
Amazon EMR on EKS Development Guide

Amazon EMR

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon EMR Amazon EMR on EKS Development Guide

Amazon EMR: Amazon EMR on EKS Development Guide

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service
that is not Amazon's, in any manner that is likely to cause confusion among customers, or in any
manner that disparages or discredits Amazon. All other trademarks not owned by Amazon are
the property of their respective owners, who may or may not be affiliated with, connected to, or
sponsored by Amazon.

Amazon EMR Amazon EMR on EKS Development Guide

Table of Contents

What is Amazon EMR on EKS? ... 1
Architecture .. 2
Concepts ... 3

Kubernetes namespace .. 3
Virtual cluster ... 3
Job run .. 4
Amazon EMR containers .. 4

How the components work together ... 4
Getting started .. 6

Run a Spark application .. 7
Best practices ... 12

Security ... 12
Pyspark job submission ... 12
Storage ... 12
Metastore integration .. 13
Debugging .. 13
Troubleshooting Amazon EMR on EKS issues .. 13
Node placement ... 13
Performance .. 13
Cost optimization ... 13
Using AWS Outposts ... 14

Customizing Docker images .. 15
How to customize Docker images .. 15

Prerequisites ... 16
Step 1: Retrieve a base image from Amazon Elastic Container Registry (Amazon ECR) 16
Step 2: Customize a base image ... 17
Step 3: (Optional but recommended) Validate a custom image ... 17
Step 4: Publish a custom image .. 19
Step 5: Submit a Spark workload in Amazon EMR using a custom image 20
Customize Docker images for interactive endpoints ... 22
Work with multi-architecture images ... 24

How to select a base image URI ... 26
Amazon ECR registry accounts .. 27

Considerations ... 28

iii

Amazon EMR Amazon EMR on EKS Development Guide

Running Flink jobs .. 30
Flink Kubernetes operator .. 30

Setting up ... 31
Getting started .. 32
Running a Flink application .. 33
Security ... 38
Uninstalling the operator .. 40

Native Kubernetes .. 40
Setting up ... 41
Getting started .. 41
Security requirements .. 44

Docker images ... 44
Customizing Docker images for Flink and FluentD ... 45

Monitoring ... 48
Using Amazon Managed Service for Prometheus .. 48
Using the Flink UI ... 50
Using monitoring configuration .. 51

Job resiliency ... 56
Using high availability ... 56
Optimizing restart times ... 62
Graceful decommission .. 69

Using Autoscaler ... 72
Autoscaler parameter autotuning ... 73

Maintenance and troubleshooting .. 82
Migrate .. 82
Troubleshooting .. 83

Supported releases .. 86
Running Spark jobs ... 87

StartJobRun ... 87
Setting up ... 88
Getting started .. 104

Spark operator .. 106
Setting up .. 107
Getting started .. 107
Vertical autoscaling .. 111
Uninstall .. 116

iv

Amazon EMR Amazon EMR on EKS Development Guide

Security ... 117
spark-submit ... 126

Setting up .. 126
Getting started .. 127
Security ... 128

Apache Livy ... 134
Setting up .. 134
Getting started .. 135
Running a Spark application .. 140
Uninstalling .. 142
Security ... 142
Installation properties ... 152
Troubleshooting .. 157

Managing job runs ... 158
Manage with CLI ... 158
Run Spark SQL scripts ... 164
Job run states .. 166
View jobs in the console ... 167
Common job run errors ... 167

Using job submitter classification .. 173
Overview ... 173
Examples ... 174

Using job templates .. 177
Creating and using a job template to start a job run ... 178
Defining job template parameters ... 179
Controlling access to job templates ... 181

Using pod templates ... 183
Common scenarios ... 183
Enabling pod templates with Amazon EMR on EKS ... 185
Pod template fields .. 187
Sidecar container considerations ... 190

Using retry policies .. 192
Set a retry policy .. 192
Retrieve the policy status ... 194
Monitor the job ... 195
Find the driver logs .. 196

v

Amazon EMR Amazon EMR on EKS Development Guide

Using Spark event log rotation .. 196
Using Spark container log rotation .. 197
Using vertical autoscaling .. 199

Setting up .. 200
Getting started .. 202
Configuration ... 204
Monitoring the recommendations .. 209
Uninstalling .. 211

Running interactive workloads ... 212
Overview of interactive endpoints ... 212
Interactive endpoints prerequisites .. 214

AWS CLI .. 214
eksctl ... 214
Amazon EKS cluster ... 215
Grant Cluster access ... 215
Activate IAM roles for Service Accounts .. 215
Create IAM job execution role ... 216
Grant users access .. 216
Register Amazon EKS cluster with Amazon EMR ... 216
Load Balancer Controller .. 217

Creating an interactive endpoint .. 217
Create an interactive endpoint .. 217
Specify custom parameters .. 218
.. 219
Interactive endpoint parameters ... 219

Configuring settings for interactive endpoints .. 221
Monitoring Spark jobs ... 221
Custom pod templates .. 222
Deploying a JEG pod to a node group .. 223
JEG configuration options .. 226
Modifying PySpark parameters ... 227
Custom kernel image ... 228

Monitoring interactive endpoints ... 229
Examples ... 232

Using self-hosted Jupyter notebooks .. 232
Create a security group ... 233

vi

Amazon EMR Amazon EMR on EKS Development Guide

Create an interactive endpoint .. 233
Get the gateway server URL .. 234
Get the auth token .. 234
Deploy the notebook ... 235
Clean up ... 240

Other operations .. 241
.. 241
List interactive endpoints ... 242
Delete interactive endpoint .. 244

Uploading data .. 245
Prerequisites .. 245
Getting started ... 245

Monitoring jobs ... 247
Monitor jobs with Amazon CloudWatch Events .. 247
Automate Amazon EMR on EKS with CloudWatch Events .. 248
Example: Set up a rule that invokes Lambda .. 249
Monitor job’s driver pod with a retry policy using Amazon CloudWatch Events 250

Managing virtual clusters ... 251
Create a virtual cluster ... 251
List virtual clusters .. 252
Describe a virtual cluster ... 253
Delete a virtual cluster ... 253
Virtual cluster states ... 253

Tutorials ... 254
Using Delta Lake .. 254
Using Iceberg .. 255
Using PyFlink .. 256
Using AWS Glue with Flink .. 257
Using Apache Hudi .. 260

Submit an Apache Hudi job ... 260
Using Spark RAPIDS .. 263
Using Spark on Redshift ... 268

Launch a Spark application .. 268
Authenticate to Amazon Redshift ... 269
Read and write to Amazon Redshift .. 271
Considerations ... 273

vii

Amazon EMR Amazon EMR on EKS Development Guide

Using Volcano ... 274
Overview ... 274
Installation ... 275
Submit: Spark operator ... 276
Submit: spark-submit .. 278

Using YuniKorn ... 279
Overview ... 279
Create your cluster ... 279
Install YuniKorn ... 281
Submit: Spark operator ... 282
Submit: spark-submit .. 285

Security .. 12
Best practices .. 288

Apply principle of least privilege .. 288
Access control list for endpoints ... 288
Get the latest security updates for custom images .. 288
Limit pod credential access .. 289
Isolate untrusted application code ... 289
Role-based access control (RBAC) permissions .. 289
Restrict access to nodegroup IAM role or instance profile credentials 290

Data protection .. 290
Encryption at rest ... 291
Encryption in transit .. 293

Identity and Access Management .. 294
Audience ... 295
Authenticating with identities ... 295
Managing access using policies ... 299
How Amazon EMR on EKS works with IAM .. 301
Using Service-Linked Roles ... 307
Managed policies for Amazon EMR on EKS .. 311
Using job execution roles with Amazon EMR on EKS ... 311
Identity-based policy examples ... 314
Policies for tag-based access control ... 317
Troubleshooting .. 320

Logging and monitoring .. 321
CloudTrail logs .. 322

viii

Amazon EMR Amazon EMR on EKS Development Guide

S3 Access Grants .. 324
Overview ... 324
Launch a cluster .. 325
Considerations ... 327

Compliance Validation .. 327
Resilience ... 327
Infrastructure Security .. 327
Configuration and vulnerability analysis .. 328
Interface VPC endpoints ... 328

Create a VPC Endpoint Policy for Amazon EMR on EKS .. 329
Cross-account access ... 332

Prerequisites .. 332
How to access a cross-account Amazon S3 bucket or DynamoDB table 332

Tagging resources .. 337
Tag basics .. 337
Tag your resources ... 338
Tag restrictions ... 339
Work with tags using the AWS CLI and the Amazon EMR on EKS API .. 339

Troubleshooting ... 13
PVC job failures .. 341

Verification ... 341
Patch .. 342
Manual patch ... 345

Vertical autoscaling failures .. 347
403 Forbidden error ... 347
Namespace not found ... 348
Docker credentials error .. 348

Spark operator failures ... 349
Helm chart install failed ... 349
Unsupported filesystem exception ... 349

Service endpoints and quotas .. 351
Service endpoints ... 351
Service quotas .. 352

Release versions ... 354
7.2.0 releases .. 355

Releases .. 355

ix

Amazon EMR Amazon EMR on EKS Development Guide

Release notes ... 357
Features .. 358
emr-7.2.0-latest .. 359
emr-7.2.0-20240610 .. 359
emr-7.2.0-flink-latest ... 359
emr-7.2.0-flink-20240610 .. 360

7.1.0 releases .. 360
Releases .. 360
Release notes ... 362
Features .. 363
emr-7.1.0-latest .. 364
emr-7.1.0-20240321 .. 364
emr-7.1.0-flink-latest ... 364
emr-7.1.0-flink-20240321 .. 364

7.0.0 releases .. 364
Releases .. 365
Release notes ... 366
Features .. 368
Changes .. 368
emr-7.0.0-latest .. 368
emr-7.0.0-2024321 .. 369
emr-7.0.0-20231211 .. 369
emr-7.0.0-flink-latest ... 369
emr-7.0.0-flink-2024321 ... 369
emr-7.0.0-flink-20231211 .. 370

6.15.0 releases .. 370
Releases .. 370
Release notes ... 372
Features .. 373
emr-6.15.0-latest .. 373
emr-6.15.0-20240105 ... 374
emr-6.15.0-20231109 ... 374
emr-6.15.0-flink-latest .. 374
emr-6.15.0-flink-20240105 .. 374
emr-6.15.0-flink-20231109 .. 375

6.14.0 releases .. 375

x

Amazon EMR Amazon EMR on EKS Development Guide

Releases .. 375
Release notes ... 376
Features .. 378
emr-6.14.0-latest .. 378
emr-6.14.0-20231005 ... 378

6.13.0 releases .. 378
Releases .. 379
Release notes ... 380
Features .. 381
emr-6.13.0-latest .. 382
emr-6.13.0-20230814 ... 382

6.12.0 releases .. 382
Releases .. 382
Release notes ... 383
Features .. 385
emr-6.12.0-latest .. 385
emr-6.12.0-20240321 ... 385
emr-6.12.0-20230701 ... 385

6.11.0 releases .. 386
Releases .. 386
Release notes ... 386
Features .. 388
emr-6.11.0-latest .. 388
emr-6.11.0-20230905 ... 389
emr-6.11.0-20230509 ... 389

6.10.0 releases .. 389
emr-6.10.0-latest .. 392
emr-6.10.0-20230905 ... 392
emr-6.10.0-20230624 ... 392
emr-6.10.0-20230421 ... 392
emr-6.10.0-20230403 ... 393
emr-6.10.0-20230220 ... 393

6.9.0 releases .. 393
emr-6.9.0-latest .. 396
emr-6.9.0-20230905 .. 396
emr-6.9.0-20230624 .. 396

xi

Amazon EMR Amazon EMR on EKS Development Guide

emr-6.9.0-20221108 .. 397
6.8.0 releases .. 397

emr-6.8.0-latest .. 401
emr-6.8.0-20230905 .. 401
emr-6.8.0-20230624 .. 401
emr-6.8.0-20221219 .. 401
emr-6.8.0-20220802 .. 402

6.7.0 releases .. 402
emr-6.7.0-latest .. 404
emr-6.7.0-20240321 .. 404
emr-6.7.0-20230624 .. 404
emr-6.7.0-20221219 .. 404
emr-6.7.0-20220630 .. 405

6.6.0 releases .. 405
emr-6.6.0-latest .. 406
emr-6.6.0-20240321 .. 407
emr-6.6.0-20230624 .. 407
emr-6.6.0-20221219 .. 407
emr-6.6.0-20220411 .. 407

6.5.0 releases .. 408
emr-6.5.0-latest .. 409
emr-6.5.0-20240321 .. 409
emr-6.5.0-20221219 .. 409
emr-6.5.0-20220802 .. 410
emr-6.5.0-20211119 .. 410

6.4.0 releases .. 410
emr-6.4.0-latest .. 411
emr-6.4.0-20240321 .. 412
emr-6.4.0-20221219 .. 412
emr-6.4.0-20210830 .. 412

6.3.0 releases .. 412
emr-6.3.0-latest .. 414
emr-6.3.0-20240321 .. 414
emr-6.3.0-20220802 .. 414
emr-6.3.0-20211008 .. 414
emr-6.3.0-20210802 .. 415

xii

Amazon EMR Amazon EMR on EKS Development Guide

emr-6.3.0-20210429 .. 415
6.2.0 releases .. 415

emr-6.2.0-latest .. 416
emr-6.2.0-20240321 .. 417
emr-6.2.0-20220802 .. 417
emr-6.2.0-20211008 .. 417
emr-6.2.0-20210802 .. 417
emr-6.2.0-20210615 .. 418
emr-6.2.0-20210129 .. 418
emr-6.2.0-20201218 .. 418
emr-6.2.0-20201201 .. 418

5.36.0 releases .. 419
emr-5.36.0-latest .. 420
emr-5.36.0-20240321 ... 420
emr-5.36.0-20221219 ... 420
emr-5.36.0-20220620 ... 420
emr-5.36.0-20220525 ... 421

5.35.0 releases .. 421
emr-5.35.0-latest .. 422
emr-5.35.0-20240321 ... 422
emr-5.35.0-20221219 ... 423
emr-5.35.0-20220802 ... 423
emr-5.35.0-20220307 ... 423

5.34 releases ... 423
emr-5.34.0-latest .. 424
emr-5.34.0-20240321 ... 425
emr-5.34.0-20220802 ... 425
emr-5.34.0-20211208 ... 425

5.33.0 releases .. 425
emr-5.33.0-latest .. 427
emr-5.33.0-20240321 ... 427
emr-5.33.0-20221219 ... 427
emr-5.33.0-20220802 ... 427
emr-5.33.0-20211008 ... 428
emr-5.33.0-20210802 ... 428
emr-5.33.0-20210615 ... 428

xiii

Amazon EMR Amazon EMR on EKS Development Guide

emr-5.33.0-20210323 ... 428
5.32.0 releases .. 429

emr-5.32.0-latest .. 430
emr-5.32.0-20240321 ... 430
emr-5.32.0-20220802 ... 430
emr-5.32.0-20211008 ... 431
emr-5.32.0-20210802 ... 431
emr-5.32.0-20210615 ... 431
emr-5.32.0-20210129 ... 431
emr-5.32.0-20201218 ... 432
emr-5.32.0-20201201 ... 432

Document history .. 433

xiv

Amazon EMR Amazon EMR on EKS Development Guide

What is Amazon EMR on EKS?

Amazon EMR on EKS provides a deployment option for Amazon EMR that allows you to run
open-source big data frameworks on Amazon Elastic Kubernetes Service (Amazon EKS). With this
deployment option, you can focus on running analytics workloads while Amazon EMR on EKS
builds, configures, and manages containers for open-source applications.

If you already use Amazon EMR, you can now run Amazon EMR based applications with other types
of applications on the same Amazon EKS cluster. This deployment option also improves resource
utilization and simplifies infrastructure management across multiple Availability Zones. If you
already run big data frameworks on Amazon EKS, you can now use Amazon EMR to automate
provisioning and management, and run Apache Spark more quickly.

Amazon EMR on EKS enables your team to collaborate more efficiently and process vast amounts
of data more easily and cost-effectively:

• You can run applications on a common pool of resources without having to provision
infrastructure. You can use Amazon EMR Studio and the AWS SDK or AWS CLI to develop, submit,
and diagnose analytics applications running on EKS clusters. You can run scheduled jobs on
Amazon EMR on EKS using self-managed Apache Airflow or Amazon Managed Workflows for
Apache Airflow (MWAA).

• Infrastructure teams can centrally manage a common computing platform to consolidate
Amazon EMR workloads with other container-based applications. You can simplify infrastructure
management with common Amazon EKS tools and take advantage of a shared cluster for
workloads that need different versions of open-source frameworks. You can also reduce
operational overhead with automated Kubernetes cluster management and OS patching. With
Amazon EC2 and AWS Fargate, you can enable multiple compute resources to meet performance,
operational, or financial requirements.

The following diagram shows the two different deployment models for Amazon EMR.

1

https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-studio.html

Amazon EMR Amazon EMR on EKS Development Guide

Topics

• Architecture

• Concepts

• How the components work together

Architecture

Amazon EMR on EKS loosely couples applications to the infrastructure that they run on. Each
infrastructure layer provides orchestration for the subsequent layer. When you submit a job to
Amazon EMR, your job definition contains all of its application-specific parameters. Amazon EMR
uses these parameters to instruct Amazon EKS about which pods and containers to deploy. Amazon
EKS then brings online the computing resources from Amazon EC2 and AWS Fargate required to
run the job.

With this loose coupling of services, you can run multiple, securely isolated jobs simultaneously.
You can also benchmark the same job with different compute backends or spread your job across
multiple Availability Zones to improve availability.

Architecture 2

Amazon EMR Amazon EMR on EKS Development Guide

The following diagram illustrates how Amazon EMR on EKS works with other AWS services.

Concepts

Kubernetes namespace

Amazon EKS uses Kubernetes namespaces to divide cluster resources between multiple users and
applications. These namespaces are the foundation for multi-tenant environments. A Kubernetes
namespace can have either Amazon EC2 or AWS Fargate as the compute provider. This flexibility
provides you with different performance and cost options for your jobs to run on.

Virtual cluster

A virtual cluster is a Kubernetes namespace that Amazon EMR is registered with. Amazon EMR uses
virtual clusters to run jobs and host endpoints. Multiple virtual clusters can be backed by the same
physical cluster. However, each virtual cluster maps to one namespace on an EKS cluster. Virtual
clusters do not create any active resources that contribute to your bill or that require lifecycle
management outside the service.

Concepts 3

Amazon EMR Amazon EMR on EKS Development Guide

Job run

A job run is a unit of work, such as a Spark jar, PySpark script, or SparkSQL query, that you submit
to Amazon EMR on EKS. One job can have multiple job runs. When you submit a job run, you
include the following information:

• A virtual cluster where the job should run.

• A job name to identify the job.

• The execution role — a scoped IAM role that runs the job and allows you to specify which
resources can be accessed by the job.

• The Amazon EMR release label that specifies the version of open-source applications to use.

• The artifacts to use when submitting your job, such as spark-submit parameters.

By default, logs are uploaded to the Spark History server and are accessible from the AWS
Management Console. You can also push event logs, execution logs, and metrics to Amazon S3 and
Amazon CloudWatch.

Amazon EMR containers

Amazon EMR containers is the API name for Amazon EMR on EKS. The emr-containers prefix is
used in the following scenarios:

• It is the prefix in the CLI commands for Amazon EMR on EKS. For example, aws emr-
containers start-job-run.

• It is the prefix before IAM policy actions for Amazon EMR on EKS. For example, "Action":
["emr-containers:StartJobRun"]. For more information, see Policy actions for Amazon
EMR on EKS.

• It is the prefix used in Amazon EMR on EKS service endpoints. For example, emr-
containers.us-east-1.amazonaws.com. For more information, see Amazon EMR on EKS
Service Endpoints.

How the components work together

The following steps and diagram illustrate the Amazon EMR on EKS workflow:

Job run 4

https://docs.aws.amazon.com/emr-on-eks/latest/APIReference/Welcome.html
https://docs.aws.amazon.com/emr/latest/EMR-on-EKS-DevelopmentGuide/security_iam_service-with-iam.html#security_iam_service-with-iam-id-based-policies-actions
https://docs.aws.amazon.com/emr/latest/EMR-on-EKS-DevelopmentGuide/security_iam_service-with-iam.html#security_iam_service-with-iam-id-based-policies-actions
https://docs.aws.amazon.com/emr/latest/EMR-on-EKS-DevelopmentGuide/service-quotas.html#service-endpoints
https://docs.aws.amazon.com/emr/latest/EMR-on-EKS-DevelopmentGuide/service-quotas.html#service-endpoints

Amazon EMR Amazon EMR on EKS Development Guide

• Use an existing Amazon EKS cluster or create one by using the eksctl command line utility or
Amazon EKS console.

• Create a virtual cluster by registering Amazon EMR with a namespace on an EKS cluster.

• Submit your job to the virtual cluster using the AWS CLI or SDK.

Registering Amazon EMR with a Kubernetes namespace on Amazon EKS creates a virtual cluster.
Amazon EMR can then run analytics workloads on that namespace. When you use Amazon EMR
on EKS to submit Spark jobs to the virtual cluster, Amazon EMR on EKS requests the Kubernetes
scheduler on Amazon EKS to schedule pods.

For each job that you run, Amazon EMR on EKS creates a container with an Amazon Linux 2 base
image, Apache Spark, and associated dependencies. Each job runs in a pod that downloads the
container and starts to run it. The pod terminates after the job terminates. If the container’s image
has been previously deployed to the node, then a cached image is used and the download is
bypassed. Sidecar containers, such as log or metric forwarders, can be deployed to the pod. After
the job terminates, you can still debug it using Spark application UI in the Amazon EMR console.

How the components work together 5

https://docs.aws.amazon.com/eks/latest/userguide/getting-started-eksctl.html

Amazon EMR Amazon EMR on EKS Development Guide

Getting started

This topic helps you get started using Amazon EMR on EKS by deploying a Spark application on a
virtual cluster. Before you begin, make sure that you've completed the steps in Setting up Amazon
EMR on EKS. For other templates that can help you get started, see our EMR Containers Best
Practices Guide on GitHub.

You will need the following information from the setup steps:

• Virtual cluster ID for the Amazon EKS cluster and Kubernetes namespace registered with Amazon
EMR

Important

When creating an EKS cluster, make sure to use m5.xlarge as the instance type, or any
other instance type with a higher CPU and memory. Using an instance type with lower
CPU or memory than m5.xlarge may lead to job failure due to insufficient resources
available in the cluster.

• Name of the IAM role used for job execution

• Release label for the Amazon EMR release (for example, emr-6.4.0-latest)

• Destination targets for logging and monitoring:

• Amazon CloudWatch log group name and log stream prefix

• Amazon S3 location to store event and container logs

Important

Amazon EMR on EKS jobs use Amazon CloudWatch and Amazon S3 as destination targets
for monitoring and logging. You can monitor job progress and troubleshoot failures
by viewing the job logs sent to these destinations. To enable logging, the IAM policy
associated with the IAM role for job execution must have the required permissions to access
the target resources. If the IAM policy doesn't have the required permissions, you must
follow the steps outlined in Update the trust policy of the job execution role, Configure
a job run to use Amazon S3 logs, and Configure a job run to use CloudWatch Logs before
running this sample job.

6

https://aws.github.io/aws-emr-containers-best-practices/
https://aws.github.io/aws-emr-containers-best-practices/
https://docs.aws.amazon.com/emr/latest/EMR-on-EKS-DevelopmentGuide/emr-eks-jobs-CLI.html#emr-eks-jobs-s3
https://docs.aws.amazon.com/emr/latest/EMR-on-EKS-DevelopmentGuide/emr-eks-jobs-CLI.html#emr-eks-jobs-s3
https://docs.aws.amazon.com/emr/latest/EMR-on-EKS-DevelopmentGuide/emr-eks-jobs-CLI.html#emr-eks-jobs-cloudwatch

Amazon EMR Amazon EMR on EKS Development Guide

Run a Spark application

Take the following steps to run a simple Spark application on Amazon EMR on
EKS. The application entryPoint file for a Spark Python application is located at
s3://REGION.elasticmapreduce/emr-containers/samples/wordcount/scripts/
wordcount.py. The REGION is the Region in which your Amazon EMR on EKS virtual cluster
resides, such as us-east-1.

1. Update the IAM policy for the job execution role with the required permissions, as the
following policy statements demonstrate.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "ReadFromLoggingAndInputScriptBuckets",
 "Effect": "Allow",
 "Action": [
 "s3:GetObject",
 "s3:ListBucket"
],
 "Resource": [
 "arn:aws:s3:::*.elasticmapreduce",
 "arn:aws:s3:::*.elasticmapreduce/*",
 "arn:aws:s3:::DOC-EXAMPLE-BUCKET-OUTPUT",
 "arn:aws:s3:::DOC-EXAMPLE-BUCKET-OUTPUT/*",
 "arn:aws:s3:::DOC-EXAMPLE-BUCKET-LOGGING",
 "arn:aws:s3:::DOC-EXAMPLE-BUCKET-LOGGING/*"
]
 },
 {
 "Sid": "WriteToLoggingAndOutputDataBuckets",
 "Effect": "Allow",
 "Action": [
 "s3:PutObject",
 "s3:DeleteObject"
],
 "Resource": [
 "arn:aws:s3:::DOC-EXAMPLE-BUCKET-OUTPUT/*",
 "arn:aws:s3:::DOC-EXAMPLE-BUCKET-LOGGING/*"
]
 },

Run a Spark application 7

Amazon EMR Amazon EMR on EKS Development Guide

 {
 "Sid": "DescribeAndCreateCloudwatchLogStream",
 "Effect": "Allow",
 "Action": [
 "logs:CreateLogStream",
 "logs:DescribeLogGroups",
 "logs:DescribeLogStreams"
],
 "Resource": [
 "arn:aws:logs:*:*:*"
]
 },
 {
 "Sid": "WriteToCloudwatchLogs",
 "Effect": "Allow",
 "Action": [
 "logs:PutLogEvents"
],
 "Resource": [
 "arn:aws:logs:*:*:log-group:my_log_group_name:log-
stream:my_log_stream_prefix/*"
]
 }
]
}

• The first statement ReadFromLoggingAndInputScriptBuckets in this policy grants
ListBucket and GetObjects access to the following Amazon S3 buckets:

• REGION.elasticmapreduce ‐ the bucket where the application entryPoint file is
located.

• DOC-EXAMPLE-BUCKET-OUTPUT ‐ a bucket that you define for your output data.

• DOC-EXAMPLE-BUCKET-LOGGING ‐ a bucket that you define for your logging data.

• The second statement WriteToLoggingAndOutputDataBuckets in this policy grants the
job permissions to write data to your output and logging buckets respectively.

• The third statement DescribeAndCreateCloudwatchLogStream grants the job with
permissions to describe and create Amazon CloudWatch Logs.

• The fourth statement WriteToCloudwatchLogs grants permissions to write logs to an
Amazon CloudWatch log group named my_log_group_name under a log stream named
my_log_stream_prefix.

Run a Spark application 8

Amazon EMR Amazon EMR on EKS Development Guide

2. To run a Spark Python application, use the following command. Replace all the replaceable
red italicized values with appropriate values. The REGION is the Region in which your
Amazon EMR on EKS virtual cluster resides, such as us-east-1.

aws emr-containers start-job-run \
--virtual-cluster-id cluster_id \
--name sample-job-name \
--execution-role-arn execution-role-arn \
--release-label emr-6.4.0-latest \
--job-driver '{
 "sparkSubmitJobDriver": {
 "entryPoint": "s3://REGION.elasticmapreduce/emr-containers/samples/wordcount/
scripts/wordcount.py",
 "entryPointArguments": ["s3://DOC-EXAMPLE-BUCKET-OUTPUT/wordcount_output"],
 "sparkSubmitParameters": "--conf spark.executor.instances=2 --
conf spark.executor.memory=2G --conf spark.executor.cores=2 --conf
 spark.driver.cores=1"
 }
}' \
--configuration-overrides '{
 "monitoringConfiguration": {
 "cloudWatchMonitoringConfiguration": {
 "logGroupName": "my_log_group_name",
 "logStreamNamePrefix": "my_log_stream_prefix"
 },
 "s3MonitoringConfiguration": {
 "logUri": "s3://DOC-EXAMPLE-BUCKET-LOGGING"
 }
 }
}'

The output data from this job will be available at s3://DOC-EXAMPLE-BUCKET-OUTPUT/
wordcount_output.

You can also create a JSON file with specified parameters for your job run. Then run the
start-job-run command with a path to the JSON file. For more information, see Submit
a job run with StartJobRun. For more details about configuring job run parameters, see
Options for configuring a job run.

3. To run a Spark SQL application, use the following command. Replace all the red italicized
values with appropriate values. The REGION is the Region in which your Amazon EMR on EKS
virtual cluster resides, such as us-east-1.

Run a Spark application 9

Amazon EMR Amazon EMR on EKS Development Guide

aws emr-containers start-job-run \
--virtual-cluster-id cluster_id \
--name sample-job-name \
--execution-role-arn execution-role-arn \
--release-label emr-6.7.0-latest \
--job-driver '{
 "sparkSqlJobDriver": {
 "entryPoint": "s3://query-file.sql",
 "sparkSqlParameters": "--conf spark.executor.instances=2 --
conf spark.executor.memory=2G --conf spark.executor.cores=2 --conf
 spark.driver.cores=1"
 }
}' \
--configuration-overrides '{
 "monitoringConfiguration": {
 "cloudWatchMonitoringConfiguration": {
 "logGroupName": "my_log_group_name",
 "logStreamNamePrefix": "my_log_stream_prefix"
 },
 "s3MonitoringConfiguration": {
 "logUri": "s3://DOC-EXAMPLE-BUCKET-LOGGING"
 }
 }
}'

A sample SQL query file is shown below. You must have an external file store, such as S3,
where the data for the tables is stored.

CREATE DATABASE demo;
CREATE EXTERNAL TABLE IF NOT EXISTS demo.amazonreview(marketplace string,
 customer_id string, review_id string, product_id string, product_parent string,
 product_title string, star_rating integer, helpful_votes integer, total_votes
 integer, vine string, verified_purchase string, review_headline string,
 review_body string, review_date date, year integer) STORED AS PARQUET LOCATION
 's3://URI to parquet files';
SELECT count(*) FROM demo.amazonreview;
SELECT count(*) FROM demo.amazonreview WHERE star_rating = 3;

The output for this job will available in the driver’s stdout logs in S3 or CloudWatch, depending
on the monitoringConfiguration that is configured.

Run a Spark application 10

Amazon EMR Amazon EMR on EKS Development Guide

4. You can also create a JSON file with specified parameters for your job run. Then run the start-
job-run command with a path to the JSON file. For more information, see Submit a job run.
For more details about configuring job run parameters, see Options for configuring a job run.

To monitor the progress of the job or to debug failures, you can inspect logs uploaded to
Amazon S3, CloudWatch Logs, or both. Refer to log path in Amazon S3 at Configure a job run
to use S3 logs and for Cloudwatch logs at Configure a job run to use CloudWatch Logs. To see
logs in CloudWatch Logs, follow the instructions below.

• Open the CloudWatch console at https://console.aws.amazon.com/cloudwatch/.

• In the Navigation pane, choose Logs. Then choose Log groups.

• Choose the log group for Amazon EMR on EKS and then view the uploaded log events.

Important

Jobs have a default configured retry policy. For information on how to modify or disable
the configuration, refer to Using job retry policies.

Run a Spark application 11

https://docs.aws.amazon.com/emr/latest/EMR-on-EKS-DevelopmentGuide/emr-eks-jobs-CLI.html#emr-eks-jobs-s3
https://docs.aws.amazon.com/emr/latest/EMR-on-EKS-DevelopmentGuide/emr-eks-jobs-CLI.html#emr-eks-jobs-s3
https://docs.aws.amazon.com/emr/latest/EMR-on-EKS-DevelopmentGuide/emr-eks-jobs-CLI.html#emr-eks-jobs-cloudwatch
https://console.aws.amazon.com/cloudwatch/

Amazon EMR Amazon EMR on EKS Development Guide

Links to the Amazon EMR on EKS best practices guides
on GitHub

We've built the Amazon EMR on EKS Best Practices Guide using open source community
collaboration so that we can iterate quickly and provide recommendations for a variety of use
cases. We recommend that you use the Amazon EMR on EKS best practices guide for the sections.
Choose the links in each section to go to the GitHub site.

Security

Note

For more information on security with Amazon EMR on EKS, see Amazon EMR on EKS
security best practices.

Encryption best practices: how to use encryption for data at rest and in transit.

Managing network security describes how to configure security groups for pods for Amazon EMR
on EKS while you connect to data sources that are hosted in AWS services like Amazon RDS and
Amazon Redshift.

Using AWS secrets manager to store secrets.

Pyspark job submission

Pyspark job submission: specifies different types of packaging for pySpark applications using
packaging formats like zip, egg, wheel, and pex.

Storage

Using EBS volumes:: how to use static and dynamic provisioning for jobs that need EBS volumes.

Using Amazon FSx for Lustre volumes: how to use static and dynamic provisioning for jobs that
need Amazon FSx for Luster volumes.

Security 12

https://aws.github.io/aws-emr-containers-best-practices/
https://aws.github.io/aws-emr-containers-best-practices/
https://aws.github.io/aws-emr-containers-best-practices/security/docs/spark/encryption/
https://aws.github.io/aws-emr-containers-best-practices/security/docs/spark/network-security/
https://aws.github.io/aws-emr-containers-best-practices/security/docs/spark/encryption/
https://aws.github.io/aws-emr-containers-best-practices/submit-applications/docs/spark/pyspark/
https://aws.github.io/aws-emr-containers-best-practices/storage/docs/spark/ebs/
https://aws.github.io/aws-emr-containers-best-practices/storage/docs/spark/fsx-lustre/

Amazon EMR Amazon EMR on EKS Development Guide

Using Instance store volumes: how to use instance store volumes for job processing.

Metastore integration

Using Hive metastore: offers different ways to use Hive metastore.

Using AWS Glue: offers different ways to configure AWS Glue catalog.

Debugging

Using Spark debugging: how to change the log level.

Connecting to Spark UI on the driver pod.

How to use self-hosted Spark history server with Amazon EMR on EKS.

Troubleshooting Amazon EMR on EKS issues

Troubleshooting.

Node placement

Using Kubernetes node selectors for single-az and other use cases.

Using Fargate node placement.

Performance

Using Dynamic Resource Allocation (DRA).

EKS best practices for the Amazon VPC Container Network Interface plugin (CNI), Cluster
Autoscaler, and Core DNS.

Cost optimization

Using spot instances: Amazon EC2 spot instance best practices and how to use the Spark node
decommission feature.

Metastore integration 13

https://aws.github.io/aws-emr-containers-best-practices/storage/docs/spark/instance-store/
https://aws.github.io/aws-emr-containers-best-practices/metastore-integrations/docs/hive-metastore/
https://aws.github.io/aws-emr-containers-best-practices/metastore-integrations/docs/hive-metastore/
https://aws.github.io/aws-emr-containers-best-practices/troubleshooting/docs/change-log-level/
https://aws.github.io/aws-emr-containers-best-practices/troubleshooting/docs/connect-spark-ui/
https://aws.github.io/aws-emr-containers-best-practices/troubleshooting/docs/self-hosted-shs/
https://aws.github.io/aws-emr-containers-best-practices/troubleshooting/docs/where-to-look-for-spark-logs/
https://aws.github.io/aws-emr-containers-best-practices/node-placement/docs/eks-node-placement/
https://aws.github.io/aws-emr-containers-best-practices/node-placement/docs/fargate-node-placement/
https://aws.github.io/aws-emr-containers-best-practices/performance/docs/dra/
https://aws.github.io/aws-emr-containers-best-practices/best-practices-and-recommendations/eks-best-practices/
https://aws.github.io/aws-emr-containers-best-practices/cost-optimization/docs/cost-optimization/

Amazon EMR Amazon EMR on EKS Development Guide

Using AWS Outposts

Running Amazon EMR on EKS using AWS Outposts

Using AWS Outposts 14

https://aws.github.io/aws-emr-containers-best-practices/outposts/emr-containers-on-outposts/

Amazon EMR Amazon EMR on EKS Development Guide

Customizing Docker images for Amazon EMR on EKS

You can use customized Docker images with Amazon EMR on EKS. Customizing the Amazon EMR
on EKS runtime image provides the following benefits:

• Package application dependencies and runtime environment into a single immutable container
that promotes portability and simplifies dependency management for each workload.

• Install and configure packages that are optimized to your workloads. These packages may not be
widely available in the public distribution of Amazon EMR runtimes.

• Integrate Amazon EMR on EKS with current established build, test, and deployment processes
within your organization, including local development and testing.

• Apply established security processes, such as image scanning, that meet compliance and
governance requirements within your organization.

Topics

• How to customize Docker images

• How to select a base image URI

• Considerations

How to customize Docker images

Take the following steps to customize Docker images for Amazon EMR on EKS.

• Prerequisites

• Step 1: Retrieve a base image from Amazon Elastic Container Registry (Amazon ECR)

• Step 2: Customize a base image

• Step 3: (Optional but recommended) Validate a custom image

• Step 4: Publish a custom image

• Step 5: Submit a Spark workload in Amazon EMR using a custom image

Here are other options you may want to consider when customizing Docker images:

• Customize Docker images for interactive endpoints

How to customize Docker images 15

Amazon EMR Amazon EMR on EKS Development Guide

• Work with multi-architecture images

Prerequisites

• Complete the Setting up Amazon EMR on EKS steps for Amazon EMR on EKS.

• Install Docker in your environment. For more information, see Get Docker.

Step 1: Retrieve a base image from Amazon Elastic Container Registry
(Amazon ECR)

The base image contains the Amazon EMR runtime and connectors that are used to access other
AWS services. For Amazon EMR 6.9.0 and higher, you can get the base images from the Amazon
ECR Public Gallery. Browse the gallery to find the image link and pull the image to your local
workspace. For example, for Amazon EMR 7.2.0 release, the following docker pull command
gets you the lastest standard base image. You can replace emr-7.2.0:latest with emr-7.2.0-
spark-rapids:latest to retrieve the image that has Nvidia RAPIDS accelerator. You can also
replace emr-7.2.0:latest with emr-7.2.0-java11:latest to retrieve the image with Java
11 runtime.

docker pull public.ecr.aws/emr-on-eks/spark/emr-7.2.0:latest

If you would like to retrieve the base image for a Amazon EMR 6.9.0 or ealier releases, or if you
prefer to retrieve from Amazon ECR registry accounts in each Region, use the following steps:

1. Choose a base image URI. The image URI follows this format, ECR-registry-
account.dkr.ecr.Region.amazonaws.com/spark/container-image-tag, as the
following example demonstrates.

895885662937.dkr.ecr.us-west-2.amazonaws.com/spark/emr-6.6.0:latest

To choose a base image in your Region, see How to select a base image URI.

2. Log in to the Amazon ECR repository where the base image is stored. Replace 895885662937
and us-west-2 with the Amazon ECR registry account and the AWS Region you have selected.

aws ecr get-login-password --region us-west-2 | docker login --username AWS --
password-stdin 895885662937.dkr.ecr.us-west-2.amazonaws.com

Prerequisites 16

https://docs.docker.com/get-docker/

Amazon EMR Amazon EMR on EKS Development Guide

3. Pull the base image into your local Workspace. Replace emr-6.6.0:latest with the
container image tag you have selected.

docker pull 895885662937.dkr.ecr.us-west-2.amazonaws.com/spark/emr-6.6.0:latest

Step 2: Customize a base image

Take the following steps to customize the base image you have pulled from Amazon ECR.

1. Create a new Dockerfile on your local Workspace.

2. Edit the Dockerfile you just created and add the following content. This Dockerfile
uses the container image you have pulled from 895885662937.dkr.ecr.us-
west-2.amazonaws.com/spark/emr-6.6.0:latest.

FROM 895885662937.dkr.ecr.us-west-2.amazonaws.com/spark/emr-6.6.0:latest
USER root
Add customization commands here
USER hadoop:hadoop

3. Add commands in the Dockerfile to customize the base image. For example, add a
command to install Python libraries, as the following Dockerfile demonstrates.

FROM 895885662937.dkr.ecr.us-west-2.amazonaws.com/spark/emr-6.6.0:latest
USER root
RUN pip3 install --upgrade boto3 pandas numpy // For python 3
USER hadoop:hadoop

4. From the same directory where the Dockerfile is created, run the following command to
build the Docker image. Provide a name for the Docker image, for example, emr6.6_custom.

docker build -t emr6.6_custom .

Step 3: (Optional but recommended) Validate a custom image

We recommend that you test the compatibility of your custom image before publishing it. You
can use the Amazon EMR on EKS custom image CLI to check if your image has the required file
structures and correct configurations for running on Amazon EMR on EKS.

Step 2: Customize a base image 17

https://github.com/awslabs/amazon-emr-on-eks-custom-image-cli

Amazon EMR Amazon EMR on EKS Development Guide

Note

The Amazon EMR on EKS custom image CLI cannot confirm that your image is free of error.
Use caution when removing dependencies from the base images.

Take the following steps to validate your custom image.

1. Download and install Amazon EMR on EKS custom image CLI. For more information, see
Amazon EMR on EKS custom image CLI Installation Guide.

2. Run the following command to test the installation.

emr-on-eks-custom-image --version

The following shows an example of the output.

Amazon EMR on EKS Custom Image CLI
Version: x.xx

3. Run the following command to validate your custom image.

emr-on-eks-custom-image validate-image -i image_name -r release_version [-
t image_type]

• -i specifies the local image URI that needs to be validated. This can be the image URI, any
name or tag that you defined for your image.

• -r specifies the exact release version for the base image, for example, emr-6.6.0-latest.

• -t specifies the image type. If this is a Spark image, input spark. The default value is
spark. The current Amazon EMR on EKS custom image CLI version only supports Spark
runtime images.

If you run the command successfully and the custom image meets all the required
configurations and file structures, the returned output displays the results of all of the tests, as
the following example demonstrates.

Amazon EMR on EKS Custom Image Test
Version: x.xx

Step 3: (Optional but recommended) Validate a custom image 18

https://github.com/awslabs/amazon-emr-on-eks-custom-image-cli/blob/main/installer/assets/INSTALLATION_GUIDE.md

Amazon EMR Amazon EMR on EKS Development Guide

... Checking if docker cli is installed

... Checking Image Manifest
[INFO] Image ID: xxx
[INFO] Created On: 2021-05-17T20:50:07.986662904Z
[INFO] Default User Set to hadoop:hadoop : PASS
[INFO] Working Directory Set to /home/hadoop : PASS
[INFO] Entrypoint Set to /usr/bin/entrypoint.sh : PASS
[INFO] SPARK_HOME is set with value: /usr/lib/spark : PASS
[INFO] JAVA_HOME is set with value: /etc/alternatives/jre : PASS
[INFO] File Structure Test for spark-jars in /usr/lib/spark/jars: PASS
[INFO] File Structure Test for hadoop-files in /usr/lib/hadoop: PASS
[INFO] File Structure Test for hadoop-jars in /usr/lib/hadoop/lib: PASS
[INFO] File Structure Test for bin-files in /usr/bin: PASS
... Start Running Sample Spark Job
[INFO] Sample Spark Job Test with local:///usr/lib/spark/examples/jars/spark-
examples.jar : PASS

Overall Custom Image Validation Succeeded.

If the custom image doesn't meet the required configurations or file structures, error messages
occur. The returned output provides information about the incorrect configurations or file
structures.

Step 4: Publish a custom image

Publish the new Docker image to your Amazon ECR registry.

1. Run the following command to create an Amazon ECR repository for storing your Docker
image. Provide a name for your repository, for example, emr6.6_custom_repo. Replace us-
west-2 with your Region.

aws ecr create-repository \
 --repository-name emr6.6_custom_repo \
 --image-scanning-configuration scanOnPush=true \
 --region us-west-2

For more information, see Create a repository in the Amazon ECR User Guide.

2. Run the following command to authenticate to your default registry.

Step 4: Publish a custom image 19

https://docs.aws.amazon.com/AmazonECR/latest/userguide/getting-started-cli.html#cli-create-repository

Amazon EMR Amazon EMR on EKS Development Guide

aws ecr get-login-password --region us-west-2 | docker login --username AWS --
password-stdin aws_account_id.dkr.ecr.us-west-2.amazonaws.com

For more information, see Authenticate to your default registry in the Amazon ECR User Guide.

3. Tag and publish an image to the Amazon ECR repository you created.

Tag the image.

docker tag emr6.6_custom aws_account_id.dkr.ecr.us-
west-2.amazonaws.com/emr6.6_custom_repo

Push the image.

docker push aws_account_id.dkr.ecr.us-west-2.amazonaws.com/emr6.6_custom_repo

For more information, see Push an image to Amazon ECR in the Amazon ECR User Guide.

Step 5: Submit a Spark workload in Amazon EMR using a custom image

After a custom image is built and published, you can submit an Amazon EMR on EKS job using a
custom image.

First, create a start-job-run-request.json file and specify the
spark.kubernetes.container.image parameter to reference the custom image, as the
following example JSON file demonstrates.

Note

You can use local:// scheme to refer to files available in the custom image as
shown with entryPoint argument in the JSON snippet below. You can also use
the local:// scheme to refer to application dependencies. All files and dependencies that
are referred using local:// scheme must already be present at the specified path in the
custom image.

{

Step 5: Submit a Spark workload in Amazon EMR using a custom image 20

https://docs.aws.amazon.com/AmazonECR/latest/userguide/getting-started-cli.html#cli-authenticate-registry
https://docs.aws.amazon.com/AmazonECR/latest/userguide/getting-started-cli.html#cli-push-image

Amazon EMR Amazon EMR on EKS Development Guide

 "name": "spark-custom-image",
 "virtualClusterId": "virtual-cluster-id",
 "executionRoleArn": "execution-role-arn",
 "releaseLabel": "emr-6.6.0-latest",
 "jobDriver": {
 "sparkSubmitJobDriver": {
 "entryPoint": "local:///usr/lib/spark/examples/jars/spark-examples.jar",
 "entryPointArguments": [
 "10"
],
 "sparkSubmitParameters": "--class org.apache.spark.examples.SparkPi --conf
 spark.kubernetes.container.image=123456789012.dkr.ecr.us-west-2.amazonaws.com/
emr6.6_custom_repo"
 }
 }
}

You can also reference the custom image with applicationConfiguration properties as the
following example demonstrates.

{
 "name": "spark-custom-image",
 "virtualClusterId": "virtual-cluster-id",
 "executionRoleArn": "execution-role-arn",
 "releaseLabel": "emr-6.6.0-latest",
 "jobDriver": {
 "sparkSubmitJobDriver": {
 "entryPoint": "local:///usr/lib/spark/examples/jars/spark-examples.jar",
 "entryPointArguments": [
 "10"
],
 "sparkSubmitParameters": "--class org.apache.spark.examples.SparkPi"
 }
 },
 "configurationOverrides": {
 "applicationConfiguration": [
 {
 "classification": "spark-defaults",
 "properties": {
 "spark.kubernetes.container.image": "123456789012.dkr.ecr.us-
west-2.amazonaws.com/emr6.6_custom_repo"

Step 5: Submit a Spark workload in Amazon EMR using a custom image 21

Amazon EMR Amazon EMR on EKS Development Guide

 }
 }
]
 }
}

Then run the start-job-run command to submit the job.

aws emr-containers start-job-run --cli-input-json file://./start-job-run-request.json

In the JSON examples above, replace emr-6.6.0-latest with your Amazon EMR release version.
We strongly recommend that you use the -latest release version to ensure that the selected
version contains the latest security updates. For more information about Amazon EMR release
versions and their image tags, see How to select a base image URI.

Note

You can use spark.kubernetes.driver.container.image and
spark.kubernetes.executor.container.image to specify a different image for
driver and executor pods.

Customize Docker images for interactive endpoints

You can also customize Docker images for interactive endpoints so that you can run customized
base kernel images. This helps you ensure that you have the dependencies you need when you run
interactive workloads from EMR Studio.

1. Follow the Steps 1-4 outlined above to customize a Docker image. For Amazon EMR 6.9.0
releases and later, you can get the base image URI from Amazon ECR Public Gallery. For
releases before Amazon EMR 6.9.0, you can get the image in Amazon ECR Registry accounts in
each AWS Region, and the only difference is the base image URI in your Dockerfile. The base
image URI follows the format:

ECR-registry-account.dkr.ecr.Region.amazonaws.com/notebook-spark/container-image-
tag

Customize Docker images for interactive endpoints 22

https://docs.aws.amazon.com/emr/latest/EMR-on-EKS-DevelopmentGuide/docker-custom-images-steps.html#docker-custom-images-retrieve

Amazon EMR Amazon EMR on EKS Development Guide

You need to use notebook-spark in the base image URI, instead of spark. The base image
contains the Spark runtime and the notebook kernels that run with it. For more information
about selecting Regions and container image tags, see How to select a base image URI.

Note

Currently only overrides of base images are supported and introducing completely new
kernels of other types than the base images AWS provides is not supported.

2. Create an interactive endpoint that can be used with the custom image.

First, create a JSON file called custom-image-managed-endpoint.json with the following
contents.

{
 "name": "endpoint-name",
 "virtualClusterId": "virtual-cluster-id",
 "type": "JUPYTER_ENTERPRISE_GATEWAY",
 "releaseLabel": "emr-6.6.0-latest",
 "executionRoleArn": "execution-role-arn",
 "certificateArn": "certificate-arn",
 "configurationOverrides": {
 "applicationConfiguration": [
 {
 "classification": "jupyter-kernel-overrides",
 "configurations": [
 {
 "classification": "python3",
 "properties": {
 "container-image": "123456789012.dkr.ecr.us-
west-2.amazonaws.com/custom-notebook-python:latest"
 }
 },
 {
 "classification": "spark-python-kubernetes",
 "properties": {
 "container-image": "123456789012.dkr.ecr.us-
west-2.amazonaws.com/custom-notebook-spark:latest"
 }
 }
]

Customize Docker images for interactive endpoints 23

Amazon EMR Amazon EMR on EKS Development Guide

 }
]
 }
}

Next, create an interactive endpoint using the configurations specified in the JSON file, as the
following example demonstrates.

aws emr-containers create-managed-endpoint --cli-input-json custom-image-managed-
endpoint.json

For more information, see Create an interactive endpoint for your virtual cluster.

3. Connect to the interactive endpoint via EMR Studio. For more information, see Connecting
from Studio.

Work with multi-architecture images

Amazon EMR on EKS supports multi-architecture container images for Amazon Elastic Container
Registry (Amazon ECR). For more information, see Introducing multi-architecture container images
for Amazon ECR.

Amazon EMR on EKS custom images support both AWS Graviton-based EC2 instances and
non-Graviton-based EC2 instances. The Graviton-based images are stored in the same image
repositories in Amazon ECR as non-Graviton-based images.

For example, to inspect the Docker manifest list for 6.6.0 images, run the following command.

docker manifest inspect 895885662937.dkr.ecr.us-west-2.amazonaws.com/spark/
emr-6.6.0:latest

Here is the output. The arm64 architecture is for Graviton instance. The amd64 is for non-Graviton
instance.

{
 "schemaVersion": 2,
 "mediaType": "application/vnd.docker.distribution.manifest.list.v2+json",
 "manifests": [
 {
 "mediaType": "application/vnd.docker.distribution.manifest.v2+json",

Work with multi-architecture images 24

https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-studio-create-eks-cluster.html#emr-studio-create-managed-endpoint
https://emr-on-eks.workshop.aws/advanced/emr-studio/connecting-from-studio.html
https://emr-on-eks.workshop.aws/advanced/emr-studio/connecting-from-studio.html
https://aws.amazon.com/blogs/containers/introducing-multi-architecture-container-images-for-amazon-ecr/
https://aws.amazon.com/blogs/containers/introducing-multi-architecture-container-images-for-amazon-ecr/

Amazon EMR Amazon EMR on EKS Development Guide

 "size": 1805,
 "digest":
 "xxx123:6b971cb47d11011ab3d45fff925e9442914b4977ae0f9fbcdcf5cfa99a7593f0",
 "platform": {
 "architecture": "arm64",
 "os": "linux"
 }
 },
 {
 "mediaType": "application/vnd.docker.distribution.manifest.v2+json",
 "size": 1805,
 "digest":
 "xxx123:6f2375582c9c57fa9838c1d3a626f1b4fc281e287d2963a72dfe0bd81117e52f",
 "platform": {
 "architecture": "amd64",
 "os": "linux"
 }
 }
]
}

Take the following steps to create multi-architecture images:

1. Create a Dockerfile with the following contents so that you can pull the arm64 image.

FROM --platform=arm64 895885662937.dkr.ecr.us-west-2.amazonaws.com/spark/
emr-6.6.0:latest
USER root

RUN pip3 install boto3 // install customizations here
USER hadoop:hadoop

2. Follow the instructions at Introducing multi-architecture container images for Amazon ECR to
build a multi-architecture image.

Note

You must create arm64 images on arm64 instances. Similarly, you must build amd64
images on amd64 instances.

Work with multi-architecture images 25

https://aws.amazon.com/blogs/containers/introducing-multi-architecture-container-images-for-amazon-ecr/

Amazon EMR Amazon EMR on EKS Development Guide

You can also build multi-architecture images without building on each specific instance
type with the Docker buildx command. For more information, see Leverage multi-CPU
architecture support.

3. After you build the multi-architecture image, you can submit a job with the same
spark.kubernetes.container.image parameter and point it to the image. In a
heterogeneous cluster with both AWS Graviton-based and non-Graviton-based EC2 instances,
the instance determines the correct architecture image based on the instance architecture that
pulls the image.

How to select a base image URI

Note

For Amazon EMR 6.9.0 releases and later, you can retrieve the base image from Amazon
ECR Public Gallery, so you don't need to construct the base image URI as the instructions
on this page direct. To find the container image tag for your base image, refer to the
release notes page for the corresponding release of Amazon EMR on EKS.

The base Docker images that you can select are stored in Amazon Elastic Container
Registry (Amazon ECR). The image URI follows this format: ECR-registry-
account.dkr.ecr.Region.amazonaws.com/spark/container-image-tag, as the following
example demonstrates.

895885662937.dkr.ecr.us-west-2.amazonaws.com/spark/emr-7.2.0:latest

The image URI for interactive endpoints follows this format: ECR-registry-
account.dkr.ecr.Region.amazonaws.com/notebook-spark/container-image-tag, as
the following example demonstrates. You need to use notebook-spark in the base image URI,
instead of spark.

895885662937.dkr.ecr.us-west-2.amazonaws.com/notebook-spark/emr-7.2.0:latest

How to select a base image URI 26

https://docs.docker.com/desktop/multi-arch/
https://docs.docker.com/desktop/multi-arch/

Amazon EMR Amazon EMR on EKS Development Guide

Similarly, for non-Spark python3 images for interactive endpoints, the image URI is ECR-
registry-account.dkr.ecr.Region.amazonaws.com/notebook-python/container-
image-tag. The following example URI is correctly formatted:

895885662937.dkr.ecr.us-west-2.amazonaws.com/notebook-python/emr-7.2.0:latest

To find the container image tag for your base image, refer to the release notes page for the
corresponding release of Amazon EMR on EKS.

Amazon ECR registry accounts by Region

To avoid high network latency, pull a base image from your closest AWS Region. Select the Amazon
ECR registry account that corresponds with the Region that you pull the image from based on the
following table.

Regions Amazon ECR registry
accounts

ap-northeast-1 059004520145

ap-northeast-2 996579266876

ap-south-1 235914868574

ap-southeast-1 671219180197

ap-southeast-2 038297999601

ca-central-1 351826393999

eu-central-1 107292555468

eu-north-1 830386416364

eu-west-1 483788554619

eu-west-2 118780647275

eu-west-3 307523725174

Amazon ECR registry accounts 27

Amazon EMR Amazon EMR on EKS Development Guide

Regions Amazon ECR registry
accounts

sa-east-1 052806832358

us-east-1 755674844232

us-east-2 711395599931

us-west-1 608033475327

us-west-2 895885662937

Considerations

When you customize Docker images, you can choose the exact runtime for your job at a granular
level. Follow these best practices when you use this feature:

• Security is a shared responsibility between AWS and you. You're responsible for security patching
the binaries that you add to the image. Follow the Amazon EMR on EKS security best practices,
especially Get the latest security updates for custom images and Apply principle of least
privilege.

• When you customize a base image, you must change the Docker user to hadoop:hadoop so that
the jobs do not run with the root user.

• Amazon EMR on EKS mounts files on top of the configurations for the image, such as the
spark-defaults.conf, at run time. To override these configuration files, we recommend that
you use the applicationOverrides parameter during the job submission and not directly
modify the files in the custom image.

• Amazon EMR on EKS mounts certain folders at run time. Any modifications that you make
to these folders aren't available in the container. If you want to add an application or its
dependencies for custom images, we recommend that you choose a directory that isn't part of
the following predefined paths:

• /var/log/fluentd

• /var/log/spark/user

• /var/log/spark/apps

• /mnt

Considerations 28

Amazon EMR Amazon EMR on EKS Development Guide

• /tmp

• /home/hadoop

• You can upload your customized image to any Docker-compatible repository, such as Amazon
ECR, Docker Hub, or a private enterprise repository. For more information on how to configure
the Amazon EKS cluster authentication with the selected Docker repository, see Pull an Image
from a Private Registry.

Considerations 29

https://kubernetes.io/docs/tasks/configure-pod-container/pull-image-private-registry/
https://kubernetes.io/docs/tasks/configure-pod-container/pull-image-private-registry/

Amazon EMR Amazon EMR on EKS Development Guide

Running Flink jobs with Amazon EMR on EKS

Amazon EMR releases 6.13.0 and higher support Amazon EMR on EKS with Apache Flink, or the
Flink Kubernetes operator, as a job submission model for Amazon EMR on EKS. With Amazon EMR
on EKS with Apache Flink, you can deploy and manage Flink applications with the Amazon EMR
release runtime on your own Amazon EKS clusters. Once you deploy the Flink Kubernetes operator
in your Amazon EKS cluster, you can directly submit Flink applications with the operator. The
operator manages the lifecycle of Flink applications.

Topics

• Flink Kubernetes operator

• Native Kubernetes

• Customizing Docker images for Amazon EMR on EKS with Apache Flink

• Monitoring Flink Kubernetes operator and Flink jobs

• Job resiliency

• Using Autoscaler for Flink applications

• Maintenance and troubleshooting

• Supported releases for Amazon EMR on EKS with Apache Flink

Flink Kubernetes operator

The following pages describe how to set up and use the Flink Kubernetes operator to run Flink jobs
with Amazon EMR on EKS.

Topics

• Setting up the Flink Kubernetes operator for Amazon EMR on EKS

• Getting started with the Flink Kubernetes operator for Amazon EMR on EKS

• Running a Flink application

• Security

• Uninstalling the Flink Kubernetes operator for Amazon EMR on EKS

Flink Kubernetes operator 30

Amazon EMR Amazon EMR on EKS Development Guide

Setting up the Flink Kubernetes operator for Amazon EMR on EKS

Complete the following tasks to get set up before you install the Flink Kubernetes operator on
Amazon EKS. If you've already signed up for Amazon Web Services (AWS) and have used Amazon
EKS, you are almost ready to use Amazon EMR on EKS. Complete the following tasks to get set up
for the Flink operator on Amazon EKS. If you've already completed any of the prerequisites, you
can skip those and move on to the next one.

• Install or update to the latest version of the AWS CLI – If you've already installed the AWS CLI,
confirm that you have the latest version.

• Set up kubectl and eksctl – eksctl is a command line tool that you use to communicate with
Amazon EKS.

• Install Helm – The Helm package manager for Kubernetes helps you install and manage
applications on your Kubernetes cluster.

• Get started with Amazon EKS – eksctl – Follow the steps to create a new Kubernetes cluster
with nodes in Amazon EKS.

• Choose an Amazon EMR release label (release 6.13.0 or higher) – the Flink Kubernetes
operator is supported with Amazon EMR releases 6.13.0 and higher.

• Enable IAM Roles for Service Accounts (IRSA) on the Amazon EKS cluster.

• Create a job execution role.

• Update the trust policy of the job execution role .

• Create an operator execution role. This step is optional. You can use the same role for Flink
jobs and operator. If you want to have a different IAM role for your operator, you can create a
separate role.

• Update the trust policy of the operator execution role. You must explicitly add one trust policy
entry for the roles you want to use for the Amazon EMR Flink Kubernetes operator service
account. You can follow this example format:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Federated": "arn:aws:iam::ACCOUNT_ID:oidc-provider/OIDC_PROVIDER"
 },
 "Action": "sts:AssumeRoleWithWebIdentity",

Setting up 31

https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html
https://docs.aws.amazon.com/eks/latest/userguide/install-kubectl.html
https://docs.aws.amazon.com/eks/latest/userguide/helm.html
https://docs.aws.amazon.com/eks/latest/userguide/getting-started-eksctl.html

Amazon EMR Amazon EMR on EKS Development Guide

 "Condition": {
 "StringLike": {
 "OIDC_PROVIDER:sub": "system:serviceaccount:NAMESPACE:emr-
containers-sa-flink-operator"
 }
 }
 }
]
}

Getting started with the Flink Kubernetes operator for Amazon EMR on
EKS

This topic helps you start to use the Flink Kubernetes operator on Amazon EKS by deploying a Flink
deployment.

Installing the operator

Use the following steps to install the Kubernetes operator for Apache Flink.

1. If you haven't already, complete the steps in the section called “Setting up”.

2. Install the cert-manager (once per Amazon EKS cluster) to enable adding the webhook
component.

kubectl apply -f https://github.com/cert-manager/cert-manager/releases/download/
v1.12.0/cert-manager.yaml

3. Install the Helm chart.

export VERSION=7.2.0 # The Amazon EMR release version
export NAMESPACE=The Kubernetes namespace to deploy the operator

helm install flink-kubernetes-operator \
oci://public.ecr.aws/emr-on-eks/flink-kubernetes-operator \
--version $VERSION \
--namespace $NAMESPACE

Example output:

NAME: flink-kubernetes-operator

Getting started 32

Amazon EMR Amazon EMR on EKS Development Guide

LAST DEPLOYED: Tue May 31 17:38:56 2022
NAMESPACE: $NAMESPACE
STATUS: deployed
REVISION: 1
TEST SUITE: None

4. Wait for the deployment to be complete and verify the chart installation.

kubectl wait deployment flink-kubernetes-operator --namespace $NAMESPACE --for
 condition=Available=True --timeout=30s

5. You should see the following message when deployment is complete.

deployment.apps/flink-kubernetes-operator condition met

6. Use the following command to see the deployed operator.

helm list --namespace $NAMESPACE

The following shows example output, where the app version x.y.z-amzn-n would
correspond with the Flink operator version for your Amazon EMR on EKS release. For more
information, see Supported releases for Amazon EMR on EKS with Apache Flink.

NAME NAMESPACE REVISION UPDATED
 STATUS CHART APP VERSION

flink-kubernetes-operator $NAMESPACE 1 2023-02-22 16:43:45.24148
 -0500 EST deployed flink-kubernetes-operator-emr-7.2.0 x.y.z-amzn-n

Running a Flink application

With Amazon EMR 6.13.0 and higher, you can run a Flink application with the Flink Kubernetes
operator in Application mode on Amazon EMR on EKS. With Amazon EMR 6.15.0 and higher, you
can also run a Flink application in Session mode. This page describes both methods that you can
use to run a Flink application with Amazon EMR on EKS.

Running a Flink application 33

Amazon EMR Amazon EMR on EKS Development Guide

Note

You must have an Amazon S3 bucket created to store the high-availability metadata when
you submit your Flink job. If you don’t want to use this feature, you can disable it. It's
enabled by default.

Prerequisite – Before you can run a Flink application with the Flink Kubernetes operator, complete
the steps in the section called “Setting up” and the section called “Installing the operator”.

Application mode

With Amazon EMR 6.13.0 and higher, you can run a Flink application with the Flink Kubernetes
operator in Application mode on Amazon EMR on EKS.

1. Create a FlinkDeployment definition file basic-example-app-cluster.yaml like in
the following example. If you activated and use one of the opt-in AWS Regions, make sure
you uncomment and configure the configuration fs.s3a.endpoint.region.

apiVersion: flink.apache.org/v1beta1
kind: FlinkDeployment
metadata:
 name: basic-example-app-cluster
spec:
 flinkConfiguration:
 taskmanager.numberOfTaskSlots: "2"
 #fs.s3a.endpoint.region: OPT_IN_AWS_REGION_NAME
 state.checkpoints.dir: CHECKPOINT_S3_STORAGE_PATH
 state.savepoints.dir: SAVEPOINT_S3_STORAGE_PATH
 flinkVersion: v1_17
 executionRoleArn: JOB_EXECUTION_ROLE_ARN
 emrReleaseLabel: "emr-6.13.0-flink-latest" # 6.13 or higher
 jobManager:
 storageDir: HIGH_AVAILABILITY_STORAGE_PATH
 resource:
 memory: "2048m"
 cpu: 1
 taskManager:
 resource:
 memory: "2048m"
 cpu: 1
 job:

Running a Flink application 34

https://docs.aws.amazon.com/controltower/latest/userguide/opt-in-region-considerations.html

Amazon EMR Amazon EMR on EKS Development Guide

 # if you have your job jar in S3 bucket you can use that path as well
 jarURI: local:///opt/flink/examples/streaming/StateMachineExample.jar
 parallelism: 2
 upgradeMode: savepoint
 savepointTriggerNonce: 0
 monitoringConfiguration:
 cloudWatchMonitoringConfiguration:
 logGroupName: LOG_GROUP_NAME

2. Submit the Flink deployment with the following command. This will also create a
FlinkDeployment object named basic-example-app-cluster.

kubectl create -f basic-example-app-cluster.yaml -n <NAMESPACE>

3. Access the Flink UI.

kubectl port-forward deployments/basic-example-app-cluster 8081 -n NAMESPACE

4. Open localhost:8081 to view your Flink jobs locally.

5. Clean up the job. Remember to clean up the S3 artifacts that were created for this job, such
as checkpointing, high-availability, savepointing metadata, and CloudWatch logs.

For more information on submitting applications to Flink through the Flink Kubernetes
operator, see Flink Kubernetes operator examples in the apache/flink-kubernetes-
operator folder on GitHub.

Session mode

With Amazon EMR 6.15.0 and higher, you can run a Flink application with the Flink Kubernetes
operator in Session mode on Amazon EMR on EKS.

1. Create a FlinkDeployment definition file named basic-example-app-cluster.yaml
like in the following example. If you activated and use one of the opt-in AWS Regions, make
sure you uncomment and configure the configuration fs.s3a.endpoint.region.

apiVersion: flink.apache.org/v1beta1
kind: FlinkDeployment
metadata:
 name: basic-example-session-cluster
spec:

Running a Flink application 35

https://github.com/apache/flink-kubernetes-operator/tree/main/examples
https://docs.aws.amazon.com/controltower/latest/userguide/opt-in-region-considerations.html

Amazon EMR Amazon EMR on EKS Development Guide

 flinkConfiguration:
 taskmanager.numberOfTaskSlots: "2"
 #fs.s3a.endpoint.region: OPT_IN_AWS_REGION_NAME
 state.checkpoints.dir: CHECKPOINT_S3_STORAGE_PATH
 state.savepoints.dir: SAVEPOINT_S3_STORAGE_PATH
 flinkVersion: v1_17
 executionRoleArn: JOB_EXECUTION_ROLE_ARN
 emrReleaseLabel: "emr-6.15.0-flink-latest"
 jobManager:
 storageDir: HIGH_AVAILABILITY_S3_STORAGE_PATH
 resource:
 memory: "2048m"
 cpu: 1
 taskManager:
 resource:
 memory: "2048m"
 cpu: 1
 monitoringConfiguration:
 s3MonitoringConfiguration:
 logUri:
 cloudWatchMonitoringConfiguration:
 logGroupName: LOG_GROUP_NAME

2. Submit the Flink deployment with the following command. This will also create a
FlinkDeployment object named basic-example-session-cluster.

kubectl create -f basic-example-app-cluster.yaml -n NAMESPACE

3. Use the following command to confirm that the session cluster LIFECYCLE is STABLE:

kubectl get flinkdeployments.flink.apache.org basic-example-session-cluster -
n NAMESPACE

The output should be similar to the following example:

NAME JOB STATUS LIFECYCLE STATE
basic-example-session-cluster STABLE

4. Create a FlinkSessionJob custom definition resource file basic-session-job.yaml
with the following example content:

apiVersion: flink.apache.org/v1beta1

Running a Flink application 36

Amazon EMR Amazon EMR on EKS Development Guide

kind: FlinkSessionJob
metadata:
 name: basic-session-job
spec:
 deploymentName: basic-session-deployment
 job:
 # If you have your job jar in an S3 bucket you can use that path.
 # To use jar in S3 bucket, set
 # OPERATOR_EXECUTION_ROLE_ARN (--set emrContainers.operatorExecutionRoleArn=
$OPERATOR_EXECUTION_ROLE_ARN)
 # when you install Spark operator
 jarURI: https://repo1.maven.org/maven2/org/apache/flink/flink-examples-
streaming_2.12/1.16.1/flink-examples-streaming_2.12-1.16.1-TopSpeedWindowing.jar
 parallelism: 2
 upgradeMode: stateless

5. Submit the Flink session job with the following command. This will create a
FlinkSessionJob object basic-session-job.

kubectl apply -f basic-session-job.yaml -n $NAMESPACE

6. Use the following command to confirm that the session cluster LIFECYCLE is STABLE, and
the JOB STATUS is RUNNING:

kubectl get flinkdeployments.flink.apache.org basic-example-session-cluster -
n NAMESPACE

The output should be similar to the following example:

NAME JOB STATUS LIFECYCLE STATE
basic-example-session-cluster RUNNING STABLE

7. Access the Flink UI.

kubectl port-forward deployments/basic-example-session-cluster 8081 -n NAMESPACE

8. Open localhost:8081 to view your Flink jobs locally.

9. Clean up the job. Remember to clean up the S3 artifacts that were created for this job, such
as checkpointing, high-availability, savepointing metadata, and CloudWatch logs.

Running a Flink application 37

Amazon EMR Amazon EMR on EKS Development Guide

Security

RBAC

To deploy the operator and run Flink jobs, we must create two Kubernetes roles: one operator and
one job role. Amazon EMR creates the two roles by default when you install the operator.

Operator role

We use the operator role to manage flinkdeployments to create and manage the JobManager
for each Flink job and other resources, like services.

The operator role's default name is emr-containers-sa-flink-operator and requires the
following permissions.

rules:
- apiGroups:
 - ""
 resources:
 - pods
 - services
 - events
 - configmaps
 - secrets
 - serviceaccounts
 verbs:
 - '*'
- apiGroups:
 - rbac.authorization.k8s.io
 resources:
 - roles
 - rolebindings
 verbs:
 - '*'
- apiGroups:
 - apps
 resources:
 - deployments
 - deployments/finalizers
 - replicasets
 verbs:
 - '*'
- apiGroups:

Security 38

Amazon EMR Amazon EMR on EKS Development Guide

 - extensions
 resources:
 - deployments
 - ingresses
 verbs:
 - '*'
- apiGroups:
 - flink.apache.org
 resources:
 - flinkdeployments
 - flinkdeployments/status
 - flinksessionjobs
 - flinksessionjobs/status
 verbs:
 - '*'
- apiGroups:
 - networking.k8s.io
 resources:
 - ingresses
 verbs:
 - '*'
- apiGroups:
 - coordination.k8s.io
 resources:
 - leases
 verbs:
 - '*'

Job role

The JobManager uses the job role to create and manage TaskManagers and ConfigMaps for each
job.

rules:
- apiGroups:
 - ""
 resources:
 - pods
 - configmaps
 verbs:
 - '*'
- apiGroups:
 - apps

Security 39

Amazon EMR Amazon EMR on EKS Development Guide

 resources:
 - deployments
 - deployments/finalizers
 verbs:
 - '*'

Uninstalling the Flink Kubernetes operator for Amazon EMR on EKS

Follow these steps to uninstall the Flink Kubernetes operator.

1. Delete the operator.

helm uninstall flink-kubernetes-operator -n <NAMESPACE>

2. Delete Kubernetes resources that Helm doesn’t uninstall.

kubectl delete serviceaccounts, roles, rolebindings -l emr-
containers.amazonaws.com/component=flink.operator --namespace <namespace>
kubectl delete crd flinkdeployments.flink.apache.org
 flinksessionjobs.flink.apache.org

3. (Optional) Delete the cert-manager.

kubectl delete -f https://github.com/jetstack/cert-manager/releases/download/
v1.12.0/cert-manager.yaml

Native Kubernetes

Amazon EMR releases 6.13.0 and higher support Flink Native Kubernetes as a command-line tool
that you can use to submit and execute Flink applications to an Amazon EMR on EKS cluster.

