
1

WINDOGRAPHER DATABASE INTERFACE SPECIFICATION

Authors: Tom Lambert, Windographer Team Lead, UL Renewables

 Tom Ferguson, Senior Software Engineer, UL Renewables

Applies to: Windographer Database Interface revision 7

Document revision: 3

Date: November 2022

1. DEFINITIONS
This document uses the term data point to mean a measurement of some variable (e.g. wind speed, wind

direction, or temperature) made over a certain time interval and recorded for later analysis. The time step is the

interval of time to which a data point corresponds (typically 10 minutes with measured data from meteorological

towers). A data column is a chronological series of data points. A data column could contain, for example, the

recorded mean wind speeds in each ten-minute time step from April 4 to July 28.

In the wind power industry, a data logger typically measures a particular variable many times within each time

step, and then records four data points for that time step: the mean, minimum, maximum, and standard deviation

of those measurements. The resulting four data columns are therefore closely associated with each other. This

document uses the term data column group to refer to such a group of related data columns. This document will

refer to the mean as ‘the parent’ and the other three (minimum, maximum, and standard deviation) as the

‘children’.

The term dataset refers to a set of data columns that have a logical grouping. For meteorological data, this will

typically consist of recorded measurements made at a particular location. This type of dataset will correspond to

one measurement campaign made at a certain place by a meteorological tower or a SoDAR or LiDAR device.

However, a database administrator might also choose to create datasets that consist of all of the measurements

for a particular instrument, even though it has been installed in different locations.

The term database refers to a relational data storage system that can house multiple datasets. Some typical

examples are SQL Server, Oracle, MySQL, and PostgreSQL.

A flag is a category that the Windographer user can use to mark and filter data points. A flagged data segment

or simply flagged segment is a set of contiguous data points to which someone has applied a flag.

A stored procedure is a subroutine contained within a relational database system that outside applications can

call to interact with the database.

* A note about the example statements found in this document: We mean for these examples to convey the gist of

what Windographer will do, not to portray the precise syntax of commands sent to the database. In other words,

these examples show the information (field names, parameter values, etc.) that Windographer will send to the

database or will expect to receive from the database. The precise syntax will vary according to the database

platform (SQL Server vs. MySQL vs. Oracle, etc.). The commands that Windographer actually sends to the database

appear in the status window at the bottom of the Import From Database window.

2

OVERVIEW
This document describes how the Windographer user will import from and export to a central database of wind

resource data and explains the requirements that the database must meet to enable this integration.

In Windographer a dataset comprises:

1. dataset properties (ID, name, longitude, latitude, elevation, change permissions, etc.)

2. data columns

3. data column properties (data type, name, units, measurement height, etc.)

4. a list of the properties of the flags used in the dataset (name and color of each)

5. a list of flagged segments

6. calibration history for each column of data

7. reviewer information (names of analysts who have reviewed the dataset and the periods they reviewed)

8. the dataset history (a list of all modifications made to the dataset and any notes about the dataset)

The database import and export processes encompass all 8 of these data types, though the last five are optional. If

the database stores all eight types of data, one user can import a dataset from the database, flag some segments

to indicate icing or tower shading, then write the data back to the database, and then another user can import the

same dataset and see those flagged segments and the full list of modifications made to the dataset.

Because Windographer communicates with the database via stored procedures, it does not need to know anything

about the structure of the database. In other words, Windographer does not need to know the names or

structures of the tables that the database uses to store data. When Windographer calls the stored procedure to

retrieve a particular type of data, that stored procedure queries the database as necessary and returns the data to

Windographer in the format that Windographer requires. The burden of writing the stored procedures rests with

the database administrator.

We have successfully tested import from and export to Microsoft SQL Server, MySQL, and PostgreSQL, and we

have also successfully tested import from an Oracle v10.2 database. We have done most of our testing against SQL

Server, and this document reflects that. Since Oracle recommends creating stored procedures and functions inside

‘packages’, Windographer's interface to Oracle databases looks slightly different. Instead of making calls to stored

procedures like this:

 Exec windog_ReadDataColumnPropertiesR2 'K5DO3AL9'

Windographer will expect the stored procedures to exist in a ‘WINDOG’ package, and then remove the ‘windog_’

prefix from each procedure name. So, the call to the ‘windog_ReadDataColumnPropertiesR2’ stored procedure will

look like this for Oracle databases:

 Call windog.ReadDataColumnPropertiesR2('K5DO3AL9')

3

2. USER INTERFACE

2.1 IMPORTING DATA
When the Windographer user chooses File > Import From Database, the following window appears:

This window serves as the main interface for importing data into Windographer from a database. The database

connection drop-down box lists the database connections that the user has configured. We expect that in most

cases that first drop-down box will contain only one item. The Edit, New, Remove, and Test buttons all refer to

Windographer database connections. They allow users to change, add, delete, and test connections, respectively.

Check one or more datasets in the list, then click Import to import those datasets (or just the subset data range

that you specify) into Windographer.

If you have not yet configured a database connection, clicking ‘Add…’ to cause the Add Database Connection

window to appear, a screenshot of which appears below. Select from the list of ODBC data sources or else specify a

connection string. Your database administrator should be able to help with this process. Click ‘Test Connection’ to

confirm that the connection string or ODBC data source is working.

4

TESTING CONNECTIONS

Notice that both the Add Database Connection window and the Import From Database window have

buttons that allow you to test a connection. The Test Connection button on the Add Database Connection

window will attempt to connect to the database with the parameters you have supplied. If the connection

succeeds, Windographer will show many connection parameters in the text box next to the Test

Connection button. If not, Windographer displays errors there instead. Text that appears in this text box

can be copied and pasted to help with diagnostics. Please be careful when sending this information as

this text may contain sensitive information like user names and passwords.

The Test button on the top right of the Import From Database window conducts the same test as

described above, plus it tests for the existence of the expected stored procedures. It runs the test on the

connection displayed next to the Database label on the left. As above, the test results will appear in the

text box at the bottom of the window, and can be selected and copied to help with diagnostics.

5

2.2 EXPORTING TO THE DATABASE
After having imported from the database one or more datasets, and/or importing from data files one or more

datasets, the user can then choose to export some or all datasets to the database using File > Export to Database,

which brings up the Export To Database window:

2.3 OTHER DATABASE INTERFACE OPTIONS
A few other interface features affect Windographer’s communications with the database. The most important of

these are the options listed in the ‘Database settings’ section at the bottom of Tools > Options > Advanced:

6

If the user selects the ‘Use the database username when connected to a database’ option, then Windographer will

use the database username (the username used to make the connection to the database) for document history

events. The checkbox labeled ‘Give detailed status updates...’ controls the detail level of the status updates as

Windographer communicates with the database. The detailed setting might be helpful when initially setting up

communications with the database, or if you experience any trouble with importing from or exporting to the

database. Windographer will use the time entered in the ‘Database command timeout’ field to determine the

length of time (in seconds) it waits for communication with the database. If your stored procedures start returning

values but don’t finish, you can increase this value to give the database more time to finish.

The ‘Choose dataset using web page’ option is an advanced feature in Windographer Enterprise that allows a

company to specify how users select datasets using a web page designed by the company. The web page

completely replaces the controls on the Import From Database window. For details about using this option, please

contact Windographer support.

7

3. READING DATABASE SPECIFICATIONS
Windographer begins its communication with the database by calling the stored procedure

windog_ReadSpecifications, which must return a recordset containing one record and at least 2 integer

fields. As the table below summarizes, the first field indicates the revision number of the Windographer interface

that the database implements, and the second specifies which of three possible methods Windographer should

use to query data columns from the database. The interface revision number will increment with future changes,

but the latest revision number is 7, so the first field of this recordset must return a value equal to or less than 7.

This document applies to interface revision 7. Older documents describe older interface versions. The second field

can contain a value of 0, 1, or 2 depending on how the database administrator wants Windographer to query data.

Table 1 – Structure of Recordset Returned by windog_ReadSpecifications

Field Name Type Meaning Possible Values

interface_version integer
Database interface
revision number

An integer between 1 and 7

data_column_query_method integer
Data column query
method

If 0, query each data column separately.
If 1, query all data columns at once.
If 2, query columns separately using a
time step number.

RETURNING ‘RECORDSET’ VARIABLES TO WINDOGRAPHER

Using SQL Server, a person can return a recordset to Windographer by including a ‘SELECT…’ statement directly in

the stored procedure. For example, a stored procedure like the following would fulfill Windographer’s requirement

for windog_ReadSpecifications.

CREATE PROCEDURE [windog_ReadSpecifications]

AS

BEGIN

 SELECT 5 as interface_version, 1 as data_column_query_method;

END

We have tested the above code using SQL Server Express version 10.5.

In addition to the two fields mentioned above, starting in revision 5 of the database interface, you can supply two

optional fields:

Table 2 – Optional Fields Returned by windog_ReadSpecifications

Field Name Type Meaning Possible Values

force_reviewer_popup integer

Pop-up reviewer
window before
exporting to database

An integer: 0 means do not pop-up the
window, any other value will cause
Windographer to pop-up the window.

reviewer_name text

Supply the name of the
reviewer to be used in
the reviewer window

Any text string

8

If the windog_ReadSpecifications stored procedure returns the ‘force_reviewer_popup’ field to

Windographer as an integer value other than zero, Windographer will show the Edit Reviewers window when a

user selects File > Export to Database:

This window allows the user to mark which sections of the dataset they have reviewed. Windographer will attempt

to save this information back to the database using the windog_WriteReviewerInfo stored procedure as

outlined below (see section 7.8). Users can also edit this information at any time by selecting View > Document

History > Reviewers.

