
University Physics with Modern Physics (14th Edition)
14th Edition
ISBN: 9780321973610
Author: Hugh D. Young, Roger A. Freedman
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 3, Problem 3.79CP
CALC A projectile thrown from a point P moves in such a way that its distance from P is always increasing. Find the maximum angle above the horizontal with which the projectile could have been thrown. Ignore air resistance.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Chapter 3 Solutions
University Physics with Modern Physics (14th Edition)
Ch. 3.1 - In which of these situations would the average...Ch. 3.2 - A sled travels over the crest of a snow-covered...Ch. 3.3 - In Example 3.10, suppose the tranquilizer dart has...Ch. 3.4 - Suppose that the particle in Fig. 3.30 experiences...Ch. 3.5 - Suppose the nose of an airplane is pointed due...Ch. 3 - A simple pendulum (a mass swinging at the end of a...Ch. 3 - Redraw Fig. 3.11a if a is antiparallel to v1. Does...Ch. 3 - A projectile moves in a parabolic path without air...Ch. 3 - A book slides off a horizontal tabletop. As it...Ch. 3 - At the instant that you fire a bullet horizontally...
Ch. 3 - A package falls out of an airplane that is flying...Ch. 3 - Sketch the six graphs of the x- and y-components...Ch. 3 - If a jumping frog can give itself the same initial...Ch. 3 - A projectile is fired upward at an angle above...Ch. 3 - In uniform circular motion, what are the average...Ch. 3 - In uniform circular motion, how does the...Ch. 3 - In uniform circular motion, the acceleration is...Ch. 3 - Raindrops hitting the side windows of a car in...Ch. 3 - In a rainstorm with a strong wind, what determines...Ch. 3 - You are on the west bank of a river that is...Ch. 3 - A stone is thrown into the air at an angle above...Ch. 3 - A squirrel has x- and y-coordinates (1.1 m, 3.4 m)...Ch. 3 - A rhinoceros is at the origin of coordinates at...Ch. 3 - CALC A web page designer creates an animation in...Ch. 3 - CALC The position of a squirrel running in a park...Ch. 3 - A jet plane is flying at a constant altitude. At...Ch. 3 - A dog running in an open field has components of...Ch. 3 - CALC The coordinates of a bird flying in the...Ch. 3 - CALC A remote-controlled car is moving in a vacant...Ch. 3 - A physics book slides off a horizontal tabletop...Ch. 3 - A daring 510-N swimmer dives off a cliff with a...Ch. 3 - Crickets Chirpy and Milada jump from the top of a...Ch. 3 - A rookie quarterback throws a football with an...Ch. 3 - Leaping the River I. During a storm, a car...Ch. 3 - BIO The Champion Jumper of the Insect World. The...Ch. 3 - Inside a starship at rest on the earth, a ball...Ch. 3 - On level ground a shell is fired with an initial...Ch. 3 - A major leaguer hits a baseball so that it leaves...Ch. 3 - A shot putter releases the shot some distance...Ch. 3 - Win the Prize. In a carnival booth, you can win a...Ch. 3 - Firemen use a high-pressure hose to shoot a stream...Ch. 3 - A man stands on the roof of a 15.0-m-tall building...Ch. 3 - A 124-kg balloon carrying a 22-kg basket is...Ch. 3 - The earth has a radius of 6380 km and turns around...Ch. 3 - BIO Dizziness. Our balance is maintained, at least...Ch. 3 - BIO Pilot Blackout in a Power Dive. A jet plane...Ch. 3 - A model of a helicopter rotor has four blades,...Ch. 3 - A Ferris wheel with radius 14.0 m is turning about...Ch. 3 - The radius of the earths orbit around the sun...Ch. 3 - BIO Hypergravity. At its Ames Research Center,...Ch. 3 - A railroad flatcar is traveling to the right at a...Ch. 3 - A moving sidewalk in an airport terminal moves at...Ch. 3 - Two piers, A and B, are located on a river; B is...Ch. 3 - A canoe has a velocity of 0.40 m/s southeast...Ch. 3 - The nose of an ultralight plane is pointed due...Ch. 3 - Crossing the River I. A river flows due south with...Ch. 3 - Crossing the River II. (a) In which direction...Ch. 3 - BIO Bird Migration. Canada geese migrate...Ch. 3 - An airplane pilot wishes to fly due west. A wind...Ch. 3 - CALC A rocket is Tired at an angle from the top of...Ch. 3 - CALC A faulty model rocket moves in the xy-plane...Ch. 3 - CALC If r=bt2i+ct3jwhere b and c are positive...Ch. 3 - CALC The position of a dragonfly that is flying...Ch. 3 - CP A test rocket starting from rest at point A is...Ch. 3 - CALC A bird flies in the .vv-plane with a velocity...Ch. 3 - A sly 1.5-kg monkey and a jungle veterinarian with...Ch. 3 - BIO Spiraling Up. Birds of prey typically rise...Ch. 3 - In fighting forest fires, airplanes work in...Ch. 3 - A movie stuntwoman drops from a helicopter that is...Ch. 3 - An airplane is flying with a velocity of 90.0 m/s...Ch. 3 - A cannon, located 60.0 m from the base of a...Ch. 3 - CP CALC A toy rocket is launched with an initial...Ch. 3 - An important piece of landing equipment must be...Ch. 3 - The longest Home Run. According to Guinness World...Ch. 3 - An Errand of Mercy. An airplane is dropping bales...Ch. 3 - A baseball thrown at an angle of 60.0 above the...Ch. 3 - A water hose is used to fill a large cylindrical...Ch. 3 - A grasshopper leaps into the air from the edge of...Ch. 3 - Figure P3.58 3.58Kicking an Extra Point. In...Ch. 3 - Look Out! A snow-ball rolls off a barn roof that...Ch. 3 - A boy 12.0 m above the ground in a tree throws a...Ch. 3 - Suppose that the boy in Problem 3.60 throws the...Ch. 3 - A rock is thrown with a velocity V0, at an angle...Ch. 3 - Leaping the River II. A physics professor did...Ch. 3 - A 2.7-kg ball is thrown upward with an initial...Ch. 3 - A 76.0-kg rock is rolling horizontally at the top...Ch. 3 - Tossing Your Lunch. Henrietta is jogging on the...Ch. 3 - A cart carrying a vertical missile launcher moves...Ch. 3 - A firefighting crew uses a water cannon that...Ch. 3 - In the middle of the night you are standing a...Ch. 3 - CP Bang! A student sits atop a platform a distance...Ch. 3 - An airplane pilot sets a compass course due west...Ch. 3 - Raindrops. When a trains velocity is 12.0 m/s...Ch. 3 - In a World Cup soccer match, Juan is running due...Ch. 3 - An elevator is moving upward at a constant speed...Ch. 3 - Two soccer players, Mia and Alice, are running as...Ch. 3 - DATA A spring-gun projects a small rock from the...Ch. 3 - DATA You have constructed a hair-spray-powered...Ch. 3 - DATA You are a member of a geological team in...Ch. 3 - CALC A projectile thrown from a point P moves in...Ch. 3 - Two students are canoeing on a river. While...Ch. 3 - CP A rocket designed to place small payloads into...Ch. 3 - BIO BALLISTIC SEED DISPERSAL. Some plants disperse...Ch. 3 - BIO BALLISTIC SEED DISPERSAL. Some plants disperse...Ch. 3 - BIO BALLISTIC SEED DISPERSAL. Some plants disperse...Ch. 3 - A large number of seeds are observed, and their...
Additional Science Textbook Solutions
Find more solutions based on key concepts
Some organizations are starting to envision a sustainable societyone in which each generation inherits sufficie...
Campbell Essential Biology (7th Edition)
Q1. Carbon tetrachloride has a chlorine - to- carbon mass ratio of 11.8:1. If a simple of carbon tetrachloride ...
Introductory Chemistry (6th Edition)
12. Testing Tennis Balls
Tennis balls are tested by being dropped from a height of 2.5 m onto a concrete floor....
College Physics: A Strategic Approach (3rd Edition)
4. Three groups of nonvascular plants are _______, ______, and _______. Three groups of seedless vascular plant...
Biology: Life on Earth (11th Edition)
1. ___ Mitosis 2. ___ Meiosis 3. __ Homologous chromosomes 4. __ Crossing over 5. __ Cytokinesis A. Cytoplasmic...
