
Physics for Scientists and Engineers with Modern Physics
4th Edition
ISBN: 9780131495081
Author: Douglas C. Giancoli
Publisher: Addison-Wesley
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 12.1, Problem 1BE
For simplicity, we wrote the equation in Example 12–2 as if the lever were perpendicular to the forces. Would the equation be valid even for a lever at an angle as shown in Fig. 12–5?
FIGURE 12–5 Example 12–2, A Lever can “multiply” your force.
Expert Solution & Answer

Learn your wayIncludes step-by-step video

schedule02:03
Students have asked these similar questions
A simple series circuit consists of a 150 Ω resistor, a 27.0 V battery, a switch, and a 2.00 pF parallel-plate capacitor (initially uncharged) with plates 5.0 mm apart. The switch is closed at t =0s .
Part A
Part complete
Part B
Part complete
Part C
Find the electric flux at t =0.50ns.
Express your answer in volt-meters.
View Available Hint(s)for Part C
Activate to select the appropriates template from the following choices. Operate up and down arrow for selection and press enter to choose the input value typeActivate to select the appropriates symbol from the following choices. Operate up and down arrow for selection and press enter to choose the input value type
nothing
V⋅m
Part D
Find the displacement current at t =0.50ns.
Urgently n
Chapter 12 Solutions
Physics for Scientists and Engineers with Modern Physics
Ch. 12.1 - For simplicity, we wrote the equation in Example...Ch. 12.2 - We did not need to use the force equation to solve...Ch. 12.2 - CHAPTER-OPENING QUESTIONGuess Now! The diving...Ch. 12.2 - Why is it reasonable to ignore friction along the...Ch. 12.4 - Two steel wires have the same length and are under...Ch. 12 - Describe several situations in which an object is...Ch. 12 - A bungee jumper momentarily comes to rest at the...Ch. 12 - Prob. 3QCh. 12 - Your doctors scale has arms on which weights slide...Ch. 12 - A ground retaining wall is shown in Fig. 1240a....
Ch. 12 - Can the sum of the torques on an object be zero...Ch. 12 - A ladder, leaning against a wall, makes a 60 angle...Ch. 12 - A uniform meter stick supported at the 25-cm mark...Ch. 12 - Prob. 9QCh. 12 - Prob. 10QCh. 12 - Place yourself facing the edge of an open door....Ch. 12 - Prob. 12QCh. 12 - Prob. 13QCh. 12 - Which of the configurations of brick, (a) or (b)...Ch. 12 - Name the type of equilibrium for each position of...Ch. 12 - Is the Youngs modulus for a bungee cord smaller or...Ch. 12 - Examine how a pair of scissors or shears cuts...Ch. 12 - Materials such as ordinary concrete and stone are...Ch. 12 - (I) Three forces are applied to a tree sapling, as...Ch. 12 - (I) Approximately what magnitude force, FM, must...Ch. 12 - Prob. 3PCh. 12 - (I) A tower crane (Fig. 1248a) must always be...Ch. 12 - (II) Calculate the forces FA and FB that the...Ch. 12 - Prob. 6PCh. 12 - (II) The two trees in Fig. 1250 are 6.6 m apart. A...Ch. 12 - Prob. 8PCh. 12 - Prob. 9PCh. 12 - Prob. 10PCh. 12 - (II) Find the tension in the two cords shown in...Ch. 12 - (II) Find the tension in the two wires supporting...Ch. 12 - Prob. 13PCh. 12 - (II) The force required to pull the cork out of...Ch. 12 - (II) Calculate and FA and FB for the beam shown in...Ch. 12 - Prob. 16PCh. 12 - Prob. 17PCh. 12 - (II) Three children are trying to balance on a...Ch. 12 - (II) The Achilles tendon is attached to the rear...Ch. 12 - (II) A shop sign weighing 215 N is supported by a...Ch. 12 - (II) A traffic light hangs from a pole as shown in...Ch. 12 - (II) A uniform steel beam has a mass of 940 kg. On...Ch. 12 - (II) Two wires run from the top of a pole 2.6 m...Ch. 12 - (II) A large 62.0-kg board is propped at a 45...Ch. 12 - (II) Repeat Problem 24 assuming the coefficient of...Ch. 12 - (II) A 0.75-kg sheet hangs from a massless...Ch. 12 - (II) A uniform rod AB of length 5.0 m and mass M =...Ch. 12 - (III) A 56.0-kg person stands 2.0 m from the...Ch. 12 - (III) A door 2.30 m high and 1.30 m wide has a...Ch. 12 - (III) A cubic crate of side s = 2.0 m is...Ch. 12 - (III) A refrigerator is approximately