
Vector Mechanics for Engineers: Statics
12th Edition
ISBN: 9781259977268
Author: Ferdinand P. Beer, E. Russell Johnston Jr., David Mazurek
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 8.2, Problem 8.48P
The machine part ABC is supported by a frictionless hinge at B and a 10° wedge at C. Knowing that the coefficient of static friction is 0.20 at both surfaces of the wedge, determine (a) the force P required to move the wedge to the left, (b) the components of the corresponding reaction at B.
Fig. P8.48
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
Stress, ksi
220
200
180
160
140
120
100
80
Question P: Data for an extension spring is shown in the table below. Use only this table for this
question! Also shown is an abridged version of Table 18-2 and figure 18
Spring Material ASTM A228 Music wire
Max Operating Load: Fo=
21
Type of Service =
Average
Estimated Wahl Factor: K =
1.200
Required Mean Diameter: D =
0.550
Design Stress in Wire: Td
90,000
psi
TABLE 18-2 Wire Gages and Diameters for Springs
Gage no.
U.S. steel wire gage¹ (in)
Music wire gage² (in)
0.6
26
0.0181
0.063
27
0.0173
0.067
28
00162
0.071
29
00150
0.075
30
00140
0.080
31
0.0132
0.085
22
0.0128
0.090
33
00118
0.095
34
0.0104
0.100
35
0.0095
0.106
36
0.0090
Wire diameter, mm
Compression and extension springs,
Music Wire, ASTM A228
O'S
5.4
5.8
6.2
0.112
1515
1380
Light service
1240
1100
Average service
965
Severe service
825
690
Wire diameter, in
OLIO
0.190
0120
0.250
550
Stress, MPa
FIGURE 18-9 Design shear stresses for ASTM A228 steel wire
(music wire)
What is the…
Endurance limit,, (psi)
100 000
80 000
60 000
Ground
40 000
20 000
As-rolled
0
50 60
70
80
90
100
110
120
Polished
Machined or
cold drawn
As-forged
130 140 150 160 17
Tensile strength, s, (ksi)
(a) U.S. customary units
What is the minimum shaft diameter of D3 in inches? (Type in a three-decimal number).
Note: We want to know the diameter D3, of the shaft, not the diameter at the base of a ring groove, profile
keyseat or any other geometric feature on the shaft.
Answer:
x (3.008)
Question G: The machined shaft shown in the diagram below has the following components on it:
(A) Sheave
(B) Bearing
(C) Sprocket
(D) Bearing
(E) Spur Gear
Diameter D3 is located underneath Bearing B. Only the sheave at point A, the sprocket at point C and the
spur gear at point E are held in place with rings.
Diameter Dy is located underneath Bearing B. Only the sheave at point A, the sprocket at point C and the
spur gear at point E are held in place with rings.
PPENDIX 3 Design Properties of Carbon and Alloy Steels
Material designation (SAE number) Condition
Tensile strength
Yield strength
(ksi)
(MPa)
(MPa)
Bearing
Bearing
1020
Hot-rolled
55
379
207
V-belt sheave
6.00 in PD
DD
1020
Cold-drawn
61
420
352
Spur gear
Chain sprocket
10.00 in PD
20 FD
12.00 in PD
1020
Annealed
60
414
296
(a) Side view of shaft
10401
Hot-rolled
72
496
290
Belt drive
to conveyor
1040
Cold-drawn
80
552
1040
OQT 1300
88
607
1040
OQT 400
113
779
1050
Hot-rolled
90
620
leput from
water turbine
Gear E drives
Q
to…
Chapter 8 Solutions
Vector Mechanics for Engineers: Statics
Ch. 8.1 - Knowing that the coefficient of friction between...Ch. 8.1 - Two blocks A and B are connected by a cable as...Ch. 8.1 - A cord is attached to and partially wound around a...Ch. 8.1 - A 40-kg packing crate must be moved to the left...Ch. 8.1 - Determine whether the block shown is in...Ch. 8.1 - Prob. 8.2PCh. 8.1 - Prob. 8.3PCh. 8.1 - Prob. 8.4PCh. 8.1 - Prob. 8.5PCh. 8.1 - The 20-lb block A hangs from a cable as shown....