If the windog_ReadSpecifications stored procedure returns the ‘reviewer_name’ field, Windographer will use

the value of this field when adding reviewer information. If the field is not supplied, or is empty, Windographer will

use the value from the ‘User name’ field in Tools > Options > General for the reviewer name.

9

4. READING LIST OF DATASETS
When the user clicks Retrieve Datasets on the Import From Database window, Windographer queries the database

for a list of datasets by calling windog_ReadListOfDataSetsR3. This stored procedure should take the user

name as its only input parameter. If the option to ‘Use the database username when connected to a database’ is

checked in Tools > Options > Advanced, Windographer will attempt to get the user name from the login used to

connect to the database. If that fails, or if the user has not selected that option, Windographer will take the user

name from the ‘User name’ field in Tools > Options > General.

For example, to retrieve the list of datasets for a user named ‘John Doe’, Windographer will execute the following

statement:

windog_ReadListOfDataSetsR3 ('John Doe')

That stored procedure must return a recordset with the structure shown in the table below. If the recordset lacks

any of the mandatory fields, Windographer will report an error and stop the import process.

Table 3 – Structure of Recordset Returned by windog_ReadListOfDataSetsR3

Field Type Comments

dataset_id text Mandatory

dataset_name text Mandatory

dataset_timestep integer Mandatory, in minutes

dataset_timezone integer
Mandatory, minutes offset from UTC
(NULL means UTC-unspecified)

dataset_start text Mandatory, format YYYY-MM-DD HH:MM

dataset_end text Mandatory, format YYYY-MM-DD HH:MM

dataset_inst_ht_meas_units text Optional, m or ft, default is m

dataset_description text Optional, default = ''

dataset_displacement_height float Optional, default = 0

dataset_elevation float Optional, default = 0

dataset_elevation_units text Optional, default = m

dataset_latitude double Optional, default = 0

dataset_longitude double Optional, default = 0

doc_history_notes text Optional, default = ''

permission_change_dataset_info boolean Optional, default = false

permission_change_numeric_data boolean Optional, default = false

permission_change_column_properties boolean Optional, default = false

permission_change_data_structure boolean Optional, default = false

permission_change_flag_properties boolean Optional, default = false

permission_change_flagged_segments boolean Optional, default = false

permission_change_calibration_constants boolean Optional, default = false

If the recordset lacks one of the optional fields, Windographer will set that field to its default value, indicated in

Table 3 above. The fields that start with ‘permission_change’ indicate the willingness of the database to allow

Windographer to write data back to the database after the user has changed the data in certain ways. The section

on exporting data to the database will cover this topic in more detail.

10

5. IMPORTING A DATASET
To import a dataset, Windographer queries the database for five types of information:

1. a list of the properties of each data column

2. the data columns themselves

3. a list of the properties of the flags used in the dataset

4. a list of flagged segments

5. a list of the calibration history for each data column

6. a list of the sections of the dataset that have been reviewed

7. a document history list, meaning a list of modifications made to the dataset

As Windographer calls the appropriate stored procedures, it reports progress in the text box at the bottom of the

Import From Database window. If no errors occur, the window closes and Windographer displays the dataset in its

main window. If an error occurs, the window stays open and reports the error.

5.1 IMPORTING DATA COLUMN PROPERTIES
Before it retrieves the data columns, Windographer has to know how much and what kind of data to expect. So it

begins by calling the windog_ReadDataColumnPropertiesR2 stored procedure to retrieve the properties of the

data columns in the dataset. For example, to retrieve data column information for the dataset with the

dataset_id value of 'K5DO3AL9', Windographer will execute the following statement:

windog_ReadDataColumnPropertiesR2 ('K5DO3AL9')

That stored procedure must return a recordset with the structure shown in the table below. If the recordset lacks

any of the mandatory fields, Windographer will report an error and stop the import process.

Table 4 – Structure of Recordset Returned by windog_ReadDataColumnPropertiesR2

Field Type Comments

column_id text Mandatory

group_id text Mandatory

type integer Mandatory

sub_type integer Mandatory

label text Mandatory

height float Mandatory

units text Mandatory

verbose_label text Optional, default = ''

color integer Optional, default = -1

is_visible boolean Optional, default = true

For example, windog_ReadDataColumnPropertiesR2 might return a recordset like the one shown in the table

below.

11

Table 5 – Sample Recordset Returned by windog_ReadDataColumnPropertiesR2

column_id group_id type sub_type height label units verbose_label color is_visible

D8iG-08 1 1 1 40 Spd 40m m/s Average wind speed at 40m 3428285 true

D8iG-03 1 1 2 40 Spd 40m SD m/s Std. dev. of wind speed at 40m 2594834 true

D8iG-04 1 1 3 40 Spd 40m Max m/s Minimum wind speed at 40m 2594582 false

D8iG-05 1 1 4 40 Spd 40m Min m/s Maximum wind speed at 40m 2594330 true

D8iG-20 2 1 1 20 Spd 20m m/s Average wind speed at 20m 2594078 true

D8iG-15 2 1 2 20 Spd 20m SD m/s Std. dev. of wind speed at 20m 2593826 true

D8iG-16 2 1 3 20 Spd 20m Max m/s Minimum wind speed at 20m 2593574 false

D8iG-17 2 1 4 20 Spd 20m Min m/s Maximum wind speed at 20m 2593322 true

D8iG-34 5 3 1 38 Dir 38m ° Average wind direction at 38m -1 true

D8iG-35 5 3 2 38 Dir 38m SD ° Std. dev. of wind dir at 38m -1 true

D8iG-57 7 4 1 0 Temperature °C Average temperature in °C -1 true

Qi-14
D8iG-08,
D8iG-20,
D8iG-34

100

1 0
Quality
Indicator

% Quality Indicator -1 true

Windographer uses the label field to identify each data column in its graphs and tables. The type and sub_type

fields must contain one of the values shown in Table 6 and Table 7 below. The type field identifies the type of data

the data column contains (wind speed, wind direction, temperature, etc.) while the sub_type field indicates

whether its data points record the mean, minimum, maximum, or standard deviation values measured in each

time step. The height field indicates the measurement height above ground. (The dataset properties specify the

units of these measurement height values.) The color field will contain an RGB value, or, if Windographer should

automatically assign a color, this field can be absent or contain -1. Windographer will use the group_id field to

associate the data columns that belong to the same data column group (see definition at the top of the

document). The is_visible field will set the initial value for the visible setting for the column.

In the example table above, columns D8iG-34 & D8iG-35 are part of the same group, where D8iG-35 represents the

standard deviation of the D8iG-34 wind speed column. Column Qi-14 contains quality information that

Windographer will associate with columns D8iG-08, D8iG-20, and D8iG-34.

Table 6 - Allowable Values of Type

Value Meaning

1 Horizontal wind speed

2 Vertical wind speed

3 Wind direction

4 Temperature

5 Air pressure

6 Relative humidity

7 Measured turbulence intensity

8 Battery voltage

 Value Meaning

9 Air density

10 Wind turbine output

11 GHI (global horizontal irradiance)

12 DNI (direct normal irradiance)

13 DHI (diffuse horizontal irradiance)

100 Quality

1000 Other (unknown type)

12

Table 7 - Allowable Values of Sub_Type

Value Meaning

1 Average

2 Standard Deviation

3 Minimum

4 Maximum

5.2 IMPORTING DATA COLUMNS
As section 4 explains, the recordset returned by windog_ReadSpecifications determines how Windographer

queries data columns. The following subsections describe the available approaches.

5.2.1 IMPORTING ONE DATA COLUMN AT A TIME
Windographer queries the data columns one at a time by calling the stored procedure windog_ReadDataColumn

once for every data column specified in the data column properties recordset. This stored procedure takes four

parameters: dataset_id, column_id, start_date, and end_date. The start and end dates come from the date

range inputs the user specified in the Import From Database window. The column_id field comes from the data

column properties recordset. The dataset_id field comes from the list of datasets retrieved by

windog_ReadListOfDataSetsR3.

For example, the call to this stored procedure might look like this:

windog_ReadDataColumn('D8iG-16', 'F7_15', '2009-03-27 18:50', '2009-03-27 23:00')

This stored procedure must return a recordset containing one column of data, such as the example shown in the

table below.

Table 8 – Sample Recordset Returned by windog_ReadDataColumn

field

11.5

12.7

9.9

9.7

10.3

10.9

11.9

12.8

...

Windographer will ignore the name of the field. Each call to windog_ReadDataColumn must return the same

number of records, and that number of records must equal the number of time steps between start_date and

end_date. In the example above, Windographer will expect to import 25 records if the time step is 10 minutes,

since there are 250 minutes from 18:50 to 23:00, and 250 minutes divided by 10 minutes per time step equals 25

time steps. If Windographer encounters a recordset with the wrong number of records, it will report an error and

stop the data import process.

13

5.2.2 IMPORTING ONE DATA COLUMN AT A TIME USING TIME STEP NUMBERS
Using this method, Windographer calls the stored procedure windog_ReadDataColumnWithStepNumber once

for every data column specified in the data column properties recordset. This stored procedure takes four

parameters: dataset_id, column_id, start_date, and end_date (the same as windog_ReadDataColumn).

The start and end dates come from the date range inputs the user specified in the Import From Database window.