Topics

• Setting up Flink Native Kubernetes for Amazon EMR on EKS

• Getting started with Flink native Kubernetes for Amazon EMR on EKS

• Flink JobManager service account security requirements for Native Kubernetes

Uninstalling the operator 40

Amazon EMR Amazon EMR on EKS Development Guide

Setting up Flink Native Kubernetes for Amazon EMR on EKS

Complete the following tasks to get set up before you can run an application with the Flink CLI on
Amazon EMR on EKS. If you've already signed up for Amazon Web Services (AWS) and have used
Amazon EKS, you are almost ready to use Amazon EMR on EKS. If you've already completed any of
the prerequisites, you can skip those and move on to the next one.

• Install or update to the latest version of the AWS CLI – If you've already installed the AWS CLI,
confirm that you have the latest version.

• Get started with Amazon EKS – eksctl – Follow the steps to create a new Kubernetes cluster
with nodes in Amazon EKS.

• Select an Amazon EMR base image URI (release 6.13.0 or higher) – the Flink Kubernetes
command is supported with Amazon EMR releases 6.13.0 and higher.

• Confirm that the JobManager service account has appropriate permissions to create and watch
TaskManager pods. For more information, see Flink JobManager service account security
requirements for Native Kubernetes.

• Set up your local AWS credentials profile.

• Create or updating a kubeconfig file for an Amazon EKS cluster on which you want to run the
Flink applications.

Getting started with Flink native Kubernetes for Amazon EMR on EKS

Run a Flink application

Amazon EMR 6.13.0 and higher supports Flink Native Kubernetes for running Flink applications on
an Amazon EKS cluster. To run a Flink application, follow these steps:

1. Before you can run a Flink application with the Flink Native Kubernetes command, complete
the steps in the section called “Setting up”.

2. Download and install Flink.

3. Set the values for the following environment variables.

#Export the FLINK_HOME environment variable to your local installation of Flink
export FLINK_HOME=/usr/local/bin/flink #Will vary depending on your installation
export NAMESPACE=flink
export CLUSTER_ID=flink-application-cluster

Setting up 41

https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html
https://docs.aws.amazon.com/eks/latest/userguide/getting-started-eksctl.html
https://docs.aws.amazon.com/emr/latest/EMR-on-EKS-DevelopmentGuide/jobruns-flink-native-kubernetes-security-requirements.html
https://docs.aws.amazon.com/emr/latest/EMR-on-EKS-DevelopmentGuide/jobruns-flink-native-kubernetes-security-requirements.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-files.html
https://docs.aws.amazon.com/eks/latest/userguide/create-kubeconfig.html
https://nightlies.apache.org/flink/flink-docs-release-1.18/docs/try-flink/local_installation

Amazon EMR Amazon EMR on EKS Development Guide

export IMAGE=<123456789012.dkr.ecr.sample-AWS Region-.amazonaws.com/flink/
emr-6.13.0-flink:latest>
export FLINK_SERVICE_ACCOUNT=emr-containers-sa-flink
export FLINK_CLUSTER_ROLE_BINDING=emr-containers-crb-flink

4. Create a service account to manage Kubernetes resources.

kubectl create serviceaccount $FLINK_SERVICE_ACCOUNT -n $NAMESPACE
kubectl create clusterrolebinding $FLINK_CLUSTER_ROLE_BINDING --clusterrole=edit --
serviceaccount=$NAMESPACE:$FLINK_SERVICE_ACCOUNT

5. Run the run-application CLI command.

$FLINK_HOME/bin/flink run-application \
 --target kubernetes-application \
 -Dkubernetes.namespace=$NAMESPACE \
 -Dkubernetes.cluster-id=$CLUSTER_ID \
 -Dkubernetes.container.image.ref=$IMAGE \
 -Dkubernetes.service-account=$FLINK_SERVICE_ACCOUNT \
 local:///opt/flink/examples/streaming/Iteration.jar
2022-12-29 21:13:06,947 INFO org.apache.flink.kubernetes.utils.KubernetesUtils
 [] - Kubernetes deployment requires a fixed port. Configuration
 blob.server.port will be set to 6124
2022-12-29 21:13:06,948 INFO org.apache.flink.kubernetes.utils.KubernetesUtils
 [] - Kubernetes deployment requires a fixed port. Configuration
 taskmanager.rpc.port will be set to 6122
2022-12-29 21:13:07,861 WARN
 org.apache.flink.kubernetes.KubernetesClusterDescriptor [] - Please note that
 Flink client operations(e.g. cancel, list, stop, savepoint, etc.) won't work from
 outside the Kubernetes cluster since 'kubernetes.rest-service.exposed.type' has
 been set to ClusterIP.
2022-12-29 21:13:07,868 INFO
 org.apache.flink.kubernetes.KubernetesClusterDescriptor [] - Create flink
 application cluster flink-application-cluster successfully, JobManager Web
 Interface: http://flink-application-cluster-rest.flink:8081

6. Examine the created Kubernetes resources.

kubectl get all -n <namespace>
NAME READY STATUS RESTARTS AGE
pod/flink-application-cluster-546687cb47-w2p2z 1/1 Running 0 3m37s
pod/flink-application-cluster-taskmanager-1-1 1/1 Running 0 3m24s

Getting started 42

Amazon EMR Amazon EMR on EKS Development Guide

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
service/flink-application-cluster ClusterIP None <none> 6123/TCP,6124/TCP 3m38s
service/flink-application-cluster-rest ClusterIP 10.100.132.158 <none> 8081/TCP
 3m38s

NAME READY UP-TO-DATE AVAILABLE AGE
deployment.apps/flink-application-cluster 1/1 1 1 3m38s

NAME DESIRED CURRENT READY AGE
replicaset.apps/flink-application-cluster-546687cb47 1 1 1 3m38s

7. Port forward to 8081.

kubectl port-forward service/flink-application-cluster-rest 8081 -n <namespace>
Forwarding from 127.0.0.1:8081 -> 8081

8. Locally access the Flink UI.

9. Delete the Flink application.

kubectl delete deployment.apps/flink-application-cluster -n <namespace>
deployment.apps "flink-application-cluster" deleted

For more information about submitting applications to Flink, see Native Kubernetes in the Apache
Flink documentation.

Getting started 43

https://nightlies.apache.org/flink/flink-docs-master/docs/deployment/resource-providers/native_kubernetes/

Amazon EMR Amazon EMR on EKS Development Guide

Flink JobManager service account security requirements for Native
Kubernetes

The Flink JobManager pod uses a Kubernetes service account to access the Kubernetes API server
to create and watch TaskManager pods. JobManager service account must have appropriate
permissions to create/delete TaskManager pods and allow the TaskManager to watch leader
ConfigMaps to retrieve the address of JobManager and ResourceManager in your cluster.

The following rules apply to this service account.

rules:
- apiGroups:
 - ""
 resources:
 - pods
 verbs:
 - "*"
- apiGroups:
 - ""
 resources:
 - services
 verbs:
 - "*"
- apiGroups:
 - ""
 resources:
 - configmaps
 verbs:
 - "*"
- apiGroups:
 - "apps"
 resources:
 - deployments
 verbs:
 - "*"

Customizing Docker images for Amazon EMR on EKS with
Apache Flink

The following sections describe how to customize Docker images for Amazon EMR on EKS.

Security requirements 44

Amazon EMR Amazon EMR on EKS Development Guide

Topics

• Customizing Docker images for Flink and FluentD

Customizing Docker images for Flink and FluentD

Take the following steps to customize Docker images for Amazon EMR on EKS with Apache Flink or
FluentD images.

Topics

• Prerequisites

• Step 1: Retrieve a base image from Amazon Elastic Container Registry

• Step 2: Customize a base image

• Step 3: Publish your custom image

• Step 4: Submit a Flink workload in Amazon EMR using a custom image

Prerequisites

Before you customize your Docker image, make sure that you have completed the following
prerequisites:

• Completed the Setting up the Flink Kubernetes operator for Amazon EMR on EKS steps.

• Installed Docker in your environment. For more information, see Get Docker.

Step 1: Retrieve a base image from Amazon Elastic Container Registry

The base image contains the Amazon EMR runtime and connectors that you need to access
other AWS services. If you're using Amazon EMR on EKS with Flink version 6.14.0 or higher, you
can get the base images from the Amazon ECR Public Gallery. Browse the gallery to find the
image link and pull the image to your local workspace. For example, for the Amazon EMR 6.14.0
release, the following docker pull command returns the latest standard base image. Replace
emr-6.14.0:latest with the release version you want.

docker pull public.ecr.aws/emr-on-eks/flink/emr-6.14.0-flink:latest

The following are links to the Flink gallery image and Fluentd gallery image:

Customizing Docker images for Flink and FluentD 45

https://docs.aws.amazon.com/emr/latest/EMR-on-EKS-DevelopmentGuide/jobruns-flink-kubernetes-operator-setup.html
https://docs.docker.com/get-docker/

Amazon EMR Amazon EMR on EKS Development Guide

• emr-on-eks/flink/emr-6.14.0-flink

• emr-on-eks/fluentd/emr-6.14.0(

Step 2: Customize a base image

The following steps describe how to customize the base image you pulled from Amazon ECR.

1. Create a new Dockerfile on your local Workspace.

2. Edit the Dockerfile and add the following content. This Dockerfile uses the
container image you pulled from public.ecr.aws/emr-on-eks/flink/emr-7.2.0-
flink:latest.

FROM public.ecr.aws/emr-on-eks/flink/emr-7.2.0-flink:latest
USER root
Add customization commands here
USER hadoop:hadoop

Use the following configuration if you're using Fluentd.

FROM public.ecr.aws/emr-on-eks/fluentd/emr-7.2.0:latest
USER root
Add customization commands here
USER hadoop:hadoop

3. Add commands in the Dockerfile to customize the base image. The following command
demonstrates how to install Python libraries.

FROM public.ecr.aws/emr-on-eks/flink/emr-7.2.0-flink:latest
USER root
RUN pip3 install --upgrade boto3 pandas numpy // For python 3
USER hadoop:hadoop

4. In the same directory of where you created DockerFile, run the following command to build
the Docker image. The field you supply following the -t flag is your custom name for the
image.

docker build -t <YOUR_ACCOUNT_ID>.dkr.ecr.<YOUR_ECR_REGION>.amazonaws.com/
<ECR_REPO>:<ECR_TAG>

Customizing Docker images for Flink and FluentD 46

https://gallery.ecr.aws/emr-on-eks/flink/emr-6.14.0-flink
https://gallery.ecr.aws/emr-on-eks/fluentd/emr-6.14.0

Amazon EMR Amazon EMR on EKS Development Guide

Step 3: Publish your custom image

You can now publish the new Docker image to your Amazon ECR registry.

1. Run the following command to create an Amazon ECR repository to store your Docker image.
Provide a name for your repository, such as emr_custom_repo. For more information, see
Create a repository in the Amazon Elastic Container Registry User Guide.

aws ecr create-repository \
 --repository-name emr_custom_repo \
 --image-scanning-configuration scanOnPush=true \
 --region <AWS_REGION>

2. Run the following command to authenticate to your default registry. For more information,
see Authenticate to your default registry in the Amazon Elastic Container Registry User Guide.

aws ecr get-login-password --region <AWS_REGION> | docker login --username AWS --
password-stdin <AWS_ACCOUNT_ID>.dkr.ecr.<YOUR_ECR_REGION>.amazonaws.com

3. Push the image. For more information, see Push an image to Amazon ECR in the Amazon
Elastic Container Registry User Guide.

docker push <YOUR_ACCOUNT_ID>.dkr.ecr.<YOUR_ECR_REGION>.amazonaws.com/
<ECR_REPO>:<ECR_TAG>

Step 4: Submit a Flink workload in Amazon EMR using a custom image

Make the following changes to your FlinkDeployment spec to use a custom image. To do so,
enter your own image in the spec.image line of your deployment spec.

apiVersion: flink.apache.org/v1beta1
 kind: FlinkDeployment
 metadata:
 name: basic-example
 spec:
 flinkVersion: v1_18
 image: <YOUR_ACCOUNT_ID>.dkr.ecr.<YOUR_ECR_REGION>.amazonaws.com/
<ECR_REPO>:<ECR_TAG>
 imagePullPolicy: Always
 flinkConfiguration:

Customizing Docker images for Flink and FluentD 47

https://docs.aws.amazon.com/AmazonECR/latest/userguide/getting-started-cli.html#cli-create-repository
https://docs.aws.amazon.com/AmazonECR/latest/userguide/getting-started-cli.html#cli-create-repository
https://docs.aws.amazon.com/AmazonECR/latest/userguide/getting-started-cli.html#cli-authenticate-registry
https://docs.aws.amazon.com/AmazonECR/latest/userguide/getting-started-cli.html#cli-push-image

Amazon EMR Amazon EMR on EKS Development Guide

 taskmanager.numberOfTaskSlots: "1"

To use a custom image for your Fluentd job, enter your own image in the
monitoringConfiguration.image line of your deployment spec.

 monitoringConfiguration:
 image: <YOUR_ACCOUNT_ID>.dkr.ecr.<YOUR_ECR_REGION>.amazonaws.com/
<ECR_REPO>:<ECR_TAG>
 cloudWatchMonitoringConfiguration:
 logGroupName: flink-log-group
 logStreamNamePrefix: custom-fluentd

Monitoring Flink Kubernetes operator and Flink jobs

This section describes several ways that you can monitor your Flink jobs with Amazon EMR on EKS.

Topics

• Using Amazon Managed Service for Prometheus to monitor Flink jobs

• Using the Flink UI to monitor Flink jobs

• Using monitoring configuration to monitor Flink Kubernetes operator and Flink jobs

Using Amazon Managed Service for Prometheus to monitor Flink jobs

You can integrate Apache Flink with Amazon Managed Service for Prometheus (management
portal). Amazon Managed Service for Prometheus supports ingesting metrics from Amazon
Managed Service for Prometheus servers in clusters running on Amazon EKS. Amazon Managed
Service for Prometheus works together with a Prometheus server already running on your Amazon
EKS cluster. Running Amazon Managed Service for Prometheus integration with Amazon EMR Flink
operator will automatically deploy and configure a Prometheus server to integrate with Amazon
Managed Service for Prometheus.

1. Create an Amazon Managed Service for Prometheus Workspace. This workspace serves as an
ingestion endpoint. You will need the remote write URL later.

2. Set up IAM roles for service accounts.

For this method of onboarding, use IAM roles for the service accounts in the Amazon EKS
cluster where the Prometheus server is running. These roles are also called service roles.

Monitoring 48

https://docs.aws.amazon.com/prometheus/latest/userguide/AMP-onboard-create-workspace.html

Amazon EMR Amazon EMR on EKS Development Guide

If you don't already have the roles, set up service roles for the ingestion of metrics from
Amazon EKS clusters.

Before you continue, create an IAM role called amp-iamproxy-ingest-role.

3. Install the Amazon EMR Flink Operator with Amazon Managed Service for Prometheus.

Now that you have an Amazon Managed Service for Prometheus workspace, a dedicated IAM role
for Amazon Managed Service for Prometheus, and the necessary permissions, you can install the
Amazon EMR Flink operator.

Create an enable-amp.yaml file. This file lets you use a custom configuration to override Amazon
Managed Service for Prometheus settings. Make sure to use your own roles.

kube-prometheus-stack:
 prometheus:
 serviceAccount:
 create: true
 name: "amp-iamproxy-ingest-service-account"
 annotations:
 eks.amazonaws.com/role-arn: "arn:aws:iam::<AWS_ACCOUNT_ID>:role/amp-
iamproxy-ingest-role"
 remoteWrite:
 - url: <AMAZON_MANAGED_PROMETHEUS_REMOTE_WRITE_URL>
 sigv4:
 region: <AWS_REGION>
 queueConfig:
 maxSamplesPerSend: 1000
 maxShards: 200
 capacity: 2500

Use the Helm Install --set command to pass overrides to the flink-kubernetes-
operator chart.

helm upgrade -n <namespace> flink-kubernetes-operator \
 oci://public.ecr.aws/emr-on-eks/flink-kubernetes-operator \
 --set prometheus.enabled=true
 -f enable-amp.yaml

This command automatically installs a Prometheus reporter in the operator on port 9999. Any
future FlinkDeployment also exposes a metrics port on 9249.

Using Amazon Managed Service for Prometheus 49

https://docs.aws.amazon.com/prometheus/latest/userguide/set-up-irsa.html
https://docs.aws.amazon.com/prometheus/latest/userguide/set-up-irsa.html
https://helm.sh/docs/helm/helm_install/

Amazon EMR Amazon EMR on EKS Development Guide

• Flink operator metrics appear in Prometheus under the label flink_k8soperator_.

• Flink Task Manager metrics appear in Prometheus under the label flink_taskmanager_.

• Flink Job Manager metrics appear in Prometheus under the label flink_jobmanager_.

Using the Flink UI to monitor Flink jobs

To monitor the health and performance of a running Flink application, use the Flink Web
Dashboard. This dashboard provides information about the status of the job, the number
of TaskManagers, and the metrics and logs for the job. It also lets you view and modify the
configuration of the Flink job, and to interact with the Flink cluster to submit or cancel jobs.

To access the Flink Web Dashboard for a running Flink application on Kubernetes:

1. Use the kubectl port-forward command to forward a local port to the port on which the
Flink Web Dashboard is running in the Flink application's TaskManager pods. By default, this
port is 8081. Replace deployment-name with the name of the Flink application deployment
from above.

kubectl get deployments -n namespace

Example output:

kubectl get deployments -n flink-namespace
NAME READY UP-TO-DATE AVAILABLE AGE
basic-example 1/1 1 1 11m
flink-kubernetes-operator 1/1 1 1 21h

kubectl port-forward deployments/deployment-name 8081 -n namespace

2. If you want to use a different port locally, use the local-port:8081 parameter.

kubectl port-forward -n flink deployments/basic-example 8080:8081

3. In a web browser, navigate to http://localhost:8081 (or http://localhost:local-
port if you used a custom local port) to access the Flink Web Dashboard. This dashboard
shows information about the running Flink application, such as the status of the job, the
number of TaskManagers, and the metrics and logs for the job.

Using the Flink UI 50

Amazon EMR Amazon EMR on EKS Development Guide

Using monitoring configuration to monitor Flink Kubernetes operator
and Flink jobs

Monitoring configuration lets you easily set up log archiving of your Flink application and operator
logs to S3 and/or CloudWatch (you can choose either one or both). Doing so adds a FluentD sidecar
to your JobManager and TaskManager pods and subsequently forwards these components' logs to
your configured sinks.

Note

You must set up IAM Roles for the service account for your Flink operator and your Flink job
(Service Accounts) to be able to use this feature, as it requires interacting with other AWS
services. You must set this up using IRSA in Setting up the Flink Kubernetes operator for
Amazon EMR on EKS.

Flink application logs

You can define this configuration in the following way.

apiVersion: flink.apache.org/v1beta1
kind: FlinkDeployment

Using monitoring configuration 51

Amazon EMR Amazon EMR on EKS Development Guide

metadata:
 name: basic-example
spec:
 image: FLINK IMAGE TAG
 imagePullPolicy: Always
 flinkVersion: v1_17
 flinkConfiguration:
 taskmanager.numberOfTaskSlots: "2"
 executionRoleArn: JOB EXECUTION ROLE
 jobManager:
 resource:
 memory: "2048m"
 cpu: 1
 taskManager:
 resource:
 memory: "2048m"
 cpu: 1
 job:
 jarURI: local:///opt/flink/examples/streaming/StateMachineExample.jar
 monitoringConfiguration:
 s3MonitoringConfiguration:
 logUri: S3 BUCKET
 cloudWatchMonitoringConfiguration:
 logGroupName: LOG GROUP NAME
 logStreamNamePrefix: LOG GROUP STREAM PREFIX
 sideCarResources:
 limits:
 cpuLimit: 500m
 memoryLimit: 250Mi
 containerLogRotationConfiguration:
 rotationSize: 2GB
 maxFilesToKeep: 10

The following are configuration options.

• s3MonitoringConfiguration – configuration key to set up forwarding to S3

• logUri (required) – the S3 bucket path of where you want to store your logs.

• The path on S3 once the logs are uploaded will look like the following.

• No log rotation enabled:

s3://${logUri}/${POD NAME}/STDOUT or STDERR.gz

Using monitoring configuration 52

Amazon EMR Amazon EMR on EKS Development Guide

• Log rotation is enabled. You can use both a rotated file and a current file (one without the
date stamp).

s3://${logUri}/${POD NAME}/STDOUT or STDERR.gz

The following format is an incrementing number.

s3://${logUri}/${POD NAME}/stdout_YYYYMMDD_index.gz

• The following IAM permissions are required to use this forwarder.

{
 "Effect": "Allow",
 "Action": [
 "s3:PutObject"
],
 "Resource": [
 "S3_BUCKET_URI/*",
 "S3_BUCKET_URI"
]
}

• cloudWatchMonitoringConfiguration – configuration key to set up forwarding to
CloudWatch.

• logGroupName (required) – nameof the CloudWatch log group that you want to send logs to
(automatically creates the group if it doesn't exist).

• logStreamNamePrefix (optional) – name of the log stream that you want to send logs into.
Default value is an empty string. The format is as follows:

${logStreamNamePrefix}/${POD NAME}/STDOUT or STDERR

• The following IAM permissions are required to use this forwarder.

{
 "Effect": "Allow",
 "Action": [
 "logs:CreateLogStream",
 "logs:CreateLogGroup",
 "logs:PutLogEvents"
],

Using monitoring configuration 53

Amazon EMR Amazon EMR on EKS Development Guide

 "Resource": [
 "arn:aws:logs:REGION:ACCOUNT-ID:log-group:{YOUR_LOG_GROUP_NAME}:*",
 "arn:aws:logs:REGION:ACCOUNT-ID:log-group:{YOUR_LOG_GROUP_NAME}"
]
}

• sideCarResources (optional) – the configuration key to set resource limits on the launched
Fluentbit sidecar container.

• memoryLimit (optional) – the default value is 512Mi. Adjust according to your needs.

• cpuLimit (optional) – this option doesn't have a default. Adjust according to your needs.

• containerLogRotationConfiguration (optional) – controls the container log rotation
behavior. It is enabled by default.

• rotationSize (required) – specifies the file size for the log rotation. The range of possible
values is from 2KB to 2GB. The numeric unit portion of the rotationSize parameter is passed as
an integer. Since decimal values aren't supported, you can specify a rotation size of 1.5GB, for
example, with the value 1500MB. The default is 2GB.

• maxFilesToKeep (required) – specifies the maximum number of files to retain in container
after rotation has taken place. The minimum value is 1, and the maximum value is 50. The
default is 10.

Flink operator logs

We can also enable log archiving for the operator by using the following options in the
values.yaml file in your helm chart installation. You can enable S3, CloudWatch, or both.

monitoringConfiguration:
 s3MonitoringConfiguration:
 logUri: "S3-BUCKET"
 totalFileSize: "1G"
 uploadTimeout: "1m"
 cloudWatchMonitoringConfiguration:
 logGroupName: "flink-log-group"
 logStreamNamePrefix: "example-job-prefix-test-2"
 sideCarResources:
 limits:
 cpuLimit: 1
 memoryLimit: 800Mi
 memoryBufferLimit: 700M

Using monitoring configuration 54

Amazon EMR Amazon EMR on EKS Development Guide

The following are the available configuration options under monitoringConfiguration.

• s3MonitoringConfiguration – set this option to archive to S3.

• logUri (required) – The S3 bucket path where you want to store your logs.

• The following are formats of what the S3 bucket paths might look like once the logs are
uploaded.

• No log rotation enabled.

s3://${logUri}/${POD NAME}/OPERATOR or WEBHOOK/STDOUT or STDERR.gz

• Log rotation is enabled. You can use both a rotated file and a current file (one without the date
stamp).

s3://${logUri}/${POD NAME}/OPERATOR or WEBHOOK/STDOUT or STDERR.gz

The following format index is an incrementing number.

s3://${logUri}/${POD NAME}/OPERATOR or WEBHOOK/stdout_YYYYMMDD_index.gz

• cloudWatchMonitoringConfiguration – the configuration key to set up forwarding to
CloudWatch.

• logGroupName (required) – name of the CloudWatch log group that you want to send logs to.
The group automatically gets created if it doesn't exist.

• logStreamNamePrefix (optional) – name of the log stream that you want to send logs into.
The default value is an empty string. The format in CloudWatch is as follows:

${logStreamNamePrefix}/${POD NAME}/STDOUT or STDERR

• sideCarResources (optional) – the configuration key to set resource limits on the launched
Fluentbit sidecar container.

• memoryLimit (optional) – the memory limit. Adjust according to your needs. The default is
512Mi.

• cpuLimit – the CPU limit. Adjust according to your needs. No default value.

• containerLogRotationConfiguration (optional): – controls the container log rotation
behavior. It is enabled by default.

Using monitoring configuration 55

Amazon EMR Amazon EMR on EKS Development Guide

• rotationSize (required) – specifies file size for the log rotation. The range of possible values
is from 2KB to 2GB. The numeric unit portion of the rotationSize parameter is passed as an
integer. Since decimal values aren't supported, you can specify a rotation size of 1.5GB, for
example, with the value 1500MB. The default is 2GB.

• maxFilesToKeep (required) – specifies the maximum number of files to retain in container
after rotation has taken place. The minimum value is 1, and the maximum value is 50. The
default is 10.

Job resiliency

The following sections outline how to make your Flink jobs more reliable and highly available.

Topics

• Using high availability (HA) for Flink Operators and Flink Applications

• Optimizing Flink job restart times for task recovery and scaling operations with Amazon EMR on
EKS

• Graceful decommission of Spot Instances with Flink on Amazon EMR on EKS

Using high availability (HA) for Flink Operators and Flink Applications

Flink operator high-availability

We enable high availability for the Flink Operator so that we can fail-over to a standby Flink
Operator to minimize downtime in the operator control loop if failures occur. High availability is
enabled by default and the default number of starting operator replicas is 2. You can configure the
replicas field in your values.yaml file for the helm chart.

The following fields are customizable:

• replicas (optional, default is 2): Setting this number to greater than 1 creates other standby
Operators and allows for faster recovery of your job.

• highAvailabilityEnabled (optional, default is true): Controls whether you want to enable
HA. Specifying this parameter as true enables multi AZ deployment support, as well as sets the
correct flink-conf.yaml parameters.

Job resiliency 56

Amazon EMR Amazon EMR on EKS Development Guide

You can disable HA for your operator by setting the following configuration in your values.yaml
file.

...
imagePullSecrets: []

replicas: 1

set this to false if you don't want HA
highAvailabilityEnabled: false
...

Multi AZ deployment

We create the operator pods in multiple Availability Zones. This is a soft constraint, and your
operator pods will be scheduled in the same AZ if you don't have enough resources in a different
AZ.

Determining the leader replica

If HA is enabled, the replicas use a lease to determine which of the JMs is the leader and uses a K8s
Lease for leader election. You can describe the Lease and look at the .Spec.Holder Identity field to
determine the current leader

kubectl describe lease <Helm Install Release Name>-<NAMESPACE>-lease -n <NAMESPACE> |
 grep "Holder Identity"

Flink-S3 Interaction

Configuring access credentials

Please make sure that you have configured IRSA with appropriate IAM permissions to access the S3
bucket.

Fetching job jars from S3 Application mode

The Flink operator also supports fetching applications jars from S3. You just provide the S3
location for the jarURI in your FlinkDeployment specification.

You can also use this feature to download other artifacts like PyFlink scripts. The resulting Python
script is dropped under the path /opt/flink/usrlib/.

Using high availability 57

Amazon EMR Amazon EMR on EKS Development Guide

The following example demonstrates how to use this feature for a PyFlink job. Note the jarURI and
args fields.

apiVersion: flink.apache.org/v1beta1
kind: FlinkDeployment
metadata:
 name: python-example
spec:
 image: <YOUR CUSTOM PYFLINK IMAGE>
 emrReleaseLabel: "emr-6.12.0-flink-latest"
 flinkVersion: v1_16
 flinkConfiguration:
 taskmanager.numberOfTaskSlots: "1"
 serviceAccount: flink
 jobManager:
 highAvailabilityEnabled: false
 replicas: 1
 resource:
 memory: "2048m"
 cpu: 1
 taskManager:
 resource:
 memory: "2048m"
 cpu: 1
 job:
 jarURI: "s3://<S3-BUCKET>/scripts/pyflink.py" # Note, this will trigger the
 artifact download process
 entryClass: "org.apache.flink.client.python.PythonDriver"
 args: ["-pyclientexec", "/usr/local/bin/python3", "-py", "/opt/flink/usrlib/
pyflink.py"]
 parallelism: 1
 upgradeMode: stateless

Flink S3 Connectors

Flink comes packaged with two S3 connectors (listed below). The following sections discuss when
to use which connector.

Checkpointing: Presto S3 connector

• Set S3 scheme to s3p://

Using high availability 58

Amazon EMR Amazon EMR on EKS Development Guide

• The recommended connector to use to checkpoint to s3. For more information, see S3-specific in
the Apache Flink documentation.

Example FlinkDeployment specification:

apiVersion: flink.apache.org/v1beta1
kind: FlinkDeployment
metadata:
 name: basic-example
spec:
 flinkConfiguration:
 taskmanager.numberOfTaskSlots: "2"
 state.checkpoints.dir: s3p://<BUCKET-NAME>/flink-checkpoint/

Reading and writing to S3: Hadoop S3 connector

• Set S3 scheme to s3:// or (s3a://)

• The recommended connector for reading and writing files from S3 (only S3 connector that
implements the Flinks Filesystem interface).

• By default, we set fs.s3a.aws.credentials.provider in the flink-conf.yaml file, which
is com.amazonaws.auth.WebIdentityTokenCredentialsProvider. If you override the d
efault flink-conf completely and you are interacting with S3, make sure to use this provider.

Example FlinkDeployment spec

apiVersion: flink.apache.org/v1beta1
kind: FlinkDeployment
metadata:
 name: basic-example
spec:
 job:
 jarURI: local:///opt/flink/examples/streaming/WordCount.jar
 args: ["--input", "s3a://<INPUT BUCKET>/PATH", "--output", "s3a://<OUTPUT BUCKET>/
PATH"]
 parallelism: 2
 upgradeMode: stateless

Using high availability 59

https://nightlies.apache.org/flink/flink-docs-master/docs/connectors/datastream/filesystem/#s3-specific
https://nightlies.apache.org/flink/flink-docs-master/docs/connectors/datastream/filesystem/

Amazon EMR Amazon EMR on EKS Development Guide

Flink Job Manager

High Availability (HA) for Flink Deployments allow jobs to continue making progress even if a
transient error is encountered and your JobManager crashes. The jobs will restart but from the
last successful checkpoint with HA enabled. Without HA enabled, Kubernetes will restart your
JobManager, but your job will start as a fresh job and will lose its progress. After configuring HA,
we can tell Kubernetes to store the HA metadata in a persistent storage to reference in case of a
transient failure in the JobManager and then resume our jobs from the last successful checkpoint.

HA is enabled by default for your Flink jobs (the replica count is set to 2, which will require you to
provide an S3 storage location for HA metadata to persist).

HA configs

apiVersion: flink.apache.org/v1beta1
kind: FlinkDeployment
metadata:
 name: basic-example
spec:
 flinkConfiguration:
 taskmanager.numberOfTaskSlots: "2"
 executionRoleArn: "<JOB EXECUTION ROLE ARN>"
 emrReleaseLabel: "emr-6.13.0-flink-latest"
 jobManager:
 resource:
 memory: "2048m"
 cpu: 1
 replicas: 2
 highAvailabilityEnabled: true
 storageDir: "s3://<S3 PERSISTENT STORAGE DIR>"
 taskManager:
 resource:
 memory: "2048m"
 cpu: 1

The following are descriptions for the above HA configs in Job Manager (defined
under .spec.jobManager):

• highAvailabilityEnabled (optional, default is true): Set this to false if you don't want
HA enabled and don’t want to use the provided HA configurations. You can still manipulate the
"replicas" field to manually configure HA.

Using high availability 60

Amazon EMR Amazon EMR on EKS Development Guide

• replicas (optional, default is 2): Setting this number to greater than 1 creates other standby
JobManagers and allows for faster recovery of your job. If you disable HA, you must set replica
count to 1, or you will keep getting validation errors (only 1 replica is supported if HA is not
enabled).

• storageDir (required): Because we use replica count as 2 by default, we have to provide a
persistent storageDir. Currently this field only accepts S3 paths as the storage location.

Pod locality

If you enable HA, we also try to collocate pods in the same AZ, which leads to improved
performance (reduced network latency by having pods in same AZs). This is a best-effort process,
meaning if you don't have enough resources in the AZ where the majority of your Pods are
scheduled, the remaining Pods will still be scheduled but might end up on a node outside of this
AZ.

Determining the leader replica

If HA is enabled, the replicas use a lease to determine which of the JMs is the leader
and uses a K8s Configmap as the datastore to store this metadata. If you want to
determine the leader, you can look at the content of the Configmap and look at the key
org.apache.flink.k8s.leader.restserver under data to find the K8s pod with the IP
address. You can also use the following bash commands.

ip=$(kubectl get configmap -n <NAMESPACE> <JOB-NAME>-cluster-config-map -o json | jq -
r ".data[\"org.apache.flink.k8s.leader.restserver\"]" | awk -F: '{print $2}' | awk -F
 '/' '{print $3}')
kubectl get pods -n NAMESPACE -o json | jq -r ".items[] | select(.status.podIP ==
 \"$ip\") | .metadata.name"

Flink job - native Kubernetes

Amazon EMR 6.13.0 and higher supports Flink native Kubernetes for running Flink applications in
high-availability mode on an Amazon EKS cluster.

Using high availability 61

Amazon EMR Amazon EMR on EKS Development Guide

Note

You must have an Amazon S3 bucket created to store the high-availability metadata when
you submit your Flink job. If you don’t want to use this feature, you can disable it. It's
enabled by default.

To turn on the Flink high-availability feature, provide the following Flink parameters when you run
the run-application CLI command. The parameters are defined below the example.

-Dhigh-availability.type=kubernetes \
-Dhigh-availability.storageDir=S3://DOC-EXAMPLE-STORAGE-BUCKET \
-
Dfs.s3a.aws.credentials.provider="com.amazonaws.auth.WebIdentityTokenCredentialsProvider"
 \
-Dkubernetes.jobmanager.replicas=3 \
-Dkubernetes.cluster-id=example-cluster

• Dhigh-availability.storageDir – The Amazon S3 bucket where you want to store the
high-availability metadata for your job.

Dkubernetes.jobmanager.replicas – The number of Job Manager pods to create as an
integer greater than 1.

Dkubernetes.cluster-id – A unique ID that identifies the Flink cluster.

Optimizing Flink job restart times for task recovery and scaling
operations with Amazon EMR on EKS

When a task fails or when a scaling operation occurs, Flink attempts to re-execute the task from
the last completed checkpoint. The restart process could take a minute or longer to execute,
depending on the size of the checkpoint state and the number of parallel tasks. During the restart
period, backlog tasks can accumulate for the job. There are some ways though, that Flink optimizes
the speed of recovery and restart of execution graphs to improve job stability.

This page describes some of the ways that Amazon EMR Flink can improve the job restart time
during task recovery or scaling operations.

Topics

Optimizing restart times 62

Amazon EMR Amazon EMR on EKS Development Guide

• Task-local recovery

• Task-local recovery by Amazon EBS volume mount

• Generic log-based incremental checkpoint

• Fine-grained recovery

• Combined restart mechanism in adaptive scheduler

Task-local recovery

Note

Task-local recovery is supported with Flink on Amazon EMR on EKS 6.14.0 and higher.

With Flink checkpoints, each task produces a snapshot of its state that Flink writes to distributed
storage like Amazon S3. In cases of recovery, the tasks restore their state from the distributed
storage. Distributed storage provides fault tolerance and can redistribute the state during rescaling
because it's accessible to all nodes.

However, a remote distributed store also has a disadvantage: all tasks must read their state from a
remote location over the network. This can result in long recovery times for large states during task
recovery or scaling operations.

This problem of long recovery time is solved by task-local recovery. Tasks write their state on
checkpoint into a secondary storage that is local to the task, such as on a local disk. They also
store their state in the primary storage, or Amazon S3 in our case. During recovery, the scheduler
schedules the tasks on the same Task Manager where the tasks ran earlier so that they can recover
from the local state store instead of reading from the remote state store. For more information,
see Task-Local Recovery in the Apache Flink Documentation.

Our benchmark tests with sample jobs have shown that the recovery time has been reduced from
minutes to a few seconds with task-local recovery enabled.

To enable task-local recovery, set the following configurations in your flink-conf.yaml file.
Specify the checkpointing interval value in milliseconds.

 state.backend.local-recovery: true
 state.backend: hasmap or rocksdb

Optimizing restart times 63

https://nightlies.apache.org/flink/flink-docs-master/docs/ops/state/large_state_tuning/#task-local-recovery

Amazon EMR Amazon EMR on EKS Development Guide

 state.checkpoints.dir: s3://STORAGE-BUCKET-PATH/checkpoint
 execution.checkpointing.interval: 15000

Task-local recovery by Amazon EBS volume mount

Note

Task-local recovery by Amazon EBS is supported with Flink on Amazon EMR on EKS 6.15.0
and higher.

With Flink on Amazon EMR on EKS, you can automatically provision Amazon EBS volumes to the
TaskManager pods for task local recovery. The default overlay mount comes with 10 GB volume,
which is sufficient for jobs with a lower state. Jobs with large states can enable the automatic EBS
volume mount option. The TaskManager pods are automatically created and mounted during pod
creation and removed during pod deletion.

Use the following steps to enable automatic EBS volume mount for Flink in Amazon EMR on EKS:

1. Export the values for the following variables that you'll use in upcoming steps.

export AWS_REGION=aa-example-1
export FLINK_EKS_CLUSTER_NAME=my-cluster
export AWS_ACCOUNT_ID=111122223333

2. Create or update a kubeconfig YAML file for your cluster.

aws eks update-kubeconfig --name $FLINK_EKS_CLUSTER_NAME --region $AWS_REGION

3. Create an IAM service account for the Amazon EBS Container Storage Interface (CSI) driver on
your Amazon EKS cluster.

eksctl create iamserviceaccount \
 --name ebs-csi-controller-sa \
 --namespace kube-system \
 --region $AWS_REGION \
 --cluster $FLINK_EKS_CLUSTER_NAME\
 --role-name TLR_${AWS_REGION}_${FLINK_EKS_CLUSTER_NAME} \
 --role-only \
 --attach-policy-arn arn:aws:iam::aws:policy/service-role/
AmazonEBSCSIDriverPolicy \

Optimizing restart times 64

Amazon EMR Amazon EMR on EKS Development Guide

 --approve

4. Create the Amazon EBS CSI driver with the following command:

eksctl create addon \
 --name aws-ebs-csi-driver \
 --region $AWS_REGION \
 --cluster $FLINK_EKS_CLUSTER_NAME \
 --service-account-role-arn arn:aws:iam::${AWS_ACCOUNT_ID}:role/TLR_
${AWS_REGION}_${FLINK_EKS_CLUSTER_NAME}

5. Create the Amazon EBS storage class with the following command:

cat # EOF # storage-class.yaml
apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
 name: ebs-sc
provisioner: ebs.csi.aws.com
volumeBindingMode: WaitForFirstConsumer
EOF

And then apply the class:

kubectl apply -f storage-class.yaml

6. Helm install the Amazon EMR Flink Kubernetes operator with options to create a service
account. This creates the emr-containers-sa-flink to use in the Flink deployment.

helm install flink-kubernetes-operator flink-kubernetes-operator/ \
 --set jobServiceAccount.create=true \
 --set rbac.jobRole.create=true \
 --set rbac.jobRoleBinding.create=true

7. To submit the Flink job and enable the automatic provision of EBS volumes for task-local
recovery, set the following configurations in your flink-conf.yaml file. Adjust the size limit
for the state size of the job. Set serviceAccount to emr-containers-sa-flink. Specify
the checkpointing interval value in milliseconds. And omit the executionRoleArn.

flinkConfiguration:
 task.local-recovery.ebs.enable: true

Optimizing restart times 65

Amazon EMR Amazon EMR on EKS Development Guide

 kubernetes.taskmanager.local-recovery.persistentVolumeClaim.sizeLimit: 10Gi
 state.checkpoints.dir: s3://BUCKET-PATH/checkpoint
 state.backend.local-recovery: true
 state.backend: hasmap or rocksdb
 state.backend.incremental: "true"
 execution.checkpointing.interval: 15000
 serviceAccount: emr-containers-sa-flink

When you're ready to delete the Amazon EBS CSI driver plugin, use the following commands:

 # Detach Attached Policy
 aws iam detach-role-policy --role-name TLR_${$AWS_REGION}_${FLINK_EKS_CLUSTER_NAME}
 --policy-arn arn:aws:iam::aws:policy/service-role/AmazonEBSCSIDriverPolicy
 # Delete the created Role
 aws iam delete-role --role-name TLR_${$AWS_REGION}_${FLINK_EKS_CLUSTER_NAME}
 # Delete the created service account
 eksctl delete iamserviceaccount --name ebs-csi-controller-sa --namespace kube-system
 --cluster $FLINK_EKS_CLUSTER_NAME --region $AWS_REGION
 # Delete Addon
 eksctl delete addon --name aws-ebs-csi-driver --cluster $FLINK_EKS_CLUSTER_NAME --
region $AWS_REGION
 # Delete the EBS storage class
 kubectl delete -f storage-class.yaml

Generic log-based incremental checkpoint

Note

Generic log-based incremental checkpointing is supported with Flink on Amazon EMR on
EKS 6.14.0 and higher.

Generic log-based incremental checkpointing was added in Flink 1.16 to improve the speed of
checkpoints. A faster checkpoint interval often results in a reduction of recovery work because
fewer events need to be reprocessed after recovery. For more information, see Improving speed
and stability of checkpointing with generic log-based incremental checkpoints on the Apache Flink
Blog.

With sample jobs, our benchmark tests have shown that the checkpoint time reduced from minutes
to a few seconds with the generic log-based incremental checkpoint.

Optimizing restart times 66

https://flink.apache.org/2022/05/30/improving-speed-and-stability-of-checkpointing-with-generic-log-based-incremental-checkpoints/
https://flink.apache.org/2022/05/30/improving-speed-and-stability-of-checkpointing-with-generic-log-based-incremental-checkpoints/

Amazon EMR Amazon EMR on EKS Development Guide

To enable generic log-based incremental checkpoints, set the following configurations in your
flink-conf.yaml file. Specify the checkpointing interval value in milliseconds.

 state.backend.changelog.enabled: true
 state.backend.changelog.storage: filesystem
 dstl.dfs.base-path: s3://bucket-path/changelog
 state.backend.local-recovery: true
 state.backend: rocksdb
 state.checkpoints.dir: s3://bucket-path/checkpoint
 execution.checkpointing.interval: 15000

Fine-grained recovery

Note

Fine-grained recovery support for the default scheduler is supported with Flink on Amazon
EMR on EKS 6.14.0 and higher. Fine-grained recovery support in the adaptive scheduler is
available with Flink on Amazon EMR on EKS 6.15.0 and higher.

When a task fails during execution, Flink resets the entire execution graph and triggers complete
re-execution from the last completed checkpoint. This is more expensive than just re-executing the
failed tasks. Fine-grained recovery restarts only the pipeline-connected component of the failed
task. In the following example, the job graph has 5 vertices (A to E). All connections between the
vertices are pipelined with pointwise distribution, and the parallelism.default for the job is
set to 2.

A # B # C # D # E

For this example, there are a total of 10 tasks running. The first pipeline (a1 to e1) runs on a
TaskManager (TM1), and the second pipeline (a2 to e2) runs on another TaskManager (TM2).

a1 # b1 # c1 # d1 # e1
a2 # b2 # c2 # d2 # e2

There are two pipelined connected components: a1 # e1, and a2 # e2. If either TM1 or TM2 fails,
the failure impacts only the 5 tasks in the pipeline where the TaskManager was running. The restart
strategy only starts the affected pipelined component.

Optimizing restart times 67

Amazon EMR Amazon EMR on EKS Development Guide

Fine-grained recovery works only with perfectly parallel Flink jobs. It's not supported with
keyBy() or redistribute() operations. For more information, see FLIP-1: Fine Grained
Recovery from Task Failures in the Flink Improvement Proposal Jira project.

To enable fine-grained recovery, set the following configurations in your flink-conf.yaml file.

jobmanager.execution.failover-strategy: region
restart-strategy: exponential-delay or fixed-delay

Combined restart mechanism in adaptive scheduler

Note

The combined restart mechanism in adaptive scheduler is supported with Flink on Amazon
EMR on EKS 6.15.0 and higher.

Adaptive scheduler can adjust the parallelism of the job based on available slots. It automatically
reduces the parallelism if not enough slots are available to fit the configured job parallelism. If new
slots become available, the job is scaled up again to the configured job parallelism. An adaptive
scheduler avoids downtime on the job when there are not enough resources available. This is the
supported scheduler for Flink Autoscaler. We recommend adaptive scheduler with Amazon EMR
Flink for these reasons. However, adaptive schedulers might do multiple restarts within a short
period of time, one restart for every new resource added. This could lead to a performance drop in
the job.

With Amazon EMR 6.15.0 and higher, Flink has a combined restart mechanism in adaptive
scheduler that opens a restart window when the first resource is added, and then waits until the
configured window interval of the default 1 minute. It performs a single restart when there are
sufficient resources available to run the job with configured parallelism or when the interval times
out.

With sample jobs, our benchmark tests have shown that this feature processes 10% of records
more than the default behavior when you use adaptive scheduler and Flink autoscaler.

To enable the combined restart mechanism, set the following configurations in your flink-
conf.yaml file.

jobmanager.adaptive-scheduler.combined-restart.enabled: true

Optimizing restart times 68

https://cwiki.apache.org/confluence/display/FLINK/FLIP-1%3A+Fine+Grained+Recovery+from+Task+Failures
https://cwiki.apache.org/confluence/display/FLINK/FLIP-1%3A+Fine+Grained+Recovery+from+Task+Failures

Amazon EMR Amazon EMR on EKS Development Guide

jobmanager.adaptive-scheduler.combined-restart.window-interval: 1m

Graceful decommission of Spot Instances with Flink on Amazon EMR on
EKS

Flink with Amazon EMR on EKS can improve the job restart time during task recovery or scaling
operations.

Overview

Amazon EMR on EKS releases 6.15.0 and higher support graceful decommission of Task Managers
on Spot Instances in Amazon EMR on EKS with Apache Flink. As part of this feature, Amazon EMR
on EKS with Flink provides the following capabilities:

• Just-in-time checkpointing – Flink streaming jobs can respond to Spot Instance interruption,
perform just-in-time (JIT) checkpoint of the running jobs, and prevent scheduling of additional
tasks on these Spot Instances. JIT checkpoint is supported with default and adaptive scheduler.

• Combined restart mechanism – A combined restart mechanism makes a best-effort attempt to
restart the job after it reaches target resource parallelism or the end of the current configured
window. This also prevents consecutive job restarts that might be caused by multiple Spot
Instance terminations. Combined restart mechanism is available with adaptive scheduler only.

These capabilities provide the following benefits:

• You can leverage Spot Instances to run Task Managers and reduce cluster expenditure.

• Improved liveness for Spot Instance Task Manager results in higher resilience and more efficient
job scheduling.

• Your Flink jobs will have more uptime because there will be less restarts from Spot Instance
termination.

How it works

Consider the following example: you provision an Amazon EMR on EKS cluster running Apache
Flink, and you specify On-Demand nodes for Job Manager, and Spot Instance nodes for Task
Manager. Two minutes before termination, Task Manager receives an interruption notice.

Graceful decommission 69

Amazon EMR Amazon EMR on EKS Development Guide

In this scenario, the Job Manager would handle the Spot Instance interruption signal, block
scheduling of additional tasks on the Spot Instance, and initiate JIT checkpointing for the
streaming job.

Then, the Job Manager would restart the job graph only after there is sufficient availability of
new resources to satisfy current job parallelism in the current restart interval window. The restart
window interval is decided on the basis of Spot Instance replacement duration, creation of new
Task Manager pods, and registration with Job Manager.

Prerequisites

To use graceful decommisioning, create and run a streaming job on an Amazon EMR on EKS cluster
running Apache Flink. Enable Adaptive Scheduler and Task Managers scheduled on at least one
Spot Instance, as shown in the following example. You should use On-Demand nodes for Job
Manager, and you can use On-Demand nodes for Task Managers as long as there's at least one Spot
Instance, too.

apiVersion: flink.apache.org/v1beta1
kind: FlinkDeployment
metadata:
 name: deployment_name
spec:
 flinkVersion: v1_17
 flinkConfiguration:
 taskmanager.numberOfTaskSlots: "2"
 cluster.taskmanager.graceful-decommission.enabled: "true"
 execution.checkpointing.interval: "240s"
 jobmanager.adaptive-scheduler.combined-restart.enabled: "true"
 jobmanager.adaptive-scheduler.combined-restart.window-interval : "1m"
 serviceAccount: flink
 jobManager:
 resource:
 memory: "2048m"
 cpu: 1
 nodeSelector:
 'eks.amazonaws.com/capacityType': 'ON_DEMAND'
 taskManager:
 resource:
 memory: "2048m"
 cpu: 1
 nodeSelector:
 'eks.amazonaws.com/capacityType': 'SPOT'

Graceful decommission 70

Amazon EMR Amazon EMR on EKS Development Guide

 job:
 jarURI: flink_job_jar_path

Configuration

This section covers most of the configurations that you can specify for your decommissioning
needs.

Key Description Default value Acceptable
values

cluster.t
askmanage
r.gracefu
l-decommi
ssion.ena
bled

Enable graceful decommission of
Task Manager.

true true, false

jobmanage
r.adaptiv
e-schedul
er.combin
ed-restar
t.enabled

Enable combined restart mechanism
in Adaptive Scheduler.

false true, false

jobmanage
r.adaptiv
e-schedul
er.combin
ed-restar
t.window-
interval

The combined restart window
interval to perfom merged restarts
for the job. An integer without a unit
is interpreted as milliseconds.

1m Examples: 30,
60s, 3m, 1h

Graceful decommission 71

Amazon EMR Amazon EMR on EKS Development Guide

Using Autoscaler for Flink applications

The operator autoscaler can help ease backpressure by collecting metrics from Flink jobs and
automatically adjusting parallelism on a job vertex level. The following is an example of what your
configuration might look like:

apiVersion: flink.apache.org/v1beta1
kind: FlinkDeployment
metadata:
 ...
spec:
 ...
 flinkVersion: v1_18
 flinkConfiguration:
 job.autoscaler.enabled: "true"
 job.autoscaler.stabilization.interval: 1m
 job.autoscaler.metrics.window: 5m
 job.autoscaler.target.utilization: "0.6"
 job.autoscaler.target.utilization.boundary: "0.2"
 job.autoscaler.restart.time: 2m
 job.autoscaler.catch-up.duration: 5m
 pipeline.max-parallelism: "720"
 ...

This configuration uses default values for the latest release of Amazon EMR. If you use other
versions, you might have different values.

Note

As of Amazon EMR 7.2.0, you don't need to include the prefix
kubernetes.operator in your configuration. If you use 7.1.0 or lower, you
must use the prefix before each configuration. For example, you must specify
kubernetes.operator.job.autoscaler.scaling.enabled.

The following are configuration options for the autoscaler.

• job.autoscaler.scaling.enabled – specifies whether to enable vertex scaling execution by
the autoscaler. The default is true. If you disable this configuration, the autoscaler only collects
metrics and evaluates the suggested parallelism for each vertex but doesn't upgrade the jobs.

Using Autoscaler 72

Amazon EMR Amazon EMR on EKS Development Guide

• job.autoscaler.stabilization.interval – the stabilization period in which no new
scaling will be executed. Default is 5 minutes.

• job.autoscaler.metrics.window – the scaling metrics aggregation window size. The larger
the window, the more smooth and stability, but the autoscaler might be slower to react to
sudden load changes. Default is 15 minutes. We recommend you experiment by using a value
between 3 to 60 minutes.

• job.autoscaler.target.utilization – the target vertex utilization to provide stable job
performance and some buffer for load fluctuations. The default is 0.7 targeting 70% utilization/
load for the job vertexes.

• job.autoscaler.target.utilization.boundary – the target vertex utilization boundary
that serves as extra buffer to avoid immediate scaling on load fluctuations. Default is 0.3, which
means 30% deviation from the target utilization is allowed before triggering a scaling action.

• ob.autoscaler.restart.time – the expected time to restart the application. Default is 5
minutes.

• job.autoscaler.catch-up.duration – the expected time to catch up, meaning fully
processing any backlog after a scaling operation completes. Default is 5 minutes. By lowering the
catch-up duration, the autoscaler haves to reserve more extra capacity for the scaling actions.

• pipeline.max-parallelism – the maximum parallelism the autoscaler can use. The
autoscaler ignores this limit if it is higher than the max parallelism configured in the Flink
config or directly on each operator. Default is -1. Note that the autoscaler computes the
parallelism as a divisor of the max parallelism number therefore it is recommended to choose
max parallelism settings that have a lot of divisors instead of relying on the Flink provided
defaults. We recommend using multiples of 60 for this configuration, such as 120, 180, 240, 360,
720 etc.

For a more detailed configuration reference page, see Autoscaler configuration.

Autoscaler parameter autotuning

Note

Amazon EMR 7.2.0 and higher uses the open source configuration
job.autoscaler.restart.time-tracking.enabled to enable rescale time
estimation. Rescale time estimation has the same functionality as Amazon EMR
autotuning, so you don't have to manually assign empirical values to the restart time.

Autoscaler parameter autotuning 73

https://nightlies.apache.org/flink/flink-kubernetes-operator-docs-main/docs/operations/configuration/#autoscaler-configuration

Amazon EMR Amazon EMR on EKS Development Guide

You can still use Amazon EMR autotuning if you're using Amazon EMR 7.1.0 or lower.

7.2.0 and higher

Amazon EMR 7.2.0 and higher measures the actual required restart time to apply
autoscaling decisions. In releases 7.1.0 and lower, you had to use the configuration
job.autoscaler.restart.time to manually configure estimated maximum restart time.
By using the configuration job.autoscaler.restart.time-tracking.enabled, you only
need to enter a restart time for the first scaling. Afterwards, the operator records the actual
restart time and will use it for subsequent scalings.

To enable this tracking, use the following command:

job.autoscaler.restart.time-tracking.enabled: true

The following are the related configurations for rescale time estimation.

Configuration Required Default Description

job.autoscaler.restart.time-
tracking.enabled

No False Indicates whether the
Flink Autoscaler should
automatically tune configura
tions over time to optimize
scaling descisions. Note
that the Autoscaler can only
autotune the Autoscaler
parameter restart.time .

job.autoscaler.restart.time No 5m The expected restart time
that Amazon EMR on EKS
uses until the operator can
determine the actual restart
time from previous scalings.

job.autoscaler.restart.time-
tracking.limit

No 15m The maximum observed
restart time when
job.autoscaler.res

Autoscaler parameter autotuning 74

Amazon EMR Amazon EMR on EKS Development Guide

Configuration Required Default Description

tart.time-tracking
.enabled is set to true.

The following is an example deployment spec you can use to try out rescale time estimation:

apiVersion: flink.apache.org/v1beta1
kind: FlinkDeployment
metadata:
 name: autoscaling-example
spec:
 flinkVersion: v1_18
 flinkConfiguration:

 # Autoscaler parameters
 job.autoscaler.enabled: "true"
 job.autoscaler.scaling.enabled: "true"
 job.autoscaler.stabilization.interval: "5s"
 job.autoscaler.metrics.window: "1m"

 job.autoscaler.restart.time-tracking.enabled: "true"
 job.autoscaler.restart.time: "2m"
 job.autoscaler.restart.time-tracking.limit: "10m"

 jobmanager.scheduler: adaptive
 taskmanager.numberOfTaskSlots: "1"
 pipeline.max-parallelism: "12"

 executionRoleArn: <JOB ARN>
 emrReleaseLabel: emr-7.2.0-flink-latest
 jobManager:
 highAvailabilityEnabled: false
 storageDir: s3://<s3_bucket>/flink/autoscaling/ha/
 replicas: 1
 resource:
 memory: "1024m"
 cpu: 0.5
 taskManager:
 resource:
 memory: "1024m"
 cpu: 0.5

Autoscaler parameter autotuning 75

Amazon EMR Amazon EMR on EKS Development Guide

 job:
 jarURI: s3://<s3_bucket>/some-job-with-back-pressure
 parallelism: 1
 upgradeMode: stateless

To simulate backpressure, use the following deployment spec.

job:
 jarURI: s3://<s3_bucket>/pyflink-script.py
 entryClass: "org.apache.flink.client.python.PythonDriver"
 args: ["-py", "/opt/flink/usrlib/pyflink-script.py"]
 parallelism: 1
 upgradeMode: stateless

Upload the following Python script to your S3 bucket.

import logging
import sys
import time
import random

from pyflink.datastream import StreamExecutionEnvironment
from pyflink.table import StreamTableEnvironment

TABLE_NAME="orders"
QUERY=f"""
CREATE TABLE {TABLE_NAME} (
 id INT,
 order_time AS CURRENT_TIMESTAMP,
 WATERMARK FOR order_time AS order_time - INTERVAL '5' SECONDS
)
WITH (
 'connector' = 'datagen',
 'rows-per-second'='10',
 'fields.id.kind'='random',
 'fields.id.min'='1',
 'fields.id.max'='100'
);
"""

def create_backpressure(i):
 time.sleep(2)
 return i

Autoscaler parameter autotuning 76

Amazon EMR Amazon EMR on EKS Development Guide

def autoscaling_demo():
 env = StreamExecutionEnvironment.get_execution_environment()
 t_env = StreamTableEnvironment.create(env)
 t_env.execute_sql(QUERY)
 res_table = t_env.from_path(TABLE_NAME)

 stream = t_env.to_data_stream(res_table) \
 .shuffle().map(lambda x: create_backpressure(x))\
 .print()
 env.execute("Autoscaling demo")

if __name__ == '__main__':
 logging.basicConfig(stream=sys.stdout, level=logging.INFO, format="%(message)s")
 autoscaling_demo()

To verify that rescale time estimation is working, make sure that DEBUG level logging of the
Flink operator is enabled. The example below demonstrates how to update the helm chart file
values.yaml. Then reinstall the updated helm chart and run your Flink job again.

log4j-operator.properties: |+
 # Flink Operator Logging Overrides
 rootLogger.level = DEBUG

Getthe name of your leader pod.

ip=$(kubectl get configmap -n $NAMESPACE <job-name>-cluster-config-map -o json | jq
 -r ".data[\"org.apache.flink.k8s.leader.restserver\"]" | awk -F: '{print $2}' | awk
 -F '/' '{print $3}')

kubectl get pods -n $NAMESPACE -o json | jq -r ".items[] | select(.status.podIP ==
 \"$ip\") | .metadata.name"

Run the following command to get the actual restart time used in metrics evaluations.

kubectl logs <FLINK-OPERATOR-POD-NAME> -c flink-kubernetes-operator -n <OPERATOR-
NAMESPACE> -f | grep "Restart time used in scaling summary computation"

You should see logs similar to the following. Note that only the first scaling uses
job.autoscaler.restart.time. Subsequent scalings use the observed restart time.

Autoscaler parameter autotuning 77

Amazon EMR Amazon EMR on EKS Development Guide

2024-05-16 17:17:32,590 o.a.f.a.ScalingExecutor [DEBUG][default/autoscaler-
example] Restart time used in scaling summary computation: PT2M
2024-05-16 17:19:03,787 o.a.f.a.ScalingExecutor [DEBUG][default/autoscaler-
example] Restart time used in scaling summary computation: PT14S
2024-05-16 17:19:18,976 o.a.f.a.ScalingExecutor [DEBUG][default/autoscaler-
example] Restart time used in scaling summary computation: PT14S
2024-05-16 17:20:50,283 o.a.f.a.ScalingExecutor [DEBUG][default/autoscaler-
example] Restart time used in scaling summary computation: PT14S
2024-05-16 17:22:21,691 o.a.f.a.ScalingExecutor [DEBUG][default/autoscaler-
example] Restart time used in scaling summary computation: PT14S

7.0.0 and 7.1.0

The open source built-in Flink Autoscaler uses numerous metrics to make the best scaling
decisions. However, the default values it uses for its calculations are meant to be applicable
to most workloads and might not optimal for a given job. The autotuning feature added into
the Amazon EMR on EKS version of the Flink Operator looks at historical trends observed over
specific captured metrics and then accordingly tries to calculate the most optimal value tailored
for the given job.

Configuration Required Default Description

kubernetes.operator.job.aut
oscaler.autotune.enable

No False Indicates whether the Flink
Autoscaler should automatic
ally tune configurations over
time to optimize autoscalers
scaling descisions. Currently
, the Autoscaler can only
autotune the Autoscaler
parameter restart.time .

kubernetes.operator.job.aut
oscaler.autotune.metrics.hi
story.max.count

No 3 Indicates how many historica
l Amazon EMR on EKS
metrics the Autoscaler keeps
in the Amazon EMR on EKS
metrics config map.

Autoscaler parameter autotuning 78

Amazon EMR Amazon EMR on EKS Development Guide

Configuration Required Default Description

kubernetes.operator.job.aut
oscaler.autotune.metrics.re
start.count

No 3 Indicates how many number
of restarts the Autoscale
r performs before it starts
calculating the average
restart time for a given job.

To enable autotuning, you must have completed the following:

• Set kubernetes.operator.job.autoscaler.autotune.enable: to true

• Set metrics.job.status.enable: to TOTAL_TIME

• Followed the setup of Using Autoscaler for Flink applications to enable Autoscaling.

The following is an example deployment spec you can use to try out autotuning.

apiVersion: flink.apache.org/v1beta1
kind: FlinkDeployment
metadata:
 name: autoscaling-example
spec:
 flinkVersion: v1_18
 flinkConfiguration:

 # Autotuning parameters
 kubernetes.operator.job.autoscaler.autotune.enable: "true"
 kubernetes.operator.job.autoscaler.autotune.metrics.history.max.count: "2"
 kubernetes.operator.job.autoscaler.autotune.metrics.restart.count: "1"
 metrics.job.status.enable: TOTAL_TIME

 # Autoscaler parameters
 kubernetes.operator.job.autoscaler.enabled: "true"
 kubernetes.operator.job.autoscaler.scaling.enabled: "true"
 kubernetes.operator.job.autoscaler.stabilization.interval: "5s"
 kubernetes.operator.job.autoscaler.metrics.window: "1m"

 jobmanager.scheduler: adaptive

 taskmanager.numberOfTaskSlots: "1"

Autoscaler parameter autotuning 79

https://docs.aws.amazon.com/emr/latest/EMR-on-EKS-DevelopmentGuide/jobruns-flink-autoscaler.html

Amazon EMR Amazon EMR on EKS Development Guide

 state.savepoints.dir: s3://<S3_bucket>/autoscaling/savepoint/
 state.checkpoints.dir: s3://<S3_bucket>/flink/autoscaling/checkpoint/
 pipeline.max-parallelism: "4"

 executionRoleArn: <JOB ARN>
 emrReleaseLabel: emr-6.14.0-flink-latest
 jobManager:
 highAvailabilityEnabled: true
 storageDir: s3://<S3_bucket>/flink/autoscaling/ha/
 replicas: 1
 resource:
 memory: "1024m"
 cpu: 0.5
 taskManager:
 resource:
 memory: "1024m"
 cpu: 0.5
 job:
 jarURI: s3://<S3_bucket>/some-job-with-back-pressure
 parallelism: 1
 upgradeMode: last-state

To simulate backpressure, use the following deployment spec.

 job:
 jarURI: s3://<S3_bucket>/pyflink-script.py
 entryClass: "org.apache.flink.client.python.PythonDriver"
 args: ["-py", "/opt/flink/usrlib/pyflink-script.py"]
 parallelism: 1
 upgradeMode: last-state

Upload the following Python script to your S3 bucket.

import logging
import sys
import time
import random

from pyflink.datastream import StreamExecutionEnvironment
from pyflink.table import StreamTableEnvironment

TABLE_NAME="orders"
QUERY=f"""

Autoscaler parameter autotuning 80

Amazon EMR Amazon EMR on EKS Development Guide

CREATE TABLE {TABLE_NAME} (
 id INT,
 order_time AS CURRENT_TIMESTAMP,
 WATERMARK FOR order_time AS order_time - INTERVAL '5' SECONDS
)
WITH (
 'connector' = 'datagen',
 'rows-per-second'='10',
 'fields.id.kind'='random',
 'fields.id.min'='1',
 'fields.id.max'='100'
);
"""

def create_backpressure(i):
 time.sleep(2)
 return i

def autoscaling_demo():
 env = StreamExecutionEnvironment.get_execution_environment()
 t_env = StreamTableEnvironment.create(env)
 t_env.execute_sql(QUERY)
 res_table = t_env.from_path(TABLE_NAME)

 stream = t_env.to_data_stream(res_table) \
 .shuffle().map(lambda x: create_backpressure(x))\
 .print()
 env.execute("Autoscaling demo")

if __name__ == '__main__':
 logging.basicConfig(stream=sys.stdout, level=logging.INFO, format="%(message)s")
 autoscaling_demo()

To verify that your autotuner is working, use the following commands. Note that you must use
your own leader pod information for the Flink Operator.

First get the name of your leader pod.

ip=$(kubectl get configmap -n $NAMESPACE <job-name>-cluster-config-map -o json | jq
 -r ".data[\"org.apache.flink.k8s.leader.restserver\"]" | awk -F: '{print $2}' | awk
 -F '/' '{print $3}')

Autoscaler parameter autotuning 81

Amazon EMR Amazon EMR on EKS Development Guide

kubectl get pods -n $NAMESPACE -o json | jq -r ".items[] | select(.status.podIP ==
 \"$ip\") | .metadata.name"

Once you have the name of your leader pod, you can run the following command.

kubectl logs -n $NAMESPACE -c flink-kubernetes-operator --follow <YOUR-FLINK-
OPERATOR-POD-NAME> | grep -E 'EmrEks|autotun|calculating|restart|autoscaler'

You should see logs similar to the following.

[m[33m2023-09-13 20:10:35,941[m [36mc.a.c.f.k.o.a.EmrEksMetricsAutotuner[m
 [36m[DEBUG][flink/autoscaling-example] Using the latest
 Emr Eks Metric for calculating restart.time for autotuning:
 EmrEksMetrics(restartMetric=RestartMetric(restartingTime=65, numRestarts=1))

[m[33m2023-09-13 20:10:35,941[m [36mc.a.c.f.k.o.a.EmrEksMetricsAutotuner[m
 [32m[INFO][flink/autoscaling-example] Calculated average restart.time metric via
 autotuning to be: PT0.065S

Maintenance and troubleshooting

The following sections will outline how to maintain your long-running Flink jobs, and provide
guidance on how to troubleshoot some common issues.

Migrating Flink applications

Flink applications are typically designed to run for long periods of time such as weeks, months, or
even years. As with all long-running services, Flink streaming applications need to be maintained.
This includes bug fixes, improvements, and migration to a Flink cluster of a later version.

When the spec changes for FlinkDeployment and FlinkSessionJob resources, you need to
upgrade the running application. To do this, the operator stops the running job (unless already
suspended) and redeploys it with the latest spec and, for stateful applications, the state from the
previous run.

Users control how to manage the state when stateful applications stop and restore with the
upgradeMode setting of the JobSpec.

Maintenance and troubleshooting 82

Amazon EMR Amazon EMR on EKS Development Guide

Upgrade modes

Optional introduction

Stateless

Stateless application upgrades from empty state.

Last state

Quick upgrades in any application state (even for failing jobs), does not require a healthy
job as it always uses the latest successful checkpoint. Manual recovery may be necessary
if HA metadata is lost. To limit the time the job may fall back when picking up the
latest checkpoint you can configure kubernetes.operator.job.upgrade.last-
state.max.allowed.checkpoint.age. If the checkpoint is older than the configured value,
a savepoint will be taken instead for healthy jobs. This is not supported in Session mode.

Savepoint

Use savepoint for upgrade, providing maximal safety and possibility to serve as backup/fork
point. The savepoint will be created during the upgrade process. Note that the Flink job needs
to be running to allow the savepoint to get created. If the job is in an unhealthy state, the last
checkpoint will be used (unless kubernetes.operator.job.upgrade.last-state-fallback.enabled is
set to false). If the last checkpoint is not available, the job upgrade will fail.

Troubleshooting

This section describes how to troubleshoot problems with Amazon EMR on EKS. For information
on how to troubleshoot general problems with Amazon EMR, see Troubleshoot a cluster in the
Amazon EMR Management Guide.

• Troubleshooting jobs that use PersistentVolumeClaims (PVC)

• Troubleshooting Amazon EMR on EKS vertical autoscaling

• Troubleshooting Amazon EMR on EKS Spark operator

Troubleshooting Apache Flink on Amazon EMR on EKS

Resource mapping not found when installing the Helm chart

You might encounter the following error message when you install the Helm chart.

Troubleshooting 83

https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-troubleshoot.html

Amazon EMR Amazon EMR on EKS Development Guide

Error: INSTALLATION FAILED: pulling from host 1234567890.dkr.ecr.us-
west-2.amazonaws.com failed with status code [manifests 6.13.0]: 403 Forbidden Error:
 INSTALLATION FAILED: unable to build kubernetes objects from release manifest:
 [resource mapping not found for name: "flink-operator-serving-cert" namespace: "<the
 namespace to install your operator>" from "": no matches for kind "Certificate" in
 version "cert-manager.io/v1"

ensure CRDs are installed first, resource mapping not found for name: "flink-operator-
selfsigned-issuer" namespace: "<the namespace to install your operator>" " from "": no
 matches for kind "Issuer" in version "cert-manager.io/v1"

ensure CRDs are installed first].

To resolve this error, install cert-manager to enable adding the webhook component. You must
install cert-manager to each Amazon EKS cluster that you use.

kubectl apply -f https://github.com/cert-manager/cert-manager/releases/download/v1.12.0

AWS service access denied error

If you see an access denied error, confirm that the IAM role for operatorExecutionRoleArn
in the Helm chart values.yaml file has the correct permissions. Also ensure the IAM role under
executionRoleArn in your FlinkDeployment specification has the correct permissions.

FlinkDeployment is stuck

If your FlinkDeployment stalls in an arrested state, use the following steps to force delete the
deployment:

1. Edit the deployment run.

kubectl edit -n Flink Namespace flinkdeployments/App Name

2. Remove this finalizer.

finalizers:
 - flinkdeployments.flink.apache.org/finalizer

3. Delete the deployment.

kubectl delete -n Flink Namespace flinkdeployments/App Name

Troubleshooting 84

Amazon EMR Amazon EMR on EKS Development Guide

s3a AWSBadRequestException issue when running a Flink application in an opt-in AWS Region

If you run a Flink application in an opt-in AWS Region, you might see the following errors:

Caused by: org.apache.hadoop.fs.s3a.AWSBadRequestException: getFileStatus on
s3://flink.txt: com.amazonaws.services.s3.model.AmazonS3Exception: Bad Request
(Service: Amazon S3; Status Code: 400; Error Code: 400 Bad Request; Request ID:
 ABCDEFGHIJKL; S3 Extended Request ID:
ABCDEFGHIJKLMNOP=; Proxy: null), S3 Extended Request ID: ABCDEFGHIJKLMNOP=:400 Bad
 Request: Bad Request
(Service: Amazon S3; Status Code: 400; Error Code: 400 Bad Request; Request ID:
 ABCDEFGHIJKL; S3 Extended Request ID: ABCDEFGHIJKLMNOP=; Proxy: null)

Caused by: org.apache.hadoop.fs.s3a.AWSBadRequestException: getS3Region on flink-
application: software.amazon.awssdk.services.s3.model.S3Exception: null
(Service: S3, Status Code: 400, Request ID: ABCDEFGHIJKLMNOP, Extended Request ID:
 ABCDEFGHIJKLMNOPQRST==):null: null
(Service: S3, Status Code: 400, Request ID: ABCDEFGHIJKLMNOP, Extended Request ID:
 AHl42uDNaTUFOus/5IIVNvSakBcMjMCH7dd37ky0vE6jhABCDEFGHIJKLMNOPQRST==)

To fix these errors, use the following configuration in your FlinkDeployment definition file.

spec:
 flinkConfiguration:
 taskmanager.numberOfTaskSlots: "2"
 fs.s3a.endpoint.region: OPT_IN_AWS_REGION_NAME

We also recommend that you use the SDKv2 credentials provider:

fs.s3a.aws.credentials.provider:
 software.amazon.awssdk.auth.credentials.WebIdentityTokenFileCredentialsProvider

If you want to use the SDKv1 credentials provider, make sure that your SDK supports your opt-in
Region. For more information, see the aws-sdk-java GitHub repository.

If you get S3 AWSBadRequestException when you run Flink SQL statements in an
opt-in Region, make sure that you set the configuration fs.s3a.endpoint.region:
OPT_IN_AWS_REGION_NAME in your flink configuration spec.

Troubleshooting 85

https://docs.aws.amazon.com/controltower/latest/userguide/opt-in-region-considerations.html
https://github.com/aws/aws-sdk-java

Amazon EMR Amazon EMR on EKS Development Guide

Supported releases for Amazon EMR on EKS with Apache Flink

Apache Flink is available with the following Amazon EMR on EKS releases. For information on all of
the releases that are available, see Amazon EMR on EKS releases.