a uniform...Ch. 12 - (III) A uniform ladder of mass m and length leans...Ch. 12 - Prob. 33PCh. 12 - (I) A nylon string on a tennis racket is under a...Ch. 12 - (I) A marble column of cross-sectional area 1.4 m2...Ch. 12 - (I) By how much is the column in Problem 35...Ch. 12 - (I) A sign (mass 1700 kg) hangs from the end of a...Ch. 12 - (II) How much pressure is needed to compress the...Ch. 12 - Prob. 39PCh. 12 - (II) At depths of 2000 m in the sea, the pressure...Ch. 12 - (III) A pole projects horizontally from the front...Ch. 12 - (I) The femur bone in the human leg has a minimum...Ch. 12 - (II) (a) What is the maximum tension possible in a...Ch. 12 - (II) If a compressive force of 3.3 104 N is...Ch. 12 - (II) (a) What is the minimum cross-sectional area...Ch. 12 - (II) Assume the supports of the uniform cantilever...Ch. 12 - (II) An iron bolt is used to connect two iron...Ch. 12 - (II) A steel cable is to support an elevator whose...Ch. 12 - (II) A heavy load Mg = 66.0 kN hangs at point E of...Ch. 12 - (II) Figure 1271 shows a simple truss that carries...Ch. 12 - (II) (a) What minimum cross-sectional area must...Ch. 12 - (II) onsider again Example 1211 but this time...Ch. 12 - (III) The truss shown in Fig. 1272 supports a...Ch. 12 - (III) Suppose in Example 1211, a 23-ton truck (m =...Ch. 12 - (III) For the Pratt truss shown in Fig. 1273,...Ch. 12 - (II) How high must a pointed arch be if it is to...Ch. 12 - The mobile in Fig. 1274 is in equilibrium. Object...Ch. 12 - A tightly stretched high wire is 36 m long. It...Ch. 12 - What minimum horizontal force F is needed to pull...Ch. 12 - A 28-kg round table is supported by three legs...Ch. 12 - When a wood shelf of mass 6.6 kg is fastened...Ch. 12 - Prob. 62GPCh. 12 - The center of gravity of a loaded truck depends on...Ch. 12 - In Fig. 1279, consider the right-hand...Ch. 12 - Assume that a single-span suspension bridge such...Ch. 12 - When a mass of 25 kg is hung from the middle of a...Ch. 12 - The forces acting on a 77,000-kg aircraft flying...Ch. 12 - A uniform flexible steel cable of weight mg is...Ch. 12 - A 20.0-m-long uniform beam weighing 650 N rests on...Ch. 12 - A cube of side l rests on a rough floor. It is...Ch. 12 - A 65.0-kg painter is on a uniform 25-kg scaffold...Ch. 12 - A man doing push-ups pauses in the position shown...Ch. 12 - A 23-kg sphere rests between two smooth planes as...Ch. 12 - A 15.0-kg ball is supported from the ceiling by...Ch. 12 - Parachutists whose chutes have failed to open have...Ch. 12 - A steel wire 2.3 mm in diameter stretches by...Ch. 12 - A 2500-kg trailer is attached to a stationary...Ch. 12 - Prob. 78GPCh. 12 - A 25-kg object is being lifted by pulling on the...Ch. 12 - A uniform 6.0-m-long ladder of mass 16.0 kg leans...Ch. 12 - There is a maximum height of a uniform vertical...Ch. 12 - A 95,000-kg train locomotive starts across a...Ch. 12 - A 23.0-kg backpack is suspended midway between two...Ch. 12 - A uniform beam of mass M and length l is mounted...Ch. 12 - Two identical, uniform beams are symmetrically set...Ch. 12 - If 35 kg is the maximum mass m that a person can...Ch. 12 - (a) Estimate the magnitude of the force FM the...Ch. 12 - One rod of the square frame shown in Fig. 1295...Ch. 12 - A steel rod of radius R = 15 cm and length 0,...Ch. 12 - A home mechanic wants to raise the 280-kg engine...Ch. 12 - A 2.0-m-high box with a 1.0-m-squarc base is moved...Ch. 12 - You are on a pirate ship and being forced to walk...Ch. 12 - A uniform sphere of weight mg and radius r0 is...Ch. 12 - Use the method of joints to determine the force in...Ch. 12 - A uniform ladder of mass m and length leans at an...Ch. 12 - In a mountain-climbing technique called the...Ch. 12 - (III) A metal cylinder has an original diameter of...Ch. 12 - (III) Two springs, attached by a rope, are...
Additional Science Textbook Solutions
Find more solutions based on key concepts
10.71 Identify each of the following as an acid or a base: (10.1)
H2SO4
RbOH
Ca(OH)2
HI
...
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