Ch. 8.1 - The 10-kg block is attached to link AB and rests...Ch. 8.1 - Considering only values of less than 90,...Ch. 8.1 - The coefficients of friction between the block and...Ch. 8.1 - The coefficients of friction between the block and...Ch. 8.1 - The 50-lb block A and the 25-lb block B are...Ch. 8.1 - The 50-lb block A and the 25-lb block B are...Ch. 8.1 - Three 4-kg packages A, B, and C are placed on a...Ch. 8.1 - Solve Prob. 8.13 assuming that package B is placed...Ch. 8.1 - A uniform crate with a mass of 30 kg must be moved...Ch. 8.1 - A worker slowly moves a 50-kg crate to the left...Ch. 8.1 - Prob. 8.17PCh. 8.1 - A 200-lb sliding door is mounted on a horizontal...Ch. 8.1 - Prob. 8.19PCh. 8.1 - Solve Prob. 8.19 assuming that the coefficients of...Ch. 8.1 - Prob. 8.21PCh. 8.1 - The cylinder shown has a weight W and radius r,...Ch. 8.1 - The 10-lb uniform rod AB is held in the position...Ch. 8.1 - In Prob. 8.23, determine the largest value of P...Ch. 8.1 - A 6. 5-m ladder AB leans against a wall as shown....Ch. 8.1 - A 6. 5-m ladder AB leans against a wall as shown....Ch. 8.1 - The press shown is used to emboss a small seal at...Ch. 8.1 - The machine base shown has a mass of 75 kg and is...Ch. 8.1 - The 50-lb plate ABCD is attached at A and D to...Ch. 8.1 - In Prob. 8.29, determine the range of values of...Ch. 8.1 - A window sash weighing 10 lb is normally supported...Ch. 8.1 - A 500-N concrete block is to be lifted by the pair...Ch. 8.1 - Prob. 8.33PCh. 8.1 - A driver starts the engine of an automobile that...Ch. 8.1 - Prob. 8.35PCh. 8.1 - Prob. 8.36PCh. 8.1 - A 1.2-m plank with a mass of 3 kg rests on two...Ch. 8.1 - Two identical uniform boards, each with a weight...Ch. 8.1 - Prob. 8.39PCh. 8.1 - Prob. 8.40PCh. 8.1 - A 10-ft beam, weighing 1200 lb, is to be moved to...Ch. 8.1 - (a) Show that the beam of Prob. 8.41 cannot be...Ch. 8.1 - Two 8-kg blocks A and B resting on shelves are...Ch. 8.1 - A slender steel rod with a length of 225 mm is...Ch. 8.1 - In Prob. 8.44, determine the smallest value of ...Ch. 8.1 - Two slender rods of negligible weight are...Ch. 8.1 - Two slender rods of negligible weight are...Ch. 8.2 - The machine part ABC is supported by a...Ch. 8.2 - Solve Prob. 8.48 assuming that the wedge is moved...Ch. 8.2 - 8.50 and 8.51 Two 6 wedges of negligible weight...Ch. 8.2 - 8.50 and 8.51 Two 6 wedges of negligible weight...Ch. 8.2 - The elevation of the end of the steel beam...Ch. 8.2 - Prob. 8.53PCh. 8.2 - Block A supports a pipe column and rests as shown...Ch. 8.2 - Block A supports a pipe column and rests as shown...Ch. 8.2 - Block A supports a pipe column and rests as shown...Ch. 8.2 - A 200-lb block rests as shown on a wedge of...Ch. 8.2 - A 15 wedge is forced into a saw cut to prevent...Ch. 8.2 - A 12 wedge is used to spread a split ring. The...Ch. 8.2 - The spring of the door latch has a constant of 1.8...Ch. 8.2 - Prob. 8.61PCh. 8.2 - Prob. 8.62PCh. 8.2 - Prob. 8.63PCh. 8.2 - A 15 wedge is forced under a 50-kg pipe as shown....Ch. 8.2 - A 15 wedge is forced under a 50-kg pipe as shown....Ch. 8.2 - Prob. 8.66PCh. 8.2 - Prob. 8.67PCh. 8.2 - Derive the following formulas relating the load W...Ch. 8.2 - The square-threaded worm gear shown has a mean...Ch. 8.2 - Prob. 8.70PCh. 8.2 - High-strength bolts are used in the construction...Ch. 8.2 - The position of the automobile jack shown is...Ch. 8.2 - For the jack of Prob. 8.72, determine the...Ch. 8.2 - Prob. 8.74PCh. 8.2 - Prob. 8.75PCh. 8.2 - Prob. 8.76PCh. 8.3 - A lever of negligible weight is loosely fitted...Ch. 8.3 - A 6-in.-radius pulley of weight 5 lb is attached...Ch. 8.3 - 8.79 and 8.80 The double pulley shown is attached...Ch. 8.3 - Prob. 8.80PCh. 8.3 - 8.81 and 8.82 The double pulley shown is attached...Ch. 8.3 - 8.81 and 8.82 The double pulley shown is attached...Ch. 8.3 - The block and tackle shown are used to raise a...Ch. 8.3 - The block and tackle shown are used to lower a...Ch. 8.3 - A scooter is to be designed to roll down a 2...Ch. 8.3 - The link arrangement shown is frequently used in...Ch. 8.3 - 8.87 and 8.88 A lever AB of negligible weight is...Ch. 8.3 - 8.87 and 8.88 A lever AB of negligible weight is...Ch. 8.3 - 8.89 and 8.90 A lever AB of negligible weight is...Ch. 8.3 - 8.89 and 8.90 A lever AB of negligible weight is...Ch. 8.3 - A loaded railroad car has a mass of 30 Mg and is...Ch. 8.3 - Prob. 8.92PCh. 8.3 - A 50-lb electric floor polisher is operated on a...Ch. 8.3 - The frictional resistance of a thrust bearing...Ch. 8.3 - Assuming that bearings wear out as indicated in...Ch. 8.3 - Assuming that the pressure between the surfaces of...Ch. 8.3 - Solve Prob. 8.93 assuming that the normal force...Ch. 8.3 - Determine the horizontal force required to move a...Ch. 8.3 - Knowing that a 6-in.