
International Journal of Computational Intelligence Systems
Vol. 13(1), 2020, pp. 864–874

DOI: https://doi.org/10.2991/ijcis.d.200617.001; ISSN: 1875-6891; eISSN: 1875-6883
https://www.atlantis-press.com/journals/ijcis/

Research Article

An Integer Cat Swarm Optimization Approach for Energy
and Throughput Efficient MPSoC Design

Shahid Ali Murtza1, Ayaz Ahmad2, Muhammad Yasir Qadri3,*, , Nadia N. Qadri2, , Majed Alhaisoni4, Sajid Baloch5

1HITEC University, Taxila, Pakistan
2Department of Electrical & Computer Engineering, COMSATS University Islamabad, Wah Campus, Wah Cantt., Pakistan
3University of Essex, Colchester, United Kingdom
4University of Ha’il, Ha’il, Kingdom of Saudi Arabia
5Institute of System Level Integration (ISLI), University of Edinburgh, Edinburgh, United Kingdom

ART I C L E I N FO
Article History

Received 28 Jul 2019
Accepted 07 May 2020

Keywords

Design space exploration (DSE)
Multicore architecture
Integer cat swarm optimization

ABSTRACT
Modern multicore architectures have an ability to allocate optimum system resources for a specific application to have improved
energy and throughput balance. The system resources can be optimized automatically by using optimization algorithms. State-
of-the-art using optimization algorithm in the field of such architectures has shown promising results in terms of minimized
energy consumption through configuration of number of CPU cores, limited cache sizes and operating frequency. We propose,
in this work, a Cat SwarmOptimization (CSO) algorithm-based technique, Integer CSO (ICSO) for the design space exploration
(DSE) of multicore computer architectures to find improved energy and throughput balance. The proposed integer variant of
CSO algorithm demonstrates convergent behavior for all of design space parameters variations. The Pareto front proposed by
ICSO is explored by using various SPLASH-2 benchmarks. Results show significant decrease in energy consumption without
affecting throughput severely. Simulation results also validate the use of ICSO in DSE for multicore architectures.

© 2020 The Authors. Published by Atlantis Press SARL.
This is an open access article distributed under the CC BY-NC 4.0 license (http://creativecommons.org/licenses/by-nc/4.0/).

1. INTRODUCTION

Most of the recent research in multicore architectures now focuses
on optimum resource allocation according to the workload. This
kind of architectures provide better application-specific perfor-
mance/power ratio due to their ability to adapt as per application
requirements. However at design time a designer has to explore
a number of configurable parameters in order to strike a balance
between energy and throughput of the system. This process is
termed as design space exploration (DSE).

Many researchers have used different set of system parameters to
tune against different figure of merits in this area of research. Com-
monly reported parameters used in literature are number of cores,
frequency, cache sizes, L2 cache area, issue width, memory band-
width, cache associativity, etc. [1–5]. In modern multicore proces-
sors, the number of cores integrated can be up to tens, hundreds or
even thousands (i.e. in case of GPUs) [6]. Similarly, configurations
of cache hierarchy in a multicore architecture system can reach
up to numerous possibilities [5]. Handling such a large number of
parameters has been an issue for the designers. The higher the num-
ber of parameters, the larger the number of configurations in the
design space and greater the time needed to find the optimal set
of solutions/configurations. Also, with the increase in number of

*Corresponding author. Email: yasirqadri@acm.org

parameters, we need to evaluate more number of system configu-
rations which make a large search/design space which is another
challenge. Consequently, simulation of all possible configurations
may not always be possible both in terms of time and computational
resources [7]. Therefore, two main problems regarding design and
analysis phase arise: (1) the huge search space and (2) an increased
simulation time. Therefore there exists a need of some optimization
algorithm to automatically explore a large design space and propose
the system architect a small set of optimal configurations to be sim-
ulated or tested.

The size of problem search space can be reduced in some cases
when there is a possibility to reduce the number of parameters by
eliminating the less important parameters. But by reducing num-
ber of parameters, there is a chance to compromise on configura-
bility of the system. On simulation side, we can reduce simulation
time to some extent by different techniques of simulations i.e. sta-
tistical, sampling and parallel simulation [8]. Even if we reduce the
simulation time by different techniques, evaluating all the possible
configurations is an NP-hard problem i.e. a lot of time is required
to investigate all. Therefore, exhaustive simulation is not possible
in most cases. Hence there exists a need of some optimization algo-
rithm to automatically explore a large design space and propose the
designer a small set of optimal configurations to be simulated or
tested.

https://doi.org/10.2991/ijcis.d.200617.001
https://www.atlantis-press.com/journals/ijcis/
https://orcid.org/0000-0001-9949-129X
https://orcid.org/0000-0002-9489-4038
http://creativecommons.org/licenses/by-nc/4.0/


Murtza et al. / International Journal of Computational Intelligence Systems 13(1) 864–874 865

Many researchers have used different approaches to obtain
improved energy/throughput performance. A number of multicore
systems support run-time configuration of voltage and frequency
that is termed as Dynamic Voltage/Frequency Scaling (DVFS). To
efficiently manage the temperature and energy consumption, vari-
ous task scheduling, task migration and core consolidation policies
can be applied using DVFS. A large body of research is available on
DVFS but frequency scaling is not so efficient inmany cases as with
this technique large unused portions of the chip still dissipate leak-
age power. In this work, we use the concept of cache re-sizing and
core switching along with frequency scaling for better optimization
of energy and throughput.

For multicore processors, researcher must consider to best fit the
trade-offs in energy consumption, throughput and area which
makes it a multiobjective optimization (MOO) problem. The sys-
tem parameter values in the design space are in integers which
renders the problem as a combinatorial optimization problem.
Therefore, we need some integer optimization techniques to explore
the design space of such type of problems. Therefore, overall the
problem becomes Multiobjective Integer Optimization Problem
(MIOP). For the DSE in this field, Bio-inspired Algorithms are an
important paradigm for consideration. These algorithms are very
commonly used to find best and optimum solutions of complex
problem in short time. Such algorithms present a shortest way to
solve large and time sensitive complex design spaces. Researchers
have used many extensions of Bio-inspired Algorithms in the area
of DSE e.g. Ant ColonyOptimization (ACO) [9,10], Particle Swarm
Optimization (PSO) [3], etc.

In this paper, we propose Integer Cat Swarm Optimization (ICSO)
algorithm for DSE of amulticore processor architecture. To the best
of our knowledge, CSO has not been used with integer optimiza-
tion specifically in the area of computer design and architecture.We
have used the Integer Multiobjective CSO due to its good perfor-
mance. It has been shown in the literature that the continuous as
well as the integer version of CSO has superior performance com-
pared to thewell-known andwidely usedmeta-heuristic algorithms
such as multiobjective particle swarm optimization (MOPSO)
and an improved version of nondominated sorting genetic algo-
rithm (NSGA-II) [11,12]. More specifically, the superior perfor-
mance of ContinuousMultiobjective CSO Algorithm is reported in
[12 Section 6.3], whereas the benefits of IntegerMultiobjective CSO
Algorithm can be witnessed from the results in [11]. The superior
performance of the proposed Integer Multiobjective CSO is also
clear from the results obtained in this paper. The main difference
between theCSOand ICSO is that the parameters in ICSO take inte-
ger values and the updating of cats for next iteration is subject to
some probability, whichmakes the ICSO suitable for the DSE prob-
lem in hand. In this paper, the ICSO algorithm is intended to sup-
port the dynamic configuration of a multicore platform as per work
load requirements while maximizing the throughput and minimiz-
ing the energy. The algorithm takes number of cores, operating fre-
quency and caches size as design space and searches for an optimal
balance between throughput and energy consumption as objective.
The algorithm generates a Pareto front between the two objectives
i.e. throughput and energy consumption. The best configurations
from the generated Pareto front set are evaluated for various bench-
mark applications using a cycle accurate simulator i.e. Micro Archi-
tectural and System Simulator for x86 (MARSSx86) [13]. Results

obtained using MARSSx86 show significant reduction in energy
consumption without a much impact over throughput.

