
Developer Guide

AWS Encryption SDK

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.



AWS Encryption SDK Developer Guide

AWS Encryption SDK: Developer Guide

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service 
that is not Amazon's, in any manner that is likely to cause confusion among customers, or in any 
manner that disparages or discredits Amazon. All other trademarks not owned by Amazon are 
the property of their respective owners, who may or may not be affiliated with, connected to, or 
sponsored by Amazon.



AWS Encryption SDK Developer Guide

Table of Contents

What is the AWS Encryption SDK? ................................................................................................. 1
Developed in open-source repositories ................................................................................................... 2
Compatibility with encryption libraries and services ............................................................................ 3
Support and maintenance .......................................................................................................................... 4
Learning more ............................................................................................................................................... 4
Sending feedback ......................................................................................................................................... 5
Concepts ......................................................................................................................................................... 6

Envelope encryption ............................................................................................................................... 7
Data key .................................................................................................................................................... 8
Wrapping key ........................................................................................................................................... 9
Keyrings and master key providers ................................................................................................... 10
Encryption context ............................................................................................................................... 11
Encrypted message ............................................................................................................................... 12
Algorithm suite ...................................................................................................................................... 12
Cryptographic materials manager ..................................................................................................... 13
Symmetric and asymmetric encryption ........................................................................................... 13
Key commitment ................................................................................................................................... 14
Commitment policy .............................................................................................................................. 15
Digital signatures .................................................................................................................................. 17

How the SDK works ................................................................................................................................... 17
How the AWS Encryption SDK encrypts data ................................................................................. 18
How the AWS Encryption SDK decrypts an encrypted message ................................................. 18

Supported algorithm suites ..................................................................................................................... 19
Recommended: AES-GCM with key derivation, signing, and key commitment ........................ 19
Other supported algorithm suites .................................................................................................... 20

Interacting with AWS KMS ............................................................................................................ 22
Best practices ................................................................................................................................. 24
Configuring the SDK ..................................................................................................................... 28

Selecting a programming language ....................................................................................................... 28
Selecting wrapping keys ........................................................................................................................... 28
Using multi-Region AWS KMS keys ........................................................................................................ 30
Choosing an algorithm suite ................................................................................................................... 51
Limiting encrypted data keys .................................................................................................................. 60
Creating a discovery filter ........................................................................................................................ 64

iii



AWS Encryption SDK Developer Guide

Setting a commitment policy .................................................................................................................. 66
Working with streaming data .................................................................................................................. 67
Caching data keys ...................................................................................................................................... 67

Using keyrings ............................................................................................................................... 68
How keyrings work .................................................................................................................................... 69
Keyring compatibility ................................................................................................................................ 70

Varying requirements for encryption keyrings ............................................................................... 71
Compatible Keyrings and Master Key Providers ............................................................................. 71

Choosing a keyring .................................................................................................................................... 72
AWS KMS keyrings ................................................................................................................................ 73
AWS KMS Hierarchical keyrings ......................................................................................................... 92
AWS KMS ECDH keyrings .................................................................................................................. 116
Raw AES keyrings ............................................................................................................................... 122
Raw RSA keyrings ............................................................................................................................... 126
Raw ECDH keyrings ............................................................................................................................ 131
Multi-keyrings ...................................................................................................................................... 139

Programming languages ............................................................................................................. 144
C ................................................................................................................................................................... 144

Installing ............................................................................................................................................... 145
Using the C SDK ................................................................................................................................. 146
Examples ............................................................................................................................................... 151

.NET ............................................................................................................................................................. 158
Install and build .................................................................................................................................. 160
Debugging ............................................................................................................................................ 160
AWS KMS keyrings ............................................................................................................................. 161
Required encryption context CMM ................................................................................................. 164
Examples ............................................................................................................................................... 166

Java ............................................................................................................................................................. 174
Prerequisites ........................................................................................................................................ 174
Installation ........................................................................................................................................... 176
AWS KMS keyrings ............................................................................................................................. 177
Required encryption context CMM ................................................................................................. 180
Examples ............................................................................................................................................... 182

JavaScript ................................................................................................................................................... 195
Compatibility ....................................................................................................................................... 195
Installation ........................................................................................................................................... 197

iv



AWS Encryption SDK Developer Guide

Modules ................................................................................................................................................ 198
Examples ............................................................................................................................................... 201

Python ........................................................................................................................................................ 208
Prerequisites ........................................................................................................................................ 208
Installation ........................................................................................................................................... 208
Examples ............................................................................................................................................... 210

Command line interface ......................................................................................................................... 221
Installing the CLI ................................................................................................................................ 222
How to use the CLI ............................................................................................................................ 225
Examples ............................................................................................................................................... 239
Syntax and parameter reference ..................................................................................................... 263
Versions ................................................................................................................................................. 277

Data key caching ......................................................................................................................... 280
How to use data key caching ................................................................................................................ 281

Using data key caching: Step-by-step ............................................................................................ 282
Data key caching example: Encrypt a string ................................................................................. 289

Setting cache security thresholds ........................................................................................................ 306
Data key caching details ........................................................................................................................ 307

How data key caching works ........................................................................................................... 308
Creating a cryptographic materials cache ..................................................................................... 311
Creating a caching cryptographic materials manager ................................................................ 312
What is in a data key cache entry? ................................................................................................ 312
Encryption context: How to select cache entries ......................................................................... 313
Is my application using cached data keys? ................................................................................... 314

Data key caching example ..................................................................................................................... 314
Local cache results ............................................................................................................................. 316
Example code ...................................................................................................................................... 316
AWS CloudFormation template ....................................................................................................... 328

Versions of the AWS Encryption SDK ........................................................................................ 343
C ................................................................................................................................................................... 343
C# / .NET .................................................................................................................................................... 344
Command line interface (CLI) ............................................................................................................... 345
Java ............................................................................................................................................................. 347
JavaScript ................................................................................................................................................... 349
Python ........................................................................................................................................................ 350
Version details .......................................................................................................................................... 352

v



AWS Encryption SDK Developer Guide

Versions earlier than 1.7.x ................................................................................................................ 352
Version 1.7.x ........................................................................................................................................ 353
Version 2.0.x ........................................................................................................................................ 355
Version 2.2.x ........................................................................................................................................ 357
Version 2.3.x ........................................................................................................................................ 358

Migrating your AWS Encryption SDK ......................................................................................... 359
How to migrate and deploy .................................................................................................................. 361

Stage 1: Update your application to the latest 1.x version ....................................................... 361
Stage 2: Update your application to the latest version .............................................................. 362

Updating AWS KMS master key providers .......................................................................................... 363
Migrating to strict mode ................................................................................................................... 364
Migrating to discovery mode ........................................................................................................... 368

Updating AWS KMS keyrings ................................................................................................................ 371
Setting your commitment policy .......................................................................................................... 373

How to set your commitment policy ............................................................................................. 375
Troubleshooting migration to the latest versions ............................................................................ 382

Deprecated or removed objects ...................................................................................................... 383
Configuration conflict: Commitment policy and algorithm suite ............................................. 383
Configuration conflict: Commitment policy and ciphertext ...................................................... 384
Key commitment validation failed .................................................................................................. 385
Other encryption failures ................................................................................................................. 385
Other decryption failures ................................................................................................................. 385
Rollback considerations ..................................................................................................................... 386

Frequently asked questions ........................................................................................................ 387
Reference ...................................................................................................................................... 392

Message format reference ..................................................................................................................... 392
Header structure ................................................................................................................................. 393
Body structure ..................................................................................................................................... 401
Footer structure .................................................................................................................................. 406

Message format examples ..................................................................................................................... 407
Framed data (message format version 1) ..................................................................................... 407
Framed data (message format version 2) ..................................................................................... 411
Non-framed data (message format version 1) ............................................................................. 413

Body AAD reference ................................................................................................................................ 417
Algorithms reference ............................................................................................................................... 418
Initialization vector reference ............................................................................................................... 423

vi



AWS Encryption SDK Developer Guide

AWS KMS Hierarchical keyring technical details ............................................................................... 424
Document history ........................................................................................................................ 425

Recent updates ......................................................................................................................................... 425
Earlier updates .......................................................................................................................................... 428

vii



AWS Encryption SDK Developer Guide

What is the AWS Encryption SDK?

The AWS Encryption SDK is a client-side encryption library designed to make it easy for everyone 
to encrypt and decrypt data using industry standards and best practices. It enables you to focus 
on the core functionality of your application, rather than on how to best encrypt and decrypt your 
data. The AWS Encryption SDK is provided free of charge under the Apache 2.0 license.

The AWS Encryption SDK answers questions like the following for you:

• Which encryption algorithm should I use?

• How, or in which mode, should I use that algorithm?

• How do I generate the encryption key?

• How do I protect the encryption key, and where should I store it?

• How can I make my encrypted data portable?

• How do I ensure that the intended recipient can read my encrypted data?

• How can I ensure my encrypted data is not modified between the time it is written and when it is 
read?

• How do I use the data keys that AWS KMS returns?

With the AWS Encryption SDK, you define a master key provider (Python) or a keyring (C, C#/.NET, 
Java, and JavaScript) that determines which wrapping keys you use to protect your data. Then you 
encrypt and decrypt your data using straightforward methods provided by the AWS Encryption 
SDK. The AWS Encryption SDK does the rest.

Without the AWS Encryption SDK, you might spend more effort on building an encryption solution 
than on the core functionality of your application. The AWS Encryption SDK answers these 
questions by providing the following things.

A default implementation that adheres to cryptography best practices

By default, the AWS Encryption SDK generates a unique data key for each data object that 
it encrypts. This follows the cryptography best practice of using unique data keys for each 
encryption operation.

The AWS Encryption SDK encrypts your data using a secure, authenticated, symmetric key 
algorithm. For more information, see the section called “Supported algorithm suites”.

1



AWS Encryption SDK Developer Guide

A framework for protecting data keys with wrapping keys

The AWS Encryption SDK protects the data keys that encrypt your data by encrypting them 
under one or more wrapping keys. By providing a framework to encrypt data keys with more 
than one wrapping key, the AWS Encryption SDK helps make your encrypted data portable.

For example, encrypt data under an AWS KMS key in AWS KMS and a key from your on-premises 
HSM. You can use either of the wrapping keys to decrypt the data, in case one is unavailable or 
the caller doesn't have permission to use both keys.

A formatted message that stores encrypted data keys with the encrypted data

The AWS Encryption SDK stores the encrypted data and encrypted data key together in an
encrypted message that uses a defined data format. This means you don't need to keep track 
of or protect the data keys that encrypt your data because the AWS Encryption SDK does it for 
you.

Some language implementations of the AWS Encryption SDK require an AWS SDK, but the AWS 
Encryption SDK doesn't require an AWS account and it doesn't depend on any AWS service. You 
need an AWS account only if you choose to use AWS KMS keys to protect your data.

Developed in open-source repositories

The AWS Encryption SDK is developed in open-source repositories on GitHub. You can use these 
repositories to view the code, read and submit issues, and find information that is specific to your 
language implementation.

• AWS Encryption SDK for C — aws-encryption-sdk-c

• AWS Encryption SDK for .NET — aws-encryption-sdk-net directory of the aws-encryption-
sdk-dafny repository.

• AWS Encryption CLI — aws-encryption-sdk-cli

• AWS Encryption SDK for Java — aws-encryption-sdk-java

• AWS Encryption SDK for JavaScript — aws-encryption-sdk-javascript

• AWS Encryption SDK for Python — aws-encryption-sdk-python

Developed in open-source repositories 2

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#kms-keys
https://github.com/aws/aws-encryption-sdk-c/
https://github.com/aws/aws-encryption-sdk-dafny/tree/mainline/AwsEncryptionSDK/runtimes/net/
https://github.com/aws/aws-encryption-sdk-cli/
https://github.com/aws/aws-encryption-sdk-java/
https://github.com/aws/aws-encryption-sdk-javascript/
https://github.com/aws/aws-encryption-sdk-python/


AWS Encryption SDK Developer Guide

Compatibility with encryption libraries and services

The AWS Encryption SDK is supported in several programming languages. All language 
implementations are interoperable. You can encrypt with one language implementation and 
decrypt with another. Interoperability might be subject to language constraints. If so, these 
constraints are described in the topic about the language implementation. Also, when encrypting 
and decrypting, you must use compatible keyrings, or master keys and master key providers. For 
details, see the section called “Keyring compatibility”.

However, the AWS Encryption SDK cannot interoperate with other libraries. Because each library 
returns encrypted data in a different format, you cannot encrypt with one library and decrypt with 
another.

DynamoDB Encryption Client and Amazon S3 client-side encryption

The AWS Encryption SDK cannot decrypt data encrypted by the DynamoDB Encryption Client
or Amazon S3 client-side encryption. These libraries cannot decrypt the encrypted message the 
AWS Encryption SDK returns. 

AWS Key Management Service (AWS KMS)

The AWS Encryption SDK can use AWS KMS keys and data keys to protect your data, including 
multi-Region KMS keys. For example, you can configure the AWS Encryption SDK to encrypt 
your data under one or more AWS KMS keys in your AWS account. However, you must use the 
AWS Encryption SDK to decrypt that data.

The AWS Encryption SDK cannot decrypt the ciphertext that the AWS KMS Encrypt or
ReEncrypt operations return. Similarly, the AWS KMS Decrypt operation cannot decrypt the
encrypted message the AWS Encryption SDK returns.

The AWS Encryption SDK supports only symmetric encryption KMS keys. You cannot use an
asymmetric KMS key for encryption or signing in the AWS Encryption SDK. The AWS Encryption 
SDK generates its own ECDSA signing keys for algorithm suites that sign messages.

For help deciding which library or service to use, see How to Choose an Encryption Tool or Service
in AWS Cryptographic Services and Tools.

Compatibility with encryption libraries and services 3

https://docs.aws.amazon.com/dynamodb-encryption-client/latest/devguide/
https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingClientSideEncryption.html
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#master_keys
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#data-keys
https://docs.aws.amazon.com/kms/latest/APIReference/API_Encrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_ReEncrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html
https://docs.aws.amazon.com/kms/latest/developerguide/symm-asymm-concepts.html#symmetric-cmks
https://docs.aws.amazon.com/kms/latest/developerguide/symm-asymm-concepts.html#asymmetric-cmks
https://docs.aws.amazon.com/crypto/latest/userguide/awscryp-overview.html


AWS Encryption SDK Developer Guide

Support and maintenance

The AWS Encryption SDK uses the same maintenance policy that the AWS SDK and Tools use, 
including its versioning and life-cycle phases. As a best practice, we recommend that you use the 
latest available version of the AWS Encryption SDK for your programming language, and upgrade 
as new versions are released. When a version requires significant changes, such as the upgrade 
from AWS Encryption SDK versions earlier than 1.7.x to versions 2.0.x and later, we provide detailed 
instructions to help you.

Each programming language implementation of the AWS Encryption SDK is developed in a 
separate open-source GitHub repository. The life-cycle and support phase of each version is likely 
to vary among repositories. For example, a given version of the AWS Encryption SDK might be in 
the general availability (full support) phase in one programming language, but the end-of-support 
phase in a different programming language. We recommend that you use a fully supported version 
whenever possible and avoid versions that are no longer supported.

To find the life-cycle phase of AWS Encryption SDK versions for your programming language, see 
the SUPPORT_POLICY.rst file in each AWS Encryption SDK repository.

• AWS Encryption SDK for C — SUPPORT_POLICY.rst

• AWS Encryption SDK for .NET — SUPPORT_POLICY.rst

• AWS Encryption CLI — SUPPORT_POLICY.rst

• AWS Encryption SDK for Java — SUPPORT_POLICY.rst

• AWS Encryption SDK for JavaScript — SUPPORT_POLICY.rst

• AWS Encryption SDK for Python — SUPPORT_POLICY.rst

For more information, see Versions of the AWS Encryption SDK and AWS SDKs and Tools 
maintenance policy in the AWS SDKs and Tools Reference Guide.

Learning more

For more information about the AWS Encryption SDK and client-side encryption, try these sources.

• For help with the terms and concepts used in this SDK, see Concepts in the AWS Encryption SDK.

• For best practice guidelines, see Best practices for the AWS Encryption SDK.

Support and maintenance 4

https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html
https://github.com/aws/aws-encryption-sdk-c/blob/master/SUPPORT_POLICY.rst
https://github.com/aws/aws-encryption-sdk-dafny/tree/mainline/AwsEncryptionSDK/runtimes/net/SUPPORT_POLICY.rst
https://github.com/aws/aws-encryption-sdk-cli/blob/master/SUPPORT_POLICY.rst
https://github.com/aws/aws-encryption-sdk-java/blob/master/SUPPORT_POLICY.rst
https://github.com/aws/aws-encryption-sdk-javascript/blob/master/SUPPORT_POLICY.rst
https://github.com/aws/aws-encryption-sdk-python/blob/master/SUPPORT_POLICY.rst
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html


AWS Encryption SDK Developer Guide

• For information about how this SDK works, see How the SDK works.

• For examples that show how to configure options in the AWS Encryption SDK, see Configuring 
the AWS Encryption SDK.

• For detailed technical information, see the Reference.

• For the technical specification for the AWS Encryption SDK, see the AWS Encryption SDK 
Specification in GitHub.

• For answers to your questions about using the AWS Encryption SDK, read and post on the AWS 
Crypto Tools Discussion Forum.

For information about implementations of the AWS Encryption SDK in different programming 
languages.

• C: See AWS Encryption SDK for C, the AWS Encryption SDK C documentation, and the aws-
encryption-sdk-c repository on GitHub.

• C#/.NET: See AWS Encryption SDK for .NET and the aws-encryption-sdk-net directory of the
aws-encryption-sdk-dafny repository on GitHub.

• Command Line Interface: See AWS Encryption SDK command line interface, Read the Docs for 
the AWS Encryption CLI, and the aws-encryption-sdk-cli repository on GitHub.

• Java: See AWS Encryption SDK for Java, the AWS Encryption SDK Javadoc, and the aws-
encryption-sdk-java repository on GitHub.

JavaScript: See the section called “JavaScript” and the aws-encryption-sdk-javascript repository 
on GitHub.

• Python: See AWS Encryption SDK for Python, the AWS Encryption SDK Python documentation, 
and the aws-encryption-sdk-python repository on GitHub.

Sending feedback

We welcome your feedback! If you have a question or comment, or an issue to report, please use 
the following resources.

• If you discover a potential security vulnerability in the AWS Encryption SDK, please notify AWS 
security. Do not create a public GitHub issue.

• To provide feedback on the AWS Encryption SDK, file an issue in the GitHub repository for the 
programming language you are using.

Sending feedback 5

https://github.com/awslabs/aws-encryption-sdk-specification/
https://github.com/awslabs/aws-encryption-sdk-specification/
https://forums.aws.amazon.com/forum.jspa?forumID=302
https://forums.aws.amazon.com/forum.jspa?forumID=302
https://aws.github.io/aws-encryption-sdk-c/html/
https://github.com/aws/aws-encryption-sdk-c/
https://github.com/aws/aws-encryption-sdk-c/
https://github.com/aws/aws-encryption-sdk-dafny/tree/mainline/AwsEncryptionSDK/runtimes/net/
https://aws-encryption-sdk-cli.readthedocs.io/en/latest/
https://github.com/aws/aws-encryption-sdk-cli/
https://aws.github.io/aws-encryption-sdk-java/
https://github.com/aws/aws-encryption-sdk-java/
https://github.com/aws/aws-encryption-sdk-java/
https://github.com/aws/aws-encryption-sdk-javascript/
https://aws-encryption-sdk-python.readthedocs.io/en/latest/
https://github.com/aws/aws-encryption-sdk-python/
https://aws.amazon.com/security/vulnerability-reporting/
https://aws.amazon.com/security/vulnerability-reporting/


AWS Encryption SDK Developer Guide

• To provide feedback on this documentation, use the Feedback links on this page. You can also 
file an issue or contribute to aws-encryption-sdk-docs, the open-source repository for this 
documentation on GitHub.

Concepts in the AWS Encryption SDK

This section introduces the concepts used in the AWS Encryption SDK, and provides a glossary and 
reference. It's designed to help you understand how the AWS Encryption SDK works and the terms 
we use to describe it.

Need help?

• Learn how the AWS Encryption SDK uses envelope encryption to protect your data.

• Learn about the elements of envelope encryption: the data keys that protect your data and the
wrapping keys that protect your data keys.

• Learn about the keyrings and master key providers that determine which wrapping keys you use.

• Learn about the encryption context that adds integrity to your encryption process. It's optional, 
but it's a best practice that we recommend.

• Learn about the encrypted message that the encryption methods return.

• Then you're ready to use the AWS Encryption SDK in your preferred programming language.

Topics

• Envelope encryption

• Data key

• Wrapping key

• Keyrings and master key providers

• Encryption context

• Encrypted message

• Algorithm suite

• Cryptographic materials manager

• Symmetric and asymmetric encryption

• Key commitment

• Commitment policy

Concepts 6

https://github.com/awsdocs/aws-encryption-sdk-docs


AWS Encryption SDK Developer Guide

• Digital signatures

Envelope encryption

The security of your encrypted data depends in part on protecting the data key that can decrypt it. 
One accepted best practice for protecting the data key is to encrypt it. To do this, you need another 
encryption key, known as a key-encryption key or wrapping key. The practice of using a wrapping 
key to encrypt data keys is known as envelope encryption.

Protecting data keys

The AWS Encryption SDK encrypts each message with a unique data key. Then it encrypts 
the data key under the wrapping key you specify. It stores the encrypted data key with the 
encrypted data in the encrypted message that it returns.

To specify your wrapping key, you use a keyring or master key provider.

Encrypting the same data under multiple wrapping keys

You can encrypt the data key under multiple wrapping keys. You might want to provide 
different wrapping keys for different users, or wrapping keys of different types, or in different 
locations. Each of the wrapping keys encrypts the same data key. The AWS Encryption SDK 
stores all of the encrypted data keys with the encrypted data in the encrypted message.

To decrypt the data, you need to provide a wrapping key that can decrypt one of the encrypted 
data keys.

Envelope encryption 7



AWS Encryption SDK Developer Guide

Combining the strengths of multiple algorithms

To encrypt your data, by default, the AWS Encryption SDK uses a sophisticated algorithm suite
with AES-GCM symmetric encryption, a key derivation function (HKDF), and signing. To encrypt 
the data key, you can specify a symmetric or asymmetric encryption algorithm appropriate to 
your wrapping key.

In general, symmetric key encryption algorithms are faster and produce smaller ciphertexts 
than asymmetric or public key encryption. But public key algorithms provide inherent separation 
of roles and easier key management. To combine the strengths of each, you can encrypt your 
data with symmetric key encryption, and then encrypt the data key with public key encryption.

Data key

A data key is an encryption key that the AWS Encryption SDK uses to encrypt your data. Each data 
key is a byte array that conforms to the requirements for cryptographic keys. Unless you're using
data key caching, the AWS Encryption SDK uses a unique data key to encrypt each message.

You don't need to specify, generate, implement, extend, protect or use data keys. The AWS 
Encryption SDK does that work for you when you call the encrypt and decrypt operations.

To protect your data keys, the AWS Encryption SDK encrypts them under one or more key-
encryption keys known as wrapping keys or master keys. After the AWS Encryption SDK uses your 
plaintext data keys to encrypt your data, it removes them from memory as soon as possible. Then 

Data key 8



AWS Encryption SDK Developer Guide

it stores the encrypted data keys with the encrypted data in the encrypted message that the 
encrypt operations return. For details, see the section called “How the SDK works”.

Tip

In the AWS Encryption SDK, we distinguish data keys from data encryption keys. Several of 
the supported algorithm suites, including the default suite, use a key derivation function
that prevents the data key from hitting its cryptographic limits. The key derivation function 
takes the data key as input and returns a data encryption key that is actually used to 
encrypt the data. For this reason, we often say that data is encrypted "under" a data key 
rather than "by" the data key.

Each encrypted data key includes metadata, including the identifier of the wrapping key that 
encrypted it. This metadata makes it easier for the AWS Encryption SDK to identify valid wrapping 
keys when decrypting.

Wrapping key

A wrapping key is a key-encryption key that the AWS Encryption SDK uses to encrypt the data key
that encrypts your data. Each plaintext data key can be encrypted under one or more wrapping 
keys. You determine which wrapping keys are used to protect your data when you configure a
keyring or master key provider.

Note

Wrapping key refers to the keys in a keyring or master key provider. Master key is typically 
associated with the MasterKey class that you instantiate when you use a master key 
provider.

The AWS Encryption SDK supports several commonly used wrapping keys, such as AWS Key 
Management Service (AWS KMS) symmetric AWS KMS keys (including multi-Region KMS keys), raw 
AES-GCM (Advanced Encryption Standard/Galois Counter Mode) keys, and raw RSA keys. You can 
also extend or implement your own wrapping keys.

When you use envelope encryption, you need to protect your wrapping keys from unauthorized 
access. You can do this in any of the following ways:

Wrapping key 9

https://en.wikipedia.org/wiki/Key_derivation_function
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#master_keys


AWS Encryption SDK Developer Guide

• Use a web service designed for this purpose, such as AWS Key Management Service (AWS KMS).

• Use a hardware security module (HSM) such as those offered by AWS CloudHSM.

• Use other key management tools and services.

If you don't have a key management system, we recommend AWS KMS. The AWS Encryption SDK 
integrates with AWS KMS to help you protect and use your wrapping keys. However, the AWS 
Encryption SDK does not require AWS or any AWS service.

Keyrings and master key providers

To specify the wrapping keys you use for encryption and decryption, you use a keyring (C, 
C# / .NET, and JavaScript) or a master key provider (Java, Python, CLI). You can use the 
keyrings and master key providers that the AWS Encryption SDK provides or design your own 
implementations. The AWS Encryption SDK provides keyrings and master key providers that are 
compatible with each other subject to language constraints. For details, see Keyring compatibility.

A keyring generates, encrypts, and decrypts data keys. When you define a keyring, you can specify 
the wrapping keys that encrypt your data keys. Most keyrings specify at least one wrapping key or 
a service that provides and protects wrapping keys. You can also define a keyring with no wrapping 
keys or a more complex keyring with additional configuration options. For help choosing and using 
the keyrings that the AWS Encryption SDK defines, see Using keyrings. Keyrings are supported in C, 
C# / .NET, JavaScript, and version 3.x of the AWS Encryption SDK for Java.

A master key provider is an alternative to a keyring. The master key provider returns the wrapping 
keys (or master keys) you specify. Each master key is associated with one master key provider, but a 
master key provider typically provides multiple master keys. Master key providers are supported in 
Java, Python, and the AWS Encryption CLI.

You must specify a keyring (or master key provider) for encryption. You can specify the same 
keyring (or master key provider), or a different one, for decryption. When encrypting, the 
AWS Encryption SDK uses all of the wrapping keys you specify to encrypt the data key. When 
decrypting, the AWS Encryption SDK uses only the wrapping keys you specify to decrypt an 
encrypted data key. Specifying wrapping keys for decryption is optional, but it's a AWS Encryption 
SDK best practice.

For details about specifying wrapping keys, see Selecting wrapping keys.

Keyrings and master key providers 10

https://aws.amazon.com/kms/
https://en.wikipedia.org/wiki/Hardware_security_module
https://aws.amazon.com/cloudhsm/


AWS Encryption SDK Developer Guide

Encryption context

To improve the security of your cryptographic operations, include an encryption context in all 
requests to encrypt data. Using an encryption context is optional, but it is a cryptographic best 
practice that we recommend.

An encryption context is a set of name-value pairs that contain arbitrary, non-secret additional 
authenticated data. The encryption context can contain any data you choose, but it typically 
consists of data that is useful in logging and tracking, such as data about the file type, purpose, 
or ownership. When you encrypt data, the encryption context is cryptographically bound to the 
encrypted data so that the same encryption context is required to decrypt the data. The AWS 
Encryption SDK includes the encryption context in plaintext in the header of the encrypted 
message that it returns.

The encryption context that the AWS Encryption SDK uses consists of the encryption context 
that you specify and a public key pair that the cryptographic materials manager (CMM) adds. 
Specifically, whenever you use an encryption algorithm with signing, the CMM adds a name-value 
pair to the encryption context that consists of a reserved name, aws-crypto-public-key, and 
a value that represents the public verification key. The aws-crypto-public-key name in the 
encryption context is reserved by the AWS Encryption SDK and cannot be used as a name in any 
other pair in the encryption context. For details, see AAD in the Message Format Reference.

The following example encryption context consists of two encryption context pairs specified in the 
request and the public key pair that the CMM adds.

"Purpose"="Test", "Department"="IT", aws-crypto-public-key=<public key>

To decrypt the data, you pass in the encrypted message. Because the AWS Encryption SDK can 
extract the encryption context from the encrypted message header, you are not required to provide 
the encryption context separately. However, the encryption context can help you to confirm that 
you are decrypting the correct encrypted message.

• In the AWS Encryption SDK Command Line Interface (CLI), if you provide an encryption context 
in a decrypt command, the CLI verifies that the values are present in the encryption context of 
the encrypted message before it returns the plaintext data.

• In other programming language implementations, the decrypt response includes the encryption 
context and the plaintext data. The decrypt function in your application should always verify 

Encryption context 11

https://docs.aws.amazon.com/crypto/latest/userguide/cryptography-concepts.html#define-encryption-context


AWS Encryption SDK Developer Guide

that the encryption context in the decrypt response includes the encryption context in the 
encrypt request (or a subset) before it returns the plaintext data.

Note

With version 4.x of the AWS Encryption SDK for .NET and version 3.x of the AWS Encryption 
SDK for Java, you can require an encryption context in all encrypt requests with the 
required encryption context CMM.

When choosing an encryption context, remember that it is not a secret. The encryption context 
is displayed in plaintext in the header of the encrypted message that the AWS Encryption SDK 
returns. If you are using AWS Key Management Service, the encryption context also might appear 
in plaintext in audit records and logs, such as AWS CloudTrail.

For examples of submitting and verifying an encryption context in your code, see the examples for 
your preferred programming language.

Encrypted message

When you encrypt data with the AWS Encryption SDK, it returns an encrypted message.

An encrypted message is a portable formatted data structure that includes the encrypted data 
along with encrypted copies of the data keys, the algorithm ID, and, optionally, an encryption 
context and a digital signature. Encrypt operations in the AWS Encryption SDK return an encrypted 
message and decrypt operations take an encrypted message as input.

Combining the encrypted data and its encrypted data keys streamlines the decryption operation 
and frees you from having to store and manage encrypted data keys independently of the data 
that they encrypt.

For technical information about the encrypted message, see Encrypted Message Format.

Algorithm suite

The AWS Encryption SDK uses an algorithm suite to encrypt and sign the data in the encrypted 
message that the encrypt and decrypt operations return. The AWS Encryption SDK supports 
several algorithm suites. All of the supported suites use Advanced Encryption Standard (AES) as the 
primary algorithm, and combine it with other algorithms and values.

Encrypted message 12



AWS Encryption SDK Developer Guide

The AWS Encryption SDK establishes a recommended algorithm suite as the default for all 
encryption operations. The default might change as standards and best practices improve. You can 
specify an alternate algorithm suite in requests to encrypt data or when creating a cryptographic 
materials manager (CMM), but unless an alternate is required for your situation, it is best to use the 
default. The current default is AES-GCM with an HMAC-based extract-and-expand key derivation 
function (HKDF), key commitment, an Elliptic Curve Digital Signature Algorithm (ECDSA) signature, 
and a 256-bit encryption key.

If your application requires high performance and the users who are encrypting data and those 
who are decrypting data are equally trusted, you might consider specifying an algorithm suite 
without a digital signature. However, we strongly recommend an algorithm suite that includes key 
commitment and a key derivation function. Algorithm suites without these features are supported 
only for backward compatibility.

Cryptographic materials manager

The cryptographic materials manager (CMM) assembles the cryptographic materials that are 
used to encrypt and decrypt data. The cryptographic materials include plaintext and encrypted 
data keys, and an optional message signing key. You never interact with the CMM directly. The 
encryption and decryption methods handle it for you.

You can use the default CMM or the caching CMM that the AWS Encryption SDK provides, or write 
a custom CMM. And you can specify a CMM, but it's not required. When you specify a keyring or 
master key provider, the AWS Encryption SDK creates a default CMM for you. The default CMM gets 
the encryption or decryption materials from the keyring or master key provider that you specify. 
This might involve a call to a cryptographic service, such as AWS Key Management Service(AWS 
KMS).

Because the CMM acts as a liaison between the AWS Encryption SDK and a keyring (or master 
key provider), it is an ideal point for customization and extension, such as support for policy 
enforcement and caching. The AWS Encryption SDK provides a caching CMM to support data key 
caching.

Symmetric and asymmetric encryption

Symmetric encryption uses the same key to encrypt and decrypt data.

Asymmetric encryption uses a mathematically related data key pair. One key in the pair encrypts 
the data; only the other key in the pair can decrypt the data. For details, see Cryptographic 
algorithms in the AWS Cryptographic Services and Tools Guide.

Cryptographic materials manager 13

https://en.wikipedia.org/wiki/HKDF
https://en.wikipedia.org/wiki/HKDF
https://en.wikipedia.org/wiki/HKDF
https://docs.aws.amazon.com/kms/latest/developerguide/
https://docs.aws.amazon.com/crypto/latest/userguide/concepts-algorithms.html
https://docs.aws.amazon.com/crypto/latest/userguide/concepts-algorithms.html


AWS Encryption SDK Developer Guide

The AWS Encryption SDK uses envelope encryption. It encrypts your data with a symmetric data 
key. It encrypts the symmetric data key with one or more symmetric or asymmetric wrapping keys. 
It returns an encrypted message that includes the encrypted data and at least one encrypted copy 
of the data key.

Encrypting your data (symmetric encryption)

To encrypt your data, the AWS Encryption SDK uses a symmetric data key and an algorithm 
suite that includes a symmetric encryption algorithm. To decrypt the data, the AWS Encryption 
SDK uses the same data key and the same algorithm suite.

Encrypting your data key (symmetric or asymmetric encryption)

The keyring or master key provider that you supply to an encrypt and decrypt operation 
determines how the symmetric data key is encrypted and decrypted. You can choose a keyring 
or master key provider that uses symmetric encryption, such as a AWS KMS keyring, or one that 
uses asymmetric encryption, such as a raw RSA keyring or JceMasterKey.

Key commitment

The AWS Encryption SDK supports key commitment (sometimes known as robustness), a security 
property that guarantees that each ciphertext can be decrypted only to a single plaintext. To do 
this, key commitment guarantees that only the data key that encrypted your message will be used 
to decrypt it. Encrypting and decrypting with key commitment is an AWS Encryption SDK best 
practice.

Most modern symmetric ciphers (including AES) encrypt a plaintext under a single secret key, such 
as the unique data key that the AWS Encryption SDK uses to encrypt each plaintext message. 
Decrypting this data with the same data key returns a plaintext that is identical to the original. 
Decrypting with a different key will usually fail. However, it's possible to decrypt a ciphertext 
under two different keys. In rare cases, it is feasible to find a key that can decrypt a few bytes of 
ciphertext into a different, but still intelligible, plaintext.

The AWS Encryption SDK always encrypts each plaintext message under one unique data key. It 
might encrypt that data key under multiple wrapping keys (or master keys), but the wrapping 
keys always encrypt the same data key. Nonetheless, a sophisticated, manually crafted encrypted 
message might actually contain different data keys, each encrypted by a different wrapping key. 
For example, if one user decrypts the encrypted message it returns 0x0 (false) while another user 
decrypting the same encrypted message gets 0x1 (true).

Key commitment 14



AWS Encryption SDK Developer Guide

To prevent this scenario, the AWS Encryption SDK supports key commitment when encrypting 
and decrypting. When the AWS Encryption SDK encrypts a message with key commitment, it 
cryptographically binds the unique data key that produced the ciphertext to the key commitment 
string, a non-secret data key identifier. Then it stores key commitment string in the metadata of 
the encrypted message. When it decrypts a message with key commitment, the AWS Encryption 
SDK verifies that the data key is the one and only key for that encrypted message. If data key 
verification fails, the decrypt operation fails.

Support for key commitment is introduced in version 1.7.x, which can decrypt messages with key 
commitment, but won't encrypt with key commitment. You can use this version to fully deploy 
the ability to decrypt ciphertext with key commitment. Version 2.0.x includes full support for 
key commitment. By default, it encrypts and decrypts only with key commitment. This is an ideal 
configuration for applications that don't need to decrypt ciphertext encrypted by earlier versions 
of the AWS Encryption SDK.

Although encrypting and decrypting with key commitment is a best practice, we let you decide 
when it's used, and let you adjust the pace at which you adopt it. Beginning in version 1.7.x, AWS 
Encryption SDK supports a commitment policy that sets the default algorithm suite and limits 
the algorithm suites that may be used. This policy determines whether your data is encrypted and 
decrypted with key commitment.

Key commitment results in a slightly larger (+ 30 bytes) encrypted message and takes more time to 
process. If your application is very sensitive to size or performance, you might choose to opt out of 
key commitment. But do so only if you must.

For more information about migrating to versions 1.7.x and 2.0.x, including their key commitment 
features, see Migrating your AWS Encryption SDK. For technical information about key 
commitment, see the section called “Algorithms reference” and the section called “Message format 
reference”.

Commitment policy

A commitment policy is a configuration setting that determines whether your application encrypts 
and decrypts with key commitment. Encrypting and decrypting with key commitment is an AWS 
Encryption SDK best practice.

Commitment policy has three values.

Commitment policy 15



AWS Encryption SDK Developer Guide

Note

You might have to scroll horizontally or vertically to see the entire table.

Commitment policy values

Value Encrypts with 
key commitmen 
t

Encrypts 
without key 
commitment

Decrypts with 
key commitmen 
t

Decrypts 
without key 
commitment

ForbidEnc 
ryptAllow 
Decrypt

RequireEn 
cryptAllo 
wDecrypt

RequireEn 
cryptRequ 
ireDecrypt

The commitment policy setting is introduced in AWS Encryption SDK version 1.7.x. It's valid in all 
supported programming languages.

• ForbidEncryptAllowDecrypt decrypts with or without key commitment, but it won't 
encrypt with key commitment. This value, introduced in version 1.7.x, is designed to prepare all 
hosts running your application to decrypt with key commitment before they ever encounter a 
ciphertext encrypted with key commitment.

• RequireEncryptAllowDecrypt always encrypts with key commitment. It can decrypt with or 
without key commitment. This value, introduced in version 2.0.x, lets you start encrypting with 
key commitment, but still decrypt legacy ciphertexts without key commitment.

• RequireEncryptRequireDecrypt encrypts and decrypts only with key commitment. 
This value is the default for version 2.0.x. Use this value when you are certain that all of your 
ciphertexts are encrypted with key commitment.

Commitment policy 16



AWS Encryption SDK Developer Guide

The commitment policy setting determines which algorithm suites you can use. Beginning in 
version 1.7.x, the AWS Encryption SDK supports algorithm suites for key commitment; with and 
without signing. If you specify an algorithm suite that conflicts with your commitment policy, the 
AWS Encryption SDK returns an error.

For help setting your commitment policy, see Setting your commitment policy.

Digital signatures

To ensure the integrity of a digital message as it goes between systems, you can apply a digital 
signature to the message. Digital signatures are always asymmetric. You use your private key to 
create the signature, and append it to the original message. Your recipient uses a public key to 
verify that the message has not been modified since you signed it.

The AWS Encryption SDK encrypts your data using an authenticated encryption algorithm, AES-
GCM, and the decryption process verifies the integrity and authenticity of an encrypted message 
without using a digital signature. But because AES-GCM uses symmetric keys, anyone who can 
decrypt the data key used to decrypt the ciphertext could also manually create a new encrypted 
ciphertext, causing a potential security concern. For instance, if you use an AWS KMS key as a 
wrapping key, this means that it is possible for a user with KMS Decrypt permissions to create 
encrypted ciphertexts without calling KMS Encrypt.

To avoid this issue, the AWS Encryption SDK supports adding an Elliptic Curve Digital Signature 
Algorithm (ECDSA) signature to the end of encrypted messages. When a signing algorithm suite 
is used, the AWS Encryption SDK generates a temporary private key and public key pair for each 
encrypted message. The AWS Encryption SDK stores the public key in the encryption context of the 
data key and discards the private key, and no one can create another signature that verifies with 
the public key. Because the algorithm binds the public key to the encrypted data key as additional 
authenticated data in the message header, a user who can only decrypt messages cannot alter the 
public key.

Signature verification adds a significant performance cost on decryption. If the users encrypting 
data and the users decrypting data are equally trusted, consider using an algorithm suite that does 
not include signing.

How the AWS Encryption SDK works

The workflows in this section explain how the AWS Encryption SDK encrypts data and decrypts
encrypted messages. These workflows describes the basic process using the default features. 

Digital signatures 17



AWS Encryption SDK Developer Guide

For details about defining and using custom components, see the GitHub repository for each 
supported language implementation.

The AWS Encryption SDK uses envelope encryption to protect your data. Each message is 
encrypted under a unique data key. Then the data key is encrypted by the wrapping keys you 
specify. To decrypt the encrypted message, the AWS Encryption SDK uses the wrapping keys you 
specify to decrypt at least one encrypted data key. Then it can decrypt the ciphertext and return a 
plaintext message.

Need help with the terminology we use in the AWS Encryption SDK? See the section called 
“Concepts”.

How the AWS Encryption SDK encrypts data

The AWS Encryption SDK provides methods that encrypt strings, byte arrays, and byte streams. For 
code examples, see the Examples topic in each Programming languages section.

1. Create a keyring (or master key provider) that specifies the wrapping keys that protect your data.

2. Pass the keyring and plaintext data to an encryption method. We recommend that you pass in 
an optional, non-secret encryption context.

3. The encryption method asks the keyring for encryption materials. The keyring returns unique 
data encryption keys for the message: one plaintext data key and one copy of that data key 
encrypted by each of the specified wrapping keys.

4. The encryption method uses the plaintext data key to encrypt the data, and then discards the 
plaintext data key. If you provide an encryption context (an AWS Encryption SDK best practice), 
the encryption method cryptographically binds the encryption context to the encrypted data.

5. The encryption method returns an encrypted message that contains the encrypted data, the 
encrypted data keys, and other metadata, including the encryption context, if you used one.

How the AWS Encryption SDK decrypts an encrypted message

The AWS Encryption SDK provides methods that decrypt the encrypted message and return 
plaintext. For code examples, see the Examples topic in each Programming languages section.

The keyring (or master key provider) that decrypts the encrypted message must be compatible 
with the one used to encrypt the message. One of its wrapping keys must be able to decrypt an 
encrypted data key in the encrypted message. For information about compatibility with keyrings 
and master key providers, see the section called “Keyring compatibility”.

How the AWS Encryption SDK encrypts data 18



AWS Encryption SDK Developer Guide

1. Create a keyring or master key provider with wrapping keys that can decrypt your data. You can 
use the same keyring that you provided to the encryption method or a different one.

2. Pass the encrypted message and the keyring to a decryption method.

3. The decryption method asks the keyring or master key provider to decrypt one of the encrypted 
data keys in the encrypted message. It passes in information from the encrypted message, 
including the encrypted data keys.

4. The keyring uses its wrapping keys to decrypt one of the encrypted data keys. If it's successful, 
the response includes the plaintext data key. If none of the wrapping keys specified by the 
keyring or master key provider can decrypt an encrypted data key, the decrypt call fails.

5. The decryption method uses the plaintext data key to decrypt the data, discards the plaintext 
data key, and returns the plaintext data.

Supported algorithm suites in the AWS Encryption SDK

An algorithm suite is a collection of cryptographic algorithms and related values. Cryptographic 
systems use the algorithm implementation to generate the ciphertext message.

The AWS Encryption SDK algorithm suite uses the Advanced Encryption Standard (AES) algorithm 
in Galois/Counter Mode (GCM), known as AES-GCM, to encrypt raw data. The AWS Encryption SDK 
supports 256-bit, 192-bit, and 128-bit encryption keys. The length of the initialization vector (IV) is 
always 12 bytes. The length of the authentication tag is always 16 bytes.

By default, the AWS Encryption SDK uses an algorithm suite with AES-GCM with an HMAC-based 
extract-and-expand key derivation function (HKDF), signing, and a 256-bit encryption key. If the
commitment policy requires key commitment, the AWS Encryption SDK selects an algorithm suite 
that also supports key commitment; otherwise, it selects an algorithm suite with key derivation and 
signing, but not key commitment.

Recommended: AES-GCM with key derivation, signing, and key 
commitment

The AWS Encryption SDK recommends an algorithm suite that derives an AES-GCM encryption key 
by supplying a 256-bit data encryption key to the HMAC-based extract-and-expand key derivation 
function (HKDF). The AWS Encryption SDK adds an Elliptic Curve Digital Signature Algorithm 
(ECDSA) signature. To support key commitment, this algorithm suite also derives a key commitment 
string – a non-secret data-key identifier – that is stored in the metadata of the encrypted message. 

Supported algorithm suites 19

https://en.wikipedia.org/wiki/HKDF


AWS Encryption SDK Developer Guide

This key commitment string is also derived through HKDF using a procedure similar to deriving the 
data encryption key.

AWS Encryption SDK Algorithm Suite

Encryption 
algorithm

Data encryptio 
n key length (in 
bits)

Key derivation 
algorithm

Signature 
algorithm

Key commitmen 
t

AES-GCM 256 HKDF with 
SHA-384

ECDSA with 
P-384 and 
SHA-384

HKDF with 
SHA-512

The HKDF helps you avoid accidental reuse of a data encryption key and reduces the risk of 
overusing a data key.

For signing, this algorithm suite uses ECDSA with a cryptographic hash function algorithm 
(SHA-384). ECDSA is used by default, even when it is not specified by the policy for the underlying 
master key. Message signing verifies the message sender was authorized to encrypt messages and 
provides non-repudiation. It is particularly useful when the authorization policy for a master key 
allows one set of users to encrypt data and a different set of users to decrypt data.

Algorithm suites with key commitment ensure that each ciphertext decrypts to only one plaintext. 
They do this by validating the identity of the data key used as input to the encryption algorithm. 
When encrypting, these algorithm suites derive a key commitment string. Before decrypting, they 
validate that the data key matches the key commitment string. If it does not, the decrypt call fails.

Other supported algorithm suites

The AWS Encryption SDK supports the following alternate algorithm suites for backward 
compatibility. In general, we do not recommend these algorithm suites. However, we recognize 
that signing can hinder performance significantly, so we offer a key committing suite with 
key derivation for those cases. For applications that must make more significant performance 
tradeoffs, we continue to offer suites that lack signing, key commitment, and key derivation.

AES-GCM without key commitment

Algorithm suites without key commitment do not validate the data key before decrypting. 
As a result, these algorithm suites might decrypt a single ciphertext into different plaintext 

Other supported algorithm suites 20



AWS Encryption SDK Developer Guide

messages. However, because algorithm suites with key commitment produce a slightly larger 
(+30 bytes) encrypted message and take longer to process, they might not be the best choice 
for every application.

The AWS Encryption SDK supports an algorithm suite with key derivation, key commitment, 
signing, and one with key derivation and key commitment, but not signing. We do not 
recommend using an algorithm suite without key commitment. If you must, we recommend 
an algorithm suite with key derivation and key commitment, but not signing. However, if your 
application performance profile supports using an algorithm suite, using an algorithm suite 
with key commitment, key derivation, and signing is a best practice.

AES-GCM without signing

Algorithm suites without signing lack the ECDSA signature that provides authenticity and non-
repudiation. Use these suites only when the users who encrypt data and those who decrypt 
data are equally trusted.

When using an algorithm suite without signing, we recommend that you choose one with key 
derivation and key commitment.

AES-GCM without key derivation

Algorithm suites without key derivation use the data encryption key as the AES-GCM encryption 
key, instead of using a key derivation function to derive a unique key. We discourage using this 
suite to generate ciphertext, but the AWS Encryption SDK supports it for compatibility reasons.

For more information about how these suites are represented and used in the library, see the 
section called “Algorithms reference”.

Other supported algorithm suites 21



AWS Encryption SDK Developer Guide

Using the AWS Encryption SDK with AWS KMS

To use the AWS Encryption SDK, you need to configure keyrings or master key providers with 
wrapping keys. If you don't have a key infrastructure, we recommend using AWS Key Management 
Service (AWS KMS). Many of the code examples in the AWS Encryption SDK require an AWS KMS 
key.

To interact with AWS KMS, the AWS Encryption SDK requires the AWS SDK for your preferred 
programming language. The AWS Encryption SDK client library works with the AWS SDKs to 
support master keys stored in AWS KMS.

To prepare to use the AWS Encryption SDK with AWS KMS

1. Create an AWS account. To learn how, see How do I create and activate a new Amazon Web 
Services account? in the AWS Knowledge Center.

2. Create a symmetric encryption AWS KMS key. For help, see Creating Keys in the AWS Key 
Management Service Developer Guide.

Tip

To use the AWS KMS key programmatically, you will need the key ID or Amazon 
Resource Name (ARN) of the AWS KMS key. For help finding the ID or ARN of an 
AWS KMS key, see Finding the Key ID and ARN in the AWS Key Management Service 
Developer Guide.

3. Generate an access key ID and security access key. You can use either the access key ID and 
secret access key for an IAM user or you can use the AWS Security Token Service to create a 
new session with temporary security credentials that include an access key ID, secret access 
key, and session token. As a security best practice, we recommend that you use temporary 
credentials instead of the long-term credentials associated with your IAM user or AWS (root) 
user accounts.

To create an IAM user with an access key, see Creating IAM Users in the IAM User Guide.

To generate temporary security credentials, see Requesting temporary security credentials in 
the IAM User Guide.

4. Set your AWS credentials using the instructions in the AWS SDK for Java, AWS SDK for 
JavaScript, AWS SDK for Python (Boto) or AWS SDK for C++ (for C), and the access key ID and 

22

https://aws.amazon.com/kms/
https://aws.amazon.com/kms/
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#master_keys
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#master_keys
https://aws.amazon.com/premiumsupport/knowledge-center/create-and-activate-aws-account/
https://aws.amazon.com/premiumsupport/knowledge-center/create-and-activate-aws-account/
https://docs.aws.amazon.com/kms/latest/developerguide/create-keys.html
https://docs.aws.amazon.com/kms/latest/developerguide/viewing-keys.html#find-cmk-id-arn
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_create.html#id_users_create_console
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_request.html
https://docs.aws.amazon.com/sdk-for-java/v1/developer-guide/setup-credentials.html
https://docs.aws.amazon.com/sdk-for-javascript/latest/developer-guide/setting-credentials.html
https://docs.aws.amazon.com/sdk-for-javascript/latest/developer-guide/setting-credentials.html
https://boto3.amazonaws.com/v1/documentation/api/latest/guide/configuration.html#guide-configuration
https://docs.aws.amazon.com/sdk-for-cpp/latest/developer-guide/credentials.html


AWS Encryption SDK Developer Guide

secret access key that you generated in step 3. If you generated temporary credentials, you will 
also need to specify the session token.

This procedure allows AWS SDKs to sign requests to AWS for you. Code samples in the AWS 
Encryption SDK that interact with AWS KMS assume that you have completed this step.

5. Download and install the AWS Encryption SDK. To learn how, see the installation instructions 
for the programming language that you want to use.

23



AWS Encryption SDK Developer Guide

Best practices for the AWS Encryption SDK

The AWS Encryption SDK is designed to make it easy for you to protect your data using industry 
standards and best practices. While many best practices are selected for you in default values, 
some practices are optional but recommended whenever it's practical.

Use the latest version

When you start using the AWS Encryption SDK, use the latest version offered in your preferred
programming language. If you've been using the AWS Encryption SDK, upgrade to each latest 
version as soon as possible. This assures that you're using the recommended configuration and 
taking advantage of new security properties to protect your data. For details about supported 
versions, including guidance for migration and deployment, see Support and maintenance and
Versions of the AWS Encryption SDK.

If a new version deprecates elements in your code, replace them as soon as you can. 
Deprecation warnings and code comments typically recommend a good alternative.

To make significant upgrades easier and less prone to error, we occasionally provide a 
temporary or transitional release. Use these releases, and their accompanying documentation, 
to assure that you can upgrade your application without disrupting your production workflow.

Use default values

The AWS Encryption SDK designs best practices into its default values. Whenever possible, use 
them. For cases where the default is impractical, we provide alternatives, such as algorithm 
suites without signing. We also provide opportunities to advanced users for customization, such 
a custom keyrings, master key providers, and cryptographic material managers (CMMs). Use 
these advanced alternatives cautiously and have your choices verified by a security engineer 
whenever possible.

Use an encryption context

To improve the security of your cryptographic operations, include an encryption context with a 
meaningful value in all requests to encrypt data. Using an encryption context is optional, but it 
is a cryptographic best practice that we recommend. An encryption context provides additional 
authenticated data (AAD) for authenticated encryption in the AWS Encryption SDK. Although 
it is not secret, the encryption context can help you to protect the integrity and authenticity of 
your encrypted data.

24

https://aws.amazon.com/blogs/security/how-to-protect-the-integrity-of-your-encrypted-data-by-using-aws-key-management-service-and-encryptioncontext/


AWS Encryption SDK Developer Guide

In the AWS Encryption SDK, you specify an encryption context only when encrypting. When 
decrypting, the AWS Encryption SDK uses the encryption context in the header of the encrypted 
message that the AWS Encryption SDK returns. Before your application returns plaintext data, 
verify that the encryption context that you used to encrypt the message is included in the 
encryption context that was used to decrypt the message. For details, see the examples in your 
programming language.

When you use the command line interface, the AWS Encryption SDK verifies the encryption 
context for you.

Protect your wrapping keys

The AWS Encryption SDK generates a unique data key to encrypt each plaintext message. Then 
it encrypts the data key with wrapping keys that you supply. If your wrapping keys are lost or 
deleted, your encrypted data is unrecoverable. If your keys are not secured, your data might be 
vulnerable.

Use wrapping keys that are protected by a secure key infrastructure, such as AWS Key 
Management Service (AWS KMS). When using raw AES or raw RSA keys, use a source of 
randomness and durable storage that meets your security requirements. Generating and storing 
wrapping keys in a hardware security module (HSM), or a service that provides HSMs, such as 
AWS CloudHSM, is a best practice.

Use the authorization mechanisms of your key infrastructure to limit access to your wrapping 
keys to only the users that require it. Implement best practice principles, such as least privilege. 
When using AWS KMS keys, use key policies and IAM policies that implement best practice 
principles.

Specify your wrapping keys

It's always a best practice to specify your wrapping keys explicitly when decrypting, as well 
as encrypting. When you do, the AWS Encryption SDK uses only the keys that you specify. 
This practice assures that you only use the encryption keys that you intend. For AWS KMS 
wrapping keys, it also improves performance by preventing you from inadvertently using keys 
in a different AWS account or Region, or attempting to decrypt with keys that you don't have 
permission to use.

When encrypting, the keyrings and master key providers that the AWS Encryption SDK supplies 
require that you specify wrapping keys. They use all and only the wrapping keys you specify. 
You are also required to specify wrapping keys when encrypting and decrypting with raw AES 
keyrings, raw RSA keyrings, and JCEMasterKeys.

25

https://docs.aws.amazon.com/kms/latest/developerguide/
https://docs.aws.amazon.com/kms/latest/developerguide/
https://docs.aws.amazon.com/kms/latest/developerguide/iam-policies.html#iam-policies-best-practices
https://docs.aws.amazon.com/kms/latest/developerguide/iam-policies.html#iam-policies-best-practices


AWS Encryption SDK Developer Guide

However, when decrypting with AWS KMS keyrings and master key providers, you are not 
required to specify wrapping keys. The AWS Encryption SDK can get the key identifier from the 
metadata of the encrypted data key. But specifying wrapping keys is a best practice that we 
recommend.

To support this best practice when working with AWS KMS wrapping keys, we recommend the 
following:

• Use AWS KMS keyrings that specify wrapping keys. When encrypting and decrypting, these 
keyrings use only the specified wrapping keys you specify.

• When using AWS KMS master keys and master key providers, use the strict mode constructors 
introduced in version 1.7.x of the AWS Encryption SDK. They create providers that encrypt 
and decrypt only with the wrapping keys you specify. Constructors for master key providers 
that always decrypt with any wrapping key are deprecated in version 1.7.x and deleted in 
version 2.0.x.

When specifying AWS KMS wrapping keys for decrypting is impractical, you can use discovery 
providers. The AWS Encryption SDK in C and JavaScript support AWS KMS discovery keyrings. 
Master key providers with a discovery mode are available for Java and Python in versions 
1.7.x and later. These discovery providers, which are used only for decrypting with AWS 
KMS wrapping keys, explicitly direct the AWS Encryption SDK to use any wrapping key that 
encrypted a data key.

If you must use a discovery provider, use its discovery filter features to limit the wrapping keys 
they use. For example, the AWS KMS regional discovery keyring uses only the wrapping keys in 
a particular AWS Region. You can also configure AWS KMS keyrings and AWS KMS master key 
providers to use only the wrapping keys in particular AWS accounts. Also, as always, use key 
policies and IAM policies to control access to your AWS KMS wrapping keys.

Use digital signatures

It's a best practice to use an algorithm suite with signing. Digital signatures verify the message 
sender was authorized to send the message and protect the integrity of the message. All 
versions of the AWS Encryption SDK use algorithm suites with signing by default.

If your security requirements don't include digital signatures, you can select an algorithm suite 
without digital signatures. However, we recommend using digital signatures, especially when 
one group of users encrypts data and a different set of users decrypts that data.

26



AWS Encryption SDK Developer Guide

Use key commitment

It is a best practice to use the key commitment security feature. By verifying the identity of the 
unique data key that encrypted your data, key commitment prevents you from decrypting any 
ciphertext that might result in more than one plaintext message.

The AWS Encryption SDK provides full support for encrypting and decrypting with key 
commitment beginning in version 2.0.x. By default, all of your messages are encrypted and 
decrypted with key commitment. Version 1.7.x of the AWS Encryption SDK can decrypt 
ciphertexts with key commitment. It is designed to help users of earlier versions deploy version 
2.0.x successfully.

Support for key commitment includes new algorithm suites and a new message format that 
produces a ciphertext only 30 bytes larger than a ciphertext without key commitment. The 
design minimizes its impact on performance so most users can enjoy the benefits of key 
commitment. If your application is very sensitive to size and performance, you might decide to 
use the commitment policy setting to disable key commitment or allow the AWS Encryption 
SDK to decrypt messages without commitment, but do so only if you must.

Limit the number of encrypted data keys

It's a best practice to limit the number of encrypted data keys in messages that you decrypt, 
especially messages from untrusted sources. Decrypting a message with numerous encrypted 
data keys that you can't decrypt can cause extended delays, run up expenses, throttle your 
application and others that share your account, and potentially exhaust your key infrastructure. 
Without limits, an encrypted message can have up to 65,535 (2^16 - 1) encrypted data keys. 
For details, see Limiting encrypted data keys.

For more information about the AWS Encryption SDK security features that underlie these best 
practices, see Improved client-side encryption: Explicit KeyIds and key commitment in the AWS 
Security Blog.

27

https://aws.amazon.com/blogs/security/improved-client-side-encryption-explicit-keyids-and-key-commitment/


AWS Encryption SDK Developer Guide

Configuring the AWS Encryption SDK

The AWS Encryption SDK is designed to be easy to use. Although the AWS Encryption SDK has 
several configuration options, the default values are carefully chosen to be practical and secure for 
most applications. However, you might need to adjust your configuration to improve performance 
or include a custom feature in your design.

When configuring your implementation, review the AWS Encryption SDK best practices and 
implement as many as you can.

Topics

• Selecting a programming language

• Selecting wrapping keys

• Using multi-Region AWS KMS keys

• Choosing an algorithm suite

• Limiting encrypted data keys

• Creating a discovery filter

• Setting a commitment policy

• Working with streaming data

• Caching data keys

Selecting a programming language

The AWS Encryption SDK is available in multiple programming languages. The language 
implementations are designed to be fully interoperable and to offer the same features, although 
they might be implemented in different ways. Typically, you use the library that is compatible 
with your application. However, you might select a programming language for a particular 
implementation. For example, if you prefer to work with keyrings, you might choose the AWS 
Encryption SDK for C or the AWS Encryption SDK for JavaScript.

Selecting wrapping keys

The AWS Encryption SDK generates a unique symmetric data key to encrypt each message. Unless 
you are using data key caching, you don't need to configure, manage, or use the data keys. The 
AWS Encryption SDK does it for you.

Selecting a programming language 28



AWS Encryption SDK Developer Guide

However, you must select one or more wrapping keys to encrypt each data key. The AWS 
Encryption SDK supports AES symmetric keys and RSA asymmetric keys in different sizes. It also 
supports AWS Key Management Service (AWS KMS) symmetric encryption AWS KMS keys. You are 
responsible for the safety and durability of your wrapping keys, so we recommend that you use an 
encryption key in a hardware security module or a key infrastructure service, such as AWS KMS.

To specify your wrapping keys for encryption and decryption, you use a keyring (C and JavaScript) 
or a master key provider (Java, Python, AWS Encryption CLI). You can specify one wrapping key or 
multiple wrapping keys of the same or different types. If you use multiple wrapping keys to wrap 
a data key, each wrapping key will encrypt a copy of the same data key. The encrypted data keys 
(one per wrapping key) are stored with the encrypted data in the encrypted message that the AWS 
Encryption SDK returns. To decrypt the data, the AWS Encryption SDK must first use one of your 
wrapping keys to decrypt an encrypted data key.

To specify an AWS KMS key in a keyring or master key provider, use a supported AWS KMS key 
identifier. For details about the key identifiers for an AWS KMS key, see Key Identifiers in the AWS 
Key Management Service Developer Guide.

• When encrypting with the AWS Encryption SDK for Java, AWS Encryption SDK for JavaScript, 
AWS Encryption SDK for Python, or the AWS Encryption CLI, you can use any valid key identifier 
(key ID, key ARN, alias name, or alias ARN) for a KMS key. When encrypting with the AWS 
Encryption SDK for C, you can only use a key ID or key ARN.

If you specify an alias name or alias ARN for a KMS key when encrypting, the AWS Encryption 
SDK saves the key ARN currently associated with that alias; it does not save the alias. Changes to 
the alias don't affect the KMS key used to decrypt your data keys.

• When decrypting in strict mode (where you specify particular wrapping keys), you must use a key 
ARN to identify AWS KMS keys. This requirement applies to all language implementations of the 
AWS Encryption SDK.

When you encrypt with an AWS KMS keyring, the AWS Encryption SDK stores the key ARN of 
the AWS KMS key in the metadata of the encrypted data key. When decrypting in strict mode, 
the AWS Encryption SDK verifies that the same key ARN appears in the keyring (or master key 
provider) before it attempts to use the wrapping key to decrypt the encrypted data key. If you 
use a different key identifier, the AWS Encryption SDK will not recognize or use the AWS KMS 
key, even if the identifiers refer to the same key.

Selecting wrapping keys 29

https://docs.aws.amazon.com/kms/latest/developerguide/
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id


AWS Encryption SDK Developer Guide

To specify a raw AES key or a raw RSA key pair as a wrapping key in a keyring, you must specify 
a namespace and a name. In a master key provider, the Provider ID is the equivalent of the 
namespace and the Key ID is the equivalent of the name. When decrypting, you must use the 
exact same namespace and name for each raw wrapping key as you used when encrypting. If 
you use a different namespace or name, the AWS Encryption SDK will not recognize or use the 
wrapping key, even if the key material is the same.

Using multi-Region AWS KMS keys

You can use AWS Key Management Service (AWS KMS) multi-Region keys as wrapping keys in the 
AWS Encryption SDK. If you encrypt with a multi-Region key in one AWS Region, you can decrypt 
using a related multi-Region key in a different AWS Region. Support for multi-Region keys is 
introduced in version 2.3.x of the AWS Encryption SDK and version 3.0.x of the AWS Encryption CLI.

AWS KMS multi-Region keys are a set of AWS KMS keys in different AWS Regions that have the 
same key material and key ID. You can use these related keys as though they were the same key 
in different Regions. Multi-Region keys support common disaster recovery and backup scenarios 
that require encrypting in one Region and decrypting in a different Region without making a cross-
Region call to AWS KMS. For information about multi-Region keys, see Using multi-Region keys in 
the AWS Key Management Service Developer Guide.

To support multi-Region keys, the AWS Encryption SDK includes AWS KMS multi-Region-aware 
keyrings and master key providers. The new multi-Region-aware symbol in each programming 
language supports both single-Region and multi-Region keys.

• For single-Region keys, the multi-Region-aware symbol behaves just like the single-Region AWS 
KMS keyring and master key provider. It attempts to decrypt ciphertext only with the single-
Region key that encrypted the data.

• For multi-Region keys, the multi-Region-aware symbol attempts to decrypt ciphertext with the 
same multi-Region key that encrypted the data or with the related multi-Region replica key in 
the Region you specify.

In the multi-Region-aware keyrings and master key providers that take more than one KMS key, 
you can specify multiple single-Region and multi-Region keys. However, you can specify only one 
key from each set of related multi-Region replica keys. If you specify more than one key identifier 
with the same key ID, the constructor call fails.

Using multi-Region AWS KMS keys 30

https://docs.aws.amazon.com/kms/latest/developerguide/multi-region-keys-overview.html
https://docs.aws.amazon.com/kms/latest/developerguide/multi-region-keys-overview.html#mrk-replica-key


AWS Encryption SDK Developer Guide

You can also use a multi-Region key with the standard, single-Region AWS KMS keyrings and 
master key providers. However, you must use the same multi-Region key in the same Region to 
encrypt and decrypt. The single-Region keyrings and master key providers attempt to decrypt 
ciphertext only with the keys that encrypted the data.

The following examples show how to encrypt and decrypt data using multi-Region keys and the 
new multi-Region-aware keyrings and master key providers. These examples encrypt data in the
us-east-1 Region and decrypt the data in the us-west-2 Region using related multi-Region 
replica keys in each Region. Before running these examples, replace the example multi-Region key 
ARN with a valid value from your AWS account.

C

To encrypt with a multi-Region key, use the
Aws::Cryptosdk::KmsMrkAwareSymmetricKeyring::Builder() method to instantiate 
the keyring. Specify a multi-Region key.

This simple example does not include an encryption context. For an example that uses an 
encryption context in C, see Encrypting and decrypting strings.

For a complete example, see kms_multi_region_keys.cpp in the AWS Encryption SDK for C 
repository on GitHub.

/* Encrypt with a multi-Region KMS key in us-east-1 */

/* Load error strings for debugging */
aws_cryptosdk_load_error_strings();

/* Initialize a multi-Region keyring */
const char *mrk_us_east_1 = "arn:aws:kms:us-east-1:111122223333:key/
mrk-1234abcd12ab34cd56ef1234567890ab";    

struct aws_cryptosdk_keyring *mrk_keyring =  
    Aws::Cryptosdk::KmsMrkAwareSymmetricKeyring::Builder().Build(mrk_us_east_1);

/* Create a session; release the keyring */
struct aws_cryptosdk_session *session = 
    aws_cryptosdk_session_new_from_keyring_2(aws_default_allocator(), 
 AWS_CRYPTOSDK_ENCRYPT, mrk_keyring);

aws_cryptosdk_keyring_release(mrk_keyring);

Using multi-Region AWS KMS keys 31

https://github.com/aws/aws-encryption-sdk-c/tree/master/examples/kms_multi_region_keys.cpp


AWS Encryption SDK Developer Guide

/* Encrypt the data 
 *   aws_cryptosdk_session_process_full is designed for non-streaming data 
 */
aws_cryptosdk_session_process_full( 
    session, ciphertext, ciphertext_buf_sz, &ciphertext_len, plaintext, 
 plaintext_len));

/* Clean up the session */
aws_cryptosdk_session_destroy(session);

C# / .NET

To encrypt with a multi-Region key in the US East (N. Virginia) (us-east-1) Region, instantiate a
CreateAwsKmsMrkKeyringInput object with a key identifier for the multi-Region key and an 
AWS KMS client for the specified Region. Then use the CreateAwsKmsMrkKeyring() method 
to create the keyring.

The CreateAwsKmsMrkKeyring() method creates a keyring with exactly one multi-
Region key. To encrypt with multiple wrapping keys, including a multi-Region key, use the
CreateAwsKmsMrkMultiKeyring() method.

For a complete example, see AwsKmsMrkKeyringExample.cs in the AWS Encryption SDK 
for .NET repository on GitHub.

//Encrypt with a multi-Region KMS key in us-east-1 Region

// Instantiate the AWS Encryption SDK and material providers
var encryptionSdk = AwsEncryptionSdkFactory.CreateDefaultAwsEncryptionSdk();
var materialProviders = 
    
 AwsCryptographicMaterialProvidersFactory.CreateDefaultAwsCryptographicMaterialProviders();

// Multi-Region keys have a distinctive key ID that begins with 'mrk'
// Specify a multi-Region key in us-east-1
string mrkUSEast1 = "arn:aws:kms:us-east-1:111122223333:key/
mrk-1234abcd12ab34cd56ef1234567890ab";

// Create the keyring
// You can specify the Region or get the Region from the key ARN
var createMrkEncryptKeyringInput = new CreateAwsKmsMrkKeyringInput
{ 
    KmsClient = new AmazonKeyManagementServiceClient(RegionEndpoint.USEast1), 

Using multi-Region AWS KMS keys 32

https://github.com/aws/aws-encryption-sdk-dafny/tree/mainline/AwsEncryptionSDK/runtimes/net/Examples/Keyring/AwsKmsMrkKeyringExample.cs


AWS Encryption SDK Developer Guide

    KmsKeyId = mrkUSEast1
};
var mrkEncryptKeyring = 
 materialProviders.CreateAwsKmsMrkKeyring(createMrkEncryptKeyringInput);

// Define the encryption context
var encryptionContext = new Dictionary<string, string>()
{ 
    {"purpose", "test"}
};

// Encrypt your plaintext data.
var encryptInput = new EncryptInput
{ 
    Plaintext = plaintext, 
    Keyring = mrkEncryptKeyring, 
    EncryptionContext = encryptionContext
};
var encryptOutput = encryptionSdk.Encrypt(encryptInput);

AWS Encryption CLI

This example encrypts the hello.txt file under a multi-Region key in the us-east-1 Region. 
Because the example specifies a key ARN with a Region element, this example doesn't use the
region attribute of the --wrapping-keys parameter.

When the key ID of the wrapping key doesn't specify a Region, you can use the region attribute 
of the --wrapping-keys to specify the region, such as --wrapping-keys key=$keyID 
region=us-east-1.

# Encrypt with a multi-Region KMS key in us-east-1 Region

# To run this example, replace the fictitious key ARN with a valid value.
$ mrkUSEast1=arn:aws:kms:us-east-1:111122223333:key/
mrk-1234abcd12ab34cd56ef1234567890ab

$ aws-encryption-cli --encrypt \ 
                     --input hello.txt \ 
                     --wrapping-keys key=$mrkUSEast1 \ 
                     --metadata-output ~/metadata \ 
                     --encryption-context purpose=test \ 
                     --output .

Using multi-Region AWS KMS keys 33



AWS Encryption SDK Developer Guide

Java

To encrypt with a multi-Region key, instantiate an AwsKmsMrkAwareMasterKeyProvider and 
specify a multi-Region key.

For a complete example, see BasicMultiRegionKeyEncryptionExample.java in the AWS 
Encryption SDK for Java repository on GitHub.

//Encrypt with a multi-Region KMS key in us-east-1 Region

// Instantiate the client
final AwsCrypto crypto = AwsCrypto.builder() 
    .withCommitmentPolicy(CommitmentPolicy.RequireEncryptRequireDecrypt) 
    .build();

// Multi-Region keys have a distinctive key ID that begins with 'mrk'
// Specify a multi-Region key in us-east-1
final String mrkUSEast1 = "arn:aws:kms:us-east-1:111122223333:key/
mrk-1234abcd12ab34cd56ef1234567890ab";

// Instantiate an AWS KMS master key provider in strict mode for multi-Region keys
// Configure it to encrypt with the multi-Region key in us-east-1
final AwsKmsMrkAwareMasterKeyProvider kmsMrkProvider = 
 AwsKmsMrkAwareMasterKeyProvider 
    .builder() 
    .buildStrict(mrkUSEast1);

// Create an encryption context
final Map<String, String> encryptionContext = Collections.singletonMap("Purpose", 
 "Test");

// Encrypt your plaintext data
final CryptoResult<byte[], AwsKmsMrkAwareMasterKey> encryptResult = 
 crypto.encryptData( 
    kmsMrkProvider, 
    encryptionContext, 
    sourcePlaintext);
byte[] ciphertext = encryptResult.getResult();

Using multi-Region AWS KMS keys 34

https://github.com/aws/aws-encryption-sdk-java/blob/master/src/examples/java/com/amazonaws/crypto/examples/v2/BasicMultiRegionKeyEncryptionExample.java


AWS Encryption SDK Developer Guide

JavaScript Browser

To encrypt with a multi-Region key, use the
buildAwsKmsMrkAwareStrictMultiKeyringBrowser() method to create the keyring and 
specify a multi-Region key.

For a complete example, see kms_multi_region_simple.ts in the AWS Encryption SDK for 
JavaScript repository on GitHub.

/* Encrypt with a multi-Region KMS key in us-east-1 Region */

import { 
  buildAwsKmsMrkAwareStrictMultiKeyringBrowser, 
  buildClient, 
  CommitmentPolicy, 
  KMS,
} from '@aws-crypto/client-browser'

/* Instantiate an AWS Encryption SDK client */
const { encrypt } = buildClient( 
  CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT
)

declare const credentials: { 
  accessKeyId: string 
  secretAccessKey: string 
  sessionToken: string
}

/* Instantiate an AWS KMS client  
 * The AWS Encryption SDK for JavaScript gets the Region from the key ARN 
 */
const clientProvider = (region: string) => new KMS({ region, credentials })

/* Specify a multi-Region key in us-east-1 */
const multiRegionUsEastKey = 
    'arn:aws:kms:us-east-1:111122223333:key/mrk-1234abcd12ab34cd56ef1234567890ab'

/* Instantiate the keyring */
const encryptKeyring = buildAwsKmsMrkAwareStrictMultiKeyringBrowser({ 
    generatorKeyId: multiRegionUsEastKey, 

Using multi-Region AWS KMS keys 35

https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-browser/src/kms_multi_region_simple.ts


AWS Encryption SDK Developer Guide

    clientProvider, 
  })

/* Set the encryption context */
const context = { 
    purpose: 'test', 
  }

/* Test data to encrypt */
const cleartext = new Uint8Array([1, 2, 3, 4, 5])

/* Encrypt the data */
const { result } = await encrypt(encryptKeyring, cleartext, { 
    encryptionContext: context, 
  })

JavaScript Node.js

To encrypt with a multi-Region key, use the
buildAwsKmsMrkAwareStrictMultiKeyringNode() method to create the keyring and 
specify a multi-Region key.

For a complete example, see kms_multi_region_simple.ts in the AWS Encryption SDK for 
JavaScript repository on GitHub.

//Encrypt with a multi-Region KMS key in us-east-1 Region

import { buildClient } from '@aws-crypto/client-node'

/* Instantiate the AWS Encryption SDK client
const { encrypt } = buildClient( 
  CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT
)

/* Test string to encrypt */
const cleartext = 'asdf'

/* Multi-Region keys have a distinctive key ID that begins with 'mrk' 
 * Specify a multi-Region key in us-east-1 
 */
const multiRegionUsEastKey = 
    'arn:aws:kms:us-east-1:111122223333:key/mrk-1234abcd12ab34cd56ef1234567890ab'

Using multi-Region AWS KMS keys 36

https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-node/src/kms_multi_region_simple.ts


AWS Encryption SDK Developer Guide

/* Create an AWS KMS keyring */
const mrkEncryptKeyring = buildAwsKmsMrkAwareStrictMultiKeyringNode({ 
    generatorKeyId: multiRegionUsEastKey, 
  })

/* Specify an encryption context */
const context = { 
    purpose: 'test', 
  }

/* Create an encryption keyring */
const { result } = await encrypt(mrkEncryptKeyring, cleartext, { 
    encryptionContext: context, 
  })

Python

To encrypt with an AWS KMS multi-Region key, use the
MRKAwareStrictAwsKmsMasterKeyProvider() method and specify a multi-Region key.

For a complete example, see mrk_aware_kms_provider.py in the AWS Encryption SDK for 
Python repository on GitHub.

* Encrypt with a multi-Region KMS key in us-east-1 Region

# Instantiate the client
client = 
 aws_encryption_sdk.EncryptionSDKClient(commitment_policy=CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT)

# Specify a multi-Region key in us-east-1
mrk_us_east_1 = "arn:aws:kms:us-east-1:111122223333:key/
mrk-1234abcd12ab34cd56ef1234567890ab"

# Use the multi-Region method to create the master key provider
# in strict mode
strict_mrk_key_provider = MRKAwareStrictAwsKmsMasterKeyProvider( 
        key_ids=[mrk_us_east_1]
)

# Set the encryption context
encryption_context = { 
        "purpose": "test" 

Using multi-Region AWS KMS keys 37

https://github.com/aws/aws-encryption-sdk-python/blob/master/examples/src/mrk_aware_kms_provider.py


AWS Encryption SDK Developer Guide

    }

# Encrypt your plaintext data
ciphertext, encrypt_header = client.encrypt( 
        source=source_plaintext, 
        encryption_context=encryption_context, 
        key_provider=strict_mrk_key_provider
)

Next, move your ciphertext to the us-west-2 Region. You don't need to re-encrypt the ciphertext.

To decrypt the ciphertext in strict mode in the us-west-2 Region, instantiate the multi-Region-
aware symbol with the key ARN of the related multi-Region key in the us-west-2 Region. If you 
specify the key ARN of a related multi-Region key in a different Region (including us-east-1, 
where it was encrypted), the multi-Region-aware symbol will make a cross-Region call for that AWS 
KMS key.

When decrypting in strict mode, the multi-Region-aware symbol requires a key ARN. It accepts only 
one key ARN from each set of related multi-Region keys.

Before running these examples, replace the example multi-Region key ARN with a valid value from 
your AWS account.

C

To decrypt in strict mode with a multi-Region key, use the
Aws::Cryptosdk::KmsMrkAwareSymmetricKeyring::Builder() method to instantiate 
the keyring. Specify the related multi-Region key in the local (us-west-2) Region.

For a complete example, see kms_multi_region_keys.cpp in the AWS Encryption SDK for C 
repository on GitHub.

/* Decrypt with a related multi-Region KMS key in us-west-2 Region */

/* Load error strings for debugging */
aws_cryptosdk_load_error_strings();

/* Initialize a multi-Region keyring */
const char *mrk_us_west_2 = "arn:aws:kms:us-west-2:111122223333:key/
mrk-1234abcd12ab34cd56ef1234567890ab";     

Using multi-Region AWS KMS keys 38

https://github.com/aws/aws-encryption-sdk-c/tree/master/examples/kms_multi_region_keys.cpp


AWS Encryption SDK Developer Guide

struct aws_cryptosdk_keyring *mrk_keyring =  
    Aws::Cryptosdk::KmsMrkAwareSymmetricKeyring::Builder().Build(mrk_us_west_2);

/* Create a session; release the keyring */
struct aws_cryptosdk_session *session = 
    aws_cryptosdk_session_new_from_keyring_2(aws_default_allocator(), 
 AWS_CRYPTOSDK_ENCRYPT, mrk_keyring);

aws_cryptosdk_session_set_commitment_policy(session, 
    COMMITMENT_POLICY_REQUIRE_ENCRYPT_REQUIRE_DECRYPT);

aws_cryptosdk_keyring_release(mrk_keyring);

/* Decrypt the ciphertext  
 *   aws_cryptosdk_session_process_full is designed for non-streaming data 
 */
aws_cryptosdk_session_process_full( 
    session, plaintext, plaintext_buf_sz, &plaintext_len, ciphertext, 
 ciphertext_len));

/* Clean up the session */
aws_cryptosdk_session_destroy(session);

C# / .NET

To decrypt in strict mode with a single multi-Region key, use the same constructors and 
methods that you used to assemble the input and create the keyring for encrypting. Instantiate 
a CreateAwsKmsMrkKeyringInput object with the key ARN of a related multi-Region 
key and an AWS KMS client for the US West (Oregon) (us-west-2) Region. Then use the
CreateAwsKmsMrkKeyring() method to create a multi-Region keyring with one multi-Region 
KMS key.

For a complete example, see AwsKmsMrkKeyringExample.cs in the AWS Encryption SDK 
for .NET repository on GitHub.

// Decrypt with a related multi-Region KMS key in us-west-2 Region

// Instantiate the AWS Encryption SDK and material providers
var encryptionSdk = AwsEncryptionSdkFactory.CreateDefaultAwsEncryptionSdk();
var materialProviders = 
    
 AwsCryptographicMaterialProvidersFactory.CreateDefaultAwsCryptographicMaterialProviders();

Using multi-Region AWS KMS keys 39

https://github.com/aws/aws-encryption-sdk-dafny/tree/mainline/AwsEncryptionSDK/runtimes/net/Examples/Keyring/AwsKmsMrkKeyringExample.cs


AWS Encryption SDK Developer Guide

// Specify the key ARN of the multi-Region key in us-west-2
string mrkUSWest2 = "arn:aws:kms:us-west-2:111122223333:key/
mrk-1234abcd12ab34cd56ef1234567890ab";

// Instantiate the keyring input
// You can specify the Region or get the Region from the key ARN
var createMrkDecryptKeyringInput = new CreateAwsKmsMrkKeyringInput
{ 
    KmsClient = new AmazonKeyManagementServiceClient(RegionEndpoint.USWest2), 
    KmsKeyId = mrkUSWest2
};

// Create the multi-Region keyring         
var mrkDecryptKeyring = 
 materialProviders.CreateAwsKmsMrkKeyring(createMrkDecryptKeyringInput);

// Decrypt the ciphertext
var decryptInput = new DecryptInput
{ 
    Ciphertext = ciphertext, 
    Keyring = mrkDecryptKeyring
};
var decryptOutput = encryptionSdk.Decrypt(decryptInput);

AWS Encryption CLI

To decrypt with the related multi-Region key in the us-west-2 Region, use the key attribute of 
the --wrapping-keys parameter to specify its key ARN.

# Decrypt with a related multi-Region KMS key in us-west-2 Region

# To run this example, replace the fictitious key ARN with a valid value.
$ mrkUSWest2=arn:aws:kms:us-west-2:111122223333:key/
mrk-1234abcd12ab34cd56ef1234567890ab

$ aws-encryption-cli --decrypt \ 
                     --input hello.txt.encrypted \ 
                     --wrapping-keys key=$mrkUSWest2 \ 
                     --commitment-policy require-encrypt-require-decrypt \ 
                     --encryption-context purpose=test \ 
                     --metadata-output ~/metadata \ 
                     --max-encrypted-data-keys 1 \ 

Using multi-Region AWS KMS keys 40



AWS Encryption SDK Developer Guide

                     --buffer \ 
                     --output .

Java

To decrypt in strict mode, instantiate an AwsKmsMrkAwareMasterKeyProvider and specify 
the related multi-Region key in the local (us-west-2) Region.

For a complete example, see BasicMultiRegionKeyEncryptionExample.java in the AWS 
Encryption SDK for Java repository on GitHub.

// Decrypt with a related multi-Region KMS key in us-west-2 Region

// Instantiate the client
final AwsCrypto crypto = AwsCrypto.builder() 
    .withCommitmentPolicy(CommitmentPolicy.RequireEncryptRequireDecrypt) 
    .build();

// Related multi-Region keys have the same key ID. Their key ARNs differs only in 
 the Region field.
String mrkUSWest2 = "arn:aws:kms:us-west-2:111122223333:key/
mrk-1234abcd12ab34cd56ef1234567890ab";

// Use the multi-Region method to create the master key provider
// in strict mode
AwsKmsMrkAwareMasterKeyProvider kmsMrkProvider = 
 AwsKmsMrkAwareMasterKeyProvider.builder() 
    .buildStrict(mrkUSWest2);

// Decrypt your ciphertext
CryptoResult<byte[], AwsKmsMrkAwareMasterKey> decryptResult = crypto.decryptData( 
        kmsMrkProvider, 
        ciphertext);
byte[] decrypted = decryptResult.getResult();

JavaScript Browser

To decrypt in strict mode, use the buildAwsKmsMrkAwareStrictMultiKeyringBrowser()
method to create the keyring and specify the related multi-Region key in the local (us-west-2) 
Region.

For a complete example, see kms_multi_region_simple.ts in the AWS Encryption SDK for 
JavaScript repository on GitHub.

Using multi-Region AWS KMS keys 41

https://github.com/aws/aws-encryption-sdk-java/blob/master/src/examples/java/com/amazonaws/crypto/examples/v2/BasicMultiRegionKeyEncryptionExample.java
https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-browser/src/kms_multi_region_simple.ts


AWS Encryption SDK Developer Guide

/* Decrypt with a related multi-Region KMS key in us-west-2 Region */

import { 
  buildAwsKmsMrkAwareStrictMultiKeyringBrowser, 
  buildClient, 
  CommitmentPolicy, 
  KMS,
} from '@aws-crypto/client-browser'

/* Instantiate an AWS Encryption SDK client */
const { decrypt } = buildClient( 
  CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT
)

declare const credentials: { 
  accessKeyId: string 
  secretAccessKey: string 
  sessionToken: string
}

/* Instantiate an AWS KMS client  
 * The AWS Encryption SDK for JavaScript gets the Region from the key ARN 
 */
const clientProvider = (region: string) => new KMS({ region, credentials })

/* Specify a multi-Region key in us-west-2 */
const multiRegionUsWestKey = 
    'arn:aws:kms:us-west-2:111122223333:key/mrk-1234abcd12ab34cd56ef1234567890ab'

/* Instantiate the keyring */
const mrkDecryptKeyring = buildAwsKmsMrkAwareStrictMultiKeyringBrowser({ 
    generatorKeyId: multiRegionUsWestKey, 
    clientProvider, 
  })

/* Decrypt the data */
const { plaintext, messageHeader } = await decrypt(mrkDecryptKeyring, result)

Using multi-Region AWS KMS keys 42



AWS Encryption SDK Developer Guide

JavaScript Node.js

To decrypt in strict mode, use the buildAwsKmsMrkAwareStrictMultiKeyringNode()
method to create the keyring and specify the related multi-Region key in the local (us-west-2) 
Region.

For a complete example, see kms_multi_region_simple.ts in the AWS Encryption SDK for 
JavaScript repository on GitHub.

/* Decrypt with a related multi-Region KMS key in us-west-2 Region */

import { buildClient } from '@aws-crypto/client-node'

/* Instantiate the client
const { decrypt } = buildClient( 
  CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT
)

/* Multi-Region keys have a distinctive key ID that begins with 'mrk' 
 * Specify a multi-Region key in us-west-2 
 */
const multiRegionUsWestKey = 
    'arn:aws:kms:us-west-2:111122223333:key/mrk-1234abcd12ab34cd56ef1234567890ab'

/* Create an AWS KMS keyring */
const mrkDecryptKeyring = buildAwsKmsMrkAwareStrictMultiKeyringNode({ 
    generatorKeyId: multiRegionUsWestKey, 
  })

/* Decrypt your ciphertext */
const { plaintext, messageHeader } = await decrypt(decryptKeyring, result)

Python

To decrypt in strict mode, use the MRKAwareStrictAwsKmsMasterKeyProvider() method 
to create the master key provider. Specify the related multi-Region key in the local (us-west-2) 
Region.

For a complete example, see mrk_aware_kms_provider.py in the AWS Encryption SDK for 
Python repository on GitHub.

# Decrypt with a related multi-Region KMS key in us-west-2 Region

Using multi-Region AWS KMS keys 43

https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-node/src/kms_multi_region_simple.ts
https://github.com/aws/aws-encryption-sdk-python/blob/master/examples/src/mrk_aware_kms_provider.py


AWS Encryption SDK Developer Guide

# Instantiate the client
client = 
 aws_encryption_sdk.EncryptionSDKClient(commitment_policy=CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT)

# Related multi-Region keys have the same key ID. Their key ARNs differs only in the 
 Region field
mrk_us_west_2 = "arn:aws:kms:us-west-2:111122223333:key/
mrk-1234abcd12ab34cd56ef1234567890ab"

# Use the multi-Region method to create the master key provider
# in strict mode
strict_mrk_key_provider = MRKAwareStrictAwsKmsMasterKeyProvider( 
        key_ids=[mrk_us_west_2]
)

# Decrypt your ciphertext
plaintext, _ = client.decrypt( 
        source=ciphertext,  
        key_provider=strict_mrk_key_provider
)

You can also decrypt in discovery mode with AWS KMS multi-Region keys. When decrypting in 
discovery mode, you don't specify any AWS KMS keys. (For information about single-Region AWS 
KMS discovery keyrings, see Using an AWS KMS discovery keyring.)

If you encrypted with a multi-Region key, the multi-Region-aware symbol in discovery mode will 
try to decrypt by using a related multi-Region key in the local Region. If none exists; the call fails. 
In discovery mode, the AWS Encryption SDK will not attempt a cross-Region call for the multi-
Region key used for encryption.

Note

If you use a multi-Region-aware symbol in discovery mode to encrypt data, the encrypt 
operation fails.

The following example shows how to decrypt with the multi-Region-aware symbol in discovery 
mode. Because you don't specify an AWS KMS key, the AWS Encryption SDK must get the Region 
from a different source. When possible, specify the local Region explicitly. Otherwise, the AWS 

Using multi-Region AWS KMS keys 44



AWS Encryption SDK Developer Guide

Encryption SDK gets the local Region from the Region configured in the AWS SDK for your 
programming language.

Before running these examples, replace the example account ID and multi-Region key ARN with 
valid values from your AWS account.

C

To decrypt in discovery mode with a multi-Region key, use the
Aws::Cryptosdk::KmsMrkAwareSymmetricKeyring::Builder() method to build 
the keyring, and the Aws::Cryptosdk::KmsKeyring::DiscoveryFilter::Builder()
method to build the discovery filter. To specify the local Region, define a
ClientConfiguration and specify it in the AWS KMS client.

For a complete example, see kms_multi_region_keys.cpp in the AWS Encryption SDK for C 
repository on GitHub.

/* Decrypt in discovery mode with a multi-Region KMS key */

/* Load error strings for debugging */
aws_cryptosdk_load_error_strings();

/* Construct a discovery filter for the account and partition. The 
 *  filter is optional, but it's a best practice that we recommend. 
 */
const char *account_id = "111122223333";
const char *partition = "aws";
const std::shared_ptr<Aws::Cryptosdk::KmsKeyring::DiscoveryFilter> discovery_filter 
 = 
    
 Aws::Cryptosdk::KmsKeyring::DiscoveryFilter::Builder(partition).AddAccount(account_id).Build();

/* Create an AWS KMS client in the desired region. */
const char *region = "us-west-2";

Aws::Client::ClientConfiguration client_config;
client_config.region = region;
const std::shared_ptr<Aws::KMS::KMSClient> kms_client = 
    Aws::MakeShared<Aws::KMS::KMSClient>("AWS_SAMPLE_CODE", client_config);

struct aws_cryptosdk_keyring *mrk_keyring =  
    Aws::Cryptosdk::KmsMrkAwareSymmetricKeyring::Builder() 
        .WithKmsClient(kms_client) 

Using multi-Region AWS KMS keys 45

https://github.com/aws/aws-encryption-sdk-c/tree/master/examples/kms_multi_region_keys.cpp


AWS Encryption SDK Developer Guide

        .BuildDiscovery(region, discovery_filter);

/* Create a session; release the keyring */
struct aws_cryptosdk_session *session = 
    aws_cryptosdk_session_new_from_keyring_2(aws_default_allocator(), 
 AWS_CRYPTOSDK_DECRYPT, mrk_keyring);

aws_cryptosdk_keyring_release(mrk_keyring);
commitment_policy=CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT
/* Decrypt the ciphertext  
 *   aws_cryptosdk_session_process_full is designed for non-streaming data 
 */
aws_cryptosdk_session_process_full( 
    session, plaintext, plaintext_buf_sz, &plaintext_len, ciphertext, 
 ciphertext_len));

/* Clean up the session */
aws_cryptosdk_session_destroy(session);

C# / .NET

To create a multi-Region-aware discovery keyring in the AWS Encryption SDK 
for .NET, instantiate a CreateAwsKmsMrkDiscoveryKeyringInput object that 
takes an AWS KMS client for a particular AWS Region, and an optional discovery 
filter that limits KMS keys to a particular AWS partition and account. Then call the
CreateAwsKmsMrkDiscoveryKeyring() method with the input object. For a complete 
example, see AwsKmsMrkDiscoveryKeyringExample.cs in the AWS Encryption SDK for .NET 
repository on GitHub.

To create a multi-Region-aware discovery keyring for more than one AWS Region, use the
CreateAwsKmsMrkDiscoveryMultiKeyring() method to create a multi-keyring, or use
CreateAwsKmsMrkDiscoveryKeyring() to create several multi-Region-aware discovery 
keyrings and then use the CreateMultiKeyring() method to combine them in a multi-
keyring.