Release label Java Flink Flink operator

emr-7.2.0-flink-latest 17 1.18.1 -

emr-7.2.0-flink-k8s-operator-latest 11 - 1.8.0

emr-7.1.0-flink-latest 17 1.18.1 -

emr-7.1.0-flink-k8s-operator-latest 11 - 1.6.1

emr-7.0.0-flink-latest 11 1.18.0 -

emr-7.0.0-flink-k8s-operator-latest 11 - 1.6.1

emr-6.15.0-flink-latest 11 1.17.1 -

emr-6.15.0-flink-k8s-operator-latest 11 - 1.6.0

emr-6.14.0-flink-latest 11 1.17.1 -

emr-6.14.0-flink-k8s-operator-latest 11 - 1.6.0

emr-6.13.0-flink-latest 11 1.17.0 -

emr-6.13.0-flink-k8s-operator-latest 11 - 1.5.0

Supported releases 86

Amazon EMR Amazon EMR on EKS Development Guide

Running jobs with Amazon EMR on EKS

A job run is a unit of work, such as a Spark jar, PySpark script, or SparkSQL query, that you submit
to Amazon EMR on EKS. This topic provides an overview of managing job runs using the AWS CLI,
viewing job runs using the Amazon EMR console, and troubleshooting common job run errors.

Note that you can't run IPv6 Spark jobs on Amazon EMR on EKS

Note

Before you submit a job run with Amazon EMR on EKS, you must complete the steps in
Setting up Amazon EMR on EKS.

Topics

• Running Spark jobs with StartJobRun

• Running Spark jobs with the Spark operator

• Running Spark jobs with spark-submit

• Using Apache Livy with Amazon EMR on EKS

• Managing Amazon EMR on EKS job runs

• Using job submitter classification

• Using job templates

• Using pod templates

• Using job retry policies

• Using Spark event log rotation

• Using Spark container log rotation

• Using vertical autoscaling with Amazon EMR Spark jobs

Running Spark jobs with StartJobRun

Topics

• Setting up Amazon EMR on EKS

• Submit a job run with StartJobRun

StartJobRun 87

Amazon EMR Amazon EMR on EKS Development Guide

Setting up Amazon EMR on EKS

Complete the following tasks to get set up for Amazon EMR on EKS. If you've already signed up
for Amazon Web Services (AWS) and have been using Amazon EKS, you are almost ready to use
Amazon EMR on EKS. Skip any of the tasks that you've already completed.

Note

You can also follow the Amazon EMR on EKS Workshop to set up all the necessary
resources to run Spark jobs on Amazon EMR on EKS. The workshop also provides
automation by using CloudFormation templates to create the resources necessary for
you to get started. For other templates and best practices, see our EMR Containers Best
Practices Guide on GitHub.

1. Install or update to the latest version of the AWS CLI

2. Set up kubectl and eksctl

3. Get started with Amazon EKS – eksctl

4. Enable cluster access for Amazon EMR on EKS

5. Enable IAM Roles for Service Accounts (IRSA) on the EKS cluster

6. Create a job execution role

7. Update the trust policy of the job execution role

8. Grant users access to Amazon EMR on EKS

9. Register the Amazon EKS cluster with Amazon EMR

Enable cluster access for Amazon EMR on EKS

Enable cluster access using EKS Access Entry (recommended)

Note

The aws-auth ConfigMap is deprecated. The recommended method to manage access to
Kubernetes APIs is Access Entries.

Setting up 88

https://emr-on-eks.workshop.aws/amazon-emr-eks-workshop.html
https://aws.github.io/aws-emr-containers-best-practices/
https://aws.github.io/aws-emr-containers-best-practices/
https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html
https://docs.aws.amazon.com/eks/latest/userguide/install-kubectl.html
https://docs.aws.amazon.com/eks/latest/userguide/getting-started-eksctl.html
https://docs.aws.amazon.com/eks/latest/userguide/access-entries.html

Amazon EMR Amazon EMR on EKS Development Guide

Amazon EMR is integrated with Amazon EKS cluster access management (CAM), so you can
automate configuration of the necessary AuthN and AuthZ policies to run Amazon EMR Spark jobs
in namespaces of Amazon EKS clusters. When you create a virtual cluster from an Amazon EKS
cluster namespace, Amazon EMR automatically configures all of the necessary permissions, so you
don't need to add any extra steps into your current workflows.

Note

The Amazon EMR integration with Amazon EKS CAM is supported only for new Amazon
EMR on EKS virtual clusters. You can't migrate existing virtual clusters to use this
integration.

Prerequisites

• Make sure that you are running version 2.15.3 or higher of the AWS CLI

• Your Amazon EKS cluster must be on version 1.23 or higher.

Setup

To set up the integration between Amazon EMR and the AccessEntry API operations from Amazon
EKS, make sure that you have completed the follow items:

• Make sure that authenticationMode of your Amazon EKS cluster is set to
API_AND_CONFIG_MAP.

aws eks describe-cluster --name <eks-cluster-name>

If it isn't already, set authenticationMode to API_AND_CONFIG_MAP.

aws eks update-cluster-config
 --name <eks-cluster-name>
 --access-config authenticationMode=API_AND_CONFIG_MAP

For more information about authentication modes, see Cluster authentication modes.

• Make sure that the IAM role that you're using to run the CreateVirtualCluster and
DeleteVirtualCluster API operations also has the following permissions:

Setting up 89

https://docs.aws.amazon.com/eks/latest/userguide/access-entries.html
https://docs.aws.amazon.com/eks/latest/userguide/access-entries.html#authentication-modes
https://docs.aws.amazon.com/emr/latest/EMR-on-EKS-DevelopmentGuide/setting-up-iam.html

Amazon EMR Amazon EMR on EKS Development Guide

{
 "Effect": "Allow",
 "Action": [
 "eks:CreateAccessEntry"
],
 "Resource":
 "arn:<AWS_PARTITION>:eks:<AWS_REGION>:<AWS_ACCOUNT_ID>:cluster/<EKS_CLUSTER_NAME>"
},
{
 "Effect": "Allow",
 "Action": [
 "eks:DescribeAccessEntry",
 "eks:DeleteAccessEntry",
 "eks:ListAssociatedAccessPolicies",
 "eks:AssociateAccessPolicy",
 "eks:DisassociateAccessPolicy"
],
 "Resource": "arn:<AWS_PARTITION>:eks:<AWS_REGION>:<AWS_ACCOUNT_ID>:access-entry/
<EKS_CLUSTER_NAME>/role/<AWS_ACCOUNT_ID>/AWSServiceRoleForAmazonEMRContainers/*"
}

Concepts and terminology

The following is a list of terminologies and concepts related to Amazon EKS CAM.

• Virtual cluster (VC) – logical representation of the namespace created in Amazon EKS. It’s a 1:1
link to an Amazon EKS cluster namespace. You can use it to run Amazon EMR workloads on a a
Amazon EKS cluster within the specified namespace.

• Namespace – mechanism to isolate groups of resources within a single EKS cluster.

• Access policy – permissions that grant access and actions to an IAM role within an EKS cluster.

• Access entry – an entry created with a role arn. You can link the access entry to an access policy
to assign specific permissions in the Amazon EKS cluster.

• EKS access entry integrated virtual cluster – the virtual cluster created using access entry API
operations from Amazon EKS.

Setting up 90

https://docs.aws.amazon.com/eks/latest/APIReference/API_Operations_Amazon_Elastic_Kubernetes_Service.html
https://docs.aws.amazon.com/eks/latest/APIReference/API_Operations_Amazon_Elastic_Kubernetes_Service.html

Amazon EMR Amazon EMR on EKS Development Guide

Enable cluster access using aws-auth

You must allow Amazon EMR on EKS access to a specific namespace in your cluster by taking the
following actions: creating a Kubernetes role, binding the role to a Kubernetes user, and mapping
the Kubernetes user with the service linked role AWSServiceRoleForAmazonEMRContainers.
These actions are automated in eksctl when the IAM identity mapping command is used with
emr-containers as the service name. You can perform these operations easily by using the
following command.

eksctl create iamidentitymapping \
 --cluster my_eks_cluster \
 --namespace kubernetes_namespace \
 --service-name "emr-containers"

Replace my_eks_cluster with the name of your Amazon EKS cluster and replace
kubernetes_namespace with the Kubernetes namespace created to run Amazon EMR workloads.

Important

You must download the latest eksctl using the previous step Set up kubectl and eksctl to
use this functionality.

Manual steps to enable cluster access for Amazon EMR on EKS

You can also use the following manual steps to enable cluster access for Amazon EMR on EKS.

1. Create a Kubernetes role in a specific namespace

Amazon EKS 1.22 - 1.29

With Amazon EKS 1.22 - 1.29, run the following command to create a Kubernetes role in
a specific namespace. This role grants the necessary RBAC permissions to Amazon EMR on
EKS.

namespace=my-namespace
cat - >>EOF | kubectl apply -f - >>namespace "${namespace}"
apiVersion: rbac.authorization.k8s.io/v1
kind: Role
metadata:
 name: emr-containers

Setting up 91

https://docs.aws.amazon.com/emr/latest/EMR-on-EKS-DevelopmentGuide/using-service-linked-roles.html
https://docs.aws.amazon.com/eks/latest/userguide/install-kubectl.html

Amazon EMR Amazon EMR on EKS Development Guide

 namespace: ${namespace}
rules:
 - apiGroups: [""]
 resources: ["namespaces"]
 verbs: ["get"]
 - apiGroups: [""]
 resources: ["serviceaccounts", "services", "configmaps", "events", "pods",
 "pods/log"]
 verbs: ["get", "list", "watch", "describe", "create", "edit", "delete",
 "deletecollection", "annotate", "patch", "label"]
 - apiGroups: [""]
 resources: ["secrets"]
 verbs: ["create", "patch", "delete", "watch"]
 - apiGroups: ["apps"]
 resources: ["statefulsets", "deployments"]
 verbs: ["get", "list", "watch", "describe", "create", "edit", "delete",
 "annotate", "patch", "label"]
 - apiGroups: ["batch"]
 resources: ["jobs"]
 verbs: ["get", "list", "watch", "describe", "create", "edit", "delete",
 "annotate", "patch", "label"]
 - apiGroups: ["extensions", "networking.k8s.io"]
 resources: ["ingresses"]
 verbs: ["get", "list", "watch", "describe", "create", "edit", "delete",
 "annotate", "patch", "label"]
 - apiGroups: ["rbac.authorization.k8s.io"]
 resources: ["roles", "rolebindings"]
 verbs: ["get", "list", "watch", "describe", "create", "edit", "delete",
 "deletecollection", "annotate", "patch", "label"]
 - apiGroups: [""]
 resources: ["persistentvolumeclaims"]
 verbs: ["get", "list", "watch", "describe", "create", "edit", "delete",
 "deletecollection", "annotate", "patch", "label"]
EOF

Amazon EKS 1.21 and below

With Amazon EKS 1.21 and below, run the following command to create a Kubernetes role
in a specific namespace. This role grants the necessary RBAC permissions to Amazon EMR
on EKS.

namespace=my-namespace

Setting up 92

Amazon EMR Amazon EMR on EKS Development Guide

cat - >>EOF | kubectl apply -f - >>namespace "${namespace}"
apiVersion: rbac.authorization.k8s.io/v1
kind: Role
metadata:
 name: emr-containers
 namespace: ${namespace}
rules:
 - apiGroups: [""]
 resources: ["namespaces"]
 verbs: ["get"]
 - apiGroups: [""]
 resources: ["serviceaccounts", "services", "configmaps", "events", "pods",
 "pods/log"]
 verbs: ["get", "list", "watch", "describe", "create", "edit", "delete",
 "deletecollection", "annotate", "patch", "label"]
 - apiGroups: [""]
 resources: ["secrets"]
 verbs: ["create", "patch", "delete", "watch"]
 - apiGroups: ["apps"]
 resources: ["statefulsets", "deployments"]
 verbs: ["get", "list", "watch", "describe", "create", "edit", "delete",
 "annotate", "patch", "label"]
 - apiGroups: ["batch"]
 resources: ["jobs"]
 verbs: ["get", "list", "watch", "describe", "create", "edit", "delete",
 "annotate", "patch", "label"]
 - apiGroups: ["extensions"]
 resources: ["ingresses"]
 verbs: ["get", "list", "watch", "describe", "create", "edit", "delete",
 "annotate", "patch", "label"]
 - apiGroups: ["rbac.authorization.k8s.io"]
 resources: ["roles", "rolebindings"]
 verbs: ["get", "list", "watch", "describe", "create", "edit", "delete",
 "deletecollection", "annotate", "patch", "label"]
 - apiGroups: [""]
 resources: ["persistentvolumeclaims"]
 verbs: ["get", "list", "watch", "describe", "create", "edit", "delete",
 "deletecollection", "annotate", "patch", "label"]
EOF

2. Create a Kubernetes role binding scoped to the namespace

Setting up 93

Amazon EMR Amazon EMR on EKS Development Guide

Run the following command to create a Kubernetes role binding in the given namespace. This
role binding grants the permissions defined in the role created in the previous step to a user
named emr-containers. This user identifies service-linked roles for Amazon EMR on EKS and
thus allows Amazon EMR on EKS to perform actions as defined by the role you created.

namespace=my-namespace

cat - <<EOF | kubectl apply -f - --namespace "${namespace}"
apiVersion: rbac.authorization.k8s.io/v1
kind: RoleBinding
metadata:
 name: emr-containers
 namespace: ${namespace}
subjects:
- kind: User
 name: emr-containers
 apiGroup: rbac.authorization.k8s.io
roleRef:
 kind: Role
 name: emr-containers
 apiGroup: rbac.authorization.k8s.io
EOF

3. Update Kubernetes aws-auth configuration map

You can use one of the following options to map the Amazon EMR on EKS service-linked role
with the emr-containers user that was bound with the Kubernetes role in the previous step.

Option 1: Using eksctl

Run the following eksctl command to map the Amazon EMR on EKS service-linked role with
the emr-containers user.

eksctl create iamidentitymapping \
 --cluster my-cluster-name \
 --arn "arn:aws:iam::my-account-id:role/AWSServiceRoleForAmazonEMRContainers" \
 --username emr-containers

Option 2: Without using eksctl

1. Run the following command to open the aws-auth configuration map in text editor.

Setting up 94

https://docs.aws.amazon.com/emr/latest/EMR-on-EKS-DevelopmentGuide/using-service-linked-roles.html

Amazon EMR Amazon EMR on EKS Development Guide

kubectl edit -n kube-system configmap/aws-auth

Note

If you receive an error stating Error from server (NotFound): configmaps
"aws-auth" not found, see the steps in Add user roles in the Amazon EKS User
Guide to apply the stock ConfigMap.

2. Add Amazon EMR on EKS service-linked role details to the mapRoles section of the
ConfigMap, under data. Add this section if it does not already exist in the file. The updated
mapRoles section under data looks like the following example.

apiVersion: v1
data:
 mapRoles: |
 - rolearn: arn:aws:iam::<your-account-id>:role/
AWSServiceRoleForAmazonEMRContainers
 username: emr-containers
 - ... <other previously existing role entries, if there's any>.

3. Save the file and exit your text editor.

Enable IAM Roles for Service Accounts (IRSA) on the EKS cluster

The IAM roles for service accounts feature is available on Amazon EKS versions 1.14 and later and
for EKS clusters that are updated to versions 1.13 or later on or after September 3rd, 2019. To use
this feature, you can update existing EKS clusters to version 1.14 or later. For more information, see
Updating an Amazon EKS cluster Kubernetes version.

If your cluster supports IAM roles for service accounts, it has an OpenID Connect issuer URL
associated with it. You can view this URL in the Amazon EKS console, or you can use the following
AWS CLI command to retrieve it.

Important

You must use the latest version of the AWS CLI to receive the proper output from this
command.

Setting up 95

https://docs.aws.amazon.com/eks/latest/userguide/add-user-role.html
https://docs.aws.amazon.com/eks/latest/userguide/update-cluster.html
https://openid.net/connect/

Amazon EMR Amazon EMR on EKS Development Guide

aws eks describe-cluster --name cluster_name --query "cluster.identity.oidc.issuer" --
output text

The expected output is as follows.

https://oidc.eks.<region-code>.amazonaws.com/id/EXAMPLED539D4633E53DE1B716D3041E

To use IAM roles for service accounts in your cluster, you must create an OIDC identity provider
using either eksctl or the AWS Management Console.

To create an IAM OIDC identity provider for your cluster with eksctl

Check your eksctl version with the following command. This procedure assumes that you have
installed eksctl and that your eksctl version is 0.32.0 or later.

eksctl version

For more information about installing or upgrading eksctl, see Installing or upgrading eksctl.

Create your OIDC identity provider for your cluster with the following command. Replace
cluster_name with your own value.

eksctl utils associate-iam-oidc-provider --cluster cluster_name --approve

To create an IAM OIDC identity provider for your cluster with the AWS Management Console

Retrieve the OIDC issuer URL from the Amazon EKS console description of your cluster, or use the
following AWS CLI command.

Use the following command to retrieve the OIDC issuer URL from the AWS CLI.

aws eks describe-cluster --name <cluster_name> --query "cluster.identity.oidc.issuer"
 --output text

Use the following steps to retrieve the OIDC issuer URL from the Amazon EKS console.

1. Open the IAM console at https://console.aws.amazon.com/iam/.

2. In the navigation panel, choose Identity Providers, and then choose Create Provider.

Setting up 96

https://docs.aws.amazon.com/eks/latest/userguide/enable-iam-roles-for-service-accounts.html#create-oidc-eksctl
https://docs.aws.amazon.com/eks/latest/userguide/enable-iam-roles-for-service-accounts.html#create-oidc-console
https://docs.aws.amazon.com/eks/latest/userguide/eksctl.html#installing-eksctl
https://console.aws.amazon.com/iam/

Amazon EMR Amazon EMR on EKS Development Guide

1. For Provider Type, choose Choose a provider type, and then choose OpenID Connect.

2. For Provider URL, paste the OIDC issuer URL for your cluster.

3. For Audience, type sts.amazonaws.com and choose Next Step.

3. Verify that the provider information is correct, and then choose Create to create your identity
provider.

Create a job execution role

To run workloads on Amazon EMR on EKS, you need to create an IAM role. We refer to this role as
the job execution role in this documentation. For more information about how to create IAM roles,
see Creating IAM roles in the IAM user Guide.

You must also create an IAM policy that specifies the permissions for the job execution role and
then attach the IAM policy to the job execution role.

The following policy for the job execution role allows access to resource targets, Amazon S3, and
CloudWatch. These permissions are necessary to monitor jobs and access logs. To follow the same
process using the AWS CLI, you can also set up your role using the steps in the Create IAM Role for
job execution section of the Amazon EMR on EKS Workshop.

Note

Access should be appropriately scoped, not granted to all S3 objects in the job execution
role.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "s3:PutObject",
 "s3:GetObject",
 "s3:ListBucket"
],
 "Resource": "arn:aws:s3:::example-bucket"
 },

Setting up 97

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create.html
https://www.eksworkshop.com/advanced/430_emr_on_eks/prereqs/#create-iam-role-for-job-execution
https://www.eksworkshop.com/advanced/430_emr_on_eks/prereqs/#create-iam-role-for-job-execution

Amazon EMR Amazon EMR on EKS Development Guide

 {
 "Effect": "Allow",
 "Action": [
 "logs:PutLogEvents",
 "logs:CreateLogStream",
 "logs:DescribeLogGroups",
 "logs:DescribeLogStreams"
],
 "Resource": [
 "arn:aws:logs:*:*:*"
]
 }
]
}

For more information, see Using job execution roles, Configure a job run to use S3 logs, and
Configure a job run to use CloudWatch Logs.

Update the trust policy of the job execution role

When you use IAM Roles for Service Accounts (IRSA) to run jobs on a Kubernetes namespace, an
administrator must create a trust relationship between the job execution role and the identity of
the EMR managed service account. The trust relationship can be created by updating the trust
policy of the job execution role. Note that the EMR managed service account is automatically
created at job submission, scoped to the namespace where the job is submitted.

Run the following command to update the trust policy.

 aws emr-containers update-role-trust-policy \
 --cluster-name cluster \
 --namespace namespace \
 --role-name iam_role_name_for_job_execution

For more information, see Using job execution roles with Amazon EMR on EKS.

Important

The operator running the above command must have these permissions:
eks:DescribeCluster, iam:GetRole, iam:UpdateAssumeRolePolicy.

Setting up 98

https://docs.aws.amazon.com/emr/latest/EMR-on-EKS-DevelopmentGuide/iam-execution-role.html
https://docs.aws.amazon.com/emr/latest/EMR-on-EKS-DevelopmentGuide/emr-eks-jobs-CLI.html#emr-eks-jobs-s3
https://docs.aws.amazon.com/emr/latest/EMR-on-EKS-DevelopmentGuide/emr-eks-jobs-CLI.html#emr-eks-jobs-cloudwatch

Amazon EMR Amazon EMR on EKS Development Guide

Grant users access to Amazon EMR on EKS

For any actions that you perform on Amazon EMR on EKS, you need a corresponding IAM
permission for that action. You must create an IAM policy that allows you to perform the Amazon
EMR on EKS actions and attach the policy to the IAM user or role that you use.

This topic provides steps for creating a new policy and attaching it to a user. It also covers the basic
permissions that you need to set up your Amazon EMR on EKS environment. We recommend that
you refine the permissions to specific resources whenever possible based on your business needs.

Creating a new IAM policy and attaching it to a user in the IAM console

Create a new IAM policy

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the left navigation pane of the IAM console, choose Policies.

3. On the Policies page, choose Create Policy.

4. In the Create Policy window, navigate to the Edit JSON tab. Create a policy document with
one or more JSON statements as shown in the examples following this procedure. Next,
choose Review policy.

5. On the Review Policy screen, enter your Policy Name, for example AmazonEMROnEKSPolicy.
Enter an optional description, and then choose Create policy.

Attach the policy to a user or role

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/

2. In the navigation pane, choose Policies.

3. In the list of policies, select the check box next to the policy created in the previous section.
You can use the Filter menu and the search box to filter the list of policies.

4. Choose Policy actions, and then choose Attach.

5. Choose the user or role to attach the policy to. You can use the Filter menu and the search
box to filter the list of principal entities. After choosing the user or role to attach the policy to,
choose Attach policy.

Setting up 99

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

Amazon EMR Amazon EMR on EKS Development Guide

Permissions for managing virtual clusters

To manage virtual clusters in your AWS account, create an IAM policy with the following
permissions. These permissions allow you to create, list, describe, and delete virtual clusters in your
AWS account.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "iam:CreateServiceLinkedRole"
],
 "Resource": "*",
 "Condition": {
 "StringLike": {
 "iam:AWSServiceName": "emr-containers.amazonaws.com"
 }
 }
 },
 {
 "Effect": "Allow",
 "Action": [
 "emr-containers:CreateVirtualCluster",
 "emr-containers:ListVirtualClusters",
 "emr-containers:DescribeVirtualCluster",
 "emr-containers:DeleteVirtualCluster"
],
 "Resource": "*"
 }
]
}

Amazon EMR is integrated with Amazon EKS cluster access management (CAM), so you can
automate configuration of the necessary AuthN and AuthZ policies to run Amazon EMR Spark jobs
in namespaces of Amazon EKS clusters. To do so, you must have the following permissions:

{
 "Effect": "Allow",
 "Action": [
 "eks:CreateAccessEntry"

Setting up 100

Amazon EMR Amazon EMR on EKS Development Guide

],
 "Resource":
 "arn:<AWS_PARTITION>:eks:<AWS_REGION>:<AWS_ACCOUNT_ID>:cluster/<EKS_CLUSTER_NAME>"
},
{
 "Effect": "Allow",
 "Action": [
 "eks:DescribeAccessEntry",
 "eks:DeleteAccessEntry",
 "eks:ListAssociatedAccessPolicies",
 "eks:AssociateAccessPolicy",
 "eks:DisassociateAccessPolicy"
],
 "Resource": "arn:<AWS_PARTITION>:eks:<AWS_REGION>:<AWS_ACCOUNT_ID>:access-
entry/<EKS_CLUSTER_NAME>/role/<AWS_ACCOUNT_ID>/AWSServiceRoleForAmazonEMRContainers/*"
}

For more information, see Automate enabling cluster access for Amazon EMR on EKS.

When the CreateVirtualCluster operation is invoked for the first time from an AWS account,
you also need the CreateServiceLinkedRole permissions to create the service-linked role for
Amazon EMR on EKS. For more information, see Using service-linked roles for Amazon EMR on EKS.

Permissions for submitting jobs

To submit jobs on the virtual clusters in your AWS account, create an IAM policy with the following
permissions. These permissions allow you to start, list, describe, and cancel job runs for the all
virtual clusters in your account. You should consider adding permissions to list or describe virtual
clusters, which allow you to check the state of the virtual cluster before submitting jobs.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "emr-containers:StartJobRun",
 "emr-containers:ListJobRuns",
 "emr-containers:DescribeJobRun",
 "emr-containers:CancelJobRun"
],
 "Resource": "*"
 }

Setting up 101

https://docs.aws.amazon.com/emr/latest/EMR-on-EKS-DevelopmentGuide/setting-up-cluster-access.html#setting-up-cluster-access-cam-integration

Amazon EMR Amazon EMR on EKS Development Guide

]
}

Permissions for debugging and monitoring

To get access to logs pushed to Amazon S3 and CloudWatch, or to view application event logs in
the Amazon EMR console, create an IAM policy with the following permissions. We recommend
that you refine the permissions to specific resources whenever possible based on your business
needs.

Important

If you haven't created an Amazon S3 bucket, you need to add s3:CreateBucket
permission to the policy statement. If you haven't created a log group, you need to add
logs:CreateLogGroup to the policy statement.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "emr-containers:DescribeJobRun",
 "elasticmapreduce:CreatePersistentAppUI",
 "elasticmapreduce:DescribePersistentAppUI",
 "elasticmapreduce:GetPersistentAppUIPresignedURL"
],
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "s3:GetObject",
 "s3:ListBucket"
],
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "logs:Get*",

Setting up 102

Amazon EMR Amazon EMR on EKS Development Guide

 "logs:DescribeLogGroups",
 "logs:DescribeLogStreams"
],
 "Resource": "*"
 }
]
}

For more information about how to configure a job run to push logs to Amazon S3 and
CloudWatch, see Configure a job run to use S3 logs and Configure a job run to use CloudWatch
Logs.

Register the Amazon EKS cluster with Amazon EMR

Registering your cluster is the final required step to set up Amazon EMR on EKS to run workloads.

Use the following command to create a virtual cluster with a name of your choice for the Amazon
EKS cluster and namespace that you set up in previous steps.

Note

Each virtual cluster must have a unique name across all the EKS clusters. If two virtual
clusters have the same name, the deployment process will fail even if the two virtual
clusters belong to different EKS clusters.

aws emr-containers create-virtual-cluster \
--name virtual_cluster_name \
--container-provider '{
 "id": "cluster_name",
 "type": "EKS",
 "info": {
 "eksInfo": {
 "namespace": "namespace_name"
 }
 }
}'

Alternatively, you can create a JSON file that includes the required parameters for the virtual
cluster and then run the create-virtual-cluster command with the path to the JSON file. For
more information, see Managing virtual clusters.

Setting up 103

https://docs.aws.amazon.com/emr/latest/EMR-on-EKS-DevelopmentGuide/emr-eks-jobs-CLI.html#emr-eks-jobs-s3
https://docs.aws.amazon.com/emr/latest/EMR-on-EKS-DevelopmentGuide/emr-eks-jobs-CLI.html#emr-eks-jobs-cloudwatch
https://docs.aws.amazon.com/emr/latest/EMR-on-EKS-DevelopmentGuide/emr-eks-jobs-CLI.html#emr-eks-jobs-cloudwatch

Amazon EMR Amazon EMR on EKS Development Guide

Note

To validate the successful creation of a virtual cluster, view the status of virtual clusters
using the list-virtual-clusters operation or by going to the Virtual Clusters page in
the Amazon EMR console.

Submit a job run with StartJobRun

To submit a job run with a JSON file with specified parameters

1. Create a start-job-run-request.json file and specify the required parameters for your
job run, as the following example JSON file demonstrates. For more information about the
parameters, see Options for configuring a job run.

{
 "name": "myjob",
 "virtualClusterId": "123456",
 "executionRoleArn": "iam_role_name_for_job_execution",
 "releaseLabel": "emr-6.2.0-latest",
 "jobDriver": {
 "sparkSubmitJobDriver": {
 "entryPoint": "entryPoint_location",
 "entryPointArguments": ["argument1", "argument2", ...],
 "sparkSubmitParameters": "--class <main_class> --conf
 spark.executor.instances=2 --conf spark.executor.memory=2G --conf
 spark.executor.cores=2 --conf spark.driver.cores=1"
 }
 },
 "configurationOverrides": {
 "applicationConfiguration": [
 {
 "classification": "spark-defaults",
 "properties": {
 "spark.driver.memory":"2G"
 }
 }
],
 "monitoringConfiguration": {
 "persistentAppUI": "ENABLED",
 "cloudWatchMonitoringConfiguration": {

Getting started 104

Amazon EMR Amazon EMR on EKS Development Guide

 "logGroupName": "my_log_group",
 "logStreamNamePrefix": "log_stream_prefix"
 },
 "s3MonitoringConfiguration": {
 "logUri": "s3://my_s3_log_location"
 }
 }
 }
}

2. Use the start-job-run command with a path to the start-job-run-request.json file
stored locally.

aws emr-containers start-job-run \
--cli-input-json file://./start-job-run-request.json

To start a job run using the start-job-run command

1. Supply all the specified parameters in the StartJobRun command, as the following example
demonstrates.

aws emr-containers start-job-run \
--virtual-cluster-id 123456 \
--name myjob \
--execution-role-arn execution-role-arn \
--release-label emr-6.2.0-latest \
--job-driver '{"sparkSubmitJobDriver": {"entryPoint": "entryPoint_location",
 "entryPointArguments": ["argument1", "argument2", ...], "sparkSubmitParameters":
 "--class <main_class> --conf spark.executor.instances=2 --conf
 spark.executor.memory=2G --conf spark.executor.cores=2 --conf
 spark.driver.cores=1"}}' \
--configuration-overrides '{"applicationConfiguration": [{"classification":
 "spark-defaults", "properties": {"spark.driver.memory": "2G"}}],
 "monitoringConfiguration": {"cloudWatchMonitoringConfiguration":
 {"logGroupName": "log_group_name", "logStreamNamePrefix": "log_stream_prefix"},
 "persistentAppUI":"ENABLED", "s3MonitoringConfiguration": {"logUri":
 "s3://my_s3_log_location" }}}'

2. For Spark SQL, supply all the specified parameters in the StartJobRun command, as the
following example demonstrates.

Getting started 105

Amazon EMR Amazon EMR on EKS Development Guide

aws emr-containers start-job-run \
--virtual-cluster-id 123456 \
--name myjob \
--execution-role-arn execution-role-arn \
--release-label emr-6.7.0-latest \
--job-driver '{"sparkSqlJobDriver": {"entryPoint": "entryPoint_location",
 "sparkSqlParameters": "--conf spark.executor.instances=2 --conf
 spark.executor.memory=2G --conf spark.executor.cores=2 --conf
 spark.driver.cores=1"}}' \
--configuration-overrides '{"applicationConfiguration": [{"classification":
 "spark-defaults", "properties": {"spark.driver.memory": "2G"}}],
 "monitoringConfiguration": {"cloudWatchMonitoringConfiguration":
 {"logGroupName": "log_group_name", "logStreamNamePrefix": "log_stream_prefix"},
 "persistentAppUI":"ENABLED", "s3MonitoringConfiguration": {"logUri":
 "s3://my_s3_log_location" }}}'

Running Spark jobs with the Spark operator

Amazon EMR releases 6.10.0 and higher support the Kubernetes operator for Apache Spark, or the
Spark operator, as a job submission model for Amazon EMR on EKS. With the Spark operator, you
can deploy and manage Spark applications with the Amazon EMR release runtime on your own
Amazon EKS clusters. Once you deploy the Spark operator in your Amazon EKS cluster, you can
directly submit Spark applications with the operator. The operator manages the lifecycle of Spark
applications.

Note

Amazon EMR calculates pricing on Amazon EKS based on vCPU and memory consumption.
This calculation applies to driver and executor pods. This calculation starts from when you
download your Amazon EMR application image until the Amazon EKS pod terminates and
is rounded to the nearest second.

Topics

• Setting up the Spark operator for Amazon EMR on EKS

• Getting started with the Spark operator for Amazon EMR on EKS

• Using vertical autoscaling with the Spark operator for Amazon EMR on EKS

Spark operator 106

Amazon EMR Amazon EMR on EKS Development Guide

• Uninstalling the Spark operator for Amazon EMR on EKS

• Security and the Spark operator with Amazon EMR on EKS

Setting up the Spark operator for Amazon EMR on EKS

Complete the following tasks to get set up before you install the Spark operator on Amazon EKS.
If you've already signed up for Amazon Web Services (AWS) and have used Amazon EKS, you are
almost ready to use Amazon EMR on EKS. Complete the following tasks to get set up for the Spark
operator on Amazon EKS. If you've already completed any of the prerequisites, you can skip those
and move on to the next one.

• Install or update to the latest version of the AWS CLI – If you've already installed the AWS CLI,
confirm that you have the latest version.

• Set up kubectl and eksctl – eksctl is a command line tool that you use to communicate with
Amazon EKS.

• Install Helm – The Helm package manager for Kubernetes helps you install and manage
applications on your Kubernetes cluster.

• Get started with Amazon EKS – eksctl – Follow the steps to create a new Kubernetes cluster
with nodes in Amazon EKS.

• Select an Amazon EMR base image URI (release 6.10.0 or higher) – the Spark operator is
supported with Amazon EMR releases 6.10.0 and higher.

Getting started with the Spark operator for Amazon EMR on EKS

This topic helps you start to use the Spark operator on Amazon EKS by deploying a Spark
application and a Schedule Spark application.

Install the Spark operator

Use the following steps to install the Kubernetes operator for Apache Spark.

1. If you haven't already, complete the steps in Setting up the Spark operator for Amazon EMR on
EKS.

2. Authenticate your Helm client to the Amazon ECR registry. In the following command,
replace the region-id values with your preferred AWS Region, and the corresponding ECR-

Setting up 107

https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html
https://docs.aws.amazon.com/eks/latest/userguide/install-kubectl.html
https://docs.aws.amazon.com/eks/latest/userguide/helm.html
https://docs.aws.amazon.com/eks/latest/userguide/getting-started-eksctl.html

Amazon EMR Amazon EMR on EKS Development Guide

registry-account value for the Region from the Amazon ECR registry accounts by Region
page.

aws ecr get-login-password \
--region region-id | helm registry login \
--username AWS \
--password-stdin ECR-registry-account.dkr.ecr.region-id.amazonaws.com

3. Install the Spark operator with the following command.

For the Helm chart --version parameter, use your Amazon EMR release label with the emr-
prefix and date suffix removed. For example, with the emr-6.12.0-java17-latest release,
specify 6.12.0-java17. The example in the following command uses the emr-7.2.0-
latest release, so it specifies 7.2.0 for the Helm chart --version.

helm install spark-operator-demo \
 oci://895885662937.dkr.ecr.region-id.amazonaws.com/spark-operator \
 --set emrContainers.awsRegion=region-id \
 --version 7.2.0 \
 --namespace spark-operator \
 --create-namespace

By default, the command creates service account emr-containers-sa-spark-
operator for the Spark operator. To use a different service account, provide the argument
serviceAccounts.sparkoperator.name. For example:

--set serviceAccounts.sparkoperator.name my-service-account-for-spark-operator

If you want to use vertical autoscaling with the Spark operator, add the following line to the
installation command to allow webhooks for the operator:

--set webhook.enable=true

4. Verify that you installed the Helm chart with the helm list command:

helm list --namespace spark-operator -o yaml

The helm list command should return your newly-deployed Helm chart release information:

Getting started 108

Amazon EMR Amazon EMR on EKS Development Guide

app_version: v1beta2-1.3.8-3.1.1
chart: spark-operator-7.2.0
name: spark-operator-demo
namespace: spark-operator
revision: "1"
status: deployed
updated: 2023-03-14 18:20:02.721638196 +0000 UTC

5. Complete installation with any additional options that you require. For more informtation, see
the spark-on-k8s-operator documentation on GitHub.

Run a Spark application

The Spark operator is supported with Amazon EMR 6.10.0 or higher. When you install the Spark
operator, it creates the service account emr-containers-sa-spark to run Spark applications
by default. Use the following steps to run a Spark application with the Spark operator on Amazon
EMR on EKS 6.10.0 or higher.

1. Before you can run a Spark application with the Spark operator, complete the steps in Setting
up the Spark operator for Amazon EMR on EKS and Install the Spark operator.

2. Create a SparkApplication definition file spark-pi.yaml with the following example
contents:

apiVersion: "sparkoperator.k8s.io/v1beta2"
kind: SparkApplication
metadata:
 name: spark-pi
 namespace: spark-operator
spec:
 type: Scala
 mode: cluster
 image: "895885662937.dkr.ecr.us-west-2.amazonaws.com/spark/emr-6.10.0:latest"
 imagePullPolicy: Always
 mainClass: org.apache.spark.examples.SparkPi
 mainApplicationFile: "local:///usr/lib/spark/examples/jars/spark-examples.jar"
 sparkVersion: "3.3.1"
 restartPolicy:
 type: Never
 volumes:
 - name: "test-volume"

Getting started 109

https://github.com/GoogleCloudPlatform/spark-on-k8s-operator/blob/master/charts/spark-operator-chart/README.md

Amazon EMR Amazon EMR on EKS Development Guide

 hostPath:
 path: "/tmp"
 type: Directory
 driver:
 cores: 1
 coreLimit: "1200m"
 memory: "512m"
 labels:
 version: 3.3.1
 serviceAccount: emr-containers-sa-spark
 volumeMounts:
 - name: "test-volume"
 mountPath: "/tmp"
 executor:
 cores: 1
 instances: 1
 memory: "512m"
 labels:
 version: 3.3.1
 volumeMounts:
 - name: "test-volume"
 mountPath: "/tmp"

3. Now, submit the Spark application with the following command. This will also create a
SparkApplication object named spark-pi:

kubectl apply -f spark-pi.yaml

4. Check events for the SparkApplication object with the following command:

kubectl describe sparkapplication spark-pi --namespace spark-operator

For more information on submitting applications to Spark through the Spark operator, see Using a
SparkApplication in the spark-on-k8s-operator documentation on GitHub.

Use Amazon S3 for storage

To use Amazon S3 as your file storage option, add the following configurations to your YAML file.

hadoopConf:
EMRFS filesystem

Getting started 110

https://www.kubeflow.org/docs/components/spark-operator/user-guide/using-sparkapplication/
https://www.kubeflow.org/docs/components/spark-operator/user-guide/using-sparkapplication/

Amazon EMR Amazon EMR on EKS Development Guide

 fs.s3.customAWSCredentialsProvider:
 com.amazonaws.auth.WebIdentityTokenCredentialsProvider
 fs.s3.impl: com.amazon.ws.emr.hadoop.fs.EmrFileSystem
 fs.AbstractFileSystem.s3.impl: org.apache.hadoop.fs.s3.EMRFSDelegate
 fs.s3.buffer.dir: /mnt/s3
 fs.s3.getObject.initialSocketTimeoutMilliseconds: "2000"
 mapreduce.fileoutputcommitter.algorithm.version.emr_internal_use_only.EmrFileSystem:
 "2"
 mapreduce.fileoutputcommitter.cleanup-
failures.ignored.emr_internal_use_only.EmrFileSystem: "true"
sparkConf:
 # Required for EMR Runtime
 spark.driver.extraClassPath: /usr/lib/hadoop-lzo/lib/*:/usr/lib/hadoop/hadoop-
aws.jar:/usr/share/aws/aws-java-sdk/*:/usr/share/aws/emr/emrfs/conf:/usr/share/aws/
emr/emrfs/lib/*:/usr/share/aws/emr/emrfs/auxlib/*:/usr/share/aws/emr/security/conf:/
usr/share/aws/emr/security/lib/*:/usr/share/aws/hmclient/lib/aws-glue-datacatalog-
spark-client.jar:/usr/share/java/Hive-JSON-Serde/hive-openx-serde.jar:/usr/share/aws/
sagemaker-spark-sdk/lib/sagemaker-spark-sdk.jar:/home/hadoop/extrajars/*
 spark.driver.extraLibraryPath: /usr/lib/hadoop/lib/native:/usr/lib/hadoop-lzo/lib/
native:/docker/usr/lib/hadoop/lib/native:/docker/usr/lib/hadoop-lzo/lib/native
 spark.executor.extraClassPath: /usr/lib/hadoop-lzo/lib/*:/usr/lib/hadoop/hadoop-
aws.jar:/usr/share/aws/aws-java-sdk/*:/usr/share/aws/emr/emrfs/conf:/usr/share/aws/
emr/emrfs/lib/*:/usr/share/aws/emr/emrfs/auxlib/*:/usr/share/aws/emr/security/conf:/
usr/share/aws/emr/security/lib/*:/usr/share/aws/hmclient/lib/aws-glue-datacatalog-
spark-client.jar:/usr/share/java/Hive-JSON-Serde/hive-openx-serde.jar:/usr/share/aws/
sagemaker-spark-sdk/lib/sagemaker-spark-sdk.jar:/home/hadoop/extrajars/*
 spark.executor.extraLibraryPath: /usr/lib/hadoop/lib/native:/usr/lib/hadoop-lzo/lib/
native:/docker/usr/lib/hadoop/lib/native:/docker/usr/lib/hadoop-lzo/lib/native

If you use Amazon EMR releases 7.2.0 and higher, the configurations are included by default.
In that case, you can set the file path to s3://<bucket_name>/<file_path> instead of
local://<file_path> in the Spark application YAML file.

Then submit the Spark application as normal.

Using vertical autoscaling with the Spark operator for Amazon EMR on
EKS

Starting with Amazon EMR 7.0, you can use Amazon EMR on EKS vertical autoscaling to simplify
resource management. It automatically tunes memory and CPU resources to adapt to the needs
of the workload that you provide for Amazon EMR Spark applications. For more information, see
Using vertical autoscaling with Amazon EMR Spark jobs.

Vertical autoscaling 111

Amazon EMR Amazon EMR on EKS Development Guide

This section describes how to configure the Spark operator to use vertical autoscaling.

Prerequisites

Before you continue, be sure to complete the following setup:

• Complete the steps in Setting up the Spark operator for Amazon EMR on EKS.

• (Optional) If you previous installed an older version of the Spark operator, delete the
SparkApplication/ScheduledSparkApplication CRD.

kubectl delete crd sparkApplication
kubectl delete crd scheduledSparkApplication

• Complete the steps in Install the Spark operator. In step 3, add the following line to the
installation command to allow webhooks for the operator:

--set webhook.enable=true

• Complete the steps in Setting up vertical autoscaling for Amazon EMR on EKS.

• Give access to the files in your Amazon S3 location:

1. Annotate your driver and operator service account with the JobExecutionRole that has S3
permissions.

kubectl annotate serviceaccount -n spark-operator emr-containers-sa-spark
 eks.amazonaws.com/role-arn=JobExecutionRole
kubectl annotate serviceaccount -n spark-operator emr-containers-sa-spark-
operator eks.amazonaws.com/role-arn=JobExecutionRole

2. Update the trust policy of your job execution role in that namespace.

aws emr-containers update-role-trust-policy \
--cluster-name cluster \
--namespace ${Namespace}\
--role-name iam_role_name_for_job_execution

3. Edit the IAM role trust policy of your job execution role and update the serviceaccount
from emr-containers-sa-spark-*-*-xxxx to emr-containers-sa-*.

{
 "Effect": "Allow",

Vertical autoscaling 112

Amazon EMR Amazon EMR on EKS Development Guide

 "Principal": {
 "Federated": "OIDC-provider"
 },
 "Action": "sts:AssumeRoleWithWebIdentity",
 "Condition": {
 "StringLike": {
 "OIDC": "system:serviceaccount:${Namespace}:emr-containers-sa-*"
 }
 }
}

4. If you're using Amazon S3 as your file storage, add the following defaults to your yaml file.

hadoopConf:
EMRFS filesystem
 fs.s3.customAWSCredentialsProvider:
 com.amazonaws.auth.WebIdentityTokenCredentialsProvider
 fs.s3.impl: com.amazon.ws.emr.hadoop.fs.EmrFileSystem
 fs.AbstractFileSystem.s3.impl: org.apache.hadoop.fs.s3.EMRFSDelegate
 fs.s3.buffer.dir: /mnt/s3
 fs.s3.getObject.initialSocketTimeoutMilliseconds: "2000"

 mapreduce.fileoutputcommitter.algorithm.version.emr_internal_use_only.EmrFileSystem:
 "2"
 mapreduce.fileoutputcommitter.cleanup-
failures.ignored.emr_internal_use_only.EmrFileSystem: "true"
sparkConf:
 # Required for EMR Runtime
 spark.driver.extraClassPath: /usr/lib/hadoop-lzo/lib/*:/usr/lib/hadoop/hadoop-
aws.jar:/usr/share/aws/aws-java-sdk/*:/usr/share/aws/emr/emrfs/conf:/usr/share/
aws/emr/emrfs/lib/*:/usr/share/aws/emr/emrfs/auxlib/*:/usr/share/aws/emr/
security/conf:/usr/share/aws/emr/security/lib/*:/usr/share/aws/hmclient/lib/aws-
glue-datacatalog-spark-client.jar:/usr/share/java/Hive-JSON-Serde/hive-openx-
serde.jar:/usr/share/aws/sagemaker-spark-sdk/lib/sagemaker-spark-sdk.jar:/home/
hadoop/extrajars/*
 spark.driver.extraLibraryPath: /usr/lib/hadoop/lib/native:/usr/lib/hadoop-lzo/
lib/native:/docker/usr/lib/hadoop/lib/native:/docker/usr/lib/hadoop-lzo/lib/
native
 spark.executor.extraClassPath: /usr/lib/hadoop-lzo/lib/*:/usr/lib/hadoop/
hadoop-aws.jar:/usr/share/aws/aws-java-sdk/*:/usr/share/aws/emr/emrfs/conf:/usr/
share/aws/emr/emrfs/lib/*:/usr/share/aws/emr/emrfs/auxlib/*:/usr/share/aws/emr/
security/conf:/usr/share/aws/emr/security/lib/*:/usr/share/aws/hmclient/lib/aws-
glue-datacatalog-spark-client.jar:/usr/share/java/Hive-JSON-Serde/hive-openx-

Vertical autoscaling 113

Amazon EMR Amazon EMR on EKS Development Guide

serde.jar:/usr/share/aws/sagemaker-spark-sdk/lib/sagemaker-spark-sdk.jar:/home/
hadoop/extrajars/*
 spark.executor.extraLibraryPath: /usr/lib/hadoop/lib/native:/usr/lib/hadoop-
lzo/lib/native:/docker/usr/lib/hadoop/lib/native:/docker/usr/lib/hadoop-lzo/lib/
native

Run a job with vertical autoscaling on the Spark operator

Before you can run a Spark application with the Spark operator, you must complete the steps in
Prerequisites.

To use vertical autoscaling with the Spark operator, add the following configuration to the driver
for your Spark Application spec to turn on vertical autoscaling:

dynamicSizing:
 mode: Off
 signature: "my-signature"

This configuration enables vertical autoscaling and is a required signature configuration that lets
you choose a signature for your job.

For more information on the configurations and parameter values, see Configuring vertical
autoscaling for Amazon EMR on EKS. By default, your job submits in the monitoring-only
Off mode of vertical autoscaling. This monitoring state lets you compute and view resource
recommendations without performing autoscaling. For more information, see Vertical autoscaling
modes.

The following is a sample SparkApplication definition file named spark-pi.yaml with the
required configurations to use vertical autoscaling.

apiVersion: "sparkoperator.k8s.io/v1beta2"
kind: SparkApplication
metadata:
 name: spark-pi
 namespace: spark-operator
spec:
 type: Scala
 mode: cluster
 image: "895885662937.dkr.ecr.us-west-2.amazonaws.com/spark/emr-7.2.0:latest"
 imagePullPolicy: Always

Vertical autoscaling 114

https://docs.aws.amazon.com/emr/latest/EMR-on-EKS-DevelopmentGuide/jobruns-vas-configure.html
https://docs.aws.amazon.com/emr/latest/EMR-on-EKS-DevelopmentGuide/jobruns-vas-configure.html
https://docs.aws.amazon.com/emr/latest/EMR-on-EKS-DevelopmentGuide/jobruns-vas-configure.html#jobruns-vas-parameters-opt-mode
https://docs.aws.amazon.com/emr/latest/EMR-on-EKS-DevelopmentGuide/jobruns-vas-configure.html#jobruns-vas-parameters-opt-mode

Amazon EMR Amazon EMR on EKS Development Guide

 mainClass: org.apache.spark.examples.SparkPi
 mainApplicationFile: "local:///usr/lib/spark/examples/jars/spark-examples.jar"
 sparkVersion: "3.4.1"
 dynamicSizing:
 mode: Off
 signature: "my-signature"
 restartPolicy:
 type: Never
 volumes:
 - name: "test-volume"
 hostPath:
 path: "/tmp"
 type: Directory
 driver:
 cores: 1
 coreLimit: "1200m"
 memory: "512m"
 labels:
 version: 3.4.1
 serviceAccount: emr-containers-sa-spark
 volumeMounts:
 - name: "test-volume"
 mountPath: "/tmp"
 executor:
 cores: 1
 instances: 1
 memory: "512m"
 labels:
 version: 3.4.1
 volumeMounts:
 - name: "test-volume"
 mountPath: "/tmp"

Now, submit the Spark application with the following command. This will also create a
SparkApplication object named spark-pi:

kubectl apply -f spark-pi.yaml

For more information on submitting applications to Spark through the Spark operator, see Using a
SparkApplication in the spark-on-k8s-operator documentation on GitHub.

Vertical autoscaling 115

https://www.kubeflow.org/docs/components/spark-operator/user-guide/using-sparkapplication/
https://www.kubeflow.org/docs/components/spark-operator/user-guide/using-sparkapplication/

Amazon EMR Amazon EMR on EKS Development Guide

Verifying the vertical autoscaling functionality

To verify that vertical autoscaling works correctly for the submitted job, use kubectl to get the
verticalpodautoscaler custom resource and view your scaling recommendations.

kubectl get verticalpodautoscalers --all-namespaces \
-l=emr-containers.amazonaws.com/dynamic.sizing.signature=my-signature

The output from this query should resemble the following:

NAMESPACE NAME MODE
 CPU MEM PROVIDED AGE
spark-operator ds-p73j6mkosvc4xeb3gr7x4xol2bfcw5evqimzqojrlysvj3giozuq-vpa Off
 580026651 True 15m

If your output doesn't look similar or contains an error code, see Troubleshooting Amazon EMR on
EKS vertical autoscaling for steps to help resolve the issue.

To remove the pods and applications, run the following command:

kubectl delete sparkapplication spark-pi

Uninstalling the Spark operator for Amazon EMR on EKS

Use the following steps to uninstall the Spark operator.

1. Delete the Spark operator using the correct namespace. For this example, the namespace is
spark-operator-demo.

helm uninstall spark-operator-demo -n spark-operator

2. Delete the Spark operator service account:

kubectl delete sa emr-containers-sa-spark-operator -n spark-operator

3. Delete the Spark operator CustomResourceDefinitions (CRDs):

kubectl delete crd sparkapplications.sparkoperator.k8s.io
kubectl delete crd scheduledsparkapplications.sparkoperator.k8s.io

Uninstall 116

Amazon EMR Amazon EMR on EKS Development Guide

Security and the Spark operator with Amazon EMR on EKS

Topics

• Setting up cluster access permissions with role-based access control (RBAC)

• Setting up cluster access permissions with IAM roles for service accounts (IRSA)

Setting up cluster access permissions with role-based access control (RBAC)

To deploy the Spark operator, Amazon EMR on EKS creates two roles and service accounts for the
Spark operator and the Spark apps.

Topics

• Operator service account and role

• Spark service account and role

Operator service account and role

Amazon EMR on EKS creates the operator service account and role to manage
SparkApplications for Spark jobs and for other resources such as services.

The default name for this service account is emr-containers-sa-spark-operator.

The following rules apply to this service role:

 rules:
- apiGroups:
 - ""
 resources:
 - pods
 verbs:
 - "*"
- apiGroups:
 - ""
 resources:
 - services
 - configmaps
 - secrets
 verbs:
 - create
 - get

Security 117

Amazon EMR Amazon EMR on EKS Development Guide

 - delete
 - update
- apiGroups:
 - extensions
 - networking.k8s.io
 resources:
 - ingresses
 verbs:
 - create
 - get
 - delete
- apiGroups:
 - ""
 resources:
 - nodes
 verbs:
 - get
- apiGroups:
 - ""
 resources:
 - events
 verbs:
 - create
 - update
 - patch
- apiGroups:
 - ""
 resources:
 - resourcequotas
 verbs:
 - get
 - list
 - watch
- apiGroups:
 - apiextensions.k8s.io
 resources:
 - customresourcedefinitions
 verbs:
 - create
 - get
 - update
 - delete
- apiGroups:
 - admissionregistration.k8s.io

Security 118

Amazon EMR Amazon EMR on EKS Development Guide

 resources:
 - mutatingwebhookconfigurations
 - validatingwebhookconfigurations
 verbs:
 - create
 - get
 - update
 - delete
- apiGroups:
 - sparkoperator.k8s.io
 resources:
 - sparkapplications
 - sparkapplications/status
 - scheduledsparkapplications
 - scheduledsparkapplications/status
 verbs:
 - "*"
 {{- if .Values.batchScheduler.enable }}
 # required for the `volcano` batch scheduler
- apiGroups:
 - scheduling.incubator.k8s.io
 - scheduling.sigs.dev
 - scheduling.volcano.sh
 resources:
 - podgroups
 verbs:
 - "*"
 {{- end }}
 {{ if .Values.webhook.enable }}
- apiGroups:
 - batch
 resources:
 - jobs
 verbs:
 - delete
 {{- end }}

Spark service account and role

A Spark driver pod needs a Kubernetes service account in the same namespace as the pod. This
service account needs permissions to create, get, list, patch and delete executor pods, and to create
a Kubernetes headless service for the driver. The driver fails and exits without the service account
unless the default service account in the pod's namespace has the required permissions.

Security 119

Amazon EMR Amazon EMR on EKS Development Guide

The default name for this service account is emr-containers-sa-spark.

The following rules apply to this service role:

 rules:
- apiGroups:
 - ""
 resources:
 - pods
 verbs:
 - "*"
- apiGroups:
 - ""
 resources:
 - services
 verbs:
 - "*"
- apiGroups:
 - ""
 resources:
 - configmaps
 verbs:
 - "*"
- apiGroups:
 - ""
 resources:
 - persistentvolumeclaims
 verbs:
 - "*"

Setting up cluster access permissions with IAM roles for service accounts (IRSA)

This section uses an example to demonstrate how to configure a Kubernetes service account to
assume an AWS Identity and Access Management role. Pods that use the service account can then
access any AWS service that the role has permissions to access.

The following example runs a Spark application to count the words from a file in Amazon S3. To do
this, you can set up IAM roles for service accounts (IRSA) to authenticate and authorize Kubernetes
service accounts.

Security 120

Amazon EMR Amazon EMR on EKS Development Guide

Note

This example uses the "spark-operator" namespace for the Spark operator and for the
namespace where you submit the Spark application.

Prerequisites

Before you try the example on this page, complete the following prerequisites:

• Get set up for the Spark operator.

• Install the Spark operator.

• Create an Amazon S3 bucket.

• Save your favorite poem in a text file named poem.txt, and upload the file to your S3 bucket.
The Spark application that you create on this page will read the contents of the text file. For
more information on uploading files to S3, see Upload an object to your bucket in the Amazon
Simple Storage Service User Guide.

Configure a Kubernetes service account to assume an IAM role

Use the following steps to configure a Kubernetes service account to assume an IAM role that pods
can use to access AWS services that the role has permissions to access.

1. After completing the Prerequisites, use the AWS Command Line Interface to create an
example-policy.json file that allows read-only access to the file that you uploaded to
Amazon S3:

cat >example-policy.json <<EOF
{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "s3:GetObject",
 "s3:ListBucket"
],
 "Resource": [
 "arn:aws:s3:::my-pod-bucket",

Security 121

https://docs.aws.amazon.com/AmazonS3/latest/userguide/creating-bucket.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/uploading-an-object-bucket.html

Amazon EMR Amazon EMR on EKS Development Guide

 "arn:aws:s3:::my-pod-bucket/*"
]
 }
]
}
EOF

2. Then, create an IAM policy example-policy:

aws iam create-policy --policy-name example-policy --policy-document file://
example-policy.json

3. Next, create an IAM role example-role and associate it with a Kubernetes service account for
the Spark driver:

eksctl create iamserviceaccount --name driver-account-sa --namespace spark-operator
 \
--cluster my-cluster --role-name "example-role" \
--attach-policy-arn arn:aws:iam::111122223333:policy/example-policy --approve

4. Create a yaml file with the cluster role bindings that are required for the Spark driver service
account:

cat >spark-rbac.yaml <<EOF
apiVersion: v1
kind: ServiceAccount
metadata:
 name: driver-account-sa

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
 name: spark-role
roleRef:
 apiGroup: rbac.authorization.k8s.io
 kind: ClusterRole
 name: edit
subjects:
 - kind: ServiceAccount
 name: driver-account-sa
 namespace: spark-operator
EOF

Security 122

Amazon EMR Amazon EMR on EKS Development Guide

5. Apply the cluster role binding configurations:

kubectl apply -f spark-rbac.yaml

The kubectl command should confirm successful creation of the account:

serviceaccount/driver-account-sa created
clusterrolebinding.rbac.authorization.k8s.io/spark-role configured

Running an application from the Spark operator

After you configure the Kubernetes service account, you can run a Spark application that counts
the number of words in the text file that you uploaded as part of the Prerequisites.

1. Create a new file word-count.yaml, with a SparkApplication definition for your word-
count application.

cat >word-count.yaml <<EOF
apiVersion: "sparkoperator.k8s.io/v1beta2"
kind: SparkApplication
metadata:
 name: word-count
 namespace: spark-operator
spec:
 type: Java
 mode: cluster
 image: "895885662937.dkr.ecr.us-west-2.amazonaws.com/spark/emr-6.10.0:latest"
 imagePullPolicy: Always
 mainClass: org.apache.spark.examples.JavaWordCount
 mainApplicationFile: local:///usr/lib/spark/examples/jars/spark-examples.jar
 arguments:
 - s3://my-pod-bucket/poem.txt
 hadoopConf:
 # EMRFS filesystem
 fs.s3.customAWSCredentialsProvider:
 com.amazonaws.auth.WebIdentityTokenCredentialsProvider
 fs.s3.impl: com.amazon.ws.emr.hadoop.fs.EmrFileSystem
 fs.AbstractFileSystem.s3.impl: org.apache.hadoop.fs.s3.EMRFSDelegate
 fs.s3.buffer.dir: /mnt/s3
 fs.s3.getObject.initialSocketTimeoutMilliseconds: "2000"

Security 123

Amazon EMR Amazon EMR on EKS Development Guide

 mapreduce.fileoutputcommitter.algorithm.version.emr_internal_use_only.EmrFileSystem:
 "2"
 mapreduce.fileoutputcommitter.cleanup-
failures.ignored.emr_internal_use_only.EmrFileSystem: "true"
 sparkConf:
 # Required for EMR Runtime
 spark.driver.extraClassPath: /usr/lib/hadoop-lzo/lib/*:/usr/lib/hadoop/
hadoop-aws.jar:/usr/share/aws/aws-java-sdk/*:/usr/share/aws/emr/emrfs/conf:/usr/
share/aws/emr/emrfs/lib/*:/usr/share/aws/emr/emrfs/auxlib/*:/usr/share/aws/emr/
security/conf:/usr/share/aws/emr/security/lib/*:/usr/share/aws/hmclient/lib/aws-
glue-datacatalog-spark-client.jar:/usr/share/java/Hive-JSON-Serde/hive-openx-
serde.jar:/usr/share/aws/sagemaker-spark-sdk/lib/sagemaker-spark-sdk.jar:/home/
hadoop/extrajars/*
 spark.driver.extraLibraryPath: /usr/lib/hadoop/lib/native:/usr/lib/hadoop-lzo/
lib/native:/docker/usr/lib/hadoop/lib/native:/docker/usr/lib/hadoop-lzo/lib/native
 spark.executor.extraClassPath: /usr/lib/hadoop-lzo/lib/*:/usr/lib/hadoop/
hadoop-aws.jar:/usr/share/aws/aws-java-sdk/*:/usr/share/aws/emr/emrfs/conf:/usr/
share/aws/emr/emrfs/lib/*:/usr/share/aws/emr/emrfs/auxlib/*:/usr/share/aws/emr/
security/conf:/usr/share/aws/emr/security/lib/*:/usr/share/aws/hmclient/lib/aws-
glue-datacatalog-spark-client.jar:/usr/share/java/Hive-JSON-Serde/hive-openx-
serde.jar:/usr/share/aws/sagemaker-spark-sdk/lib/sagemaker-spark-sdk.jar:/home/
hadoop/extrajars/*
 spark.executor.extraLibraryPath: /usr/lib/hadoop/lib/native:/usr/lib/hadoop-
lzo/lib/native:/docker/usr/lib/hadoop/lib/native:/docker/usr/lib/hadoop-lzo/lib/
native
 sparkVersion: "3.3.1"
 restartPolicy:
 type: Never
 driver:
 cores: 1
 coreLimit: "1200m"
 memory: "512m"
 labels:
 version: 3.3.1
 serviceAccount: my-spark-driver-sa
 executor:
 cores: 1
 instances: 1
 memory: "512m"
 labels:
 version: 3.3.1
EOF

Security 124

Amazon EMR Amazon EMR on EKS Development Guide

2. Submit the Spark application.

kubectl apply -f word-count.yaml

The kubectl command should return confirmation that you successfully created a
SparkApplication object called word-count.

sparkapplication.sparkoperator.k8s.io/word-count configured

3. To check events for the SparkApplication object, run the following command:

kubectl describe sparkapplication word-count -n spark-operator

The kubectl command should return the description of the SparkApplication with the
events:

Events:
 Type Reason Age From
 Message
 ---- ------ ---- ----

 Normal SparkApplicationSpecUpdateProcessed 3m2s (x2 over 17h) spark-
operator Successfully processed spec update for SparkApplication word-count
 Warning SparkApplicationPendingRerun 3m2s (x2 over 17h) spark-
operator SparkApplication word-count is pending rerun
 Normal SparkApplicationSubmitted 2m58s (x2 over 17h) spark-
operator SparkApplication word-count was submitted successfully
 Normal SparkDriverRunning 2m56s (x2 over 17h) spark-
operator Driver word-count-driver is running
 Normal SparkExecutorPending 2m50s spark-
operator Executor [javawordcount-fdd1698807392c66-exec-1] is pending
 Normal SparkExecutorRunning 2m48s spark-
operator Executor [javawordcount-fdd1698807392c66-exec-1] is running
 Normal SparkDriverCompleted 2m31s (x2 over 17h) spark-
operator Driver word-count-driver completed
 Normal SparkApplicationCompleted 2m31s (x2 over 17h) spark-
operator SparkApplication word-count completed
 Normal SparkExecutorCompleted 2m31s (x2 over 2m31s) spark-
operator Executor [javawordcount-fdd1698807392c66-exec-1] completed

Security 125

Amazon EMR Amazon EMR on EKS Development Guide

The application is now counting the words in your S3 file. To find the count of words, refer to the
log files for your driver:

kubectl logs pod/word-count-driver -n spark-operator

The kubectl command should return the contents of the log file with the results of your word-
count application.

INFO DAGScheduler: Job 0 finished: collect at JavaWordCount.java:53, took 5.146519 s
 Software: 1

For more information on how to submit applications to Spark through the Spark operator, see
Using a SparkApplication in the Kubernetes Operator for Apache Spark (spark-on-k8s-operator)
documentation on GitHub.

Running Spark jobs with spark-submit

Amazon EMR releases 6.10.0 and higher support spark-submit as a command-line tool that you
can use to submit and execute Spark applications to an Amazon EMR on EKS cluster.

Note

Amazon EMR calculates pricing on Amazon EKS based on vCPU and memory consumption.
This calculation applies to driver and executor pods. This calculation starts from when you
download your Amazon EMR application image until the Amazon EKS pod terminates and
is rounded to the nearest second.

Topics

• Setting up spark-submit for Amazon EMR on EKS

• Getting started with spark-submit for Amazon EMR on EKS

• Spark driver service account security requirements for spark-submit

Setting up spark-submit for Amazon EMR on EKS

Complete the following tasks to get set up before you can run an application with spark-submit on
Amazon EMR on EKS. If you've already signed up for Amazon Web Services (AWS) and have used

spark-submit 126

https://www.kubeflow.org/docs/components/spark-operator/user-guide/using-sparkapplication/

Amazon EMR Amazon EMR on EKS Development Guide

Amazon EKS, you are almost ready to use Amazon EMR on EKS. If you've already completed any of
the prerequisites, you can skip those and move on to the next one.

• Install or update to the latest version of the AWS CLI – If you've already installed the AWS CLI,
confirm that you have the latest version.

• Set up kubectl and eksctl – eksctl is a command line tool that you use to communicate with
Amazon EKS.

• Get started with Amazon EKS – eksctl – Follow the steps to create a new Kubernetes cluster
with nodes in Amazon EKS.

• Select an Amazon EMR base image URI (release 6.10.0 or higher) – the spark-submit
command is supported with Amazon EMR releases 6.10.0 and higher.

• Confirm that the driver service account has appropriate permissions to create and watch
executor pods. For more information, see Spark driver service account security requirements for
spark-submit.

• Set up your local AWS credentials profile.

• From the Amazon EKS console, choose your EKS cluster, then find the EKS cluster endpoint,
located under Overview, Details, then API server endpoint.

Getting started with spark-submit for Amazon EMR on EKS

Run a Spark application

Amazon EMR 6.10.0 and higher supports spark-submit for running Spark applications on an
Amazon EKS cluster. To run the Spark application, follow these steps:

1. Before you can run a Spark application with the spark-submit command, complete the steps
in Setting up spark-submit for Amazon EMR on EKS.

2. Run a container with an Amazon EMR on EKS base image. See How to select a base image URI
for more information.

kubectl run -it containerName --image=EMRonEKSImage --command -n namespace /bin/
bash

3. Set the values for the following environment variables:

export SPARK_HOME=spark-home

Getting started 127

https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html
https://docs.aws.amazon.com/eks/latest/userguide/install-kubectl.html
https://docs.aws.amazon.com/eks/latest/userguide/getting-started-eksctl.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-files.html
https://docs.aws.amazon.com/emr/latest/EMR-on-EKS-DevelopmentGuide/docker-custom-images-tag.html

Amazon EMR Amazon EMR on EKS Development Guide

export MASTER_URL=k8s://Amazon EKS-cluster-endpoint

4. Now, submit the Spark application with the following command:

$SPARK_HOME/bin/spark-submit \
 --class org.apache.spark.examples.SparkPi \
 --master $MASTER_URL \
 --conf spark.kubernetes.container.image=895885662937.dkr.ecr.us-
west-2.amazonaws.com/spark/emr-6.10.0:latest \
 --conf spark.kubernetes.authenticate.driver.serviceAccountName=spark \
 --deploy-mode cluster \
 --conf spark.kubernetes.namespace=spark-operator \
 local:///usr/lib/spark/examples/jars/spark-examples.jar 20

For more information about submitting applications to Spark, see Submitting applications in the
Apache Spark documentation.

Important

spark-submit only supports cluster mode as the submission mechanism.

Spark driver service account security requirements for spark-submit

The Spark driver pod uses a Kubernetes service account to access the Kubernetes API server to
create and watch executor pods. Driver service account must have appropriate permissions to list,
create, edit, patch and delete pods in your cluster. You can verify that you can list these resources
by running the following command:

kubectl auth can-i list|create|edit|delete|patch pods

Verify that you have the necessary permissions by running each command.

kubectl auth can-i list pods
kubectl auth can-i create pods
kubectl auth can-i edit pods
kubectl auth can-i delete pods
kubectl auth can-i patch pods

Security 128

https://spark.apache.org/docs/latest/submitting-applications.html

Amazon EMR Amazon EMR on EKS Development Guide

The following rules apply to this service role:

 rules:
- apiGroups:
 - ""
 resources:
 - pods
 verbs:
 - "*"
- apiGroups:
 - ""
 resources:
 - services
 verbs:
 - "*"
- apiGroups:
 - ""
 resources:
 - configmaps
 verbs:
 - "*"
- apiGroups:
 - ""
 resources:
 - persistentvolumeclaims
 verbs:
 - "*"

Setting up IAM roles for service accounts (IRSA) for spark-submit

The following sections explain how to set up IAM roles for service accounts (IRSA) to authenticate
and authorize Kubernetes service accounts so you can run Spark applications stored in Amazon S3.

Prerequisites

Before trying any of the examples in this documentation, make sure that you have completed the
following prerequisites:

• Finished setting up spark-submit

• Created an S3 bucket and uploaded the spark application jar

Security 129

https://docs.aws.amazon.com/emr/latest/EMR-on-EKS-DevelopmentGuide/spark-submit-setup.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/creating-bucket.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/uploading-an-object-bucket.html

Amazon EMR Amazon EMR on EKS Development Guide

Configuring a Kubernetes service account to assume an IAM role

The following steps cover how to configure a Kubernetes service account to assume an AWS
Identity and Access Management (IAM) role. After you configure the pods to use the service
account, they can then access any AWS service that the role has permissions to access.

1. Create a policy file to allow read-only access to the Amazon S3 object you uploaded:

cat >my-policy.json <<EOF
{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "s3:GetObject",
 "s3:ListBucket"
],
 "Resource": [
 "arn:aws:s3:::<my-spark-jar-bucket>",
 "arn:aws:s3:::<my-spark-jar-bucket>/*"
]
 }
]
}
EOF

2. Create the IAM policy.

aws iam create-policy --policy-name my-policy --policy-document file://my-
policy.json

3. Create an IAM role and associate it with a Kubernetes service account for the Spark driver

eksctl create iamserviceaccount --name my-spark-driver-sa --namespace spark-
operator \
--cluster my-cluster --role-name "my-role" \
--attach-policy-arn arn:aws:iam::111122223333:policy/my-policy --approve

4. Create a YAML file with the required permissions for the Spark driver service account:

cat >spark-rbac.yaml <<EOF
apiVersion: rbac.authorization.k8s.io/v1

Security 130

https://docs.aws.amazon.com/AmazonS3/latest/userguide/uploading-an-object-bucket.html
https://docs.aws.amazon.com/emr/latest/EMR-on-EKS-DevelopmentGuide/spark-submit-security.html

Amazon EMR Amazon EMR on EKS Development Guide

kind: Role
metadata:
 namespace: default
 name: emr-containers-role-spark
rules:
- apiGroups:
 - ""
 resources:
 - pods
 verbs:
 - "*"
- apiGroups:
 - ""
 resources:
 - services
 verbs:
 - "*"
- apiGroups:
 - ""
 resources:
 - configmaps
 verbs:
 - "*"
- apiGroups:
 - ""
 resources:
 - persistentvolumeclaims
 verbs:
 - "*"

apiVersion: rbac.authorization.k8s.io/v1
kind: RoleBinding
metadata:
 name: spark-role-binding
 namespace: default
roleRef:
 apiGroup: rbac.authorization.k8s.io
 kind: Role
 name: emr-containers-role-spark
subjects:
- kind: ServiceAccount
 name: emr-containers-sa-spark
 namespace: default

Security 131

Amazon EMR Amazon EMR on EKS Development Guide

EOF

5. Apply the cluster role binding configurations.

kubectl apply -f spark-rbac.yaml

6. The kubectl command should return confirmation of the created account.

serviceaccount/emr-containers-sa-spark created
clusterrolebinding.rbac.authorization.k8s.io/emr-containers-role-spark configured

Running the Spark application

Amazon EMR 6.10.0 and higher supports spark-submit for running Spark applications on an
Amazon EKS cluster. To run the Spark application, follow these steps:

1. Make sure that you have completed the steps in Setting up spark-submit for Amazon EMR on
EKS.

2. Set the values for the following environment variables:

export SPARK_HOME=spark-home
export MASTER_URL=k8s://Amazon EKS-cluster-endpoint

3. Now, submit the Spark application with the following command:

$SPARK_HOME/bin/spark-submit \
 --class org.apache.spark.examples.SparkPi \
 --master $MASTER_URL \
 --conf spark.kubernetes.container.image=895885662937.dkr.ecr.us-
west-2.amazonaws.com/spark/emr-6.15.0:latest \
 --conf spark.kubernetes.authenticate.driver.serviceAccountName=emr-containers-sa-
spark \
 --deploy-mode cluster \
 --conf spark.kubernetes.namespace=default \
 --conf "spark.driver.extraClassPath=/usr/lib/hadoop-lzo/lib/*:/usr/lib/hadoop/
hadoop-aws.jar:/usr/share/aws/aws-java-sdk/*:/usr/share/aws/emr/emrfs/conf:/usr/
share/aws/emr/emrfs/lib/*:/usr/share/aws/emr/emrfs/auxlib/*:/usr/share/aws/emr/
security/conf:/usr/share/aws/emr/security/lib/*:/usr/share/aws/hmclient/lib/aws-
glue-datacatalog-spark-client.jar:/usr/share/java/Hive-JSON-Serde/hive-openx-
serde.jar:/usr/share/aws/sagemaker-spark-sdk/lib/sagemaker-spark-sdk.jar:/home/
hadoop/extrajars/*" \

Security 132

https://docs.aws.amazon.com/emr/latest/EMR-on-EKS-DevelopmentGuide/spark-submit-setup.html
https://docs.aws.amazon.com/emr/latest/EMR-on-EKS-DevelopmentGuide/spark-submit-setup.html

Amazon EMR Amazon EMR on EKS Development Guide

 --conf "spark.driver.extraLibraryPath=/usr/lib/hadoop/lib/native:/usr/lib/hadoop-
lzo/lib/native:/docker/usr/lib/hadoop/lib/native:/docker/usr/lib/hadoop-lzo/lib/
native" \
 --conf "spark.executor.extraClassPath=/usr/lib/hadoop-lzo/lib/*:/usr/lib/hadoop/
hadoop-aws.jar:/usr/share/aws/aws-java-sdk/*:/usr/share/aws/emr/emrfs/conf:/usr/
share/aws/emr/emrfs/lib/*:/usr/share/aws/emr/emrfs/auxlib/*:/usr/share/aws/emr/
security/conf:/usr/share/aws/emr/security/lib/*:/usr/share/aws/hmclient/lib/aws-
glue-datacatalog-spark-client.jar:/usr/share/java/Hive-JSON-Serde/hive-openx-
serde.jar:/usr/share/aws/sagemaker-spark-sdk/lib/sagemaker-spark-sdk.jar:/home/
hadoop/extrajars/*" \
 --conf "spark.executor.extraLibraryPath=/usr/lib/hadoop/lib/native:/usr/lib/
hadoop-lzo/lib/native:/docker/usr/lib/hadoop/lib/native:/docker/usr/lib/hadoop-lzo/
lib/native" \
 --conf
 spark.hadoop.fs.s3.customAWSCredentialsProvider=com.amazonaws.auth.WebIdentityTokenCredentialsProvider
 \
 --conf spark.hadoop.fs.s3.impl=com.amazon.ws.emr.hadoop.fs.EmrFileSystem \
 --conf
 spark.hadoop.fs.AbstractFileSystem.s3.impl=org.apache.hadoop.fs.s3.EMRFSDelegate \
 --conf spark.hadoop.fs.s3.buffer.dir=/mnt/s3 \
 --conf spark.hadoop.fs.s3.getObject.initialSocketTimeoutMilliseconds="2000" \
 --conf
 spark.hadoop.mapreduce.fileoutputcommitter.algorithm.version.emr_internal_use_only.EmrFileSystem="2"
 \
 --conf spark.hadoop.mapreduce.fileoutputcommitter.cleanup-
failures.ignored.emr_internal_use_only.EmrFileSystem="true" \
 s3://my-pod-bucket/spark-examples.jar 20

4. After the spark driver finishes the Spark job, you should see a log line at the end of the
submission indicating that the Spark job has finished.

