, 60, 8, ST77XX_WHITE);
  tft.fillRoundRect(39, 98, 20, 45, 5, ST77XX_GREEN);
  tft.fillRoundRect(69, 98, 20, 45, 5, ST77XX_GREEN);
  delay(500);
  // play color
  tft.fillTriangle(42, 20, 42, 60, 90, 40, ST77XX_BLUE);
  delay(50);
  // pause color
  tft.fillRoundRect(39, 98, 20, 45, 5, ST77XX_RED);
  tft.fillRoundRect(69, 98, 20, 45, 5, ST77XX_RED);
  // play color
  tft.fillTriangle(42, 20, 42, 60, 90, 40, ST77XX_GREEN);
}


Thursday, July 8, 2021

Change Arduino IDE Tab size, by editing preferences.txt.

This video show how to locate Arduino IDE's preferences.txt, and edit it to change Arduino Editor Tab size.

Wednesday, June 30, 2021

UDP communication between Raspberry Pi/Python and Arduino Nano RP2040 Connect.

This exercise run on Raspberry Pi/Python and Arduino Nano RP2040 Connect, communicate in UDP.

WiFiNINA is needed, install it in Arduino IDE's Library Manager. 

Exercise 1: Simple UDP example.

With WiFiNINA installed and board of Arduino Nano RP2040 Connect selected, you can load WiFiNINA example WiFiUdpSendReceiveString. Remember to update ssid and password in arduino_secrets.h to match your WiFi network. Upload it to Nano RP2040, open Serial Monitor, it will connect to the WiFi network. Check the ip show in Serial Monitor.

In Raspberry Pi side, run the Python code with matched UDP_IP; simple send message to nano RP2040 via UDP.

pyUDP_client_20210630.py
# ref:
# https://wiki.python.org/moin/UdpCommunication
import socket

#UDP_IP = "127.0.0.1"
#UDP_PORT = 5005
UDP_IP = "192.168.197.39"
UDP_PORT = 2390
MESSAGE = b"Hello, World!"

print("UDP target IP: %s" % UDP_IP)
print("UDP target port: %s" % UDP_PORT)
print("message: %s" % MESSAGE)

sock = socket.socket(socket.AF_INET, # Internet
                     socket.SOCK_DGRAM) # UDP
sock.sendto(MESSAGE, (UDP_IP, UDP_PORT))

Exercise 2: With GUI using PyQt5

Keep WiFiUdpSendReceiveString run on Nano RP2040.

In Raspberry Pi side, run following code with GUI.

pyQt5_UDP_client_20210630.py
import sys
from pkg_resources import require

from PyQt5.QtWidgets import (QApplication, QWidget, QLabel,
                             QTextEdit, QPushButton,
                             QVBoxLayout, QMessageBox)
from PyQt5.QtGui import QFont

from PyQt5.QtNetwork import QUdpSocket, QHostAddress

UDP_IP = "192.168.197.39"
UDP_PORT = 2390

print("Python version")
print(sys.version)
print()

class AppWindow(QWidget):
    
    def __init__(self):
        super().__init__()
        
        self.sock = QUdpSocket(self)
        self.sock.bind(QHostAddress(UDP_PORT), UDP_PORT)
        self.sock.readyRead.connect(self.sock_readyRead_slot)
        
        lbAppTitle = QLabel('Python UDP Client to send msg')
        lbAppTitle.setFont(QFont('Anton', 15, QFont.Bold))
        lbSysInfo = QLabel('Python:\n' + sys.version)
        vboxInfo = QVBoxLayout()
        vboxInfo.addWidget(lbAppTitle)
        vboxInfo.addWidget(lbSysInfo)
        
        self.edMsg = QTextEdit()
        btnSend = QPushButton("Send")
        btnSend.clicked.connect(self.btnSend_Clicked)
        vboxMsg = QVBoxLayout()
        vboxMsg.addWidget(self.edMsg)
        vboxMsg.addWidget(btnSend)
        
        vboxMain = QVBoxLayout()
        vboxMain.addLayout(vboxInfo)
        vboxMain.addLayout(vboxMsg)
        vboxMain.addStretch()
        self.setLayout(vboxMain)
        
        self.setGeometry(100, 100, 500,400)
        self.show()
        
    def sock_readyRead_slot(self):
        while self.sock.hasPendingDatagrams():
            datagram, host, port = self.sock.readDatagram(
                self.sock.pendingDatagramSize()
            )
            
            print("rx:")
            message = '{}\nHost: {}\nPort: {}\n\n'.format(datagram.decode(),
                                                          host.toString(),
                                                          port)

            print(message)
            print()
        
    def btnSend_Clicked(self):
        msgToSend = self.edMsg.toPlainText()
        print("tx:")
        print(msgToSend)
        print()
        
        datagram = msgToSend.encode()
        self.sock.writeDatagram(datagram, QHostAddress(UDP_IP), UDP_PORT)
        
    def closeEvent(self, event):
        close = QMessageBox.question(
            self,
            "QUIT",
            "Close Application?",
            QMessageBox.Yes | QMessageBox.No)
        if close == QMessageBox.Yes:
            print("Close")
            event.accept()
        else:
            event.ignore()

if __name__ == '__main__':
    print('run __main__')
    app = QApplication(sys.argv)
    window = AppWindow()
    sys.exit(app.exec_())

print("- bye -")

Exercise 3: Raspberry Pi/Python remote control Nano RP2040 onboard RGB LED via UDP.