The remaining paper is organized as follows: Related research in the
field of Multicore Processor Architectures is discussed in Section 2.
The design space representation is described in Section 3, fol-
lowed by the implementation of ICSO on the given DSE problem in
Section 4. Sections 5 describes the simulation setup and results are
provided in Section 6. Finally, conclusion is presented in Section 7.

2. RELATED WORK

Recent research has produced variousDSE techniques in the field of
Multiprocessor System on Chip (MPSoC) [14,15]. In the following,
we provide an account of some of the state-of-the-art approaches in
this area.

Calborean et al. [6], proposed a framework called Framework for
Automatic Design Space Exploration (FADSE). This tool solves sin-
gle andMOO problems but is unable to handle large design spaces.
Mariani et al. [1] presented a DSE scheme and an operating sys-
tem (OS) layer for resource management which targets hardware
and software configuration on a multicore platform. However, in
this work, the authors took only two configurable parameters i.e.
the number of cores and their operating frequency for a particu-
lar application. Moreover, their design space comprised of 8-cores
whereas our proposed platform is generic because it can solve for
any number of cores. Monchiero et al. [2], performed DSE for mul-
ticore architectures for parameters such as number of cores, L2
cache size and varying core complexity, for parallel benchmarks to
achieve a set of optimal energy/performance trade-offs. We have
also considered operating frequency in addition to the parameters
taken in their work [2], as a design parameter. We employed swarm
intelligence algorithm to explore the given MPSoC’s design space.

Givargis et al. [16], presented an optimization tool called Platune,
which uses parameter independence for characterizing approxi-
mate Pareto sets without performing the exhaustive search over the
complete design space. Their proposed approach require the spec-
ification of parameter independence through a dependency graph.
Moreover, the framework supports the exploration of aMIPS based
system only.

Researchers have also proposed evolutionary and bio-inspired
based algorithms for exploring the design space of MPSoCs
[3,4,10,17]. Palermo et al. [3], proposed a Discrete Particle Swarm
Optimization (DPSO) scheme to perform DSE for hardware of
a computing platform. The suggested scheme is aimed to effi-
ciently analyze the workload and to produce an approximated
Pareto set of system configurations for selected performance met-
rics. Although author claimed an 80% reduction in exploration
timing as compared to exhaustive search. The effectiveness of the
proposed methodology greatly depend on the large population size
[18]. Though the efficiency of the algorithm increases with large
population size but simulation time still remains a major challenge
for complex applications. The exploration scheme considers only
caches and CPU as their targeted design space also it lack validation
of the proposed solution on any industrial benchmarks. Sheikh et al.
[4], proposed combined optimization of performance, energy, and
temperature i.e. termed as PET optimization. To find optimal solu-
tions, the authors employed multiobjective evolutionary algorithm



866 Murtza et al. / International Journal of Computational Intelligence Systems 13(1) 864–874

(MOEA) and Strength Pareto Evolutionary Algorithm (SPEA). The
authors explored number of cores and switching frequency, how-
ever, and did not consider the cache size.

For multiprocessor platforms, Beltrame et al. [18], proposed
design-time analysis strategies that provide multiple mappings for
a target application. The authors optimized the energy and delay
by decreasing the number of simulations required to find the map-
pings which provide optimal energy/delay trade-offs. Their pro-
posed scheme takes only two parameters i.e. number of processor
cores and size of cache. Singh et al. [19], presented a comprehen-
sive survey onmappingmethodologies focusingmulticore systems.
In their paper, the authors discussed various run-time and design-
time mapping methodologies along with their advantages and dis-
advantages in details. Gordon-Ross et al. [5], performed DSE on
system with a unified L2 cache as the only configurable parameter.

• Firstly, the DSE of multicore reconfigurable architecture is an
integer multiobjective problem, while the algorithm proposed
in the literature are either presented for single objective with a
constraint or they are not suited for integer multiobjective
problem as demonstrated in [11].

• Secondly, we have also compared the proposed methodology
with the previously presented nondominated Sorting Genetic
algorithm-based DSE methodology and it is being shown that
our proposed methodology dominates the NSGA-2 based
method.

• Lastly, we have use cycle accurate simulator, the MARSSx86
Splach-2 benchmark applications for the evaluation of the
methodology. The obtained results show a significant reduction
in energy consumption without a major impact on throughput.

3. REPRESENTATION OF DESIGN SPACE
AND MULTIOBJECTIVE PROBLEM

As the complexity of SoC is increasing for multicore processors,
one must consider a wide range of issues to best fit the trade-offs in
energy consumption, throughput and area. This process is known
as DSE involving a MOO problem. Theoretically, multicore archi-
tectures can contain many configurable parameters which makes
the design space for the search space algorithm very large [5,20,21].
Our design space consists of those configurable system parameters
which greatly affect the overall energy consumption and through-
put. Our design space includes the cache size, number of cores and
operating frequency as described below:

• We take L1 cache size which can fit into the form of 2k KB
where k = 0, 1, 2,⋯ , n. For example, for n = 5, the set of L1
cache sizes becomes {1, 2, 4, 8, 16, 32} KB.

• Number of cores can be any integer ranging from 1 to N where
N is the highest number of cores with which the architecture is
considered to be equipped.

• The set of operating frequencies of the MPSoC can be
represented as F = f1, f2,⋯ , fm wherem belongs to a set of
positive integer numbers.

Our design space is purely integer where some of the decision vari-
ables do not take all integer values between their corresponding
lower and upper limits. For the search space algorithm, we use

integer index mapping from index based search space to actual
search/design space. Here, actual search/design space consists of
actual values of the system parameters while index-based search
space consists of the corresponding indexes of the set of values
in actual design space. In other words, the search space algorithm
takes integer indexes of corresponding values in the design space.
The corresponding indexes are internally mapped and demapped
to actual values in the objective function, as shown in the following
example.

For example, if we take our design space as number of cores, 1
to 16, cache sizes {1, 2, 4, 8, 16, 32, 128, 256} KB and frequencies
{10, 16, 25, 33}MHz, then our mapping will be as following:
Actual Design Space → Index based Search Space Mapping:
CacheSizes ∶ {1, 2, 4, 8, 16, 32, 128, 256}KB →
{1, 2, 3, 4, 5, 6, 7, 8, 9}
OperatingFrequency ∶ {10, 16, 25, 33}MHz → {1, 2, 3, 4}
NumberofCores ∶ {1, 2, 3, 4, 5, 6, ..., 16} → {1, 2, 3, 4, 5, 6, ..., 16} In
fact, the considered DSE problem is a combinatorial MOO prob-
lem with two conflicting objectives and discrete decision variables
(number of cores, cache sizes and frequencies). For multiobjective
optimization problem, no single solution exists that simultaneously
optimizes each objective and as the two objectives are conflicting,
there exists a large number of possible solutions. Even for problems
with finite search space, finding the set of Pareto optimal solutions
by exhaustive search (complete exploration) has prohibitively high
computational complexity. The proposed ICSO with finds the
Pareto optimal solution with very small computational complexity.
The proposed framework is generalized and can be applied to any
size of search space. In the simulations, the range of parameters
(search space) is kept small without loss of generality. This is
done in order to be able to simulate the framework on ordinary
Lab computers as the solution obtained by the hybrid GA-EDA
are then evaluated on MARSSx86 simulator and simulations on
MARSSx86 simulator are highly time consuming. In future multi-
core systems, the number of cores, cache sizes and frequencies will
be in thousands/millions [22,23] and exhaustive search for design
pace exploration in such system would be impossible. For such
multicore systems with huge solution space, our proposed DSE
framework is equally applicable.