Microbiology with Diseases by Body System (5th Edition)
14.19 In Genetic Analysis, we designed a screen to identify conditional mutants of S. cerevisiae in which the s...
Genetic Analysis: An Integrated Approach (3rd Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Please dont forget the last three rowsarrow_forward1. [3.33/20 Points] Shown in the figure below is an electrical circuit containing three resistors and two batteries. R₁ www 4 R3 ww 10 www Write down the Kirchhoff Junction equation and solve it for I, in terms of I, and I. Write the result here: 4-42-13 Write down the Kirchhoff Loop equation for a loop that starts at the lower left corner and follows the perimeter of the circuit diagram dockwise. 0-10-₁ +4 × Write down the Kirchhoff Loop equation for a loop that starts at the lower left corner and touches the components 10V, R₁, 4V, and R₂. 0--12R₂-IR₁ × The resistors in the circuit have the following values: R, 20 R₂ =6 R 100 Solve for all the following (some answers may be negative): I-1.3478 -0.2174 --1.1304 x Amperes x Amperes x Amperes NOTE: For the equations, put in resistances and currents SYMBOLICALLY using variables like R,,R₂,R, and I, J₂,;. Use numerical values of 10 and 4 for the voltages. SUBMIT ANSWERarrow_forwardQ3:A tow truck pulls a car that is stuck in the mud, with a force of 2 500 N as shown. The tow cable is under tension and therefore pulls downward and to the left on the pin at its upper end. The light pin is held in equilibrium by forces exerted by the two bars A and B. Each bar is a strut: that is, each is a bar whose weight is small com-pared to the forces it exerts, and which exerts forces only through hinge pins at its ends. Each strut exerts a force directed parallel to its length. (i) Determine the force of tension or compression in each strut. Proceed as follows: Make a guess as to which way (pushing or pulling) each force acts on the top pin. (4) (ii) Draw a free-body diagram of the pin. Use the condition for equilibrium of the pin to translate the free-body diagram into equations. From the equations calculate the forces exerted by struts A and B. 4A negative answer means the direction should be reversed, but the absolute value correctly gives the magnitude of the force. (8)…arrow_forward
- 2. Kiran is doing a summer internship in a physics lab that uses optical fibres. Their Thorlabs 1550BHP fibre has specifications listed here. To the right is a diagram of the various layers (thicknesses to scale) and the definition of the bending radius (not to scale). Kiran needs to route a beam of A = 1550 nm light through a tight mechanical setup and needs to keep the curves larger than the listed minimum bend radius (Long Term). Assume that any curves are circular (i.e. the curve makes a perfect circular arc segment) and Coating Cladding Core Cladding Coating that all the light is perfectly aligned when it enters the fibre. Bending Radius a) Draw a diagram of the situation showing the light beams, the core, and core-cladding interface of the fibre. Include a circular bend of the minimum bending radius, and the path of the light beams as they reflect. b) Based on the minimum bending radius, what is the ratio of the indices of refraction of the core and cladding material? I.e. find…arrow_forward1. Tobenna is visiting the penguin exhibit at a zoo. He sees a penguin swimming underwater, using its beak to look for food at the bottom of the tank. According to a tour guide, the tank is 2.0 m deep. The index of refraction of the water is the usual one of 1.33, and Tobenna is standing right at the edge of the tank. a) Tobenna's excellent depth perception tells him the penguin is 5.3 m away. He has taken PHYS 102 so he knows that this is just an apparent distance. Determine the apparent and actual horizontal distances of the penguin from the edge of the tank. b) If Tobenna crouches down so his head is only 1.0 m above the ground, will he perceive the penguin to be closer or further from the wall than in a)? c) Is there a place where Tobenna could stand where he would not see the penguin at all, despite being able to draw a straight line between his eyes and the penguin? (i.e. due to refraction, not from standing around a corner.) d) This question is qualitative only. You don't need…arrow_forwardReta 2. The force of gravity between two objects becomes stronger/twice as strong) LAWS OF MOTION 99 if the distance