23/11/24 17:02:14 INFO LoggingPodStatusWatcherImpl: Application
 org.apache.spark.examples.SparkPi with submission ID default:org-apache-spark-
examples-sparkpi-4980808c03ff3115-driver finished
23/11/24 17:02:14 INFO ShutdownHookManager: Shutdown hook called

Cleanup

When you're done running your applications, you can perform cleanup with the following
command.

Security 133

Amazon EMR Amazon EMR on EKS Development Guide

kubectl delete -f spark-rbac.yaml

Using Apache Livy with Amazon EMR on EKS

With Amazon EMR releases 7.1.0 and higher, you can use Apache Livy to submit jobs on Amazon
EMR on EKS. Using Apache Livy, you can set up your own Apache Livy REST endpoint and use it to
deploy and manage Spark applications on your Amazon EKS clusters. After you install Livy in your
Amazon EKS cluster, you can use the Livy endpoint to submit Spark applications to your Livy server.
The server manages the lifecycle of the Spark applications.

Note

Amazon EMR calculates pricing on Amazon EKS based on vCPU and memory consumption.
This calculation applies to driver and executor pods. This calculation starts from when you
download your Amazon EMR application image until the Amazon EKS pod terminates and
is rounded to the nearest second.

Topics

• Setting up Apache Livy for Amazon EMR on EKS

• Getting started with Apache Livy on Amazon EMR on EKS

• Running a Spark application with Apache Livy for Amazon EMR on EKS

• Uninstalling Apache Livy with Amazon EMR on EKS

• Security for Apache Livy with Amazon EMR on EKS

• Installation properties for Apache Livy on Amazon EMR on EKS releases

• Troubleshooting

Setting up Apache Livy for Amazon EMR on EKS

Before you can install Apache Livy on your Amazon EKS cluster, you must complete the following
tasks.

• Install or update to the latest version of the AWS CLI – If you've already installed the AWS CLI,
confirm that you have the latest version.

Apache Livy 134

https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html

Amazon EMR Amazon EMR on EKS Development Guide

• Set up kubectl and eksctl – eksctl is a command line tool that you use to communicate with
Amazon EKS.

• Install Helm – The Helm package manager for Kubernetes helps you install and manage
applications on your Kubernetes cluster.

• Get started with Amazon EKS – eksctl – Follow the steps to create a new Kubernetes cluster
with nodes in Amazon EKS.

• Select an Amazon EMR release label – the Apache Livy is supported with Amazon EMR releases
7.1.0 and higher.

• Install the ALB controller – the ALB controller manages AWS Elastic Load Balancing for
Kubernetes clusters. It creates an AWS Network Load Balancer (NLB) when you create a
Kubernetes Ingress while setting up Apache Livy.

Getting started with Apache Livy on Amazon EMR on EKS

Complete the following steps to install Apache Livy.

1. If you haven't already, set up Apache Livy for Amazon EMR on EKS.

2. Authenticate your Helm client to the Amazon ECR registry. You can find the corresponding
ECR-registry-account value for your AWS Region from Amazon ECR registry accounts by
Region.

aws ecr get-login-password \--region <AWS_REGION> | helm registry login \
--username AWS \
--password-stdin <ECR-registry-account>.dkr.ecr.<region-id>.amazonaws.com

3. Setting up Livy creates a service account for the Livy server and another account for the Spark
application. To set up IRSA for the service accounts, see Setting up access permissions with IAM
roles for service accounts (IRSA).

4. Create a namespace to run your Spark workloads.

kubectl create ns <spark-ns>

5. Use the following command to install Livy.

This Livy endpoint is only internally available to the VPC in the EKS cluster. To enable access
beyond the VPC, set —-set loadbalancer.internal=false in your Helm installation
command.

Getting started 135

https://docs.aws.amazon.com/eks/latest/userguide/install-kubectl.html
https://docs.aws.amazon.com/eks/latest/userguide/helm.html
https://docs.aws.amazon.com/eks/latest/userguide/getting-started-eksctl.html
https://docs.aws.amazon.com/eks/latest/userguide/aws-load-balancer-controller.html
https://docs.aws.amazon.com/emr/latest/EMR-on-EKS-DevelopmentGuide/job-runs-apache-livy-setup.html
https://docs.aws.amazon.com/emr/latest/EMR-on-EKS-DevelopmentGuide/docker-custom-images-tag.html#docker-custom-images-ECR
https://docs.aws.amazon.com/emr/latest/EMR-on-EKS-DevelopmentGuide/docker-custom-images-tag.html#docker-custom-images-ECR
https://docs.aws.amazon.com/emr/latest/EMR-on-EKS-DevelopmentGuide/job-runs-apache-livy-irsa.html
https://docs.aws.amazon.com/emr/latest/EMR-on-EKS-DevelopmentGuide/job-runs-apache-livy-irsa.html

Amazon EMR Amazon EMR on EKS Development Guide

Note

By default, SSL is not enabled within this Livy endpoint and the endpoint is only visible
inside the VPC of the EKS cluster. If you set loadbalancer.internal=false and
ssl.enabled=false, you are exposing an insecure endpointto outside of your VPC.
To set up a secure Livy endpoint, see Configuring a secure Apache Livy endpoint with
TLS/SSL.

helm install livy-demo \
 oci://895885662937.dkr.ecr.region-id.amazonaws.com/livy \
 --version 7.2.0 \
 --namespace livy-ns \
 --set image=ECR-registry-account.dkr.ecr.region-id.amazonaws.com/livy/
emr-7.2.0:latest \
 --set sparkNamespace=<spark-ns> \
 --create-namespace

You should see the following output.

NAME: livy-demo
LAST DEPLOYED: Mon Mar 18 09:23:23 2024
NAMESPACE: livy-ns
STATUS: deployed
REVISION: 1
TEST SUITE: None
NOTES:
The Livy server has been installed.
Check installation status:
1. Check Livy Server pod is running
 kubectl --namespace livy-ns get pods -l "app.kubernetes.io/instance=livy-demo"
2. Verify created NLB is in Active state and it's target groups are healthy (if
 loadbalancer.enabled is true)

Access LIVY APIs:
 # Ensure your NLB is active and healthy
 # Get the Livy endpoint using command:
 LIVY_ENDPOINT=$(kubectl get svc -n livy-ns -l app.kubernetes.io/
instance=livy-demo,emr-containers.amazonaws.com/type=loadbalancer -o

Getting started 136

https://docs.aws.amazon.com/emr/latest/EMR-on-EKS-DevelopmentGuide/job-runs-apache-livy-secure-endpoint.html
https://docs.aws.amazon.com/emr/latest/EMR-on-EKS-DevelopmentGuide/job-runs-apache-livy-secure-endpoint.html

Amazon EMR Amazon EMR on EKS Development Guide

 jsonpath='{.items[0].status.loadBalancer.ingress[0].hostname}' | awk '{printf
 "%s:8998\n", $0}')
 # Access Livy APIs using http://$LIVY_ENDPOINT or https://$LIVY_ENDPOINT (if
 SSL is enabled)
 # Note: While uninstalling Livy, makes sure the ingress and NLB are deleted
 after running the helm command to avoid dangling resources

The default service account names for the Livy server and the Spark session are emr-
containers-sa-livy and emr-containers-sa-spark-livy. To use custom names, use
the serviceAccounts.name and sparkServiceAccount.name parameters.

--set serviceAccounts.name=my-service-account-for-livy
--set sparkServiceAccount.name=my-service-account-for-spark

6. Verify that you installed the Helm chart.

helm list -n livy-ns -o yaml

The helm list command should return information about your new Helm chart.

app_version: 0.7.1-incubating
chart: livy-emr-7.2.0
name: livy-demo
namespace: livy-ns
revision: "1"
status: deployed
updated: 2024-02-08 22:39:53.539243 -0800 PST

7. Verify that the Network Load Balancer is active.

LIVY_NAMESPACE=<livy-ns>
LIVY_APP_NAME=<livy-app-name>
AWS_REGION=<AWS_REGION>

Get the NLB Endpoint URL
NLB_ENDPOINT=$(kubectl --namespace $LIVY_NAMESPACE get svc -l "app.kubernetes.io/
instance=$LIVY_APP_NAME,emr-containers.amazonaws.com/type=loadbalancer" -o
 jsonpath='{.items[0].status.loadBalancer.ingress[0].hostname}')

Get all the load balancers in the account's region
ELB_LIST=$(aws elbv2 describe-load-balancers --region $AWS_REGION)

Getting started 137

Amazon EMR Amazon EMR on EKS Development Guide

Get the status of the NLB that matching the endpoint from the Kubernetes service
NLB_STATUS=$(echo $ELB_LIST | grep -A 8 "\"DNSName\": \"$NLB_ENDPOINT\"" | awk '/
Code/{print $2}/}/' | tr -d '"},\n')
echo $NLB_STATUS

8. Now verify that the target group in the Network Load Balancer is healthy.

LIVY_NAMESPACE=<livy-ns>
LIVY_APP_NAME=<livy-app-name>
AWS_REGION=<AWS_REGION>

Get the NLB endpoint
NLB_ENDPOINT=$(kubectl --namespace $LIVY_NAMESPACE get svc -l "app.kubernetes.io/
instance=$LIVY_APP_NAME,emr-containers.amazonaws.com/type=loadbalancer" -o
 jsonpath='{.items[0].status.loadBalancer.ingress[0].hostname}')

Get all the load balancers in the account's region
ELB_LIST=$(aws elbv2 describe-load-balancers --region $AWS_REGION)

Get the NLB ARN from the NLB endpoint
NLB_ARN=$(echo $ELB_LIST | grep -B 1 "\"DNSName\": \"$NLB_ENDPOINT\"" | awk
 '/"LoadBalancerArn":/,/"/'| awk '/:/{print $2}' | tr -d \",)

Get the target group from the NLB. Livy setup only deploys 1 target group
TARGET_GROUP_ARN=$(aws elbv2 describe-target-groups --load-balancer-arn $NLB_ARN
 --region $AWS_REGION | awk '/"TargetGroupArn":/,/"/'| awk '/:/{print $2}' | tr -d
 \",)

Get health of target group
aws elbv2 describe-target-health --target-group-arn $TARGET_GROUP_ARN

The following is sample output that shows the status of the target group:

{
 "TargetHealthDescriptions": [
 {
 "Target": {
 "Id": "<target IP>",
 "Port": 8998,
 "AvailabilityZone": "us-west-2d"
 },
 "HealthCheckPort": "8998",

Getting started 138

Amazon EMR Amazon EMR on EKS Development Guide

 "TargetHealth": {
 "State": "healthy"
 }
 }
]
}

Once the status of your NLB becomes active and your target group is healthy, you can
continue. It might take a few minutes.

9. Retrieve the Livy endpoint from the Helm installation. Whether or not your Livy endpoint is
secure depends on whether you enabled SSL.

LIVY_NAMESPACE=<livy-ns>
 LIVY_APP_NAME=livy-app-name
 LIVY_ENDPOINT=$(kubectl get svc -n livy-ns -l app.kubernetes.io/
instance=livy-app-name,emr-containers.amazonaws.com/type=loadbalancer -o
 jsonpath='{.items[0].status.loadBalancer.ingress[0].hostname}' | awk '{printf
 "%s:8998\n", $0}')
 echo "$LIVY_ENDPOINT"

10. Retrieve the Spark service account from the Helm installation

SPARK_NAMESPACE=spark-ns
LIVY_APP_NAME=<livy-app-name>
SPARK_SERVICE_ACCOUNT=$(kubectl --namespace $SPARK_NAMESPACE
 get sa -l "app.kubernetes.io/instance=$LIVY_APP_NAME" -o
 jsonpath='{.items[0].metadata.name}')
echo "$SPARK_SERVICE_ACCOUNT"

You should see something similar to the following output:

emr-containers-sa-spark-livy

11. If you set internalALB=true to enable access from outside of your VPC, create an Amazon
EC2 instance and make sure the Network Load Balancer allows network traffic coming from
the EC2 instance. You must do so for the instance to have access to your Livy endpoint. For
more information about securely exposing your endpoint outside of your VPC, see Setting up
with a secure Apache Livy endpoint with TLS/SSL.

Getting started 139

https://docs.aws.amazon.com/emr/latest/EMR-on-EKS-DevelopmentGuide/job-runs-apache-livy-secure-endpoint.html
https://docs.aws.amazon.com/emr/latest/EMR-on-EKS-DevelopmentGuide/job-runs-apache-livy-secure-endpoint.html

Amazon EMR Amazon EMR on EKS Development Guide

12. Installing Livy creates the service account emr-containers-sa-spark to run Spark
applications. If your Spark application uses any AWS resources like S3 or calls AWS API or CLI
operations, you must link an IAM role with the necessary permissions to your spark service
account. For more information, see Setting up access permissions with IAM roles for service
accounts (IRSA).

Apache Livy supports additional configurations that you can use while installing Livy. For more
information, see Installation properties for Apache Livy on Amazon EMR on EKS releases.

Running a Spark application with Apache Livy for Amazon EMR on EKS

Before you can run a Spark application with Apache Livy, make sure that you have completed the
steps in Setting up Apache Livy for Amazon EMR on EKS and Getting started with Apache Livy for
Amazon EMR on EKS.

You can use Apache Livy to run two types of applications:

• Batch sessions – a type of Livy workload to submit Spark batch jobs.

• Interactive sessions – a type of Livy workload that provides a programmatic and visual interface
to run Spark queries.

Note

Driver and executor pods from different sessions can communicate with each other.
Namespaces don't guarantee any security between pods. Kubernetes doesn't allow
selective permissions on a subset of pods inside a given namespace.

Running batch sessions

To submit a batch job, use the following command.

curl -s -k -H 'Content-Type: application/json' -X POST \
 -d '{
 "name": "my-session",
 "file": "entryPoint_location (S3 or local)",
 "args": ["argument1", "argument2", ...],
 "conf": {

Running a Spark application 140

https://docs.aws.amazon.com/emr/latest/EMR-on-EKS-DevelopmentGuide/job-runs-apache-livy-irsa.html
https://docs.aws.amazon.com/emr/latest/EMR-on-EKS-DevelopmentGuide/job-runs-apache-livy-irsa.html
https://docs.aws.amazon.com/emr/latest/EMR-on-EKS-DevelopmentGuide/job-runs-apache-livy-setup.html
https://docs.aws.amazon.com/emr/latest/EMR-on-EKS-DevelopmentGuide/job-runs-apache-livy-install.html
https://docs.aws.amazon.com/emr/latest/EMR-on-EKS-DevelopmentGuide/job-runs-apache-livy-install.html

Amazon EMR Amazon EMR on EKS Development Guide

 "spark.kubernetes.namespace": "<spark-namespace>",
 "spark.kubernetes.container.image": "public.ecr.aws/emr-on-eks/spark/
emr-7.2.0:latest",
 "spark.kubernetes.authenticate.driver.serviceAccountName": "<spark-
service-account>"
 }
 }' <livy-endpoint>/batches

To monitor your batch job, use the following command.

curl -s -k -H 'Content-Type: application/json' -X GET <livy-endpoint>/batches/my-
session

Running interactive sessions

To run interactive sessions with Apache Livy, see the following steps.

1. Make sure you have access to either a self-hosted or a managed Jupyter notebook, such as a
SageMaker Jupyter notebook. Your jupyter notebook must have sparkmagic installed.

2. Create a bucket for Spark configuration spark.kubernetes.file.upload.path. Make sure
the Spark service account has read and write access to the bucket. For more details on how
to configure your spark service account, see Setting up access permissions with IAM roles for
service accounts (IRSA)

3. Load sparkmagic in the Jupyter notebook with the command %load_ext
sparkmagic.magics.

4. Run the command %manage_spark to set up your Livy endpoint with the Jupyter notebook.
Choose the Add Endpoints tab, choose the configured auth type, add the Livy endpoint to the
notebook, and then choose Add endpoint.

5. Run %manage_spark again to create the Spark context and then go to the Create session.
Choose the Livy endpoint, specify a unique session name choose a language, and then add the
following properties.

{
 "conf": {
 "spark.kubernetes.namespace": "livy-namespace",
 "spark.kubernetes.container.image": "public.ecr.aws/emr-on-eks/spark/
emr-7.2.0:latest",
 "spark.kubernetes.authenticate.driver.serviceAccountName": "<spark-service-
account>",

Running a Spark application 141

https://github.com/jupyter-incubator/sparkmagic/blob/master/README.md

Amazon EMR Amazon EMR on EKS Development Guide

 "spark.kubernetes.file.upload.path": "<URI_TO_S3_LOCATION_>"
 }
}

6. Submit the application and wait for it to create the Spark context.

7. To monitor the status of the interactive session, run the following command.

curl -s -k -H 'Content-Type: application/json' -X GET livy-endpoint/sessions/my-
interactive-session

Monitoring Spark applications

To monitor the progress of your Spark applications with the Livy UI, use the link http://<livy-
endpoint>/ui.

Uninstalling Apache Livy with Amazon EMR on EKS

Follow these steps to uninstall Apache Livy.

1. Delete the Livy setup using the names of your namespace and application name. In this
example, the application name is livy-demo and the namespace is livy-ns.

helm uninstall livy-demo -n livy-ns

2. When uninstalling, Amazon EMR on EKS deletes the Kubernetes service in Livy, the AWS load
balancers, and the target groups that you created during installation. Deleting resources can
take a few minutes. Make sure that the resources are deleted before installing Livy on the
namespace again.

3. Delete the Spark namespace.

kubectl delete namespace spark-ns

Security for Apache Livy with Amazon EMR on EKS

See the following pages to learn more about configuring security for Apache Livy with Amazon
EMR on EKS

Topics

Uninstalling 142

Amazon EMR Amazon EMR on EKS Development Guide

• Setting up a secure Apache Livy endpoint with TLS/SSL

• Setting up the Apache Livy and Spark application permissions with role-based access control
(RBAC)

• Setting up access permissions with IAM roles for service accounts (IRSA)

Setting up a secure Apache Livy endpoint with TLS/SSL

See the following sections to learn more about setting up Apache Livy for Amazon EMR on EKS
with end-to-end TLS and SSL encryption.

Setting up TLS and SSL encryption

To set up SSL encryption on your Apache Livy endpoint, follow these steps.

• Install the Secrets Store CSI Driver and AWS Secrets and Configuration Provider (ASCP) – the
Secrets Store CSI Driver and ASCP securely store Livy's JKS certificates and passwords that the
Livy server pod needs to enable SSL. You can also install just the Secrets Store CSI Driver and use
any other supported secrets provider.

• Create an ACM certificate – this certificate is required to secure the connection between the
client and the ALB endpoint.

• Set up a JKS certificate, key password, and keystore password for AWS Secrets Manager –
required to secure the connection between the ALB endpoint and the Livy server.

• Add permissions to the Livy service account to retrieve secrets from AWS Secrets Manager
– the Livy server needs these permissions to retrieve secrets from ASCP and add the Livy
configurations to secure the Livy server. To add IAM permissions to a service account, see Setting
up access permissions with IAM roles for service accounts (IRSA).

Setting up a JKS certificate with a key and a keystore password for AWS Secrets Manager

Follow these steps to set up a JKS certificate with a key and a keystore password.

1. Generate a keystore file for the Livy server.

keytool -genkey -alias <host> -keyalg RSA -keysize 2048 –dname
 CN=<host>,OU=hw,O=hw,L=<your_location>,ST=<state>,C=<country> –
keypass <keyPassword> -keystore <keystore_file> -storepass <storePassword> --
validity 3650

Security 143

https://docs.aws.amazon.com/secretsmanager/latest/userguide/integrating_csi_driver.html
https://docs.aws.amazon.com/acm/latest/userguide/gs-acm-request-public.html

Amazon EMR Amazon EMR on EKS Development Guide

2. Create a certificate.

keytool -export -alias <host> -keystore mykeystore.jks -rfc -
file mycertificate.cert -storepass <storePassword>

3. Create a truststore file.

keytool -import -noprompt -alias <host>-file <cert_file> -
keystore <truststore_file> -storepass <truststorePassword>

4. Save the JKS certificate in AWS Secrets Manager. Replace livy-jks-secret with your secret
and fileb://mykeystore.jks with the path to your keystore JKS certificate.

aws secretsmanager create-secret \
--name livy-jks-secret \
--description "My Livy keystore JKS secret" \
--secret-binary fileb://mykeystore.jks

5. Save the keystore and key password in Secrets Manager. Make sure to use your own
parameters.

aws secretsmanager create-secret \
--name livy-jks-secret \
--description "My Livy key and keystore password secret" \
--secret-string "{\"keyPassword\":\"<test-key-password>\",\"keyStorePassword\":
\"<test-key-store-password>\"}"

6. Create a Livy server namespace with the following command.

kubectl create ns <livy-ns>

7. Create the ServiceProviderClass object for the Livy server that has the JKS certificate and
the passwords.

cat >livy-secret-provider-class.yaml << EOF
apiVersion: secrets-store.csi.x-k8s.io/v1
kind: SecretProviderClass
metadata:
 name: aws-secrets
spec:
 provider: aws
 parameters:

Security 144

Amazon EMR Amazon EMR on EKS Development Guide

 objects: |
 - objectName: "livy-jks-secret"
 objectType: "secretsmanager"
 - objectName: "livy-passwords"
 objectType: "secretsmanager"

EOF
kubectl apply -f livy-secret-provider-class.yaml -n <livy-ns>

Getting started with SSL-enabled Apache Livy

After enabling SSL on your Livy server, you must set up the serviceAccount to have access to
the keyStore and keyPasswords secrets on AWS Secrets Manager.

1. Create the Livy server namespace.

kubectl create namespace <livy-ns>

2. Set up the Livy service account to have access to the secrets in Secrets Manager. For more
information about setting up IRSA, see Setting up IRSA while installing Apache Livy.

aws ecr get-login-password \--region region-id | helm registry login \
--username AWS \
--password-stdin ECR-registry-account.dkr.ecr.region-id.amazonaws.com

3. Install Livy. For the Helm chart --version parameter, use your Amazon EMR release label, such
as 7.1.0. You must also replace the Amazon ECR registry account ID and Region ID with your
own IDs. You can find the corresponding ECR-registry-account value for your AWS Region
from Amazon ECR registry accounts by Region.

helm install <livy-app-name> \
 oci://895885662937.dkr.ecr.region-id.amazonaws.com/livy \
 --version 7.2.0 \
 --namespace livy-namespace-name \
 --set image=<ECR-registry-account.dkr.ecr>.<region>.amazonaws.com/livy/
emr-7.2.0:latest \
 --set sparkNamespace=spark-namespace \
 --set ssl.enabled=true
 --set ssl.CertificateArn=livy-acm-certificate-arn
 --set ssl.secretProviderClassName=aws-secrets
 --set ssl.keyStoreObjectName=livy-jks-secret

Security 145

https://docs.aws.amazon.com/emr/latest/EMR-on-EKS-DevelopmentGuide/job-runs-apache-livy-irsa.html#job-runs-apache-livy-irsa
https://docs.aws.amazon.com/emr/latest/EMR-on-EKS-DevelopmentGuide/docker-custom-images-tag.html#docker-custom-images-ECR

Amazon EMR Amazon EMR on EKS Development Guide

 --set ssl.keyPasswordsObjectName=livy-passwords
 --create-namespace

4. Continue from step 5 of the Installing Apache Livy on Amazon EMR on EKS.

Setting up the Apache Livy and Spark application permissions with role-based
access control (RBAC)

To deploy Livy, Amazon EMR on EKS creates a server service account and role and a Spark service
account and role. These roles must have the necessary RBAC permissions to finish setup and run
Spark applications.

RBAC permissions for the server service account and role

Amazon EMR on EKS creates the Livy server service account and role to manage Livy sessions for
Spark jobs and routing traffic to and from the ingress and other resources.

The default name for this service account is emr-containers-sa-livy. It must have the
following permissions.

rules:
- apiGroups:
 - ""
 resources:
 - "namespaces"
 verbs:
 - "get"
- apiGroups:
 - ""
 resources:
 - "serviceaccounts"
 "services"
 "configmaps"
 "events"
 "pods"
 "pods/log"
 verbs:
 - "get"
 "list"
 "watch"
 "describe"
 "create"

Security 146

https://docs.aws.amazon.com/emr/latest/EMR-on-EKS-DevelopmentGuide/job-runs-apache-livy-setup.html#job-runs-apache-livy-install

Amazon EMR Amazon EMR on EKS Development Guide

 "edit"
 "delete"
 "deletecollection"
 "annotate"
 "patch"
 "label"
 - apiGroups:
 - ""
 resources:
 - "secrets"
 verbs:
 - "create"
 "patch"
 "delete"
 "watch"
 - apiGroups:
 - ""
 resources:
 - "persistentvolumeclaims"
 verbs:
 - "get"
 "list"
 "watch"
 "describe"
 "create"
 "edit"
 "delete"
 "annotate"
 "patch"
 "label"

RBAC permissions for the spark service account and role

A Spark driver pod needs a Kubernetes service account in the same namespace as the pod. This
service account needs permissions to manage executor pods and any resources required by the
driver pod. Unless the default service account in the namespace has the required permissions, the
driver fails and exits. The following RBAC permissions are required.

rules:
- apiGroups:
 - ""
 "batch"
 "extensions"

Security 147

Amazon EMR Amazon EMR on EKS Development Guide

 "apps"
 resources:
 - "configmaps"
 "serviceaccounts"
 "events"
 "pods"
 "pods/exec"
 "pods/log"
 "pods/portforward"
 "secrets"
 "services"
 "persistentvolumeclaims"
 "statefulsets"
 verbs:
 - "create"
 "delete"
 "get"
 "list"
 "patch"
 "update"
 "watch"
 "describe"
 "edit"
 "deletecollection"
 "patch"
 "label"

Setting up access permissions with IAM roles for service accounts (IRSA)

By default, the Livy server and Spark application's driver and executors don't have access to AWS
resources. The server service account and spark service account controls access to AWS resources
for the Livy server and spark application's pods. To grant access, you need to map the service
accounts with an IAM role that has the necessary AWS permissions.

You can set up IRSA mapping before you install Apache Livy, during the installation, or after you
finish the installation.

Setting up IRSA while installing Apache Livy (for server service account)

Note

This mapping is supported only for the server service account.

Security 148

Amazon EMR Amazon EMR on EKS Development Guide

1. Make sure that you have finished setting up Apache Livy for Amazon EMR on EKS and are in
the middle of installing Apache Livy with Amazon EMR on EKS.

2. Create a Kubernetes namespace for the Livy server. In this example, the name of the
namespace is livy-ns.

3. Create an IAM policy that includes the permissions for the AWS services for which you want
your pods to access. The following example creates an IAM policy of getting Amazon S3
resources for the Spark entry point.

cat >my-policy.json <<EOF{
"Version": "2012-10-17",
 "Statement": [
 {
"Effect": "Allow",
 "Action": "s3:GetObject",
 "Resource": "arn:aws:s3:::my-spark-entrypoint-bucket"
 }
]
}
EOF

aws iam create-policy --policy-name my-policy --policy-document file://my-
policy.json

4. Use the following command to set your AWS account ID to a variable.

account_id=$(aws sts get-caller-identity --query "Account" --output text)

5. Set the OpenID Connect (OIDC) identity provider of your cluster to an environment variable.

oidc_provider=$(aws eks describe-cluster --name my-cluster --region $AWS_REGION --
query "cluster.identity.oidc.issuer" --output text | sed -e "s/^https:\/\///")

6. Set variables for the namespace and name of the service account. Be sure to use your own
values.

export namespace=default
export service_account=my-service-account

7. Create a trust policy file with the following command. If you want to grant access of the
role to all service accounts within a namespace, copy the following command, and replace
StringEquals with StringLike and replace $service_account with *.

Security 149

https://docs.aws.amazon.com/emr/latest/EMR-on-EKS-DevelopmentGuide/job-runs-apache-livy-setup.html
https://docs.aws.amazon.com/emr/latest/EMR-on-EKS-DevelopmentGuide/job-runs-apache-livy-install.html

Amazon EMR Amazon EMR on EKS Development Guide

cat >trust-relationship.json <<EOF
{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Federated": "arn:aws:iam::$account_id:oidc-provider/$oidc_provider"
 },
 "Action": "sts:AssumeRoleWithWebIdentity",
 "Condition": {
 "StringEquals": {
 "$oidc_provider:aud": "sts.amazonaws.com",
 "$oidc_provider:sub": "system:serviceaccount:$namespace:$service_account"
 }
 }
 }
]
}
EOF

8. Create the role.

aws iam create-role --role-name my-role --assume-role-policy-document file://trust-
relationship.json --description "my-role-description"

9. Use the following Helm install command to set the serviceAccount.executionRoleArn
to map IRSA. The following is an example of the Helm install command. You can find the
corresponding ECR-registry-account value for your AWS Region from Amazon ECR
registry accounts by Region.

helm install livy-demo \
 oci://895885662937.dkr.ecr.us-west-2.amazonaws.com/livy \
 --version 7.2.0 \
 --namespace livy-ns \
 --set image=ECR-registry-account.dkr.ecr.region-id.amazonaws.com/livy/
emr-7.2.0:latest \
 --set sparkNamespace=spark-ns \
 --set serviceAccount.executionRoleArn=arn:aws:iam::123456789012:role/my-role

Security 150

https://docs.aws.amazon.com/emr/latest/EMR-on-EKS-DevelopmentGuide/docker-custom-images-tag.html#docker-custom-images-ECR
https://docs.aws.amazon.com/emr/latest/EMR-on-EKS-DevelopmentGuide/docker-custom-images-tag.html#docker-custom-images-ECR

Amazon EMR Amazon EMR on EKS Development Guide

Mapping IRSA to a Spark service account

Before you map IRSA to a Spark service account, make sure that you have completed the following
items:

• Make sure that you have finished setting up Apache Livy for Amazon EMR on EKS and are in the
middle of installing Apache Livy with Amazon EMR on EKS.

• You must have an existing IAM OpenID Connect (OIDC) provdider for your cluster. To see if you
already have one or how to create one, see Create an IAM OIDC provider for your cluster.

• Make sure that you have installed version 0.171.0 or later of the eksctl CLI installed or AWS
CloudShell. To install or update eksctl, see Installation of the eksctl documentation.

Follow these steps to map IRSA to your Spark service account:

1. Use the following command to get the Spark service account.

SPARK_NAMESPACE=<spark-ns>
LIVY_APP_NAME=<livy-app-name>
kubectl --namespace $SPARK_NAMESPACE describe sa -l "app.kubernetes.io/instance=
$LIVY_APP_NAME" | awk '/^Name:/ {print $2}'

2. Set your variables for the namespace and name of the service account.

export namespace=default
export service_account=my-service-account

3. Use the following command to create a trust policy file for the IAM role. The following
example gives permission to all service accounts within the namespace to use the role. To do
so, replace StringEquals with StringLike and replace $service_account with *.

cat >trust-relationship.json <<EOF
{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Federated": "arn:aws:iam::$account_id:oidc-provider/$oidc_provider"
 },
 "Action": "sts:AssumeRoleWithWebIdentity",

Security 151

https://docs.aws.amazon.com/emr/latest/EMR-on-EKS-DevelopmentGuide/job-runs-apache-livy-setup.html
https://docs.aws.amazon.com/emr/latest/EMR-on-EKS-DevelopmentGuide/job-runs-apache-livy-install.html
https://docs.aws.amazon.com/eks/latest/userguide/enable-iam-roles-for-service-accounts.html
https://eksctl.io/installation/

Amazon EMR Amazon EMR on EKS Development Guide

 "Condition": {
 "StringEquals": {
 "$oidc_provider:aud": "sts.amazonaws.com",
 "$oidc_provider:sub": "system:serviceaccount:$namespace:$service_account"
 }
 }
 }
]
}
EOF

4. Create the role.

aws iam create-role --role-name my-role --assume-role-policy-document file://trust-
relationship.json --description "my-role-description"

5. Map the server or spark service account with the following eksctl command. Make sure to
use your own values.

 eksctl create iamserviceaccount --name spark-sa \
 --namespace spark-namespace --cluster livy-eks-cluster \
 --attach-role-arn arn:aws:iam::0123456789012:role/my-role \
 --approve --override-existing-serviceaccounts

Installation properties for Apache Livy on Amazon EMR on EKS releases

Apache Livy installation allows you to select a version of the Livy Helm chart. The Helm chart
offers a variety of properties to customize your installation and setup experience. These properties
are supported for Amazon EMR on EKS releases 7.1.0 and higher.

Topics

• Amazon EMR 7.1.0 installation properties

Amazon EMR 7.1.0 installation properties

The following table describes all of the supported Livy properties. When installing Apache Livy, you
can choose the Livy Helm chart version. To set a property during the installation, use the command
--set <property>=<value>.

Installation properties 152

Amazon EMR Amazon EMR on EKS Development Guide

Property Description Default

image The Amazon EMR release URI
of the Livy server. This is a
required configuration.

""

sparkNamespace Namespace to run Livy Spark
sessions. For example, specify
"livy". This is a required
configuration.

""

nameOverride Provide a name instead of
livy. The name is set as a
label for all Livy resources

"livy"

fullnameOverride Provide a name to use instead
of the full names of resources.

""

ssl.enabled Enables end-to-end SSL from
Livy endpoint to Livy server.

FALSE

ssl.certificateArn If SSL is enabled, this is the
ACM certificate ARN for the
NLB created by the service..

""

ssl.secretProviderClassName If SSL is enabled, this is the
secret provider class name to
secure NLB for the Livy server
connection with SSL.

""

ssl.keyStoreObjectName If SSL is enabled, the object
name for the keystore
certificate in the secret
provider class.

""

ssl.keyPasswordsObjectName If SSL is enabled, the object
name for the secret that

""

Installation properties 153

Amazon EMR Amazon EMR on EKS Development Guide

Property Description Default

has the keystore and key
password.

rbac.create If true, creates RBAC
resources.

FALSE

serviceAccount.create If true, creates a Livy service
account.

TRUE

serviceAccount.name The name of the service
account to use for Livy. If
you don't set this property
and create a service account,
Amazon EMR on EKS
automatically generates a
name using the fullname
override property.

"emr-containers-sa-livy"

serviceAccount.executionRol
eArn

The execution role ARN of the
Livy service account.

""

sparkServiceAccount.create IF true, creates the Spark
service account in .Release.
Namespace

TRUE

sparkServiceAccount.name The name of the service
account to use for Spark. If
you don't set this property
and create a Spark service
account, Amazon EMR on EKS
automatically generates a
name with the fullnameO
verride property with -
spark-livy suffix.

"emr-containers-sa-spark-li
vy"

Installation properties 154

Amazon EMR Amazon EMR on EKS Development Guide

Property Description Default

service.name Name of the Livy service "emr-containers-li
vy"

service.annotations Livy service annotations {}

loadbalancer.enabled Whether to create a load
balancer for the Livy service
used to expose the Livy
endpoint outside of the
Amazon EKS cluster.

FALSE

loadbalancer.internal Whether to configure the Livy
endpoint as internal to the
VPC or external.

Setting this property to
FALSE exposes the endpoint
to sources outside of the VPC.
We recommend securing your
endpoint with TLS/SSL. For
more information, see Setting
up TLS and SSL encryption.

FALSE

imagePullSecrets The list of imagePull
Secret names to use to
pull Livy image from private
repositories.

[]

resources The resource requests and
limits for Livy containers.

{}

nodeSelector The nodes for which to
schedule Livy pods.

{}

tolerations A list containing the Livy pods
tolerations to define.

[]

Installation properties 155

https://docs.aws.amazon.com/emr/latest/EMR-on-EKS-DevelopmentGuide/job-runs-apache-livy-security.html#job-runs-apache-livy-security-tls
https://docs.aws.amazon.com/emr/latest/EMR-on-EKS-DevelopmentGuide/job-runs-apache-livy-security.html#job-runs-apache-livy-security-tls

Amazon EMR Amazon EMR on EKS Development Guide

Property Description Default

affinity The Livy pods affinity rules. {}

persistence.enabled If true, enables persistance for
sesions directories.

FALSE

persistence.subPath The PVC subpath to mount to
sessions directories.

""

persistence.existingClaim The PVC to use instead of
creating a new one.

{}

persistence.storageClass The storage class to use.
To define this parameter,
use the format storageCl
assName: <storageC
lass> . Setting this
parameter to "-" disables
dynamic provisioning. If you
set this parameter to null
or don't specify anything,
 Amazon EMR on EKS doesn't
set a storageClassName and
uses the default provisioner.

""

persistence.accessMode The PVC access mode. ReadWriteOnce

persistence.size The PVC size. 20Gi

persistence.annotations Additional annotations for
the PVC.

{}

env.* Additional envs to set to Livy
container. For more informati
on, see Inputting your own
Livy and Spark configurations
while installing Livy.

{}

Installation properties 156

https://docs.aws.amazon.com/emr/latest/EMR-on-EKS-DevelopmentGuide/job-runs-apache-livy-troubleshooting.html
https://docs.aws.amazon.com/emr/latest/EMR-on-EKS-DevelopmentGuide/job-runs-apache-livy-troubleshooting.html
https://docs.aws.amazon.com/emr/latest/EMR-on-EKS-DevelopmentGuide/job-runs-apache-livy-troubleshooting.html

Amazon EMR Amazon EMR on EKS Development Guide

Property Description Default

envFrom.* Additional envs to set to Livy
from a Kubernetes config
map or secret.

[]

livyConf.* Additional livy.conf entries
to set from a mounted
Kubernetes config map or
secret.

{}

sparkDefaultsConf.* Additional spark-def
aults.conf entries to set
from a mounted Kubernetes
config map or secret.

{}

Troubleshooting

Inputting your own Livy and Spark configurations while installing Livy

You can configure any Apache Livy or Apache Spark environment variable with the env.* Helm
property. Follow the steps below to convert the example configuration example.config.with-
dash.withUppercase to a supported environment variable format.

1. Replace uppercase letters with a 1 and a lowercase of the letter. For example,
example.config.with-dash.withUppercase becomes example.config.with-
dash.with1uppercase.

2. Replace dashes (-) with 0. For example, example.config.with-dash.with1uppercase
becomes example.config.with0dash.with1uppercase

3. Replace dots (.) with underscores (_). For example,
example.config.with0dash.with1uppercase becomes
example_config_with0dash_with1uppercase.

4. Replace all lowercase letters with uppercase letters.

5. Add the prefix LIVY_ to the variable name.

6. Use the variable while installing Livy through the helm chart using the format --set
env.YOUR_VARIABLE_NAME.value=yourvalue

Troubleshooting 157

Amazon EMR Amazon EMR on EKS Development Guide

For example, to set the Livy and Spark configurations livy.server.recovery.state-store =
filesystem and spark.kubernetes.executor.podNamePrefix = my-prefix, use these
Helm properties:

—set env.LIVY_LIVY_SERVER_RECOVERY_STATE0STORE.value=filesystem
—set env.LIVY_SPARK_KUBERNETES_EXECUTOR_POD0NAME0PREFIX.value=myprefix

Managing Amazon EMR on EKS job runs

The following sections cover topics that help you manage your Amazon EMR on EKS job runs.

Topics

• Managing job runs with the AWS CLI

• Running Spark SQL scripts through the StartJobRun API

• Job run states

• Viewing jobs in the Amazon EMR console

• Common errors when running jobs

Managing job runs with the AWS CLI

This page covers how to manage job runs with the AWS Command Line Interface (AWS CLI).

Options for configuring a job run

Use the following options to configure job run parameters:

• --execution-role-arn: You must provide an IAM role that is used for running jobs. For more
information, see Using job execution roles with Amazon EMR on EKS.

• --release-label: You can deploy Amazon EMR on EKS with Amazon EMR versions 5.32.0 and
6.2.0 and later. Amazon EMR on EKS is not supported in previous Amazon EMR release versions.
For more information, see Amazon EMR on EKS releases.

• --job-driver: Job driver is used to provide input on the main job. This is a union type field
where you can only pass one of the values for the job type that you want to run. Supported job
types include:

Managing job runs 158

Amazon EMR Amazon EMR on EKS Development Guide

• Spark submit jobs - Used to run a command through Spark submit. You can use this job type
to run Scala, PySpark, SparkR, SparkSQL and any other supported jobs through Spark Submit.
This job type has the following parameters:

• Entrypoint - This is the HCFS (Hadoop compatible file system) reference to the main jar/py
file you want to run.

• EntryPointArguments - This is an array of arguments you want to pass to your main jar/py
file. You should handle reading these parameters using your entrypoint code. Each argument
in the array should be separated by a comma. EntryPointArguments cannot contain brackets
or parentheses, such as (), {}, or [].

• SparkSubmitParameters - These are the additional spark parameters you want to send to
the job. Use this parameter to override default Spark properties such as driver memory
or number of executors like —conf or —class. For additional information, see Launching
Applications with spark-submit.

• Spark SQL jobs - Used to run a SQL query file through Spark SQL. You can use this job type to
run SparkSQL jobs. This job type has the following parameters:

• Entrypoint - This is the HCFS (Hadoop compatible file system) reference to the SQL query
file you want to run.

For a list of additional Spark parameters you can use for a Spark SQL job, see Running Spark
SQL scripts through the StartJobRun API.

• --configuration-overrides: You can override the default configurations for applications
by supplying a configuration object. You can use a shorthand syntax to provide the configuration
or you can reference the configuration object in a JSON file. Configuration objects consist of a
classification, properties, and optional nested configurations. Properties consist of the settings
you want to override in that file. You can specify multiple classifications for multiple applications
in a single JSON object. The configuration classifications that are available vary by Amazon
EMR release version. For a list of configuration classifications that are available for each release
version of Amazon EMR, see Amazon EMR on EKS releases.

If you pass the same configuration in an application override and in Spark submit parameters,
the Spark submit parameters take precedence. The complete configuration priority list follows, in
order of highest priority to lowest priority.

• Configuration supplied when creating SparkSession.

• Configuration supplied as part of sparkSubmitParameters using —conf.

• Configuration provided as part of application overrides.

Manage with CLI 159

https://spark.apache.org/docs/latest/submitting-applications.html#launching-applications-with-spark-submit
https://spark.apache.org/docs/latest/submitting-applications.html#launching-applications-with-spark-submit

Amazon EMR Amazon EMR on EKS Development Guide

• Optimized configurations chosen by Amazon EMR for the release.

• Default open source configurations for the application.

To monitor job runs using Amazon CloudWatch or Amazon S3, you must provide the
configuration details for CloudWatch. For more information, see Configure a job run to use
Amazon S3 logs and Configure a job run to use Amazon CloudWatch Logs. If the S3 bucket or
CloudWatch log group does not exist, then Amazon EMR creates it before uploading logs to the
bucket.

• For an additional list of Kubernetes configuration options, see Spark Properties on Kubernetes.

The following Spark configurations are not supported.

• spark.kubernetes.authenticate.driver.serviceAccountName

• spark.kubernetes.authenticate.executor.serviceAccountName

• spark.kubernetes.namespace

• spark.kubernetes.driver.pod.name

• spark.kubernetes.container.image.pullPolicy

• spark.kubernetes.container.image

Note

You can use spark.kubernetes.container.image for customized Docker images.
For more information, see Customizing Docker images for Amazon EMR on EKS.

Configure a job run to use Amazon S3 logs

To be able to monitor the job progress and to troubleshoot failures, you must configure your jobs
to send log information to Amazon S3, Amazon CloudWatch Logs, or both. This topic helps you get
started publishing application logs to Amazon S3 on your jobs that are launched with Amazon EMR
on EKS.

S3 logs IAM policy

Before your jobs can send log data to Amazon S3, the following permissions must be included in
the permissions policy for the job execution role. Replace DOC-EXAMPLE-BUCKET-LOGGING with
the name of your logging bucket.

Manage with CLI 160

https://spark.apache.org/docs/latest/running-on-kubernetes.html#configuration

Amazon EMR Amazon EMR on EKS Development Guide

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "s3:PutObject",
 "s3:GetObject",
 "s3:ListBucket"
],
 "Resource": [
 "arn:aws:s3:::DOC-EXAMPLE-BUCKET-LOGGING",
 "arn:aws:s3:::DOC-EXAMPLE-BUCKET-LOGGING/*",
]
 }
]
}

Note

Amazon EMR on EKS can also create an Amazon S3 bucket. If an Amazon S3 bucket is not
available, include the “s3:CreateBucket” permission in the IAM policy.

After you've given your execution role the proper permissions to send logs to Amazon S3, your
log data are sent to the following Amazon S3 locations when s3MonitoringConfiguration is
passed in the monitoringConfiguration section of a start-job-run request, as shown in
Managing job runs with the AWS CLI.

• Controller Logs - /logUri/virtual-cluster-id/jobs/job-id/containers/pod-name/
(stderr.gz/stdout.gz)

• Driver Logs - /logUri/virtual-cluster-id/jobs/job-id/containers/spark-
application-id/spark-job-id-driver/(stderr.gz/stdout.gz)

• Executor Logs - /logUri/virtual-cluster-id/jobs/job-id/containers/spark-
application-id/executor-pod-name/(stderr.gz/stdout.gz)

Manage with CLI 161

Amazon EMR Amazon EMR on EKS Development Guide

Configure a job run to use Amazon CloudWatch Logs

To monitor job progress and to troubleshoot failures, you must configure your jobs to send log
information to Amazon S3, Amazon CloudWatch Logs, or both. This topic helps you get started
using CloudWatch Logs on your jobs that are launched with Amazon EMR on EKS. For more
information about CloudWatch Logs, see Monitoring Log Files in the Amazon CloudWatch User
Guide.

CloudWatch Logs IAM policy

For your jobs to send log data to CloudWatch Logs, the following permissions must be included
in the permissions policy for the job execution role. Replace my_log_group_name and
my_log_stream_prefix with names of your CloudWatch log group and log stream names,
respectively. Amazon EMR on EKS creates the log group and log stream if they do not exist as long
as the execution role ARN has appropriate permissions.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "logs:CreateLogStream",
 "logs:DescribeLogGroups",
 "logs:DescribeLogStreams"
],
 "Resource": [
 "arn:aws:logs:*:*:*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "logs:PutLogEvents"
],
 "Resource": [
 "arn:aws:logs:*:*:log-group:my_log_group_name:log-
stream:my_log_stream_prefix/*"
]
 }
]
}

Manage with CLI 162

https://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/WhatIsCloudWatchLogs.html

Amazon EMR Amazon EMR on EKS Development Guide

Note

Amazon EMR on EKS can also create a log stream. If a log stream does not exist, the IAM
policy should include the"logs:CreateLogGroup" permission.

After you've given your execution role the proper permissions, your application sends its log
data to CloudWatch Logs when cloudWatchMonitoringConfiguration is passed in the
monitoringConfiguration section of a start-job-run request, as shown in Managing job
runs with the AWS CLI.

In the StartJobRun API, log_group_name is the log group name for CloudWatch, and
log_stream_prefix is the log stream name prefix for CloudWatch. You can view and search
these logs in the AWS Management Console.

• Controller logs - logGroup/logStreamPrefix/virtual-cluster-id/jobs/job-id/
containers/pod-name/(stderr/stdout)

• Driver logs - logGroup/logStreamPrefix/virtual-cluster-id/jobs/job-id/
containers/spark-application-id/spark-job-id-driver/(stderrstdout)

• Executor logs - logGroup/logStreamPrefix/virtual-cluster-id/jobs/job-id/
containers/spark-application-id/executor-pod-name/(stderr/stdout)

List job runs

You can run list-job-run to show the states of job runs, as the following example
demonstrates.

aws emr-containers list-job-runs --virtual-cluster-id <cluster-id>

Describe a job run

You can run describe-job-run to get more details about the job, such as job state, state details,
and job name, as the following example demonstrates.

aws emr-containers describe-job-run --virtual-cluster-id cluster-id --id job-run-id

Manage with CLI 163

Amazon EMR Amazon EMR on EKS Development Guide

Cancel a job run

You can run cancel-job-run to cancel running jobs, as the following example demonstrates.

aws emr-containers cancel-job-run --virtual-cluster-id cluster-id --id job-run-id

Running Spark SQL scripts through the StartJobRun API

Amazon EMR on EKS releases 6.7.0 and higher include a Spark SQL job driver so that you can
run Spark SQL scripts through the StartJobRun API. You can supply SQL entry-point files to
directly run Spark SQL queries on Amazon EMR on EKS with the StartJobRun API, without any
modifications to existing Spark SQL scripts. The following table lists Spark parameters that are
supported for the Spark SQL jobs through the StartJobRun API.

You can choose from the following Spark parameters to send to a Spark SQL job. Use these
parameters to override default Spark properties.

Option Description

--name NAME Application Name

--jars JARS Comma separated list of jars to be included
with driver and execute classpath.

--packages Comma-separated list of maven coordinates
of jars to include on the driver and executor
classpaths.

--exclude-packages Comma-separated list of groupId:artifactId,
to exclude while resolving the dependencies
provided in –packages to avoid dependency
conflicts.

--repositories Comma-separated list of additional remote
repositories to search for the maven coordinat
es given with –packages.

--files FILES Comma-separated list of files to be placed in
the working directory of each executor.

Run Spark SQL scripts 164

Amazon EMR Amazon EMR on EKS Development Guide

Option Description

--conf PROP=VALUE Spark configuration property.

--properties-file FILE Path to a file from which to load extra
properties.

--driver-memory MEM Memory for driver. Default 1024MB.

--driver-java-options Extra Java options to pass to the driver.

--driver-library-path Extra library path entries to pass to the driver.

--driver-class-path Extra classpath entries to pass to the driver.

--executor-memory MEM Memory per executor. Default 1GB.

--driver-cores NUM Number of cores used by the driver.

--total-executor-cores NUM Total cores for all executors.

--executor-cores NUM Number of cores used by each executor.

--num-executors NUM Number of executors to launch.

-hivevar <key=value> Variable substitution to apply to Hive
commands, for example, -hivevar A=B

-hiveconf <property=value> Value to use for the given property.

For a Spark SQL job, create a start-job-run-request.json file and specify the required parameters for
your job run, as in the following example:

{
 "name": "myjob",
 "virtualClusterId": "123456",
 "executionRoleArn": "iam_role_name_for_job_execution",
 "releaseLabel": "emr-6.7.0-latest",
 "jobDriver": {
 "sparkSqlJobDriver": {
 "entryPoint": "entryPoint_location",

Run Spark SQL scripts 165

Amazon EMR Amazon EMR on EKS Development Guide

 "sparkSqlParameters": "--conf spark.executor.instances=2 --conf
 spark.executor.memory=2G --conf spark.executor.cores=2 --conf spark.driver.cores=1"
 }
 },
 "configurationOverrides": {
 "applicationConfiguration": [
 {
 "classification": "spark-defaults",
 "properties": {
 "spark.driver.memory":"2G"
 }
 }
],
 "monitoringConfiguration": {
 "persistentAppUI": "ENABLED",
 "cloudWatchMonitoringConfiguration": {
 "logGroupName": "my_log_group",
 "logStreamNamePrefix": "log_stream_prefix"
 },
 "s3MonitoringConfiguration": {
 "logUri": "s3://my_s3_log_location"
 }
 }
 }
}

Job run states

When you submit a job run to an Amazon EMR on EKS job queue, the job run enters the PENDING
state. It then passes through the following states until it succeeds (exits with code 0) or fails (exits
with a non-zero code).

Job runs can have the following states:

• PENDING ‐ The initial job state when the job run is submitted to Amazon EMR on EKS. The job is
waiting to be submitted to the virtual cluster, and Amazon EMR on EKS is working on submitting
this job.

• SUBMITTED ‐ A job run that has been successfully submitted to the virtual cluster. The cluster
scheduler then tries to run this job on the cluster.

• RUNNING ‐ A job run that is running in the virtual cluster. In Spark applications, this means that
the Spark driver process is in the running state.

Job run states 166

Amazon EMR Amazon EMR on EKS Development Guide

• FAILED ‐ A job run that failed to be submitted to the virtual cluster or that completed
unsuccessfully. Look at StateDetails and FailureReason to find additional information about this
job failure.

• COMPLETED ‐ A job run that has completed successfully.

• CANCEL_PENDING ‐ A job run has been requested for cancellation. Amazon EMR on EKS is trying
to cancel the job on the virtual cluster.

• CANCELLED ‐ A job run that was cancelled successfully.

Viewing jobs in the Amazon EMR console

To view jobs in the Amazon EMR console, perform the following steps.

1. In the Amazon EMR console lefthand menu, under Amazon EMR on EKS, choose Virtual clusters.

2. From the list of virtual clusters, select the virtual cluster for which you want to view jobs.

3. On the Job runs table, select View logs to view the details of a job run.

Note

Support for the one-click experience is enabled by default. It can be turned off by setting
persistentAppUI to DISABLED in monitoringConfiguration during job submission.
For more information, see View Persistent Application User Interfaces.

Common errors when running jobs

The following errors may occur when you run StartJobRun API.

Error Message Error Condition Recommended Next Step

error: argument --argument
is required

Required parameters are
missing.

Add the missing arguments to
the API request.

An error occurred (AccessDe
niedException) when calling
the StartJobRun operation:
User: ARN is not authorized to

Execution role is missing. See Using Using job execution
roles with Amazon EMR on
EKS.

View jobs in the console 167

https://docs.aws.amazon.com/emr/latest/ManagementGuide/app-history-spark-UI.html

Amazon EMR Amazon EMR on EKS Development Guide

Error Message Error Condition Recommended Next Step

perform: emr-containers:Sta
rtJobRun

An error occurred (AccessDe
niedException) when calling
the StartJobRun operation:
User: ARN is not authorized to
perform: emr-containers:Sta
rtJobRun

Caller doesn't have permissio
n to the execution role
[valid / not valid format] via
condition keys.

See Using job execution roles
with Amazon EMR on EKS.

An error occurred (AccessDe
niedException) when calling
the StartJobRun operation:
User: ARN is not authorized to
perform: emr-containers:Sta
rtJobRun

Job submitter and Execution
role ARN are from different
accounts.

Ensure that job submitter and
execution role ARN are from
the same AWS account.

1 validation error detected:
Value Role at 'executio
nRoleArn' failed to satisfy
the ARN regular expressio
n pattern: ^arn:(aws[a-zA-
Z0-9-]*):iam::(\d{12})?:(role(
(\u002F)|(\u002F[\u0021-\u0
07F]+\u002F))[\w+=,.@-]+)

Caller has permissions for the
execution role via condition
keys, but the role does not
satisfy the constraints of ARN
format.

Provide the execution role
following the ARN format.
See Using job execution roles
with Amazon EMR on EKS.

An error occurred (Resource
NotFoundException) when
calling the StartJobRun
operation: Virtual cluster
Virtual Cluster ID
doesn't exist.

Virtual cluster ID is not found. Provide a virtual cluster ID
registered with Amazon EMR
on EKS.

Common job run errors 168

Amazon EMR Amazon EMR on EKS Development Guide

Error Message Error Condition Recommended Next Step

An error occurred (Validati
onException) when calling
the StartJobRun operation:
Virtual cluster state state is
not valid to create resource
JobRun.

Virtual cluster is not ready to
execute job.

See Virtual cluster states.

An error occurred (Resource
NotFoundException) when
calling the StartJobRun
operation: Release RELEASE
doesn't exist.

The release specified in job
submission is incorrect.

See Amazon EMR on EKS
releases.

An error occurred (AccessDe
niedException) when calling
the StartJobRun operation:
User: ARN is not authorized to
perform: emr-containers:Sta
rtJobRun on resource: ARN
with an explicit deny.

An error occurred (AccessDe
niedException) when calling
the StartJobRun operation:
User: ARN is not authorized to
perform: emr-containers:Sta
rtJobRun on resource: ARN

User is not authorized to call
StartJobRun.

See Using job execution roles
with Amazon EMR on EKS.

Common job run errors 169

Amazon EMR Amazon EMR on EKS Development Guide

Error Message Error Condition Recommended Next Step

An error occurred (Validati
onException) when calling
the StartJobRun operation:
configurationOverrides.moni
toringConfiguration.s3Monit
oringConfiguration.logUri
failed to satisfy constraint :
%s

S3 path URI syntax is not
valid.

logUri should be in the
format of s3://...

The following errors may occur when you run DescribeJobRun API before the job runs.

Error Message Error Condition Recommended Next Step

stateDetails: JobRun
submission failed.

Classification classific
ation not supported.

failureReason: VALIDATIO
N_ERROR

state: FAILED.

Parameters in StartJobRun
are not valid.

See Amazon EMR on EKS
releases.

stateDetails: Cluster EKS
Cluster ID does not exist.

failureReason: CLUSTER_U
NAVAILABLE

state: FAILED

The EKS cluster is not
available.

Check if the EKS cluster exists
and has the right permissio
ns. For more information, see
Setting up Amazon EMR on
EKS.

stateDetails: Cluster EKS
Cluster ID does not have
sufficient permissions.

Amazon EMR does not have
permissions to access the EKS
cluster.

Verify that permissions are
set up for Amazon EMR on
the registered namespace. For

Common job run errors 170

Amazon EMR Amazon EMR on EKS Development Guide

Error Message Error Condition Recommended Next Step

failureReason: CLUSTER_U
NAVAILABLE

state: FAILED

more information, see Setting
up Amazon EMR on EKS.

stateDetails: Cluster EKS
Cluster ID is currently not
reachable.

failureReason: CLUSTER_U
NAVAILABLE

state: FAILED

EKS cluster is not reachable. Check if EKS Cluster exists
and has the right permissio
ns. For more information, see
Setting up Amazon EMR on
EKS.

stateDetails: JobRun
submission failed due to an
internal error.

failureReason: INTERNAL_
ERROR

state: FAILED

An internal error has occurred
with the EKS cluster.

N/A

stateDetails: Cluster EKS
Cluster ID does not have
sufficient resources.

failureReason: USER_ERROR

state: FAILED

There are insufficient
resources in the EKS cluster to
run the job.

Add more capacity to the
EKS node group or set up
EKS Autoscaler. For more
information, see Cluster
Autoscaler.

The following errors may occur when you run DescribeJobRun API after the job runs.

Error Message Error Condition Recommended Next Step

stateDetails: Trouble
monitoring your JobRun.

The EKS cluster does not
exist.

Check if EKS Cluster exists
and has the right permissio

Common job run errors 171

https://docs.aws.amazon.com/eks/latest/userguide/cluster-autoscaler.html
https://docs.aws.amazon.com/eks/latest/userguide/cluster-autoscaler.html

Amazon EMR Amazon EMR on EKS Development Guide

Error Message Error Condition Recommended Next Step

Cluster EKS Cluster ID
does not exist.

failureReason: CLUSTER_U
NAVAILABLE

state: FAILED

ns. For more information, see
Setting up Amazon EMR on
EKS.

stateDetails: Trouble
monitoring your JobRun.

Cluster EKS Cluster ID
does not have sufficient
permissions.

failureReason: CLUSTER_U
NAVAILABLE

state: FAILED

Amazon EMR does not have
permissions to access the EKS
cluster.

Verify that permissions are
set up for Amazon EMR on
the registered namespace. For
more information, see Setting
up Amazon EMR on EKS.

stateDetails: Trouble
monitoring your JobRun.

Cluster EKS Cluster ID is
currently not reachable.

failureReason: CLUSTER_U
NAVAILABLE

state: FAILED

The EKS cluster is not
reachable.

Check if EKS Cluster exists
and has the right permissio
ns. For more information, see
Setting up Amazon EMR on
EKS.

stateDetails: Trouble
monitoring your JobRun due
to an internal error

failureReason: INTERNAL_
ERROR

state: FAILED

An internal error has occurred
and is preventing JobRun
monitoring.

N/A

Common job run errors 172

Amazon EMR Amazon EMR on EKS Development Guide

The following error may occur when a job cannot start and the job waits in the SUBMITTED state
for 15 minutes. This can be caused by a lack of cluster resources.

Error Message Error Condition Recommended Next Step

cluster timeout The job has been in the
SUBMITTED state for 15
minutes or more.

You can override the default
setting of 15 minutes for this
parameter with the configura
tion override shown below.

Use the following configuration to change the cluster timeout setting to 30 minutes. Notice that
you provide the new job-start-timeout value in seconds:

{
"configurationOverrides": {
 "applicationConfiguration": [{
 "classification": "emr-containers-defaults",
 "properties": {
 "job-start-timeout":"1800"
 }
 }]
}

Using job submitter classification

Overview

The Amazon EMR on EKS StartJobRun request creates a job submitter pod (also known as the
job-runner pod) to spawn the Spark driver. You can configure node selectors for your job submitter
pod with the emr-job-submitter classification.

The following setting is available under the emr-job-submitter classification:

jobsubmitter.node.selector.[labelKey]

Adds to the node selector of the job submitter pod, with key labelKey and the
value as the configuration value for the configuration. For example, you can set
jobsubmitter.node.selector.identifier to myIdentifier and the job submitter pod

Using job submitter classification 173

Amazon EMR Amazon EMR on EKS Development Guide

will have a node selector with a key identifier value of myIdentifier. To add multiple node
selector keys, set multiple configurations with this prefix.

As a best practice, we recommend that job submitter pods have node placement on On Demand
Instances and not on Spot Instances. This is because a job will fail if the job submitter pod is
subjected to Spot Instance interruptions. You can also place the job submitter pod in a single
Availability Zone, or use any Kubernetes labels that are applied to the nodes.

Job submitter classification examples

In this section

• StartJobRun request with On-Demand node placement for the job submitter pod

• StartJobRun request with single-AZ node placement for the job submitter pod

• StartJobRun request with single-AZ and Amazon EC2 instance type placement for the job
submitter pod

StartJobRun request with On-Demand node placement for the job submitter
pod

cat >spark-python-in-s3-nodeselector-job-submitter.json << EOF
{
 "name": "spark-python-in-s3-nodeselector",
 "virtualClusterId": "virtual-cluster-id",
 "executionRoleArn": "execution-role-arn",
 "releaseLabel": "emr-6.11.0-latest",
 "jobDriver": {
 "sparkSubmitJobDriver": {
 "entryPoint": "s3://S3-prefix/trip-count.py",
 "sparkSubmitParameters": "--conf spark.driver.cores=5 --conf
 spark.executor.memory=20G --conf spark.driver.memory=15G --conf
 spark.executor.cores=6"
 }
 },
 "configurationOverrides": {
 "applicationConfiguration": [
 {
 "classification": "spark-defaults",
 "properties": {
 "spark.dynamicAllocation.enabled":"false"

Examples 174

Amazon EMR Amazon EMR on EKS Development Guide

 }
 },
 {
 "classification": "emr-job-submitter",
 "properties": {
 "jobsubmitter.node.selector.eks.amazonaws.com/capacityType": "ON_DEMAND"
 }
 }
],
 "monitoringConfiguration": {
 "cloudWatchMonitoringConfiguration": {
 "logGroupName": "/emr-containers/jobs",
 "logStreamNamePrefix": "demo"
 },
 "s3MonitoringConfiguration": {
 "logUri": "s3://joblogs"
 }
 }
 }
}
EOF
aws emr-containers start-job-run --cli-input-json file:///spark-python-in-s3-
nodeselector-job-submitter.json

StartJobRun request with single-AZ node placement for the job submitter pod

cat >spark-python-in-s3-nodeselector-job-submitter-az.json << EOF
{
 "name": "spark-python-in-s3-nodeselector",
 "virtualClusterId": "virtual-cluster-id",
 "executionRoleArn": "execution-role-arn",
 "releaseLabel": "emr-6.11.0-latest",
 "jobDriver": {
 "sparkSubmitJobDriver": {
 "entryPoint": "s3://S3-prefix/trip-count.py",
 "sparkSubmitParameters": "--conf spark.driver.cores=5 --conf
 spark.executor.memory=20G --conf spark.driver.memory=15G --conf
 spark.executor.cores=6"
 }
 },
 "configurationOverrides": {
 "applicationConfiguration": [
 {

Examples 175

Amazon EMR Amazon EMR on EKS Development Guide

 "classification": "spark-defaults",
 "properties": {
 "spark.dynamicAllocation.enabled":"false"
 }
 },
 {
 "classification": "emr-job-submitter",
 "properties": {
 "jobsubmitter.node.selector.topology.kubernetes.io/zone": "Availability
 Zone"
 }
 }
],
 "monitoringConfiguration": {
 "cloudWatchMonitoringConfiguration": {
 "logGroupName": "/emr-containers/jobs",
 "logStreamNamePrefix": "demo"
 },
 "s3MonitoringConfiguration": {
 "logUri": "s3://joblogs"
 }
 }
 }
}
EOF
aws emr-containers start-job-run --cli-input-json file:///spark-python-in-s3-
nodeselector-job-submitter-az.json

StartJobRun request with single-AZ and Amazon EC2 instance type placement
for the job submitter pod

{
 "name": "spark-python-in-s3-nodeselector",
 "virtualClusterId": "virtual-cluster-id",
 "executionRoleArn": "execution-role-arn",
 "releaseLabel": "emr-6.11.0-latest",
 "jobDriver": {
 "sparkSubmitJobDriver": {
 "entryPoint": "s3://S3-prefix/trip-count.py",
 "sparkSubmitParameters": "--conf spark.driver.cores=5 --conf
 spark.kubernetes.pyspark.pythonVersion=3 --conf spark.executor.memory=20G
 --conf spark.driver.memory=15G --conf spark.executor.cores=6 --conf
 spark.sql.shuffle.partitions=1000"

Examples 176

Amazon EMR Amazon EMR on EKS Development Guide

 }
 },
 "configurationOverrides": {
 "applicationConfiguration": [
 {
 "classification": "spark-defaults",
 "properties": {
 "spark.dynamicAllocation.enabled":"false",
 }
 },
 {
 "classification": "emr-job-submitter",
 "properties": {
 "jobsubmitter.node.selector.topology.kubernetes.io/zone": "Availability
 Zone",
 "jobsubmitter.node.selector.node.kubernetes.io/instance-type":"m5.4xlarge"
 }
 }
],
 "monitoringConfiguration": {
 "cloudWatchMonitoringConfiguration": {
 "logGroupName": "/emr-containers/jobs",
 "logStreamNamePrefix": "demo"
 },
 "s3MonitoringConfiguration": {
 "logUri": "s3://joblogs"
 }
 }
 }
}

Using job templates

A job template stores values that can be shared across StartJobRun API invocations when
starting a job run. It supports two use cases:

• To prevent repetitive recurring StartJobRun API request values.

• To enforce a rule that certain values must be provided via StartJobRun API requests.

Job templates enable you to define a reusable template for job runs to apply additional
customization, for example:

Using job templates 177

Amazon EMR Amazon EMR on EKS Development Guide

• Configuring executor and driver compute capacity

• Setting security and governance properties such as IAM roles

• Customizing a docker image to use across multiple applications and data pipelines

Creating and using a job template to start a job run

This section describes creating a job template and using the template to start a job run with the
AWS Command Line Interface (AWS CLI).

To create a job template

1. Create a create-job-template-request.json file and specify the required parameters
for your job template, as shown in the following example JSON file. For information about all
available parameters, see the CreateJobTemplate API.

Most values that are required for the StartJobRun API are also required for
jobTemplateData. If you want to use placeholders for any parameters and provide values
when invoking StartJobRun using a job template, please see the next section on job template
parameters.

{
 "name": "mytemplate",
 "jobTemplateData": {
 "executionRoleArn": "iam_role_arn_for_job_execution",
 "releaseLabel": "emr-6.7.0-latest",
 "jobDriver": {
 "sparkSubmitJobDriver": {
 "entryPoint": "entryPoint_location",
 "entryPointArguments": ["argument1","argument2",...],
 "sparkSubmitParameters": "--class <main_class> --conf
 spark.executor.instances=2 --conf spark.executor.memory=2G --conf
 spark.executor.cores=2 --conf spark.driver.cores=1"
 }
 },
 "configurationOverrides": {
 "applicationConfiguration": [
 {
 "classification": "spark-defaults",
 "properties": {
 "spark.driver.memory":"2G"

Creating and using a job template to start a job run 178

https://docs.aws.amazon.com/emr-on-eks/latest/APIReference/Welcome.html

Amazon EMR Amazon EMR on EKS Development Guide

 }
 }
],
 "monitoringConfiguration": {
 "persistentAppUI": "ENABLED",
 "cloudWatchMonitoringConfiguration": {
 "logGroupName": "my_log_group",
 "logStreamNamePrefix": "log_stream_prefix"
 },
 "s3MonitoringConfiguration": {
 "logUri": "s3://my_s3_log_location/"
 }
 }
 }
 }
}

2. Use the create-job-template command with a path to the create-job-template-
request.json file stored locally.

aws emr-containers create-job-template \
--cli-input-json file://./create-job-template-request.json

To start a job run using a job template

Supply the virtual cluster id, job template id, and job name in the StartJobRun command, as
shown in the following example.

aws emr-containers start-job-run \
--virtual-cluster-id 123456 \
--name myjob \
--job-template-id 1234abcd

Defining job template parameters

Job template parameters allow you to specify variables in the job template. Values for these
parameter variables will need to be specified when starting a job run using that job template. Job
template parameters are specified in ${parameterName} format. You can choose to specify any
value in a jobTemplateData field as a job template parameter. For each of the job template
parameter variables, specify its data type (STRING or NUMBER) and optionally a default value. The

Defining job template parameters 179

Amazon EMR Amazon EMR on EKS Development Guide

example below shows how you can specify job template parameters for entry point location, main
class, and S3 log location values.

To specify entry point location, main class, and Amazon S3 log location as job template
parameters

1. Create a create-job-template-request.json file and specify the required parameters for
your job template, as shown in the following example JSON file. For more information about the
parameters, see the CreateJobTemplate API.