3.1. Multiobjective Problem Representation

The objective we have chosen against these configurable parame-
ters, is to have an optimal balance between energy consumption
and throughput of the proposed architecture. The objective func-
tion being optimized is presented as follows:

F(X) = {
minimize

X
E(X)

maximize
X

T(X)
(1)

where X = {x𝟏,x𝟐,⋯,xD},
and Ran(xd) = {xd ∈ Z+| xmin

d
⩽ xd ⩽ xmax

d
for

1 ⩽ d ⩽ D}.

In Equation (1), E(X) and T(X) are the objective functions rep-
resenting energy consumption and throughput respectively. X
represents the corresponding indexes of the configuration being
evaluated consisting of design variables i.e. number of cores, cache



Murtza et al. / International Journal of Computational Intelligence Systems 13(1) 864–874 867

size and frequency; Ran(xd) represents the integer range of xd
(dth dimension ofX) i.e. design variable. Whereas the lower limit is
xmin
d

and upper limit is xmax
d

and D is the total number of design
variables i.e. in our case D = 3. Note that X represents indexes
of corresponding configuration parameters values which are inter-
nally mapped to actual parameter values to achieve actual configu-
ration.

4. CAT SWARM OPTIMIZATION

4.1. History

In 2006, Chu and Tsai [24] introduced a new optimization algo-
rithm i.e. CSO, bymodeling the behavior of cats. The authors inves-
tigated that cats take rest indolently most of the time when they
are awake, move speedily when they are tracing some targets and
they are curious about all kinds of moving things. Based upon their
investigations, they modeled cats’ useful behavior into two modes:
Seeking mode (SM) (Resting state) and Tracing mode (TM) (Prey
state). Originally, they tested their algorithm for single objective
continuous optimization problems. Later on, Pradhan and Panda
[25] extended this algorithm to multiobjective continuous opti-
mization problems. Many researchers have also applied CSO in dis-
crete and mixed integer problems involving single objective and
multiobjective problems [26–28].

4.2. Proposed Approach

Engineering problems such as MPSoC have their design space in
purely integer form and the problem is of combinatorial nature. We
propose a new approach, ICSO, to solve this problem. Unlike con-
tinuous version of CSO, in proposed ICSO the position vector can
take only integer values in each dimension. This approach uses the
concept of Asynchronous Updating (AU) proposed for AU-PSO by
Zhao et al. [29] for mutation. By using this approach, the integer
variables in some of the dimensions have a probability to hold the
previous values. This kind of treatment provides more chances to
find a better solution by better exploring the solution space [29].
These changes make ICSO algorithm different from conventional
continuous CSO algorithm. Similar to the continuous version of
CSO, proposed ICSO also has two modes: SM and TM.

The ICSO algorithm uses two sets of cats i.e. one set of cats for SM
and other for TM to find the optimal solutions. SM gives a global
search optionwhile TMprovides local search. These two sets of cats
jointly solve the optimization problem. For the ratio of cats in the
two sets, a parameter called mixture/MR is used which is the ratio
of the number of cats in TM to that of the cats in SM. A new param-
eter 𝜙 is threshold probability which decides whether to update the
new value or keep previous value in a particular dimension of a cat’s
position.

Each artificial cat has its position, velocity, flag and fitness value.
Position of each cat represents a candidate solution and its dimen-
sions indicate the variables of the problem space which are cache
size, number of cores (CPU cores) and operating frequency. In
other words, position of any cat is the configuration consisting
of the combination of L1 cache, CPU cores and operating fre-
quency. For each iteration, cats are evaluated at their positions, best
configurations are stored, and for next iteration cats are modified
according to the information based upon best solutions found so

far. The objective functions calculate the energy consumption and
throughput against the candidate solutions. To this end, energy and
throughput models proposed by Qadri et al. [30] are used.

The pseudo code of the ICSO is listed in Algorithm 1 and the steps
of the algorithm are discussed as following:

4.2.1. Parameters of algorithm

List of general parameters of ICSO algorithm includes swarm size
(SwarmSize), dimensions of problem (D), mixing/mixture ratio
(MR), maximum iterations to run algorithm (MI) and 𝜙. Swarm-
Size is the total number of cats, whose position represent candi-
date configurations. D indicates the number of dimensions of the
problem i.e. number of input variables of objective function. MR
tells how many of the total cats are set for TM and others for SM.
The parameter 𝜙 is threshold probability which decides whether to
update the new value or keep previous value in a particular dimen-
sion of cat’s position. Default values for these parameters are shown
in the Table 1.

SM has four special parameters: Seeking Memory Pool (SMP), Self
Position Consideration (SPC), Counts of the Dimension to Change
(CDC) and Range of the Selected Dimension (SRD). SMP is the
number copies to be made of current configuration and SPC is
a flag that indicates whether current configuration will be one of
the configurations to be selected again or not. CDC indicates how
many of the inputs from number of cores, cache size and frequency
are to be varied. SRD defines the mutation ratio for the selected
input.

TM has two parameters c1 and r1. Here, c1 is the algorithm’s cogni-
tive learning constant which can have a value from 1 to 4 and r1 is
a random number taken from 0 to 1.

The pseudo code of the ICSO is shown in Algorithm 1 and the
detail, and steps of the algorithm are as following:

4.3. Algorithm

Following are the main steps in the ICSO algorithm.

Step 1. Initialize the algorithm parameters and Cats positions.

The algorithm parameters of ICSO are specified in first step i.e. the
number of initial solutions (SwarmSize),MR,maximumnumber of
iterations to run the algorithm (MI), asynchronous probability (𝜙)
and the Seeking and TM parameters. This step of ICSO algorithm
also involves the initialization of variables. In this step, the selec-
tion of initial configurations comprising of random values of cache
size, number of cores and frequency is done from the specified
design space. Each artificial cat at its position represents a candidate
solution/configuration where each dimension of the position of
cat is a design variable. In Algorithm 1, lines 1 to 5 represent this
step.

Table 1 Parameters of ICSO algorithm.

Swarmsize MR SMR SRD CDC Vmax

50 0.3 3 0.2 0.2 4
ICSO, Integer Cat Swarm Optimization; CDC, Counts of the Dimension to Change; SRD,
Range of the Selected Dimension.



868 Murtza et al. / International Journal of Computational Intelligence Systems 13(1) 864–874

Step 2. Initialize the velocity and flag.