For an example, see AwsKmsMrkDiscoveryMultiKeyringExample.cs.

// Decrypt in discovery mode with a multi-Region KMS key

// Instantiate the AWS Encryption SDK and material providers
var encryptionSdk = AwsEncryptionSdkFactory.CreateDefaultAwsEncryptionSdk();
var materialProviders = 

Using multi-Region AWS KMS keys 46

https://github.com/aws/aws-encryption-sdk-dafny/tree/mainline/AwsEncryptionSDK/runtimes/net/Examples/Keyring/AwsKmsMrkDiscoveryKeyringExample.cs
https://github.com/aws/aws-encryption-sdk-dafny/tree/mainline/AwsEncryptionSDK/runtimes/net/Examples/Keyring/AwsKmsMrkDiscoveryMultiKeyringExample.cs


AWS Encryption SDK Developer Guide

   
 AwsCryptographicMaterialProvidersFactory.CreateDefaultAwsCryptographicMaterialProviders();

List<string> account = new List<string> { "111122223333" };

// Instantiate the discovery filter
DiscoveryFilter mrkDiscoveryFilter = new DiscoveryFilter()
{ 
    AccountIds = account, 
    Partition = "aws"
}

// Create the keyring
var createMrkDiscoveryKeyringInput = new CreateAwsKmsMrkDiscoveryKeyringInput
{ 
    KmsClient = new AmazonKeyManagementServiceClient(RegionEndpoint.USWest2), 
    DiscoveryFilter = mrkDiscoveryFilter
};
var mrkDiscoveryKeyring = 
 materialProviders.CreateAwsKmsMrkDiscoveryKeyring(createMrkDiscoveryKeyringInput);

// Decrypt the ciphertext
var decryptInput = new DecryptInput
{ 
    Ciphertext = ciphertext, 
    Keyring = mrkDiscoveryKeyring
};
var decryptOutput = encryptionSdk.Decrypt(decryptInput);

AWS Encryption CLI

To decrypt in discovery mode, use the discovery attribute of the --wrapping-keys parameter. 
The discovery-account and discovery-partition attributes create a discovery filter that is 
optional, but recommended.

To specify the Region, this command includes the region attribute of the --wrapping-keys
parameter.

# Decrypt in discovery mode with a multi-Region KMS key

$ aws-encryption-cli --decrypt \ 
                     --input hello.txt.encrypted \ 

Using multi-Region AWS KMS keys 47



AWS Encryption SDK Developer Guide

                     --wrapping-keys discovery=true \  
                                     discovery-account=111122223333 \ 
                                     discovery-partition=aws \ 
                                      region=us-west-2 \ 
                     --encryption-context purpose=test \ 
                     --metadata-output ~/metadata \ 
                     --max-encrypted-data-keys 1 \ 
                     --buffer \ 
                     --output .

Java

To specify the local Region, use the builder().withDiscoveryMrkRegion parameter. 
Otherwise, the AWS Encryption SDK gets the local Region from the Region configured in the
AWS SDK for Java.

For a complete example, see DiscoveryMultiRegionDecryptionExample.java in the AWS 
Encryption SDK for Java repository on GitHub.

// Decrypt in discovery mode with a multi-Region KMS key

// Instantiate the client
final AwsCrypto crypto = AwsCrypto.builder() 
    .withCommitmentPolicy(CommitmentPolicy.RequireEncryptRequireDecrypt) 
    .build(); 
                 
DiscoveryFilter discoveryFilter = new DiscoveryFilter("aws", 111122223333);

AwsKmsMrkAwareMasterKeyProvider mrkDiscoveryProvider = 
 AwsKmsMrkAwareMasterKeyProvider 
    .builder() 
    .withDiscoveryMrkRegion(Region.US_WEST_2) 
    .buildDiscovery(discoveryFilter);

// Decrypt your ciphertext
final CryptoResult<byte[], AwsKmsMrkAwareMasterKey> decryptResult = crypto 
    .decryptData(mrkDiscoveryProvider, ciphertext);

JavaScript Browser

To decrypt in discovery mode with a symmetric multi-Region key, use the
AwsKmsMrkAwareSymmetricDiscoveryKeyringBrowser() method.

Using multi-Region AWS KMS keys 48

https://docs.aws.amazon.com/sdk-for-java/v1/developer-guide/java-dg-region-selection.html
https://github.com/aws/aws-encryption-sdk-java/blob/master/src/examples/java/com/amazonaws/crypto/examples/v2/DiscoveryMultiRegionDecryptionExample.java


AWS Encryption SDK Developer Guide

For a complete example, see kms_multi_region_discovery.ts in the AWS Encryption SDK for 
JavaScript repository on GitHub.

/* Decrypt in discovery mode with a multi-Region KMS key */

import { 
  AwsKmsMrkAwareSymmetricDiscoveryKeyringBrowser, 
  buildClient, 
  CommitmentPolicy, 
  KMS,
} from '@aws-crypto/client-browser'

/* Instantiate an AWS Encryption SDK client */
const { decrypt } = buildClient()

declare const credentials: { 
  accessKeyId: string 
  secretAccessKey: string 
  sessionToken: string
}

/* Instantiate the KMS client with an explicit Region */
const client = new KMS({ region: 'us-west-2', credentials })

/* Create a discovery filter */
const discoveryFilter = { partition: 'aws', accountIDs: ['111122223333'] }

/* Create an AWS KMS discovery keyring */
const mrkDiscoveryKeyring = new AwsKmsMrkAwareSymmetricDiscoveryKeyringBrowser({ 
    client, 
    discoveryFilter, 
  })

/* Decrypt the data */
const { plaintext, messageHeader } = await decrypt(mrkDiscoveryKeyring, ciphertext)

Using multi-Region AWS KMS keys 49

https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-browser/src/kms_multi_region_discovery.ts


AWS Encryption SDK Developer Guide

JavaScript Node.js

To decrypt in discovery mode with a symmetric multi-Region key, use the
AwsKmsMrkAwareSymmetricDiscoveryKeyringNode() method.

For a complete example, see kms_multi_region_discovery.ts in the AWS Encryption SDK for 
JavaScript repository on GitHub.

/* Decrypt in discovery mode with a multi-Region KMS key */

import { 
  AwsKmsMrkAwareSymmetricDiscoveryKeyringNode, 
  buildClient, 
  CommitmentPolicy, 
  KMS,
} from '@aws-crypto/client-node'

/* Instantiate the Encryption SDK client
const { decrypt } = buildClient()

/* Instantiate the KMS client with an explicit Region */
const client = new KMS({ region: 'us-west-2' })

/* Create a discovery filter */
const discoveryFilter = { partition: 'aws', accountIDs: ['111122223333'] }

/* Create an AWS KMS discovery keyring */
const mrkDiscoveryKeyring = new AwsKmsMrkAwareSymmetricDiscoveryKeyringNode({ 
    client, 
    discoveryFilter, 
  })

/* Decrypt your ciphertext */
const { plaintext, messageHeader } = await decrypt(mrkDiscoveryKeyring, result)

Python

To decrypt in discovery mode with a multi-Region key, use the
MRKAwareDiscoveryAwsKmsMasterKeyProvider() method.

For a complete example, see mrk_aware_kms_provider.py in the AWS Encryption SDK for 
Python repository on GitHub.

Using multi-Region AWS KMS keys 50

https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-node/src/kms_multi_region_discovery.ts
https://github.com/aws/aws-encryption-sdk-python/blob/master/examples/src/mrk_aware_kms_provider.py


AWS Encryption SDK Developer Guide

# Decrypt in discovery mode with a multi-Region KMS key

# Instantiate the client
client = aws_encryption_sdk.EncryptionSDKClient()

# Create the discovery filter and specify the region
decrypt_kwargs = dict( 
        discovery_filter=DiscoveryFilter(account_ids="111122223333", 
 partition="aws"), 
        discovery_region="us-west-2", 
    )

# Use the multi-Region method to create the master key provider
# in discovery mode
mrk_discovery_key_provider = 
 MRKAwareDiscoveryAwsKmsMasterKeyProvider(**decrypt_kwargs)

# Decrypt your ciphertext
plaintext, _ = client.decrypt( 
        source=ciphertext,  
        key_provider=mrk_discovery_key_provider
)

Choosing an algorithm suite

The AWS Encryption SDK supports several symmetric and asymmetric encryption algorithms for 
encrypting your data keys under the wrapping keys you specify. However, when it uses those data 
keys to encrypt your data, the AWS Encryption SDK defaults to a recommended algorithm suite
that uses the AES-GCM algorithm with key derivation, digital signatures, and key commitment. 
Although the default algorithm suite is likely to be suitable for most applications, you can 
choose an alternate algorithm suite. For example, some trust models would be satisfied by an 
algorithm suite without digital signatures. For information about the algorithm suites that the AWS 
Encryption SDK supports, see Supported algorithm suites in the AWS Encryption SDK.

The following examples show you how to select an alternate algorithm suite when encrypting. 
These examples select a recommended AES-GCM algorithm suite with key derivation and key 
commitment, but without digital signatures. When you encrypt with an algorithm suite that does 
not include digital signatures, use the unsigned-only decryption mode when decrypting. This 
mode, which fails if it encounters a signed ciphertext, is most useful when streaming decryption.

Choosing an algorithm suite 51



AWS Encryption SDK Developer Guide

C

To specify an alternate algorithm suite in the AWS Encryption SDK for C, you must create a 
CMM explicitly. Then use the aws_cryptosdk_default_cmm_set_alg_id with the CMM and 
the selected algorithm suite.

/* Specify an algorithm suite without signing */

/* Load error strings for debugging */
aws_cryptosdk_load_error_strings();

/* Construct an AWS KMS keyring */
struct aws_cryptosdk_keyring *kms_keyring = 
 Aws::Cryptosdk::KmsKeyring::Builder().Build(key_arn);

/* To set an alternate algorithm suite, create an cryptographic  
   materials manager (CMM) explicitly 
 */
struct aws_cryptosdk_cmm *cmm = 
 aws_cryptosdk_default_cmm_new(aws_default_allocator(), kms_keyring);
aws_cryptosdk_keyring_release(kms_keyring);  

/* Specify the algorithm suite for the CMM */
aws_cryptosdk_default_cmm_set_alg_id(cmm, ALG_AES256_GCM_HKDF_SHA512_COMMIT_KEY); 
     
/* Construct the session with the CMM,  
   then release the CMM reference  
 */
struct aws_cryptosdk_session *session = aws_cryptosdk_session_new_from_cmm_2(alloc, 
 AWS_CRYPTOSDK_ENCRYPT, cmm);
aws_cryptosdk_cmm_release(cmm);

/* Encrypt the data  
   Use aws_cryptosdk_session_process_full with non-streaming data 
 */
if (AWS_OP_SUCCESS != aws_cryptosdk_session_process_full( 
                          session,  
                          ciphertext,  
                          ciphertext_buf_sz,  
                          &ciphertext_len,  
                          plaintext,  
                          plaintext_len)) { 
    aws_cryptosdk_session_destroy(session); 

Choosing an algorithm suite 52



AWS Encryption SDK Developer Guide

    return AWS_OP_ERR;
}

When decrypting data that was encrypted without digital signatures, use
AWS_CRYPTOSDK_DECRYPT_UNSIGNED. This causes the decrypt to fail if it encounters signed 
ciphertext.

/* Decrypt unsigned streaming data */

/* Load error strings for debugging */
aws_cryptosdk_load_error_strings();

/* Construct an AWS KMS keyring */
struct aws_cryptosdk_keyring *kms_keyring = 
 Aws::Cryptosdk::KmsKeyring::Builder().Build(key_arn); 
     
/* Create a session for decrypting with the AWS KMS keyring 
   Then release the keyring reference 
 */
struct aws_cryptosdk_session *session = 
        
 aws_cryptosdk_session_new_from_keyring_2(alloc, AWS_CRYPTOSDK_DECRYPT_UNSIGNED, 
 kms_keyring);
aws_cryptosdk_keyring_release(kms_keyring);  
    
if (!session) { 
    return AWS_OP_ERR;
} 
     
/* Limit encrypted data keys */
aws_cryptosdk_session_set_max_encrypted_data_keys(session, 1); 
   
/* Decrypt  
   Use aws_cryptosdk_session_process_full with non-streaming data 
 */ 
    if (AWS_OP_SUCCESS != aws_cryptosdk_session_process_full( 
                          session,                           
                          plaintext, 
                          plaintext_buf_sz, 
                          &plaintext_len, 
                          ciphertext, 
                          ciphertext_len)) { 
    aws_cryptosdk_session_destroy(session); 

Choosing an algorithm suite 53



AWS Encryption SDK Developer Guide

    return AWS_OP_ERR;
}

C# / .NET

To specify an alternate algorithm suite in the AWS Encryption SDK for .NET, specify the
AlgorithmSuiteId property of an EncryptInput object. The AWS Encryption SDK for .NET 
includes constants that you can use to identify your preferred algorithm suite.

The AWS Encryption SDK for .NET doesn't have a method to detect signed ciphertext when 
streaming decryption because this library doesn't support streaming data.

// Specify an algorithm suite without signing

// Instantiate the AWS Encryption SDK and material providers
var encryptionSdk = AwsEncryptionSdkFactory.CreateDefaultAwsEncryptionSdk();
var materialProviders = 
    
 AwsCryptographicMaterialProvidersFactory.CreateDefaultAwsCryptographicMaterialProviders();

// Create the keyring
var keyringInput = new CreateAwsKmsKeyringInput
{ 
    KmsClient = new AmazonKeyManagementServiceClient(), 
    KmsKeyId = keyArn
};
var keyring = materialProviders.CreateAwsKmsKeyring(keyringInput);

// Encrypt your plaintext data
var encryptInput = new EncryptInput
{ 
    Plaintext = plaintext, 
    Keyring = keyring, 
     AlgorithmSuiteId = AlgorithmSuiteId.ALG_AES_256_GCM_HKDF_SHA512_COMMIT_KEY
};
var encryptOutput = encryptionSdk.Encrypt(encryptInput);

AWS Encryption CLI

When encrypting the hello.txt file, this example uses the --algorithm parameter to 
specify an algorithm suite without digital signatures.

# Specify an algorithm suite without signing

Choosing an algorithm suite 54

https://github.com/aws/aws-encryption-sdk-dafny/blob/mainline/AwsEncryptionSDK/runtimes/net/Generated/AwsEncryptionSdk/EncryptInput.cs
https://github.com/aws/aws-cryptographic-material-providers-library/blob/main/AwsCryptographicMaterialProviders/runtimes/net/Generated/AwsCryptographicMaterialProviders/AlgorithmSuiteId.cs


AWS Encryption SDK Developer Guide

# To run this example, replace the fictitious key ARN with a valid value.
$ keyArn=arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab

$ aws-encryption-cli --encrypt \ 
                     --input hello.txt \ 
                     --wrapping-keys key=$keyArn \
                     --algorithm AES_256_GCM_HKDF_SHA512_COMMIT_KEY \
                     --metadata-output ~/metadata \ 
                     --encryption-context purpose=test \ 
                     --commitment-policy require-encrypt-require-decrypt \ 
                     --output hello.txt.encrypted \ 
                     --decode

When decrypting, this example uses the --decrypt-unsigned parameter. This parameter is 
recommended to ensure that you are decrypting unsigned ciphertext, especially with the CLI, 
which is always streaming input and output.

# Decrypt unsigned streaming data

# To run this example, replace the fictitious key ARN with a valid value.
$ keyArn=arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab

$ aws-encryption-cli --decrypt-unsigned \
                     --input hello.txt.encrypted \ 
                     --wrapping-keys key=$keyArn \ 
                     --max-encrypted-data-keys 1 \ 
                     --commitment-policy require-encrypt-require-decrypt \ 
                     --encryption-context purpose=test \ 
                     --metadata-output ~/metadata \ 
                     --output .

Java

To specify an alternate algorithm suite, use the
AwsCrypto.builder().withEncryptionAlgorithm() method. This example specifies an 
alternate algorithm suite without digital signatures.

// Specify an algorithm suite without signing

// Instantiate the client
AwsCrypto crypto = AwsCrypto.builder() 

Choosing an algorithm suite 55



AWS Encryption SDK Developer Guide

    .withCommitmentPolicy(CommitmentPolicy.RequireEncryptRequireDecrypt) 
     .withEncryptionAlgorithm(CryptoAlgorithm.ALG_AES_256_GCM_HKDF_SHA512_COMMIT_KEY)
    .build();

String awsKmsKey = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab";

// Create a master key provider in strict mode
KmsMasterKeyProvider masterKeyProvider = KmsMasterKeyProvider.builder() 
    .buildStrict(awsKmsKey); 
     
// Create an encryption context to identify this ciphertext 
        Map<String, String> encryptionContext = Collections.singletonMap("Example", 
 "FileStreaming");

// Encrypt your plaintext data
CryptoResult<byte[], KmsMasterKey> encryptResult = crypto.encryptData( 
    masterKeyProvider, 
    sourcePlaintext, 
    encryptionContext);
byte[] ciphertext = encryptResult.getResult();

When streaming data for decryption, use the
createUnsignedMessageDecryptingStream() method to ensure that all ciphertext that 
you're decrypting is unsigned.

// Decrypt unsigned streaming data

// Instantiate the client
AwsCrypto crypto = AwsCrypto.builder() 
  .withCommitmentPolicy(CommitmentPolicy.RequireEncryptRequireDecrypt) 
  .withMaxEncryptedDataKeys(1) 
  .build();

// Create a master key provider in strict mode
String awsKmsKey = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab";
KmsMasterKeyProvider masterKeyProvider = KmsMasterKeyProvider.builder() 
  .buildStrict(awsKmsKey);

// Decrypt the encrypted message
FileInputStream in = new FileInputStream(srcFile + ".encrypted");   

Choosing an algorithm suite 56



AWS Encryption SDK Developer Guide

CryptoInputStream<KmsMasterKey> decryptingStream = 
 crypto.createUnsignedMessageDecryptingStream(masterKeyProvider, in); 
   
// Return the plaintext data
// Write the plaintext data to disk
FileOutputStream out = new FileOutputStream(srcFile + ".decrypted");
IOUtils.copy(decryptingStream, out);
decryptingStream.close();

JavaScript Browser

To specify an alternate algorithm suite, use the suiteId parameter with an
AlgorithmSuiteIdentifier enum value.

// Specify an algorithm suite without signing

// Instantiate the client  
const { encrypt } = buildClient( CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT )

// Specify a KMS key  
const generatorKeyId = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab";

// Create a keyring with the KMS key
const keyring = new KmsKeyringBrowser({ generatorKeyId })

// Encrypt your plaintext data  
const { result } = await encrypt(keyring, cleartext, { suiteId: 
 AlgorithmSuiteIdentifier.ALG_AES256_GCM_IV12_TAG16_HKDF_SHA512_COMMIT_KEY, 
 encryptionContext: context, })

When decrypting, use the standard decrypt method. AWS Encryption SDK for JavaScript in 
the browser doesn't have a decrypt-unsigned mode because the browser doesn't support 
streaming.

// Decrypt unsigned streaming data

// Instantiate the client  
const { decrypt } = buildClient( CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT )

// Create a keyring with the same KMS key used to encrypt
const generatorKeyId = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab";  

Choosing an algorithm suite 57



AWS Encryption SDK Developer Guide

const keyring = new KmsKeyringBrowser({ generatorKeyId })

// Decrypt the encrypted message  
const { plaintext, messageHeader } = await decrypt(keyring, ciphertextMessage)     

JavaScript Node.js

To specify an alternate algorithm suite, use the suiteId parameter with an
AlgorithmSuiteIdentifier enum value.

// Specify an algorithm suite without signing

// Instantiate the client  
const { encrypt } = buildClient( CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT )

// Specify a KMS key
const generatorKeyId = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab";

// Create a keyring with the KMS key
const keyring = new KmsKeyringNode({ generatorKeyId })

// Encrypt your plaintext data  
const { result } = await encrypt(keyring, cleartext, { suiteId: 
 AlgorithmSuiteIdentifier.ALG_AES256_GCM_IV12_TAG16_HKDF_SHA512_COMMIT_KEY, 
 encryptionContext: context, })

When decrypting data that was encrypted without digital signatures, use 
decryptUnsignedMessageStream. This method fails if it encounters signed ciphertext.

// Decrypt unsigned streaming data

// Instantiate the client  
const { decryptUnsignedMessageStream } = 
 buildClient( CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT )

// Create a keyring with the same KMS key used to encrypt
const generatorKeyId = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab";  
const keyring = new KmsKeyringNode({ generatorKeyId })

// Decrypt the encrypted message  

Choosing an algorithm suite 58



AWS Encryption SDK Developer Guide

const outputStream = 
 createReadStream(filename) .pipe(decryptUnsignedMessageStream(keyring))

Python

To specify an alternate encryption algorithm, use the algorithm parameter with an
Algorithm enum value.

# Specify an algorithm suite without signing

# Instantiate a client
client = 
 aws_encryption_sdk.EncryptionSDKClient(commitment_policy=CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT,  
                                                max_encrypted_data_keys=1)

# Create a master key provider in strict mode
aws_kms_key = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"
aws_kms_strict_master_key_provider = StrictAwsKmsMasterKeyProvider( 
        key_ids=[aws_kms_key]
)

# Encrypt the plaintext using an alternate algorithm suite
ciphertext, encrypted_message_header = client.encrypt( 
     algorithm=Algorithm.AES_256_GCM_HKDF_SHA512_COMMIT_KEY, source=source_plaintext, 
 key_provider=kms_key_provider
)

When decrypting messages that were encrypted without digital signatures, use the decrypt-
unsigned streaming mode, especially when decrypting while streaming.

# Decrypt unsigned streaming data

# Instantiate the client
client = 
 aws_encryption_sdk.EncryptionSDKClient(commitment_policy=CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT,  
                                                max_encrypted_data_keys=1)

# Create a master key provider in strict mode
aws_kms_key = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"
aws_kms_strict_master_key_provider = StrictAwsKmsMasterKeyProvider( 

Choosing an algorithm suite 59



AWS Encryption SDK Developer Guide

        key_ids=[aws_kms_key]
)

# Decrypt with decrypt-unsigned
with open(ciphertext_filename, "rb") as ciphertext, open(cycled_plaintext_filename, 
 "wb") as plaintext: 
    with client.stream(mode="decrypt-unsigned",  
                       source=ciphertext,  
                       key_provider=master_key_provider) as decryptor: 
        for chunk in decryptor: 
            plaintext.write(chunk)

# Verify that the encryption context
assert all( 
   pair in decryptor.header.encryption_context.items() for pair in 
 encryptor.header.encryption_context.items()
)
return ciphertext_filename, cycled_plaintext_filename

Limiting encrypted data keys

You can limit the number of encrypted data keys in an encrypted message. This best practice 
feature can help you detect a misconfigured keyring when encrypting or a malicious ciphertext 
when decrypting. It also prevents unnecessary, expensive, and potentially exhaustive calls to 
your key infrastructure. Limiting encrypted data keys is most valuable when you are decrypting 
messages from an untrusted source.

Although most encrypted messages have one encrypted data key for each wrapping key used in 
the encryption, an encrypted message can contain up to 65,535 encrypted data keys. A malicious 
actor might construct an encrypted message with thousands of encrypted data keys, none of which 
can be decrypted. As a result, the AWS Encryption SDK would attempt to decrypt each encrypted 
data key until it exhausted the encrypted data keys in the message.

To limit encrypted data keys, use the MaxEncryptedDataKeys parameter. This parameter 
is available for all supported programming languages beginning in versions 1.9.x and 2.2.x
of the AWS Encryption SDK. It is optional and valid when encrypting and decrypting. The 
following examples decrypt data that was encrypted under three different wrapping keys. The
MaxEncryptedDataKeys value is set to 3.

Limiting encrypted data keys 60



AWS Encryption SDK Developer Guide

C

/* Load error strings for debugging */
aws_cryptosdk_load_error_strings();

/* Construct an AWS KMS keyring */
struct aws_cryptosdk_keyring *kms_keyring =  
      Aws::Cryptosdk::KmsKeyring::Builder().Build(key_arn1, { key_arn2, key_arn3 });

/* Create a session */
struct aws_cryptosdk_session *session =  
    aws_cryptosdk_session_new_from_keyring_2(alloc, AWS_CRYPTOSDK_DECRYPT, 
 kms_keyring);
aws_cryptosdk_keyring_release(kms_keyring);

/* Limit encrypted data keys */
aws_cryptosdk_session_set_max_encrypted_data_keys(session, 3);
  
/* Decrypt */
size_t ciphertext_consumed_output;
aws_cryptosdk_session_process(session, 
    plaintext_output, 
    plaintext_buf_sz_output, 
    &plaintext_len_output, 
    ciphertext_input, 
    ciphertext_len_input, 
    &ciphertext_consumed_output);
assert(aws_cryptosdk_session_is_done(session));
assert(ciphertext_consumed == ciphertext_len);

C# / .NET

To limit encrypted data keys in the AWS Encryption SDK for .NET, instantiate a client for the 
AWS Encryption SDK for .NET and set its optional MaxEncryptedDataKeys parameter to 
the desired value. Then, call the Decrypt() method on the configured AWS Encryption SDK 
instance.

// Decrypt with limited data keys

// Instantiate the material providers
var materialProviders = 
    
 AwsCryptographicMaterialProvidersFactory.CreateDefaultAwsCryptographicMaterialProviders();

Limiting encrypted data keys 61



AWS Encryption SDK Developer Guide

// Configure the commitment policy on the AWS Encryption SDK instance
var config = new AwsEncryptionSdkConfig
{ 
     MaxEncryptedDataKeys = 3
};
var encryptionSdk = AwsEncryptionSdkFactory.CreateAwsEncryptionSdk(config);

// Create the keyring
string keyArn = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab";
var createKeyringInput = new CreateAwsKmsKeyringInput
{ 
    KmsClient = new AmazonKeyManagementServiceClient(), 
    KmsKeyId = keyArn
};
var decryptKeyring = materialProviders.CreateAwsKmsKeyring(createKeyringInput);

// Decrypt the ciphertext
var decryptInput = new DecryptInput
{ 
    Ciphertext = ciphertext, 
    Keyring = decryptKeyring
};
var decryptOutput = encryptionSdk.Decrypt(decryptInput);

AWS Encryption CLI

# Decrypt with limited encrypted data keys

$ aws-encryption-cli --decrypt \ 
    --input hello.txt.encrypted \ 
    --wrapping-keys key=$key_arn1 key=$key_arn2 key=$key_arn3 \ 
    --buffer \
    --max-encrypted-data-keys 3 \
    --encryption-context purpose=test \ 
    --metadata-output ~/metadata \ 
    --output .

Java

// Construct a client with limited encrypted data keys
final AwsCrypto crypto = AwsCrypto.builder()

Limiting encrypted data keys 62



AWS Encryption SDK Developer Guide

  .withMaxEncryptedDataKeys(3)
  .build();

// Create an AWS KMS master key provider
final KmsMasterKeyProvider keyProvider = KmsMasterKeyProvider.builder() 
      .buildStrict(keyArn1, keyArn2, keyArn3); 
    
// Decrypt
final CryptoResult<byte[], KmsMasterKey> decryptResult = 
 crypto.decryptData(keyProvider, ciphertext)

JavaScript Browser

// Construct a client with limited encrypted data keys
const { encrypt, decrypt } = buildClient({ maxEncryptedDataKeys: 3 })

declare const credentials: { 
  accessKeyId: string 
  secretAccessKey: string 
  sessionToken: string
}
const clientProvider = getClient(KMS, { 
  credentials: { accessKeyId, secretAccessKey, sessionToken }
})

// Create an AWS KMS keyring
const keyring = new KmsKeyringBrowser({ 
  clientProvider, 
  keyIds: [keyArn1, keyArn2, keyArn3],
})

// Decrypt
const { plaintext, messageHeader } = await decrypt(keyring, ciphertext)

JavaScript Node.js

// Construct a client with limited encrypted data keys
const { encrypt, decrypt } = buildClient({ maxEncryptedDataKeys: 3 })

// Create an AWS KMS keyring
const keyring = new KmsKeyringBrowser({ 
  keyIds: [keyArn1, keyArn2, keyArn3],
}) 

Limiting encrypted data keys 63



AWS Encryption SDK Developer Guide

  
// Decrypt
const { plaintext, messageHeader } = await decrypt(keyring, ciphertext)

Python

# Instantiate a client with limited encrypted data keys
client = aws_encryption_sdk.EncryptionSDKClient(max_encrypted_data_keys=3)

# Create an AWS KMS master key provider
master_key_provider = aws_encryption_sdk.StrictAwsKmsMasterKeyProvider( 
    key_ids=[key_arn1, key_arn2, key_arn3])

# Decrypt
plaintext, header = client.decrypt(source=ciphertext, 
 key_provider=master_key_provider)

Creating a discovery filter

When decrypting data encrypted with KMS keys, it's a best practice to decrypt in strict mode, that 
is, to limit the wrapping keys used to only those that you specify. However, if necessary, you can 
also decrypt in discovery mode, where you don't specify any wrapping keys. In this mode, AWS KMS 
can decrypt the encrypted data key using the KMS key that encrypted it, regardless of who owns or 
has access to that KMS key.

If you must decrypt in discovery mode, we recommend that you always use a discovery filter, 
which limits the KMS keys that can be used to those in a specified AWS account and partition. The 
discovery filter is optional, but it's a best practice.

Use the following table to determine the partition value for your discovery filter.

Region Partition

AWS Regions aws

China Regions aws-cn

AWS GovCloud (US) Regions aws-us-gov

Creating a discovery filter 64

https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html


AWS Encryption SDK Developer Guide

The examples in this section show how to create a discovery filter. Before using the code, replace 
the example values with valid values for the AWS account and partition.

C

For a complete examples, see kms_discovery.cpp in the AWS Encryption SDK for C.

/* Create a discovery filter for an AWS account and partition */ 
     
const char *account_id = "111122223333";
const char *partition = "aws";
const std::shared_ptr<Aws::Cryptosdk::KmsKeyring::DiscoveryFilter> discovery_filter 
 = 
    
 Aws::Cryptosdk::KmsKeyring::DiscoveryFilter::Builder(partition).AddAccount(account_id).Build();

C# / .NET

For a complete example, see DiscoveryFilterExample.cs in the AWS Encryption SDK for .NET.

// Create a discovery filter for an AWS account and partition

List<string> account = new List<string> { "111122223333" };

DiscoveryFilter exampleDiscoveryFilter = new DiscoveryFilter()
{ 
    AccountIds = account, 
    Partition = "aws"
}                 

AWS Encryption CLI

# Decrypt in discovery mode with a discovery filter

$ aws-encryption-cli --decrypt \ 
                     --input hello.txt.encrypted \ 
                     --wrapping-keys discovery=true \  
                                     discovery-account=111122223333 \ 
                                     discovery-partition=aws \ 
                     --encryption-context purpose=test \ 
                     --metadata-output ~/metadata \ 
                     --max-encrypted-data-keys 1 \ 

Creating a discovery filter 65

https://github.com/aws/aws-encryption-sdk-c/blob/master/examples/kms_discovery.cpp
https://github.com/aws/aws-encryption-sdk-dafny/tree/mainline/AwsEncryptionSDK/runtimes/net/Examples/DiscoveryFilterExample.cs


AWS Encryption SDK Developer Guide

                     --buffer \ 
                     --output .                     

Java

For a complete example, see DiscoveryDecryptionExample.java in the AWS Encryption SDK for 
Java.

// Create a discovery filter for an AWS account and partition

DiscoveryFilter discoveryFilter = new DiscoveryFilter("aws", 111122223333);

JavaScript (Node and Browser)

For complete examples, see kms_filtered_discovery.ts (Node.js) and
kms_multi_region_discovery.ts (Browser) in the AWS Encryption SDK for JavaScript.

/* Create a discovery filter for an AWS account and partition */
const discoveryFilter = {  
  accountIDs: ['111122223333'],  
  partition: 'aws',
}

Python

For a complete example, see discovery_kms_provider.py in the AWS Encryption SDK for Python.

# Create the discovery filter and specify the region
decrypt_kwargs = dict( 
        discovery_filter=DiscoveryFilter(account_ids="111122223333", 
 partition="aws"), 
        discovery_region="us-west-2", 
    )

Setting a commitment policy

A commitment policy is a configuration setting that determines whether your application encrypts 
and decrypts with key commitment. Encrypting and decrypting with key commitment is an AWS 
Encryption SDK best practice.

Setting a commitment policy 66

https://github.com/aws/aws-encryption-sdk-java/blob/master/src/examples/java/com/amazonaws/crypto/examples/v2/DiscoveryDecryptionExample.java
https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-node/src/kms_filtered_discovery.ts
https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-browser/src/kms_multi_region_discovery.ts
https://github.com/aws/aws-encryption-sdk-python/blob/master/examples/src/discovery_kms_provider.py


AWS Encryption SDK Developer Guide

Setting and adjusting your commitment policy is a critical step in migrating from versions 1.7.x and 
earlier of the AWS Encryption SDK to version 2.0.x and later. This progression is explained in detail 
in the migration topic.

The default commitment policy value in the latest versions of the AWS Encryption SDK (beginning 
in version 2.0.x), RequireEncryptRequireDecrypt, is ideal for most situations. However, if 
you need to decrypt ciphertext that was encrypted without key commitment, you might need to 
change your commitment policy to RequireEncryptAllowDecrypt. For examples of how to set 
a commitment policy in each programming language, see Setting your commitment policy.

Working with streaming data

When you stream data for decryption, be aware that the AWS Encryption SDK returns decrypted 
plaintext after the integrity checks are complete, but before the digital signature is verified. To 
ensure that you don't return or use plaintext until the signature is verified, we recommend that you 
buffer the streamed plaintext until the entire decryption process is complete.

This issue arises only when you are streaming ciphertext for decryption, and only when you are 
using an algorithm suite, such as the default algorithm suite, that includes digital signatures.

To make the buffering easier, some AWS Encryption SDK language implementations, such as 
AWS Encryption SDK for JavaScript in Node.js, include a buffering feature as part of the decrypt 
method. The AWS Encryption CLI, which always streams input and output introduced a --buffer
parameter in versions 1.9.x and 2.2.x. In other language implementations, you can use existing 
buffering features. (The AWS Encryption SDK for .NET does not support streaming.)

If you are using an algorithm suite without digital signatures, be sure to use the decrypt-
unsigned feature in each language implementation. This feature decrypts ciphertext but fails if it 
encounters signed ciphertext. For details, see Choosing an algorithm suite.

Caching data keys

In general, reusing data keys is discouraged, but the AWS Encryption SDK offers a data key caching
option that provides limited reuse of data keys. Data key caching can improve the performance 
of some applications and reduce calls to your key infrastructure. Before using data key caching in 
production, adjust the security thresholds, and test to make sure that the benefits outweigh the 
disadvantages of reusing data keys.

Working with streaming data 67



AWS Encryption SDK Developer Guide

Using keyrings

The AWS Encryption SDK for C, the AWS Encryption SDK for JavaScript, the AWS Encryption SDK 
for Java, and the AWS Encryption SDK for .NET use keyrings to perform envelope encryption. 
Keyrings generate, encrypt, and decrypt data keys. Keyrings determine the source of the unique 
data keys that protect each message, and the wrapping keys that encrypt that data key. You specify 
a keyring when encrypting and the same or a different keyring when decrypting. You can use the 
keyrings that the SDK provides or write your own compatible custom keyrings.

You can use each keyring individually or combine keyrings into a multi-keyring. Although most 
keyrings can generate, encrypt, and decrypt data keys, you might create a keyring that performs 
only one particular operation, such as a keyring that only generates data keys, and use that keyring 
in combination with others.

We recommend that you use a keyring that protects your wrapping keys and performs 
cryptographic operations within a secure boundary, such as the AWS KMS keyring, which uses AWS 
KMS keys that never leave AWS Key Management Service (AWS KMS) unencrypted. You can also 
write a keyring that uses wrapping keys that are stored in your hardware security modules (HSMs) 
or protected by other master key services. For details, see the Keyring Interface topic in the AWS 
Encryption SDK Specification.

Keyrings play the role of master keys and master key providers in the AWS Encryption SDK for 
Java, AWS Encryption SDK for Python, and the AWS Encryption CLI. If you use different language 
implementations of the AWS Encryption SDK to encrypt and decrypt your data, be sure to use 
compatible keyrings and master key providers. For details, see Keyring compatibility.

This topic explains how to use the keyring feature of the AWS Encryption SDK and how to choose a 
keyring. For examples of creating and using keyrings, see the C and JavaScript topics.

Topics

• How keyrings work

• Keyring compatibility

• Choosing a keyring

68

https://docs.aws.amazon.com/crypto/latest/userguide/cryptography-concepts.html#define-envelope-encryption
https://docs.aws.amazon.com/kms/latest/developerguide/
https://github.com/awslabs/aws-encryption-sdk-specification/blob/master/framework/keyring-interface.md


AWS Encryption SDK Developer Guide

How keyrings work

When you encrypt data, the AWS Encryption SDK asks the keyring for encryption materials. The 
keyring returns a plaintext data key and a copy of the data key that's encrypted by each of the 
wrapping keys in the keyring. The AWS Encryption SDK uses the plaintext key to encrypt the data, 
and then destroys the plaintext data key. Then, the AWS Encryption SDK returns an encrypted 
message that includes the encrypted data keys and the encrypted data.

When you decrypt data, you can use the same keyring that you used to encrypt the data, or a 
different one. To decrypt the data, a decryption keyring must include (or have access to) at least 
one wrapping key in the encryption keyring.

The AWS Encryption SDK passes the encrypted data keys from the encrypted message to the 
keyring, and asks the keyring to decrypt any one of them. The keyring uses its wrapping keys to 
decrypt one of the encrypted data keys and returns a plaintext data key. The AWS Encryption SDK 
uses the plaintext data key to decrypt the data. If none of the wrapping keys in the keyring can 
decrypt any of the encrypted data keys, the decrypt operation fails.

How keyrings work 69



AWS Encryption SDK Developer Guide

You can use a single keyring or also combine keyrings of the same type or a different type into a
multi-keyring. When you encrypt data, the multi-keyring returns a copy of the data key encrypted 
by all of the wrapping keys in all of the keyrings that comprise the multi-keyring. You can decrypt 
the data using a keyring with any one of the wrapping keys in the multi-keyring.

Keyring compatibility

Although the different language implementations of the AWS Encryption SDK have some 
architectural differences, they are fully compatible, subject to language constraints. You can 
encrypt your data using one language implementation and decrypt it with any other language 
implementation. However, you must use the same or corresponding wrapping keys to encrypt 
and decrypt your data keys. For information about language constraints, see the topic about each 
language implementation, such as the section called “Compatibility” in the AWS Encryption SDK 
for JavaScript topic.

Keyring compatibility 70



AWS Encryption SDK Developer Guide

Varying requirements for encryption keyrings

In AWS Encryption SDK language implementations other than the AWS Encryption SDK for C, all 
wrapping keys in an encryption keyring (or multi-keyring) or master key provider must be able to 
encrypt the data key. If any wrapping key fails to encrypt, the encrypt method fails. As a result, the 
caller must have the required permissions for all keys in the keyring. If you use a discovery keyring 
to encrypt data, alone or in a multi-keyring, the encrypt operation fails.

The exception is the AWS Encryption SDK for C, where the encrypt operation ignores a standard 
discovery keyring, but fails if you specify a multi-Region discovery keyring, alone or in a multi-
keyring.

Compatible Keyrings and Master Key Providers

The following table shows which master keys and master key providers are compatible with 
the keyrings that the AWS Encryption SDK supplies. Any minor incompatibility due to language 
constraints is explained in the topic about the language implementation.

Keyring: Master Key Provider:

AWS KMS keyring KMSMasterKey (Java)

KMSMasterKeyProvider (Java)

KMSMasterKey (Python)

KMSMasterKeyProvider (Python)

Note

The AWS Encryption SDK for Python and AWS Encryptio 
n SDK for Java don't include a master key or master key 
provider that is equivalent to the AWS KMS regional 
discovery keyring.

AWS KMS Hierarchical 
keyring

Only available with version 4.x of the AWS Encryption SDK for .NET 
and version 3.x of the AWS Encryption SDK for Java.

AWS KMS ECDH keyring Only available with version 3.x of the AWS Encryption SDK for Java.

Varying requirements for encryption keyrings 71

https://aws.github.io/aws-encryption-sdk-java/com/amazonaws/encryptionsdk/kms/KmsMasterKey.html
https://aws.github.io/aws-encryption-sdk-java/com/amazonaws/encryptionsdk/kms/KmsMasterKeyProvider.html
https://aws-encryption-sdk-python.readthedocs.io/en/latest/generated/aws_encryption_sdk.key_providers.kms.html
https://aws-encryption-sdk-python.readthedocs.io/en/latest/generated/aws_encryption_sdk.key_providers.kms.html#aws_encryption_sdk.key_providers.kms.KMSMasterKeyProvider


AWS Encryption SDK Developer Guide

Keyring: Master Key Provider:

Raw AES keyring When they are used with symmetric encryption keys:
JceMasterKey (Java)

RawMasterKey (Python)

Raw RSA keyring When they are used with asymmetric encryption keys:
JceMasterKey (Java)

RawMasterKey (Python)

Note

The Raw RSA keyring does not support asymmetric KMS 
keys. If you want to use asymmetric RSA KMS keys, version 
4.x of the AWS Encryption SDK for .NET supports AWS 
KMS keyrings that use symmetric encryption (SYMMETRIC 
_DEFAULT ) or asymmetric RSA AWS KMS keys.

Raw ECDH keyring Only available with version 4.x of the AWS Encryption SDK for .NET 
and version 3.x of the AWS Encryption SDK for Java.

Choosing a keyring

Your keyring determines the wrapping keys that protect your data keys, and ultimately, your 
data. Use the most secure wrapping keys that are practical for your task. Whenever possible 
use wrapping keys that are protected by a hardware security module or a key management 
infrastructure, such as KMS keys in AWS Key Management Service (AWS KMS) or encryption keys
AWS CloudHSM.

The AWS Encryption SDK provides several keyrings and keyring configurations in multiple 
programming languages, and you can create your own custom keyrings. You can also create a
multi-keyring that includes one or more keyrings of the same or a different type.

Topics

• AWS KMS keyrings

Choosing a keyring 72

https://aws.github.io/aws-encryption-sdk-java/com/amazonaws/encryptionsdk/jce/JceMasterKey.html
https://aws-encryption-sdk-python.readthedocs.io/en/latest/generated/aws_encryption_sdk.key_providers.raw.html#aws_encryption_sdk.key_providers.raw.RawMasterKey
https://aws.github.io/aws-encryption-sdk-java/com/amazonaws/encryptionsdk/jce/JceMasterKey.html
https://aws-encryption-sdk-python.readthedocs.io/en/latest/generated/aws_encryption_sdk.key_providers.raw.html#aws_encryption_sdk.key_providers.raw.RawMasterKey
https://docs.aws.amazon.com/kms/latest/developerguide/
https://docs.aws.amazon.com/cloudhsm/latest/userguide/


AWS Encryption SDK Developer Guide

• AWS KMS Hierarchical keyrings

• AWS KMS ECDH keyrings

• Raw AES keyrings

• Raw RSA keyrings

• Raw ECDH keyrings

• Multi-keyrings

AWS KMS keyrings

An AWS KMS keyring uses symmetric encryption AWS KMS keys to generate, encrypt, and decrypt 
data keys. AWS Key Management Service (AWS KMS) protects your KMS keys and performs 
cryptographic operations within the FIPS boundary. We recommend that you use a AWS KMS 
keyring, or a keyring with similar security properties, whenever possible.

You can use an AWS KMS multi-Region key in an AWS KMS keyring or master key provider 
beginning in version 2.3.x of the AWS Encryption SDK and version 3.0.x of the AWS Encryption CLI. 
For details and examples of using the new multi-Region-aware symbol, see Using multi-Region 
AWS KMS keys. For information about multi-Region keys, see Using multi-Region keys in the AWS 
Key Management Service Developer Guide.

Note

Version 4.x of the AWS Encryption SDK for .NET and version 3.x of the AWS Encryption 
SDK for Java are the only programming language implementations that support AWS KMS 
keyrings that use asymmetric RSA AWS KMS keys.
If you try to include an asymmetric KMS key in an encryption keyring in any other language 
implementation, the encrypt call fails. If you include it in a decryption keyring, it is ignored.
All mentions of KMS keyrings in the AWS Encryption SDK refer to AWS KMS keyrings.

AWS KMS keyrings can include two types of wrapping keys:

• Generator key: Generates a plaintext data key and encrypts it. A keyring that encrypts data must 
have one generator key.

• Additional keys: Encrypts the plaintext data key that the generator key generated. AWS KMS 
keyrings can have zero or more additional keys.

AWS KMS keyrings 73

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#master_keys
https://docs.aws.amazon.com/kms/latest/developerguide/multi-region-keys-overview.html


AWS Encryption SDK Developer Guide

When encrypting, the AWS KMS keyring that you use must have a generator key. When decrypting, 
the generator key is optional, and the distinction between generators keys and additional keys is 
ignored.

When an AWS KMS encryption keyring has just one AWS KMS key, that key is used to generate and 
encrypt the data key.

Like all keyrings, AWS KMS keyrings can be used independently or in a multi-keyring with other 
keyrings of the same or a different type.

Topics

• Required permissions for AWS KMS keyrings

• Identifying AWS KMS keys in an AWS KMS keyring

• Creating an AWS KMS keyring for encryption

• Creating an AWS KMS keyring for decryption

• Using an AWS KMS discovery keyring

• Using an AWS KMS regional discovery keyring

Required permissions for AWS KMS keyrings

The AWS Encryption SDK doesn't require an AWS account and it doesn't depend on any AWS 
service. However, to use an AWS KMS keyring, you need an AWS account and the following 
minimum permissions on the AWS KMS keys in your keyring.

• To encrypt with an AWS KMS keyring, you need kms:GenerateDataKey permission on the 
generator key. You need kms:Encrypt permission on all additional keys in the AWS KMS keyring.

• To decrypt with an AWS KMS keyring, you need kms:Decrypt permission on at least one key in 
the AWS KMS keyring.

• To encrypt with a multi-keyring comprised of AWS KMS keyrings, you need
kms:GenerateDataKey permission on the generator key in the generator keyring. You need
kms:Encrypt permission on all other keys in all other AWS KMS keyrings.

For detailed information about permissions for AWS KMS keys, see Authentication and access 
control in the AWS Key Management Service Developer Guide.

AWS KMS keyrings 74

https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Encrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Encrypt.html
https://docs.aws.amazon.com/kms/latest/developerguide/control-access.html
https://docs.aws.amazon.com/kms/latest/developerguide/control-access.html


AWS Encryption SDK Developer Guide

Identifying AWS KMS keys in an AWS KMS keyring

An AWS KMS keyring can include one or more AWS KMS keys. To specify an AWS KMS key in an 
AWS KMS keyring, use a supported AWS KMS key identifier. The key identifiers you can use to 
identify an AWS KMS key in a keyring vary with the operation and the language implementation. 
For details about the key identifiers for an AWS KMS key, see Key Identifiers in the AWS Key 
Management Service Developer Guide.

As a best practice, use the most specific key identifier that is practical for your task.

• In an encryption keyring for the AWS Encryption SDK for C, you can use a key ARN or alias ARN
to identify KMS keys. In all other language implementations, you can use a key ID, key ARN, alias 
name, or alias ARN to encrypt data.

• In a decryption keyring, you must use a key ARN to identify AWS KMS keys. This requirement 
applies to all language implementations of the AWS Encryption SDK. For details, see Selecting 
wrapping keys.

• In a keyring used for encryption and decryption, you must use a key ARN to identify AWS KMS 
keys. This requirement applies to all language implementations of the AWS Encryption SDK.

If you specify an alias name or alias ARN for a KMS key in an encryption keyring, the encrypt 
operation saves the key ARN currently associated with the alias in the metadata of the encrypted 
data key. It does not save the alias. Changes to the alias don't affect the KMS key used to decrypt 
your encrypted data keys.

Creating an AWS KMS keyring for encryption

You can configure each AWS KMS keyring with a single AWS KMS key or multiple AWS KMS keys 
in the same or different AWS accounts and AWS Regions. The AWS KMS keys must be symmetric 
encryption keys (SYMMETRIC_DEFAULT). You can also use a symmetric encryption multi-Region 
KMS key. As with all keyrings, you can use one or more AWS KMS keyrings in a multi-keyring.

When you create an AWS KMS keyring to encrypt data, you must specify a generator key, which 
is an AWS KMS key that is used to generate a plaintext data key and encrypt it. The data key is 
mathematically unrelated to the KMS key. Then, if you choose, you can specify additional AWS KMS 
keys that encrypt the same plaintext data key.

To decrypt the encrypted message protected by this keyring, the keyring that you use must include 
at least one of the AWS KMS keys defined in the keyring, or no AWS KMS keys. (An AWS KMS 
keyring with no AWS KMS keys is known as an AWS KMS discovery keyring.)

AWS KMS keyrings 75

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-ARN
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-ARN
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-id
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-ARN
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-name
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-name
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-ARN


AWS Encryption SDK Developer Guide

In AWS Encryption SDK language implementations other than the AWS Encryption SDK for C, all 
wrapping keys in an encryption keyring or multi-keyring must be able to encrypt the data key. If 
any wrapping key fails to encrypt, the encrypt method fails. As a result, the caller must have the
required permissions for all keys in the keyring. If you use a discovery keyring to encrypt data, 
alone or in a multi-keyring, the encrypt operation fails. The exception is the AWS Encryption SDK 
for C, where the encrypt operation ignores a standard discovery keyring, but fails if you specify a 
multi-Region discovery keyring, alone or in a multi-keyring.

The following examples create an AWS KMS keyring with one generator key and one additional 
key. These examples use key ARNs to identify the KMS keys. This is a best practice for AWS KMS 
keyrings used for encryption, and a requirement for AWS KMS keyrings used for decryption. For 
details, see Identifying AWS KMS keys in an AWS KMS keyring.

C

To identify an AWS KMS key in an encryption keyring in the AWS Encryption SDK for C, specify 
a key ARN or alias ARN. In a decryption keyring, you must use a key ARN. For details, see
Identifying AWS KMS keys in an AWS KMS keyring.

For a complete example, see string.cpp.

const char * generator_key = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"

const char * additional_key = "arn:aws:kms:us-
west-2:111122223333:key/0987dcba-09fe-87dc-65ba-ab0987654321"     

struct aws_cryptosdk_keyring *kms_encrypt_keyring =  
       Aws::Cryptosdk::KmsKeyring::Builder().Build(generator_key,{additional_key});

C# / .NET

To create an AWS KMS keyring with one or multiple AWS KMS keys in the AWS Encryption SDK 
for .NET, create a multi-keyring. The AWS Encryption SDK for .NET includes a multi-keyring just 
for AWS KMS keys.

When you specify an AWS KMS key for an encryption keyring in the AWS Encryption SDK 
for .NET, you can use any valid key identifier: a key ID, key ARN, alias name, or alias ARN. For 
help identifying the AWS KMS keys in an AWS KMS keyring, see Identifying AWS KMS keys in an 
AWS KMS keyring.

AWS KMS keyrings 76

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-ARN
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-ARN
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-arn
https://github.com/aws/aws-encryption-sdk-c/blob/master/examples/string.cpp
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-id
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-ARN
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-name
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-arn


AWS Encryption SDK Developer Guide

The following example uses version 4.x of the AWS Encryption SDK for .NET to create an 
AWS KMS keyring with a generator key and additional keys. For a complete example, see
AwsKmsMultiKeyringExample.cs.

// Instantiate the AWS Encryption SDK and material provider
var mpl = new MaterialProviders(new MaterialProvidersConfig());
var esdk =  new ESDK(new AwsEncryptionSdkConfig());

string generatorKey = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab";
List<string> additionalKey = new List<string> { "alias/exampleAlias" };

// Instantiate the keyring input object
var kmsEncryptKeyringInput = new CreateAwsKmsMultiKeyringInput
{ 
    Generator = generatorKey, 
    KmsKeyIds = additionalKey
};

var kmsEncryptKeyring = 
 materialProviders.CreateAwsKmsMultiKeyring(kmsEncryptKeyringInput);

JavaScript Browser

When you specify an AWS KMS key for an encryption keyring in the AWS Encryption SDK for 
JavaScript, you can use any valid key identifier: a key ID, key ARN, alias name, or alias ARN. For 
help identifying the AWS KMS keys in an AWS KMS keyring, see Identifying AWS KMS keys in an 
AWS KMS keyring.

For a complete example, see kms_simple.ts in the AWS Encryption SDK for JavaScript repository 
in GitHub.

const clientProvider = getClient(KMS, { credentials })
const generatorKeyId = 'arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab'
const additionalKey = 'alias/exampleAlias'

const keyring = new KmsKeyringBrowser({ 
  clientProvider,  
  generatorKeyId,  
  keyIds: [additionalKey]  
})

AWS KMS keyrings 77

https://github.com/aws/aws-encryption-sdk-dafny/tree/mainline/AwsEncryptionSDK/runtimes/net/Examples/Keyring/AwsKmsMultiKeyringExample.cs
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-id
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-ARN
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-name
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-arn
https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-browser/src/kms_simple.ts


AWS Encryption SDK Developer Guide

JavaScript Node.js

When you specify an AWS KMS key for an encryption keyring in the AWS Encryption SDK for 
JavaScript, you can use any valid key identifier: a key ID, key ARN, alias name, or alias ARN. For 
help identifying the AWS KMS keys in an AWS KMS keyring, see Identifying AWS KMS keys in an 
AWS KMS keyring.

For a complete example, see kms_simple.ts in the AWS Encryption SDK for JavaScript repository 
in GitHub.

const generatorKeyId = 'arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab' 
                             
const additionalKey = 'alias/exampleAlias'

const keyring = new KmsKeyringNode({ 
  generatorKeyId, 
  keyIds: [additionalKey]
})

Java

To create an AWS KMS keyring with one or multiple AWS KMS keys in the AWS Encryption SDK 
for Java, create a multi-keyring. The AWS Encryption SDK for Java includes a multi-keyring just 
for AWS KMS keys.

When you specify an AWS KMS key for an encryption keyring in the AWS Encryption SDK for 
Java, you can use any valid key identifier: a key ID, key ARN, alias name, or alias ARN. For help 
identifying the AWS KMS keys in an AWS KMS keyring, see Identifying AWS KMS keys in an AWS 
KMS keyring.

For a complete example, see BasicEncryptionKeyringExample.java in the AWS Encryption SDK 
for Java repository in GitHub.

 // Instantiate the AWS Encryption SDK and material providers
final AwsCrypto crypto = AwsCrypto.builder().build();
final MaterialProviders materialProviders = MaterialProviders.builder() 
            .MaterialProvidersConfig(MaterialProvidersConfig.builder().build()) 
            .build();

String generatorKey = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab";

AWS KMS keyrings 78

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-id
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-ARN
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-name
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-arn
https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-node/src/kms_simple.ts
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-id
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-ARN
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-name
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-arn
https://github.com/aws/aws-encryption-sdk-java/blob/master/src/examples/java/com/amazonaws/crypto/examples/keyrings/BasicEncryptionKeyringExample.java


AWS Encryption SDK Developer Guide

List<String> additionalKey = Collections.singletonList("alias/exampleAlias");

// Create the AWS KMS keyring
final CreateAwsKmsMultiKeyringInput keyringInput = 
 CreateAwsKmsMultiKeyringInput.builder() 
        .generator(generatorKey) 
        .kmsKeyIds(additionalKey) 
        .build();
final IKeyring kmsKeyring = matProv.CreateAwsKmsMultiKeyring(keyringInput);

Creating an AWS KMS keyring for decryption

You also specify an AWS KMS keyring when decrypting the encrypted message that the AWS 
Encryption SDK returns. If the decryption keyring specifies AWS KMS keys, the AWS Encryption SDK 
will use only those wrapping keys to decrypt the encrypted data keys in the encrypted message. 
(You can also use an AWS KMS discovery keyring, which doesn't specify any AWS KMS keys.)

When decrypting, the AWS Encryption SDK searches the AWS KMS keyring for an AWS KMS key 
that can decrypt one of the encrypted data keys. Specifically, the AWS Encryption SDK uses the 
following pattern for each encrypted data key in an encrypted message.

• The AWS Encryption SDK gets the key ARN of the AWS KMS key that encrypted the data key 
from the metadata of the encrypted message.

• The AWS Encryption SDK searches the decryption keyring for an AWS KMS key with a matching 
key ARN.

• If it finds an AWS KMS key with a matching key ARN in the keyring, the AWS Encryption SDK asks 
AWS KMS to use the KMS key to decrypt the encrypted data key.

• Otherwise, it skips to the next encrypted data key, if any.

The AWS Encryption SDK never attempts to decrypt an encrypted data key unless the key ARN 
of the AWS KMS key that encrypted that data key is included in the decryption keyring. If the 
decryption keyring doesn't include the ARNs of any of the AWS KMS keys that encrypted any of the 
data keys, the AWS Encryption SDK fails the decrypt call without ever calling AWS KMS.

Beginning in version 1.7.x, when decrypting an encrypted data key, the AWS Encryption SDK 
always passes the key ARN of the AWS KMS key to the KeyId parameter of the AWS KMS Decrypt
operation. Identifying the AWS KMS key when decrypting is an AWS KMS best practice that assures 
that you decrypt the encrypted data key with the wrapping key you intend to use.

AWS KMS keyrings 79

https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html


AWS Encryption SDK Developer Guide

A decrypt call with an AWS KMS keyring succeeds when at least one AWS KMS key in the 
decryption keyring can decrypt one of the encrypted data keys in the encrypted message. Also, 
the caller must have kms:Decrypt permission on that AWS KMS key. This behavior enables you to 
encrypt data under multiple AWS KMS keys in different AWS Regions and accounts, but provide a 
more limited decryption keyring tailored to a particular account, Region, user, group, or role.

When you specify an AWS KMS key in a decryption keyring, you must use its key ARN. Otherwise, 
the AWS KMS key is not recognized. For help finding the key ARN, see Finding the Key ID and ARN
in the AWS Key Management Service Developer Guide.

Note

If you reuse an encryption keyring for decrypting, be sure that the AWS KMS keys in the 
keyring are identified by their key ARNs.

For example, the following AWS KMS keyring includes only the additional key that was used in 
the encryption keyring. However, instead of referring to the additional key by its alias, alias/
exampleAlias, the example uses the additional key's key ARN as required by decrypt calls.

You can use this keyring to decrypt a message that was encrypted under both the generator key 
and the additional key, provided that you have permission to use the additional key to decrypt 
data.

C

const char * additional_key = "arn:aws:kms:us-
west-2:111122223333:key/0987dcba-09fe-87dc-65ba-ab0987654321"     

struct aws_cryptosdk_keyring *kms_decrypt_keyring =  
       Aws::Cryptosdk::KmsKeyring::Builder().Build(additional_key);

C# / .NET

Because this decrypt keyring includes only one AWS KMS key, the example uses the
CreateAwsKmsKeyring() method with an instance of its CreateAwsKmsKeyringInput
object. To create a AWS KMS keyring with one AWS KMS key, you can use a single-key or multi-
key keyring. For details, see Encrypting data in the AWS Encryption SDK for .NET. The following 
example uses version 4.x of the AWS Encryption SDK for .NET to create an AWS KMS keyring for 
decryption.

AWS KMS keyrings 80

https://docs.aws.amazon.com/kms/latest/developerguide/viewing-keys.html#find-cmk-id-arn


AWS Encryption SDK Developer Guide

// Instantiate the AWS Encryption SDK and material providers
var esdk =  new ESDK(new AwsEncryptionSdkConfig());
var mpl = new MaterialProviders(new MaterialProvidersConfig());

string additionalKey = "arn:aws:kms:us-
west-2:111122223333:key/0987dcba-09fe-87dc-65ba-ab0987654321";

// Instantiate a KMS keyring for one AWS KMS key.
var kmsDecryptKeyringInput = new CreateAwsKmsKeyringInput
{ 
    KmsClient = new AmazonKeyManagementServiceClient(), 
    KmsKeyId = additionalKey
};

var kmsDecryptKeyring = 
 materialProviders.CreateAwsKmsKeyring(kmsDecryptKeyringInput);

JavaScript Browser

const clientProvider = getClient(KMS, { credentials })
const additionalKey = 'arn:aws:kms:us-
west-2:111122223333:key/0987dcba-09fe-87dc-65ba-ab0987654321'

const keyring = new KmsKeyringBrowser({ clientProvider, keyIds: [additionalKey] })

JavaScript Node.js

const additionalKey = 'arn:aws:kms:us-
west-2:111122223333:key/0987dcba-09fe-87dc-65ba-ab0987654321'

const keyring = new KmsKeyringNode({ keyIds: [additionalKey] })

Java

Because this decrypt keyring includes only one AWS KMS key, the example uses the
CreateAwsKmsKeyring() method with an instance of its CreateAwsKmsKeyringInput
object. To create a AWS KMS keyring with one AWS KMS key, you can use a single-key or multi-
key keyring.

// Instantiate the AWS Encryption SDK and material providers
final AwsCrypto crypto = AwsCrypto.builder().build();
final MaterialProviders materialProviders = MaterialProviders.builder() 

AWS KMS keyrings 81



AWS Encryption SDK Developer Guide

        .MaterialProvidersConfig(MaterialProvidersConfig.builder().build()) 
        .build(); 
         
String additionalKey = "arn:aws:kms:us-
west-2:111122223333:key/0987dcba-09fe-87dc-65ba-ab0987654321";

// Create a AwsKmsKeyring
CreateAwsKmsKeyringInput kmsDecryptKeyringInput = CreateAwsKmsKeyringInput.builder() 
        .generator(additionalKey) 
        .kmsClient(KmsClient.create()) 
        .build();
IKeyring kmsKeyring = materialProviders.CreateAwsKmsKeyring(kmsDecryptKeyringInput);

You can also use an AWS KMS keyring that specifies a generator key for decrypting, such as 
the following one. When decrypting, the AWS Encryption SDK ignores the distinction between 
generator keys and additional keys. It can use any of the specified AWS KMS keys to decrypt an 
encrypted data key. The call to AWS KMS succeeds only when the caller has permission to use that 
AWS KMS key to decrypt data.

C

struct aws_cryptosdk_keyring *kms_decrypt_keyring =  
       Aws::Cryptosdk::KmsKeyring::Builder().Build(generator_key, {additional_key, 
 other_key});

C# / .NET

The following example uses version 4.x of the AWS Encryption SDK for .NET.

// Instantiate the AWS Encryption SDK and material providers
var esdk =  new ESDK(new AwsEncryptionSdkConfig());
var mpl = new MaterialProviders(new MaterialProvidersConfig());

string generatorKey = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab";

// Instantiate a KMS keyring for one AWS KMS key.
var kmsDecryptKeyringInput = new CreateAwsKmsKeyringInput
{ 
    KmsClient = new AmazonKeyManagementServiceClient(), 
    KmsKeyId = generatorKey

AWS KMS keyrings 82



AWS Encryption SDK Developer Guide

};

var kmsDecryptKeyring = 
 materialProviders.CreateAwsKmsKeyring(kmsDecryptKeyringInput);

JavaScript Browser

const clientProvider = getClient(KMS, { credentials })

const keyring = new KmsKeyringBrowser({ 
  clientProvider,  
  generatorKeyId,  
  keyIds: [additionalKey, otherKey]
})

JavaScript Node.js

const keyring = new KmsKeyringNode({ 
  generatorKeyId, 
  keyIds: [additionalKey, otherKey]
})

Java

// Instantiate the AWS Encryption SDK and material providers
final AwsCrypto crypto = AwsCrypto.builder().build();
final MaterialProviders materialProviders = MaterialProviders.builder() 
        .MaterialProvidersConfig(MaterialProvidersConfig.builder().build()) 
        .build(); 
         
String generatorKey = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab";

// Create a AwsKmsKeyring
CreateAwsKmsKeyringInput kmsDecryptKeyringInput = CreateAwsKmsKeyringInput.builder() 
        .generator(generatorKey) 
        .kmsClient(KmsClient.create()) 
        .build();
IKeyring kmsKeyring = materialProviders.CreateAwsKmsKeyring(kmsDecryptKeyringInput);

AWS KMS keyrings 83



AWS Encryption SDK Developer Guide

Unlike an encryption keyring that uses all of the specified AWS KMS keys, you can decrypt an 
encrypted message using a decryption keyring that includes AWS KMS keys that are unrelated 
to the encrypted message, and AWS KMS keys that the caller doesn't have permission to use. If a 
decrypt call to AWS KMS fails, such as when the caller doesn't have the required permission, the 
AWS Encryption SDK just skips to the next encrypted data key.

Using an AWS KMS discovery keyring

When decrypting, it's a best practice to specify the wrapping keys that the AWS Encryption SDK 
can use. To follow this best practice, use an AWS KMS decryption keyring that limits the AWS 
KMS wrapping keys to those that you specify. However, you can also create an AWS KMS discovery 
keyring, that is, an AWS KMS keyring that doesn't specify any wrapping keys.

The AWS Encryption SDK provides a standard AWS KMS discovery keyring and a discovery keyring 
for AWS KMS multi-Region keys. For information about using multi-Region keys with the AWS 
Encryption SDK, see Using multi-Region AWS KMS keys.

Because it doesn't specify any wrapping keys, a discovery keyring can't encrypt data. If you use 
a discovery keyring to encrypt data, alone or in a multi-keyring, the encrypt operation fails. The 
exception is the AWS Encryption SDK for C, where the encrypt operation ignores a standard 
discovery keyring, but fails if you specify a multi-Region discovery keyring, alone or in a multi-
keyring.

When decrypting, a discovery keyring allows the AWS Encryption SDK to ask AWS KMS to decrypt 
any encrypted data key by using the AWS KMS key that encrypted it, regardless of who owns or has 
access to that AWS KMS key. The call succeeds only when the caller has kms:Decrypt permission 
on the AWS KMS key.

Important

If you include an AWS KMS discovery keyring in a decryption multi-keyring, the discovery 
keyring overrides all KMS key restrictions specified by other keyrings in the multi-keyring. 
The multi-keyring behaves like its least restrictive keyring. An AWS KMS discovery keyring 
has no effect on encryption when used by itself or in a multi-keyring.

The AWS Encryption SDK provides an AWS KMS discovery keyring for convenience. However, we 
recommend that you use a more limited keyring whenever possible for the following reasons.

AWS KMS keyrings 84



AWS Encryption SDK Developer Guide

• Authenticity – An AWS KMS discovery keyring can use any AWS KMS key that was used to 
encrypt a data key in the encrypted message, just so the caller has permission to use that AWS 
KMS key to decrypt. This might not be the AWS KMS key that the caller intends to use. For 
example, one of the encrypted data keys might have been encrypted under a less secure AWS 
KMS key that anyone can use.

• Latency and performance – An AWS KMS discovery keyring might be perceptibly slower than 
other keyrings because the AWS Encryption SDK tries to decrypt all of the encrypted data keys, 
including those encrypted by AWS KMS keys in other AWS accounts and Regions, and AWS KMS 
keys that the caller doesn't have permission to use for decryption.

If you use a discovery keyring, we recommend that you use a discovery filter to limit the KMS 
keys that can be used to those in specified AWS accounts and partitions. Discovery filters are 
supported in versions 1.7.x and later of the AWS Encryption SDK. For help finding your account ID 
and partition, see Your AWS account identifiers and ARN format in the AWS General Reference.

The following code instantiates an AWS KMS discovery keyring with a discovery filter that limits 
the KMS keys the AWS Encryption SDK can use to those in the aws partition and 111122223333 
example account.

Before using this code, replace the example AWS account and partition values with valid values for 
your AWS account and partition. If your KMS keys are in China Regions, use the aws-cn partition 
value. If your KMS keys are in AWS GovCloud (US) Regions, use the aws-us-gov partition value. 
For all other AWS Regions, use the aws partition value.

C

For a complete example, see:  kms_discovery.cpp.

std::shared_ptr<KmsKeyring::> discovery_filter( 
    KmsKeyring::DiscoveryFilter::Builder("aws") 
        .AddAccount("111122223333") 
        .Build());

struct aws_cryptosdk_keyring *kms_discovery_keyring = 
 Aws::Cryptosdk::KmsKeyring::Builder() 
       .BuildDiscovery(discovery_filter));

C# / .NET

The following example uses version 4.x of the AWS Encryption SDK for .NET.

AWS KMS keyrings 85

https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html
https://docs.aws.amazon.com/general/latest/gr/acct-identifiers.html
https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html#arns-syntax
https://github.com/aws/aws-encryption-sdk-c/blob/master/examples/kms_discovery.cpp


AWS Encryption SDK Developer Guide

// Instantiate the AWS Encryption SDK and material providers
var esdk =  new ESDK(new AwsEncryptionSdkConfig());
var mpl = new MaterialProviders(new MaterialProvidersConfig());

List<string> account = new List<string> { "111122223333" }; 
         
// In a discovery keyring, you specify an AWS KMS client and a discovery filter,
// but not a AWS KMS key
var kmsDiscoveryKeyringInput = new CreateAwsKmsDiscoveryKeyringInput
{ 
    KmsClient = new AmazonKeyManagementServiceClient(), 
    DiscoveryFilter = new DiscoveryFilter() 
    { 
        AccountIds = account, 
        Partition = "aws" 
    }
}; 
         
var kmsDiscoveryKeyring = 
 materialProviders.CreateAwsKmsDiscoveryKeyring(kmsDiscoveryKeyringInput);

JavaScript Browser

In JavaScript, you must explicitly specify the discovery property.

const clientProvider = getClient(KMS, { credentials })

const discovery = true
const keyring = new KmsKeyringBrowser(clientProvider, { 
    discovery, 
    discoveryFilter: { accountIDs: [111122223333], partition: 'aws' }
})

JavaScript Node.js

In JavaScript, you must explicitly specify the discovery property.

const discovery = true

const keyring = new KmsKeyringNode({ 
    discovery, 
    discoveryFilter: { accountIDs: ['111122223333'], partition: 'aws' }

AWS KMS keyrings 86



AWS Encryption SDK Developer Guide

})

Java

// Create discovery filter
DiscoveryFilter discoveryFilter = DiscoveryFilter.builder() 
        .partition("aws") 
        .accountIds(111122223333) 
        .build();
// Create the discovery keyring
CreateAwsKmsMrkDiscoveryMultiKeyringInput createAwsKmsMrkDiscoveryMultiKeyringInput 
 = CreateAwsKmsMrkDiscoveryMultiKeyringInput.builder() 
        .discoveryFilter(discoveryFilter) 
        .build();
IKeyring decryptKeyring = 
 matProv.CreateAwsKmsMrkDiscoveryMultiKeyring(createAwsKmsMrkDiscoveryMultiKeyringInput);

Using an AWS KMS regional discovery keyring

An AWS KMS regional discovery keyring is a keyring that doesn't specify the ARNs of KMS keys. 
Instead, it allows the AWS Encryption SDK to decrypt using only the KMS keys in particular AWS 
Regions.

When decrypting with an AWS KMS regional discovery keyring, the AWS Encryption SDK decrypts 
any encrypted data key that was encrypted under an AWS KMS key in the specified AWS Region. To 
succeed, the caller must have kms:Decrypt permission on at least one of the AWS KMS keys in the 
specified AWS Region that encrypted a data key.

Like other discovery keyrings, the regional discovery keyring has no effect on encryption. It works 
only when decrypting encrypted messages. If you use a regional discovery keyring in a multi-
keyring that is used for encrypting and decrypting, it is effective only when decrypting. If you use a 
multi-Region discovery keyring to encrypt data, alone or in a multi-keyring, the encrypt operation 
fails.

Important

If you include an AWS KMS regional discovery keyring in a decryption multi-keyring, the 
regional discovery keyring overrides all KMS key restrictions specified by other keyrings in 

AWS KMS keyrings 87



AWS Encryption SDK Developer Guide

the multi-keyring. The multi-keyring behaves like its least restrictive keyring. An AWS KMS 
discovery keyring has no effect on encryption when used by itself or in a multi-keyring.

The regional discovery keyring in the AWS Encryption SDK for C attempts to decrypt only with 
KMS keys in the specified Region. When you use a discovery keyring in the AWS Encryption SDK 
for JavaScript and AWS Encryption SDK for .NET, you configure the Region on the AWS KMS client. 
These AWS Encryption SDK implementations don't filter KMS keys by Region, but AWS KMS will fail 
a decrypt request for KMS keys outside of the specified Region.

If you use a discovery keyring, we recommend that you use a discovery filter to limit the KMS 
keys used in decryption to those in specified AWS accounts and partitions. Discovery filters are 
supported in versions 1.7.x and later of the AWS Encryption SDK.

For example, the following code creates an AWS KMS regional discovery keyring with a discovery 
filter. This keyring limits the AWS Encryption SDK to KMS keys in account 111122223333 in the US 
West (Oregon) Region (us-west-2).

C

To view this keyring, and the create_kms_client method, in a working example, see
kms_discovery.cpp.

std::shared_ptr<KmsKeyring::DiscoveryFilter> discovery_filter( 
    KmsKeyring::DiscoveryFilter::Builder("aws") 
        .AddAccount("111122223333") 
        .Build());

struct aws_cryptosdk_keyring *kms_regional_keyring = 
 Aws::Cryptosdk::KmsKeyring::Builder() 
       
 .WithKmsClient(create_kms_client(Aws::Region::US_WEST_2)).BuildDiscovery(discovery_filter));

C# / .NET

The AWS Encryption SDK for .NET does not have a dedicated regional discovery keyring. 
However, you can use several techniques to limit the KMS keys used when decrypting to a 
particular Region.

The most efficient way to limit the Regions in a discovery keyring is to use a multi-Region-
aware discovery keyring, even if you encrypted the data using only single-Region keys. When it 

AWS KMS keyrings 88

https://github.com/aws/aws-encryption-sdk-c/blob/master/examples/kms_discovery.cpp


AWS Encryption SDK Developer Guide

encounters single-Region keys, the multi-Region-aware keyring does not use any multi-Region 
features.

The keyring returned by the CreateAwsKmsMrkDiscoveryKeyring() method filters KMS 
keys by Region before calling AWS KMS. It sends a decrypt request to AWS KMS only when 
the encrypted data key was encrypted by a KMS key in the Region specified by the Region
parameter in the CreateAwsKmsMrkDiscoveryKeyringInput object.

The following examples uses version 4.x of the AWS Encryption SDK for .NET.

// Instantiate the AWS Encryption SDK and material providers
var esdk =  new ESDK(new AwsEncryptionSdkConfig());
var mpl = new MaterialProviders(new MaterialProvidersConfig());

List<string> account = new List<string> { "111122223333" };

// Create the discovery filter
var filter = DiscoveryFilter = new DiscoveryFilter
{ 
    AccountIds = account, 
    Partition = "aws"
}; 
                                 
var regionalDiscoveryKeyringInput = new CreateAwsKmsMrkDiscoveryKeyringInput
{ 
    KmsClient = new AmazonKeyManagementServiceClient(RegionEndpoint.USWest2), 
    Region = RegionEndpoint.USWest2, 
    DiscoveryFilter = filter
};                                 

var kmsRegionalDiscoveryKeyring = 
 materialProviders.CreateAwsKmsMrkDiscoveryKeyring(regionalDiscoveryKeyringInput);

You can also limit KMS keys to a particular AWS Region by specifying a Region in your instance 
of the AWS KMS client (AmazonKeyManagementServiceClient). However, this configuration is 
less efficient and potentially more costly than using a multi-Region-aware discovery keyring. 
Instead of filtering KMS keys by Region before calling AWS KMS, the AWS Encryption SDK 
for .NET calls AWS KMS for each encrypted data key (until it decrypts one) and relies on AWS 
KMS to limit the KMS keys it uses to the specified Region.

The following example uses version 4.x of the AWS Encryption SDK for .NET.

AWS KMS keyrings 89

https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/KeyManagementService/TKeyManagementServiceClient.html


AWS Encryption SDK Developer Guide

// Instantiate the AWS Encryption SDK and material providers
var esdk =  new ESDK(new AwsEncryptionSdkConfig());
var mpl = new MaterialProviders(new MaterialProvidersConfig());

List<string> account = new List<string> { "111122223333" }; 
         
// Create the discovery filter,
// but not a AWS KMS key
var createRegionalDiscoveryKeyringInput = new CreateAwsKmsDiscoveryKeyringInput
{ 
    KmsClient = new AmazonKeyManagementServiceClient(RegionEndpoint.USWest2), 
    DiscoveryFilter = new DiscoveryFilter() 
    { 
        AccountIds = account, 
        Partition = "aws" 
    }
}; 
         
var kmsRegionalDiscoveryKeyring = 
 materialProviders.CreateAwsKmsDiscoveryKeyring(createRegionalDiscoveryKeyringInput);

JavaScript Browser

const clientProvider = getClient(KMS, { credentials })

const discovery = true
const clientProvider = limitRegions(['us-west-2'], getKmsClient)
const keyring = new KmsKeyringBrowser(clientProvider, { 
    discovery, 
    discoveryFilter: { accountIDs: ['111122223333'], partition: 'aws' }
})

JavaScript Node.js

To view this keyring, and the limitRegions and function, in a working example, see
kms_regional_discovery.ts.

const discovery = true
const clientProvider = limitRegions(['us-west-2'], getKmsClient)
const keyring = new KmsKeyringNode({ 
    clientProvider, 
    discovery, 

AWS KMS keyrings 90

https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-node/src/kms_regional_discovery.ts


AWS Encryption SDK Developer Guide

    discoveryFilter: { accountIDs: ['111122223333'], partition: 'aws' }
})

Java

// Create the discovery filter
DiscoveryFilter discoveryFilter = DiscoveryFilter.builder() 
        .partition("aws") 
        .accountIds(111122223333) 
        .build();
// Create the discovery keyring
CreateAwsKmsMrkDiscoveryMultiKeyringInput createAwsKmsMrkDiscoveryMultiKeyringInput 
 = CreateAwsKmsMrkDiscoveryMultiKeyringInput.builder() 
        .discoveryFilter(discoveryFilter) 
        .regions("us-west-2") 
        .build();
IKeyring decryptKeyring = 
 matProv.CreateAwsKmsMrkDiscoveryMultiKeyring(createAwsKmsMrkDiscoveryMultiKeyringInput);

The AWS Encryption SDK for JavaScript also exports an excludeRegions function for Node.js and 
the browser. This function creates an AWS KMS regional discovery keyring that omits AWS KMS 
keys in particular regions. The following example creates an AWS KMS regional discovery keyring 
that can use AWS KMS keys in account 111122223333 in every AWS Region except for US East (N. 
Virginia) (us-east-1).

The AWS Encryption SDK for C does not have an analogous method, but you can implement one by 
creating a custom ClientSupplier.

This example shows the code for Node.js.

const discovery = true
const clientProvider = excludeRegions(['us-east-1'], getKmsClient)
const keyring = new KmsKeyringNode({ 
    clientProvider, 
    discovery, 
    discoveryFilter: { accountIDs: [111122223333], partition: 'aws' }
})

AWS KMS keyrings 91

https://github.com/aws/aws-encryption-sdk-c/blob/master/aws-encryption-sdk-cpp/include/aws/cryptosdk/cpp/kms_keyring.h#L157


AWS Encryption SDK Developer Guide

AWS KMS Hierarchical keyrings

Important

The AWS KMS Hierarchical keyring is only supported by version 4.x of the AWS Encryption 
SDK for .NET and version 3.x of the AWS Encryption SDK for Java.

With the AWS KMS Hierarchical keyring, you can protect your cryptographic materials under a 
symmetric encryption KMS key without calling AWS KMS every time you encrypt or decrypt data. It 
is a good choice for applications that need to minimize calls to AWS KMS, and applications that can 
reuse some cryptographic materials without violating their security requirements.

The Hierarchical keyring is a cryptographic materials caching solution that reduces the number 
of AWS KMS calls by using AWS KMS protected branch keys persisted in an Amazon DynamoDB 
table, and then locally caching branch key materials used in encrypt and decrypt operations. The 
DynamoDB table serves as the branch key store that manages and protects branch keys. It stores 
the active branch key and all previous versions of the branch key. The active branch key is the most 
recent branch key version. The Hierarchical keyring uses a unique data key to encrypt each message 
and encrypts each data key with a unique wrapping key derived from the active branch key. The 
Hierarchical keyring is dependent on the hierarchy established between active branch keys and 
their derived wrapping keys.

The Hierarchical keyring typically uses each branch key version to satisfy multiple requests. But 
you control the extent to which active branch keys are reused and determine how often the active 
branch key is rotated. The active version of the branch key remains active until you rotate it. 
Previous versions of the active branch key will not be used to perform encrypt operations, but they 
can still be queried and used in decrypt operations.

When you instantiate the Hierarchical keyring, it creates a local cache. You specify a cache limit
that defines the maximum amount of time that the branch key materials are stored within the 
local cache before they expire and are evicted from the cache. The Hierarchical keyring makes one 
AWS KMS call to decrypt the branch key and assemble the branch key materials the first time a
branch-key-id is specified in an operation. Then, the branch key materials are stored in the local 
cache and reused for all encrypt and decrypt operations that specify that branch-key-id until 
the cache limit expires. Storing branch key materials in the local cache reduces AWS KMS calls. For 
example, consider a cache limit of 15 minutes. If you perform 10,000 encrypt operations within 
that cache limit, the traditional AWS KMS keyring would need to make 10,000 AWS KMS calls to 

AWS KMS Hierarchical keyrings 92



AWS Encryption SDK Developer Guide

satisfy 10,000 encrypt operations. If you have one active branch-key-id, the Hierarchical keyring 
only needs to make one AWS KMS call to satisfy 10,000 encrypt operations.

The local cache consists of two partitions, one for encrypt operations and a second for decrypt 
operations. The encrypt partition stores the branch key materials assembled from the active 
branch key and reuses them for all encrypt operations until the cache limit expires. The decrypt 
partition stores the branch key materials assembled for other branch key versions identified 
in decrypt operations. The decryption partition can store multiple active branch key materials 
versions at a time. When it's configured to use a branch key ID supplier for a multitenant 
environment, the encrypt partition can also store multiple branch key materials versions at a time. 
For more information, see Using the Hierarchical keyring in multitenant environments.

Note

All mentions of Hierarchical keyring in the AWS Encryption SDK refer to the AWS KMS 
Hierarchical keyring.

Topics

• How it works

• Prerequisites

• Create a Hierarchical keyring

• Rotate your active branch key

• Using the Hierarchical keyring in multitenant environments

How it works

The following walkthroughs describe how the Hierarchical keyring assembles encryption and 
decryption materials, and the different calls that the keyring makes for encrypt and decrypt 
operations. For technical details on the wrapping key derivation and plaintext data key encryption 
processes, see AWS KMS Hierarchical keyring technical details.

Encrypt and sign

The following walkthrough describes how the Hierarchical keyring assembles encryption materials 
and derives a unique wrapping key.

AWS KMS Hierarchical keyrings 93



AWS Encryption SDK Developer Guide

1. The encryption method asks the Hierarchical keyring for encryption materials. The keyring 
generates a plaintext data key, then checks to see if there are valid branch materials in the 
local cache to generate the wrapping key. If there are valid branch key materials, the keyring 
proceeds to Step 4.

2. If there are no valid branch key materials, the Hierarchical keyring queries the branch key store 
for the active branch key.

a. The branch key store calls AWS KMS to decrypt the active branch key and returns the 
plaintext active branch key. Data identifying the active branch key is serialized to provide 
additional authenticated data (AAD) in the decrypt call to AWS KMS.

b. The branch key store returns the plaintext branch key and data that identifies it, such as 
the branch key version.

3. The Hierarchical keyring assembles branch key materials (the plaintext branch key and branch 
key version) and stores a copy of them in the local cache.

4. The Hierarchical keyring derives a unique wrapping key from the plaintext branch key and a 
16-byte random salt. It uses the derived wrapping key to encrypt a copy of the plaintext data 
key.

The encryption method uses the encryption materials to encrypt the data. For more information, 
see How the AWS Encryption SDK encrypts data.

Decrypt and verify

The following walkthrough describes how the Hierarchical keyring assembles decryption materials 
and decrypts the encrypted data key.

1. The decryption method identifies the encrypted data key from the encrypted message, and 
passes it to the Hierarchical keyring.

2. The Hierarchical keyring deserializes data identifying the encrypted data key, including the 
branch key version, the 16-byte salt, and other information describing how the data key was 
encrypted.

For more information, see AWS KMS Hierarchical keyring technical details.

3. The Hierarchical keyring checks to see if there are valid branch key materials in the local cache 
that match the branch key version identified in Step 2. If there are valid branch key materials, 
the keyring proceeds to Step 6.

AWS KMS Hierarchical keyrings 94



AWS Encryption SDK Developer Guide

4. If there are no valid branch key materials, the Hierarchical keyring queries the branch key store 
for the branch key that matches the branch key version identified in Step 2.

a. The branch key store calls AWS KMS to decrypt the branch key and returns the plaintext 
active branch key. Data identifying the active branch key is serialized to provide additional 
authenticated data (AAD) in the decrypt call to AWS KMS.

b. The branch key store returns the plaintext branch key and data that identifies it, such as 
the branch key version.

5. The Hierarchical keyring assembles branch key materials (the plaintext branch key and branch 
key version) and stores a copy of them in the local cache.

6. The Hierarchical keyring uses the assembled branch key materials and the 16-byte salt 
identified in Step 2 to reproduce the unique wrapping key that encrypted the data key.

7. The Hierarchical keyring uses the reproduced wrapping key to decrypt the data key and returns 
the plaintext data key.

The decryption method uses the decryption materials and plaintext data key to decrypt the 
encrypted message. For more information , see How the AWS Encryption SDK decrypts an 
encrypted message.

Prerequisites

The AWS Encryption SDK doesn't require an AWS account and it doesn't depend on any AWS 
service. However, the Hierarchical keyring depends on AWS KMS and Amazon DynamoDB.

To use a Hierarchical keyring, you need a symmetric encryption AWS KMS key with kms:Decrypt
permissions. You can also use a symmetric encryption multi-Region key. For detailed information 
about permissions for AWS KMS keys, see Authentication and access control in the AWS Key 
Management Service Developer Guide.

Before you can create and use a Hierarchical keyring, you must create your branch key store and 
populate it with your first active branch key.

Step 1: Configure a new key store service

The key store service provides several API operations, such as CreateKeyStore and
CreateKey, to help you assemble the Hierarchical keyring prerequisites and manage your 
branch key store.

AWS KMS Hierarchical keyrings 95

https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html
https://docs.aws.amazon.com/kms/latest/developerguide/multi-region-keys-overview.html
https://docs.aws.amazon.com/kms/latest/developerguide/control-access.html


AWS Encryption SDK Developer Guide

The following example creates a key store service. You must specify a DynamoDB table name 
to serve as the name of your branch key store, a logical name for the branch key store, and the 
KMS key ARN that identifies the KMS key that will protect your branch keys.

The logical key store name is cryptographically bound to all data stored in the table to simplify 
DynamoDB restore operations. The logical key store name can be the same as your DynamoDB 
table name, but it does not have to be. We recommend specifying your DynamoDB table name 
as the logical table name when you first configure your key store service. You must always 
specify the same logical table name. In the event that your branch key store name changes 
after restoring your DynamoDB table from a backup, the logical key store name maps to the 
DynamoDB table name you specify to ensure that the Hierarchical keyring can still access your 
branch key store.

Note

The logical key store name is included in the encryption context of all key store service 
API operations that call AWS KMS. The encryption context is not secret, its values—
including the logical key store name—appear in plaintext in AWS CloudTrail logs.

C# / .NET

var kmsConfig = new KMSConfiguration { KmsKeyArn = kmsKeyArn };
var keystoreConfig = new KeyStoreConfig
{ 
    KmsClient = new AmazonKeyManagementServiceClient(), 
    KmsConfiguration = kmsConfig, 
    DdbTableName = keyStoreName, 
    DdbClient = new AmazonDynamoDBClient(), 
    LogicalKeyStoreName = logicalKeyStoreName
};
var keystore = new KeyStore(keystoreConfig);

Java

final KeyStore keystore = KeyStore.builder().KeyStoreConfig( 
                KeyStoreConfig.builder() 
                        .ddbClient(DynamoDbClient.create()) 
                        .ddbTableName(keyStoreName) 
                        .logicalKeyStoreName(logicalKeyStoreName) 

AWS KMS Hierarchical keyrings 96

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Restore.Tutorial.html


AWS Encryption SDK Developer Guide

                        .kmsClient(KmsClient.create()) 
                        .kmsConfiguration(KMSConfiguration.builder() 
                                .kmsKeyArn(kmsKeyArn) 
                                .build()) 
                        .build()).build();

Step 2: Call CreateKeyStore to create a branch key store

The following operation creates the branch key store that will persist and protect your branch 
keys.

C# / .NET

var createKeyStoreOutput = keystore.CreateKeyStore(new CreateKeyStoreInput());

Java

keystore.CreateKeyStore(CreateKeyStoreInput.builder().build());

The CreateKeyStore operation creates a DynamoDB table with the table name you specified 
in Step 1 and the following required values.

Partition key Sort key

Base table branch-key-id type

Note

You can manually create the DynamoDB table that serves as your branch key store 
instead of using the CreateKeyStore operation. If you choose to manually create the 
branch key store, you must specify the following string values for the partition and sort 
keys:

• Partition key: branch-key-id

• Sort key: type

AWS KMS Hierarchical keyrings 97



AWS Encryption SDK Developer Guide

Step 3: Call CreateKey to create a new active branch key

The following operation creates a new active branch key using the KMS key you specified in
Step 1, and adds the active branch key to the DynamoDB table you created in Step 2.

When you call CreateKey, you can choose to specify the following optional values.

• Branch key identifier: defines a custom branch-key-id.

To create a custom branch-key-id, you must also include an additional encryption context 
with the encryptionContext parameter.

• Encryption context: defines an optional set of non-secret key–value pairs that 
provides additional authenticated data (AAD) in the encryption context included in the
kms:GenerateDataKeyWithoutPlaintext call.

This additional encryption context is displayed with the aws-crypto-ec: prefix.

C# / .NET

var additionalEncryptionContext = new Dictionary<string, string>();
additionalEncryptionContext.Add("Additional Encryption Context for", "custom 
 branch key id"); 
         
var branchKeyId = keystore.CreateKey(new CreateKeyInput
{ 
    BranchKeyIdentifier = "custom-branch-key-id", // OPTIONAL 
    EncryptionContext = additionalEncryptionContext // OPTIONAL
});

Java

final Map<String, String> additionalEncryptionContext = 
 Collections.singletonMap("Additional Encryption Context for", 
        "custom branch key id"); 
             
final String BranchKey = keystore.CreateKey( 
        CreateKeyInput.builder() 
                .branchKeyIdentifier(custom-branch-key-id) //OPTIONAL 
                .encryptionContext(additionalEncryptionContext) //OPTIONAL 
                .build()).branchKeyIdentifier();

First, the CreateKey operation generates the following values.

AWS KMS Hierarchical keyrings 98

https://docs.aws.amazon.com/crypto/latest/userguide/cryptography-concepts.html#term-aad
https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKeyWithoutPlaintext.html


AWS Encryption SDK Developer Guide

• A version 4 Universally Unique Identifier (UUID) for the branch-key-id (unless you specified 
a custom branch-key-id).

• A version 4 UUID for the branch key version

• A timestamp in the ISO 8601 date and time format in Coordinated Universal Time (UTC).

Then, the CreateKey operation calls kms:GenerateDataKeyWithoutPlaintext using the 
following request.

{ 
   "EncryptionContext": {  
      "branch-key-id" : "branch-key-id", 
      "type" : "type", 
      "create-time" : "timestamp", 
      "logical-key-store-name" : "the logical table name for your branch key store", 
      "kms-arn" : the KMS key ARN, 
      "hierarchy-version" : "1", 
      "aws-crypto-ec:contextKey": "contextValue" 
   }, 
   "KeyId": "the KMS key ARN you specified in Step 1", 
   "NumberOfBytes": "32"
}

Next, the CreateKey operation calls kms:ReEncrypt to create an active record for the branch 
key by updating the encryption context.

Last, the CreateKey operation calls ddb:TransactWriteItems to write a new item that will 
persist the branch key in the table you created in Step 2. The item has the following attributes.

{ 
    "branch-key-id" : branch-key-id, 
    "type" : "branch:ACTIVE", 
    "enc" : the branch key returned by the GenerateDataKeyWithoutPlaintext call, 
    "version": "branch:version:the branch key version UUID", 
    "create-time" : "timestamp", 
    "kms-arn" : "the KMS key ARN you specified in Step 1", 
    "hierarchy-version" : "1", 
    "aws-crypto-ec:contextKey": "contextValue"
}

AWS KMS Hierarchical keyrings 99

https://www.ietf.org/rfc/rfc4122.txt
https://www.iso.org/iso-8601-date-and-time-format.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKeyWithoutPlaintext.html
https://docs.aws.amazon.com/kms/latest/APIReference/AAPI_ReEncrypt.html
https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_TransactWriteItems.html


AWS Encryption SDK Developer Guide

Create a Hierarchical keyring

To initialize the Hierarchical keyring, you must provide the following values:

• A branch key store name

The name of the DynamoDB table you created to serve as your branch key store.