The column_id field comes from the data column properties recordset. The dataset_id field comes from the

list of datasets retrieved by windog_ReadListOfDataSetsR3.

For example, the call to this stored procedure might look like this:

windog_ReadDataColumnWithStepNumber('D81', 'F7', '2009-03-27 18:50', '2009-03-27

23:00')

This stored procedure must return a recordset containing two columns. Windographer will expect the first column

to contain the time step number, and the second column to contain numerical values, as in the example in the

table below.

Table 9 – Sample Recordset Returned by windog_ReadDataColumnWithStepNumber

time step number data

0 11.5

1 12.7

2 9.9

7 9.7

10 10.9

8 10.3

11 11.9

12 12.8

Windographer ignores the name of the fields and will fill the values of its data column with data from the second

column of this recordset. The time step numbers should be zero-indexed, meaning the first time step in the

requested date range should have the number zero. Time steps for which the recordset specifies no data will be

treated as gaps in Windographer. For instance, if a dataset with 10min time steps spans a time period from 2013-

06-15 9:10 to 2013-06-15 11:20, Windographer will expect to fill its data column with 13 values (10 min x 13 =

130min). If the table above were returned to Windographer for one of the columns of that dataset, the column in

Windographer would have empty values for the time steps with numbers 3, 4, 5, 6, and 9, as shown in Table 10:

14

Table 10 – Values Entered into Windographer for the Example Above

time step number data

0 11.5

1 12.7

2 9.9

3

4

5

6

7 9.7

8 10.3

9

10 10.9

11 11.9

12 12.8

Windographer does not require the records to be returned in order of ascending time step. It will put the data

values into the positions specified by the time step numbers regardless of order. It will ignore any extra values

returned by the recordset.

5.2.3 IMPORTING ALL DATA COLUMNS AT ONCE
To query all data columns at once, Windographer calls the windog_ReadAllDataColumns stored procedure

once, with one parameter specifying the dataset ID, one for the start date, and one for the end date. For example,

the call to this stored procedure might look like this:

windog_ReadAllDataColumns ('D8iG-16', '2009-03-27 18:50', '2009-03-27 23:00')

That stored procedure should return a recordset whose number of fields corresponds to the number of records in

the recordset returned by windog_ReadDataColumnPropertiesR2. Each field corresponds to one data column,

and the name of each field must correspond to the column_id of that data column.

For example, if windog_ReadDataColumnPropertiesR2 returns a recordset like the one shown in Table 11,

then windog_ReadAllDataColumns should return a recordset like the one shown in Table 12:

Table 11 – Sample Recordset Returned by windog_ReadDataColumnPropertiesR2

column_id group_id type sub_type height label units color is_visible

Qe3s-12 1 1 1 40 Spd 40m m/s 3428285 true

Qe3s-41 1 1 2 40 Spd 40m SD m/s 2594834 true

Qe3s-08 1 1 3 40 Spd 40m Max m/s 2594582 true

Qe3s-05 1 1 4 40 Spd 40m Min m/s 2594330 false

Qe3s-32 2 3 1 38 Dir 38m ° -1 true

Qe3s-02 2 3 2 38 Dir 38m SD ° -1 true

Qe3s-16 3 4 1 0 Temperature °C -1 true

15

Table 12 – Sample Recordset Returned by windog_ReadAllDataColumns

Qe3s-12 Qe3s-41 Qe3s-08 Qe3s-05 Qe3s-32 Qe3s-02 Qe3s-16

11.5 2.0 12.0 11.0 250 5 21

12.7 2.5 13.5 11.0 255 25 21

9.9 1.5 11.0 8.0 268 55 21

9.0 1.8 10.5 6.0 251 45 21

10.3 2.1 11.0 8.9 240 56 21

10.9 2.2 14.7 7.6 233 74 21

11.9 1.5 12.5 8.5 247 35 21

12.8 1.7 15.0 5.0 258 94 21

...

The order of these fields does not matter; Windographer will identify each data column by its column_id, which

appears as the field name. In this example, Windographer will interpret the third field in Table 12 (highlighted) as

the maximum wind speed measured at 40 meters, since its field name matches the column_id of the third record

of Table 11 (also highlighted). Likewise, it will interpret the 5th column as the wind direction measured at 38

meters, and so on.

If Windographer successfully queries the data columns (one at a time, or altogether) without encountering any

errors, it will move on to querying flag properties.

5.3 IMPORTING FLAG PROPERTIES
To retrieve a list of the flags used in a particular dataset, Windographer calls the stored procedure

windog_ReadFlagProperties with one parameter specifying the dataset ID. For the dataset with an ID of

'K5DO3AL9', for example, Windographer will execute the following statement:

windog_ReadFlagProperties('K5DO3AL9')

That stored procedure must return a recordset with the structure shown in the table below. If the recordset lacks

any of the mandatory fields, Windographer will report an error and stop the import process.

Table 13 – Structure of Recordset Returned by windog_ReadFlagProperties

Field Type Comments

flag_id text Mandatory

name text Mandatory

Description text Mandatory

Color bigint Mandatory

include_in_calcs bit Mandatory

show_in_graphs bit Mandatory

tower_shading bit Mandatory

invalid_data bit Mandatory

synthesized_data bit Mandatory

For example, windog_ReadFlagProperties might return a recordset like the one shown in Table 14. The

Windographer database interface requires all the fields shown in Table 13. If the database administrator decides to

use the same set of flags for every dataset, this stored procedure can ignore the dataset ID parameter – and the

16

permission_change_flag_list field should have a value false (otherwise each user would be writing to the

same table, potentially overwriting each other’s changes).

Table 14 – Sample Recordset Returned by windog_ReadFlagProperties

flag_id name description color include_in_calcs show_in_graphs tower_shading invalid_data synthesized_data

38 Icing
Data affected by
sensor icing

245754 false true false false false

39 Invalid
Error code value
from data logger

216526 false false false true false

4a
Low
quality

Signal-to-noise ratio
lower than threshold

487298 false false false false false

4b
Tower
shading

Shading of an
anemometer by the
tower

358070 false true true false false

4c
Synthesize
d

Synthesized by
Windographer

328842 true true false false true

4d
Cold
weather

Chilly 304210 true true false false false

4e
Summerti
me

Nice and warm 274982 true true false false false

The name, description, color, include_in_calcs, and show_in_graphs fields that appear in this table correspond to

the properties of flags in Windographer, and the Windographer online help system contains further information

about them. The last three fields (tower_shading, invalid_data, and synthesized_data) tell Windographer which

flags will be used as special purpose flags. Only one of the flags can be marked as the tower shading flag, invalid

data flag, and synthesized data flag – that is why there is a single ‘true’ value in each of those columns. In this

example, the ‘Tower shading’ flag will become Windographer’s default flag for marking points as tower shading.

Similarly, ‘Invalid’ will get used to flag invalid data, and ‘Synthesized’ will get used to mark data that Windographer

synthesizes. If more than one record has a ‘true’ value in any of these last three fields (tower_shading,

invalid_data, or synthesized_data), Windographer will return an error and stop the import process. Windographer

will also return an error if any of those fields do not have any records with a ‘true’ value.

17

HOW WINDOGRAPHER HANDLES FLAGS

Each row returned by the windog_ReadFlagProperties stored procedure corresponds to a flag in

Windographer. When Windographer imports data from a database, the list of flags returned by

windog_ReadFlagProperties will appear in the list of flags in the Define Flags dialog box.

Windographer users can also define a set of ‘favorite flags’, which are not associated with any single

dataset. Starting in revision 2 of the database interface (the initial version used in Windographer v3),

Windographer added these ‘favorite flags’ to a new dataset only if the windog_ReadFlagProperties

stored procedure did not return any records from the database. Otherwise, Windographer would only

include the flags returned by the stored procedure in the list of flags in the Define Flags window

By default, Windographer defines 5 favorite flags which correspond to the first 5 flags in Table 14: Icing,

Low Quality, Tower shading, Invalid, and, Synthesized. Also by default, Windographer will assign the last

three (Tower shading, Invalid, and Synthesized) as the ‘special purpose’ flags, which is uses for particular

situations.

Starting in revision 2 of the database interface, Windographer completely separates its flag IDs from those

used by the database. The database can assign any format for a flag ID (integers, characters, or a mixture

of the two) and Windographer will use those values when exporting data back to the database. This means

that when a user creates a new flag in Windographer, the export process must get the new flag ID from

the database before it can save the flagged segments associated with this flag. Thus, the

windog_AddOrUpdateFlagR2 stored procedure must return the new flag ID from the database when it

is called to add a flag.

Starting in revision 3 of the database interface, Windographer imports/exports special purpose flags

from/to the database. We have updated the specifications for the stored procedure that writes flag

properties in the database and given it a new name: windog_AddOrUpdateFlagR2.

18

5.4 IMPORTING FLAGGED SEGMENTS
To retrieve flagged segment data for a particular dataset, Windographer will call the stored procedure

windog_ReadFlaggedSegments, passing in the dataset ID as a parameter. For a dataset with an ID of

'K5DO3AL9', for example, Windographer will execute the following statement:

windog_ReadFlaggedSegments('K5DO3AL9')

This stored procedure must return a recordset of the format shown in the example in the table below.

