As part of a project, I’m trying to learn how to do motion capture on videos. Fortunately, there’s Python support for the OpenCV computer vision library.
I adapted some motion capture code I found online that uses the Shi-Tomasi Corner Detector scheme to find good features to track — regions in a grayscale video frame that have large derivatives in two orthogonal directions.
Then the code estimates the optical flow using the Lucas-Kanade method, which applies a least-squares fit to solve for the two-dimensional velocity vector of the corner features.
As a test case, I used a video of Alice singing the “Ito Maki Maki” song.
The shiny tracks in the video show the best-fit model. Interestingly, the corner detection scheme chooses to follow the glints in her eyes and on her lip. The motion tracker does a good job following the glints until she blinks and swings her arm across her face.
The code I used is posted below.
import numpy as np import cv2 cap = cv2.VideoCapture('IMG_0986.mov') size = (int(cap.get(cv2.cv.CV_CAP_PROP_FRAME_WIDTH)), int(cap.get(cv2.cv.CV_CAP_PROP_FRAME_HEIGHT))) # params for ShiTomasi corner detection feature_params = dict( maxCorners = 100, qualityLevel = 0.3, minDistance = 7, blockSize = 7 ) # Parameters for lucas kanade optical flow lk_params = dict( winSize = (15,15), maxLevel = 2, criteria = (cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT, 10, 0.03)) # Create some random colors color = np.random.randint(0,255,(100,3)) # Take first frame and find corners in it ret, frame = cap.read() old_gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) p0 = cv2.goodFeaturesToTrack(old_gray, mask = None, **feature_params) # Create a mask image for drawing purposes mask = np.zeros_like(frame) images = list() height , width , layers = frame.shape fourcc = cv2.cv.CV_FOURCC('m', 'p', '4', 'v') video = cv2.VideoWriter() success = video.open('Alice_singing.mp4v', fourcc, 15.0, size, True) ret = True while(ret): print(ret) frame_gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) # calculate optical flow p1, st, err = cv2.calcOpticalFlowPyrLK(old_gray, frame_gray, p0, None, **lk_params) # Select good points good_new = p1[st==1] good_old = p0[st==1] # draw the tracks for i,(new,old) in enumerate(zip(good_new,good_old)): a,b = new.ravel() c,d = old.ravel() cv2.line(mask, (a,b),(c,d), color[i].tolist(), 2) cv2.circle(frame,(a,b),5,color[i].tolist(),-1) img = cv2.add(frame,mask) video.write(img) ret,frame = cap.read() # Now update the previous frame and previous points old_gray = frame_gray.copy() p0 = good_new.reshape(-1,1,2) cap.release() video.release() cv2.destroyAllWindows()