{
 "name": "mytemplate",
 "jobTemplateData": {
 "executionRoleArn": "iam_role_arn_for_job_execution",
 "releaseLabel": "emr-6.7.0-latest",
 "jobDriver": {
 "sparkSubmitJobDriver": {
 "entryPoint": "${EntryPointLocation}",
 "entryPointArguments": ["argument1","argument2",...],
 "sparkSubmitParameters": "--class ${MainClass} --conf
 spark.executor.instances=2 --conf spark.executor.memory=2G --conf
 spark.executor.cores=2 --conf spark.driver.cores=1"
 }
 },
 "configurationOverrides": {
 "applicationConfiguration": [
 {
 "classification": "spark-defaults",
 "properties": {
 "spark.driver.memory":"2G"
 }
 }
],
 "monitoringConfiguration": {
 "persistentAppUI": "ENABLED",
 "cloudWatchMonitoringConfiguration": {
 "logGroupName": "my_log_group",
 "logStreamNamePrefix": "log_stream_prefix"
 },
 "s3MonitoringConfiguration": {
 "logUri": "${LogS3BucketUri}"
 }
 }

Defining job template parameters 180

https://docs.aws.amazon.com/emr-on-eks/latest/APIReference/Welcome.html

Amazon EMR Amazon EMR on EKS Development Guide

 },
 "parameterConfiguration": {
 "EntryPointLocation": {
 "type": "STRING"
 },
 "MainClass": {
 "type": "STRING",
 "defaultValue":"Main"
 },
 "LogS3BucketUri": {
 "type": "STRING",
 "defaultValue":"s3://my_s3_log_location/"
 }
 }
 }
}

2. Use the create-job-template command with a path to the create-job-template-
request.json file stored locally or in Amazon S3.

aws emr-containers create-job-template \
--cli-input-json file://./create-job-template-request.json

To start a job run using job template with job template parameters

To start a job run with a job template containing job template parameters, specify the job template
id as well as values for job template parameters in the StartJobRun API request as shown below.

aws emr-containers start-job-run \
--virtual-cluster-id 123456 \
--name myjob \
--job-template-id 1234abcd \
--job-template-parameters '{"EntryPointLocation": "entry_point_location","MainClass":
 "ExampleMainClass","LogS3BucketUri": "s3://example_s3_bucket/"}'

Controlling access to job templates

StartJobRun policy lets you enforce that a user or a role can only run jobs using job templates
that you specify and cannot run StartJobRun operations without using the specified job
templates. To achieve this, first ensure that you give the user or role a read permission to the
specified job templates as shown below.

Controlling access to job templates 181

Amazon EMR Amazon EMR on EKS Development Guide

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "emr-containers:DescribeJobTemplate",
 "Resource": [
 "job_template_1_arn",
 "job_template_2_arn",
 ...
]
 }
]
}

To enforce that a user or role is able to invoke StartJobRun operation only when using specified
job templates, you can assign the following StartJobRun policy permission to a given user or
role.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "emr-containers:StartJobRun",
 "Resource": [
 "virtual_cluster_arn",
],
 "Condition": [
 "StringEquals": {
 "emr-containers:JobTemplateArn": [
 "job_template_1_arn",
 "job_template_2_arn",
 ...
]
 }
]
 }
 }
]
}

Controlling access to job templates 182

Amazon EMR Amazon EMR on EKS Development Guide

If the job template specifies a job template parameter inside the execution role ARN field, then the
user will be able to provide a value for this parameter and thus be able to invoke StartJobRun
using an arbitrary execution role. To restrict the execution roles the user can provide, see
Controlling access to the execution role in Using job execution roles with Amazon EMR on EKS.

If no condition is specified in the above StartJobRun action policy for a given user or a role, the
user or the role will be allowed to invoke StartJobRun action on the specified virtual cluster using
an arbitrary job template that they have read access to or using an arbitrary execution role.

Using pod templates

Beginning with Amazon EMR versions 5.33.0 or 6.3.0, Amazon EMR on EKS supports Spark’s pod
template feature. A pod is a group of one or more containers, with shared storage and network
resources, and a specification for how to run the containers. Pod templates are specifications that
determine how to run each pod. You can use pod template files to define the driver or executor
pod’s configurations that Spark configurations do not support. For more information about the
Spark’s pod template feature, see Pod Template.

Note

The pod template feature only works with driver and executor pods. You cannot configure
job controller pods using the pod template.

Common scenarios

You can define how to run Spark jobs on shared EKS clusters by using pod templates with Amazon
EMR on EKS and save costs and improve resource utilization and performance.

• To reduce costs, you can schedule Spark driver tasks to run on Amazon EC2 On-Demand
Instances while scheduling Spark executor tasks to run on Amazon EC2 Spot Instances.

• To increase resource utilization, you can support multiple teams running their workloads on
the same EKS cluster. Each team will get a designated Amazon EC2 node group to run their
workloads on. You can use pod templates to apply a corresponding toleration to their workload.

• To improve monitoring, you can run a separate logging container to forward logs to your existing
monitoring application.

Using pod templates 183

https://spark.apache.org/docs/latest/running-on-kubernetes.html#pod-template

Amazon EMR Amazon EMR on EKS Development Guide

For example, the following pod template file demonstrates a common usage scenario.

apiVersion: v1
kind: Pod
spec:
 volumes:
 - name: source-data-volume
 emptyDir: {}
 - name: metrics-files-volume
 emptyDir: {}
 nodeSelector:
 eks.amazonaws.com/nodegroup: emr-containers-nodegroup
 containers:
 - name: spark-kubernetes-driver # This will be interpreted as driver Spark main
 container
 env:
 - name: RANDOM
 value: "random"
 volumeMounts:
 - name: shared-volume
 mountPath: /var/data
 - name: metrics-files-volume
 mountPath: /var/metrics/data
 - name: custom-side-car-container # Sidecar container
 image: <side_car_container_image>
 env:
 - name: RANDOM_SIDECAR
 value: random
 volumeMounts:
 - name: metrics-files-volume
 mountPath: /var/metrics/data
 command:
 - /bin/sh
 - '-c'
 - <command-to-upload-metrics-files>
 initContainers:
 - name: spark-init-container-driver # Init container
 image: <spark-pre-step-image>
 volumeMounts:
 - name: source-data-volume # Use EMR predefined volumes
 mountPath: /var/data
 command:
 - /bin/sh
 - '-c'

Common scenarios 184

Amazon EMR Amazon EMR on EKS Development Guide

 - <command-to-download-dependency-jars>

The pod template completes the following tasks:

• Add a new init container that is executed before the Spark main container starts. The init
container shares the EmptyDir volume called source-data-volume with the Spark main
container. You can have your init container run initialization steps, such as downloading
dependencies or generating input data. Then the Spark main container consumes the data.

• Add another sidecar container that is executed along with the Spark main container. The two
containers are sharing another EmptyDir volume called metrics-files-volume. Your Spark
job can generate metrics, such as Prometheus metrics. Then the Spark job can put the metrics
into a file and have the sidecar container upload the files to your own BI system for future
analysis.

• Add a new environment variable to the Spark main container. You can have your job consume the
environment variable.

• Define a node selector, so that the pod is only scheduled on the emr-containers-nodegroup
node group. This helps to isolate compute resources across jobs and teams.

Enabling pod templates with Amazon EMR on EKS

To enable the pod template feature with Amazon EMR on EKS, configure the
Spark properties spark.kubernetes.driver.podTemplateFile and
spark.kubernetes.executor.podTemplateFile to point to the pod template files in
Amazon S3. Spark then downloads the pod template file and uses it to construct driver and
executor pods.

Note

Spark uses the job execution role to load the pod template, so the job execution role must
have permissions to access Amazon S3 to load the pod templates. For more information,
see Create a job execution role.

You can use the SparkSubmitParameters to specify the Amazon S3 path to the pod template, as
the following job run JSON file demonstrates.

Enabling pod templates with Amazon EMR on EKS 185

https://kubernetes.io/docs/concepts/workloads/pods/init-containers/
https://kubernetes.io/docs/concepts/storage/volumes/#emptydir
https://kubernetes.io/docs/concepts/workloads/pods/#how-pods-manage-multiple-containers
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/

Amazon EMR Amazon EMR on EKS Development Guide

{
 "name": "myjob",
 "virtualClusterId": "123456",
 "executionRoleArn": "iam_role_name_for_job_execution",
 "releaseLabel": "release_label",
 "jobDriver": {
 "sparkSubmitJobDriver": {
 "entryPoint": "entryPoint_location",
 "entryPointArguments": ["argument1", "argument2", ...],
 "sparkSubmitParameters": "--class <main_class> \
 --conf
 spark.kubernetes.driver.podTemplateFile=s3://path_to_driver_pod_template \
 --conf
 spark.kubernetes.executor.podTemplateFile=s3://path_to_executor_pod_template \
 --conf spark.executor.instances=2 \
 --conf spark.executor.memory=2G \
 --conf spark.executor.cores=2 \
 --conf spark.driver.cores=1"
 }
 }
}

Alternatively, you can use the configurationOverrides to specify the Amazon S3 path to the
pod template, as the following job run JSON file demonstrates.

{
 "name": "myjob",
 "virtualClusterId": "123456",
 "executionRoleArn": "iam_role_name_for_job_execution",
 "releaseLabel": "release_label",
 "jobDriver": {
 "sparkSubmitJobDriver": {
 "entryPoint": "entryPoint_location",
 "entryPointArguments": ["argument1", "argument2", ...],
 "sparkSubmitParameters": "--class <main_class> \
 --conf spark.executor.instances=2 \
 --conf spark.executor.memory=2G \
 --conf spark.executor.cores=2 \
 --conf spark.driver.cores=1"
 }
 },
 "configurationOverrides": {
 "applicationConfiguration": [

Enabling pod templates with Amazon EMR on EKS 186

Amazon EMR Amazon EMR on EKS Development Guide

 {
 "classification": "spark-defaults",
 "properties": {
 "spark.driver.memory":"2G",
 "spark.kubernetes.driver.podTemplateFile":"s3://path_to_driver_pod_template",

 "spark.kubernetes.executor.podTemplateFile":"s3://path_to_executor_pod_template"
 }
 }
]
 }
}

Note

1. You need to follow the security guidelines when using the pod template feature with
Amazon EMR on EKS, such as isolating untrusted application code. For more information,
see Amazon EMR on EKS security best practices.

2. You cannot change the Spark main container names by using
spark.kubernetes.driver.podTemplateContainerName and
spark.kubernetes.executor.podTemplateContainerName, because these names
are hardcoded as spark-kubernetes-driver and spark-kubernetes-executors.
If you want to customize the Spark main container, you must specify the container in a
pod template with these hardcoded names.

Pod template fields

Consider the following field restrictions when configuring a pod template with Amazon EMR on
EKS.

• Amazon EMR on EKS allows only the following fields in a pod template to enable proper job
scheduling.

These are the allowed pod level fields:

• apiVersion

• kind

• metadata

Pod template fields 187

Amazon EMR Amazon EMR on EKS Development Guide

• spec.activeDeadlineSeconds

• spec.affinity

• spec.containers

• spec.enableServiceLinks

• spec.ephemeralContainers

• spec.hostAliases

• spec.hostname

• spec.imagePullSecrets

• spec.initContainers

• spec.nodeName

• spec.nodeSelector

• spec.overhead

• spec.preemptionPolicy

• spec.priority

• spec.priorityClassName

• spec.readinessGates

• spec.runtimeClassName

• spec.schedulerName

• spec.subdomain

• spec.terminationGracePeriodSeconds

• spec.tolerations

• spec.topologySpreadConstraints

• spec.volumes

These are the allowed Spark main container level fields:

• env

• envFrom

• name

• lifecycle

• livenessProbe

• readinessProbe

Pod template fields 188

Amazon EMR Amazon EMR on EKS Development Guide

• resources

• startupProbe

• stdin

• stdinOnce

• terminationMessagePath

• terminationMessagePolicy

• tty

• volumeDevices

• volumeMounts

• workingDir

When you use any disallowed fields in the pod template, Spark throws an exception and the
job fails. The following example shows an error message in the Spark controller log due to
disallowed fields.

Executor pod template validation failed.
Field container.command in Spark main container not allowed but specified.

• Amazon EMR on EKS predefines the following parameters in a pod template. The fields that you
specify in a pod template must not overlap with these fields.

These are the predefined volume names:

• emr-container-communicate

• config-volume

• emr-container-application-log-dir

• emr-container-event-log-dir

• temp-data-dir

• mnt-dir

• home-dir

• emr-container-s3

These are the predefined volume mounts that only apply to the Spark main container:

• Name: emr-container-communicate; MountPath: /var/log/fluentd

• Name: emr-container-application-log-dir; MountPath: /var/log/spark/user
Pod template fields 189

Amazon EMR Amazon EMR on EKS Development Guide

• Name: emr-container-event-log-dir; MountPath: /var/log/spark/apps

• Name: mnt-dir; MountPath: /mnt

• Name: temp-data-dir; MountPath: /tmp

• Name: home-dir; MountPath: /home/hadoop

These are the predefined environment variables that only apply to the Spark main container:

• SPARK_CONTAINER_ID

• K8S_SPARK_LOG_URL_STDERR

• K8S_SPARK_LOG_URL_STDOUT

• SIDECAR_SIGNAL_FILE

Note

You can still use these predefined volumes and mount them into your additional sidecar
containers. For example, you can use emr-container-application-log-dir and
mount it to your own sidecar container defined in the pod template.

If the fields you specify conflict with any of the predefined fields in the pod template, Spark
throws an exception and the job fails. The following example shows an error message in the
Spark application log due to conflicts with the predefined fields.

Defined volume mount path on main container must not overlap with reserved mount
 paths: [<reserved-paths>]

Sidecar container considerations

Amazon EMR controls the lifecycle of the pods provisioned by Amazon EMR on EKS. The sidecar
containers should follow the same lifecycle of the Spark main container. If you inject additional
sidecar containers into your pods, we recommend that you integrate with the pod lifecycle
management that Amazon EMR defines so that the sidecar container can stop itself when the
Spark main container exits.

To reduce costs, we recommend that you implement a process that prevents driver pods with
sidecar containers from continuing to run after your job completes. The Spark driver deletes
executor pods when the executor is done. However, when a driver program completes, the

Sidecar container considerations 190

Amazon EMR Amazon EMR on EKS Development Guide

additional sidecar containers continue to run. The pod is billed until Amazon EMR on EKS cleans up
the driver pod, usually less than one minute after the driver Spark main container completes. To
reduce costs, you can integrate your additional sidecar containers with the lifecycle management
mechanism that Amazon EMR on EKS defines for both driver and executor pods, as described in the
following section.

Spark main container in driver and executor pods sends heartbeat to a file /var/log/fluentd/
main-container-terminated every two seconds. By adding the Amazon EMR predefined emr-
container-communicate volume mount to your sidecar container, you can define a sub-process
of your sidecar container to periodically track the last modified time for this file. The sub-process
then stops itself if it discovers that the Spark main container stops the heartbeat for a longer
duration.

The following example demonstrates a sub-process that tracks the heartbeat file and stops itself.
Replace your_volume_mount with the path where you mount the predefined volume. The script
is bundled inside the image used by sidecar container. In a pod template file, you can specify a
sidecar container with the following commands sub_process_script.sh and main_command.

MOUNT_PATH="your_volume_mount"
FILE_TO_WATCH="$MOUNT_PATH/main-container-terminated"
INITIAL_HEARTBEAT_TIMEOUT_THRESHOLD=60
HEARTBEAT_TIMEOUT_THRESHOLD=15
SLEEP_DURATION=10

function terminate_main_process() {
 # Stop main process
}

Waiting for the first heartbeat sent by Spark main container
echo "Waiting for file $FILE_TO_WATCH to appear..."
start_wait=$(date +%s)
while ! [[-f "$FILE_TO_WATCH"]]; do
 elapsed_wait=$(expr $(date +%s) - $start_wait)
 if ["$elapsed_wait" -gt "$INITIAL_HEARTBEAT_TIMEOUT_THRESHOLD"]; then
 echo "File $FILE_TO_WATCH not found after $INITIAL_HEARTBEAT_TIMEOUT_THRESHOLD
 seconds; aborting"
 terminate_main_process
 exit 1
 fi
 sleep $SLEEP_DURATION;
done;

Sidecar container considerations 191

Amazon EMR Amazon EMR on EKS Development Guide

echo "Found file $FILE_TO_WATCH; watching for heartbeats..."

while [[-f "$FILE_TO_WATCH"]]; do
 LAST_HEARTBEAT=$(stat -c %Y $FILE_TO_WATCH)
 ELAPSED_TIME_SINCE_AFTER_HEARTBEAT=$(expr $(date +%s) - $LAST_HEARTBEAT)
 if ["$ELAPSED_TIME_SINCE_AFTER_HEARTBEAT" -gt "$HEARTBEAT_TIMEOUT_THRESHOLD"];
 then
 echo "Last heartbeat to file $FILE_TO_WATCH was more than
 $HEARTBEAT_TIMEOUT_THRESHOLD seconds ago at $LAST_HEARTBEAT; terminating"
 terminate_main_process
 exit 0
 fi
 sleep $SLEEP_DURATION;
done;
echo "Outside of loop, main-container-terminated file no longer exists"

The file will be deleted once the fluentd container is terminated

echo "The file $FILE_TO_WATCH doesn't exist any more;"
terminate_main_process
exit 0

Using job retry policies

In Amazon EMR on EKS versions 6.9.0 and later, you can set a retry policy for your job runs. Retry
policies cause a job driver pod to be restarted automatically if it fails or is deleted. This makes long-
running Spark streaming jobs more resilient to failures.

Setting a retry policy for a job

To configure a retry policy, you provide a RetryPolicyConfiguration field using the
StartJobRun API. An example retryPolicyConfiguration is shown here:

aws emr-containers start-job-run \
--virtual-cluster-id cluster_id \
--name sample-job-name \
--execution-role-arn execution-role-arn \
--release-label emr-6.9.0-latest \
--job-driver '{
 "sparkSubmitJobDriver": {
 "entryPoint": "local:///usr/lib/spark/examples/src/main/python/pi.py",

Using retry policies 192

https://docs.aws.amazon.com/emr-on-eks/latest/APIReference/API_StartJobRun.html

Amazon EMR Amazon EMR on EKS Development Guide

 "entryPointArguments": ["2"],
 "sparkSubmitParameters": "--conf spark.executor.instances=2 --conf
 spark.executor.memory=2G --conf spark.executor.cores=2 --conf spark.driver.cores=1"
 }
}' \
--retry-policy-configuration '{
 "maxAttempts": 5
 }' \
--configuration-overrides '{
 "monitoringConfiguration": {
 "cloudWatchMonitoringConfiguration": {
 "logGroupName": "my_log_group_name",
 "logStreamNamePrefix": "my_log_stream_prefix"
 },
 "s3MonitoringConfiguration": {
 "logUri": "s3://DOC-EXAMPLE-BUCKET-LOGGING"
 }
 }
}'

Note

retryPolicyConfiguration is only available from AWS CLI 1.27.68 version onwards. To
update the AWS CLI to the latest version, see Installing or updating the latest version of the
AWS CLI

Configure the maxAttempts field with the maximum number of times you want the job driver pod
to be restarted if it fails or is deleted. The execution interval between two job driver retry attempts
is an exponential retry interval of (10 seconds, 20 seconds, 40 seconds ...) which is capped at 6
minutes, as described in the Kubernetes documentation.

Note

Every additional job driver execution will be billed as another job run, and will be subject to
Amazon EMR on EKS pricing.

Set a retry policy 193

https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html
https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html
https://kubernetes.io/docs/concepts/workloads/controllers/job/#pod-backoff-failure-policy
https://aws.amazon.com/emr/pricing/#Amazon_EMR_on_Amazon_EKS

Amazon EMR Amazon EMR on EKS Development Guide

Retry policy configuration values

• Default retry policy for a job: StartJobRun includes a retry policy set to 1 maximum attempt
by default. You can configure the retry policy as desired.

Note

If maxAttempts of the retryPolicyConfiguration is set to 1, it means that no
retries will be done to bring up the driver pod on failure.

• Disabling retry policy for a job: To disable a retry policy, set the max attempts value in
retryPolicyConfiguration to 1.

"retryPolicyConfiguration": {
 "maxAttempts": 1
}

• Set maxAttempts for a job within the valid range: StartJobRun call will fail if the
maxAttempts value is outside the valid range. The valid maxAttempts range is from 1
to 2,147,483,647 (32-bit integer), the range supported for Kubernetes' backOffLimit
configuration setting. For more information, see Pod backoff failure policy in the Kubernetes
documentation. If the maxAttempts value is invalid, the following error message is returned:

{
 "message": "Retry policy configuration's parameter value of maxAttempts is invalid"
}

Retrieving a retry policy status for a job

You can view the status of the retry attempts for a job with the ListJobRuns and
DescribeJobRun APIs. Once you request a job with an enabled retry policy configuration, the
ListJobRun and DescribeJobRun responses will contain the status of the retry policy in the
RetryPolicyExecution field. In addition, the DescribeJobRun response will contain the
RetryPolicyConfiguration that was input in the StartJobRun request for the job.

Sample responses

Retrieve the policy status 194

https://kubernetes.io/docs/concepts/workloads/controllers/job/#pod-backoff-failure-policy
https://docs.aws.amazon.com/emr-on-eks/latest/APIReference/API_ListJobRuns.html
https://docs.aws.amazon.com/emr-on-eks/latest/APIReference/API_DescribeJobRun.html

Amazon EMR Amazon EMR on EKS Development Guide

ListJobRuns response

{
 "jobRuns": [
 ...
 ...
 "retryPolicyExecution" : {
 "currentAttemptCount": 2
 }
 ...
 ...
]
}

DescribeJobRun response

{
 ...
 ...
 "retryPolicyConfiguration": {
 "maxAttempts": 5
 },
 "retryPolicyExecution" : {
 "currentAttemptCount": 2
 },
 ...
 ...
}

These fields will not be visible when retry policy is disabled in the job, as described below in Retry
policy configuration values.

Monitoring a job with a retry policy

When you enable a retry policy, a CloudWatch event is generated for every job driver that
is created. To subscribe to these events, set up a CloudWatch event rule using the following
command:

aws events put-rule \
--name cwe-test \

Monitor the job 195

Amazon EMR Amazon EMR on EKS Development Guide

--event-pattern '{"detail-type": ["EMR Job Run New Driver Attempt"]}'

The event will return information on the newDriverPodName, newDriverCreatedAt timestamp,
previousDriverFailureMessage, and currentAttemptCount of the job drivers. These
events will not be created if the retry policy is disabled.

For more information on how to monitor your job with CloudWatch events, see Monitor jobs with
Amazon CloudWatch Events.

Finding logs for drivers and executors

Driver pod names follow the format spark-<job id>-driver-<random-suffix>. The same
random-suffix is added to the executor pod names that the driver spawns. When you use this
random-suffix, you can find logs for a driver and its associated executors. The random-suffix
is only present if the retry policy is enabled for the job; otherwise, the random-suffix is absent.

For more information on how to configure jobs with monitoring configuration for logging, see Run
a Spark application.

Using Spark event log rotation

With Amazon EMR 6.3.0 and later, you can turn on the Spark event log rotation feature for Amazon
EMR on EKS. Instead of generating a single event log file, this feature rotates the file based on your
configured time interval and removes the oldest event log files.

Rotating Spark event logs can help you avoid potential issues with a large Spark event log file
generated for long running or streaming jobs. For example, you start a long running Spark job with
an event log enabled with the persistentAppUI parameter. The Spark driver generates an event
log file. If the job runs for hours or days and there is a limited disk space on the Kubernetes node,
the event log file can consume all available disk space. Turning on the Spark event log rotation
feature solves the problem by splitting the log file into multiple files and removing the oldest files.

Note

This feature only works with Amazon EMR on EKS. Amazon EMR running on Amazon EC2
doesn't support Spark event log rotation.

To turn on the Spark event log rotation feature, configure the following Spark parameters:

Find the driver logs 196

Amazon EMR Amazon EMR on EKS Development Guide

• spark.eventLog.rotation.enabled ‐ turns on log rotation. It is disabled by default in the
Spark configuration file. Set it to true to turn on this feature.

• spark.eventLog.rotation.interval ‐ specifies time interval for the log rotation. The
minimum value is 60 seconds. The default value is 300 seconds.

• spark.eventLog.rotation.minFileSize ‐ specifies a minimum file size to rotate the log
file. The minimum and default value is 1 MB.

• spark.eventLog.rotation.maxFilesToRetain ‐ specifies how many rotated log files to
keep during cleanup. The valid range is 1 to 10. The default value is 2.

You can specify these parameters in the sparkSubmitParameters section of the StartJobRun
API, as the following example shows.

"sparkSubmitParameters": "--class org.apache.spark.examples.SparkPi --conf
 spark.eventLog.rotation.enabled=true --conf spark.eventLog.rotation.interval=300 --
conf spark.eventLog.rotation.minFileSize=1m --conf
 spark.eventLog.rotation.maxFilesToRetain=2"

Using Spark container log rotation

With Amazon EMR 6.11.0 and later, you can turn on the Spark container log rotation feature for
Amazon EMR on EKS. Instead of generating a single stdout or stderr log file, this feature rotates
the file based on your configured rotation size and removes the oldest log files from the container.

Rotating Spark container logs can help you avoid potential issues with a large Spark log files
generated for long-running or streaming jobs. For example, you might start a long-running Spark
job, and the Spark driver generates a container log file. If the job runs for hours or days and there
is limited disk space on the Kubernetes node, the container log file can consume all available disk
space. When you turn on Spark container log rotation, you split the log file into multiple files, and
remove the oldest files.

To turn on the Spark container log rotation feature, configure the following Spark parameters:

containerLogRotationConfiguration

Include this parameter in monitoringConfiguration to turn on log rotation. It is
disabled by default. You must use containerLogRotationConfiguration in addition to
s3MonitoringConfiguration.

Using Spark container log rotation 197

Amazon EMR Amazon EMR on EKS Development Guide

rotationSize

The rotationSize parameter specifies file size for the log rotation. The range of possible
values is from 2KB to 2GB. The numeric unit portion of the rotationSize parameter is passed
as an integer. Since decimal values aren't supported, you can specify a rotation size of 1.5GB,
for example, with the value 1500MB.

maxFilesToKeep

The maxFilesToKeep parameter specifies the maximum number of files to retain in container
after rotation has taken place. The minimum value is 1, and the maximum value is 50.

You can specify these parameters in the monitoringConfiguration section of the
StartJobRun API, as the following example shows. In this example, with rotationSize = "10
MB" and maxFilesToKeep = 3, Amazon EMR on EKS rotates your logs at 10 MB, generates a new
log file, and then purges the oldest log file once the number of log files reaches 3.

{
 "name": "my-long-running-job",
 "virtualClusterId": "123456",
 "executionRoleArn": "iam_role_name_for_job_execution",
 "releaseLabel": "emr-6.11.0-latest",
 "jobDriver": {
 "sparkSubmitJobDriver": {
 "entryPoint": "entryPoint_location",
 "entryPointArguments": ["argument1", "argument2", ...],
 "sparkSubmitParameters": "--class main_class --conf spark.executor.instances=2
 --conf spark.executor.memory=2G --conf spark.executor.cores=2 --conf
 spark.driver.cores=1"
 }
 },
 "configurationOverrides": {
 "applicationConfiguration": [
 {
 "classification": "spark-defaults",
 "properties": {
 "spark.driver.memory":"2G"
 }
 }
],
 "monitoringConfiguration": {
 "persistentAppUI": "ENABLED",

Using Spark container log rotation 198

Amazon EMR Amazon EMR on EKS Development Guide

 "cloudWatchMonitoringConfiguration": {
 "logGroupName": "my_log_group",
 "logStreamNamePrefix": "log_stream_prefix"
 },
 "s3MonitoringConfiguration": {
 "logUri": "s3://my_s3_log_location"
 },
 "containerLogRotationConfiguration": {
 "rotationSize":"10MB",
 "maxFilesToKeep":"3"
 }
 }
 }
}

To start a job run with Spark container log rotation, include a path to the json file that you
configured with these parameters in the StartJobRun command.

aws emr-containers start-job-run \
--cli-input-json file://path-to-json-request-file

Using vertical autoscaling with Amazon EMR Spark jobs

Amazon EMR on EKS vertical autoscaling automatically tunes memory and CPU resources to adapt
to the needs of the workload that you provide for Amazon EMR Spark applications. This simplifies
resource management.

To track the real-time and historic resource utilization of your Amazon EMR Spark applications,
vertical autoscaling leverages the Kubernetes Vertical Pod Autoscaler (VPA). The vertical
autoscaling capability uses the data that VPA collects to automatically tune the memory and CPU
resources assigned to your Spark applications. This simplified process enhances reliability and
optimizes cost.

Topics

• Setting up vertical autoscaling for Amazon EMR on EKS

• Getting started with vertical autoscaling for Amazon EMR on EKS

• Configuring vertical autoscaling for Amazon EMR on EKS

• Monitoring vertical autoscaling for Amazon EMR on EKS

Using vertical autoscaling 199

https://github.com/kubernetes/autoscaler/tree/master/vertical-pod-autoscaler

Amazon EMR Amazon EMR on EKS Development Guide

• Uninstall the Amazon EMR on EKS vertical autoscaling operator

Setting up vertical autoscaling for Amazon EMR on EKS

This topic helps you get your Amazon EKS cluster ready to submit Amazon EMR Spark jobs with
vertical autoscaling. The setup process requires you to confirm or complete the tasks in the
following sections:

Topics

• Prerequisites

• Install the Operator Lifecycle Manager (OLM) on your Amazon EKS cluster

• Install the Amazon EMR on EKS vertical autoscaling operator

Prerequisites

Complete the following tasks before you install the vertical autoscaling Kubernetes operator on
your cluster. If you've already completed any of the prerequisites, you can skip those and move on
to the next one.

• Install or update to the latest version of the AWS CLI – If you've already installed the AWS CLI,
confirm that you have the latest version.

• Install kubectl – kubectl is a command line tool that you use to communicate with the
Kubernetes API server. You need kubectl to install and monitor vertical autoscaling-related
artifacts on your Amazon EKS cluster.

• Install the Operator SDK – Amazon EMR on EKS uses the Operator SDK as a package manager
for the life of the vertical autoscaling operator that you install on your cluster.

• Install Docker – You need access to the Docker CLI to authenticate and fetch the vertical
autoscaling-related Docker images to install on your Amazon EKS cluster.

• Install the Kubernetes Metrics server– You must first install metrics server so the vertical pod
autoscaler can fetch metrics from the Kubernetes API server.

• Get started with Amazon EKS – eksctl (version 1.24 or higher) – Vertical autoscaling is
supported with Amazon EKS versions 1.24 and higher. Once you create the cluster, register it for
use with Amazon EMR.

• Select an Amazon EMR base image URI (release 6.10.0 or higher) – Vertical autoscaling is
supported with Amazon EMR releases 6.10.0 and higher.

Setting up 200

https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html
https://docs.aws.amazon.com/eks/latest/userguide/install-kubectl.html
https://sdk.operatorframework.io/docs/installation/
https://docs.docker.com/get-docker/
https://docs.aws.amazon.com/eks/latest/userguide/metrics-server.html
https://docs.aws.amazon.com/eks/latest/userguide/getting-started-eksctl.html

Amazon EMR Amazon EMR on EKS Development Guide

Install the Operator Lifecycle Manager (OLM) on your Amazon EKS cluster

Use the Operator SDK CLI to install the Operator Lifecycle Manager (OLM) on the Amazon EMR on
EKS cluster where you want to set up vertical autoscaling, as shown in the following example. Once
you set it up, you can use OLM to install and manage the lifecycle of the Amazon EMR vertical
autoscaling operator.

operator-sdk olm install

To validate installation, run the olm status command:

operator-sdk olm status

Verify that the command returns a successful result, similar to the following example output:

INFO[0007] Successfully got OLM status for version X.XX

If your installation doesn't succeed, see Troubleshooting Amazon EMR on EKS vertical autoscaling.

Install the Amazon EMR on EKS vertical autoscaling operator

Use the following steps to install the vertical autoscaling operator on your Amazon EKS cluster:

1. Set up the following environment variables that you will use to complete the installation:

• $REGION points to the AWS Region for your cluster. For example, us-west-2.

• $ACCOUNT_ID points to the Amazon ECR account ID for your Region. For more information,
see Amazon ECR registry accounts by Region.

• $RELEASE points to the Amazon EMR release that you want to use for your cluster. With
vertical autoscaling, you must use Amazon EMR release 6.10.0 or higher.

2. Next, get authentication tokens to the Amazon ECR registry for the operator.

aws ecr get-login-password \
 --region region-id | docker login \
 --username AWS \
 --password-stdin $ACCOUNT_ID.dkr.ecr.region-id.amazonaws.com

3. Install the Amazon EMR on EKS vertical autoscaling operator with the following command:

ECR_URL=$ACCOUNT_ID.dkr.ecr.$REGION.amazonaws.com && \

Setting up 201

Amazon EMR Amazon EMR on EKS Development Guide

REPO_DEST=dynamic-sizing-k8s-operator-olm-bundle && \
BUNDLE_IMG=emr-$RELEASE-dynamic-sizing-k8s-operator && \
operator-sdk run bundle \
$ECR_URL/$REPO_DEST/$BUNDLE_IMG\:latest

This will create a release of the vertical autoscaling operator in the default namespace of your
Amazon EKS cluster. Use this command to install in a different namespace:

operator-sdk run bundle \
$ACCOUNT_ID.dkr.ecr.$REGION.amazonaws.com/dynamic-sizing-k8s-operator-olm-bundle/
emr-$RELEASE-dynamic-sizing-k8s-operator:latest \
-n operator-namespace

Note

If the namespace that you specify doesn't exist, OLM won't install the operator. For
more information, see Kubernetes namespace not found.

4. Verify that you successfully installed the operator with the kubectl Kubernetes command-line
tool.

kubectl get csv -n operator-namespace

The kubectl command should return your newly-deployed vertical autoscaler operator with
a Phase status of Succeeded. If you've trouble with installation or setup, see Troubleshooting
Amazon EMR on EKS vertical autoscaling.

Getting started with vertical autoscaling for Amazon EMR on EKS

Submitting a Spark job with vertical autoscaling

When you submit a job through the StartJobRun API, add the following two configurations to the
driver for your Spark job to turn on vertical autoscaling:

"spark.kubernetes.driver.label.emr-containers.amazonaws.com/dynamic.sizing":"true",
"spark.kubernetes.driver.annotation.emr-containers.amazonaws.com/
dynamic.sizing.signature":"YOUR_JOB_SIGNATURE"

Getting started 202

https://docs.aws.amazon.com/emr-on-eks/latest/APIReference/API_StartJobRun.html

Amazon EMR Amazon EMR on EKS Development Guide

In the code above, the first line enables the vertical autoscaling capability. The next line is a
required signature configuration that lets you choose a signature for your job.

For more information on these configurations and acceptable parameter values, see Configuring
vertical autoscaling for Amazon EMR on EKS. By default, your job submits in the monitoring-
only Off mode of vertical autoscaling. This monitoring state lets you compute and view resource
recommendations without performing autoscaling. For more information, see Vertical autoscaling
modes.

The following example shows how to complete a sample start-job-run command with vertical
autoscaling:

aws emr-containers start-job-run \
--virtual-cluster-id $VIRTUAL_CLUSTER_ID \
--name $JOB_NAME \
--execution-role-arn $EMR_ROLE_ARN \
--release-label emr-6.10.0-latest \
--job-driver '{
 "sparkSubmitJobDriver": {
 "entryPoint": "local:///usr/lib/spark/examples/src/main/python/pi.py"
 }
 }' \
--configuration-overrides '{
 "applicationConfiguration": [{
 "classification": "spark-defaults",
 "properties": {
 "spark.kubernetes.driver.label.emr-containers.amazonaws.com/dynamic.sizing":
 "true",
 "spark.kubernetes.driver.annotation.emr-containers.amazonaws.com/
dynamic.sizing.signature": "test-signature"
 }
 }]
 }'

Verifying the vertical autoscaling functionality

To verify that vertical autoscaling works correctly for the submitted job, use kubectl to get the
verticalpodautoscaler custom resource and view your scaling recommendations. For example,
the following command queries for recommendations on the example job from the Submitting a
Spark job with vertical autoscaling section:

kubectl get verticalpodautoscalers --all-namespaces \

Getting started 203

Amazon EMR Amazon EMR on EKS Development Guide

-l=emr-containers.amazonaws.com/dynamic.sizing.signature=test-signature

The output from this query should resemble the following:

NAME MODE CPU MEM
 PROVIDED AGE
ds-jceyefkxnhrvdzw6djum3naf2abm6o63a6dvjkkedqtkhlrf25eq-vpa Off 3304504865 True
 87m

If your output doesn't look similar or contains an error code, see Troubleshooting Amazon EMR on
EKS vertical autoscaling for steps to help resolve the issue.

Configuring vertical autoscaling for Amazon EMR on EKS

You can configure vertical autoscaling when you submit Amazon EMR Spark jobs through the
StartJobRun API. Set the autoscaling-related configuration parameters on the Spark driver pod as
shown in the example in Submitting a Spark job with vertical autoscaling.

The Amazon EMR on EKS vertical autoscaling operator listens to driver pods that have autoscaling,
then sets up integration with the Kubernetes Vertical Pod Autoscaler (VPA) with the settings on the
driver pod. This facilitates resource tracking and autoscaling of Spark executor pods.

The following sections describe the parameters that you can use when you configure vertical
autoscaling for your Amazon EKS cluster.

Note

Configure the feature toggle parameter as a label, and configure the remaining parameters
as annotations on the Spark driver pod. The autoscaling parameters belong to the emr-
containers.amazonaws.com/ domain and have the dynamic.sizing prefix.

Required parameters

You must include the following two parameters on the Spark job driver when you submit your job:

Configuration 204

https://docs.aws.amazon.com/emr-on-eks/latest/APIReference/API_StartJobRun.html

Amazon EMR Amazon EMR on EKS Development Guide

Key Description Accepted
values

Default
value

Type Spark
parameter1

dynamic.s
izing

Feature
toggle

true, false not set label spark.kub
ernetes.d
river.lab
el.emr-co
ntainers.
amazonaws
.com/dyna
mic.sizin
g

dynamic.s
izing.sig
nature

Job signature string not set annotation spark.kub
ernetes.d
river.ann
otation.e
mr-contai
ners.amaz
onaws.com
/dynamic.
sizing.si
gnature

1 Use this parameter as a SparkSubmitParameter or ConfigurationOverride in the
StartJobRun API.

• dynamic.sizing – You can turn vertical autoscaling on and off with the dynamic.sizing
label. To turn on vertical autoscaling, set dynamic.sizing to true on the Spark driver pod. If
you omit this label or set it to any value other than true, vertical autoscaling is off.

• dynamic.sizing.signature – Set the job signature with the dynamic.sizing.signature
annotation on the driver pod. Vertical autoscaling aggregates your resource usage data across
different runs of Amazon EMR Spark jobs to derive resource recommendations. You provide the
unique identifier to tie the jobs together.

Configuration 205

Amazon EMR Amazon EMR on EKS Development Guide

Note

If your job recurs at a fixed interval such as daily or weekly, then your job signature
should remain the same for each new instance of the job. This ensures that vertical
autoscaling can compute and aggregate recommendations across different runs of the
job.

1 Use this parameter as a SparkSubmitParameter or ConfigurationOverride in the
StartJobRun API.

Optional parameters

Vertical autoscaling also supports the following optional parameters. Set them as annotations on
the driver pod.

Key Description Accepted
values

Default
value

Type Spark
parameter1

dynamic.s
izing.mod
e

Vertical
autoscaling
mode

Off,
Initial,
Auto

Off annotation spark.kub
ernetes.d
river.lab
el.emr-co
ntainers.
amazonaws
.com/dyna
mic.sizin
g.mode

dynamic.s
izing.sca
le.memory

Enables
memory
scaling

true, false true annotation spark.kub
ernetes.d
river.lab
el.emr-co
ntainers.
amazonaws
.com/dyna
mic.sizin

Configuration 206

Amazon EMR Amazon EMR on EKS Development Guide

Key Description Accepted
values

Default
value

Type Spark
parameter1

g.scale.m
emory

dynamic.s
izing.sca
le.cpu

Turn CPU
scaling on or
off

true, false false annotation spark.kub
ernetes.d
river.lab
el.emr-co
ntainers.
amazonaws
.com/dyna
mic.sizin
g.scale.c
pu

dynamic.s
izing.sca
le.memory
.min

Minumum
limit for
memory
scaling

string, K8s
resource
quantity ex:
1G

not set annotation spark.kub
ernetes.d
river.lab
el.emr-co
ntainers.
amazonaws
.com/dyna
mic.sizin
g.scale.m
emory.min

Configuration 207

https://pkg.go.dev/k8s.io/apimachinery/pkg/api/resource#Quantity
https://pkg.go.dev/k8s.io/apimachinery/pkg/api/resource#Quantity
https://pkg.go.dev/k8s.io/apimachinery/pkg/api/resource#Quantity

Amazon EMR Amazon EMR on EKS Development Guide

Key Description Accepted
values

Default
value

Type Spark
parameter1

dynamic.s
izing.sca
le.memory
.max

Maximum
limit for
memory
scaling

string, K8s
resource
quantity ex:
4G

not set annotation spark.kub
ernetes.d
river.lab
el.emr-co
ntainers.
amazonaws
.com/dyna
mic.sizin
g.scale.m
emory.max

dynamic.s
izing.sca
le.cpu.mi
n

Minimum
limit for CPU
scaling

string, K8s
resource
quantity ex: 1

not set annotation spark.kub
ernetes.d
river.lab
el.emr-co
ntainers.
amazonaws
.com/dyna
mic.sizin
g.scale.c
pu.min

dynamic.s
izing.sca
le.cpu.ma
x

Maximum
limit for CPU
scaling

string, K8s
resource
quantity ex: 2

not set annotation spark.kub
ernetes.d
river.lab
el.emr-co
ntainers.
amazonaws
.com/dyna
mic.sizin
g.scale.c
pu.max

Configuration 208

https://pkg.go.dev/k8s.io/apimachinery/pkg/api/resource#Quantity
https://pkg.go.dev/k8s.io/apimachinery/pkg/api/resource#Quantity
https://pkg.go.dev/k8s.io/apimachinery/pkg/api/resource#Quantity
https://pkg.go.dev/k8s.io/apimachinery/pkg/api/resource#Quantity
https://pkg.go.dev/k8s.io/apimachinery/pkg/api/resource#Quantity
https://pkg.go.dev/k8s.io/apimachinery/pkg/api/resource#Quantity
https://pkg.go.dev/k8s.io/apimachinery/pkg/api/resource#Quantity
https://pkg.go.dev/k8s.io/apimachinery/pkg/api/resource#Quantity
https://pkg.go.dev/k8s.io/apimachinery/pkg/api/resource#Quantity

Amazon EMR Amazon EMR on EKS Development Guide

Vertical autoscaling modes

The mode parameter maps to the different autoscaling modes that the VPA supports. Use the
dynamic.sizing.mode annotation on the driver pod to set the mode. The following values are
supported for this parameter:

• Off – A dry-run mode where you can monitor recommendations, but autoscaling is not
performed. This is the default mode for vertical autoscaling. In this mode, the associated vertical
pod autoscaler resource computes recommendations, and you can monitor the recommendations
through tools like kubectl, Prometheus, and Grafana.

• Initial – In this mode, VPA autoscales resources when the job starts if recommendations are
available based on historic runs of the job, such as in the case of a recurring job.

• Auto – In this mode, VPA evicts Spark executor pods, and autoscales them with the
recommended resource settings when the Spark driver pod restarts them. Sometimes, the VPA
evicts running Spark executor pods, so it might result in additional latency when it retries the
interrupted executor.

Resource scaling

When you set up vertical autoscaling, you can choose whether to scale CPU and memory resources.
Set the dynamic.sizing.scale.cpu and dynamic.sizing.scale.memory annotations to
true or false. By default, CPU scaling is set to false, and memory scaling is set to true.

Resource minimums and maximums (Bounds)

Optionally, you can also set boundaries on the CPU and memory resources. Choose a minimum
and maximum value for these resources with the dynamic.sizing.[memory/cpu].[min/
max] annotations when you enable autoscaling. By default, the resources have no limitations. Set
the annotations as string values that represent a Kubernetes resource quantity. For example, set
dynamic.sizing.memory.max to 4G to represent 4 GB.

Monitoring vertical autoscaling for Amazon EMR on EKS

You can use the kubectl Kubernetes command line tool to list the active, vertical autoscaling-
related recommendations on your cluster. You can also view your tracked job signatures, and purge
any unneeded resources that are associated with the signatures.

Monitoring the recommendations 209

Amazon EMR Amazon EMR on EKS Development Guide

List the vertical autoscaling recommendations for your cluster

Use kubectl to get the verticalpodautoscaler resource, and view the current status and
recommendations. The following example query returns all active resources on your Amazon EKS
cluster.

kubectl get verticalpodautoscalers \
-o custom-columns="NAME:.metadata.name,"\
"SIGNATURE:.metadata.labels.emr-containers\.amazonaws\.com/dynamic\.sizing
\.signature,"\
"MODE:.spec.updatePolicy.updateMode,"\
"MEM:.status.recommendation.containerRecommendations[0].target.memory" \
--all-namespaces

The output from this query resembles the following:

NAME SIGNATURE MODE MEM
ds-example-id-1-vpa job-signature-1 Off none
ds-example-id-2-vpa job-signature-2 Initial 12936384283

Query and delete the vertical autoscaling recommendations for your cluster

When you delete an Amazon EMR vertical autoscaling job-run resource, it automatically deletes the
associated VPA object that tracks and stores recommendations.

The following example uses kubectl to purge recommendations for a job that is identified by a
signature:

kubectl delete jobrun -n emr -l=emr-containers\.amazonaws\.com/dynamic\.sizing
\.signature=integ-test
jobrun.dynamicsizing.emr.services.k8s.aws "ds-job-signature" deleted

If you don't know the specific job signature, or want to purge all of the resources on the cluster,
you can use --all or --all-namespaces in your command instead of the unique job ID, as
shown in the following example:

kubectl delete jobruns --all --all-namespaces
jobrun.dynamicsizing.emr.services.k8s.aws "ds-example-id" deleted

Monitoring the recommendations 210

Amazon EMR Amazon EMR on EKS Development Guide

Uninstall the Amazon EMR on EKS vertical autoscaling operator

If you want to remove the vertical autoscaling operator from your Amazon EKS cluster, use
the cleanup command with the Operator SDK CLI as shown in the following example. This
also deletes upstream dependencies that installed with the operator, such as the Vertical Pod
Autoscaler.

operator-sdk cleanup emr-dynamic-sizing

If there are any running jobs on the cluster when you delete the operator, those jobs continue to
run without vertical autoscaling. If you submit jobs on the cluster after you delete the operator,
Amazon EMR on EKS will ignore any vertical autoscaling-related parameters that you may have
defined during configuration.

Uninstalling 211

Amazon EMR Amazon EMR on EKS Development Guide

Running interactive workloads on Amazon EMR on EKS

An interactive endpoint is a gateway that connects Amazon EMR Studio to Amazon EMR on EKS so
that you can run interactive workloads. You can use interactive endpoints with EMR Studio to run
interactive analytics with datasets in data stores like Amazon S3 and Amazon DynamoDB.

Use cases

• Create an ETL script with the EMR Studio IDE experience. The IDE ingests on-premises data and
stores it in Amazon S3 after transformations for subsequent analysis.

• Use notebooks to explore datasets and train a machine-learning model to detect anomalies in
the datasets.

• Create scripts that generate daily reports for analytic applications like business dashboards.

Topics

• Overview of interactive endpoints

• Prerequisites to create an interactive endpoint on Amazon EMR on EKS

• Creating an interactive endpoint for your virtual cluster

• Configuring settings for interactive endpoints

• Monitoring interactive endpoints

• Using self-hosted Jupyter notebooks

• Other operations on an interactive endpoint

Overview of interactive endpoints

An interactive endpoint provides the capability for interactive clients like Amazon EMR Studio to
connect to Amazon EMR on EKS clusters to run interactive workloads. The interactive endpoint is
backed by a Jupyter Enterprise Gateway that provides the remote kernel lifecycle management
capability that interactive clients need. Kernels are language-specific processes that interact with
the Jupyter-based Amazon EMR Studio client to run interactive workloads.

Interactive endpoints support the following kernels:

• Python 3

• PySpark on Kubernetes

Overview of interactive endpoints 212

https://docs.aws.amazon.com/AmazonS3/latest/user-guide/
https://docs.aws.amazon.com/amazondynamodb/latest/gettingstartedguide/

Amazon EMR Amazon EMR on EKS Development Guide

• Apache Spark with Scala

Note

Amazon EMR on EKS pricing applies for the interactive endpoints and kernels. For more
information, see the Amazon EMR on EKS pricing page.

The following entities are required for EMR Studio to connect with Amazon EMR on EKS.

• Amazon EMR on EKS virtual cluster – A virtual cluster is a Kubernetes namespace that you
register Amazon EMR with. Amazon EMR uses virtual clusters to run jobs and host endpoints. You
can back multiple virtual clusters with the same physical cluster. However, each virtual cluster
maps to one namespace on an Amazon EKS cluster. Virtual clusters don't create any active
resources that contribute to your bill or that require lifecycle management outside the service.

• Amazon EMR on EKS interactive endpoint – An interactive endpoint is an HTTPS endpoint to
which EMR Studio users can connect a workspace. You can only access the HTTPS endpoints from
your EMR Studio, and you create them in a private subnet of the Amazon Virtual Private Cloud
(Amazon VPC) for your Amazon EKS cluster.

The Python, PySpark, and Spark Scala kernels use the permissions defined in your Amazon EMR
on EKS job execution role to invoke other AWS services. All kernels and users that connect to
the interactive endpoint utilize the role that you specified when you created the endpoint. We
recommend that you create separate endpoints for different users, and that the users have
different AWS Identity and Access Management (IAM) roles.

• AWS Application Load Balancer controller – The AWS Application Load Balancer controller
manages Elastic Load Balancing for an Amazon EKS Kubernetes cluster. The controller provisions
an Application Load Balancer (ALB) when you create a Kubernetes Ingress resource. An ALB
exposes a Kubernetes service, such as an interactive endpoint, outside of the Amazon EKS cluster
but within the same Amazon VPC. When you create an interactive endpoint, an Ingress resource
is also deployed that exposes the interactive endpoint by means of the ALB for interactive clients
to connect to. You only need to install one AWS Application Load Balancer controller for each
Amazon EKS cluster.

The following diagram depicts the interactive endpoints architecture in Amazon EMR on EKS. An
Amazon EKS cluster comprises the compute to run the analytic workloads, and the interactive

Overview of interactive endpoints 213

https://aws.amazon.com/emr/pricing/#Amazon_EMR_on_Amazon_EKS

Amazon EMR Amazon EMR on EKS Development Guide

endpoint. The Application Load Balancer controller runs in the kube-system namespace; the
workloads and interactive endpoints run in the namespace that you specify when you create
the virtual cluster. When you create an interactive endpoint, the Amazon EMR on EKS control
plane creates the interactive endpoint deployment in the Amazon EKS cluster. Additionally, an
instance of the application load balancer ingress is created by the AWS load balancer controller.
The application load balancer provides the external interface for clients like EMR Studio to connect
to the Amazon EMR cluster and run interactive workloads.

Prerequisites to create an interactive endpoint on Amazon EMR
on EKS

This section describes prerequisites to set up an interactive endpoint that EMR Studio can use to
connect to an Amazon EMR on EKS cluster and run interactive workloads.

AWS CLI

Follow the steps in Install or update to the latest version of the AWS CLI to install the latest version
of the AWS Command Line Interface (AWS CLI).

Installing eksctl

Follow the steps in Install kubectl to install the latest version of eksctl. If you are using Kubernetes
version 1.22 or later for your Amazon EKS cluster, use an eksctl version greater than 0.117.0.

Interactive endpoints prerequisites 214

https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html
https://docs.aws.amazon.com/eks/latest/userguide/install-kubectl.html

Amazon EMR Amazon EMR on EKS Development Guide

Amazon EKS cluster

Create an Amazon EKS cluster. Register the cluster as a virtual cluster with Amazon EMR on EKS.
The following are requirements and considerations for this cluster:

• The cluster must be in the same Amazon Virtual Private Cloud (VPC) as your EMR Studio.

• The cluster must have at least one private subnet to activate interactive endpoints, to link Git-
based repositories, and to launch the Application Load Balancer in private mode.

• There must be at least one private subnet in common between your EMR Studio and the Amazon
EKS cluster that you use to register your virtual cluster. This ensures that your interactive
endpoint appears as an option in your Studio workspaces, and activates connectivity from Studio
to the Application Load Balancer.

There are two methods that you can choose from to connect your Studio and your Amazon EKS
cluster:

• Create an Amazon EKS cluster and associate it with the subnets that belong to your EMR
Studio.

• Alternatively, create an EMR Studio and specify the private subnets for your Amazon EKS
cluster.

• Amazon EKS optimized ARM Amazon Linux AMIs are not supported for Amazon EMR on EKS
interactive endpoints.

• Interactive endpoints work with Amazon EKS clusters that use Kubernetes versions up to 1.30.

• Only Amazon EKS managed node groups are supported.

Grant Cluster access for Amazon EMR on EKS

Use the the steps in Grant Cluster Access for Amazon EMR on EKS to grant Amazon EMR on EKS
access to a specific namespace in your cluster.

Activate IRSA on the Amazon EKS cluster

To activate IAM roles for Service Accounts (IRSA) on the Amazon EKS cluster, follow the steps in
Enable IAM Roles for Service Accounts (IRSA).

Amazon EKS cluster 215

https://docs.aws.amazon.com/eks/latest/userguide/managed-node-groups.html
https://docs.aws.amazon.com/emr/latest/EMR-on-EKS-DevelopmentGuide/setting-up-cluster-access.html
https://docs.aws.amazon.com/emr/latest/EMR-on-EKS-DevelopmentGuide/setting-up-enable-IAM.html

Amazon EMR Amazon EMR on EKS Development Guide

Create IAM job execution role

You must create an IAM role to run workloads on Amazon EMR on EKS interactive endpoints. We
refer to this IAM role as the job execution role in this documentation. This IAM role gets assigned
to both the interactive endpoint container and the actual execution containers that are created
when you submit jobs with EMR Studio. You'll need the Amazon Resource Name (ARN) of your job
execution role for Amazon EMR on EKS. There are two steps required for this:

• Create a IAM role for job execution.

• Update the trust policy of the job execution role.

Grant users access to Amazon EMR on EKS

The IAM entity (user or role) that makes the request to create an interactive endpoint must also
have the following Amazon EC2 and emr-containers permissions. Follow the steps described
in Grant users access to Amazon EMR on EKS to grant these permissions that allow Amazon EMR
on EKS to create, manage, and delete the security groups that limit inbound traffic to the load
balancer of your interactive endpoint.

The following emr-containers permissions allow the user to perform basic interactive endpoint
operations:

"ec2:CreateSecurityGroup",
"ec2:DeleteSecurityGroup",
"ec2:AuthorizeSecurityGroupEgress",
"ec2:AuthorizeSecurityGroupIngress",
"ec2:RevokeSecurityGroupEgress",
"ec2:RevokeSecurityGroupIngress"

"emr-containers:CreateManagedEndpoint",
"emr-containers:ListManagedEndpoints",
"emr-containers:DescribeManagedEndpoint",
"emr-containers:DeleteManagedEndpoint"

Register the Amazon EKS cluster with Amazon EMR

Set up a virtual cluster and map it to the namespace in the Amazon EKS cluster where you want to
run your jobs. For AWS Fargate-only clusters, use the same namespace for both the Amazon EMR
on EKS virtual cluster and Fargate profile.

Create IAM job execution role 216

https://docs.aws.amazon.com/emr/latest/EMR-on-EKS-DevelopmentGuide/creating-job-execution-role.html
https://docs.aws.amazon.com/emr/latest/EMR-on-EKS-DevelopmentGuide/setting-up-trust-policy.html

Amazon EMR Amazon EMR on EKS Development Guide

For information on setting up an Amazon EMR on EKS virtual cluster, see Register the Amazon EKS
cluster with Amazon EMR.

Deploy AWS Load Balancer Controller to Amazon EKS cluster

An AWS Application Load Balancer is required for your Amazon EKS cluster. You only need to set
up one Application Load Balancer controller per Amazon EKS cluster. For information on setting up
the AWS Application Load Balancer controller, see Installing the AWS Load Balancer Controller add-
on in the Amazon EKS User Guide.

Creating an interactive endpoint for your virtual cluster

This page describes how to create an interactive endpoint using the AWS Command Line Interface
(AWS CLI).

Create an interactive endpoint with the create-managed-endpoint
command

Specify the parameters in the create-managed-endpoint command as follows. Amazon EMR on
EKS supports creating interactive endpoints with Amazon EMR releases 6.7.0 and higher.

aws emr-containers create-managed-endpoint \
‐‐type JUPYTER_ENTERPRISE_GATEWAY \
‐‐virtual‐cluster‐id 1234567890abcdef0xxxxxxxx \
‐‐name example-endpoint-name \
‐‐execution-role-arn arn:aws:iam::444455556666:role/JobExecutionRole \
‐‐release-label emr-6.9.0-latest \
‐‐configuration-overrides '{
 "applicationConfiguration": [{
 "classification": "spark-defaults",
 "properties": {
 "spark.driver.memory": "2G"
 }
 }],
 "monitoringConfiguration": {
 "cloudWatchMonitoringConfiguration": {
 "logGroupName": "log_group_name",
 "logStreamNamePrefix": "log_stream_prefix"
 },
 "persistentAppUI": "ENABLED",

Load Balancer Controller 217

https://docs.aws.amazon.com/eks/latest/userguide/aws-load-balancer-controller.html
https://docs.aws.amazon.com/eks/latest/userguide/aws-load-balancer-controller.html

Amazon EMR Amazon EMR on EKS Development Guide

 "s3MonitoringConfiguration": {
 "logUri": "s3://my_s3_log_location"
 }
 }
}'

For more information, see Parameters for creating an interactive endpoint.

Create an interactive endpoint with specified parameters in a JSON file

1. Create a create-managed-endpoint-request.json file and specify the required
parameters for your endpoint, as shown in the following JSON file:

{
 "name": "MY_TEST_ENDPOINT",
 "virtualClusterId": "MY_CLUSTER_ID",
 "type": "JUPYTER_ENTERPRISE_GATEWAY",
 "releaseLabel": "emr-6.9.0-latest",
 "executionRoleArn": "arn:aws:iam::444455556666:role/JobExecutionRole",
 "configurationOverrides":
 {
 "applicationConfiguration":
 [
 {
 "classification": "spark-defaults",
 "properties":
 {
 "spark.driver.memory": "8G"
 }
 }
],
 "monitoringConfiguration":
 {
 "persistentAppUI": "ENABLED",
 "cloudWatchMonitoringConfiguration":
 {
 "logGroupName": "my_log_group",
 "logStreamNamePrefix": "log_stream_prefix"
 },
 "s3MonitoringConfiguration":
 {
 "logUri": "s3://my_s3_log_location"
 }

Specify custom parameters 218

Amazon EMR Amazon EMR on EKS Development Guide

 }
 }
}

2. Use the create-managed-endpoint command with a path to the create-managed-
endpoint-request.json file that is stored locally or in Amazon S3.

aws emr-containers create-managed-endpoint \
‐‐cli-input-json file://./create-managed-endpoint-request.json ‐‐region AWS-Region

Output of create interactive endpoint

You should see the following output in the terminal. The output includes the name and identifier
of your new interactive endpoint:

{
 "id": "1234567890abcdef0",
 "name": "example-endpoint-name",
 "arn": "arn:aws:emr-containers:us-west-2:111122223333:/
virtualclusters/444455556666/endpoints/444455556666",
 "virtualClusterId": "111122223333xxxxxxxx"
}

Running aws emr-containers create-managed-endpoint creates a self-signed certificate
that allows HTTPS communication between EMR Studio and the interactive endpoint server.

If you run create-managed-endpoint and haven't completed the prerequisites, Amazon EMR
returns an error message with the actions that you must take to continue.

Parameters for creating an interactive endpoint

Topics

• Required parameters for interactive endpoints

• Optional parameters for interactive endpoints

Required parameters for interactive endpoints

You must specify the following parameters when you create an interactive endpoint:

219

Amazon EMR Amazon EMR on EKS Development Guide

‐‐type

Use JUPYTER_ENTERPRISE_GATEWAY. This is the only supported type.

‐‐virtual-cluster-id

The identifier of the virtual cluster that you registered with Amazon EMR on EKS.

‐‐name

A descriptive name for the interactive endpoint that helps EMR Studio users select it from the
dropdown list.

‐‐execution-role-arn

The Amazon Resource Name (ARN) of your IAM job execution role for Amazon EMR on EKS that
was created as part of the prerequisites.

‐‐release-label

The release label of the Amazon EMR release to use for the endpoint. For example,
emr-6.9.0-latest. Amazon EMR on EKS supports interactive endpoints with Amazon EMR
releases 6.7.0 and higher.

Optional parameters for interactive endpoints

Optionally, you can also specify the following parameters when you create an interactive endpoint:

‐‐configuration-overrides

To override the default configurations for applications, supply a coonfiguration object. You can
use a shorthand syntax to provide the configuration, or you can reference the configuration
object in a JSON file.

Configuration objects consist of a classification, properties, and optional nested configurations.
Properties consist of the settings that you want to override in that file. You can specify multiple
classifications for multiple applications in a single JSON object. The configuration classifications
that are available vary by Amazon EMR on EKS release. For a list of configuration classifications
that are available for each release of Amazon EMR on EKS, see Amazon EMR on EKS releases. In
addition to the configuration classifications listed for each release, interactive endpoints bring in
the additional classification jeg-config. For more information, see Jupyter Enterprise Gateway
(JEG) configuration options.

Interactive endpoint parameters 220

Amazon EMR Amazon EMR on EKS Development Guide

Configuring settings for interactive endpoints

Monitoring Spark jobs

So that you can monitor and troubleshoot failures, configure your interactive endpoints so that
the jobs initiated with the endpoint can send log information to Amazon S3, Amazon CloudWatch
Logs, or both. The following sections describe how to send Spark application logs to Amazon S3 for
the Spark jobs that you launch with Amazon EMR on EKS interactive endpoints.

Configure IAM policy for Amazon S3 logs

Before your kernels can send log data to Amazon S3, the permissions policy for the job execution
role must include the following permissions. Replace DOC-EXAMPLE-BUCKET-LOGGING with the
name of your logging bucket.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "s3:PutObject",
 "s3:GetObject",
 "s3:ListBucket"
],
 "Resource": [
 "arn:aws:s3:::DOC-EXAMPLE-BUCKET-LOGGING",
 "arn:aws:s3:::DOC-EXAMPLE-BUCKET-LOGGING/*",
]
 }
]
}

Note

Amazon EMR on EKS can also create an S3 bucket. If an S3 bucket is not available, include
the s3:CreateBucket permission in the IAM policy.

After you've given your execution role the permissions it needs to send logs to the S3
bucket, your log data is sent to the following Amazon S3 locations. This happens when

Configuring settings for interactive endpoints 221

Amazon EMR Amazon EMR on EKS Development Guide

s3MonitoringConfiguration is passed in the monitoringConfiguration section of a
create-managed-endpoint request.

• Driver logs – logUri/virtual-cluster-id/endpoints/endpoint-id/containers/
spark-application-id/spark-application-id-driver/(stderr.gz/stdout.gz)

• Executor logs – logUri/virtual-cluster-id/endpoints/endpoint-id/containers/
spark-application-id/executor-pod-name-exec-<Number>/(stderr.gz/
stdout.gz)

Note

Amazon EMR on EKS doesn't upload the endpoint logs to your S3 bucket.

Specifying custom pod templates with interactive endpoints

You can create interactive endpoints where you specify custom pod templates for drivers and
executors. Pod templates are specifications that determine how to run each pod. You can use pod
template files to define the configurations of driver or executor pods that Spark configurations
don't support. Pod templates are currently supported in Amazon EMR releases 6.3.0 and greater.

For more information about pod templates, see Using pod templates in the Amazon EMR on EKS
Development Guide.

The following example shows how to create an interactive endpoint with pod templates:

aws emr-containers create-managed-endpoint \
 --type JUPYTER_ENTERPRISE_GATEWAY \
 --virtual-cluster-id virtual-cluster-id \
 --name example-endpoint-name \
 --execution-role-arn arn:aws:iam::aws-account-id:role/EKSClusterRole \
 --release-label emr-6.9.0-latest \
 --configuration-overrides '{
 "applicationConfiguration": [
 {
 "classification": "spark-defaults",
 "properties": {
 "spark.kubernetes.driver.podTemplateFile": "path/to/driver/
template.yaml",

Custom pod templates 222

https://docs.aws.amazon.com/emr/latest/EMR-on-EKS-DevelopmentGuide/pod-templates.html

Amazon EMR Amazon EMR on EKS Development Guide

 "spark.kubernetes.executor.podTemplateFile": "path/to/executor/
template.yaml"
 }
 }]
 }'

Deploying a JEG pod to a node group

JEG (Jupyter Enterprise Gateway) pod placement is a feature that allows you to deploy an
interactive endpoint on a specific node group. With this feature, you can configure settings such as
instance type for the interactive endpoint.

Associating a JEG pod to a managed node group

The following configuration property allows you to specify the name of a managed node group on
your Amazon EKS cluster where the JEG pod will be deployed.

//payload
--configuration-overrides '{
 "applicationConfiguration": [
 {
 "classification": "endpoint-configuration",
 "properties": {
 "managed-nodegroup-name": NodeGroupName
 }
 }
]
 }'

A node group must have the Kubernetes label for-use-with-emr-containers-managed-
endpoint-ng=NodeGroupName attached to all nodes that are part of the node group. To list all
nodes of a node group that have this tag, use the following command:

kubectl get nodes --show-labels | grep for-use-with-emr-containers-managed-endpoint-
ng=NodeGroupName

If the output of the command above doesn't return nodes that are part of your managed
node group, then there are no nodes in the node group that have the for-use-with-emr-
containers-managed-endpoint-ng=NodeGroupName Kubernetes label attached. In this case,
follow the steps below to attach that label to the nodes in your node group.

Deploying a JEG pod to a node group 223

Amazon EMR Amazon EMR on EKS Development Guide

1. Use the following command to add the for-use-with-emr-containers-managed-
endpoint-ng=NodeGroupName Kubernetes label to all nodes in a managed node group
NodeGroupName:

kubectl label nodes --selector eks:nodegroup-name=NodeGroupName for-use-with-emr-
containers-managed-endpoint-ng=NodeGroupName

2. Verify that the nodes were labeled correctly using the following command:

kubectl get nodes --show-labels | grep for-use-with-emr-containers-managed-endpoint-
ng=NodeGroupName

A managed node group must be associated with an Amazon EKS cluster’s security group, which is
usually the case if you created your cluster and managed node group using eksctl. You can verify
this in the AWS console using the following steps.

1. Go to your cluster in the Amazon EKS console.

2. Go to the networking tab of your cluster and note down the cluster security group.

3. Go to the compute tab of your cluster and click on the managed node group name.

4. Under the Details tab of the managed node group, verify that the cluster security group that
you noted previously is listed under Security groups.

If the managed node group is not attached to the Amazon EKS cluster security group,
you need to attach the for-use-with-emr-containers-managed-endpoint-
sg=ClusterName/NodeGroupName tag to the node group security group. Use the steps below to
attach this tag.

1. Go to the Amazon EC2 console and click on security groups on the left navigation pane.

2. Select your managed node group’s security group by clicking the checkbox.

3. Under the Tags tab, add the tag for-use-with-emr-containers-managed-endpoint-
sg=ClusterName/NodeGroupName using the Manage tags button.

Associating a JEG pod to a self-managed node group

The following configuration property allows you to specify the name of a self-managed or
unmanaged node group on the Amazon EKS cluster where the JEG pod will be deployed.

Deploying a JEG pod to a node group 224

Amazon EMR Amazon EMR on EKS Development Guide

//payload
--configuration-overrides '{
 "applicationConfiguration": [
 {
 "classification": "endpoint-configuration",
 "properties": {
 "self-managed-nodegroup-name": NodeGroupName
 }
 }
]
 }'

The node group must have for-use-with-emr-containers-managed-endpoint-
ng=NodeGroupName Kubernetes label attached to all nodes that are part of the node group. To
list all the nodes of a node group that have this tag, use the following command:

kubectl get nodes --show-labels | grep for-use-with-emr-containers-managed-endpoint-
ng=NodeGroupName

If the output of the command above doesn't return nodes that are part of your self-managed
node group, then there are no nodes in the node group that have the for-use-with-emr-
containers-managed-endpoint-ng=NodeGroupName Kubernetes label attached. In this case,
follow the steps below to attach that label to the nodes in your node group.

1. If you created the self-managed node group using eksctl, then use the following command
to add the for-use-with-emr-containers-managed-endpoint-ng=NodeGroupName
Kubernetes label to all nodes in the self-managed node group NodeGroupName at once.

kubectl label nodes --selector alpha.eksctl.io/nodegroup-name=NodeGroupName for-use-
with-emr-containers-managed-endpoint-ng=NodeGroupName

If you didn’t use eksctl to create the self-managed node group, then you will need to replace
the selector in the above command to a different Kubernetes label that is attached to all the
nodes of the node group.

2. Use the following command to verify that the nodes were labeled correctly:

kubectl get nodes --show-labels | grep for-use-with-emr-containers-managed-endpoint-
ng=NodeGroupName

Deploying a JEG pod to a node group 225

Amazon EMR Amazon EMR on EKS Development Guide

The security group for the self-managed node group must have the for-use-with-emr-
containers-managed-endpoint-sg=ClusterName/NodeGroupName tag attached. Use the
following steps to attach the tag to the security group from the AWS Management Console.

1. Navigate to the Amazon EC2 console. Select Security groups on the left navigation pane.

2. Select the checkbox next to the security group for your self-managed node group.

3. Under the Tags tab, use the Manage tags button to add the tag for-use-with-emr-
containers-managed-endpoint-sg=ClusterName/NodeGroupName. Replace
ClusterName and NodeGroupName with appropriate values.

Associating a JEG pod to a managed node group with On-Demand instances

You can also define additional labels, known as Kubernetes label selectors, to specify additional
constraints or restrictions to run an interactive endpoint on a given node or node group. The
following example shows how to use On-Demand Amazon EC2 instances for a JEG pod.

--configuration-overrides '{
 "applicationConfiguration": [
 {
 "classification": "endpoint-configuration",
 "properties": {
 "managed-nodegroup-name": NodeGroupName,
 "node-labels": "eks.amazonaws.com/capacityType:ON_DEMAND"
 }
 }
]
 }'

Note

You can only use the node-labels property with either with a managed-nodegroup-
name or self-managed-nodegroup-name property.

Jupyter Enterprise Gateway (JEG) configuration options

Amazon EMR on EKS uses Jupyter Enterprise Gateway (JEG) to turn on interactive endpoints. You
can set the following values for the allow-listed JEG configurations when you create the endpoint.

JEG configuration options 226

Amazon EMR Amazon EMR on EKS Development Guide

• RemoteMappingKernelManager.cull_idle_timeout – Timeout in seconds (integer), after
which a kernel is considered idle and ready to be culled. Values of 0 or lower deactivate culling.
Short timeouts might result in kernels being culled for users with poor network connections.

• RemoteMappingKernelManager.cull_interval – The interval in seconds (integer) on which
to check for idle kernels that exceed the cull timeout value.

Modifying PySpark session parameters

Starting with Amazon EMR on EKS release 6.9.0, in Amazon EMR Studio you can adjust the Spark
configuration associated with a PySpark session by executing the %%configure magic command
in the EMR notebook cell.

The following example shows a sample payload that you can use to modify memory, cores, and
other properties for the Spark driver and executor. For the conf settings, you can configure any
Spark configuration mentioned in the Apache Spark configuration documentation.

%%configure -f
{
 "driverMemory": "16G",
 "driverCores" 4,
 "executorMemory" : "32G"
 "executorCores": 2,
 "conf": {
 "spark.dynamicAllocation.maxExecutors" : 10,
 "spark.dynamicAllocation.minExecutors": 1
 }
}

The following example shows a sample payload that you can use to add files, pyFiles, and jar
dependencies to a Spark runtime.

%%configure -f
{
 "files": "s3://test-bucket-emr-eks/sample_file.txt",
 "pyFiles": : "path-to-python-files",
 "jars" : "path-to-jars
}

Modifying PySpark parameters 227

https://spark.apache.org/docs/latest/configuration.html

Amazon EMR Amazon EMR on EKS Development Guide

Custom kernel image with interactive endpoint

To ensure that you have the correct dependencies for your application when you run interactive
workloads from Amazon EMR Studio, you can customize Docker images for interactive endpoints
and run customized base kernel images. To create an interactive endpoint and connect it with a
custom Docker image, perform the following steps.

Note

You can only override base images. You can't add new kernel image types.

1. Create and publish a customized Docker image. The base image contains the Spark runtime
and the notebook kernels that run with it. To create the image, you can follow steps 1 through
4 in How to customize Docker images. In step 1, the base image URI in your Docker file must
use notebook-spark in place of spark.

ECR-registry-account.dkr.ecr.Region.amazonaws.com/notebook-spark/container-image-
tag

For more information on how to select AWS Regions and container image tags, see How to
select a base image URI.