Table 15 – Sample Recordset Returned by windog_ReadFlaggedSegments

flag_id column_id start_time end_time

4b 84 2009-07-08 16:30 2009-07-10 09:40

4b 84 2009-07-12 01:00 2009-07-12 04:20

4b 86 2009-07-12 01:00 2009-07-12 04:20

39 92 2009-07-12 01:00 2009-07-12 04:20

4b 85 2009-07-08 16:30 2009-07-10 09:40

39 92 2009-07-08 16:30 2009-07-10 09:40

The windog_ReadFlaggedSegments stored procedure does not take a date range as parameters. It should

return all flagged segments, regardless of whether the user is reading the entire date range of a dataset, or just a

subset thereof. Windographer will sort out which flagged segments apply to the retrieved date range and ignore

those that do not.

Please note that if the user has imported only a subset of the dataset, meaning only a particular date range, then if

Windographer encounters any flagged segments that span the start or end of that date range, it will prevent the

user from editing flagged segments and then exporting back to the database. In this situation, if the user does flag

or unflag segments, Windographer will break the link to the database, so that the user can save the dataset to a

.windog file but not back to the database. This situation will never arise if the user imports the complete dataset.

5.5 READING CALIBRATION DATA
Starting in revision 4 of the database interface, Windographer imports calibration settings from the database and

exports them back to the database. To read the calibration history for a dataset, Windographer calls the

windog_ReadCalibrationEvents stored procedure, passing one parameter specifying the dataset ID, one for

the start date, and one for the end date. For example, for the dataset with ID '23-31567', Windographer will

execute the following statement:

windog_ReadCalibrationEvents ('23-31567', '2009-03-01 00:00', '2009-04-01 00:00')

The call to this stored procedure must return a recordset of the format shown in the table below.

19

Table 16 – Sample Recordset Returned by windog_ReadCalibrationEvents

column_id start_time slope offset boom_orientation serial_number

456 2009-03-01 00:00 0.35 0.0 270 1565848

456 2009-03-12 01:00 0.4 0.0 271 4565-DD15

477 2009-03-01 00:00 0.3 0.0 90 8755889

478 2009-03-01 00:00 0.3 8.5 180.5 65411

479 2009-03-01 00:00 0.1 0.50 0 17

482 2009-03-01 00:00 1.25 0.51 125 87H7

The column_id must match the column ID of the column to which the calibration information applies. The

start_time is the date and time where that calibration period started to apply. The first calibration start_time for a

column should match the start time of the dataset. Windographer will assume that a calibration period applies

beginning with its start_time and continuing until it encounters another calibration event for that column. If no

other calibration event applies to that column, the initial one applies to the whole column. In the example above,

only the ‘456’ column has more than one calibration period. The first begins at ‘2009-03-01 00:00’ and applies up

to ‘2009-03-12 01:00’. From that point on, the second calibration period applies. The slope, offset, and

boom_orientation fields should be floating point values, and the serial_number field will be handled as text. If the

stored procedure does not return any records, Windographer will assign default calibration constants (0 for the

offset and boom orientation, and 1 for the slope) to each parent (mean) column.

5.6 READING REVIEWER INFORMATION
Starting in revision 5 of the database interface, Windographer reads and writes reviewer information. Reviewer

information is simply a list of names with associated dates that is meant to keep track of who has reviewed

different parts of the dataset. To read the reviewer information for a dataset, Windographer will call the

windog_ReadReviewerInfo stored procedure, passing one parameter specifying the dataset ID, one for the

start date, and one for the end date. For example, for the dataset with ID ‘3651’, Windographer will execute the

following statement:

windog_ReadReviewerInfo ('3651', '2009-03-01 00:00', '2009-04-01 00:00')

The call to this stored procedure must return a recordset of the format shown in the table below.

Table 17 – Sample Recordset Returned by windog_ReadReviewerInfo

reviewer_name start_time end_time

Tom Ferguson 2009-03-01 00:00 2009-03-03 00:00

Linda Sloka 2009-03-08 14:00 2009-03-11 00:00

Tom Lambert 2009-03-11 00:00 2009-03-21 00:00

If the stored procedure does not return any records, Windographer will simply leave the reviewer information

empty for this dataset. If the stored procedure returns any records, then all the fields shown in the table above are

mandatory. The reviewer_name field should be a text field, while start_time and end_time are date/time fields.

20

5.7 READING DOCUMENT HISTORY DATA
As of revision 4 of the database interface, Windographer will call the windog_ReadDocumentHistoryR2 stored

procedure to retrieve the document history for a particular dataset. Windographer will pass in one parameter to

indicate the dataset. For the dataset with ID 'K5DO3AL9', for example, Windographer will execute the following

statement:

windog_ReadDocumentHistoryR2('K5DO3AL9')

This stored procedure must return a recordset with the structure shown in the table below. As with flagged

segments, the database will always provide the entire document history list even if the user has retrieved only a

portion of the entire dataset.

Table 18 – Structure of Recordset Returned by windog_ReadDocumentHistoryR2

Field Type

type integer

user text

modification_time date/time

start_time date/time

end_time date/time

time_steps integer

data_columns text

text1 text

text2 text

float_array text

binary_blob varbinary(max)

For Windographer to accept the recordset as valid, the stored procedure must return all fields listed in Table 18.

These specifications do not provide details about each field since these are very specific to Windographer and can

simply be retrieved from a table with the same structure as the recordset shown above. Windographer will update

the table using the windog_WriteDocumentHistoryEventR3 stored procedure whenever a user saves

information back to the database.

21

6. WRITING DATA TO THE DATABASE
Windographer can write the same types of information to a database that it reads. If you imported the dataset

from a database, then Windographer will make the exporting process more efficient by writing only the data that

have changed since the import. For example, if the user has applied flags but not changed the numeric data in any

way, then Windographer will write the flag data to the database, but it will not write the numeric data. But the

write process will always encompass all the modified data. For example, if the user has changed both flag data and

numeric data, he or she will not have the option of writing just the modified flag data or just the modified numeric

data; the only option will be to write all modified data, both flag and numeric, back to the database.

To ensure data integrity, Windographer gives the database administrator a great deal of control over the process

of writing data to the database. That control begins with the ability to specify the kinds of modifications that the

Windographer user can make to the dataset, and still write that dataset back to the database.

Windographer allows users to insert datasets into the database. All stored procedures that add new items

(datasets, columns, and flags) to the database therefore require at least one output parameter from the database:

the ID of the newly-added item. These stored procedures (windog_AddOrUpdateDatasetR4,

windog_AddOrUpdateColumnR2, and windog_AddOrUpdateFlagR2) each work in a similar way. When

Windographer wants to modify a dataset that it imported from the database, it will send the dataset ID as the

input parameter into the stored procedure. When Windographer wants to insert a new item that is part of a

dataset that did not originate in the database, it will specify an empty dataset ID as the input parameter, and it will

expect the stored procedure to specify the new dataset ID as an output parameter.

For example, the code below contains a few lines from the windog_AddOrUpdateDatasetR4 stored procedure

in our test database.

Example T_SQL code for returning new dataset ID from the data base (this is NOT a complete stored procedure):

...

@new_dataset_id varchar(50) output,

...

@retmsg varchar(200)=null output

...

Insert into [tblSites] ([name], [description], [timestep], [elevation]...

select @name, @description, @timestep, @elevation, @longitude, @latitude...

if exists(select id from [tblSites] where id=(select SCOPE_IDENTITY()))

 begin

 set @new_dataset_id = (select SCOPE_IDENTITY())

 return 1

 end

else

 begin

 set @retmsg='Error adding a record into the tblSites table.'

 return 0

 end

22

Note: Unlike reading data from a database, the technique that Windographer uses to write data to a database

changes substantially for different database platforms. This results from the fact that different databases handle

stored procedures differently. MySQL in particular handles return values from stored procedures in a distinctive

way.

6.1 PERMISSION TO WRITE DATA TO THE DATABASE
The Windographer user will be able to do anything to a dataset imported from a database that he or she could do

to any other dataset. Possible changes the user can make include applying flags, applying slopes and offsets to

numeric data, applying time shifts, deleting data, filling gaps, changing data column properties, creating a new

wind speed data column by vertical extrapolation, updating calibration constants, appending rows and/or columns

using File > Append, and adding calculated data columns. The question for the database administrator is this:

Given that a certain dataset has been changed in a certain way, does Windographer have permission to write that

dataset back to the database or not? (The user will always have the option of saving the dataset to a .windog file

using File > Save, or exporting to a text file using File > Export Data.)

The six permission_change fields in Table 3 specify the types of modifications the user can make to a dataset

while still preserving the option to write that dataset back to the database. The

permission_change_numeric_data field, for example, specifies whether a dataset can be written back to the

database after the user has made one or more changes to its numeric data, such as the application of a slope or

offset to some or all data points, or the deletion of some data points. If that permission field had a value of false,

then just at the point that the user was about to execute some change to the numeric data, Windographer would

issue the following warning message:

If the user clicks Yes, Windographer will disable the Export to Database menu item, switch out of database mode,

and cease to ask such questions for the current dataset.

The table below lists the modifications governed by each of the six permission fields. As mentioned in the section

on reading data, these fields form part of the recordset returned by the windog_ReadListOfDataSetsR3 stored

procedure. Their values could vary by dataset if the database administrator decides that the database can accept

certain types of modification in some datasets, but not in others. However, in most cases we would expect the

database administrator to apply the same restrictions to all datasets.