•

A cache limit time to live (TTL)

The amount of time in seconds that a branch key materials entry within the local cache can be 
used before it expires. This value must be greater than zero. When the cache limit TTL expires, 
the entry is evicted from the local cache.

• A branch key identifier

The branch-key-id that identifies the active branch key in your branch key store.

Note

To initialize the Hierarchical keyring for multitenant use, you must specify a branch 
key ID supplier instead of a branch-key-id. For more information, see Using the 
Hierarchical keyring in multitenant environments.

• (Optional) A cache

If you want to customize your cache type or the number of branch key materials entries that can 
be stored in the local cache, specify the cache type and entry capacity when you initialize the 
keyring.

Cache type defines the threading model. The Hierarchical keyring provides three cache types that 
support multitenant environments: Default, MultiThreaded, StormTracking.

If you do not specify a cache, the Hierarchical keyring automatically uses the Default cache type 
and sets the entry capacity to 1000.

Default (Recommended)

For most users, the Default cache fulfills their threading requirements. The Default cache is 
designed to support heavily multithreaded environments. When a branch key materials entry 
expires, the Default cache prevents multiple threads from calling AWS KMS and Amazon 

AWS KMS Hierarchical keyrings 100



AWS Encryption SDK Developer Guide

DynamoDB by notifying one thread that the branch key materials entry is going to expire 10 
seconds in advance. This ensures that only one thread sends a request to AWS KMS to refresh 
the cache.

To initialize your Hierarchical keyring with a Default cache, specify the following value:

• Entry capacity: limits the number of branch key materials entries that can be stored in the 
local cache.

C# / .NET

CacheType defaultCache = new CacheType
{ 
    Default = new DefaultCache{EntryCapacity = 100}
};

Java

.cache(CacheType.builder() 
        .Default(DefaultCache.builder() 
        .entryCapacity(100) 
        .build())

The Default and StormTracking caches support the same threading model, but you only need 
to specify the entry capacity to initialize the Hierarchical keyring with the Default cache. For 
more granular cache customizations, use the StormTracking cache.

MultiThreaded

The MultiThreaded cache is safe to use in multithreaded environments, but it does not 
provide any functionality to minimize AWS KMS or Amazon DynamoDB calls. As a result, 
when a branch key materials entry expires, all threads will be notified at the same time. This 
can result in multiple AWS KMS calls to refresh the cache.

To initialize your Hierarchical keyring with a MultiThreaded cache, specify the following 
values:

• Entry capacity: limits the number of branch key materials entries that can be stored in the 
local cache.

• Entry pruning tail size: defines the number of entries to prune if the entry capacity is 
reached.

AWS KMS Hierarchical keyrings 101



AWS Encryption SDK Developer Guide

C# / .NET

CacheType multithreadedCache = new CacheType
{ 
    MultiThreaded = new MultiThreadedCache 
    { 
        EntryCapacity = 100, 
        EntryPruningTailSize = 1
    }
};

Java

.cache(CacheType.builder() 
        .MultiThreaded(MultiThreadedCache.builder() 
        .entryCapacity(100) 
        .entryPruningTailSize(1)                                         
        .build())

StormTracking

The StormTracking cache is designed to support heavily multithreaded environments. When 
a branch key materials entry expires, the StormTracking cache prevents multiple threads 
from calling AWS KMS and Amazon DynamoDB by notifying one thread that the branch 
key materials entry is going to expire in advance. This ensures that only one thread sends a 
request to AWS KMS to refresh the cache.

To initialize your Hierarchical keyring with a StormTracking cache, specify the following 
values:

• Entry capacity: limits the number of branch key materials entries that can be stored in the 
local cache.

• Entry pruning tail size: defines the number of branch key materials entries to prune at a 
time.

Default value: 1 entry

• Grace period: defines the number of seconds before expiration that an attempt to refresh 
branch key materials is made.

Default value: 10 seconds

AWS KMS Hierarchical keyrings 102



AWS Encryption SDK Developer Guide

• Grace interval: defines the number of seconds between attempts to refresh the branch key 
materials.

Default value: 1 second

• Fan out: defines the number of simultaneous attempts that can be made to refresh the 
branch key materials.

Default value: 20 attempts

• In flight time to live (TTL): defines the number of seconds until an attempt to refresh the 
branch key materials times out. Any time the cache returns NoSuchEntry in response to a
GetCacheEntry, that branch key is considered to be in flight until the same key is written 
with a PutCache entry.

Default value: 20 seconds

• Sleep: defines the number of seconds that a thread should sleep if the fanOut is exceeded.

Default value: 20 milliseconds

C# / .NET

CacheType stormTrackingCache = new CacheType
{ 
    StormTracking = new StormTrackingCache 
    { 
        EntryCapacity = 100, 
        EntryPruningTailSize = 1, 
        FanOut = 20, 
        GraceInterval = 1, 
        GracePeriod = 10, 
        InFlightTTL = 20, 
        SleepMilli = 20
    }
};

Java

.cache(CacheType.builder() 
        .MultiThreaded(MultiThreadedCache.builder() 
        .entryCapacity(100) 
        .entryPruningTailSize(1) 
        .gracePeriod(10) 

AWS KMS Hierarchical keyrings 103



AWS Encryption SDK Developer Guide

        .graceInterval(1) 
        .fanOut(20)  
        .inFlightTTL(20) 
        .sleepMilli(20)                                         
        .build())

• (Optional) A list of Grant Tokens

If you control access to the KMS key in your Hierarchical keyring with grants, you must provide all 
necessary grant tokens when you initialize the keyring.

The following example initializes a Hierarchical keyring with a cache limit TLL of 600 seconds, and 
an entry capacity of 1000.

C# / .NET

// Instantiate the AWS Encryption SDK and material providers  
var mpl = new MaterialProviders(new MaterialProvidersConfig());
var esdk =  new ESDK(new AwsEncryptionSdkConfig());

// Instantiate the keyring
var createKeyringInput = new CreateAwsKmsHierarchicalKeyringInput
{ 
    KeyStore = branchKeyStoreName, 
    BranchKeyId = branch-key-id, 
    Cache = new CacheType { Default = new DefaultCache{EntryCapacity = 1000} }, 
    TtlSeconds = 600
};

Java

final MaterialProviders matProv = MaterialProviders.builder() 
        .MaterialProvidersConfig(MaterialProvidersConfig.builder().build()) 
        .build();
final CreateAwsKmsHierarchicalKeyringInput keyringInput = 
 CreateAwsKmsHierarchicalKeyringInput.builder() 
        .keyStore(branchKeyStoreName) 
        .branchKeyId(branch-key-id) 
        .ttlSeconds(600) 
        .cache(CacheType.builder() //OPTIONAL 
                .Default(DefaultCache.builder() 
                .entryCapacity(1000) 

AWS KMS Hierarchical keyrings 104

https://docs.aws.amazon.com/kms/latest/developerguide/grants.html


AWS Encryption SDK Developer Guide

                .build()) 
        .build();
final Keyring hierarchicalKeyring = 
 matProv.CreateAwsKmsHierarchicalKeyring(keyringInput);

Rotate your active branch key

There can only be one active version for each branch key at a time. The Hierarchical keyring 
typically uses each active branch key version to satisfy multiple requests. But you control the 
extent to which active branch keys are reused and determine how often the active branch key is 
rotated.

Branch keys are not used to encrypt plaintext data keys. They are used to derive the unique 
wrapping keys that encrypt plaintext data keys. The wrapping key derivation process produces 
a unique 32 byte wrapping key with 28 bytes of randomness. This means that a branch key can 
derive more than 79 octillion, or 296, unique wrapping keys before cryptographic wear-out occurs. 
Despite this very low exhaustion risk, you might be required to rotate your active branch keys due 
to business or contract rules or government regulations.

The active version of the branch key remains active until you rotate it. Previous versions of the 
active branch key will not be used to perform encrypt operations and cannot be used to derive new 
wrapping keys. But they can still be queried and provide wrapping keys to decrypt the data keys 
that they encrypted while active.

Use the key store service VersionKey operation to rotate your active branch key. When you rotate 
the active branch key, a new branch key is created to replace the previous version. The branch-
key-id does not change when you rotate the active branch key. You must specify the branch-
key-id that identifies the current active branch key when you call VersionKey.

C# / .NET

 keystore.VersionKey(new VersionKeyInput{BranchKeyIdentifier = branchKeyId});

Java

keystore.VersionKey( 
    VersionKeyInput.builder() 
        .branchKeyIdentifier("branch-key-id") 
        .build()

AWS KMS Hierarchical keyrings 105



AWS Encryption SDK Developer Guide

);

Using the Hierarchical keyring in multitenant environments

You can use the key hierarchy established between active branch keys and their derived wrapping 
keys to support multitenant environments by creating a branch key for each tenant in your 
environment. The Hierarchical keyring then encrypts all of the data for a given tenant with their 
distinct branch key. This enables you to isolate tenant data by branch key.

Each tenant has their own branch key that is defined by a unique branch-key-id. There can only 
be one active version of each branch-key-id at a time.

Before you can initialize your Hierarchical keyring for multitenant use, you must create a branch 
key for each tenant and create a branch key ID supplier. Use the branch key ID supplier to create a 
friendly name for your branch-key-ids to make it easier to recognize the correct branch-key-
id for a tenant. For example, the friendly name enables you to refer to a branch key as tenant1
instead of b3f61619-4d35-48ad-a275-050f87e15122.

For decrypt operations, you can either statically configure a single Hierarchical keyring to restrict 
decryption to a single tenant, or you can use the branch key ID supplier to identify which tenant is 
responsible for decrypting a message.

First, follow Step 1 and Step 2 of the Prerequisites procedures. Then, use the following procedures 
to create a branch key for each tenant, create a branch key ID supplier, and initialize your 
Hierarchical keyring for multitenant use.

Step 1: Create a branch key for each tenant in your environment

Call CreateKey for each tenant.

The following operation creates two branch keys using the KMS key you specified when creating 
your key store service, and adds the branch keys to the DynamoDB table you created to serve as 
your branch key store. The same KMS key must protect all branch keys.

C# / .NET

var branchKeyId1 = keystore.CreateKey(new CreateKeyInput());
var branchKeyId2 = keystore.CreateKey(new CreateKeyInput());

AWS KMS Hierarchical keyrings 106



AWS Encryption SDK Developer Guide

Java

CreateKeyOutput branchKeyId1 = 
 keystore.CreateKey(CreateKeyInput.builder().build());
CreateKeyOutput branchKeyId2 = 
 keystore.CreateKey(CreateKeyInput.builder().build());

Step 2: Create a branch key ID supplier

The following example creates a branch key ID supplier.

C# / .NET

var branchKeySupplier = 
    new ExampleBranchKeySupplier(branchKeyId1.BranchKeyIdentifier, 
 branchKeyId2.BranchKeyIdentifier);

Java

IBranchKeyIdSupplier branchKeyIdSupplier = new ExampleBranchKeyIdSupplier( 
        branchKeyId1.branchKeyIdentifier(), branchKeyId2.branchKeyIdentifier());

Step 3: Initialize your Hierarchical keyring with the branch key ID supplier

To initialize the Hierarchical keyring you must provide the following values:

• A branch key store name

• A cache limit time to live (TTL)

• A branch key ID supplier

• (Optional) A cache

If you want to customize your cache type or the number of branch key materials entries that 
can be stored in the local cache, specify the cache type and entry capacity when you initialize 
the keyring.

Cache type defines the threading model. The Hierarchical keyring provides three cache types 
that support multitenant environments: Default, MultiThreaded, StormTracking.

If you do not specify a cache, the Hierarchical keyring automatically uses the Default cache 
type and sets the entry capacity to 1000.

AWS KMS Hierarchical keyrings 107



AWS Encryption SDK Developer Guide

Default (Recommended)

For most users, the Default cache fulfills their threading requirements. The Default cache 
is designed to support heavily multithreaded environments. When a branch key materials 
entry expires, the Default cache prevents multiple threads from calling AWS KMS and 
Amazon DynamoDB by notifying one thread that the branch key materials entry is going 
to expire 10 seconds in advance. This ensures that only one thread sends a request to AWS 
KMS to refresh the cache.

To initialize your Hierarchical keyring with a Default cache, specify the following value:

• Entry capacity: limits the number of branch key materials entries that can be stored in 
the local cache.

C# / .NET

CacheType defaultCache = new CacheType
{ 
    Default = new DefaultCache{EntryCapacity = 100}
};

Java

.cache(CacheType.builder() 
        .Default(DefaultCache.builder() 
        .entryCapacity(100) 
        .build())

The Default and StormTracking caches support the same threading model, but you only 
need to specify the entry capacity to initialize the Hierarchical keyring with the Default 
cache. For more granular cache customizations, use the StormTracking cache.

MultiThreaded

The MultiThreaded cache is safe to use in multithreaded environments, but it does not 
provide any functionality to minimize AWS KMS or Amazon DynamoDB calls. As a result, 
when a branch key materials entry expires, all threads will be notified at the same time. 
This can result in multiple AWS KMS calls to refresh the cache.

To initialize your Hierarchical keyring with a MultiThreaded cache, specify the following 
values:

AWS KMS Hierarchical keyrings 108



AWS Encryption SDK Developer Guide

• Entry capacity: limits the number of branch key materials entries that can be stored in 
the local cache.

• Entry pruning tail size: defines the number of entries to prune if the entry capacity is 
reached.

C# / .NET

CacheType multithreadedCache = new CacheType
{ 
    MultiThreaded = new MultiThreadedCache 
    { 
        EntryCapacity = 100, 
        EntryPruningTailSize = 1
    }
};

Java

.cache(CacheType.builder() 
        .MultiThreaded(MultiThreadedCache.builder() 
        .entryCapacity(100) 
        .entryPruningTailSize(1)                                         
        .build())

StormTracking

The StormTracking cache is designed to support heavily multithreaded environments. 
When a branch key materials entry expires, the StormTracking cache prevents multiple 
threads from calling AWS KMS and Amazon DynamoDB by notifying one thread that the 
branch key materials entry is going to expire in advance. This ensures that only one thread 
sends a request to AWS KMS to refresh the cache.

To initialize your Hierarchical keyring with a StormTracking cache, specify the following 
values:

• Entry capacity: limits the number of branch key materials entries that can be stored in 
the local cache.

• Entry pruning tail size: defines the number of branch key materials entries to prune at 
a time.

Default value: 1 entry
AWS KMS Hierarchical keyrings 109



AWS Encryption SDK Developer Guide

• Grace period: defines the number of seconds before expiration that an attempt to 
refresh branch key materials is made.

Default value: 10 seconds

• Grace interval: defines the number of seconds between attempts to refresh the branch 
key materials.

Default value: 1 second

• Fan out: defines the number of simultaneous attempts that can be made to refresh the 
branch key materials.

Default value: 20 attempts

• In flight time to live (TTL): defines the number of seconds until an attempt to refresh 
the branch key materials times out. Any time the cache returns NoSuchEntry in 
response to a GetCacheEntry, that branch key is considered to be in flight until the 
same key is written with a PutCache entry.

Default value: 20 seconds

• Sleep: defines the number of seconds that a thread should sleep if the fanOut is 
exceeded.

Default value: 20 milliseconds

C# / .NET

CacheType stormTrackingCache = new CacheType
{ 
    StormTracking = new StormTrackingCache 
    { 
        EntryCapacity = 100, 
        EntryPruningTailSize = 1, 
        FanOut = 20, 
        GraceInterval = 1, 
        GracePeriod = 10, 
        InFlightTTL = 20, 
        SleepMilli = 20
    }
};

AWS KMS Hierarchical keyrings 110



AWS Encryption SDK Developer Guide

Java

.cache(CacheType.builder() 
        .MultiThreaded(MultiThreadedCache.builder() 
        .entryCapacity(100) 
        .entryPruningTailSize(1) 
        .gracePeriod(10) 
        .graceInterval(1) 
        .fanOut(20)  
        .inFlightTTL(20) 
        .sleepMilli(20)                                         
        .build())

• (Optional) A list of Grant Tokens

If you control access to the KMS key in your Hierarchical keyring with grants, you must 
provide all necessary grant tokens when you initialize the keyring.

The following example initializes a Hierarchical keyring with the branch key ID supplier created 
in Step 2, a cache limit TLL of 600 seconds, and an entry capacity of 1000.

C# / .NET

var createKeyringInput = new CreateAwsKmsHierarchicalKeyringInput
{ 
    KeyStore = keystore, 
    BranchKeyIdSupplier = branchKeySupplier, 
    Cache = new CacheType { Default = new DefaultCache{EntryCapacity = 1000} },  
    TtlSeconds = 600
};
var keyring = mpl.CreateAwsKmsHierarchicalKeyring(createKeyringInput);

Java

final MaterialProviders matProv = MaterialProviders.builder() 
        .MaterialProvidersConfig(MaterialProvidersConfig.builder().build()) 
        .build();
final CreateAwsKmsHierarchicalKeyringInput keyringInput = 
 CreateAwsKmsHierarchicalKeyringInput.builder() 
        .keyStore(branchKeyStoreName) 
        .branchKeyIdSupplier(branchKeyIdSupplier) 
        .ttlSeconds(600) 
        .cache(CacheType.builder() //OPTIONAL 

AWS KMS Hierarchical keyrings 111

https://docs.aws.amazon.com/kms/latest/developerguide/grants.html


AWS Encryption SDK Developer Guide

                .Default(DefaultCache.builder() 
                        .entryCapacity(100) 
                        .build()) 
                .build();
final IKeyring hierarchicalKeyring = 
 matProv.CreateAwsKmsHierarchicalKeyring(keyringInput);

Step 4: Create friendly names for each branch key

The following example creates friendly names for the two branch keys created in Step 1. The 
AWS Encryption SDK uses encryption contexts to map the friendly name that you define to the 
associated branch-key-id.

C# / .NET

// Create encryption contexts for the two branch keys created in Step 1
var encryptionContextA = new Dictionary<string, string>()
{ 
    // We will encrypt with branchKeyTenantA 
    {"tenant", "TenantA"}, 
    {"encryption", "context"}, 
    {"is not", "secret"}, 
    {"but adds", "useful metadata"}, 
    {"that can help you", "be confident that"}, 
    {"the data you are handling", "is what you think it is"}
};
var encryptionContextB = new Dictionary<string, string>()
{ 
    // We will encrypt with branchKeyTenantB 
    {"tenant", "TenantB"}, 
    {"encryption", "context"}, 
    {"is not", "secret"}, 
    {"but adds", "useful metadata"}, 
    {"that can help you", "be confident that"}, 
    {"the data you are handling", "is what you think it is"}
}; 
         
// Instantiate the AWS Encryption SDK  
var esdk =  new ESDK(new AwsEncryptionSdkConfig());

var encryptInputA = new EncryptInput
{ 
    Plaintext = plaintext, 

AWS KMS Hierarchical keyrings 112



AWS Encryption SDK Developer Guide

    Keyring = keyring, 
    // Encrypt with branchKeyId1 
    EncryptionContext = encryptionContextA
};

var encryptInputB = new EncryptInput
{ 
    Plaintext = plaintext, 
    Keyring = keyring, 
    // Encrypt with branchKeyId2 
    EncryptionContext = encryptionContextB
}; 
         
var encryptOutput = esdk.Encrypt(encryptInputA);
encryptOutput = esdk.Encrypt(encryptInputB); 
  
// Use the encryption contexts to define friendly names for each branch key    
public class ExampleBranchKeySupplier : IBranchKeyIdSupplier
{ 
    private string branchKeyTenantA; 
    private string branchKeyTenantB; 

    public ExampleBranchKeySupplier(string branchKeyTenantA, string 
 branchKeyTenantB) 
    { 
        this.branchKeyTenantA = branchKeyTenantA; 
        this.branchKeyTenantB = branchKeyTenantB; 
    } 
         
    public GetBranchKeyIdOutput GetBranchKeyId(GetBranchKeyIdInput input) 
    { 
        Dictionary<string, string> encryptionContext = input.EncryptionContext; 
             
        if (!encryptionContext.ContainsKey("tenant")) 
        { 
            throw new Exception("EncryptionContext invalid, does not contain 
 expected tenant key value pair."); 
        } 

        string tenant = encryptionContext["tenant"]; 
        string branchkeyId; 

        if (tenant.Equals("TenantA")) 
        { 

AWS KMS Hierarchical keyrings 113



AWS Encryption SDK Developer Guide

            GetBranchKeyIdOutput output = new GetBranchKeyIdOutput(); 
            output.BranchKeyId = branchKeyTenantA; 
            return output; 
        } else if (tenant.Equals("TenantB")) 
        { 
            GetBranchKeyIdOutput output = new GetBranchKeyIdOutput(); 
            output.BranchKeyId = branchKeyTenantB; 
            return output; 
        } 
        else 
        { 
            throw new Exception("Item does not have a valid tenantID."); 
        } 
    }
}

Java

// Create encryption context for branchKeyTenantA
Map<String, String> encryptionContextA = new HashMap<>();
encryptionContextA.put("tenant", "TenantA");
encryptionContextA.put("encryption", "context");
encryptionContextA.put("is not", "secret");
encryptionContextA.put("but adds", "useful metadata");
encryptionContextA.put("that can help you", "be confident that");
encryptionContextA.put("the data you are handling", "is what you think it is"); 
                                             
// Create encryption context for branchKeyTenantB
Map<String, String> encryptionContextB = new HashMap<>();
encryptionContextB.put("tenant", "TenantB");
encryptionContextB.put("encryption", "context");
encryptionContextB.put("is not", "secret");
encryptionContextB.put("but adds", "useful metadata");
encryptionContextB.put("that can help you", "be confident that");
encryptionContextB.put("the data you are handling", "is what you think it is");   
                                           
                                             
// Instantiate the AWS Encryption SDK  
final AwsCrypto crypto = AwsCrypto.builder().build();

final CryptoResult<byte[], ?> encryptResultA = crypto.encryptData(keyring, 
 plaintext, encryptionContextA);

AWS KMS Hierarchical keyrings 114



AWS Encryption SDK Developer Guide

final CryptoResult<byte[], ?> encryptResultB = crypto.encryptData(keyring, 
 plaintext, encryptionContextB); 
                                             
// Use the encryption contexts to define friendly names for each branch key
public class ExampleBranchKeyIdSupplier implements IBranchKeyIdSupplier { 
    private static String branchKeyIdForTenantA; 
    private static String branchKeyIdForTenantB; 

    public ExampleBranchKeyIdSupplier(String tenant1Id, String tenant2Id) { 
        this.branchKeyIdForTenantA = tenant1Id; 
        this.branchKeyIdForTenantB = tenant2Id; 
    } 

    @Override 
    public GetBranchKeyIdOutput GetBranchKeyId(GetBranchKeyIdInput input) { 

        Map<String, String> encryptionContext = input.encryptionContext(); 

        if (!encryptionContext.containsKey("tenant")) 
        { 
            throw new IllegalArgumentException("EncryptionContext invalid, does 
 not contain expected tenant key value pair."); 
        } 

        String tenantKeyId = encryptionContext.get("tenant"); 
        String branchKeyId; 

        if (tenantKeyId.equals("TenantA")) { 
            branchKeyId = branchKeyIdForTenantA; 
        } else if (tenantKeyId.equals("TenantB")) { 
            branchKeyId = branchKeyIdForTenantB; 
        } else { 
            throw new IllegalArgumentException("Item does not contain valid 
 tenant ID"); 
        } 
         
        return GetBranchKeyIdOutput.builder().branchKeyId(branchKeyId).build(); 
    }
}

AWS KMS Hierarchical keyrings 115



AWS Encryption SDK Developer Guide

AWS KMS ECDH keyrings

Important

The AWS KMS ECDH keyring is only available with version 4.x of the AWS Encryption SDK 
for .NET and version 3.x of the AWS Encryption SDK for Java. The AWS KMS ECDH keyring is 
introduced in version 1.5.0 of the Material Providers Library.

An AWS KMS ECDH keyring uses asymmetric key agreement AWS KMS keys to derive a shared 
symmetric wrapping key between two parties. First, the keyring uses the Elliptic Curve Diffie-
Hellman (ECDH) key agreement algorithm to derive a shared secret from the private key in the 
sender's KMS key pair and the recipient's public key. Then, the keyring uses the shared secret 
to derive the shared wrapping key that protects your data encryption keys. The key derivation 
function that the AWS Encryption SDK uses (KDF_CTR_HMAC_SHA384) to derive the shared 
wrapping key conforms to NIST recommendations for key derivation.

The key derivation function returns 64 bytes of keying material. To ensure that both parties use 
the correct keying material, the AWS Encryption SDK uses the first 32 bytes as a commitment key 
and the last 32 bytes as the shared wrapping key. On decrypt, if the keyring cannot reproduce the 
same commitment key and shared wrapping key that is stored on the message header ciphertext, 
the operation fails. For example, if you encrypt data with a keyring configured with Alice's private 
key and Bob's public key, a keyring configured with Bob's private key and Alice's public key will 
reproduce the same commitment key and shared wrapping key and be able to decrypt the data. If 
Bob's public key is not from a KMS key pair, then Bob can create a Raw ECDH keyring to decrypt the 
data.

The AWS KMS ECDH keyring encrypts data with a symmetric key using AES-GCM. The data key is 
then envelope encrypted with the derived shared wrapping key using AES-GCM. Each AWS KMS 
ECDH keyring can have only one shared wrapping key, but you can include multiple AWS KMS 
ECDH keyrings, alone or with other keyrings, in a multi-keyring.

Topics

• Required permissions for AWS KMS ECDH keyrings

• Creating an AWS KMS ECDH keyring

• Creating an AWS KMS ECDH discovery keyring

AWS KMS ECDH keyrings 116

https://docs.aws.amazon.com/kms/latest/developerguide/key-types.html
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-108r1-upd1.pdf


AWS Encryption SDK Developer Guide

Required permissions for AWS KMS ECDH keyrings

The AWS Encryption SDK doesn't require an AWS account and it doesn't depend on any AWS 
service. However, to use an AWS KMS ECDH keyring, you need an AWS account and the following 
minimum permissions on the AWS KMS keys in your keyring. The permissions vary based on which 
key agreement schema you use.

• To encrypt and decrypt data using the KmsPrivateKeyToStaticPublicKey key agreement 
schema, you need kms:GetPublicKey and kms:DeriveSharedSecret on the sender's asymmetric 
KMS key pair. If you directly provide the sender's DER-encoded public key when you instantiate 
your keyring, you only need kms:DeriveSharedSecret permission on the sender's asymmetric KMS 
key pair.

• To decrypt data using the KmsPublicKeyDiscovery key agreement schema, you need
kms:DeriveSharedSecret and kms:GetPublicKey permissions on the specified asymmetric KMS 
key pair.

Creating an AWS KMS ECDH keyring

To create an AWS KMS ECDH keyring that encrypts and decrypts data, you must use the
KmsPrivateKeyToStaticPublicKey key agreement schema. To initialize an AWS KMS ECDH 
keyring with the KmsPrivateKeyToStaticPublicKey key agreement schema, provide the 
following values:

• Sender's AWS KMS key ID

Must identify an asymmetric NIST-recommended elliptic curve (ECC) KMS key pair with a
KeyUsage value of KEY_AGREEMENT. The sender's private key is used to derive the shared secret.

• (Optional) Sender's public key

Must be a DER-encoded X.509 public key, also known as SubjectPublicKeyInfo (SPKI), as 
defined in RFC 5280.

The AWS KMS GetPublicKey operation returns the public key of an asymmetric KMS key pair in 
the required DER-encoded format.

To reduce the number of AWS KMS calls that your keyring makes, you can directly provide the 
sender's public key. If no value is provided for the sender's public key, the keyring calls AWS KMS 
to retrieve the sender's public key.

AWS KMS ECDH keyrings 117

https://docs.aws.amazon.com/kms/latest/APIReference/API_GetPublicKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_DeriveSharedSecret.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_DeriveSharedSecret.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_DeriveSharedSecret.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GetPublicKey.html
https://tools.ietf.org/html/rfc5280
https://docs.aws.amazon.com/kms/latest/APIReference/API_GetPublicKey.html


AWS Encryption SDK Developer Guide

• Recipient's public key

You must provide the recipient's DER-encoded X.509 public key, also known as
SubjectPublicKeyInfo (SPKI), as defined in RFC 5280.

The AWS KMS GetPublicKey operation returns the public key of an asymmetric KMS key pair in 
the required DER-encoded format.

• Curve specification

Identifies the elliptic curve specification in the specified key pairs. Both the sender and recipient's 
key pairs must have the same curve specification.

Valid values: ECC_NIST_P256, ECC_NIS_P384, ECC_NIST_P512

• (Optional) A list of Grant Tokens

If you control access to the KMS key in your AWS KMS ECDH keyring with grants, you must 
provide all necessary grant tokens when you initialize the keyring.

C# / .NET

The following example creates an AWS KMS ECDH keyring with the with the sender's KMS 
key, the sender's public key, and the recipient's public key. This example uses the optional
SenderPublicKey parameter to provide the sender's public key. If you do not provide the 
sender's public key, the keyring calls AWS KMS to retrieve the sender's public key. Both the 
sender and recipient's key pairs are on the ECC_NIST_P256 curve.

// Instantiate material providers
var materialProviders = new MaterialProviders(new MaterialProvidersConfig());

// Must be DER-encoded X.509 public keys
var BobPublicKey = new MemoryStream(new byte[] { });
var AlicePublicKey = new MemoryStream(new byte[] { });

// Create the AWS KMS ECDH static keyring
var staticConfiguration = new KmsEcdhStaticConfigurations
{ 
    KmsPrivateKeyToStaticPublicKey = new KmsPrivateKeyToStaticPublicKeyInput 
    { 
        SenderKmsIdentifier = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab", 

AWS KMS ECDH keyrings 118

https://tools.ietf.org/html/rfc5280
https://docs.aws.amazon.com/kms/latest/APIReference/API_GetPublicKey.html
https://docs.aws.amazon.com/kms/latest/developerguide/grants.html


AWS Encryption SDK Developer Guide

        SenderPublicKey = BobPublicKey, 
        RecipientPublicKey = AlicePublicKey 
    }
}; 
      
var createKeyringInput = new CreateAwsKmsEcdhKeyringInput
{ 
    CurveSpec = ECDHCurveSpec.ECC_NIST_P256, 
    KmsClient = new AmazonKeyManagementServiceClient(), 
    KeyAgreementScheme = staticConfiguration
};

var keyring = materialProviders.CreateAwsKmsEcdhKeyring(createKeyringInput);

Java

The following example creates an AWS KMS ECDH keyring with the with the sender's KMS 
key, the sender's public key, and the recipient's public key. This example uses the optional
senderPublicKey parameter to provide the sender's public key. If you do not provide the 
sender's public key, the keyring calls AWS KMS to retrieve the sender's public key. Both the 
sender and recipient's key pairs are on the ECC_NIST_P256 curve.

// Retrieve public keys
// Must be DER-encoded X.509 public keys                                 
ByteBuffer BobPublicKey = getPublicKeyBytes("arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"); 
        ByteBuffer AlicePublicKey = getPublicKeyBytes("arn:aws:kms:us-
west-2:111122223333:key/0987dcba-09fe-87dc-65ba-ab0987654321");  

// Create the AWS KMS ECDH static keyring 
        final CreateAwsKmsEcdhKeyringInput senderKeyringInput = 
          CreateAwsKmsEcdhKeyringInput.builder() 
            .kmsClient(KmsClient.create()) 
            .curveSpec(ECDHCurveSpec.ECC_NIST_P256) 
            .KeyAgreementScheme( 
              KmsEcdhStaticConfigurations.builder() 
                .KmsPrivateKeyToStaticPublicKey( 
                  KmsPrivateKeyToStaticPublicKeyInput.builder() 
                    .senderKmsIdentifier("arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab") 
                    .senderPublicKey(BobPublicKey) 
                    .recipientPublicKey(AlicePublicKey) 

AWS KMS ECDH keyrings 119



AWS Encryption SDK Developer Guide

                    .build()).build()).build();

Creating an AWS KMS ECDH discovery keyring

When decrypting, it's a best practice to specify the keys that the AWS Encryption 
SDK can use. To follow this best practice, use an AWS KMS ECDH keyring with the
KmsPrivateKeyToStaticPublicKey key agreement schema. However, you can also create 
an AWS KMS ECDH discovery keyring, that is, an AWS KMS ECDH keyring that can decrypt any 
message where the public key of the specified KMS key pair matches the recipient's public key 
stored on the message ciphertext.

Important

When you decrypt messages using the KmsPublicKeyDiscovery key agreement schema, 
you accept all public keys, regardless of who owns it.

To initialize an AWS KMS ECDH keyring with the KmsPublicKeyDiscovery key agreement 
schema, provide the following values:

• Recipient's AWS KMS key ID

Must identify an asymmetric NIST-recommended elliptic curve (ECC) KMS key pair with a
KeyUsage value of KEY_AGREEMENT.

• Curve specification

Identifies the elliptic curve specification in the recipient's KMS key pair.

Valid values: ECC_NIST_P256, ECC_NIS_P384, ECC_NIST_P512

• (Optional) A list of Grant Tokens

If you control access to the KMS key in your AWS KMS ECDH keyring with grants, you must 
provide all necessary grant tokens when you initialize the keyring.

C# / .NET

The following example creates an AWS KMS ECDH discovery keyring with a KMS key pair on 
the ECC_NIST_P256 curve. You must have kms:GetPublicKey and kms:DeriveSharedSecret

AWS KMS ECDH keyrings 120

https://docs.aws.amazon.com/kms/latest/developerguide/grants.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GetPublicKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_DeriveSharedSecret.html


AWS Encryption SDK Developer Guide

permissions on the specified KMS key pair. This keyring can decrypt any message where the 
public key of the specified KMS key pair matches the recipient's public key stored on the 
message ciphertext.

// Instantiate material providers
var materialProviders = new MaterialProviders(new MaterialProvidersConfig());

// Create the AWS KMS ECDH discovery keyring
var discoveryConfiguration = new KmsEcdhStaticConfigurations
{ 
    KmsPublicKeyDiscovery = new KmsPublicKeyDiscoveryInput 
    { 
        RecipientKmsIdentifier = "arn:aws:kms:us-
west-2:111122223333:key/0987dcba-09fe-87dc-65ba-ab0987654321" 
    } 
       
};
var createKeyringInput = new CreateAwsKmsEcdhKeyringInput
{ 
    CurveSpec = ECDHCurveSpec.ECC_NIST_P256, 
    KmsClient = new AmazonKeyManagementServiceClient(), 
    KeyAgreementScheme = discoveryConfiguration
};
var keyring = materialProviders.CreateAwsKmsEcdhKeyring(createKeyringInput);

Java

The following example creates an AWS KMS ECDH discovery keyring with a KMS key pair on 
the ECC_NIST_P256 curve. You must have kms:GetPublicKey and kms:DeriveSharedSecret
permissions on the specified KMS key pair. This keyring can decrypt any message where the 
public key of the specified KMS key pair matches the recipient's public key stored on the 
message ciphertext.

// Create the AWS KMS ECDH discovery keyring
final CreateAwsKmsEcdhKeyringInput recipientKeyringInput = 
  CreateAwsKmsEcdhKeyringInput.builder() 
    .kmsClient(KmsClient.create()) 
    .curveSpec(ECDHCurveSpec.ECC_NIST_P256) 
    .KeyAgreementScheme( 
      KmsEcdhStaticConfigurations.builder() 
        .KmsPublicKeyDiscovery( 
          KmsPublicKeyDiscoveryInput.builder() 

AWS KMS ECDH keyrings 121

https://docs.aws.amazon.com/kms/latest/APIReference/API_GetPublicKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_DeriveSharedSecret.html


AWS Encryption SDK Developer Guide

            .recipientKmsIdentifier("arn:aws:kms:us-
west-2:111122223333:key/0987dcba-09fe-87dc-65ba-ab0987654321").build() 
        ).build()) 
    .build();

Raw AES keyrings

The AWS Encryption SDK lets you use an AES symmetric key that you provide as a wrapping key 
that protects your data key. You need to generate, store, and protect the key material, preferably 
in a hardware security module (HSM) or key management system. Use a Raw AES keyring when you 
need to provide the wrapping key and encrypt the data keys locally or offline.

The Raw AES keyring encrypts data by using the AES-GCM algorithm and a wrapping key that you 
specify as a byte array. You can specify only one wrapping key in each Raw AES keyring, but you 
can include multiple Raw AES keyrings, alone or with other keyrings, in a multi-keyring.

The Raw AES keyring is equivalent to and interoperates with the JceMasterKey class in the AWS 
Encryption SDK for Java and the RawMasterKey class in the AWS Encryption SDK for Python when 
they are used with an AES encryption keys. You can encrypt data with one implementation and 
decrypt the data with any other implementation using the same wrapping key. For details, see
Keyring compatibility.

Key namespaces and names

To identify the AES key in a keyring, the Raw AES keyring uses a key namespace and key name that 
you provide. These values are not secret. They appear in plain text in the header of the encrypted 
message that the encrypt operation returns. We recommend using a key namespace your HSM or 
key management system and a key name that identifies the AES key in that system.

Note

The key namespace and key name are equivalent to the Provider ID (or Provider) and Key ID
fields in the JceMasterKey and RawMasterKey.
The AWS Encryption SDK for C and AWS Encryption SDK for .NET reserve the aws-kms key 
namespace value for KMS keys. Do not use this namespace value in a Raw AES keyring or 
Raw RSA keyring with these libraries.

Raw AES keyrings 122

https://aws.github.io/aws-encryption-sdk-java/com/amazonaws/encryptionsdk/jce/JceMasterKey.html
https://aws-encryption-sdk-python.readthedocs.io/en/latest/generated/aws_encryption_sdk.key_providers.raw.html#aws_encryption_sdk.key_providers.raw.RawMasterKey


AWS Encryption SDK Developer Guide

If you construct different keyrings to encrypt and decrypt a given message, the namespace and 
name values are critical. If the key namespace and key name in the decryption keyring isn't an 
exact, case-sensitive match for the key namespace and key name in the encryption keyring, the 
decryption keyring isn't used, even if the key material bytes are identical.

For example, you might define a Raw AES keyring with key namespace HSM_01 and key name
AES_256_012. Then, you use that keyring to encrypt some data. To decrypt that data, construct a 
Raw AES keyring with the same key namespace, key name, and key material.

The following examples show how to create a Raw AES keyring. The AESWrappingKey variable 
represents the key material you provide.

C

To instantiate a Raw AES keyring in the AWS Encryption SDK for C, use
aws_cryptosdk_raw_aes_keyring_new(). For a complete example, see raw_aes_keyring.c.

struct aws_allocator *alloc = aws_default_allocator();

AWS_STATIC_STRING_FROM_LITERAL(wrapping_key_namespace, "HSM_01");
AWS_STATIC_STRING_FROM_LITERAL(wrapping_key_name, "AES_256_012");

struct aws_cryptosdk_keyring *raw_aes_keyring = aws_cryptosdk_raw_aes_keyring_new( 
        alloc, wrapping_key_namespace, wrapping_key_name, aes_wrapping_key, 
 wrapping_key_len);

C# / .NET

To create a Raw AES keyring in AWS Encryption SDK for .NET, use the
materialProviders.CreateRawAesKeyring() method. For a complete example, see
RawAESKeyringExample.cs.

The following example uses version 4.x of the AWS Encryption SDK for .NET.

// Instantiate the AWS Encryption SDK and material providers
var esdk =  new ESDK(new AwsEncryptionSdkConfig());
var mpl = new MaterialProviders(new MaterialProvidersConfig());

var keyNamespace = "HSM_01";
var keyName = "AES_256_012";

Raw AES keyrings 123

https://github.com/aws/aws-encryption-sdk-c/blob/master/examples/raw_aes_keyring.c
https://github.com/aws/aws-encryption-sdk-dafny/tree/mainline/AwsEncryptionSDK/runtimes/net/Examples/Keyring/RawAESKeyringExample.cs


AWS Encryption SDK Developer Guide

// This example uses the key generator in Bouncy Castle to generate the key 
 material.
// In production, use key material from a secure source.
var aesWrappingKey = new 
 MemoryStream(GeneratorUtilities.GetKeyGenerator("AES256").GenerateKey());

// Create the keyring that determines how your data keys are protected.
var createKeyringInput = new CreateRawAesKeyringInput
{ 
    KeyNamespace = keyNamespace, 
    KeyName = keyName, 
    WrappingKey = aesWrappingKey, 
    WrappingAlg = AesWrappingAlg.ALG_AES256_GCM_IV12_TAG16
};

var keyring = materialProviders.CreateRawAesKeyring(createKeyringInput);

JavaScript Browser

The AWS Encryption SDK for JavaScript in the browser gets its cryptographic 
primitives from the WebCrypto API. Before you construct the keyring, you must use
RawAesKeyringWebCrypto.importCryptoKey() to import the raw key material into 
the WebCrypto backend. This assures that the keyring is complete even though all calls to 
WebCrypto are asynchronous.

Then, to instantiate a Raw AES keyring, use the RawAesKeyringWebCrypto() method. You 
must specify the AES wrapping algorithm ("wrapping suite) based on the length of your key 
material. For a complete example, see aes_simple.ts (JavaScript Browser).

const keyNamespace = 'HSM_01'
const keyName = 'AES_256_012'

const wrappingSuite = 
  RawAesWrappingSuiteIdentifier.AES256_GCM_IV12_TAG16_NO_PADDING

/* Import the plaintext AES key into the WebCrypto backend. */
const aesWrappingKey = await RawAesKeyringWebCrypto.importCryptoKey( 
  rawAesKey, 
  wrappingSuite
)

const rawAesKeyring = new RawAesKeyringWebCrypto({ 

Raw AES keyrings 124

https://developer.mozilla.org/en-US/docs/Web/API/Web_Crypto_API
https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-browser/src/aes_simple.ts


AWS Encryption SDK Developer Guide

  keyName, 
  keyNamespace, 
  wrappingSuite, 
   aesWrappingKey
})

JavaScript Node.js

To instantiate a Raw AES keyring in the AWS Encryption SDK for JavaScript for Node.js, create 
an instance of the  RawAesKeyringNode class. You must specify the AES wrapping algorithm 
("wrapping suite") based on the length of your key material. For a complete example, see
aes_simple.ts (JavaScript Node.js).

const keyName = 'AES_256_012'
const keyNamespace = 'HSM_01'

const wrappingSuite = 
  RawAesWrappingSuiteIdentifier.AES256_GCM_IV12_TAG16_NO_PADDING

const rawAesKeyring = new RawAesKeyringNode({ 
  keyName, 
  keyNamespace, 
   aesWrappingKey, 
  wrappingSuite,
}) 

Java

To instantiate a Raw AES keyring in the AWS Encryption SDK for Java, use
matProv.CreateRawAesKeyring().

final CreateRawAesKeyringInput keyringInput = CreateRawAesKeyringInput.builder() 
        .keyName("AES_256_012") 
        .keyNamespace("HSM_01") 
        .wrappingKey(AESWrappingKey) 
        .wrappingAlg(AesWrappingAlg.ALG_AES256_GCM_IV12_TAG16) 
        .build();
final MaterialProviders matProv = MaterialProviders.builder() 
        .MaterialProvidersConfig(MaterialProvidersConfig.builder().build()) 
        .build();
IKeyring rawAesKeyring = matProv.CreateRawAesKeyring(keyringInput);

Raw AES keyrings 125

https://github.com/aws/aws-encryption-sdk-javascript//blob/master/modules/example-node/src/aes_simple.ts


AWS Encryption SDK Developer Guide

Raw RSA keyrings

The Raw RSA keyring performs asymmetric encryption and decryption of data keys in local 
memory with an RSA public and private keys that you provide. You need to generate, store, and 
protect the private key, preferably in a hardware security module (HSM) or key management 
system. The encryption function encrypts the data key under the RSA public key. The decryption 
function decrypts the data key using the private key. You can select from among the several RSA 
padding modes.

A Raw RSA keyring that encrypts and decrypts must include an asymmetric public key and private 
key pair. However, you can encrypt data with a Raw RSA keyring that has only a public key, and you 
can decrypt data with a Raw RSA keyring that has only a private key. You can include any Raw RSA 
keyring in a multi-keyring. If you configure a Raw RSA keyring with a public and private key, be sure 
that they are part of the same key pair. Some language implementations of the AWS Encryption 
SDK will not construct a Raw RSA keyring with keys from different pairs. Others rely on you to 
verify that your keys are from the same key pair.

The Raw RSA keyring is equivalent to and interoperates with the JceMasterKey in the AWS 
Encryption SDK for Java and the RawMasterKey in the AWS Encryption SDK for Python when they 
are used with RSA asymmetric encryption keys. You can encrypt data with one implementation 
and decrypt the data with any other implementation using the same wrapping key. For details, see
Keyring compatibility.

Note

The Raw RSA keyring does not support asymmetric KMS keys. If you want to use 
asymmetric RSA KMS keys, version 4.x of the AWS Encryption SDK for .NET and version 
3.x of the AWS Encryption SDK for Java support AWS KMS keyrings that use symmetric 
encryption (SYMMETRIC_DEFAULT) or asymmetric RSA AWS KMS keys.
If you encrypt data with a Raw RSA keyring that includes the public key of an RSA KMS 
key, neither the AWS Encryption SDK nor AWS KMS can decrypt it. You cannot export the 
private key of an AWS KMS asymmetric KMS key into a Raw RSA keyring. The AWS KMS 
Decrypt operation cannot decrypt the encrypted message that the AWS Encryption SDK 
returns.

When constructing a Raw RSA keyring in the AWS Encryption SDK for C, be sure to provide the
contents of the PEM file that includes each key as a null-terminated C-string, not as a path or file 

Raw RSA keyrings 126

https://github.com/aws/aws-encryption-sdk-c/blob/master/include/aws/cryptosdk/cipher.h
https://github.com/aws/aws-encryption-sdk-c/blob/master/include/aws/cryptosdk/cipher.h
https://aws.github.io/aws-encryption-sdk-java/com/amazonaws/encryptionsdk/jce/JceMasterKey.html
https://aws-encryption-sdk-python.readthedocs.io/en/latest/generated/aws_encryption_sdk.key_providers.raw.html#aws_encryption_sdk.key_providers.raw.RawMasterKey


AWS Encryption SDK Developer Guide

name. When constructing a Raw RSA keyring in JavaScript, be aware of potential incompatibility
with other language implementations.

Namespaces and names

To identify the RSA key material in a keyring, the Raw RSA keyring uses a key namespace and key 
name that you provide. These values are not secret. They appear in plain text in the header of the
encrypted message that the encrypt operation returns. We recommend using the key namespace 
and key name that identifies the RSA key pair (or its private key) in your HSM or key management 
system.

Note

The key namespace and key name are equivalent to the Provider ID (or Provider) and Key ID
fields in the JceMasterKey and RawMasterKey.
The AWS Encryption SDK for C reserves the aws-kms key namespace value for KMS keys. 
Do not use it in a Raw AES keyring or Raw RSA keyring with the AWS Encryption SDK for C.

If you construct different keyrings to encrypt and decrypt a given message, the namespace and 
name values are critical. If the key namespace and key name in the decryption keyring isn't an 
exact, case-sensitive match for the key namespace and key name in the encryption keyring, the 
decryption keyring isn't used, even if the keys are from the same key pair.

The key namespace and key name of the key material in the encryption and decryption keyrings 
must be same whether the keyring contains the RSA public key, the RSA private key, or both keys in 
the key pair. For example, suppose you encrypt data with a Raw RSA keyring for an RSA public key 
with key namespace HSM_01 and key name RSA_2048_06. To decrypt that data, construct a Raw 
RSA keyring with the private key (or key pair), and the same key namespace and name.

Padding mode

You must specify a padding mode for Raw RSA keyrings used for encryption and decryption, or use 
features of your language implementation that specify it for you.

The AWS Encryption SDK supports the following padding modes, subjects to the constraints 
of each language. We recommend an OAEP padding mode, particularly OAEP with SHA-256 
and MGF1 with SHA-256 Padding. The PKCS1 padding mode is supported only for backward 
compatibility.

Raw RSA keyrings 127

https://tools.ietf.org/html/rfc8017#section-7.1
https://tools.ietf.org/html/rfc8017#section-7.2


AWS Encryption SDK Developer Guide

• OAEP with SHA-1 and MGF1 with SHA-1 Padding

• OAEP with SHA-256 and MGF1 with SHA-256 Padding

• OAEP with SHA-384 and MGF1 with SHA-384 Padding

• OAEP with SHA-512 and MGF1 with SHA-512 Padding

• PKCS1 v1.5 Padding

The following examples show how to create a Raw RSA keyring with the public and private key 
of an RSA key pair and the OAEP with SHA-256 and MGF1 with SHA-256 padding mode. The
RSAPublicKey and RSAPrivateKey variables represent the key material you provide.

C

To create a Raw RSA keyring in the AWS Encryption SDK for C, use
aws_cryptosdk_raw_rsa_keyring_new.

When constructing a Raw RSA keyring in the AWS Encryption SDK for C, be sure to provide the
contents of the PEM file that includes each key as a null-terminated C-string, not as a path or 
file name. For a complete example, see raw_rsa_keyring.c.

struct aws_allocator *alloc = aws_default_allocator();

AWS_STATIC_STRING_FROM_LITERAL(key_namespace, "HSM_01");
AWS_STATIC_STRING_FROM_LITERAL(key_name, "RSA_2048_06");

struct aws_cryptosdk_keyring *rawRsaKeyring = aws_cryptosdk_raw_rsa_keyring_new( 
    alloc, 
    key_namespace, 
    key_name, 
    private_key_from_pem, 
    public_key_from_pem, 
    AWS_CRYPTOSDK_RSA_OAEP_SHA256_MGF1);

C# / .NET

To instantiate a Raw RSA keyring in the AWS Encryption SDK for .NET, use the
materialProviders.CreateRawRsaKeyring() method. For a complete example, see
RawRSAKeyringExample.cs.

The following example uses version 4.x of the AWS Encryption SDK for .NET.

Raw RSA keyrings 128

https://github.com/aws/aws-encryption-sdk-c/blob/master/examples/raw_rsa_keyring.c
https://github.com/aws/aws-encryption-sdk-dafny/tree/mainline/AwsEncryptionSDK/runtimes/net/Examples/Keyring/RawRSAKeyringExample.cs


AWS Encryption SDK Developer Guide

// Instantiate the AWS Encryption SDK and material providers
var esdk =  new ESDK(new AwsEncryptionSdkConfig());
var mpl = new MaterialProviders(new MaterialProvidersConfig());

var keyNamespace = "HSM_01";
var keyName = "RSA_2048_06";

// Get public and private keys from PEM files
var publicKey = new 
 MemoryStream(System.IO.File.ReadAllBytes("RSAKeyringExamplePublicKey.pem"));
var privateKey = new 
 MemoryStream(System.IO.File.ReadAllBytes("RSAKeyringExamplePrivateKey.pem"));

// Create the keyring input
var createRawRsaKeyringInput = new CreateRawRsaKeyringInput
{ 
    KeyNamespace = keyNamespace, 
    KeyName = keyName, 
    PaddingScheme = PaddingScheme.OAEP_SHA512_MGF1, 
    PublicKey = publicKey, 
    PrivateKey = privateKey
};

// Create the keyring
var rawRsaKeyring = materialProviders.CreateRawRsaKeyring(createRawRsaKeyringInput);

JavaScript Browser

The AWS Encryption SDK for JavaScript in the browser gets its cryptographic primitives from 
the WebCrypto library. Before you construct the keyring, you must use importPublicKey()
and/or importPrivateKey() to import the raw key material into the WebCrypto backend. 
This assures that the keyring is complete even though all calls to WebCrypto are asynchronous. 
The object that the import methods take includes the wrapping algorithm and its padding 
mode.

After importing the key material, use the RawRsaKeyringWebCrypto() method to instantiate 
the keyring. When constructing a Raw RSA keyring in JavaScript, be aware of potential 
incompatibility with other language implementations.

For a complete example, see rsa_simple.ts (JavaScript Browser).

const privateKey = await RawRsaKeyringWebCrypto.importPrivateKey( 

Raw RSA keyrings 129

https://developer.mozilla.org/en-US/docs/Web/API/Web_Crypto_API
https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-browser/src/rsa_simple.ts


AWS Encryption SDK Developer Guide

  privateRsaJwKKey
)

const publicKey = await RawRsaKeyringWebCrypto.importPublicKey( 
  publicRsaJwKKey
)

const keyNamespace = 'HSM_01'
const keyName = 'RSA_2048_06'

const keyring = new RawRsaKeyringWebCrypto({ 
  keyName, 
  keyNamespace, 
  publicKey, 
  privateKey,
})              

JavaScript Node.js

To instantiate a Raw RSA keyring in AWS Encryption SDK for JavaScript for Node.js, create a 
new instance of the RawRsaKeyringNode class. The wrapKey parameter holds the public 
key. The unwrapKey parameter holds the private key. The RawRsaKeyringNode constructor 
calculates a default padding mode for you, although you can specify a preferred padding mode.

When constructing a raw RSA keyring in JavaScript, be aware of potential incompatibility with 
other language implementations.

For a complete example, see rsa_simple.ts (JavaScript Node.js).

const keyNamespace = 'HSM_01'
const keyName = 'RSA_2048_06'

const keyring = new RawRsaKeyringNode({ keyName, keyNamespace, rsaPublicKey, 
 rsaPrivateKey})

Java

final CreateRawRsaKeyringInput keyringInput = CreateRawRsaKeyringInput.builder() 
        .keyName("RSA_2048_06") 
        .keyNamespace("HSM_01") 
        .paddingScheme(PaddingScheme.OAEP_SHA256_MGF1) 
        .publicKey(RSAPublicKey) 
        .privateKey(RSAPrivateKey) 

Raw RSA keyrings 130

https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-node/src/rsa_simple.ts


AWS Encryption SDK Developer Guide

        .build();
final MaterialProviders matProv = MaterialProviders.builder() 
        .MaterialProvidersConfig(MaterialProvidersConfig.builder().build()) 
        .build();
IKeyring rawRsaKeyring = matProv.CreateRawRsaKeyring(keyringInput);

Raw ECDH keyrings

Important

The Raw ECDH keyring is only available with version 4.x of the AWS Encryption SDK 
for .NET and version 3.x of the AWS Encryption SDK for Java. The Raw ECDH keyring is 
introduced in version 1.5.0 of the Material Providers Library.

The Raw ECDH keyring uses the elliptic curve public-private key pairs that you provide to derive 
a shared wrapping key between two parties. First, the keyring derives a shared secret using the 
sender's private key, the recipient's public key, and the Elliptic Curve Diffie-Hellman (ECDH) key 
agreement algorithm. Then, the keyring uses the shared secret to derive the shared wrapping key 
that protects your data encryption keys. The key derivation function that the AWS Encryption 
SDK uses (KDF_CTR_HMAC_SHA384) to derive the shared wrapping key conforms to NIST 
recommendations for key derivation.

The key derivation function returns 64 bytes of key material. To ensure that both parties use the 
correct key material, the AWS Encryption SDK uses the first 32 bytes as a commitment key and the 
last 32 bytes as the shared wrapping key. On decrypt, if the keyring cannot reproduce the same 
commitment key and shared wrapping key that is stored on the message header ciphertext, the 
operation fails. For example, if you encrypt data with a keyring configured with Alice's private 
key and Bob's public key, a keyring configured with Bob's private key and Alice's public key will 
reproduce the same commitment key and shared wrapping key and be able to decrypt the data. If 
Bob's public key is from an AWS KMS key pair, then Bob can create an AWS KMS ECDH keyring to 
decrypt the data.

The Raw ECDH keyring encrypts data with a symmetric key using AES-GCM. The data key is then 
envelope encrypted with the derived shared wrapping key using AES-GCM. Each Raw ECDH keyring 
can have only one shared wrapping key, but you can include multiple Raw ECDH keyrings, alone or 
with other keyrings, in a multi-keyring.

Raw ECDH keyrings 131

https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-108r1-upd1.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-108r1-upd1.pdf


AWS Encryption SDK Developer Guide

You are responsible for generating, storing, and protecting your private keys, preferably in a 
hardware security module (HSM) or key management system. The sender and recipient's key pairs 
much be on the same elliptic curve. The AWS Encryption SDK supports the following elliptic cuve 
specifications:

• ECC_NIST_P256

• ECC_NIST_P384

• ECC_NIST_P512

Creating a Raw ECDH keyring

The Raw ECDH keyring supports three key agreement schemas:
RawPrivateKeyToStaticPublicKey, EphemeralPrivateKeyToStaticPublicKey, 
and PublicKeyDiscovery. The key agreement schema that you select determines which 
cryptographic operations you can perform and how the keying materials are assembled.

Topics

• RawPrivateKeyToStaticPublicKey

• EphemeralPrivateKeyToStaticPublicKey

• PublicKeyDiscovery

RawPrivateKeyToStaticPublicKey

Use the RawPrivateKeyToStaticPublicKey key agreement schema to statically configure the 
sender's private key and the recipient's public key in the keyring. This key agreement schema can 
encrypt and decrypt data.

To initialize a Raw ECDH keyring with the RawPrivateKeyToStaticPublicKey key agreement 
schema, provide the following values:

• Sender's private key

You must provide the sender's PEM-encoded private key (PKCS #8 PrivateKeyInfo structures), as 
defined in RFC 5958.

• Recipient's public key

Raw ECDH keyrings 132

https://tools.ietf.org/html/rfc5958#section-2


AWS Encryption SDK Developer Guide

You must provide the recipient's DER-encoded X.509 public key, also known as
SubjectPublicKeyInfo (SPKI), as defined in RFC 5280.

You can specify the public key of an asymmetric key agreement KMS key pair or the public key 
from a key pair generated outside of AWS.

• Curve specification

Identifies the elliptic curve specification in the specified key pairs. Both the sender and recipient's 
key pairs must have the same curve specification.

Valid values: ECC_NIST_P256, ECC_NIS_P384, ECC_NIST_P512

C# / .NET

// Instantiate material providers
var materialProviders = new MaterialProviders(new MaterialProvidersConfig()); 
     var BobPrivateKey = new MemoryStream(new byte[] { }); 
     var AlicePublicKey = new MemoryStream(new byte[] { }); 

     // Create the Raw ECDH static keyring 
     var staticConfiguration = new RawEcdhStaticConfigurations() 
     { 
      RawPrivateKeyToStaticPublicKey = new RawPrivateKeyToStaticPublicKeyInput 
      { 
       SenderStaticPrivateKey = BobPrivateKey, 
       RecipientPublicKey = AlicePublicKey 
      } 
     }; 
      
     var createKeyringInput = new CreateRawEcdhKeyringInput()  
     { 
      CurveSpec = ECDHCurveSpec.ECC_NIST_P256, 
      KeyAgreementScheme = staticConfiguration  
     }; 

     var keyring = materialProviders.CreateRawEcdhKeyring(createKeyringInput);

Raw ECDH keyrings 133

https://tools.ietf.org/html/rfc5280


AWS Encryption SDK Developer Guide

Java

The following Java example uses the RawPrivateKeyToStaticPublicKey key agreement 
schema to statically configure the sender's private key and the recipient's public key. Both key 
pairs are on the ECC_NIST_P256 curve.

private static void StaticRawKeyring() { 
    // Instantiate material providers 
    final MaterialProviders materialProviders = 
      MaterialProviders.builder() 
        .MaterialProvidersConfig(MaterialProvidersConfig.builder().build()) 
        .build(); 

    KeyPair senderKeys = GetRawEccKey(); 
    KeyPair recipient = GetRawEccKey(); 

    // Create the Raw ECDH static keyring 
    final CreateRawEcdhKeyringInput rawKeyringInput = 
      CreateRawEcdhKeyringInput.builder() 
        .curveSpec(ECDHCurveSpec.ECC_NIST_P256) 
        .KeyAgreementScheme( 
          RawEcdhStaticConfigurations.builder() 
            .RawPrivateKeyToStaticPublicKey( 
                RawPrivateKeyToStaticPublicKeyInput.builder() 
                  // Must be a PEM-encoded private key 
                  
 .senderStaticPrivateKey(ByteBuffer.wrap(senderKeys.getPrivate().getEncoded())) 
                  // Must be a DER-encoded X.509 public key 
                  
 .recipientPublicKey(ByteBuffer.wrap(recipient.getPublic().getEncoded())) 
                  .build() 
            ) 
            .build() 
        ).build(); 

    final IKeyring staticKeyring = 
 materialProviders.CreateRawEcdhKeyring(rawKeyringInput);
}

Raw ECDH keyrings 134



AWS Encryption SDK Developer Guide

EphemeralPrivateKeyToStaticPublicKey

Keyrings configured with the EphemeralPrivateKeyToStaticPublicKey key agreement 
schema create a new key pair locally and derive a unique shared wrapping key for each encrypt call.

This key agreement schema can only encrypt messages. To decrypt messages encrypted with the
EphemeralPrivateKeyToStaticPublicKey key agreement schema, you must use a discovery 
key agreement schema configured with the same recipient's public key. To decrypt, you can use a 
Raw ECDH keyring with the PublicKeyDiscovery key agreement algorithm, or, if the recipient's 
public key is from an asymmetric key agreement KMS key pair, you can use an AWS KMS ECDH 
keyring with the KmsPublicKeyDiscovery key agreement schema.

To initialize a Raw ECDH keyring with the EphemeralPrivateKeyToStaticPublicKey key 
agreement schema, provide the following values:

• Recipient's public key

You must provide the recipient's DER-encoded X.509 public key, also known as
SubjectPublicKeyInfo (SPKI), as defined in RFC 5280.

You can specify the public key of an asymmetric key agreement KMS key pair or the public key 
from a key pair generated outside of AWS.

• Curve specification

Identifies the elliptic curve specification in the specified public key.

On encrypt, the keyring creates a new key pair on the specified curve and uses the new private 
key and specified public key to derive a shared wrapping key.

Valid values: ECC_NIST_P256, ECC_NIS_P384, ECC_NIST_P512

C# / .NET

The following example creates a Raw ECDH keyring with the
EphemeralPrivateKeyToStaticPublicKey key agreement schema. On encrypt, the keyring 
will create a new key pair locally on the specified ECC_NIST_P256 curve.

// Instantiate material providers
var materialProviders = new MaterialProviders(new MaterialProvidersConfig()); 
     var AlicePublicKey = new MemoryStream(new byte[] { }); 

Raw ECDH keyrings 135

https://tools.ietf.org/html/rfc5280


AWS Encryption SDK Developer Guide

     // Create the Raw ECDH ephemeral keyring 
     var ephemeralConfiguration = new RawEcdhStaticConfigurations() 
     { 
      EphemeralPrivateKeyToStaticPublicKey = new 
 EphemeralPrivateKeyToStaticPublicKeyInput 
      { 
       RecipientPublicKey = AlicePublicKey 
      } 
     }; 
      
     var createKeyringInput = new CreateRawEcdhKeyringInput()  
     { 
      CurveSpec = ECDHCurveSpec.ECC_NIST_P256, 
      KeyAgreementScheme = ephemeralConfiguration 
     }; 

     var keyring = materialProviders.CreateRawEcdhKeyring(createKeyringInput);

Java

The following example creates a Raw ECDH keyring with the
EphemeralPrivateKeyToStaticPublicKey key agreement schema. On encrypt, the keyring 
will create a new key pair locally on the specified ECC_NIST_P256 curve.

private static void EphemeralRawEcdhKeyring() { 
    // Instantiate material providers 
    final MaterialProviders materialProviders = 
      MaterialProviders.builder() 
        .MaterialProvidersConfig(MaterialProvidersConfig.builder().build()) 
        .build(); 

    ByteBuffer recipientPublicKey = getPublicKeyBytes(); 

    // Create the Raw ECDH ephemeral keyring 
    final CreateRawEcdhKeyringInput ephemeralInput = 
      CreateRawEcdhKeyringInput.builder() 
        .curveSpec(ECDHCurveSpec.ECC_NIST_P256) 
        .KeyAgreementScheme( 
          RawEcdhStaticConfigurations.builder() 
            .EphemeralPrivateKeyToStaticPublicKey( 
              EphemeralPrivateKeyToStaticPublicKeyInput.builder() 
                .recipientPublicKey(recipientPublicKey) 

Raw ECDH keyrings 136



AWS Encryption SDK Developer Guide

                .build() 
            ) 
            .build() 
        ).build(); 

    final IKeyring ephemeralKeyring = 
 materialProviders.CreateRawEcdhKeyring(ephemeralInput);
}

PublicKeyDiscovery

When decrypting, it's a best practice to specify the wrapping keys that the AWS Encryption SDK 
can use. To follow this best practice, use an ECDH keyring that specifies both a sender's private 
key and recipient's public key. However, you can also create a Raw ECDH discovery keyring, that is, 
a Raw ECDH keyring that can decrypt any message where the specified key's public key matches 
the recipient's public key stored on the message ciphertext. This key agreement schema can only 
decrypt messages.

Important

When you decrypt messages using the PublicKeyDiscovery key agreement schema, you 
accept all public keys, regardless of who owns it.

To initialize a Raw ECDH keyring with the PublicKeyDiscovery key agreement schema, provide 
the following values:

• Recipient's static private key

You must provide the recipient's PEM-encoded private key (PKCS #8 PrivateKeyInfo structures), 
as defined in RFC 5958.

• Curve specification

Identifies the elliptic curve specification in the specified private key. Both the sender and 
recipient's key pairs must have the same curve specification.

Valid values: ECC_NIST_P256, ECC_NIS_P384, ECC_NIST_P512

Raw ECDH keyrings 137

https://tools.ietf.org/html/rfc5958#section-2


AWS Encryption SDK Developer Guide

C# / .NET

The following example creates a Raw ECDH keyring with the PublicKeyDiscovery key 
agreement schema. This keyring can decrypt any message where the public key of the specified 
private key matches the recipient's public key stored on the message ciphertext.

// Instantiate material providers
var materialProviders = new MaterialProviders(new MaterialProvidersConfig()); 
     var AlicePrivateKey = new MemoryStream(new byte[] { }); 

     // Create the Raw ECDH discovery keyring 
     var discoveryConfiguration = new RawEcdhStaticConfigurations() 
     { 
      PublicKeyDiscovery = new PublicKeyDiscoveryInput 
      { 
       RecipientStaticPrivateKey = AlicePrivateKey 
      } 
     }; 
      
     var createKeyringInput = new CreateRawEcdhKeyringInput()  
     { 
      CurveSpec = ECDHCurveSpec.ECC_NIST_P256, 
      KeyAgreementScheme = discoveryConfiguration  
     }; 

     var keyring = materialProviders.CreateRawEcdhKeyring(createKeyringInput);

Java

The following example creates a Raw ECDH keyring with the PublicKeyDiscovery key 
agreement schema. This keyring can decrypt any message where the public key of the specified 
private key matches the recipient's public key stored on the message ciphertext.

private static void RawEcdhDiscovery() { 
    // Instantiate material providers 
    final MaterialProviders materialProviders = 
      MaterialProviders.builder() 
        .MaterialProvidersConfig(MaterialProvidersConfig.builder().build()) 
        .build(); 

    KeyPair recipient = GetRawEccKey(); 

Raw ECDH keyrings 138



AWS Encryption SDK Developer Guide

    // Create the Raw ECDH discovery keyring 
    final CreateRawEcdhKeyringInput rawKeyringInput = 
      CreateRawEcdhKeyringInput.builder() 
        .curveSpec(ECDHCurveSpec.ECC_NIST_P256) 
        .KeyAgreementScheme( 
          RawEcdhStaticConfigurations.builder() 
            .PublicKeyDiscovery( 
              PublicKeyDiscoveryInput.builder() 
                // Must be a PEM-encoded private key 
                
 .recipientStaticPrivateKey(ByteBuffer.wrap(sender.getPrivate().getEncoded())) 
                .build() 
            ) 
            .build() 
        ).build(); 

    final IKeyring publicKeyDiscovery  = 
 materialProviders.CreateRawEcdhKeyring(rawKeyringInput);
}

Multi-keyrings

You can combine keyrings into a multi-keyring. A multi-keyring is a keyring that consists of one or 
more individual keyrings of the same or a different type. The effect is like using several keyrings 
in a series. When you use a multi-keyring to encrypt data, any of the wrapping keys in any of its 
keyrings can decrypt that data.

When you create a multi-keyring to encrypt data, you designate one of the keyrings as the
generator keyring. All other keyrings are known as child keyrings. The generator keyring generates 
and encrypts the plaintext data key. Then, all of the wrapping keys in all of the child keyrings 
encrypt the same plaintext data key. The multi-keyring returns the plaintext key and one encrypted 
data key for each wrapping key in the multi-keyring. If the generator keyring is a KMS keyring, 
the generator key in the AWS KMS keyring generates and encrypts the plaintext key. Then, all 
additional AWS KMS keys in the AWS KMS keyring, and all wrapping keys in all child keyrings in the 
multi-keyring, encrypt the same plaintext key.

If you create a multi-keyring with no generator keyring, you can use it by itself to decrypt data, but 
not to encrypt. Or, to use a multi-keyring with no genertor keyring in encrypt operations, you can 
specify it as a child keyring in another multi-keyring. A multi-keyring with no generator keyring 
cannot be designated as the generator keyring in another multi-keyring.

Multi-keyrings 139



AWS Encryption SDK Developer Guide

When decrypting, the AWS Encryption SDK uses the keyrings to try to decrypt one of the 
encrypted data keys. The keyrings are called in the order that they are specified in the multi-
keyring. Processing stops as soon as any key in any keyring can decrypt an encrypted data key.

Beginning in version 1.7.x, when an encrypted data key is encrypted under an AWS Key 
Management Service (AWS KMS) keyring (or master key provider), the AWS Encryption SDK 
always passes the key ARN of the AWS KMS key to the KeyId parameter of the AWS KMS Decrypt
operation. This is an AWS KMS best practice that assures that you decrypt the encrypted data key 
with the wrapping key you intend to use.

To see a working example of a multi-keyring, see:

• C: multi_keyring.cpp

• C# / .NET: MultiKeyringExample.cs

• JavaScript Node.js: multi_keyring.ts

• JavaScript Browser: multi_keyring.ts

• Java: MultiKeyringExample.java

To create a multi-keyring, first instantiate the child keyrings. In this example, we use an AWS KMS 
keyring and a Raw AES keyring, but you can combine any supported keyrings in a multi-keyring.

C

/* Define an AWS KMS keyring. For details, see string.cpp */
struct aws_cryptosdk_keyring *kms_keyring = 
 Aws::Cryptosdk::KmsKeyring::Builder().Build(example_key);

// Define a Raw AES keyring. For details, see raw_aes_keyring.c */
struct aws_cryptosdk_keyring *aes_keyring = aws_cryptosdk_raw_aes_keyring_new( 
        alloc, wrapping_key_namespace, wrapping_key_name, wrapping_key, 
 AWS_CRYPTOSDK_AES256);

C# / .NET

// Define an AWS KMS keyring. For details, see AwsKmsKeyringExample.cs.
var kmsKeyring = materialProviders.CreateAwsKmsKeyring(createKmsKeyringInput);

// Define a Raw AES keyring. For details, see RawAESKeyringExample.cs.
var aesKeyring = materialProviders.CreateRawAesKeyring(createAesKeyringInput);

Multi-keyrings 140

https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html
https://github.com/aws/aws-encryption-sdk-c/blob/master/examples/multi_keyring.cpp
https://github.com/aws/aws-encryption-sdk-dafny/tree/mainline/AwsEncryptionSDK/runtimes/net/Examples/Keyring/MultiKeyringExample.cs
https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-node/src/multi_keyring.ts
https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-browser/src/multi_keyring.ts
https://github.com/aws/aws-encryption-sdk-java/blob/master/src/examples/java/com/amazonaws/crypto/examples/keyrings/MultiKeyringExample.java
https://github.com/aws/aws-encryption-sdk-c/blob/master/examples/string.cpp
https://github.com/aws/aws-encryption-sdk-c/blob/master/examples/raw_aes_keyring.c
https://github.com/aws/aws-encryption-sdk-dafny/tree/mainline/AwsEncryptionSDK/runtimes/net/Examples/Keyring/AwsKmsKeyringExample.cs
https://github.com/aws/aws-encryption-sdk-dafny/tree/mainline/AwsEncryptionSDK/runtimes/net/Examples/Keyring/RawAESKeyringExample.cs


AWS Encryption SDK Developer Guide

JavaScript Browser

const clientProvider = getClient(KMS, { credentials })

// Define an AWS KMS keyring. For details, see kms_simple.ts.  
const kmsKeyring = new KmsKeyringBrowser({ generatorKeyId: exampleKey })

// Define a Raw AES keyring. For details, see aes_simple.ts.
const aesKeyring = new RawAesKeyringWebCrypto({ keyName, keyNamespace, 
 wrappingSuite, masterKey })

JavaScript Node.js

// Define an AWS KMS keyring. For details, see kms_simple.ts.  
const kmsKeyring = new KmsKeyringNode({ generatorKeyId: exampleKey })

// Define a Raw AES keyring. For details, see raw_aes_keyring_node.ts.
const aesKeyring = new RawAesKeyringNode({ keyName, keyNamespace, wrappingSuite, 
 unencryptedMasterKey })

Java

// Define the raw AES keyring.
final MaterialProviders matProv = MaterialProviders.builder() 
        .MaterialProvidersConfig(MaterialProvidersConfig.builder().build()) 
        .build();
final CreateRawAesKeyringInput createRawAesKeyringInput = 
 CreateRawAesKeyringInput.builder() 
        .keyName("AES_256_012") 
        .keyNamespace("HSM_01") 
        .wrappingKey(AESWrappingKey) 
        .wrappingAlg(AesWrappingAlg.ALG_AES256_GCM_IV12_TAG16) 
        .build();
IKeyring rawAesKeyring = matProv.CreateRawAesKeyring(createRawAesKeyringInput);

// Define the AWS KMS keyring.
final CreateAwsKmsMrkMultiKeyringInput createAwsKmsMrkMultiKeyringInput = 
 CreateAwsKmsMrkMultiKeyringInput.builder() 
        .generator(kmsKeyArn) 
        .build();
IKeyring awsKmsMrkMultiKeyring = 
 matProv.CreateAwsKmsMrkMultiKeyring(createAwsKmsMrkMultiKeyringInput);

Multi-keyrings 141

https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-browser/src/kms_simple.ts
https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-browser/src/aes_simple.ts
https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-node/src/kms_simple.ts
https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/raw-aes-keyring-node/src/raw_aes_keyring_node.ts


AWS Encryption SDK Developer Guide

Next, create the multi-keyring and specify its generator keyring, if any. In this example, we create 
a multi-keyring in which the AWS KMS keyring is the generator keyring and the AES keyring is the 
child keyring.

C

In the multi-keyring constructor in C, you specify only its generator keyring.

struct aws_cryptosdk_keyring *multi_keyring = aws_cryptosdk_multi_keyring_new(alloc, 
 kms_keyring);

To add a child keyring to your multi-keyring, use the
aws_cryptosdk_multi_keyring_add_child method. You need to call the method once for 
each child keyring that you add.

// Add the Raw AES keyring (C only)
aws_cryptosdk_multi_keyring_add_child(multi_keyring, aes_keyring);

C# / .NET

The .NET CreateMultiKeyringInput constructor lets you define a generator keyring and 
child keyrings. The resulting CreateMultiKeyringInput object is immutable.

var createMultiKeyringInput = new CreateMultiKeyringInput
{ 
    Generator = kmsKeyring, 
    ChildKeyrings = new List<IKeyring>() {aesKeyring}
};

var multiKeyring = materialProviders.CreateMultiKeyring(createMultiKeyringInput);

JavaScript Browser

JavaScript multi-keyrings are immutable. The JavaScript multi-keyring constructor lets you 
specify the generator keyring and multiple child keyrings.

const clientProvider = getClient(KMS, { credentials })

const multiKeyring = new MultiKeyringWebCrypto(generator: kmsKeyring, children: 
 [aesKeyring]);

Multi-keyrings 142



AWS Encryption SDK Developer Guide

JavaScript Node.js

JavaScript multi-keyrings are immutable. The JavaScript multi-keyring constructor lets you 
specify the generator keyring and multiple child keyrings.

const multiKeyring = new MultiKeyringNode(generator: kmsKeyring, children: 
 [aesKeyring]);

Java

The Java CreateMultiKeyringInput constructor lets you define a generator keyring and 
child keyrings. The resulting createMultiKeyringInput object is immutable.

final CreateMultiKeyringInput createMultiKeyringInput = 
 CreateMultiKeyringInput.builder() 
        .generator(awsKmsMrkMultiKeyring) 
        .childKeyrings(Collections.singletonList(rawAesKeyring)) 
        .build();
IKeyring multiKeyring = matProv.CreateMultiKeyring(createMultiKeyringInput);

Now, you can use the multi-keyring to encrypt and decrypt data.

Multi-keyrings 143



AWS Encryption SDK Developer Guide

AWS Encryption SDK programming languages

The AWS Encryption SDK is available for the following programming languages. All language 
implementations are interoperable. You can encrypt with one language implementation and 
decrypt with another. Interoperability might be subject to language constraints. If so, these 
constraints are described in the topic about the language implementation. Also, when encrypting 
and decrypting, you must use compatible keyrings, or master keys and master key providers. For 
details, see the section called “Keyring compatibility”.

Topics

• AWS Encryption SDK for C

• AWS Encryption SDK for .NET

• AWS Encryption SDK for Java

• AWS Encryption SDK for JavaScript

• AWS Encryption SDK for Python

• AWS Encryption SDK command line interface

AWS Encryption SDK for C

The AWS Encryption SDK for C provides a client-side encryption library for developers who are 
writing applications in C. It also serves as a foundation for implementations of the AWS Encryption 
SDK in higher-level programming languages.

Like all implementations of the AWS Encryption SDK, the AWS Encryption SDK for C offers 
advanced data protection features. These include envelope encryption, additional authenticated 
data (AAD), and secure, authenticated, symmetric key algorithm suites, such as 256-bit AES-GCM 
with key derivation and signing.

All language-specific implementations of the AWS Encryption SDK are fully interoperable. For 
example, you can encrypt data with the AWS Encryption SDK for C and decrypt it with any 
supported language implementation, including the AWS Encryption CLI.

The AWS Encryption SDK for C requires the AWS SDK for C++ to interact with AWS Key 
Management Service (AWS KMS). You need to use it only if you're using the optional AWS KMS 
keyring. However, the AWS Encryption SDK doesn't require AWS KMS or any other AWS service.

C 144

https://docs.aws.amazon.com/crypto/latest/userguide/cryptography-concepts.html#define-envelope-encryption


AWS Encryption SDK Developer Guide

Learn More

• For details about programming with the AWS Encryption SDK for C, see the C examples, the
examples in the aws-encryption-sdk-c repository on GitHub, and the AWS Encryption SDK for C 
API documentation.

• For a discussion about how to use the AWS Encryption SDK for C to encrypt data so that you can 
decrypt it in multiple AWS Regions, see How to decrypt ciphertexts in multiple regions with the 
AWS Encryption SDK in C in the AWS Security Blog.

Topics

• Installing the AWS Encryption SDK for C

• Using the AWS Encryption SDK for C

• AWS Encryption SDK for C examples

Installing the AWS Encryption SDK for C

Install the latest version of the AWS Encryption SDK for C.

Note

All versions of the AWS Encryption SDK for C earlier than 2.0.0 are in the end-of-support 
phase.
You can safely update from version 2.0.x and later to the latest version of the AWS 
Encryption SDK for C without any code or data changes. However,  new security features
introduced in version 2.0.x are not backward-compatible. To update from versions earlier 
than 1.7.x to version 2.0.x and later, you must first update to the latest 1.x version of the 
AWS Encryption SDK for C. For details, see Migrating your AWS Encryption SDK.

You can find detailed instructions for installing and building the AWS Encryption SDK for C in 
the README file of the aws-encryption-sdk-c repository. It includes instructions for building on 
Amazon Linux, Ubuntu, macOS, and Windows platforms.

Before you begin, decide whether you want to use AWS KMS keyrings in the AWS Encryption SDK. 
If you use an AWS KMS keyring, you need to install the AWS SDK for C++. The AWS SDK is required 
to interact with AWS Key Management Service (AWS KMS). When you use AWS KMS keyrings, the 

Installing 145

https://github.com/aws/aws-encryption-sdk-c/tree/master/examples
https://github.com/aws/aws-encryption-sdk-c/
https://aws.github.io/aws-encryption-sdk-c/html/
https://aws.github.io/aws-encryption-sdk-c/html/
https://aws.amazon.com/blogs/security/how-to-decrypt-ciphertexts-multiple-regions-aws-encryption-sdk-in-c/
https://aws.amazon.com/blogs/security/how-to-decrypt-ciphertexts-multiple-regions-aws-encryption-sdk-in-c/
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://github.com/aws/aws-encryption-sdk-c/#readme
https://github.com/aws/aws-encryption-sdk-c/
https://docs.aws.amazon.com/kms/latest/developerguide/


AWS Encryption SDK Developer Guide

AWS Encryption SDK uses AWS KMS to generate and protect the encryption keys that protect your 
data.

You do not need to install the AWS SDK for C++ if you are using another keyring type, such as a 
raw AES keyring, a raw RSA keyring, or a multi-keyring that doesn't include an AWS KMS keyring. 
However, when using a raw keyring type, you need to generate and protect your own raw wrapping 
keys.

For help deciding which keyring types to use, see the section called “Choosing a keyring”.

If you're having trouble with your installation, file an issue in the aws-encryption-sdk-c
repository or use any of the feedback links on this page.

Using the AWS Encryption SDK for C

This topic explains some of the features of the AWS Encryption SDK for C that are not supported in 
other programming language implementations.

The examples in this section show how to use version 2.0.x and later of the AWS Encryption SDK 
for C. For examples that use earlier versions, find your release in the Releases list of the aws-
encryption-sdk-c repository repository on GitHub.

For details about programming with the AWS Encryption SDK for C, see the C examples, the
examples in the aws-encryption-sdk-c repository on GitHub, and the AWS Encryption SDK for C API 
documentation.

See also: Using keyrings

Topics

• Patterns for encrypting and decrypting data

• Reference counting

Patterns for encrypting and decrypting data

When you use the AWS Encryption SDK for C, you follow a pattern similar to this: create a keyring, 
create a CMM that uses the keyring, create a session that uses the CMM (and keyring), and then 
process the session.

Using the C SDK 146

https://github.com/aws/aws-encryption-sdk-c/issues
https://github.com/aws/aws-encryption-sdk-c/releases
https://github.com/aws/aws-encryption-sdk-c/
https://github.com/aws/aws-encryption-sdk-c/
https://github.com/aws/aws-encryption-sdk-c/tree/master/examples
https://github.com/aws/aws-encryption-sdk-c/
https://aws.github.io/aws-encryption-sdk-c/html/
https://aws.github.io/aws-encryption-sdk-c/html/


AWS Encryption SDK Developer Guide

1. Load error strings.

Call the aws_cryptosdk_load_error_strings() method in your C or C++ code. It loads 
error information that is very useful for debugging.

You only need to call it once, such as in your main method.

/* Load error strings for debugging */
aws_cryptosdk_load_error_strings();

2. Create a keyring.

Configure your keyring with the wrapping keys that you want to use to encrypt your data keys. 
This example uses an AWS KMS keyring with one AWS KMS key, but you can use any type of 
keyring in its place.

To identify an AWS KMS key in an encryption keyring in the AWS Encryption SDK for C, specify 
a key ARN or alias ARN. In a decryption keyring, you must use a key ARN. For details, see
Identifying AWS KMS keys in an AWS KMS keyring.

const char * KEY_ARN = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"     
struct aws_cryptosdk_keyring *kms_keyring =  
       Aws::Cryptosdk::KmsKeyring::Builder().Build(KEY_ARN);

3. Create a session.

In the AWS Encryption SDK for C, you use a session to encrypt a single plaintext message or 
decrypt a single ciphertext message, regardless of its size. The session maintains the state of 
the message throughout its processing.

Configure your session with an allocator, a keyring, and a mode: AWS_CRYPTOSDK_ENCRYPT
or AWS_CRYPTOSDK_DECRYPT. If you need to change the mode of the session, use the
aws_cryptosdk_session_reset method.

When you create a session with a keyring, the AWS Encryption SDK for C automatically creates a 
default cryptographic materials manager (CMM) for you. You don't need to create, maintain, or 
destroy this object.

For example, the following session uses the allocator and the keyring that was defined in step 1. 
When you encrypt data, the mode is AWS_CRYPTOSDK_ENCRYPT.

Using the C SDK 147

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-ARN
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-arn


AWS Encryption SDK Developer Guide

struct aws_cryptosdk_session * session = 
 aws_cryptosdk_session_new_from_keyring_2(allocator, AWS_CRYPTOSDK_ENCRYPT, 
 kms_keyring);

4. Encrypt or decrypt the data.

To process the data in the session, use the aws_cryptosdk_session_process
method. If the input buffer is large enough to hold the entire plaintext, and 
the output buffer is large enough to hold the entire ciphertext, you can call
aws_cryptosdk_session_process_full. However, if you need to handle streaming 
data, you can call aws_cryptosdk_session_process in a loop. For an example, see the
file_streaming.cpp example. The aws_cryptosdk_session_process_full is introduced in 
AWS Encryption SDK versions 1.9.x and 2.2.x.

When the session is configured to encrypt data, the plaintext fields describe the input and the 
ciphertext fields describe the output. The plaintext field holds the message that you want 
to encrypt and the ciphertext field gets the encrypted message that the encrypt method 
returns.

/* Encrypting data */
aws_cryptosdk_session_process_full(session, 
                                   ciphertext, 
                                   ciphertext_buffer_size, 
                                   &ciphertext_length, 
                                   plaintext, 
                                   plaintext_length) 
                               

When the session is configured to decrypt data, the ciphertext fields describe the input and the 
plaintext fields describe the output. The ciphertext field holds the encrypted message that 
the encrypt method returned, and the plaintext field gets the plaintext message that the 
decrypt method returns.

To decrypt the data, call the aws_cryptosdk_session_process_full method.

/* Decrypting data */
aws_cryptosdk_session_process_full(session, 
                                   plaintext, 
                                   plaintext_buffer_size, 
                                   &plaintext_length, 

Using the C SDK 148

https://github.com/aws/aws-encryption-sdk-c/blob/master/examples/file_streaming.cpp


AWS Encryption SDK Developer Guide

                                   ciphertext, 
                                   ciphertext_length) 
                                    

Reference counting

To prevent memory leaks, be sure to release your references to all objects that you create when 
you are finished with them. Otherwise, you end up with memory leaks. The SDK provides methods 
to make this task easier.

Whenever you create a parent object with one of the following child objects, the parent object gets 
and maintains a reference to the child object, as follows:

• A keyring, such as creating a session with a keyring

• A default cryptographic materials manager (CMM), such as creating a session or custom CMM 
with a default CMM

• A data key cache, such as creating a caching CMM with a keyring and cache

Unless you need an independent reference to the child object, you can release your reference 
to the child object as soon as you create the parent object. The remaining reference to the child 
object is released when the parent object is destroyed. This pattern ensures that you maintain 
the reference to each object only for as long as you need it, and you don't leak memory due to 
unreleased references.

You are only responsible for releasing references to the child objects that you create 
explicitly. You are not responsible for managing references to any objects that the 
SDK creates for you. If the SDK creates an object, such as the default CMM that the
aws_cryptosdk_caching_cmm_new_from_keyring method adds to a session, the SDK 
manages the creation and destruction of the object and its references.

In the following example, when you create a session with a keyring, the session gets a 
reference to the keyring, and maintains that reference until the session is destroyed. 
If you do not need to maintain an additional reference to the keyring, you can use the
aws_cryptosdk_keyring_release method to release the keyring object as soon as the session 
is created. This method decrements the reference count for the keyring. The session's reference to 
the keyring is released when you call aws_cryptosdk_session_destroy to destroy the session.

// The session gets a reference to the keyring.

Using the C SDK 149



AWS Encryption SDK Developer Guide

struct aws_cryptosdk_session *session =  
 aws_cryptosdk_session_new_from_keyring_2(alloc, AWS_CRYPTOSDK_ENCRYPT, keyring);

// After you create a session with a keyring, release the reference to the keyring 
 object.
aws_cryptosdk_keyring_release(keyring);

For more complex tasks, such as reusing a keyring for multiple sessions or specifying an algorithm 
suite in a CMM, you might need to maintain an independent reference to the object. If so, don't call 
the release methods immediately. Instead, release your references when you are no longer using 
the objects, in addition to destroying the session.

This reference counting technique also works when you are using alternate CMMs, such as the 
caching CMM for data key caching. When you create a caching CMM from a cache and a keyring, 
the caching CMM gets a reference to both objects. Unless you need them for another task, you 
can release your independent references to the cache and keyring as soon as the caching CMM is 
created. Then, when you create a session with the caching CMM, you can release your reference to 
the caching CMM.

Notice that you are only responsible for releasing references to objects that you create explicitly. 
Objects that the methods create for you, such as the default CMM that underlies the caching CMM, 
are managed by the method.

/ Create the caching CMM from a cache and a keyring.
struct aws_cryptosdk_cmm *caching_cmm = 
 aws_cryptosdk_caching_cmm_new_from_keyring(allocator, cache, kms_keyring, NULL, 60, 
 AWS_TIMESTAMP_SECS);

// Release your references to the cache and the keyring.
aws_cryptosdk_materials_cache_release(cache);
aws_cryptosdk_keyring_release(kms_keyring);

// Create a session with the caching CMM.
struct aws_cryptosdk_session *session = aws_cryptosdk_session_new_from_cmm_2(allocator, 
 AWS_CRYPTOSDK_ENCRYPT, caching_cmm);

// Release your references to the caching CMM.
aws_cryptosdk_cmm_release(caching_cmm);

// ...

Using the C SDK 150



AWS Encryption SDK Developer Guide

aws_cryptosdk_session_destroy(session);

AWS Encryption SDK for C examples

The following examples show you how to use the AWS Encryption SDK for C to encrypt and 
decrypt data.

The examples in this section show how to use versions 2.0.x and later of the AWS Encryption 
SDK for C. For examples that use earlier versions, find your release in the Releases list of the aws-
encryption-sdk-c repository repository on GitHub.

When you install and build the AWS Encryption SDK for C, the source code for these and other 
examples are included in the examples subdirectory, and they are compiled and built into the
build directory. You can also find them in the examples subdirectory of the aws-encryption-sdk-c
repository on GitHub.

Topics

• Encrypting and decrypting strings

Encrypting and decrypting strings

The following example shows you how to use the AWS Encryption SDK for C to encrypt and 
decrypt a string.

This example features the AWS KMS keyring, a type of keyring that uses an AWS KMS key in AWS 
Key Management Service (AWS KMS) to generate and encrypt data keys. The example includes 
code written in C++. The AWS Encryption SDK for C requires the AWS SDK for C++ to call AWS 
KMS when using AWS KMS keyrings. If you're using a keyring that doesn't interact with AWS KMS, 
such as a raw AES keyring, a raw RSA keyring, or a multi-keyring that doesn't include an AWS KMS 
keyring, the AWS SDK for C++ is not required.

For help creating an AWS KMS key, see Creating Keys in the AWS Key Management Service Developer 
Guide. For help identifying the AWS KMS keys in an AWS KMS keyring, see Identifying AWS KMS 
keys in an AWS KMS keyring.

See the complete code sample: string.cpp

Topics

• Encrypt a string

Examples 151

https://github.com/aws/aws-encryption-sdk-c/releases
https://github.com/aws/aws-encryption-sdk-c/
https://github.com/aws/aws-encryption-sdk-c/
https://github.com/aws/aws-encryption-sdk-c/tree/master/examples
https://github.com/aws/aws-encryption-sdk-c/
https://docs.aws.amazon.com/kms/latest/developerguide/
https://docs.aws.amazon.com/kms/latest/developerguide/
https://docs.aws.amazon.com/kms/latest/developerguide/create-keys.html
https://github.com/aws/aws-encryption-sdk-c/blob/master/examples/string.cpp


AWS Encryption SDK Developer Guide

• Decrypt a string

Encrypt a string

The first part of this example uses an AWS KMS keyring with one AWS KMS key to encrypt a 
plaintext string.

Step 1. Load error strings.

Call the aws_cryptosdk_load_error_strings() method in your C or C++ code. It loads 
error information that is very useful for debugging.

You only need to call it once, such as in your main method.

/* Load error strings for debugging */
aws_cryptosdk_load_error_strings();

Step 2: Construct the keyring.

Create an AWS KMS keyring for encryption. The keyring in this example is configured with 
one AWS KMS key, but you can configure an AWS KMS keyring with multiple AWS KMS keys, 
including AWS KMS keys in different AWS Regions and different accounts.