In Algorithm 1, lines 4 to 5 represent the second step. This step
involves the initial settings of algorithm mechanism variables i.e.
velocity and flags.Movements of cats aremodeled by their velocities
and their positions are defied based upon the values of velocities.
Initially, random velocities (V) are assigned within a given range to
each dimension. To ensure the velocities to be within a given range
during algorithm run, a threshold value, vmax needs to be speci-
fied according to velocity ranges. Since positions andmovements of
cats are grouped in twomodes, Tracing and Seeking, thereforemix-
ture/mixing ratio (MR) parameter is used to specify howmany cats
will go either into TM or SM. Each cat is set a flag representing its
mode. By default, all cats are in SM and randomly chosen cats are
set into TM according to MR.

Step 3. Evaluate objective function and find Pareto front.

In Algorithm 1, line 6 represents this step. Initially created cats are
evaluated for the objective function at their position (X) as a candi-
date solution. The results of the objective functions are evaluated to
find the Pareto optimal set from objective values using Pareto dom-
inance concept given in [25] and the result is stored in an external
archive.

Step 4. Applying cats into corresponding mode.

After the initial/latest Pareto front is obtained, the cats are iterated
through a loop and based upon their flag they are set into SM pro-
cess (Section 4.3.2) and TMprocess (Section 4.3.1). In Algorithm 1,
lines 9 to 21 represent TM and lines 22 to 34 represent SM. The
overall step is implemented from line number 8 to 34.



Murtza et al. / International Journal of Computational Intelligence Systems 13(1) 864–874 869

Step 5. Repeat step 4 and so on, until the termination criterion is
met.

In the last step, the termination criteria thatmay be specific number
of iterations completed or ideal solution is examined, if it is satis-
fiedArchive is returned as an output and the program is terminated.
Otherwise, cats are remixed into TM and SM randomly according
to MR and the program control is jumped back to step 4 for newly
evaluated cats. This step is shown in Algorithm 1 in lines 35 to 37.

4.3.1. Tracing mode

In Algorithm 1, lines 9 to 21 represent the TM. This mode gives
a local search option in exploring the design/search space. In this
mode, a cat chases the target with high speeds which is mathemat-
ically modeled as large changes in the cat’s position i.e. cat takes
larger steps towards convergence. In the D-dimensional space, the
position of the kth cat is represented as Xk = (xk1, xk2,⋯ , xkD)
and its velocity is represented as Vk = (vk1, vk2,⋯ , vkD), where
the second subscripts d = {1, 2,⋯ ,D} represent the dimension
number. The global best position of the cat swarm is presented as
Xg = (xg1, xg2,⋯ , xgD). The steps involved in this mode are as
follows:

1. Update the velocity of catk by the following equation:

v′kd = vkd + c1 ∗ r1 ∗ (xgd − xkd) (2)

where xkd and vkd are position and velocity of catk in dimension
d respectively and xgd is the position of best cat in that dimen-
sion found so far. Here, c1 is the algorithm constant which can
have a value from 1 to 4 and r1 is a randomly generated num-
ber between 0 to 1 inclusive. The global best Xg is taken ran-
domly from the external archive, that is generally picked from
the top five percent of the previously obtained nondominated
solutions.

2. Check velocity for vmax and clamp if vkd > vmax.

3. Update the position of catk by the following equation:

xkd =
⎧⎪
⎨⎪
⎩

round(xkd + v′kd)
if round(xkd + v′kd) ∈ Ran(xd) and rkd < 𝜙
xkd
otherwise

(3)

where rkd is a random value from [0, 1], Ran(xd) is the range
of xd and 𝜙 is a threshold value which dictates AU. Also d =
{1, 2,⋯ ,D}.

4. Evaluate objective function at Xk.

5. Update Archive if current solution is nondominated.

4.3.2. Seeking mode

In Algorithm 1, lines 22 to 34 represent the SM also known as rest-
ing mode of cats. This step in proposed integer variant of CSO dif-
fers from conventional CSO in updating technique (refer Section
4.2) for positions of cats. The steps involved in this mode are given
below:

1. Make j = SMP− SPC copies of catk. (Each copy is represented
by y ∶ yld, where 1 < l ⩽ j and 1 < d ⩽ D, l is cat’s copy
number and d is the dimension number.)

2. Apply mutation operator to each copy.

3. Check for bounds of each dimension of all copies and update
using the following equation.

yld ← { round(yld) if round(y′ld) ∈ Ran(xd) and rld < 𝜙
xkd otherwise

(4)

where rkd is a random real value from [0, 1],Ran(xd) represents
range of xd and 𝜙 is a threshold value which dictates AU.

4. Evaluate objective function at all mutated copies.

5. Update Archive with those modified copies that give nondom-
inated solutions/configurations.

6. Select a candidate randomly from j copies which replaces the
older position (Xk) of catk.

5. SIMULATION SETUP

This section discusses the multicore configurable processor archi-
tecture and the simulation setup that is used to evaluate the pro-
posed scheme. Our multicore architecture platform takes L1 cache
sizes, number of CPU cores and operating frequency as config-
urable variables. The objective of our proposed work is to have
improved energy and throughput balance i.e. minimizing energy
consumption with little compromise on throughput. To meet this
objective, we can vary the values of decision variables within a
specific range to get different configurations.We vary number of
symmetric cores from 1 to 16. The platform incorporates config-
urable L1 cache size, number of cores and operating frequency/-
voltage. We used ICSO algorithm that takes frequency, number of
cores and caches sizes as design space and finds an efficient bal-
ance between energy consumption and throughput as an objective.
This algorithm was coded in MATLAB 8.1 (R2013a). This algo-
rithm gives a Pareto front set of efficient balances between energy
consumption and throughput. Then, we used a full system simula-
tor MARSSx86 [13] to simulate the optimal solutions suggested by
ICSO. This simulator is a fast cycle accurate simulation platform for
single core and multicore configurations. It is targeted to simulate
cycle accurate out-of-order x86 cores. In a single simulation run,
it gives statistics of user and kernel modes activities separately. We
defined an x86 based 16-core platform in which each core has pri-
vate L1 cache and all cores are coupledwith a single shared L2 cache.
We used Modified-Shared-Exclusive-Invalid (MESI) protocol [36]
for the coherence between cache and main memory. The experi-
ments were performed on Dell OptiPlex core i5 system with 8Gb
of ram and 32Ghz processor frequency. We used Ubuntu version
10.04 as the targeted OS for simulation purpose. We obtained L1
cache timing and energy information from CACTI [37]. However,
CACTI simulator is not a trace driven, therefore it does not account
energy consumption due to number of cache hits and misses for a
specific application. Therefore, we used detailed analytical models
presented by Qadri et al. [30] to estimate the cache throughput and
energy based on cache hit/miss information.



870 Murtza et al. / International Journal of Computational Intelligence Systems 13(1) 864–874

Table 2 Benchmark applications used in this work.

Sr. Application Description Problem Size

1 Barnes Employs Barnes-Hut algorithm to solve N-body
problems [31].

16,384 particles

2 FMM Uses a parallel adaptive Fast Multipole Method (FMM)
to simulate the N-body problems [32].

16,384 particles

3 Ocean Simulate large-scale ocean motility based on eddy
currents and boundary currents [33].

258x258 grid

4 Water-NSquared An improvised version of the original Water code in
SPLASH [34,35].

512 molecules

5 Water-Spatial Simulates the same molecular dynamics N-body
problem as in the original Water-NSquared
code in SPLASH [34].

512 molecules

Table 3 Pareto front (ICSO).