-diameter disk rolls at a...Ch. 8.3 - A 900-kg machine base is rolled along a concrete...Ch. 8.3 - Solve Prob. 8.85 including the effect of a...Ch. 8.3 - Solve Prob. 8.91 including the effect of a...Ch. 8.4 - A rope having a weight per unit length of 0.4...Ch. 8.4 - A hawser is wrapped two full turns around a...Ch. 8.4 - Two cylinders are connected by a rope that passes...Ch. 8.4 - Two cylinders are connected by a rope that passes...Ch. 8.4 - The coefficient of static friction between block B...Ch. 8.4 - The coefficient of static friction S is the same...Ch. 8.4 - A band belt is used to control the speed of a...Ch. 8.4 - The setup shown is used to measure the output of a...Ch. 8.4 - The setup shown is used to measure the output of a...Ch. 8.4 - A flat belt is used to transmit a couple from drum...Ch. 8.4 - A flat belt is used to transmit a couple from...Ch. 8.4 - Prob. 8.114PCh. 8.4 - The speed of the brake drum shown is controlled by...Ch. 8.4 - Prob. 8.116PCh. 8.4 - The speed of the brake drum shown is controlled by...Ch. 8.4 - Bucket A and block C are connected by a cable that...Ch. 8.4 - Solve Prob. 8.118 assuming that drum B is frozen...Ch. 8.4 - Prob. 8.120PCh. 8.4 - 8.121 and 8.123 A cable is placed around three...Ch. 8.4 - Prob. 8.122PCh. 8.4 - 8.121 and 8.123 A cable is placed around three...Ch. 8.4 - A recording tape passes over the 20-mm-radius...Ch. 8.4 - Solve Prob. 8.124 assuming that the idler drum C...Ch. 8.4 - Prob. 8.126PCh. 8.4 - The axle of the pulley is frozen and cannot rotate...Ch. 8.4 - Prob. 8.128PCh. 8.4 - Prob. 8.129PCh. 8.4 - Prove that Eqs. (8.13) and (8.14) are valid for...Ch. 8.4 - Prob. 8.131PCh. 8.4 - Solve Prob. 8.112 assuming that the flat belt and...Ch. 8.4 - Solve Prob. 8.113 assuming that the flat belt and...Ch. 8 - 8.134 and 8.135 The coefficients of friction are S...Ch. 8 - 8.134 and 8.135 The coefficients of friction are S...Ch. 8 - A 120-lb cabinet is mounted on casters that can be...Ch. 8 - Prob. 8.137RPCh. 8 - The hydraulic cylinder shown exerts a force of 3...Ch. 8 - Prob. 8.139RPCh. 8 - Bar AB is attached to collars that can slide on...Ch. 8 - Two 10 wedges of negligible weight are used to...Ch. 8 - A 10 wedge is used to split a section of a log....Ch. 8 - In the gear-pulling assembly shown, the...Ch. 8 - A lever of negligible weight is loosely fitted...Ch. 8 - In the pivoted motor mount shown, the weight W of...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- 220 200 180 160 140 120 Stress, ksi 100 80 Question O: Data for an extension spring is shown in the table below. Use only this table for this question! Also shown is an abridged version of Table 18-2 and figure 18. Spring Material ASTM A228 Music wire Max Operating Load: F₁ = 57 Type of Service Average Estimated Wahl Factor: K= 1.200 Required Mean Diameter: D = 0.850 Design Stress in Wire: 1 = 115,000 psi TABLE 18-2 Wire Gages and Diameters for Springs 0.0181 27 0.0175 Gage no. U.S. steel wire gage (in) Music wire gage² (in) 0063 0.067 28 0.0162 0.071 29 0.0150 0.075 30 00140 0.080 31 0.0132 0085 32 00128 0.090 33 00118 0096 34 0.0104 0.100 35 0.0095 36 0.0090 1.8 Wire diameter, mm 0.106 0.112 5.4 5.8 6.2 1515 Compression and extension springs, Music Wire, ASTM A228. 1380 Light service 1240 Average service 1100 965 Severe service 825 690 P10100 OSO 0 0.150 0.170 061'0 0.210 0.230 F 0.250 550 Stress, MPa Wire diameter, in FIGURE 18-9 Design shear stresses for ASTM A228 steel wire (music…arrow_forwardPlease see attachment.arrow_forwardPlease see attachment.arrow_forward