To identify an AWS KMS key in an encryption keyring in the AWS Encryption SDK for C, specify 
a key ARN or alias ARN. In a decryption keyring, you must use a key ARN. For details, see
Identifying AWS KMS keys in an AWS KMS keyring.

Identifying AWS KMS keys in an AWS KMS keyring

When you create a keyring with multiple AWS KMS keys, you specify the AWS KMS key used to 
generate and encrypt the plaintext data key, and an optional array of additional AWS KMS keys 
that encrypt the same plaintext data key. In this case, you specify only the generator AWS KMS 
key.

Before running this code, replace the example key ARN with a valid one.

const char * key_arn = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab";     

struct aws_cryptosdk_keyring *kms_keyring =  
       Aws::Cryptosdk::KmsKeyring::Builder().Build(key_arn);

Examples 152

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-ARN
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-arn


AWS Encryption SDK Developer Guide

Step 3: Create a session.

Create a session using the allocator, a mode enumerator, and the keyring.

Every session requires a mode: either AWS_CRYPTOSDK_ENCRYPT to encrypt or
AWS_CRYPTOSDK_DECRYPT to decrypt. To change the mode of an existing session, use the
aws_cryptosdk_session_reset method.

After you create a session with the keyring, you can release your reference to the keyring using 
the method that the SDK provides. The session retains a reference to the keyring object during 
its lifetime. References to the keyring and session objects are released when you destroy the 
session. This reference counting technique helps to prevent memory leaks and to prevent the 
objects from being released while they are in use.

struct aws_cryptosdk_session *session =  
       aws_cryptosdk_session_new_from_keyring_2(alloc, AWS_CRYPTOSDK_ENCRYPT, 
 kms_keyring);

/* When you add the keyring to the session, release the keyring object */
aws_cryptosdk_keyring_release(kms_keyring);

Step 4: Set the encryption context.

An encryption context is arbitrary, non-secret additional authenticated data. When you provide 
an encryption context on encrypt, the AWS Encryption SDK cryptographically binds the 
encryption context to the ciphertext so that the same encryption context is required to decrypt 
the data. Using an encryption context is optional, but we recommend it as a best practice.

First, create a hash table that includes the encryption context strings.

/* Allocate a hash table for the encryption context */
int set_up_enc_ctx(struct aws_allocator *alloc, struct aws_hash_table *my_enc_ctx)  

// Create encryption context strings
AWS_STATIC_STRING_FROM_LITERAL(enc_ctx_key1, "Example");
AWS_STATIC_STRING_FROM_LITERAL(enc_ctx_value1, "String");
AWS_STATIC_STRING_FROM_LITERAL(enc_ctx_key2, "Company");
AWS_STATIC_STRING_FROM_LITERAL(enc_ctx_value2, "MyCryptoCorp");

// Put the key-value pairs in the hash table
aws_hash_table_put(my_enc_ctx, enc_ctx_key1, (void *)enc_ctx_value1, &was_created)

Examples 153



AWS Encryption SDK Developer Guide

aws_hash_table_put(my_enc_ctx, enc_ctx_key2, (void *)enc_ctx_value2, &was_created)

Get a mutable pointer to the encryption context in the session. Then, use the
aws_cryptosdk_enc_ctx_clone function to copy the encryption context into the session. 
Keep the copy in my_enc_ctx so you can validate the value after decrypting the data.

The encryption context is part of the session, not a parameter passed to the session process 
function. This guarantees that the same encryption context is used for every segment of a 
message, even if the session process function is called multiple times to encrypt the entire 
message.

struct aws_hash_table *session_enc_ctx = 
 aws_cryptosdk_session_get_enc_ctx_ptr_mut(session);

aws_cryptosdk_enc_ctx_clone(alloc, session_enc_ctx, my_enc_ctx)

Step 5: Encrypt the string.

To encrypt the plaintext string, use the aws_cryptosdk_session_process_full method 
with the session in encryption mode. This method, introduced in AWS Encryption SDK versions 
1.9.x and 2.2.x, is designed for non-streaming encryption and decryption. To handle streaming 
data, call the aws_cryptosdk_session_process in a loop.

When encrypting, the plaintext fields are input fields; the ciphertext fields are output fields. 
When the processing is complete, the ciphertext_output field contains the encrypted 
message, including the actual ciphertext, encrypted data keys, and the encryption context. 
You can decrypt this encrypted message by using the AWS Encryption SDK for any supported 
programming language.

/* Gets the length of the plaintext that the session processed */
size_t ciphertext_len_output;
if (AWS_OP_SUCCESS != aws_cryptosdk_session_process_full(session, 
                                  ciphertext_output, 
                                  ciphertext_buf_sz_output, 
                                  &ciphertext_len_output, 
                                  plaintext_input, 
                                  plaintext_len_input)) { 
    aws_cryptosdk_session_destroy(session); 
    return 8;
}

Examples 154



AWS Encryption SDK Developer Guide

Step 6: Clean up the session.

The final step destroys the session including references to the CMM and the keyring.

If you prefer, instead of destroying the session, you can reuse the session with the same keyring 
and CMM to decrypt the string, or to encrypt or decrypt other messages. To use the session 
for decrypting, use the aws_cryptosdk_session_reset method to change the mode to
AWS_CRYPTOSDK_DECRYPT.

Decrypt a string

The second part of this example decrypts an encrypted message that contains the ciphertext of the 
original string.

Step 1: Load error strings.

Call the aws_cryptosdk_load_error_strings() method in your C or C++ code. It loads 
error information that is very useful for debugging.

You only need to call it once, such as in your main method.

/* Load error strings for debugging */
aws_cryptosdk_load_error_strings();

Step 2: Construct the keyring.

When you decrypt data in AWS KMS, you pass in the encrypted message that the encrypt API 
returned. The Decrypt API doesn't take an AWS KMS key as input. Instead, AWS KMS uses the 
same AWS KMS key to decrypt the ciphertext that it used to encrypt it. However, the AWS 
Encryption SDK lets you specify an AWS KMS keyring with AWS KMS keys on encrypt and 
decrypt.

On decrypt, you can configure a keyring with only the AWS KMS keys that you want to use to 
decrypt the encrypted message. For example, you might want to create a keyring with only 
the AWS KMS key that is used by a particular role in your organization. The AWS Encryption 
SDK will never use an AWS KMS key unless it appears in the decryption keyring. If the SDK can't 
decrypt the encrypted data keys by using the AWS KMS keys in the keyring that you provide, 
either because none of AWS KMS keys in the keyring were used to encrypt any of the data 
keys, or because the caller doesn't have permission to use the AWS KMS keys in the keyring to 
decrypt, the decrypt call fails.

Examples 155

https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html


AWS Encryption SDK Developer Guide

When you specify an AWS KMS key for a decryption keyring, you must use its key ARN. Alias 
ARNs are permitted only in encryption keyrings. For help identifying the AWS KMS keys in an 
AWS KMS keyring, see Identifying AWS KMS keys in an AWS KMS keyring.

In this example, we specify a keyring configured with the same AWS KMS key used to encrypt 
the string. Before running this code, replace the example key ARN with a valid one.

const char * key_arn = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"     

struct aws_cryptosdk_keyring *kms_keyring = 
        Aws::Cryptosdk::KmsKeyring::Builder().Build(key_arn);

Step 3: Create a session.

Create a session using the allocator and the keyring. To configure the session for decryption, 
configure the session with the AWS_CRYPTOSDK_DECRYPT mode.

After you create a session with a keyring, you can release your reference to the keyring using 
the method that the SDK provides. The session retains a reference to the keyring object during 
its lifetime, and both the session and keyring are released when you destroy the session. This 
reference counting technique helps to prevent memory leaks and to prevent the objects from 
being released while they are in use.

struct aws_cryptosdk_session *session =  
 aws_cryptosdk_session_new_from_keyring_2(alloc, AWS_CRYPTOSDK_DECRYPT, 
 kms_keyring);

/* When you add the keyring to the session, release the keyring object */
aws_cryptosdk_keyring_release(kms_keyring);

Step 4: Decrypt the string.

To decrypt the string, use the aws_cryptosdk_session_process_full method with the 
session that is configured for decryption. This method, introduced in AWS Encryption SDK 
versions 1.9.x and 2.2.x, is designed for non-streaming encryption and decryption. To handle 
streaming data, call the aws_cryptosdk_session_process in a loop.

When decrypting, the ciphertext fields are input fields and the plaintext fields are output fields. 
The ciphertext_input field holds the encrypted message that the encrypt method returned. 

Examples 156

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-ARN
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-arn
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-arn


AWS Encryption SDK Developer Guide

When the processing is complete, the plaintext_output field contains the plaintext 
(decrypted) string.

size_t plaintext_len_output;

if (AWS_OP_SUCCESS != aws_cryptosdk_session_process_full(session, 
                                  plaintext_output, 
                                  plaintext_buf_sz_output, 
                                  &plaintext_len_output, 
                                  ciphertext_input, 
                                  ciphertext_len_input)) { 
    aws_cryptosdk_session_destroy(session); 
    return 13;
}

Step 5: Verify the encryption context.

Be sure that the actual encryption context — the one that was used to decrypt the message — 
contains the encryption context that you provided when encrypting the message. The actual 
encryption context might include extra pairs, because the cryptographic materials manager
(CMM) can add pairs to the provided encryption context before encrypting the message.

In the AWS Encryption SDK for C, you are not required to provide an encryption context when 
decrypting because the encryption context is included in the encrypted message that the SDK 
returns. But, before it returns the plaintext message, your decrypt function should verify that 
all pairs in the provided encryption context appear in the encryption context that was used to 
decrypt the message.

First, get a read-only pointer to the hash table in the session. This hash table contains the 
encryption context that was used to decrypt the message.

const struct aws_hash_table *session_enc_ctx = 
 aws_cryptosdk_session_get_enc_ctx_ptr(session);

Then, loop through the encryption context in the my_enc_ctx hash table that you copied 
when encrypting. Verify that each pair in the my_enc_ctx hash table that was used to encrypt 
appears in the session_enc_ctx hash table that was used to decrypt. If any key is missing, or 
that key has a different value, stop processing and write an error message.

for (struct aws_hash_iter iter = aws_hash_iter_begin(my_enc_ctx); !
aws_hash_iter_done(&iter); 

Examples 157



AWS Encryption SDK Developer Guide

      aws_hash_iter_next(&iter)) { 
     struct aws_hash_element *session_enc_ctx_kv_pair; 
     aws_hash_table_find(session_enc_ctx, iter.element.key, 
 &session_enc_ctx_kv_pair) 

    if (!session_enc_ctx_kv_pair || 
        !aws_string_eq( 
            (struct aws_string *)iter.element.value, (struct aws_string 
 *)session_enc_ctx_kv_pair->value)) { 
        fprintf(stderr, "Wrong encryption context!\n"); 
        abort(); 
    }
}

Step 6: Clean up the session.

After you verify the encryption context, you can destroy the session, or reuse it. If you need to 
reconfigure the session, use the aws_cryptosdk_session_reset method.

aws_cryptosdk_session_destroy(session);

AWS Encryption SDK for .NET

The AWS Encryption SDK for .NET is a client-side encryption library for developers who are writing 
applications in C# and other .NET programming languages. It is supported on Windows, macOS, 
and Linux.

All programming language implementations of the AWS Encryption SDK are fully interoperable. 
However, if you encrypt data using the required encryption context CMM in version 4.x of the 
AWS Encryption SDK for .NET, you can only decrypt it with version 4.x of the AWS Encryption SDK 
for .NET or version 3.x of the AWS Encryption SDK for Java.

Note

Version 4.0.0 of the AWS Encryption SDK for .NET deviates from the AWS Encryption 
SDK Message Specification. As a result, messages encrypted by version 4.0.0 can only be 
decrypted by version 4.0.0 or later of the AWS Encryption SDK for .NET. They cannot be 
decrypted by any other programming language implementation.
Version 4.0.1 of the AWS Encryption SDK for .NET writes messages according to the AWS 
Encryption SDK Message Specification, and is interoperable with other programming 

.NET 158



AWS Encryption SDK Developer Guide

language implementations. By default, version 4.0.1 can read messages encrypted by 
version 4.0.0. However, if you do not want to decrypt messages encrypted by version 4.0.0, 
you can specify the NetV4_0_0_RetryPolicy property to prevent the client from reading 
these messages. For more information, see the v4.0.1 release notes in the aws-encryption-
sdk-dafny repository on GitHub.

The AWS Encryption SDK for .NET differs from some of the other programming language 
implementations of the AWS Encryption SDK in the following ways:

• No support for data key caching

Note

Version 4.x of the AWS Encryption SDK for .NET supports the AWS KMS Hierarchical 
keyring, an alternative cryptographic materials caching solution.

• No support for streaming data

• No logging or stack traces from the AWS Encryption SDK for .NET

• Requires the AWS SDK for .NET

The AWS Encryption SDK for .NET includes all of the security features introduced in versions 2.0.x
and later of other language implementations of the AWS Encryption SDK. However, if you are 
using the AWS Encryption SDK for .NET to decrypt data that was encrypted by a pre-2.0.x version 
another language implementation of the AWS Encryption SDK, you might need to adjust your
commitment policy. For details, see How to set your commitment policy.

The AWS Encryption SDK for .NET is a product of the AWS Encryption SDK in Dafny, a formal 
verification language in which you write specifications, the code to implement them, and the 
proofs to test them. The result is a library that implements the features of the AWS Encryption SDK 
in a framework that assures functional correctness.

Learn More

• For examples showing how to configure options in the AWS Encryption SDK, such as specifying 
an alternate algorithm suite, limiting encrypted data keys, and using AWS KMS multi-Region 
keys, see Configuring the AWS Encryption SDK.

.NET 159

https://github.com/aws/aws-encryption-sdk-dafny/tree/mainline/AwsEncryptionSDK/runtimes/net/Examples/NetV4_0_0Example.cs
https://github.com/aws/aws-encryption-sdk-dafny/releases/tag/v4.0.1?
https://github.com/dafny-lang/dafny/blob/master/README.md


AWS Encryption SDK Developer Guide

• For details about programming with the AWS Encryption SDK for .NET, see the aws-
encryption-sdk-net directory of the aws-encryption-sdk-dafny repository on GitHub.

Topics

• Installing the AWS Encryption SDK for .NET

• Debugging the AWS Encryption SDK for .NET

• AWS KMS keyrings in the AWS Encryption SDK for .NET

• Required encryption contexts in version 4.x

• AWS Encryption SDK for .NET examples

Installing the AWS Encryption SDK for .NET

The AWS Encryption SDK for .NET is available as the AWS.Cryptography.EncryptionSDK
package in NuGet. For details about installing and building the AWS Encryption SDK for .NET, see 
the README.md file in the aws-encryption-sdk-net repository.

Version 3.x

Version 3.x of the AWS Encryption SDK for .NET supports .NET Framework 4.5.2 – 4.8 only on 
Windows. It supports .NET Core 3.0+ and .NET 5.0 and later on all supported operating systems.

Version 4.x

Version 4.x of the AWS Encryption SDK for .NET supports .NET 6.0 and .NET Framework net48 
and later.

The AWS Encryption SDK for .NET requires the AWS SDK for .NET even if you aren't using AWS Key 
Management Service (AWS KMS) keys. It's installed with the NuGet package. However, unless you 
are using AWS KMS keys, AWS Encryption SDK for .NET does not require an AWS account, AWS 
credentials, or interaction with any AWS service. For help setting up an AWS account if you need it, 
see Using the AWS Encryption SDK with AWS KMS.

Debugging the AWS Encryption SDK for .NET

The AWS Encryption SDK for .NET does not generate any logs. Exceptions in the AWS Encryption 
SDK for .NET generate an exception message, but no stack traces.

Install and build 160

https://github.com/aws/aws-encryption-sdk-dafny/tree/mainline/AwsEncryptionSDK/runtimes/net/
https://github.com/aws/aws-encryption-sdk-dafny/tree/mainline/AwsEncryptionSDK/runtimes/net/
https://www.nuget.org/packages/AWS.Cryptography.EncryptionSDK
https://github.com/aws/aws-encryption-sdk-dafny/tree/mainline/AwsEncryptionSDK/runtimes/net/#readme


AWS Encryption SDK Developer Guide

To help you debug, be sure to enable logging in the AWS SDK for .NET. The logs and error 
messages from the AWS SDK for .NET can help you distinguish errors arising in the AWS SDK 
for .NET from those in the AWS Encryption SDK for .NET. For help with AWS SDK for .NET logging, 
see AWSLogging in the AWS SDK for .NET Developer Guide. (To see the topic, expand the Open to 
view .NET Framework content section.)

AWS KMS keyrings in the AWS Encryption SDK for .NET

The basic AWS KMS keyrings in the AWS Encryption SDK for .NET take only one KMS key. They also 
require an AWS KMS client, which gives you an opportunity to configure the client for the AWS 
Region of the KMS key.

To create a AWS KMS keyring with one or more wrapping keys, use a multi-keyring. The AWS 
Encryption SDK for .NET has a special multi-keyring that takes one or more AWS KMS keys, and a 
standard multi-keyring that takes one or more keyrings of any supported type. Some programmers 
prefer to use a multi-keyring method to create all of their keyrings, and the AWS Encryption SDK 
for .NET supports that strategy.

The AWS Encryption SDK for .NET provides basic single-key keyrings and multi-keyrings for all 
typical use-cases, including AWS KMS multi-Region keys.

For example, to create a AWS KMS keyring with one AWS KMS key, you can use the
CreateAwsKmsKeyring() method.

Version 3.x

The following example uses version 3.x of the AWS Encryption SDK for .NET to create a default 
AWS KMS client for the Region that contains the specified key.

// Instantiate the AWS Encryption SDK and material providers
var encryptionSdk = AwsEncryptionSdkFactory.CreateDefaultAwsEncryptionSdk();
var materialProviders = 
    
 AwsCryptographicMaterialProvidersFactory.CreateDefaultAwsCryptographicMaterialProviders();

string keyArn = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab";

// Instantiate the keyring input object
var kmsKeyringInput = new CreateAwsKmsKeyringInput
{ 
    KmsClient = new AmazonKeyManagementServiceClient(), 

AWS KMS keyrings 161

https://docs.aws.amazon.com/sdk-for-net/v3/developer-guide/net-dg-config-other.html#config-setting-awslogging


AWS Encryption SDK Developer Guide

    KmsKeyId = keyArn
};

// Create the keyring
var keyring = materialProviders.CreateAwsKmsKeyring(kmsKeyringInput);

Version 4.x

The following example uses version 4.x of the AWS Encryption SDK for .NET to create an AWS 
KMS client for the Region that contains the specified key.

// Instantiate the AWS Encryption SDK and material providers
var esdk =  new ESDK(new AwsEncryptionSdkConfig());
var mpl = new MaterialProviders(new MaterialProvidersConfig());

string keyArn = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab";

// Instantiate the keyring input object
var createKeyringInput = new CreateAwsKmsKeyringInput
{ 
    KmsClient = new AmazonKeyManagementServiceClient(), 
    KmsKeyId = kmsArn
};

// Create the keyring
var kmsKeyring = mpl.CreateAwsKmsKeyring(createKeyringInput);

To create a keyring with one or more AWS KMS keys, use the CreateAwsKmsMultiKeyring()
method. This example uses two AWS KMS keys. To specify one KMS key, use only the Generator
parameter. The KmsKeyIds parameter that specifies additional KMS keys is optional.

The input for this keyring doesn't take an AWS KMS client. Instead, the AWS Encryption SDK uses 
the default AWS KMS client for each Region represented by a KMS key in the keyring. For example, 
if the KMS key identified by the value of the Generator parameter is in the US West (Oregon) 
Region (us-west-2), the AWS Encryption SDK creates a default AWS KMS client for the us-
west-2 Region. If you need to customize the AWS KMS client, use the CreateAwsKmsKeyring()
method.

The following example uses version 4.x of the AWS Encryption SDK for .NET and the
CreateAwsKmsKeyring() method to customize the AWS KMS client.

AWS KMS keyrings 162



AWS Encryption SDK Developer Guide

// Instantiate the AWS Encryption SDK and material providers
var esdk =  new ESDK(new AwsEncryptionSdkConfig());
var mpl = new MaterialProviders(new MaterialProvidersConfig());

string generatorKey = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab";
List<string> additionalKeys = new List<string> { "arn:aws:kms:us-
west-2:111122223333:key/0987dcba-09fe-87dc-65ba-ab0987654321" };

// Instantiate the keyring input object
var createEncryptKeyringInput = new CreateAwsKmsMultiKeyringInput
{ 
    Generator = generatorKey, 
    KmsKeyIds = additionalKeys
};

var kmsEncryptKeyring = 
 materialProviders.CreateAwsKmsMultiKeyring(createEncryptKeyringInput);

Version 4.x of the AWS Encryption SDK for .NET supports AWS KMS keyrings that use symmetric 
encryption (SYMMETRIC_DEFAULT) or asymmetric RSA KMS keys. AWS KMS keyrings created with 
asymmetric RSA KMS keys can only contain one key pair.

To encrypt with an asymmetric RSA AWS KMS keyring, you do not need kms:GenerateDataKey or
kms:Encrypt because you must specify the public key material that you want to use for encryption 
when you create the keyring. No AWS KMS calls are made when encrypting with this keyring. To 
decrypt with an asymmetric RSA AWS KMS keyring, you need kms:Decrypt permission.

To create an asymmetric RSA AWS KMS keyring, you must provide the public key and private key 
ARN from your asymmetric RSA KMS key. The public key must be PEM encoded. The following 
example creates an AWS KMS keyring with an asymmetric RSA key pair.

// Instantiate the AWS Encryption SDK and material providers
var esdk =  new ESDK(new AwsEncryptionSdkConfig());
var mpl = new MaterialProviders(new MaterialProvidersConfig()); 
         
var publicKey = new MemoryStream(Encoding.UTF8.GetBytes(AWS KMS RSA public key));

// Instantiate the keyring input object

AWS KMS keyrings 163

https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Encrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html


AWS Encryption SDK Developer Guide

var createKeyringInput = new CreateAwsKmsRsaKeyringInput
{ 
    KmsClient = new AmazonKeyManagementServiceClient(), 
    KmsKeyId = AWS KMS RSA private key ARN, 
    PublicKey = publicKey, 
    EncryptionAlgorithm = EncryptionAlgorithmSpec.RSAES_OAEP_SHA_256
};

// Create the keyring
var kmsRsaKeyring = mpl.CreateAwsKmsRsaKeyring(createKeyringInput);

Required encryption contexts in version 4.x

With version 4.x of the AWS Encryption SDK for .NET, you can use the required encryption context 
CMM to require encryption contexts in your cryptographic operations. An encryption context is 
a set of non-secret key–value pairs. The encryption context is cryptographically bound to the 
encrypted data so that the same encryption context is required to decrypt the field. When you use 
the required encryption context CMM, you can specify one or more required encryption context keys
(required keys) that must be included in all encrypt and decrypt calls.

Note

The required encryption context CMM is only interoperable with version 3.x of the AWS 
Encryption SDK for Java. It is not interoperable with any other programming language 
implementation. If you encrypt data using the required encryption context CMM, you can 
only decrypt it with version 3.x of the AWS Encryption SDK for Java or version 4.x of the 
AWS Encryption SDK for .NET.

On encrypt, the AWS Encryption SDK verifies that all required encryption context keys are included 
in the encryption context that you specified. The AWS Encryption SDK signs the encryption 
contexts that you specified. Only the key-value pairs that are not required keys are serialized and 
stored in plaintext in the header of the encrypted message that the encrypt operation returns.

On decrypt, you must provide an encryption context that contains all of the key-value pairs that 
represent the required keys. The AWS Encryption SDK uses this encryption context and the key-
value pairs stored in the encrypted message’s header to reconstruct the original encryption context 
that you specified in the encrypt operation. If the AWS Encryption SDK cannot reconstruct the 
original encryption context, then the decrypt operation fails. If you provide a key-value pair that 

Required encryption context CMM 164

https://docs.aws.amazon.com/crypto/latest/userguide/cryptography-concepts.html#define-encryption-context


AWS Encryption SDK Developer Guide

contains the required key with an incorrect value, the encrypted message cannot be decrypted. You 
must provide the same key-value pair that was specified on encrypt.

Important

Carefully consider which values you choose for the required keys in your encryption 
context. You must be able to provide the same keys and their corresponding values again 
on decrypt. If you're unable to reproduce the required keys, the encrypted message cannot 
be decrypted.

The following example initializes an AWS KMS keyring with the required encryption context CMM.

var encryptionContext = new Dictionary<string, string>()
{ 
    {"encryption", "context"}, 
    {"is not", "secret"}, 
    {"but adds", "useful metadata"}, 
    {"that can help you", "be confident that"}, 
    {"the data you are handling", "is what you think it is"}
};

// Instantiate the AWS Encryption SDK and material providers
var esdk =  new ESDK(new AwsEncryptionSdkConfig());
var mpl = new MaterialProviders(new MaterialProvidersConfig()); 
         
// Instantiate the keyring input object
var createKeyringInput = new CreateAwsKmsKeyringInput
{ 
    KmsClient = new AmazonKeyManagementServiceClient(), 
    KmsKeyId = kmsKey
}; 
  
// Create the keyring  
var kmsKeyring = mpl.CreateAwsKmsKeyring(createKeyringInput); 
         
var createCMMInput = new CreateRequiredEncryptionContextCMMInput
{ 
    UnderlyingCMM = mpl.CreateDefaultCryptographicMaterialsManager(new 
 CreateDefaultCryptographicMaterialsManagerInput{Keyring = kmsKeyring}), 
    // If you pass in a keyring but no underlying cmm, it will result in a failure 
 because only cmm is supported. 

Required encryption context CMM 165



AWS Encryption SDK Developer Guide

    RequiredEncryptionContextKeys = new List<string>(encryptionContext.Keys)
}; 
  
// Create the required encryption context CMM
var requiredEcCMM = mpl.CreateRequiredEncryptionContextCMM(createCMMInput);

If you use an AWS KMS keyring, the AWS Encryption SDK for .NET also uses the encryption context 
to provide additional authenticated data (AAD) in the calls the keyring makes to AWS KMS.

AWS Encryption SDK for .NET examples

The following examples show the basic coding patterns that you use when programming with 
the AWS Encryption SDK for .NET. Specifically, you instantiate the AWS Encryption SDK and the 
material providers library. Then, before calling each method, you instantiate an object that defines 
the input for the method. This is much like the coding pattern you use in the AWS SDK for .NET.

For examples showing how to configure options in the AWS Encryption SDK, such as specifying an 
alternate algorithm suite, limiting encrypted data keys, and using AWS KMS multi-Region keys, see
Configuring the AWS Encryption SDK.

For more examples of programming with the AWS Encryption SDK for .NET, see the examples in 
the aws-encryption-sdk-net directory of the aws-encryption-sdk-dafny repository on 
GitHub.

Encrypting data in the AWS Encryption SDK for .NET

This example shows the basic pattern for encrypting data. It encrypts a small file with data keys 
that are protected by one AWS KMS wrapping key.

Step 1: Instantiate the AWS Encryption SDK and the material providers library.

Begin by instantiating the AWS Encryption SDK and the material providers library. You'll use the 
methods in the AWS Encryption SDK to encrypt and decrypt data. You'll use the methods in the 
material providers library to create the keyrings that specify which keys protect your data.

The way you instantiate the AWS Encryption SDK and the material providers library differs 
between versions 3.x and 4.x of the AWS Encryption SDK for .NET. All of the following steps are 
the same for both version 3.x and 4.x of the AWS Encryption SDK for .NET.

Version 3.x

// Instantiate the AWS Encryption SDK and material providers

Examples 166

https://github.com/aws/aws-encryption-sdk-dafny/tree/mainline/AwsEncryptionSDK/runtimes/net/Examples


AWS Encryption SDK Developer Guide

var encryptionSdk = AwsEncryptionSdkFactory.CreateDefaultAwsEncryptionSdk();
var materialProviders = 
    
 AwsCryptographicMaterialProvidersFactory.CreateDefaultAwsCryptographicMaterialProviders();

Version 4.x

// Instantiate the AWS Encryption SDK and material providers
var esdk =  new ESDK(new AwsEncryptionSdkConfig());
var mpl = new MaterialProviders(new MaterialProvidersConfig());

Step 2: Create an input object for the keyring.

Each method that creates a keyring has a corresponding input object class. For example, to 
create the input object for the CreateAwsKmsKeyring() method, create an instance of the
CreateAwsKmsKeyringInput class.

Even though the input for this keyring doesn't specify a generator key, the single KMS key 
specified by the KmsKeyId parameter is the generator key. It generates and encrypts the data 
key that encrypts the data.

This input object requires an AWS KMS client for the AWS Region of the KMS key. To create a 
AWS KMS client, instantiate the AmazonKeyManagementServiceClient class in the AWS 
SDK for .NET. Calling the AmazonKeyManagementServiceClient() constructor with no 
parameters creates a client with the default values.

In an AWS KMS keyring used for encrypting with the AWS Encryption SDK for .NET, you can
identify the KMS keys by using the key ID, key ARN, alias name, or alias ARN. In an AWS KMS 
keyring used for decrypting, you must use a key ARN to identify each KMS key. If you plan to 
reuse your encryption keyring for decrypting, use a key ARN identifier for all KMS keys.

string keyArn = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab";

// Instantiate the keyring input object
var kmsKeyringInput = new CreateAwsKmsKeyringInput
{     
    KmsClient = new AmazonKeyManagementServiceClient(), 
    KmsKeyId = keyArn
};

Examples 167



AWS Encryption SDK Developer Guide

Step 3: Create the keyring.

To create the keyring, call the keyring method with the keyring input object. This example uses 
the CreateAwsKmsKeyring() method, which takes just one KMS key.

var keyring = materialProviders.CreateAwsKmsKeyring(kmsKeyringInput);

Step 4: Define an encryption context.

An encryption context is an optional, but strongly recommended element of cryptographic 
operations in the AWS Encryption SDK. You can define one or more non-secret key-value pairs.

Note

With version 4.x of the AWS Encryption SDK for .NET, you can require an encryption 
context in all encrypt requests with the required encryption context CMM.

// Define the encryption context
var encryptionContext = new Dictionary<string, string>()
{ 
    {"purpose", "test"}
};

Step 5: Create the input object for encrypting.

Before calling the Encrypt() method, create an instance of the EncryptInput class.

string plaintext = File.ReadAllText("C:\\Documents\\CryptoTest\\TestFile.txt"); 
             
// Define the encrypt input
var encryptInput = new EncryptInput
{ 
    Plaintext = plaintext, 
    Keyring = keyring, 
    EncryptionContext = encryptionContext
};

Examples 168



AWS Encryption SDK Developer Guide

Step 6: Encrypt the plaintext.

Use the Encrypt() method of the AWS Encryption SDK to encrypt the plaintext using the 
keyring you defined.

The EncryptOutput that the Encrypt() method returns has methods for getting the 
encrypted message (Ciphertext), encryption context, and algorithm suite.

var encryptOutput = encryptionSdk.Encrypt(encryptInput);

Step 7: Get the encrypted message.

The Decrypt() method in the AWS Encryption SDK for .NET takes the Ciphertext member 
of the EncryptOutput instance.

The Ciphertext member of the EncryptOutput object is the encrypted message, a portable 
object that includes the encrypted data, encrypted data keys, and metadata, including the 
encryption context. You can safely store the encrypted message for an extended time or submit 
it to the Decrypt() method to recover the plaintext.

var encryptedMessage = encryptOutput.Ciphertext;

Decrypting in strict mode in the AWS Encryption SDK for .NET

Best practices recommend that you specify the keys that you use to decrypt data, an option known 
as strict mode. The AWS Encryption SDK uses only the KMS keys that you specify in your keyring to 
decrypt the ciphertext. The keys in your decryption keyring must include at least one of the keys 
that encrypted the data.

This example shows the basic pattern of decrypting in strict mode with the AWS Encryption SDK 
for .NET.

Step 1: Instantiate the AWS Encryption SDK and material providers library.

// Instantiate the AWS Encryption SDK and material providers
var esdk =  new ESDK(new AwsEncryptionSdkConfig());
var mpl = new MaterialProviders(new MaterialProvidersConfig());

Examples 169



AWS Encryption SDK Developer Guide

Step 2: Create the input object for your keyring.

To specify the parameters for the keyring method, create an input object. Each keyring 
method in the AWS Encryption SDK for .NET has a corresponding input object. Because this 
example uses the CreateAwsKmsKeyring() method to create the keyring, it instantiates the
CreateAwsKmsKeyringInput class for the input.

In a decryption keyring, you must use a key ARN to identify KMS keys.

string keyArn = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab";

// Instantiate the keyring input object
var kmsKeyringInput = new CreateAwsKmsKeyringInput
{ 
    KmsClient = new AmazonKeyManagementServiceClient(), 
    KmsKeyId = keyArn
};

Step 3: Create the keyring.

To create the decryption keyring, this example uses the CreateAwsKmsKeyring() method 
and the keyring input object.

var keyring = materialProviders.CreateAwsKmsKeyring(kmsKeyringInput);

Step 4: Create the input object for decrypting.

To create the input object for the Decrypt() method, instantiate the DecryptInput class.

The Ciphertext parameter of the DecryptInput() constructor takes the Ciphertext
member of the EncryptOutput object that the Encrypt() method returned. The
Ciphertext property represents the encrypted message, which includes the encrypted 
data, encrypted data keys, and metadata that the AWS Encryption SDK needs to decrypt the 
message.

With version 4.x of the AWS Encryption SDK for .NET, you can use the optional
EncryptionContext parameter to specify your encryption context in the Decrypt()
method.

Use the EncryptionContext parameter to verify that the encryption context used on encrypt
is included in the encryption context used to decrypt the ciphertext. The AWS Encryption SDK 

Examples 170



AWS Encryption SDK Developer Guide

adds pairs to the encryption context, including the digital signature if you're using an algorithm 
suite with signing, such as the default algorithm suite.

var encryptedMessage = encryptOutput.Ciphertext;

var decryptInput = new DecryptInput
{ 
    Ciphertext = encryptedMessage, 
    Keyring = keyring, 
    EncryptionContext = encryptionContext // OPTIONAL
};

Step 5: Decrypt the ciphertext.

var decryptOutput = encryptionSdk.Decrypt(decryptInput);

Step 6: Verify the encryption context – Version 3.x

The Decrypt() method of version 3.x of the AWS Encryption SDK for .NET does not take an 
encryption context. It gets the encryption context values from the metadata in the encrypted 
message. However, before returning or using the plaintext, it's a best practice to verify that 
encryption context that was used to decrypt the ciphertext includes the encryption context you 
provided when encrypting.

Verify that the encryption context used on encrypt is included in the encryption context that 
used to decrypt the ciphertext. The AWS Encryption SDK adds pairs to the encryption context, 
including the digital signature if you're using an algorithm suite with signing, such as the 
default algorithm suite.

// Verify the encryption context
string contextKey = "purpose";
string contextValue = "test";

if (!decryptOutput.EncryptionContext.TryGetValue(contextKey, out var 
 decryptContextValue) 
    || !decryptContextValue.Equals(contextValue))
{ 
    throw new Exception("Encryption context does not match expected values");
}

Examples 171



AWS Encryption SDK Developer Guide

Decrypting with a discovery keyring in the AWS Encryption SDK for .NET

Rather than specifying the KMS keys for decryption, you can provide a AWS KMS discovery keyring, 
which is a keyring that doesn't specify any KMS keys. A discovery keyring lets the AWS Encryption 
SDK decrypt the data by using whichever KMS key encrypted it, provided that the caller has 
decrypt permission on the key. For best practices, add a discovery filter that limits the KMS keys 
that can be used to those in particular AWS accounts of a specified partition.

The AWS Encryption SDK for .NET provides a basic discovery keyring that requires an AWS KMS 
client and a discovery multi-keyring that requires you to specify one or more AWS Regions. The 
client and Regions both limit the KMS keys that can be used to decrypt the encrypted message. 
The input objects for both keyrings take the recommended discovery filter.

The following example shows the pattern for decrypting data with an AWS KMS discovery keyring 
and discovery filter.

Step 1: Instantiate the AWS Encryption SDK and the material providers library.

// Instantiate the AWS Encryption SDK and material providers
var esdk =  new ESDK(new AwsEncryptionSdkConfig());
var mpl = new MaterialProviders(new MaterialProvidersConfig());

Step 2: Create the input object for the keyring.

To specify the parameters for the keyring method, create an input object. Each keyring method 
in the AWS Encryption SDK for .NET has a corresponding input object. Because this example 
uses the CreateAwsKmsDiscoveryKeyring() method to create the keyring, it instantiates 
the CreateAwsKmsDiscoveryKeyringInput class for the input.

List<string> accounts = new List<string> { "111122223333" };

var discoveryKeyringInput = new CreateAwsKmsDiscoveryKeyringInput
{ 
    KmsClient = new AmazonKeyManagementServiceClient(), 
    DiscoveryFilter = new DiscoveryFilter() 
    { 
        AccountIds = accounts, 
        Partition = "aws" 
    }
};

Examples 172



AWS Encryption SDK Developer Guide

Step 3: Create the keyring.

To create the decryption keyring, this example uses the CreateAwsKmsDiscoveryKeyring()
method and the keyring input object.

var discoveryKeyring = 
 materialProviders.CreateAwsKmsDiscoveryKeyring(discoveryKeyringInput);

Step 4: Create the input object for decrypting.

To create the input object for the Decrypt() method, instantiate the DecryptInput class. 
The value of the Ciphertext parameter is the Ciphertext member of the EncryptOutput
object that the Encrypt() method returns.

With version 4.x of the AWS Encryption SDK for .NET, you can use the optional
EncryptionContext parameter to specify your encryption context in the Decrypt()
method.

Use the EncryptionContext parameter to verify that the encryption context used on encrypt
is included in the encryption context used to decrypt the ciphertext. The AWS Encryption SDK 
adds pairs to the encryption context, including the digital signature if you're using an algorithm 
suite with signing, such as the default algorithm suite.

var ciphertext = encryptOutput.Ciphertext;

var decryptInput = new DecryptInput
{ 
    Ciphertext = ciphertext, 
    Keyring = discoveryKeyring, 
    EncryptionContext = encryptionContext // OPTIONAL 
     
};
var decryptOutput = encryptionSdk.Decrypt(decryptInput);

Step 5: Verify the encryption context – Version 3.x

The Decrypt() method of version 3.x of the AWS Encryption SDK for .NET does not take an 
encryption context on Decrypt(). It gets the encryption context values from the metadata in 
the encrypted message. However, before returning or using the plaintext, it's a best practice to 
verify that encryption context that was used to decrypt the ciphertext includes the encryption 
context you provided when encrypting.

Examples 173



AWS Encryption SDK Developer Guide

Verify that the encryption context used on encrypt is included in the encryption context that 
was used to decrypt the ciphertext. The AWS Encryption SDK adds pairs to the encryption 
context, including the digital signature if you're using an algorithm suite with signing, such as 
the default algorithm suite.

// Verify the encryption context
string contextKey = "purpose";
string contextValue = "test";

if (!decryptOutput.EncryptionContext.TryGetValue(contextKey, out var 
 decryptContextValue) 
    || !decryptContextValue.Equals(contextValue))
{ 
    throw new Exception("Encryption context does not match expected values");
}

AWS Encryption SDK for Java

This topic explains how to install and use the AWS Encryption SDK for Java. For details about 
programming with the AWS Encryption SDK for Java, see the aws-encryption-sdk-java repository 
on GitHub. For API documentation, see the Javadoc for the AWS Encryption SDK for Java.

Topics

• Prerequisites

• Installation

• AWS KMS keyrings in the AWS Encryption SDK for Java

• Required encryption contexts in version 3.x

• AWS Encryption SDK for Java examples

Prerequisites

Before you install the AWS Encryption SDK for Java, be sure you have the following prerequisites.

A Java development environment

You will need Java 8 or later. On the Oracle website, go to Java SE Downloads, and then 
download and install the Java SE Development Kit (JDK).

Java 174

https://github.com/aws/aws-encryption-sdk-java/
https://aws.github.io/aws-encryption-sdk-java/
https://www.oracle.com/technetwork/java/javase/downloads/index.html


AWS Encryption SDK Developer Guide

If you use the Oracle JDK, you must also download and install the Java Cryptography Extension 
(JCE) Unlimited Strength Jurisdiction Policy Files.

Bouncy Castle

The AWS Encryption SDK for Java requires Bouncy Castle.

• AWS Encryption SDK for Java versions 1.6.1 and later use Bouncy Castle to serialize and 
deserialize cryptographic objects. You can use Bouncy Castle or Bouncy Castle FIPS to 
satisfy this requirement. For help installing and configuring Bouncy Castle FIPS, see BC FIPS 
Documentation, especially the User Guides and Security Policy PDFs.

• Earlier versions of the AWS Encryption SDK for Java use Bouncy Castle's cryptography API for 
Java. This requirement is satisfied only by non-FIPS Bouncy Castle.

If you don't have Bouncy Castle, go to Bouncy Castle latest releases to download the provider 
file that corresponds to your JDK. You can also use Apache Maven to get the artifact for the 
standard Bouncy Castle provider (bcprov-ext-jdk15on) or the artifact for Bouncy Castle FIPS 
(bc-fips).

AWS SDK for Java

Version 3.x of the AWS Encryption SDK for Java requires the AWS SDK for Java 2.x, even if you 
don't use AWS KMS keyrings.

Version 2.x or earlier of the AWS Encryption SDK for Java does not require the AWS SDK for 
Java. However, the AWS SDK for Java is required to use AWS Key Management Service (AWS 
KMS) as a master key provider. Beginning in the AWS Encryption SDK for Java version 2.4.0, 
the AWS Encryption SDK for Java supports both version 1.x and 2.x of the AWS SDK for Java. 
AWS Encryption SDK code for the AWS SDK for Java 1.x and 2.x are interoperable. For example, 
you can encrypt data with AWS Encryption SDK code that supports AWS SDK for Java 1.x and 
decrypt it using code that supports AWS SDK for Java 2.x (or vice versa). Versions of the AWS 
Encryption SDK for Java earlier than 2.4.0 support only AWS SDK for Java 1.x. For information 
about updating your version of the AWS Encryption SDK, see Migrating your AWS Encryption 
SDK.

When updating your AWS Encryption SDK for Java code from the AWS SDK for Java 1.x to 
AWS SDK for Java 2.x, replace references to the AWSKMS interface in AWS SDK for Java 1.x with 
references to the KmsClient interface in AWS SDK for Java 2.x. The AWS Encryption SDK for 
Java does not support the KmsAsyncClient interface. Also, update your code to use the AWS 
KMS-related objects in the kmssdkv2 namespace, instead of the kms namespace.

Prerequisites 175

http://www.oracle.com/technetwork/java/javase/downloads/jce8-download-2133166.html
http://www.oracle.com/technetwork/java/javase/downloads/jce8-download-2133166.html
https://www.bouncycastle.org/java.html
https://www.bouncycastle.org/about/bouncy-castle-fips-faq/
https://www.bouncycastle.org/documentation.html
https://www.bouncycastle.org/documentation.html
https://bouncycastle.org/latest_releases.html
https://maven.apache.org/
https://mvnrepository.com/artifact/org.bouncycastle/bcprov-ext-jdk15on
https://mvnrepository.com/artifact/org.bouncycastle/bc-fips
https://aws.amazon.com/kms/
https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/kms/package-summary.html
https://sdk.amazonaws.com/java/api/latest/software/amazon/awssdk/services/kms/package-summary.html
https://sdk.amazonaws.com/java/api/latest/software/amazon/awssdk/services/kms/KmsAsyncClient.html


AWS Encryption SDK Developer Guide

To install the AWS SDK for Java, use Apache Maven.

• To import the entire AWS SDK for Java as a dependency, declare it in your pom.xml file.

• To create a dependency only for the AWS KMS module in AWS SDK for Java 1.x, follow the 
instructions for specifying particular modules, and set the artifactId to aws-java-sdk-
kms.

• To create a dependency only for the AWS KMS module in AWS SDK for Java 2.x, 
follow the instructions for specifying particular modules. Set the groupId to
software.amazon.awssdk and the artifactId to kms.

For more changes, see What's different between the AWS SDK for Java 1.x and 2.x in the AWS 
SDK for Java 2.x Developer Guide.

Java examples in the AWS Encryption SDK Developer Guide use the AWS SDK for Java 2.x.

Installation

Install the latest version of the AWS Encryption SDK for Java.

Note

All versions of the AWS Encryption SDK for Java earlier than 2.0.0 are in the end-of-support 
phase.
You can safely update from version 2.0.x and later to the latest version of the AWS 
Encryption SDK for Java without any code or data changes. However,  new security features
introduced in version 2.0.x are not backward-compatible. To update from versions earlier 
than 1.7.x to version 2.0.x and later, you must first update to the latest 1.x version of the 
AWS Encryption SDK. For details, see Migrating your AWS Encryption SDK.

You can install the AWS Encryption SDK for Java in the following ways.

Manually

To install the AWS Encryption SDK for Java, clone or download the aws-encryption-sdk-java
GitHub repository.

Installation 176

https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/setup-project-maven.html#build-the-entire-sdk-into-your-project
https://docs.aws.amazon.com/sdk-for-java/v1/developer-guide/setup-project-maven.html#modules-dependencies
https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/setup-project-maven.html#modules-dependencies
https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/migration-whats-different.html
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://github.com/aws/aws-encryption-sdk-java/


AWS Encryption SDK Developer Guide

Using Apache Maven

The AWS Encryption SDK for Java is available through Apache Maven with the following 
dependency definition.

<dependency> 
  <groupId>com.amazonaws</groupId> 
  <artifactId>aws-encryption-sdk-java</artifactId> 
  <version>3.0.0</version>
</dependency>

After you install the SDK, get started by looking at the example Java code in this guide and the
Javadoc on GitHub.

AWS KMS keyrings in the AWS Encryption SDK for Java

Version 3.x of the AWS Encryption SDK for Java uses keyrings to perform envelope encryption. 
The basic AWS KMS keyrings in the AWS Encryption SDK for Java take only one KMS key. They also 
require an AWS KMS client, which gives you an opportunity to configure the client for the AWS 
Region of the KMS key.

To create a AWS KMS keyring with one or more wrapping keys, use a multi-keyring. The AWS 
Encryption SDK for Java has a special multi-keyring that takes one or more AWS KMS keys, and a 
standard multi-keyring that takes one or more keyrings of any supported type. Some programmers 
prefer to use a multi-keyring method to create all of their keyrings, and the AWS Encryption SDK 
for Java supports that strategy.

The AWS Encryption SDK for Java provides basic single-key keyrings and multi-keyrings for all 
typical use-cases, including AWS KMS multi-Region keys.

For example, to create a AWS KMS keyring with one AWS KMS key, you can use the
CreateAwsKmsKeyring()] method.

// Instantiate the AWS Encryption SDK and material providers
final AwsCrypto crypto = AwsCrypto.builder().build();
final MaterialProviders materialProviders = MaterialProviders.builder() 
        .MaterialProvidersConfig(MaterialProvidersConfig.builder().build()) 
        .build();

// Create the keyring

AWS KMS keyrings 177

https://maven.apache.org/
https://aws.github.io/aws-encryption-sdk-java/
https://docs.aws.amazon.com/crypto/latest/userguide/cryptography-concepts.html#define-envelope-encryption


AWS Encryption SDK Developer Guide

CreateAwsKmsKeyringInput kmsKeyringInput = CreateAwsKmsKeyringInput.builder() 
        .kmsKeyId(keyArn) 
        .kmsClient(KmsClient.create()) 
        .build();
IKeyring kmsKeyring = materialProviders.CreateAwsKmsKeyring(kmsKeyringInput);

To create a keyring with one or more AWS KMS keys, use the CreateAwsKmsMultiKeyring()
method. This example uses two KMS keys. To specify one KMS key, use only the generator
parameter. The msKeyIds parameter that specifies additional KMS keys is optional.

The input for this keyring doesn't take an AWS KMS client. Instead, the AWS Encryption SDK uses 
the default AWS KMS client for each Region represented by a KMS key in the keyring. For example, 
if the KMS key identified by the value of the Generator parameter is in the US West (Oregon) 
Region (us-west-2), the AWS Encryption SDK creates a default AWS KMS client for the us-
west-2 Region. If you need to customize the AWS KMS client, use the CreateAwsKmsKeyring()
method.

// Instantiate the AWS Encryption SDK and material providers
final AwsCrypto crypto = AwsCrypto.builder().build();
final MaterialProviders materialProviders = MaterialProviders.builder() 
            .MaterialProvidersConfig(MaterialProvidersConfig.builder().build()) 
            .build();

String generatorKey = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab";
List<String> additionalKey = Collections.singletonList("arn:aws:kms:us-
west-2:111122223333:key/0987dcba-09fe-87dc-65ba-ab0987654321");
// Create the keyring
final CreateAwsKmsMultiKeyringInput keyringInput = 
 CreateAwsKmsMultiKeyringInput.builder() 
        .generator(generatorKey) 
        .kmsKeyIds(additionalKey) 
        .build();
final IKeyring kmsKeyring = materialProviders.CreateAwsKmsMultiKeyring(keyringInput);

AWS Encryption SDK for Java supports AWS KMS keyrings that use symmetric encryption 
(SYMMETRIC_DEFAULT) or asymmetric RSA KMS keys. AWS KMS keyrings created with asymmetric 
RSA KMS keys can only contain one key pair.

To encrypt with an asymmetric RSA AWS KMS keyring, you do not need kms:GenerateDataKey or
kms:Encrypt because you must specify the public key material that you want to use for encryption 

AWS KMS keyrings 178

https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Encrypt.html


AWS Encryption SDK Developer Guide

when you create the keyring. No AWS KMS calls are made when encrypting with this keyring. To 
decrypt with an asymmetric RSA AWS KMS keyring, you need kms:Decrypt permission.

To create an asymmetric RSA AWS KMS keyring, you must provide the public key and private key 
ARN from your asymmetric RSA KMS key. The public key must be PEM encoded. The following 
example creates an AWS KMS keyring with an asymmetric RSA key pair.

// Instantiate the AWS Encryption SDK and material providers
final AwsCrypto crypto = AwsCrypto.builder() 
        // Specify algorithmSuite without asymmetric signing here 
        // 
        // ALG_AES_128_GCM_IV12_TAG16_NO_KDF("0x0014"), 
        // ALG_AES_192_GCM_IV12_TAG16_NO_KDF("0x0046"), 
        // ALG_AES_256_GCM_IV12_TAG16_NO_KDF("0x0078"), 
        // ALG_AES_128_GCM_IV12_TAG16_HKDF_SHA256("0x0114"), 
        // ALG_AES_192_GCM_IV12_TAG16_HKDF_SHA256("0x0146"), 
        // ALG_AES_256_GCM_IV12_TAG16_HKDF_SHA256("0x0178") 
        
 .withEncryptionAlgorithm(CryptoAlgorithm.ALG_AES_256_GCM_IV12_TAG16_HKDF_SHA256) 
        .build(); 
                 
final MaterialProviders matProv = MaterialProviders.builder() 
        .MaterialProvidersConfig(MaterialProvidersConfig.builder().build()) 
        .build();

// Create a KMS RSA keyring.
//    This keyring takes in:
//     - kmsClient
//     - kmsKeyId: Must be an ARN representing an asymmetric RSA KMS key
//     - publicKey: A ByteBuffer of a UTF-8 encoded PEM file representing the public
//                  key for the key passed into kmsKeyId
//     - encryptionAlgorithm: Must be either RSAES_OAEP_SHA_256 or RSAES_OAEP_SHA_1
final CreateAwsKmsRsaKeyringInput createAwsKmsRsaKeyringInput = 
        CreateAwsKmsRsaKeyringInput.builder() 
                .kmsClient(KmsClient.create()) 
                .kmsKeyId(rsaKeyArn) 
                .publicKey(publicKey) 
                .encryptionAlgorithm(EncryptionAlgorithmSpec.RSAES_OAEP_SHA_256) 
                .build();
IKeyring awsKmsRsaKeyring = 
 matProv.CreateAwsKmsRsaKeyring(createAwsKmsRsaKeyringInput);

AWS KMS keyrings 179

https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html


AWS Encryption SDK Developer Guide

Required encryption contexts in version 3.x

With version 3.x of the AWS Encryption SDK for Java, you can use the required encryption context 
CMM to require encryption contexts in your cryptographic operations. An encryption context is 
a set of non-secret key–value pairs. The encryption context is cryptographically bound to the 
encrypted data so that the same encryption context is required to decrypt the field. When you use 
the required encryption context CMM, you can specify one or more required encryption context keys
(required keys) that must be included in all encrypt and decrypt calls.

Note

The required encryption context CMM is only interoperable with version 4.x of the AWS 
Encryption SDK for .NET. It is not interoperable with any other programming language 
implementation. If you encrypt data using the required encryption context CMM, you can 
only decrypt it with version 3.x of the AWS Encryption SDK for Java or version 4.x of the 
AWS Encryption SDK for .NET.

On encrypt, the AWS Encryption SDK verifies that all required encryption context keys are included 
in the encryption context that you specified. The AWS Encryption SDK signs the encryption 
contexts that you specified. Only the key-value pairs that are not required keys are serialized and 
stored in plaintext in the header of the encrypted message that the encrypt operation returns.

On decrypt, you must provide an encryption context that contains all of the key-value pairs that 
represent the required keys. The AWS Encryption SDK uses this encryption context and the key-
value pairs stored in the encrypted message’s header to reconstruct the original encryption context 
that you specified in the encrypt operation. If the AWS Encryption SDK cannot reconstruct the 
original encryption context, then the decrypt operation fails. If you provide a key-value pair that 
contains the required key with an incorrect value, the encrypted message cannot be decrypted. You 
must provide the same key-value pair that was specified on encrypt.

Important

Carefully consider which values you choose for the required keys in your encryption 
context. You must be able to provide the same keys and their corresponding values again 
on decrypt. If you're unable to reproduce the required keys, the encrypted message cannot 
be decrypted.

Required encryption context CMM 180

https://docs.aws.amazon.com/crypto/latest/userguide/cryptography-concepts.html#define-encryption-context


AWS Encryption SDK Developer Guide

The following example initializes an AWS KMS keyring with the required encryption context CMM.

// Instantiate the AWS Encryption SDK
final AwsCrypto crypto = AwsCrypto.builder() 
        .withCommitmentPolicy(CommitmentPolicy.RequireEncryptRequireDecrypt) 
        .build(); 
     
// Create your encryption context
final Map<String, String> encryptionContext = new HashMap<>();
encryptionContext.put("encryption", "context");
encryptionContext.put("is not", "secret");
encryptionContext.put("but adds", "useful metadata");
encryptionContext.put("that can help you", "be confident that");
encryptionContext.put("the data you are handling", "is what you think it is");     

// Create a list of required encryption contexts
final List<String> requiredEncryptionContextKeys = Arrays.asList("encryption", 
 "context"); 
     
// Create the keyring
final MaterialProviders materialProviders = MaterialProviders.builder() 
        .MaterialProvidersConfig(MaterialProvidersConfig.builder().build()) 
        .build();
final CreateAwsKmsKeyringInput keyringInput = CreateAwsKmsKeyringInput.builder() 
        .kmsKeyId(keyArn) 
        .kmsClient(KmsClient.create()) 
        .build();
IKeyring kmsKeyring = materialProviders.CreateAwsKmsKeyring(keyringInput); 
     
// Create the required encryption context CMM
ICryptographicMaterialsManager cmm =  
    materialProviders.CreateDefaultCryptographicMaterialsManager( 
        CreateDefaultCryptographicMaterialsManagerInput.builder() 
            .keyring(kmsKeyring) 
            .build() 
    );
ICryptographicMaterialsManager requiredCMM =  
    materialProviders.CreateRequiredEncryptionContextCMM( 
        CreateRequiredEncryptionContextCMMInput.builder() 
            .requiredEncryptionContextKeys(requiredEncryptionContextKeys) 
            .underlyingCMM(cmm) 
            .build() 
        );

Required encryption context CMM 181



AWS Encryption SDK Developer Guide

AWS Encryption SDK for Java examples

The following examples show you how to use the AWS Encryption SDK for Java to encrypt and 
decrypt data. These examples show how to use version 3.x and later of the AWS Encryption SDK for 
Java. Version 3.x of the AWS Encryption SDK for Java requires the AWS SDK for Java 2.x. Version 3.x
of the AWS Encryption SDK for Java replaces master key providers with keyrings. For examples that 
use earlier versions, find your release in the Releases list of the aws-encryption-sdk-java repository 
on GitHub.

Topics

• Encrypting and decrypting strings

• Encrypting and decrypting byte streams

• Encrypting and decrypting byte streams with a multi-keyring

Encrypting and decrypting strings

The following example shows you how to use version 3.x of the AWS Encryption SDK for Java to 
encrypt and decrypt strings. Before using the string, convert it into a byte array.

This example uses an AWS KMS keyring. When you encrypt with an AWS KMS keyring, you can use 
a key ID, key ARN, alias name, or alias ARN to identify the KMS keys. When decrypting, you must 
use a key ARN to identify KMS keys.

When you call the encryptData() method, it returns an encrypted message (CryptoResult) 
that includes the ciphertext, the encrypted data keys, and the encryption context. When you call
getResult on the CryptoResult object, it returns a base-64-encoded string version of the
encrypted message that you can pass to the decryptData() method.

Similarly, when you call decryptData(), the CryptoResult object it returns contains the 
plaintext message and an AWS KMS key ID. Before your application returns the plaintext, verify 
that the AWS KMS key ID and the encryption context in the encrypted message are the ones that 
you expect.

// Copyright Amazon.com Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0

package com.amazonaws.crypto.keyrings;

import com.amazonaws.encryptionsdk.AwsCrypto;

Examples 182

https://github.com/aws/aws-encryption-sdk-java/releases
https://github.com/aws/aws-encryption-sdk-java/


AWS Encryption SDK Developer Guide

import com.amazonaws.encryptionsdk.CommitmentPolicy;
import com.amazonaws.encryptionsdk.CryptoResult;
import software.amazon.cryptography.materialproviders.IKeyring;
import software.amazon.cryptography.materialproviders.MaterialProviders;
import 
 software.amazon.cryptography.materialproviders.model.CreateAwsKmsMultiKeyringInput;
import software.amazon.cryptography.materialproviders.model.MaterialProvidersConfig;

import java.nio.charset.StandardCharsets;
import java.util.Arrays;
import java.util.Collections;
import java.util.Map;

/** 
 * Encrypts and then decrypts data using an AWS KMS Keyring. 
 * 
 * <p>Arguments: 
 * 
 * <ol> 
 *   <li>Key ARN: For help finding the Amazon Resource Name (ARN) of your AWS KMS 
 customer master 
 *       key (CMK), see 'Viewing Keys' at 
 *       http://docs.aws.amazon.com/kms/latest/developerguide/viewing-keys.html 
 * </ol> 
 */
public class BasicEncryptionKeyringExample { 

  private static final byte[] EXAMPLE_DATA = "Hello 
 World".getBytes(StandardCharsets.UTF_8); 

  public static void main(final String[] args) { 
    final String keyArn = args[0]; 

    encryptAndDecryptWithKeyring(keyArn); 
  } 

  public static void encryptAndDecryptWithKeyring(final String keyArn) { 
    // 1. Instantiate the SDK 
    // This builds the AwsCrypto client with the RequireEncryptRequireDecrypt 
 commitment policy, 
    // which means this client only encrypts using committing algorithm suites and 
 enforces 
    // that the client will only decrypt encrypted messages that were created with a 
 committing 

Examples 183



AWS Encryption SDK Developer Guide

    // algorithm suite. 
    // This is the default commitment policy if you build the client with 
    // `AwsCrypto.builder().build()` 
    // or `AwsCrypto.standard()`. 
    final AwsCrypto crypto = 
        AwsCrypto.builder() 
            .withCommitmentPolicy(CommitmentPolicy.RequireEncryptRequireDecrypt) 
            .build(); 

    // 2. Create the AWS KMS keyring. 
    // This example creates a multi keyring, which automatically creates the KMS 
 client. 
    final MaterialProviders materialProviders = 
        MaterialProviders.builder() 
            .MaterialProvidersConfig(MaterialProvidersConfig.builder().build()) 
            .build(); 
    final CreateAwsKmsMultiKeyringInput keyringInput = 
        CreateAwsKmsMultiKeyringInput.builder().generator(keyArn).build(); 
    final IKeyring kmsKeyring = 
 materialProviders.CreateAwsKmsMultiKeyring(keyringInput); 

    // 3. Create an encryption context 
    // We recommend using an encryption context whenever possible 
    // to protect integrity. This sample uses placeholder values. 
    // For more information see: 
    // blogs.aws.amazon.com/security/post/Tx2LZ6WBJJANTNW/How-to-Protect-the-Integrity-
of-Your-Encrypted-Data-by-Using-AWS-Key-Management 
    final Map<String, String> encryptionContext = 
        Collections.singletonMap("ExampleContextKey", "ExampleContextValue"); 

    // 4. Encrypt the data 
    final CryptoResult<byte[], ?> encryptResult = 
        crypto.encryptData(kmsKeyring, EXAMPLE_DATA, encryptionContext); 
    final byte[] ciphertext = encryptResult.getResult(); 

    // 5. Decrypt the data 
    final CryptoResult<byte[], ?> decryptResult = 
        crypto.decryptData( 
            kmsKeyring, 
            ciphertext, 
            // Verify that the encryption context in the result contains the 
            // encryption context supplied to the encryptData method 
            encryptionContext); 

Examples 184



AWS Encryption SDK Developer Guide

    // 6. Verify that the decrypted plaintext matches the original plaintext 
    assert Arrays.equals(decryptResult.getResult(), EXAMPLE_DATA); 
  }
}

Encrypting and decrypting byte streams

The following example shows you how to use the AWS Encryption SDK to encrypt and decrypt byte 
streams.

This example uses a Raw AES keyring.

When encrypting, this example uses the
AwsCrypto.builder() .withEncryptionAlgorithm() method to specify an algorithm 
suite without digital signatures. When decrypting, to ensure that the ciphertext is unsigned, 
this example uses the createUnsignedMessageDecryptingStream() method. The
createUnsignedMessageDecryptingStream() method, fails if it encounters a ciphertext with 
a digital signature.

If you're encrypting with the default algorithm suite, which includes digital signatures, use the
createDecryptingStream() method instead, as shown in the next example.

// Copyright Amazon.com Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0

package com.amazonaws.crypto.keyrings;

import com.amazonaws.encryptionsdk.AwsCrypto;
import com.amazonaws.encryptionsdk.CommitmentPolicy;
import com.amazonaws.encryptionsdk.CryptoAlgorithm;
import com.amazonaws.encryptionsdk.CryptoInputStream;
import com.amazonaws.encryptionsdk.jce.JceMasterKey;
import com.amazonaws.util.IOUtils;
import software.amazon.cryptography.materialproviders.IKeyring;
import software.amazon.cryptography.materialproviders.MaterialProviders;
import software.amazon.cryptography.materialproviders.model.AesWrappingAlg;
import software.amazon.cryptography.materialproviders.model.CreateRawAesKeyringInput;
import software.amazon.cryptography.materialproviders.model.MaterialProvidersConfig;

import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.io.IOException;

Examples 185



AWS Encryption SDK Developer Guide

import java.nio.ByteBuffer;
import java.security.SecureRandom;
import java.util.Collections;
import java.util.Map;
import javax.crypto.SecretKey;
import javax.crypto.spec.SecretKeySpec;

/** 
 * <p> 
 * Encrypts and then decrypts a file under a random key. 
 * 
 * <p> 
 * Arguments: 
 * <ol> 
 * <li>Name of file containing plaintext data to encrypt 
 * </ol> 
 * 
 * <p> 
 * This program demonstrates using a standard Java {@link SecretKey} object as a {@link 
 IKeyring} to 
 * encrypt and decrypt streaming data. 
 */
public class FileStreamingKeyringExample { 
    private static String srcFile; 

    public static void main(String[] args) throws IOException { 
        srcFile = args[0]; 

        // In this example, we generate a random key. In practice,  
        // you would get a key from an existing store 
        SecretKey cryptoKey = retrieveEncryptionKey(); 

        // Create a Raw Aes Keyring using the random key and an AES-GCM encryption 
 algorithm 
        final MaterialProviders materialProviders = MaterialProviders.builder() 
                .MaterialProvidersConfig(MaterialProvidersConfig.builder().build()) 
                .build(); 
        final CreateRawAesKeyringInput keyringInput = 
 CreateRawAesKeyringInput.builder() 
                .wrappingKey(ByteBuffer.wrap(cryptoKey.getEncoded())) 
                .keyNamespace("Example") 
                .keyName("RandomKey") 
                .wrappingAlg(AesWrappingAlg.ALG_AES128_GCM_IV12_TAG16) 

Examples 186



AWS Encryption SDK Developer Guide

                .build(); 
        IKeyring keyring = materialProviders.CreateRawAesKeyring(keyringInput); 

        // Instantiate the SDK. 
        // This builds the AwsCrypto client with the RequireEncryptRequireDecrypt 
 commitment policy, 
        // which means this client only encrypts using committing algorithm suites and 
 enforces 
        // that the client will only decrypt encrypted messages that were created with 
 a committing 
        // algorithm suite. 
        // This is the default commitment policy if you build the client with 
        // `AwsCrypto.builder().build()` 
        // or `AwsCrypto.standard()`. 
        // This example encrypts with an algorithm suite that doesn't include signing 
 for faster decryption, 
        // since this use case assumes that the contexts that encrypt and decrypt are 
 equally trusted. 
        final AwsCrypto crypto = AwsCrypto.builder() 
                .withCommitmentPolicy(CommitmentPolicy.RequireEncryptRequireDecrypt) 
                
 .withEncryptionAlgorithm(CryptoAlgorithm.ALG_AES_256_GCM_HKDF_SHA512_COMMIT_KEY) 
                .build(); 

        // Create an encryption context to identify the ciphertext 
        Map<String, String> context = Collections.singletonMap("Example", 
 "FileStreaming"); 

        // Because the file might be too large to load into memory, we stream the data, 
 instead of  
        //loading it all at once. 
        FileInputStream in = new FileInputStream(srcFile); 
        CryptoInputStream<JceMasterKey> encryptingStream = 
 crypto.createEncryptingStream(keyring, in, context); 

        FileOutputStream out = new FileOutputStream(srcFile + ".encrypted"); 
        IOUtils.copy(encryptingStream, out); 
        encryptingStream.close(); 
        out.close(); 

        // Decrypt the file. Verify the encryption context before returning the 
 plaintext. 
        // Since the data was encrypted using an unsigned algorithm suite, use the 
 recommended 

Examples 187



AWS Encryption SDK Developer Guide

        // createUnsignedMessageDecryptingStream method, which only accepts unsigned 
 messages. 
        in = new FileInputStream(srcFile + ".encrypted"); 
        CryptoInputStream<JceMasterKey> decryptingStream = 
 crypto.createUnsignedMessageDecryptingStream(keyring, in); 
        // Does it contain the expected encryption context? 
        if 
 (!"FileStreaming".equals(decryptingStream.getCryptoResult().getEncryptionContext().get("Example"))) 
 { 
            throw new IllegalStateException("Bad encryption context"); 
        } 

        // Write the plaintext data to disk. 
        out = new FileOutputStream(srcFile + ".decrypted"); 
        IOUtils.copy(decryptingStream, out); 
        decryptingStream.close(); 
        out.close(); 
    } 

    /** 
     * In practice, this key would be saved in a secure location. 
     * For this demo, we generate a new random key for each operation. 
     */ 
    private static SecretKey retrieveEncryptionKey() { 
        SecureRandom rnd = new SecureRandom(); 
        byte[] rawKey = new byte[16]; // 128 bits 
        rnd.nextBytes(rawKey); 
        return new SecretKeySpec(rawKey, "AES"); 
    }
}

Encrypting and decrypting byte streams with a multi-keyring

The following example shows you how to use the AWS Encryption SDK with a multi-keyring. When 
you use a multi-keyring to encrypt data, any of the wrapping keys in any of its keyrings can decrypt 
that data. This example uses an AWS KMS keyring and a Raw RSA keyring as the child keyrings.

This example encrypts with the default algorithm suite, which includes a digital signature. When 
streaming, the AWS Encryption SDK releases plaintext after integrity checks, but before it has 
verified the digital signature. To avoid using the plaintext until the signature is verified, this 
example buffers the plaintext, and writes it to disk only when decryption and verification are 
complete.

Examples 188



AWS Encryption SDK Developer Guide

// Copyright Amazon.com Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0

package com.amazonaws.crypto.keyrings;

import com.amazonaws.encryptionsdk.AwsCrypto;
import com.amazonaws.encryptionsdk.CommitmentPolicy;
import com.amazonaws.encryptionsdk.CryptoOutputStream;
import com.amazonaws.util.IOUtils;
import software.amazon.cryptography.materialproviders.IKeyring;
import software.amazon.cryptography.materialproviders.MaterialProviders;
import 
 software.amazon.cryptography.materialproviders.model.CreateAwsKmsMultiKeyringInput;
import software.amazon.cryptography.materialproviders.model.CreateMultiKeyringInput;
import software.amazon.cryptography.materialproviders.model.CreateRawRsaKeyringInput;
import software.amazon.cryptography.materialproviders.model.MaterialProvidersConfig;
import software.amazon.cryptography.materialproviders.model.PaddingScheme;

import java.io.ByteArrayInputStream;
import java.io.ByteArrayOutputStream;
import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.nio.ByteBuffer;
import java.security.GeneralSecurityException;
import java.security.KeyPair;
import java.security.KeyPairGenerator;
import java.util.Collections;

/** 
 * <p> 
 * Encrypts a file using both AWS KMS Key and an asymmetric key pair. 
 * 
 * <p> 
 * Arguments: 
 * <ol> 
 * <li>Key ARN: For help finding the Amazon Resource Name (ARN) of your AWS KMS key, 
 *   see 'Viewing Keys' at http://docs.aws.amazon.com/kms/latest/developerguide/
viewing-keys.html 
 * 
 * <li>Name of file containing plaintext data to encrypt 
 * </ol> 
 * <p> 

Examples 189



AWS Encryption SDK Developer Guide

 * You might use AWS Key Management Service (AWS KMS) for most encryption and 
 decryption operations, but 
 * still want the option of decrypting your data offline independently of AWS KMS. This 
 sample 
 * demonstrates one way to do this. 
 * <p> 
 * The sample encrypts data under both an AWS KMS key and an "escrowed" RSA key pair 
 * so that either key alone can decrypt it. You might commonly use the AWS KMS key for 
 decryption. However, 
 * at any time, you can use the private RSA key to decrypt the ciphertext independent 
 of AWS KMS. 
 * <p> 
 * This sample uses the RawRsaKeyring to generate a RSA public-private key pair 
 * and saves the key pair in memory. In practice, you would store the private key in a 
 secure offline 
 * location, such as an offline HSM, and distribute the public key to your development 
 team. 
 */
public class EscrowedEncryptKeyringExample { 
    private static ByteBuffer publicEscrowKey; 
    private static ByteBuffer privateEscrowKey; 

    public static void main(final String[] args) throws Exception { 
        // This sample generates a new random key for each operation. 
        // In practice, you would distribute the public key and save the private key in 
 secure 
        // storage. 
        generateEscrowKeyPair(); 

        final String kmsArn = args[0]; 
        final String fileName = args[1]; 

        standardEncrypt(kmsArn, fileName); 
        standardDecrypt(kmsArn, fileName); 

        escrowDecrypt(fileName); 
    } 

    private static void standardEncrypt(final String kmsArn, final String fileName) 
 throws Exception { 
        // Encrypt with the KMS key and the escrowed public key 
        // 1. Instantiate the SDK 
        // This builds the AwsCrypto client with the RequireEncryptRequireDecrypt 
 commitment policy, 

Examples 190



AWS Encryption SDK Developer Guide

        // which means this client only encrypts using committing algorithm suites and 
 enforces 
        // that the client will only decrypt encrypted messages that were created with 
 a committing 
        // algorithm suite. 
        // This is the default commitment policy if you build the client with 
        // `AwsCrypto.builder().build()` 
        // or `AwsCrypto.standard()`. 
        final AwsCrypto crypto = AwsCrypto.builder() 
                .withCommitmentPolicy(CommitmentPolicy.RequireEncryptRequireDecrypt) 
                .build(); 

        // 2. Create the AWS KMS keyring. 
        // This example creates a multi keyring, which automatically creates the KMS 
 client. 
        final MaterialProviders matProv = MaterialProviders.builder() 
                .MaterialProvidersConfig(MaterialProvidersConfig.builder().build()) 
                .build(); 
        final CreateAwsKmsMultiKeyringInput keyringInput = 
 CreateAwsKmsMultiKeyringInput.builder() 
                .generator(kmsArn) 
                .build(); 
        IKeyring kmsKeyring = matProv.CreateAwsKmsMultiKeyring(keyringInput); 

        // 3. Create the Raw Rsa Keyring with Public Key. 
        final CreateRawRsaKeyringInput encryptingKeyringInput = 
 CreateRawRsaKeyringInput.builder() 
                .keyName("Escrow") 
                .keyNamespace("Escrow") 
                .paddingScheme(PaddingScheme.OAEP_SHA512_MGF1) 
                .publicKey(publicEscrowKey) 
                .build(); 
        IKeyring rsaPublicKeyring = 
 matProv.CreateRawRsaKeyring(encryptingKeyringInput); 

        // 4. Create the multi-keyring. 
        final CreateMultiKeyringInput createMultiKeyringInput = 
 CreateMultiKeyringInput.builder() 
                .generator(kmsKeyring) 
                .childKeyrings(Collections.singletonList(rsaPublicKeyring)) 
                .build(); 
        IKeyring multiKeyring = matProv.CreateMultiKeyring(createMultiKeyringInput); 

        // 5. Encrypt the file 

Examples 191



AWS Encryption SDK Developer Guide

        // To simplify this code example, we omit the encryption context. Production 
 code should always  
        // use an encryption context.  
        final FileInputStream in = new FileInputStream(fileName); 
        final FileOutputStream out = new FileOutputStream(fileName + ".encrypted"); 
        final CryptoOutputStream<?> encryptingStream = 
 crypto.createEncryptingStream(multiKeyring, out); 

        IOUtils.copy(in, encryptingStream); 
        in.close(); 
        encryptingStream.close(); 
    } 

    private static void standardDecrypt(final String kmsArn, final String fileName) 
 throws Exception { 
        // Decrypt with the AWS KMS key and the escrow public key.  

        // 1. Instantiate the SDK. 
        // This builds the AwsCrypto client with the RequireEncryptRequireDecrypt 
 commitment policy, 
        // which means this client only encrypts using committing algorithm suites and 
 enforces 
        // that the client will only decrypt encrypted messages that were created with 
 a committing 
        // algorithm suite. 
        // This is the default commitment policy if you build the client with 
        // `AwsCrypto.builder().build()` 
        // or `AwsCrypto.standard()`. 
        final AwsCrypto crypto = AwsCrypto.builder() 
                .withCommitmentPolicy(CommitmentPolicy.RequireEncryptRequireDecrypt) 
                .build(); 

        // 2. Create the AWS KMS keyring. 
        // This example creates a multi keyring, which automatically creates the KMS 
 client. 
        final MaterialProviders matProv = MaterialProviders.builder() 
                .MaterialProvidersConfig(MaterialProvidersConfig.builder().build()) 
                .build(); 
        final CreateAwsKmsMultiKeyringInput keyringInput = 
 CreateAwsKmsMultiKeyringInput.builder() 
                .generator(kmsArn) 
                .build(); 
        IKeyring kmsKeyring = matProv.CreateAwsKmsMultiKeyring(keyringInput); 

Examples 192



AWS Encryption SDK Developer Guide

        // 3. Create the Raw Rsa Keyring with Public Key. 
        final CreateRawRsaKeyringInput encryptingKeyringInput = 
 CreateRawRsaKeyringInput.builder() 
                .keyName("Escrow") 
                .keyNamespace("Escrow") 
                .paddingScheme(PaddingScheme.OAEP_SHA512_MGF1) 
                .publicKey(publicEscrowKey) 
                .build(); 
        IKeyring rsaPublicKeyring = 
 matProv.CreateRawRsaKeyring(encryptingKeyringInput); 

        // 4. Create the multi-keyring. 
        final CreateMultiKeyringInput createMultiKeyringInput = 
 CreateMultiKeyringInput.builder() 
                .generator(kmsKeyring) 
                .childKeyrings(Collections.singletonList(rsaPublicKeyring)) 
                .build(); 
        IKeyring multiKeyring = matProv.CreateMultiKeyring(createMultiKeyringInput); 

        // 5. Decrypt the file 
        // To simplify this code example, we omit the encryption context. Production 
 code should always  
        // use an encryption context.  
        final FileInputStream in = new FileInputStream(fileName + ".encrypted"); 
        final FileOutputStream out = new FileOutputStream(fileName + ".decrypted"); 
        // Since we are using a signing algorithm suite, we avoid streaming decryption 
 directly to the output file, 
        // to ensure that the trailing signature is verified before writing any 
 untrusted plaintext to disk. 
        final ByteArrayOutputStream plaintextBuffer = new ByteArrayOutputStream(); 
        final CryptoOutputStream<?> decryptingStream = 
 crypto.createDecryptingStream(multiKeyring, plaintextBuffer); 
        IOUtils.copy(in, decryptingStream); 
        in.close(); 
        decryptingStream.close(); 
        final ByteArrayInputStream plaintextReader = new 
 ByteArrayInputStream(plaintextBuffer.toByteArray()); 
        IOUtils.copy(plaintextReader, out); 
        out.close(); 
    } 

    private static void escrowDecrypt(final String fileName) throws Exception { 
        // You can decrypt the stream using only the private key. 
        // This method does not call AWS KMS. 

Examples 193



AWS Encryption SDK Developer Guide

        // 1. Instantiate the SDK 
        final AwsCrypto crypto = AwsCrypto.standard(); 

        // 2. Create the Raw Rsa Keyring with Private Key. 
        final MaterialProviders matProv = MaterialProviders.builder() 
                .MaterialProvidersConfig(MaterialProvidersConfig.builder().build()) 
                .build(); 
        final CreateRawRsaKeyringInput encryptingKeyringInput = 
 CreateRawRsaKeyringInput.builder() 
                .keyName("Escrow") 
                .keyNamespace("Escrow") 
                .paddingScheme(PaddingScheme.OAEP_SHA512_MGF1) 
                .publicKey(publicEscrowKey) 
                .privateKey(privateEscrowKey) 
                .build(); 
        IKeyring escrowPrivateKeyring = 
 matProv.CreateRawRsaKeyring(encryptingKeyringInput); 

        // 3. Decrypt the file 
        // To simplify this code example, we omit the encryption context. Production 
 code should always  
        // use an encryption context.  
        final FileInputStream in = new FileInputStream(fileName + ".encrypted"); 
        final FileOutputStream out = new FileOutputStream(fileName + ".deescrowed"); 
        final CryptoOutputStream<?> decryptingStream = 
 crypto.createDecryptingStream(escrowPrivateKeyring, out); 
        IOUtils.copy(in, decryptingStream); 
        in.close(); 
        decryptingStream.close(); 

    } 

    private static void generateEscrowKeyPair() throws GeneralSecurityException { 
        final KeyPairGenerator kg = KeyPairGenerator.getInstance("RSA"); 
        kg.initialize(4096); // Escrow keys should be very strong 
        final KeyPair keyPair = kg.generateKeyPair(); 
        publicEscrowKey = RawRsaKeyringExample.getPEMPublicKey(keyPair.getPublic()); 
        privateEscrowKey = RawRsaKeyringExample.getPEMPrivateKey(keyPair.getPrivate()); 

    }
}

Examples 194



AWS Encryption SDK Developer Guide

AWS Encryption SDK for JavaScript

The AWS Encryption SDK for JavaScript is designed to provide a client-side encryption library for 
developers who are writing web browser applications in JavaScript or web server applications in 
Node.js.

Like all implementations of the AWS Encryption SDK, the AWS Encryption SDK for JavaScript offers 
advanced data protection features. These include envelope encryption, additional authenticated 
data (AAD), and secure, authenticated, symmetric key algorithm suites, such as 256-bit AES-GCM 
with key derivation and signing.

All language-specific implementations of the AWS Encryption SDK are designed to be 
interoperable, subject to the constraints of the language. For details about language constraints for 
JavaScript, see the section called “Compatibility”.

Learn More

• For details about programming with the AWS Encryption SDK for JavaScript, see the aws-
encryption-sdk-javascript repository on GitHub.

• For programming examples, see the section called “Examples” and the example-browser and
example-node modules in the aws-encryption-sdk-javascript repository.

• For a real-world example of using the AWS Encryption SDK for JavaScript to encrypt data in a 
web application, see How to enable encryption in a browser with the AWS Encryption SDK for 
JavaScript and Node.js in the AWS Security Blog.

Topics

• Compatibility of the AWS Encryption SDK for JavaScript

• Installing the AWS Encryption SDK for JavaScript

• Modules in the AWS Encryption SDK for JavaScript

• AWS Encryption SDK for JavaScript examples

Compatibility of the AWS Encryption SDK for JavaScript

The AWS Encryption SDK for JavaScript is designed to be interoperable with other language 
implementations of the AWS Encryption SDK. In most cases, you can encrypt data with the AWS 
Encryption SDK for JavaScript and decrypt it with any other language implementation, including 

JavaScript 195

https://docs.aws.amazon.com/crypto/latest/userguide/cryptography-concepts.html#define-envelope-encryption
https://docs.aws.amazon.com/crypto/latest/userguide/cryptography-concepts.html#term-aad
https://docs.aws.amazon.com/crypto/latest/userguide/cryptography-concepts.html#term-aad
https://github.com/aws/aws-encryption-sdk-javascript/
https://github.com/aws/aws-encryption-sdk-javascript/
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/example-browser
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/example-node
https://github.com/aws/aws-encryption-sdk-javascript/
https://aws.amazon.com/blogs/security/how-to-enable-encryption-browser-aws-encryption-sdk-javascript-node-js/
https://aws.amazon.com/blogs/security/how-to-enable-encryption-browser-aws-encryption-sdk-javascript-node-js/


AWS Encryption SDK Developer Guide

the AWS Encryption SDK Command Line Interface. And you can use the AWS Encryption SDK for 
JavaScript to decrypt encrypted messages produced by other language implementations of the 
AWS Encryption SDK.

However, when you use the AWS Encryption SDK for JavaScript, you need to be aware of some 
compatibility issues in the JavaScript language implementation and in web browsers.

Also, when using different language implementations, be sure to configure compatible master key 
providers, master keys, and keyrings. For details, see Keyring compatibility.

AWS Encryption SDK for JavaScript compatibility

The JavaScript implementation of the AWS Encryption SDK differs from other language 
implementations in the following ways:

• The encrypt operation of the AWS Encryption SDK for JavaScript doesn't return nonframed 
ciphertext. However, the AWS Encryption SDK for JavaScript will decrypt framed and nonframed 
ciphertext returned by other language implementations of the AWS Encryption SDK.

• Beginning in Node.js version 12.9.0, Node.js supports the following RSA key wrapping options:

• OAEP with SHA1, SHA256, SHA384, or SHA512

• OAEP with SHA1 and MGF1 with SHA1

• PKCS1v15

• Before version 12.9.0, Node.js supports only the following RSA key wrapping options:

• OAEP with SHA1 and MGF1 with SHA1

• PKCS1v15

Browser compatibility

Some web browsers don't support basic cryptographic operations that the AWS Encryption SDK 
for JavaScript requires. You can compensate for some of the missing operations by configuring a 
fallback for the WebCrypto API that the browser implements.

Web browser limitations

The following limitations are common to all web browsers:

• The WebCrypto API doesn't support PKCS1v15 key wrapping.

• Browsers don't support 192-bit keys.

Compatibility 196



AWS Encryption SDK Developer Guide

Required cryptographic operations

The AWS Encryption SDK for JavaScript requires the following operations in web browsers. If a 
browser doesn't support these operations, it's incompatible with the AWS Encryption SDK for 
JavaScript.

• The browser must include crypto.getRandomValues(), which is a method for generating 
cryptographically random values. For information about the web browser versions that support
crypto.getRandomValues(), see Can I Use crypto.getRandomValues()?.

Required fallback

The AWS Encryption SDK for JavaScript requires the following libraries and operations in web 
browsers. If you support a web browser that doesn't fulfill these requirements, you must configure 
a fallback. Otherwise, attempts to use the AWS Encryption SDK for JavaScript with the browser will 
fail.

• The WebCrypto API, which performs basic cryptographic operations in web applications, isn't 
available for all browsers. For information about the web browser versions that support web 
cryptography, see Can I Use Web Cryptography?.

• Modern versions of the Safari web browser don't support AES-GCM encryption of zero bytes, 
which the AWS Encryption SDK requires. If the browser implements the WebCrypto API, but can't 
use AES-GCM to encrypt zero bytes, the AWS Encryption SDK for JavaScript uses the fallback 
library only for zero-byte encryption. It uses the WebCrypto API for all other operations.

To configure a fallback for either limitation, add the following statements to your code. In the
configureFallback function, specify a library that supports the missing features. The following 
example uses the Microsoft Research JavaScript Cryptography Library (msrcrypto), but you can 
replace it with a compatible library. For a complete example, see fallback.ts.

import { configureFallback } from '@aws-crypto/client-browser'
configureFallback(msrCrypto)

Installing the AWS Encryption SDK for JavaScript

The AWS Encryption SDK for JavaScript consists of a collection of interdependent modules. 
Several of the modules are just collections of modules that are designed to work together. Some 

Installation 197

https://caniuse.com/#feat=getrandomvalues
https://caniuse.com/#feat=cryptography
https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/web-crypto-backend/src/backend-factory.ts#L78
https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-browser/src/fallback.ts


AWS Encryption SDK Developer Guide

modules are designed to work independently. A few modules are required for all implementations; 
a few others are required only for special cases. For information about the modules in the AWS 
Encryption SDK for JavaScript, see Modules in the AWS Encryption SDK for JavaScript and the
README.md file in each of the modules in the aws-encryption-sdk-javascript repository on GitHub.

Note

All versions of the AWS Encryption SDK for JavaScript earlier than 2.0.0 are in the end-of-
support phase.
You can safely update from version 2.0.x and later to the latest version of the AWS 
Encryption SDK for JavaScript without any code or data changes. However,  new security 
features introduced in version 2.0.x are not backward-compatible. To update from versions 
earlier than 1.7.x to version 2.0.x and later, you must first update to the latest 1.x version 
of the AWS Encryption SDK for JavaScript. For details, see Migrating your AWS Encryption 
SDK.

To install the modules, use the npm package manager.

For example, to install the client-node module, which includes all of the modules you need to 
program with the AWS Encryption SDK for JavaScript in Node.js, use the following command.

npm install @aws-crypto/client-node

To install the client-browser module, which includes all of the modules you need to program 
with the AWS Encryption SDK for JavaScript in the browser, use the following command.

npm install @aws-crypto/client-browser

For working examples of how to use the AWS Encryption SDK for JavaScript, see the examples 
in the example-node and example-browser modules in the aws-encryption-sdk-javascript
repository on GitHub.

Modules in the AWS Encryption SDK for JavaScript

The modules in the AWS Encryption SDK for JavaScript make it easy to install the code that you 
need for your projects.

Modules 198

https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://www.npmjs.com/get-npm
https://github.com/aws/aws-encryption-sdk-javascript/


AWS Encryption SDK Developer Guide

Modules for JavaScript Node.js

client-node

Includes all of the modules you need to program with the AWS Encryption SDK for JavaScript in 
Node.js.

caching-materials-manager-node

Exports functions that support the data key caching feature in the AWS Encryption SDK for 
JavaScript in Node.js.

decrypt-node

Exports functions that decrypt and verify encrypted messages representing data and data 
streams. Included in the client-node module.

encrypt-node

Exports functions that encrypt and sign different types of data. Included in the client-node
module.

example-node

Exports working examples of programming with the AWS Encryption SDK for JavaScript in 
Node.js. Includes example of different types of keyrings and different types of data.

hkdf-node

Exports an HMAC-based Key Derivation Function (HKDF) that the AWS Encryption SDK for 
JavaScript in Node.js uses in particular algorithm suites. The AWS Encryption SDK for JavaScript 
in the browser uses the native HKDF function in the WebCrypto API.

integration-node

Defines tests that verify that the AWS Encryption SDK for JavaScript in Node.js is compatible 
with other language implementations of the AWS Encryption SDK.

kms-keyring-node

Exports functions that support AWS KMS keyrings in Node.js.

raw-aes-keyring-node

Exports functions that support Raw AES keyrings in Node.js.

Modules 199

https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/client-node
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/caching-materials-manager-node
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/decrypt-node
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/encrypt-node
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/example-node
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/hkdf-node
https://en.wikipedia.org/wiki/HKDF
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/integration-node
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/kms-keyring-node
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/raw-aes-keyring-node


AWS Encryption SDK Developer Guide

raw-rsa-keyring-node

Exports functions that support Raw RSA keyrings in Node.js.

Modules for JavaScript Browser

client-browser

Includes all of the modules you need to program with the AWS Encryption SDK for JavaScript in 
the browser.

caching-materials-manager-browser

Exports functions that support the data key caching feature for JavaScript in the browser.

decrypt-browser

Exports functions that decrypt and verify encrypted messages representing data and data 
streams.

encrypt-browser

Exports functions that encrypt and sign different types of data.

example-browser

Working examples of programming with the AWS Encryption SDK for JavaScript in the browser. 
Includes examples of different types of keyrings and different types of data.

integration-browser

Defines tests that verify that the AWS Encryption SDK for JavaScript in the browser is 
compatible with other language implementations of the AWS Encryption SDK.

kms-keyring-browser

Exports functions that support AWS KMS keyrings in the browser.

raw-aes-keyring-browser

Exports functions that support Raw AES keyrings in the browser.

raw-rsa-keyring-browser

Exports functions that support Raw RSA keyrings in the browser.

Modules 200

https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/raw-rsa-keyring-node
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/client-browser
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/caching-materials-manager-browser
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/decrypt-browser
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/encrypt-browser
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/example-browser
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/integration-browser
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/kms-keyring-browser
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/raw-aes-keyring-browser
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/raw-rsa-keyring-browser


AWS Encryption SDK Developer Guide

Modules for all implementations

cache-material

Supports the data key caching feature. Provides code for assembling the cryptographic 
materials that are cached with each data key.

kms-keyring

Exports functions that support KMS keyrings.

material-management

Implements the cryptographic materials manager (CMM).

raw-keyring

Exports functions required for raw AES and RSA keyrings.

serialize

Exports functions that the SDK uses to serialize its output.

web-crypto-backend

Exports functions that use the WebCrypto API in the AWS Encryption SDK for JavaScript in the 
browser.

AWS Encryption SDK for JavaScript examples

The following examples show you how to use the AWS Encryption SDK for JavaScript to encrypt 
and decrypt data.

You can find more examples of using the AWS Encryption SDK for JavaScript in the example-
node and example-browser modules in the aws-encryption-sdk-javascript repository on GitHub. 
These example modules are not installed when you install the client-browser or client-node
modules.

See the complete code samples: Node: kms_simple.ts, Browser: kms_simple.ts

Topics

• Encrypting data with an AWS KMS keyring

Examples 201

https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/cache-material
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/kms-keyring
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/material-management
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/raw-keyring
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/serialize
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/web-crypto-backend
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/example-node
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/example-node
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/example-browser
https://github.com/aws/aws-encryption-sdk-javascript/
https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-node/src/kms_simple.ts
https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-browser/src/kms_simple.ts


AWS Encryption SDK Developer Guide

• Decrypting data with an AWS KMS keyring

Encrypting data with an AWS KMS keyring

The following example shows you how to use the AWS Encryption SDK for JavaScript to encrypt 
and decrypt a short string or byte array.

This example features an AWS KMS keyring, a type of keyring that uses an AWS KMS key to 
generate and encrypt data keys. For help creating an AWS KMS key, see Creating Keys in the AWS 
Key Management Service Developer Guide. For help identifying the AWS KMS keys in an AWS KMS 
keyring, see Identifying AWS KMS keys in an AWS KMS keyring

Step 1: Construct the keyring.

Create an AWS KMS keyring for encryption.

When encrypting with an AWS KMS keyring, you must specify a generator key, that is, an AWS 
KMS key that is used to generate the plaintext data key and encrypt it. You can also specify 
zero or more additional keys that encrypt the same plaintext data key. The keyring returns 
the plaintext data key and one encrypted copy of that data key for each AWS KMS key in the 
keyring, including the generator key. To decrypt the data, you need to decrypt any one of the 
encrypted data keys.

To specify the AWS KMS keys for an encryption keyring in the AWS Encryption SDK for 
JavaScript, you can use any supported AWS KMS key identifier. This example uses a generator 
key, which is identified by its alias ARN, and one additional key, which is identified by a key ARN.

Note

If you plan to reuse your AWS KMS keyring for decrypting, you must use key ARNs to 
identify the AWS KMS keys in the keyring.