Cache
sizes(KB)

No. of cores Frequency
(MHz)

Throughput Energy(J)

2 1 10 1.02986 0.05486
2 1 25 2.57466 0.05487
4 1 33 3.39006 0.08506
2 2 33 3.99855 0.10973
1 3 33 4.40376 0.11688
1 5 33 4.90376 0.19480
1 6 33 5.07043 0.23376
1 7 33 5.20376 0.27272
1 8 33 5.31285 0.31168
1 9 33 5.40376 0.35064
1 10 33 5.48069 0.38960
1 11 33 5.54662 0.42856
1 12 33 5.60376 0.46752
1 13 33 5.65376 0.50648
1 14 33 5.69788 0.54544
1 15 33 5.73710 0.58440
1 16 33 5.77218 0.62336
32 16 33 5.78840 5.26334
64 15 33 5.79334 5.61560
64 16 33 5.82842 5.98998

ICSO, Integer Cat Swarm Optimization.

We used Intel 486 GX embedded processor data sheet [38]
for energy consumption calculations and frequency range.
We evaluated the optimal solution, suggested by ICSO, using
SPLASH-2 benchmark applications. All the applications were
executed for the complete run and then design space param-
eters were modified based on results obtained using ICSO
algorithm.

As the suggested architecture consists of a multicore plat-
form, a set of SPLASH-2 [39] benchmark applications is cho-
sen in order to perform the objective evaluation. A summary
of the benchmark applications used for this purpose is given in
Table 2.

6. RESULTS

6.1. Algorithm Results

As the main objective of the proposed approach is to achieve a bal-
ance between throughput and energy consumption of the SoC. In
order to achieve this, the ICSO algorithm-based technique takes the

configurations consisting of systemparameters i.e. number of cores,
L1 cache size and operating frequency (for testing purpose, we take
the limited ranges of these parameters; the ranges of the parameters
are as given in the example in Section 3). This algorithm is run on
100 iterations with 20 number of initial solutions, and a 0.5 value of
asynchronous probability (𝜙). The obtained Pareto front is shown
in Figure 1 and Table 3. This Pareto front has 20 optimal configu-
rations. Figure 1 shows that initially throughput increases with the
increase in energy consumption and then throughput almost sat-
urates but energy consumption goes on to increase. If we look on
Table 3, we can see the corresponding configurations for through-
put and energy consumption shown in Figure 1. For comparison,
we also obtained the true Pareto front for the same ranges of con-
figuration parameters and a Pareto front using the integer variant
of NSGA-II [40] and EDA algorithm [14]. A comparison of these
four Pareto fronts (true Pareto front and Pareto fronts obtained
fromNSGA-II, Pareto front of EDA and proposed ICSO algorithm)
are shown in Figure 1. The plot clearly shows that the Pareto front
obtained from the proposed ICSO algorithm approximately over-
laps on true Pareto front while the NSGA-II and EDA Pareto fronts
aremuch deviant from true Pareto front curve. Hence the proposed
ICSO algorithm proves to be useful for integer type of problems
with better results.

6.2. Evaluation of Pareto Set

To evaluate the Pareto set obtained using ICSO algorithm, we
have selected two configurations from the set of twenty config-
urations shown in Table 3 for detailed simulations i.e. one con-
figuration with minimum energy consumption, we call it energy
efficient configuration and second configuration with maximum
throughput, we call it throughput efficient configuration. Then, we
have a default system configuration, which uses maximum avail-
able system resources, as a reference to compare the effect of system
parameter variations in energy efficient and throughput efficient
configurations. The default, throughput efficient and energy effi-
cient configurations are shown in Table 5. The configurations
given in this table are simulated with different SPLASH-2 bench-
mark applications (Barnes, Cholesky, LU, FMM, Water-Spatial and
Water-NSquared) on MARSSx86 simulator. It should be noted
that the default system configuration has maximum throughput
but at the same time maximum energy consumption. The results
of other two configurations, throughput efficient and energy effi-
cient, are discussed with reference to this default configuration as
following.



Murtza et al. / International Journal of Computational Intelligence Systems 13(1) 864–874 871

Table 4 Pareto front energy consumption and throughput values for NSGA-2II and True Pareto-front.

NSGA-II Pareto-front

Throughput 6.188 5.775 5.389 5.363 5.050 5.046 4.950 4.570 4.554 4.541 4.537
Energy consumption 4.125 3.300 3.045 2.888 0.570 0.568 0.413 0.078 0.026 0.011 0.0108

EDA Pareto-front
Energy 0.13 0.47 1.26 2.36 2.52 3.4 4.36 6.24 8.3 10.58 10.84
Throughput 2.41 3.17 5.37 5.42 5.74 5.91 6.06 7.06 7.18 8.84 10.37

True Pareto-front
Throughput 5.828 5.793 5.772 5.204 5.070 4.404 4.004 3.404 2.579 1.650 1.031445
Energy consumption 5.990 5.616 0.623 0.273 0.234 0.117 0.078 0.039 0.039 0.039 0.038

NSGA-II, nondominated sorting genetic algorithm.

Figure 1 Pareto-front (set of nondominated solutions).

Table 5 Selected configurations for MARSSx86 simulation.

Configuration Name Cache Size(KB) Core Frequency(MHz)

Default system 256 16 33
Throughput efficient 64 16 33
Energy efficient 2 1 10

MARSSx86; Micro Architectural and System Simulator for x86.

A. L1 Cache

L1 cache size has a significant impact on throughput and energy
consumption of an MPSoC. Therefore it is necessary to include
L1 cache size variations for analysis. For performance measure-
ment of L1 cache the performance metric miss ratio is used. L1
cache miss ratio depends on the size of the cache. The larger L1
cache size results in fewer misses. However larger cache size also
increases latency, and thus consumes more power. For simulation,
all SPLASH-2 applications are set to L1 cache size of 256KB, 64KB,
and 1KB for default, throughput efficient and energy efficient con-
figuration respectively. Simulation results for L1 cachemiss ratio for
all three configurations are shown in Figure 2. The figure shows that
reducing cache size from256KB to 64KBdoes not effectmuch on all
benchmark applications except for Ocean for which the aggregate
L1 miss ratio increases to 10% from default 5%. For energy efficient
configuration reducing L1 cache size from 256KB to 1KB increases

the aggregate L1 miss ratio from 15% to 20% for FMM, Ocean, and
Water-Spatial as compared to the default ranges from 1% to 5%. For
Barnes and WWater-Nsquared the miss ratio remains almost the
same. The proposed architecture makes the use of a shared level 2
(L2), uniform cache memory. For simulation, all SPLASH-2 appli-
cations are set to L2 cache size of 2MB for all three configurations.
Simulation results for L2 cache miss ratio for all three configura-
tions are shown in Figure 3. This figure shows that for throughput
efficient configuration L2 miss ratio is reduced significantly except
for Ocean and Water-Nsquared for which it is increased from 1%
to 5% and 25% to 30% respectively. For energy efficient configu-
ration an overall reduction in miss ratio is observed for almost all
the applications. The least reduction in miss ratio can be observed
in case of Barnes for which it reduces from 38% to 35% only. A
nominal increase of 2% is observed for Ocean benchmark.

B. Number of Cores and CPU Frequency

Number of cores and CPU frequency has a significant impact on
throughput and energy consumption. Increase in CPU frequency
increases throughput greatly along with increase in energy con-
sumption. Since for increased operating frequency, a system takes
less time to complete a task and the overall average energy con-
sumption can be more or less same. While on the other hand,
throughput is not increased linearly by increasing the number of
cores rather relationship between throughput and number of cores



872 Murtza et al. / International Journal of Computational Intelligence Systems 13(1) 864–874

Figure 2 L1 cache miss ratio.