- P3: A differential band brake shown in the figure below uses a woven lining having a design value of the friction coefficient f=0.20. Dimensions are b=80 mm, r=250 mm, c=700 mm, a = 150 mm, s=35 mm, and 0=240°. Find 1) the brake torque if the maximum lining pressure is 0.5 MPa, 2) the corresponding actuating force F, and 3) the values of dimensions that would cause the brake to be self-locking. (25%) -240° F-250 mm Band width, b-80 mm Rotation Friction coefficient, -0.20 Maximum lining pressure, P-0.5 MPa 3-35 mm la-150 mm e-700 mm-arrow_forwardInclude a grapharrow_forwardA particular furnace is shaped like a section of a cone. The top surface of the furnace is uniformly heated by a resistance heater. During operation, the top surface is measured to be 800 K and the power supplied to the resistance heater is 1750 W/m². The sidewall of the furnace is perfectly insulated with ε = 0.2. If the emissivity of the top and bottom surfaces are ε = 0.5 and > = 0.7, respectively, determine the temperatures of the sidewall and the bottom surface of the furnace. A1 D₂ = 20 mm A₂ L = 50 mm D₁ = 40 mmarrow_forward
- You are designing an industrial furnace to keep pieces of sheet metal at a fixed temperature. You decide a long, hemispherical furnace will be the best choice. The hemispherical portion is built from insulating brick to reflect the radiation from a ceramic plate onto the sheet metal and the ceramic plate is heated by gas burners from below. An insulating wall prevents direct transmission of radiative energy from the ceramic plate to the sheet metal. The radius of the hemisphere is 1 m and the rest of the system properties can be found in the table below. You may neglect convection during your analysis. Temperature Emissivity Ceramic Plate 1600 K ε = 0.85 Sheet Metal 500 K Insulating Brick unknown € = 1 ε = 0.6 a) Calculate the required heat input, in W, per unit length of the furnace (out of the page) that must be supplied by the gas burners to maintain the specified temperatures. b) What is the temperature of the insulating brick surface? Metal products (2) T₂ = 500 K, &- 1 -…arrow_forwardDerive common expressions for the radiative heat transfer rate between two surfaces below. Aσ (T-T) a) Infinite parallel plates: A1, T1 E1 912 = 1 1 + ε1 E2 1 A2, T2, E2 b) Infinitely long concentric cylinders: 912 c) Concentric spheres: 912 182 A₁σ (T-T) 1-82 (11) = 1 + ε1 E2 = A₁σ (T-T) 1 1-82 રંતુ + E2 2arrow_forwardFollowing page contains formulas.arrow_forward
- 1) The assembly is made of the slender rods that have a mass per unit length of 3 kg/m. Determine the mass moment of inertia of the assembly about an axis perpendicular to the page and passing through point O. 0.4 m 0.8 m 0.4 marrow_forwardanswer asaparrow_forwardA radio controlled aircraft is instrumented with an airspeed sensor and a power module, which measures the airspeed V [m/s] with an uncertainty of ± 0.8 [m/s], the battery voltage E [V] with an uncertainty of ± 0.8 [V] and the current draw i with an uncertainty of ± 0.8 [A]. These sensors are used to estimate the coefficient of drag CD of the aircraft. For this purpose, the aircraft was flown under cruise condition at a constant speed, maintaining a constant altitude and the airspeed was recorded as V=10 [m/s]. A battery voltage of E=11.1 [V] and current draw i= 1[A] was also recorded. Prior to take off the weight of the aircraft was recorded using a scale as 0.8 [N] ± 0.03 [N], and the planform area S of the aircraft was found using a CAD model as 0.35 [m^2]. The air density p relevant to flight conditions was found to be p =1.225 [kg/m^3] and the propulsion efficiency was found to be 0.4. The coefficient of drag CD for cruise flight is governed by the following equation. Provide the…arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- International Edition---engineering Mechanics: St...Mechanical EngineeringISBN:9781305501607Author:Andrew Pytel And Jaan KiusalaasPublisher:CENGAGE L

International Edition---engineering Mechanics: St...
Mechanical Engineering
ISBN:9781305501607
Author:Andrew Pytel And Jaan Kiusalaas
Publisher:CENGAGE L
How to balance a see saw using moments example problem; Author: Engineer4Free;https://www.youtube.com/watch?v=d7tX37j-iHU;License: Standard Youtube License