2. Create an interactive endpoint that can be used with the custom image.

a. Create a JSON file custom-image-managed-endpoint.json with the following
contents. This example uses Amazon EMR release 6.9.0.

Example

{
 "name": "endpoint-name",
 "virtualClusterId": "virtual-cluster-id",
 "type": "JUPYTER_ENTERPRISE_GATEWAY",
 "releaseLabel": "emr-6.9.0-latest",
 "executionRoleArn": "execution-role-arn",
 "configurationOverrides": {
 "applicationConfiguration": [
 {
 "classification": "jupyter-kernel-overrides",
 "configurations": [

Custom kernel image 228

Amazon EMR Amazon EMR on EKS Development Guide

 {
 "classification": "python3",
 "properties": {
 "container-image": "123456789012.dkr.ecr.us-
west-2.amazonaws.com/custom-notebook-python:latest"
 }
 },
 {
 "classification": "spark-python-kubernetes",
 "properties": {
 "container-image": "123456789012.dkr.ecr.us-
west-2.amazonaws.com/custom-notebook-spark:latest"
 }
 }
]
 }
]
 }
}

b. Create an interactive endpoint with the configurations specified in the JSON file as shown
in the following example. For more information, see Create an interactive endpoint with
the create-managed-endpoint command.

aws emr-containers create-managed-endpoint --cli-input-json custom-image-
managed-endpoint.json

3. Connect to the interactive endpoint via EMR Studio. For more information and steps
to complete, see Connecting from Studio in the Amazon EMR on EKS section of the AWS
Workshop Studio docs.

Monitoring interactive endpoints

With Amazon EMR on EKS version 6.10 and later, interactive endpoints emit Amazon CloudWatch
metrics for monitoring and troubleshooting kernel lifecycle operations. Metrics are triggered by
interactive clients, such as EMR Studio or self-hosted Jupyter notebooks. Each of the operations
supported by interactive endpoints have metrics associated with them. The operations are
modeled as dimensions to each metric, as shown in the table below. Metrics emitted by interactive
endpoints are visible under a custom namespace, EMRContainers, in your account.

Monitoring interactive endpoints 229

https://emr-on-eks.workshop.aws/advanced/emr-studio/connecting-from-studio.html

Amazon EMR Amazon EMR on EKS Development Guide

Metric Description Unit

RequestCount Cumulative number of
requests of an operation
processed by the interactive
endpoint.

Count

RequestLatency The time from when a request
arrived at the interactive
endpoint and a response
was sent by the interactive
endpoint.

Millisecond

4XXError Emitted when a request for
an operation results in a 4xx
error during processing.

Count

5XXError Emitted when a request for
an operation results in a 5Xxx
server side error.

Count

KernelLaunchSuccess Applicable only for the
CreateKernel operation. It
indicates the cumulative
number of kernel launches
that were successful up to
and including this request.

Count

KernelLaunchFailure Applicable only for the
CreateKernel operation. It
indicates the cumulative
number of kernel launch
failures up until and including
this request.

Count

Each interactive endpoint metric has the following dimensions attached to it:

Monitoring interactive endpoints 230

Amazon EMR Amazon EMR on EKS Development Guide

• ManagedEndpointId – Identifier for the interactive endpoint

• OperationName – The operation triggered by the interactive client

Possible values for the OperationName dimension are shown in the following table:

operationName Operation description

CreateKernel Request that the interactive endpoint start a
kernel.

ListKernels Request that the interactive endpoint list the
kernels that have been previously started
using the same session token.

GetKernel Request that the interactive endpoint get
details about a specific kernel that has been
previously started.

ConnectKernel Request that the interactive endpoint
establish connectivity between the notebook
client and the kernel.

ConfigureKernel Publish %%configure magic request on
a pyspark kernel.

ListKernelSpecs Request that the interactive endpoint list the
available kernel specs.

GetKernelSpec Request that the interactive endpoint get
the kernel specs of a kernel that has been
previously launched.

GetKernelSpecResource Request that the interactive endpoint get
specific resources associated with the kernel
specs that have been previously launched.

Monitoring interactive endpoints 231

Amazon EMR Amazon EMR on EKS Development Guide

Examples

To access the total number of kernels launched for an interactive endpoint on a
given day:

1. Select the custom namespace: EMRContainers

2. Select your ManagedEndpointId, OperationName – CreateKernel

3. RequestCount metric with the statistic SUM and period 1 day will provide all the kernel launch
requests made in the last 24 hours.

4. KernelLaunchSuccess metric with statistic SUM and period 1 day will provide all the successful
kernel launch requests made in the last 24 hours.

To access the number of kernel failures for an interactive endpoint on a given
day:

1. Select the custom namespace: EMRContainers

2. Select your ManagedEndpointId, OperationName – CreateKernel

3. KernelLaunchFailure metric with statistic SUM and period 1 day will provide all the failed
kernel launch requests made in the last 24 hours. You can also select the 4XXError and
5XXError metric to know what kind of kernel launch failure happened.

Using self-hosted Jupyter notebooks

You can host and manage Jupyter or JupyterLab notebooks on an Amazon EC2 instance or on your
own Amazon EKS cluster as a self-hosted Jupyter notebook. You can then run interactive workloads
with your self-hosted Jupyter notebooks. The following sections walk through the process to set up
and deploy a self-hosted Jupyter notebook on an Amazon EKS cluster.

Creating a self-hosted Jupyter notebook on an EKS cluster

• Create a security group

• Create an Amazon EMR on EKS interactive endpoint

• Retrieve the gateway server URL of your interactive endpoint

• Retrieve an auth token to connect to the interactive endpoint

• Example: Deploy a JupyterLab notebook

Examples 232

Amazon EMR Amazon EMR on EKS Development Guide

• Delete a self-hosted Jupyter notebook

Create a security group

Before you can create an interactive endpoint and run a self-hosted Jupyter or JupyterLab
notebook, you must create a security group to control the traffic between your notebook and the
interactive endpoint. To use the Amazon EC2 console or Amazon EC2 SDK to create the security
group, refer to the steps in Create a security group in the Amazon EC2 User Guide. You should
create the security group in the VPC where you want to deploy your notebook server.

To follow the example in this guide, use the same VPC as your Amazon EKS cluster. If you want
to host your notebook in a VPC that is different from the VPC for your Amazon EKS cluster, you
might need to create a peering connection between those two VPCs. For steps to create a peering
connection between two VPCs, see Create a VPC peering connection in the Amazon VPC Getting
Started Guide.

You need the ID for the security group to create an Amazon EMR on EKS interactive endpoint in the
next step.

Create an Amazon EMR on EKS interactive endpoint

After you create security group for your notebook, use the steps provided in Creating an interactive
endpoint for your virtual cluster to create an interactive endpoint. You must provide the security
group ID that you created for your notebook in Create a security group.

Insert the security ID in place of your-notebook-security-group-id in the following
configuration override settings:

--configuration-overrides '{
 "applicationConfiguration": [
 {
 "classification": "endpoint-configuration",
 "properties": {
 "notebook-security-group-id": "your-notebook-security-group-id"
 }
 }
],
 "monitoringConfiguration": {
 ...'

Create a security group 233

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/working-with-security-groups.html#creating-security-group
https://docs.aws.amazon.com/vpc/latest/peering/create-vpc-peering-connection.html

Amazon EMR Amazon EMR on EKS Development Guide

Retrieve the gateway server URL of your interactive endpoint

After you create an interactive endpoint, retrieve the gateway server URL with the describe-
managed-endpoint command in the AWS CLI. You need this URL to connect your notebook to the
endpoint. The gateway server URL is a private endpoint.

aws emr-containers describe-managed-endpoint \
--region region \
--virtual-cluster-id virtualClusterId \
--id endpointId

Initially, your endpoint is in the CREATING state. After a few minutes, it transitions to the ACTIVE
state. When the endpoint is ACTIVE, it's ready to use.

Take note of the serverUrl attribute that the aws emr-containers describe-managed-
endpoint command returns from the active endpoint. You need this URL to connect your
notebook to the endpoint when you deploy your self-hosted Jupyter or JupyterLab notebook.

Retrieve an auth token to connect to the interactive endpoint

To connect to an interactive endpoint from a Jupyter or JupyterLab notebook, you must generate a
session token with the GetManagedEndpointSessionCredentials API. The token acts as proof
of authentication to connect to the interactive endpoint server.

The following command is explained in more detail with an output example below.

aws emr-containers get-managed-endpoint-session-credentials \
--endpoint-identifier endpointArn \
--virtual-cluster-identifier virtualClusterArn \
--execution-role-arn executionRoleArn \
--credential-type "TOKEN" \
--duration-in-seconds durationInSeconds \
--region region

endpointArn

The ARN of your endpoint. You can find the ARN in the result of a describe-managed-
endpoint call.

virtualClusterArn

The ARN of the virtual cluster.

Get the gateway server URL 234

Amazon EMR Amazon EMR on EKS Development Guide

executionRoleArn

The ARN of the execution role.

durationInSeconds

The duration in seconds for which the token is valid. The default duration is 15 minutes (900),
and the maximum is 12 hours (43200).

region

The same region as your endpoint.

Your output should resemble the following example. Take note of the session-token value that
you will use when you deploy your self-hosted Jupyter or JupyterLab notebook.

{
 "id": "credentialsId",
 "credentials": {
 "token": "session-token"
 },
 "expiresAt": "2022-07-05T17:49:38Z"
}

Example: Deploy a JupyterLab notebook

Once you've completed the steps above, you can try this example procedure to deploy a
JupyterLab notebook into the Amazon EKS cluster with your interactive endpoint.

1. Create a namespace to run the notebook server.

2. Create a file locally, notebook.yaml, with the following contents. The file contents are
described below.

apiVersion: v1
kind: Pod
metadata:
 name: jupyter-notebook
 namespace: namespace
spec:
 containers:
 - name: minimal-notebook
 image: jupyter/all-spark-notebook:lab-3.1.4 # open source image

Deploy the notebook 235

Amazon EMR Amazon EMR on EKS Development Guide

 ports:
 - containerPort: 8888
 command: ["start-notebook.sh"]
 args: ["--LabApp.token=''"]
 env:
 - name: JUPYTER_ENABLE_LAB
 value: "yes"
 - name: KERNEL_LAUNCH_TIMEOUT
 value: "400"
 - name: JUPYTER_GATEWAY_URL
 value: "serverUrl"
 - name: JUPYTER_GATEWAY_VALIDATE_CERT
 value: "false"
 - name: JUPYTER_GATEWAY_AUTH_TOKEN
 value: "session-token"

If you are deploying Jupyter notebook to a Fargate-only cluster, label the Jupyter pod with a
role label as shown in the following example:

...
metadata:
 name: jupyter-notebook
 namespace: default
 labels:
 role: example-role-name-label
spec:
 ...

namespace

The Kubernetes namespace that the notebook deploys into.

serverUrl

The serverUrl attribute that the describe-managed-endpoint command returned in
Retrieve the gateway server URL of your interactive endpoint .

session-token

The session-token attribute that the get-managed-endpoint-session-
credentials command returned in Retrieve an auth token to connect to the interactive
endpoint.

Deploy the notebook 236

Amazon EMR Amazon EMR on EKS Development Guide

KERNEL_LAUNCH_TIMEOUT

The amount of time in seconds that the interactive endpoint waits for the kernel to come
to RUNNING state. Ensure sufficient time for kernel launch to complete by setting the
kernel launch timeout to an appropriate value (maximum 400 seconds).

KERNEL_EXTRA_SPARK_OPTS

Optionally, you can pass additional Spark configurations for the Spark kernels. Set this
environment variable with the values as the Spark configuration property as shown in the
following example:

- name: KERNEL_EXTRA_SPARK_OPTS
 value: "--conf spark.driver.cores=2
 --conf spark.driver.memory=2G
 --conf spark.executor.instances=2
 --conf spark.executor.cores=2
 --conf spark.executor.memory=2G
 --conf spark.dynamicAllocation.enabled=true
 --conf spark.dynamicAllocation.shuffleTracking.enabled=true
 --conf spark.dynamicAllocation.minExecutors=1
 --conf spark.dynamicAllocation.maxExecutors=5
 --conf spark.dynamicAllocation.initialExecutors=1
 "

3. Deploy the pod spec to your Amazon EKS cluster:

kubectl apply -f notebook.yaml -n namespace

This will start up a minimal JupyterLab notebook connected to your Amazon EMR on EKS
interactive endpoint. Wait until the pod is RUNNING. You can check its status with the
following command:

kubectl get pod jupyter-notebook -n namespace

When the pod is ready, the get pod command returns output similar to this:

NAME READY STATUS RESTARTS AGE
jupyter-notebook 1/1 Running 0 46s

4. Attach the notebook security group to the node where the notebook is scheduled.
Deploy the notebook 237

Amazon EMR Amazon EMR on EKS Development Guide

a. First, identify the node where jupyter-notebook pod is scheduled with the describe
pod command.

kubectl describe pod jupyter-notebook -n namespace

b. Open the Amazon EKS console at https://console.aws.amazon.com/eks/home#/clusters.

c. Navigate to the Compute tab for your Amazon EKS cluster and select the node identified
by the describe pod command. Select the instance ID for the node.

d. From the Actions menu, select Security > Change security groups to attach the security
group that you created in Create a security group.

e. If you are deploying Jupyter notebook pod on AWS Fargate, create a
SecurityGroupPolicy to apply to the Jupyter notebook pod with the role label:

cat >my-security-group-policy.yaml <<EOF
apiVersion: vpcresources.k8s.aws/v1beta1
kind: SecurityGroupPolicy
metadata:
 name: example-security-group-policy-name
 namespace: default
spec:
 podSelector:
 matchLabels:
 role: example-role-name-label
 securityGroups:
 groupIds:
 - your-notebook-security-group-id
EOF

5. Now, port-forward so that you can locally access the JupyterLab interface:

kubectl port-forward jupyter-notebook 8888:8888 -n namespace

Once that is running, navigate to your local browser and visit localhost:8888 to see the
JupyterLab interface:

Deploy the notebook 238

https://console.aws.amazon.com/eks/home#/clusters

Amazon EMR Amazon EMR on EKS Development Guide

6. From JupyterLab, create a new Scala notebook. Here is a sample code snippet that you can run
to approximate the value of Pi:

import scala.math.random
import org.apache.spark.sql.SparkSession

/** Computes an approximation to pi */
val session = SparkSession
 .builder
 .appName("Spark Pi")
 .getOrCreate()

val slices = 2
// avoid overflow
val n = math.min(100000L * slices, Int.MaxValue).toInt

val count = session.sparkContext
.parallelize(1 until n, slices)
.map { i =>
 val x = random * 2 - 1
 val y = random * 2 - 1

Deploy the notebook 239

Amazon EMR Amazon EMR on EKS Development Guide

 if (x*x + y*y <= 1) 1 else 0
}.reduce(_ + _)

println(s"Pi is roughly ${4.0 * count / (n - 1)}")
session.stop()

Delete a self-hosted Jupyter notebook

When you're ready to delete your self-hosted notebook, you can also delete the interactive
endpoint and security group, too. Perform the actions in the following order:

1. Use the following command to delete the jupyter-notebook pod:

kubectl delete pod jupyter-notebook -n namespace

2. Then, delete your interactive endpoint with the delete-managed-endpoint command.
For steps to delete an interactive endpoint, see Delete an interactive endpoint. Initially, your
endpoint will be in the TERMINATING state. Once all resources have been cleaned up, it
transitions to the TERMINATED state.

Clean up 240

Amazon EMR Amazon EMR on EKS Development Guide

3. If you don’t plan to use the notebook security group that you created in Create a security
group for other Jupyter notebook deployments, you can delete it. See Delete a security group
in the Amazon EC2 User Guide for more information.

Other operations on an interactive endpoint

This topic covers the supported operations on an interactive endpoint other than create-
managed-endpoint.

Fetch interactive endpoint details

After you create an interactive endpoint, you can retrieve its details using the describe-
managed-endpoint AWS CLI command. Insert your own values for managed-endpoint-id,
virtual-cluster-id, and region:

aws emr-containers describe-managed-endpoint ‐‐id managed-endpoint-id \
 ‐‐virtual-cluster-id virtual-cluster-id ‐‐region region

The output looks similar to the following, with the specified endpoint, such as ARN, ID, and name.

{
 "id": "as3ys2xxxxxxx",
 "name": "endpoint-name",
 "arn": "arn:aws:emr-containers:us-east-1:1828xxxxxxxx:/virtualclusters/
lbhl6kwwyoxxxxxxxxxxxxxxx/endpoints/as3ysxxxxxxxx",
 "virtualClusterId": "lbhl6kwwyoxxxxxxxxxxxxxxx",
 "type": "JUPYTER_ENTERPRISE_GATEWAY",
 "state": "ACTIVE",
 "releaseLabel": "emr-6.9.0-latest",
 "executionRoleArn": "arn:aws:iam::1828xxxxxxxx:role/RoleName",
 "certificateAuthority": {
 "certificateArn": "arn:aws:acm:us-east-1:1828xxxxxxxx:certificate/zzzzzzzz-
e59b-4ed0-aaaa-bbbbbbbbbbbb",
 "certificateData": "certificate-data"
 },
 "configurationOverrides": {
 "applicationConfiguration": [
 {
 "classification": "spark-defaults",
 "properties": {
 "spark.driver.memory": "8G"

Other operations 241

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/working-with-security-groups.html#deleting-security-group

Amazon EMR Amazon EMR on EKS Development Guide

 }
 }
],
 "monitoringConfiguration": {
 "persistentAppUI": "ENABLED",
 "cloudWatchMonitoringConfiguration": {
 "logGroupName": "log-group-name",
 "logStreamNamePrefix": "log-stream-name-prefix"
 },
 "s3MonitoringConfiguration": {
 "logUri": "s3-bucket-name"
 }
 }
 },
 "serverUrl": "https://internal-k8s-namespace-ingressa-aaaaaaaaaa-
zzzzzzzzzz.us-east-1.elb.amazonaws.com:18888 (https://internal-k8s-nspluto-
ingressa-51e860abbd-1620715833.us-east-1.elb.amazonaws.com:18888/)",
 "createdAt": "2022-09-19T12:37:49+00:00",
 "securityGroup": "sg-aaaaaaaaaaaaaa",
 "subnetIds": [
 "subnet-11111111111",
 "subnet-22222222222",
 "subnet-33333333333"
],
 "stateDetails": "Endpoint created successfully. It took 3 Minutes 15 Seconds",
 "tags": {}
 }

List all interactive endpoints associated with a virtual cluster

Use the list-managed-endpoints AWS CLI command to fetch a list of all the interactive
endpoints associated with a specified virtual cluster. Replace virtual-cluster-id with the ID of
your virtual cluster.

aws emr-containers list-managed-endpoints ‐‐virtual-cluster-id virtual-cluster-id

The output of the list-managed-endpoint command is shown below:

{
 "endpoints": [{
 "id": "as3ys2xxxxxxx",
 "name": "endpoint-name",

List interactive endpoints 242

Amazon EMR Amazon EMR on EKS Development Guide

 "arn": "arn:aws:emr-containers:us-east-1:1828xxxxxxxx:/virtualclusters/
lbhl6kwwyoxxxxxxxxxxxxxxx/endpoints/as3ysxxxxxxxx",
 "virtualClusterId": "lbhl6kwwyoxxxxxxxxxxxxxxx",
 "type": "JUPYTER_ENTERPRISE_GATEWAY",
 "state": "ACTIVE",
 "releaseLabel": "emr-6.9.0-latest",
 "executionRoleArn": "arn:aws:iam::1828xxxxxxxx:role/RoleName",
 "certificateAuthority": {
 "certificateArn": "arn:aws:acm:us-east-1:1828xxxxxxxx:certificate/zzzzzzzz-
e59b-4ed0-aaaa-bbbbbbbbbbbb",
 "certificateData": "certificate-data"
 },
 "configurationOverrides": {
 "applicationConfiguration": [{
 "classification": "spark-defaults",
 "properties": {
 "spark.driver.memory": "8G"
 }
 }],
 "monitoringConfiguration": {
 "persistentAppUI": "ENABLED",
 "cloudWatchMonitoringConfiguration": {
 "logGroupName": "log-group-name",
 "logStreamNamePrefix": "log-stream-name-prefix"
 },
 "s3MonitoringConfiguration": {
 "logUri": "s3-bucket-name"
 }
 }
 },
 "serverUrl": "https://internal-k8s-namespace-ingressa-aaaaaaaaaa-
zzzzzzzzzz.us-east-1.elb.amazonaws.com:18888 (https://internal-k8s-nspluto-
ingressa-51e860abbd-1620715833.us-east-1.elb.amazonaws.com:18888/)",
 "createdAt": "2022-09-19T12:37:49+00:00",
 "securityGroup": "sg-aaaaaaaaaaaaaa",
 "subnetIds": [
 "subnet-11111111111",
 "subnet-22222222222",
 "subnet-33333333333"
],
 "stateDetails": "Endpoint created successfully. It took 3 Minutes 15 Seconds",
 "tags": {}
 }]

List interactive endpoints 243

Amazon EMR Amazon EMR on EKS Development Guide

}

Delete an interactive endpoint

To delete an interactive endpoint associated with an Amazon EMR on EKS virtual cluster, use the
delete-managed-endpoint AWS CLI command. When you delete an interactive endpoint,
Amazon EMR on EKS removes the default security groups that were created for that endpoint.

Specify values for the following parameters to the command:

• ‐‐id: The identifier of the interactive endpoint that you want to delete.

• ‐‐virtual-cluster-id – The identifier of the virtual cluster associated with the interactive
endpoint that you want to delete. This is the same virtual cluster ID that was specified when the
interactive endpoint was created.

aws emr-containers delete-managed-endpoint ‐‐id managed-endpoint-id ‐‐virtual-cluster-
id virtual-cluster-id

The command returns output similar to the following to confirm that you deleted the interactive
endpoint:

{
 "id":"8gai4l4exxxxx",
 "virtualClusterId":"0b0qvauoy3ch1nqodxxxxxxxx"
}

Delete interactive endpoint 244

Amazon EMR Amazon EMR on EKS Development Guide

Uploading data into Amazon S3 Express One Zone with
Amazon EMR on EKS

With Amazon EMR releases 7.2.0 and higher, you can use Amazon EMR on EKS with the Amazon
S3 Express One Zone storage class for improved performance when you run jobs and workloads.
S3 Express One Zone is a a high-performance, single-zone Amazon S3 storage class that delivers
consistent, single-digit millisecond data access for most latency-sensitive applications. At the time
of its release, S3 Express One Zone delivers the lowest latency and highest performance cloud
object storage in Amazon S3.

Prerequisites

Before you can use S3 Express One Zone with Amazon EMR on EKS, you must have the following
prerequisites:

• Completed setting up Amazon EMR on EKS.

• After you set up Amazon EMR on EKS, create a virtual cluster.

Getting started with S3 Express One Zone

Follow these steps to get started with S3 Express One Zone

1. Add the CreateSession permission to your job execution role. When S3 Express One
Zone initially performs an action like GET, LIST, or PUT on an S3 object, the storage class
calls CreateSession on your behalf. The following is an example of how to grant the
CreateSession permission.

{
 "Version":"2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Resource": "arn:aws:s3express:<AWS_REGION>:<ACCOUNT_ID>:bucket/DOC-
EXAMPLE-BUCKET",
 "Action": [
 "s3express:CreateSession"
]

Prerequisites 245

https://docs.aws.amazon.com/AmazonS3/latest/userguide/s3-express-one-zone.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/s3-express-one-zone.html
https://docs.aws.amazon.com/emr/latest/EMR-on-EKS-DevelopmentGuide/setting-up.html
https://docs.aws.amazon.com/emr/latest/EMR-on-EKS-DevelopmentGuide/virtual-cluster.html#create-virtul-cluster

Amazon EMR Amazon EMR on EKS Development Guide

 }
]
 }

2. You must use the Apache Hadoop connector S3A to access the S3 Express buckets, so change
your Amazon S3 URIs to use the s3a scheme to use the connector. If they don’t use the
scheme, you can change the filesystem implementation that you use for s3 and s3n schemes.

To change the s3 scheme, specify the following cluster configurations:

[
 {
 "Classification": "core-site",
 "Properties": {
 "fs.s3.impl": "org.apache.hadoop.fs.s3a.S3AFileSystem",
 "fs.AbstractFileSystem.s3.impl": "org.apache.hadoop.fs.s3a.S3A"
 }
 }
]

To change the s3n scheme, specify the following cluster configurations:

[
 {
 "Classification": "core-site",
 "Properties": {
 "fs.s3n.impl": "org.apache.hadoop.fs.s3a.S3AFileSystem",
 "fs.AbstractFileSystem.s3n.impl": "org.apache.hadoop.fs.s3a.S3A"
 }
 }
]

3. In your spark-submit configuration, use the web identity credential provider.

"spark.hadoop.fs.s3a.aws.credentials.provider=com.amazonaws.auth.WebIdentityTokenCredentialsProvider"

Getting started 246

Amazon EMR Amazon EMR on EKS Development Guide

Monitoring jobs

Topics

• Monitor jobs with Amazon CloudWatch Events

• Automate Amazon EMR on EKS with CloudWatch Events

• Example: Set up a rule that invokes Lambda

• Monitor job’s driver pod with a retry policy using Amazon CloudWatch Events

Monitor jobs with Amazon CloudWatch Events

Amazon EMR on EKS emits events when the state of a job run changes. Each event provides
information, such as the date and time when the event occurred, along with further details about
the event, such as the virtual cluster ID and the ID of the job run that was affected.

You can use events to track the activity and health of a jobs that you run on a virtual cluster. You
can also use Amazon CloudWatch Events to define an action to take when a job run generates
an event that matches a pattern that you specify. Events are useful for monitoring a specific
occurrence during the lifecycle of a job run. For example, you can monitor when a job run changes
state from submitted to running. For more information about CloudWatch Events, see the
Amazon EventBridge User Guide.

The following table lists Amazon EMR on EKS events along with the state or state change that
the event indicates, the severity of the event, and event messages. Each event is represented as
a JSON object that is sent automatically to an event stream. The JSON object includes further
details about the event. The JSON object is particularly important when you set up rules for event
processing using CloudWatch Events because rules seek to match patterns in the JSON object. For
more information, see Amazon EventBridge event patterns and Amazon EMR on EKS Events in the
Amazon EventBridge User Guide.

Job run state change events

State Severity Message

SUBMITTED INFO Job Run JobRunId (JobRunName) was
successfully submitted to virtual cluster
VirtualClusterId at Time UTC.

Monitor jobs with Amazon CloudWatch Events 247

https://docs.aws.amazon.com/eventbridge/latest/userguide/eb-events.html
https://docs.aws.amazon.com/eventbridge/latest/userguide/eb-event-patterns.html
https://docs.aws.amazon.com/eventbridge/latest/userguide/eb-service-event.html#emr_event_type

Amazon EMR Amazon EMR on EKS Development Guide

State Severity Message

RUNNING INFO Job Run JobRunId (JobRunName) in
virtual cluster VirtualClusterId started
running at Time.

COMPLETED INFO Job Run jobRunId (JobRunName) in virtual
cluster VirtualClusterId completed at
Time. The Job Run started running at Time
and took Num minutes to complete.

CANCELLED WARN Cancellation request has succeeded for Job
Run JobRunId (JobRunName) in virtual
cluster VirtualClusterId at Time and
the Job Run is now cancelled.

FAILED ERROR Job Run JobRunId (JobRunName) in virtual
cluster VirtualClusterId failed at Time.

Automate Amazon EMR on EKS with CloudWatch Events

You can use Amazon CloudWatch Events to automate your AWS services to respond to system
events such as application availability issues or resource changes. Events from AWS services are
delivered to CloudWatch Events in near real time. You can write simple rules to indicate which
events are of interest to you and what automated actions to take when an event matches a rule.
The actions that can be automatically triggered include the following:

• Invoking an AWS Lambda function

• Invoking Amazon EC2 Run Command

• Relaying the event to Amazon Kinesis Data Streams

• Activating an AWS Step Functions state machine

• Notifying an Amazon Simple Notification Service (SNS) topic or an Amazon Simple Queue
Service (SQS) queue

Some examples of using CloudWatch Events with Amazon EMR on EKS include the following:

Automate Amazon EMR on EKS with CloudWatch Events 248

Amazon EMR Amazon EMR on EKS Development Guide

• Activating a Lambda function when a job run succeeds

• Notifying an Amazon SNS topic when a job run fails

CloudWatch Events for "detail-type:" "EMR Job Run State Change" are generated by
Amazon EMR on EKS for SUBMITTED, RUNNING, CANCELLED, FAILED and COMPLETED state
changes.

Example: Set up a rule that invokes Lambda

Use the following steps to set up a CloudWatch Events rule that invokes Lambda when there is an
"EMR Job Run State Change" event.

aws events put-rule \
--name cwe-test \
--event-pattern '{"detail-type": ["EMR Job Run State Change"]}'

Add the Lambda function that you own as a new target and give CloudWatch Events permission to
invoke the Lambda function as follows. Replace 123456789012 with your account ID.

aws events put-targets \
--rule cwe-test \
--targets Id=1,Arn=arn:aws:lambda:us-east-1:123456789012:function:MyFunction

aws lambda add-permission \
--function-name MyFunction \
--statement-id MyId \
--action 'lambda:InvokeFunction' \
--principal events.amazonaws.com

Note

You cannot write a program that depends on the order or existence of notification events,
as they might be out of sequence or missing. Events are emitted on a best effort basis.

Example: Set up a rule that invokes Lambda 249

Amazon EMR Amazon EMR on EKS Development Guide

Monitor job’s driver pod with a retry policy using Amazon
CloudWatch Events

Using CloudWatch events, you can monitor driver pods that have been created in jobs that have
retry policies. For more information, see Monitoring a job with a retry policy in this guide.

Monitor job’s driver pod with a retry policy using Amazon CloudWatch Events 250

Amazon EMR Amazon EMR on EKS Development Guide

Managing virtual clusters

A virtual cluster is a Kubernetes namespace that Amazon EMR is registered with. You can create,
describe, list, and delete virtual clusters. They do not consume any additional resource in your
system. A single virtual cluster maps to a single Kubernetes namespace. Given this relationship,
you can model virtual clusters the same way you model Kubernetes namespaces to meet your
requirements. See possible use cases in the Kubernetes Concepts Overview documentation.

To register Amazon EMR with a Kubernetes namespace on an Amazon EKS cluster, you need the
name of the EKS cluster and the namespace that has been set up for running your workload. These
registered clusters in Amazon EMR are called virtual clusters because they do not manage physical
compute or storage but point to a Kubernetes namespace where your workload is scheduled.

Note

Before creating a virtual cluster, you must first complete the steps 1-8 in Setting up
Amazon EMR on EKS.

Topics

• Create a virtual cluster

• List virtual clusters

• Describe a virtual cluster

• Delete a virtual cluster

• Virtual cluster states

Create a virtual cluster

Run the following command to create a virtual cluster by registering Amazon EMR with a
namespace on an EKS cluster. Replace virtual_cluster_name with a name that you provide for
your virtual cluster. Replace eks_cluster_name with the name of the EKS cluster. Replace the
namespace_name with the namespace that you want to register Amazon EMR with.

aws emr-containers create-virtual-cluster \
--name virtual_cluster_name \
--container-provider '{

Create a virtual cluster 251

https://kubernetes.io/docs/concepts/overview/working-with-objects/namespaces/

Amazon EMR Amazon EMR on EKS Development Guide

 "id": "eks_cluster_name",
 "type": "EKS",
 "info": {
 "eksInfo": {
 "namespace": "namespace_name"
 }
 }
}'

Alternatively, you can create a JSON file that includes the required parameters for the virtual
cluster, as the following example demonstrates.

{
 "name": "virtual_cluster_name",
 "containerProvider": {
 "type": "EKS",
 "id": "eks_cluster_name",
 "info": {
 "eksInfo": {
 "namespace": "namespace_name"
 }
 }
 }
}

Then run the following create-virtual-cluster command with the path to the JSON file.

aws emr-containers create-virtual-cluster \
--cli-input-json file://./create-virtual-cluster-request.json

Note

To validate the successful creation of a virtual cluster, view the status of virtual clusters by
running the list-virtual-clusters command or by going to the Virtual clusters page
in the Amazon EMR console.

List virtual clusters

Run the following command to view the status of virtual clusters.

List virtual clusters 252

Amazon EMR Amazon EMR on EKS Development Guide

aws emr-containers list-virtual-clusters

Describe a virtual cluster

Run the following command to get more details about a virtual cluster, such as namespace, status,
and date registered. Replace 123456 with your virtual cluster ID.

aws emr-containers describe-virtual-cluster --id 123456

Delete a virtual cluster

Run the following command to delete a virtual cluster. Replace 123456 with your virtual cluster ID.

aws emr-containers delete-virtual-cluster --id 123456

Virtual cluster states

The following table describes the four possible states of a virtual cluster.

State Description

RUNNING Virtual cluster is in RUNNING state.

TERMINATING The requested termination of the virtual
cluster is in progress.

TERMINATED The requested termination is complete.

ARRESTED The requested termination failed because of
insufficient permissions.

Describe a virtual cluster 253

Amazon EMR Amazon EMR on EKS Development Guide

Tutorials for Amazon EMR on EKS

This section describes common use cases for when you work with Amazon EMR on EKS
applications.

Topics

• Using Delta Lake with Amazon EMR on EKS

• Using Apache Iceberg with Amazon EMR on EKS

• Using PyFlink

• Using AWS Glue with Flink

• Using Apache Hudi with Apache Flink

• Using RAPIDS Accelerator for Apache Spark with Amazon EMR on EKS

• Using Amazon Redshift integration for Apache Spark on Amazon EMR on EKS

• Using Volcano as a custom scheduler for Apache Spark on Amazon EMR on EKS

• Using YuniKorn as a custom scheduler for Apache Spark on Amazon EMR on EKS

Using Delta Lake with Amazon EMR on EKS

To use Delta Lake with Amazon EMR on EKS applications

1. When you start a job run to submit a Spark job in the application configuration, include the
Delta Lake JAR files:

--job-driver '{"sparkSubmitJobDriver" : {
 "sparkSubmitParameters" : "--jars local:///usr/share/aws/delta/lib/delta-
core.jar,local:///usr/share/aws/delta/lib/delta-storage.jar,local:///usr/share/aws/
delta/lib/delta-storage-s3-dynamodb.jar"}}'

Note

Amazon EMR releases 7.0.0 and higher uses Delta Lake 3.0, which renames delta-
core.jar to delta-spark.jar. If you use Amazon EMR releases 7.0.0 or higher, be
sure to use the correct file name, such as in the following example:

Using Delta Lake 254

https://delta.io/

Amazon EMR Amazon EMR on EKS Development Guide

--jars local:///usr/share/aws/delta/lib/delta-spark.jar

2. Include Delta Lake additional configuration and use AWS Glue Data Catalog as your metastore.

--configuration-overrides '{
 "applicationConfiguration": [
 {
 "classification" : "spark-defaults",
 "properties" : {
 "spark.sql.extensions" : "io.delta.sql.DeltaSparkSessionExtension",

 "spark.sql.catalog.spark_catalog":"org.apache.spark.sql.delta.catalog.DeltaCatalog",
"spark.hadoop.hive.metastore.client.factory.class":"com.amazonaws.glue.catalog.metastore.AWSGlueDataCatalogHiveClientFactory"
 }
 }]}'

Using Apache Iceberg with Amazon EMR on EKS

To use Apache Iceberg with Amazon EMR on EKS applications

1. When you start a job run to submit a Spark job in the application configuration, include the
Iceberg spark runtime JAR file:

--job-driver '{"sparkSubmitJobDriver" : {"sparkSubmitParameters" : "--jars
 local:///usr/share/aws/iceberg/lib/iceberg-spark3-runtime.jar"}}'

2. Include Iceberg additional configuration:

--configuration-overrides '{
 "applicationConfiguration": [
 "classification" : "spark-defaults",
 "properties" : {
 "spark.sql.catalog.dev.warehouse" : "s3://DOC-EXAMPLE-BUCKET/EXAMPLE-
PREFIX/ ",
 "spark.sql.extensions ":"
 org.apache.iceberg.spark.extensions.IcebergSparkSessionExtensions ",
 "spark.sql.catalog.dev" : "org.apache.iceberg.spark.SparkCatalog",
 "spark.sql.catalog.dev.catalog-impl" :
 "org.apache.iceberg.aws.glue.GlueCatalog",

Using Iceberg 255

Amazon EMR Amazon EMR on EKS Development Guide

 "spark.sql.catalog.dev.io-impl": "org.apache.iceberg.aws.s3.S3FileIO"
 }
]
}'

To learn more about Apache Iceberg release versions of EMR, see Iceberg release history.

Using PyFlink

Amazon EMR on EKS releases 6.15.0 and higher supports PyFlink. If you already have a PyFlink
script, you can do one of the following:

• Create a custom image with your PyFlink script included.

• Upload your script to an Amazon S3 location

If you don't already have a script, you can use the following example to launch a PyFlink job.
This example retrieves the script from S3. If you're using a custom image with your script already
included in the image, you must update the script path to the location of where you stored your
script. If the script is in an S3 location, Amazon EMR on EKS will retrieve the script and place it
under the /opt/flink/usrlib/ directory in the Flink container.

apiVersion: flink.apache.org/v1beta1
kind: FlinkDeployment
metadata:
 name: python-example
spec:
 flinkVersion: v1_17
 flinkConfiguration:
 taskmanager.numberOfTaskSlots: "1"
 executionRoleArn: job-execution-role
 emrReleaseLabel: "emr-6.15.0-flink-latest"
 jobManager:
 highAvailabilityEnabled: false
 replicas: 1
 resource:
 memory: "2048m"
 cpu: 1
 taskManager:
 resource:

Using PyFlink 256

https://docs.aws.amazon.com/emr/latest/ReleaseGuide/Iceberg-release-history.html

Amazon EMR Amazon EMR on EKS Development Guide

 memory: "2048m"
 cpu: 1
 job:
 jarURI: s3://S3 bucket with your script/pyflink-script.py
 entryClass: "org.apache.flink.client.python.PythonDriver"
 args: ["-py", "/opt/flink/usrlib/pyflink-script.py"]
 parallelism: 1
 upgradeMode: stateless

Using AWS Glue with Flink

Amazon EMR on EKS with Apache Flink releases 6.15.0 and higher supports using the AWS Glue
Data Catalog as a metadata store for streaming and batch SQL workflows.

You must first create an AWS Glue database named default that serves as your Flink SQL Catalog.
This Flink Catalog stores metadata such as databases, tables, paritions, views, functions, and other
information needed to access data in other external systems.

aws glue create-database \
 --database-input "{\"Name\":\"default\"}"

To enable AWS Glue support, use a FlinkDeployment spec. This example spec uses a Python
script to quickly issue some Flink SQL statements to interact with the AWS Glue catalog.

apiVersion: flink.apache.org/v1beta1
kind: FlinkDeployment
metadata:
 name: python-example
spec:
 flinkVersion: v1_17
 flinkConfiguration:
 taskmanager.numberOfTaskSlots: "1"
 aws.glue.enabled: "true"
 executionRoleArn: job-execution-role-arn;
 emrReleaseLabel: "emr-6.15.0-flink-latest"
 jobManager:
 highAvailabilityEnabled: false
 replicas: 1
 resource:
 memory: "2048m"
 cpu: 1

Using AWS Glue with Flink 257

Amazon EMR Amazon EMR on EKS Development Guide

 taskManager:
 resource:
 memory: "2048m"
 cpu: 1
 job:
 jarURI: s3://<S3_bucket_with_your_script/pyflink-glue-script.py
 entryClass: "org.apache.flink.client.python.PythonDriver"
 args: ["-py", "/opt/flink/usrlib/pyflink-glue-script.py"]
 parallelism: 1
 upgradeMode: stateless

The following is an example of what your PyFlink script might look like.

import logging
import sys
from pyflink.datastream import StreamExecutionEnvironment
from pyflink.table import StreamTableEnvironment

def glue_demo():
 env = StreamExecutionEnvironment.get_execution_environment()
 t_env = StreamTableEnvironment.create(stream_execution_environment=env)
 t_env.execute_sql("""
 CREATE CATALOG glue_catalog WITH (
 'type' = 'hive',
 'default-database' = 'default',
 'hive-conf-dir' = '/glue/confs/hive/conf',
 'hadoop-conf-dir' = '/glue/confs/hadoop/conf'
)
 """)
 t_env.execute_sql("""
 USE CATALOG glue_catalog;
 """)
 t_env.execute_sql("""
 DROP DATABASE IF EXISTS eks_flink_db CASCADE;
 """)
 t_env.execute_sql("""
 CREATE DATABASE IF NOT EXISTS eks_flink_db WITH ('hive.database.location-
uri'= 's3a://S3-bucket-to-store-metadata/flink/flink-glue-for-hive/warehouse/');
 """)
 t_env.execute_sql("""
 USE eks_flink_db;
 """)
 t_env.execute_sql("""

Using AWS Glue with Flink 258

Amazon EMR Amazon EMR on EKS Development Guide

 CREATE TABLE IF NOT EXISTS eksglueorders (
 order_number BIGINT,
 price DECIMAL(32,2),
 buyer RO first_name STRING, last_name STRING,
 order_time TIMESTAMP(3)
) WITH (
 'connector' = 'datagen'
);
 """)
 t_env.execute_sql("""
 CREATE TABLE IF NOT EXISTS eksdestglueorders (
 order_number BIGINT,
 price DECIMAL(32,2),
 buyer ROW first_name STRING, last_name STRING,
 order_time TIMESTAMP(3)
) WITH (
 'connector' = 'filesystem',
 'path' = 's3://S3-bucket-to-store-metadata/flink/flink-glue-for-hive/
warehouse/eksdestglueorders',
 'format' = 'json'
);
 """)
 t_env.execute_sql("""
 CREATE TABLE IF NOT EXISTS print_table (
 order_number BIGINT,
 price DECIMAL(32,2),
 buyer ROW first_name STRING, last_name STRING,
 order_time TIMESTAMP(3)
) WITH (
 'connector' = 'print'
);
 """)
 t_env.execute_sql("""
 EXECUTE STATEMENT SET
 BEGIN
 INSERT INTO eksdestglueorders SELECT * FROM eksglueorders LIMIT 10;
 INSERT INTO print_table SELECT * FROM eksdestglueorders;
 END;
 """)

if __name__ == '__main__':
 logging.basicConfig(stream=sys.stdout, level=logging.INFO, format="%(message)s")

Using AWS Glue with Flink 259

Amazon EMR Amazon EMR on EKS Development Guide

 glue_demo()

Using Apache Hudi with Apache Flink

Apache Hudi is an open-source data management framework with record-level operations such as
insert, update, upsert, and delete that you can use to simplify data management and data pipeline
development. When combined with efficient data management in Amazon S3, Hudi lets you ingest
and update data in real time. Hudi maintains metadata of all of the operations that you run on the
dataset, so all of the actions remain atomic and consistent.

Apache Hudi is available on Amazon EMR on EKS with Apache Flink with Amazon EMR releases
7.2.0 and higher. See the following steps to learn how to get started and submit Apache Hudi jobs.

Submit an Apache Hudi job

See the following steps to learn how to submit an Apache Hudi job.

1. Create an AWS Glue database named default.

aws glue create-database --database-input "{\"Name\":\"default\"}"

2. Follow the Flink Kubernetes Operator SQL Example to build the flink-sql-runner.jar
file.

3. Create a Hudi SQL script like the following.

CREATE CATALOG hudi_glue_catalog WITH (
'type' = 'hudi',
'mode' = 'hms',
'table.external' = 'true',
'default-database' = 'default',
'hive.conf.dir' = '/glue/confs/hive/conf/',
'catalog.path' = 's3://<hudi-example-bucket>/FLINK_HUDI/warehouse/'
);

USE CATALOG hudi_glue_catalog;
CREATE DATABASE IF NOT EXISTS hudi_db;
use hudi_db;

CREATE TABLE IF NOT EXISTS hudi-flink-example-table(
 uuid VARCHAR(20),

Using Apache Hudi 260

https://github.com/apache/flink-kubernetes-operator/tree/main/examples/flink-sql-runner-example

Amazon EMR Amazon EMR on EKS Development Guide

 name VARCHAR(10),
 age INT,
 ts TIMESTAMP(3),
 `partition` VARCHAR(20)
)
PARTITIONED BY (`partition`)
WITH (
 'connector' = 'hudi',
 'path' = 's3://<hudi-example-bucket>/hudi-flink-example-table',
 'hive_sync.enable' = 'true',
 'hive_sync.mode' = 'glue',
 'hive_sync.table' = 'hudi-flink-example-table',
 'hive_sync.db' = 'hudi_db',
 'compaction.delta_commits' = '1',
 'hive_sync.partition_fields' = 'partition',
 'hive_sync.partition_extractor_class' =
 'org.apache.hudi.hive.MultiPartKeysValueExtractor',
 'table.type' = 'COPY_ON_WRITE'
);

EXECUTE STATEMENT SET
BEGIN

INSERT INTO hudi-flink-example-table VALUES
 ('id1','Alex',23,TIMESTAMP '1970-01-01 00:00:01','par1'),
 ('id2','Stephen',33,TIMESTAMP '1970-01-01 00:00:02','par1'),
 ('id3','Julian',53,TIMESTAMP '1970-01-01 00:00:03','par2'),
 ('id4','Fabian',31,TIMESTAMP '1970-01-01 00:00:04','par2'),
 ('id5','Sophia',18,TIMESTAMP '1970-01-01 00:00:05','par3'),
 ('id6','Emma',20,TIMESTAMP '1970-01-01 00:00:06','par3'),
 ('id7','Bob',44,TIMESTAMP '1970-01-01 00:00:07','par4'),
 ('id8','Han',56,TIMESTAMP '1970-01-01 00:00:08','par4');

END;

4. Upload your Hudi SQL script and the flink-sql-runner.jar file to an S3 location.

5. In your FlinkDeployments YAML file, set hudi.enabled to true.

spec:
 flinkConfiguration:
 hudi.enabled: "true"

6. Create a YAML file to run your configuration. This example file is named hudi-write.yaml.

Submit an Apache Hudi job 261

Amazon EMR Amazon EMR on EKS Development Guide

apiVersion: flink.apache.org/v1beta1
kind: FlinkDeployment
metadata:
 name: hudi-write-example
spec:
 flinkVersion: v1_18
 flinkConfiguration:
 taskmanager.numberOfTaskSlots: "2"
 hudi.enabled: "true"
 executionRoleArn: "<JobExecutionRole>"
 emrReleaseLabel: "emr-7.2.0-flink-latest"
 jobManager:
 highAvailabilityEnabled: false
 replicas: 1
 resource:
 memory: "2048m"
 cpu: 1
 taskManager:
 resource:
 memory: "2048m"
 cpu: 1
 job:
 jarURI: local:///opt/flink/usrlib/flink-sql-runner.jar
 args: ["/opt/flink/scripts/hudi-write.sql"]
 parallelism: 1
 upgradeMode: stateless
 podTemplate:
 spec:
 initContainers:
 - name: flink-sql-script-download
 args:
 - s3
 - cp
 - s3://<s3_location>/hudi-write.sql
 - /flink-scripts
 image: amazon/aws-cli:latest
 imagePullPolicy: Always
 resources: {}
 terminationMessagePath: /dev/termination-log
 terminationMessagePolicy: File
 volumeMounts:
 - mountPath: /flink-scripts
 name: flink-scripts

Submit an Apache Hudi job 262

Amazon EMR Amazon EMR on EKS Development Guide

 - name: flink-sql-runner-download
 args:
 - s3
 - cp
 - s3://<s3_location>/flink-sql-runner.jar
 - /flink-artifacts
 image: amazon/aws-cli:latest
 imagePullPolicy: Always
 resources: {}
 terminationMessagePath: /dev/termination-log
 terminationMessagePolicy: File
 volumeMounts:
 - mountPath: /flink-artifacts
 name: flink-artifact
 containers:
 - name: flink-main-container
 volumeMounts:
 - mountPath: /opt/flink/scripts
 name: flink-scripts
 - mountPath: /opt/flink/usrlib
 name: flink-artifact
 volumes:
 - emptyDir: {}
 name: flink-scripts
 - emptyDir: {}
 name: flink-artifact

7. Submit a Flink Hudi job to the Flink Kubernetes operator.

kubectl apply -f hudi-write.yaml

Using RAPIDS Accelerator for Apache Spark with Amazon EMR
on EKS

With Amazon EMR on EKS, you can run jobs for the Nvidia RAPIDS Accelerator for Apache Spark.
This tutorial covers how to run Spark jobs using RAPIDS on EC2 graphics processing unit (GPU)
instance types. The tutorial uses the following versions:

• Amazon EMR on EKS release version 6.9.0 and later

• Apache Spark 3.x

Using Spark RAPIDS 263

https://docs.aws.amazon.com/emr/latest/EMR-on-EKS-DevelopmentGuide/jobruns-flink-kubernetes-operator.html

Amazon EMR Amazon EMR on EKS Development Guide

You can accelerate Spark with Amazon EC2 GPU instance types by using the Nvidia RAPIDS
Accelerator for Apache Spark plugin. When you use these technologies together, you accelerate
your data science pipelines without having to make any code changes. This reduces the run time
needed for data processing and model training. By getting more done in less time, you spend less
on the cost of infrastructure.

Before you begin, make sure you have the following resources.

• Amazon EMR on EKS virtual cluster

• Amazon EKS cluster with a GPU enabled node group

An Amazon EKS virtual cluster is a registered handle to the Kubernetes namespace on an Amazon
EKS cluster, and is managed by Amazon EMR on EKS. The handle allows Amazon EMR to use the
Kubernetes namespace as a destination for running jobs. For more information on how to set up a
virtual cluster, see Setting up Amazon EMR on EKS in this guide.

You must configure the Amazon EKS virtual cluster with a node group that has GPU instances. You
must configure the nodes with an Nvidia device plugin. See managed node groups to learn more.

To configure your Amazon EKS cluster to add GPU-enabled node groups, perform the following
procedure:

To add GPU enabled node groups

1. Create a GPU-enabled node group with the following create-nodegroup command. Be sure
to substitute the correct parameters for your Amazon EKS cluster. Use an instance type that
supports Spark RAPIDS, such as P4, P3, G5 or G4dn.

aws eks create-nodegroup \
 --cluster-name EKS_CLUSTER_NAME \
 --nodegroup-name NODEGROUP_NAME \
 --scaling-config minSize=0,maxSize=5,desiredSize=2 CHOOSE_APPROPRIATELY \
 --ami-type AL2_x86_64_GPU \
 --node-role NODE_ROLE \
 --subnets SUBNETS_SPACE_DELIMITED \
 --remote-access ec2SshKey= SSH_KEY \
 --instance-types GPU_INSTANCE_TYPE \
 --disk-size DISK_SIZE \
 --region AWS_REGION

Using Spark RAPIDS 264

https://nvidia.github.io/spark-rapids/)
https://nvidia.github.io/spark-rapids/)
https://docs.aws.amazon.com/eks/latest/userguide/managed-node-groups.html
https://docs.aws.amazon.com/cli/latest/reference/eks/create-nodegroup.html

Amazon EMR Amazon EMR on EKS Development Guide

2. Install the Nvidia device plugin in your cluster to emit the number of GPUs on each node of
your cluster and to run GPU-enabled containers in your cluster. Run the following code to
install the plugin:

kubectl apply -f https://raw.githubusercontent.com/NVIDIA/k8s-device-plugin/v0.9.0/
nvidia-device-plugin.yml

3. To validate how many GPUs are available on each node of your cluster, run the following
command:

kubectl get nodes "-o=custom-
columns=NAME:.metadata.name,GPU:.status.allocatable.nvidia\.com/gpu"

To run a Spark RAPIDS job

1. Submit a Spark RAPIDS job to your Amazon EMR on EKS cluster. The following code shows
an example of a command to start the job. The first time you run the job, it might take a few
minutes to download the image and cache it on the node.

aws emr-containers start-job-run \
--virtual-cluster-id VIRTUAL_CLUSTER_ID \
--execution-role-arn JOB_EXECUTION_ROLE \
--release-label emr-6.9.0-spark-rapids-latest \
--job-driver '{"sparkSubmitJobDriver": {"entryPoint": "local:///usr/lib/
spark/examples/jars/spark-examples.jar","entryPointArguments": ["10000"],
 "sparkSubmitParameters":"--class org.apache.spark.examples.SparkPi "}}' \
---configuration-overrides '{"applicationConfiguration": [{"classification":
 "spark-defaults","properties": {"spark.executor.instances":
 "2","spark.executor.memory": "2G"}}],"monitoringConfiguration":
 {"cloudWatchMonitoringConfiguration": {"logGroupName": "LOG_GROUP
 _NAME"},"s3MonitoringConfiguration": {"logUri": "LOG_GROUP_STREAM"}}}'

2. To validate that the Spark RAPIDS Accelerator is enabled, check the Spark driver logs. These
logs are stored either in CloudWatch or in the S3 location you specify when you run the
start-job-run command. The following example generally shows what the log lines look
like:

22/11/15 00:12:44 INFO RapidsPluginUtils: RAPIDS Accelerator build:
 {version=22.08.0-amzn-0, user=release, url=, date=2022-11-03T03:32:45Z, revision=,
 cudf_version=22.08.0, branch=}

Using Spark RAPIDS 265

Amazon EMR Amazon EMR on EKS Development Guide

22/11/15 00:12:44 INFO RapidsPluginUtils: RAPIDS Accelerator JNI build:
 {version=22.08.0, user=, url=https://github.com/NVIDIA/spark-rapids-jni.git,
 date=2022-08-18T04:14:34Z, revision=a1b23cd_sample, branch=HEAD}
22/11/15 00:12:44 INFO RapidsPluginUtils: cudf build: {version=22.08.0,
 user=, url=https://github.com/rapidsai/cudf.git, date=2022-08-18T04:14:34Z,
 revision=a1b23ce_sample, branch=HEAD}
22/11/15 00:12:44 WARN RapidsPluginUtils: RAPIDS Accelerator 22.08.0-amzn-0 using
 cudf 22.08.0.
22/11/15 00:12:44 WARN RapidsPluginUtils:
 spark.rapids.sql.multiThreadedRead.numThreads is set to 20.
22/11/15 00:12:44 WARN RapidsPluginUtils: RAPIDS Accelerator is enabled, to disable
 GPU support set `spark.rapids.sql.enabled` to false.
22/11/15 00:12:44 WARN RapidsPluginUtils: spark.rapids.sql.explain is set to
 `NOT_ON_GPU`. Set it to 'NONE' to suppress the diagnostics logging about the query
 placement on the GPU.

3. To see the operations that will be run on a GPU, perform the following steps to enable extra
logging. Note the "spark.rapids.sql.explain : ALL" config.

aws emr-containers start-job-run \
--virtual-cluster-id VIRTUAL_CLUSTER_ID \
--execution-role-arn JOB_EXECUTION_ROLE \
--release-label emr-6.9.0-spark-rapids-latest \
--job-driver '{"sparkSubmitJobDriver": {"entryPoint": "local:///usr/lib/
spark/examples/jars/spark-examples.jar","entryPointArguments": ["10000"],
 "sparkSubmitParameters":"--class org.apache.spark.examples.SparkPi "}}' \
---configuration-overrides '{"applicationConfiguration":
 [{"classification": "spark-defaults","properties":
 {"spark.rapids.sql.explain":"ALL","spark.executor.instances":
 "2","spark.executor.memory": "2G"}}],"monitoringConfiguration":
 {"cloudWatchMonitoringConfiguration": {"logGroupName":
 "LOG_GROUP_NAME"},"s3MonitoringConfiguration": {"logUri": "LOG_GROUP_STREAM"}}}'

The previous command is an example of a job that uses the GPU. Its output would look
something like the example below. Refer to this key for help to understand the output:

• * – marks an operation that works on a GPU

• ! – marks an operation that can't run on a GPU

• @ – marks an operation that works on a GPU, but won't get to run because it's inside a plan
that can't run on a GPU

Using Spark RAPIDS 266

Amazon EMR Amazon EMR on EKS Development Guide

 22/11/15 01:22:58 INFO GpuOverrides: Plan conversion to the GPU took 118.64 ms
 22/11/15 01:22:58 INFO GpuOverrides: Plan conversion to the GPU took 4.20 ms
 22/11/15 01:22:58 INFO GpuOverrides: GPU plan transition optimization took 8.37 ms
 22/11/15 01:22:59 WARN GpuOverrides:
 *Exec <ProjectExec> will run on GPU
 *Expression <Alias> substring(cast(date#149 as string), 0, 7) AS month#310
 will run on GPU
 *Expression <Substring> substring(cast(date#149 as string), 0, 7) will run
 on GPU
 *Expression <Cast> cast(date#149 as string) will run on GPU
 *Exec <SortExec> will run on GPU
 *Expression <SortOrder> date#149 ASC NULLS FIRST will run on GPU
 *Exec <ShuffleExchangeExec> will run on GPU
 *Partitioning <RangePartitioning> will run on GPU
 *Expression <SortOrder> date#149 ASC NULLS FIRST will run on GPU
 *Exec <UnionExec> will run on GPU
 !Exec <ProjectExec> cannot run on GPU because not all expressions can
 be replaced
 @Expression <AttributeReference> customerID#0 could run on GPU
 @Expression <Alias> Charge AS kind#126 could run on GPU
 @Expression <Literal> Charge could run on GPU
 @Expression <AttributeReference> value#129 could run on GPU
 @Expression <Alias> add_months(2022-11-15, cast(-(cast(_we0#142 as
 bigint) + last_month#128L) as int)) AS date#149 could run on GPU
 ! <AddMonths> add_months(2022-11-15, cast(-
(cast(_we0#142 as bigint) + last_month#128L) as int)) cannot run
 on GPU because GPU does not currently support the operator class
 org.apache.spark.sql.catalyst.expressions.AddMonths
 @Expression <Literal> 2022-11-15 could run on GPU
 @Expression <Cast> cast(-(cast(_we0#142 as bigint) +
 last_month#128L) as int) could run on GPU
 @Expression <UnaryMinus> -(cast(_we0#142 as bigint) +
 last_month#128L) could run on GPU
 @Expression <Add> (cast(_we0#142 as bigint) +
 last_month#128L) could run on GPU
 @Expression <Cast> cast(_we0#142 as bigint) could run on
 GPU
 @Expression <AttributeReference> _we0#142 could run on
 GPU

Using Spark RAPIDS 267

Amazon EMR Amazon EMR on EKS Development Guide

 @Expression <AttributeReference> last_month#128L could run
 on GPU

Using Amazon Redshift integration for Apache Spark on
Amazon EMR on EKS

With Amazon EMR release 6.9.0 and later, every release image includes a connector between
Apache Spark and Amazon Redshift. This way, you can use Spark on Amazon EMR on EKS to
process data stored in Amazon Redshift. The integration is based on the spark-redshift open-
source connector. For Amazon EMR on EKS, the Amazon Redshift integration for Apache Spark is
included as a native integration.

Topics

• Launching a Spark application using the Amazon Redshift integration for Apache Spark

• Authenticating with the Amazon Redshift integration for Apache Spark

• Reading and writing from and to Amazon Redshift

• Considerations and limitations when using the Spark connector

Launching a Spark application using the Amazon Redshift integration
for Apache Spark

To use the integration, you must pass the required Spark Redshift dependencies with your Spark
job. You must use --jars to include Redshift connector-related libraries. To see other file
locations supported by the --jars option, see the Advanced Dependency Management section of
the Apache Spark documentation.

• spark-redshift.jar

• spark-avro.jar

• RedshiftJDBC.jar

• minimal-json.jar

To launch a Spark application with the Amazon Redshift integration for Apache Spark on Amazon
EMR on EKS release 6.9.0 or later, use the following example command. Note that the paths listed
with the --conf spark.jars option are the default paths for the JAR files.

Using Spark on Redshift 268

https://aws.amazon.com/emr/features/spark/
https://github.com/spark-redshift-community/spark-redshift#readme
https://github.com/spark-redshift-community/spark-redshift#readme
https://docs.aws.amazon.com/redshift/latest/mgmt/spark-redshift-connector.html
https://spark.apache.org/docs/latest/submitting-applications.html#advanced-dependency-management

Amazon EMR Amazon EMR on EKS Development Guide

aws emr-containers start-job-run \

--virtual-cluster-id cluster_id \
--execution-role-arn arn \
--release-label emr-6.9.0-latest\
--job-driver '{
 "sparkSubmitJobDriver": {
 "entryPoint": "s3://script_path",
 "sparkSubmitParameters":
 "--conf spark.kubernetes.file.upload.path=s3://upload_path
 --conf spark.jars=
 /usr/share/aws/redshift/jdbc/RedshiftJDBC.jar,
 /usr/share/aws/redshift/spark-redshift/lib/spark-redshift.jar,
 /usr/share/aws/redshift/spark-redshift/lib/spark-avro.jar,
 /usr/share/aws/redshift/spark-redshift/lib/minimal-json.jar"
 }
 }'

Authenticating with the Amazon Redshift integration for Apache Spark

Use AWS Secrets Manager to retrieve credentials and connect to Amazon Redshift

You can store credentials in Secrets Manager to authenticate securely to Amazon Redshift. You can
have your Spark job call the GetSecretValue API to fetch the credentials:

from pyspark.sql import SQLContextimport boto3

sc = # existing SparkContext
sql_context = SQLContext(sc)

secretsmanager_client = boto3.client('secretsmanager',
 region_name=os.getenv('AWS_REGION'))
secret_manager_response = secretsmanager_client.get_secret_value(
 SecretId='string',
 VersionId='string',
 VersionStage='string'
)
username = # get username from secret_manager_response
password = # get password from secret_manager_response
url = "jdbc:redshift://redshifthost:5439/database?user=" + username + "&password="
 + password

Authenticate to Amazon Redshift 269

Amazon EMR Amazon EMR on EKS Development Guide

Access to Redshift cluster using Spark

Use IAM based authentication with Amazon EMR on EKS job execution role

Starting with Amazon EMR on EKS release 6.9.0, the Amazon Redshift JDBC driver version
2.1 or higher is packaged into the environment. With JDBC driver 2.1 and higher, you can
specify the JDBC URL and not include the raw username and password. Instead, you can specify
jdbc:redshift:iam:// scheme. This commands the JDBC driver to use your Amazon EMR on
EKS job execution role to fetch the credentials automatically.

See Configure a JDBC or ODBC connection to use IAM credentials in the Amazon Redshift
Management Guide for more information.

The following example URL uses a jdbc:redshift:iam:// scheme.

jdbc:redshift:iam://examplecluster.abc123xyz789.us-west-2.redshift.amazonaws.com:5439/
dev

The following permissions are required for your job execution role when it meets the provided
conditions.

Permission Conditions when required for job execution role

redshift:GetCluste
rCredentials

Required for JDBC driver to fetch the credentials from Amazon
Redshift

redshift:DescribeC
luster

Required if you specify the Amazon Redshift cluster and AWS
Region in the JDBC URL instead of endpoint

redshift-serverles
s:GetCredentials

Required for JDBC driver to fetch the credentials from Amazon
Redshift Serverless

redshift-serverles
s:GetWorkgroup

Required if you are using Amazon Redshift Serverless and you
specify the URL in terms of workgroup name and Region

Your job execution role policy should have the following permissions.

Authenticate to Amazon Redshift 270

https://docs.aws.amazon.com/redshift/latest/mgmt/generating-iam-credentials-configure-jdbc-odbc.html

Amazon EMR Amazon EMR on EKS Development Guide

{
 "Effect": "Allow",
 "Action": [
 "redshift:GetClusterCredentials",
 "redshift:DescribeCluster",
 "redshift-serverless:GetCredentials",
 "redshift-serverless:GetWorkgroup"
],
 "Resource": [

 "arn:aws:redshift:AWS_REGION:ACCOUNT_ID:dbname:CLUSTER_NAME/DATABASE_NAME",
 "arn:aws:redshift:AWS_REGION:ACCOUNT_ID:dbuser:DATABASE_NAME/USER_NAME"
]
 }

Authenticate to Amazon Redshift with a JDBC driver

Set username and password inside the JDBC URL

To authenticate a Spark job to an Amazon Redshift cluster, you can specify the Amazon Redshift
database name and password in the JDBC URL.

Note

If you pass the database credentials in the URL, anyone who has access to the URL can also
access the credentials. This method isn't generally recommended because it's not a secure
option.

If security isn't a concern for your application, you can use the following format to set the
username and password in the JDBC URL:

jdbc:redshift://redshifthost:5439/database?user=username&password=password

Reading and writing from and to Amazon Redshift

The following code examples use PySpark to read and write sample data from and to an Amazon
Redshift database with a data source API and with SparkSQL.

Read and write to Amazon Redshift 271

Amazon EMR Amazon EMR on EKS Development Guide

Data source API

Use PySpark to read and write sample data from and to an Amazon Redshift database with a
data source API.

import boto3
from pyspark.sql import SQLContext

sc = # existing SparkContext
sql_context = SQLContext(sc)

url = "jdbc:redshift:iam://redshifthost:5439/database"
aws_iam_role_arn = "arn:aws:iam::accountID:role/roleName"

df = sql_context.read \
 .format("io.github.spark_redshift_community.spark.redshift") \
 .option("url", url) \
 .option("dbtable", "tableName") \
 .option("tempdir", "s3://path/for/temp/data") \
 .option("aws_iam_role", "aws_iam_role_arn") \
 .load()

df.write \
 .format("io.github.spark_redshift_community.spark.redshift") \
 .option("url", url) \
 .option("dbtable", "tableName_copy") \
 .option("tempdir", "s3://path/for/temp/data") \
 .option("aws_iam_role", "aws_iam_role_arn") \
 .mode("error") \
 .save()

SparkSQL

Use PySpark to read and write sample data from and to an Amazon Redshift database using
SparkSQL.

import boto3
import json
import sys
import os
from pyspark.sql import SparkSession

spark = SparkSession \

Read and write to Amazon Redshift 272

Amazon EMR Amazon EMR on EKS Development Guide

 .builder \
 .enableHiveSupport() \
 .getOrCreate()

url = "jdbc:redshift:iam://redshifthost:5439/database"
aws_iam_role_arn = "arn:aws:iam::accountID:role/roleName"

bucket = "s3://path/for/temp/data"
tableName = "tableName" # Redshift table name

s = f"""CREATE TABLE IF NOT EXISTS {tableName} (country string, data string)
 USING io.github.spark_redshift_community.spark.redshift
 OPTIONS (dbtable '{tableName}', tempdir '{bucket}', url '{url}', aws_iam_role
 '{aws_iam_role_arn}'); """

spark.sql(s)

columns = ["country" ,"data"]
data = [("test-country","test-data")]
df = spark.sparkContext.parallelize(data).toDF(columns)

Insert data into table
df.write.insertInto(tableName, overwrite=False)
df = spark.sql(f"SELECT * FROM {tableName}")
df.show()

Considerations and limitations when using the Spark connector

• We recommend that you activate SSL for the JDBC connection from Spark on Amazon EMR to
Amazon Redshift.

• We recommend that you manage the credentials for the Amazon Redshift cluster in AWS
Secrets Manager as a best practice. See Using AWS Secrets Manager to retrieve credentials for
connecting to Amazon Redshift for an example.

• We recommend that you pass an IAM role with the parameter aws_iam_role for the Amazon
Redshift authentication parameter.

• The parameter tempformat currently doesn't support the Parquet format.

• The tempdir URI points to an Amazon S3 location. This temp directory isn't cleaned up
automatically and therefore could add additional cost.

• Consider the following recommendations for Amazon Redshift:

Considerations 273

https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-spark-redshift-secrets.html
https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-spark-redshift-secrets.html

Amazon EMR Amazon EMR on EKS Development Guide

• We recommend that you block public access to the Amazon Redshift cluster.

• We recommend that you turn on Amazon Redshift audit logging.

• We recommend turn on Amazon Redshift at-rest encryption.

• Consider the following recommendations for Amazon S3:

• We recommend blocking public access to Amazon S3 buckets.

• We recommend that you use Amazon S3 server-side encryption to encrypt the S3 buckets that
you use.

• We recommend that you use Amazon S3 lifecycle policies to define the retention rules for the
S3 bucket.

• Amazon EMR always verifies code imported from open-source into the image. For security,
we don't support encoding AWS access keys in the tempdir URI as an authentication method
from Spark to Amazon S3.

For more information on using the connector and its supported parameters, see the following
resources:

• Amazon Redshift integration for Apache Spark in the Amazon Redshift Management Guide

• The spark-redshift community repository on Github

Using Volcano as a custom scheduler for Apache Spark on
Amazon EMR on EKS

With Amazon EMR on EKS, you can use Spark operator or spark-submit to run Spark jobs with
Kubernetes custom schedulers. This tutorial covers how to run Spark jobs with a Volcano scheduler
on a custom queue.

Overview

Volcano can help manage Spark scheduling with advanced functions such as queue scheduling,
fair-share scheduling, and resource reservation. For more information on the benefits of
Volcano, see Why Spark chooses Volcano as built-in batch scheduler on Kubernetes on The Linux
Foundation’s CNCF blog.

Using Volcano 274

https://docs.aws.amazon.com/redshift/latest/mgmt/db-auditing.html
https://docs.aws.amazon.com/redshift/latest/mgmt/security-server-side-encryption.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/access-control-block-public-access.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/serv-side-encryption.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/object-lifecycle-mgmt.html
https://docs.aws.amazon.com/redshift/latest/mgmt/spark-redshift-connector.html
https://github.com/spark-redshift-community/spark-redshift#readme
https://volcano.sh/en/
https://www.cncf.io/blog/2022/06/30/why-spark-chooses-volcano-as-built-in-batch-scheduler-on-kubernetes/

Amazon EMR Amazon EMR on EKS Development Guide

Install and set up Volcano

1. Choose one of the following kubectl commands to install Volcano, depending on your
architectural needs:

x86_64
kubectl apply -f https://raw.githubusercontent.com/volcano-sh/volcano/v1.5.1/
installer/volcano-development.yaml
arm64:
kubectl apply -f https://raw.githubusercontent.com/volcano-sh/volcano/v1.5.1/
installer/volcano-development-arm64.yaml

2. Prepare a sample Volcano queue. A queue is a collection of PodGroups. The queue adopts FIFO
and is the basis for resource division.

cat << EOF > volcanoQ.yaml
apiVersion: scheduling.volcano.sh/v1beta1
kind: Queue
metadata:
 name: sparkqueue
spec:
 weight: 4
 reclaimable: false
 capability:
 cpu: 10
 memory: 20Gi
EOF

kubectl apply -f volcanoQ.yaml

3. Upload a sample PodGroup manifest to Amazon S3. PodGroup is a group of pods with strong
association. You typically use a PodGroup for batch scheduling. Submit the following sample
PodGroup to the queue that you defined in the previous step.

cat << EOF > podGroup.yaml
apiVersion: scheduling.volcano.sh/v1beta1
kind: PodGroup
spec:
 # Set minMember to 1 to make a driver pod
 minMember: 1
 # Specify minResources to support resource reservation.
 # Consider the driver pod resource and executors pod resource.

Installation 275

https://volcano.sh/en/docs/podgroup/

Amazon EMR Amazon EMR on EKS Development Guide

 # The available resources should meet the minimum requirements of the Spark job
 # to avoid a situation where drivers are scheduled, but they can't schedule
 # sufficient executors to progress.
 minResources:
 cpu: "1"
 memory: "1Gi"
 # Specify the queue. This defines the resource queue that the job should be
 submitted to.
 queue: sparkqueue
EOF

aws s3 mv podGroup.yaml s3://bucket-name

Run a Spark application with Volcano scheduler with the Spark
operator

1. If you haven't already, complete the steps in the following sections to get set up:

a. Install and set up Volcano

b. Setting up the Spark operator for Amazon EMR on EKS

c. Install the Spark operator

Include the following arguments when you run the helm install spark-operator-
demo command:

--set batchScheduler.enable=true
--set webhook.enable=true

2. Create a SparkApplication definition file spark-pi.yaml with batchScheduler
configured.

apiVersion: "sparkoperator.k8s.io/v1beta2"
kind: SparkApplication
metadata:
 name: spark-pi
 namespace: spark-operator
spec:
 type: Scala
 mode: cluster
 image: "895885662937.dkr.ecr.us-west-2.amazonaws.com/spark/emr-6.10.0:latest"

Submit: Spark operator 276

Amazon EMR Amazon EMR on EKS Development Guide

 imagePullPolicy: Always
 mainClass: org.apache.spark.examples.SparkPi
 mainApplicationFile: "local:///usr/lib/spark/examples/jars/spark-examples.jar"
 sparkVersion: "3.3.1"
 batchScheduler: "volcano" #Note: You must specify the batch scheduler name as
 'volcano'
 restartPolicy:
 type: Never
 volumes:
 - name: "test-volume"
 hostPath:
 path: "/tmp"
 type: Directory
 driver:
 cores: 1
 coreLimit: "1200m"
 memory: "512m"
 labels:
 version: 3.3.1
 serviceAccount: emr-containers-sa-spark
 volumeMounts:
 - name: "test-volume"
 mountPath: "/tmp"
 executor:
 cores: 1
 instances: 1
 memory: "512m"
 labels:
 version: 3.3.1
 volumeMounts:
 - name: "test-volume"
 mountPath: "/tmp"

3. Submit the Spark application with the following command. This also creates a
SparkApplication object called spark-pi:

kubectl apply -f spark-pi.yaml

4. Check events for the SparkApplication object with the following command:

kubectl describe pods spark-pi-driver --namespace spark-operator

The first pod event will show that Volcano has scheduled the pods:

Submit: Spark operator 277

Amazon EMR Amazon EMR on EKS Development Guide

Type Reason Age From Message
---- ------ ---- ---- -------
Normal Scheduled 23s volcano Successfully assigned default/spark-
pi-driver to integration-worker2

Run a Spark application with Volcano scheduler with spark-submit

1. First, complete the steps in the Setting up spark-submit for Amazon EMR on EKS section. You
must build your spark-submit distribution with Volcano support. For more information, see
the Build section of Using Volcano as Customized Scheduler for Spark on Kubernetes in the
Apache Spark documentation.