Figure 3 L2 cache miss ratio.

is governed by Amdhal’s Law [41]. Throughput saturates for the
most of the applications after scaling the number of cores beyond
a certain limit [42]. Energy consumption is also increased with the
increase of number of cores, which can be reduced by turning off of
excess cores [43]. In selected pareto set, number of cores for default
and throughput efficient configurations is 16, and for energy effi-
cient it is 1. The frequency for these configurations is set to 33MHz,
33MHz and 10MHz for default, throughput efficient and energy
efficient configuration respectively. These values of frequency and
number of core are shown in Table 5, and are suggested by ICSO
algorithm.

Results for normalized throughput and energy are shown in
Figures 4 and 5 respectively. The figures clearly show that
the default configuration has maximum throughput and at the
same time maximum energy consumption. Throughput efficient
configuration has reduced throughput and it also has reduced
energy consumption. The minimum throughput is observed for

Ocean benchmark i.e. 75% of the default value (see Figure 4).
Whereas for all other applications less than 5% throughput reduc-
tion. The throughput efficient configuration shows decrease in
energy consumption for all the applications (see Figure 5). Barnes
application has shown least energy consumption i.e. around 10%
of the default configuration. Whereas Ocean shows energy sav-
ings of up to 40% and for all other applications it is around
50%. The energy efficient configuration showed throughput reduc-
tion of more than 90% for all applications that is not desir-
able for most cases however this has resulted in highest energy
savings of 90% or more (see Figures 4 and 5). Thus, results
show that the throughput efficient configuration has desir-
able improvements in terms of both throughput and energy
consumption.

Figure 6 shows the normalized Energy Delay Product (EDP) of the
three configurations. The figure shows that the EDP of through-
put efficient configuration is 53% of the default value and of energy
efficient configurations 55% of the default value on average (see
Figure 6). The minimum EDP is observed for Barnes applica-
tion for throughput efficient configuration i.e. 13% of the default
value. For this configuration, FMM, Water Spatial and Water-
NSquared show about 50% reduction in EDP. For energy effi-
cient configuration, Barnes achieves 19% EDP and FMM, Ocean,
Water Spatial and Water-NSquared achieve about 65% of the
default EDP. Overall EDP is reduced significantly in all applications
except Ocean application which improved least with 98% and 87%
of the default EDPs for throughput efficient and energy efficient
configurations respectively.

Since lower EDP is desired one, thus the results show a significant
overall improvement in performance of these configurations sug-
gested by the proposed ICSO algorithm.



Murtza et al. / International Journal of Computational Intelligence Systems 13(1) 864–874 873

Figure 4 Results for normalized throughput.

Figure 5 Results for normalized energy.

Figure 6 Results for energy delay product.

7. CONCLUSION

In this paper, ICSO-based multiobjective DSE methodology was
presented for multicore reconfigurable architectures. The objective
of proposed methodology was to find an optimal trade-off between
energy consumption and throughput. The pareto curve obtained by
the proposedmethodologywas comparedwith the other state of the
art exploration methodology which demonstrate the dominance of
our proposed ICSO-based exploration method. The results were
evaluated using extensive simulation which includes cycle accu-
rate simulator MARSSx86, SPLASH-2 benchmark applications and
CACTI for L1 cache energy consumption and timing data. The
results demonstrate significant reduction in energy consumption
without a major impact on the throughput. The proposed ICSO-
based exploration technique is demonstrated for MPSoC reconfig-
uration but it is extendable for many core processors with more
design space parameters.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

AUTHORS’ CONTRIBUTIONS

ShahidAliMurtzaAlgorithmdevelopment,WritingOriginal Draft,
Simulations, Results presentation; Ayaz Ahmad Algorithm devel-
opment, Supervision in simulations, Results analysis; Muhammad
Yasir Qadri Multicore modelling, target platform parametrization,
final result evaluation, Final draft preparation, Project supervision
(Project Co-PI), ICT R&D Funding; Nadia N. Qadri Data analy-
sis, Development of Methodology; Majed Alhaisoni Project super-
vision, data analysis, Manuscript finalization, University of Ha’il
Funding; Sajid Baloch Project supervision, team management and
administration, validation and verification of results

ACKNOWLEDGMENTS

This work was part supported by the National ICT R&D Fund Pakistan,
through grant number: ICTRDF/TR&D/2012/65 and by Deanship of Sci-
entific Research at University of Ha’il, Ha’il, Kingdom of Saudi Arabia.

REFERENCES

[1] G. Mariani,P. Avasare, G. Vanmeerbeeck, C.Y. Couvreur,
G. Palermo, C. Silvano, V. Zaccaria, An industrial design space
exploration framework for supporting run-time resource man-
agement on multi-core systems, in Proceeding of Conference &
Exhibition on Design, Automation & Test in Europe (DATE),
Dresden, Germany, 2010, pp. 196–201.

[2] M. Monchiero, R. Canal, A. González, Design space exploration
for multicore architectures: a power/performance/thermal view,
in Proceeding of 20th Annual International Conference on Super-
computing, Cairns, Australia, 2006, pp. 177–186.

[3] G. Palermo, C. Silvano, V. Zaccaria, Discrete particle swarm opti-
mization for multi-objective design space exploration, in Pro-
ceeding of 11th EUROMICRO Conference on Digital System
Design Architectures, Methods and Tools (DSD’08), Parma, Italy,
2008, pp. 641–644.

[4] H.F. Sheikh, I. Ahmad, Simultaneous optimization of perfor-
mance, energy and temperature for DAG scheduling in multi-
core processors, in International Green Computing Conference
(IGCC), San Jose, CA, USA, 2012, pp. 1–6.

[5] A.G. Ross, F. Vahid, N. Dutt, Fast configurable-cache tuning with
a unified second-level cache, IEEE Trans. Very Large Scale Inte-
gration Syst. 17 (2009), 80–91.

[6] H. Calborean, L. Vintan, An automatic design space exploration
framework for multicore architecture optimizations, in Interna-
tional Conference on Roedunet (RoEduNet), Sibiu, Romania,
2010, pp. 202–207.

[7] L. Vintan, Main challenges in multicore architecture research,
Revista Romana de Informatica si Automatica. 19 (2009).

[8] J.J. Yi, D.J. Lilja, Simulation of computer architectures: simulators,
benchmarks, methodologies, and recommendations, IEEE Trans.
Comput. 55 (2006), 268–280.

[9] E. Kugu, O.K. Sahingoz, ACO algorithms with multi-core imple-
mentation, in Proceeding of 7th InternationalConference on

https://doi.org/10.1109/DATE.2010.5457211
https://doi.org/10.1109/DATE.2010.5457211
https://doi.org/10.1109/DATE.2010.5457211
https://doi.org/10.1109/DATE.2010.5457211
https://doi.org/10.1109/DATE.2010.5457211
https://doi.org/10.1109/DATE.2010.5457211
https://doi.org/10.1145/1183401.1183428
https://doi.org/10.1145/1183401.1183428
https://doi.org/10.1145/1183401.1183428
https://doi.org/10.1145/1183401.1183428
https://doi.org/10.1109/DSD.2008.21
https://doi.org/10.1109/DSD.2008.21
https://doi.org/10.1109/DSD.2008.21
https://doi.org/10.1109/DSD.2008.21
https://doi.org/10.1109/DSD.2008.21
https://doi.org/10.1109/IGCC.2012.6322280
https://doi.org/10.1109/IGCC.2012.6322280
https://doi.org/10.1109/IGCC.2012.6322280
https://doi.org/10.1109/IGCC.2012.6322280
https://doi.org/10.1109/TVLSI.2008.2002459
https://doi.org/10.1109/TVLSI.2008.2002459
https://doi.org/10.1109/TVLSI.2008.2002459
https://doi.org/10.1109/TC.2006.44
https://doi.org/10.1109/TC.2006.44
https://doi.org/10.1109/TC.2006.44
https://doi.org/10.1109/ICAICT.2013.6722749
https://doi.org/10.1109/ICAICT.2013.6722749


874 Murtza et al. / International Journal of Computational Intelligence Systems 13(1) 864–874

Application of Information and Communication Technologies
(AICT), Baku, Azerbaijan, 2013, pp. 1–5.