Before running this code, replace the example AWS KMS key identifiers with valid identifiers. 
You must have the permissions required to use the AWS KMS keys in the keyring.

JavaScript Browser

Begin by providing your credentials to the browser. The AWS Encryption SDK for JavaScript 
examples use the webpack.DefinePlugin, which replaces the credential constants with your 

Examples 202

https://docs.aws.amazon.com/kms/latest/developerguide/create-keys.html
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-ARN
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-ARN
https://webpack.js.org/plugins/define-plugin/


AWS Encryption SDK Developer Guide

actual credentials. But you can use any method to provide your credentials. Then, use the 
credentials to create an AWS KMS client.

declare const credentials: {accessKeyId: string, secretAccessKey:string, 
 sessionToken:string }

const clientProvider = getClient(KMS, { 
  credentials: { 
    accessKeyId, 
    secretAccessKey, 
    sessionToken 
  }
})

Next, specify the AWS KMS keys for the generator key and additional key. Then, create an 
AWS KMS keyring using the AWS KMS client and the AWS KMS keys.

const generatorKeyId = 'arn:aws:kms:us-west-2:111122223333:alias/EncryptDecrypt'
const keyIds = ['arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab']

const keyring = new KmsKeyringBrowser({ clientProvider, generatorKeyId, keyIds })

JavaScript Node.js

const generatorKeyId = 'arn:aws:kms:us-west-2:111122223333:alias/EncryptDecrypt'
const keyIds = ['arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab']

const keyring = new KmsKeyringNode({ generatorKeyId, keyIds })

Step 2: Set the encryption context.

An encryption context is arbitrary, non-secret additional authenticated data. When you provide 
an encryption context on encrypt, the AWS Encryption SDK cryptographically binds the 
encryption context to the ciphertext so that the same encryption context is required to decrypt 
the data. Using an encryption context is optional, but we recommend it as a best practice.

Create a simple object that includes the encryption context pairs. The key and value in each pair 
must be a string.

Examples 203



AWS Encryption SDK Developer Guide

JavaScript Browser

const context = { 
  stage: 'demo', 
  purpose: 'simple demonstration app', 
  origin: 'us-west-2'
}

JavaScript Node.js

const context = { 
  stage: 'demo', 
  purpose: 'simple demonstration app', 
  origin: 'us-west-2'
}

Step 3: Encrypt the data.

To encrypt the plaintext data, call the encrypt function. Pass in the AWS KMS keyring, the 
plaintext data, and the encryption context.

The encrypt function returns an encrypted message (result) that contains the encrypted 
data, the encrypted data keys, and important metadata, including the encryption context and 
signature.

You can decrypt this encrypted message by using the AWS Encryption SDK for any supported 
programming language.

JavaScript Browser

const plaintext = new Uint8Array([1, 2, 3, 4, 5])

const { result } = await encrypt(keyring, plaintext, { encryptionContext: 
 context })

JavaScript Node.js

const plaintext = 'asdf'

const { result } = await encrypt(keyring, plaintext, { encryptionContext: 
 context })

Examples 204



AWS Encryption SDK Developer Guide

Decrypting data with an AWS KMS keyring

You can use the AWS Encryption SDK for JavaScript to decrypt the encrypted message and recover 
the original data.

In this example, we decrypt the data that we encrypted in the the section called “Encrypting data 
with an AWS KMS keyring” example.

Step 1: Construct the keyring.

To decrypt the data, pass in the encrypted message (result) that the encrypt function 
returned. The encrypted message includes the encrypted data, the encrypted data keys, and 
important metadata, including the encryption context and signature.

You must also specify an AWS KMS keyring when decrypting. You can use the same keyring that 
was used to encrypt the data or a different keyring. To succeed, at least one AWS KMS key in 
the decryption keyring must be able to decrypt one of the encrypted data keys in the encrypted 
message. Because no data keys are generated, you do not need to specify a generator key in a 
decryption keyring. If you do, the generator key and additional keys are treated the same way.

To specify an AWS KMS key for a decryption keyring in the AWS Encryption SDK for JavaScript, 
you must use the key ARN. Otherwise, the AWS KMS key is not recognized. For help identifying 
the AWS KMS keys in an AWS KMS keyring, see Identifying AWS KMS keys in an AWS KMS 
keyring

Note

If you use the same keyring for encrypting and decrypting, use key ARNs to identify the 
AWS KMS keys in the keyring.

In this example, we create a keyring that includes only one of the AWS KMS keys in the 
encryption keyring. Before running this code, replace the example key ARN with a valid one. You 
must have kms:Decrypt permission on the AWS KMS key.

JavaScript Browser

Begin by providing your credentials to the browser. The AWS Encryption SDK for JavaScript 
examples use the webpack.DefinePlugin, which replaces the credential constants with your 
actual credentials. But you can use any method to provide your credentials. Then, use the 
credentials to create an AWS KMS client.

Examples 205

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-ARN
https://webpack.js.org/plugins/define-plugin/


AWS Encryption SDK Developer Guide

declare const credentials: {accessKeyId: string, secretAccessKey:string, 
 sessionToken:string }

const clientProvider = getClient(KMS, { 
  credentials: { 
    accessKeyId, 
    secretAccessKey, 
    sessionToken 
  }
})

Next, create an AWS KMS keyring using the AWS KMS client. This example uses just one of 
the AWS KMS keys from the encryption keyring.

const keyIds = ['arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab']

const keyring = new KmsKeyringBrowser({ clientProvider, keyIds })

JavaScript Node.js

const keyIds = ['arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab']

const keyring = new KmsKeyringNode({ keyIds })

Step 2: Decrypt the data.

Next, call the decrypt function. Pass in the decryption keyring that you just created (keyring) 
and the encrypted message that the encrypt function returned (result). The AWS Encryption 
SDK uses the keyring to decrypt one of the encrypted data keys. Then it uses the plaintext data 
key to decrypt the data.

If the call succeeds, the plaintext field contains the plaintext (decrypted) data. The
messageHeader field contains metadata about the decryption process, including the 
encryption context that was used to decrypt the data.

JavaScript Browser

const { plaintext, messageHeader } = await decrypt(keyring, result)

Examples 206



AWS Encryption SDK Developer Guide

JavaScript Node.js

const { plaintext, messageHeader } = await decrypt(keyring, result)

Step 3: Verify the encryption context.

The encryption context that was used to decrypt the data is included in the message header 
(messageHeader) that the decrypt function returns. Before your application returns the 
plaintext data, verify that the encryption context that you provided when encrypting is included 
in the encryption context that was used when decrypting. A mismatch might indicate that the 
data was tampered with, or that you didn't decrypt the right ciphertext.

When verifying the encryption context, do not require an exact match. When you use an 
encryption algorithm with signing, the cryptographic materials manager (CMM) adds the 
public signing key to the encryption context before encrypting the message. But all of the 
encryption context pairs that you submitted should be included in the encryption context that 
was returned.

First, get the encryption context from the message header. Then, verify that each key-value 
pair in the original encryption context (context) matches a key-value pair in the returned 
encryption context (encryptionContext).

JavaScript Browser

const { encryptionContext } = messageHeader

Object 
  .entries(context) 
  .forEach(([key, value]) => { 
    if (encryptionContext[key] !== value) throw new Error('Encryption Context 
 does not match expected values')
})

JavaScript Node.js

const { encryptionContext } = messageHeader

Object 
  .entries(context) 
  .forEach(([key, value]) => { 
    if (encryptionContext[key] !== value) throw new Error('Encryption Context 
 does not match expected values')

Examples 207



AWS Encryption SDK Developer Guide

})

If the encryption context check succeeds, you can return the plaintext data.

AWS Encryption SDK for Python

This topic explains how to install and use the AWS Encryption SDK for Python. For details about 
programming with the AWS Encryption SDK for Python, see the aws-encryption-sdk-python
repository on GitHub. For API documentation, see Read the Docs.

Topics

• Prerequisites

• Installation

• AWS Encryption SDK for Python example code

Prerequisites

Before you install the AWS Encryption SDK for Python, be sure you have the following 
prerequisites.

A supported version of Python

Python 3.8 or later is required by the AWS Encryption SDK for Python versions 3.2.0 and later.

Earlier versions of the AWS Encryption SDK support Python 2.7 and Python 3.4 and later, but 
we recommend that you use the latest version of the AWS Encryption SDK.

To download Python, see Python downloads.

The pip installation tool for Python

pip is included in Python 3.6 and later versions, although you might want to upgrade it. For 
more information about upgrading or installing pip, see Installation in the pip documentation.

Installation

Install the latest version of the AWS Encryption SDK for Python.

Python 208

https://github.com/aws/aws-encryption-sdk-python/
https://aws-encryption-sdk-python.readthedocs.io/en/latest/
https://www.python.org/downloads/
https://pip.pypa.io/en/latest/installation/


AWS Encryption SDK Developer Guide

Note

All versions of the AWS Encryption SDK for Python earlier than 3.0.0 are in the end-of-
support phase.
You can safely update from version 2.0.x and later to the latest version of the AWS 
Encryption SDK without any code or data changes. However,  new security features
introduced in version 2.0.x are not backward-compatible. To update from versions earlier 
than 1.7.x to version 2.0.x and later, you must first update to the latest 1.x version of the 
AWS Encryption SDK. For details, see Migrating your AWS Encryption SDK.

Use pip to install the AWS Encryption SDK for Python, as shown in the following examples.

To install the latest version

pip install aws-encryption-sdk

For more details about using pip to install and upgrade packages, see Installing Packages.

The AWS Encryption SDK for Python requires the cryptography library (pyca/cryptography) on 
all platforms. All versions of pip automatically install and build the cryptography library on 
Windows. pip 8.1 and later automatically installs and builds cryptography on Linux. If you 
are using an earlier version of pip and your Linux environment doesn't have the tools needed to 
build the cryptography library, you need to install them. For more information, see Building 
Cryptography on Linux.

Versions 1.10.0 and 2.5.0 of the AWS Encryption SDK for Python pin the cryptography dependency 
between 2.5.0 and 3.3.2. Other versions of the AWS Encryption SDK for Python install the latest 
version of cryptography. If you require a version of cryptography later than 3.3.2, we recommend 
that you use the latest major version of the AWS Encryption SDK for Python.

For the latest development version of the AWS Encryption SDK for Python, go to the aws-
encryption-sdk-python repository in GitHub.

After you install the AWS Encryption SDK for Python, get started by looking at the Python example 
code in this guide.

Installation 209

https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://packaging.python.org/tutorials/installing-packages/
https://cryptography.io/en/latest/
https://cryptography.io/en/latest/installation.html#building-cryptography-on-linux
https://cryptography.io/en/latest/installation.html#building-cryptography-on-linux
https://cryptography.io/en/latest/
https://github.com/aws/aws-encryption-sdk-python/
https://github.com/aws/aws-encryption-sdk-python/


AWS Encryption SDK Developer Guide

AWS Encryption SDK for Python example code

The following examples show you how to use the AWS Encryption SDK for Python to encrypt and 
decrypt data.

The examples in this section show how to use version 2.0.x and later of the AWS Encryption SDK 
for Python. For examples that use earlier versions, find your release in the Releases list of the aws-
encryption-sdk-python repository on GitHub.

Topics

• Encrypting and decrypting strings

• Encrypting and decrypting byte streams

• Encrypting and decrypting byte streams with multiple master key providers

• Using data key caching to encrypt messages

Encrypting and decrypting strings

The following example shows you how to use the AWS Encryption SDK to encrypt and decrypt 
strings. This example uses an AWS KMS key in AWS Key Management Service (AWS KMS) as the 
master key.

When encrypting, the StrictAwsKmsMasterKeyProvider constructor takes a key ID, key ARN, 
alias name, or alias ARN. When decrypting, it requires a key ARN. In this case, because the keyArn
parameter is used for encrypting and decrypting, its value must be a key ARN. For information 
about IDs for AWS KMS keys, see Key identifiers in the AWS Key Management Service Developer 
Guide.

# Copyright 2017 Amazon.com, Inc. or its affiliates. All Rights Reserved.  
#  
# Licensed under the Apache License, Version 2.0 (the "License"). You  
# may not use this file except in compliance with the License. A copy of  
# the License is located at  
#  
# http://aws.amazon.com/apache2.0/  
#  
# or in the "license" file accompanying this file. This file is  
# distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF  
# ANY KIND, either express or implied. See the License for the specific  
# language governing permissions and limitations under the License.  

Examples 210

https://github.com/aws/aws-encryption-sdk-python/releases
https://github.com/aws/aws-encryption-sdk-python/
https://github.com/aws/aws-encryption-sdk-python/
https://aws.amazon.com/kms/
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id


AWS Encryption SDK Developer Guide

"""Example showing basic encryption and decryption of a value already in memory."""  
import aws_encryption_sdk  
from aws_encryption_sdk import CommitmentPolicy  
  
  
def cycle_string(key_arn, source_plaintext, botocore_session=None):  
    """Encrypts and then decrypts a string under an &KMS; key.  
  
    :param str key_arn: Amazon Resource Name (ARN) of the &KMS; key  
    :param bytes source_plaintext: Data to encrypt  
    :param botocore_session: existing botocore session instance  
    :type botocore_session: botocore.session.Session  
    """  
    # Set up an encryption client with an explicit commitment policy. If you do not 
 explicitly choose a  
    # commitment policy, REQUIRE_ENCRYPT_REQUIRE_DECRYPT is used by default.  
    client = 
 aws_encryption_sdk.EncryptionSDKClient(commitment_policy=CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT)  
  
    # Create an AWS KMS master key provider  
    kms_kwargs = dict(key_ids=[key_arn])  
    if botocore_session is not None:  
        kms_kwargs["botocore_session"] = botocore_session  
    master_key_provider = 
 aws_encryption_sdk.StrictAwsKmsMasterKeyProvider(**kms_kwargs)  
  
    # Encrypt the plaintext source data  
    ciphertext, encryptor_header = client.encrypt(source=source_plaintext, 
 key_provider=master_key_provider)  
  
    # Decrypt the ciphertext  
    cycled_plaintext, decrypted_header = client.decrypt(source=ciphertext, 
 key_provider=master_key_provider)  
  
    # Verify that the "cycled" (encrypted, then decrypted) plaintext is identical to 
 the source plaintext  
    assert cycled_plaintext == source_plaintext  
  
    # Verify that the encryption context used in the decrypt operation includes all key 
 pairs from  
    # the encrypt operation. (The SDK can add pairs, so don't require an exact match.)  
    #  
    # In production, always use a meaningful encryption context. In this sample, we 
 omit the  

Examples 211



AWS Encryption SDK Developer Guide

    # encryption context (no key pairs).  
    assert all(  
        pair in decrypted_header.encryption_context.items() for pair in 
 encryptor_header.encryption_context.items()  
    )

Encrypting and decrypting byte streams

The following example shows you how to use the AWS Encryption SDK to encrypt and decrypt byte 
streams. This example doesn't use AWS. It uses a static, ephemeral master key provider.

When encrypting, this example uses an alternate algorithm suite without digital signatures
(AES_256_GCM_HKDF_SHA512_COMMIT_KEY). This algorithm suite is appropriate when the users 
who are encrypting and decrypting data are equally trusted. Then, when decrypting, the example 
uses the decrypt-unsigned streaming mode, which fails if it encounters signed ciphertext. The
decrypt-unsigned streaming mode is introduced in AWS Encryption SDK versions 1.9.x and 
2.2.x.

# Copyright 2017 Amazon.com, Inc. or its affiliates. All Rights Reserved.  
#  
# Licensed under the Apache License, Version 2.0 (the "License"). You  
# may not use this file except in compliance with the License. A copy of  
# the License is located at  
#  
# http://aws.amazon.com/apache2.0/  
#  
# or in the "license" file accompanying this file. This file is  
# distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF  
# ANY KIND, either express or implied. See the License for the specific  
# language governing permissions and limitations under the License.  
"""Example showing creation and use of a RawMasterKeyProvider."""  
import filecmp  
import os  
  
import aws_encryption_sdk  
from aws_encryption_sdk.identifiers import Algorithm, CommitmentPolicy, 
 EncryptionKeyType, WrappingAlgorithm  
from aws_encryption_sdk.internal.crypto.wrapping_keys import WrappingKey  
from aws_encryption_sdk.key_providers.raw import RawMasterKeyProvider  
  
  
class StaticRandomMasterKeyProvider(RawMasterKeyProvider):  

Examples 212



AWS Encryption SDK Developer Guide

    """Randomly generates 256-bit keys for each unique key ID."""  
  
    provider_id = "static-random"  
  
    def __init__(self, **kwargs):  # pylint: disable=unused-argument  
        """Initialize empty map of keys."""  
        self._static_keys = {}  
  
    def _get_raw_key(self, key_id):  
        """Returns a static, randomly-generated symmetric key for the specified key 
 ID.  
        :param str key_id: Key ID  
        :returns: Wrapping key that contains the specified static key  
        :rtype: :class:`aws_encryption_sdk.internal.crypto.WrappingKey`  
        """  
        try:  
            static_key = self._static_keys[key_id]  
        except KeyError:  
            static_key = os.urandom(32)  
            self._static_keys[key_id] = static_key  
        return WrappingKey(  
            wrapping_algorithm=WrappingAlgorithm.AES_256_GCM_IV12_TAG16_NO_PADDING,  
            wrapping_key=static_key,  
            wrapping_key_type=EncryptionKeyType.SYMMETRIC,  
        )  
  
  
def cycle_file(source_plaintext_filename):  
    """Encrypts and then decrypts a file under a custom static master key provider.  
    :param str source_plaintext_filename: Filename of file to encrypt  
    """  
    # Set up an encryption client with an explicit commitment policy. Note that if you 
 do not explicitly choose a  
    # commitment policy, REQUIRE_ENCRYPT_REQUIRE_DECRYPT is used by default.  
    client = 
 aws_encryption_sdk.EncryptionSDKClient(commitment_policy=CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT)  
  
    # Create a static random master key provider  
    key_id = os.urandom(8)  
    master_key_provider = StaticRandomMasterKeyProvider()  
    master_key_provider.add_master_key(key_id)  
  
    ciphertext_filename = source_plaintext_filename + ".encrypted"  
    cycled_plaintext_filename = source_plaintext_filename + ".decrypted"  

Examples 213



AWS Encryption SDK Developer Guide

 
    # Encrypt the plaintext source data  
    # We can use an unsigning algorithm suite here under the assumption that the 
 contexts that encrypt  
    # and decrypt are equally trusted.  
    with open(source_plaintext_filename, "rb") as plaintext, open(ciphertext_filename, 
 "wb") as ciphertext:  
        with client.stream(  
            algorithm=Algorithm.AES_256_GCM_HKDF_SHA512_COMMIT_KEY,  
            mode="e",  
            source=plaintext,  
            key_provider=master_key_provider,  
        ) as encryptor:  
            for chunk in encryptor:  
                ciphertext.write(chunk)  
  
    # Decrypt the ciphertext  
    # We can use the recommended "decrypt-unsigned" streaming mode since we encrypted 
 with an unsigned algorithm suite.  
    with open(ciphertext_filename, "rb") as ciphertext, open(cycled_plaintext_filename, 
 "wb") as plaintext:  
        with client.stream(mode="decrypt-unsigned", source=ciphertext, 
 key_provider=master_key_provider) as decryptor:  
            for chunk in decryptor:  
                plaintext.write(chunk)  
  
    # Verify that the "cycled" (encrypted, then decrypted) plaintext is identical to 
 the source  
    # plaintext  
    assert filecmp.cmp(source_plaintext_filename, cycled_plaintext_filename)  
  
    # Verify that the encryption context used in the decrypt operation includes all key 
 pairs from  
    # the encrypt operation  
    #  
    # In production, always use a meaningful encryption context. In this sample, we 
 omit the  
    # encryption context (no key pairs).  
    assert all(  
        pair in decryptor.header.encryption_context.items() for pair in 
 encryptor.header.encryption_context.items()  
    )  
    return ciphertext_filename, cycled_plaintext_filename

Examples 214



AWS Encryption SDK Developer Guide

Encrypting and decrypting byte streams with multiple master key providers

The following example shows you how to use the AWS Encryption SDK with more than one master 
key provider. Using more than one master key provider creates redundancy if one master key 
provider is unavailable for decryption. This example uses an AWS KMS key and an RSA key pair as 
the master keys.

This example encrypts with the default algorithm suite, which includes a digital signature. When 
streaming, the AWS Encryption SDK releases plaintext after integrity checks, but before it has 
verified the digital signature. To avoid using the plaintext until the signature is verified, this 
example buffers the plaintext, and writes it to disk only when decryption and verification are 
complete.

# Copyright 2017 Amazon.com, Inc. or its affiliates. All Rights Reserved.  
#  
# Licensed under the Apache License, Version 2.0 (the "License"). You  
# may not use this file except in compliance with the License. A copy of  
# the License is located at  
#  
# http://aws.amazon.com/apache2.0/  
#  
# or in the "license" file accompanying this file. This file is  
# distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF  
# ANY KIND, either express or implied. See the License for the specific  
# language governing permissions and limitations under the License.  
"""Example showing creation of a RawMasterKeyProvider, how to use multiple  
master key providers to encrypt, and demonstrating that each master key  
provider can then be used independently to decrypt the same encrypted message.  
"""  
import filecmp  
import os  
  
from cryptography.hazmat.backends import default_backend  
from cryptography.hazmat.primitives import serialization  
from cryptography.hazmat.primitives.asymmetric import rsa  
  
import aws_encryption_sdk  
from aws_encryption_sdk.identifiers import CommitmentPolicy, EncryptionKeyType, 
 WrappingAlgorithm  
from aws_encryption_sdk.internal.crypto.wrapping_keys import WrappingKey  
from aws_encryption_sdk.key_providers.raw import RawMasterKeyProvider  
  

Examples 215



AWS Encryption SDK Developer Guide

 
class StaticRandomMasterKeyProvider(RawMasterKeyProvider):  
    """Randomly generates and provides 4096-bit RSA keys consistently per unique key 
 id."""  
  
    provider_id = "static-random"  
  
    def __init__(self, **kwargs):  # pylint: disable=unused-argument  
        """Initialize empty map of keys."""  
        self._static_keys = {}  
  
    def _get_raw_key(self, key_id):  
        """Retrieves a static, randomly generated, RSA key for the specified key id.  
  
        :param str key_id: User-defined ID for the static key  
        :returns: Wrapping key that contains the specified static key  
        :rtype: :class:`aws_encryption_sdk.internal.crypto.WrappingKey`  
        """  
        try:  
            static_key = self._static_keys[key_id]  
        except KeyError:  
            private_key = rsa.generate_private_key(public_exponent=65537, 
 key_size=4096, backend=default_backend())  
            static_key = private_key.private_bytes(  
                encoding=serialization.Encoding.PEM,  
                format=serialization.PrivateFormat.PKCS8,  
                encryption_algorithm=serialization.NoEncryption(),  
            )  
            self._static_keys[key_id] = static_key  
        return WrappingKey(  
            wrapping_algorithm=WrappingAlgorithm.RSA_OAEP_SHA1_MGF1,  
            wrapping_key=static_key,  
            wrapping_key_type=EncryptionKeyType.PRIVATE,  
        )  
  
  
def cycle_file(key_arn, source_plaintext_filename, botocore_session=None):  
    """Encrypts and then decrypts a file using an AWS KMS master key provider and a 
 custom static master  
    key provider. Both master key providers are used to encrypt the plaintext file, so 
 either one alone  
    can decrypt it.  
  
    :param str key_arn: Amazon Resource Name (ARN) of the &KMS; key  

Examples 216



AWS Encryption SDK Developer Guide

    (http://docs.aws.amazon.com/kms/latest/developerguide/viewing-keys.html)  
    :param str source_plaintext_filename: Filename of file to encrypt  
    :param botocore_session: existing botocore session instance  
    :type botocore_session: botocore.session.Session  
    """  
    # "Cycled" means encrypted and then decrypted  
    ciphertext_filename = source_plaintext_filename + ".encrypted"  
    cycled_kms_plaintext_filename = source_plaintext_filename + ".kms.decrypted"  
    cycled_static_plaintext_filename = source_plaintext_filename + ".static.decrypted"  
  
    # Set up an encryption client with an explicit commitment policy. Note that if you 
 do not explicitly choose a  
    # commitment policy, REQUIRE_ENCRYPT_REQUIRE_DECRYPT is used by default.  
    client = 
 aws_encryption_sdk.EncryptionSDKClient(commitment_policy=CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT)  
  
    # Create an AWS KMS master key provider  
    kms_kwargs = dict(key_ids=[key_arn])  
    if botocore_session is not None:  
        kms_kwargs["botocore_session"] = botocore_session  
    kms_master_key_provider = 
 aws_encryption_sdk.StrictAwsKmsMasterKeyProvider(**kms_kwargs)  
  
    # Create a static master key provider and add a master key to it  
    static_key_id = os.urandom(8)  
    static_master_key_provider = StaticRandomMasterKeyProvider()  
    static_master_key_provider.add_master_key(static_key_id)  
  
    # Add the static master key provider to the AWS KMS master key provider  
    #   The resulting master key provider uses AWS KMS master keys to generate (and 
 encrypt)  
    #   data keys and static master keys to create an additional encrypted copy of each 
 data key.  
    kms_master_key_provider.add_master_key_provider(static_master_key_provider)  
  
    # Encrypt plaintext with both AWS KMS and static master keys  
    with open(source_plaintext_filename, "rb") as plaintext, open(ciphertext_filename, 
 "wb") as ciphertext:  
        with client.stream(source=plaintext, mode="e", 
 key_provider=kms_master_key_provider) as encryptor:  
            for chunk in encryptor:  
                ciphertext.write(chunk)  
  
    # Decrypt the ciphertext with only the AWS KMS master key  

Examples 217



AWS Encryption SDK Developer Guide

    # Buffer the data in memory before writing to disk. This ensures verfication of the 
 digital signature before returning plaintext.  
    with open(ciphertext_filename, "rb") as ciphertext, 
 open(cycled_kms_plaintext_filename, "wb") as plaintext:  
        with client.stream(  
            source=ciphertext, mode="d", 
 key_provider=aws_encryption_sdk.StrictAwsKmsMasterKeyProvider(**kms_kwargs)  
        ) as kms_decryptor:  
             plaintext.write(kms_decryptor.read())  
  
    # Decrypt the ciphertext with only the static master key  
    # Buffer the data in memory before writing to disk to ensure verfication of the 
 signature before returning plaintext.  
    with open(ciphertext_filename, "rb") as ciphertext, 
 open(cycled_static_plaintext_filename, "wb") as plaintext:  
        with client.stream(source=ciphertext, mode="d", 
 key_provider=static_master_key_provider) as static_decryptor:  
             plaintext.write(static_decryptor.read())  
  
    # Verify that the "cycled" (encrypted, then decrypted) plaintext is identical to 
 the source plaintext  
    assert filecmp.cmp(source_plaintext_filename, cycled_kms_plaintext_filename)  
    assert filecmp.cmp(source_plaintext_filename, cycled_static_plaintext_filename)  
  
    # Verify that the encryption context in the decrypt operation includes all key 
 pairs from the  
    # encrypt operation.  
    #  
    # In production, always use a meaningful encryption context. In this sample, we 
 omit the  
    # encryption context (no key pairs).  
    assert all(  
        pair in kms_decryptor.header.encryption_context.items() for pair in 
 encryptor.header.encryption_context.items()  
    )  
    assert all(  
        pair in static_decryptor.header.encryption_context.items()  
        for pair in encryptor.header.encryption_context.items()  
    )  
    return (ciphertext_filename, cycled_kms_plaintext_filename, 
 cycled_static_plaintext_filename)

Examples 218



AWS Encryption SDK Developer Guide

Using data key caching to encrypt messages

The following example shows how to use data key caching in the AWS Encryption SDK 
for Python. It is designed to show you how to configure an instance of the local cache
(LocalCryptoMaterialsCache) with the required capacity value and an instance of the caching 
cryptographic materials manager (caching CMM) with cache security thresholds.

This very basic example creates a function that encrypts a fixed string. It lets you specify an AWS 
KMS key, the required cache size (capacity), and a maximum age value. For a more complex, real-
world example of data key caching, see Data key caching example code.

Although it is optional, this example also uses an encryption context as additional authenticated 
data. When you decrypt data that was encrypted with an encryption context, be sure that your 
application verifies that the encryption context is the one that you expect before returning the 
plaintext data to your caller. An encryption context is a best practice element of any encryption 
or decryption operation, but it plays a special role in data key caching. For details, see Encryption 
Context: How to Select Cache Entries.

# Copyright 2017 Amazon.com, Inc. or its affiliates. All Rights Reserved.  
#  
# Licensed under the Apache License, Version 2.0 (the "License"). You  
# may not use this file except in compliance with the License. A copy of  
# the License is located at  
#  
# http://aws.amazon.com/apache2.0/  
#  
# or in the "license" file accompanying this file. This file is  
# distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF  
# ANY KIND, either express or implied. See the License for the specific  
# language governing permissions and limitations under the License.  
"""Example of encryption with data key caching."""  
import aws_encryption_sdk  
from aws_encryption_sdk import CommitmentPolicy  
  
  
def encrypt_with_caching(kms_key_arn, max_age_in_cache, cache_capacity):  
    """Encrypts a string using an &KMS; key and data key caching.  
  
    :param str kms_key_arn: Amazon Resource Name (ARN) of the &KMS; key  
    :param float max_age_in_cache: Maximum time in seconds that a cached entry can be 
 used  
    :param int cache_capacity: Maximum number of entries to retain in cache at once  

Examples 219



AWS Encryption SDK Developer Guide

    """  
    # Data to be encrypted  
    my_data = "My plaintext data"  
  
    # Security thresholds  
    #   Max messages (or max bytes per) data key are optional  
    MAX_ENTRY_MESSAGES = 100  
  
    # Create an encryption context  
    encryption_context = {"purpose": "test"}  
  
    # Set up an encryption client with an explicit commitment policy. Note that if you 
 do not explicitly choose a  
    # commitment policy, REQUIRE_ENCRYPT_REQUIRE_DECRYPT is used by default.  
    client = 
 aws_encryption_sdk.EncryptionSDKClient(commitment_policy=CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT)  
  
    # Create a master key provider for the &KMS; key  
    key_provider = 
 aws_encryption_sdk.StrictAwsKmsMasterKeyProvider(key_ids=[kms_key_arn])  
  
    # Create a local cache  
    cache = aws_encryption_sdk.LocalCryptoMaterialsCache(cache_capacity)  
  
    # Create a caching CMM  
    caching_cmm = aws_encryption_sdk.CachingCryptoMaterialsManager(  
        master_key_provider=key_provider,  
        cache=cache,  
        max_age=max_age_in_cache,  
        max_messages_encrypted=MAX_ENTRY_MESSAGES,  
    )  
  
    # When the call to encrypt data specifies a caching CMM,  
    # the encryption operation uses the data key cache specified  
    # in the caching CMM  
    encrypted_message, _header = client.encrypt(  
        source=my_data, materials_manager=caching_cmm, 
 encryption_context=encryption_context  
    )  
  
    return encrypted_message

Examples 220



AWS Encryption SDK Developer Guide

AWS Encryption SDK command line interface

The AWS Encryption SDK Command Line Interface (AWS Encryption CLI) enables you to use the 
AWS Encryption SDK to encrypt and decrypt data interactively at the command line and in scripts. 
You don't need cryptography or programming expertise.

Note

Versions of the AWS Encryption CLI earlier than 4.0.0 are in the end-of-support phase.
You can safely update from version 2.1.x and later to the latest version of the AWS 
Encryption CLI without any code or data changes. However,  new security features
introduced in version 2.1.x are not backward-compatible. To update from version 1.7.x
or earlier, you must first update to the latest 1.x version of the AWS Encryption CLI. For 
details, see Migrating your AWS Encryption SDK.
New security features were originally released in AWS Encryption CLI versions 1.7.x
and 2.0.x. However, AWS Encryption CLI version 1.8.x replaces version 1.7.x and AWS 
Encryption CLI 2.1.x replaces 2.0.x. For details, see the relevant security advisory in the aws-
encryption-sdk-cli repository on GitHub.

Like all implementations of the AWS Encryption SDK, the AWS Encryption CLI offers advanced 
data protection features. These include envelope encryption, additional authenticated data (AAD), 
and secure, authenticated, symmetric key algorithm suites, such as 256-bit AES-GCM with key 
derivation, key commitment, and signing.

The AWS Encryption CLI is built on the AWS Encryption SDK for Python and is supported on Linux, 
macOS, and Windows. You can run commands and scripts to encrypt and decrypt your data in your 
preferred shell on Linux or macOS, in a Command Prompt window (cmd.exe) on Windows, and in a 
PowerShell console on any system.

All language-specific implementations of the AWS Encryption SDK, including the AWS Encryption 
CLI, are interoperable. For example, you can encrypt data with the AWS Encryption SDK for Java
and decrypt it with the AWS Encryption CLI.

This topic introduces the AWS Encryption CLI, explains how to install and use it, and provides 
several examples to help you get started. For a quick start, see How to Encrypt and Decrypt Your 
Data with the AWS Encryption CLI in the AWS Security Blog. For more detailed information, see

Command line interface 221

https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://github.com/aws/aws-encryption-sdk-cli/security/advisories/GHSA-2xwp-m7mq-7q3r
https://github.com/aws/aws-encryption-sdk-cli/
https://github.com/aws/aws-encryption-sdk-cli/
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/how-it-works.html#envelope-encryption
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/supported-algorithms.html
https://aws.amazon.com/blogs/security/how-to-encrypt-and-decrypt-your-data-with-the-aws-encryption-cli/
https://aws.amazon.com/blogs/security/how-to-encrypt-and-decrypt-your-data-with-the-aws-encryption-cli/


AWS Encryption SDK Developer Guide

Read The Docs, and join us in developing the AWS Encryption CLI in the aws-encryption-sdk-cli
repository on GitHub.

Performance

The AWS Encryption CLI is built on the AWS Encryption SDK for Python. Each time you run the CLI, 
you start a new instance of the Python runtime. To improve performance, whenever possible, use 
a single command instead of a series of independent commands. For example, run one command 
that processes the files in a directory recursively instead of running separate commands for each 
file.

Topics

• Installing the AWS Encryption SDK command line interface

• How to use the AWS Encryption CLI

• Examples of the AWS Encryption CLI

• AWS Encryption SDK CLI syntax and parameter reference

• Versions of the AWS Encryption CLI

Installing the AWS Encryption SDK command line interface

This topic explains how to install the AWS Encryption CLI. For detailed information, see the aws-
encryption-sdk-cli repository on GitHub and Read the Docs.

Topics

• Installing the prerequisites

• Installing and updating the AWS Encryption CLI

Installing the prerequisites

The AWS Encryption CLI is built on the AWS Encryption SDK for Python. To install the AWS 
Encryption CLI, you need Python and pip, the Python package management tool. Python and pip
are available on all supported platforms.

Install the following prerequisites before you install the AWS Encryption CLI,

Python

Python 3.8 or later is required by the AWS Encryption CLI versions 4.2.0 and later.

Installing the CLI 222

https://aws-encryption-sdk-cli.readthedocs.io/en/latest/
https://github.com/aws/aws-encryption-sdk-cli/
https://github.com/aws/aws-encryption-sdk-cli/
https://github.com/aws/aws-encryption-sdk-cli/
https://aws-encryption-sdk-cli.readthedocs.io/en/latest/


AWS Encryption SDK Developer Guide

Earlier versions of the AWS Encryption CLI support Python 2.7 and 3.4 and later, but we 
recommend that you use the latest version of the AWS Encryption CLI.

Python is included in most Linux and macOS installations, but you need to upgrade to Python 
3.6 or later. We recommend that you use the latest version of Python. On Windows, you have 
to install Python; it is not installed by default. To download and install Python, see Python 
downloads.

To determine whether Python is installed, at the command line, type the following.

python

To check the Python version, use the -V (uppercase V) parameter.

python -V

On Windows, after you install Python, add the path to the Python.exe file to the value of the
Path environment variable.

By default, Python is installed in the all users directory or in a user profile directory ($home
or %userprofile%) in the AppData\Local\Programs\Python subdirectory. To find the 
location of the Python.exe file on your system, check one of the following registry keys. You 
can use PowerShell to search the registry.

PS C:\> dir HKLM:\Software\Python\PythonCore\version\InstallPath
# -or-
PS C:\> dir HKCU:\Software\Python\PythonCore\version\InstallPath

pip

pip is the Python package manager. To install the AWS Encryption CLI and its dependencies, 
you need pip 8.1 or later. For help installing or upgrading pip, see Installation in the pip
documentation.

On Linux installations, versions of pip earlier than 8.1 can't build the cryptography library that 
the AWS Encryption CLI requires. If you choose not to update your pip version, you can install 
the build tools separately. For more information, see Building cryptography on Linux.

Installing the CLI 223

https://www.python.org/downloads/
https://www.python.org/downloads/
https://pip.pypa.io/en/latest/installing/
https://cryptography.io/en/latest/installation.html#building-cryptography-on-linux


AWS Encryption SDK Developer Guide

AWS Command Line Interface

The AWS Command Line Interface (AWS CLI) is required only if you are using AWS KMS keys 
in AWS Key Management Service (AWS KMS) with the AWS Encryption CLI. If you are using a 
different master key provider, the AWS CLI is not required.

To use AWS KMS keys with the AWS Encryption CLI, you need to install and configure  the AWS 
CLI. The configuration makes the credentials that you use to authenticate to AWS KMS available 
to the AWS Encryption CLI.

Installing and updating the AWS Encryption CLI

Install the latest version of the AWS Encryption CLI. When you use pip to install the AWS 
Encryption CLI, it automatically installs the libraries that the CLI needs, including the AWS 
Encryption SDK for Python, the Python cryptography library, and the AWS SDK for Python (Boto3).

Note

Versions of the AWS Encryption CLI earlier than 4.0.0 are in the end-of-support phase.
You can safely update from version 2.1.x and later to the latest version of the AWS 
Encryption CLI without any code or data changes. However,  new security features
introduced in version 2.1.x are not backward-compatible. To update from version 1.7.x
or earlier, you must first update to the latest 1.x version of the AWS Encryption CLI. For 
details, see Migrating your AWS Encryption SDK.
New security features were originally released in AWS Encryption CLI versions 1.7.x
and 2.0.x. However, AWS Encryption CLI version 1.8.x replaces version 1.7.x and AWS 
Encryption CLI 2.1.x replaces 2.0.x. For details, see the relevant security advisory in the aws-
encryption-sdk-cli repository on GitHub.

To install the latest version of the AWS Encryption CLI

pip install aws-encryption-sdk-cli

To upgrade to the latest version of the AWS Encryption CLI

pip install --upgrade aws-encryption-sdk-cli

Installing the CLI 224

https://docs.aws.amazon.com/cli/latest/userguide/installing.html
http://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html#cli-quick-configuration
https://cryptography.io/en/latest/
https://boto3.amazonaws.com/v1/documentation/api/latest/index.html
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://github.com/aws/aws-encryption-sdk-cli/security/advisories/GHSA-2xwp-m7mq-7q3r
https://github.com/aws/aws-encryption-sdk-cli/
https://github.com/aws/aws-encryption-sdk-cli/


AWS Encryption SDK Developer Guide

To find the version numbers of your AWS Encryption CLI and AWS Encryption SDK

aws-encryption-cli --version

The output lists the version numbers of both libraries.

aws-encryption-sdk-cli/2.1.0 aws-encryption-sdk/2.0.0

To upgrade to the latest version of the AWS Encryption CLI

pip install --upgrade aws-encryption-sdk-cli

Installing the AWS Encryption CLI also installs the latest version of the AWS SDK for Python 
(Boto3), if it's not already installed. If Boto3 is installed, the installer verifies the Boto3 version and 
updates it if required.

To find your installed version of Boto3

pip show boto3

To update to the latest version of Boto3

pip install --upgrade boto3

To install the version of the AWS Encryption CLI currently in development, see the aws-encryption-
sdk-cli repository on GitHub.

For more details about using pip to install and upgrade Python packages, see the pip 
documentation.

How to use the AWS Encryption CLI

This topic explains how to use the parameters in the AWS Encryption CLI. For examples, see
Examples of the AWS Encryption CLI. For complete documentation, see Read the Docs. The syntax 
shown in these examples is for AWS Encryption CLI version 2.1.x and later.

How to use the CLI 225

https://github.com/aws/aws-encryption-sdk-cli/
https://github.com/aws/aws-encryption-sdk-cli/
https://pip.pypa.io/en/stable/quickstart/
https://pip.pypa.io/en/stable/quickstart/
https://aws-encryption-sdk-cli.readthedocs.io/en/latest/


AWS Encryption SDK Developer Guide

Note

Versions of the AWS Encryption CLI earlier than 4.0.0 are in the end-of-support phase.
You can safely update from version 2.1.x and later to the latest version of the AWS 
Encryption CLI without any code or data changes. However,  new security features
introduced in version 2.1.x are not backward-compatible. To update from version 1.7.x
or earlier, you must first update to the latest 1.x version of the AWS Encryption CLI. For 
details, see Migrating your AWS Encryption SDK.
New security features were originally released in AWS Encryption CLI versions 1.7.x
and 2.0.x. However, AWS Encryption CLI version 1.8.x replaces version 1.7.x and AWS 
Encryption CLI 2.1.x replaces 2.0.x. For details, see the relevant security advisory in the aws-
encryption-sdk-cli repository on GitHub.

For an example showing how to use the security feature that limits encrypted data keys, see
Limiting encrypted data keys.

For an example showing how to use AWS KMS multi-Region keys, see Using multi-Region AWS KMS 
keys.

Topics

• How to encrypt and decrypt data

• How to specify wrapping keys

• How to provide input

• How to specify the output location

• How to use an encryption context

• How to specify a commitment policy

• How to store parameters in a configuration file

How to encrypt and decrypt data

The AWS Encryption CLI uses the features of the AWS Encryption SDK to make it easy to encrypt 
and decrypt data securely.

How to use the CLI 226

https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://github.com/aws/aws-encryption-sdk-cli/security/advisories/GHSA-2xwp-m7mq-7q3r
https://github.com/aws/aws-encryption-sdk-cli/
https://github.com/aws/aws-encryption-sdk-cli/


AWS Encryption SDK Developer Guide

Note

The --master-keys parameter is deprecated in version 1.8.x of the AWS Encryption CLI 
and removed in version 2.1.x. Instead, use the --wrapping-keys parameter. Beginning 
in version 2.1.x, the --wrapping-keys parameter is required when encrypting and 
decrypting. For details, see AWS Encryption SDK CLI syntax and parameter reference.

• When you encrypt data in the AWS Encryption CLI, you specify your plaintext data and a
wrapping key (or master key), such as an AWS KMS key in AWS Key Management Service (AWS 
KMS). If you are using a custom master key provider, you also need to specify the provider. You 
also specify output locations for the encrypted message and for metadata about the encryption 
operation. An encryption context is optional, but recommended.

In version 1.8.x, the --commitment-policy parameter is required when you use the --
wrapping-keys parameter; otherwise it's not valid. Beginning in version 2.1.x, the --
commitment-policy parameter is optional, but recommended.

aws-encryption-cli --encrypt --input myPlaintextData \ 
                   --wrapping-keys key=1234abcd-12ab-34cd-56ef-1234567890ab \ 
                   --output myEncryptedMessage \ 
                   --metadata-output ~/metadata \ 
                   --encryption-context purpose=test \ 
                   --commitment-policy require-encrypt-require-decrypt

The AWS Encryption CLI encrypts your data under a unique data key. Then it encrypts the 
data key under the wrapping keys you specify. It returns an encrypted message and metadata 
about the operation. The encrypted message contains your encrypted data (ciphertext) and an 
encrypted copy of the data key. You don't have to worry about storing, managing, or losing the 
data key.

 

• When you decrypt data, you pass in your encrypted message, the optional encryption context, 
and location for the plaintext output and the metadata. You also specify the wrapping keys that 
the AWS Encryption CLI can use to decrypt the message, or tell the AWS Encryption CLI it can use 
any wrapping keys that encrypted the message.

How to use the CLI 227



AWS Encryption SDK Developer Guide

Beginning in version 1.8.x, the --wrapping-keys parameter is optional when decrypting, but 
recommended. Beginning in version 2.1.x, the --wrapping-keys parameter is required when 
encrypting and decrypting.

When decrypting, you can use the key attribute of the --wrapping-keys parameter to 
specify the wrapping keys that decrypt your data. Specifying an AWS KMS wrapping key when 
decrypting is optional, but it's a best practice that prevents you from using a key you didn't 
intend to use. If you're using a custom master key provider, you must specify the provider and 
wrapping key.

If you don't use the key attribute, you must set the discovery attribute of the --wrapping-
keys parameter to true, which lets the AWS Encryption CLI decrypt using any wrapping key 
that encrypted the message.

As a best practice, use the --max-encrypted-data-keys parameter to avoid decrypting a 
malformed message with an excessive number of encrypted data keys. Specify the expected 
number of encrypted data keys (one for each wrapping key used in encryption) or a reasonable 
maximum (such as 5). For details, see Limiting encrypted data keys.

The --buffer parameter returns plaintext only after all input is processed, including verifying 
the digital signature if one is present.

The --decrypt-unsigned parameter decrypts ciphertext and ensures that messages are 
unsigned before decryption. Use this parameter if you used the --algorithm parameter and 
selected an algorithm suite without digital signing to encrypt data. If the ciphertext is signed, 
decryption fails.

You can use --decrypt or --decrypt-unsigned for decryption but not both.

aws-encryption-cli --decrypt --input myEncryptedMessage \ 
                   --wrapping-keys key=1234abcd-12ab-34cd-56ef-1234567890ab \ 
                   --output myPlaintextData \ 
                   --metadata-output ~/metadata \ 
                   --max-encrypted-data-keys 1 \ 
                   --buffer \ 
                   --encryption-context purpose=test \  
                   --commitment-policy require-encrypt-require-decrypt

How to use the CLI 228



AWS Encryption SDK Developer Guide

The AWS Encryption CLI uses the wrapping key to decrypt the data key in the encrypted 
message. Then it uses the data key to decrypt your data. It returns your plaintext data and 
metadata about the operation.

How to specify wrapping keys

When you encrypt data in the AWS Encryption CLI, you need to specify at least one wrapping key
(or master key). You can use AWS KMS keys in AWS Key Management Service (AWS KMS), wrapping 
keys from a custom master key provider, or both. The custom master key provider can be any 
compatible Python master key provider.

To specify wrapping keys in versions 1.8.x and later, use the --wrapping-keys parameter (-w). 
The value of this parameter is a collection of attributes with the attribute=value format. The 
attributes that you use depend on the master key provider and the command.

• AWS KMS. In encrypt commands, you must specify a --wrapping-keys parameter with a
key attribute. Beginning in version 2.1.x, the --wrapping-keys parameter is also required 
in decrypt commands. When decrypting, the --wrapping-keys parameter must have a key
attribute or a discovery attribute with a value of true (but not both). Other attributes are 
optional.

• Custom master key provider. You must specify a --wrapping-keys parameter in every 
command. The parameter value must have key and provider attributes.

You can include multiple --wrapping-keys parameters and multiple key attributes in the same 
command.

Wrapping key parameter attributes

The value of the --wrapping-keys parameter consists of the following attributes and their 
values. A --wrapping-keys parameter (or --master-keys parameter) is required in all encrypt 
commands. Beginning in version 2.1.x, the --wrapping-keys parameter is also required when 
decrypting.

If an attribute name or value includes spaces or special characters, enclose both the name and 
value in quotation marks. For example, --wrapping-keys key=12345 "provider=my cool 
provider".

How to use the CLI 229



AWS Encryption SDK Developer Guide

Key: Specify a wrapping key

Use the key attribute to identify a wrapping key. When encrypting, the value can be any key 
identifier that the master key provider recognizes.

--wrapping-keys key=1234abcd-12ab-34cd-56ef-1234567890ab

In an encrypt command, you must include at least one key attribute and value. To encrypt your 
data key under multiple wrapping keys, use multiple key attributes.

aws-encryption-cli --encrypt --wrapping-keys 
 key=1234abcd-12ab-34cd-56ef-1234567890ab key=1a2b3c4d-5e6f-1a2b-3c4d-5e6f1a2b3c4d

In encrypt commands that use AWS KMS keys, the value of key can be the key ID, its key ARN, 
an alias name, or alias ARN. For example, this encrypt command uses an alias ARN in the 
value of the key attribute. For details about the key identifiers for an AWS KMS key, see Key 
Identifiers in the AWS Key Management Service Developer Guide.

aws-encryption-cli --encrypt --wrapping-keys key=arn:aws:kms:us-
west-2:111122223333:alias/ExampleAlias

In decrypt commands that use a custom master key provider, key and provider attributes are 
required.

\\ Custom master key provider
aws-encryption-cli --decrypt --wrapping-keys provider='myProvider' key='100101'

In decrypt commands that use AWS KMS, you can use the key attribute to specify the AWS KMS 
keys to use for decrypting, or the discovery attribute with a value of true, which lets the AWS 
Encryption CLI use any AWS KMS key that was used to encrypt the message. If you specify an 
AWS KMS key, it must be one of the wrapping keys used to encrypt the message.

Specifying the wrapping key is an AWS Encryption SDK best practice. It assures that you use the 
AWS KMS key you intend to use.

In a decrypt command, the value of the key attribute must be a key ARN.

\\ AWS KMS key
aws-encryption-cli --decrypt --wrapping-keys key=arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab

How to use the CLI 230

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-ARN


AWS Encryption SDK Developer Guide

Discovery: Use any AWS KMS key when decrypting

If you don't need to limit the AWS KMS keys to use when decrypting, you can use the discovery
attribute with a value of true. A value of true allows the AWS Encryption CLI to decrypt 
using any AWS KMS key that encrypted the message. If you don't specify a discovery attribute, 
discovery is false (default). The discovery attribute is valid only in decrypt commands and 
only when the message was encrypted with AWS KMS keys.

The discovery attribute with a value of true is an alternative to using the key attribute to 
specify AWS KMS keys. When decrypting a message encrypted with AWS KMS keys, each --
wrapping-keys parameter must have a key attribute or a discovery attribute with a value of
true, but not both.

When discovery is true, it's a best practice to use the discovery-partition and discovery-
account attributes to limit the AWS KMS keys used to those in the AWS accounts you specify. In 
the following example, the discovery attributes allow the AWS Encryption CLI to use any AWS 
KMS key in the specified AWS accounts.

aws-encryption-cli --decrypt --wrapping-keys \ 
    discovery=true \ 
    discovery-partition=aws \ 
    discovery-account=111122223333 \ 
    discovery-account=444455556666

Provider: Specify the master key provider

The provider attribute identifies the master key provider. The default value is aws-kms, which 
represents AWS KMS. If you are using a different master key provider, the provider attribute is 
required.

--wrapping-keys key=12345 provider=my_custom_provider

For more information about using custom (non-AWS KMS) master key providers, see the
Advanced Configuration topic in the README file for the AWS Encryption CLI repository.

Region: Specify an AWS Region

Use the region attribute to specify the AWS Region of an AWS KMS key. This attribute is valid 
only in encrypt commands and only when the master key provider is AWS KMS.

--encrypt --wrapping-keys key=alias/primary-key region=us-east-2

How to use the CLI 231

https://github.com/aws/aws-encryption-sdk-cli/blob/master/README.rst
https://github.com/aws/aws-encryption-sdk-cli/


AWS Encryption SDK Developer Guide

AWS Encryption CLI commands use the AWS Region that is specified in the key attribute value 
if it includes a region, such as an ARN. if the key value specifies a AWS Region, the region
attribute is ignored.

The region attribute takes precedence over other region specifications. If you don't use a region 
attribute, AWS Encryption CLI commands uses the AWS Region specified in your AWS CLI
named profile, if any, or your default profile.

Profile: Specify a named profile

Use the profile attribute to specify an AWS CLI named profile. Named profiles can include 
credentials and an AWS Region. This attribute is valid only when the master key provider is AWS 
KMS.

--wrapping-keys key=alias/primary-key profile=admin-1

You can use the profile attribute to specify alternate credentials in encrypt and decrypt 
commands. In an encrypt command, the AWS Encryption CLI uses the AWS Region in the named 
profile only when the key value does not include a region and there is no region attribute. In a 
decrypt command, the AWS Region in the name profile is ignored.

How to specify multiple wrapping keys

You can specify multiple wrapping keys (or master keys) in each command.

If you specify more than one wrapping key, the first wrapping key generates and encrypts the 
data key that is used to encrypt your data. The other wrapping keys encrypt the same data key. 
The resulting encrypted message contains the encrypted data ("ciphertext") and a collection of 
encrypted data keys, one encrypted by each wrapping key. Any of the wrapping can decrypt one 
encrypted data key and then decrypt the data.

There are two ways to specify multiple wrapping keys:

• Include multiple key attributes in the --wrapping-keys parameter value.

$key_oregon=arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab
$key_ohio=arn:aws:kms:us-east-2:111122223333:key/0987ab65-43cd-21ef-09ab-87654321cdef

--wrapping-keys key=$key_oregon key=$key_ohio

How to use the CLI 232

https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-files.html#cli-configure-files-using-profiles
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-files.html#cli-configure-files-using-profiles


AWS Encryption SDK Developer Guide

• Include multiple --wrapping-keys parameters in the same command. Use this syntax when 
the attribute values that you specify do not apply to all of the wrapping keys in the command.

--wrapping-keys region=us-east-2 key=alias/test_key \
--wrapping-keys region=us-west-1 key=alias/test_key

The discovery attribute with a value of true lets the AWS Encryption CLI use any AWS KMS key 
that encrypted the message. If you use multiple --wrapping-keys parameters in the same 
command, using discovery=true in any --wrapping-keys parameter effectively overrides the 
limits of the key attribute in other --wrapping-keys parameters.

For example, in the following command, the key attribute in the first --wrapping-keys
parameter limits the AWS Encryption CLI to the specified AWS KMS key. However, the discovery
attribute in the second --wrapping-keys parameter lets the AWS Encryption CLI use any AWS 
KMS key in the specified accounts to decrypt the message.

aws-encryption-cli --decrypt \ 
    --wrapping-keys key=arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab \ 
    --wrapping-keys discovery=true \ 
                    discovery-partition=aws \ 
                    discovery-account=111122223333 \ 
                    discovery-account=444455556666

How to provide input

The encrypt operation in the AWS Encryption CLI takes plaintext data as input and returns an
encrypted message. The decrypt operation takes an encrypted message as input and returns 
plaintext data.

The --input parameter (-i) , which tells the AWS Encryption CLI where to find the input, is 
required in all AWS Encryption CLI commands.

You can provide input in any of the following ways:

• Use a file.

--input myData.txt

• Use a file name pattern.

How to use the CLI 233



AWS Encryption SDK Developer Guide

--input testdir/*.xml

• Use a directory or directory name pattern. When the input is a directory, the --recursive
parameter (-r, -R) is required.

--input testdir --recursive

• Pipe input to the command (stdin). Use a value of - for the --input parameter. (The --input
parameter is always required.)

echo 'Hello World' | aws-encryption-cli --encrypt --input -

How to specify the output location

The --output parameter tells the AWS Encryption CLI where to write the results of the encryption 
or decryption operation. It is required in every AWS Encryption CLI command. The AWS Encryption 
CLI creates a new output file for every input file in the operation.

If an output file already exists, by default, the AWS Encryption CLI prints a warning, then 
overwrites the file. To prevent overwriting, use the --interactive parameter, which prompts 
you for confirmation before overwriting, or --no-overwrite, which skips the input if the output 
would cause an overwrite. To suppress the overwrite warning, use --quiet. To capture errors and 
warnings from the AWS Encryption CLI, use the 2>&1 redirection operator to write them to the 
output stream.

Note

Commands that overwrite output files begin by deleting the output file. If the command 
fails, the output file might already be deleted.

You can the output location in several ways.

• Specify a file name. If you specify a path to the file, all directories in the path must exist before 
the command runs.

--output myEncryptedData.txt

How to use the CLI 234



AWS Encryption SDK Developer Guide

• Specify a directory. The output directory must exist before the command runs.

If the input contains subdirectories, the command reproduces the subdirectories under the 
specified directory.

--output Test

When the output location is a directory (without file names), the AWS Encryption CLI creates 
output file names based on the input file names plus a suffix. Encrypt operations append
.encrypted to the input file name and the decrypt operations append .decrypted. To change 
the suffix, use the --suffix parameter.

For example, if you encrypt file.txt, the encrypt command creates
file.txt.encrypted. If you decrypt file.txt.encrypted, the decrypt command creates
file.txt.encrypted.decrypted.

 

• Write to the command line (stdout). Enter a value of - for the --output parameter. You can use
--output - to pipe output to another command or program.

--output -

How to use an encryption context

The AWS Encryption CLI lets you provide an encryption context in encrypt and decrypt commands. 
It is not required, but it is a cryptographic best practice that we recommend.

An encryption context is a type of arbitrary, non-secret additional authenticated data. In the AWS 
Encryption CLI, the encryption context consists of a collection of name=value pairs. You can use 
any content in the pairs, including information about the files, data that helps you to find the 
encryption operation in logs, or data that your grants or policies require.

In an encrypt command

The encryption context that you specify in an encrypt command, along with any additional 
pairs that the CMM adds, is cryptographically bound to the encrypted data. It is also included 
(in plaintext) in the encrypted message that the command returns. If you are using an AWS KMS 

How to use the CLI 235



AWS Encryption SDK Developer Guide

key, the encryption context also might appear in plaintext in audit records and logs, such as AWS 
CloudTrail.

The following example shows an encryption context with three name=value pairs.

--encryption-context purpose=test dept=IT class=confidential 

In a decrypt command

In a decrypt command, the encryption context helps you to confirm that you are decrypting the 
right encrypted message.

You are not required to provide an encryption context in a decrypt command, even if an encryption 
context was used on encrypt. However, if you do, the AWS Encryption CLI verifies that every 
element in the encryption context of the decrypt command matches an element in the encryption 
context of the encrypted message. If any element does not match, the decrypt command fails.

For example, the following command decrypts the encrypted message only if its encryption 
context includes dept=IT.

aws-encryption-cli --decrypt --encryption-context dept=IT ...

An encryption context is an important part of your security strategy. However, when choosing an 
encryption context, remember that its values are not secret. Do not include any confidential data in 
the encryption context.

To specify an encryption context

• In an encrypt command, use the --encryption-context parameter with one or more
name=value pairs. Use a space to separate each pair.

--encryption-context name=value [name=value] ...

• In a decrypt command, the --encryption-context parameter value can include name=value
pairs, name elements (with no values), or a combination of both.

--encryption-context name[=value] [name] [name=value] ...

How to use the CLI 236



AWS Encryption SDK Developer Guide

If the name or value in a name=value pair includes spaces or special characters, enclose the entire 
pair in quotation marks.

--encryption-context "department=software engineering" "AWS Region=us-west-2"

For example, this encrypt command includes an encryption context with two pairs, purpose=test
and dept=23.

aws-encryption-cli --encrypt --encryption-context purpose=test dept=23 ...

These decrypt command would succeed. The encryption context in each commands is a subset of 
the original encryption context.

\\ Any one or both of the encryption context pairs
aws-encryption-cli --decrypt --encryption-context dept=23 ...

\\ Any one or both of the encryption context names
aws-encryption-cli --decrypt --encryption-context purpose ...

\\ Any combination of names and pairs
aws-encryption-cli --decrypt --encryption-context dept purpose=test ...

However, these decrypt commands would fail. The encryption context in the encrypted message 
does not contain the specified elements.

aws-encryption-cli --decrypt --encryption-context dept=Finance ...
aws-encryption-cli --decrypt --encryption-context scope ...

How to specify a commitment policy

To set the commitment policy for the command, use the --commitment-policy parameter. 
This parameter is introduced in version 1.8.x. It is valid in encrypt and decrypt commands. The 
commitment policy you set is valid only for the command in which it appears. If you do not set a 
commitment policy for a command, the AWS Encryption CLI uses the default value.

For example, the following parameter value sets the commitment policy to require-encrypt-
allow-decrypt, which always encrypts with key commitment, but will decrypt a ciphertext that 
was encrypted with or without key commitment.

How to use the CLI 237



AWS Encryption SDK Developer Guide

--commitment-policy require-encrypt-allow-decrypt

How to store parameters in a configuration file

You can save time and avoid typing errors by saving frequently used AWS Encryption CLI 
parameters and values in configuration files.

A configuration file is a text file that contains parameters and values for an AWS Encryption CLI 
command. When you refer to a configuration file in a AWS Encryption CLI command, the reference 
is replaced by the parameters and values in the configuration file. The effect is the same is if you 
typed the file content at the command line. A configuration file can have any name and it can be 
located in any directory that the current user can access.

The following example configuration file, key.conf, specifies two AWS KMS keys in different 
Regions.

--wrapping-keys key=arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab
--wrapping-keys key=arn:aws:kms:us-
east-2:111122223333:key/0987ab65-43cd-21ef-09ab-87654321cdef

To use the configuration file in a command, prefix the file name with an at sign (@). In a PowerShell 
console, use a backtick character to escape the at sign (`@).

This example command uses the key.conf file in an encrypt command.

Bash

$ aws-encryption-cli -e @key.conf -i hello.txt -o testdir  

PowerShell

PS C:\> aws-encryption-cli -e `@key.conf -i .\Hello.txt -o .\TestDir

Configuration file rules

The rules for using configuration files are as follows:

• You can include multiple parameters in each configuration file and list them in any order. List 
each parameter with its values (if any) on a separate line.

How to use the CLI 238



AWS Encryption SDK Developer Guide

• Use # to add a comment to all or part of a line.

• You can include references to other configuration files. Do not use a backtick to escape the @
sign, even in PowerShell.

• If you use quotes in a configuration file, the quoted text cannot span multiple lines.

For example, this is the contents of an example encrypt.conf file.

# Archive Files
--encrypt
--output /archive/logs
--recursive
--interactive
--encryption-context class=unclassified dept=IT
--suffix  # No suffix
--metadata-output ~/metadata
@caching.conf  # Use limited caching   

You can also include multiple configuration files in a command. This example command uses both 
the encrypt.conf and master-keys.conf configurations files.

Bash

$  aws-encryption-cli -i /usr/logs @encrypt.conf @master-keys.conf

PowerShell

PS C:\> aws-encryption-cli -i $home\Test\*.log `@encrypt.conf `@master-keys.conf

Next: Try the AWS Encryption CLI examples

Examples of the AWS Encryption CLI

Use the following examples to try the AWS Encryption CLI on the platform you prefer. For help 
with master keys and other parameters, see How to use the AWS Encryption CLI. For a quick 
reference, see AWS Encryption SDK CLI syntax and parameter reference.

Note

The following examples use the syntax for AWS Encryption CLI version 2.1.x.

Examples 239



AWS Encryption SDK Developer Guide

New security features were originally released in AWS Encryption CLI versions 1.7.x
and 2.0.x. However, AWS Encryption CLI version 1.8.x replaces version 1.7.x and AWS 
Encryption CLI 2.1.x replaces 2.0.x. For details, see the relevant security advisory in the aws-
encryption-sdk-cli repository on GitHub.

For an example showing how to use the security feature that limits encrypted data keys, see
Limiting encrypted data keys.

For an example showing how to use AWS KMS multi-Region keys, see Using multi-Region AWS KMS 
keys.

Topics

• Encrypting a file

• Decrypting a file

• Encrypting all files in a directory

• Decrypting all files in a directory

• Encrypting and decrypting on the command line

• Using multiple master keys

• Encrypting and decrypting in scripts

• Using data key caching

Encrypting a file

This example uses the AWS Encryption CLI to encrypt the contents of the hello.txt file, which 
contains a "Hello World" string.

When you run an encrypt command on a file, the AWS Encryption CLI gets the contents of the file, 
generates a unique data key, encrypts the file contents under the data key, and then writes the
encrypted message to a new file.

The first command saves the key ARN of an AWS KMS key in the $keyArn variable. When 
encrypting with an AWS KMS key, you can identify it by using a key ID, key ARN, alias name, or alias 
ARN. For details about the key identifiers for an AWS KMS key, see Key Identifiers in the AWS Key 
Management Service Developer Guide.

Examples 240

https://github.com/aws/aws-encryption-sdk-cli/security/advisories/GHSA-2xwp-m7mq-7q3r
https://github.com/aws/aws-encryption-sdk-cli/
https://github.com/aws/aws-encryption-sdk-cli/
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id


AWS Encryption SDK Developer Guide

The second command encrypts the file contents. The command uses the --encrypt parameter 
to specify the operation and the --input parameter to indicate the file to encrypt. The --
wrapping-keys parameter, and its required key attribute, tell the command to use the AWS KMS 
key represented by the key ARN.

The command uses the --metadata-output parameter to specify a text file for the metadata 
about the encryption operation. As a best practice, the command uses the --encryption-
context parameter to specify an encryption context.

This command also uses the --commitment-policy parameter to set the commitment policy 
explicitly. In version 1.8.x, this parameter is required when you use the --wrapping-keys
parameter. Beginning in version 2.1.x, the --commitment-policy parameter is optional, but 
recommended.

The value of the --output parameter, a dot (.), tells the command to write the output file to the 
current directory.

Bash

\\ To run this example, replace the fictitious key ARN with a valid value.
$ keyArn=arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab

$ aws-encryption-cli --encrypt \ 
                     --input hello.txt \ 
                     --wrapping-keys key=$keyArn \ 
                     --metadata-output ~/metadata \ 
                     --encryption-context purpose=test \ 
                     --commitment-policy require-encrypt-require-decrypt \ 
                     --output .

PowerShell

# To run this example, replace the fictitious key ARN with a valid value.
PS C:\> $keyArn = 'arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab'

PS C:\> aws-encryption-cli --encrypt ` 
                           --input Hello.txt ` 
                           --wrapping-keys key=$keyArn ` 
                           --metadata-output $home\Metadata.txt ` 
                           --commitment-policy require-encrypt-require-decrypt ` 
                           --encryption-context purpose=test ` 

Examples 241



AWS Encryption SDK Developer Guide

                           --output .

When the encrypt command succeeds, it does not return any output. To determine whether the 
command succeeded, check the Boolean value in the $? variable. When the command succeeds, 
the value of $? is 0 (Bash) or True (PowerShell). When the command fails, the value of $? is non-
zero (Bash) or False (PowerShell).

Bash

$ echo $?
0

PowerShell

PS C:\> $?
True

You can also use a directory listing command to see that the encrypt command created a new 
file, hello.txt.encrypted. Because the encrypt command did not specify a file name for the 
output, the AWS Encryption CLI wrote the output to a file with the same name as the input file plus 
a .encrypted suffix. To use a different suffix, or suppress the suffix, use the --suffix parameter.

The hello.txt.encrypted file contains an encrypted message that includes the ciphertext of 
the hello.txt file, an encrypted copy of the data key, and additional metadata, including the 
encryption context.

Bash

$  ls
hello.txt  hello.txt.encrypted

PowerShell

PS C:\> dir

    Directory: C:\TestCLI

Mode                LastWriteTime         Length Name
----                -------------         ------ ----

Examples 242



AWS Encryption SDK Developer Guide

-a----        9/15/2017   5:57 PM             11 Hello.txt
-a----        9/17/2017   1:06 PM            585 Hello.txt.encrypted

Decrypting a file

This example uses the AWS Encryption CLI to decrypt the contents of the Hello.txt.encrypted
file that was encrypted in the previous example.

The decrypt command uses the --decrypt parameter to indicate the operation and --input
parameter to identify the file to decrypt. The value of the --output parameter is a dot that 
represents the current directory.

The --wrapping-keys parameter with a key attribute specifies the wrapping key used to decrypt 
the encrypted message. In decrypt commands with AWS KMS keys, the value of the key attribute 
must be a key ARN. The --wrapping-keys parameter is required in a decrypt command. If you 
are using AWS KMS keys, you can use the key attribute to specify AWS KMS keys for decrypting or 
the discovery attribute with a value of true (but not both). If you are using a custom master key 
provider, the key and provider attributes are required.

The --commitment-policy parameter is optional beginning in version 2.1.x, but it is 
recommended. Using it explicitly makes your intent clear, even if you specify the default value,
require-encrypt-require-decrypt.

The --encryption-context parameter is optional in the decrypt command, even when an
encryption context is provided in the encrypt command. In this case, the decrypt command uses 
the same encryption context that was provided in the encrypt command. Before decrypting, the 
AWS Encryption CLI verifies that the encryption context in the encrypted message includes a
purpose=test pair. If it does not, the decrypt command fails.

The --metadata-output parameter specifies a file for metadata about the decryption operation. 
The value of the --output parameter, a dot (.), writes the output file to the current directory.

As a best practice, use the --max-encrypted-data-keys parameter to avoid decrypting a 
malformed message with an excessive number of encrypted data keys. Specify the expected 
number of encrypted data keys (one for each wrapping key used in encryption) or a reasonable 
maximum (such as 5). For details, see Limiting encrypted data keys.

The --buffer returns plaintext only after all input is processed, including verifying the digital 
signature if one is present.

Examples 243

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-ARN


AWS Encryption SDK Developer Guide

Bash

\\ To run this example, replace the fictitious key ARN with a valid value.
$ keyArn=arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab

$ aws-encryption-cli --decrypt \ 
                     --input hello.txt.encrypted \ 
                     --wrapping-keys key=$keyArn \ 
                     --commitment-policy require-encrypt-require-decrypt \ 
                     --encryption-context purpose=test \ 
                     --metadata-output ~/metadata \ 
                     --max-encrypted-data-keys 1 \ 
                     --buffer \ 
                     --output .

PowerShell

\\ To run this example, replace the fictitious key ARN with a valid value.
PS C:\> $keyArn = 'arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab'

PS C:\> aws-encryption-cli --decrypt ` 
                           --input Hello.txt.encrypted ` 
                           --wrapping-keys key=$keyArn ` 
                           --commitment-policy require-encrypt-require-decrypt ` 
                           --encryption-context purpose=test ` 
                           --metadata-output $home\Metadata.txt ` 
                           --max-encrypted-data-keys 1 ` 
                           --buffer ` 
                           --output .

When a decrypt command succeeds, it does not return any output. To determine whether 
the command succeeded, get the value of the $? variable. You can also use a directory listing 
command to see that the command created a new file with a .decrypted suffix. To see the 
plaintext content, use a command to get the file content, such as cat or Get-Content.

Bash

$  ls
hello.txt  hello.txt.encrypted  hello.txt.encrypted.decrypted

Examples 244

https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.management/get-content


AWS Encryption SDK Developer Guide

$  cat hello.txt.encrypted.decrypted
Hello World

PowerShell

PS C:\> dir

    Directory: C:\TestCLI

Mode                LastWriteTime         Length Name
----                -------------         ------ ----
-a----        9/17/2017   1:01 PM             11 Hello.txt
-a----        9/17/2017   1:06 PM            585 Hello.txt.encrypted
-a----        9/17/2017   1:08 PM             11 Hello.txt.encrypted.decrypted

PS C:\> Get-Content Hello.txt.encrypted.decrypted
Hello World

Encrypting all files in a directory

This example uses the AWS Encryption CLI to encrypt the contents of all of the files in a directory.

When a command affects multiple files, the AWS Encryption CLI processes each file individually. 
It gets the file contents, gets a unique data key for the file from the master key, encrypts the file 
contents under the data key, and writes the results to a new file in the output directory. As a result, 
you can decrypt the output files independently.

This listing of the TestDir directory shows the plaintext files that we want to encrypt.

Bash

$  ls testdir
cool-new-thing.py  hello.txt  employees.csv

PowerShell

PS C:\> dir C:\TestDir

    Directory: C:\TestDir

Examples 245



AWS Encryption SDK Developer Guide

Mode                LastWriteTime         Length Name
----                -------------         ------ ----
-a----        9/12/2017   3:11 PM           2139 cool-new-thing.py
-a----        9/15/2017   5:57 PM             11 Hello.txt
-a----        9/17/2017   1:44 PM             46 Employees.csv

The first command saves the Amazon Resource Name (ARN) of an AWS KMS key in the $keyArn
variable.

The second command encrypts the content of files in the TestDir directory and writes the files of 
encrypted content to the TestEnc directory. If the TestEnc directory doesn't exist, the command 
fails. Because the input location is a directory, the --recursive parameter is required.

The --wrapping-keys parameter, and its required key attribute, specify the wrapping key to use. 
The encrypt command includes an encryption context, dept=IT. When you specify an encryption 
context in a command that encrypts multiple files, the same encryption context is used for all of 
the files.

The command also has a --metadata-output parameter to tell the AWS Encryption CLI where to 
write the metadata about the encryption operations. The AWS Encryption CLI writes one metadata 
record for each file that was encrypted.

The --commitment-policy parameter is optional beginning in version 2.1.x, but it is 
recommended. If the command or script fails because it cannot decrypt a ciphertext, the explicit 
commitment policy setting might help you to detect the problem quickly.

When the command completes, the AWS Encryption CLI writes the encrypted files to the TestEnc
directory, but it does not return any output.

The final command lists the files in the TestEnc directory. There is one output file of encrypted 
content for each input file of plaintext content. Because the command did not specify an alternate 
suffix, the encrypt command appended .encrypted to each of the input file names.

Bash

# To run this example, replace the fictitious key ARN with a valid master key 
 identifier.
$  keyArn=arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab

Examples 246

https://docs.aws.amazon.com/kms/latest/developerguide/viewing-keys.html#find-cmk-id-arn


AWS Encryption SDK Developer Guide

$ aws-encryption-cli --encrypt \ 
                     --input testdir --recursive\ 
                     --wrapping-keys key=$keyArn \ 
                     --encryption-context dept=IT \ 
                     --commitment-policy require-encrypt-require-decrypt \ 
                     --metadata-output ~/metadata \ 
                     --output testenc

$ ls testenc
cool-new-thing.py.encrypted  employees.csv.encrypted  hello.txt.encrypted

PowerShell

# To run this example, replace the fictitious key ARN with a valid master key 
 identifier.
PS C:\> $keyArn = arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab

PS C:\> aws-encryption-cli --encrypt ` 
                           --input .\TestDir --recursive ` 
                           --wrapping-keys key=$keyArn ` 
                           --encryption-context dept=IT ` 
                           --commitment-policy require-encrypt-require-decrypt ` 
                           --metadata-output .\Metadata\Metadata.txt ` 
                           --output .\TestEnc

PS C:\> dir .\TestEnc

    Directory: C:\TestEnc

Mode                LastWriteTime         Length Name
----                -------------         ------ ----
-a----        9/17/2017   2:32 PM           2713 cool-new-thing.py.encrypted
-a----        9/17/2017   2:32 PM            620 Hello.txt.encrypted
-a----        9/17/2017   2:32 PM            585 Employees.csv.encrypted

Decrypting all files in a directory

This example decrypts all files in a directory. It starts with the files in the TestEnc directory that 
were encrypted in the previous example.

Examples 247



AWS Encryption SDK Developer Guide

Bash

$  ls testenc
cool-new-thing.py.encrypted  hello.txt.encrypted  employees.csv.encrypted

PowerShell

PS C:\> dir C:\TestEnc

    Directory: C:\TestEnc

Mode                LastWriteTime         Length Name
----                -------------         ------ ----
-a----        9/17/2017   2:32 PM           2713 cool-new-thing.py.encrypted
-a----        9/17/2017   2:32 PM            620 Hello.txt.encrypted
-a----        9/17/2017   2:32 PM            585 Employees.csv.encrypted

This decrypt command decrypts all of the files in the TestEnc directory and writes the plaintext 
files to the TestDec directory. The --wrapping-keys parameter with a key attribute and a key 
ARN value tells the AWS Encryption CLI which AWS KMS keys to use to decrypt the files. The 
command uses the --interactive parameter to tell the AWS Encryption CLI to prompt you 
before overwriting a file with the same name.

This command also uses the encryption context that was provided when the files were encrypted. 
When decrypting multiple files, the AWS Encryption CLI checks the encryption context of every 
file. If the encryption context check on any file fails, the AWS Encryption CLI rejects the file, writes 
a warning, records the failure in the metadata, and then continues checking the remaining files. If 
the AWS Encryption CLI fails to decrypt a file for any other reason, the entire decrypt command 
fails immediately.

In this example, the encrypted messages in all of the input files contain the dept=IT encryption 
context element. However, if you were decrypting messages with different encryption contexts, 
you might still be able to verify part of the encryption context. For example, if some messages 
had an encryption context of dept=finance and others had dept=IT, you could verify that the 
encryption context always contains a dept name without specifying the value. If you wanted to be 
more specific, you could decrypt the files in separate commands.

Examples 248

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-ARN
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-ARN


AWS Encryption SDK Developer Guide

The decrypt command does not return any output, but you can use a directory listing command 
to see that it created new files with the .decrypted suffix. To see the plaintext content, use a 
command to get the file content.

Bash

# To run this example, replace the fictitious key ARN with a valid master key 
 identifier.
$ keyArn=arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab

$ aws-encryption-cli --decrypt \ 
                     --input testenc --recursive \ 
                     --wrapping-keys key=$keyArn \ 
                     --encryption-context dept=IT \ 
                     --commitment-policy require-encrypt-require-decrypt \ 
                     --metadata-output ~/metadata \ 
                     --max-encrypted-data-keys 1 \ 
                     --buffer \ 
                     --output testdec --interactive

$ ls testdec
cool-new-thing.py.encrypted.decrypted  hello.txt.encrypted.decrypted  
 employees.csv.encrypted.decrypted

PowerShell

# To run this example, replace the fictitious key ARN with a valid master key 
 identifier.
PS C:\> $keyArn = 'arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab'

PS C:\> aws-encryption-cli --decrypt ` 
                           --input C:\TestEnc --recursive ` 
                           --wrapping-keys key=$keyArn ` 
                           --encryption-context dept=IT ` 
                           --commitment-policy require-encrypt-require-decrypt ` 
                           --metadata-output $home\Metadata.txt ` 
                           --max-encrypted-data-keys 1 ` 
                           --buffer ` 
                           --output C:\TestDec --interactive

PS C:\> dir .\TestDec

Examples 249



AWS Encryption SDK Developer Guide

    Mode                LastWriteTime         Length Name
----                -------------         ------ ----
-a----        10/8/2017   4:57 PM           2139 cool-new-
thing.py.encrypted.decrypted
-a----        10/8/2017   4:57 PM             46 Employees.csv.encrypted.decrypted
-a----        10/8/2017   4:57 PM             11 Hello.txt.encrypted.decrypted

Encrypting and decrypting on the command line

These examples show you how to pipe input to commands (stdin) and write output to the 
command line (stdout). They explain how to represent stdin and stdout in a command and how 
to use the built-in Base64 encoding tools to prevent the shell from misinterpreting non-ASCII 
characters.

This example pipes a plaintext string to an encrypt command and saves the encrypted message 
in a variable. Then, it pipes the encrypted message in the variable to a decrypt command, which 
writes its output to the pipeline (stdout).

The example consists of three commands:

• The first command saves the key ARN of an AWS KMS key in the $keyArn variable.

Bash

$  keyArn=arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab

PowerShell

PS C:\> $keyArn = 'arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab'

 

• The second command pipes the Hello World string to the encrypt command and saves the 
result in the $encrypted variable.

The --input and --output parameters are required in all AWS Encryption CLI commands. To 
indicate that input is being piped to the command (stdin), use a hyphen (-) for the value of the

Examples 250

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-ARN


AWS Encryption SDK Developer Guide

--input parameter. To send the output to the command line (stdout), use a hyphen for the 
value of the --output parameter.

The --encode parameter Base64-encodes the output before returning it. This prevents the shell 
from misinterpreting the non-ASCII characters in the encrypted message.

Because this command is just a proof of concept, we omit the encryption context and suppress 
the metadata (-S).

Bash

$ encrypted=$(echo 'Hello World' | aws-encryption-cli --encrypt -S \ 
                                                      --input - --output - --
encode \ 
                                                      --wrapping-keys key=
$keyArn )

PowerShell

PS C:\> $encrypted = 'Hello World' | aws-encryption-cli --encrypt -S ` 
                                                        --input - --output - --
encode ` 
                                                        --wrapping-keys key=
$keyArn

 

• The third command pipes the encrypted message in the $encrypted variable to the decrypt 
command.

This decrypt command uses --input - to indicate that input is coming from the pipeline (stdin) 
and --output - to send the output to the pipeline (stdout). (The input parameter takes the 
location of the input, not the actual input bytes, so you cannot use the $encrypted variable as 
the value of the --input parameter.)

This example uses the discovery attribute of the --wrapping-keys parameter to allow 
the AWS Encryption CLI to use any AWS KMS key to decrypt the data. It doesn't specify a
commitment policy, so it uses the default value for version 2.1.x and later, require-encrypt-
require-decrypt.

Examples 251



AWS Encryption SDK Developer Guide

Because the output was encrypted and then encoded, the decrypt command uses the --decode
parameter to decode Base64-encoded input before decrypting it. You can also use the --decode
parameter to decode Base64-encoded input before encrypting it.

Again, the command omits the encryption context and suppresses the metadata (-S).

Bash

$  echo $encrypted | aws-encryption-cli --decrypt --wrapping-keys discovery=true 
 --input - --output - --decode --buffer -S
Hello World

PowerShell

PS C:\> $encrypted | aws-encryption-cli --decrypt --wrapping-keys discovery=$true 
 --input - --output - --decode --buffer -S
Hello World

You can also perform the encrypt and decrypt operations in a single command without the 
intervening variable.

As in the previous example, the --input and --output parameters have a - value and the 
command uses the --encode parameter to encode the output and the --decode parameter to 
decode the input.

Bash

$  keyArn=arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab

$  echo 'Hello World' | 
          aws-encryption-cli --encrypt --wrapping-keys key=$keyArn --input - --
output - --encode -S | 
          aws-encryption-cli --decrypt --wrapping-keys discovery=true --input - --
output - --decode -S
Hello World

Examples 252



AWS Encryption SDK Developer Guide

PowerShell

PS C:\> $keyArn = 'arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab'

PS C:\> 'Hello World' | 
               aws-encryption-cli --encrypt --wrapping-keys key=$keyArn --input - --
output - --encode -S | 
               aws-encryption-cli --decrypt --wrapping-keys discovery=$true --input 
 - --output - --decode -S
Hello World

Using multiple master keys

This example shows how to use multiple master keys when encrypting and decrypting data in the 
AWS Encryption CLI.

When you use multiple master keys to encrypt data, any one of the master keys can be used to 
decrypt the data. This strategy assures that you can decrypt the data even if one of the master keys 
is unavailable. If you are storing the encrypted data in multiple AWS Regions, this strategy lets you 
use a master key in the same Region to decrypt the data.

When you encrypt with multiple master keys, the first master key plays a special role. It generates 
the data key that is used to encrypt the data. The remaining master keys encrypt the plaintext data 
key. The resulting encrypted message includes the encrypted data and a collection of encrypted 
data keys, one for each master key. Although the first master key generated the data key, any of 
the master keys can decrypt one of the data keys, which can be used to decrypt the data.

Encrypting with three master keys

This example command uses three wrapping keys to encrypt the Finance.log file, one in each of 
three AWS Regions.

It writes the encrypted message to the Archive directory. The command uses the --suffix
parameter with no value to suppress the suffix, so the input and output files names will be the 
same.

The command uses the --wrapping-keys parameter with three key attributes. You can also use 
multiple --wrapping-keys parameters in the same command.

Examples 253



AWS Encryption SDK Developer Guide

To encrypt the log file, the AWS Encryption CLI asks the first wrapping key in the list, $key1, to 
generate the data key that it uses to encrypt the data. Then, it uses each of the other wrapping 
keys to encrypt a plaintext copy of the same data key. The encrypted message in the output file 
includes all three of the encrypted data keys.

Bash

$ key1=arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab
$ key2=arn:aws:kms:us-east-2:111122223333:key/0987ab65-43cd-21ef-09ab-87654321cdef
$ key3=arn:aws:kms:ap-
southeast-1:111122223333:key/1a2b3c4d-5e6f-1a2b-3c4d-5e6f1a2b3c4d

$ aws-encryption-cli --encrypt --input /logs/finance.log \ 
                               --output /archive --suffix \ 
                               --encryption-context class=log \ 
                               --metadata-output ~/metadata \ 
                               --wrapping-keys key=$key1 key=$key2 key=$key3

PowerShell

PS C:\> $key1 = 'arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab'
PS C:\> $key2 = 'arn:aws:kms:us-
east-2:111122223333:key/0987ab65-43cd-21ef-09ab-87654321cdef'
PS C:\> $key3 = 'arn:aws:kms:ap-
southeast-1:111122223333:key/1a2b3c4d-5e6f-1a2b-3c4d-5e6f1a2b3c4d'

PS C:\> aws-encryption-cli --encrypt --input D:\Logs\Finance.log ` 
                           --output D:\Archive --suffix ` 
                           --encryption-context class=log ` 
                           --metadata-output $home\Metadata.txt ` 
                           --wrapping-keys key=$key1 key=$key2 key=$key3

This command decrypts the encrypted copy of the Finance.log file and writes it to a
Finance.log.clear file in the Finance directory. To decrypt data encrypted under three AWS 
KMS keys, you can specify the same three AWS KMS keys or any subset of them. This example 
specifies only one of the AWS KMS keys.

Examples 254



AWS Encryption SDK Developer Guide

To tell the AWS Encryption CLI which AWS KMS keys to use to decrypt your data, use the key
attribute of the --wrapping-keys parameter. When decrypting with AWS KMS keys, the value of 
the key attribute must be a key ARN.

You must have permission to call the Decrypt API on the AWS KMS keys you specify. For more 
information, see  Authentication and Access Control for AWS KMS.

As a best practice, this examples use the --max-encrypted-data-keys parameter to avoid 
decrypting a malformed message with an excessive number of encrypted data keys. Even though 
this example uses only one wrapping key for decryption, the encrypted message has three (3) 
encrypted data keys; one for each of the three wrapping keys used when encrypting. Specify the 
expected number of encrypted data keys or a reasonable maximum value, such as 5. If you specify 
a maximum value less than 3, the command fails. For details, see Limiting encrypted data keys.

Bash

$ aws-encryption-cli --decrypt --input /archive/finance.log \ 
                     --wrapping-keys key=$key1 \ 
                     --output /finance --suffix '.clear' \ 
                     --metadata-output ~/metadata \ 
                     --max-encrypted-data-keys 3 \ 
                     --buffer \ 
                     --encryption-context class=log

PowerShell

PS C:\> aws-encryption-cli --decrypt ` 
                           --input D:\Archive\Finance.log ` 
                           --wrapping-keys key=$key1 ` 
                           --output D:\Finance --suffix '.clear' ` 
                           --metadata-output .\Metadata\Metadata.txt ` 
                           --max-encrypted-data-keys 3 ` 
                           --buffer ` 
                           --encryption-context class=log

Encrypting and decrypting in scripts

This example shows how to use the AWS Encryption CLI in scripts. You can write scripts that just 
encrypt and decrypt data, or scripts that encrypt or decrypt as part of a data management process.

Examples 255

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-ARN
https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html
https://docs.aws.amazon.com/kms/latest/developerguide/control-access.html


AWS Encryption SDK Developer Guide

In this example, the script gets a collection of log files, compresses them, encrypts them, and then 
copies the encrypted files to an Amazon S3 bucket. This script processes each file separately, so 
that you can decrypt and expand them independently.

When you compress and encrypt files, be sure to compress before you encrypt. Properly encrypted 
data is not compressible.

Warning

Be careful when compressing data that includes both secrets and data that might be 
controlled by a malicious actor. The final size of the compressed data might inadvertently 
reveal sensitive information about its contents.

Bash

# Continue running even if an operation fails.
set +e

dir=$1
encryptionContext=$2
s3bucket=$3
s3folder=$4
masterKeyProvider="aws-kms"
metadataOutput="/tmp/metadata-$(date +%s)"

compress(){ 
    gzip -qf $1
}

encrypt(){ 
    # -e encrypt 
    # -i input 
    # -o output 
    # --metadata-output unique file for metadata 
    # -m masterKey read from environment variable 
    # -c encryption context read from the second argument. 
    # -v be verbose 
    aws-encryption-cli -e -i ${1} -o $(dirname ${1}) --metadata-output 
 ${metadataOutput} -m key="${masterKey}" provider="${masterKeyProvider}" -c 
 "${encryptionContext}" -v
}

Examples 256



AWS Encryption SDK Developer Guide

s3put (){ 
    # copy file argument 1 to s3 location passed into the script. 
    aws s3 cp ${1} ${s3bucket}/${s3folder}
}

# Validate all required arguments are present.
if [ "${dir}" ] && [ "${encryptionContext}" ] && [ "${s3bucket}" ] && 
 [ "${s3folder}" ] && [ "${masterKey}" ]; then

# Is $dir a valid directory?
test -d "${dir}"
if [ $? -ne 0 ]; then 
    echo "Input is not a directory; exiting" 
    exit 1
fi

# Iterate over all the files in the directory, except *gz and *encrypted (in case of 
 a re-run).
for f in $(find ${dir} -type f \( -name "*" ! -name \*.gz ! -name \*encrypted \) ); 
 do 
    echo "Working on $f" 
    compress ${f} 
    encrypt ${f}.gz 
    rm -f ${f}.gz 
    s3put ${f}.gz.encrypted
done;
else 
    echo "Arguments: <Directory> <encryption context> <s3://bucketname> <s3 folder>" 
    echo " and ENV var \$masterKey must be set" 
    exit 255
fi         

PowerShell

#Requires -Modules AWSPowerShell, Microsoft.PowerShell.Archive
Param
( 
    [Parameter(Mandatory)] 
    [ValidateScript({Test-Path $_})] 
    [String[]] 
    $FilePath, 

Examples 257



AWS Encryption SDK Developer Guide

    [Parameter()] 
    [Switch] 
    $Recurse, 

    [Parameter(Mandatory=$true)] 
    [String] 
    $wrappingKeyID, 

    [Parameter()] 
    [String] 
    $masterKeyProvider = 'aws-kms', 

    [Parameter(Mandatory)] 
    [ValidateScript({Test-Path $_})] 
    [String] 
    $ZipDirectory, 

    [Parameter(Mandatory)] 
    [ValidateScript({Test-Path $_})] 
    [String] 
    $EncryptDirectory, 

    [Parameter()] 
    [String] 
    $EncryptionContext, 

    [Parameter(Mandatory)] 
    [ValidateScript({Test-Path $_})] 
    [String] 
    $MetadataDirectory, 

    [Parameter(Mandatory)] 
    [ValidateScript({Test-S3Bucket -BucketName $_})] 
    [String] 
    $S3Bucket, 

    [Parameter()] 
    [String] 
    $S3BucketFolder
)

BEGIN {}
PROCESS { 

Examples 258



AWS Encryption SDK Developer Guide

    if ($files = dir $FilePath -Recurse:$Recurse) 
    { 

        # Step 1: Compress 
        foreach ($file in $files) 
        { 
            $fileName = $file.Name 
            try 
            { 
                Microsoft.PowerShell.Archive\Compress-Archive -Path $file.FullName -
DestinationPath $ZipDirectory\$filename.zip 
            } 
            catch 
            { 
                Write-Error "Zip failed on $file.FullName" 
            } 

            # Step 2: Encrypt 
            if (-not (Test-Path "$ZipDirectory\$filename.zip")) 
            { 
                Write-Error "Cannot find zipped file: $ZipDirectory\$filename.zip" 
            } 
            else 
            { 
                # 2>&1 captures command output 
                $err = (aws-encryption-cli -e -i "$ZipDirectory\$filename.zip" ` 
                                           -o $EncryptDirectory ` 
                                           -m key=$wrappingKeyID provider=
$masterKeyProvider ` 
                                           -c $EncryptionContext ` 
                                           --metadata-output $MetadataDirectory ` 
                                           -v) 2>&1 

                # Check error status 
                if ($? -eq $false) 
                { 
                    # Write the error 
                    $err 
                } 
                elseif (Test-Path "$EncryptDirectory\$fileName.zip.encrypted") 
                { 
                    # Step 3: Write to S3 bucket 
                    if ($S3BucketFolder) 
                    { 

Examples 259



AWS Encryption SDK Developer Guide

                        Write-S3Object -BucketName $S3Bucket -File 
 "$EncryptDirectory\$fileName.zip.encrypted" -Key "$S3BucketFolder/
$fileName.zip.encrypted" 

                    } 
                    else 
                    { 
                        Write-S3Object -BucketName $S3Bucket -File 
 "$EncryptDirectory\$fileName.zip.encrypted" 
                    } 
                } 
            } 
        } 
    }
}     

Using data key caching

This example uses data key caching in a command that encrypts a large number of files.

By default, the AWS Encryption CLI (and other versions of the AWS Encryption SDK) generates a 
unique data key for each file that it encrypts. Although using a unique data key for each operation 
is a cryptographic best practice, limited reuse of data keys is acceptable for some situations. If 
you are considering data key caching, consult with a security engineer to understand the security 
requirements of your application and determine security thresholds that are right for you.