23

Table 19 – Changes Governed by Permission Fields

Permission Field Changes Governed by Permission Field

permission_change_dataset_info Changes to the meta data like the dataset name, description,

longitude, latitude, elevation, measurement units, etc.

permission_change_numeric_data Filling of gaps, application of slope or offset, calibration changes

where user selects option to update the data, deletion of data, or

time shifting data within the existing period of record (with Revise >

Time Shift)

permission_change_column_properties Changes to data column properties (label, type, units, color,

associations with other data columns)

permission_change_data_structure Addition of time steps (with File > Append) or removal of time steps

(with Revise > Delete Data). A future version may also allow addition

of data columns (with File > Append or vertical extrapolation), or

removal of data columns (with Revise > Delete Data or Revise >

Configure Dataset), or time shifting data such any of the new data

falls outside of the starting period of record (with Revise > Time Shift).

permission_change_flag_list Changes to the properties of a flag, addition of flags, deletion of flags*

permission_change_flagged_segments Application of a flag to a segment, removal of a flag from a segment

permission_change_calibration_constants Calibration changes

*Note: the scenario in which the Windographer user imports only a portion of a dataset (e.g. the last month of a

two-year dataset) requires special handling. When the user deletes a flag, Windographer also deletes all the

associated flagged segments (those that refer to that flag) in the dataset. But if Windographer cannot access the

entire dataset it cannot perform that step in its entirety, nor even correctly inform the user as to whether it must

be performed, since it only sees a subset of the dataset. To avoid this problem, in the scenario in which the

database import covers only a portion of the entire dataset, the Define Flags window will disable the Delete button

and inform the user that he or she cannot delete flags, as shown in the screenshot below.

24

6.2 WRITING DATASET INFORMATION
Windographer will start its export to the database by opening a transaction in the database. If Windographer finds

that its connection already has a transaction open, it will add a warning to the status text box. Windographer will

conclude the transaction after it calls windog_WriteConcluded.

Windographer begins exporting data to the database by calling the windog_AddOrUpdateDatasetR4 stored

procedure. If the user imported the current dataset from a database, or if the dataset came from a file but has

already been saved to the database, then the first parameter (the dataset ID from the database) will have a value

and Windographer will ignore the output parameters of this stored procedure. If the dataset did not originate from

a database, then the first parameter will be empty, and Windographer will use the output parameters. Specifically,

Windographer will need parameter 18, the new ID for this dataset, which was assigned by the database.

SQL Server: Windographer will query the database to determine the list of parameters for the

windog_AddOrUpdateDatasetR4 stored procedure. Windographer will expect to find the

parameters listed in the table below and will report an error message otherwise. The stored

procedure should return an integer: 1 for success, or 0 for failure. If the stored procedure

returns 0, and has an extra output parameter of type varchar, Windographer will treat this

as an error message and will display it in the status text box. If the stored procedure returns 1

and is being called to add data from a file into the database, then the stored procedure

should also return all the parameters listed as ‘out’ parameters in the table below. The

parameters, their types, and the values that Windographer will pass in or retrieve appear in

the table below:

Table 20 – Parameters for windog_AddOrUpdateDatasetR4

Parameter Direction Type Comments

1 in varchar dataset ID

2 in varchar dataset name (or file name if it’s empty)

3 in varchar dataset description

4 in varchar document history notes

5 in integer time zone (minutes from UTC; NULL means UTC-unspecified)
unspecified) 6 in integer timestep (minutes)

7 in float displacement height (m)

8 in float elevation (m)

9 in float longitude

10 in float latitude

11 in varchar instrument height measurement units

12 in varchar elevation units

13 in boolean Permission to change the dataset information

14 in boolean Permission to change numeric data

15 in boolean Permission to change column properties

16 in boolean Permission to change data structure

25

Table 20 Continued – Parameters for windog_AddOrUpdateDatasetR4

Parameter Direction Type Comments

17 in boolean Permission to change flag properties

18 in boolean Permission to change flagged segments

19 in boolean Permission to change calibration constants

20 out varchar New dataset ID

21 out bit Permission to change dataset info

22 out bit Permission to change numeric data

23 out bit Permission to change the column properties

24 out bit Permission to change the data structure

25 out bit Permission to change flag properties

26 out bit Permission to change flagged segments

27 out bit Permission to change calibration constants

Example T-SQL code setting up the parameters for the stored procedure:

CREATE proc [dbo].[windog_AddOrUpdateDatasetR4]

@dataset_id varchar(50),

@name varchar(250),

@description varchar(250)=null,

@doc_history_notes varchar(4000)=null,

@timezone int,

@timestep int,

@displacement_height float,

@elevation float,

@longitude float,

@latitude float,

@height_meas_units varchar(50),

@elevation_units varchar(50),

@permission_change_dataset_info bit,

@permission_change_numeric_data bit,

@permission_change_column_properties bit,

@permission_change_data_structure bit,

@permission_change_flag_list bit,

@permission_change_flagged_segments bit,

@permission_change_calibration_constants bit,

@new_dataset_id varchar(50) output,

@permission_change_dataset_info_out bit output,

@permission_change_numeric_data_out bit output,

@permission_change_column_properties_out bit output,

@permission_change_data_structure_out bit output,

@permission_change_flag_list_out bit output,

@permission_change_flagged_segments_out bit output,

@permission_change_calibration_constants_out bit output,

@retmsg varchar(200)=null output

as

...

Please note that none of the return parameters is defined as ‘varchar(max)’. The current versions of Windows

drivers do not handle that data type correctly – values being returned to Windographer must have the variable size

specified; for example: varchar(50) or nvarchar(2000).

26

6.3 DATA COLUMN PROPERTIES
If the call to windog_AddOrUpdateDatasetR4 succeeds, then Windographer will determine whether to call the

windog_AddOrUpdateColumnR2 stored procedure. It needs to do so in the following two scenarios:

1) If the user is exporting from a file into the database and creating a new dataset in the database,

Windographer will have to call windog_AddOrUpdateColumnR2 for each data column to inform the

database of the properties of each data column, and to retrieve from the database the new column IDs

for use in later stored procedure calls. These calls to windog_AddOrUpdateColumnR2 will happen just

after the call to windog_AddOrUpdateDatasetR4, as part of the process of changing the dataset

structure.

2) If the current dataset originated from a database, but the user has changed the properties of any data

column such as a measurement height or a color, Windographer will call

windog_AddOrUpdateColumnR2 for each data column. These calls to

windog_AddOrUpdateColumnR2 will happen just after the call to windog_WriteFlaggedSegmentR2

(see section 7.6), as part of the routine updates to column properties.

If Windographer intends for the column properties to update existing values in the database, then it will pass the

current column ID as the second parameter to this stored procedure. If the data are being added to the database

for the first time, then Windographer will pass an empty string as the second parameter, and the database must

assign a new column ID for the data column and return it as parameter 12. Windographer stores this returned

column ID and uses it in later stored procedure calls. If the database does not return a new column ID when

Windographer has passed in an empty column ID, Windographer will stop the export process and report an error.

We introduced the ‘Parent Column ID’ field in revision 2 of Windographer’s database interface to help with the file

export process. When exporting data from a file, Windographer must provide the database with a way to maintain

referential integrity for columns in the same data column group (see definition at the top of the document). In the

process of exporting from a file to a database, Windographer will first call the windog_AddOrUpdateColumnR2

stored procedure for all ‘parent’ columns. For each one, Windographer will record the new column ID returned by

the database (parameter 12 in the table below). Then, as Windographer calls windog_AddOrUpdateColumnR2

for each child column, Windographer will pass in the column ID (assigned by the database) for the parent column

as parameter number 10.

SQL Server: Windographer will query the database to determine the list of parameters for the

windog_AddOrUpdateColumnR2 stored procedure. Windographer will expect to find the

parameters listed in the table below and will report an error message otherwise. The stored

procedure should also return an integer: 1 for success, or 0 for failure. If the stored procedure

returns 0, and has an extra output parameter of type varchar, Windographer will treat this

as an error message and will display it in the status text box. The parameters, their types, and

the values that Windographer will pass in appear in the table below:

27

Table 21 – Parameters for windog_AddOrUpdateColumnR2

Parameter Type Value That Windographer Will Pass In

1 varchar Dataset ID

2 varchar Column ID

3 int Type

4 int Sub-type

5 varchar Label

6 float Height

7 varchar Units

8 varchar Verbose Label

9 long Color

10 varchar Parent column ID

11 bit Is visible

12 varchar (OUTPUT) New column ID

As of Windographer v3.1.10, released in November of 2013, Windographer will send the value 1000 for columns of

type ‘Other’. Prior versions of Windographer sent the value of 0 (zero).

6.4 CHANGING DATA STRUCTURE
Two types of data structure changes are possible in Windographer: addition or removal of time steps, and addition

or removal of data columns. In the current version of Windographer, only the first type of change can be exported

to the database, and then only if the database specifies the permission_change_data_structure field as

true. We have not yet implemented the ability to update a dataset in the database after the addition or removal of

data columns. That means that if a user imports a dataset and adds or removes a data column, she will lose the

ability to write the dataset back to the database. As mentioned above, users always have the option to save the

dataset to a .windog file or export to a text file.

When exporting to the database, Windographer handles added and deleted time steps by calling the

windog_WriteDataPoint and windog_WriteDataFollowUp stored procedures, as the following section

explains.

28

6.5 WRITING NUMERIC DATA
If the call to windog_AddOrUpdateDatasetR4 succeeds, Windographer will call the stored procedure

windog_WriteDataPoint once for each data point that the user has modified, for example by applying a scale or

offset factor, or by filling a gap or deleting a data segment. If a data point has been deleted, Windographer will

pass a NULL value in as the 4th parameter to windog_WriteDataPoint. Applying a flag to a data point does not

count as a modification in this context, since the flagging operation does not affect the actual numeric value of the

data point. If the user has not changed any data points, Windographer will not call windog_WriteDataPoint or

windog_WriteDataFollowUp.