between them is halved. (four times 3. The force of gravity is weaker on the moon than on earth because the moon has less 4. The gravitational force exerted by the earth on an object is called the object's (Analysis) (mass/distance) (Application) (weight/mass) (Understanding) ANSWERS 1. decreases 2. four times stronger 3. mass 4. weight. Numericals Find the gravitational force between two bodies of masses 50 kg each, situated at 1 m from each other. Ans. 1.67 x 107 N. 2. Find the attractive force between moon and earth if mass of earth is 6 x 1024 kg, mass of moon is 7.4 × 1022 kg and moon is at a distance of 3.84 x 108 m from the earth. Ans. 2.01 x 1020 N. 3. How does the gravitational force between two bodies change, if the distance between them is reduced to half? Calculate the value of 'g' at height of 3 times to radius of earth. Ans. 4 times. Ans. g/16. Ans. 60 kg.…arrow_forward
- 6. [0/5 Points] DETAILS MY NOTES PREVIOUS ANSWERS ASK YOUR TEACHER PRACTICE ANOTHER The emf in the figure below is 4.38 V. The resistances are R₁ = 26.02, R2 = 26.50, and R3 = 38.00. Find the following. R₁ R2 R3 (a) the current in each resistor (Give your answers to at least three significant figures.) 12= 13 = A A A (b) the power consumed by each resistor P1 P₂ = P3 W W W (c) the power supplied by the emf device Enter a number. W Viewing Saved Work Revert to Last Response SUBMIT ANSWER KatzPSE1 29.P.040.arrow_forwardThe stators in a gas turbine are designed to increase the kinetic energy of the gas passing through them adiabatically. Air enters a set of these nozzles at 300 psia and 700°F with a velocity of 76 ft/s and exits at 250 psia and 645°F. Calculate the velocity at the exit of the nozzles. The specific heat of air at the average temperature of 672.5°F is cp=0.253 Btu/lbm⋅R . The velocity at the exit of the nozzles is __________ ft/s.arrow_forwardA desktop computer is to be cooled by a fan whose flow rate is 0.34 m³/min. Determine the mass flow rate of air through the fan at an elevation of 3400 m where the air density is 0.7 kg/m³. Also, if the average velocity of air is not to exceed 103 m/min, determine the diameter of the casing of the fan. Air outlet Air inlet Exhaust fan The mass flow rate of air through the fan is The diameter of the casing of the fan is kg/min. cm.arrow_forward
- Air at 80 kPa and 127°C enters an adiabatic diffuser steadily at a rate of 6600 kg/h and leaves at 100 kPa. The velocity of the airstream is decreased from 230 m/s to 30 m/s as it passes through the diffuser. The gas constant of air is 0.287 kPa·m3/kg·K. The enthalpy of air at the inlet temperature of 400 K is h1 = 400.98 kJ/kg. Determine the exit area of the diffuser. The exit area of the diffuser is_______ m2.arrow_forwardThere is a ring of metal flying through space towards Earth. The ring's velocity and normal vector both point right towards Earth. The ring is on the left and the Earth is on the right. The ring is initially constant and uniform magnetic field is pointing upwards relative to the ring's direction of motion. What is the distribution of charges on the ringarrow_forwardSteel train rails are laid in 15.0-m-long segments placed end to end. The rails are laid on a winter day when their temperature is -1.0 °C. Part A How much space must be left between adjacent rails if they are just to touch on a summer day when their temperature is 34.0°C? Express your answer to two significant figures and include the appropriate units. D= 0.0058 Submit 0 ? m Previous Answers Request Answer × Incorrect; Try again; 4 attempts remaining Part B If the rails are originally laid in contact, what is the stress in them on a summer day when their temperature is 34.0°C? Express your answer using two significant figures. Enter positive value if the stress is tensile and negative value if the stress is compressive. ΤΟ ΑΣΦ TA F = -7.7.107 Submit Q Previous Answers Request Answer × Incorrect; Try Again; 5 attempts remaining ? Paarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning

Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill

Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning

University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University

Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Kinematics Part 3: Projectile Motion; Author: Professor Dave explains;https://www.youtube.com/watch?v=aY8z2qO44WA;License: Standard YouTube License, CC-BY