In this example, data key caching speeds up the encryption operation by reducing the frequency of 
requests to the master key provider.

The command in this example encrypts a large directory with multiple subdirectories that contain a 
total of approximately 800 small log files. The first command saves the ARN of the AWS KMS key in 
a keyARN variable. The second command encrypts all of the files in the input directory (recursively) 
and writes them to an archive directory. The command uses the --suffix parameter to specify 
the .archive suffix.

The --caching parameter enables data key caching. The capacity attribute, which limits the 
number of data keys in the cache, is set to 1, because serial file processing never uses more than 
one data key at a time. The max_age attribute, which determines how long the cached data key 
can used, is set to 10 seconds.

Examples 260



AWS Encryption SDK Developer Guide

The optional max_messages_encrypted attribute is set to 10 messages, so a single data key is 
never used to encrypt more than 10 files. Limiting the number of files encrypted by each data 
key reduces the number of files that would be affected in the unlikely event that a data key was 
compromised.

To run this command on log files that your operating system generates, you might need 
administrator permissions (sudo in Linux; Run as Administrator in Windows).

Bash

$  keyArn=arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab

$  aws-encryption-cli --encrypt \ 
                      --input /var/log/httpd --recursive \ 
                      --output ~/archive --suffix .archive \ 
                      --wrapping-keys key=$keyArn \ 
                      --encryption-context class=log \ 
                      --suppress-metadata \ 
                      --caching capacity=1 max_age=10 max_messages_encrypted=10 

PowerShell

PS C:\> $keyARN = 'arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab'

PS C:\> aws-encryption-cli --encrypt ` 
                           --input C:\Windows\Logs --recursive ` 
                           --output $home\Archive --suffix '.archive' ` 
                           --wrapping-keys key=$keyARN ` 
                           --encryption-context class=log ` 
                           --suppress-metadata ` 
                           --caching capacity=1 max_age=10 
 max_messages_encrypted=10 

To test the effect of data key caching, this example uses the Measure-Command cmdlet in 
PowerShell. When you run this example without data key caching, it takes about 25 seconds to 
complete. This process generates a new data key for each file in the directory.

PS C:\> Measure-Command {aws-encryption-cli --encrypt ` 

Examples 261

https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.utility/measure-command


AWS Encryption SDK Developer Guide

                                            --input C:\Windows\Logs --recursive ` 
                                            --output $home\Archive  --suffix '.archive' 
 ` 
                                            --wrapping-keys key=$keyARN ` 
                                            --encryption-context class=log ` 
                                            --suppress-metadata }

Days              : 0
Hours             : 0
Minutes           : 0
Seconds           : 25
Milliseconds      : 453
Ticks             : 254531202
TotalDays         : 0.000294596298611111
TotalHours        : 0.00707031116666667
TotalMinutes      : 0.42421867
TotalSeconds      : 25.4531202
TotalMilliseconds : 25453.1202

Data key caching makes the process quicker, even when you limit each data key to a maximum of 
10 files. The command now takes less than 12 seconds to complete and reduces the number of 
calls to the master key provider to 1/10 of the original value.

PS C:\> Measure-Command {aws-encryption-cli --encrypt ` 
                                            --input C:\Windows\Logs --recursive ` 
                                            --output $home\Archive  --suffix '.archive' 
 ` 
                                            --wrapping-keys key=$keyARN ` 
                                            --encryption-context class=log ` 
                                            --suppress-metadata ` 
                                            --caching capacity=1 max_age=10 
 max_messages_encrypted=10}

Days              : 0
Hours             : 0
Minutes           : 0
Seconds           : 11
Milliseconds      : 813
Ticks             : 118132640
TotalDays         : 0.000136727592592593
TotalHours        : 0.00328146222222222

Examples 262



AWS Encryption SDK Developer Guide

TotalMinutes      : 0.196887733333333
TotalSeconds      : 11.813264
TotalMilliseconds : 11813.264

If you eliminate the max_messages_encrypted restriction, all files are encrypted under the same 
data key. This change increases the risk of reusing data keys without making the process much 
faster. However, it reduces the number of calls to the master key provider to 1.

PS C:\> Measure-Command {aws-encryption-cli --encrypt ` 
                                            --input C:\Windows\Logs --recursive ` 
                                            --output $home\Archive  --suffix '.archive' 
 ` 
                                            --wrapping-keys key=$keyARN ` 
                                            --encryption-context class=log ` 
                                            --suppress-metadata ` 
                                            --caching capacity=1 max_age=10}

Days              : 0
Hours             : 0
Minutes           : 0
Seconds           : 10
Milliseconds      : 252
Ticks             : 102523367
TotalDays         : 0.000118661304398148
TotalHours        : 0.00284787130555556
TotalMinutes      : 0.170872278333333
TotalSeconds      : 10.2523367
TotalMilliseconds : 10252.3367

AWS Encryption SDK CLI syntax and parameter reference

This topic provides syntax diagrams and brief parameter descriptions to help you use the AWS 
Encryption SDK Command Line Interface (CLI). For help with wrapping keys and other parameters, 
see How to use the AWS Encryption CLI. For examples, see Examples of the AWS Encryption CLI. 
For complete documentation, see Read the Docs.

Topics

• AWS Encryption CLI syntax

• AWS Encryption CLI command line parameters

Syntax and parameter reference 263

https://aws-encryption-sdk-cli.readthedocs.io/en/latest/


AWS Encryption SDK Developer Guide

• Advanced parameters

AWS Encryption CLI syntax

These AWS Encryption CLI syntax diagrams show the syntax for each task that you perform with 
the AWS Encryption CLI. They represent recommended syntax in AWS Encryption CLI version 2.1.x
and later.

New security features were originally released in AWS Encryption CLI versions 1.7.x and 2.0.x. 
However, AWS Encryption CLI version 1.8.x replaces version 1.7.x and AWS Encryption CLI 
2.1.x replaces 2.0.x. For details, see the relevant security advisory in the aws-encryption-sdk-cli
repository on GitHub.

Note

Unless noted in the parameter description, each parameter or attribute can be used only 
once in each command.
If you use an attribute that a parameter does not support, the AWS Encryption CLI ignores 
that unsupported attribute without a warning or error.

Get help

To get the full AWS Encryption CLI syntax with parameter descriptions, use --help or -h.

aws-encryption-cli (--help | -h)

Get the version

To get the version number of your AWS Encryption CLI installation, use --version. Be sure to 
include the version when you ask questions, report problems, or share tips about using the AWS 
Encryption CLI.

aws-encryption-cli --version

Encrypt data

The following syntax diagram shows the parameters that an encrypt command uses.

Syntax and parameter reference 264

https://github.com/aws/aws-encryption-sdk-cli/security/advisories/GHSA-2xwp-m7mq-7q3r
https://github.com/aws/aws-encryption-sdk-cli/


AWS Encryption SDK Developer Guide

aws-encryption-cli --encrypt 
                   --input <input> [--recursive] [--decode] 
                   --output <output> [--interactive] [--no-overwrite] [--suffix 
 [<suffix>]] [--encode] 
                   --wrapping-keys  [--wrapping-keys] ... 
                       key=<keyID> [key=<keyID>] ... 
                       [provider=<provider-name>] [region=<aws-region>] 
 [profile=<aws-profile>] 
                   --metadata-output <location> [--overwrite-metadata] | --suppress-
metadata] 
                   [--commitment-policy <commitment-policy>] 
                   [--encryption-context <encryption_context> [<encryption_context>
 ...]] 
                   [--max-encrypted-data-keys <integer>] 
                   [--algorithm <algorithm_suite>] 
                   [--caching <attributes>]  
                   [--frame-length <length>] 
                   [-v | -vv | -vvv | -vvvv] 
                   [--quiet]

Decrypt data

The following syntax diagram shows the parameters that a decrypt command uses.

In version 1.8.x, the --wrapping-keys parameter is optional when decrypting, but 
recommended. Beginning in version 2.1.x, the --wrapping-keys parameter is required 
when encrypting and decrypting. For AWS KMS keys, you can use the key attribute to specify 
wrapping keys (best practice) or set the discovery attribute to true, which doesn't limit the 
wrapping keys that the AWS Encryption CLI can use.

aws-encryption-cli --decrypt (or [--decrypt-unsigned])  
                   --input <input> [--recursive] [--decode] 
                   --output <output> [--interactive] [--no-overwrite]  [--suffix 
 [<suffix>]] [--encode]            
                   --wrapping-keys  [--wrapping-keys] ... 
                       [key=<keyID>] [key=<keyID>] ... 
                       [discovery={true|false}] [discovery-partition=<aws-partition-
name> discovery-account=<aws-account-ID> [discovery-account=<aws-account-ID>] ...]  
                       [provider=<provider-name>] [region=<aws-region>] 
 [profile=<aws-profile>] 
                   --metadata-output <location> [--overwrite-metadata] | --suppress-
metadata] 

Syntax and parameter reference 265



AWS Encryption SDK Developer Guide

                   [--commitment-policy <commitment-policy>] 
                   [--encryption-context <encryption_context> [<encryption_context>
 ...]] 
                   [--buffer] 
                   [--max-encrypted-data-keys <integer>] 
                   [--caching <attributes>] 
                   [--max-length <length>] 
                   [-v | -vv | -vvv | -vvvv] 
                   [--quiet] 
                    

Use configuration files

You can refer to configuration files that contain parameters and their values. This is equivalent 
to typing the parameters and values in the command. For an example, see How to store 
parameters in a configuration file.

aws-encryption-cli @<configuration_file>

# In a PowerShell console, use a backtick to escape the @.
aws-encryption-cli `@<configuration_file>

AWS Encryption CLI command line parameters

This list provides a basic description of the AWS Encryption CLI command parameters. For a 
complete description, see the aws-encryption-sdk-cli documentation.

--encrypt (-e)

Encrypts the input data. Every command must have an --encrypt, or --decrypt, or --
decrypt-unsigned parameter.

--decrypt (-d)

Decrypts the input data. Every command must have an --encrypt, --decrypt, or --
decrypt-unsigned parameter.

--decrypt-unsigned [Introduced in versions 1.9.x and 2.2.x]

The --decrypt-unsigned parameter decrypts ciphertext and ensures that messages are 
unsigned before decryption. Use this parameter if you used the --algorithm parameter and 

Syntax and parameter reference 266

http://aws-encryption-sdk-cli.readthedocs.io/en/latest/


AWS Encryption SDK Developer Guide

selected an algorithm suite without digital signing to encrypt data. If the ciphertext is signed, 
decryption fails.

You can use --decrypt or --decrypt-unsigned for decryption but not both.

--wrapping-keys (-w) [Introduced in version 1.8.x]

Specifies the wrapping keys (or master keys) used in encryption and decryption operations. You 
can use multiple --wrapping-keys parameters in each command.

Beginning in version 2.1.x, the --wrapping-keys parameter is required in encrypt and decrypt 
commands. In version 1.8.x, encrypt commands require either a --wrapping-keys or --
master-keys parameter. In version 1.8.x decrypt commands, a --wrapping-keys parameter 
is optional but recommended.

When using a custom master key provider, encrypt and decrypt commands require key and
provider attributes. When using AWS KMS keys, encrypt commands require a key attribute. 
Decrypt commands require a key attribute or a discovery attribute with a value of true (but 
not both). Using the key attribute when decrypting is an AWS Encryption SDK best practice. It is 
particularly important if you're decrypting batches of unfamiliar messages, such as those in an 
Amazon S3 bucket or an Amazon SQS queue.

For an example showing how to use AWS KMS multi-Region keys as wrapping keys, see Using 
multi-Region AWS KMS keys.

Attributes: The value of the --wrapping-keys parameter consists of the following attributes. 
The format is attribute_name=value.

key

Identifies the wrapping key used in the operation. The format is a key=ID pair. You can 
specify multiple key attributes in each --wrapping-keys parameter value.

• Encrypt commands: All encrypt commands require the key attribute . When you use an 
AWS KMS key in an encrypt command, the value of the key attribute can be a key ID, key 
ARN, an alias name, or an alias ARN. For descriptions of the AWS KMS key identifiers, see
Key identifiers in the AWS Key Management Service Developer Guide.

• Decrypt commands: When decrypting with AWS KMS keys, the --wrapping-keys
parameter requires a key attribute with a key ARN value or a discovery attribute with 
a value of true (but not both). Using the key attribute is an AWS Encryption SDK best 
practice. When decrypting with a custom master key provider, the key attribute is 
required.

Syntax and parameter reference 267

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-ARN


AWS Encryption SDK Developer Guide

Note

To specify an AWS KMS wrapping key in a decrypt command, the value of the key
attribute must be a key ARN. If you use a key ID, alias name, or alias ARN, the AWS 
Encryption CLI does not recognize the wrapping key.

You can specify multiple key attributes in each --wrapping-keys parameter value. 
However, any provider, region, and profile attributes in a --wrapping-keys parameter 
apply to all wrapping keys in that parameter value. To specify wrapping keys with different 
attribute values, use multiple --wrapping-keys parameters in the command.

discovery

Allows the AWS Encryption CLI to use any AWS KMS key to decrypt the message. The
discovery value can be true or false. The default value is false. The discovery attribute 
is valid only in decrypt commands and only when the master key provider is AWS KMS.

When decrypting with AWS KMS keys, the --wrapping-keys parameter requires a key
attribute or a discovery attribute with a value of true (but not both). If you use the key
attribute, you can use a discovery attribute with a value of false to explicitly reject 
discovery.

• False (default) — When the discovery attribute isn't specified or its value is false, 
the AWS Encryption CLI decrypts the message using only the AWS KMS keys specified 
by the key attribute of the --wrapping-keys parameter. If you don't specify a key
attribute when discovery is false, the decrypt command fails. This value supports an 
AWS Encryption CLI best practice.

• True — When the value of the discovery attribute is true, the AWS Encryption CLI gets 
the AWS KMS keys from metadata in the encrypted message, and uses those AWS KMS 
keys to decrypt the message. The discovery attribute with a value of true behaves like 
versions of the AWS Encryption CLI before version 1.8.x that didn't permit you to specify a 
wrapping key when decrypting. However, your intent to use any AWS KMS key is explicit. If 
you specify a key attribute when discovery is true, the decrypt command fails.

The true value might cause the AWS Encryption CLI to use AWS KMS keys in different 
AWS accounts and Regions, or attempt to use AWS KMS keys that the user isn't authorized 
to use.

Syntax and parameter reference 268



AWS Encryption SDK Developer Guide

When discovery is true, it's a best practice to use the discovery-partition and discovery-
account attributes to limit the AWS KMS keys used to those in the AWS accounts you specify.

discovery-account

Limits the AWS KMS keys used for decrypting to those in the specified AWS account. The 
only valid value for this attribute is an AWS account ID.

This attribute is optional and valid only in decrypt commands with AWS KMS keys where the
discovery attribute is set to true and the discovery-partition attribute is specified.

Each discovery-account attribute takes just one AWS account ID, but you can specify 
multiple discovery-account attributes in the same --wrapping-keys parameter. All 
accounts specified in a given --wrapping-keys parameter must be in the specified AWS 
partition.

discovery-partition

Specifies the AWS partition for the accounts in the discovery-account attribute. Its value 
must be an AWS partition, such as aws, aws-cn, or aws-gov-cloud. For information, see
Amazon Resource Names in the AWS General Reference.

This attribute is required when you use the discovery-account attribute. You can specify 
only one discovery-partition attribute in each --wrapping keys parameter. To specify 
AWS accounts in multiple partitions, use an additional --wrapping-keys parameter.

provider

Identifies the master key provider. The format is a provider=ID pair. The default value, aws-
kms, represents AWS KMS. This attribute is required only when the master key provider is 
not AWS KMS.

region

Identifies the AWS Region of an AWS KMS key. This attribute is valid only for AWS KMS keys. 
It is used only when the key identifier does not specify a Region; otherwise, it is ignored. 
When it is used, it overrides the default Region in the AWS CLI named profile.

profile

Identifies an AWS CLI named profile. This attribute is valid only for AWS KMS keys. The 
Region in the profile is used only when the key identifier does not specify a Region and there 
is no region attribute in the command.

Syntax and parameter reference 269

https://docs.aws.amazon.com/general/latest/gr/acct-identifiers.html
https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html#arns-syntax
https://docs.aws.amazon.com/cli/latest/userguide/cli-multiple-profiles.html


AWS Encryption SDK Developer Guide

--input (-i)

Specifies the location of the data to encrypt or decrypt. This parameter is required. The 
value can be a path to a file or directory, or a file name pattern. If you are piping input to the 
command (stdin), use -.

If the input does not exist, the command completes successfully without error or warning.

--recursive (-r, -R)

Performs the operation on files in the input directory and its subdirectories. This parameter 
is required when the value of --input is a directory.

--decode

Decodes Base64-encoded input.

If you are decrypting a message that was encrypted and then encoded, you must decode the 
message before decrypting it. This parameter does that for you.

For example, if you used the --encode parameter in an encrypt command, use the --
decode parameter in the corresponding decrypt command. You can also use this parameter 
to decode Base64-encoded input before you encrypt it.

--output (-o)

Specifies a destination for the output. This parameter is required. The value can be a file name, 
an existing directory, or -, which writes output to the command line (stdout).

If the specified output directory does not exist, the command fails. If the input contains 
subdirectories, the AWS Encryption CLI reproduces the subdirectories under the output 
directory that you specify.

By default, the AWS Encryption CLI overwrites files with the same name. To change that 
behavior, use the --interactive or --no-overwrite parameters. To suppress the overwrite 
warning, use the --quiet parameter.

Note

If a command that would overwrite an output file fails, the output file is deleted.

Syntax and parameter reference 270



AWS Encryption SDK Developer Guide

--interactive

Prompts before overwriting the file.

--no-overwrite

Does not overwrite files. Instead, if the output file exists, the AWS Encryption CLI skips the 
corresponding input.

--suffix

Specifies a custom file name suffix for files that the AWS Encryption CLI creates. To indicate 
no suffix, use the parameter with no value (--suffix).

By default, when the --output parameter does not specify a file name, the output file 
name has the same name as the input file name plus the suffix. The suffix for encrypt 
commands is .encrypted. The suffix for decrypt commands is .decrypted.

--encode

Applies Base64 (binary to text) encoding to the output. Encoding prevents the shell host 
program from misinterpreting non-ASCII characters in output text.

Use this parameter when writing encrypted output to stdout (--output -), especially in a 
PowerShell console, even when you are piping the output to another command or saving it 
in a variable.

--metadata-output

Specifies a location for metadata about the cryptographic operations. Enter a path and 
file name. If the directory does not exist, the command fails. To write the metadata to the 
command line (stdout), use -.

You cannot write command output (--output) and metadata output (--metadata-output) 
to stdout in the same command. Also, when the value of --input or --output is a directory 
(without file names), you cannot write the metadata output to the same directory or to any 
subdirectory of that directory.

If you specify an existing file, by default, the AWS Encryption CLI appends new metadata 
records to any content in the file. This feature lets you create a single file that contains the 
metadata for all of your cryptographic operations. To overwrite the content in an existing file, 
use the --overwrite-metadata parameter.

Syntax and parameter reference 271



AWS Encryption SDK Developer Guide

The AWS Encryption CLI returns a JSON-formatted metadata record for each encryption or 
decryption operation that the command performs. Each metadata record includes the full paths 
to the input and output file, the encryption context, the algorithm suite, and other valuable 
information that you can use to review the operation and verify that it meets your security 
standards.

--overwrite-metadata

Overwrites the content in the metadata output file. By default, the --metadata-output
parameter appends metadata to any existing content in the file.

--suppress-metadata (-S)

Suppresses the metadata about the encryption or decryption operation.

--commitment-policy

Specifies the commitment policy for encrypt and decrypt commands. The commitment policy 
determines whether your message is encrypted and decrypted with the key commitment
security feature.

The --commitment-policy parameter is introduced in version 1.8.x. It is valid in encrypt and 
decrypt commands.

In version 1.8.x, the AWS Encryption CLI uses the forbid-encrypt-allow-decrypt
commitment policy for all encrypt and decrypt operations. When you use the --wrapping-
keys parameter in an encrypt or decrypt command, a --commitment-policy parameter with 
the forbid-encrypt-allow-decrypt value is required. If you don't use the --wrapping-
keys parameter, the --commitment-policy parameter is invalid. Setting a commitment 
policy explicitly prevents your commitment policy from changing automatically to require-
encrypt-require-decrypt when you upgrade to version 2.1.x

Beginning in version 2.1.x, all commitment policy values are supported. The --commitment-
policy parameter is optional and the default value is require-encrypt-require-
decrypt.

This parameter has the following values:

• forbid-encrypt-allow-decrypt — Cannot encrypt with key commitment. It can decrypt 
ciphertexts encrypted with or without key commitment.

In version 1.8.x, this is the only valid value. The AWS Encryption CLI uses the forbid-
encrypt-allow-decrypt commitment policy for all encrypt and decrypt operations.

Syntax and parameter reference 272



AWS Encryption SDK Developer Guide

• require-encrypt-allow-decrypt — Encrypts only with key commitment. Decrypts with 
and without key commitment. This value is introduced in version 2.1.x.

• require-encrypt-require-decrypt (default) — Encrypts and decrypts only with key 
commitment. This value is introduced in version 2.1.x. It is the default value in versions 2.1.x
and later. With this value, the AWS Encryption CLI will not decrypt any ciphertext that was 
encrypted with earlier versions of the AWS Encryption SDK.

For detailed information about setting your commitment policy, see Migrating your AWS 
Encryption SDK.

--encryption-context (-c)

Specifies an encryption context for the operation. This parameter is not required, but it is 
recommended.

• In an --encrypt command, enter one or more name=value pairs. Use spaces to separate 
the pairs.

• In a --decrypt command, enter name=value pairs, name elements with no values, or both.

If the name or value in a name=value pair includes spaces or special characters, 
enclose the entire pair in quotation marks. For example, --encryption-context 
"department=software development".

--buffer (-b) [Introduced in versions 1.9.x and 2.2.x]

Returns plaintext only after all input is processed, including verifying the digital signature if one 
is present.

--max-encrypted-data-keys [Introduced in versions 1.9.x and 2.2.x]

Specifies the maximum number of encrypted data keys in an encrypted message. This 
parameter is optional.

Valid values are 1 – 65,535. If you omit this parameter, the AWS Encryption CLI does not 
enforce any maximum. An encrypted message can hold up to 65,535 (2^16 - 1) encrypted data 
keys.

You can use this parameter in encrypt commands to prevent a malformed message. You can 
use it in decrypt commands to detect malicious messages and avoid decrypting messages with 
numerous encrypted data keys that you can't decrypt. For details and an example, see Limiting 
encrypted data keys.

Syntax and parameter reference 273



AWS Encryption SDK Developer Guide

--help (-h)

Prints usage and syntax at the command line.

--version

Gets the version of the AWS Encryption CLI.

-v | -vv | -vvv | -vvvv

Displays verbose information, warning, and debugging messages. The detail in the output 
increases with the number of vs in the parameter. The most detailed setting (-vvvv) returns 
debugging-level data from the AWS Encryption CLI and all of the components that it uses.

--quiet (-q)

Suppresses warning messages, such as the message that appears when you overwrite an output 
file.

--master-keys (-m) [Deprecated]

Note

The --master-keys parameter is deprecated in 1.8.x and removed in version 2.1.x. 
Instead, use the --wrapping-keys parameter.

Specifies the master keys used in encryption and decryption operations. You can use multiple 
master keys parameters in each command.

The --master-keys parameter is required in encrypt commands. It is required in decrypt 
commands only when you are using a custom (non-AWS KMS) master key provider.

Attributes: The value of the --master-keys parameter consists of the following attributes. 
The format is attribute_name=value.

key

Identifies the wrapping key used in the operation. The format is a key=ID pair. The key
attribute is required in all encrypt commands.

When you use an AWS KMS key in an encrypt command, the value of the key attribute 
can be a key ID, key ARN, an alias name, or an alias ARN. For details about AWS KMS key 
identifiers, see Key identifiers in the AWS Key Management Service Developer Guide.

Syntax and parameter reference 274

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id


AWS Encryption SDK Developer Guide

The key attribute is required in decrypt commands when the master key provider is not AWS 
KMS. The key attribute is not permitted in commands that decrypt data that was encrypted 
under an AWS KMS key.

You can specify multiple key attributes in each --master-keys parameter value. However, 
any provider, region, and profile attributes apply to all master keys in the parameter 
value. To specify master keys with different attribute values, use multiple --master-keys
parameters in the command.

provider

Identifies the master key provider. The format is a provider=ID pair. The default value, aws-
kms, represents AWS KMS. This attribute is required only when the master key provider is 
not AWS KMS.

region

Identifies the AWS Region of an AWS KMS key. This attribute is valid only for AWS KMS keys. 
It is used only when the key identifier does not specify a Region; otherwise, it is ignored. 
When it is used, it overrides the default Region in the AWS CLI named profile.

profile

Identifies an AWS CLI named profile. This attribute is valid only for AWS KMS keys. The 
Region in the profile is used only when the key identifier does not specify a Region and there 
is no region attribute in the command.

Advanced parameters

--algorithm

Specifies an alternate algorithm suite. This parameter is optional and valid only in encrypt 
commands.

If you omit this parameter, the AWS Encryption CLI uses one of the default algorithm suites for 
the AWS Encryption SDK introduced in version 1.8.x. Both default algorithms use AES-GCM with 
an HKDF, an ECDSA signature, and a 256-bit encryption key. One uses key commitment; one 
does not. The choice of default algorithm suite is determined by the commitment policy for the 
command.

The default algorithm suites are recommended for most encryption operations. For a list of 
valid values, see the values for the algorithm parameter in Read the Docs.

Syntax and parameter reference 275

https://docs.aws.amazon.com/cli/latest/userguide/cli-multiple-profiles.html
https://en.wikipedia.org/wiki/HKDF
https://aws-encryption-sdk-cli.readthedocs.io/en/latest/index.html#execution


AWS Encryption SDK Developer Guide

--frame-length

Creates output with specified frame length. This parameter is optional and valid only in encrypt 
commands.

Enter a value in bytes. Valid values are 0 and 1 – 2^31 - 1. A value of 0 indicates nonframed 
data. The default is 4096 (bytes).

Note

Whenever possible, use framed data. The AWS Encryption SDK supports nonframed 
data only for legacy use. Some language implementations of the AWS Encryption SDK 
can still generate nonframed ciphertext. All supported language implementations can 
decrypt framed and nonframed ciphertext.

--max-length

Indicates the maximum frame size (or maximum content length for nonframed messages) in 
bytes to read from encrypted messages. This parameter is optional and valid only in decrypt 
commands. It is designed to protect you from decrypting extremely large malicious ciphertext.

Enter a value in bytes. If you omit this parameter, the AWS Encryption SDK does not limit the 
frame size when decrypting.

--caching

Enables the data key caching feature, which reuses data keys, instead of generating a new data 
key for each input file. This parameter supports an advanced scenario. Be sure to read the Data 
Key Caching documentation before using this feature.

The --caching parameter has the following attributes.

capacity (required)

Determines the maximum number of entries in the cache.

The minimum value is 1. There is no maximum value.

max_age (required)

Determine how long cache entries are used, in seconds, beginning when they are added to 
the cache.

Syntax and parameter reference 276



AWS Encryption SDK Developer Guide

Enter a value greater than 0. There is no maximum value.

max_messages_encrypted (optional)

Determines the maximum number of messages that a cached entry can encrypt.

Valid values are 1 – 2^32. The default value is 2^32 (messages).

max_bytes_encrypted (optional)

Determines the maximum number of bytes that a cached entry can encrypt.

Valid values are 0 and 1 – 2^63 - 1. The default value is 2^63 - 1 (messages). A value of 0 
lets you use data key caching only when you are encrypting empty message strings.

Versions of the AWS Encryption CLI

We recommend that you use the latest version of the AWS Encryption CLI.

Note

Versions of the AWS Encryption CLI earlier than 4.0.0 are in the end-of-support phase.
You can safely update from version 2.1.x and later to the latest version of the AWS 
Encryption CLI without any code or data changes. However,  new security features
introduced in version 2.1.x are not backward-compatible. To update from version 1.7.x
or earlier, you must first update to the latest 1.x version of the AWS Encryption CLI. For 
details, see Migrating your AWS Encryption SDK.
New security features were originally released in AWS Encryption CLI versions 1.7.x
and 2.0.x. However, AWS Encryption CLI version 1.8.x replaces version 1.7.x and AWS 
Encryption CLI 2.1.x replaces 2.0.x. For details, see the relevant security advisory in the aws-
encryption-sdk-cli repository on GitHub.

For information about significant versions of the AWS Encryption SDK, see Versions of the AWS 
Encryption SDK.

Which version do I use?

If you're new to the AWS Encryption CLI, use the latest version.

Versions 277

https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://github.com/aws/aws-encryption-sdk-cli/security/advisories/GHSA-2xwp-m7mq-7q3r
https://github.com/aws/aws-encryption-sdk-cli/
https://github.com/aws/aws-encryption-sdk-cli/


AWS Encryption SDK Developer Guide

To decrypt data encrypted by a version of the AWS Encryption SDK earlier than version 1.7.x, 
migrate first to the latest version of the AWS Encryption CLI. Make all recommended changes
before updating to version 2.1.x or later. For details, see Migrating your AWS Encryption SDK.

Learn more

• For detailed information about the changes and guidance for migrating to these new versions, 
see Migrating your AWS Encryption SDK.

• For descriptions of the new AWS Encryption CLI parameters and attributes, see AWS Encryption 
SDK CLI syntax and parameter reference.

The following lists describe the change to the AWS Encryption CLI in versions 1.8.x and 2.1.x.

Version 1.8.x changes to the AWS Encryption CLI

• Deprecates the --master-keys parameter. Instead, use the --wrapping-keys parameter.

• Adds the --wrapping-keys (-w) parameter. It supports all attributes of the --master-keys
parameter. It also adds the following optional attributes, which are valid only when decrypting 
with AWS KMS keys.

• discovery

• discovery-partition

• discovery-account

For custom master key providers, --encrypt and --decrypt commands require either a
--wrapping-keys parameter or a --master-keys parameter (but not both). Also, an --
encrypt command with AWS KMS keys requires either a --wrapping-keys parameter or a --
master-keys parameter (but not both).

In a --decrypt command with AWS KMS keys, the --wrapping-keys parameter is optional, 
but recommended, because it is required in version 2.1.x. If you use it, you must specify either 
the key attribute or the discovery attribute with a value of true (but not both).

• Adds the --commitment-policy parameter. The only valid value is forbid-encrypt-allow-
decrypt. The forbid-encrypt-allow-decrypt commitment policy is used in all encrypt 
and decrypt commands.

In version 1.8.x, when you use the --wrapping-keys parameter, a --commitment-policy
parameter with the forbid-encrypt-allow-decrypt value is required. Setting the value 

Versions 278



AWS Encryption SDK Developer Guide

explicitly prevents your commitment policy from changing automatically to require-encrypt-
require-decrypt when you upgrade to version 2.1.x.

Version 2.1.x changes to the AWS Encryption CLI

• Removes the --master-keys parameter. Instead, use the --wrapping-keys parameter.

• The --wrapping-keys parameter is required in all encrypt and decrypt commands. You must 
specify either a key attribute or a discovery attribute with a value of true (but not both).

• The --commitment-policy parameter supports the following values. For details, see Setting 
your commitment policy.

• forbid-encrypt-allow-decrypt

• require-encrypt-allow-decrypt

• require-encrypt-require decrypt (Default)

• The --commitment-policy parameter is optional in version 2.1.x. The default value is
require-encrypt-require-decrypt.

Version 1.9.x and 2.2.x changes to the AWS Encryption CLI

• Adds the --decrypt-unsigned parameter. For details, see Version 2.2.x.

• Adds the --buffer parameter. For details, see Version 2.2.x.

• Adds the --max-encrypted-data-keys parameter. For details, see Limiting encrypted data 
keys.

Version 3.0.x changes to the AWS Encryption CLI

• Adds support for AWS KMS multi-Region keys. For details, see Using multi-Region AWS KMS 
keys.

Versions 279



AWS Encryption SDK Developer Guide

Data key caching

Data key caching stores data keys and related cryptographic material in a cache. When you encrypt 
or decrypt data, the AWS Encryption SDK looks for a matching data key in the cache. If it finds a 
match, it uses the cached data key rather than generating a new one. Data key caching can improve 
performance, reduce cost, and help you stay within service limits as your application scales.

Your application can benefit from data key caching if:

• It can reuse data keys.

• It generates numerous data keys.

• Your cryptographic operations are unacceptably slow, expensive, limited, or resource-intensive.

Caching can reduce your use of cryptographic services, such as AWS Key Management Service 
(AWS KMS). If you are hitting your AWS KMS requests-per-second limit, caching can help. Your 
application can use cached keys to service some of your data key requests instead of calling AWS 
KMS. (You can also create a case in the AWS Support Center to raise the limit for your account.)

The AWS Encryption SDK helps you to create and manage your data key cache. It provides a local 
cache and a caching cryptographic materials manager (caching CMM) that interacts with the cache 
and enforces security thresholds that you set. Working together, these components help you to 
benefit from the efficiency of reusing data keys while maintaining the security of your system.

Data key caching is an optional feature of the AWS Encryption SDK that you should use cautiously. 
By default, the AWS Encryption SDK generates a new data key for every encryption operation. This 
technique supports cryptographic best practices, which discourage excessive reuse of data keys. In 
general, use data key caching only when it is required to meet your performance goals. Then, use 
the data key caching security thresholds to ensure that you use the minimum amount of caching 
required to meet your cost and performance goals.

The caching CMM is not supported by the AWS Encryption SDK for .NET. Version 3.x of the AWS 
Encryption SDK for Java only supports the caching CMM with the legacy master key providers 
interface, not the keyring interface. However, version 4.x of the AWS Encryption SDK for .NET 
and version 3.x of the AWS Encryption SDK for Java support the AWS KMS Hierarchical keyring, 
an alternative cryptographic materials caching solution. Content encrypted with the AWS KMS 
Hierarchical keyring can only be decrypted with the AWS KMS Hierarchical keyring.

280

https://docs.aws.amazon.com/kms/latest/developerguide/limits.html#requests-per-second
https://console.aws.amazon.com/support/home#/


AWS Encryption SDK Developer Guide

For a detailed discussion of these security tradeoffs, see AWS Encryption SDK: How to Decide if 
Data Key Caching is Right for Your Application in the AWS Security Blog.

Topics

• How to use data key caching

• Setting cache security thresholds

• Data key caching details

• Data key caching example

How to use data key caching

This topic shows you how to use data key caching in your application. It takes you through the 
process step by step. Then, it combines the steps in a simple example that uses data key caching in 
an operation to encrypt a string.

The examples in this section show how to use version 2.0.x and later of the AWS Encryption 
SDK. For examples that use earlier versions, find your release in the Releases list of the GitHub 
repository for your programming language.

For complete and tested examples of using data key caching in the AWS Encryption SDK, see:

• C/C++: caching_cmm.cpp

• Java: SimpleDataKeyCachingExample.java

• JavaScript Browser: caching_cmm.ts

• JavaScript Node.js: caching_cmm.ts

• Python: data_key_caching_basic.py

The AWS Encryption SDK for .NET does not support data key caching.

Topics

• Using data key caching: Step-by-step

• Data key caching example: Encrypt a string

How to use data key caching 281

https://aws.amazon.com/blogs/security/aws-encryption-sdk-how-to-decide-if-data-key-caching-is-right-for-your-application/
https://aws.amazon.com/blogs/security/aws-encryption-sdk-how-to-decide-if-data-key-caching-is-right-for-your-application/
https://github.com/aws/aws-encryption-sdk-c/releases
https://github.com/aws/aws-encryption-sdk-c/blob/master/examples/caching_cmm.cpp
https://github.com/aws/aws-encryption-sdk-java/blob/master/src/examples/java/com/amazonaws/crypto/examples/v2/SimpleDataKeyCachingExample.java
https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-browser/src/caching_cmm.ts
https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-node/src/caching_cmm.ts
https://github.com/aws/aws-encryption-sdk-python/blob/master/examples/src/data_key_caching_basic.py


AWS Encryption SDK Developer Guide

Using data key caching: Step-by-step

These step-by-step instructions show you how to create the components that you need to 
implement data key caching.

• Create a data key cache. In these examples, we use the local cache that the AWS Encryption SDK 
provides. We limit the cache to 10 data keys.

 

C

// Cache capacity (maximum number of entries) is required
size_t cache_capacity = 10;  
struct aws_allocator *allocator = aws_default_allocator();

struct aws_cryptosdk_materials_cache *cache = 
 aws_cryptosdk_materials_cache_local_new(allocator, cache_capacity);

Java

The following example uses version 2.x of the AWS Encryption SDK for Java. Version 3.x of 
the AWS Encryption SDK for Java deprecates the data key caching CMM. With version 3.x, 
you can also use the AWS KMS Hierarchical keyring, an alternative cryptographic materials 
caching solution.

// Cache capacity (maximum number of entries) is required
int MAX_CACHE_SIZE = 10;  

CryptoMaterialsCache cache = new LocalCryptoMaterialsCache(MAX_CACHE_SIZE);

JavaScript Browser

const capacity = 10

const cache = getLocalCryptographicMaterialsCache(capacity)

JavaScript Node.js

const capacity = 10

Using data key caching: Step-by-step 282



AWS Encryption SDK Developer Guide

const cache = getLocalCryptographicMaterialsCache(capacity)

Python

# Cache capacity (maximum number of entries) is required
MAX_CACHE_SIZE = 10

cache = aws_encryption_sdk.LocalCryptoMaterialsCache(MAX_CACHE_SIZE)

 

• Create a master key provider (Java and Python) or a keyring (C and JavaScript). These examples 
use an AWS Key Management Service (AWS KMS) master key provider or a compatible AWS KMS 
keyring.

 

C

// Create an AWS KMS keyring
//   The input is the Amazon Resource Name (ARN)  
//   of an AWS KMS key

struct aws_cryptosdk_keyring *kms_keyring = 
 Aws::Cryptosdk::KmsKeyring::Builder().Build(kms_key_arn);

Java

The following example uses version 2.x of the AWS Encryption SDK for Java. Version 3.x of 
the AWS Encryption SDK for Java deprecates the data key caching CMM. With version 3.x, 
you can also use the AWS KMS Hierarchical keyring, an alternative cryptographic materials 
caching solution.

// Create an AWS KMS master key provider
//   The input is the Amazon Resource Name (ARN)  
//   of an AWS KMS key

MasterKeyProvider<KmsMasterKey> keyProvider = 
 KmsMasterKeyProvider.builder().buildStrict(kmsKeyArn);

Using data key caching: Step-by-step 283



AWS Encryption SDK Developer Guide

JavaScript Browser

In the browser, you must inject your credentials securely. This example defines credentials in 
a webpack (kms.webpack.config) that resolves credentials at runtime. It creates an AWS KMS 
client provider instance from an AWS KMS client and the credentials. Then, when it creates 
the keyring, it passes the client provider to the constructor along with the AWS KMS key 
(generatorKeyId).

const { accessKeyId, secretAccessKey, sessionToken } = credentials

const clientProvider = getClient(KMS, { 
    credentials: { 
      accessKeyId, 
      secretAccessKey, 
      sessionToken 
    } 
  })

/*  Create an AWS KMS keyring 
 *  You must configure the AWS KMS keyring with at least one AWS KMS key 
 *  The input is the Amazon Resource Name (ARN)  
 */ of an AWS KMS key

const keyring = new KmsKeyringBrowser({ 
    clientProvider, 
    generatorKeyId, 
    keyIds, 
  })

JavaScript Node.js

/* Create an AWS KMS keyring 
 *   The input is the Amazon Resource Name (ARN)  
*/   of an AWS KMS key

const keyring = new KmsKeyringNode({ generatorKeyId })

Python

# Create an AWS KMS master key provider
#  The input is the Amazon Resource Name (ARN)  

Using data key caching: Step-by-step 284



AWS Encryption SDK Developer Guide

#  of an AWS KMS key

key_provider = 
 aws_encryption_sdk.StrictAwsKmsMasterKeyProvider(key_ids=[kms_key_arn])

 

• Create a caching cryptographic materials manager (caching CMM).

 

Associate your caching CMM with your cache and your master key provider or keyring. Then, set 
cache security thresholds on the caching CMM.

 

C

In the AWS Encryption SDK for C, you can create a caching CMM from an underlying CMM, 
such as the default CMM, or from a keyring. This example creates the caching CMM from a 
keyring.

After you create the caching CMM, you can release your references to the keyring and the 
cache. For details, see the section called “Reference counting”.

// Create the caching CMM
//   Set the partition ID to NULL.
//   Set the required maximum age value to 60 seconds.
struct aws_cryptosdk_cmm *caching_cmm = 
 aws_cryptosdk_caching_cmm_new_from_keyring(allocator, cache, kms_keyring, NULL, 
 60, AWS_TIMESTAMP_SECS);

// Add an optional message threshold
//   The cached data key will not be used for more than 10 messages.
aws_status = aws_cryptosdk_caching_cmm_set_limit_messages(caching_cmm, 10);

// Release your references to the cache and the keyring.
aws_cryptosdk_materials_cache_release(cache);
aws_cryptosdk_keyring_release(kms_keyring);

Using data key caching: Step-by-step 285



AWS Encryption SDK Developer Guide

Java

The following example uses version 2.x of the AWS Encryption SDK for Java. Version 3.x of 
the AWS Encryption SDK for Java does not support data key caching, but it does support the
AWS KMS Hierarchical keyring, an alternative cryptographic materials caching solution.

/* 
 * Security thresholds 
 *   Max entry age is required.  
 *   Max messages (and max bytes) per entry are optional 
 */
int MAX_ENTRY_AGE_SECONDS = 60;
int MAX_ENTRY_MSGS = 10; 
        
//Create a caching CMM
CryptoMaterialsManager cachingCmm = 
    CachingCryptoMaterialsManager.newBuilder().withMasterKeyProvider(keyProvider) 
                                 .withCache(cache) 
                                 .withMaxAge(MAX_ENTRY_AGE_SECONDS, 
 TimeUnit.SECONDS) 
                                 .withMessageUseLimit(MAX_ENTRY_MSGS) 
                                 .build();       

JavaScript Browser

/* 
 * Security thresholds 
 *   Max age (in milliseconds) is required. 
 *   Max messages (and max bytes) per entry are optional. 
 */
const maxAge = 1000 * 60
const maxMessagesEncrypted = 10

/* Create a caching CMM from a keyring  */
const cachingCmm = new WebCryptoCachingMaterialsManager({ 
  backingMaterials: keyring, 
  cache, 
  maxAge, 
  maxMessagesEncrypted
})

Using data key caching: Step-by-step 286



AWS Encryption SDK Developer Guide

JavaScript Node.js

/* 
 * Security thresholds 
 *   Max age (in milliseconds) is required. 
 *   Max messages (and max bytes) per entry are optional. 
 */
const maxAge = 1000 * 60
const maxMessagesEncrypted = 10

/* Create a caching CMM from a keyring  */
const cachingCmm = new NodeCachingMaterialsManager({ 
  backingMaterials: keyring, 
  cache, 
  maxAge, 
  maxMessagesEncrypted
})

Python

# Security thresholds
#   Max entry age is required.  
#   Max messages (and max bytes) per entry are optional
#
MAX_ENTRY_AGE_SECONDS = 60.0
MAX_ENTRY_MESSAGES = 10 
        
# Create a caching CMM
caching_cmm = CachingCryptoMaterialsManager( 
    master_key_provider=key_provider, 
    cache=cache, 
    max_age=MAX_ENTRY_AGE_SECONDS, 
    max_messages_encrypted=MAX_ENTRY_MESSAGES
)

That's all you need to do. Then, let the AWS Encryption SDK manage the cache for you, or add your 
own cache management logic.

When you want to use data key caching in a call to encrypt or decrypt data, specify your caching 
CMM instead of a master key provider or other CMM.

Using data key caching: Step-by-step 287



AWS Encryption SDK Developer Guide

Note

If you are encrypting data streams, or any data of unknown size, be sure to specify the 
data size in the request. The AWS Encryption SDK does not use data key caching when 
encrypting data of unknown size.

C

In the AWS Encryption SDK for C, you create a session with the caching CMM and then process 
the session.

By default, when the message size is unknown and unbounded, the AWS Encryption SDK 
does not cache data keys. To allow caching when you don't know the exact data size, use the
aws_cryptosdk_session_set_message_bound method to set a maximum size for the 
message. Set the bound larger than the estimated message size. If the actual message size 
exceeds the bound, the encryption operation fails.

/* Create a session with the caching CMM. Set the session mode to encrypt. */
struct aws_cryptosdk_session *session = 
 aws_cryptosdk_session_new_from_cmm_2(allocator, AWS_CRYPTOSDK_ENCRYPT, 
 caching_cmm);

/* Set a message bound of 1000 bytes */
aws_status = aws_cryptosdk_session_set_message_bound(session, 1000);

/* Encrypt the message using the session with the caching CMM */
aws_status = aws_cryptosdk_session_process( 
             session, output_buffer, output_capacity, &output_produced, 
 input_buffer, input_len, &input_consumed);

/* Release your references to the caching CMM and the session. */
aws_cryptosdk_cmm_release(caching_cmm);
aws_cryptosdk_session_destroy(session);

Java

The following example uses version 2.x of the AWS Encryption SDK for Java. Version 3.x of 
the AWS Encryption SDK for Java deprecates the data key caching CMM. With version 3.x, you 
can also use the AWS KMS Hierarchical keyring, an alternative cryptographic materials caching 
solution.

Using data key caching: Step-by-step 288



AWS Encryption SDK Developer Guide

// When the call to encryptData specifies a caching CMM,
// the encryption operation uses the data key cache
final AwsCrypto encryptionSdk = AwsCrypto.standard();
return encryptionSdk.encryptData(cachingCmm, plaintext_source).getResult();

JavaScript Browser

const { result } = await encrypt(cachingCmm, plaintext)

JavaScript Node.js

When you use the caching CMM in the AWS Encryption SDK for JavaScript for Node.js, the
encrypt method requires the length of the plaintext. If you don't provide it, the data key is not 
cached. If you provide a length, but the plaintext data that you supply exceeds that length, the 
encrypt operation fails. If you don't know the exact length of the plaintext, such as when you're 
streaming data, provide the largest expected value.

const { result } = await encrypt(cachingCmm, plaintext, { plaintextLength: 
 plaintext.length })

Python

# Set up an encryption client
client = aws_encryption_sdk.EncryptionSDKClient()

# When the call to encrypt specifies a caching CMM,
# the encryption operation uses the data key cache
#
encrypted_message, header = client.encrypt( 
    source=plaintext_source, 
    materials_manager=caching_cmm
)

Data key caching example: Encrypt a string

This simple code example uses data key caching when encrypting a string. It combines the code 
from the step-by-step procedure into test code that you can run.

The example creates a local cache and a master key provider or keyring for an AWS KMS key. 
Then, it uses the local cache and master key provider or keyring to create a caching CMM with 

Data key caching example: Encrypt a string 289



AWS Encryption SDK Developer Guide

appropriate security thresholds. In Java and Python, the encryption request specifies the caching 
CMM, the plaintext data to encrypt, and an encryption context. In C, the caching CMM is specified 
in the session, and the session is provided to the encryption request.

To run these examples, you need to supply the Amazon Resource Name (ARN) of an AWS KMS key. 
Be sure that you have permission to use the AWS KMS key to generate a data key.

For more detailed, real-world examples of creating and using a data key cache, see Data key 
caching example code.

C

/*  
 * Copyright 2019 Amazon.com, Inc. or its affiliates. All Rights Reserved.  
 *  
 * Licensed under the Apache License, Version 2.0 (the "License"). You may not use  
 * this file except in compliance with the License. A copy of the License is  
 * located at  
 *  
 *     http://aws.amazon.com/apache2.0/  
 *  
 * or in the "license" file accompanying this file. This file is distributed on an  
 * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or  
 * implied. See the License for the specific language governing permissions and  
 * limitations under the License.  
 */  
  
#include <aws/cryptosdk/cache.h>  
#include <aws/cryptosdk/cpp/kms_keyring.h>  
#include <aws/cryptosdk/session.h>  
  
void encrypt_with_caching(  
    uint8_t *ciphertext,     // output will go here (assumes ciphertext_capacity 
 bytes already allocated)  
    size_t *ciphertext_len,  // length of output will go here  
    size_t ciphertext_capacity,  
    const char *kms_key_arn,  
    int max_entry_age,  
    int cache_capacity) {  
    const uint64_t MAX_ENTRY_MSGS = 100;  
  
    struct aws_allocator *allocator = aws_default_allocator();  
      

Data key caching example: Encrypt a string 290

https://docs.aws.amazon.com/kms/latest/developerguide/viewing-keys.html
https://docs.aws.amazon.com/kms/latest/developerguide/key-policies.html#key-policy-default-allow-users


AWS Encryption SDK Developer Guide

    // Load error strings for debugging  
    aws_cryptosdk_load_error_strings();  
  
    // Create a keyring  
    struct aws_cryptosdk_keyring *kms_keyring = 
 Aws::Cryptosdk::KmsKeyring::Builder().Build(kms_key_arn);  
  
    // Create a cache  
    struct aws_cryptosdk_materials_cache *cache = 
 aws_cryptosdk_materials_cache_local_new(allocator, cache_capacity);  
  
    // Create a caching CMM  
    struct aws_cryptosdk_cmm *caching_cmm = 
 aws_cryptosdk_caching_cmm_new_from_keyring(  
        allocator, cache, kms_keyring, NULL, max_entry_age, AWS_TIMESTAMP_SECS);  
    if (!caching_cmm) abort();  
  
    if (aws_cryptosdk_caching_cmm_set_limit_messages(caching_cmm, MAX_ENTRY_MSGS)) 
 abort();  
  
    // Create a session  
    struct aws_cryptosdk_session *session =          
        aws_cryptosdk_session_new_from_cmm_2(allocator, AWS_CRYPTOSDK_ENCRYPT, 
 caching_cmm);  
    if (!session) abort();  
  
    // Encryption context  
    struct aws_hash_table *enc_ctx = 
 aws_cryptosdk_session_get_enc_ctx_ptr_mut(session);  
    if (!enc_ctx) abort();  
    AWS_STATIC_STRING_FROM_LITERAL(enc_ctx_key, "purpose");  
    AWS_STATIC_STRING_FROM_LITERAL(enc_ctx_value, "test");  
    if (aws_hash_table_put(enc_ctx, enc_ctx_key, (void *)enc_ctx_value, NULL)) 
 abort();  
  
    // Plaintext data to be encrypted  
    const char *my_data = "My plaintext data";  
    size_t my_data_len  = strlen(my_data);  
    if (aws_cryptosdk_session_set_message_size(session, my_data_len)) abort();  
  
    // When the session uses a caching CMM, the encryption operation uses the data 
 key cache  
    // specified in the caching CMM.  
    size_t bytes_read;  

Data key caching example: Encrypt a string 291



AWS Encryption SDK Developer Guide

    if (aws_cryptosdk_session_process(  
            session,  
            ciphertext,  
            ciphertext_capacity,  
            ciphertext_len,  
            (const uint8_t *)my_data,  
            my_data_len,  
            &bytes_read))  
        abort();  
    if (!aws_cryptosdk_session_is_done(session) || bytes_read != my_data_len) 
 abort();  
  
    aws_cryptosdk_session_destroy(session);  
    aws_cryptosdk_cmm_release(caching_cmm);  
    aws_cryptosdk_materials_cache_release(cache);  
    aws_cryptosdk_keyring_release(kms_keyring);  
}

Java

The following example uses version 2.x of the AWS Encryption SDK for Java. Version 3.x of 
the AWS Encryption SDK for Java deprecates the data key caching CMM. With version 3.x, you 
can also use the AWS KMS Hierarchical keyring, an alternative cryptographic materials caching 
solution.

// Copyright Amazon.com Inc. or its affiliates. All Rights Reserved.  
// SPDX-License-Identifier: Apache-2.0  
  
package com.amazonaws.crypto.examples;  
  
import com.amazonaws.encryptionsdk.AwsCrypto;  
import com.amazonaws.encryptionsdk.CryptoMaterialsManager;  
import com.amazonaws.encryptionsdk.MasterKeyProvider;  
import com.amazonaws.encryptionsdk.caching.CachingCryptoMaterialsManager;  
import com.amazonaws.encryptionsdk.caching.CryptoMaterialsCache;  
import com.amazonaws.encryptionsdk.caching.LocalCryptoMaterialsCache;  
import com.amazonaws.encryptionsdk.kmssdkv2.KmsMasterKey;  
import com.amazonaws.encryptionsdk.kmssdkv2.KmsMasterKeyProvider;  
import java.nio.charset.StandardCharsets;  
import java.util.Collections;  
import java.util.Map;  
import java.util.concurrent.TimeUnit;  
  

Data key caching example: Encrypt a string 292



AWS Encryption SDK Developer Guide

/**  
 * <p>  
 * Encrypts a string using an &KMS; key and data key caching  
 *  
 * <p>  
 * Arguments:  
 * <ol>  
 * <li>KMS Key ARN: To find the Amazon Resource Name of your &KMS; key,  
 *     see 'Find the key ID and ARN' at https://docs.aws.amazon.com/kms/latest/
developerguide/find-cmk-id-arn.html  
 * <li>Max entry age: Maximum time (in seconds) that a cached entry can be used  
 * <li>Cache capacity: Maximum number of entries in the cache  
 * </ol>  
 */  
public class SimpleDataKeyCachingExample {  
  
    /*  
     * Security thresholds  
     *   Max entry age is required.  
     *   Max messages (and max bytes) per data key are optional  
     */  
    private static final int MAX_ENTRY_MSGS = 100;  
  
    public static byte[] encryptWithCaching(String kmsKeyArn, int maxEntryAge, int 
 cacheCapacity) {  
        // Plaintext data to be encrypted  
        byte[] myData = "My plaintext data".getBytes(StandardCharsets.UTF_8);  
  
        // Encryption context  
        // Most encrypted data should have an associated encryption context  
        // to protect integrity. This sample uses placeholder values.  
        // For more information see:  
        // blogs.aws.amazon.com/security/post/Tx2LZ6WBJJANTNW/How-to-Protect-the-
Integrity-of-Your-Encrypted-Data-by-Using-AWS-Key-Management  
        final Map<String, String> encryptionContext = 
 Collections.singletonMap("purpose", "test");  
  
        // Create a master key provider  
        MasterKeyProvider<KmsMasterKey> keyProvider = 
 KmsMasterKeyProvider.builder()  
            .buildStrict(kmsKeyArn);  
  
        // Create a cache  
        CryptoMaterialsCache cache = new LocalCryptoMaterialsCache(cacheCapacity);  

Data key caching example: Encrypt a string 293



AWS Encryption SDK Developer Guide

 
        // Create a caching CMM  
        CryptoMaterialsManager cachingCmm =  
            
 CachingCryptoMaterialsManager.newBuilder().withMasterKeyProvider(keyProvider)  
                .withCache(cache)  
                .withMaxAge(maxEntryAge, TimeUnit.SECONDS)  
                .withMessageUseLimit(MAX_ENTRY_MSGS)  
                .build();  
  
        // When the call to encryptData specifies a caching CMM,  
        // the encryption operation uses the data key cache  
        final AwsCrypto encryptionSdk = AwsCrypto.standard();  
        return encryptionSdk.encryptData(cachingCmm, myData, 
 encryptionContext).getResult();  
    }  
} 

JavaScript Browser

// Copyright Amazon.com Inc. or its affiliates. All Rights Reserved.  
// SPDX-License-Identifier: Apache-2.0  
  
/* This is a simple example of using a caching CMM with a KMS keyring  
 * to encrypt and decrypt using the AWS Encryption SDK for Javascript in a browser.  
 */  
  
import {  
  KmsKeyringBrowser,  
  KMS,  
  getClient,  
  buildClient,  
  CommitmentPolicy,  
  WebCryptoCachingMaterialsManager,  
  getLocalCryptographicMaterialsCache,  
} from '@aws-crypto/client-browser'  
import { toBase64 } from '@aws-sdk/util-base64-browser'  
  
/* This builds the client with the REQUIRE_ENCRYPT_REQUIRE_DECRYPT commitment 
 policy,  
 * which enforces that this client only encrypts using committing algorithm suites  
 * and enforces that this client  
 * will only decrypt encrypted messages  

Data key caching example: Encrypt a string 294



AWS Encryption SDK Developer Guide

 * that were created with a committing algorithm suite.  
 * This is the default commitment policy  
 * if you build the client with `buildClient()`.  
 */  
const { encrypt, decrypt } = buildClient(  
  CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT  
)  
  
/* This is injected by webpack.  
 * The webpack.DefinePlugin or @aws-sdk/karma-credential-loader will replace the 
 values when bundling.  
 * The credential values are pulled from @aws-sdk/credential-provider-node  
 * Use any method you like to get credentials into the browser.  
 * See kms.webpack.config  
 */  
declare const credentials: {  
  accessKeyId: string  
  secretAccessKey: string  
  sessionToken: string  
}  
  
/* This is done to facilitate testing. */  
export async function testCachingCMMExample() {  
  /* This example uses an &KMS; keyring. The generator key in a &KMS; keyring 
 generates and encrypts the data key.  
   * The caller needs kms:GenerateDataKey permission on the &KMS; key in 
 generatorKeyId.  
   */  
  const generatorKeyId =  
    'arn:aws:kms:us-west-2:658956600833:alias/EncryptDecrypt'  
  
  /* Adding additional KMS keys that can decrypt.  
   * The caller must have kms:Encrypt permission for every &KMS; key in keyIds.  
   * You might list several keys in different AWS Regions.  
   * This allows you to decrypt the data in any of the represented Regions.  
   * In this example, the generator key  
   * and the additional key are actually the same &KMS; key.  
   * In `generatorId`, this &KMS; key is identified by its alias ARN.  
   * In `keyIds`, this &KMS; key is identified by its key ARN.  
   * In practice, you would specify different &KMS; keys,  
   * or omit the `keyIds` parameter.  
   * This is *only* to demonstrate how the &KMS; key ARNs are configured.  
   */  
  const keyIds = [  

Data key caching example: Encrypt a string 295



AWS Encryption SDK Developer Guide

    'arn:aws:kms:us-west-2:658956600833:key/b3537ef1-d8dc-4780-9f5a-55776cbb2f7f',  
  ]  
  
  /* Need a client provider that will inject correct credentials.  
   * The credentials here are injected by webpack from your environment bundle is 
 created  
   * The credential values are pulled using @aws-sdk/credential-provider-node.  
   * See kms.webpack.config  
   * You should inject your credential into the browser in a secure manner  
   * that works with your application.  
   */  
  const { accessKeyId, secretAccessKey, sessionToken } = credentials  
  
  /* getClient takes a KMS client constructor  
   * and optional configuration values.  
   * The credentials can be injected here,  
   * because browsers do not have a standard credential discovery process the way 
 Node.js does.  
   */  
  const clientProvider = getClient(KMS, {  
    credentials: {  
      accessKeyId,  
      secretAccessKey,  
      sessionToken,  
    },  
  })  
  
  /* You must configure the KMS keyring with your &KMS; keys */  
  const keyring = new KmsKeyringBrowser({  
    clientProvider,  
    generatorKeyId,  
    keyIds,  
  })  
  
  /* Create a cache to hold the data keys (and related cryptographic material).  
   * This example uses the local cache provided by the Encryption SDK.  
   * The `capacity` value represents the maximum number of entries  
   * that the cache can hold.  
   * To make room for an additional entry,  
   * the cache evicts the oldest cached entry.  
   * Both encrypt and decrypt requests count independently towards this threshold.  
   * Entries that exceed any cache threshold are actively removed from the cache.  
   * By default, the SDK checks one item in the cache every 60 seconds (60,000 
 milliseconds).  

Data key caching example: Encrypt a string 296



AWS Encryption SDK Developer Guide

   * To change this frequency, pass in a `proactiveFrequency` value  
   * as the second parameter. This value is in milliseconds.  
   */  
  const capacity = 100  
  const cache = getLocalCryptographicMaterialsCache(capacity)  
  
  /* The partition name lets multiple caching CMMs share the same local 
 cryptographic cache.  
   * By default, the entries for each CMM are cached separately. However, if you 
 want these CMMs to share the cache,  
   * use the same partition name for both caching CMMs.  
   * If you don't supply a partition name, the Encryption SDK generates a random 
 name for each caching CMM.  
   * As a result, sharing elements in the cache MUST be an intentional operation.  
   */  
  const partition = 'local partition name'  
  
  /* maxAge is the time in milliseconds that an entry will be cached.  
   * Elements are actively removed from the cache.  
   */  
  const maxAge = 1000 * 60  
  
  /* The maximum number of bytes that will be encrypted under a single data key.  
   * This value is optional,  
   * but you should configure the lowest practical value.  
   */  
  const maxBytesEncrypted = 100  
  
  /* The maximum number of messages that will be encrypted under a single data key.  
   * This value is optional,  
   * but you should configure the lowest practical value.  
   */  
  const maxMessagesEncrypted = 10  
  
  const cachingCMM = new WebCryptoCachingMaterialsManager({  
    backingMaterials: keyring,  
    cache,  
    partition,  
    maxAge,  
    maxBytesEncrypted,  
    maxMessagesEncrypted,  
  })  
  
  /* Encryption context is a *very* powerful tool for controlling  

Data key caching example: Encrypt a string 297



AWS Encryption SDK Developer Guide

   * and managing access.  
   * When you pass an encryption context to the encrypt function,  
   * the encryption context is cryptographically bound to the ciphertext.  
   * If you don't pass in the same encryption context when decrypting,  
   * the decrypt function fails.  
   * The encryption context is ***not*** secret!  
   * Encrypted data is opaque.  
   * You can use an encryption context to assert things about the encrypted data.  
   * The encryption context helps you to determine  
   * whether the ciphertext you retrieved is the ciphertext you expect to decrypt.  
   * For example, if you are are only expecting data from 'us-west-2',  
   * the appearance of a different AWS Region in the encryption context can indicate 
 malicious interference.  
   * See: https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/
concepts.html#encryption-context  
   *  
   * Also, cached data keys are reused ***only*** when the encryption contexts 
 passed into the functions are an exact case-sensitive match.  
   * See: https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/data-
caching-details.html#caching-encryption-context  
   */  
  const encryptionContext = {  
    stage: 'demo',  
    purpose: 'simple demonstration app',  
    origin: 'us-west-2',  
  }  
  
  /* Find data to encrypt. */  
  const plainText = new Uint8Array([1, 2, 3, 4, 5])  
  
  /* Encrypt the data.  
   * The caching CMM only reuses data keys  
   * when it know the length (or an estimate) of the plaintext.  
   * However, in the browser,  
   * you must provide all of the plaintext to the encrypt function.  
   * Therefore, the encrypt function in the browser knows the length of the 
 plaintext  
   * and does not accept a plaintextLength option.  
   */  
  const { result } = await encrypt(cachingCMM, plainText, { encryptionContext })  
  
  /* Log the plain text  
   * only for testing and to show that it works.  
   */  

Data key caching example: Encrypt a string 298



AWS Encryption SDK Developer Guide

  console.log('plainText:', plainText)  
  document.write('</br>plainText:' + plainText + '</br>')  
  
  /* Log the base64-encoded result  
   * so that you can try decrypting it with another AWS Encryption SDK 
 implementation.  
   */  
  const resultBase64 = toBase64(result)  
  console.log(resultBase64)  
  document.write(resultBase64)  
  
  /* Decrypt the data.  
   * NOTE: This decrypt request will not use the data key  
   * that was cached during the encrypt operation.  
   * Data keys for encrypt and decrypt operations are cached separately.  
   */  
  const { plaintext, messageHeader } = await decrypt(cachingCMM, result)  
  
  /* Grab the encryption context so you can verify it. */  
  const { encryptionContext: decryptedContext } = messageHeader  
  
  /* Verify the encryption context.  
   * If you use an algorithm suite with signing,  
   * the Encryption SDK adds a name-value pair to the encryption context that 
 contains the public key.  
   * Because the encryption context might contain additional key-value pairs,  
   * do not include a test that requires that all key-value pairs match.  
   * Instead, verify that the key-value pairs that you supplied to the `encrypt` 
 function are included in the encryption context that the `decrypt` function 
 returns.  
   */  
  Object.entries(encryptionContext).forEach(([key, value]) => {  
    if (decryptedContext[key] !== value)  
      throw new Error('Encryption Context does not match expected values')  
  })  
  
  /* Log the clear message  
   * only for testing and to show that it works.  
   */  
  document.write('</br>Decrypted:' + plaintext)  
  console.log(plaintext)  
  
  /* Return the values to make testing easy. */  
  return { plainText, plaintext }  

Data key caching example: Encrypt a string 299



AWS Encryption SDK Developer Guide

}

JavaScript Node.js

// Copyright Amazon.com Inc. or its affiliates. All Rights Reserved.  
// SPDX-License-Identifier: Apache-2.0  
  
import {  
  KmsKeyringNode,  
  buildClient,  
  CommitmentPolicy,  
  NodeCachingMaterialsManager,  
  getLocalCryptographicMaterialsCache,  
} from '@aws-crypto/client-node'  
  
/* This builds the client with the REQUIRE_ENCRYPT_REQUIRE_DECRYPT commitment 
 policy,  
 * which enforces that this client only encrypts using committing algorithm suites  
 * and enforces that this client  
 * will only decrypt encrypted messages  
 * that were created with a committing algorithm suite.  
 * This is the default commitment policy  
 * if you build the client with `buildClient()`.  
 */  
const { encrypt, decrypt } = buildClient(  
  CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT  
)  
  
export async function cachingCMMNodeSimpleTest() {  
  /* An &KMS; key is required to generate the data key.  
   * You need kms:GenerateDataKey permission on the &KMS; key in generatorKeyId.  
   */  
  const generatorKeyId =  
    'arn:aws:kms:us-west-2:658956600833:alias/EncryptDecrypt'  
  
  /* Adding alternate &KMS; keys that can decrypt.  
   * Access to kms:Encrypt is required for every &KMS; key in keyIds.  
   * You might list several keys in different AWS Regions.  
   * This allows you to decrypt the data in any of the represented Regions.  
   * In this example, the generator key  
   * and the additional key are actually the same &KMS; key.  
   * In `generatorId`, this &KMS; key is identified by its alias ARN.  
   * In `keyIds`, this &KMS; key is identified by its key ARN.  

Data key caching example: Encrypt a string 300



AWS Encryption SDK Developer Guide

   * In practice, you would specify different &KMS; keys,  
   * or omit the `keyIds` parameter.  
   * This is *only* to demonstrate how the &KMS; key ARNs are configured.  
   */  
  const keyIds = [  
    'arn:aws:kms:us-west-2:658956600833:key/b3537ef1-d8dc-4780-9f5a-55776cbb2f7f',  
  ]  
  
  /* The &KMS; keyring must be configured with the desired &KMS; keys  
   * This example passes the keyring to the caching CMM  
   * instead of using it directly.  
   */  
  const keyring = new KmsKeyringNode({ generatorKeyId, keyIds })  
  
  /* Create a cache to hold the data keys (and related cryptographic material).  
   * This example uses the local cache provided by the Encryption SDK.  
   * The `capacity` value represents the maximum number of entries  
   * that the cache can hold.  
   * To make room for an additional entry,  
   * the cache evicts the oldest cached entry.  
   * Both encrypt and decrypt requests count independently towards this threshold.  
   * Entries that exceed any cache threshold are actively removed from the cache.  
   * By default, the SDK checks one item in the cache every 60 seconds (60,000 
 milliseconds).  
   * To change this frequency, pass in a `proactiveFrequency` value  
   * as the second parameter. This value is in milliseconds.  
   */  
  const capacity = 100  
  const cache = getLocalCryptographicMaterialsCache(capacity)  
  
  /* The partition name lets multiple caching CMMs share the same local 
 cryptographic cache.  
   * By default, the entries for each CMM are cached separately. However, if you 
 want these CMMs to share the cache,  
   * use the same partition name for both caching CMMs.  
   * If you don't supply a partition name, the Encryption SDK generates a random 
 name for each caching CMM.  
   * As a result, sharing elements in the cache MUST be an intentional operation.  
   */  
  const partition = 'local partition name'  
  
  /* maxAge is the time in milliseconds that an entry will be cached.  
   * Elements are actively removed from the cache.  
   */  

Data key caching example: Encrypt a string 301



AWS Encryption SDK Developer Guide

  const maxAge = 1000 * 60  
  
  /* The maximum amount of bytes that will be encrypted under a single data key.  
   * This value is optional,  
   * but you should configure the lowest value possible.  
   */  
  const maxBytesEncrypted = 100  
  
  /* The maximum number of messages that will be encrypted under a single data key.  
   * This value is optional,  
   * but you should configure the lowest value possible.  
   */  
  const maxMessagesEncrypted = 10  
  
  const cachingCMM = new NodeCachingMaterialsManager({  
    backingMaterials: keyring,  
    cache,  
    partition,  
    maxAge,  
    maxBytesEncrypted,  
    maxMessagesEncrypted,  
  })  
  
  /* Encryption context is a *very* powerful tool for controlling  
   * and managing access.  
   * When you pass an encryption context to the encrypt function,  
   * the encryption context is cryptographically bound to the ciphertext.  
   * If you don't pass in the same encryption context when decrypting,  
   * the decrypt function fails.  
   * The encryption context is ***not*** secret!  
   * Encrypted data is opaque.  
   * You can use an encryption context to assert things about the encrypted data.  
   * The encryption context helps you to determine  
   * whether the ciphertext you retrieved is the ciphertext you expect to decrypt.  
   * For example, if you are are only expecting data from 'us-west-2',  
   * the appearance of a different AWS Region in the encryption context can indicate 
 malicious interference.  
   * See: https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/
concepts.html#encryption-context  
   *  
   * Also, cached data keys are reused ***only*** when the encryption contexts 
 passed into the functions are an exact case-sensitive match.  
   * See: https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/data-
caching-details.html#caching-encryption-context  

Data key caching example: Encrypt a string 302



AWS Encryption SDK Developer Guide

   */  
  const encryptionContext = {  
    stage: 'demo',  
    purpose: 'simple demonstration app',  
    origin: 'us-west-2',  
  }  
  
  /* Find data to encrypt.  A simple string. */  
  const cleartext = 'asdf'  
  
  /* Encrypt the data.  
   * The caching CMM only reuses data keys  
   * when it know the length (or an estimate) of the plaintext.  
   * If you do not know the length,  
   * because the data is a stream  
   * provide an estimate of the largest expected value.  
   *  
   * If your estimate is smaller than the actual plaintext length  
   * the AWS Encryption SDK will throw an exception.  
   *  
   * If the plaintext is not a stream,  
   * the AWS Encryption SDK uses the actual plaintext length  
   * instead of any length you provide.  
   */  
  const { result } = await encrypt(cachingCMM, cleartext, {  
    encryptionContext,  
    plaintextLength: 4,  
  })  
  
  /* Decrypt the data.  
   * NOTE: This decrypt request will not use the data key  
   * that was cached during the encrypt operation.  
   * Data keys for encrypt and decrypt operations are cached separately.  
   */  
  const { plaintext, messageHeader } = await decrypt(cachingCMM, result)  
  
  /* Grab the encryption context so you can verify it. */  
  const { encryptionContext: decryptedContext } = messageHeader  
  
  /* Verify the encryption context.  
   * If you use an algorithm suite with signing,  
   * the Encryption SDK adds a name-value pair to the encryption context that 
 contains the public key.  
   * Because the encryption context might contain additional key-value pairs,  

Data key caching example: Encrypt a string 303



AWS Encryption SDK Developer Guide

   * do not include a test that requires that all key-value pairs match.  
   * Instead, verify that the key-value pairs that you supplied to the `encrypt` 
 function are included in the encryption context that the `decrypt` function 
 returns.  
   */  
  Object.entries(encryptionContext).forEach(([key, value]) => {  
    if (decryptedContext[key] !== value)  
      throw new Error('Encryption Context does not match expected values')  
  })  
  
  /* Return the values so the code can be tested. */  
  return { plaintext, result, cleartext, messageHeader }  
}

Python

# Copyright 2017 Amazon.com, Inc. or its affiliates. All Rights Reserved.  
#  
# Licensed under the Apache License, Version 2.0 (the "License"). You  
# may not use this file except in compliance with the License. A copy of  
# the License is located at  
#  
# http://aws.amazon.com/apache2.0/  
#  
# or in the "license" file accompanying this file. This file is  
# distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF  
# ANY KIND, either express or implied. See the License for the specific  
# language governing permissions and limitations under the License.  
"""Example of encryption with data key caching."""  
import aws_encryption_sdk  
from aws_encryption_sdk import CommitmentPolicy  
  
  
def encrypt_with_caching(kms_key_arn, max_age_in_cache, cache_capacity):  
    """Encrypts a string using an &KMS; key and data key caching.  
  
    :param str kms_key_arn: Amazon Resource Name (ARN) of the &KMS; key  
    :param float max_age_in_cache: Maximum time in seconds that a cached entry can 
 be used  
    :param int cache_capacity: Maximum number of entries to retain in cache at once  
    """  
    # Data to be encrypted  
    my_data = "My plaintext data"  

Data key caching example: Encrypt a string 304



AWS Encryption SDK Developer Guide

 
    # Security thresholds  
    #   Max messages (or max bytes per) data key are optional  
    MAX_ENTRY_MESSAGES = 100  
  
    # Create an encryption context  
    encryption_context = {"purpose": "test"}  
  
    # Set up an encryption client with an explicit commitment policy. Note that if 
 you do not explicitly choose a  
    # commitment policy, REQUIRE_ENCRYPT_REQUIRE_DECRYPT is used by default.  
    client = 
 aws_encryption_sdk.EncryptionSDKClient(commitment_policy=CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT)  
  
    # Create a master key provider for the &KMS; key  
    key_provider = 
 aws_encryption_sdk.StrictAwsKmsMasterKeyProvider(key_ids=[kms_key_arn])  
  
    # Create a local cache  
    cache = aws_encryption_sdk.LocalCryptoMaterialsCache(cache_capacity)  
  
    # Create a caching CMM  
    caching_cmm = aws_encryption_sdk.CachingCryptoMaterialsManager(  
        master_key_provider=key_provider,  
        cache=cache,  
        max_age=max_age_in_cache,  
        max_messages_encrypted=MAX_ENTRY_MESSAGES,  
    )  
  
    # When the call to encrypt data specifies a caching CMM,  
    # the encryption operation uses the data key cache specified  
    # in the caching CMM  
    encrypted_message, _header = client.encrypt(  
        source=my_data, materials_manager=caching_cmm, 
 encryption_context=encryption_context  
    )  
  
    return encrypted_message

Data key caching example: Encrypt a string 305



AWS Encryption SDK Developer Guide

Setting cache security thresholds

When you implement data key caching, you need to configure the security thresholds that the
caching CMM enforces.

The security thresholds help you to limit how long each cached data key is used and how much 
data is protected under each data key. The caching CMM returns cached data keys only when the 
cache entry conforms to all of the security thresholds. If the cache entry exceeds any threshold, the 
entry is not used for the current operation and it is evicted from the cache as soon as possible. The 
first use of each data key (before caching) is exempt from these thresholds.

As a rule, use the minimum amount of caching that is required to meet your cost and performance 
goals.

The AWS Encryption SDK only caches data keys that are encrypted by using a key derivation 
function. Also, it establishes upper limits for some of the threshold values. These restrictions 
ensure that data keys are not reused beyond their cryptographic limits. However, because your 
plaintext data keys are cached (in memory, by default), try to minimize the time that the keys are 
saved . Also, try to limit the data that might be exposed if a key is compromised.

For examples of setting cache security thresholds, see AWS Encryption SDK: How to Decide if Data 
Key Caching is Right for Your Application in the AWS Security Blog.

Note

The caching CMM enforces all of the following thresholds. If you do not specify an optional 
value, the caching CMM uses the default value.
To disable data key caching temporarily, the Java and Python implementations of the AWS 
Encryption SDK provide a null cryptographic materials cache (null cache). The null cache 
returns a miss for every GET request and does not respond to PUT requests. We recommend 
that you use the null cache instead of setting the cache capacity or security thresholds to 0. 
For more information, see the null cache in Java and Python.

Maximum age (required)

Determines how long a cached entry can be used, beginning when it was added. This value is 
required. Enter a value greater than 0. The AWS Encryption SDK does not limit the maximum 
age value.

Setting cache security thresholds 306

https://en.wikipedia.org/wiki/Key_derivation_function
https://en.wikipedia.org/wiki/Key_derivation_function
https://aws.amazon.com/blogs/security/aws-encryption-sdk-how-to-decide-if-data-key-caching-is-right-for-your-application/
https://aws.amazon.com/blogs/security/aws-encryption-sdk-how-to-decide-if-data-key-caching-is-right-for-your-application/
https://aws.github.io/aws-encryption-sdk-java/com/amazonaws/encryptionsdk/caching/NullCryptoMaterialsCache.html
https://aws-encryption-sdk-python.readthedocs.io/en/latest/generated/aws_encryption_sdk.caches.null.html


AWS Encryption SDK Developer Guide

All language implementations of the AWS Encryption SDK define the maximum age in seconds, 
except for the AWS Encryption SDK for JavaScript, which uses milliseconds.

Use the shortest interval that still allows your application to benefit from the cache. You can 
use the maximum age threshold like a key rotation policy. Use it to limit reuse of data keys, 
minimize exposure of cryptographic materials, and evict data keys whose policies might have 
changed while they were cached.

Maximum messages encrypted (optional)

Specifies the maximum number of messages that a cached data key can encrypt. This value is 
optional. Enter a value between 1 and 2^32 messages. The default value is 2^32 messages.

Set the number of messages protected by each cached key to be large enough to get value 
from reuse, but small enough to limit the number of messages that might be exposed if a key is 
compromised.

Maximum bytes encrypted (optional)

Specifies the maximum number of bytes that a cached data key can encrypt. This value is 
optional. Enter a value between 0 and 2^63 - 1. The default value is 2^63 - 1. A value of 0 lets 
you use data key caching only when you are encrypting empty message strings.

The bytes in the current request are included when evaluating this threshold. If the bytes 
processed, plus current bytes, exceed the threshold, the cached data key is evicted from the 
cache, even though it might have been used on a smaller request.

Data key caching details

Most applications can use the default implementation of data key caching without writing custom 
code. This section describes the default implementation and some details about options.

Topics

• How data key caching works

• Creating a cryptographic materials cache

• Creating a caching cryptographic materials manager

• What is in a data key cache entry?

• Encryption context: How to select cache entries

Data key caching details 307



AWS Encryption SDK Developer Guide

• Is my application using cached data keys?

How data key caching works

When you use data key caching in a request to encrypt or decrypt data, the AWS Encryption SDK 
first searches the cache for a data key that matches the request. If it finds a valid match, it uses 
the cached data key to encrypt the data. Otherwise, it generates a new data key, just as it would 
without the cache.

Data key caching is not used for data of unknown size, such as streamed data. This allows the 
caching CMM to properly enforce the maximum bytes threshold. To avoid this behavior, add the 
message size to the encryption request.

In addition to a cache, data key caching uses a caching cryptographic materials manager (caching 
CMM). The caching CMM is a specialized cryptographic materials manager (CMM) that interacts 
with a cache and an underlying CMM. (When you specify a master key provider or keyring, the AWS 
Encryption SDK creates a default CMM for you.) The caching CMM caches the data keys that its 
underlying CMM returns. The caching CMM also enforces cache security thresholds that you set.

To prevent the wrong data key from being selected from the cache, all compatible caching CMMs 
require that the following properties of the cached cryptographic materials match the materials 
request.

• Algorithm suite

• Encryption context (even when empty)

• Partition name (a string that identifies the caching CMM)

• (Decryption only) Encrypted data keys

Note

The AWS Encryption SDK caches data keys only when the algorithm suite uses a key 
derivation function.

The following workflows show how a request to encrypt data is processed with and without data 
key caching. They show how the caching components that you create, including the cache and the 
caching CMM, are used in the process.

How data key caching works 308

https://en.wikipedia.org/wiki/Key_derivation_function
https://en.wikipedia.org/wiki/Key_derivation_function


AWS Encryption SDK Developer Guide

Encrypt data without caching

To get encryption materials without caching:

1. An application asks the AWS Encryption SDK to encrypt data.

The request specifies a master key provider or keyring. The AWS Encryption SDK creates a 
default CMM that interacts with your master key provider or keyring.

2. The AWS Encryption SDK asks the CMM for encryption materials (get cryptographic materials).

3. The CMM asks its keyring (C and JavaScript) or master key provider (Java and Python) for 
cryptographic materials. This might involve a call to a cryptographic service, such as AWS 
Key Management Service (AWS KMS). The CMM returns the encryption materials to the AWS 
Encryption SDK.

4. The AWS Encryption SDK uses the plaintext data key to encrypt the data. It stores the encrypted 
data and encrypted data keys in an encrypted message, which it returns to the user.

Encrypt data with caching

To get encryption materials with data key caching:

How data key caching works 309



AWS Encryption SDK Developer Guide

1. An application asks the AWS Encryption SDK to encrypt data.

The request specifies a caching cryptographic materials manager (caching CMM) that is 
associated with a underlying cryptographic materials manager (CMM). When you specify a 
master key provider or keyring, the AWS Encryption SDK creates a default CMM for you.

2. The SDK asks the specified caching CMM for encryption materials.

3. The caching CMM requests encryption materials from the cache.

a. If the cache finds a match, it updates the age and use values of the matched cache entry, and 
returns the cached encryption materials to the caching CMM.

If the cache entry conforms to its security thresholds, the caching CMM returns it to the SDK. 
Otherwise, it tells the cache to evict the entry and proceeds as though there was no match.

b. If the cache cannot find a valid match, the caching CMM asks its underlying CMM to generate 
a new data key.

The underlying CMM gets the cryptographic materials from its keyring (C and JavaScript) or 
master key provider (Java and Python). This might involve a call to a service, such as AWS Key 
Management Service. The underlying CMM returns the plaintext and encrypted copies of the 
data key to the caching CMM.

The caching CMM saves the new encryption materials in the cache.

4. The caching CMM returns the encryption materials to the AWS Encryption SDK.

5. The AWS Encryption SDK uses the plaintext data key to encrypt the data. It stores the encrypted 
data and encrypted data keys in an encrypted message, which it returns to the user.

How data key caching works 310



AWS Encryption SDK Developer Guide

Creating a cryptographic materials cache

The AWS Encryption SDK defines the requirements for a cryptographic materials 
cache used in data key caching. It also provides a local cache, which is a configurable, 
in-memory, least recently used (LRU) cache. To create an instance of the 
local cache, use the LocalCryptoMaterialsCache constructor in Java and 
Python, the getLocalCryptographicMaterialsCache function in JavaScript, or the
aws_cryptosdk_materials_cache_local_new constructor in C.

The local cache includes logic for basic cache management, including adding, evicting, and 
matching cached entries, and maintaining the cache. You don't need to write any custom cache 
management logic. You can use the local cache as is, customize it, or substitute any compatible 
cache.

When you create a local cache, you set its capacity, that is, the maximum number of entries that 
the cache can hold. This setting helps you to design an efficient cache with limited data key reuse.

The AWS Encryption SDK for Java and the AWS Encryption SDK for Python also provide a
null cryptographic materials cache (NullCryptoMaterialsCache). The NullCryptoMaterialsCache 
returns a miss for all GET operations and does not respond to PUT operations. You can use the 

Creating a cryptographic materials cache 311

https://en.wikipedia.org/wiki/Cache_replacement_policies#Least_Recently_Used_.28LRU.29


AWS Encryption SDK Developer Guide

NullCryptoMaterialsCache in testing or to temporarily disable caching in an application that 
includes caching code.

In the AWS Encryption SDK, each cryptographic materials cache is associated with a caching 
cryptographic materials manager (caching CMM). The caching CMM gets data keys from the cache, 
puts data keys in the cache, and enforces security thresholds that you set. When you create a 
caching CMM, you specify the cache that it uses and the underlying CMM or master key provider 
that generates the data keys that it caches.

Creating a caching cryptographic materials manager

To enable data key caching, you create a cache and a caching cryptographic materials manager
(caching CMM). Then, in your requests to encrypt or decrypt data, you specify a caching CMM, 
instead of a standard cryptographic materials manager (CMM), or master key provider or keyring.

There are two types of CMMs. Both get data keys (and related cryptographic material), but in 
different ways, as follows:

• A CMM is associated with a keyring (C or JavaScript) or a master key provider (Java and Python). 
When the SDK asks the CMM for encryption or decryption materials, the CMM gets the materials 
from its keyring or master key provider. In Java and Python, the CMM uses the master keys to 
generate, encrypt, or decrypt the data keys. In C and JavaScript, the keyring generates, encrypts, 
and returns the cryptographic materials.

• A caching CMM is associated with one cache, such as a local cache, and an underlying CMM. 
When the SDK asks the caching CMM for cryptographic materials, the caching CMM tries to get 
them from the cache. If it cannot find a match, the caching CMM asks its underlying CMM for the 
materials. Then, it caches the new cryptographic materials before returning them to the caller.

The caching CMM also enforces security thresholds that you set for each cache entry. Because the 
security thresholds are set in and enforced by the caching CMM, you can use any compatible cache, 
even if the cache is not designed for sensitive material.

What is in a data key cache entry?

Data key caching stores data keys and related cryptographic materials in a cache. Each entry 
includes the elements listed below. You might find this information useful when you're deciding 
whether to use the data key caching feature, and when you're setting security thresholds on a 
caching cryptographic materials manager (caching CMM).

Creating a caching cryptographic materials manager 312



AWS Encryption SDK Developer Guide

Cached Entries for Encryption Requests

The entries that are added to a data key cache as a result of a encryption operation include the 
following elements:

• Plaintext data key

• Encrypted data keys (one or more)

• Encryption context

• Message signing key (if one is used)

• Algorithm suite

• Metadata, including usage counters for enforcing security thresholds

Cached Entries for Decryption Requests

The entries that are added to a data key cache as a result of a decryption operation include the 
following elements:

• Plaintext data key

• Signature verification key (if one is used)

• Metadata, including usage counters for enforcing security thresholds

Encryption context: How to select cache entries

You can specify an encryption context in any request to encrypt data. However, the encryption 
context plays a special role in data key caching. It lets you create subgroups of data keys in your 
cache, even when the data keys originate from the same caching CMM.

An encryption context is a set of key-value pairs that contain arbitrary nonsecret data. During 
encryption, the encryption context is cryptographically bound to the encrypted data so that 
the same encryption context is required to decrypt the data. In the AWS Encryption SDK, the 
encryption context is stored in the encrypted message with the encrypted data and data keys.

When you use a data key cache, you can also use the encryption context to select particular 
cached data keys for your encryption operations. The encryption context is saved in the cache 
entry with the data key (it's part of the cache entry ID). Cached data keys are reused only when 
their encryption contexts match. If you want to reuse certain data keys for an encryption request, 

Encryption context: How to select cache entries 313



AWS Encryption SDK Developer Guide

specify the same encryption context. If you want to avoid those data keys, specify a different 
encryption context.

The encryption context is always optional, but recommended. If you don't specify an encryption 
context in your request, an empty encryption context is included in the cache entry identifier and 
matched to each request.

Is my application using cached data keys?

Data key caching is an optimization strategy that is very effective for certain applications and 
workloads. However, because it entails some risk, it's important to determine how effective it is 
likely to be for your situation, and then decide whether the benefits outweigh the risks.

Because data key caching reuses data keys, the most obvious effect is reducing the number of 
calls to generate new data keys. When data key caching is implemented, the AWS Encryption SDK 
calls the AWS KMS GenerateDataKey operation only to create the initial data key and when the 
cache misses. But, caching improves performance perceptibly only in applications that generate 
numerous data keys with the same characteristics, including the same encryption context and 
algorithm suite.

To determine whether your implementation of the AWS Encryption SDK is actually using data keys 
from the cache, try the following techniques.

• In the logs of your master key infrastructure, check the frequency of calls to create new data 
keys. When data key caching is effective, the number of calls to create new keys should drop 
perceptibly. For example, if you are using a AWS KMS master key provider or keyring, search the 
CloudTrail logs for GenerateDataKey calls.

• Compare the encrypted messages that the AWS Encryption SDK returns in response to different 
encrypt requests. For example, if you are using the AWS Encryption SDK for Java, compare the
ParsedCiphertext object from different encrypt calls. In the AWS Encryption SDK for JavaScript, 
compare the contents of the encryptedDataKeys property of the MessageHeader. When data 
keys are reused, the encrypted data keys in the encrypted message are identical.

Data key caching example

This example uses data key caching with a local cache to speed up an application in which data 
generated by multiple devices is encrypted and stored in different Regions.

Is my application using cached data keys? 314

https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKey.html
https://aws.github.io/aws-encryption-sdk-java/com/amazonaws/encryptionsdk/ParsedCiphertext.html
https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/serialize/src/types.ts#L21


AWS Encryption SDK Developer Guide

In this scenario, multiple data producers generate data, encrypt it, and write to a Kinesis stream in 
each Region. AWS Lambda functions (consumers) decrypt the streams and write plaintext data to a 
DynamoDB table in the Region. Data producers and consumers use the AWS Encryption SDK and an
AWS KMS master key provider. To reduce calls to KMS, each producer and consumer has their own 
local cache.

You can find the source code for these examples in Java and Python. The sample also includes a 
AWS CloudFormation template that defines the resources for the samples.

Data key caching example 315

https://aws.amazon.com/kinesis/streams/
https://aws.amazon.com/lambda/


AWS Encryption SDK Developer Guide

Local cache results

The following table shows that a local cache reduces the total calls to KMS (per second per Region) 
in this example to 1% of its original value.

Producer requests

Requests per second per client 

Generate 
data key (us-
west-2)

Encrypt data 
key (eu-centr 
al-1)

Total (per 
region)

Clients per 
region

Average 
requests per 
second per 
region

No cache 1 1 1 500 500

Local cache 1 rps / 100 
uses

1 rps / 100 
uses

1 rps / 100 
uses

500 5

Consumer requests

Requests per second per client 

Decrypt data 
key

Producers Total

Client per 
region

Average 
requests per 
second per 
region

No cache 1 rps per 
producer

500 500 2 1,000

Local cache 1 rps per 
producer / 
100 uses

500 5 2 10

Data key caching example code

This code sample creates a simple implementation of data key caching with a local cache in Java 
and Python. The code creates two instances of a local cache: one for data producers that are 
encrypting data and another for data consumers (AWS Lambda functions) that are decrypting data. 

Local cache results 316



AWS Encryption SDK Developer Guide

For details about the implementation of data key caching in each language, see the Javadoc and
Python documentation for the AWS Encryption SDK.

Data key caching is available for all programming languages that the AWS Encryption SDK 
supports.

For complete and tested examples of using data key caching in the AWS Encryption SDK, see:

• C/C++: caching_cmm.cpp

• Java: SimpleDataKeyCachingExample.java

• JavaScript Browser: caching_cmm.ts

• JavaScript Node.js: caching_cmm.ts

• Python: data_key_caching_basic.py

Producer

The producer gets a map, converts it to JSON, uses the AWS Encryption SDK to encrypt it, and 
pushes the ciphertext record to a Kinesis stream in each AWS Region.

The code defines a caching cryptographic materials manager (caching CMM) and associates it with 
a local cache and an underlying AWS KMS master key provider. The caching CMM caches the data 
keys (and related cryptographic materials) from the master key provider. It also interacts with the 
cache on behalf of the SDK and enforces security thresholds that you set.

Because the call to the encrypt method specifies a caching CMM, instead of a regular cryptographic 
materials manager (CMM) or master key provider, the encryption will use data key caching.

Java

The following example uses version 2.x of the AWS Encryption SDK for Java. Version 3.x of 
the AWS Encryption SDK for Java deprecates the data key caching CMM. With version 3.x, you 
can also use the AWS KMS Hierarchical keyring, an alternative cryptographic materials caching 
solution.