SQL Server: Windographer will query the database to determine the list of parameters for the

windog_WriteDataPoint stored procedure. Windographer will expect to find the

parameters listed in the table below and will report an error message otherwise. The stored

procedure should return an integer: 1 for success, or 0 for failure. If the stored procedure

returns 0, and has an extra output parameter of type varchar, Windographer will treat this

as an error message and will display it in the status text box. The input parameters, their

types, and the values that Windographer will pass in appear in the table below:

Table 22 – Parameters for windog_WriteDataPoint

Parameter Type Value That Windographer Will Pass In

1 varchar Dataset ID

2 varchar Column ID

3 datetime Start of time step

4 float Value within time step, or NULL for deleted data

After all the calls to windog_WriteDataPoint (one for each data value that changed), Windographer will call the

windog_WriteDataFollowup stored procedure once. This stored procedure should take a single input

parameter specifying the dataset ID.

SQL Server: Windographer will query the database to determine the list of parameters for the

windog_WriteDataFollowUp stored procedure. Windographer will expect to find the

parameters listed in the table below and will report an error message otherwise. The stored

procedure should return an integer: 1 for success, or 0 for failure. If the stored procedure

returns 0, and has an extra output parameter of type varchar, Windographer will treat this

as an error message and will display it in the status text box. The input parameters, their

types, and the values that Windographer will pass in appear in the table below:

Table 23 – Parameters for windog_WriteDataFollowUp

Parameter Type Value That Windographer Will Pass In

1 varchar Dataset ID

The database can use the windog_WriteDataFollowUp stored procedure as a trigger to update tables that

summarize the data, such as a table that contains the start date and end date of each dataset.

29

6.6 WRITING FLAGS AND FLAGGED SEGMENTS
If previous stored procedures calls succeed, Windographer will next attempt to update the dataset’s flags and

flagged segments, if necessary. Because flagged segments refer to flag IDs, to insure referential integrity

Windographer first deletes flagged segments, then makes the necessary changes to the list of flags, and then

writes the flagged segments.

6.6.1 DELETING FLAGGED SEGMENTS
If the user has made any change to the set of flagged segments, either by applying a flag to one or more data

segments or by removing a flag from one or more data segments, Windographer will instruct the database to

delete and rewrite all flagged segments. To delete the flagged segments, it calls the stored procedure

windog_DeleteFlaggedSegments, passing in as parameters the dataset ID, start date, and end date. The

windog_DeleteFlaggedSegments stored procedure must delete all flagged segments for the current dataset

that fall within, or partially overlap this date range.

SQL Server: In SQL Server, the T-SQL necessary to carry out this stored procedure will look

something like this:

delete from tblWindogFlaggedSegments

where (dataset_id = @dataset_id)

AND (

 ((start_time >= @start_time) AND (start_time < @end_time))

 OR

 ((end_time > @start_time) AND (end_time <= @end_time))

 OR

 ((start_time < @start_time) AND (end_time > @end_time))

);

In the example above, the parameters passed in were @dataset_id, @start_time, and

@end_time. As with other stored procedures that are part of the writing process,

Windographer will query the database to determine the list of parameters for the

windog_DeleteFlaggedSegments stored procedure. Windographer will expect to find the

parameters listed in the table below and will report an error message otherwise. The stored

procedure should also return an integer: 1 for success, or 0 for failure. If the stored procedure

returns 0, and has an extra output parameter of type varchar, Windographer will treat this

as an error message and will display it in the status text box. The input parameters, their

types, and the values that Windographer will pass in appear in the table below:

Table 24 – Parameters for windog_DeleteFlaggedSegments

Parameter Type Value That Windographer Will Pass In

1 varchar Dataset ID

2 datetime Start time of dataset or subset

3 datetime End time of dataset or subset

30

6.6.2 WRITING FLAGS
The user can modify the set of flags in three ways: by adding a flag, deleting a flag, or changing the properties of a

flag. Windographer updates the list of flags in the database by calling three stored procedures, one for each of

those three ways. First it calls the windog_DeleteFlagR2 stored procedure once for each flag that the user has

deleted since importing the dataset.

SQL Server: Windographer will query the database to determine the list of parameters for the

windog_DeleteFlagR2 stored procedure. Windographer will expect to find the parameters

listed in the table below and will report an error message otherwise. The stored procedure

should also return an integer: 1 for success, or 0 for failure. If the stored procedure returns 0,

and has an extra output parameter of type varchar, Windographer will treat this as an

error message and will display it in the status text box.

Table 25 – Parameters for windog_DeleteFlagR2

Parameter Type Value That Windographer Will Pass In

1 varchar Dataset ID

2 varchar Flag ID

Next, Windographer will call the windog_AddOrUpdateFlagR2 stored procedure for each flag whose properties

the user has changed in the current session and for each flag that has been added. If Windographer intends to

update the flag properties, then the flag ID passed into the stored procedure will have a non-empty value. In this

case, Windographer will ignore the value returned for the ‘new flag ID’. Otherwise, the flag ID will be an empty

string and Windographer intends for the flag to be added into the database. When adding a flag, Windographer

will expect the database to return the new flag’s ID in the eleventh parameter. Windographer will then use the

new flag ID when updating or deleting this flag in future exports to the database. If the database does not return a

new flag ID when Windographer has passed in an empty flag ID, Windographer will stop the export process and

report an error.

Starting in revision 3 of Windographer’s database interface, Windographer imports/exports special purpose flags

from/to the database. Up to three different flags can be marked as special purpose flags, one each for tower

shading, invalid data, and synthesized data. However, a single flag can also be used as more than one special

purpose flag. For instance, if a dataset has only a single flag, it will be marked as all three special purpose flags (and

Windographer will use that flag to mark synthesized data, invalid data, and tower shading). As this can lead to

confusing situations, we don’t recommend using a single flag.

SQL Server: Windographer will query the database to determine the list of parameters for the

windog_AddOrUpdateFlagR2 stored procedure. Windographer will expect to find the

parameters listed in the table below and will report an error message otherwise. The stored

procedure should also return an integer: 1 for success, or 0 for failure. If the stored procedure

returns 0, and has an extra output parameter of type varchar, Windographer will treat this

as an error message and will display it in the status text box. The parameters, their types, and

the values that Windographer will pass in appear in the table below:

31

Table 26 – Parameters for windog_AddOrUpdateFlagR2

Parameter Type Value That Windographer Will Pass In

1 varchar Dataset ID

2 varchar Flag ID

3 varchar Flag Name

4 varchar Flag description

5 bigint Flag color

6 bit Include in calculations

7 bit Show in graphs

8 bit Tower shading

9 bit Invalid data

10 bit Synthesized data

11 varchar (OUTPUT) New flag ID if exporting data from a file

6.6.3 WRITING FLAGGED SEGMENTS
If previous stored procedures calls succeed, and if the user has changed the set of flagged segments,

Windographer will then write the flagged segments to the database one by one by calling the

windog_WriteFlaggedSegmentR2 stored procedure once for each flagged segment.

SQL Server: Windographer will query the database to determine the list of parameters for the

windog_WriteFlaggedSegmentR2 stored procedure. Windographer will expect to find the

parameters listed in the table below and will report an error message otherwise. The stored

procedure should also return an integer: 1 for success, or 0 for failure. If the stored procedure

returns 0, and has an extra output parameter of type varchar, Windographer will treat this

as an error message and will display it in the status box. The input parameters, their types,

and the values that Windographer will pass in appear in the table below:

Table 27 – Parameters for windog_WriteFlaggedSegmentR2

Parameter Type Value That Windographer Will Pass In

1 varchar Dataset ID

2 varchar Flag ID

3 varchar Column ID

4 datetime Start date/time of segment

5 datetime End date/time of segment

32

6.7 WRITING CALIBRATION DATA
If previous stored procedures calls succeed, and if the user has changed any calibration information, Windographer

will then attempt to write the new calibration information to the database using a two-step process for each

column: first it will call windog_DeleteCalibrationEvents to remove existing calibrations events, and then it

will call windog_WriteCalibrationEventR2 for each calibration change to each column.

6.7.1 DELETING EXISTING CALIBRATION INFORMATION FOR A COLUMN
Windographer will call the windog_DeleteCalibrationEvents once for each ‘parent’ column in the dataset

since parent columns are the only columns for which Windographer recognizes calibration information.

SQL Server: Windographer will query the database to determine the list of parameters for the

windog_DeleteCalibrationEvents stored procedure. Windographer will expect to find

the parameters listed in the table below and will report an error message otherwise. The

stored procedure should also return an integer: 1 for success, or 0 for failure. If the stored

procedure returns 0, and has an extra output parameter of type varchar, Windographer

will treat this as an error message and will display it in the status box. The input parameters,

their types, and the values that Windographer will pass in appear in the table below:

Table 28 – Parameters for windog_DeleteCalibrationEvents

Parameter Type Value That Windographer Will Pass In

1 varchar Dataset ID

2 varchar Column ID

3 datetime Start time of dataset or subset

4 datetime End time of dataset or subset

Windographer expects the database to remove all calibration information for the column between the start date

and the end date because the following calls to windog_WriteCalibrationEventR2 for that column should

replace the calibration information for the same time period.