17.1 Reciprocal crosses of experimental animals or plants sometimes give different results in the. What are two...
Genetic Analysis: An Integrated Approach (3rd Edition)
1. Why is the quantum-mechanical model of the atom important for understanding chemistry?
Chemistry: Structure and Properties (2nd Edition)
Describe an example of bioconversion. What metabolic processes can result in fuels?
Microbiology: An Introduction
65. Whale sharks swim forward while ascending or descending. They swim along a straight-line path at a shallow ...
College Physics: A Strategic Approach (3rd Edition)
What two body structures contain flexible elastic cartilage?
Anatomy & Physiology (6th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- 1. [3.33/20 Points] Shown in the figure below is an electrical circuit containing three resistors and two batteries. R₁ www 4 R3 ww 10 www Write down the Kirchhoff Junction equation and solve it for I, in terms of I, and I. Write the result here: 4-42-13 Write down the Kirchhoff Loop equation for a loop that starts at the lower left corner and follows the perimeter of the circuit diagram dockwise. 0-10-₁ +4 × Write down the Kirchhoff Loop equation for a loop that starts at the lower left corner and touches the components 10V, R₁, 4V, and R₂. 0--12R₂-IR₁ × The resistors in the circuit have the following values: R, 20 R₂ =6 R 100 Solve for all the following (some answers may be negative): I-1.3478 -0.2174 --1.1304 x Amperes x Amperes x Amperes NOTE: For the equations, put in resistances and currents SYMBOLICALLY using variables like R,,R₂,R, and I, J₂,;. Use numerical values of 10 and 4 for the voltages. SUBMIT ANSWERarrow_forwardQ3:A tow truck pulls a car that is stuck in the mud, with a force of 2 500 N as shown. The tow cable is under tension and therefore pulls downward and to the left on the pin at its upper end. The light pin is held in equilibrium by forces exerted by the two bars A and B. Each bar is a strut: that is, each is a bar whose weight is small com-pared to the forces it exerts, and which exerts forces only through hinge pins at its ends. Each strut exerts a force directed parallel to its length. (i) Determine the force of tension or compression in each strut. Proceed as follows: Make a guess as to which way (pushing or pulling) each force acts on the top pin. (4) (ii) Draw a free-body diagram of the pin. Use the condition for equilibrium of the pin to translate the free-body diagram into equations. From the equations calculate the forces exerted by struts A and B. 4A negative answer means the direction should be reversed, but the absolute value correctly gives the magnitude of the force. (8)…arrow_forward2. Kiran is doing a summer internship in a physics lab that uses optical fibres. Their Thorlabs 1550BHP fibre has specifications listed here. To the right is a diagram of the various layers (thicknesses to scale) and the definition of the bending radius (not to scale). Kiran needs to route a beam of A = 1550 nm light through a tight mechanical setup and needs to keep the curves larger than the listed minimum bend radius (Long Term). Assume that any curves are circular (i.e. the curve makes a perfect circular arc segment) and Coating Cladding Core Cladding Coating that all the light is perfectly aligned when it enters the fibre. Bending Radius a) Draw a diagram of the situation showing the light beams, the core, and core-cladding interface of the fibre. Include a circular bend of the minimum bending radius, and the path of the light beams as they reflect. b) Based on the minimum bending radius, what is the ratio of the indices of refraction of the core and cladding material? I.e. find…arrow_forward