/* 
 * Copyright 2017 Amazon.com, Inc. or its affiliates. All Rights Reserved. 
 * 
 * Licensed under the Apache License, Version 2.0 (the "License"). You may not use 
 this file except 
 * in compliance with the License. A copy of the License is located at 

Example code 317

https://aws.github.io/aws-encryption-sdk-java/
https://aws-encryption-sdk-python.readthedocs.io/en/latest/
https://github.com/aws/aws-encryption-sdk-c/blob/master/examples/caching_cmm.cpp
https://github.com/aws/aws-encryption-sdk-java/blob/master/src/examples/java/com/amazonaws/crypto/examples/v2/SimpleDataKeyCachingExample.java
https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-browser/src/caching_cmm.ts
https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-node/src/caching_cmm.ts
https://github.com/aws/aws-encryption-sdk-python/blob/master/examples/src/data_key_caching_basic.py
https://aws.amazon.com/kinesis/streams/


AWS Encryption SDK Developer Guide

 * 
 * http://aws.amazon.com/apache2.0 
 * 
 * or in the "license" file accompanying this file. This file is distributed on an 
 "AS IS" BASIS, 
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the 
 License for the 
 * specific language governing permissions and limitations under the License. 
 */
package com.amazonaws.crypto.examples.kinesisdatakeycaching;

import com.amazonaws.encryptionsdk.AwsCrypto;
import com.amazonaws.encryptionsdk.CommitmentPolicy;
import com.amazonaws.encryptionsdk.CryptoResult;
import com.amazonaws.encryptionsdk.MasterKeyProvider;
import com.amazonaws.encryptionsdk.caching.CachingCryptoMaterialsManager;
import com.amazonaws.encryptionsdk.caching.LocalCryptoMaterialsCache;
import com.amazonaws.encryptionsdk.kmssdkv2.KmsMasterKey;
import com.amazonaws.encryptionsdk.kmssdkv2.KmsMasterKeyProvider;
import com.amazonaws.encryptionsdk.multi.MultipleProviderFactory;
import com.amazonaws.util.json.Jackson;
import java.util.ArrayList;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import java.util.UUID;
import java.util.concurrent.TimeUnit;
import software.amazon.awssdk.auth.credentials.AwsCredentialsProvider;
import software.amazon.awssdk.auth.credentials.DefaultCredentialsProvider;
import software.amazon.awssdk.core.SdkBytes;
import software.amazon.awssdk.regions.Region;
import software.amazon.awssdk.services.kinesis.KinesisClient;
import software.amazon.awssdk.services.kms.KmsClient;

/** 
 * Pushes data to Kinesis Streams in multiple Regions. 
 */
public class MultiRegionRecordPusher { 

    private static final long MAX_ENTRY_AGE_MILLISECONDS = 300000; 
    private static final long MAX_ENTRY_USES = 100; 
    private static final int MAX_CACHE_ENTRIES = 100; 
    private final String streamName_; 
    private final ArrayList<KinesisClient> kinesisClients_; 

Example code 318



AWS Encryption SDK Developer Guide

    private final CachingCryptoMaterialsManager cachingMaterialsManager_; 
    private final AwsCrypto crypto_; 

    /** 
     * Creates an instance of this object with Kinesis clients for all target 
 Regions and a cached 
     * key provider containing KMS master keys in all target Regions. 
     */ 
    public MultiRegionRecordPusher(final Region[] regions, final String 
 kmsAliasName, 
        final String streamName) { 
        streamName_ = streamName; 
        crypto_ = AwsCrypto.builder() 
            .withCommitmentPolicy(CommitmentPolicy.RequireEncryptRequireDecrypt) 
            .build(); 
        kinesisClients_ = new ArrayList<>(); 

        AwsCredentialsProvider credentialsProvider = 
 DefaultCredentialsProvider.builder().build(); 

        // Build KmsMasterKey and AmazonKinesisClient objects for each target region 
        List<KmsMasterKey> masterKeys = new ArrayList<>(); 
        for (Region region : regions) { 
            kinesisClients_.add(KinesisClient.builder() 
                .credentialsProvider(credentialsProvider) 
                .region(region) 
                .build()); 

            KmsMasterKey regionMasterKey = KmsMasterKeyProvider.builder() 
                .defaultRegion(region) 
                .builderSupplier(() -> 
 KmsClient.builder().credentialsProvider(credentialsProvider)) 
                .buildStrict(kmsAliasName) 
                .getMasterKey(kmsAliasName); 

            masterKeys.add(regionMasterKey); 
        } 

        // Collect KmsMasterKey objects into single provider and add cache 
        MasterKeyProvider<?> masterKeyProvider = 
 MultipleProviderFactory.buildMultiProvider( 
            KmsMasterKey.class, 
            masterKeys 
        ); 

Example code 319



AWS Encryption SDK Developer Guide

        cachingMaterialsManager_ = CachingCryptoMaterialsManager.newBuilder() 
            .withMasterKeyProvider(masterKeyProvider) 
            .withCache(new LocalCryptoMaterialsCache(MAX_CACHE_ENTRIES)) 
            .withMaxAge(MAX_ENTRY_AGE_MILLISECONDS, TimeUnit.MILLISECONDS) 
            .withMessageUseLimit(MAX_ENTRY_USES) 
            .build(); 
    } 

    /** 
     * JSON serializes and encrypts the received record data and pushes it to all 
 target streams. 
     */ 
    public void putRecord(final Map<Object, Object> data) { 
        String partitionKey = UUID.randomUUID().toString(); 
        Map<String, String> encryptionContext = new HashMap<>(); 
        encryptionContext.put("stream", streamName_); 

        // JSON serialize data 
        String jsonData = Jackson.toJsonString(data); 

        // Encrypt data 
        CryptoResult<byte[], ?> result = crypto_.encryptData( 
            cachingMaterialsManager_, 
            jsonData.getBytes(), 
            encryptionContext 
        ); 
        byte[] encryptedData = result.getResult(); 

        // Put records to Kinesis stream in all Regions 
        for (KinesisClient regionalKinesisClient : kinesisClients_) { 
            regionalKinesisClient.putRecord(builder -> 
                builder.streamName(streamName_) 
                    .data(SdkBytes.fromByteArray(encryptedData)) 
                    .partitionKey(partitionKey)); 
        } 
    }
}

Python

"""
Copyright 2017 Amazon.com, Inc. or its affiliates. All Rights Reserved. 

Example code 320



AWS Encryption SDK Developer Guide

 
Licensed under the Apache License, Version 2.0 (the "License"). You may not use this 
 file except
in compliance with the License. A copy of the License is located at 
  
https://aws.amazon.com/apache-2-0/ 
  
or in the "license" file accompanying this file. This file is distributed on an "AS 
 IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the 
 License for the
specific language governing permissions and limitations under the License.
"""
import json
import uuid 
  
from aws_encryption_sdk import EncryptionSDKClient, StrictAwsKmsMasterKeyProvider, 
 CachingCryptoMaterialsManager, LocalCryptoMaterialsCache, CommitmentPolicy
from aws_encryption_sdk.key_providers.kms import KMSMasterKey
import boto3 
  
  
class MultiRegionRecordPusher(object): 
    """Pushes data to Kinesis Streams in multiple Regions.""" 
    CACHE_CAPACITY = 100 
    MAX_ENTRY_AGE_SECONDS = 300.0 
    MAX_ENTRY_MESSAGES_ENCRYPTED = 100 
  
    def __init__(self, regions, kms_alias_name, stream_name): 
        self._kinesis_clients = [] 
        self._stream_name = stream_name 
  
        # Set up EncryptionSDKClient 
        _client = 
 EncryptionSDKClient(CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT) 
  
        # Set up KMSMasterKeyProvider with cache 
        _key_provider = StrictAwsKmsMasterKeyProvider(kms_alias_name) 
  
        # Add MasterKey and Kinesis client for each Region 
        for region in regions: 
            self._kinesis_clients.append(boto3.client('kinesis', 
 region_name=region)) 
            regional_master_key = KMSMasterKey( 

Example code 321



AWS Encryption SDK Developer Guide

                client=boto3.client('kms', region_name=region), 
                key_id=kms_alias_name 
            ) 
            _key_provider.add_master_key_provider(regional_master_key) 
  
        cache = LocalCryptoMaterialsCache(capacity=self.CACHE_CAPACITY) 
        self._materials_manager = CachingCryptoMaterialsManager( 
            master_key_provider=_key_provider, 
            cache=cache, 
            max_age=self.MAX_ENTRY_AGE_SECONDS, 
            max_messages_encrypted=self.MAX_ENTRY_MESSAGES_ENCRYPTED 
        ) 
  
    def put_record(self, record_data): 
        """JSON serializes and encrypts the received record data and pushes it to 
 all target streams. 
  
        :param dict record_data: Data to write to stream 
        """ 
        # Kinesis partition key to randomize write load across stream shards 
        partition_key = uuid.uuid4().hex 
  
        encryption_context = {'stream': self._stream_name} 
  
        # JSON serialize data 
        json_data = json.dumps(record_data) 
  
        # Encrypt data 
        encrypted_data, _header = _client.encrypt( 
            source=json_data, 
            materials_manager=self._materials_manager, 
            encryption_context=encryption_context 
        ) 
  
        # Put records to Kinesis stream in all Regions 
        for client in self._kinesis_clients: 
            client.put_record( 
                StreamName=self._stream_name, 
                Data=encrypted_data, 
                PartitionKey=partition_key 
            )

Example code 322



AWS Encryption SDK Developer Guide

Consumer

The data consumer is an AWS Lambda function that is triggered by Kinesis events. It decrypts and 
deserializes each record, and writes the plaintext record to an Amazon DynamoDB table in the 
same Region.

Like the producer code, the consumer code enables data key caching by using a caching 
cryptographic materials manager (caching CMM) in calls to the decrypt method.

The Java code builds a master key provider in strict mode with a specified AWS KMS key. Strict 
mode isn't required when decrypting, but it's a best practice. The Python code uses discovery mode, 
which lets the AWS Encryption SDK use any wrapping key that encrypted a data key to decrypt it.

Java

The following example uses version 2.x of the AWS Encryption SDK for Java. Version 3.x of 
the AWS Encryption SDK for Java deprecates the data key caching CMM. With version 3.x, you 
can also use the AWS KMS Hierarchical keyring, an alternative cryptographic materials caching 
solution.

This code creates a master key provider for decrypting in strict mode. The AWS Encryption SDK 
can use only the AWS KMS keys you specify to decrypt your message.

/* 
 * Copyright 2017 Amazon.com, Inc. or its affiliates. All Rights Reserved. 
 * 
 * Licensed under the Apache License, Version 2.0 (the "License"). You may not use 
 this file except 
 * in compliance with the License. A copy of the License is located at 
 * 
 * http://aws.amazon.com/apache2.0 
 * 
 * or in the "license" file accompanying this file. This file is distributed on an 
 "AS IS" BASIS, 
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the 
 License for the 
 * specific language governing permissions and limitations under the License. 
 */
package com.amazonaws.crypto.examples.kinesisdatakeycaching;

import com.amazonaws.encryptionsdk.AwsCrypto;
import com.amazonaws.encryptionsdk.CommitmentPolicy;

Example code 323

https://aws.amazon.com/lambda/
https://aws.amazon.com/kinesis/
https://aws.amazon.com/dynamodb/


AWS Encryption SDK Developer Guide

import com.amazonaws.encryptionsdk.CryptoResult;
import com.amazonaws.encryptionsdk.caching.CachingCryptoMaterialsManager;
import com.amazonaws.encryptionsdk.caching.LocalCryptoMaterialsCache;
import com.amazonaws.encryptionsdk.kmssdkv2.KmsMasterKeyProvider;
import com.amazonaws.services.lambda.runtime.Context;
import com.amazonaws.services.lambda.runtime.events.KinesisEvent;
import com.amazonaws.services.lambda.runtime.events.KinesisEvent.KinesisEventRecord;
import com.amazonaws.util.BinaryUtils;
import java.io.UnsupportedEncodingException;
import java.nio.ByteBuffer;
import java.nio.charset.StandardCharsets;
import java.util.concurrent.TimeUnit;
import software.amazon.awssdk.enhanced.dynamodb.DynamoDbEnhancedClient;
import software.amazon.awssdk.enhanced.dynamodb.DynamoDbTable;
import software.amazon.awssdk.enhanced.dynamodb.TableSchema;

/** 
 * Decrypts all incoming Kinesis records and writes records to DynamoDB. 
 */
public class LambdaDecryptAndWrite { 

    private static final long MAX_ENTRY_AGE_MILLISECONDS = 600000; 
    private static final int MAX_CACHE_ENTRIES = 100; 
    private final CachingCryptoMaterialsManager cachingMaterialsManager_; 
    private final AwsCrypto crypto_; 
    private final DynamoDbTable<Item> table_; 

    /** 
     * Because the cache is used only for decryption, the code doesn't set the max 
 bytes or max 
     * message security thresholds that are enforced only on on data keys used for 
 encryption. 
     */ 
    public LambdaDecryptAndWrite() { 
        String kmsKeyArn = System.getenv("CMK_ARN"); 
        cachingMaterialsManager_ = CachingCryptoMaterialsManager.newBuilder() 
            
 .withMasterKeyProvider(KmsMasterKeyProvider.builder().buildStrict(kmsKeyArn)) 
            .withCache(new LocalCryptoMaterialsCache(MAX_CACHE_ENTRIES)) 
            .withMaxAge(MAX_ENTRY_AGE_MILLISECONDS, TimeUnit.MILLISECONDS) 
            .build(); 

        crypto_ = AwsCrypto.builder() 
            .withCommitmentPolicy(CommitmentPolicy.RequireEncryptRequireDecrypt) 

Example code 324



AWS Encryption SDK Developer Guide

            .build(); 

        String tableName = System.getenv("TABLE_NAME"); 
        DynamoDbEnhancedClient dynamodb = DynamoDbEnhancedClient.builder().build(); 
        table_ = dynamodb.table(tableName, TableSchema.fromClass(Item.class)); 
    } 

    /** 
     * @param event 
     * @param context 
     */ 
    public void handleRequest(KinesisEvent event, Context context) 
        throws UnsupportedEncodingException { 
        for (KinesisEventRecord record : event.getRecords()) { 
            ByteBuffer ciphertextBuffer = record.getKinesis().getData(); 
            byte[] ciphertext = BinaryUtils.copyAllBytesFrom(ciphertextBuffer); 

            // Decrypt and unpack record 
            CryptoResult<byte[], ?> plaintextResult = 
 crypto_.decryptData(cachingMaterialsManager_, 
                ciphertext); 

            // Verify the encryption context value 
            String streamArn = record.getEventSourceARN(); 
            String streamName = streamArn.substring(streamArn.indexOf("/") + 1); 
            if (!
streamName.equals(plaintextResult.getEncryptionContext().get("stream"))) { 
                throw new IllegalStateException("Wrong Encryption Context!"); 
            } 

            // Write record to DynamoDB 
            String jsonItem = new String(plaintextResult.getResult(), 
 StandardCharsets.UTF_8); 
            System.out.println(jsonItem); 
            table_.putItem(Item.fromJSON(jsonItem)); 
        } 
    } 

    private static class Item { 

        static Item fromJSON(String jsonText) { 
            // Parse JSON and create new Item 
            return new Item(); 
        } 

Example code 325



AWS Encryption SDK Developer Guide

    }
}

Python

This Python code decrypts with a master key provider in discovery mode. It lets the AWS 
Encryption SDK use any wrapping key that encrypted a data key to decrypt it. Strict mode, in 
which you specify the wrapping keys that can be used for decryption, is a best practice.

"""
Copyright 2017 Amazon.com, Inc. or its affiliates. All Rights Reserved. 
  
Licensed under the Apache License, Version 2.0 (the "License"). You may not use this 
 file except
in compliance with the License. A copy of the License is located at 
  
https://aws.amazon.com/apache-2-0/ 
  
or in the "license" file accompanying this file. This file is distributed on an "AS 
 IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the 
 License for the
specific language governing permissions and limitations under the License.
"""
import base64
import json
import logging
import os 
  
from aws_encryption_sdk import EncryptionSDKClient, 
 DiscoveryAwsKmsMasterKeyProvider, CachingCryptoMaterialsManager, 
 LocalCryptoMaterialsCache, CommitmentPolicy
import boto3 
  
_LOGGER = logging.getLogger(__name__)
_is_setup = False
CACHE_CAPACITY = 100
MAX_ENTRY_AGE_SECONDS = 600.0 
  
def setup(): 
    """Sets up clients that should persist across Lambda invocations.""" 
    global encryption_sdk_client 

Example code 326



AWS Encryption SDK Developer Guide

    encryption_sdk_client = 
 EncryptionSDKClient(CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT) 
  
    global materials_manager 
    key_provider = DiscoveryAwsKmsMasterKeyProvider() 
    cache = LocalCryptoMaterialsCache(capacity=CACHE_CAPACITY) 
            
    #  Because the cache is used only for decryption, the code doesn't set 
    #   the max bytes or max message security thresholds that are enforced 
    #   only on on data keys used for encryption. 
    materials_manager = CachingCryptoMaterialsManager( 
        master_key_provider=key_provider, 
        cache=cache, 
        max_age=MAX_ENTRY_AGE_SECONDS 
    ) 
    global table 
    table_name = os.environ.get('TABLE_NAME') 
    table = boto3.resource('dynamodb').Table(table_name) 
    global _is_setup 
    _is_setup = True 
  
  
def lambda_handler(event, context): 
    """Decrypts all incoming Kinesis records and writes records to DynamoDB.""" 
    _LOGGER.debug('New event:') 
    _LOGGER.debug(event) 
    if not _is_setup: 
        setup() 
    with table.batch_writer() as batch: 
        for record in event.get('Records', []): 
            # Record data base64-encoded by Kinesis 
            ciphertext = base64.b64decode(record['kinesis']['data']) 
  
            # Decrypt and unpack record 
            plaintext, header = encryption_sdk_client.decrypt( 
                source=ciphertext, 
                materials_manager=materials_manager 
            ) 
            item = json.loads(plaintext) 
  
            # Verify the encryption context value 
            stream_name = record['eventSourceARN'].split('/', 1)[1] 
            if stream_name != header.encryption_context['stream']: 
                raise ValueError('Wrong Encryption Context!') 

Example code 327



AWS Encryption SDK Developer Guide

 
            # Write record to DynamoDB 
            batch.put_item(Item=item)
 

Data key caching example: AWS CloudFormation template

This AWS CloudFormation template sets up all the necessary AWS resources to reproduce the data 
key caching example.

JSON

{ 
    "Parameters": { 
        "SourceCodeBucket": { 
            "Type": "String", 
            "Description": "S3 bucket containing Lambda source code zip files" 
        }, 
        "PythonLambdaS3Key": { 
            "Type": "String", 
            "Description": "S3 key containing Python Lambda source code zip file" 
        }, 
        "PythonLambdaObjectVersionId": { 
            "Type": "String", 
            "Description": "S3 version id for S3 key containing Python Lambda source 
 code zip file" 
        }, 
        "JavaLambdaS3Key": { 
            "Type": "String", 
            "Description": "S3 key containing Python Lambda source code zip file" 
        }, 
        "JavaLambdaObjectVersionId": { 
            "Type": "String", 
            "Description": "S3 version id for S3 key containing Python Lambda source 
 code zip file" 
        }, 
        "KeyAliasSuffix": { 
            "Type": "String", 
            "Description": "Suffix to use for KMS key Alias (ie: alias/
<KeyAliasSuffix>)" 
        }, 
        "StreamName": { 

AWS CloudFormation template 328



AWS Encryption SDK Developer Guide

            "Type": "String", 
            "Description": "Name to use for Kinesis Stream" 
        } 
    }, 
    "Resources": { 
        "InputStream": { 
            "Type": "AWS::Kinesis::Stream", 
            "Properties": { 
                "Name": { 
                    "Ref": "StreamName" 
                }, 
                "ShardCount": 2 
            } 
        }, 
        "PythonLambdaOutputTable": { 
            "Type": "AWS::DynamoDB::Table", 
            "Properties": { 
                "AttributeDefinitions": [ 
                    { 
                        "AttributeName": "id", 
                        "AttributeType": "S" 
                    } 
                ], 
                "KeySchema": [ 
                    { 
                        "AttributeName": "id", 
                        "KeyType": "HASH" 
                    } 
                ], 
                "ProvisionedThroughput": { 
                    "ReadCapacityUnits": 1, 
                    "WriteCapacityUnits": 1 
                } 
            } 
        }, 
        "PythonLambdaRole": { 
            "Type": "AWS::IAM::Role", 
            "Properties": { 
                "AssumeRolePolicyDocument": { 
                    "Version": "2012-10-17", 
                    "Statement": [ 
                        { 
                            "Effect": "Allow", 
                            "Principal": { 

AWS CloudFormation template 329



AWS Encryption SDK Developer Guide

                                "Service": "lambda.amazonaws.com" 
                            }, 
                            "Action": "sts:AssumeRole" 
                        } 
                    ] 
                }, 
                "ManagedPolicyArns": [ 
                    "arn:aws:iam::aws:policy/service-role/
AWSLambdaBasicExecutionRole" 
                ], 
                "Policies": [ 
                    { 
                        "PolicyName": "PythonLambdaAccess", 
                        "PolicyDocument": { 
                            "Version": "2012-10-17", 
                            "Statement": [ 
                                { 
                                    "Effect": "Allow", 
                                    "Action": [ 
                                        "dynamodb:DescribeTable", 
                                        "dynamodb:BatchWriteItem" 
                                    ], 
                                    "Resource": { 
                                        "Fn::Sub": "arn:aws:dynamodb:${AWS::Region}:
${AWS::AccountId}:table/${PythonLambdaOutputTable}" 
                                    } 
                                }, 
                                { 
                                    "Effect": "Allow", 
                                    "Action": [ 
                                        "dynamodb:PutItem" 
                                    ], 
                                    "Resource": { 
                                        "Fn::Sub": "arn:aws:dynamodb:${AWS::Region}:
${AWS::AccountId}:table/${PythonLambdaOutputTable}*" 
                                    } 
                                }, 
                                { 
                                    "Effect": "Allow", 
                                    "Action": [ 
                                        "kinesis:GetRecords", 
                                        "kinesis:GetShardIterator", 
                                        "kinesis:DescribeStream", 
                                        "kinesis:ListStreams" 

AWS CloudFormation template 330



AWS Encryption SDK Developer Guide

                                    ], 
                                    "Resource": { 
                                        "Fn::Sub": "arn:aws:kinesis:${AWS::Region}:
${AWS::AccountId}:stream/${InputStream}" 
                                    } 
                                } 
                            ] 
                        } 
                    } 
                ] 
            } 
        }, 
        "PythonLambdaFunction": { 
            "Type": "AWS::Lambda::Function", 
            "Properties": { 
                "Description": "Python consumer", 
                "Runtime": "python2.7", 
                "MemorySize": 512, 
                "Timeout": 90, 
                "Role": { 
                    "Fn::GetAtt": [ 
                        "PythonLambdaRole", 
                        "Arn" 
                    ] 
                }, 
                "Handler": 
 "aws_crypto_examples.kinesis_datakey_caching.consumer.lambda_handler", 
                "Code": { 
                    "S3Bucket": { 
                        "Ref": "SourceCodeBucket" 
                    }, 
                    "S3Key": { 
                        "Ref": "PythonLambdaS3Key" 
                    }, 
                    "S3ObjectVersion": { 
                        "Ref": "PythonLambdaObjectVersionId" 
                    } 
                }, 
                "Environment": { 
                    "Variables": { 
                        "TABLE_NAME": { 
                            "Ref": "PythonLambdaOutputTable" 
                        } 
                    } 

AWS CloudFormation template 331



AWS Encryption SDK Developer Guide

                } 
            } 
        }, 
        "PythonLambdaSourceMapping": { 
            "Type": "AWS::Lambda::EventSourceMapping", 
            "Properties": { 
                "BatchSize": 1, 
                "Enabled": true, 
                "EventSourceArn": { 
                    "Fn::Sub": "arn:aws:kinesis:${AWS::Region}:
${AWS::AccountId}:stream/${InputStream}" 
                }, 
                "FunctionName": { 
                    "Ref": "PythonLambdaFunction" 
                }, 
                "StartingPosition": "TRIM_HORIZON" 
            } 
        }, 
        "JavaLambdaOutputTable": { 
            "Type": "AWS::DynamoDB::Table", 
            "Properties": { 
                "AttributeDefinitions": [ 
                    { 
                        "AttributeName": "id", 
                        "AttributeType": "S" 
                    } 
                ], 
                "KeySchema": [ 
                    { 
                        "AttributeName": "id", 
                        "KeyType": "HASH" 
                    } 
                ], 
                "ProvisionedThroughput": { 
                    "ReadCapacityUnits": 1, 
                    "WriteCapacityUnits": 1 
                } 
            } 
        }, 
        "JavaLambdaRole": { 
            "Type": "AWS::IAM::Role", 
            "Properties": { 
                "AssumeRolePolicyDocument": { 
                    "Version": "2012-10-17", 

AWS CloudFormation template 332



AWS Encryption SDK Developer Guide

                    "Statement": [ 
                        { 
                            "Effect": "Allow", 
                            "Principal": { 
                                "Service": "lambda.amazonaws.com" 
                            }, 
                            "Action": "sts:AssumeRole" 
                        } 
                    ] 
                }, 
                "ManagedPolicyArns": [ 
                    "arn:aws:iam::aws:policy/service-role/
AWSLambdaBasicExecutionRole" 
                ], 
                "Policies": [ 
                    { 
                        "PolicyName": "JavaLambdaAccess", 
                        "PolicyDocument": { 
                            "Version": "2012-10-17", 
                            "Statement": [ 
                                { 
                                    "Effect": "Allow", 
                                    "Action": [ 
                                        "dynamodb:DescribeTable", 
                                        "dynamodb:BatchWriteItem" 
                                    ], 
                                    "Resource": { 
                                        "Fn::Sub": "arn:aws:dynamodb:${AWS::Region}:
${AWS::AccountId}:table/${JavaLambdaOutputTable}" 
                                    } 
                                }, 
                                { 
                                    "Effect": "Allow", 
                                    "Action": [ 
                                        "dynamodb:PutItem" 
                                    ], 
                                    "Resource": { 
                                        "Fn::Sub": "arn:aws:dynamodb:${AWS::Region}:
${AWS::AccountId}:table/${JavaLambdaOutputTable}*" 
                                    } 
                                }, 
                                { 
                                    "Effect": "Allow", 
                                    "Action": [ 

AWS CloudFormation template 333



AWS Encryption SDK Developer Guide

                                        "kinesis:GetRecords", 
                                        "kinesis:GetShardIterator", 
                                        "kinesis:DescribeStream", 
                                        "kinesis:ListStreams" 
                                    ], 
                                    "Resource": { 
                                        "Fn::Sub": "arn:aws:kinesis:${AWS::Region}:
${AWS::AccountId}:stream/${InputStream}" 
                                    } 
                                } 
                            ] 
                        } 
                    } 
                ] 
            } 
        }, 
        "JavaLambdaFunction": { 
            "Type": "AWS::Lambda::Function", 
            "Properties": { 
                "Description": "Java consumer", 
                "Runtime": "java8", 
                "MemorySize": 512, 
                "Timeout": 90, 
                "Role": { 
                    "Fn::GetAtt": [ 
                        "JavaLambdaRole", 
                        "Arn" 
                    ] 
                }, 
                "Handler": 
 "com.amazonaws.crypto.examples.kinesisdatakeycaching.LambdaDecryptAndWrite::handleRequest", 
                "Code": { 
                    "S3Bucket": { 
                        "Ref": "SourceCodeBucket" 
                    }, 
                    "S3Key": { 
                        "Ref": "JavaLambdaS3Key" 
                    }, 
                    "S3ObjectVersion": { 
                        "Ref": "JavaLambdaObjectVersionId" 
                    } 
                }, 
                "Environment": { 
                    "Variables": { 

AWS CloudFormation template 334



AWS Encryption SDK Developer Guide

                        "TABLE_NAME": { 
                            "Ref": "JavaLambdaOutputTable" 
                        }, 
                        "CMK_ARN": { 
                            "Fn::GetAtt": [ 
                                "RegionKinesisCMK", 
                                "Arn" 
                            ] 
                        } 
                    } 
                } 
            } 
        }, 
        "JavaLambdaSourceMapping": { 
            "Type": "AWS::Lambda::EventSourceMapping", 
            "Properties": { 
                "BatchSize": 1, 
                "Enabled": true, 
                "EventSourceArn": { 
                    "Fn::Sub": "arn:aws:kinesis:${AWS::Region}:
${AWS::AccountId}:stream/${InputStream}" 
                }, 
                "FunctionName": { 
                    "Ref": "JavaLambdaFunction" 
                }, 
                "StartingPosition": "TRIM_HORIZON" 
            } 
        }, 
        "RegionKinesisCMK": { 
            "Type": "AWS::KMS::Key", 
            "Properties": { 
                "Description": "Used to encrypt data passing through Kinesis Stream 
 in this region", 
                "Enabled": true, 
                "KeyPolicy": { 
                    "Version": "2012-10-17", 
                    "Statement": [ 
                        { 
                            "Effect": "Allow", 
                            "Principal": { 
                                "AWS": { 
                                    "Fn::Sub": "arn:aws:iam::${AWS::AccountId}:root" 
                                } 
                            }, 

AWS CloudFormation template 335



AWS Encryption SDK Developer Guide

                            "Action": [ 
                                "kms:Encrypt", 
                                "kms:GenerateDataKey", 
                                "kms:CreateAlias", 
                                "kms:DeleteAlias", 
                                "kms:DescribeKey", 
                                "kms:DisableKey", 
                                "kms:EnableKey", 
                                "kms:PutKeyPolicy", 
                                "kms:ScheduleKeyDeletion", 
                                "kms:UpdateAlias", 
                                "kms:UpdateKeyDescription" 
                            ], 
                            "Resource": "*" 
                        }, 
                        { 
                            "Effect": "Allow", 
                            "Principal": { 
                                "AWS": [ 
                                    { 
                                        "Fn::GetAtt": [ 
                                            "PythonLambdaRole", 
                                            "Arn" 
                                        ] 
                                    }, 
                                    { 
                                        "Fn::GetAtt": [ 
                                            "JavaLambdaRole", 
                                            "Arn" 
                                        ] 
                                    } 
                                ] 
                            }, 
                            "Action": "kms:Decrypt", 
                            "Resource": "*" 
                        } 
                    ] 
                } 
            } 
        }, 
        "RegionKinesisCMKAlias": { 
            "Type": "AWS::KMS::Alias", 
            "Properties": { 
                "AliasName": { 

AWS CloudFormation template 336



AWS Encryption SDK Developer Guide

                    "Fn::Sub": "alias/${KeyAliasSuffix}" 
                }, 
                "TargetKeyId": { 
                    "Ref": "RegionKinesisCMK" 
                } 
            } 
        } 
    }
}

YAML

Parameters: 
    SourceCodeBucket: 
        Type: String 
        Description: S3 bucket containing Lambda source code zip files 
    PythonLambdaS3Key: 
        Type: String 
        Description: S3 key containing Python Lambda source code zip file 
    PythonLambdaObjectVersionId: 
        Type: String 
        Description: S3 version id for S3 key containing Python Lambda source code 
 zip file 
    JavaLambdaS3Key: 
        Type: String 
        Description: S3 key containing Python Lambda source code zip file 
    JavaLambdaObjectVersionId: 
        Type: String 
        Description: S3 version id for S3 key containing Python Lambda source code 
 zip file 
    KeyAliasSuffix: 
        Type: String 
        Description: 'Suffix to use for KMS CMK Alias (ie: alias/<KeyAliasSuffix>)' 
    StreamName: 
        Type: String 
        Description: Name to use for Kinesis Stream
Resources: 
    InputStream: 
        Type: AWS::Kinesis::Stream 
        Properties: 
            Name: !Ref StreamName 
            ShardCount: 2 
    PythonLambdaOutputTable: 

AWS CloudFormation template 337



AWS Encryption SDK Developer Guide

        Type: AWS::DynamoDB::Table 
        Properties: 
            AttributeDefinitions: 
                - 
                    AttributeName: id 
                    AttributeType: S 
            KeySchema: 
                - 
                    AttributeName: id 
                    KeyType: HASH 
            ProvisionedThroughput: 
                ReadCapacityUnits: 1 
                WriteCapacityUnits: 1 
    PythonLambdaRole: 
        Type: AWS::IAM::Role 
        Properties: 
            AssumeRolePolicyDocument: 
                Version: 2012-10-17 
                Statement: 
                    - 
                        Effect: Allow 
                        Principal: 
                            Service: lambda.amazonaws.com 
                        Action: sts:AssumeRole 
            ManagedPolicyArns: 
                - arn:aws:iam::aws:policy/service-role/AWSLambdaBasicExecutionRole 
            Policies: 
                - 
                    PolicyName: PythonLambdaAccess 
                    PolicyDocument: 
                        Version: 2012-10-17 
                        Statement: 
                            - 
                                Effect: Allow 
                                Action: 
                                    - dynamodb:DescribeTable 
                                    - dynamodb:BatchWriteItem 
                                Resource: !Sub arn:aws:dynamodb:${AWS::Region}:
${AWS::AccountId}:table/${PythonLambdaOutputTable} 
                            - 
                                Effect: Allow 
                                Action: 
                                    - dynamodb:PutItem 

AWS CloudFormation template 338



AWS Encryption SDK Developer Guide

                                Resource: !Sub arn:aws:dynamodb:${AWS::Region}:
${AWS::AccountId}:table/${PythonLambdaOutputTable}* 
                            - 
                                Effect: Allow 
                                Action: 
                                    - kinesis:GetRecords 
                                    - kinesis:GetShardIterator 
                                    - kinesis:DescribeStream 
                                    - kinesis:ListStreams 
                                Resource: !Sub arn:aws:kinesis:${AWS::Region}:
${AWS::AccountId}:stream/${InputStream} 
    PythonLambdaFunction: 
        Type: AWS::Lambda::Function 
        Properties: 
            Description: Python consumer 
            Runtime: python2.7 
            MemorySize: 512 
            Timeout: 90 
            Role: !GetAtt PythonLambdaRole.Arn 
            Handler: 
 aws_crypto_examples.kinesis_datakey_caching.consumer.lambda_handler 
            Code: 
                S3Bucket: !Ref SourceCodeBucket 
                S3Key: !Ref PythonLambdaS3Key 
                S3ObjectVersion: !Ref PythonLambdaObjectVersionId 
            Environment: 
                Variables: 
                    TABLE_NAME: !Ref PythonLambdaOutputTable 
    PythonLambdaSourceMapping: 
        Type: AWS::Lambda::EventSourceMapping 
        Properties: 
            BatchSize: 1 
            Enabled: true 
            EventSourceArn: !Sub arn:aws:kinesis:${AWS::Region}:
${AWS::AccountId}:stream/${InputStream} 
            FunctionName: !Ref PythonLambdaFunction 
            StartingPosition: TRIM_HORIZON 
    JavaLambdaOutputTable: 
        Type: AWS::DynamoDB::Table 
        Properties: 
            AttributeDefinitions: 
                - 
                    AttributeName: id 
                    AttributeType: S 

AWS CloudFormation template 339



AWS Encryption SDK Developer Guide

            KeySchema: 
                - 
                    AttributeName: id 
                    KeyType: HASH 
            ProvisionedThroughput: 
                ReadCapacityUnits: 1 
                WriteCapacityUnits: 1 
    JavaLambdaRole: 
        Type: AWS::IAM::Role 
        Properties: 
            AssumeRolePolicyDocument: 
                Version: 2012-10-17 
                Statement: 
                    - 
                        Effect: Allow 
                        Principal: 
                            Service: lambda.amazonaws.com 
                        Action: sts:AssumeRole 
            ManagedPolicyArns: 
                - arn:aws:iam::aws:policy/service-role/AWSLambdaBasicExecutionRole 
            Policies: 
                - 
                    PolicyName: JavaLambdaAccess 
                    PolicyDocument: 
                        Version: 2012-10-17 
                        Statement: 
                            - 
                                Effect: Allow 
                                Action: 
                                    - dynamodb:DescribeTable 
                                    - dynamodb:BatchWriteItem 
                                Resource: !Sub arn:aws:dynamodb:${AWS::Region}:
${AWS::AccountId}:table/${JavaLambdaOutputTable} 
                            - 
                                Effect: Allow 
                                Action: 
                                    - dynamodb:PutItem 
                                Resource: !Sub arn:aws:dynamodb:${AWS::Region}:
${AWS::AccountId}:table/${JavaLambdaOutputTable}* 
                            - 
                                Effect: Allow 
                                Action: 
                                    - kinesis:GetRecords 
                                    - kinesis:GetShardIterator 

AWS CloudFormation template 340



AWS Encryption SDK Developer Guide

                                    - kinesis:DescribeStream 
                                    - kinesis:ListStreams 
                                Resource: !Sub arn:aws:kinesis:${AWS::Region}:
${AWS::AccountId}:stream/${InputStream} 
    JavaLambdaFunction: 
        Type: AWS::Lambda::Function 
        Properties: 
            Description: Java consumer 
            Runtime: java8 
            MemorySize: 512 
            Timeout: 90 
            Role: !GetAtt JavaLambdaRole.Arn 
            Handler: 
 com.amazonaws.crypto.examples.kinesisdatakeycaching.LambdaDecryptAndWrite::handleRequest 
            Code: 
                S3Bucket: !Ref SourceCodeBucket 
                S3Key: !Ref JavaLambdaS3Key 
                S3ObjectVersion: !Ref JavaLambdaObjectVersionId 
            Environment: 
                Variables: 
                    TABLE_NAME: !Ref JavaLambdaOutputTable 
                    CMK_ARN: !GetAtt RegionKinesisCMK.Arn 
    JavaLambdaSourceMapping: 
        Type: AWS::Lambda::EventSourceMapping 
        Properties: 
            BatchSize: 1 
            Enabled: true 
            EventSourceArn: !Sub arn:aws:kinesis:${AWS::Region}:
${AWS::AccountId}:stream/${InputStream} 
            FunctionName: !Ref JavaLambdaFunction 
            StartingPosition: TRIM_HORIZON 
    RegionKinesisCMK: 
        Type: AWS::KMS::Key 
        Properties: 
            Description: Used to encrypt data passing through Kinesis Stream in this 
 region 
            Enabled: true 
            KeyPolicy: 
                Version: 2012-10-17 
                Statement: 
                    - 
                        Effect: Allow 
                        Principal: 
                            AWS: !Sub arn:aws:iam::${AWS::AccountId}:root 

AWS CloudFormation template 341



AWS Encryption SDK Developer Guide

                        Action: 
                            # Data plane actions 
                            - kms:Encrypt 
                            - kms:GenerateDataKey 
                            # Control plane actions 
                            - kms:CreateAlias 
                            - kms:DeleteAlias 
                            - kms:DescribeKey 
                            - kms:DisableKey 
                            - kms:EnableKey 
                            - kms:PutKeyPolicy 
                            - kms:ScheduleKeyDeletion 
                            - kms:UpdateAlias 
                            - kms:UpdateKeyDescription 
                        Resource: '*' 
                    - 
                        Effect: Allow 
                        Principal: 
                            AWS: 
                                - !GetAtt PythonLambdaRole.Arn 
                                - !GetAtt JavaLambdaRole.Arn 
                        Action: kms:Decrypt 
                        Resource: '*' 
    RegionKinesisCMKAlias: 
        Type: AWS::KMS::Alias 
        Properties: 
            AliasName: !Sub alias/${KeyAliasSuffix} 
            TargetKeyId: !Ref RegionKinesisCMK

AWS CloudFormation template 342



AWS Encryption SDK Developer Guide

Versions of the AWS Encryption SDK

The AWS Encryption SDK language implementations use semantic versioning to make it easier for 
you to identify the magnitude of changes in each release. A change in the major version number, 
such as 1.x.x to 2.x.x, indicates a breaking change that is likely to require code changes and a 
planned deployment. Breaking changes in a new version might not impact every use case, review 
the release notes to see if you're impacted. A change in a minor version, such as x.1.x to x.2.x, is 
always backward compatible, but might include deprecated elements.

Whenever possible, use the latest version of the AWS Encryption SDK in your chosen programming 
language. The maintenance and support policy for each version differs between programming 
language implementations. For details about the supported versions in your preferred 
programming language, see the SUPPORT_POLICY.rst file in its GitHub repository.

When upgrades include new features that require special configuration to avoid encryption or 
decryption error, we provide an intermediate version and detailed instructions for using it. For 
example, versions 1.7.x and 1.8.x are designed to be transitional versions that help you upgrade 
from versions earlier than 1.7.x to versions 2.0.x and later. For details, see Migrating your AWS 
Encryption SDK.

Note

The x in a version number represents any patch of the major and minor version. For 
example, version 1.7.x represents all versions that begin with 1.7, including 1.7.1 and 1.7.9.
New security features were originally released in AWS Encryption CLI versions 1.7.x
and 2.0.x. However, AWS Encryption CLI version 1.8.x replaces version 1.7.x and AWS 
Encryption CLI 2.1.x replaces 2.0.x. For details, see the relevant security advisory in the aws-
encryption-sdk-cli repository on GitHub.

The following tables provide an overview of the major differences between supported versions of 
the AWS Encryption SDK for each programming language.

C

For a detailed description of all changes, see the CHANGELOG.md in the aws-encryption-sdk-c
repository on GitHub.

C 343

https://semver.org/
https://github.com/aws/aws-encryption-sdk-cli/security/advisories/GHSA-2xwp-m7mq-7q3r
https://github.com/aws/aws-encryption-sdk-cli/
https://github.com/aws/aws-encryption-sdk-cli/
https://github.com/aws/aws-encryption-sdk-c/blob/master/CHANGELOG.md
https://github.com/aws/aws-encryption-sdk-c/


AWS Encryption SDK Developer Guide

Major version Details SDK major version 
life-cycle phase

1.0 Initial release.1.x

1.7 Updates to the AWS 
Encryption SDK that 
help users of earlier 
versions upgrade 
to versions 2.0.x
and later. For more 
information, see
version 1.7.x.

End-of-Support 
phase

2.0 Updates to the AWS 
Encryption SDK. For 
more information, 
see version 2.0.x.

2.2 Improvements to the 
message decryption 
process.

2.x

2.3 Adds support for 
AWS KMS multi-Reg 
ion keys.

General Availability
(GA)

C# / .NET

For a detailed description of all changes, see the CHANGELOG.md in the aws-encryption-sdk-
net repository on GitHub.

Major version Details SDK major version 
life-cycle phase

3.x 3.0 Initial release. General Availability
(GA)

C# / .NET 344

https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://github.com/aws/aws-encryption-sdk-dafny/tree/mainline/AwsEncryptionSDK/runtimes/net/CHANGELOG.md
https://github.com/aws/aws-encryption-sdk-dafny/tree/mainline/AwsEncryptionSDK/runtimes/net/
https://github.com/aws/aws-encryption-sdk-dafny/tree/mainline/AwsEncryptionSDK/runtimes/net/
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle


AWS Encryption SDK Developer Guide

Version 3.x of the 
AWS Encryption SDK 
for .NET will enter 
maintenance mode 
on May, 13 2024.

4.x 4.0 Adds support for the 
AWS KMS Hierarchical 
keyring, the required 
encryption context 
CMM, and asymmetri 
c RSA AWS KMS 
keyrings.

General Availability
(GA)

Command line interface (CLI)

For a detailed description of all changes, see Versions of the AWS Encryption CLI and the
CHANGELOG.rst in the aws-encryption-sdk-cli repository on GitHub.

Major version Details SDK major version 
life-cycle phase

1.0 Initial release.1.x

1.7 Updates to the AWS 
Encryption SDK that 
help users of earlier 
versions upgrade 
to versions 2.0.x
and later. For more 
information, see
version 1.7.x.

End-of-Support 
phase

2.x 2.0 Updates to the AWS 
Encryption SDK. For 
more information, 
see version 2.0.x.

End-of-Support 
phase

Command line interface (CLI) 345

https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://github.com/aws/aws-encryption-sdk-cli/blob/master/CHANGELOG.rst
https://github.com/aws/aws-encryption-sdk-cli/
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle


AWS Encryption SDK Developer Guide

2.1 Removes the --
discovery
parameter and 
replaces it with 
the discovery
attribute of the --
wrapping-keys
parameter.

Version 2.1.0 of 
the AWS Encryptio 
n CLI is equivalen 
t to version 2.0 in 
other programming 
languages.

2.2 Improvements to the 
message decryption 
process.

3.x 3.0 Adds support for 
AWS KMS multi-Reg 
ion keys.

End-of-Support 
phase

4.x 4.0 The AWS Encryptio 
n CLI no longer 
supports Python 2 
or Python 3.4. As of 
major version 4.x of 
the AWS Encryption 
CLI, only Python 3.5 
or later is supported.

General Availability
(GA)

Command line interface (CLI) 346

https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle


AWS Encryption SDK Developer Guide

4.1 The AWS Encryptio 
n CLI no longer 
supports Python 3.5. 
As of version 4.1.x of 
the AWS Encryption 
CLI, only Python 3.6 
or later is supported.

4.2 The AWS Encryptio 
n CLI no longer 
supports Python 3.6. 
As of version 4.2.x of 
the AWS Encryption 
CLI, only Python 3.7 
or later is supported.

Java

For a detailed description of all changes, see the CHANGELOG.rst in the aws-encryption-sdk-java
repository on GitHub.

Major version Details SDK major version 
life-cycle phase

1.0 Initial release.

1.3 Adds support for 
cryptographic 
materials manager 
and data key caching. 
Moved to determini 
stic IV generation.

1.x

1.6.1 Deprecates
AwsCrypto 
.encryptS 
tring()  and

End-of-Support 
phase

Java 347

https://github.com/aws/aws-encryption-sdk-cli/blob/master/CHANGELOG.rst
https://github.com/aws/aws-encryption-sdk-java/
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle


AWS Encryption SDK Developer Guide

AwsCrypto 
.decryptS 
tring()  and 
replaces them 
with AwsCrypto 
.encryptData()
and AwsCrypto 
.decryptData() .

1.7 Updates to the AWS 
Encryption SDK that 
help users of earlier 
versions upgrade 
to versions 2.0.x
and later. For more 
information, see
version 1.7.x.

2.0 Updates to the AWS 
Encryption SDK. For 
more information, 
see version 2.0.x.

2.2 Improvements to the 
message decryption 
process.

2.3 Adds support for 
AWS KMS multi-Reg 
ion keys.

2.x

2.4 Adds support for 
AWS SDK for Java 2.x.

General Availability
(GA)

Version 2.x of the 
AWS Encryption SDK 
for Java will enter 
maintenance mode in 
2024.

Java 348

https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle


AWS Encryption SDK Developer Guide

3.x 3.0 Integrates the AWS 
Encryption SDK 
for Java with the 
material providers 
library.

Adds support for 
symmetric and 
asymmetric RSA 
AWS KMS keyrings, 
AWS KMS Hierarchi 
cal keyrings, Raw 
AES keyrings, Raw 
RSA keyrings, Multi-
keyrings, and the 
required encryption 
context CMM.

General Availability
(GA)

JavaScript

For a detailed description of all changes, see the CHANGELOG.md in the aws-encryption-sdk-
javascript repository on GitHub.

Major version Details SDK major version 
life-cycle phase

1.0 Initial release.1.x

1.7 Updates to the AWS 
Encryption SDK that 
help users of earlier 
versions upgrade 
to versions 2.0.x
and later. For more 
information, see
version 1.7.x.

End-of-Support 
phase

JavaScript 349

https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://github.com/aws/aws-encryption-sdk-javascript/blob/master/CHANGELOG.md
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle


AWS Encryption SDK Developer Guide

2.0 Updates to the AWS 
Encryption SDK. For 
more information, 
see version 2.0.x.

2.2 Improvements to the 
message decryption 
process.

2.x

2.3 Adds support for 
AWS KMS multi-Reg 
ion keys.

End-of-Support 
phase

3.x 3.0 Removes CI coverage 
for Node 10. 
Upgrades dependenc 
ies to no longer 
support Node 8 and 
Node 10.

Maintenance

Support for version 
3.x of the AWS 
Encryption SDK for 
JavaScript will end on 
January 17, 2024.

4.x 4.0 Requires version 3 of 
the AWS Encryption 
SDK for JavaScript's
kms-client  to use 
the AWS KMS keyring.

General Availability
(GA)

Python

For a detailed description of all changes, see the CHANGELOG.rst in the aws-encryption-sdk-
python repository on GitHub.

Major version Details SDK major version 
life-cycle phase

1.x 1.0 Initial release. End-of-Support 
phase

Python 350

https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://github.com/aws/aws-encryption-sdk-python/blob/master/CHANGELOG.rst
https://github.com/aws/aws-encryption-sdk-python/
https://github.com/aws/aws-encryption-sdk-python/
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle


AWS Encryption SDK Developer Guide

1.3 Adds support for 
cryptographic 
materials manager 
and data key caching. 
Moved to determini 
stic IV generation.

1.7 Updates to the AWS 
Encryption SDK that 
help users of earlier 
versions upgrade 
to versions 2.0.x
and later. For more 
information, see
version 1.7.x.

2.0 Updates to the AWS 
Encryption SDK. For 
more information, 
see version 2.0.x.

2.2 Improvements to the 
message decryption 
process.

2.x

2.3 Adds support for 
AWS KMS multi-Reg 
ion keys.

End-of-Support 
phase

Python 351

https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle


AWS Encryption SDK Developer Guide

3.x 3.0 The AWS Encryptio 
n SDK for Python 
no longer supports 
Python 2 or Python 
3.4. As of major 
version 3.x of the 
AWS Encryption SDK 
for Python, only 
Python 3.5 or later is 
supported.

General Availability
(GA)

Version details

The following list describes the major differences between supported versions of the AWS 
Encryption SDK.

Topics

• Versions earlier than 1.7.x

• Version 1.7.x

• Version 2.0.x

• Version 2.2.x

• Version 2.3.x

Versions earlier than 1.7.x

Note

All 1.x.x versions of the AWS Encryption SDK are in the end-of-support phase. Upgrade to 
the latest available version of the AWS Encryption SDK for your programming language as 
soon as is practical. To upgrade from an AWS Encryption SDK version earlier than 1.7.x, you 
must first upgrade to 1.7.x. For details, see Migrating your AWS Encryption SDK.

Versions of the AWS Encryption SDK earlier than 1.7.x provide important security features, 
including encryption with the Advanced Encryption Standard algorithm in Galois/Counter Mode 

Version details 352

https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle


AWS Encryption SDK Developer Guide

(AES-GCM), an HMAC-based extract-and-expand key derivation function (HKDF), signing, and a 
256-bit encryption key. However, these versions don't support best practices that we recommend, 
including key commitment.

Version 1.7.x

Note

All 1.x.x versions of the AWS Encryption SDK are in the end-of-support phase.

Version 1.7.x is designed to help users of earlier versions of the AWS Encryption SDK to upgrade to 
versions 2.0.x and later. If you are new to the AWS Encryption SDK, you can skip this version and 
begin with the latest available version in your programming language.

Version 1.7.x is fully backward compatible; it does not introduce any breaking changes or change 
the behavior of the AWS Encryption SDK. It's also forwards compatible; it allows you to update 
your code so it's compatible with version 2.0.x. It includes new features, but doesn't fully enable 
them. And it requires configuration values that prevent you from immediately adopting all new 
features until you are ready.

Version 1.7.x includes the following changes:

AWS KMS master key provider updates (required)

Version 1.7.x introduces new constructors to the AWS Encryption SDK for Java and AWS 
Encryption SDK for Python that explicitly create AWS KMS master key providers in either strict
or discovery mode. This version adds similar changes to the AWS Encryption SDK command-line 
interface (CLI). For details, see Updating AWS KMS master key providers.

• In strict mode, AWS KMS master key providers require a list of wrapping keys, and they 
encrypt and decrypt with only the wrapping keys you specify. This is an AWS Encryption SDK 
best practice that assures that you are using the wrapping keys you intend to use.

• In discovery mode, AWS KMS master key providers do not take any wrapping keys. You cannot 
use them for encrypting. When decrypting, they can use any wrapping key to decrypt an 
encrypted data key. However, you can limit the wrapping keys used for decryption to those 
in particular AWS accounts. Account filtering is optional, but it's a best practice that we 
recommend.

Version 1.7.x 353

https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle


AWS Encryption SDK Developer Guide

The constructors that create earlier versions of AWS KMS master key providers are deprecated 
in version 1.7.x and removed in version 2.0.x. These constructors instantiate master key 
providers that encrypt using the wrapping keys you specify. However, they decrypt encrypted 
data keys using the wrapping key that encrypted them, without regard to the specified 
wrapping keys. Users might unintentionally decrypt messages with wrapping keys they don't 
intend to use, including AWS KMS keys in other AWS accounts and Regions.

There are no changes to constructors for AWS KMS master keys. When encrypting and 
decrypting, AWS KMS master keys use only the AWS KMS key that you specify.

AWS KMS keyring updates (optional)

Version 1.7.x adds a new filter to the AWS Encryption SDK for C and AWS Encryption SDK for 
JavaScript implementations that limits AWS KMS discovery keyrings to particular AWS accounts. 
This new account filter is optional, but it's a best practice that we recommend. For details, see
Updating AWS KMS keyrings.

There are no changes to constructors for AWS KMS keyrings. Standard AWS KMS keyrings 
behave like master key providers in strict mode. AWS KMS discovery keyrings are created 
explicitly in discovery mode.

Passing a key ID to AWS KMS Decrypt

Beginning in version 1.7.x, when decrypting encrypted data keys, the AWS Encryption SDK 
always specifies an AWS KMS key in its calls to the AWS KMS Decrypt operation. The AWS 
Encryption SDK gets the key ID value for the AWS KMS key from the metadata in each 
encrypted data key. This feature doesn't require any code changes.

Specifying the key ID of the AWS KMS key is not required to decrypt ciphertext that was 
encrypted under a symmetric encryption KMS key, but it is an AWS KMS best practice. Like 
specifying wrapping keys in your key provider, this practice assures that AWS KMS only decrypts 
using the wrapping key you intend to use.

Decrypt ciphertext with key commitment

Version 1.7.x can decrypt ciphertext that was encrypted with or without key commitment. 
However, it cannot encrypt ciphertext with key commitment. This property allows you to fully 
deploy applications that can decrypt ciphertext encrypted with key commitment before they 
ever encounter any such ciphertext. Because this version decrypts messages that are encrypted 
without key commitment, you don't need to re-encrypt any ciphertext.

Version 1.7.x 354

https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html#KMS-Decrypt-request-KeyId


AWS Encryption SDK Developer Guide

To implement this behavior, version 1.7.x includes a new commitment policy configuration 
setting that determines whether the AWS Encryption SDK can encrypt or decrypt with 
key commitment. In version 1.7.x, the only valid value for the commitment policy,
ForbidEncryptAllowDecrypt, is used in all encrypt and decrypt operations. This value 
prevents the AWS Encryption SDK from encrypting with either of the new algorithm suites that 
include key commitment. It allows the AWS Encryption SDK to decrypt ciphertext with and 
without key commitment.

Although there is only one valid commitment policy value in version 1.7.x, we require that you 
can set this value explicitly when you use the new APIs introduced in this release. Setting the 
value explicitly prevents your commitment policy from changing automatically to require-
encrypt-require-decrypt when you upgrade to version 2.1.x. Instead, you can migrate 
your commitment policy in stages.

Algorithm suites with key commitment

Version 1.7.x includes two new algorithm suites that support key commitment. One includes 
signing; the other does not. Like earlier supported algorithm suites, both of these new 
algorithm suites include encryption with AES-GCM, a 256-bit encryption key, and an HMAC-
based extract-and-expand key derivation function (HKDF).

However, the default algorithm suite used for encryption does not change. These algorithm 
suites are added to version 1.7.x to prepare your application to use them in versions 2.0.x and 
later.

CMM implementation changes

Version 1.7.x introduces changes to the Default cryptographic materials manager (CMM) 
interface to support key commitment. This change affects you only if you have written a custom 
CMM. For details, see the API documentation or GitHub repository for your programming 
language.

Version 2.0.x

Version 2.0.x supports new security features offered in the AWS Encryption SDK, including 
specified wrapping keys and key commitment. To support these features, version 2.0.x includes 
breaking changes for earlier versions of the AWS Encryption SDK. You can prepare for these 
changes by deploying version 1.7.x. Version 2.0.x includes all of the new features introduced in 
version 1.7.x with the following additions and changes.

Version 2.0.x 355



AWS Encryption SDK Developer Guide

Note

Version 2.x.x of the AWS Encryption SDK for Python, AWS Encryption SDK for JavaScript, 
and the AWS Encryption CLI are in the end-of-support phase.
For information about support and maintenance of this AWS Encryption SDK version in 
your preferred programming language, see the SUPPORT_POLICY.rst file in its GitHub 
repository.

AWS KMS master key providers

The original AWS KMS master key provider constructors that were deprecated in version 1.7.x
are removed in version 2.0.x. You must explicitly construct AWS KMS master key providers in
strict mode or discovery mode.

Encrypt and decrypt ciphertext with key commitment

Version 2.0.x can encrypt and decrypt ciphertext with or without key commitment. Its behavior 
is determined by the commitment policy setting. By default, it always encrypts with key 
commitment and only decrypts ciphertext encrypted with key commitment. Unless you change 
the commitment policy, the AWS Encryption SDK will not decrypt ciphertexts encrypted by any 
earlier version of the AWS Encryption SDK, including version 1.7.x.

Important

By default, version 2.0.x will not decrypt any ciphertext that was encrypted without 
key commitment. If your application might encounter a ciphertext that was encrypted 
without key commitment, set a commitment policy value with AllowDecrypt.

In version 2.0.x, the commitment policy setting has three valid values:

• ForbidEncryptAllowDecrypt — The AWS Encryption SDK cannot encrypt with key 
commitment. It can decrypt ciphertexts encrypted with or without key commitment.

• RequireEncryptAllowDecrypt — The AWS Encryption SDK must encrypt with key 
commitment. It can decrypt ciphertexts encrypted with or without key commitment.

• RequireEncryptRequireDecrypt (default) — The AWS Encryption SDK must encrypt with 
key commitment. It only decrypts ciphertexts with key commitment.

Version 2.0.x 356

https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle


AWS Encryption SDK Developer Guide

If you are migrating from an earlier version of the AWS Encryption SDK to version 2.0.x, set the 
commitment policy to a value that assures that you can decrypt all existing ciphertexts that 
your application might encounter. You are likely to adjust this setting over time.

Version 2.2.x

Adds support for digital signatures and limiting encrypted data keys.

Note

Version 2.x.x of the AWS Encryption SDK for Python, AWS Encryption SDK for JavaScript, 
and the AWS Encryption CLI are in the end-of-support phase.
For information about support and maintenance of this AWS Encryption SDK version in 
your preferred programming language, see the SUPPORT_POLICY.rst file in its GitHub 
repository.

Digital signatures

To improve handling of digital signatures when decrypting, the AWS Encryption SDK includes 
the following features:

• Non-streaming mode — returns plaintext only after processing all input, including verifying 
the digital signature if present. This feature prevents you from using plaintext before 
verifying the digital signature. Use this feature whenever you decrypt data encrypted with 
digital signatures (the default algorithm suite). For example, because the AWS Encryption CLI 
always processes data in streaming mode, use the - -buffer parameter when decrypting 
ciphertext with digital signatures.

• Unsigned-only decryption mode — this feature only decrypts unsigned ciphertext. If 
decryption encounters a digital signature in the ciphertext, the operation fails. Use this 
feature to avoid unintentionally processing plaintext from signed messages before verifying 
the signature.

Limiting encrypted data keys

You can limit the number of encrypted data keys in an encrypted message. This feature can 
help you detect a misconfigured master key provider or keyring when encrypting, or identify a 
malicious ciphertext when decrypting.

Version 2.2.x 357

https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle


AWS Encryption SDK Developer Guide

You should limit encrypted data keys when you decrypt messages from an untrusted source. It 
prevents unnecessary, expensive, and potentially exhaustive calls to your key infrastructure.

Version 2.3.x

Adds support for AWS KMS multi-Region keys. For details, see Using multi-Region AWS KMS keys.

Note

The AWS Encryption CLI supports multi-Region keys beginning in version 3.0.x.
Version 2.x.x of the AWS Encryption SDK for Python, AWS Encryption SDK for JavaScript, 
and the AWS Encryption CLI are in the end-of-support phase.
For information about support and maintenance of this AWS Encryption SDK version in 
your preferred programming language, see the SUPPORT_POLICY.rst file in its GitHub 
repository.

Version 2.3.x 358

https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle


AWS Encryption SDK Developer Guide

Migrating your AWS Encryption SDK

The AWS Encryption SDK supports multiple interoperable programming language 
implementations, each of which is developed in an open-source repository on GitHub. As a best 
practice, we recommend that you use the latest version of the AWS Encryption SDK for each 
language.

You can safely upgrade from version 2.0.x or later of AWS Encryption SDK to the latest version. 
However, the 2.0.x version of the AWS Encryption SDK introduces significant new security features, 
some of which are breaking changes. To upgrade from versions earlier than 1.7.x to versions 2.0.x
and later, you must first upgrade to the latest 1.x version. The topics in this section are designed 
to help you understand the changes, select the correct version for your application, and migrate 
safely and successfully to the newest versions of the AWS Encryption SDK.

For information about significant versions of the AWS Encryption SDK, see Versions of the AWS 
Encryption SDK.

Important

Do not upgrade directly from a version earlier than 1.7.x to version 2.0.x or later without 
first upgrading to the latest 1.x version. If you upgrade directly to version 2.0.x or later and 
enable all new features immediately, the AWS Encryption SDK won't be able to decrypt 
ciphertext encrypted under older versions of the AWS Encryption SDK.

Note

The earliest version of the AWS Encryption SDK for .NET is version 3.0.x. All versions of the 
AWS Encryption SDK for .NET support the security best practices introduced in 2.0.x of the 
AWS Encryption SDK. You can safely upgrade to the latest version without any code or data 
changes.
AWS Encryption CLI: When reading this migration guide, use the 1.7.x migration 
instructions for AWS Encryption CLI 1.8.x and use the 2.0.x migration instructions for AWS 
Encryption CLI 2.1.x. For details, see Versions of the AWS Encryption CLI.
New security features were originally released in AWS Encryption CLI versions 1.7.x
and 2.0.x. However, AWS Encryption CLI version 1.8.x replaces version 1.7.x and AWS 

359



AWS Encryption SDK Developer Guide

Encryption CLI 2.1.x replaces 2.0.x. For details, see the relevant security advisory in the aws-
encryption-sdk-cli repository on GitHub.

New users

If you're new to the AWS Encryption SDK, install the latest version of the AWS Encryption SDK 
for your programming language. The default values enable all security features of the AWS 
Encryption SDK, including encryption with signing, key derivation, and key commitment. of the 
AWS Encryption SDK

Current users

We recommend that you upgrade from your current version to the latest available version 
as soon as possible. All 1.x versions of the AWS Encryption SDK are in the end-of-support 
phase, as are later versions in some programming languages. For details about the support and 
maintenance status of the AWS Encryption SDK in your programming language, see Support 
and maintenance.

AWS Encryption SDK versions 2.0.x and later provide new security features to help protect 
your data. However, AWS Encryption SDK version 2.0.x includes breaking changes that are not 
backwards compatible. To assure a safe transition, begin by migrating from your current version 
to the latest 1.x in your programming language. When your latest 1.x version is fully deployed 
and operating successfully, you can safely migrate to versions 2.0.x and later. This two-step 
process is critical especially for distributed applications.

For more information about the AWS Encryption SDK security features that underlie these changes, 
see Improved client-side encryption: Explicit KeyIds and key commitment in the AWS Security Blog.

Looking for help with using the AWS Encryption SDK for Java with the AWS SDK for Java 2.x? See
Prerequisites.

Topics

• How to migrate and deploy the AWS Encryption SDK

• Updating AWS KMS master key providers

• Updating AWS KMS keyrings

• Setting your commitment policy

360

https://github.com/aws/aws-encryption-sdk-cli/security/advisories/GHSA-2xwp-m7mq-7q3r
https://github.com/aws/aws-encryption-sdk-cli/
https://github.com/aws/aws-encryption-sdk-cli/
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://aws.amazon.com/blogs/security/improved-client-side-encryption-explicit-keyids-and-key-commitment/


AWS Encryption SDK Developer Guide

• Troubleshooting migration to the latest versions

How to migrate and deploy the AWS Encryption SDK

When migrating from an AWS Encryption SDK version earlier than 1.7.x to version 2.0.x or later, 
you must transition safely to encrypting with key commitment. Otherwise, your application will 
encounter ciphertexts that it cannot decrypt. If you are using AWS KMS master key providers, you 
must update to new constructors that create master key providers in strict mode or discovery 
mode.

Note

This topic is designed for users migrating from earlier versions of the AWS Encryption SDK 
to version 2.0.x or later. If you are new to the AWS Encryption SDK, you can begin using the 
latest available version immediately with the default settings.

To avoid a critical situation in which you cannot decrypt ciphertext that you need to read, we 
recommend that you migrate and deploy in multiple distinct stages. Verify that each stage is 
complete and fully deployed before starting the next stage. This is particularly important for 
distributed applications with multiple hosts.

Stage 1: Update your application to the latest 1.x version

Update to the latest 1.x version for your programming language. Test carefully, deploy your 
changes, and confirm that the update has propagated to all destination hosts before starting stage 
2.

Important

Verify that your latest 1.x version is version 1.7.x or later of the AWS Encryption SDK.

The latest 1.x versions of the AWS Encryption SDK are backward compatible with legacy versions 
of the AWS Encryption SDK and forward compatible with versions 2.0.x and later. They include the 
new features that are present in version 2.0.x, but include safe defaults designed for this migration. 
They allow you to upgrade your AWS KMS master key providers, if necessary, and to fully deploy 
with algorithm suites that can decrypt ciphertext with key commitment.

How to migrate and deploy 361



AWS Encryption SDK Developer Guide

• Replace deprecated elements, including constructors for legacy AWS KMS master key providers. 
In Python, be sure to turn on deprecation warnings. Code elements that are deprecated in the 
latest 1.x versions are removed from versions 2.0.x and later.

• Explicitly set your commitment policy to ForbidEncryptAllowDecrypt. Although this is 
the only valid value in the latest 1.x versions, this setting is required when you use the APIs 
introduced in this release. It prevents your application from rejecting ciphertext encrypted 
without key commitment when you migrate to version 2.0.x and later. For details, see the section 
called “Setting your commitment policy”.

• If you use AWS KMS master key providers, you must update your legacy master key providers 
to master key providers that support strict mode and discovery mode. This update is required 
for the AWS Encryption SDK for Java, AWS Encryption SDK for Python, and the AWS Encryption 
CLI. If you use master key providers in discovery mode, we recommend that you implement the 
discovery filter that limits the wrapping keys used to those in particular AWS accounts. This 
update is optional, but it's a best practice that we recommend. For details, see Updating AWS 
KMS master key providers.

• If you use AWS KMS discovery keyrings, we recommend that you include a discovery filter that 
limits the wrapping keys used in decryption to those in particular AWS accounts. This update 
is optional, but it's a best practice that we recommend. For details, see Updating AWS KMS 
keyrings.

Stage 2: Update your application to the latest version

After deploying the latest 1.x version successfully to all hosts, you can upgrade to versions 2.0.x
and later. Version 2.0.x includes breaking changes for all earlier versions of the AWS Encryption 
SDK. However, if you make the code changes recommended in Stage 1, you can avoid errors when 
you migrate to the latest version.

Before you update to the latest version, verify that your commitment policy is consistently 
set to ForbidEncryptAllowDecrypt. Then, depending on your data configuration, you can 
migrate at your own pace to RequireEncryptAllowDecrypt and then to the default setting,
RequireEncryptRequireDecrypt. We recommend a series of transition steps like the following 
pattern.

1. Begin with your commitment policy set to ForbidEncryptAllowDecrypt. The AWS 
Encryption SDK can decrypt messages with key commitment, but it doesn't yet encrypt with key 
commitment.

Stage 2: Update your application to the latest version 362

https://docs.python.org/3/library/warnings.html


AWS Encryption SDK Developer Guide

2. When you are ready, update your commitment policy to RequireEncryptAllowDecrypt. 
The AWS Encryption SDK begins to encrypt your data with key commitment. It can decrypt 
ciphertext with and without key commitment.

Before updating your commitment policy to RequireEncryptAllowDecrypt, verify that 
your latest 1.x version is deployed to all hosts, including hosts of any applications that decrypt 
the ciphertext you produce. Versions of the AWS Encryption SDK prior to version 1.7.x cannot 
decrypt messages encrypted with key commitment.

This is also a good time to add metrics to your application to measure whether you are still 
processing ciphertext without key commitment. This will help you determine when it's safe 
to update your commitment policy setting to RequireEncryptRequireDecrypt. For some 
applications, such as those that encrypt messages in an Amazon SQS queue, this might mean 
waiting long enough that all ciphertext encrypted under old versions have been re-encrypted or 
deleted. For other applications, such as encrypted S3 objects, you might need to download, re-
encrypt, and re-upload all objects.

3. When you are certain that you don't have any messages encrypted without key commitment, 
you can update your commitment policy to RequireEncryptRequireDecrypt. This value 
assures that your data is always encrypted and decrypted with key commitment. This setting is 
the default, so you aren't required to set it explicitly, but we recommend it. An explicit setting 
will aid debugging and any potential rollbacks that might be required if your application 
encounters ciphertext encrypted without key commitment.

Updating AWS KMS master key providers

To migrate to the latest 1.x version of the AWS Encryption SDK, and then to version 2.0.x or 
later, you must replace legacy AWS KMS master key providers with master key providers created 
explicitly in strict mode or discovery mode. Legacy master key providers are deprecated in version 
1.7.x and removed in version 2.0.x. This change is required for applications and scripts that use the
AWS Encryption SDK for Java, AWS Encryption SDK for Python, and the AWS Encryption CLI. The 
examples in this section will show you how to update your code.

Note

In Python, turn on deprecation warnings. This will help you identify the parts of your code 
that you need to update.

Updating AWS KMS master key providers 363

https://docs.python.org/3/library/warnings.html


AWS Encryption SDK Developer Guide

If you are using an AWS KMS master key (not a master key provider), you can skip this step. AWS 
KMS master keys are not deprecated or removed. They encrypt and decrypt only with the wrapping 
keys that you specify.

The examples in this section focus on the elements of your code that you need to change. For a 
complete example of the updated code, see the Examples section of the GitHub repository for 
your programming language. Also, these examples typically use key ARNs to represent AWS KMS 
keys. When you create a master key provider for encrypting, you can use any valid AWS KMS key 
identifier to represent an AWS KMS key . When you create a master key provider for decrypting, 
you must use a key ARN.

Learn more about migration

For all AWS Encryption SDK users, learn about setting your commitment policy in the section called 
“Setting your commitment policy”.

For AWS Encryption SDK for C and AWS Encryption SDK for JavaScript users, learn about an 
optional update to keyrings in Updating AWS KMS keyrings.

Topics

• Migrating to strict mode

• Migrating to discovery mode

Migrating to strict mode

After updating to the latest 1.x version of the AWS Encryption SDK, replace your legacy master key 
providers with master key providers in strict mode. In strict mode, you must specify the wrapping 
keys to use when encrypting and decrypting. The AWS Encryption SDK uses only the wrapping 
keys you specify. Deprecated master key providers can decrypt data using any AWS KMS key that 
encrypted a data key, including AWS KMS keys in different AWS accounts and Regions.

Master key providers in strict mode are introduced in the AWS Encryption SDK version 1.7.x. They 
replace legacy master key providers, which are deprecated in 1.7.x and removed in 2.0.x. Using 
master key providers in strict mode is an AWS Encryption SDK  best practice.

The following code creates a master key provider in strict mode that you can use for encrypting 
and decrypting.

Migrating to strict mode 364

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id


AWS Encryption SDK Developer Guide

Java

This example represents code in an application that uses the version 1.6.2 or earlier of the AWS 
Encryption SDK for Java.

This code uses the KmsMasterKeyProvider.builder() method to instantiate an AWS KMS 
master key provider that uses one AWS KMS key as a wrapping key.

// Create a master key provider
// Replace the example key ARN with a valid one
String awsKmsKey = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab";

KmsMasterKeyProvider masterKeyProvider = KmsMasterKeyProvider.builder()
    .withKeysForEncryption(awsKmsKey) 
    .build();

This example represents code in an application that uses version 1.7.x or later of the AWS 
Encryption SDK for Java . For a complete example, see BasicEncryptionExample.java.

The Builder.build() and Builder.withKeysForEncryption() methods used in the 
previous example are deprecated in version 1.7.x and are removed from version 2.0.x.

To update to a strict mode master key provider, this code replaces calls to deprecated methods 
with a call to the new Builder.buildStrict() method. This example specifies one AWS 
KMS key as the wrapping key, but the Builder.buildStrict() method can take a list of 
multiple AWS KMS keys.

// Create a master key provider in strict mode
// Replace the example key ARN with a valid one from your AWS account.
String awsKmsKey = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab";

KmsMasterKeyProvider masterKeyProvider = KmsMasterKeyProvider.builder() 
     .buildStrict(awsKmsKey);

Python

This example represents code in an application that uses version 1.4.1 of the AWS Encryption 
SDK for Python. This code uses KMSMasterKeyProvider, which is deprecated in version 1.7.x
and removed from version 2.0.x. When decrypting, it uses any AWS KMS key that encrypted a 
data key without regard to the AWS KMS keys you specify.

Migrating to strict mode 365

https://github.com/aws/aws-encryption-sdk-java/blob/master/src/examples/java/com/amazonaws/crypto/examples/v2/BasicEncryptionExample.java


AWS Encryption SDK Developer Guide

Note that KMSMasterKey is not deprecated or removed. When encrypting and decrypting, it 
uses only the AWS KMS key you specify.

# Create a master key provider
# Replace the example key ARN with a valid one
key_1 = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"
key_2 = "arn:aws:kms:us-west-2:111122223333:key/0987dcba-09fe-87dc-65ba-
ab0987654321"

aws_kms_master_key_provider = KMSMasterKeyProvider( 
   key_ids=[key_1, key_2]
)

This example represents code in an application that uses version 1.7.x of the AWS Encryption 
SDK for Python. For a complete example, see basic_encryption.py.

To update to a strict mode master key provider, this code replaces the call to
KMSMasterKeyProvider() with a call to StrictAwsKmsMasterKeyProvider().

# Create a master key provider in strict mode
# Replace the example key ARNs with valid values from your AWS account
key_1 = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"
key_2 = "arn:aws:kms:us-west-2:111122223333:key/0987dcba-09fe-87dc-65ba-
ab0987654321"

aws_kms_master_key_provider = StrictAwsKmsMasterKeyProvider( 
    key_ids=[key_1, key_2]
)

AWS Encryption CLI

This example shows how to encrypt and decrypt using the AWS Encryption CLI version 1.1.7 or 
earlier.

In version 1.1.7 and earlier, when encrypting, you specify one or more master keys (or wrapping 
keys), such as an AWS KMS key. When decrypting, you can't specify any wrapping keys unless 
you are using a custom master key provider. The AWS Encryption CLI can use any wrapping key 
that encrypted a data key.

\\ Replace the example key ARN with a valid one

Migrating to strict mode 366

https://github.com/aws/aws-encryption-sdk-python/blob/master/examples/src/basic_encryption.py


AWS Encryption SDK Developer Guide

$ keyArn=arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab

\\ Encrypt your plaintext data
$ aws-encryption-cli --encrypt \ 
                     --input hello.txt \ 
                      --master-keys key=$keyArn \
                     --metadata-output ~/metadata \ 
                     --encryption-context purpose=test \ 
                     --output .

\\ Decrypt your ciphertext                
$ aws-encryption-cli --decrypt \ 
                     --input hello.txt.encrypted \ 
                     --encryption-context purpose=test \ 
                     --metadata-output ~/metadata \ 
                     --output .   

This example shows how to encrypt and decrypt using the AWS Encryption CLI version 1.7.x or 
later. For complete examples, see Examples of the AWS Encryption CLI.

The --master-keys parameter is deprecated in version 1.7.x and removed in version 2.0.x. 
It's replaced the by --wrapping-keys parameter, which is required in encrypt and decrypt 
commands. This parameter supports strict mode and discovery mode. Strict mode is an AWS 
Encryption SDK best practice that assures that you use the wrapping key that you intend.

To upgrade to strict mode, use the key attribute of the --wrapping-keys parameter to specify 
a wrapping key when encrypting and decrypting.

\\ Replace the example key ARN with a valid value
$ keyArn=arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab

\\ Encrypt your plaintext data
$ aws-encryption-cli --encrypt \ 
                     --input hello.txt \ 
                      --wrapping-keys key=$keyArn \ 
                     --metadata-output ~/metadata \ 
                     --encryption-context purpose=test \ 
                     --output .

\\ Decrypt your ciphertext                
$ aws-encryption-cli --decrypt \ 
                     --input hello.txt.encrypted \ 
                     --wrapping-keys key=$keyArn \ 

Migrating to strict mode 367



AWS Encryption SDK Developer Guide

                     --encryption-context purpose=test \ 
                     --metadata-output ~/metadata \ 
                     --output .

Migrating to discovery mode

Beginning in version 1.7.x, it's an AWS Encryption SDK best practice to use strict mode for AWS 
KMS master key providers, that is, to specify wrapping keys when encrypting and decrypting. You 
must always specify wrapping keys when encrypting. But there are situations in which specifying 
the key ARNs of AWS KMS keys for decrypting is impractical. For example, if you're using aliases to 
identify AWS KMS keys when encrypting, you lose the benefit of aliases if you have to list key ARNs 
when decrypting. Also, because master key providers in discovery mode behave like the original 
master key providers, you might use them temporarily as part of your migration strategy, and then 
upgrade to master key providers in strict mode later.

In cases like this, you can use master key providers in discovery mode. These master key providers 
don't let you specify wrapping keys, so you cannot use them for encrypting. When decrypting, 
they can use any wrapping key that encrypted a data key. But unlike legacy master key providers, 
which behave the same way, you create them in discovery mode explicitly. When using master 
key providers in discovery mode, you can limit the wrapping keys that can be used to those 
in particular AWS accounts. This discovery filter is optional, but it's a best practice that we 
recommend. For information about AWS partitions and accounts, see Amazon Resource Names in 
the AWS General Reference.

The following examples create an AWS KMS master key provider in strict mode for encrypting and 
an AWS KMS master key provider in discovery mode for decrypting. The master key provider in 
discovery mode uses a discovery filter to limit the wrapping keys used for decrypting to the aws
partition and to particular example AWS accounts. Although the account filter is not necessary in 
this very simple example, it's a best practice that is very beneficial when one application encrypts 
data and a different application decrypts the data.

Java

This example represents code in an application that uses version 1.7.x or later of the AWS 
Encryption SDK for Java. For a complete example, see DiscoveryDecryptionExample.java.

To instantiate a master key provider in strict mode for encrypting, this example uses 
the Builder.buildStrict() method. To instantiate a master key provider in 

Migrating to discovery mode 368

https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html#arns-syntax
https://github.com/aws/aws-encryption-sdk-java/blob/master/src/examples/java/com/amazonaws/crypto/examples/


AWS Encryption SDK Developer Guide

discovery mode for decrypting, it uses the Builder.buildDiscovery() method. The
Builder.buildDiscovery() method takes a DiscoveryFilter that limits the AWS 
Encryption SDK to AWS KMS keys in the specified AWS partition and accounts.

// Create a master key provider in strict mode for encrypting
// Replace the example alias ARN with a valid one from your AWS account.
String awsKmsKey = "arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias";

KmsMasterKeyProvider encryptingKeyProvider = KmsMasterKeyProvider.builder() 
     .buildStrict(awsKmsKey);

// Create a master key provider in discovery mode for decrypting
// Replace the example account IDs with valid values.
DiscoveryFilter accounts = new DiscoveryFilter("aws", Arrays.asList("111122223333", 
 "444455556666"));

KmsMasterKeyProvider decryptingKeyProvider = KmsMasterKeyProvider.builder() 
     .buildDiscovery(accounts);

Python

This example represents code in an application that uses version 1.7.x or later of the AWS 
Encryption SDK for Python . For a complete example, see discovery_kms_provider.py.

To create a master key provider in strict mode for encrypting, this example uses
StrictAwsKmsMasterKeyProvider. To create a master key provider in discovery mode for 
decrypting, it uses DiscoveryAwsKmsMasterKeyProvider with a DiscoveryFilter that 
limits the AWS Encryption SDK to AWS KMS keys in the specified AWS partition and accounts.

# Create a master key provider in strict mode
# Replace the example key ARN and alias ARNs with valid values from your AWS 
 account.
key_1 = "arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias"
key_2 = "arn:aws:kms:us-
west-2:444455556666:key/1a2b3c4d-5e6f-1a2b-3c4d-5e6f1a2b3c4d"

aws_kms_master_key_provider = StrictAwsKmsMasterKeyProvider( 
    key_ids=[key_1, key_2]
)

# Create a master key provider in discovery mode for decrypting
# Replace the example account IDs with valid values

Migrating to discovery mode 369

https://github.com/aws/aws-encryption-sdk-python/blob/master/examples/src/discovery_kms_provider.py


AWS Encryption SDK Developer Guide

accounts = DiscoveryFilter( 
    partition="aws", 
    account_ids=["111122223333", "444455556666"]
)
aws_kms_master_key_provider = DiscoveryAwsKmsMasterKeyProvider( 
        discovery_filter=accounts
)

AWS Encryption CLI

This example shows how to encrypt and decrypt using the AWS Encryption CLI version 1.7.x or 
later. Beginning in version 1.7.x, the --wrapping-keys parameter is required when encrypting 
and decrypting. The --wrapping-keys parameter supports strict mode and discovery mode. 
For complete examples, see the section called “Examples”.

When encrypting, this example specifies a wrapping key, which is required. When decrypting, it 
explicitly chooses discovery mode by using the discovery attribute of the --wrapping-keys
parameter with a value of true.

To limit the wrapping keys that the AWS Encryption SDK can use in discovery mode to those 
in particular AWS accounts, this example uses the discovery-partition and discovery-
account attributes of the --wrapping-keys parameter. These optional attributes are valid 
only when the discovery attribute is set to true. You must use the discovery-partition
and discovery-account attributes together; neither is valid alone.

\\ Replace the example key ARN with a valid value
$ keyAlias=arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias

\\ Encrypt your plaintext data
$ aws-encryption-cli --encrypt \ 
                     --input hello.txt \ 
                      --wrapping-keys key=$keyAlias \ 
                     --metadata-output ~/metadata \ 
                     --encryption-context purpose=test \ 
                     --output .

\\ Decrypt your ciphertext
\\ Replace the example account IDs with valid values            
$ aws-encryption-cli --decrypt \ 
                     --input hello.txt.encrypted \ 
                      --wrapping-keys discovery=true \ 
                                     discovery-partition=aws \ 

Migrating to discovery mode 370



AWS Encryption SDK Developer Guide

                                     discovery-account=111122223333 \ 
                                     discovery-account=444455556666 \
                     --encryption-context purpose=test \ 
                     --metadata-output ~/metadata \ 
                     --output .   

Updating AWS KMS keyrings

The AWS KMS keyrings in the AWS Encryption SDK for C, the AWS Encryption SDK for .NET, and 
the AWS Encryption SDK for JavaScript support best practices by allowing you to specify wrapping 
keys when encrypting and decrypting. If you create an AWS KMS discovery keyring, you do so 
explicitly.

Note

The earliest version of the AWS Encryption SDK for .NET is version 3.0.x. All versions of the 
AWS Encryption SDK for .NET support the security best practices introduced in 2.0.x of the 
AWS Encryption SDK. You can safely upgrade to the latest version without any code or data 
changes.

When you update to the latest 1.x version of the AWS Encryption SDK, you can use a discovery 
filter to limit the wrapping keys that an AWS KMS discovery keyring or AWS KMS regional discovery 
keyring uses when decrypting to those in particular AWS accounts. Filtering a discovery keyring is 
an AWS Encryption SDK best practice.

The examples in this section will show you how to add the discovery filter to an AWS KMS regional 
discovery keyring.

Learn more about migration

For all AWS Encryption SDK users, learn about setting your commitment policy in the section called 
“Setting your commitment policy”.

For AWS Encryption SDK for Java, AWS Encryption SDK for Python, and AWS Encryption CLI users, 
learn about a required update to master key providers in the section called “Updating AWS KMS 
master key providers”.

 

Updating AWS KMS keyrings 371



AWS Encryption SDK Developer Guide

You might have code like the following in your application. This example creates an AWS KMS 
regional discovery keyring that can only use wrapping keys in the US West (Oregon) (us-west-2) 
Region. This example represents code in AWS Encryption SDK versions earlier than 1.7.x. However, 
it is still valid in versions 1.7.x and later.

C

struct aws_cryptosdk_keyring *kms_regional_keyring = 
 Aws::Cryptosdk::KmsKeyring::Builder() 
       .WithKmsClient(create_kms_client(Aws::Region::US_WEST_2)).BuildDiscovery());

JavaScript Browser

const clientProvider = getClient(KMS, { credentials })

const discovery = true
const clientProvider = limitRegions(['us-west-2'], getKmsClient)
const keyring = new KmsKeyringBrowser({ clientProvider, discovery })

JavaScript Node.js

const discovery = true
const clientProvider = limitRegions(['us-west-2'], getKmsClient)
const keyring = new KmsKeyringNode({ clientProvider, discovery })

Beginning in version 1.7.x, you can add a discovery filter to any AWS KMS discovery keyring. This 
discovery filter limits the AWS KMS keys that the AWS Encryption SDK can use for decryption 
to those in the specified partition and accounts. Before using this code, change the partition, if 
necessary, and replace the example account IDs with valid ones.

C

For a complete example, see kms_discovery.cpp.

std::shared_ptr<KmsKeyring::DiscoveryFilter> discovery_filter( 
    KmsKeyring::DiscoveryFilter::Builder("aws") 
        .AddAccount("111122223333") 
        .AddAccount("444455556666") 
        .Build());

Updating AWS KMS keyrings 372

https://github.com/aws/aws-encryption-sdk-c/blob/master/examples/kms_discovery.cpp


AWS Encryption SDK Developer Guide

struct aws_cryptosdk_keyring *kms_regional_keyring = 
 Aws::Cryptosdk::KmsKeyring::Builder() 
       
 .WithKmsClient(create_kms_client(Aws::Region::US_WEST_2)).BuildDiscovery(discovery_filter));

JavaScript Browser

const clientProvider = getClient(KMS, { credentials })

const discovery = true
const clientProvider = limitRegions(['us-west-2'], getKmsClient)
const keyring = new KmsKeyringBrowser(clientProvider, { 
    discovery, 
    discoveryFilter: { accountIDs: ['111122223333', '444455556666'], partition: 
 'aws' }
})

JavaScript Node.js

For a complete example, see kms_filtered_discovery.ts.

const discovery = true
const clientProvider = limitRegions(['us-west-2'], getKmsClient)
const keyring = new KmsKeyringNode({ 
    clientProvider, 
    discovery, 
    discoveryFilter: { accountIDs: ['111122223333', '444455556666'], partition: 
 'aws' }
})

Setting your commitment policy

Key commitment assures that your encrypted data always decrypts to the same plaintext. To 
provide this security property, beginning in version 1.7.x, the AWS Encryption SDK uses new
algorithm suites with key commitment. To determine whether your data is encrypted and 
decrypted with key commitment, use the commitment policy configuration setting. Encrypting and 
decrypting data with key commitment is an AWS Encryption SDK best practice.

Setting a commitment policy is an important part of the second step in the migration process 
— migrating from the latest 1.x versions of the AWS Encryption SDK to versions 2.0.x and later. 

Setting your commitment policy 373

https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-node/src/kms_filtered_discovery.ts


AWS Encryption SDK Developer Guide

After setting and changing your commitment policy, be sure to test your application thoroughly 
before deploying it in production. For migration guidance, see How to migrate and deploy the AWS 
Encryption SDK.

The commitment policy setting has three valid values in versions 2.0.x and later. In the latest 1.x
versions (beginning with version 1.7.x), only ForbidEncryptAllowDecrypt is valid.

• ForbidEncryptAllowDecrypt — The AWS Encryption SDK cannot encrypt with key 
commitment. It can decrypt ciphertexts encrypted with or without key commitment.

In the latest 1.x versions, this is the only valid value. It ensures that you don't encrypt with key 
commitment until you are fully prepared to decrypt with key commitment. Setting the value 
explicitly prevents your commitment policy from changing automatically to require-encrypt-
require-decrypt when you upgrade to versions 2.0.x or later. Instead, you can migrate your 
commitment policy in stages.

• RequireEncryptAllowDecrypt — The AWS Encryption SDK always encrypts with key 
commitment. It can decrypt ciphertexts encrypted with or without key commitment. This value is 
added in version 2.0.x.

• RequireEncryptRequireDecrypt — The AWS Encryption SDK always encrypts and decrypts 
with key commitment. This value is added in version 2.0.x. It is the default value in versions 2.0.x
and later.

In the latest 1.x versions, the only valid commitment policy value is
ForbidEncryptAllowDecrypt. After you migrate to version 2.0.x or later, you can change 
your commitment policy in stages as you are ready. Don't update your commitment policy to
RequireEncryptRequireDecrypt until you are certain that you don't have any messages 
encrypted without key commitment.

These examples show you how to set your commitment policy in the latest 1.x versions and in 
versions 2.0.x and later. The technique depends on your programming language.

Learn more about migration

For AWS Encryption SDK for Java, AWS Encryption SDK for Python, and the AWS Encryption CLI, 
learn about required changes to master key providers in the section called “Updating AWS KMS 
master key providers”.

For AWS Encryption SDK for C and AWS Encryption SDK for JavaScript, learn about an optional 
update to keyrings in Updating AWS KMS keyrings.

Setting your commitment policy 374



AWS Encryption SDK Developer Guide

How to set your commitment policy

The technique that you use to set your commitment policy differs slightly with each language 
implementation. These examples show you how to do it. Before changing your commitment policy, 
review the multi-stage approach in How to migrate and deploy.

C

Beginning in version 1.7.x of the AWS Encryption SDK for C, you use the
aws_cryptosdk_session_set_commitment_policy function to set the commitment 
policy on your encrypt and decrypt sessions. The commitment policy that you set applies to all 
encrypt and decrypt operations called on that session.

The aws_cryptosdk_session_new_from_keyring and
aws_cryptosdk_session_new_from_cmm functions are deprecated 
in version 1.7.x and removed in version 2.0.x. These functions are 
replaced by aws_cryptosdk_session_new_from_keyring_2 and
aws_cryptosdk_session_new_from_cmm_2 functions that return a session.

When you use the aws_cryptosdk_session_new_from_keyring_2 and
aws_cryptosdk_session_new_from_cmm_2 in the latest 1.x versions, you are 
required to call the aws_cryptosdk_session_set_commitment_policy function 
with the COMMITMENT_POLICY_FORBID_ENCRYPT_ALLOW_DECRYPT commitment 
policy value. In versions 2.0.x and later, calling this function is optional and it 
takes all valid values. The default commitment policy for versions 2.0.x and later is
COMMITMENT_POLICY_REQUIRE_ENCRYPT_REQUIRE_DECRYPT.

For a complete example, see string.cpp.

/* Load error strings for debugging */
aws_cryptosdk_load_error_strings();

/* Create an AWS KMS keyring */
const char * key_arn = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab";
struct aws_cryptosdk_keyring *kms_keyring = 
 Aws::Cryptosdk::KmsKeyring::Builder().Build(key_arn);

/* Create an encrypt session with a CommitmentPolicy setting */
struct aws_cryptosdk_session *encrypt_session = 
 aws_cryptosdk_session_new_from_keyring_2( 

How to set your commitment policy 375

https://github.com/aws/aws-encryption-sdk-c/blob/master/examples/string.cpp


AWS Encryption SDK Developer Guide

    alloc, AWS_CRYPTOSDK_ENCRYPT, kms_keyring);

aws_cryptosdk_keyring_release(kms_keyring);
aws_cryptosdk_session_set_commitment_policy(encrypt_session, 
    COMMITMENT_POLICY_FORBID_ENCRYPT_ALLOW_DECRYPT);

...
/* Encrypt your data */

size_t plaintext_consumed_output;
aws_cryptosdk_session_process(encrypt_session, 
                              ciphertext_output, 
                              ciphertext_buf_sz_output, 
                              ciphertext_len_output, 
                              plaintext_input, 
                              plaintext_len_input, 
                              &plaintext_consumed_output)
...

/* Create a decrypt session with a CommitmentPolicy setting */

struct aws_cryptosdk_keyring *kms_keyring = 
 Aws::Cryptosdk::KmsKeyring::Builder().Build(key_arn);
struct aws_cryptosdk_session *decrypt_session = 
 *aws_cryptosdk_session_new_from_keyring_2( 
        alloc, AWS_CRYPTOSDK_DECRYPT, kms_keyring);
aws_cryptosdk_keyring_release(kms_keyring);
aws_cryptosdk_session_set_commitment_policy(decrypt_session, 
        COMMITMENT_POLICY_FORBID_ENCRYPT_ALLOW_DECRYPT);

/* Decrypt your ciphertext */
size_t ciphertext_consumed_output;
aws_cryptosdk_session_process(decrypt_session, 
                              plaintext_output, 
                              plaintext_buf_sz_output, 
                              plaintext_len_output, 
                              ciphertext_input, 
                              ciphertext_len_input, 
                              &ciphertext_consumed_output)

C# / .NET

The require-encrypt-require-decrypt value is the default commitment policy in 
all versions of the AWS Encryption SDK for .NET. You can set it explicitly as a best practice, 

How to set your commitment policy 376



AWS Encryption SDK Developer Guide

but it's not required. However, if you are using the AWS Encryption SDK for .NET to decrypt 
ciphertext that was encrypted by another language implementation of the AWS Encryption 
SDK without key commitment, you need to change the commitment policy value to
REQUIRE_ENCRYPT_ALLOW_DECRYPT or FORBID_ENCRYPT_ALLOW_DECRYPT. Otherwise, 
attempts to decrypt the ciphertext will fail.