In Nano RP2040, modify to control onboard RGB LED base on incoming command: start with "#RGB", follow with three bytes for R, G and B.
WiFiUdp_RGB__20210630.ino
/*
  WiFi UDP to control Nano RP2040 Connect onboard RGB
 */
#include <SPI.h>
#include <WiFiNINA.h>
#include <WiFiUdp.h>

int status = WL_IDLE_STATUS;
#include "arduino_secrets.h" 
///////please enter your sensitive data in the Secret tab/arduino_secrets.h
char ssid[] = SECRET_SSID;  // your network SSID (name)
char pass[] = SECRET_PASS;  // your network password (use for WPA, or use as key for WEP)
int keyIndex = 0;           // your network key index number (needed only for WEP)

unsigned int localPort = 2390;      // local port to listen on

char packetBuffer[256]; //buffer to hold incoming packet
char  ReplyBuffer[] = "acknowledged";       // a string to send back

WiFiUDP Udp;

void setup() {
  //Initialize serial and wait for port to open:
  Serial.begin(9600);

  pinMode(LEDR, OUTPUT);
  pinMode(LEDG, OUTPUT);
  pinMode(LEDB, OUTPUT);

  analogWrite(LEDR, 0);
  analogWrite(LEDG, 0);
  analogWrite(LEDB, 0);
  
  while (!Serial) {
    ; // wait for serial port to connect. Needed for native USB port only
  }
  analogWrite(LEDR, 255);
  analogWrite(LEDG, 255);
  analogWrite(LEDB, 255);

  // check for the WiFi module:
  if (WiFi.status() == WL_NO_MODULE) {
    Serial.println("Communication with WiFi module failed!");
    // don't continue
    while (true);
  }

  String fv = WiFi.firmwareVersion();
  if (fv < WIFI_FIRMWARE_LATEST_VERSION) {
    Serial.println("Please upgrade the firmware");
  }

  // attempt to connect to WiFi network:
  while (status != WL_CONNECTED) {
    Serial.print("Attempting to connect to SSID: ");
    Serial.println(ssid);
    // Connect to WPA/WPA2 network. Change this line if using open or WEP network:
    status = WiFi.begin(ssid, pass);

    // wait 10 seconds for connection:
    delay(10000);
  }
  Serial.println("Connected to WiFi");
  printWifiStatus();

  Serial.println("\nStarting connection to server...");
  // if you get a connection, report back via serial:
  Udp.begin(localPort);

  analogWrite(LEDR, 0);
  analogWrite(LEDG, 0);
  analogWrite(LEDB, 0);
}

void loop() {

  // if there's data available, read a packet
  int packetSize = Udp.parsePacket();
  if (packetSize) {
    Serial.print("Received packet of size ");
    Serial.println(packetSize);
    Serial.print("From ");
    IPAddress remoteIp = Udp.remoteIP();
    Serial.print(remoteIp);
    Serial.print(", port ");
    Serial.println(Udp.remotePort());

    // read the packet into packetBufffer
    int len = Udp.read(packetBuffer, 255);
    if (len > 0) {
      packetBuffer[len] = 0;
    }
    Serial.println("Contents:");
    Serial.println(packetBuffer);

    // send a reply, to the IP address and port that sent us the packet we received
    Udp.beginPacket(Udp.remoteIP(), Udp.remotePort());
    Udp.write(ReplyBuffer);
    Udp.endPacket();

    String cmd = String(packetBuffer);
    if(cmd.startsWith("#RGB")){
      Serial.println("CMD: #RGB");
      int valR = (int)(packetBuffer[4]);
      int valG = (int)(packetBuffer[5]);
      int valB = (int)(packetBuffer[6]);
      Serial.println("R: " + String(valR));
      Serial.println("G: " + String(valG));
      Serial.println("B: " + String(valB));

      analogWrite(LEDR, 255-valR);
      analogWrite(LEDG, 255-valG);
      analogWrite(LEDB, 255-valB);
    }else{
      Serial.println("NOT MATCH");
    }

  }
}


void printWifiStatus() {
  // print the SSID of the network you're attached to:
  Serial.print("SSID: ");
  Serial.println(WiFi.SSID());

  // print your board's IP address:
  IPAddress ip = WiFi.localIP();
  Serial.print("IP Address: ");
  Serial.println(ip);

  // print the received signal strength:
  long rssi = WiFi.RSSI();
  Serial.print("signal strength (RSSI):");
  Serial.print(rssi);
  Serial.println(" dBm");
}