[10] I. Hussain, A. Ahmad, M.Y. Qadri, N.N. Qadri, J. Ahmed, Ant
colony optimization for multicore re-configurable architecture,
AI Commun. 29 (2016), 595–606.

[11] S.A. Murtza, A. Ahmad, J. Shafique, Integer cat swarm optimiza-
tion algorithm for multiobjective integer problems, Soft Comput.
24 (2020), 1927–1955.

[12] B. Xing, W.-J. Gao, Innovative Computational Intelligence: a
Rough Guide to 134 Clever Algorithms, Intelligent Systems Ref-
erence Library, vol. 62, Springer, Cham, Switzerland, 2014.

[13] A. Patel, F. Afram, K. Ghose, MARSS-x86: a QEMU-basedmicro-
architectural and systems simulator for x86 multicore processors,
in Proceeding of 1st InternationalQEMUUsers Forum,Grenoble,
France, 2011, pp. 29–30.

[14] M. Murad, I. Hussain, A. Ahmad, M.Y. Qadri, N.N. Qadri, Esti-
mation of distribution based multi-objective design space explo-
ration for energy and throughput-optimized MPSoCs, Turk. J.
Electr. Eng. Comp. Sci. 28 (2020), 540–555.

[15] I. Hussain, S.A. Murtza, M.Y. Qadri, M. Fleury, N.N. Qadri,
Scalable, energy-aware system modeling and application-specific
reconfiguration ofMPSocswith a type-2 fuzzy logic system,Com-
put. Electr. Eng. 74 (2019), 292–304.

[16] T. Givargis, F. Vahid, Platune: a tuning framework for system-on-
a-chip platforms, IEEE Trans. Comput. Aided Design Integr. Cir-
cuits Syst. 21 (2002), 1317–1327.

[17] I. Hussain, A. Parveen, A. Ahmad, M.Y. Qadri, N.N. Qadri,
J. Ahmed, NSGA-II based design space exploration for energy
and throughput aware multicore architectures, Cybern. Syst. 48
(2017), 536–550.

[18] G. Beltrame, L. Fossati, D. Sciuto, Decision-theoretic design space
exploration of multiprocessor platforms, IEEE Trans. Comput.
Aided Design Integr. Circuits Syst. 29 (2010), 1083–1095.

[19] A.K. Singh, M. Shafique, A. Kumar, J. Henkel, Mapping on
multi/many-core systems: survey of current and emerging trends,
in Proceeding of 50th Annual Design Automation Conference,
Austin, TX, USA, 2013, pp. 1–10.

[20] K. Sigdel, System-Level Design Space Exploration of Reconfig-
urable Architectures, PhD Thesis, Delft University of Technology,
TU Delft, 2011.

[21] C. Silvano, W. Fornaciari, E. Villar, Multi-objective Design Space
Exploration of Multiprocessor SoC Architectures, Springer, New
York, NY, USA, 2011.

[22] J.Dongarra, S.Gottlieb,W.T.C.Kramer, Race to exascale, Comput.
Sci. Eng. 21 (2019), 4–5.

[23] S. Furber, A. Brown, Biologically-inspired massively-parallel
architectures - computing beyond a million processors, in Pro-
ceedingof the Ninth International Conference on Application
of Concurrency to System Design, Augsburg, Germany, 2009,
pp. 3–12.

[24] C. Shu-Chuan, P. Tsai, Computational intelligence based on the
behavior of cats, Int. J. Innov. Comput. Inf. Control. 3 (2007),
163–173.

[25] P.M. Pradhan, G. Panda, Solving multiobjective problems using
cat swarm optimization, Expert Syst. Appl. 39 (2012), 2956–2964.

[26] D. Kumar, S.R. Samantaray, I. Kamwa, N.C. Sahoo, Reliability-
constrained based optimal placement and sizing of multiple
distributed generators in power distribution network using cat
swarm optimization, Electr. Power Compo. Syst. 42 (2014),
149–164.

[27] B. Santosa,M.K.Ningrum,Cat swarmoptimization for clustering,
in Proceeding of Soft Computing and Pattern Recognition (SOC-
PAR’09), Malacca, Malaysia, 2009, pp. 54–59.

[28] Y. Sharafi, M.A. Khanesar, M. Teshnehlab, Discrete binary cat
swarmoptimization algorithm, in Proceeding of 3rd International
Conference on Computer, Control & Communication (IC4),
Karachi, Pakistan, 2013, pp. 1–6.

[29] X. Zhao, Y. Jin, H. Ji, J. Geng, X. Liang, R. Jin, An improved
mixed-integer multi-objective particle swarm optimization and
its application in antenna array design, in Proceeding of 2013
IEEE 5th International Symposium Microwave, Antenna, Prop-
agation and EMC Technologies for Wireless Communication
(MAPE), Chengdu, China, 2013, pp. 412–415.

[30] M.Y. Qadri, K.D. McDonald-Maier, Analytical evaluation of
energy and throughput for multilevel caches, in Proceeding of
12th International Conference on Computer Modelling and Sim-
ulation (UKSim), Cambridge, UK, 2010, pp. 598–603.

[31] J.P. Singh, J.L. Hennessy, A. Gupta, Implications of hierarchical
n-body methods for multiprocessor architectures, ACM Trans.
Comput. Syst. 13 (1995), 141–202.

[32] J.P. Singh, C. Holt, J.L. Hennessy, A. Gupta, A parallel adaptive fast
multipole method, in Proceeding of 1993 ACM/IEEE Conference
on Supercomputing, Portland, OR, USA, 1993, pp. 54–65.

[33] S.C. Woo, J.P. Singh, J.L. Hennessy, The Performance Advantages
of Integrating Message Passing in Cache-Coherent Multiproces-
sors, Technical Report, Stanford University, 408 Panama Mall,
Suite 217, Stanford, CA, United States, 1993.

[34] C.W. Gear, Numerical Initial Value Problems in Ordinary Differ-
ential Equations, Prentice-Hall, Englewood Cliffs, NJ, USA, 1971.

[35] J.P. Singh, W.-D. Weber, A. Gupta, SPLASH: stanford parallel
applications for shared-memory, ACM SIGARCH Comp. Arch.
News. 20 (1992), 5–44.

[36] M.S. Papamarcos, J.H. Patel, A low-overhead coherence solu-
tion for multiprocessors with private cache memories, ACM
SIGARCH Comp. Arch. News. 12 (1984), 348–354.

[37] D. Tarjan, S. Thoziyoor,N.P. Jouppi, CACTI 4.0, Technical Report,
HPL-2006-86, HP Laboratories, Palo Alto, CA, USA, 2006.