6.7.2 UPDATING CALIBRATION INFORMATION
After calling windog_DeleteCalibrationEvents once for a particular column, Windographer will then call the

windog_WriteCalibrationEventR2 once for each calibration change to that column. Windographer will call

windog_WriteCalibrationEventR2 at least once for each column to create the initial calibration event for

each column (the calibration period that begins at the start date). If the calibration does not change over the time

period from start date to end date, that will be the only call; otherwise, Windographer will call

windog_WriteCalibrationEventR2, with appropriate start and end dates, for each subsequent calibration

event.

SQL Server: Windographer will query the database to determine the list of parameters for the

windog_WriteCalibrationEventR2 stored procedure. Windographer will expect to find

the parameters listed in the table below and will report an error message otherwise. The

stored procedure should also return an integer: 1 for success, or 0 for failure. If the stored

procedure returns 0, and has an extra output parameter of type varchar, Windographer

will treat this as an error message and will display it in the status box. The input parameters,

their types, and the values that Windographer will pass in appear in the table below:

33

Table 29 - Parameters for windog_WriteCalibrationEventR2

Parameter Type Value That Windographer Will Pass In

1 varchar Dataset ID

2 varchar Column ID

3 datetime Start date/time of calibration period

4 datetime End date/time of calibration period

5 float Offset

6 float Slope

7 float Boom orientation

8 varchar Serial number

Windographer will call the windog_WriteCalibrationEventR2 stored procedure using chronological order for

the calibration change events. Windographer does not allow overlapping calibration periods or gaps in between

calibration periods. The end of one period can never occur between the start and end of another period. Similarly,

the start of a period can never fall between the start and end of another period. Also, the end date of one period is

guaranteed to coincide with the start of the next calibration period. If there are no following calibration changes

(for instance, if there is only one, or on the last calibration change for a column), Windographer will pass the

dataset end date as the ending date for the calibration period.

As the list of parameters shows, Windographer will pass an end date for each calibration change. Since the end

date is redundant information, the database administrator may choose to ignore the end date and set calibrations

to last until the next calibration starts, or until the end of the dataset.

6.8 WRITING REVIEWER INFORMATION
If previous stored procedures calls succeed, and if the user has changed any reviewer information, Windographer

will then attempt to write the new reviewer information to the database using a two-step process: first it will call

windog_DeleteReviewerInfo to remove existing reviewer information, and then it will call

windog_WriteReviewerInfo for each period that has been marked as reviewed. If the

windog_ReadSpecifications stored procedure returned the ‘reviewer_name’ field, Windographer will use the

value of this field when a user adds reviewer information through Windographer’s graphic user interface. If the

field is not supplied, or is empty, Windographer will use the value from the ‘User name’ field in Tools > Options >

General for the reviewer name.

6.8.1 DELETING REVIEWER INFORMATION
Windographer will first call the windog_DeleteReviewerInfo stored procedure to remove reviewer

information in the database over the time period that the user.

SQL Server: Windographer will query the database to determine the list of parameters for the

windog_DeleteReviewerInfo stored procedure. Windographer will expect to find the

parameters listed in the table below and will report an error message otherwise. The stored

procedure should also return an integer: 1 for success, or 0 for failure. If the stored procedure

returns 0, and has an extra output parameter of type varchar, Windographer will treat this

as an error message and will display it in the status text box. The input parameters, their

types, and the values that Windographer will pass in are listed below:

34

Table 30 – Parameters for windog_DeleteReviewerInfo

Parameter Type Value That Windographer Will Pass In

1 varchar Dataset ID

2 varchar Reviewer name

3 datetime Start time of dataset or subset

4 datetime End time of dataset or subset

Windographer expects the database to remove all reviewer information for this dataset between the start date

and the end date because the following calls to windog_WriteReviewerInfo for that column should replace the

reviewer information for the same time period.

6.8.2 UPDATING REVIEWER INFORMATION
After calling windog_DeleteReviewerInfo once for the dataset, Windographer will then call the

windog_WriteReviewerInfo once for each period that has been marked as reviewed.

SQL Server: Windographer will query the database to determine the list of parameters for the

windog_WriteReviewerInfo stored procedure. Windographer will expect to find the

parameters listed in the table below and will report an error message otherwise. The stored

procedure should also return an integer: 1 for success, or 0 for failure. If the stored procedure

returns 0, and has an extra output parameter of type varchar, Windographer will treat this

as an error message and will display it in the status box. The input parameters, their types,

and the values that Windographer will pass in appear in the table below:

Table 31 – Parameters for windog_WriteReviewerInfo

Parameter Type Value That Windographer Will Pass In

1 varchar Dataset ID

2 varchar Reviewer name

3 datetime Start time of review period

4 datetime End time of review period

Windographer will call the windog_WriteReviewerInfo stored procedure using chronological order for the

reviewed periods. Windographer does not allow overlapping reviewed periods; however, it does allow for gaps

between reviewed periods. So, the end date of one reviewed period is not guaranteed to coincide with the start of

the next time period, since there may be a gap. But, the end of one period will never come between the start and

end of another period. Similarly, the start of a period will never fall between the start and end of another period.

35

6.9 WRITING DOCUMENT HISTORY DATA AND NOTES
If previous stored procedures calls succeed, Windographer will call the stored procedure

windog_WriteDocumentHistoryEventR3 once for each document history event that has been added since the

data was imported from the database.

SQL Server: Windographer will query the database to determine the list of parameters for the

windog_WriteDocumentHistoryEventR3 stored procedure. Windographer will expect to

find the parameters listed in the table below and will report an error message otherwise. The

stored procedure should also return an integer: 1 for success, or 0 for failure. If the stored

procedure returns 0, and has an extra output parameter of type varchar, Windographer

will treat this as an error message and will display it in the status text box. The input

parameters, their types, and the values that Windographer will pass in are listed below:

Table 32 – Parameters for windog_WriteDocumentHistoryEventR3

Parameter Type Value That Windographer Will Pass In

1 int Event ID (generated by Windographer)

2 varchar Dataset ID

3 int type (code used by Windographer)

4 varchar User name (database login)

5 varchar(3500) Verbose description (created by Windographer)

6 datetime modification_time

7 datetime start_time

8 datetime end_time

9 int time_steps

10 varchar(3500) data_columns

11 varchar(3500) text1

12 varchar(3500) text2

13 varchar(3500) array of values used in doc history event

14 varbinary(max) byte array used to store details of the event

We expect that the database will contain a dedicated table for Windographer document history events since these

are very specific to Windographer. Table 32 above can serve to guide the design of this database table.

36

If call(s) to windog_WriteDocumentHistoryEventR2 succeed, Windographer will call the

windog_WriteDocumentHistoryNotes stored procedure once, passing in the text found on the “Notes” tab of

the Document History window. This stored procedure does not have to carry out any actions on the database, but

it does have to exist with parameters as specified below and return a 1 (for success), for Windographer to

successfully complete an export to the database using interface revision 5 or later.

SQL Server: Windographer will query the database to determine the list of parameters for the

windog_WriteDocumentHistoryNotes stored procedure. Windographer will expect to

find the parameters listed in the table below, and will report an error message otherwise. The

stored procedure should also return an integer: 1 for success, or 0 for failure. If the stored

procedure returns 0, and has an extra output parameter of type varchar, Windographer

will treat this as an error message and will display it in the status text box. The input

parameters, their types, and the values that Windographer will pass in are listed below:

Table 33 - Parameters for windog_WriteDocumentHistoryNotes

Parameter Type Value That Windographer Will Pass In

1 varchar Dataset ID

2 varchar Document History Notes

37

6.10 CONCLUDING THE WRITE PROCESS
If previous stored procedure calls succeed, Windographer will call the windog_WriteConcluded stored

procedure once. Windographer will call this stored procedure regardless of whether any data has changed; it will

always be the last stored procedure called. This stored procedure does not have to carry out any actions on the

database, but it does have to exist with parameters as specified below and return a 1 (for success), for

Windographer successfully to complete an export to the database using interface revision 5 or later.

SQL Server: Windographer will query the database to determine the list of parameters for the

windog_WriteConcluded stored procedure. Windographer will expect to find the

parameters listed in the table below and will report an error message otherwise. The stored

procedure should also return an integer: 1 for success, or 0 for failure. If the stored procedure

returns 0, and has an extra output parameter of type varchar, Windographer will treat this

as an error message and will display it in the status text box. The table below shows the input

parameters, their types, and the values that Windographer will pass in to this stored

procedure:

Table 34 – Parameters for windog_WriteConcluded

Parameter Type Value That Windographer Will Pass In

1 varchar Dataset ID

2 varchar User name

The following T-SQL would create a stored procedure in MS SQL Server sufficient to fulfill

Windographer’s demand for windog_WriteConcluded:

CREATE proc [dbo].[windog_WriteConcluded]

@dataset_id nvarchar(50),

@user_name nvarchar(400),

@retmsg nvarchar(500)=null output

AS

BEGIN

 SET NOCOUNT ON

 return 1

END

The call to the windog_WriteConcluded stored procedure allows for any final data manipulations that need to

occur within the database. After a successful call to windog_WriteConcluded, Windographer will commit the

transaction that includes the whole export process. Any other outcome (for instance, user cancellation or an error)

will cause Windographer to roll back the transaction.

38

7. LIST OF REQUIRED STORED PROCEDURES
Table 35 - Required Stored Procedures

1 – Returning a ‘recordset’ from a stored procedure in SQL Server can be accomplished with a ‘Select...’ statement

directly in the stored procedure code.