2. Set the values for the following environment variables:

export SPARK_HOME=spark-home
export MASTER_URL=k8s://Amazon-EKS-cluster-endpoint

3. Submit the Spark application with the following command:

$SPARK_HOME/bin/spark-submit \
 --class org.apache.spark.examples.SparkPi \
 --master $MASTER_URL \
 --conf spark.kubernetes.container.image=895885662937.dkr.ecr.us-
west-2.amazonaws.com/spark/emr-6.10.0:latest \
 --conf spark.kubernetes.authenticate.driver.serviceAccountName=spark \
 --deploy-mode cluster \
 --conf spark.kubernetes.namespace=spark-operator \
 --conf spark.kubernetes.scheduler.name=volcano \
 --conf spark.kubernetes.scheduler.volcano.podGroupTemplateFile=/path/to/podgroup-
template.yaml \
 --conf
 spark.kubernetes.driver.pod.featureSteps=org.apache.spark.deploy.k8s.features.VolcanoFeatureStep
 \
 --conf
 spark.kubernetes.executor.pod.featureSteps=org.apache.spark.deploy.k8s.features.VolcanoFeatureStep
 \
 local:///usr/lib/spark/examples/jars/spark-examples.jar 20

4. Check events for the SparkApplication object with the following command:

Submit: spark-submit 278

https://spark.apache.org/docs/latest/running-on-kubernetes.html#build

Amazon EMR Amazon EMR on EKS Development Guide

kubectl describe pod spark-pi --namespace spark-operator

The first pod event will show that Volcano has scheduled the pods:

Type Reason Age From Message
---- ------ ---- ---- -------
Normal Scheduled 23s volcano Successfully assigned default/spark-
pi-driver to integration-worker2

Using YuniKorn as a custom scheduler for Apache Spark on
Amazon EMR on EKS

With Amazon EMR on EKS, you can use Spark operator or spark-submit to run Spark jobs with
Kubernetes custom schedulers. This tutorial covers how to run Spark jobs with a YuniKorn
scheduler on a custom queue and gang scheduling.

Overview

Apache YuniKorn can help manage Spark scheduling with app-aware scheduling so that you can
have fine-grained control on resource quotas and priorities. With gang scheduling, YuniKorn
schedules an app only when the minimal resource request for the app can be satisfied. For more
information, see What is gang scheduling on the Apache YuniKorn documentation site.

Create your cluster and get set up for YuniKorn

Use the following steps to deploy an Amazon EKS cluster. You can change the AWS Region
(region) and Availability Zones (availabilityZones).

1. Define the Amazon EKS cluster:

cat <<EOF >eks-cluster.yaml

apiVersion: eksctl.io/v1alpha5
kind: ClusterConfig

metadata:
 name: emr-eks-cluster

Using YuniKorn 279

https://yunikorn.apache.org/
https://yunikorn.apache.org/docs/user_guide/gang_scheduling/

Amazon EMR Amazon EMR on EKS Development Guide

 region: eu-west-1

vpc:
 clusterEndpoints:
 publicAccess: true
 privateAccess: true

iam:
 withOIDC: true

nodeGroups:
 - name: spark-jobs
 labels: { app: spark }
 instanceType: m5.xlarge
 desiredCapacity: 2
 minSize: 2
 maxSize: 3
 availabilityZones: ["eu-west-1a"]
EOF

2. Create the cluster:

eksctl create cluster -f eks-cluster.yaml

3. Create the namespace spark-job where you will execute the Spark job:

kubectl create namespace spark-job

4. Next, create a Kubernetes role and role binding. This is required for the service account that
the Spark job run uses.

a. Define the service account, role, and role binding for Spark jobs.

cat <<EOF >emr-job-execution-rbac.yaml

apiVersion: v1
kind: ServiceAccount
metadata:
 name: spark-sa
 namespace: spark-job
automountServiceAccountToken: false

apiVersion: rbac.authorization.k8s.io/v1

Create your cluster 280

Amazon EMR Amazon EMR on EKS Development Guide

kind: Role
metadata:
 name: spark-role
 namespace: spark-job
rules:
 - apiGroups: ["", "batch","extensions"]
 resources: ["configmaps","serviceaccounts","events","pods","pods/
exec","pods/log","pods/
portforward","secrets","services","persistentvolumeclaims"]
 verbs: ["create","delete","get","list","patch","update","watch"]

apiVersion: rbac.authorization.k8s.io/v1
kind: RoleBinding
metadata:
 name: spark-sa-rb
 namespace: spark-job
roleRef:
 apiGroup: rbac.authorization.k8s.io
 kind: Role
 name: spark-role
subjects:
 - kind: ServiceAccount
 name: spark-sa
 namespace: spark-job
EOF

b. Apply the Kubernetes role and role binding definition with the following command:

kubectl apply -f emr-job-execution-rbac.yaml

Install and set up YuniKorn

1. Use the following kubectl command to create a namespace yunikornto deploy the Yunikorn
scheduler:

kubectl create namespace yunikorn

2. To install the scheduler, execute the following Helm commands:

helm repo add yunikorn https://apache.github.io/yunikorn-release

Install YuniKorn 281

Amazon EMR Amazon EMR on EKS Development Guide

helm repo update

helm install yunikorn yunikorn/yunikorn --namespace yunikorn

Run a Spark application with YuniKorn scheduler with the Spark
operator

1. If you haven't already, complete the steps in the following sections to get set up:

a. Create your cluster and get set up for YuniKorn

b. Install and set up YuniKorn

c. Setting up the Spark operator for Amazon EMR on EKS

d. Install the Spark operator

Include the following arguments when you run the helm install spark-operator-
demo command:

--set batchScheduler.enable=true
--set webhook.enable=true

2. Create a SparkApplication definition file spark-pi.yaml.

To use YuniKorn as a scheduler for your jobs, you must add certain annotations and labels to
your application definition. The annotations and labels specify the queue for your job and the
scheduling strategy that you want to use.

In the following example, the annotation schedulingPolicyParameters sets up gang
scheduling for the application. Then, the example creates task groups, or "gangs" of tasks,
to specify the minimum capacity that must be available before scheduling the pods to start
the job execution. And finally, it specifies in the task group definition to use node groups with
the "app": "spark" label, as defined in the Create your cluster and get set up for YuniKorn
section.

apiVersion: "sparkoperator.k8s.io/v1beta2"
kind: SparkApplication
metadata:

Submit: Spark operator 282

Amazon EMR Amazon EMR on EKS Development Guide

 name: spark-pi
 namespace: spark-job
spec:
 type: Scala
 mode: cluster
 image: "895885662937.dkr.ecr.us-west-2.amazonaws.com/spark/emr-6.10.0:latest"
 imagePullPolicy: Always
 mainClass: org.apache.spark.examples.SparkPi
 mainApplicationFile: "local:///usr/lib/spark/examples/jars/spark-examples.jar"
 sparkVersion: "3.3.1"
 restartPolicy:
 type: Never
 volumes:
 - name: "test-volume"
 hostPath:
 path: "/tmp"
 type: Directory
 driver:
 cores: 1
 coreLimit: "1200m"
 memory: "512m"
 labels:
 version: 3.3.1
 annotations:
 yunikorn.apache.org/schedulingPolicyParameters: "placeholderTimeoutSeconds=30
 gangSchedulingStyle=Hard"
 yunikorn.apache.org/task-group-name: "spark-driver"
 yunikorn.apache.org/task-groups: |-
 [{
 "name": "spark-driver",
 "minMember": 1,
 "minResource": {
 "cpu": "1200m",
 "memory": "1Gi"
 },
 "nodeSelector": {
 "app": "spark"
 }
 },
 {
 "name": "spark-executor",
 "minMember": 1,
 "minResource": {
 "cpu": "1200m",

Submit: Spark operator 283

Amazon EMR Amazon EMR on EKS Development Guide

 "memory": "1Gi"
 },
 "nodeSelector": {
 "app": "spark"
 }
 }]
 serviceAccount: spark-sa
 volumeMounts:
 - name: "test-volume"
 mountPath: "/tmp"
 executor:
 cores: 1
 instances: 1
 memory: "512m"
 labels:
 version: 3.3.1
 annotations:
 yunikorn.apache.org/task-group-name: "spark-executor"
 volumeMounts:
 - name: "test-volume"
 mountPath: "/tmp"

3. Submit the Spark application with the following command. This also creates a
SparkApplication object called spark-pi:

kubectl apply -f spark-pi.yaml

4. Check events for the SparkApplication object with the following command:

kubectl describe sparkapplication spark-pi --namespace spark-job

The first pod event will show that YuniKorn has scheduled the pods:

Type Reason Age From Message
---- ------ ---- ---- -------
Normal Scheduling 3m12s yunikorn spark-operator/org-apache-spark-examples-
sparkpi-2a777a88b98b8a95-driver is queued and waiting for allocation
Normal GangScheduling 3m12s yunikorn Pod belongs to the taskGroup spark-
driver, it will be scheduled as a gang member
Normal Scheduled 3m10s yunikorn Successfully assigned spark
Normal PodBindSuccessful 3m10s yunikorn Pod spark-operator/
Normal TaskCompleted 2m3s yunikorn Task spark-operator/

Submit: Spark operator 284

Amazon EMR Amazon EMR on EKS Development Guide

Normal Pulling 3m10s kubelet Pulling

Run a Spark application with YuniKorn scheduler with spark-submit

1. First, complete the steps in the Setting up spark-submit for Amazon EMR on EKS section.

2. Set the values for the following environment variables:

export SPARK_HOME=spark-home
export MASTER_URL=k8s://Amazon-EKS-cluster-endpoint

3. Submit the Spark application with the following command:

In the following example, the annotation schedulingPolicyParameters sets up gang
scheduling for the application. Then, the example creates task groups, or "gangs" of tasks,
to specify the minimum capacity that must be available before scheduling the pods to start
the job execution. And finally, it specifies in the task group definition to use node groups with
the "app": "spark" label, as defined in the Create your cluster and get set up for YuniKorn
section.

$SPARK_HOME/bin/spark-submit \
 --class org.apache.spark.examples.SparkPi \
 --master $MASTER_URL \
 --conf spark.kubernetes.container.image=895885662937.dkr.ecr.us-
west-2.amazonaws.com/spark/emr-6.10.0:latest \
 --conf spark.kubernetes.authenticate.driver.serviceAccountName=spark-sa \
 --deploy-mode cluster \
 --conf spark.kubernetes.namespace=spark-job \
 --conf spark.kubernetes.scheduler.name=yunikorn \
 --conf spark.kubernetes.driver.annotation.yunikorn.apache.org/
schedulingPolicyParameters="placeholderTimeoutSeconds=30 gangSchedulingStyle=Hard"
 \
 --conf spark.kubernetes.driver.annotation.yunikorn.apache.org/task-group-
name="spark-driver" \
 --conf spark.kubernetes.executor.annotation.yunikorn.apache.org/task-group-
name="spark-executor" \
 --conf spark.kubernetes.driver.annotation.yunikorn.apache.org/task-groups='[{
 "name": "spark-driver",
 "minMember": 1,
 "minResource": {
 "cpu": "1200m",

Submit: spark-submit 285

Amazon EMR Amazon EMR on EKS Development Guide

 "memory": "1Gi"
 },
 "nodeSelector": {
 "app": "spark"
 }
 },
 {
 "name": "spark-executor",
 "minMember": 1,
 "minResource": {
 "cpu": "1200m",
 "memory": "1Gi"
 },
 "nodeSelector": {
 "app": "spark"
 }
 }]' \
 local:///usr/lib/spark/examples/jars/spark-examples.jar 20

4. Check events for the SparkApplication object with the following command:

kubectl describe pod spark-driver-pod --namespace spark-job

The first pod event will show that YuniKorn has scheduled the pods:

Type Reason Age From Message
---- ------ ---- ---- -------
Normal Scheduling 3m12s yunikorn spark-operator/org-apache-spark-examples-
sparkpi-2a777a88b98b8a95-driver is queued and waiting for allocation
Normal GangScheduling 3m12s yunikorn Pod belongs to the taskGroup spark-
driver, it will be scheduled as a gang member
Normal Scheduled 3m10s yunikorn Successfully assigned spark
Normal PodBindSuccessful 3m10s yunikorn Pod spark-operator/
Normal TaskCompleted 2m3s yunikorn Task spark-operator/
Normal Pulling 3m10s kubelet Pulling

Submit: spark-submit 286

Amazon EMR Amazon EMR on EKS Development Guide

Security in Amazon EMR on EKS

Cloud security at AWS is the highest priority. As an AWS customer, you benefit from data centers
and network architectures that are built to meet the requirements of the most security-sensitive
organizations.

Security is a shared responsibility between AWS and you. The shared responsibility model describes
this as security of the cloud and security in the cloud:

• Security of the cloud – AWS is responsible for protecting the infrastructure that runs AWS
services in the AWS Cloud. AWS also provides you with services that you can use securely. Third-
party auditors regularly test and verify the effectiveness of our security as part of the AWS
Compliance Programs. To learn about the compliance programs that apply to Amazon EMR, see
AWS Services in Scope by Compliance Program.

• Security in the cloud – Your responsibility is determined by the AWS service that you use. You
are also responsible for other factors including the sensitivity of your data, your company’s
requirements, and applicable laws and regulations.

This documentation helps you understand how to apply the shared responsibility model when
using Amazon EMR on EKS. The following topics show you how to configure Amazon EMR on EKS
to meet your security and compliance objectives. You also learn how to use other AWS services that
help you to monitor and secure your Amazon EMR on EKS resources.

Topics

• Amazon EMR on EKS security best practices

• Data protection

• Identity and Access Management

• Logging and monitoring

• Using Amazon S3 Access Grants with Amazon EMR on EKS

• Compliance validation for Amazon EMR on EKS

• Resilience in Amazon EMR on EKS

• Infrastructure security in Amazon EMR on EKS

• Configuration and vulnerability analysis

• Connect to Amazon EMR on EKS Using an interface VPC endpoint

287

https://aws.amazon.com/compliance/shared-responsibility-model/
https://aws.amazon.com/compliance/programs/
https://aws.amazon.com/compliance/programs/
https://aws.amazon.com/compliance/services-in-scope/

Amazon EMR Amazon EMR on EKS Development Guide

• Set up cross-account access for Amazon EMR on EKS

Amazon EMR on EKS security best practices

Amazon EMR on EKS provides a number of security features to consider as you develop and
implement your own security policies. The following best practices are general guidelines and don’t
represent a complete security solution. Because these best practices might not be appropriate or
sufficient for your environment, treat them as helpful considerations rather than prescriptions.

Note

For more security best practices, see Amazon EMR on EKS security best practices.

Apply principle of least privilege

Amazon EMR on EKS provides a granular access policy for applications using IAM roles, such as
execution roles. These execution roles are mapped to Kubernetes service accounts through the IAM
role’s trust policy. Amazon EMR on EKS creates pods within a registered Amazon EKS namespace
that execute user-provided application code. The job pods running the application code assume
the execution role when connecting to other AWS services. We recommend that execution roles be
granted only the minimum set of privileges required by the job, such as covering your application
and access to log destination. We also recommend auditing the jobs for permissions on a regular
basis and upon any change to application code.

Access control list for endpoints

Managed endpoints can be created only for those EKS clusters that have been configured to use
at least one private subnet in your VPC. This configuration restricts access to the load balancers
created by managed endpoints so that they can only be accessed from your VPC. To further
enhance security, we recommend that you configure security groups with these load balancers so
that they can restrict incoming traffic to a selected set of IP addresses.

Get the latest security updates for custom images

To use custom images with Amazon EMR on EKS, you can install any binaries and libraries on the
image. You are responsible for the security patching of the binaries you add to the image. Amazon

Best practices 288

Amazon EMR Amazon EMR on EKS Development Guide

EMR on EKS images are regularly patched with latest security patches. To get the latest image, you
must rebuild the custom images whenever there is a new base image version of the Amazon EMR
release. For more information, see Amazon EMR on EKS releases and How to select a base image
URI.

Limit pod credential access

Kubernetes supports several methods of assigning credentials to a pod. Provisioning multiple
credentials providers can increase the complexity of your security model. Amazon EMR on EKS has
adopted the use of IAM roles for services accounts (IRSA) as a standard credential provider within a
registered EKS namespace. Other methods are not supported, including kube2iam, kiam and using
an EC2 instance profile of the instance running on the cluster.

Isolate untrusted application code

Amazon EMR on EKS does not inspect the integrity of the application code submitted by users of
the system. If you are running a multi-tenanted virtual cluster that is configured using multiple
execution roles that can be used to submit jobs by untrusted tenants running arbitrary code, there
is a risk of a malicious application escalating its privileges. In this situation, consider isolating
execution roles with similar privileges into a different virtual cluster.

Role-based access control (RBAC) permissions

Administrators should strictly control Role-based access control (RBAC) permissions for Amazon
EMR on EKS managed namespaces. At a minimum, the following permissions should not be
granted to job submitters in Amazon EMR on EKS managed namespaces.

• Kubernetes RBAC permissions to modify configmap ‐ because Amazon EMR on EKS uses
Kubernetes configmaps to generate managed pod templates that have the managed service
account name. This attribute should not be mutated.

• Kubernetes RBAC permissions to exec into Amazon EMR on EKS pods ‐ to avoid giving access to
managed pod templates that have the managed SA name. This attribute should not be mutated.
This permission can also give access to the JWT token mounted into the pod which can then be
used to retrieve the execution role credentials.

• Kubernetes RBAC permissions to create pods ‐ to prevent users from creating pods using a
Kubernetes ServiceAccount which may be mapped to an IAM role with more AWS privileges than
the user.

Limit pod credential access 289

https://docs.aws.amazon.com/eks/latest/userguide/iam-roles-for-service-accounts.html
https://github.com/jtblin/kube2iam
https://github.com/uswitch/kiam

Amazon EMR Amazon EMR on EKS Development Guide

• Kubernetes RBAC permissions to deploy mutating webhook ‐ to prevent users from using the
mutating webhook to mutate Kubernetes ServiceAccount name for pods created by Amazon
EMR on EKS.

• Kubernetes RBAC permissions to read Kubernetes secrets ‐ to prevent users from reading
confidential data stored in these secrets.

Restrict access to nodegroup IAM role or instance profile credentials

• We recommend that you assign minimum AWS permissions to nodegroup’s IAM role(s). This
helps to avoid privilege escalation by code that may run using instance profile credentials of EKS
worker nodes.

• To completely block access to instance profile credentials to all pods that runs in Amazon EMR
on EKS managed namespaces, we recommend that you run iptables commands on EKS
nodes. For more information, see Restricting access to Amazon EC2 instance profile credentials.
However, it is important to properly scope your service account IAM roles so that your pods
have all of the necessary permissions. For example, the node IAM role is assigned permissions
to pull container images from Amazon ECR. If a pod isn't assigned those permissions, the pod
can't pull container images from Amazon ECR. The VPC CNI plugin also needs to be updated. For
more information, see Walkthrough: Updating the VPC CNI plugin to use IAM roles for service
accounts.

Data protection

The AWS shared responsibility model applies to data protection in Amazon EMR on EKS. As
described in this model, AWS is responsible for protecting the global infrastructure that runs all
of the AWS Cloud. You are responsible for maintaining control over your content that is hosted on
this infrastructure. This content includes the security configuration and management tasks for the
AWS services that you use. For more information about data privacy, see the Data Privacy FAQ . For
information about data protection in Europe, see the AWS Shared Responsibility Model and GDPR
blog post on the AWS Security Blog.

For data protection purposes, we recommend that you protect AWS account credentials and set up
individual accounts with AWS Identity and Access Management (IAM). That way each user is given
only the permissions necessary to fulfill their job duties. We also recommend that you secure your
data in the following ways:

Restrict access to nodegroup IAM role or instance profile credentials 290

https://docs.aws.amazon.com/eks/latest/userguide/restrict-ec2-credential-access.html
https://docs.aws.amazon.com/eks/latest/userguide/iam-roles-for-service-accounts-cni-walkthrough.html
https://docs.aws.amazon.com/eks/latest/userguide/iam-roles-for-service-accounts-cni-walkthrough.html
https://aws.amazon.com/compliance/shared-responsibility-model/
https://aws.amazon.com/compliance/data-privacy-faq/
http://aws.amazon.com/blogs/security/the-aws-shared-responsibility-model-and-gdpr/

Amazon EMR Amazon EMR on EKS Development Guide

• Use multi-factor authentication (MFA) with each account.

• Use SSL/TLS to communicate with AWS resources. We recommend TLS 1.2 or later.

• Set up API and user activity logging with AWS CloudTrail.

• Use AWS encryption solutions, along with all default security controls within AWS services.

• Use advanced managed security services such as Amazon Macie, which assists in discovering and
securing personal data that is stored in Amazon S3.

• Use Amazon EMR on EKS encryption options to encrypt data at rest and in transit.

• If you require FIPS 140-2 validated cryptographic modules when accessing AWS through a
command line interface or an API, use a FIPS endpoint. For more information about the available
FIPS endpoints, see Federal Information Processing Standard (FIPS) 140-2.

We strongly recommend that you never put sensitive identifying information, such as your
customers' account numbers, into free-form fields such as a Name field. This includes when you
work with Amazon EMR on EKS or other AWS services using the console, API, AWS CLI, or AWS
SDKs. Any data that you enter into Amazon EMR on EKS or other services might get picked up for
inclusion in diagnostic logs. When you provide a URL to an external server, don't include credentials
information in the URL to validate your request to that server.

Encryption at rest

Data encryption helps prevent unauthorized users from reading data on a cluster and associated
data storage systems. This includes data saved to persistent media, known as data at rest, and data
that may be intercepted as it travels the network, known as data in transit.

Data encryption requires keys and certificates. You can choose from several options, including keys
managed by AWS Key Management Service, keys managed by Amazon S3, and keys and certificates
from custom providers that you supply. When using AWS KMS as your key provider, charges apply
for the storage and use of encryption keys. For more information, see AWS KMS Pricing.

Before you specify encryption options, decide on the key and certificate management systems you
want to use. Then create the keys and certificates for the custom providers that you specify as part
of encryption settings.

Encryption at rest for EMRFS data in Amazon S3

Amazon S3 encryption works with EMR File System (EMRFS) objects read from and written to
Amazon S3. You specify Amazon S3 server-side encryption (SSE) or client-side encryption (CSE)

Encryption at rest 291

https://aws.amazon.com/compliance/fips/
https://aws.amazon.com/kms/pricing/

Amazon EMR Amazon EMR on EKS Development Guide

as the Default encryption mode when you enable encryption at rest. Optionally, you can specify
different encryption methods for individual buckets using Per bucket encryption overrides.
Regardless of whether Amazon S3 encryption is enabled, Transport Layer Security (TLS) encrypts
the EMRFS objects in transit between EMR cluster nodes and Amazon S3. For in-depth information
about Amazon S3 encryption, see Protecting Data Using Encryption in the Amazon Simple Storage
Service Developer Guide.

Note

When you use AWS KMS, charges apply for the storage and use of encryption keys. For
more information, see AWS KMS Pricing.

Amazon S3 server-side encryption

When you set up Amazon S3 server-side encryption, Amazon S3 encrypts data at the object level
as it writes the data to disk and decrypts the data when it is accessed. For more information about
SSE, see Protecting Data Using Server-Side Encryption in the Amazon Simple Storage Service
Developer Guide.

You can choose between two different key management systems when you specify SSE in Amazon
EMR on EKS:

• SSE-S3 ‐ Amazon S3 manages keys for you.

• SSE-KMS ‐ You use an AWS KMS key to set up with policies suitable for Amazon EMR on EKS.

SSE with customer-provided keys (SSE-C) is not available for use with Amazon EMR on EKS.

Amazon S3 client-side encryption

With Amazon S3 client-side encryption, the Amazon S3 encryption and decryption takes place in
the EMRFS client on your cluster. Objects are encrypted before being uploaded to Amazon S3 and
decrypted after they are downloaded. The provider you specify supplies the encryption key that
the client uses. The client can use keys provided by AWS KMS (CSE-KMS) or a custom Java class that
provides the client-side root key (CSE-C). The encryption specifics are slightly different between
CSE-KMS and CSE-C, depending on the specified provider and the metadata of the object being
decrypted or encrypted. For more information about these differences, see Protecting Data Using
Client-Side Encryption in the Amazon Simple Storage Service Developer Guide.

Encryption at rest 292

https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingEncryption.html
https://aws.amazon.com/kms/pricing/
https://docs.aws.amazon.com/AmazonS3/latest/dev/serv-side-encryption.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingClientSideEncryption.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingClientSideEncryption.html

Amazon EMR Amazon EMR on EKS Development Guide

Note

Amazon S3 CSE only ensures that EMRFS data exchanged with Amazon S3 is encrypted; not
all data on cluster instance volumes is encrypted. Furthermore, because Hue does not use
EMRFS, objects that the Hue S3 File Browser writes to Amazon S3 are not encrypted.

Local disk encryption

Apache Spark supports encrypting temporary data written to local disks. This covers shuffle files,
shuffle spills, and data blocks stored on disk for both caching and broadcast variables. It does not
cover encrypting output data generated by applications with APIs such as saveAsHadoopFile
or saveAsTable. It also may not cover temporary files created explicitly by the user. For more
information, see Local Storage Encryption in the Spark documentation. Spark does not support
encrypted data on local disk, such as intermediate data written to a local disk by an executor
process when the data does not fit in memory. Data that is persisted to disk is scoped to the job
runtime, and the key that is used to encrypt the data is generated dynamically by Spark for every
job run. Once the Spark job terminates, no other process can decrypt the data.

For driver and executor pod, you encrypt data at rest that is persisted to the mounted volume.
There are three different AWS native storage options you can use with Kubernetes: EBS, EFS, and
FSx for Lustre. All three offer encryption at rest using a service managed key or an AWS KMS key.
For more information see the EKS Best Practices Guide. With this approach, all data persisted to
the mounted volume is encrypted.

Key management

You can configure KMS to automatically rotate your KMS keys. This rotates your keys once a
year while saving old keys indefinitely so that your data can still be decrypted. For additional
information, see Rotating AWS KMS keys.

Encryption in transit

Several encryption mechanisms are enabled with in-transit encryption. These are open-source
features, are application-specific, and may vary by Amazon EMR on EKS release. The following
application-specific encryption features can be enabled with Amazon EMR on EKS:

• Spark

Encryption in transit 293

https://spark.apache.org/docs/latest/security.html#local-storage-encryption
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AmazonEBS.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AmazonEFS.html
https://docs.aws.amazon.com/fsx/latest/LustreGuide/what-is.html
https://aws.github.io/aws-eks-best-practices/security/docs/data
https://docs.aws.amazon.com/kms/latest/developerguide/rotate-keys.html

Amazon EMR Amazon EMR on EKS Development Guide

• Internal RPC communication between Spark components, such as the block transfer service
and the external shuffle service, is encrypted using the AES-256 cipher in Amazon EMR
versions 5.9.0 and later. In earlier releases, internal RPC communication is encrypted using
SASL with DIGEST-MD5 as the cipher.

• HTTP protocol communication with user interfaces such as Spark History Server and HTTPS-
enabled file servers is encrypted using Spark's SSL configuration. For more information, see
SSL Configuration in Spark documentation.

For more information, see Spark security settings.

• You should allow only encrypted connections over HTTPS (TLS) using the aws:SecureTransport
condition on Amazon S3 bucket IAM policies.

• Query results that stream to JDBC or ODBC clients are encrypted using TLS.

Identity and Access Management

AWS Identity and Access Management (IAM) is an AWS service that helps an administrator securely
control access to AWS resources. IAM administrators control who can be authenticated (signed in)
and authorized (have permissions) to use Amazon EMR on EKS resources. IAM is an AWS service
that you can use with no additional charge.

Topics

• Audience

• Authenticating with identities

• Managing access using policies

• How Amazon EMR on EKS works with IAM

• Using service-linked roles for Amazon EMR on EKS

• Managed policies for Amazon EMR on EKS

• Using job execution roles with Amazon EMR on EKS

• Identity-based policy examples for Amazon EMR on EKS

• Policies for tag-based access control

• Troubleshooting Amazon EMR on EKS identity and access

Identity and Access Management 294

https://spark.apache.org/docs/latest/security.html#ssl-configuration
http://spark.apache.org/docs/latest/security.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition_operators.html#Conditions_Boolean
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition_operators.html#Conditions_Boolean

Amazon EMR Amazon EMR on EKS Development Guide

Audience

How you use AWS Identity and Access Management (IAM) differs, depending on the work that you
do in Amazon EMR on EKS.

Service user – If you use the Amazon EMR on EKS service to do your job, then your administrator
provides you with the credentials and permissions that you need. As you use more Amazon EMR on
EKS features to do your work, you might need additional permissions. Understanding how access is
managed can help you request the right permissions from your administrator. If you cannot access
a feature in Amazon EMR on EKS, see Troubleshooting Amazon EMR on EKS identity and access.

Service administrator – If you're in charge of Amazon EMR on EKS resources at your company, you
probably have full access to Amazon EMR on EKS. It's your job to determine which Amazon EMR on
EKS features and resources your service users should access. You must then submit requests to your
IAM administrator to change the permissions of your service users. Review the information on this
page to understand the basic concepts of IAM. To learn more about how your company can use IAM
with Amazon EMR on EKS, see How Amazon EMR on EKS works with IAM.

IAM administrator – If you're an IAM administrator, you might want to learn details about how you
can write policies to manage access to Amazon EMR on EKS. To view example Amazon EMR on EKS
identity-based policies that you can use in IAM, see Identity-based policy examples for Amazon
EMR on EKS.

Authenticating with identities

Authentication is how you sign in to AWS using your identity credentials. You must be
authenticated (signed in to AWS) as the AWS account root user, as an IAM user, or by assuming an
IAM role.

You can sign in to AWS as a federated identity by using credentials provided through an identity
source. AWS IAM Identity Center (IAM Identity Center) users, your company's single sign-on
authentication, and your Google or Facebook credentials are examples of federated identities.
When you sign in as a federated identity, your administrator previously set up identity federation
using IAM roles. When you access AWS by using federation, you are indirectly assuming a role.

Depending on the type of user you are, you can sign in to the AWS Management Console or the
AWS access portal. For more information about signing in to AWS, see How to sign in to your AWS
account in the AWS Sign-In User Guide.

Audience 295

https://docs.aws.amazon.com/signin/latest/userguide/how-to-sign-in.html
https://docs.aws.amazon.com/signin/latest/userguide/how-to-sign-in.html

Amazon EMR Amazon EMR on EKS Development Guide

If you access AWS programmatically, AWS provides a software development kit (SDK) and a
command line interface (CLI) to cryptographically sign your requests by using your credentials. If
you don't use AWS tools, you must sign requests yourself. For more information about using the
recommended method to sign requests yourself, see Signing AWS API requests in the IAM User
Guide.

Regardless of the authentication method that you use, you might be required to provide additional
security information. For example, AWS recommends that you use multi-factor authentication
(MFA) to increase the security of your account. To learn more, see Multi-factor authentication in the
AWS IAM Identity Center User Guide and Using multi-factor authentication (MFA) in AWS in the IAM
User Guide.

AWS account root user

When you create an AWS account, you begin with one sign-in identity that has complete access to
all AWS services and resources in the account. This identity is called the AWS account root user and
is accessed by signing in with the email address and password that you used to create the account.
We strongly recommend that you don't use the root user for your everyday tasks. Safeguard your
root user credentials and use them to perform the tasks that only the root user can perform. For
the complete list of tasks that require you to sign in as the root user, see Tasks that require root
user credentials in the IAM User Guide.

Federated identity

As a best practice, require human users, including users that require administrator access, to use
federation with an identity provider to access AWS services by using temporary credentials.

A federated identity is a user from your enterprise user directory, a web identity provider, the AWS
Directory Service, the Identity Center directory, or any user that accesses AWS services by using
credentials provided through an identity source. When federated identities access AWS accounts,
they assume roles, and the roles provide temporary credentials.

For centralized access management, we recommend that you use AWS IAM Identity Center. You can
create users and groups in IAM Identity Center, or you can connect and synchronize to a set of users
and groups in your own identity source for use across all your AWS accounts and applications. For
information about IAM Identity Center, see What is IAM Identity Center? in the AWS IAM Identity
Center User Guide.

Authenticating with identities 296

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-signing.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/enable-mfa.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/root-user-tasks.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/root-user-tasks.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/what-is.html

Amazon EMR Amazon EMR on EKS Development Guide

IAM users and groups

An IAM user is an identity within your AWS account that has specific permissions for a single person
or application. Where possible, we recommend relying on temporary credentials instead of creating
IAM users who have long-term credentials such as passwords and access keys. However, if you have
specific use cases that require long-term credentials with IAM users, we recommend that you rotate
access keys. For more information, see Rotate access keys regularly for use cases that require long-
term credentials in the IAM User Guide.

An IAM group is an identity that specifies a collection of IAM users. You can't sign in as a group. You
can use groups to specify permissions for multiple users at a time. Groups make permissions easier
to manage for large sets of users. For example, you could have a group named IAMAdmins and give
that group permissions to administer IAM resources.

Users are different from roles. A user is uniquely associated with one person or application, but
a role is intended to be assumable by anyone who needs it. Users have permanent long-term
credentials, but roles provide temporary credentials. To learn more, see When to create an IAM user
(instead of a role) in the IAM User Guide.

IAM roles

An IAM role is an identity within your AWS account that has specific permissions. It is similar to an
IAM user, but is not associated with a specific person. You can temporarily assume an IAM role in
the AWS Management Console by switching roles. You can assume a role by calling an AWS CLI or
AWS API operation or by using a custom URL. For more information about methods for using roles,
see Using IAM roles in the IAM User Guide.

IAM roles with temporary credentials are useful in the following situations:

• Federated user access – To assign permissions to a federated identity, you create a role
and define permissions for the role. When a federated identity authenticates, the identity
is associated with the role and is granted the permissions that are defined by the role. For
information about roles for federation, see Creating a role for a third-party Identity Provider
in the IAM User Guide. If you use IAM Identity Center, you configure a permission set. To control
what your identities can access after they authenticate, IAM Identity Center correlates the
permission set to a role in IAM. For information about permissions sets, see Permission sets in
the AWS IAM Identity Center User Guide.

• Temporary IAM user permissions – An IAM user or role can assume an IAM role to temporarily
take on different permissions for a specific task.

Authenticating with identities 297

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#rotate-credentials
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#rotate-credentials
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_groups.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id.html#id_which-to-choose
https://docs.aws.amazon.com/IAM/latest/UserGuide/id.html#id_which-to-choose
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-console.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-idp.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/permissionsetsconcept.html

Amazon EMR Amazon EMR on EKS Development Guide

• Cross-account access – You can use an IAM role to allow someone (a trusted principal) in a
different account to access resources in your account. Roles are the primary way to grant cross-
account access. However, with some AWS services, you can attach a policy directly to a resource
(instead of using a role as a proxy). To learn the difference between roles and resource-based
policies for cross-account access, see Cross account resource access in IAM in the IAM User Guide.

• Cross-service access – Some AWS services use features in other AWS services. For example, when
you make a call in a service, it's common for that service to run applications in Amazon EC2 or
store objects in Amazon S3. A service might do this using the calling principal's permissions,
using a service role, or using a service-linked role.

• Forward access sessions (FAS) – When you use an IAM user or role to perform actions in
AWS, you are considered a principal. When you use some services, you might perform an
action that then initiates another action in a different service. FAS uses the permissions of the
principal calling an AWS service, combined with the requesting AWS service to make requests
to downstream services. FAS requests are only made when a service receives a request that
requires interactions with other AWS services or resources to complete. In this case, you must
have permissions to perform both actions. For policy details when making FAS requests, see
Forward access sessions.

• Service role – A service role is an IAM role that a service assumes to perform actions on your
behalf. An IAM administrator can create, modify, and delete a service role from within IAM. For
more information, see Creating a role to delegate permissions to an AWS service in the IAM
User Guide.

• Service-linked role – A service-linked role is a type of service role that is linked to an AWS
service. The service can assume the role to perform an action on your behalf. Service-linked
roles appear in your AWS account and are owned by the service. An IAM administrator can
view, but not edit the permissions for service-linked roles.

• Applications running on Amazon EC2 – You can use an IAM role to manage temporary
credentials for applications that are running on an EC2 instance and making AWS CLI or AWS API
requests. This is preferable to storing access keys within the EC2 instance. To assign an AWS role
to an EC2 instance and make it available to all of its applications, you create an instance profile
that is attached to the instance. An instance profile contains the role and enables programs that
are running on the EC2 instance to get temporary credentials. For more information, see Using
an IAM role to grant permissions to applications running on Amazon EC2 instances in the IAM
User Guide.

Authenticating with identities 298

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies-cross-account-resource-access.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_forward_access_sessions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-ec2.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-ec2.html

Amazon EMR Amazon EMR on EKS Development Guide

To learn whether to use IAM roles or IAM users, see When to create an IAM role (instead of a user)
in the IAM User Guide.

Managing access using policies

You control access in AWS by creating policies and attaching them to AWS identities or resources.
A policy is an object in AWS that, when associated with an identity or resource, defines their
permissions. AWS evaluates these policies when a principal (user, root user, or role session) makes
a request. Permissions in the policies determine whether the request is allowed or denied. Most
policies are stored in AWS as JSON documents. For more information about the structure and
contents of JSON policy documents, see Overview of JSON policies in the IAM User Guide.

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

By default, users and roles have no permissions. To grant users permission to perform actions on
the resources that they need, an IAM administrator can create IAM policies. The administrator can
then add the IAM policies to roles, and users can assume the roles.

IAM policies define permissions for an action regardless of the method that you use to perform the
operation. For example, suppose that you have a policy that allows the iam:GetRole action. A
user with that policy can get role information from the AWS Management Console, the AWS CLI, or
the AWS API.

Identity-based policies

Identity-based policies are JSON permissions policy documents that you can attach to an identity,
such as an IAM user, group of users, or role. These policies control what actions users and roles can
perform, on which resources, and under what conditions. To learn how to create an identity-based
policy, see Creating IAM policies in the IAM User Guide.

Identity-based policies can be further categorized as inline policies or managed policies. Inline
policies are embedded directly into a single user, group, or role. Managed policies are standalone
policies that you can attach to multiple users, groups, and roles in your AWS account. Managed
policies include AWS managed policies and customer managed policies. To learn how to choose
between a managed policy or an inline policy, see Choosing between managed policies and inline
policies in the IAM User Guide.

Managing access using policies 299

https://docs.aws.amazon.com/IAM/latest/UserGuide/id.html#id_which-to-choose_role
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html#access_policies-json
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#choosing-managed-or-inline
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#choosing-managed-or-inline

Amazon EMR Amazon EMR on EKS Development Guide

Resource-based policies

Resource-based policies are JSON policy documents that you attach to a resource. Examples of
resource-based policies are IAM role trust policies and Amazon S3 bucket policies. In services that
support resource-based policies, service administrators can use them to control access to a specific
resource. For the resource where the policy is attached, the policy defines what actions a specified
principal can perform on that resource and under what conditions. You must specify a principal
in a resource-based policy. Principals can include accounts, users, roles, federated users, or AWS
services.

Resource-based policies are inline policies that are located in that service. You can't use AWS
managed policies from IAM in a resource-based policy.

Access control lists (ACLs)

Access control lists (ACLs) control which principals (account members, users, or roles) have
permissions to access a resource. ACLs are similar to resource-based policies, although they do not
use the JSON policy document format.

Amazon S3, AWS WAF, and Amazon VPC are examples of services that support ACLs. To learn more
about ACLs, see Access control list (ACL) overview in the Amazon Simple Storage Service Developer
Guide.

Other policy types

AWS supports additional, less-common policy types. These policy types can set the maximum
permissions granted to you by the more common policy types.

• Permissions boundaries – A permissions boundary is an advanced feature in which you set
the maximum permissions that an identity-based policy can grant to an IAM entity (IAM user
or role). You can set a permissions boundary for an entity. The resulting permissions are the
intersection of an entity's identity-based policies and its permissions boundaries. Resource-based
policies that specify the user or role in the Principal field are not limited by the permissions
boundary. An explicit deny in any of these policies overrides the allow. For more information
about permissions boundaries, see Permissions boundaries for IAM entities in the IAM User Guide.

• Service control policies (SCPs) – SCPs are JSON policies that specify the maximum permissions
for an organization or organizational unit (OU) in AWS Organizations. AWS Organizations is a
service for grouping and centrally managing multiple AWS accounts that your business owns. If

Managing access using policies 300

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_principal.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/acl-overview.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_boundaries.html

Amazon EMR Amazon EMR on EKS Development Guide

you enable all features in an organization, then you can apply service control policies (SCPs) to
any or all of your accounts. The SCP limits permissions for entities in member accounts, including
each AWS account root user. For more information about Organizations and SCPs, see Service
control policies in the AWS Organizations User Guide.

• Session policies – Session policies are advanced policies that you pass as a parameter when you
programmatically create a temporary session for a role or federated user. The resulting session's
permissions are the intersection of the user or role's identity-based policies and the session
policies. Permissions can also come from a resource-based policy. An explicit deny in any of these
policies overrides the allow. For more information, see Session policies in the IAM User Guide.

Multiple policy types

When multiple types of policies apply to a request, the resulting permissions are more complicated
to understand. To learn how AWS determines whether to allow a request when multiple policy
types are involved, see Policy evaluation logic in the IAM User Guide.

How Amazon EMR on EKS works with IAM

Before you use IAM to manage access to Amazon EMR on EKS, learn what IAM features are
available to use with Amazon EMR on EKS.

IAM features you can use with Amazon EMR on EKS

IAM feature Amazon EMR on EKS support

Identity-based policies Yes

Resource-based policies No

Policy actions Yes

Policy resources Yes

Policy condition keys Yes

ACLs No

ABAC (tags in policies) Yes

Temporary credentials Yes

How Amazon EMR on EKS works with IAM 301

https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_scps.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_scps.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html#policies_session
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_evaluation-logic.html

Amazon EMR Amazon EMR on EKS Development Guide

IAM feature Amazon EMR on EKS support

Principal permissions Yes

Service roles No

Service-linked roles Yes

To get a high-level view of how Amazon EMR on EKS and other AWS services work with most IAM
features, see AWS services that work with IAM in the IAM User Guide.

Identity-based policies for Amazon EMR on EKS

Supports identity-based policies: Yes

Identity-based policies are JSON permissions policy documents that you can attach to an identity,
such as an IAM user, group of users, or role. These policies control what actions users and roles can
perform, on which resources, and under what conditions. To learn how to create an identity-based
policy, see Creating IAM policies in the IAM User Guide.

With IAM identity-based policies, you can specify allowed or denied actions and resources as well
as the conditions under which actions are allowed or denied. You can't specify the principal in an
identity-based policy because it applies to the user or role to which it is attached. To learn about all
of the elements that you can use in a JSON policy, see IAM JSON policy elements reference in the
IAM User Guide.

Identity-based policy examples for Amazon EMR on EKS

To view examples of Amazon EMR on EKS identity-based policies, see Identity-based policy
examples for Amazon EMR on EKS.

Resource-based policies within Amazon EMR on EKS

Supports resource-based policies: No

Resource-based policies are JSON policy documents that you attach to a resource. Examples of
resource-based policies are IAM role trust policies and Amazon S3 bucket policies. In services that
support resource-based policies, service administrators can use them to control access to a specific
resource. For the resource where the policy is attached, the policy defines what actions a specified

How Amazon EMR on EKS works with IAM 302

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements.html

Amazon EMR Amazon EMR on EKS Development Guide

principal can perform on that resource and under what conditions. You must specify a principal
in a resource-based policy. Principals can include accounts, users, roles, federated users, or AWS
services.

To enable cross-account access, you can specify an entire account or IAM entities in another
account as the principal in a resource-based policy. Adding a cross-account principal to a resource-
based policy is only half of establishing the trust relationship. When the principal and the resource
are in different AWS accounts, an IAM administrator in the trusted account must also grant
the principal entity (user or role) permission to access the resource. They grant permission by
attaching an identity-based policy to the entity. However, if a resource-based policy grants access
to a principal in the same account, no additional identity-based policy is required. For more
information, see Cross account resource access in IAM in the IAM User Guide.

Policy actions for Amazon EMR on EKS

Supports policy actions: Yes

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

The Action element of a JSON policy describes the actions that you can use to allow or deny
access in a policy. Policy actions usually have the same name as the associated AWS API operation.
There are some exceptions, such as permission-only actions that don't have a matching API
operation. There are also some operations that require multiple actions in a policy. These
additional actions are called dependent actions.

Include actions in a policy to grant permissions to perform the associated operation.

To see a list of Amazon EMR on EKS actions, see Actions, resources, and condition keys for Amazon
EMR on EKS in the Service Authorization Reference.

Policy actions in Amazon EMR on EKS use the following prefix before the action:

emr-containers

To specify multiple actions in a single statement, separate them with commas.

"Action": [
 "emr-containers:action1",
 "emr-containers:action2"

How Amazon EMR on EKS works with IAM 303

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_principal.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies-cross-account-resource-access.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonemroneksemrcontainers.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonemroneksemrcontainers.html

Amazon EMR Amazon EMR on EKS Development Guide

]

To view examples of Amazon EMR on EKS identity-based policies, see Identity-based policy
examples for Amazon EMR on EKS.

Policy resources for Amazon EMR on EKS

Supports policy resources: Yes

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

The Resource JSON policy element specifies the object or objects to which the action applies.
Statements must include either a Resource or a NotResource element. As a best practice,
specify a resource using its Amazon Resource Name (ARN). You can do this for actions that support
a specific resource type, known as resource-level permissions.

For actions that don't support resource-level permissions, such as listing operations, use a wildcard
(*) to indicate that the statement applies to all resources.

"Resource": "*"

To see a list of Amazon EMR on EKS resource types and their ARNs, see Resources defined by
Amazon EMR on EKS in the Service Authorization Reference. To learn which actions you can specify
the ARN of each resource, see Actions, resources, and condition keys for Amazon EMR on EKS.

To view examples of Amazon EMR on EKS identity-based policies, see Identity-based policy
examples for Amazon EMR on EKS.

Policy condition keys for Amazon EMR on EKS

Supports service-specific policy condition keys: Yes

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

The Condition element (or Condition block) lets you specify conditions in which a statement
is in effect. The Condition element is optional. You can create conditional expressions that use

How Amazon EMR on EKS works with IAM 304

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference-arns.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonemroneksemrcontainers.html#amazonemroneksemrcontainers-resources-for-iam-policies
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonemroneksemrcontainers.html#amazonemroneksemrcontainers-resources-for-iam-policies
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonemroneksemrcontainers.html

Amazon EMR Amazon EMR on EKS Development Guide

condition operators, such as equals or less than, to match the condition in the policy with values in
the request.

If you specify multiple Condition elements in a statement, or multiple keys in a single
Condition element, AWS evaluates them using a logical AND operation. If you specify multiple
values for a single condition key, AWS evaluates the condition using a logical OR operation. All of
the conditions must be met before the statement's permissions are granted.

You can also use placeholder variables when you specify conditions. For example, you can grant
an IAM user permission to access a resource only if it is tagged with their IAM user name. For more
information, see IAM policy elements: variables and tags in the IAM User Guide.

AWS supports global condition keys and service-specific condition keys. To see all AWS global
condition keys, see AWS global condition context keys in the IAM User Guide.

To see a list of Amazon EMR on EKS condition keys and to learn which actions and resources you
can use a condition key, see Actions, resources, and condition keys for Amazon EMR on EKS in the
Service Authorization Reference.

To view examples of Amazon EMR on EKS identity-based policies, see Identity-based policy
examples for Amazon EMR on EKS.

Access control lists (ACLs) in Amazon EMR on EKS

Supports ACLs: No

Access control lists (ACLs) control which principals (account members, users, or roles) have
permissions to access a resource. ACLs are similar to resource-based policies, although they do not
use the JSON policy document format.

Attribute-based access control (ABAC) with Amazon EMR on EKS

Supports ABAC (tags in policies) Yes

Attribute-based access control (ABAC) is an authorization strategy that defines permissions based
on attributes. In AWS, these attributes are called tags. You can attach tags to IAM entities (users or
roles) and to many AWS resources. Tagging entities and resources is the first step of ABAC. Then
you design ABAC policies to allow operations when the principal's tag matches the tag on the
resource that they are trying to access.

How Amazon EMR on EKS works with IAM 305

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition_operators.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_variables.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonemroneksemrcontainers.html

Amazon EMR Amazon EMR on EKS Development Guide

ABAC is helpful in environments that are growing rapidly and helps with situations where policy
management becomes cumbersome.

To control access based on tags, you provide tag information in the condition element of a policy
using the aws:ResourceTag/key-name, aws:RequestTag/key-name, or aws:TagKeys
condition keys.

If a service supports all three condition keys for every resource type, then the value is Yes for the
service. If a service supports all three condition keys for only some resource types, then the value is
Partial.

For more information about ABAC, see What is ABAC? in the IAM User Guide. To view a tutorial with
steps for setting up ABAC, see Use attribute-based access control (ABAC) in the IAM User Guide.

Using Temporary credentials with Amazon EMR on EKS

Supports temporary credentials: Yes

Some AWS services don't work when you sign in using temporary credentials. For additional
information, including which AWS services work with temporary credentials, see AWS services that
work with IAM in the IAM User Guide.

You are using temporary credentials if you sign in to the AWS Management Console using
any method except a user name and password. For example, when you access AWS using your
company's single sign-on (SSO) link, that process automatically creates temporary credentials. You
also automatically create temporary credentials when you sign in to the console as a user and then
switch roles. For more information about switching roles, see Switching to a role (console) in the
IAM User Guide.

You can manually create temporary credentials using the AWS CLI or AWS API. You can then use
those temporary credentials to access AWS. AWS recommends that you dynamically generate
temporary credentials instead of using long-term access keys. For more information, see
Temporary security credentials in IAM.

Cross-service principal permissions for Amazon EMR on EKS

Supports forward access sessions (FAS): Yes

When you use an IAM user or role to perform actions in AWS, you are considered a principal.
When you use some services, you might perform an action that then initiates another action in a
different service. FAS uses the permissions of the principal calling an AWS service, combined with

How Amazon EMR on EKS works with IAM 306

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction_attribute-based-access-control.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/tutorial_attribute-based-access-control.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-console.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp.html

Amazon EMR Amazon EMR on EKS Development Guide

the requesting AWS service to make requests to downstream services. FAS requests are only made
when a service receives a request that requires interactions with other AWS services or resources to
complete. In this case, you must have permissions to perform both actions. For policy details when
making FAS requests, see Forward access sessions.

Service roles for Amazon EMR on EKS

Supports service roles No

Service-linked roles for Amazon EMR on EKS

Supports service-linked roles Yes

For details about creating or managing service-linked roles, see AWS services that work with IAM.
Find a service in the table that includes a Yes in the Service-linked role column. Choose the Yes
link to view the service-linked role documentation for that service.

Using service-linked roles for Amazon EMR on EKS

Amazon EMR on EKS uses AWS Identity and Access Management (IAM) service-linked roles. A
service-linked role is a unique type of IAM role that is linked directly to Amazon EMR on EKS.
Service-linked roles are predefined by Amazon EMR on EKS and include all the permissions that the
service requires to call other AWS services on your behalf.

A service-linked role makes setting up Amazon EMR on EKS easier because you don’t have to
manually add the necessary permissions. Amazon EMR on EKS defines the permissions of its
service-linked roles, and unless defined otherwise, only Amazon EMR on EKS can assume its roles.
The defined permissions include the trust policy and the permissions policy, and that permissions
policy cannot be attached to any other IAM entity.

You can delete a service-linked role only after first deleting their related resources. This protects
your Amazon EMR on EKS resources because you can't inadvertently remove permission to access
the resources.

For information about other services that support service-linked roles, see AWS Services That Work
with IAM and look for the services that have Yes in the Service-Linked Role column. Choose a Yes
with a link to view the service-linked role documentation for that service.

Using Service-Linked Roles 307

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_forward_access_sessions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_terms-and-concepts.html#iam-term-service-linked-role
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html

Amazon EMR Amazon EMR on EKS Development Guide

Service-linked role permissions for Amazon EMR on EKS

Amazon EMR on EKS uses the service-linked role named
AWSServiceRoleForAmazonEMRContainers.

The AWSServiceRoleForAmazonEMRContainers service-linked role trusts the following
services to assume the role:

• emr-containers.amazonaws.com

The role permissions policy AmazonEMRContainersServiceRolePolicy allows Amazon EMR
on EKS to complete a set of actions on the specified resources, as the following policy statement
demonstrates.

Note

Managed policy contents change, so the policy shown here may be out-of-date. View the
most up-to-date policy AmazonEMRContainersServiceRolePolicy in the AWS Management
Console.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "eks:DescribeCluster",
 "eks:ListNodeGroups",
 "eks:DescribeNodeGroup",
 "ec2:DescribeRouteTables",
 "ec2:DescribeSubnets",
 "ec2:DescribeSecurityGroups",
 "elasticloadbalancing:DescribeInstanceHealth",
 "elasticloadbalancing:DescribeLoadBalancers",
 "elasticloadbalancing:DescribeTargetGroups",
 "elasticloadbalancing:DescribeTargetHealth"
],
 "Resource": "*"
 },
 {

Using Service-Linked Roles 308

https://console.aws.amazon.com/iam/home#policies/arn:aws:iam::aws:policy/AmazonEMRContainersServiceRolePolicy

Amazon EMR Amazon EMR on EKS Development Guide

 "Effect": "Allow",
 "Action": [
 "acm:ImportCertificate",
 "acm:AddTagsToCertificate"
],
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "aws:RequestTag/emr-container:endpoint:managed-certificate": "true"
 }
 }
 },
 {
 "Effect": "Allow",
 "Action": [
 "acm:DeleteCertificate"
],
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "aws:ResourceTag/emr-container:endpoint:managed-certificate":
 "true"
 }
 }
 }
]
}

You must configure permissions to allow an IAM entity (such as a user, group, or role) to create,
edit, or delete a service-linked role. For more information, see Service-Linked Role Permissions in
the IAM User Guide.

Creating a service-linked role for Amazon EMR on EKS

You don't need to manually create a service-linked role. When you create a virtual cluster, Amazon
EMR on EKS creates the service-linked role for you.

If you delete this service-linked role, and then need to create it again, you can use the same process
to recreate the role in your account. When you create a virtual cluster, Amazon EMR on EKS creates
the service-linked role for you again.

You can also use the IAM console to create a service-linked role with the Amazon EMR on
EKS use case. In the AWS CLI or the AWS API, create a service-linked role with the emr-

Using Service-Linked Roles 309

https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html#service-linked-role-permissions

Amazon EMR Amazon EMR on EKS Development Guide

containers.amazonaws.com service name. For more information, see Creating a Service-Linked
Role in the IAM User Guide. If you delete this service-linked role, you can use this same process to
create the role again.

Editing a service-linked role for Amazon EMR on EKS

Amazon EMR on EKS does not allow you to edit the
AWSServiceRoleForAmazonEMRContainers service-linked role. After you create a service-
linked role, you cannot change the name of the role because various entities might reference the
role. However, you can edit the description of the role using IAM. For more information, see Editing
a Service-Linked Role in the IAM User Guide.

Deleting a service-linked role for Amazon EMR on EKS

If you no longer need to use a feature or service that requires a service-linked role, we recommend
that you delete that role. That way you don’t have an unused entity that is not actively monitored
or maintained. However, you must clean up the resources for your service-linked role before you
can manually delete it.

Note

If the Amazon EMR on EKS service is using the role when you try to delete the resources,
then the deletion might fail. If that happens, wait for a few minutes and try the operation
again.

To delete Amazon EMR on EKS resources used by the
AWSServiceRoleForAmazonEMRContainers

1. Open the Amazon EMR console.

2. Choose a virtual cluster.

3. On the Virtual Cluster page choose Delete.

4. Repeat this procedure for any other virtual clusters in your account.

To manually delete the service-linked role using IAM

Using Service-Linked Roles 310

https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html#create-service-linked-role
https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html#create-service-linked-role
https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html#edit-service-linked-role
https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html#edit-service-linked-role

Amazon EMR Amazon EMR on EKS Development Guide

Use the IAM console, the AWS CLI, or the AWS API to delete the
AWSServiceRoleForAmazonEMRContainers service-linked role. For more information, see
Deleting a Service-Linked Role in the IAM User Guide.

Supported Regions for Amazon EMR on EKS service-linked roles

Amazon EMR on EKS supports using service-linked roles in all of the Regions where the service is
available. For more information, see Amazon EMR on EKS service endpoints and quotas.

Managed policies for Amazon EMR on EKS

View details about updates to AWS managed policies for Amazon EMR on EKS since March 1, 2021.

Change Description Date

AmazonEMRContainer
sServiceRolePolicy

 ‐ Added permissions to
describe and list Amazon
EKS nodegroups, describe
load balancer target
groups, and describe load
balancer target health.

The following permissions are added
to the policy: eks:ListNodeGroups

, eks:DescribeNodeGroup ,
elasticloadbalancing:Descri
beTargetGroups , elasticlo
adbalancing:DescribeTargetH
ealth .

March 13, 2023

AmazonEMRContainer
sServiceRolePolicy

 ‐ Added permissions to
import and delete certifica
tes in AWS Certificate
Manager.

The following permissions are added
to the policy: acm:ImportCertific
ate , acm:AddTagsToCerti
ficate , acm:DeleteCertific
ate .

Dec 3, 2021

Amazon EMR on EKS
started tracking changes

Amazon EMR on EKS started tracking
changes for its AWS managed policies.

March 1, 2021

Using job execution roles with Amazon EMR on EKS

To use the StartJobRun command to submit a job run on an EKS cluster, you must first onboard
a job execution role to be used with a virtual cluster. For more information, see Create a job

Managed policies for Amazon EMR on EKS 311

https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html#delete-service-linked-role

Amazon EMR Amazon EMR on EKS Development Guide

execution role in Setting up Amazon EMR on EKS. You can also follow the instructions in the Create
IAM Role for job execution section of the Amazon EMR on EKS Workshop.

The following permissions must be included in the trust policy for the job execution role.

 {
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Federated": "arn:aws:iam::AWS_ACCOUNT_ID:oidc-provider/OIDC_PROVIDER"
 },
 "Action": "sts:AssumeRoleWithWebIdentity",
 "Condition": {
 "StringLike": {
 "OIDC_PROVIDER:sub": "system:serviceaccount:NAMESPACE:emr-containers-sa-*-
*-AWS_ACCOUNT_ID-BASE36_ENCODED_ROLE_NAME"
 }
 }
 }
]
}

The trust policy in the preceding example grants permissions only to an Amazon EMR
managed Kubernetes service account with a name that matches the emr-containers-sa-*-
*-AWS_ACCOUNT_ID-BASE36_ENCODED_ROLE_NAME pattern. Service accounts with this pattern
will be automatically created at job submission, and scoped to the namespace where you submit
the job. This trust policy allows these service accounts to assume the execution role and get the
temporary credentials of the execution role. Service accounts from a different Amazon EKS cluster
or from a different namespace within the same EKS cluster are restricted from assuming the
execution role.

You can run the following command to automatically update the trust policy in the format given
above.

aws emr-containers update-role-trust-policy \
 --cluster-name cluster \
 --namespace namespace \

Using job execution roles with Amazon EMR on EKS 312

https://www.eksworkshop.com/advanced/430_emr_on_eks/prereqs/#create-iam-role-for-job-execution
https://www.eksworkshop.com/advanced/430_emr_on_eks/prereqs/#create-iam-role-for-job-execution

Amazon EMR Amazon EMR on EKS Development Guide

 --role-name iam_role_name_for_job_execution

Controlling access to the execution role

An administrator for your Amazon EKS cluster can create a multi-tenant Amazon EMR on EKS
virtual cluster to which an IAM administrator can add multiple execution roles. Because untrusted
tenants can use these execution roles to submit jobs that run arbitrary code, you might want
to restrict those tenants so that they can't run code that gains the permissions assigned to
one or more of these execution roles. To restrict the IAM policy attached to an IAM identity,
the IAM administrator can use the optional Amazon Resource Name (ARN) condition key emr-
containers:ExecutionRoleArn. This condition accepts a list of execution role ARNs that have
permissions to the virtual cluster, as the following permissions policy demonstrates.

 {
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "emr-containers:StartJobRun",
 "Resource": "arn:aws:emr-containers:REGION:AWS_ACCOUNT_ID:/
virtualclusters/VIRTUAL_CLUSTER_ID",
 "Condition": {
 "ArnEquals": {
 "emr-containers:ExecutionRoleArn": [
 "execution_role_arn_1",
 "execution_role_arn_2",
 ...
]
 }
 }
 }
]
}

If you want to allow all execution roles that begin with a particular prefix, such as MyRole, you
can replace the condition operator ArnEquals with the ArnLike operator, and you can replace
the execution_role_arn value in the condition with a wildcard * character. For example,
arn:aws:iam::AWS_ACCOUNT_ID:role/MyRole*. All other ARN condition keys are also
supported.

Using job execution roles with Amazon EMR on EKS 313

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition_operators.html#Conditions_ARN

Amazon EMR Amazon EMR on EKS Development Guide

Note

With Amazon EMR on EKS, you can't grant permissions to execution roles based on tags
or attributes. Amazon EMR on EKS doesn't support tag-based access control (TBAC) or
attribute-based access control (ABAC) for execution roles.

Identity-based policy examples for Amazon EMR on EKS

By default, users and roles don't have permission to create or modify Amazon EMR on EKS
resources. They also can't perform tasks by using the AWS Management Console, AWS Command
Line Interface (AWS CLI), or AWS API. To grant users permission to perform actions on the
resources that they need, an IAM administrator can create IAM policies. The administrator can then
add the IAM policies to roles, and users can assume the roles.

To learn how to create an IAM identity-based policy by using these example JSON policy
documents, see Creating IAM policies in the IAM User Guide.

For details about actions and resource types defined by Amazon EMR on EKS, including the format
of the ARNs for each of the resource types, see Actions, resources, and condition keys for Amazon
EMR on EKS in the Service Authorization Reference.

Topics

• Policy best practices

• Using the Amazon EMR on EKS console

• Allow users to view their own permissions

Policy best practices

Identity-based policies determine whether someone can create, access, or delete Amazon EMR
on EKS resources in your account. These actions can incur costs for your AWS account. When you
create or edit identity-based policies, follow these guidelines and recommendations:

• Get started with AWS managed policies and move toward least-privilege permissions – To
get started granting permissions to your users and workloads, use the AWS managed policies
that grant permissions for many common use cases. They are available in your AWS account. We
recommend that you reduce permissions further by defining AWS customer managed policies

Identity-based policy examples 314

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create-console.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonemroneksemrcontainers.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonemroneksemrcontainers.html

Amazon EMR Amazon EMR on EKS Development Guide

that are specific to your use cases. For more information, see AWS managed policies or AWS
managed policies for job functions in the IAM User Guide.

• Apply least-privilege permissions – When you set permissions with IAM policies, grant only the
permissions required to perform a task. You do this by defining the actions that can be taken on
specific resources under specific conditions, also known as least-privilege permissions. For more
information about using IAM to apply permissions, see Policies and permissions in IAM in the
IAM User Guide.

• Use conditions in IAM policies to further restrict access – You can add a condition to your
policies to limit access to actions and resources. For example, you can write a policy condition to
specify that all requests must be sent using SSL. You can also use conditions to grant access to
service actions if they are used through a specific AWS service, such as AWS CloudFormation. For
more information, see IAM JSON policy elements: Condition in the IAM User Guide.

• Use IAM Access Analyzer to validate your IAM policies to ensure secure and functional
permissions – IAM Access Analyzer validates new and existing policies so that the policies
adhere to the IAM policy language (JSON) and IAM best practices. IAM Access Analyzer provides
more than 100 policy checks and actionable recommendations to help you author secure and
functional policies. For more information, see IAM Access Analyzer policy validation in the IAM
User Guide.

• Require multi-factor authentication (MFA) – If you have a scenario that requires IAM users
or a root user in your AWS account, turn on MFA for additional security. To require MFA when
API operations are called, add MFA conditions to your policies. For more information, see
Configuring MFA-protected API access in the IAM User Guide.

For more information about best practices in IAM, see Security best practices in IAM in the IAM User
Guide.

Using the Amazon EMR on EKS console

To access the Amazon EMR on EKS console, you must have a minimum set of permissions. These
permissions must allow you to list and view details about the Amazon EMR on EKS resources in
your AWS account. If you create an identity-based policy that is more restrictive than the minimum
required permissions, the console won't function as intended for entities (users or roles) with that
policy.

You don't need to allow minimum console permissions for users that are making calls only to the
AWS CLI or the AWS API. Instead, allow access to only the actions that match the API operation
that they're trying to perform.

Identity-based policy examples 315

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#aws-managed-policies
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_job-functions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_job-functions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access-analyzer-policy-validation.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa_configure-api-require.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa_configure-api-require.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html

Amazon EMR Amazon EMR on EKS Development Guide

To ensure that users and roles can still use the Amazon EMR on EKS console, also attach the
Amazon EMR on EKS ConsoleAccess or ReadOnly AWS managed policy to the entities. For more
information, see Adding permissions to a user in the IAM User Guide.

Allow users to view their own permissions

This example shows how you might create a policy that allows IAM users to view the inline and
managed policies that are attached to their user identity. This policy includes permissions to
complete this action on the console or programmatically using the AWS CLI or AWS API.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "ViewOwnUserInfo",
 "Effect": "Allow",
 "Action": [
 "iam:GetUserPolicy",
 "iam:ListGroupsForUser",
 "iam:ListAttachedUserPolicies",
 "iam:ListUserPolicies",
 "iam:GetUser"
],
 "Resource": ["arn:aws:iam::*:user/${aws:username}"]
 },
 {
 "Sid": "NavigateInConsole",
 "Effect": "Allow",
 "Action": [
 "iam:GetGroupPolicy",
 "iam:GetPolicyVersion",
 "iam:GetPolicy",
 "iam:ListAttachedGroupPolicies",
 "iam:ListGroupPolicies",
 "iam:ListPolicyVersions",
 "iam:ListPolicies",
 "iam:ListUsers"
],
 "Resource": "*"
 }
]
}

Identity-based policy examples 316

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_change-permissions.html#users_change_permissions-add-console

Amazon EMR Amazon EMR on EKS Development Guide

Policies for tag-based access control

You can use conditions in your identity-based policy to control access to virtual clusters and job
runs based on tags. For more information about tagging, see Tagging your Amazon EMR on EKS
resources.

The following examples demonstrate different scenarios and ways to use condition operators with
Amazon EMR on EKS condition keys. These IAM policy statements are intended for demonstration
purposes only and should not be used in production environments. There are multiple ways to
combine policy statements to grant and deny permissions according to your requirements. For
more information about planning and testing IAM policies, see the IAM user Guide.

Important

Explicitly denying permission for tagging actions is an important consideration. This
prevents users from tagging a resource and thereby granting themselves permissions that
you did not intend to grant. If tagging actions for a resource are not denied, a user can
modify tags and circumvent the intention of the tag-based policies. For an example of a
policy that denies tagging actions, see Deny access to add and remove tags.

The examples below demonstrate identity-based permissions policies that are used to control the
actions that are allowed with Amazon EMR on EKS virtual clusters.

Allow actions only on resources with specific tag values

In the following policy example, the StringEquals condition operator tries to match dev with the
value for the tag department. If the tag department hasn't been added to the virtual cluster, or
doesn't contain the value dev, the policy doesn't apply, and the actions aren't allowed by this
policy. If no other policy statements allow the actions, the user can only work with virtual clusters
that have this tag with this value.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [

Policies for tag-based access control 317

https://docs.aws.amazon.com/IAM/latest/UserGuide/

Amazon EMR Amazon EMR on EKS Development Guide

 "emr-containers:DescribeVirtualCluster"
],
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "aws:ResourceTag/department": "dev"
 }
 }
 }
]
}

You can also specify multiple tag values using a condition operator. For example, to allow actions
on virtual clusters where the department tag contains the value dev or test, you could replace
the condition block in the earlier example with the following.

"Condition": {
 "StringEquals": {
 "aws:ResourceTag/department": ["dev", "test"]
 }
 }

Require tagging when a resource is created

In the example below, the tag needs to be applied when creating the virtual cluster.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "emr-containers:CreateVirtualCluster"
],
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "aws:RequestTag/department": "dev"
 }
 }
 }
]

Policies for tag-based access control 318

Amazon EMR Amazon EMR on EKS Development Guide

}

The following policy statement allows a user to create a virtual cluster only if the cluster has a
department tag, which can contain any value.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "emr-containers:CreateVirtualCluster"
],
 "Resource": "*",
 "Condition": {
 "Null": {
 "aws:RequestTag/department": "false"
 }
 }
 }
]
}

Deny access to add and remove tags

The effect of this policy is to deny a user the permission to add or remove any tags on virtual
clusters that are tagged with a department tag that contains the dev value.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Deny",
 "Action": [
 "emr-containers:TagResource",
 "emr-containers:UntagResource"
],
 "Resource": "*",
 "Condition": {
 "StringNotEquals": {
 "aws:ResourceTag/department": "dev"
 }

Policies for tag-based access control 319

Amazon EMR Amazon EMR on EKS Development Guide

 }
 }
]
}

Troubleshooting Amazon EMR on EKS identity and access

Use the following information to help you diagnose and fix common issues that you might
encounter when working with Amazon EMR on EKS and IAM.

Topics

• I am not authorized to perform an action in Amazon EMR on EKS

• I am not authorized to perform iam:PassRole

• I want to allow people outside of my AWS account to access my Amazon EMR on EKS resources

I am not authorized to perform an action in Amazon EMR on EKS

If the AWS Management Console tells you that you're not authorized to perform an action, then
you must contact your administrator for assistance. Your administrator is the person that provided
you with your user name and password.

The following example error occurs when the mateojackson user tries to use the console to view
details about a fictional my-example-widget resource but does not have the fictional emr-
containers:GetWidget permissions.

User: arn:aws:iam::123456789012:user/mateojackson is not authorized to perform: emr-
containers:GetWidget on resource: my-example-widget

In this case, Mateo asks his administrator to update his policies to allow him to access the my-
example-widget resource using the emr-containers:GetWidget action.

I am not authorized to perform iam:PassRole

If you receive an error that you're not authorized to perform the iam:PassRole action, your
policies must be updated to allow you to pass a role to Amazon EMR on EKS.

Some AWS services allow you to pass an existing role to that service instead of creating a new
service role or service-linked role. To do this, you must have permissions to pass the role to the
service.

Troubleshooting 320

Amazon EMR Amazon EMR on EKS Development Guide

The following example error occurs when an IAM user named marymajor tries to use the console
to perform an action in Amazon EMR on EKS. However, the action requires the service to have
permissions that are granted by a service role. Mary does not have permissions to pass the role to
the service.

User: arn:aws:iam::123456789012:user/marymajor is not authorized to perform:
 iam:PassRole

In this case, Mary's policies must be updated to allow her to perform the iam:PassRole action.

If you need help, contact your AWS administrator. Your administrator is the person who provided
you with your sign-in credentials.

I want to allow people outside of my AWS account to access my Amazon EMR on
EKS resources

You can create a role that users in other accounts or people outside of your organization can use to
access your resources. You can specify who is trusted to assume the role. For services that support
resource-based policies or access control lists (ACLs), you can use those policies to grant people
access to your resources.

To learn more, consult the following:

• To learn whether Amazon EMR on EKS supports these features, see How Amazon EMR on EKS
works with IAM.

• To learn how to provide access to your resources across AWS accounts that you own, see
Providing access to an IAM user in another AWS account that you own in the IAM User Guide.

• To learn how to provide access to your resources to third-party AWS accounts, see Providing
access to AWS accounts owned by third parties in the IAM User Guide.

• To learn how to provide access through identity federation, see Providing access to externally
authenticated users (identity federation) in the IAM User Guide.

• To learn the difference between using roles and resource-based policies for cross-account access,
see Cross account resource access in IAM in the IAM User Guide.