In Raspberry Pi side:

pyQt5_UDP_client_RGB_20210630.py
import sys
from pkg_resources import require

from PyQt5.QtCore import Qt
from PyQt5.QtWidgets import (QApplication, QWidget, QLabel,
                             QSlider, QPushButton,
                             QVBoxLayout, QHBoxLayout, QMessageBox)
from PyQt5.QtGui import QFont

from PyQt5.QtNetwork import QUdpSocket, QHostAddress

UDP_IP = "192.168.197.39"
UDP_PORT = 2390

print("Python version")
print(sys.version)
print()

class AppWindow(QWidget):
    
    def __init__(self):
        super().__init__()
        
        self.sock = QUdpSocket(self)
        self.sock.bind(QHostAddress(UDP_PORT), UDP_PORT)
        self.sock.readyRead.connect(self.sock_readyRead_slot)
        
        lbAppTitle = QLabel('Python UDP Client to control RGB')
        lbAppTitle.setFont(QFont('Anton', 15, QFont.Bold))
        lbSysInfo = QLabel('Python:\n' + sys.version)
        vboxInfo = QVBoxLayout()
        vboxInfo.addWidget(lbAppTitle)
        vboxInfo.addWidget(lbSysInfo)

        
        lbR = QLabel(' R: ')
        self.sliderR = QSlider(Qt.Horizontal, self)
        self.sliderR.setRange(0, 255)
        self.sliderR.valueChanged.connect(self.sliderRGB_valueChanged_slot)
        boxR = QHBoxLayout()
        boxR.addWidget(lbR)
        boxR.addWidget(self.sliderR)
        
        lbG = QLabel(' G: ')
        self.sliderG = QSlider(Qt.Horizontal, self)
        self.sliderG.setRange(0, 255)
        self.sliderG.valueChanged.connect(self.sliderRGB_valueChanged_slot)
        boxG = QHBoxLayout()
        boxG.addWidget(lbG)
        boxG.addWidget(self.sliderG)
        
        lbB = QLabel(' B: ')
        self.sliderB = QSlider(Qt.Horizontal, self)
        self.sliderB.setRange(0, 255)
        self.sliderB.valueChanged.connect(self.sliderRGB_valueChanged_slot)
        boxB = QHBoxLayout()
        boxB.addWidget(lbB)
        boxB.addWidget(self.sliderB)
        
        boxRGB = QVBoxLayout()
        boxRGB.addLayout(boxR)
        boxRGB.addLayout(boxG)
        boxRGB.addLayout(boxB)
        
        btnSend = QPushButton("Update")
        btnSend.clicked.connect(self.btnSend_Clicked)
        vboxMsg = QVBoxLayout()
        vboxMsg.addLayout(boxRGB)
        vboxMsg.addWidget(btnSend)
        
        vboxMain = QVBoxLayout()
        vboxMain.addLayout(vboxInfo)
        vboxMain.addLayout(vboxMsg)
        vboxMain.addStretch()
        self.setLayout(vboxMain)
        
        self.setGeometry(100, 100, 500,400)
        self.show()
        
    def sock_readyRead_slot(self):
        while self.sock.hasPendingDatagrams():
            datagram, host, port = self.sock.readDatagram(
                self.sock.pendingDatagramSize()
            )
            
            print("rx:")
            message = '{}\nHost: {}\nPort: {}\n\n'.format(datagram.decode(),
                                                          host.toString(),
                                                          port)

            print(message)
            print()
        
    def btnSend_Clicked(self):
        print("tx:")
        
        valueR = self.sliderR.value()
        valueG = self.sliderG.value()
        valueB = self.sliderB.value()
        
        CMD_RGB = "#RGB"
        bCMD_RGB = str.encode(CMD_RGB) + bytes([valueR, valueG, valueB])
        print(type(bCMD_RGB))
        print("CMD: ", bCMD_RGB)
        
        self.sock.writeDatagram(bCMD_RGB, QHostAddress(UDP_IP), UDP_PORT)
        
        """
        msgToSend = self.edMsg.toPlainText()
        print("tx:")
        print(msgToSend)
        print()
        
        datagram = msgToSend.encode()
        self.sock.writeDatagram(datagram, QHostAddress(UDP_IP), UDP_PORT)
        """
        
    def sliderRGB_valueChanged_slot(self):
        print("sliderRGB_valueChanged_slot")
        valueR = self.sliderR.value()
        valueG = self.sliderG.value()
        valueB = self.sliderB.value()
        print(" R: ", valueR, " G: ", valueG, " B: ", valueB)
        
        CMD_RGB = "#RGB"
        bCMD_RGB = str.encode(CMD_RGB) + bytes([valueR, valueG, valueB])
        print(type(bCMD_RGB))
        print(bCMD_RGB)
        
    def closeEvent(self, event):
        close = QMessageBox.question(
            self,
            "QUIT",
            "Close Application?",
            QMessageBox.Yes | QMessageBox.No)
        if close == QMessageBox.Yes:
            print("Close")
            event.accept()
        else:
            event.ignore()

if __name__ == '__main__':
    print('run __main__')
    app = QApplication(sys.argv)
    window = AppWindow()
    sys.exit(app.exec_())

print("- bye -")


~ More exercise of Arduino Nano RP2040 Connect.