In the AWS Encryption SDK for .NET, you set the commitment policy on an instance of the AWS 
Encryption SDK. Instantiate an AwsEncryptionSdkConfig object with a CommitmentPolicy
parameter, and use the configuration object to create the AWS Encryption SDK instance. Then, 
call the Encrypt() and Decrypt() methods of the configured AWS Encryption SDK instance.

This example sets the commitment policy to require-encrypt-allow-decrypt.

// Instantiate the material providers
var materialProviders = 
    
 AwsCryptographicMaterialProvidersFactory.CreateDefaultAwsCryptographicMaterialProviders();

// Configure the commitment policy on the AWS Encryption SDK instance
var config = new AwsEncryptionSdkConfig
{ 
    CommitmentPolicy = CommitmentPolicy.REQUIRE_ENCRYPT_ALLOW_DECRYPT
};
var encryptionSdk = AwsEncryptionSdkFactory.CreateAwsEncryptionSdk(config);

string keyArn = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab";

var encryptionContext = new Dictionary<string, string>()
{ 
    {"purpose", "test"}encryptionSdk
};

var createKeyringInput = new CreateAwsKmsKeyringInput
{ 
    KmsClient = new AmazonKeyManagementServiceClient(), 
    KmsKeyId = keyArn
};
var keyring = materialProviders.CreateAwsKmsKeyring(createKeyringInput);

// Encrypt your plaintext data
var encryptInput = new EncryptInput

How to set your commitment policy 377



AWS Encryption SDK Developer Guide

{ 
    Plaintext = plaintext, 
    Keyring = keyring, 
    EncryptionContext = encryptionContext
};
var encryptOutput = encryptionSdk.Encrypt(encryptInput);

// Decrypt your ciphertext
var decryptInput = new DecryptInput
{ 
    Ciphertext = ciphertext, 
    Keyring = keyring
};
var decryptOutput = encryptionSdk.Decrypt(decryptInput);

AWS Encryption CLI

To set a commitment policy in the AWS Encryption CLI, use the --commitment-policy
parameter. This parameter is introduced in version 1.8.x.

In the latest 1.x version, when you use the --wrapping-keys parameter in an --encrypt
or --decrypt command, a --commitment-policy parameter with the forbid-encrypt-
allow-decrypt value is required. Otherwise, the --commitment-policy parameter is 
invalid.

In versions 2.1.x and later, the --commitment-policy parameter is optional and defaults 
to the require-encrypt-require-decrypt value, which won't encrypt or decrypt any 
ciphertext encrypted without key commitment. However, we recommend that you set the 
commitment policy explicitly in all encrypt and decrypt calls to help with maintenance and 
troubleshooting.

This example sets the commitment policy. It also uses the --wrapping-keys parameter that 
replaces the --master-keys parameter beginning in version 1.8.x. For details, see the section 
called “Updating AWS KMS master key providers”. For complete examples, see Examples of the 
AWS Encryption CLI.

\\ To run this example, replace the fictitious key ARN with a valid value.  
$ keyArn=arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab

\\ Encrypt your plaintext data - no change to algorithm suite used
$ aws-encryption-cli --encrypt \ 
                     --input hello.txt \ 

How to set your commitment policy 378



AWS Encryption SDK Developer Guide

                     --wrapping-keys key=$keyArn \ 
                      --commitment-policy forbid-encrypt-allow-decrypt \ 
                     --metadata-output ~/metadata \ 
                     --encryption-context purpose=test \ 
                     --output .

\\ Decrypt your ciphertext - supports key commitment on 1.7 and later
$ aws-encryption-cli --decrypt \ 
                     --input hello.txt.encrypted \ 
                     --wrapping-keys key=$keyArn \ 
                      --commitment-policy forbid-encrypt-allow-decrypt \ 
                     --encryption-context purpose=test \ 
                     --metadata-output ~/metadata \ 
                     --output .

Java

Beginning in version 1.7.x of the AWS Encryption SDK for Java, you set the commitment policy 
on your instance of AwsCrypto, the object that represents the AWS Encryption SDK client. This 
commitment policy setting applies to all encrypt and decrypt operations called on that client.

The AwsCrypto() constructor is deprecated in the latest 1.x versions of the AWS Encryption 
SDK for Java and is removed in version 2.0.x. It's replaced by a new Builder class, a
Builder.withCommitmentPolicy() method, and the CommitmentPolicy enumerated 
type.

In the latest 1.x versions, the Builder class requires the
Builder.withCommitmentPolicy() method and the
CommitmentPolicy.ForbidEncryptAllowDecrypt argument. Beginning in version 
2.0.x, the Builder.withCommitmentPolicy() method is optional; the default value is
CommitmentPolicy.RequireEncryptRequireDecrypt.

For a complete example, see SetCommitmentPolicyExample.java.

// Instantiate the client
final AwsCrypto crypto = AwsCrypto.builder()
    .withCommitmentPolicy(CommitmentPolicy.ForbidEncryptAllowDecrypt)
    .build();

// Create a master key provider in strict mode
String awsKmsKey = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab";

How to set your commitment policy 379

https://github.com/aws/aws-encryption-sdk-java/blob/master/src/examples/java/com/amazonaws/crypto/examples/v2/SetCommitmentPolicyExample.java


AWS Encryption SDK Developer Guide

KmsMasterKeyProvider masterKeyProvider = KmsMasterKeyProvider.builder() 
    .buildStrict(awsKmsKey);

// Encrypt your plaintext data
CryptoResult<byte[], KmsMasterKey> encryptResult = crypto.encryptData( 
    masterKeyProvider, 
    sourcePlaintext, 
    encryptionContext);
byte[] ciphertext = encryptResult.getResult();

// Decrypt your ciphertext
CryptoResult<byte[], KmsMasterKey> decryptResult = crypto.decryptData( 
        masterKeyProvider, 
        ciphertext);
byte[] decrypted = decryptResult.getResult();

JavaScript

Beginning in version 1.7.x of the AWS Encryption SDK for JavaScript, you can set the 
commitment policy when you call the new buildClient function that instantiates an AWS 
Encryption SDK client. The buildClient function takes an enumerated value that represents 
your commitment policy. It returns updated encrypt and decrypt functions that enforce your 
commitment policy when you encrypt and decrypt.

In the latest 1.x versions, the buildClient function requires the
CommitmentPolicy.FORBID_ENCRYPT_ALLOW_DECRYPT argument. Beginning in 
version 2.0.x, the commitment policy argument is optional and the default value is
CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT.

The code for Node.js and the browser are identical for this purpose, except that browser needs a 
statement to set credentials.

The following example encrypts data with an AWS KMS keyring. The new buildClient
function sets the commitment policy to FORBID_ENCRYPT_ALLOW_DECRYPT, the default value 
in the latest 1.x versins. The upgraded encrypt and decrypt functions that buildClient
returns enforce the commitment policy you set.

import { buildClient } from '@aws-crypto/client-node'
const { encrypt, decrypt } = 
 buildClient(CommitmentPolicy.FORBID_ENCRYPT_ALLOW_DECRYPT)

How to set your commitment policy 380



AWS Encryption SDK Developer Guide

// Create an AWS KMS keyring
const generatorKeyId = 'arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias'
const keyIds = ['arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab']
const keyring = new KmsKeyringNode({ generatorKeyId, keyIds })

// Encrypt your plaintext data
const { ciphertext } = await encrypt(keyring, plaintext, { encryptionContext: 
 context })

// Decrypt your ciphertext
const { decrypted, messageHeader } = await decrypt(keyring, ciphertext)

Python

Beginning in version 1.7.x of the AWS Encryption SDK for Python, you set the commitment 
policy on your instance of EncryptionSDKClient, a new object that represents the AWS 
Encryption SDK client. The commitment policy that you set applies to all encrypt and
decrypt calls that use that instance of the client.

In the latest 1.x versions, the EncryptionSDKClient constructor requires the
CommitmentPolicy.FORBID_ENCRYPT_ALLOW_DECRYPT enumerated value. Beginning 
in version 2.0.x, the commitment policy argument is optional and the default value is
CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT.

This example uses the new EncryptionSDKClient constructor and sets the commitment 
policy to the 1.7.x default value. The constructor instantiates a client that represents the AWS 
Encryption SDK. When you call the encrypt, decrypt, or stream methods on this client, they 
enforce the commitment policy that you set. This example also uses the new constructor for the
StrictAwsKmsMasterKeyProvider class, which specifies AWS KMS keys when encrypting 
and decrypting.

For a complete example, see set_commitment.py.

# Instantiate the client
client = 
 aws_encryption_sdk.EncryptionSDKClient(commitment_policy=CommitmentPolicy.FORBID_ENCRYPT_ALLOW_DECRYPT)

// Create a master key provider in strict mode
aws_kms_key = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"

How to set your commitment policy 381

https://github.com/aws/aws-encryption-sdk-python/blob/master/examples/src/set_commitment.py


AWS Encryption SDK Developer Guide

aws_kms_strict_master_key_provider = StrictAwsKmsMasterKeyProvider( 
        key_ids=[aws_kms_key]
)

# Encrypt your plaintext data
ciphertext, encrypt_header = client.encrypt( 
        source=source_plaintext, 
        encryption_context=encryption_context, 
        master_key_provider=aws_kms_strict_master_key_provider
)

# Decrypt your ciphertext
decrypted, decrypt_header = client.decrypt( 
        source=ciphertext, 
        master_key_provider=aws_kms_strict_master_key_provider
)

Troubleshooting migration to the latest versions

Before updating your application to version 2.0.x or later of the AWS Encryption SDK, update to 
the latest 1.x version of the AWS Encryption SDK and deploy it completely. That will help you avoid 
most errors you might encounter when updating to versions 2.0.x and later. For detailed guidance, 
including examples, see Migrating your AWS Encryption SDK.

Important

Verify that your latest 1.x version is version 1.7.x or later of the AWS Encryption SDK.

Note

AWS Encryption CLI: References in this guide to version 1.7.x of the AWS Encryption SDK 
apply to version 1.8.x of the AWS Encryption CLI. References in this guide to version 2.0.x of 
the AWS Encryption SDK apply to 2.1.x of the AWS Encryption CLI.
New security features were originally released in AWS Encryption CLI versions 1.7.x
and 2.0.x. However, AWS Encryption CLI version 1.8.x replaces version 1.7.x and AWS 
Encryption CLI 2.1.x replaces 2.0.x. For details, see the relevant security advisory in the aws-
encryption-sdk-cli repository on GitHub.

Troubleshooting migration to the latest versions 382

https://github.com/aws/aws-encryption-sdk-cli/security/advisories/GHSA-2xwp-m7mq-7q3r
https://github.com/aws/aws-encryption-sdk-cli/
https://github.com/aws/aws-encryption-sdk-cli/


AWS Encryption SDK Developer Guide

This topic is designed to help you recognize and resolve the most common errors you might 
encounter.

Topics

• Deprecated or removed objects

• Configuration conflict: Commitment policy and algorithm suite

• Configuration conflict: Commitment policy and ciphertext

• Key commitment validation failed

• Other encryption failures

• Other decryption failures

• Rollback considerations

Deprecated or removed objects

Version 2.0.x includes several breaking changes, including removing legacy constructors, methods, 
functions, and classes that were deprecated in version 1.7.x. To avoid compiler errors, import 
errors, syntax errors, and symbol not found errors (depending on your programming language), 
upgrade first to the latest 1.x version of the AWS Encryption SDK for your programming language. 
(This must be version 1.7.x or later.) While using the latest 1.x version, you can begin using the 
replacement elements before the original symbols are removed.

If you need to upgrade to version 2.0.x or later immediately, consult the changelog for your 
programming language, and replace the legacy symbols with the symbols the changelog 
recommends.

Configuration conflict: Commitment policy and algorithm suite

If you specify an algorithm suite that conflicts with your commitment policy, the call to encrypt 
fails with a Configuration conflict error.

To avoid this type of error, don't specify an algorithm suite. By default, the AWS Encryption SDK 
chooses the most secure algorithm that is compatible with your commitment policy. However, if 
you must specify an algorithm suite, such as one without signing, be sure to choose an algorithm 
suite that is compatible with your commitment policy.

Deprecated or removed objects 383



AWS Encryption SDK Developer Guide

Commitment policy Compatible algorithm suites

ForbidEncryptAllowDecrypt Any algorithm suite without key commitment, 
such as:
AES_256_GCM_IV12_TAG16_HKDF 
_SHA384_ECDSA_P384  (03 78) (with 
signing)

AES_256_GCM_IV12_TAG16_HKDF 
_SHA256  (01 78) (without signing)

RequireEncryptAllowDecrypt

RequireEncryptRequireDecrypt

Any algorithm suite with key commitment, 
such as:
AES_256_GCM_HKDF_SHA512_COM 
MIT_KEY_ECDSA_P384  (05 78) (with 
signing)

AES_256_GCM_HKDF_SHA512_COM 
MIT_KEY  (04 78) (without signing)

If you encounter this error when you have not specified an algorithm suite, the conflicting 
algorithm suite might have been chosen by your cryptographic materials manager (CMM). The 
Default CMM won't select a conflicting algorithm suite, but a custom CMM might. For help, consult 
the documentation for your custom CMM.

Configuration conflict: Commitment policy and ciphertext

The RequireEncryptRequireDecrypt commitment policy does not permit the AWS Encryption 
SDK to decrypt a message that was encrypted without key commitment. If you ask the AWS 
Encryption SDK to decrypt a message without key commitment, it returns a Configuration conflict
error.

To avoid this error, before setting the RequireEncryptRequireDecrypt commitment policy, 
be sure that all ciphertexts encrypted without key commitment are decrypted and re-encrypted 
with key commitment, or handled by a different application. If you encounter this error, you can 
return an error for the conflicting ciphertext or change your commitment policy temporarily to
RequireEncryptAllowDecrypt.

Configuration conflict: Commitment policy and ciphertext 384



AWS Encryption SDK Developer Guide

If you are encountering this error because you upgraded to version 2.0.x or later from a version 
earlier than 1.7.x without first upgrading to the latest 1.x version (version 1.7.x or later), consider
rolling back to the latest 1.x version and deploying that version to all hosts before upgrading to 
version 2.0.x or later. For help, see How to migrate and deploy the AWS Encryption SDK.

Key commitment validation failed

When you decrypt messages that are encrypted with key commitment, you might get a Key 
commitment validation failed error message. This indicates that the decrypt call failed because 
a data key in an encrypted message is not identical to the unique data key for the message. 
By validating the data key during decryption, key commitment protects you from decrypting a 
message that might result in more than one plaintext.

This error indicates that the encrypted message that you were trying to decrypt was not returned 
by the AWS Encryption SDK. It might be a manually crafted message or the result of data 
corruption. If you encounter this error, your application can reject the message and continue, or 
stop processing new messages.

Other encryption failures

Encryption can fail for multiple reasons. You cannot use an AWS KMS discovery keyring or a master 
key provider in discovery mode to encrypt a message.

Be sure that you specify a keyring or master key provider with wrapping keys that you have
permission to use for encryption. For help with permissions on AWS KMS keys, see Viewing a key 
policy and Determining access to an AWS KMS key in the AWS Key Management Service Developer 
Guide.

Other decryption failures

If your attempt to decrypt an encrypted message fails, it means that the AWS Encryption SDK 
could not (or would not) decrypt any of the encrypted data keys in the message.

If you used a keyring or master key provider that specifies wrapping keys, the AWS Encryption 
SDK uses only the wrapping keys you specify. Verify that you are using the wrapping keys that you 
intend and that you have kms:Decrypt permission on at least one of the wrapping keys. If you are 
using AWS KMS keys, as a fallback, you can try decrypting the message with an AWS KMS discovery 
keyring or a master key provider in discovery mode. If the operation succeeds, before returning the 
plaintext, verify that the key used to decrypt the message is one that you trust.

Key commitment validation failed 385

https://docs.aws.amazon.com/kms/latest/developerguide/key-policy-viewing.html
https://docs.aws.amazon.com/kms/latest/developerguide/key-policy-viewing.html
https://docs.aws.amazon.com/kms/latest/developerguide/determining-access.html


AWS Encryption SDK Developer Guide

Rollback considerations

If your application is failing to encrypt or decrypt data, you can usually resolve the problem by 
updating the code symbols, keyrings, master key providers, or commitment policy. However, in 
some cases, you might decide that it's best to roll back your application to a previous version of the 
AWS Encryption SDK.

If you must roll back, do so with caution. Versions of the AWS Encryption SDK prior to 1.7.x cannot 
decrypt ciphertext encrypted with key commitment.

• Rolling back from the latest 1.x version to a previous version of the AWS Encryption SDK is 
generally safe. You might have to undo changes you made to your code to use symbols and 
objects that are not supported in previous versions.

• Once you have begun encrypting with key commitment (setting your commitment policy to
RequireEncryptAllowDecrypt) in version 2.0.x or later, you can roll back to version 1.7.x, 
but not to any earlier version. Versions of the AWS Encryption SDK prior to 1.7.x cannot decrypt 
ciphertext encrypted with key commitment.

If you accidentally enable encrypting with key commitment before all hosts can decrypt with key 
commitment, it might be best to continue with the roll out rather than to roll back. If messages are 
transient or can be safely dropped, then you might consider a rollback with loss of messages. If a 
rollback is required, you might consider writing a tool that decrypts and re-encrypts all messages.

Rollback considerations 386



AWS Encryption SDK Developer Guide

Frequently asked questions

• How is the AWS Encryption SDK different from the AWS SDKs?

• How is the AWS Encryption SDK different from the Amazon S3 encryption client?

• Which cryptographic algorithms are supported by the AWS Encryption SDK, and which one is the 
default?

• How is the initialization vector (IV) generated and where is it stored?

• How is each data key generated, encrypted, and decrypted?

• How do I keep track of the data keys that were used to encrypt my data?

• How does the AWS Encryption SDK store encrypted data keys with their encrypted data?

• How much overhead does the AWS Encryption SDK message format add to my encrypted data?

• Can I use my own master key provider?

• Can I encrypt data under more than one wrapping key?

• Which data types can I encrypt with the AWS Encryption SDK?

• How does the AWS Encryption SDK encrypt and decrypt input/output (I/O) streams?

How is the AWS Encryption SDK different from the AWS SDKs?

The AWS SDKs provide libraries for interacting with Amazon Web Services (AWS), including 
AWS Key Management Service (AWS KMS). Some of the language implementations of the AWS 
Encryption SDK, such as the AWS Encryption SDK for .NET, always require the AWS SDK in the 
same programming language. Other language implementations require the corresponding AWS 
SDK only when you use AWS KMS keys in your keyrings or master key providers. For details, see 
the topic about your programming language in AWS Encryption SDK programming languages.

You can use the AWS SDKs to interact with AWS KMS, including encrypting and decrypting 
small amounts of data (up to 4,096 bytes with a symmetric encryption key) and generating 
data keys for client-side encryption. However, when you generate a data key, you must manage 
the entire encryption and decryption process, including encrypting your data with the data key 
outside of AWS KMS, safely discarding the plaintext data key, storing the encrypted data key, 
and then decrypting the data key and decrypting your data. The AWS Encryption SDK handles 
this process for you.

The AWS Encryption SDK provides a library that encrypts and decrypts data using industry 
standards and best practices. It generates the data key, encrypts it under the wrapping keys you 

387

https://aws.amazon.com/tools/


AWS Encryption SDK Developer Guide

specify, and returns an encrypted message, a portable data object that includes the encrypted 
data and the encrypted data keys you need to decrypt it. When it's time to decrypt, you pass 
in the encrypted message and at least one of the wrapping keys (optional), and the AWS 
Encryption SDK returns your plaintext data.

You can use AWS KMS keys as wrapping keys in the AWS Encryption SDK, but it is not required. 
You can use encryption keys that you generate and those from your key manager or on-
premises hardware security module. You can use the AWS Encryption SDK even if you don't 
have an AWS account.

How is the AWS Encryption SDK different from the Amazon S3 encryption client?

The Amazon S3 encryption client in the AWS SDKs provides encryption and decryption for data 
that you store in Amazon Simple Storage Service (Amazon S3). These clients are tightly coupled 
to Amazon S3 and are intended for use only with data stored there.

The AWS Encryption SDK provides encryption and decryption for data that you can store 
anywhere. The AWS Encryption SDK and the Amazon S3 encryption client are not compatible 
because they produce ciphertexts with different data formats.

Which cryptographic algorithms are supported by the AWS Encryption SDK, and which one is 
the default?

The AWS Encryption SDK uses the Advanced Encryption Standard (AES) symmetric algorithm in 
Galois/Counter Mode (GCM), known as AES-GCM, to encrypt your data. It lets you choose from 
several symmetric and asymmetric algorithms to encrypt the data keys that encrypt your data.

For AES-GCM, the default algorithm suite is AES-GCM with a 256-bit key, key derivation (HKDF),
digital signatures, and key commitment. AWS Encryption SDK also supports 192-bit, and 128-
bit encryption keys and encryption algorithms without digital signatures and key commitment.

In all cases, the length of the initialization vector (IV) is 12 bytes; the length of the 
authentication tag is 16 bytes. By default, the SDK uses the data key as an input to the HMAC-
based extract-and-expand key derivation function (HKDF) to derive the AES-GCM encryption 
key, and also adds an Elliptic Curve Digital Signature Algorithm (ECDSA) signature.

For information about choosing which algorithm to use, see Supported algorithm suites.

For implementation details about the supported algorithms, see Algorithms reference.

388

https://docs.aws.amazon.com/AmazonS3/latest/user-guide/UsingClientSideEncryption.html


AWS Encryption SDK Developer Guide

How is the initialization vector (IV) generated and where is it stored?

The AWS Encryption SDK uses a deterministic method to construct a different IV value for 
each frame. This procedure guarantees that IVs are never repeated within a message. (Prior to 
version 1.3.0 of the AWS Encryption SDK for Java and the AWS Encryption SDK for Python, the 
AWS Encryption SDK randomly generated a unique IV value for each frame.)

The IV is stored in the encrypted message that the AWS Encryption SDK returns. For more 
information, see the AWS Encryption SDK message format reference.

How is each data key generated, encrypted, and decrypted?

The method depends on the keyring or master key provider you use.

The AWS KMS keyrings and master key providers in the AWS Encryption SDK use the AWS KMS
GenerateDataKey API operation to generate each data key and encrypt it under its wrapping 
key. To encrypt copies of the data key under additional KMS keys, they use the AWS KMS
Encrypt operation. To decrypt the data keys, they use the AWS KMS Decrypt operation. For 
details, see AWS KMS keyring in the AWS Encryption SDK Specification in GitHub.

Other keyrings generate the data key, encrypt, and decrypt using best practice methods for 
each programming language. For details, see the specification of the keyring or master key 
provider in the Framework section of the AWS Encryption SDK Specification in GitHub.

How do I keep track of the data keys that were used to encrypt my data?

The AWS Encryption SDK does this for you. When you encrypt data, the SDK encrypts the data 
key and stores the encrypted key along with the encrypted data in the encrypted message that 
it returns. When you decrypt data, the AWS Encryption SDK extracts the encrypted data key 
from the encrypted message, decrypts it, and then uses it to decrypt the data.

How does the AWS Encryption SDK store encrypted data keys with their encrypted data?

The encryption operations in the AWS Encryption SDK return an encrypted message, a single 
data structure that contains the encrypted data and its encrypted data keys. The message 
format consists of at least two parts: a header and a body. The message header contains the 
encrypted data keys and information about how the message body is formed. The message 
body contains the encrypted data. If the algorithm suite includes a digital signature, the 
message format includes a footer that contains the signature. For more information, see AWS 
Encryption SDK message format reference.

389

https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Encrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html
https://github.com/awslabs/aws-encryption-sdk-specification/blob/master/framework/aws-kms/aws-kms-keyring.md
https://github.com/awslabs/aws-encryption-sdk-specification/tree/master/framework


AWS Encryption SDK Developer Guide

How much overhead does the AWS Encryption SDK message format add to my encrypted data?

The amount of overhead added by the AWS Encryption SDK depends on several factors, 
including the following:

• The size of the plaintext data

• Which of the supported algorithms is used

• Whether additional authenticated data (AAD) is provided, and the length of that AAD

• The number and type of wrapping keys or master keys

• The frame size (when framed data is used)

When you use the AWS Encryption SDK with its default configuration (one AWS KMS key as 
the wrapping key (or master key), no AAD, nonframed data, and an encryption algorithm with 
signing), the overhead is approximately 600 bytes. In general, you can reasonably assume that 
the AWS Encryption SDK adds overhead of 1 KB or less, not including the provided AAD. For 
more information, see AWS Encryption SDK message format reference.

Can I use my own master key provider?

Yes. The implementation details vary depending on which of the supported programming 
languages you use. However, all supported languages allow you to define custom cryptographic 
materials managers (CMMs), master key providers, keyrings, master keys, and wrapping keys.

Can I encrypt data under more than one wrapping key?

Yes. You can encrypt the data key with additional wrapping keys (or master keys) to add 
redundancy when the key is in a different region or is unavailable for decryption.

To encrypt data under multiple wrapping keys, create a keyring or master key provider with 
multiple wrapping keys. When working with keyrings, you can create a single keyring with 
multiple wrapping keys or a multi-keyring.

When you encrypt data with multiple wrapping keys, the AWS Encryption SDK uses one 
wrapping key to generate a plaintext data key. The data key is unique and mathematically 
unrelated to the wrapping key. The operation returns the plaintext data key and a copy of the 
data key encrypted by the wrapping key. Then the encryption method, encrypts the data key 
with the other wrapping keys. The resulting encrypted message includes the encrypted data 
and one encrypted data key for each wrapping key.

390



AWS Encryption SDK Developer Guide

The encrypted message can be decrypted by using any one of the wrapping keys used in the 
encryption operation. The AWS Encryption SDK uses a wrapping key to decrypt an encrypted 
data key. Then, it uses the plaintext data key to decrypt the data.

Which data types can I encrypt with the AWS Encryption SDK?

Most programming language implementations of the AWS Encryption SDK can encrypt 
raw bytes (byte arrays), I/O streams (byte streams), and strings. The AWS Encryption SDK 
for .NET does not support I/O streams. We provide example code for each of the supported 
programming languages.

How does the AWS Encryption SDK encrypt and decrypt input/output (I/O) streams?

The AWS Encryption SDK creates an encrypting or decrypting stream that wraps an underlying 
I/O stream. The encrypting or decrypting stream performs a cryptographic operation on a read 
or write call. For example, it can read plaintext data on the underlying stream and encrypt it 
before returning the result. Or it can read ciphertext from an underlying stream and decrypt it 
before returning the result. We provide example code for encrypting and decrypting streams for 
each of the supported programming languages that supports streaming.

The AWS Encryption SDK for .NET does not support I/O streams.

391



AWS Encryption SDK Developer Guide

AWS Encryption SDK reference

The information on this page is a reference for building your own encryption library that 
is compatible with the AWS Encryption SDK. If you are not building your own compatible 
encryption library, you likely do not need this information.

To use the AWS Encryption SDK in one of the supported programming languages, see
Programming languages.

For the specification that defines the elements of a proper AWS Encryption SDK implement 
ation, see the AWS Encryption SDK Specification in GitHub.

The AWS Encryption SDK uses the supported algorithms to return a single data structure or
message that contains encrypted data and the corresponding encrypted data keys. The following 
topics explain the algorithms and the data structure. Use this information to build libraries that can 
read and write ciphertexts that are compatible with this SDK.

Topics

• AWS Encryption SDK message format reference

• AWS Encryption SDK message format examples

• Body additional authenticated data (AAD) reference for the AWS Encryption SDK

• AWS Encryption SDK algorithms reference

• AWS Encryption SDK initialization vector reference

• AWS KMS Hierarchical keyring technical details

AWS Encryption SDK message format reference

The information on this page is a reference for building your own encryption library that 
is compatible with the AWS Encryption SDK. If you are not building your own compatible 
encryption library, you likely do not need this information.

To use the AWS Encryption SDK in one of the supported programming languages, see
Programming languages.

Message format reference 392

https://github.com/awslabs/aws-encryption-sdk-specification/


AWS Encryption SDK Developer Guide

For the specification that defines the elements of a proper AWS Encryption SDK implement 
ation, see the AWS Encryption SDK Specification in GitHub.

The encryption operations in the AWS Encryption SDK return a single data structure or encrypted 
message that contains the encrypted data (ciphertext) and all encrypted data keys. To understand 
this data structure, or to build libraries that read and write it, you need to understand the message 
format.

The message format consists of at least two parts: a header and a body. In some cases, the message 
format consists of a third part, a footer. The message format defines an ordered sequence of bytes 
in network byte order, also called big-endian format. The message format begins with the header, 
followed by the body, followed by the footer (when there is one).

The algorithms suites supported by the AWS Encryption SDK use one of two message format 
versions. Algorithm suites without key commitment use message format version 1. Algorithm 
suites with key commitment use message format version 2.

Topics

• Header structure

• Body structure

• Footer structure

Header structure

The message header contains the encrypted data key and information about how the message 
body is formed. The following table describes the fields that form the header in message format 
versions 1 and 2. The bytes are appended in the order shown.

The Not present value indicates that the field doesn't exist in that version of the message format.
Bold text indicates values that are different in each version.

Note

You might need to scroll horizontally or vertically to see all of the data in this table.

Header structure 393

https://github.com/awslabs/aws-encryption-sdk-specification/


AWS Encryption SDK Developer Guide

Header Structure

Field Message format version 1

Length (bytes)

Message format version 2

Length (bytes)

Version 1 1

Type 1 Not present

Algorithm ID 2 2

Message ID 16 32

AAD Length 2

When the encryption context
is empty, the value of the 2-
byte AAD Length field is 0.

2

When the encryption context
is empty, the value of the 2-
byte AAD Length field is 0.

AAD Variable. The length of this 
field appears in the previous 2 
bytes (AAD Length field).

When the encryption context
is empty, there is no AAD field 
in the header.

Variable. The length of this 
field appears in the previous 2 
bytes (AAD Length field).

When the encryption context
is empty, there is no AAD field 
in the header.

Encrypted Data Key Count 2 2

Encrypted Data Key(s) Variable. Determined by the 
number of encrypted data 
keys and the length of each.

Variable. Determined by the 
number of encrypted data 
keys and the length of each.

Content Type 1 1

Reserved 4 Not present

IV Length 1 Not present

Frame Length 4 4

Header structure 394



AWS Encryption SDK Developer Guide

Field Message format version 1

Length (bytes)

Message format version 2

Length (bytes)

Algorithm Suite Data Not present Variable. Determined by the
algorithm that generated the 
message.

Header Authentication Variable. Determined by the
algorithm that generated the 
message.

Variable. Determined by the
algorithm that generated the 
message.

Version

The version of this message format. The version is either 1 or 2 encoded as the byte 01 or 02 in 
hexadecimal notation

Type

The type of this message format. The type indicates the kind of structure. The only supported 
type is described as customer authenticated encrypted data. Its type value is 128, encoded as 
byte 80 in hexadecimal notation.

This field is not present in message format version 2.

Algorithm ID

An identifier for the algorithm used. It is a 2-byte value interpreted as a 16-bit unsigned integer. 
For more information about the algorithms, see AWS Encryption SDK algorithms reference.

Message ID

A randomly generated value that identifies the message. The Message ID:

• Uniquely identifies the encrypted message.

• Weakly binds the message header to the message body.

• Provides a mechanism to securely reuse a data key with multiple encrypted messages.

• Protects against accidental reuse of a data key or the wearing out of keys in the AWS 
Encryption SDK.

This value is 128 bits in message format version 1 and 256 bits in version 2.

Header structure 395



AWS Encryption SDK Developer Guide

AAD Length

The length of the additional authenticated data (AAD). It is a 2-byte value interpreted as a 16-
bit unsigned integer that specifies the number of bytes that contain the AAD.

When the encryption context is empty, the value of the AAD Length field is 0.

AAD

The additional authenticated data. The AAD is an encoding of the encryption context, an 
array of key-value pairs where each key and value is a string of UTF-8 encoded characters. The 
encryption context is converted to a sequence of bytes and used for the AAD value. When the 
encryption context is empty, there is no AAD field in the header.

When the algorithms with signing are used, the encryption context must contain the key-
value pair {'aws-crypto-public-key', Qtxt}. Qtxt represents the elliptic curve point Q 
compressed according to SEC 1 version 2.0 and then base64-encoded. The encryption context 
can contain additional values, but the maximum length of the constructed AAD is 2^16 - 1 
bytes.

The following table describes the fields that form the AAD. Key-value pairs are sorted, by key, in 
ascending order according to UTF-8 character code. The bytes are appended in the order shown.

AAD Structure

Field Length (bytes)

Key-Value Pair Count 2

Key Length 2

Key Variable. Equal to the value specified in the 
previous 2 bytes (Key Length).

Value Length 2

Value Variable. Equal to the value specified in the 
previous 2 bytes (Value Length).

Header structure 396

http://www.secg.org/sec1-v2.pdf


AWS Encryption SDK Developer Guide

Key-Value Pair Count

The number of key-value pairs in the AAD. It is a 2-byte value interpreted as a 16-bit 
unsigned integer that specifies the number of key-value pairs in the AAD. The maximum 
number of key-value pairs in the AAD is 2^16 - 1.

When there is no encryption context or the encryption context is empty, this field is not 
present in the AAD structure.

Key Length

The length of the key for the key-value pair. It is a 2-byte value interpreted as a 16-bit 
unsigned integer that specifies the number of bytes that contain the key.

Key

The key for the key-value pair. It is a sequence of UTF-8 encoded bytes.

Value Length

The length of the value for the key-value pair. It is a 2-byte value interpreted as a 16-bit 
unsigned integer that specifies the number of bytes that contain the value.

Value

The value for the key-value pair. It is a sequence of UTF-8 encoded bytes.

Encrypted Data Key Count

The number of encrypted data keys. It is a 2-byte value interpreted as a 16-bit unsigned integer 
that specifies the number of encrypted data keys. The maximum number of encrypted data 
keys in each message is 65,535 (2^16 - 1).

Encrypted Data Key(s)

A sequence of encrypted data keys. The length of the sequence is determined by the number of 
encrypted data keys and the length of each. The sequence contains at least one encrypted data 
key.

The following table describes the fields that form each encrypted data key. The bytes are 
appended in the order shown.

Header structure 397



AWS Encryption SDK Developer Guide

Encrypted Data Key Structure

Field Length (bytes)

Key Provider ID Length 2

Key Provider ID Variable. Equal to the value specified in the 
previous 2 bytes (Key Provider ID Length).

Key Provider Information Length 2

Key Provider Information Variable. Equal to the value specified in the 
previous 2 bytes (Key Provider Information 
Length).

Encrypted Data Key Length 2

Encrypted Data Key Variable. Equal to the value specified in 
the previous 2 bytes (Encrypted Data Key 
Length).

Key Provider ID Length

The length of the key provider identifier. It is a 2-byte value interpreted as a 16-bit unsigned 
integer that specifies the number of bytes that contain the key provider ID.

Key Provider ID

The key provider identifier. It is used to indicate the provider of the encrypted data key and 
intended to be extensible.

Key Provider Information Length

The length of the key provider information. It is a 2-byte value interpreted as a 16-
bit unsigned integer that specifies the number of bytes that contain the key provider 
information.

Key Provider Information

The key provider information. It is determined by the key provider.

When AWS KMS is the master key provider or you are using an AWS KMS keyring, this value 
contains the Amazon Resource Name (ARN) of the AWS KMS key.

Header structure 398



AWS Encryption SDK Developer Guide

Encrypted Data Key Length

The length of the encrypted data key. It is a 2-byte value interpreted as a 16-bit unsigned 
integer that specifies the number of bytes that contain the encrypted data key.

Encrypted Data Key

The encrypted data key. It is the data encryption key encrypted by the key provider.

Content Type

The type of encrypted data, either nonframed or framed.

Note

Whenever possible, use framed data. The AWS Encryption SDK supports nonframed 
data only for legacy use. Some language implementations of the AWS Encryption SDK 
can still generate nonframed ciphertext. All supported language implementations can 
decrypt framed and nonframed ciphertext.

Framed data is divided into equal-length parts; each part is encrypted separately. Framed 
content is type 2, encoded as the byte 02 in hexadecimal notation.

Nonframed data is not divided; it is a single encrypted blob. Non-framed content is type 1, 
encoded as the byte 01 in hexadecimal notation.

Reserved

A reserved sequence of 4 bytes. This value must be 0. It is encoded as the bytes 00 00 00 00
in hexadecimal notation (that is, a 4-byte sequence of a 32-bit integer value equal to 0).

This field is not present in message format version 2.

IV Length

The length of the initialization vector (IV). It is a 1-byte value interpreted as an 8-bit unsigned 
integer that specifies the number of bytes that contain the IV. This value is determined by the IV 
bytes value of the algorithm that generated the message.

This field is not present in message format version 2, which only supports algorithm suites that 
use deterministic IV values in the message header.

Header structure 399



AWS Encryption SDK Developer Guide

Frame Length

The length of each frame of framed data. It is a 4-byte value interpreted as a 32-bit unsigned 
integer that specifies the number of bytes in each frame. When the data is nonframed, that is, 
when the value of the Content Type field is 1, this value must be 0.

Note

Whenever possible, use framed data. The AWS Encryption SDK supports nonframed 
data only for legacy use. Some language implementations of the AWS Encryption SDK 
can still generate nonframed ciphertext. All supported language implementations can 
decrypt framed and nonframed ciphertext.

Algorithm Suite Data

Supplementary data needed by the algorithm that generated the message. The length and 
contents are determined by the algorithm. Its length might be 0.

This field is not present in message format version 1.

Header Authentication

The header authentication is determined by the algorithm that generated the message. 
The header authentication is calculated over the entire header. It consists of an IV and an 
authentication tag. The bytes are appended in the order shown.

Header Authentication Structure

Field Length in version 1.0 
(bytes)

Length in version 2.0 
(bytes)

IV Variable. Determined by 
the IV bytes value of the
algorithm that generated 
the message.

N/A

Authentication Tag Variable. Determined by the 
authentication tag bytes 
value of the algorithm that 
generated the message.

Variable. Determined by the 
authentication tag bytes 
value of the algorithm that 
generated the message.

Header structure 400



AWS Encryption SDK Developer Guide

IV

The initialization vector (IV) used to calculate the header authentication tag.

This field is not present in the header of message format version 2. Message format version 
2 only supports algorithm suites that use deterministic IV values in the message header.

Authentication Tag

The authentication value for the header. It is used to authenticate the entire contents of the 
header.

Body structure

The message body contains the encrypted data, called the ciphertext. The structure of the body 
depends on the content type (nonframed or framed). The following sections describe the format 
of the message body for each content type. The message body structure is the same in message 
format versions 1 and 2.

Topics

• Non-framed data

• Framed data

Non-framed data

Non-framed data is encrypted in a single blob with a unique IV and body AAD.

Note

Whenever possible, use framed data. The AWS Encryption SDK supports nonframed data 
only for legacy use. Some language implementations of the AWS Encryption SDK can still 
generate nonframed ciphertext. All supported language implementations can decrypt 
framed and nonframed ciphertext.

The following table describes the fields that form nonframed data. The bytes are appended in the 
order shown.

Body structure 401



AWS Encryption SDK Developer Guide

Non-Framed Body Structure

Field Length, in bytes

IV Variable. Equal to the value specified in the IV 
Length byte of the header.

Encrypted Content Length 8

Encrypted Content Variable. Equal to the value specified in the 
previous 8 bytes (Encrypted Content Length).

Authentication Tag Variable. Determined by the algorithm 
 implementation used.

IV

The initialization vector (IV) to use with the encryption algorithm.

Encrypted Content Length

The length of the encrypted content, or ciphertext. It is an 8-byte value interpreted as a 64-bit 
unsigned integer that specifies the number of bytes that contain the encrypted content.

Technically, the maximum allowed value is 2^63 - 1, or 8 exbibytes (8 EiB). However, in practice 
the maximum value is 2^36 - 32, or 64 gibibytes (64 GiB), due to restrictions imposed by the
implemented algorithms.

Note

The Java implementation of this SDK further restricts this value to 2^31 - 1, or 2 
gibibytes (2 GiB), due to restrictions in the language.

Encrypted Content

The encrypted content (ciphertext) as returned by the encryption algorithm.

Authentication Tag

The authentication value for the body. It is used to authenticate the message body.

Body structure 402



AWS Encryption SDK Developer Guide

Framed data

In framed data, the plaintext data is divided into equal-length parts called frames. The AWS 
Encryption SDK encrypts each frame separately with a unique IV and body AAD.

Note

Whenever possible, use framed data. The AWS Encryption SDK supports nonframed data 
only for legacy use. Some language implementations of the AWS Encryption SDK can still 
generate nonframed ciphertext. All supported language implementations can decrypt 
framed and nonframed ciphertext.

The frame length, which is the length of the encrypted content in the frame, can be different for 
each message. The maximum number of bytes in a frame is 2^32 - 1. The maximum number of 
frames in a message is 2^32 - 1.

There are two types of frames: regular and final. Every message must consist of or include a final 
frame.

All regular frames in a message have the same frame length. The final frame can have a different 
frame length.

The composition of frames in framed data varies with the length of the encrypted content.

• Equal to the frame length — When the encrypted content length is the same as the frame 
length of the regular frames, the message can consist of a regular frame that contains the data, 
followed by a final frame of zero (0) length. Or, the message can consist only of a final frame 
that contains the data. In this case, the final frame has the same frame length as the regular 
frames.

• Multiple of the frame length — When the encrypted content length is an exact multiple of the 
frame length of the regular frames, the message can end in a regular frame that contains the 
data, followed by a final frame of zero (0) length. Or, the message can end in a final frame that 
contains the data. In this case, the final frame has the same frame length as the regular frames.

• Not a multiple of the frame length — When the encrypted content length is not an exact 
multiple of the frame length of the regular frames, the final frame contains the remaining data. 
The frame length of the final frame is less than the frame length of the regular frames.

Body structure 403



AWS Encryption SDK Developer Guide

• Less than the frame length — When the encrypted content length is less than the frame length 
of the regular frames, the message consists of a final frame that contains all of the data. The 
frame length of the final frame is less than the frame length of the regular frames.

The following tables describe the fields that form the frames. The bytes are appended in the order 
shown.

Framed Body Structure, Regular Frame

Field Length, in bytes

Sequence Number 4

IV Variable. Equal to the value specified in the IV 
Length byte of the header.

Encrypted Content Variable. Equal to the value specified in the
Frame Length of the header.

Authentication Tag Variable. Determined by the algorithm used, 
as specified in the Algorithm ID of the header.

Sequence Number

The frame sequence number. It is an incremental counter number for the frame. It is a 4-byte 
value interpreted as a 32-bit unsigned integer.

Framed data must start at sequence number 1. Subsequent frames must be in order and must 
contain an increment of 1 of the previous frame. Otherwise, the decryption process stops and 
reports an error.

IV

The initialization vector (IV) for the frame. The SDK uses a deterministic method to construct a 
different IV for each frame in the message. Its length is specified by the algorithm suite used.

Encrypted Content

The encrypted content (ciphertext) for the frame, as returned by the encryption algorithm.

Body structure 404



AWS Encryption SDK Developer Guide

Authentication Tag

The authentication value for the frame. It is used to authenticate the entire frame.

Framed Body Structure, Final Frame

Field Length, in bytes

Sequence Number End 4

Sequence Number 4

IV Variable. Equal to the value specified in the IV 
Length byte of the header.

Encrypted Content Length 4

Encrypted Content Variable. Equal to the value specified in the 
previous 4 bytes (Encrypted Content Length).

Authentication Tag Variable. Determined by the algorithm used, 
as specified in the Algorithm ID of the header.

Sequence Number End

An indicator for the final frame. The value is encoded as the 4 bytes FF FF FF FF in 
hexadecimal notation.

Sequence Number

The frame sequence number. It is an incremental counter number for the frame. It is a 4-byte 
value interpreted as a 32-bit unsigned integer.

Framed data must start at sequence number 1. Subsequent frames must be in order and must 
contain an increment of 1 of the previous frame. Otherwise, the decryption process stops and 
reports an error.

IV

The initialization vector (IV) for the frame. The SDK uses a deterministic method to construct 
a different IV for each frame in the message. The length of the IV length is specified by the
algorithm suite.

Body structure 405



AWS Encryption SDK Developer Guide

Encrypted Content Length

The length of the encrypted content. It is a 4-byte value interpreted as a 32-bit unsigned 
integer that specifies the number of bytes that contain the encrypted content for the frame.

Encrypted Content

The encrypted content (ciphertext) for the frame, as returned by the encryption algorithm.

Authentication Tag

The authentication value for the frame. It is used to authenticate the entire frame.

Footer structure

When the algorithms with signing are used, the message format contains a footer. The message 
footer contains a digital signature calculated over the message header and body. The following 
table describes the fields that form the footer. The bytes are appended in the order shown. The 
message footer structure is the same in message format versions 1 and 2.

Footer Structure

Field Length, in bytes

Signature Length 2

Signature Variable. Equal to the value specified in the 
previous 2 bytes (Signature Length).

Signature Length

The length of the signature. It is a 2-byte value interpreted as a 16-bit unsigned integer that 
specifies the number of bytes that contain the signature.

Signature

The signature.

Footer structure 406



AWS Encryption SDK Developer Guide

AWS Encryption SDK message format examples

The information on this page is a reference for building your own encryption library that 
is compatible with the AWS Encryption SDK. If you are not building your own compatible 
encryption library, you likely do not need this information.

To use the AWS Encryption SDK in one of the supported programming languages, see
Programming languages.

For the specification that defines the elements of a proper AWS Encryption SDK implement 
ation, see the AWS Encryption SDK Specification in GitHub.

The following topics show examples of the AWS Encryption SDK message format. Each example 
shows the raw bytes, in hexadecimal notation, followed by a description of what those bytes 
represent.

Topics

• Framed data (message format version 1)

• Framed data (message format version 2)

• Non-framed data (message format version 1)

Framed data (message format version 1)

The following example shows the message format for framed data in message format version 1.

+--------+
| Header |
+--------+
01                                         Version (1.0)
80                                         Type (128, customer authenticated encrypted 
 data)
0378                                       Algorithm ID (see Algorithms reference)
6E7C0FBD 4DF4A999 717C22A2 DDFE1A27        Message ID (random 128-bit value)
008E                                       AAD Length (142)
0004                                       AAD Key-Value Pair Count (4)
0005                                       AAD Key-Value Pair 1, Key Length (5)
30746869 73                                AAD Key-Value Pair 1, Key ("0This")
0002                                       AAD Key-Value Pair 1, Value Length (2)

Message format examples 407

https://github.com/awslabs/aws-encryption-sdk-specification/


AWS Encryption SDK Developer Guide

6973                                       AAD Key-Value Pair 1, Value ("is")
0003                                       AAD Key-Value Pair 2, Key Length (3)
31616E                                     AAD Key-Value Pair 2, Key ("1an")
000A                                       AAD Key-Value Pair 2, Value Length (10)
656E6372 79774690 6F6E                     AAD Key-Value Pair 2, Value ("encryption")
0008                                       AAD Key-Value Pair 3, Key Length (8)
32636F6E 74657874                          AAD Key-Value Pair 3, Key ("2context")
0007                                       AAD Key-Value Pair 3, Value Length (7)
6578616D 706C65                            AAD Key-Value Pair 3, Value ("example")
0015                                       AAD Key-Value Pair 4, Key Length (21)
6177732D 63727970 746F2D70 75626C69        AAD Key-Value Pair 4, Key ("aws-crypto-
public-key")
632D6B65 79
0044                                       AAD Key-Value Pair 4, Value Length (68)
416A4173 7569326F 7430364C 4B77715A        AAD Key-Value Pair 4, Value 
 ("AjAsui2ot06LKwqZXDJnU/Aqc2vD+0OkpOZ1cc8Tg2qd7rs5aLTg7lvfUEW/86+/5w==")
58444A6E 552F4171 63327644 2B304F6B
704F5A31 63633854 67327164 37727335
614C5467 376C7666 5545572F 38362B2F
35773D3D
0002                                       EncryptedDataKeyCount (2)
0007                                       Encrypted Data Key 1, Key Provider ID Length 
 (7)
6177732D 6B6D73                            Encrypted Data Key 1, Key Provider ID ("aws-
kms")
004B                                       Encrypted Data Key 1, Key Provider 
 Information Length (75)
61726E3A 6177733A 6B6D733A 75732D77        Encrypted Data Key 1, Key Provider 
 Information ("arn:aws:kms:us-west-2:111122223333:key/715c0818-5825-4245-
a755-138a6d9a11e6")
6573742D 323A3131 31313232 32323333
33333A6B 65792F37 31356330 3831382D
35383235 2D343234 352D6137 35352D31
33386136 64396131 316536
00A7                                       Encrypted Data Key 1, Encrypted Data Key 
 Length (167)
01010200 7857A1C1 F7370545 4ECA7C83        Encrypted Data Key 1, Encrypted Data Key
956C4702 23DCE8D7 16C59679 973E3CED
02A4EF29 7F000000 7E307C06 092A8648
86F70D01 0706A06F 306D0201 00306806
092A8648 86F70D01 0701301E 06096086
48016503 04012E30 11040C3F F02C897B
7A12EB19 8BF2D802 0110803B 24003D1F
A5474FBC 392360B5 CB9997E0 6A17DE4C

Framed data (message format version 1) 408



AWS Encryption SDK Developer Guide

A6BD7332 6BF86DAB 60D8CCB8 8295DBE9
4707E356 ADA3735A 7C52D778 B3135A47
9F224BF9 E67E87
0007                                       Encrypted Data Key 2, Key Provider ID Length 
 (7)
6177732D 6B6D73                            Encrypted Data Key 2, Key Provider ID ("aws-
kms")
004E                                       Encrypted Data Key 2, Key Provider 
 Information Length (78)
61726E3A 6177733A 6B6D733A 63612D63        Encrypted Data Key 2, Key Provider 
 Information ("arn:aws:kms:ca-central-1:111122223333:key/9b13ca4b-afcc-46a8-aa47-
be3435b423ff")
656E7472 616C2D31 3A313131 31323232
32333333 333A6B65 792F3962 31336361
34622D61 6663632D 34366138 2D616134
372D6265 33343335 62343233 6666
00A7                                       Encrypted Data Key 2, Encrypted Data Key 
 Length (167)
01010200 78FAFFFB D6DE06AF AC72F79B        Encrypted Data Key 2, Encrypted Data Key
0E57BD87 3F60F4E6 FD196144 5A002C94
AF787150 69000000 7E307C06 092A8648
86F70D01 0706A06F 306D0201 00306806
092A8648 86F70D01 0701301E 06096086
48016503 04012E30 11040C36 CD985E12
D218B674 5BBC6102 0110803B 0320E3CD
E470AA27 DEAB660B 3E0CE8E0 8B1A89E4
57DCC69B AAB1294F 21202C01 9A50D323
72EBAAFD E24E3ED8 7168E0FA DB40508F
556FBD58 9E621C
02                                         Content Type (2, framed data)
00000000                                   Reserved
0C                                         IV Length (12)
00000100                                   Frame Length (256)
4ECBD5C0 9899CA65 923D2347                 IV
0B896144 0CA27950 CA571201 4DA58029        Authentication Tag
+------+
| Body |
+------+
00000001                                   Frame 1, Sequence Number (1)
6BD3FE9C ADBCB213 5B89E8F1                 Frame 1, IV
1F6471E0 A51AF310 10FA9EF6 F0C76EDF        Frame 1, Encrypted Content
F5AFA33C 7D2E8C6C 9C5D5175 A212AF8E
FBD9A0C3 C6E3FB59 C125DBF2 89AC7939
BDEE43A8 0F00F49E ACBBD8B2 1C785089

Framed data (message format version 1) 409



AWS Encryption SDK Developer Guide

A90DB923 699A1495 C3B31B50 0A48A830
201E3AD9 1EA6DA14 7F6496DB 6BC104A4
DEB7F372 375ECB28 9BF84B6D 2863889F
CB80A167 9C361C4B 5EC07438 7A4822B4
A7D9D2CC 5150D414 AF75F509 FCE118BD
6D1E798B AEBA4CDB AD009E5F 1A571B77
0041BC78 3E5F2F41 8AF157FD 461E959A
BB732F27 D83DC36D CC9EBC05 00D87803
57F2BB80 066971C2 DEEA062F 4F36255D
E866C042 E1382369 12E9926B BA40E2FC
A820055F FB47E428 41876F14 3B6261D9
5262DB34 59F5D37E 76E46522 E8213640
04EE3CC5 379732B5 F56751FA 8E5F26AD        Frame 1, Authentication Tag
00000002                                   Frame 2, Sequence Number (2)
F1140984 FF25F943 959BE514                 Frame 2, IV
216C7C6A 2234F395 F0D2D9B9 304670BF        Frame 2, Encrypted Content
A1042608 8A8BCB3F B58CF384 D72EC004
A41455B4 9A78BAC9 36E54E68 2709B7BD
A884C1E1 705FF696 E540D297 446A8285
23DFEE28 E74B225A 732F2C0C 27C6BDA2
7597C901 65EF3502 546575D4 6D5EBF22
1FF787AB 2E38FD77 125D129C 43D44B96
778D7CEE 3C36625F FF3A985C 76F7D320
ED70B1F3 79729B47 E7D9B5FC 02FCE9F5
C8760D55 7779520A 81D54F9B EC45219D
95941F7E 5CBAEAC8 CEC13B62 1464757D
AC65B6EF 08262D74 44670624 A3657F7F
2A57F1FD E7060503 AC37E197 2F297A84
DF1172C2 FA63CF54 E6E2B9B6 A86F582B
3B16F868 1BBC5E4D 0B6919B3 08D5ABCF
FECDC4A4 8577F08B 99D766A1 E5545670
A61F0A3B A3E45A84 4D151493 63ECA38F        Frame 2, Authentication Tag
FFFFFFFF                                   Final Frame, Sequence Number End
00000003                                   Final Frame, Sequence Number (3)
35F74F11 25410F01 DD9E04BF                 Final Frame, IV
0000008E                                   Final Frame, Encrypted Content Length (142)
F7A53D37 2F467237 6FBD0B57 D1DFE830        Final Frame, Encrypted Content
B965AD1F A910AA5F 5EFFFFF4 BC7D431C
BA9FA7C4 B25AF82E 64A04E3A A0915526
88859500 7096FABB 3ACAD32A 75CFED0C
4A4E52A3 8E41484D 270B7A0F ED61810C
3A043180 DF25E5C5 3676E449 0986557F
C051AD55 A437F6BC 139E9E55 6199FD60
6ADC017D BA41CDA4 C9F17A83 3823F9EC

Framed data (message format version 1) 410



AWS Encryption SDK Developer Guide

B66B6A5A 80FDB433 8A48D6A4 21CB
811234FD 8D589683 51F6F39A 040B3E3B        Final Frame, Authentication Tag
+--------+
| Footer |
+--------+
0066                                       Signature Length (102)
30640230 085C1D3C 63424E15 B2244448        Signature
639AED00 F7624854 F8CF2203 D7198A28
758B309F 5EFD9D5D 2E07AD0B 467B8317
5208B133 02301DF7 2DFC877A 66838028
3C6A7D5E 4F8B894E 83D98E7C E350F424
7E06808D 0FE79002 E24422B9 98A0D130
A13762FF 844D

Framed data (message format version 2)

The following example shows the message format for framed data in message format version 2.

+--------+
| Header |
+--------+
02                                         Version (2.0)
0578                                       Algorithm ID (see Algorithms reference)
122747eb 21dfe39b 38631c61 7fad7340
cc621a30 32a11cc3 216d0204 fd148459        Message ID (random 256-bit value)
008e                                       AAD Length (142)
0004                                       AAD Key-Value Pair Count (4)
0005                                       AAD Key-Value Pair 1, Key Length (5)
30546869 73                                AAD Key-Value Pair 1, Key ("0This")
0002                                       AAD Key-Value Pair 1, Value Length (2)
6973                                       AAD Key-Value Pair 1, Value ("is")
0003                                       AAD Key-Value Pair 2, Key Length (3)
31616e                                     AAD Key-Value Pair 2, Key ("1an")
000a                                       AAD Key-Value Pair 2, Value Length (10)
656e6372 79707469 6f6e                     AAD Key-Value Pair 2, Value ("encryption")
0008                                       AAD Key-Value Pair 3, Key Length (8)
32636f6e 74657874                          AAD Key-Value Pair 3, Key ("2context")
0007                                       AAD Key-Value Pair 3, Value Length (7)
6578616d 706c65                            AAD Key-Value Pair 3, Value ("example")
0015                                       AAD Key-Value Pair 4, Key Length (21)
6177732d 63727970 746f2d70 75626c69        AAD Key-Value Pair 4, Key ("aws-crypto-
public-key")
632d6b65 79

Framed data (message format version 2) 411



AWS Encryption SDK Developer Guide

0044                                       AAD Key-Value Pair 4, Value Length (68)
41746733 72703845 41345161 36706669        AAD Key-Value Pair 4, Value 
 ("QXRnM3JwOEVBNFFhNnBmaTk3MUlTNTk3NHpOMnlZWE5vSmtwRHFPc0dIYkVaVDRqME5OMlFkRStmbTFVY01WdThnPT0=")
39373149 53353937 347a4e32 7959584e
6f4a6b70 44714f73 47486245 5a54346a
304e4e32 5164452b 666d3155 634d5675
38673d3d
0001                                       Encrypted Data Key Count (1)
0007                                       Encrypted Data Key 1, Key Provider ID Length 
 (7)
6177732d 6b6d73                            Encrypted Data Key 1, Key Provider ID ("aws-
kms")
004b                                       Encrypted Data Key 1, Key Provider 
 Information Length (75)
61726e3a 6177733a 6b6d733a 75732d77        Encrypted Data Key 1, Key 
 Provider Information ("arn:aws:kms:us-west-2:658956600833:key/b3537ef1-
d8dc-4780-9f5a-55776cbb2f7f")
6573742d 323a3635 38393536 36303038
33333a6b 65792f62 33353337 6566312d
64386463 2d343738 302d3966 35612d35
35373736 63626232 663766
00a7                                       Encrypted Data Key 1, Encrypted Data Key 
 Length (167)
01010100 7840f38c 275e3109 7416c107        Encrypted Data Key 1, Encrypted Data Key
29515057 1964ada3 ef1c21e9 4c8ba0bd
bc9d0fb4 14000000 7e307c06 092a8648
86f70d01 0706a06f 306d0201 00306806
092a8648 86f70d01 0701301e 06096086
48016503 04012e30 11040c39 32d75294
06063803 f8460802 0110803b 2a46bc23
413196d2 903bf1d7 3ed98fc8 a94ac6ed
e00ee216 74ec1349 12777577 7fa052a5
ba62e9e4 f2ac8df6 bcb1758f 2ce0fb21
cc9ee5c9 7203bb
02                                         Content Type (2, framed data)
00001000                                   Frame Length (4096)
05cd035b 29d5499d 4587570b 87502afe        Algorithm Suite Data (key commitment)
634f7b2c c3df2aa9 88a10105 4a2c7687  
76cb339f 2536741f 59a1c202 4f2594ab        Authentication Tag
+------+
| Body |
+------+
ffffffff                                   Final Frame, Sequence Number End
00000001                                   Final Frame, Sequence Number (1)

Framed data (message format version 2) 412



AWS Encryption SDK Developer Guide

00000000 00000000 00000001                 Final Frame, IV
00000009                                   Final Frame, Encrypted Content Length (9)
fa6e39c6 02927399 3e                       Final Frame, Encrypted Content
f683a564 405d68db eeb0656c d57c9eb0        Final Frame, Authentication Tag
+--------+
| Footer |
+--------+
0067                                       Signature Length (103)
30650230 2a1647ad 98867925 c1712e8f        Signature  
ade70b3f 2a2bc3b8 50eb91ef 56cfdd18  
967d91d8 42d92baf 357bba48 f636c7a0
869cade2 023100aa ae12d08f 8a0afe85
e5054803 110c9ed8 11b2e08a c4a052a9
074217ea 3b01b660 534ac921 bf091d12
3657e2b0 9368bd    
   

Non-framed data (message format version 1)

The following example shows the message format for nonframed data.

Note

Whenever possible, use framed data. The AWS Encryption SDK supports nonframed data 
only for legacy use. Some language implementations of the AWS Encryption SDK can still 
generate nonframed ciphertext. All supported language implementations can decrypt 
framed and nonframed ciphertext.

+--------+
| Header |
+--------+
01                                         Version (1.0)
80                                         Type (128, customer authenticated encrypted 
 data)
0378                                       Algorithm ID (see Algorithms reference)
B8929B01 753D4A45 C0217F39 404F70FF        Message ID (random 128-bit value)
008E                                       AAD Length (142)
0004                                       AAD Key-Value Pair Count (4)
0005                                       AAD Key-Value Pair 1, Key Length (5)
30746869 73                                AAD Key-Value Pair 1, Key ("0This")
0002                                       AAD Key-Value Pair 1, Value Length (2)

Non-framed data (message format version 1) 413



AWS Encryption SDK Developer Guide

6973                                       AAD Key-Value Pair 1, Value ("is")
0003                                       AAD Key-Value Pair 2, Key Length (3)
31616E                                     AAD Key-Value Pair 2, Key ("1an")
000A                                       AAD Key-Value Pair 2, Value Length (10)
656E6372 79774690 6F6E                     AAD Key-Value Pair 2, Value ("encryption")
0008                                       AAD Key-Value Pair 3, Key Length (8)
32636F6E 74657874                          AAD Key-Value Pair 3, Key ("2context")
0007                                       AAD Key-Value Pair 3, Value Length (7)
6578616D 706C65                            AAD Key-Value Pair 3, Value ("example")
0015                                       AAD Key-Value Pair 4, Key Length (21)
6177732D 63727970 746F2D70 75626C69        AAD Key-Value Pair 4, Key ("aws-crypto-
public-key")
632D6B65 79
0044                                       AAD Key-Value Pair 4, Value Length (68)
41734738 67473949 6E4C5075 3136594B        AAD Key-Value Pair 4, Value 
 ("AsG8gG9InLPu16YKlqXTOD+nykG8YqHAhqecj8aXfD2e5B4gtVE73dZkyClA+rAMOQ==")
6C715854 4F442B6E 796B4738 59714841
68716563 6A386158 66443265 35423467
74564537 33645A6B 79436C41 2B72414D
4F513D3D
0002                                       Encrypted Data Key Count (2)
0007                                       Encrypted Data Key 1, Key Provider ID Length 
 (7)
6177732D 6B6D73                            Encrypted Data Key 1, Key Provider ID ("aws-
kms")
004B                                       Encrypted Data Key 1, Key Provider 
 Information Length (75)
61726E3A 6177733A 6B6D733A 75732D77        Encrypted Data Key 1, Key Provider 
 Information ("arn:aws:kms:us-west-2:111122223333:key/715c0818-5825-4245-
a755-138a6d9a11e6")
6573742D 323A3131 31313232 32323333
33333A6B 65792F37 31356330 3831382D
35383235 2D343234 352D6137 35352D31
33386136 64396131 316536
00A7                                       Encrypted Data Key 1, Encrypted Data Key 
 Length (167)
01010200 7857A1C1 F7370545 4ECA7C83        Encrypted Data Key 1, Encrypted Data Key
956C4702 23DCE8D7 16C59679 973E3CED
02A4EF29 7F000000 7E307C06 092A8648
86F70D01 0706A06F 306D0201 00306806
092A8648 86F70D01 0701301E 06096086
48016503 04012E30 11040C28 4116449A
0F2A0383 659EF802 0110803B B23A8133
3A33605C 48840656 C38BCB1F 9CCE7369

Non-framed data (message format version 1) 414



AWS Encryption SDK Developer Guide

E9A33EBE 33F46461 0591FECA 947262F3
418E1151 21311A75 E575ECC5 61A286E0
3E2DEBD5 CB005D
0007                                       Encrypted Data Key 2, Key Provider ID Length 
 (7)
6177732D 6B6D73                            Encrypted Data Key 2, Key Provider ID ("aws-
kms")
004E                                       Encrypted Data Key 2, Key Provider 
 Information Length (78)
61726E3A 6177733A 6B6D733A 63612D63        Encrypted Data Key 2, Key Provider 
 Information ("arn:aws:kms:ca-central-1:111122223333:key/9b13ca4b-afcc-46a8-aa47-
be3435b423ff")
656E7472 616C2D31 3A313131 31323232
32333333 333A6B65 792F3962 31336361
34622D61 6663632D 34366138 2D616134
372D6265 33343335 62343233 6666
00A7                                       Encrypted Data Key 2, Encrypted Data Key 
 Length (167)
01010200 78FAFFFB D6DE06AF AC72F79B        Encrypted Data Key 2, Encrypted Data Key
0E57BD87 3F60F4E6 FD196144 5A002C94
AF787150 69000000 7E307C06 092A8648
86F70D01 0706A06F 306D0201 00306806
092A8648 86F70D01 0701301E 06096086
48016503 04012E30 11040CB2 A820D0CC
76616EF2 A6B30D02 0110803B 8073D0F1
FDD01BD9 B0979082 099FDBFC F7B13548
3CC686D7 F3CF7C7A CCC52639 122A1495
71F18A46 80E2C43F A34C0E58 11D05114
2A363C2A E11397
01                                         Content Type (1, nonframed data)
00000000                                   Reserved
0C                                         IV Length (12)
00000000                                   Frame Length (0, nonframed data)
734C1BBE 032F7025 84CDA9D0                 IV
2C82BB23 4CBF4AAB 8F5C6002 622E886C        Authentication Tag
+------+
| Body |
+------+
D39DD3E5 915E0201 77A4AB11                 IV
00000000 0000028E                          Encrypted Content Length (654)
E8B6F955 B5F22FE4 FD890224 4E1D5155        Encrypted Content
5871BA4C 93F78436 1085E4F8 D61ECE28
59455BD8 D76479DF C28D2E0B BDB3D5D3
E4159DFE C8A944B6 685643FC EA24122B

Non-framed data (message format version 1) 415



AWS Encryption SDK Developer Guide

6766ECD5 E3F54653 DF205D30 0081D2D8
55FCDA5B 9F5318BC F4265B06 2FE7C741
C7D75BCC 10F05EA5 0E2F2F40 47A60344
ECE10AA7 559AF633 9DE2C21B 12AC8087
95FE9C58 C65329D1 377C4CD7 EA103EC1
31E4F48A 9B1CC047 EE5A0719 704211E5
B48A2068 8060DF60 B492A737 21B0DB21
C9B21A10 371E6179 78FAFB0B BAAEC3F4
9D86E334 701E1442 EA5DA288 64485077
54C0C231 AD43571A B9071925 609A4E59
B8178484 7EB73A4F AAE46B26 F5B374B8
12B0000C 8429F504 936B2492 AAF47E94
A5BA804F 7F190927 5D2DF651 B59D4C2F
A15D0551 DAEBA4AF 2060D0D5 CB1DA4E6
5E2034DB 4D19E7CD EEA6CF7E 549C86AC
46B2C979 AB84EE12 202FD6DF E7E3C09F
C2394012 AF20A97E 369BCBDA 62459D3E
C6FFB914 FEFD4DE5 88F5AFE1 98488557
1BABBAE4 BE55325E 4FB7E602 C1C04BEE
F3CB6B86 71666C06 6BF74E1B 0F881F31
B731839B CF711F6A 84CA95F5 958D3B44
E3862DF6 338E02B5 C345CFF8 A31D54F3
6920AA76 0BF8E903 552C5A04 917CCD11
D4E5DF5C 491EE86B 20C33FE1 5D21F0AD
6932E67C C64B3A26 B8988B25 CFA33E2B
63490741 3AB79D60 D8AEFBE9 2F48E25A
978A019C FE49EE0A 0E96BF0D D6074DDB
66DFF333 0E10226F 0A1B219C BE54E4C2
2C15100C 6A2AA3F1 88251874 FDC94F6B
9247EF61 3E7B7E0D 29F3AD89 FA14A29C
76E08E9B 9ADCDF8C C886D4FD A69F6CB4
E24FDE26 3044C856 BF08F051 1ADAD329
C4A46A1E B5AB72FE 096041F1 F3F3571B
2EAFD9CB B9EB8B83 AE05885A 8F2D2793
1E3305D9 0C9E2294 E8AD7E3B 8E4DEC96
6276C5F1 A3B7E51E 422D365D E4C0259C
50715406 822D1682 80B0F2E5 5C94
65B2E942 24BEEA6E A513F918 CCEC1DE3      Authentication Tag
+--------+
| Footer |
+--------+
0067                                     Signature Length (103)
30650230 7229DDF5 B86A5B64 54E4D627      Signature
CBE194F1 1CC0F8CF D27B7F8B F50658C0

Non-framed data (message format version 1) 416



AWS Encryption SDK Developer Guide

BE84B355 3CED1721 A0BE2A1B 8E3F449E
1BEB8281 023100B2 0CB323EF 58A4ACE3
1559963B 889F72C3 B15D1700 5FB26E61
331F3614 BC407CEE B86A66FA CBF74D9E
34CB7E4B 363A38

Body additional authenticated data (AAD) reference for the 
AWS Encryption SDK

The information on this page is a reference for building your own encryption library that 
is compatible with the AWS Encryption SDK. If you are not building your own compatible 
encryption library, you likely do not need this information.

To use the AWS Encryption SDK in one of the supported programming languages, see
Programming languages.

For the specification that defines the elements of a proper AWS Encryption SDK implement 
ation, see the AWS Encryption SDK Specification in GitHub.

You must provide additional authenticated data (AAD) to the AES-GCM algorithm for each 
cryptographic operation. This is true for both framed and nonframed body data. For more 
information about AAD and how it is used in Galois/Counter Mode (GCM), see Recommendations 
for Block Cipher Modes of Operations: Galois/Counter Mode (GCM) and GMAC.

The following table describes the fields that form the body AAD. The bytes are appended in the 
order shown.

Body AAD Structure

Field Length, in bytes

Message ID 16

Body AAD Content Variable. See Body AAD Content in the 
following list.

Sequence Number 4

Body AAD reference 417

https://github.com/awslabs/aws-encryption-sdk-specification/
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38d.pdf
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38d.pdf


AWS Encryption SDK Developer Guide

Field Length, in bytes

Content Length 8

Message ID

The same Message ID value set in the message header.

Body AAD Content

A UTF-8 encoded value determined by the type of body data used.

For nonframed data, use the value AWSKMSEncryptionClient Single Block.

For regular frames in framed data, use the value AWSKMSEncryptionClient Frame.

For the final frame in framed data, use the value AWSKMSEncryptionClient Final Frame.

Sequence Number

A 4-byte value interpreted as a 32-bit unsigned integer.

For framed data, this is the frame sequence number.

For nonframed data, use the value 1, encoded as the 4 bytes 00 00 00 01 in hexadecimal 
notation.

Content Length

The length, in bytes, of the plaintext data provided to the algorithm for encryption. It is an 8-
byte value interpreted as a 64-bit unsigned integer.

AWS Encryption SDK algorithms reference

The information on this page is a reference for building your own encryption library that 
is compatible with the AWS Encryption SDK. If you are not building your own compatible 
encryption library, you likely do not need this information.

To use the AWS Encryption SDK in one of the supported programming languages, see
Programming languages.

Algorithms reference 418



AWS Encryption SDK Developer Guide

For the specification that defines the elements of a proper AWS Encryption SDK implement 
ation, see the AWS Encryption SDK Specification in GitHub.

If you are building your own library that can read and write ciphertexts that are compatible with 
the AWS Encryption SDK, you'll need to understand how the AWS Encryption SDK implements the 
supported algorithm suites to encrypt raw data.

The AWS Encryption SDK supports the following algorithm suites. All AES-GCM algorithm suites 
have a 12-byte initialization vector and a 16-byte AES-GCM authentication tag. The default 
algorithm suite varies with the AWS Encryption SDK version and the selected key commitment 
policy. For details, see Commitment policy and algorithm suite.

AWS Encryption SDK Algorithm Suites

Algorithm 
ID

Message 
format 
version

Encryptio 
n 
algorithm

Data key 
length 
(bits)

Key 
derivatio 
n 
algorithm

Signature 
algorithm

Key 
commitmen 
t 
algorithm

Algorithm 
suite 
data 
length 
(bytes)

05 78 0x02 AES-GCM 256 HKDF 
with 
SHA-512

ECDSA 
with 
P-384 
and 
SHA-384

HKDF 
with 
SHA-512

32 (key 
commitmen 
t)

04 78 0x02 AES-GCM 256 HKDF 
with 
SHA-512

None HKDF 
with 
SHA-512

32 (key 
commitmen 
t)

03 78 0x01 AES-GCM 256 HKDF 
with 
SHA-384

ECDSA 
with 
P-384 
and 
SHA-384

None N/A

Algorithms reference 419

https://github.com/awslabs/aws-encryption-sdk-specification/


AWS Encryption SDK Developer Guide

Algorithm 
ID

Message 
format 
version

Encryptio 
n 
algorithm

Data key 
length 
(bits)

Key 
derivatio 
n 
algorithm

Signature 
algorithm

Key 
commitmen 
t 
algorithm

Algorithm 
suite 
data 
length 
(bytes)

03 46 0x01 AES-GCM 192 HKDF 
with 
SHA-384

ECDSA 
with 
P-384 
and 
SHA-384

None N/A

02 14 0x01 AES-GCM 128 HKDF 
with 
SHA-256

ECDSA 
with 
P-256 
and 
SHA-256

None N/A

01 78 0x01 AES-GCM 256 HKDF 
with 
SHA-256

None None N/A

01 46 0x01 AES-GCM 192 HKDF 
with 
SHA-256

None None N/A

01 14 0x01 AES-GCM 128 HKDF 
with 
SHA-256

None None N/A

00 78 0x01 AES-GCM 256 None None None N/A

00 46 0x01 AES-GCM 192 None None None N/A

00 14 0x01 AES-GCM 128 None None None N/A

Algorithms reference 420



AWS Encryption SDK Developer Guide

Algorithm ID

A 2-byte hexadecimal value that uniquely identifies an algorithm implementation. This value is 
stored in the message header of the ciphertext.

Message format version

The version of the message format. Algorithm suites with key commitment use message format 
version 2 (0x02). Algorithm suites without key commitment use message format version 1 
(0x01).

Algorithm suite data length

The length in bytes of data specific to the algorithm suite. This field is supported only in 
message format version 2 (0x02). In message format version 2 (0x02), this data appears in 
the Algorithm suite data field of the message header. Algorithm suites that support
key commitment use 32 bytes for the key commitment string. For more information, see Key 
commitment algorithm in this list.

Data key length

The length of the data key in bits. The AWS Encryption SDK supports 256-bit, 192-bit, and 128-
bit keys. The data key is generated by a keyring or master key.

In some implementations, this data key is used as input to an HMAC-based extract-and-expand 
key derivation function (HKDF). The output of the HKDF is used as the data encryption key in 
the encryption algorithm. For more information, see Key derivation algorithm in this list.

Encryption algorithm

The name and mode of the encryption algorithm used. Algorithm suites in the AWS Encryption 
SDK use the Advanced Encryption Standard (AES) encryption algorithm with Galois/Counter 
Mode (GCM).

Key commitment algorithm

The algorithm used to calculate the key commitment string. The output is stored in the
Algorithm suite data field of the message header and is used to validate the data key for 
key commitment.

For a technical explanation of adding key commitment to an algorithm suite, see Key 
Committing AEADs in Cryptology ePrint Archive.

Algorithms reference 421

https://eprint.iacr.org/2020/1153
https://eprint.iacr.org/2020/1153


AWS Encryption SDK Developer Guide

Key derivation algorithm

The HMAC-based extract-and-expand key derivation function (HKDF) used to derive the data 
encryption key. The AWS Encryption SDK uses the HKDF defined in RFC 5869.

Algorithm suites without key commitment (algorithm ID 01xx – 03xx)

• The hash function used is either SHA-384 or SHA-256, depending on the algorithm suite.

• For the extract step:

• No salt is used. Per the RFC, the salt is set to a string of zeros. The string length is equal 
to the length of the hash function output, which is 48 bytes for SHA-384 and 32 bytes for 
SHA-256.

• The input keying material is the data key from the keyring or master key provider.

• For the expand step:

• The input pseudorandom key is the output from the extract step.

• The input info is a concatenation of the algorithm ID and message ID (in that order).

• The length of the output keying material is the Data key length. This output is used as the 
data encryption key in the encryption algorithm.

Algorithm suites with key commitment (algorithm ID 04xx and 05xx)

• The hash function used is SHA-512.

• For the extract step:

• The salt is a 256-bit cryptographic random value. In message format version 2 (0x02), this 
value is stored in the MessageID field.

• The initial keying material is the data key from the keyring or master key provider.

• For the expand step:

• The input pseudorandom key is the output from the extract step.

• The key label is the UTF-8-encoded bytes of the DERIVEKEY string in big endian byte 
order.

• The input info is a concatenation of the algorithm ID and the key label (in that order).

• The length of the output keying material is the Data key length. This output is used as the 
data encryption key in the encryption algorithm.

Message format version

The version of the message format used with the algorithm suite. For details, see Message 
format reference.

Algorithms reference 422

https://tools.ietf.org/html/rfc5869


AWS Encryption SDK Developer Guide

Signature algorithm

The signature algorithm that is used to generate a digital signature over the ciphertext header 
and body. The AWS Encryption SDK uses the Elliptic Curve Digital Signature Algorithm (ECDSA) 
with the following specifics:

• The elliptic curve used is either the P-384 or P-256 curve, as specified by the algorithm ID. 
These curves are defined in Digital Signature Standard (DSS) (FIPS PUB 186-4).

• The hash function used is SHA-384 (with the P-384 curve) or SHA-256 (with the P-256 curve).

AWS Encryption SDK initialization vector reference

The information on this page is a reference for building your own encryption library that 
is compatible with the AWS Encryption SDK. If you are not building your own compatible 
encryption library, you likely do not need this information.

To use the AWS Encryption SDK in one of the supported programming languages, see
Programming languages.

For the specification that defines the elements of a proper AWS Encryption SDK implement 
ation, see the AWS Encryption SDK Specification in GitHub.

The AWS Encryption SDK supplies the initialization vectors (IVs) that are required by all supported
algorithm suites. The SDK uses frame sequence numbers to construct an IV so that no two frames 
in the same message can have the same IV.

Each 96-bit (12-byte) IV is constructed from two big-endian byte arrays concatenated in the 
following order:

• 64 bits: 0 (reserved for future use)

• 32 bits: Frame sequence number. For the header authentication tag, this value is all zeroes.

Before the introduction of data key caching, the AWS Encryption SDK always used a new data 
key to encrypt each message, and it generated all IVs randomly. Randomly generated IVs were 
cryptographically safe because data keys were never reused. When the SDK introduced data key 
caching, which intentionally reuses data keys, we changed the way the SDK generates IVs.

Initialization vector reference 423

http://doi.org/10.6028/NIST.FIPS.186-4
https://github.com/awslabs/aws-encryption-sdk-specification/
https://en.wikipedia.org/wiki/Initialization_vector


AWS Encryption SDK Developer Guide

Using deterministic IVs that cannot repeat within a message significantly increases the number 
of invocations that can safely be executed under a single data key. In addition, data keys that are 
cached always use an algorithm suite with a key derivation function. Using a deterministic IV with a 
pseudo-random key derivation function to derive encryption keys from a data key allows the AWS 
Encryption SDK to encrypt 2^32 messages without exceeding cryptographic bounds.

AWS KMS Hierarchical keyring technical details

The AWS KMS Hierarchical keyring uses a unqiue data key to encrypt each message and encrypts 
each data key with a unique wrapping key derived from an active branch key. It uses a key 
derivation in counter mode with a pseudorandom function with HMAC SHA-256 to derive the 32 
byte wrapping key with the following inputs.

• A 16 byte random salt

• The active branch key

• The UTF-8 encoded value for the key provider identifier "aws-kms-hierarchy"

The Hierarchical keyring uses the derived wrapping key to encrypt a copy of the plaintext data key 
using AES-GCM-256 with a 16 byte authentication tag and the following inputs.

• The derived wrapping key is used as the AES-GCM cipher key

• The data key is used as the AES-GCM message

• A 12 byte random initialization vector (IV) is used as the AES-GCM IV

• Additional authenticated data (AAD) containing the following serialized values.

Value Length in bytes Interpreted as

"aws-kms-hierarchy" 17 UTF-8 encoded

The branch key identifier Variable UTF-8 encoded

The branch key version 16 UTF-8 encoded

Encryption context Variable UTF-8 encoded key value 
pairs

AWS KMS Hierarchical keyring technical details 424

https://en.wikipedia.org/wiki/Key_derivation_function
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-108r1.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-108r1.pdf
https://en.wikipedia.org/wiki/UTF-8


AWS Encryption SDK Developer Guide

Document history for the AWS Encryption SDK 
Developer Guide

This topic describes significant updates to the AWS Encryption SDK Developer Guide.

Topics

• Recent updates

• Earlier updates

Recent updates

The following table describes significant changes to this documentation since November 2017. In 
addition to major changes listed here, we also update the documentation frequently to improve 
the descriptions and examples, and to address the feedback that you send to us. To be notified 
about significant changes, subscribe to the RSS feed.

Change Description Date

General availability Added documentation for the
AWS KMS ECDH keyring and
Raw ECDH keyring.

June 17, 2024

AWS Encryption SDK for Java 
version 3.x

Integrates the AWS Encryptio 
n SDK for Java with the 
material providers library. 
Adds support for keyrings 
and the required encryption 
context CMM.

December 6, 2023

AWS Encryption SDK for .NET 
version 4.x

Adds support for the AWS 
KMS Hierarchical keyring, the 
required encryption context 
CMM, and asymmetric RSA 
AWS KMS keyrings.

October 12, 2023

Recent updates 425

https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/use-kms-ecdh-keyring.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/use-kms-ecdh-keyring.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/use-raw-ecdh-keyring.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/java.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/java.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/dot-net.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/dot-net.html


AWS Encryption SDK Developer Guide

General availability Introducing support for the 
AWS Encryption SDK for .NET.

May 17, 2022

Documentation change Replace the AWS Key 
Management Service term
customer master key (CMK)
with AWS KMS key and KMS 
key.

August 30, 2021

General availability Added support for AWS Key 
Management Service.(AWS 
KMS) multi-Region keys. 
Multi-Region keys are AWS 
KMS keys in different AWS 
Regions that can be used 
interchangeably because they 
have the same key ID and key 
material.

June 8, 2021

General availability Added and updated 
documentation about the 
improved message decryption 
process.

May 11, 2021

General availability Added and updated 
documentation for the 
general availability release 
of AWS Encryption CLI 
version 1.8.x to replace AWS 
Encryption CLI version 1.7.x, 
and AWS Encryption CLI 2.1.x
to replace AWS Encryption CLI 
2.0.x.

October 27, 2020

Recent updates 426

https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/dot-net.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/concepts.html#master-key
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/configure.html#config-mrks
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/concepts.html#digital-sigs
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/about-versions.html


AWS Encryption SDK Developer Guide

General availability Added and updated 
documentation for the 
general availability release 
of the AWS Encryption SDK 
versions 1.7.x and 2.0.x, 
including a best practices 
guide, a migration guide, 
updated concepts, updated
programming language 
topics, an updated algorithm 
suites reference, an updated
message format reference, 
and a new message format 
example.

September 24, 2020

General availability Added and updated 
documentation for the 
general availability release of 
the AWS Encryption SDK for 
JavaScript.

October 1, 2019

Preview release Added and updated 
documentation of the public 
beta release of the AWS 
Encryption SDK for JavaScrip 
t.

June 21, 2019

General availability Added and updated 
documentation for the 
general availability release of 
the AWS Encryption SDK for 
C.

May 16, 2019

Preview release Added documentation of the 
preview release of the AWS 
Encryption SDK for C.

February 5, 2019

Recent updates 427

https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/about-versions.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/best-practices.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/best-practices.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/migration-guide.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/concepts.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/programming-languages.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/programming-languages.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/algorithms-reference.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/algorithms-reference.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/message-format.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/message-format-examples.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/message-format-examples.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/javascript.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/javascript.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/javascript.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/javascript.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/javascript.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/javascript.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/javascript.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/c-language.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/c-language.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/c-language.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/c-language.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/c-language.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/c-language.html


AWS Encryption SDK Developer Guide

New release Added documentation of the
command line interface for 
the AWS Encryption SDK.

November 20, 2017

Earlier updates

The following table describes significant changes to the AWS Encryption SDK Developer Guide
before November 2017.

Change Description Date

New release Added the Data key caching
chapter for the new feature.

Added the the section called 
“Initialization vector reference 
” topic that explains that the 
SDK changed from generatin 
g random IVs to constructing 
deterministic IVs.

Added the the section called 
“Concepts” topic to explain 
concepts, including the new 
cryptographic materials 
manager.

July 31, 2017

Update Expanded the Message 
format reference documenta 
tion into a new AWS 
Encryption SDK reference
 section.

Added a section about 
the AWS Encryption SDK
Supported algorithm suites.

March 21, 2017

Earlier updates 428

https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/crypto-cli.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/crypto-cli.html


AWS Encryption SDK Developer Guide

Change Description Date

New release The AWS Encryption SDK 
now supports the Python
programming language, in 
addition to Java.

March 21, 2017

Initial release Initial release of the AWS 
Encryption SDK and this 
documentation.

March 22, 2016

Earlier updates 429


	AWS Encryption SDK
	Table of Contents
	What is the AWS Encryption SDK?
	Developed in open-source repositories
	Compatibility with encryption libraries and services
	Support and maintenance
	Learning more
	Sending feedback
	Concepts in the AWS Encryption SDK
	Envelope encryption
	Data key
	Wrapping key
	Keyrings and master key providers
	Encryption context
	Encrypted message
	Algorithm suite
	Cryptographic materials manager
	Symmetric and asymmetric encryption
	Key commitment
	Commitment policy
	Digital signatures

	How the AWS Encryption SDK works
	How the AWS Encryption SDK encrypts data
	How the AWS Encryption SDK decrypts an encrypted message

	Supported algorithm suites in the AWS Encryption SDK
	Recommended: AES-GCM with key derivation, signing, and key commitment
	Other supported algorithm suites


	Using the AWS Encryption SDK with AWS KMS
	Best practices for the AWS Encryption SDK
	Configuring the AWS Encryption SDK
	Selecting a programming language
	Selecting wrapping keys
	Using multi-Region AWS KMS keys
	Choosing an algorithm suite
	Limiting encrypted data keys
	Creating a discovery filter
	Setting a commitment policy
	Working with streaming data
	Caching data keys

	Using keyrings
	How keyrings work
	Keyring compatibility
	Varying requirements for encryption keyrings
	Compatible Keyrings and Master Key Providers

	Choosing a keyring
	AWS KMS keyrings
	Required permissions for AWS KMS keyrings
	Identifying AWS KMS keys in an AWS KMS keyring
	Creating an AWS KMS keyring for encryption
	Creating an AWS KMS keyring for decryption
	Using an AWS KMS discovery keyring
	Using an AWS KMS regional discovery keyring

	AWS KMS Hierarchical keyrings
	How it works
	Prerequisites
	Create a Hierarchical keyring
	Rotate your active branch key
	Using the Hierarchical keyring in multitenant environments

	AWS KMS ECDH keyrings
	Required permissions for AWS KMS ECDH keyrings
	Creating an AWS KMS ECDH keyring
	Creating an AWS KMS ECDH discovery keyring

	Raw AES keyrings
	Raw RSA keyrings
	Raw ECDH keyrings
	Creating a Raw ECDH keyring
	RawPrivateKeyToStaticPublicKey
	EphemeralPrivateKeyToStaticPublicKey
	PublicKeyDiscovery


	Multi-keyrings


	AWS Encryption SDK programming languages
	AWS Encryption SDK for C
	Installing the AWS Encryption SDK for C
	Using the AWS Encryption SDK for C
	Patterns for encrypting and decrypting data
	Reference counting

	AWS Encryption SDK for C examples
	Encrypting and decrypting strings
	Encrypt a string
	Decrypt a string



	AWS Encryption SDK for .NET
	Installing the AWS Encryption SDK for .NET
	Debugging the AWS Encryption SDK for .NET
	AWS KMS keyrings in the AWS Encryption SDK for .NET
	Required encryption contexts in version 4.x
	AWS Encryption SDK for .NET examples
	Encrypting data in the AWS Encryption SDK for .NET
	Decrypting in strict mode in the AWS Encryption SDK for .NET
	Decrypting with a discovery keyring in the AWS Encryption SDK for .NET


	AWS Encryption SDK for Java
	Prerequisites
	Installation
	AWS KMS keyrings in the AWS Encryption SDK for Java
	Required encryption contexts in version 3.x
	AWS Encryption SDK for Java examples
	Encrypting and decrypting strings
	Encrypting and decrypting byte streams
	Encrypting and decrypting byte streams with a multi-keyring


	AWS Encryption SDK for JavaScript
	Compatibility of the AWS Encryption SDK for JavaScript
	AWS Encryption SDK for JavaScript compatibility
	Browser compatibility

	Installing the AWS Encryption SDK for JavaScript
	Modules in the AWS Encryption SDK for JavaScript
	Modules for JavaScript Node.js
	Modules for JavaScript Browser
	Modules for all implementations

	AWS Encryption SDK for JavaScript examples
	Encrypting data with an AWS KMS keyring
	Decrypting data with an AWS KMS keyring


	AWS Encryption SDK for Python
	Prerequisites
	Installation
	AWS Encryption SDK for Python example code
	Encrypting and decrypting strings
	Encrypting and decrypting byte streams
	Encrypting and decrypting byte streams with multiple master key providers
	Using data key caching to encrypt messages


	AWS Encryption SDK command line interface
	Installing the AWS Encryption SDK command line interface
	Installing the prerequisites
	Installing and updating the AWS Encryption CLI

	How to use the AWS Encryption CLI
	How to encrypt and decrypt data
	How to specify wrapping keys
	Wrapping key parameter attributes
	How to specify multiple wrapping keys

	How to provide input
	How to specify the output location
	How to use an encryption context
	How to specify a commitment policy
	How to store parameters in a configuration file

	Examples of the AWS Encryption CLI
	Encrypting a file
	Decrypting a file
	Encrypting all files in a directory
	Decrypting all files in a directory
	Encrypting and decrypting on the command line
	Using multiple master keys
	Encrypting and decrypting in scripts
	Using data key caching

	AWS Encryption SDK CLI syntax and parameter reference
	AWS Encryption CLI syntax
	AWS Encryption CLI command line parameters
	Advanced parameters

	Versions of the AWS Encryption CLI
	Version 1.8.x changes to the AWS Encryption CLI
	Version 2.1.x changes to the AWS Encryption CLI
	Version 1.9.x and 2.2.x changes to the AWS Encryption CLI
	Version 3.0.x changes to the AWS Encryption CLI



	Data key caching
	How to use data key caching
	Using data key caching: Step-by-step
	Data key caching example: Encrypt a string

	Setting cache security thresholds
	Data key caching details
	How data key caching works
	Encrypt data without caching
	Encrypt data with caching

	Creating a cryptographic materials cache
	Creating a caching cryptographic materials manager
	What is in a data key cache entry?
	Encryption context: How to select cache entries
	Is my application using cached data keys?

	Data key caching example
	Local cache results
	Data key caching example code
	Producer
	Consumer

	Data key caching example: AWS CloudFormation template


	Versions of the AWS Encryption SDK
	C
	C# / .NET
	Command line interface (CLI)
	Java
	JavaScript
	Python
	Version details
	Versions earlier than 1.7.x
	Version 1.7.x
	Version 2.0.x
	Version 2.2.x
	Version 2.3.x


	Migrating your AWS Encryption SDK
	How to migrate and deploy the AWS Encryption SDK
	Stage 1: Update your application to the latest 1.x version
	Stage 2: Update your application to the latest version

	Updating AWS KMS master key providers
	Migrating to strict mode
	Migrating to discovery mode

	Updating AWS KMS keyrings
	Setting your commitment policy
	How to set your commitment policy

	Troubleshooting migration to the latest versions
	Deprecated or removed objects
	Configuration conflict: Commitment policy and algorithm suite
	Configuration conflict: Commitment policy and ciphertext
	Key commitment validation failed
	Other encryption failures
	Other decryption failures
	Rollback considerations


	Frequently asked questions
	AWS Encryption SDK reference
	AWS Encryption SDK message format reference
	Header structure
	Body structure
	Non-framed data
	Framed data

	Footer structure

	AWS Encryption SDK message format examples
	Framed data (message format version 1)
	Framed data (message format version 2)
	Non-framed data (message format version 1)

	Body additional authenticated data (AAD) reference for the AWS Encryption SDK
	AWS Encryption SDK algorithms reference
	AWS Encryption SDK initialization vector reference
	AWS KMS Hierarchical keyring technical details

	Document history for the AWS Encryption SDK Developer Guide
	Recent updates
	Earlier updates