- 1. Tobenna is visiting the penguin exhibit at a zoo. He sees a penguin swimming underwater, using its beak to look for food at the bottom of the tank. According to a tour guide, the tank is 2.0 m deep. The index of refraction of the water is the usual one of 1.33, and Tobenna is standing right at the edge of the tank. a) Tobenna's excellent depth perception tells him the penguin is 5.3 m away. He has taken PHYS 102 so he knows that this is just an apparent distance. Determine the apparent and actual horizontal distances of the penguin from the edge of the tank. b) If Tobenna crouches down so his head is only 1.0 m above the ground, will he perceive the penguin to be closer or further from the wall than in a)? c) Is there a place where Tobenna could stand where he would not see the penguin at all, despite being able to draw a straight line between his eyes and the penguin? (i.e. due to refraction, not from standing around a corner.) d) This question is qualitative only. You don't need…arrow_forwardReta 2. The force of gravity between two objects becomes stronger/twice as strong) LAWS OF MOTION 99 if the distance between them is halved. (four times 3. The force of gravity is weaker on the moon than on earth because the moon has less 4. The gravitational force exerted by the earth on an object is called the object's (Analysis) (mass/distance) (Application) (weight/mass) (Understanding) ANSWERS 1. decreases 2. four times stronger 3. mass 4. weight. Numericals Find the gravitational force between two bodies of masses 50 kg each, situated at 1 m from each other. Ans. 1.67 x 107 N. 2. Find the attractive force between moon and earth if mass of earth is 6 x 1024 kg, mass of moon is 7.4 × 1022 kg and moon is at a distance of 3.84 x 108 m from the earth. Ans. 2.01 x 1020 N. 3. How does the gravitational force between two bodies change, if the distance between them is reduced to half? Calculate the value of 'g' at height of 3 times to radius of earth. Ans. 4 times. Ans. g/16. Ans. 60 kg.…arrow_forward6. [0/5 Points] DETAILS MY NOTES PREVIOUS ANSWERS ASK YOUR TEACHER PRACTICE ANOTHER The emf in the figure below is 4.38 V. The resistances are R₁ = 26.02, R2 = 26.50, and R3 = 38.00. Find the following. R₁ R2 R3 (a) the current in each resistor (Give your answers to at least three significant figures.) 12= 13 = A A A (b) the power consumed by each resistor P1 P₂ = P3 W W W (c) the power supplied by the emf device Enter a number. W Viewing Saved Work Revert to Last Response SUBMIT ANSWER KatzPSE1 29.P.040.arrow_forward
- The stators in a gas turbine are designed to increase the kinetic energy of the gas passing through them adiabatically. Air enters a set of these nozzles at 300 psia and 700°F with a velocity of 76 ft/s and exits at 250 psia and 645°F. Calculate the velocity at the exit of the nozzles. The specific heat of air at the average temperature of 672.5°F is cp=0.253 Btu/lbm⋅R . The velocity at the exit of the nozzles is __________ ft/s.arrow_forwardA desktop computer is to be cooled by a fan whose flow rate is 0.34 m³/min. Determine the mass flow rate of air through the fan at an elevation of 3400 m where the air density is 0.7 kg/m³. Also, if the average velocity of air is not to exceed 103 m/min, determine the diameter of the casing of the fan. Air outlet Air inlet Exhaust fan The mass flow rate of air through the fan is The diameter of the casing of the fan is kg/min. cm.arrow_forwardAir at 80 kPa and 127°C enters an adiabatic diffuser steadily at a rate of 6600 kg/h and leaves at 100 kPa. The velocity of the airstream is decreased from 230 m/s to 30 m/s as it passes through the diffuser. The gas constant of air is 0.287 kPa·m3/kg·K. The enthalpy of air at the inlet temperature of 400 K is h1 = 400.98 kJ/kg. Determine the exit area of the diffuser. The exit area of the diffuser is_______ m2.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegeClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning

University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University

Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill

Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning

College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College

Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning

Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Static Equilibrium: concept; Author: Jennifer Cash;https://www.youtube.com/watch?v=0BIgFKVnlBU;License: Standard YouTube License, CC-BY