[38] Intel, Embedded Ultra-Low Power Intel-486 GX Processor,
Datasheet, Intel Corporation, Santa Clara, CA 95054-1549, USA,
1997, pp. 47–48.

[39] S.C. Woo, S. Cameron, M. Ohara, E. Torrie, J.P. Singh, A. Gupta,
The SPLASH-2 programs: characterization and methodological
considerations, ACM SIGARCH Comp. Arch. News. 23 (1995),
24–36.

[40] R.F. Subtil, E.G. Carrano, M. Souza, R.H.C. Takahashi, Using an
enhanced Integer NSGA-II for solving the multiobjective gener-
alized assignment problem, in Proceeding of 2010 IEEE Congress
on Evolutionary Computation (CEC), Barcelona, Spain, 2010, pp.
1–7.

[41] G.M. Amdahl, Validity of the single processor approach to achiev-
ing large scale computing capabilities, in Proceeding of the Spring
Joint Computer Conference (AFIPS ’67), Spring, New York, NY,
USA, 1967, pp. 483–485.

[42] J.L. Gustafson, Re-evaluating Amdahl’s law, Commun. ACM. 31
(1988), 532–533.

[43] P. Thanarungroj, C. Liu, Power and energy consumption analysis
on Intel SCCmany-core system, in Proceeding of IEEE 30th Inter-
national Performance Computing and Communications Confer-
ence (IPCCC), Orlando, FL, USA, 2011, pp. 1–2.

https://doi.org/10.3233/AIC-160708
https://doi.org/10.3233/AIC-160708
https://doi.org/10.3233/AIC-160708
https://doi.org/10.1007/s00500-019-04023-1
https://doi.org/10.1007/s00500-019-04023-1
https://doi.org/10.1007/s00500-019-04023-1
https://doi.org/10.1007/978-3-319-03404-1
https://doi.org/10.1007/978-3-319-03404-1
https://doi.org/10.1007/978-3-319-03404-1
https://doi.org/10.3906/elk-1812-59
https://doi.org/10.3906/elk-1812-59
https://doi.org/10.3906/elk-1812-59
https://doi.org/10.3906/elk-1812-59
https://doi.org/10.1016/j.compeleceng.2019.01.015
https://doi.org/10.1016/j.compeleceng.2019.01.015
https://doi.org/10.1016/j.compeleceng.2019.01.015
https://doi.org/10.1016/j.compeleceng.2019.01.015
https://doi.org/10.1109/TCAD.2002.804107
https://doi.org/10.1109/TCAD.2002.804107
https://doi.org/10.1109/TCAD.2002.804107
https://doi.org/10.1080/01969722.2017.1402433
https://doi.org/10.1080/01969722.2017.1402433
https://doi.org/10.1080/01969722.2017.1402433
https://doi.org/10.1080/01969722.2017.1402433
https://doi.org/10.1109/TCAD.2010.2049053
https://doi.org/10.1109/TCAD.2010.2049053
https://doi.org/10.1109/TCAD.2010.2049053
https://doi.org/10.1145/2463209.2488734
https://doi.org/10.1145/2463209.2488734
https://doi.org/10.1145/2463209.2488734
https://doi.org/10.1145/2463209.2488734
https://doi.org/10.1007/978-1-4419-8837-9
https://doi.org/10.1007/978-1-4419-8837-9
https://doi.org/10.1007/978-1-4419-8837-9
https://doi.org/10.1109/MCSE.2018.2882574
https://doi.org/10.1109/MCSE.2018.2882574
https://doi.org/10.1109/ACSD.2009.17
https://doi.org/10.1109/ACSD.2009.17
https://doi.org/10.1109/ACSD.2009.17
https://doi.org/10.1109/ACSD.2009.17
https://doi.org/10.1109/ACSD.2009.17
https://doi.org/10.1016/j.eswa.2011.08.157
https://doi.org/10.1016/j.eswa.2011.08.157
https://doi.org/10.1080/15325008.2013.853215
https://doi.org/10.1080/15325008.2013.853215
https://doi.org/10.1080/15325008.2013.853215
https://doi.org/10.1080/15325008.2013.853215
https://doi.org/10.1080/15325008.2013.853215
https://doi.org/10.1109/SoCPaR.2009.23
https://doi.org/10.1109/SoCPaR.2009.23
https://doi.org/10.1109/SoCPaR.2009.23
https://doi.org/10.1109/IC4.2013.6653754
https://doi.org/10.1109/IC4.2013.6653754
https://doi.org/10.1109/IC4.2013.6653754
https://doi.org/10.1109/IC4.2013.6653754
https://doi.org/10.1109/MAPE.2013.6689835
https://doi.org/10.1109/MAPE.2013.6689835
https://doi.org/10.1109/MAPE.2013.6689835
https://doi.org/10.1109/MAPE.2013.6689835
https://doi.org/10.1109/MAPE.2013.6689835
https://doi.org/10.1109/MAPE.2013.6689835
https://doi.org/10.1109/UKSIM.2010.114
https://doi.org/10.1109/UKSIM.2010.114
https://doi.org/10.1109/UKSIM.2010.114
https://doi.org/10.1109/UKSIM.2010.114
https://doi.org/10.1145/201045.201050
https://doi.org/10.1145/201045.201050
https://doi.org/10.1145/201045.201050
https://doi.org/10.1145/169627.169651
https://doi.org/10.1145/169627.169651
https://doi.org/10.1145/169627.169651
https://doi.org/10.1137/1015088
https://doi.org/10.1137/1015088
https://doi.org/10.1145/130823.130824
https://doi.org/10.1145/130823.130824
https://doi.org/10.1145/130823.130824
https://doi.org/10.1145/773453.808204
https://doi.org/10.1145/773453.808204
https://doi.org/10.1145/773453.808204
https://doi.org/10.1145/225830.223990
https://doi.org/10.1145/225830.223990
https://doi.org/10.1145/225830.223990
https://doi.org/10.1145/225830.223990
https://doi.org/10.1109/CEC.2010.5586086
https://doi.org/10.1109/CEC.2010.5586086
https://doi.org/10.1109/CEC.2010.5586086
https://doi.org/10.1109/CEC.2010.5586086
https://doi.org/10.1109/CEC.2010.5586086
https://doi.org/10.1145/1465482.1465560
https://doi.org/10.1145/1465482.1465560
https://doi.org/10.1145/1465482.1465560
https://doi.org/10.1145/1465482.1465560
https://doi.org/10.1145/42411.42415
https://doi.org/10.1145/42411.42415
https://doi.org/10.1109/PCCC.2011.6108095
https://doi.org/10.1109/PCCC.2011.6108095
https://doi.org/10.1109/PCCC.2011.6108095
https://doi.org/10.1109/PCCC.2011.6108095

	An Integer Cat Swarm Optimization Approach for Energy and Throughput Efficient MPSoC Design
	1 INTRODUCTION
	2 RELATED WORK
	3 REPRESENTATION OF DESIGN SPACE AND MULTIOBJECTIVE PROBLEM
	3.1 Multiobjective Problem Representation

	4 CAT SWARM OPTIMIZATION
	4.1 History
	4.2 Proposed Approach
	4.2.1 Parameters of algorithm

	4.3 Algorithm
	4.3.1 Tracing mode
	4.3.2 Seeking mode


	5 SIMULATION SETUP
	6 RESULTS
	6.1 Algorithm Results
	6.2 Evaluation of Pareto Set

	7 CONCLUSION