Stored Procedure Arguments Return Value

1 windog_ReadSpecifications recordset1

2 windog_ReadListOfDataSetsR3 user name recordset

3 windog_ReadDataColumnPropertiesR2 dataset ID recordset

4

windog_ReadDataColumn, or

windog_ReadAllDataColumns, or
windog_ReadDataColumnWithStepNumber

dataset ID, column ID, start date, end date recordset

5 windog_ReadFlagProperties dataset ID recordset

6 windog_ReadFlaggedSegments dataset ID recordset

7 windog_ReadCalibrationEvents dataset ID, start date, end date recordset

8 windog_ReadReviewerInfo dataset ID, start date, end date recordset

9 windog_ReadDocumentHistoryR2 dataset ID recordset

10 windog_AddOrUpdateDatasetR4
dataset ID, dataset name, 17 other dataset
properties, plus 8 output parameters

integer code and 8
output parameters

11 windog_AddOrUpdateColumnR2

dataset ID, column ID, parent column ID, 8
parameters describing the data column, an
output parameter of the new column ID

integer code and 1
output parameter

12 windog_WriteDataPoint
dataset ID, column ID, start of time step, value
within time step

integer code

13 windog_WriteDataFollowUp dataset ID integer code

14 windog_DeleteFlaggedSegments dataset ID, start date, end date integer code

15 windog_DeleteFlagR2 dataset ID, flag ID integer code

16 windog_AddOrUpdateFlagR2

dataset ID, flag ID, 8 parameters describing
flag, an output parameter with the new flag ID
for flags being added to the database

integer code and 1
output parameter

17 windog_WriteFlaggedSegmentR2
dataset ID, flag ID, column ID, start and end
time of segment

integer code

18 windog_DeleteCalibrationEvents
dataset ID, column ID, start and end of dataset
or subset

integer code

19 windog_WriteCalibrationEventR2 dataset ID, column ID, 6 others integer code

20 windog_DeleteReviewerInfo
dataset ID, reviewer name, start and end of
dataset or subset

integer code

21 windog_WriteReviewerInfo
dataset ID, reviewer name, start and end of
review period

integer code

22 windog_WriteDocumentHistoryEventR3
dataset ID, event ID, and 12 parameters
describing the event

integer code

23 windog_WriteDocumentHistoryNotes dataset ID, doc history notes integer code

24 windog_WriteConcluded dataset ID, user name integer code

39

8. UPDATING FROM PREVIOUS DATABASE INTERFACE REVISIONS
If your database implements an older revision of the Windographer database interface, you can follow these steps

to update your database to revision 7. Not every step listed below is mandatory. If you do not intend to export

data from Windographer to the database, for example, then you need not perform any of the steps that relate to

writing data to the database. The relevant sections of this document explain each of the new and revised stored

procedures in detail.

8.1 TO UPDATE FROM REV1 TO REV7
1. You can now specify three additional data column types: relative humidity, wind turbine output, and other.

2. Add windog_ReadDataColumnWithStepNumber if you wish to specify time series data in that way.

3. If you wish to store reviewer info in the database, add to the recordset returned by

windog_ReadSpecifications two new fields: ‘force_reviewer_popup’ and ‘reviewer_name’.

4. Add windog_ReadListOfDataSetsR3 to replace windog_ReadListOfDataSets.

5. Add windog_ReadDataColumnPropertiesR2 to replace windog_ReadDataColumnProperties.

6. Add three new fields to the recordset returned by windog_ReadFlagProperties, to identify special-purpose

flags.

7. Add windog_ReadCalibrationEvents.

8. Add windog_ReadDocumentHistoryR2.

9. Add windog_AddOrUpdateDatasetR4.

10. Add windog_AddOrUpdateColumnR2.

11. Add windog_AddOrUpdateFlagR2.

12. Add windog_DeleteFlagR2.

13. Add windog_WriteFlaggedSegmentR2.

14. Add windog_DeleteCalibrationEvents.

15. Add windog_WriteCalibrationEventR2.

16. Add windog_ReadReviewerInfo, windog_DeleteReviewerInfo, and windog_WriteReviewerInfo.

17. Add windog_WriteDataFollowUp and windog_WriteConcluded.

18. Add windog_WriteDocumentHistoryEventR3.

8.2 TO UPDATE FROM REV2 TO REV7
1. You can now specify the data column type ‘other’.

2. Add windog_ReadDataColumnWithStepNumber if you wish to specify time series data in that way.

3. Two new optional fields in the recordset returned by windog_ReadSpecifications: ‘force_reviewer_popup’ and

‘reviewer_name’.

4. windog_ReadListOfDataSetsR3 replaces windog_ReadListOfDataSets.

5. windog_ReadDataColumnProperties replaced by windog_ReadDataColumnPropertiesR2, with an additional

field ‘is_visible’ indicating whether the data column is visible or hidden.

6. Add three new fields to the recordset returned by windog_ReadFlagProperties, to identify special-purpose

flags.

7. Add windog_ReadCalibrationEvents.

8. Add windog_ReadDocumentHistoryR2.

9. Add windog_AddOrUpdateDatasetR4 to replace windog_AddOrUpdateDataset.

10. Add windog_AddOrUpdateColumnR2.

11. Add windog_AddOrUpdateFlagR2.

40

12. Add windog_DeleteFlagR2.

13. Add windog_WriteFlaggedSegmentR2 to replace windog_WriteFlaggedSegment_v2.

14. Add windog_DeleteCalibrationEvents and windog_WriteCalibrationEvent.

15. Add windog_ReadReviewerInfo, windog_DeleteReviewerInfo, and windog_WriteReviewerInfo.

16. Add windog_WriteDataFollowUp and windog_WriteConcluded.

17. Add windog_WriteCalibrationEventR2 to replace windog_WriteCalibrationEvent.

18. Add windog_WriteDocumentHistoryEventR3 to replace windog_WriteDocumentHistoryEventR2.

8.3 TO UPDATE FROM REV3 TO REV7
1. Two new optional fields in the recordset returned by windog_ReadSpecifications: ‘force_reviewer_popup’ and

‘reviewer_name’.

2. windog_ReadListOfDataSetsR3 replaces windog_ReadListOfDataSets.

3. windog_ReadDataColumnProperties replaced by windog_ReadDataColumnPropertiesR2, with an additional

field ‘is_visible’ indicating whether the data column is visible or hidden.

4. Added windog_ReadCalibrationEvents.

5. Added windog_ReadDocumentHistoryR2.

6. Add windog_AddOrUpdateDatasetR4 to replace windog_AddOrUpdateDataset.

7. Add windog_AddOrUpdateColumnR2.

8. Add windog_DeleteCalibrationEvents and windog_WriteCalibrationEvent.

9. Added windog_ReadReviewerInfo, windog_DeleteReviewerInfo, windog_WriteReviewerInfo, and

windog_WriteDataFollowUp, and windog_WriteConcluded.

10. windog_WriteCalibrationEventR2 replaces windog_WriteCalibrationEvent. The new stored procedure has one

more input parameter specifying boom orientation.

11. windog_WriteDocumentHistoryEventR3 replaces windog_WriteDocumentHistoryEventR2. The new stored

procedure has one more input parameter: a binary byte array.

8.4 TO UPDATE FROM REV4 TO REV7
1. Two new optional fields in the recordset returned by windog_ReadSpecifications: ‘force_reviewer_popup’ and

‘reviewer_name’.

2. windog_ReadListOfDataSetsR3 replaces windog_ReadListOfDataSets.

3. windog_ReadCalibrationEvents now can include an additional field named ‘boom_orientation’ in the recordset

it returns.

4. windog_ReadDocumentHistoryR2 now must include an additional field named ‘binary_blob’ in the recordset it

returns.

5. windog_AddOrUpdateDatasetR4 replaces windog_AddOrUpdateDataset.

6. Added windog_ReadReviewerInfo, windog_DeleteReviewerInfo, windog_WriteReviewerInfo, and

windog_WriteDataFollowUp, and windog_WriteConcluded.

7. windog_WriteCalibrationEventR2 replaces windog_WriteCalibrationEvent. The new stored procedure has one

more input parameter specifying boom orientation.

8. windog_WriteDocumentHistoryEventR3 replaces windog_WriteDocumentHistoryEventR2. The new stored

procedure has one more input parameter: a binary byte array.

8.5 TO UPDATE FROM REV5 TO REV7
1. windog_ReadListOfDataSetsR3 replaces windog_ReadListOfDataSetsR2.

41

2. windog_ReadCalibrationEvents now can include an additional field named ‘boom_orientation’ in the recordset

it returns.

3. windog_ReadDocumentHistoryR2 now must include an additional field named ‘binary_blob’ in the recordset it

returns.

4. windog_AddOrUpdateDatasetR4 replaces windog_AddOrUpdateDatasetR2. The new stored procedure has

additional input parameters specifying displacement height, document history notes, and time zone.

5. windog_WriteCalibrationEventR2 replaces windog_WriteCalibrationEvent. The new stored procedure has one

more input parameter specifying boom orientation.

6. windog_WriteDocumentHistoryEventR3 replaces windog_WriteDocumentHistoryEventR2. The new stored

procedure has one more input parameter: a binary byte array.

8.6 TO UPDATE FROM REV6 TO REV7
1. Replace windog_ReadListOfDataSetsR2 with windog_ReadListOfDataSetsR3. The new stored procedure must

return an additional field named ‘time_zone’.

2. Replace windog_AddOrUpdateDatasetR3 with windog_AddOrUpdateDatasetR4. The new stored procedure

has two additional input parameters specifying document history notes and time zone.