Logging and monitoring

To detect incidents, receive alerts when incidents occur, and respond to them, use these options
with Amazon EMR on EKS:

Logging and monitoring 321

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_aws-accounts.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_third-party.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_third-party.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_federated-users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_federated-users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies-cross-account-resource-access.html

Amazon EMR Amazon EMR on EKS Development Guide

• Monitor Amazon EMR on EKS with AWS CloudTrail ‐ AWS CloudTrail provides a record of actions
taken by a user, role, or an AWS service in Amazon EMR on EKS. It captures calls from the
Amazon EMR console and code calls to the Amazon EMR on EKS API operations as events. This
allows you to determine the request that was made to Amazon EMR on EKS, the IP address from
which the request was made, who made the request, when it was made, and additional details.
For more information, see Logging Amazon EMR on EKS API calls using AWS CloudTrail.

• Use CloudWatch Events with Amazon EMR on EKS ‐ CloudWatch Events delivers a near real-
time stream of system events that describe changes in AWS resources. CloudWatch Events
becomes aware of operational changes as they occur, responds to them, and takes corrective
action as necessary, by sending messages to respond to the environment, activating functions,
making changes, and capturing state information. To use CloudWatch Events with Amazon EMR
on EKS, create a rule that triggers on an Amazon EMR on EKS API call via CloudTrail. For more
information, see Monitor jobs with Amazon CloudWatch Events.

Logging Amazon EMR on EKS API calls using AWS CloudTrail

Amazon EMR on EKS is integrated with AWS CloudTrail, a service that provides a record of actions
taken by a user, role, or an AWS service in Amazon EMR on EKS. CloudTrail captures all API calls
for Amazon EMR on EKS as events. The calls captured include calls from the Amazon EMR on EKS
console and code calls to the Amazon EMR on EKS API operations. If you create a trail, you can
enable continuous delivery of CloudTrail events to an Amazon S3 bucket, including events for
Amazon EMR on EKS. If you don't configure a trail, you can still view the most recent events in
the CloudTrail console in Event history. Using the information collected by CloudTrail, you can
determine the request that was made to Amazon EMR on EKS, the IP address from which the
request was made, who made the request, when it was made, and additional details.

To learn more about CloudTrail, see the AWS CloudTrail User Guide.

Amazon EMR on EKS information in CloudTrail

CloudTrail is enabled on your AWS account when you create the account. When activity occurs in
Amazon EMR on EKS, that activity is recorded in a CloudTrail event along with other AWS service
events in Event history. You can view, search, and download recent events in your AWS account.
For more information, see Viewing events with CloudTrail Event history.

For an ongoing record of events in your AWS account, including events for Amazon EMR on EKS,
create a trail. A trail enables CloudTrail to deliver log files to an Amazon S3 bucket. By default,
when you create a trail in the console, the trail applies to all AWS Regions. The trail logs events

CloudTrail logs 322

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-user-guide.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/view-cloudtrail-events.html

Amazon EMR Amazon EMR on EKS Development Guide

from all Regions in the AWS partition and delivers the log files to the Amazon S3 bucket that you
specify. Additionally, you can configure other AWS services to further analyze and act upon the
event data collected in CloudTrail logs. For more information, see the following:

• Overview for creating a trail

• CloudTrail supported services and integrations

• Configuring Amazon SNS notifications for CloudTrail

• Receiving CloudTrail log files from multiple regions and Receiving CloudTrail log files from
multiple accounts

All Amazon EMR on EKS actions are logged by CloudTrail and are documented in Amazon EMR on
EKS API documentation. For example, calls to the CreateVirtualCluster, StartJobRun and
ListJobRuns actions generate entries in the CloudTrail log files.

Every event or log entry contains information about who generated the request. The identity
information helps you determine the following:

• Whether the request was made with root or AWS Identity and Access Management (IAM) user
credentials.

• Whether the request was made with temporary security credentials for a role or federated user.

• Whether the request was made by another AWS service.

For more information, see the CloudTrail user Identity element.

Understanding Amazon EMR on EKS log file entries

A trail is a configuration that enables delivery of events as log files to an Amazon S3 bucket that
you specify. CloudTrail log files contain one or more log entries. An event represents a single
request from any source and includes information about the requested action, the date and time of
the action, request parameters, and so on. CloudTrail log files aren't an ordered stack trace of the
public API calls, so they don't appear in any specific order.

The following example shows a CloudTrail log entry that demonstrates the ListJobRuns action.

{
 "eventVersion": "1.05",
 "userIdentity": {
 "type": "AssumedRole",

CloudTrail logs 323

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-create-and-update-a-trail.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-aws-service-specific-topics.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/configure-sns-notifications-for-cloudtrail.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/receive-cloudtrail-log-files-from-multiple-regions.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-receive-logs-from-multiple-accounts.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-receive-logs-from-multiple-accounts.html
https://docs.aws.amazon.com/emr-on-eks/latest/APIReference/
https://docs.aws.amazon.com/emr-on-eks/latest/APIReference/
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-event-reference-user-identity.html
https://docs.aws.amazon.com/emr-on-eks/latest/APIReference/API_ListJobRuns.html

Amazon EMR Amazon EMR on EKS Development Guide

 "principalId": "AIDACKCEVSQ6C2EXAMPLE:admin",
 "arn": "arn:aws:sts::012345678910:assumed-role/Admin/admin",
 "accountId": "012345678910",
 "accessKeyId": "AKIAIOSFODNN7EXAMPLE",
 "sessionContext": {
 "sessionIssuer": {
 "type": "Role",
 "principalId": "AIDACKCEVSQ6C2EXAMPLE",
 "arn": "arn:aws:iam::012345678910:role/Admin",
 "accountId": "012345678910",
 "userName": "Admin"
 },
 "webIdFederationData": {},
 "attributes": {
 "mfaAuthenticated": "false",
 "creationDate": "2020-11-04T21:49:36Z"
 }
 }
 },
 "eventTime": "2020-11-04T21:52:58Z",
 "eventSource": "emr-containers.amazonaws.com",
 "eventName": "ListJobRuns",
 "awsRegion": "us-east-1",
 "sourceIPAddress": "203.0.113.1",
 "userAgent": "aws-cli/1.11.167 Python/2.7.10 Darwin/16.7.0 botocore/1.7.25",
 "requestParameters": {
 "virtualClusterId": "1K48XXXXXXHCB"
 },
 "responseElements": null,
 "requestID": "890b8639-e51f-11e7-b038-EXAMPLE",
 "eventID": "874f89fa-70fc-4798-bc00-EXAMPLE",
 "readOnly": true,
 "eventType": "AwsApiCall",
 "recipientAccountId": "012345678910"
}

Using Amazon S3 Access Grants with Amazon EMR on EKS

S3 Access Grants overview for Amazon EMR on EKS

With Amazon EMR releases 6.15.0 and higher, Amazon S3 Access Grants provide a scalable access
control solution that you can use to augment access to your Amazon S3 data from Amazon EMR on

S3 Access Grants 324

Amazon EMR Amazon EMR on EKS Development Guide

EKS. If you have a complex or large permission configuration for your S3 data, you can use Access
Grants to scale S3 data permissions for users, roles, and applications.

Use S3 Access Grants to augment access to Amazon S3 data beyond the permissions granted by
the runtime role or the IAM roles that are attached to the identities with access to your Amazon
EMR on EKS cluster.

For more information, see Managing access with S3 Access Grants for Amazon EMR in the Amazon
EMR Management Guide and Managing access with S3 Access Grants in the Amazon Simple Storage
Service User Guide.

This page describes the requirements to run a Spark job in Amazon EMR on EKS with S3 Access
Grants integration. With Amazon EMR on EKS, S3 Access Grants requires an additional IAM policy
statement in the execution role for your job, and an additional override configuration for the
StartJobRun API. For steps to set up S3 Access Grants with other Amazon EMR deployments, see
the following documentation:

• Using S3 Access Grants with Amazon EMR

• Using S3 Access Grants with EMR Serverless

Launch an Amazon EMR on EKS cluster with S3 Access Grants for data
management

You can enable S3 Access Grants on Amazon EMR on EKS and launch a Spark job. When your
application makes a request for S3 data, Amazon S3 provides temporary credentials that are
scoped to the specific bucket, prefix, or object.

1. Set up a job execution role for your Amazon EMR on EKS cluster. Include the
required IAM permissions that you need to run Spark jobs, s3:GetDataAccess and
s3:GetAccessGrantsInstanceForPrefix:

{
 "Effect": "Allow",
 "Action": [
 "s3:GetDataAccess",
 "s3:GetAccessGrantsInstanceForPrefix"
],
 "Resource": [//LIST ALL INSTANCE ARNS THAT THE ROLE IS ALLOWED TO QUERY
 "arn:aws_partition:s3:Region:account-id1:access-grants/default",

Launch a cluster 325

https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-access-grants.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/access-grants.html
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-access-grants.html
https://docs.aws.amazon.com/emr/latest/EMR-Serverless-UserGuide/access-grants.html

Amazon EMR Amazon EMR on EKS Development Guide

 "arn:aws_partition:s3:Region:account-id2:access-grants/default"
]
}

Note

If you specify IAM roles that for job execution that have any additional permissions
to access S3 directly, then users might be able to access data regardless of the
permissions that you define in S3 Access Grants

2. Submit a job to your Amazon EMR on EKS cluster with an Amazon EMR release label of 6.15 or
higher and the emrfs-site classification, as the following example shows. Replace the values
in red text with the appropriate values for your usage scenario.

{
 "name": "myjob",
 "virtualClusterId": "123456",
 "executionRoleArn": "iam_role_name_for_job_execution",
 "releaseLabel": "emr-7.2.0-latest",
 "jobDriver": {
 "sparkSubmitJobDriver": {
 "entryPoint": "entryPoint_location",
 "entryPointArguments": ["argument1", "argument2"],
 "sparkSubmitParameters": "--class main_class"
 }
 },
 "configurationOverrides": {
 "applicationConfiguration": [
 {
 "classification": "emrfs-site",
 "properties": {
 "fs.s3.s3AccessGrants.enabled": "true",
 "fs.s3.s3AccessGrants.fallbackToIAM": "false"
 }
 }
],
 }
}

Launch a cluster 326

Amazon EMR Amazon EMR on EKS Development Guide

S3 Access Grants considerations with Amazon EMR on EKS

For important support, compatibility, and behavioral information when you use Amazon S3 Access
Grants with Amazon EMR on EKS, see S3 Access Grants considerations with Amazon EMR in the
Amazon EMR Management Guide.

Compliance validation for Amazon EMR on EKS

Third-party auditors assess the security and compliance of Amazon EMR on EKS as part of multiple
AWS compliance programs. These include SOC, PCI, FedRAMP, HIPAA, and others.

Resilience in Amazon EMR on EKS

The AWS global infrastructure is built around AWS Regions and Availability Zones. AWS Regions
provide multiple physically separated and isolated Availability Zones, which are connected with
low-latency, high-throughput, and highly redundant networking. With Availability Zones, you
can design and operate applications and databases that automatically fail over between zones
without interruption. Availability Zones are more highly available, fault tolerant, and scalable than
traditional single or multiple data center infrastructures.

For more information about AWS Regions and Availability Zones, see AWS Global Infrastructure.

In addition to the AWS global infrastructure, Amazon EMR on EKS offers integration with Amazon
S3 through EMRFS to help support your data resiliency and backup needs.

Infrastructure security in Amazon EMR on EKS

As a managed service, Amazon EMR is protected by AWS global network security. For information
about AWS security services and how AWS protects infrastructure, see AWS Cloud Security. To
design your AWS environment using the best practices for infrastructure security, see Infrastructure
Protection in Security Pillar AWS Well‐Architected Framework.

You use AWS published API calls to access Amazon EMR through the network. Clients must support
the following:

• Transport Layer Security (TLS). We require TLS 1.2 and recommend TLS 1.3.

• Cipher suites with perfect forward secrecy (PFS) such as DHE (Ephemeral Diffie-Hellman) or
ECDHE (Elliptic Curve Ephemeral Diffie-Hellman). Most modern systems such as Java 7 and later
support these modes.

Considerations 327

https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-access-grants-considerations.html
https://aws.amazon.com/about-aws/global-infrastructure/
https://aws.amazon.com/security/
https://docs.aws.amazon.com/wellarchitected/latest/security-pillar/infrastructure-protection.html
https://docs.aws.amazon.com/wellarchitected/latest/security-pillar/infrastructure-protection.html

Amazon EMR Amazon EMR on EKS Development Guide

Additionally, requests must be signed by using an access key ID and a secret access key that is
associated with an IAM principal. Or you can use the AWS Security Token Service (AWS STS) to
generate temporary security credentials to sign requests.

Configuration and vulnerability analysis

AWS handles basic security tasks like guest operating system (OS) and database patching, firewall
configuration, and disaster recovery. These procedures have been reviewed and certified by the
appropriate third parties. For more details, see the following resources:

• Compliance validation for Amazon EMR on EKS

• Shared Responsibility Model

• Amazon Web Services: Overview of Security Processes (whitepaper)

Connect to Amazon EMR on EKS Using an interface VPC
endpoint

You can connect directly to Amazon EMR on EKS using Interface VPC endpoints (AWS PrivateLink)
in your Virtual Private Cloud (VPC) instead of connecting over the internet. When you use an
interface VPC endpoint, communication between your VPC and Amazon EMR on EKS is conducted
entirely within the AWS network. Each VPC endpoint is represented by one or more Elastic network
interfaces (ENIs) with private IP addresses in your VPC subnets.

The interface VPC endpoint connects your VPC directly to Amazon EMR on EKS without an internet
gateway, NAT device, VPN connection, or AWS Direct Connect connection. The instances in your
VPC don't need public IP addresses to communicate with the Amazon EMR on EKS API.

You can create an interface VPC endpoint to connect to Amazon EMR on EKS using the AWS
Management Console or AWS Command Line Interface (AWS CLI) commands. For more
information, see Creating an Interface Endpoint.

After you create an interface VPC endpoint, if you enable private DNS hostnames for the endpoint,
the default Amazon EMR on EKS endpoint resolves to your VPC endpoint. The default service name
endpoint for Amazon EMR on EKS is in the following format.

emr-containers.Region.amazonaws.com

Configuration and vulnerability analysis 328

https://docs.aws.amazon.com/STS/latest/APIReference/welcome.html
https://aws.amazon.com/compliance/shared-responsibility-model/
https://d0.awsstatic.com/whitepapers/Security/AWS_Security_Whitepaper.pdf
https://docs.aws.amazon.com/vpc/latest/userguide/vpce-interface.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-eni.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-eni.html
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/vpce-interface.html#create-interface-endpoint

Amazon EMR Amazon EMR on EKS Development Guide

If you do not enable private DNS hostnames, Amazon VPC provides a DNS endpoint name that you
can use in the following format.

VPC_Endpoint_ID.emr-containers.Region.vpce.amazonaws.com

For more information, see Interface VPC Endpoints (AWS PrivateLink) in the Amazon VPC User
Guide. Amazon EMR on EKS supports making calls to all of its API Actions inside your VPC.

You can attach VPC endpoint policies to a VPC endpoint to control access for IAM principals. You
can also associate security groups with a VPC endpoint to control inbound and outbound access
based on the origin and destination of network traffic, such as a range of IP addresses. For more
information, see Controlling Access to Services with VPC Endpoints.

Create a VPC Endpoint Policy for Amazon EMR on EKS

You can create a policy for Amazon VPC endpoints for Amazon EMR on EKS to specify the
following:

• The principal that can or cannot perform actions

• The actions that can be performed

• The resources on which actions can be performed

For more information, see Controlling Access to Services with VPC Endpoints in the Amazon VPC
User Guide.

Example VPC Endpoint Policy to Deny All Access From a Specified AWS Account

The following VPC endpoint policy denies AWS account 123456789012 all access to resources
using the endpoint.

{
 "Statement": [
 {
 "Action": "*",
 "Effect": "Allow",
 "Resource": "*",
 "Principal": "*"
 },
 {
 "Action": "*",

Create a VPC Endpoint Policy for Amazon EMR on EKS 329

https://docs.aws.amazon.com/vpc/latest/userguide/vpce-interface.html
https://docs.aws.amazon.com/emr-on-eks/latest/APIReference/API_Operations.html
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-endpoints-access.html
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-endpoints-access.html

Amazon EMR Amazon EMR on EKS Development Guide

 "Effect": "Deny",
 "Resource": "*",
 "Principal": {
 "AWS": [
 "123456789012"
]
 }
 }
]
}

Example VPC Endpoint Policy to Allow VPC Access Only to a Specified IAM Principal (User)

The following VPC endpoint policy allows full access only to the IAM user lijuan in AWS account
123456789012. All other IAM principals are denied access using the endpoint.

{
 "Statement": [
 {
 "Action": "*",
 "Effect": "Allow",
 "Resource": "*",
 "Principal": {
 "AWS": [
 "arn:aws:iam::123456789012:user/lijuan"
]
 }
 }
]
}

Example VPC Endpoint Policy to Allow Read-Only Amazon EMR on EKS Operations

The following VPC endpoint policy allows only AWS account 123456789012 to perform the
specified Amazon EMR on EKS actions.

The actions specified provide the equivalent of read-only access for Amazon EMR on EKS. All other
actions on the VPC are denied for the specified account. All other accounts are denied any access.
For a list of Amazon EMR on EKS actions, see Actions, Resources, and Condition Keys for Amazon
EMR on EKS.

{

Create a VPC Endpoint Policy for Amazon EMR on EKS 330

https://docs.aws.amazon.com/IAM/latest/UserGuide/list_amazonemroneksemrcontainers.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/list_amazonemroneksemrcontainers.html

Amazon EMR Amazon EMR on EKS Development Guide

 "Statement": [
 {
 "Action": [
 "emr-containers:DescribeJobRun",
 "emr-containers:DescribeVirtualCluster",
 "emr-containers:ListJobRuns",
 "emr-containers:ListTagsForResource",
 "emr-containers:ListVirtualClusters"
],
 "Effect": "Allow",
 "Resource": "*",
 "Principal": {
 "AWS": [
 "123456789012"
]
 }
 }
]
}

Example VPC Endpoint Policy Denying Access to a Specified Virtual Cluster

The following VPC endpoint policy allows full access for all accounts and principals, but denies
any access for AWS account 123456789012 to actions performed on the virtual cluster with
cluster ID A1B2CD34EF5G. Other Amazon EMR on EKS actions that don't support resource-level
permissions for virtual clusters are still allowed. For a list of Amazon EMR on EKS actions and their
corresponding resource type, see Actions, Resources, and Condition Keys for Amazon EMR on EKS-
in the AWS Identity and Access Management User Guide.

{
 "Statement": [
 {
 "Action": "*",
 "Effect": "Allow",
 "Resource": "*",
 "Principal": "*"
 },
 {
 "Action": "*",
 "Effect": "Deny",
 "Resource": "arn:aws:emr-containers:us-west-2:123456789012:/
virtualclusters/A1B2CD34EF5G",
 "Principal": {

Create a VPC Endpoint Policy for Amazon EMR on EKS 331

https://docs.aws.amazon.com/IAM/latest/UserGuide/list_amazonemroneksemrcontainers.html

Amazon EMR Amazon EMR on EKS Development Guide

 "AWS": [
 "123456789012"
]
 }
 }
]
}

Set up cross-account access for Amazon EMR on EKS

You can set up cross-account access for Amazon EMR on EKS. Cross-account access enables users
from one AWS account to run Amazon EMR on EKS jobs and access the underlying data that
belongs to another AWS account.

Prerequisites

To set up cross-account access for Amazon EMR on EKS, you’ll complete tasks while signed in to the
following AWS accounts:

• AccountA ‐ An AWS account where you have created an Amazon EMR on EKS virtual cluster by
registering Amazon EMR with a namespace on an EKS cluster.

• AccountB ‐ An AWS account that contains an Amazon S3 bucket or a DynamoDB table that you
want your Amazon EMR on EKS jobs to access.

You must have the following ready in your AWS accounts before setting up cross-account access:

• An Amazon EMR on EKS virtual cluster in AccountA where you want to run jobs.

• A job execution role in AccountA that has the required permissions to run jobs in the virtual
cluster. For more information, see Create a job execution role and Using job execution roles with
Amazon EMR on EKS.

How to access a cross-account Amazon S3 bucket or DynamoDB table

To set up cross-account access for Amazon EMR on EKS, complete the following steps.

1. Create an Amazon S3 bucket, cross-account-bucket, in AccountB. For more information,
see Creating a bucket. If you want to have cross-account access to DynamoDB, you can also
create a DynamoDB table in AccountB. For more information, see Creating a DynamoDB table.

Cross-account access 332

https://docs.aws.amazon.com/AmazonS3/latest/gsg/CreatingABucket.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/getting-started-step-1.html

Amazon EMR Amazon EMR on EKS Development Guide

2. Create a Cross-Account-Role-B IAM role in AccountB that can access the cross-
account-bucket.

1. Sign in to the IAM console.

2. Choose Roles and create a new role: Cross-Account-Role-B. For more information about
how to create IAM roles, see Creating IAM roles in the IAM user Guide.

3. Create an IAM policy that specifies the permissions for Cross-Account-Role-B to access
the cross-account-bucket S3 bucket, as the following policy statement demonstrates.
Then attach the IAM policy to Cross-Account-Role-B. For more information, see
Creating a New Policy in the IAM user Guide.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "s3:*",
 "Resource": [
 "arn:aws:s3:::cross-account-bucket",
 "arn:aws:s3:::cross-account-bucket/*"
]
 }
]
}

If DynamoDB access is required, create an IAM policy that specifies permissions to access the
cross-account DynamoDB table. Then attach the IAM policy to Cross-Account-Role-B.
For more information, see Create a DynamoDB table in the IAM user guide.

Following is a policy to access a DynamoDB table, CrossAccountTable.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "dynamodb:*",
 "Resource": "arn:aws:dynamodb:MyRegion:AccountB:table/
CrossAccountTable"
 }

How to access a cross-account Amazon S3 bucket or DynamoDB table 333

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_examples_dynamodb_specific-table.html

Amazon EMR Amazon EMR on EKS Development Guide

]
}

3. Edit the trust relationship for the Cross-Account-Role-B role.

1. To configure the trust relationship for the role, choose the Trust Relationships tab in the
IAM console for the role created in Step 2: Cross-Account-Role-B.

2. Select Edit Trust Relationship.

3. Add the following policy document, which allows Job-Execution-Role-A in AccountA
to assume this Cross-Account-Role-B role.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::AccountA:role/Job-Execution-Role-A"
 },
 "Action": "sts:AssumeRole"
 }
]
}

4. Grant Job-Execution-Role-A in AccountA with - STS Assume role permission to assume
Cross-Account-Role-B.

1. In the IAM console for AWS account AccountA, select Job-Execution-Role-A.

2. Add the following policy statement to the Job-Execution-Role-A to allow the
AssumeRole action on the Cross-Account-Role-B role.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "sts:AssumeRole",
 "Resource": "arn:aws:iam::AccountB:role/Cross-Account-Role-B"
 }
]
}

How to access a cross-account Amazon S3 bucket or DynamoDB table 334

Amazon EMR Amazon EMR on EKS Development Guide

5. For Amazon S3 access, set the following spark-submit parameters (spark conf) while
submitting the job to Amazon EMR on EKS.

Note

By default, EMRFS uses the job execution role to access the S3 bucket
from the job. But when customAWSCredentialsProvider is set to
AssumeRoleAWSCredentialsProvider, EMRFS uses the corresponding role that
you specify with ASSUME_ROLE_CREDENTIALS_ROLE_ARN instead of the Job-
Execution-Role-A for Amazon S3 access.

• --conf
spark.hadoop.fs.s3.customAWSCredentialsProvider=com.amazonaws.emr.AssumeRoleAWSCredentialsProvider

• --conf
spark.kubernetes.driverEnv.ASSUME_ROLE_CREDENTIALS_ROLE_ARN=arn:aws:iam::AccountB:role/
Cross-Account-Role-B \

• --conf
spark.executorEnv.ASSUME_ROLE_CREDENTIALS_ROLE_ARN=arn:aws:iam::AccountB:role/
Cross-Account-Role-B \

Note

You must set ASSUME_ROLE_CREDENTIALS_ROLE_ARN for both executor and driver
env in the job spark configuration.

For DynamoDB cross-account access, you must set --conf
spark.dynamodb.customAWSCredentialsProvider=com.amazonaws.emr.AssumeRoleAWSCredentialsProvider.

6. Run the Amazon EMR on EKS job with cross-account access, as the following example
demonstrates.

aws emr-containers start-job-run \
--virtual-cluster-id 123456 \
--name myjob \
--execution-role-arn execution-role-arn \

How to access a cross-account Amazon S3 bucket or DynamoDB table 335

Amazon EMR Amazon EMR on EKS Development Guide

--release-label emr-6.2.0-latest \
--job-driver '{"sparkSubmitJobDriver": {"entryPoint": "entryPoint_location",
 "entryPointArguments": ["arguments_list"], "sparkSubmitParameters": "--class
 <main_class> --conf spark.executor.instances=2 --conf spark.executor.memory=2G
 --conf spark.executor.cores=2 --conf spark.driver.cores=1 --conf
 spark.hadoop.fs.s3.customAWSCredentialsProvider=com.amazonaws.emr.AssumeRoleAWSCredentialsProvider
 --conf
 spark.kubernetes.driverEnv.ASSUME_ROLE_CREDENTIALS_ROLE_ARN=arn:aws:iam::AccountB:role/
Cross-Account-Role-B --conf
 spark.executorEnv.ASSUME_ROLE_CREDENTIALS_ROLE_ARN=arn:aws:iam::AccountB:role/
Cross-Account-Role-B"}} ' \
--configuration-overrides '{"applicationConfiguration": [{"classification":
 "spark-defaults", "properties": {"spark.driver.memory": "2G"}}],
 "monitoringConfiguration": {"cloudWatchMonitoringConfiguration":
 {"logGroupName": "log_group_name", "logStreamNamePrefix": "log_stream_prefix"},
 "persistentAppUI":"ENABLED", "s3MonitoringConfiguration": {"logUri": "s3://
my_s3_log_location" }}}'

How to access a cross-account Amazon S3 bucket or DynamoDB table 336

Amazon EMR Amazon EMR on EKS Development Guide

Tagging your Amazon EMR on EKS resources

To help you manage your Amazon EMR on EKS resources, you can assign your own metadata to
each resource using tags. This topic provides an overview of the tags function and shows you how
to create tags.

Topics

• Tag basics

• Tag your resources

• Tag restrictions

• Work with tags using the AWS CLI and the Amazon EMR on EKS API

Tag basics

A tag is a label that you assign to an AWS resource. Each tag consists of a key and an optional
value, both of which you define.

Tags enable you to categorize your AWS resources by attributes such as purpose, owner, or
environment. When you have many resources of the same type, you can quickly identify a specific
resource based on the tags you've assigned to it. For example, you can define a set of tags for
your Amazon EMR on EKS clusters to help you track each cluster's owner and stack level. We
recommend that you devise a consistent set of tag keys for each resource type. You can then search
and filter the resources based on the tags that you add.

Tags are not automatically assigned to your resources. After you add a tag, you can edit tag keys
and values or remove tags from a resource at any time. If you delete a resource, any tags for the
resource are also deleted.

Tags don't have any semantic meaning to Amazon EMR on EKS and are interpreted strictly as a
string of characters.

A tag value can be an empty string, but not null. A tag key cannot be an empty string. If you add a
tag that has the same key as an existing tag on that resource, the new value overwrites the earlier
value.

If you use AWS Identity and Access Management (IAM), you can control which users in your AWS
account have permission to manage tags.

Tag basics 337

Amazon EMR Amazon EMR on EKS Development Guide

For tag-based access control policy examples, see Policies for tag-based access control.

Tag your resources

You can tag new or existing virtual clusters and job runs that are in active states. The active states
for job runs include: PENDING, SUBMITTED, RUNNING, and CANCEL_PENDING. The active states for
virtual clusters include: RUNNING, TERMINATING and ARRESTED. For more information, see Job run
states and Virtual cluster states.

When a virtual cluster is terminated, tags are cleaned and no longer accessible.

If you're using the Amazon EMR on EKS API, the AWS CLI, or an AWS SDK, you can apply tags to
new resources using the tags parameter on the relevant API action. You can apply tags to existing
resources using the TagResource API action.

You can use some resource-creating actions to specify tags for a resource when the resource is
created. In this case, if tags cannot be applied while the resource is being created, the resource fails
to be created. This mechanism ensures that resources you intended to tag on creation are either
created with specified tags or not created at all. If you tag resources at the time of creation, you
don't need to run custom tagging scripts after creating a resource.

The following table describes the Amazon EMR on EKS resources that can be tagged.

Resource Supports tags Supports tag
propagation

Supports tagging
on creation
(Amazon EMR on
EKS API, AWS CLI,
and AWS SDK)

API for
creation
(tags can
be added
during
creation)

Virtual cluster Yes No. Tags
associated
with a virtual
cluster do not
propagate to job
runs submitted
to that virtual
cluster.

Yes CreateVir
tualCluster

Tag your resources 338

Amazon EMR Amazon EMR on EKS Development Guide

Resource Supports tags Supports tag
propagation

Supports tagging
on creation
(Amazon EMR on
EKS API, AWS CLI,
and AWS SDK)

API for
creation
(tags can
be added
during
creation)

Job runs Yes No Yes StartJobRun

Tag restrictions

The following basic restrictions apply to tags:

• Maximum number of tags per resource – 50

• For each resource, each tag key must be unique, and each tag key can have only one value.

• Maximum key length – 128 Unicode characters in UTF-8

• Maximum value length – 256 Unicode characters in UTF-8

• If your tagging schema is used across multiple AWS services and resources, remember that other
services may have restrictions on allowed characters. Generally allowed characters are letters,
numbers, spaces representable in UTF-8, and the following characters: + - = . _ : / @.

• Tag keys and values are case sensitive.

• A tag value can be an empty string, but not null. A tag key cannot be an empty string.

• Don't use aws:, AWS:, or any upper or lowercase combination of such as a prefix for either keys
or values. These are reserved only for AWS use.

Work with tags using the AWS CLI and the Amazon EMR on EKS
API

Use the following AWS CLI commands or Amazon EMR on EKS API operations to add, update, list,
and delete the tags for your resources.

Tag restrictions 339

Amazon EMR Amazon EMR on EKS Development Guide

Task AWS CLI API action

Add or overwrite one or more
tags

tag-resource TagResource

List tags for a resource list-tags-for-resource ListTagsForResource

Delete one or more tags untag-resource UntagResource

The following examples show how to tag or untag resources using the AWS CLI.

Example 1: Tag an existing virtual cluster

The following command tags an existing virtual cluster.

aws emr-containers tag-resource --resource-arn resource_ARN --tags team=devs

Example 2: Untag an existing virtual cluster

The following command deletes a tag from an existing virtual cluster.

aws emr-containers untag-resource --resource-arn resource_ARN --tag-keys tag_key

Example 3: List tags for a resource

The following command lists the tags associated with an existing resource.

aws emr-containers list-tags-for-resource --resource-arn resource_ARN

Work with tags using the AWS CLI and the Amazon EMR on EKS API 340

https://docs.aws.amazon.com/cli/latest/reference/emr-containers/tag-resource.html
https://docs.aws.amazon.com/emr-on-eks/latest/APIReference/API_TagResource.html
https://docs.aws.amazon.com/cli/latest/reference/emr-containers/list-tags-for-resource.html
https://docs.aws.amazon.com/emr-on-eks/latest/APIReference/API_ListTagsForResource.html
https://docs.aws.amazon.com/cli/latest/reference/emr-containers/untag-resource.html
https://docs.aws.amazon.com/emr-on-eks/latest/APIReference/API_UntagResource.html

Amazon EMR Amazon EMR on EKS Development Guide

Troubleshooting for Amazon EMR on EKS

This section describes how to troubleshoot problems with Amazon EMR on EKS. For information
about how to troubleshoot general problems with Amazon EMR, see Troubleshoot a cluster in the
Amazon EMR Management Guide.

Topics

• Troubleshooting jobs that use PersistentVolumeClaims (PVC)

• Troubleshooting Amazon EMR on EKS vertical autoscaling

• Troubleshooting Amazon EMR on EKS Spark operator

Troubleshooting jobs that use PersistentVolumeClaims (PVC)

If you need to create, list, or delete PersistentVolumeClaims (PVC) for a job but don't add PVC
permissions to the default Kubernetes role emr-containers, the job fails when you submit it.
Without these permissions, the emr-containers role can’t create necessary roles for the Spark driver
or Spark client. It isn't enough to add permissions to the Spark driver or client roles, as suggested
by error messages. The emr-containers primary role must include the required permissions also.
This section explains how to add the required permissions to the emr-containers primary role.

Verification

To verify whether or not your emr-containers role has the necessary permissions, set the
NAMESPACE variable with your own value and then run the following command:

export NAMESPACE=YOUR_VALUE
kubectl describe role emr-containers -n ${NAMESPACE}

In addition, to verify whether the Spark and client roles have the necessary permissions, run the
following command:

kubectl describe role emr-containers-role-spark-driver -n ${NAMESPACE}
kubectl describe role emr-containers-role-spark-client -n ${NAMESPACE}

If the permissions aren’t there, proceed with the patch, as follows.

PVC job failures 341

https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-troubleshoot.html

Amazon EMR Amazon EMR on EKS Development Guide

Patch

1. If the jobs without the permissions are currently running, stop these jobs.

2. Create a file named RBAC_Patch.py as follows:

import os
import subprocess as sp
import tempfile as temp
import json
import argparse
import uuid

def delete_if_exists(dictionary: dict, key: str):
 if dictionary.get(key, None) is not None:
 del dictionary[key]

def doTerminalCmd(cmd):
 with temp.TemporaryFile() as f:
 process = sp.Popen(cmd, stdout=f, stderr=f)
 process.wait()
 f.seek(0)
 msg = f.read().decode()
 return msg

def patchRole(roleName, namespace, extraRules, skipConfirmation=False):
 cmd = f"kubectl get role {roleName} -n {namespace} --output json".split(" ")
 msg = doTerminalCmd(cmd)
 if "(NotFound)" in msg and "Error" in msg:
 print(msg)
 return False
 role = json.loads(msg)
 rules = role["rules"]
 rulesToAssign = extraRules[::]
 passedRules = []
 for rule in rules:
 apiGroups = set(rule["apiGroups"])
 resources = set(rule["resources"])
 verbs = set(rule["verbs"])
 for extraRule in extraRules:
 passes = 0
 apiGroupsExtra = set(extraRule["apiGroups"])
 resourcesExtra = set(extraRule["resources"])
 verbsExtra = set(extraRule["verbs"])

Patch 342

Amazon EMR Amazon EMR on EKS Development Guide

 passes += len(apiGroupsExtra.intersection(apiGroups)) >=
 len(apiGroupsExtra)
 passes += len(resourcesExtra.intersection(resources)) >=
 len(resourcesExtra)
 passes += len(verbsExtra.intersection(verbs)) >= len(verbsExtra)
 if passes >= 3:
 if extraRule not in passedRules:
 passedRules.append(extraRule)
 if extraRule in rulesToAssign:
 rulesToAssign.remove(extraRule)
 break
 prompt_text = "Apply Changes?"
 if len(rulesToAssign) == 0:
 print(f"The role {roleName} seems to already have the necessary
 permissions!")
 prompt_text = "Proceed anyways?"
 for ruleToAssign in rulesToAssign:
 role["rules"].append(ruleToAssign)
 delete_if_exists(role, "creationTimestamp")
 delete_if_exists(role, "resourceVersion")
 delete_if_exists(role, "uid")
 new_role = json.dumps(role, indent=3)
 uid = uuid.uuid4()
 filename = f"Role-{roleName}-New_Permissions-{uid}-TemporaryFile.json"
 try:
 with open(filename, "w+") as f:
 f.write(new_role)
 f.flush()
 prompt = "y"
 if not skipConfirmation:
 prompt = input(
 doTerminalCmd(f"kubectl diff -f {filename}".split(" ")) +
 f"\n{prompt_text} y/n: "
).lower().strip()
 while prompt != "y" and prompt != "n":
 prompt = input("Please make a valid selection. y/n:
 ").lower().strip()
 if prompt == "y":
 print(doTerminalCmd(f"kubectl apply -f {filename}".split(" ")))
 except Exception as e:
 print(e)
 os.remove(f"./{filename}")

if __name__ == '__main__':

Patch 343

Amazon EMR Amazon EMR on EKS Development Guide

 parser = argparse.ArgumentParser()
 parser.add_argument("-n", "--namespace",
 help="Namespace of the Role. By default its the
 VirtualCluster's namespace",
 required=True,
 dest="namespace"
)

 parser.add_argument("-p", "--no-prompt",
 help="Applies the patches without asking first",
 dest="no_prompt",
 default=False,
 action="store_true"
)
 args = parser.parse_args()

 emrRoleRules = [
 {
 "apiGroups": [""],
 "resources": ["persistentvolumeclaims"],
 "verbs": ["list", "create", "delete"]
 }

]

 driverRoleRules = [
 {
 "apiGroups": [""],
 "resources": ["persistentvolumeclaims"],
 "verbs": ["list", "create", "delete"]
 },
 {
 "apiGroups": [""],
 "resources": ["services"],
 "verbs": ["get", "list", "describe", "create", "delete", "watch"]
 }
]

 clientRoleRules = [
 {
 "apiGroups": [""],
 "resources": ["persistentvolumeclaims"],
 "verbs": ["list", "create", "delete"]
 }

Patch 344

Amazon EMR Amazon EMR on EKS Development Guide

]

 patchRole("emr-containers", args.namespace, emrRoleRules, args.no_prompt)
 patchRole("emr-containers-role-spark-driver", args.namespace, driverRoleRules,
 args.no_prompt)
 patchRole("emr-containers-role-spark-client", args.namespace, clientRoleRules,
 args.no_prompt)

3. Run the Python script:

python3 RBAC_Patch.py -n ${NAMESPACE}

4. A kubectl diff between the new permissions and the old ones appears. Press y to patch the role.

5. Verify the three roles with additional permissions as follows:

kubectl describe role -n ${NAMESPACE}

6. Run the python script:

python3 RBAC_Patch.py -n ${NAMESPACE}

7. After running the command, it will show a kubectl diff between the new permissions and the old
ones. Press y to patch the role.

8. Verify the three roles with additional permissions:

kubectl describe role -n ${NAMESPACE}

9. Submit the job again.

Manual patch

If the permission that your application requires applies to something other than the PVC rules, you
can manually add Kubernetes permissions for your Amazon EMR virtual cluster as needed.

Note

The role emr-containers is a primary role. This means that it must provide all the necessary
permissions before you can change your underlying driver or client roles.

Manual patch 345

Amazon EMR Amazon EMR on EKS Development Guide

1. Download the current permissions into yaml files by running the commands below:

kubectl get role -n ${NAMESPACE} emr-containers -o yaml >> emr-containers-role-
patch.yaml
kubectl get role -n ${NAMESPACE} emr-containers-role-spark-driver -o yaml >> driver-
role-patch.yaml
kubectl get role -n ${NAMESPACE} emr-containers-role-spark-client -o yaml >> client-
role-patch.yaml

2. Based on the permission your application requires, edit each file and add additional rules such as
the following:

• emr-containers-role-patch.yaml

- apiGroups:
 - ""
 resources:
 - persistentvolumeclaims
 verbs:
 - list
 - create
 - delete

• driver-role-patch.yaml

- apiGroups:
 - ""
 resources:
 - persistentvolumeclaims
 verbs:
 - list
 - create
 - delete
- apiGroups:
 - ""
 resources:
 - services
 verbs:
 - get
 - list
 - describe
 - create
 - delete

Manual patch 346

Amazon EMR Amazon EMR on EKS Development Guide

 - watch

• client-role-patch.yaml

- apiGroups:
 - ""
 resources:
 - persistentvolumeclaims
 verbs:
 - list
 - create
 - delete

3. Remove the following attributes with their values. This is necessary to apply the update.

• creationTimestamp

• resourceVersion

• uid

4. Finally, run the patch:

kubectl apply -f emr-containers-role-patch.yaml
kubectl apply -f driver-role-patch.yaml
kubectl apply -f client-role-patch.yaml

Troubleshooting Amazon EMR on EKS vertical autoscaling

Refer to the following sections if you encounter problems when you set up the Amazon EMR on
EKS vertical autoscaling operator on an Amazon EKS cluster with Operator Lifecycle Manager. For
more information including steps to complete the installation, see Using vertical autoscaling with
Amazon EMR Spark jobs.

403 Forbidden error

If you followed the steps in Install the Operator Lifecycle Manager (OLM) on your Amazon EKS
cluster, ran the olm status command, and it returned a 403 Forbidden error like the one
below, you might not have obtained the authentication tokens to the Amazon ECR repository for
the operator.

To resolve this issue, repeat the step in Install the Amazon EMR on EKS vertical autoscaling
operator to obtain the tokens. Then, try the installation again.

Vertical autoscaling failures 347

Amazon EMR Amazon EMR on EKS Development Guide

Error: FATA[0002] Failed to run bundle: pull bundle image: error pulling image IMAGE.
error resolving name : unexpected status code [manifests latest]: 403 Forbidden

Kubernetes namespace not found

When you set up the Amazon EMR on EKS vertical autoscaling operator on an Amazon EKS cluster,
you might get a namespaces not found error like the one shown here:

FATA[0020] Failed to run bundle: create catalog: error creating catalog source:
 namespaces "NAME" not found.

If the namespace that you specify doesn't exist, OLM won't install the vertical autoscaling
operator. To resolve this issue, use the following command to create the namespace. Then, try the
installation again.

kubectl create namespace NAME

Error saving Docker credentials

To set up vertical autoscaling, you must authenticate and fetch your Amazon EMR on EKS vertical
autoscaling-related Docker images. When you do this, you might get an error like the following one
if Docker isn't running:

aws ecr get-login-password \
 --region $REGION | docker login \
 --username AWS \
 --password-stdin $ACCOUNT_ID.dkr.ecr.$REGION.amazonaws.com

Error saving credentials: error storing credentials - err: exit status 1
out: 'Post "http://ipc/registry/credstore-updated": dial unix backend.sock: connect: no
 such file or directory'

To resolve this issue, confirm that Docker is running or open Docker Desktop. Then, try to save your
credentials again.

Namespace not found 348

Amazon EMR Amazon EMR on EKS Development Guide

Troubleshooting Amazon EMR on EKS Spark operator

Refer to the following sections if you encounter problems with the Amazon EMR on EKS Spark
operator. For more information including steps to complete the installation, see Running Spark
jobs with the Spark operator.

Error on Helm chart installation

If you followed the steps in Install the Spark operator and it returned a INSTALLATION FAILED
error like the one below when you tried to install or verify the Helm chart, you might not have
obtained the authentication tokens to the Amazon ECR repository for the operator.

To resolve this issue, repeat the step in Install the Spark operator to authenticate your Helm client
to the Amazon ECR registry. Then, try the installation step again.

Error: INSTALLATION FAILED: Kubernetes cluster unreachable: the server has asked for
 the client to provide credentials

UnsupportedFileSystemException: No FileSystem for scheme "s3"

You might encounter the following exception in thread "main":

org.apache.hadoop.fs.UnsupportedFileSystemException: No FileSystem for scheme "s3"

If this occurs, add the following exceptions to the SparkApplication spec:

 hadoopConf:
 # EMRFS filesystem
 fs.s3.customAWSCredentialsProvider:
 com.amazonaws.auth.WebIdentityTokenCredentialsProvider
 fs.s3.impl: com.amazon.ws.emr.hadoop.fs.EmrFileSystem
 fs.AbstractFileSystem.s3.impl: org.apache.hadoop.fs.s3.EMRFSDelegate
 fs.s3.buffer.dir: /mnt/s3
 fs.s3.getObject.initialSocketTimeoutMilliseconds: "2000"
 mapreduce.fileoutputcommitter.algorithm.version.emr_internal_use_only.EmrFileSystem:
 "2"
 mapreduce.fileoutputcommitter.cleanup-
failures.ignored.emr_internal_use_only.EmrFileSystem: "true"
 sparkConf:
 # Required for EMR Runtime

Spark operator failures 349

Amazon EMR Amazon EMR on EKS Development Guide

 spark.driver.extraClassPath: /usr/lib/hadoop-lzo/lib/*:/usr/lib/hadoop/hadoop-
aws.jar:/usr/share/aws/aws-java-sdk/*:/usr/share/aws/emr/emrfs/conf:/usr/share/aws/
emr/emrfs/lib/*:/usr/share/aws/emr/emrfs/auxlib/*:/usr/share/aws/emr/security/conf:/
usr/share/aws/emr/security/lib/*:/usr/share/aws/hmclient/lib/aws-glue-datacatalog-
spark-client.jar:/usr/share/java/Hive-JSON-Serde/hive-openx-serde.jar:/usr/share/aws/
sagemaker-spark-sdk/lib/sagemaker-spark-sdk.jar:/home/hadoop/extrajars/*
 spark.driver.extraLibraryPath: /usr/lib/hadoop/lib/native:/usr/lib/hadoop-lzo/lib/
native:/docker/usr/lib/hadoop/lib/native:/docker/usr/lib/hadoop-lzo/lib/native
 spark.executor.extraClassPath: /usr/lib/hadoop-lzo/lib/*:/usr/lib/hadoop/hadoop-
aws.jar:/usr/share/aws/aws-java-sdk/*:/usr/share/aws/emr/emrfs/conf:/usr/share/aws/
emr/emrfs/lib/*:/usr/share/aws/emr/emrfs/auxlib/*:/usr/share/aws/emr/security/conf:/
usr/share/aws/emr/security/lib/*:/usr/share/aws/hmclient/lib/aws-glue-datacatalog-
spark-client.jar:/usr/share/java/Hive-JSON-Serde/hive-openx-serde.jar:/usr/share/aws/
sagemaker-spark-sdk/lib/sagemaker-spark-sdk.jar:/home/hadoop/extrajars/*
 spark.executor.extraLibraryPath: /usr/lib/hadoop/lib/native:/usr/lib/hadoop-lzo/lib/
native:/docker/usr/lib/hadoop/lib/native:/docker/usr/lib/hadoop-lzo/lib/native

Unsupported filesystem exception 350

Amazon EMR Amazon EMR on EKS Development Guide

Amazon EMR on EKS service endpoints and quotas

The following are the service endpoints and service quotas for Amazon EMR on EKS. To connect
programmatically to an AWS service, you use an endpoint. In addition to the standard AWS
endpoints, some AWS services offer FIPS endpoints in selected Regions. For more information,
see AWS service endpoints. Service quotas, also referred to as limits, are the maximum number
of service resources or operations for your AWS account. For more information, see AWS service
quotas.

Service endpoints

AWS Region name Code Endpoint Protocol

US East (N. Virginia) us-east-1 emr-containers.us-
east-1.amazonaws.com

HTTPS

US East (Ohio) us-east-2 emr-containers.us-
east-2.amazonaws.com

HTTPS

US West (N. Californi
a)

us-west-1 emr-containers.us-
west-1.amazonaws.com

HTTPS

US West (Oregon) us-west-2 emr-containers.us-
west-2.amazonaws.com

HTTPS

Asia Pacific (Tokyo) ap-northe
ast-1

emr-containers.ap-
northeast-1.amazonaws.com

HTTPS

Asia Pacific (Seoul) ap-northe
ast-2

emr-containers.ap-
northeast-2.amazonaws.com

HTTPS

Asia Pacific (Mumbai) ap-south-1 emr-containers.ap-
south-1.amazonaws.com

HTTPS

Asia Pacific (Singapor
e)

ap-southe
ast-1

emr-containers.ap-
southeast-1.amazonaws.com

HTTPS

Service endpoints 351

https://docs.aws.amazon.com/general/latest/gr/rande.html
https://docs.aws.amazon.com/general/latest/gr/aws_service_limits.html
https://docs.aws.amazon.com/general/latest/gr/aws_service_limits.html

Amazon EMR Amazon EMR on EKS Development Guide

AWS Region name Code Endpoint Protocol

Asia Pacific (Sydney) ap-southe
ast-2

emr-containers.ap-
southeast-2.amazonaws.com

HTTPS

Asia Pacific (Hong
Kong)

ap-east-1 emr-containers.ap-
east-1.amazonaws.com

HTTPS

Canada (Central) ca-central-1 emr-containers.ca-
central-1.amazonaws.com

HTTPS

Europe (Frankfurt) eu-central-1 emr-containers.eu-
central-1.amazonaws.com

HTTPS

Europe (Ireland) eu-west-1 emr-containers.eu-
west-1.amazonaws.com

HTTPS

Europe (London) eu-west-2 emr-containers.eu-
west-2.amazonaws.com

HTTPS

Europe (Stockholm) eu-north-1 emr-containers.eu-
north-1.amazonaws.com

HTTPS

South America (São
Paulo)

sa-east-1 emr-containers.sa-
east-1.amazonaws.com

HTTPS

Middle East (Bahrain) me-south-1 emr-containers.me-
south-1.amazonaws.com

HTTPS

AWS GovCloud (US-
East)

us-gov-ea
st-1

emr-containers.us-gov-
east-1.amazonaws.com

HTTPS

AWS GovCloud (US-
West)

us-gov-we
st-1

emr-containers.us-gov-
west-1.amazonaws.com

HTTPS

Service quotas

Amazon EMR on EKS throttles the following API requests for each AWS account on a per-Region
basis. For more information about how throttling is applied, see API Request Throttling in the

Service quotas 352

https://docs.aws.amazon.com/AWSEC2/latest/APIReference/throttling.html

Amazon EMR Amazon EMR on EKS Development Guide

Amazon EC2 API Reference. You can request an increase to API throttling quotas for your AWS
account.

API action Bucket maximum capacity Bucket refill rate (per
second)

CancelJobRun 25 1

CreateManagedEndpoint 25 1

CreateVirtualCluster 25 1

DeleteManagedEndpoint 25 1

DeleteVirtualCluster 25 1

DescribeJobRun 100 20

DescribeManagedEndpoint 100 5

DescribeVirtualCluster 100 5

ListJobRun 100 5

ListManagedEndpoint 25 1

ListVirtualCluster 100 5

StartJobRun 25 1

At the AWS account level, the
bucket maximum capacity
and refill rate for the sum of
all API actions listed in this
table

200 20

Service quotas 353

Amazon EMR Amazon EMR on EKS Development Guide

Amazon EMR on EKS releases

An Amazon EMR release is a set of open-source applications from the big data ecosystem. Each
release comprises different big data applications, components, and features that you select to have
Amazon EMR on EKS deploy and configure when you run your job.

Beginning with Amazon EMR releases 5.32.0 and 6.2.0, you can deploy Amazon EMR on EKS. This
deployment option is not available with earlier Amazon EMR release versions. You must specify a
supported release version when you submit your job.

Amazon EMR on EKS uses the following form of release label: emr-x.x.x-latest or
emr-x.x.x-yyyymmdd with a specific release date. For example, emr-7.2.0-latest or
emr-7.2.0-20210129. When you use the -latest suffix, you ensure that your Amazon EMR
version always includes the latest security updates.

Note

For a comparison between Amazon EMR on EKS and Amazon EMR running on EC2, see the
Amazon EMR FAQs on the AWS website.

Topics

• Amazon EMR on EKS 7.2.0 releases

• Amazon EMR on EKS 7.1.0 releases

• Amazon EMR on EKS 7.0.0 releases

• Amazon EMR on EKS 6.15.0 releases

• Amazon EMR on EKS 6.14.0 releases

• Amazon EMR on EKS 6.13.0 releases

• Amazon EMR on EKS 6.12.0 releases

• Amazon EMR on EKS 6.11.0 releases

• Amazon EMR on EKS 6.10.0 releases

• Amazon EMR on EKS 6.9.0 releases

• Amazon EMR on EKS 6.8.0 releases

• Amazon EMR on EKS 6.7.0 releases

• Amazon EMR on EKS 6.6.0 releases

354

https://aws.amazon.com/emr/faqs/#Deployment_options

Amazon EMR Amazon EMR on EKS Development Guide

• Amazon EMR on EKS 6.5.0 releases

• Amazon EMR on EKS 6.4.0 releases

• Amazon EMR on EKS 6.3.0 releases

• Amazon EMR on EKS 6.2.0 releases

• Amazon EMR on EKS 5.36.0 releases

• Amazon EMR on EKS 5.35.0 releases

• Amazon EMR on EKS 5.34.0 releases

• Amazon EMR on EKS 5.33.0 releases

• Amazon EMR on EKS 5.32.0 releases

Amazon EMR on EKS 7.2.0 releases

This page describes the new and updated functionality for Amazon EMR that is specific to the
Amazon EMR on EKS deployment. For details about Amazon EMR running on Amazon EC2 and
about the Amazon EMR 7.2.0 release in general, see Amazon EMR 7.2.0 in the Amazon EMR Release
Guide.

Amazon EMR on EKS 7.2 releases

The following Amazon EMR 7.2.0 releases are available for Amazon EMR on EKS. Select a specific
emr-7.2.0-XXXX release to view more details such as the related container image tag.

Flink releases

The following Amazon EMR 7.2.0 releases are available for Amazon EMR on EKS when you run
Flink applications.

• emr-7.2.0-flink-latest

• emr-7.2.0-flink-20240610

Spark releases

The following Amazon EMR 7.2.0 releases are available for Amazon EMR on EKS when you run
Spark applications.

• emr-7.2.0-latest

7.2.0 releases 355

https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-720-release.html

Amazon EMR Amazon EMR on EKS Development Guide

• emr-7.2.0-20240610

• emr-7.2.0-spark-rapids-latest

• emr-7.2.0-spark-rapids-20240610

• emr-7.2.0-java11-latest

• emr-7.2.0-java11-20240610

• emr-7.2.0-java8-latest

• emr-7.2.0-java8-20240610

• emr-7.2.0-spark-rapids-java8-latest

• emr-7.2.0-spark-rapids-java8-20240610

• notebook-spark/emr-7.2.0-latest

• notebook-spark/emr-7.2.0-20240610

• notebook-spark/emr-7.2.0-spark-rapids-latest

• notebook-spark/emr-7.2.0-spark-rapids-20240610

• notebook-spark/emr-7.2.0-java11-latest

• notebook-spark/emr-7.2.0-java11-20240610

• notebook-spark/emr-7.2.0-java8-latest

• notebook-spark/emr-7.2.0-java8-20240610

• notebook-spark/emr-7.2.0-spark-rapids-java8-latest

• notebook-spark/emr-7.2.0-spark-rapids-java8-20240610

• notebook-python/emr-7.2.0-latest

• notebook-python/emr-7.2.0-20240610

• notebook-python/emr-7.2.0-spark-rapids-latest

• notebook-python/emr-7.2.0-spark-rapids-20240610

• notebook-python/emr-7.2.0-java11-latest

• notebook-python/emr-7.2.0-java11-20240610

• notebook-python/emr-7.2.0-java8-latest

• notebook-python/emr-7.2.0-java8-20240610

• notebook-python/emr-7.2.0-spark-rapids-java8-latest

• notebook-python/emr-7.2.0-spark-rapids-java8-20240610

• livy/emr-7.2.0-latest

Releases 356

Amazon EMR Amazon EMR on EKS Development Guide

• livy/emr-7.2.0-20240610

• livy/emr-7.2.0-java11-latest

• livy/emr-7.2.0-java11-20240610

• livy/emr-7.2.0-java8-latest

• livy/emr-7.2.0-java8-20240610

Release notes

Release notes for Amazon EMR on EKS 7.2.0

• Supported applications ‐ AWS SDK for Java 2.23.18 and 1.12.705, Apache Spark 3.5.1-amzn-1,
Apache Hudi 0.14.1-amzn-0, Apache Iceberg 1.5.0-amzn-0, Delta 3.1.0, Apache Spark RAPIDS
24.02.0-amzn-1, Jupyter Enterprise Gateway 2.6.0, Apache Flink 1.18.1-amzn-0, Flink Operator
1.8.0-amzn-1

• Supported components ‐ aws-sagemaker-spark-sdk, emr-ddb, emr-goodies, emr-s3-
select, emrfs, hadoop-client, hudi, hudi-spark, iceberg, spark-kubernetes.

• Supported configuration classifications

For use with StartJobRun and CreateManagedEndpoint APIs:

Classifications Descriptions

core-site Change values in the core-site.xml
Hadoop file.

emrfs-site Change EMRFS settings.

spark-metrics Change values in the metrics.p
roperties Spark file.

spark-defaults Change values in the spark-def
aults.conf Spark file.

spark-env Change values in the Spark environment.

spark-hive-site Change values in the hive-site.xml
Spark file.

Release notes 357

https://docs.aws.amazon.com/emr-on-eks/latest/APIReference/API_StartJobRun.html
https://docs.aws.amazon.com/emr-on-eks/latest/APIReference/API_CreateManagedEndpoint.html

Amazon EMR Amazon EMR on EKS Development Guide

Classifications Descriptions

spark-log4j2 Change values in the log4j2.properties
Spark file.

emr-job-submitter Configuration for job submitter pod.

For use specifically with CreateManagedEndpoint APIs:

Classifications Descriptions

jeg-config Change values in Jupyter Enterprise Gateway
jupyter_enterprise_gateway_
config.py file.

jupyter-kernel-overrides Change value for the Kernel Image in Jupyter
Kernel Spec file.

Configuration classifications allow you to customize applications. These often correspond
to a configuration XML file for the application, such as spark-hive-site.xml. For more
information, see Configure Applications.

Notable features

The following features are included with the 7.2.0 release of Amazon EMR on EKS.

• Application upgrades – Amazon EMR on EKS 7.2.0 application upgrades include Spark 3.5.1,
Flink 1.18.1, and Flink Operator 1.8.0.

• Autoscaler for Flink updates – The 7.2.0 release uses the open source configuration
job.autoscaler.restart.time-tracking.enabled to enable rescale time estimation, so
you no longer have to manually assign empirical values to restart time. If you run 7.1.0 or lower,
you can still use Amazon EMR autoscaling.

• Apache Hudi integration Apache Flink on Amazon EMR on EKS – This release adds an
integration between Apache Hudi and Apache Flink, so you can use the Flink Kubernetes

Features 358

https://docs.aws.amazon.com/emr-on-eks/latest/APIReference/API_CreateManagedEndpoint.html
https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-configure-apps.html
https://docs.aws.amazon.com/emr/latest/EMR-on-EKS-DevelopmentGuide/jobruns-flink-kubernetes-operator.html
https://docs.aws.amazon.com/emr/latest/EMR-on-EKS-DevelopmentGuide/jobruns-flink-autoscaler.html
https://docs.aws.amazon.com/emr/latest/EMR-on-EKS-DevelopmentGuide/tutorial-hudi-for-flink.html

Amazon EMR Amazon EMR on EKS Development Guide

operator to run Hudi jobs. Hudi lets you use record-level operations that you can use to simplify
data management and data pipeline development.

• Amazon S3 Express One Zone integration with Amazon EMR on EKS – With 7.2.0 and higher,
you can upload data into the S3 Express One Zone with Amazon EMR on EKS. S3 Express One
Zone is a a high-performance, single-zone Amazon S3 storage class that delivers consistent,
single-digit millisecond data access for most latency-sensitive applications. At the time of its
release, S3 Express One Zone delivers the lowest latency and highest performance cloud object
storage in Amazon S3.

• Support for default configurations in the Spark operator – Spark operator on Amazon EKS
now supports the same default configurations as the start job run model on Amazon EMR on EKS
for 7.2.0 and higher. This means that features such as Amazon S3 and EMRFS no longer require
manual configurations in the yaml file.

emr-7.2.0-latest

Release notes: emr-7.2.0-latest currently points to emr-7.2.0-20240610.

Regions: emr-7.2.0-latest is available in all Regions supported by Amazon EMR on EKS. For
more information, see Amazon EMR on EKS service endpoints.

Container image tag: emr-7.2.0:latest

emr-7.2.0-20240610

Release notes: 7.2.0-20240610 was released in December, 2023. This is the initial release of
Amazon EMR 7.2.0 (Spark).

Regions: emr-7.2.0-20240610 is available in all Regions supported by Amazon EMR on EKS. For
more information, see Amazon EMR on EKS service endpoints.

Container image tag: emr-7.2.0:20240610

emr-7.2.0-flink-latest

Release notes: emr-7.2.0-flink-latest currently points to emr-7.2.0-flink-20240610.

Regions: emr-7.2.0-flink-latest is available in all Regions supported by Amazon EMR on
EKS. For more information, see Amazon EMR on EKS service endpoints.

emr-7.2.0-latest 359

https://docs.aws.amazon.com/emr/latest/EMR-on-EKS-DevelopmentGuide/upload-data-s3-express.html
https://docs.aws.amazon.com/emr/latest/EMR-on-EKS-DevelopmentGuide/spark-operator-gs.html
https://docs.aws.amazon.com/emr/latest/EMR-on-EKS-DevelopmentGuide/service-quotas.html#service-endpoints
https://docs.aws.amazon.com/emr/latest/EMR-on-EKS-DevelopmentGuide/service-quotas.html#service-endpoints
https://docs.aws.amazon.com/emr/latest/EMR-on-EKS-DevelopmentGuide/service-quotas.html#service-endpoints

Amazon EMR Amazon EMR on EKS Development Guide

Container image tag: emr-7.2.0-flink:latest

emr-7.2.0-flink-20240610

Release notes: 7.2.0-flink-20240610 was released in December 2023. This is the initial release
of Amazon EMR 7.2.0 (Flink).

Regions: emr-7.2.0-flink-20240610 is available in all Regions supported by Amazon EMR on
EKS. For more information, see Amazon EMR on EKS service endpoints.

Container image tag: emr-7.2.0-flink:20240610

Amazon EMR on EKS 7.1.0 releases

This page describes the new and updated functionality for Amazon EMR that is specific to the
Amazon EMR on EKS deployment. For details about Amazon EMR running on Amazon EC2 and
about the Amazon EMR 7.1.0 release in general, see Amazon EMR 7.1.0 in the Amazon EMR Release
Guide.

Amazon EMR on EKS 7.1 releases

The following Amazon EMR 7.1.0 releases are available for Amazon EMR on EKS. Select a specific
emr-7.1.0-XXXX release to view more details such as the related container image tag.

Flink releases

The following Amazon EMR 7.1.0 releases are available for Amazon EMR on EKS when you run
Flink applications.

• emr-7.1.0-flink-latest

• emr-7.1.0-flink-20240321

Spark releases

The following Amazon EMR 7.1.0 releases are available for Amazon EMR on EKS when you run
Spark applications.

• emr-7.1.0-latest

• emr-7.1.0-20240321

emr-7.2.0-flink-20240610 360

https://docs.aws.amazon.com/emr/latest/EMR-on-EKS-DevelopmentGuide/service-quotas.html#service-endpoints
https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-710-release.html

Amazon EMR Amazon EMR on EKS Development Guide

• emr-7.1.0-spark-rapids-latest

• emr-7.1.0-spark-rapids-20240321

• emr-7.1.0-java11-latest

• emr-7.1.0-java11-20240321

• emr-7.1.0-java8-latest

• emr-7.1.0-java8-20240321

• emr-7.1.0-spark-rapids-java8-latest

• emr-7.1.0-spark-rapids-java8-20240321

• notebook-spark/emr-7.1.0-latest

• notebook-spark/emr-7.1.0-20240321

• notebook-spark/emr-7.1.0-spark-rapids-latest

• notebook-spark/emr-7.1.0-spark-rapids-20240321

• notebook-spark/emr-7.1.0-java11-latest

• notebook-spark/emr-7.1.0-java11-20240321

• notebook-spark/emr-7.1.0-java8-latest

• notebook-spark/emr-7.1.0-java8-20240321

• notebook-spark/emr-7.1.0-spark-rapids-java8-latest

• notebook-spark/emr-7.1.0-spark-rapids-java8-20240321

• notebook-python/emr-7.1.0-latest

• notebook-python/emr-7.1.0-20240321

• notebook-python/emr-7.1.0-spark-rapids-latest

• notebook-python/emr-7.1.0-spark-rapids-20240321

• notebook-python/emr-7.1.0-java11-latest

• notebook-python/emr-7.1.0-java11-20240321

• notebook-python/emr-7.1.0-java8-latest

• notebook-python/emr-7.1.0-java8-20240321

• notebook-python/emr-7.1.0-spark-rapids-java8-latest

• notebook-python/emr-7.1.0-spark-rapids-java8-20240321

• livy/emr-7.1.0-latest

Releases 361

Amazon EMR Amazon EMR on EKS Development Guide

• livy/emr-7.1.0-20240321

• livy/emr-7.1.0-java11-latest

• livy/emr-7.1.0-java11-20240321

• livy/emr-7.1.0-java8-latest

• livy/emr-7.1.0-java8-20240321

Release notes

Release notes for Amazon EMR on EKS 7.1.0

• Supported applications ‐ AWS SDK for Java 2.23.18 and 1.12.656, Apache Spark 3.5.0-amzn-1,
Apache Hudi 0.14.1-amzn-0, Apache Iceberg 1.4.3-amzn-0, Delta 3.0.0, Apache Spark RAPIDS
23.10.0-amzn-1, Jupyter Enterprise Gateway 2.6.0, Apache Flink 1.18.1-amzn-0, Flink Operator
1.6.1-amzn-1

• Supported components ‐ aws-sagemaker-spark-sdk, emr-ddb, emr-goodies, emr-s3-
select, emrfs, hadoop-client, hudi, hudi-spark, iceberg, spark-kubernetes.

• Supported configuration classifications

For use with StartJobRun and CreateManagedEndpoint APIs:

Classifications Descriptions

core-site Change values in the core-site.xml
Hadoop file.

emrfs-site Change EMRFS settings.

spark-metrics Change values in the metrics.p
roperties Spark file.

spark-defaults Change values in the spark-def
aults.conf Spark file.

spark-env Change values in the Spark environment.

spark-hive-site Change values in the hive-site.xml
Spark file.

Release notes 362

https://docs.aws.amazon.com/emr-on-eks/latest/APIReference/API_StartJobRun.html
https://docs.aws.amazon.com/emr-on-eks/latest/APIReference/API_CreateManagedEndpoint.html

Amazon EMR Amazon EMR on EKS Development Guide

Classifications Descriptions

spark-log4j2 Change values in the log4j2.properties
Spark file.

emr-job-submitter Configuration for job submitter pod.

For use specifically with CreateManagedEndpoint APIs:

Classifications Descriptions

jeg-config Change values in Jupyter Enterprise Gateway
jupyter_enterprise_gateway_
config.py file.

jupyter-kernel-overrides Change value for the Kernel Image in Jupyter
Kernel Spec file.

Configuration classifications allow you to customize applications. These often correspond
to a configuration XML file for the application, such as spark-hive-site.xml. For more
information, see Configure Applications.

Notable features

The following features are included with the 7.1.0 release of Amazon EMR on EKS.

• Apache Livy support for Amazon EMR on EKS – With Amazon EMR on EKS releases 7.1.0
and higher, you can use Apache Livy on an Amazon EKS cluster to create an Apache Livy REST
interface to submit Spark jobs or snippets of Spark code. Doing so lets you retrieve results
synchronously and asynchronously, while still leveraging Amazon EMR on EKS benefits, such as
Amazon EMR-optimized Spark runtime, SSL-enabled Livy endpoints, and a programmatic set-up
experience.

Features 363

https://docs.aws.amazon.com/emr-on-eks/latest/APIReference/API_CreateManagedEndpoint.html
https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-configure-apps.html
https://docs.aws.amazon.com/emr/latest/EMR-on-EKS-DevelopmentGuide/job-runs-apache-livy.html

Amazon EMR Amazon EMR on EKS Development Guide

emr-7.1.0-latest

Release notes: emr-7.1.0-latest currently points to emr-7.1.0-20240321.

Regions: emr-7.1.0-latest is available in all Regions supported by Amazon EMR on EKS. For
more information, see Amazon EMR on EKS service endpoints.

Container image tag: emr-7.1.0:latest

emr-7.1.0-20240321

Release notes: 7.1.0-20240321 was released in December, 2023. This is the initial release of
Amazon EMR 7.1.0 (Spark).

Regions: emr-7.1.0-20240321 is available in all Regions supported by Amazon EMR on EKS. For
more information, see Amazon EMR on EKS service endpoints.

Container image tag: emr-7.1.0:20240321

emr-7.1.0-flink-latest

Release notes: emr-7.1.0-flink-latest currently points to emr-7.1.0-flink-20240321.

Regions: emr-7.1.0-flink-latest is available in all Regions supported by Amazon EMR on
EKS. For more information, see Amazon EMR on EKS service endpoints.

Container image tag: emr-7.1.0-flink:latest

emr-7.1.0-flink-20240321

Release notes: 7.1.0-flink-20240321 was released in December 2023. This is the initial release
of Amazon EMR 7.1.0 (Flink).

Regions: emr-7.1.0-flink-20240321 is available in all Regions supported by Amazon EMR on
EKS. For more information, see Amazon EMR on EKS service endpoints.

Container image tag: emr-7.1.0-flink:20240321

Amazon EMR on EKS 7.0.0 releases

This page describes the new and updated functionality for Amazon EMR that is specific to the
Amazon EMR on EKS deployment. For details about Amazon EMR running on Amazon EC2 and

emr-7.1.0-latest 364

https://docs.aws.amazon.com/emr/latest/EMR-on-EKS-DevelopmentGuide/service-quotas.html#service-endpoints
https://docs.aws.amazon.com/emr/latest/EMR-on-EKS-DevelopmentGuide/service-quotas.html#service-endpoints
https://docs.aws.amazon.com/emr/latest/EMR-on-EKS-DevelopmentGuide/service-quotas.html#service-endpoints
https://docs.aws.amazon.com/emr/latest/EMR-on-EKS-DevelopmentGuide/service-quotas.html#service-endpoints

Amazon EMR Amazon EMR on EKS Development Guide

about the Amazon EMR 7.0.0 release in general, see Amazon EMR 7.0.0 in the Amazon EMR Release
Guide.

Amazon EMR on EKS 7.0 releases

The following Amazon EMR 7.0.0 releases are available for Amazon EMR on EKS. Select a specific
emr-7.0.0-XXXX release to view more details such as the related container image tag.

Flink releases

The following Amazon EMR 7.0.0 releases are available for Amazon EMR on EKS when you run
Flink applications.

• emr-7.0.0-flink-latest

• emr-7.0.0-flink-2024321

• emr-7.0.0-flink-20231211

Spark releases

The following Amazon EMR 7.0.0 releases are available for Amazon EMR on EKS when you run
Spark applications.

• emr-7.0.0-latest

• emr-7.0.0-20231211

• emr-7.0.0-spark-rapids-latest

• emr-7.0.0-spark-rapids-20231211

• emr-7.0.0-java11-latest

• emr-7.0.0-java11-20231211

• emr-7.0.0-java8-latest

• emr-7.0.0-java8-20231211

• emr-7.0.0-spark-rapids-java8-latest

• emr-7.0.0-spark-rapids-java8-20231211

• notebook-spark/emr-7.0.0-latest

• notebook-spark/emr-7.0.0-20231211

Releases 365

https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-6120-release.html

Amazon EMR Amazon EMR on EKS Development Guide

• notebook-spark/emr-7.0.0-spark-rapids-latest

• notebook-spark/emr-7.0.0-spark-rapids-20231211

• notebook-spark/emr-7.0.0-java11-latest

• notebook-spark/emr-7.0.0-java11-20231211

• notebook-spark/emr-7.0.0-java8-latest

• notebook-spark/emr-7.0.0-java8-20231211

• notebook-spark/emr-7.0.0-spark-rapids-java8-latest

• notebook-spark/emr-7.0.0-spark-rapids-java8-20231211

• notebook-python/emr-7.0.0-latest

• notebook-python/emr-7.0.0-20231211

• notebook-python/emr-7.0.0-spark-rapids-latest

• notebook-python/emr-7.0.0-spark-rapids-20231211

• notebook-python/emr-7.0.0-java11-latest

• notebook-python/emr-7.0.0-java11-20231211

• notebook-python/emr-7.0.0-java8-latest

• notebook-python/emr-7.0.0-java8-20231211

• notebook-python/emr-7.0.0-spark-rapids-java8-latest

• notebook-python/emr-7.0.0-spark-rapids-java8-20231211

Release notes

Release notes for Amazon EMR on EKS 7.0.0

• Supported applications ‐ AWS SDK for Java 2.20.160-amzn-0 and 1.12.595, Apache Spark 3.5.0-
amzn-0, Apache Flink 1.18.0-amzn-0, Flink Operator 1.6.1, Apache Hudi 0.14.0-amzn-1, Apache
Iceberg 1.4.2-amzn-0, Delta 3.0.0, Apache Spark RAPIDS 23.10.0-amzn-0, Jupyter Enterprise
Gateway 2.6.0

• Supported components ‐ aws-sagemaker-spark-sdk, emr-ddb, emr-goodies, emr-s3-
select, emrfs, hadoop-client, hudi, hudi-spark, iceberg, spark-kubernetes.

• Supported configuration classifications

For use with StartJobRun and CreateManagedEndpoint APIs:

Release notes 366

https://docs.aws.amazon.com/emr-on-eks/latest/APIReference/API_StartJobRun.html
https://docs.aws.amazon.com/emr-on-eks/latest/APIReference/API_CreateManagedEndpoint.html

Amazon EMR Amazon EMR on EKS Development Guide

Classifications Descriptions

core-site Change values in the core-site.xml
Hadoop file.

emrfs-site Change EMRFS settings.

spark-metrics Change values in the metrics.p
roperties Spark file.

spark-defaults Change values in the spark-def
aults.conf Spark file.

spark-env Change values in the Spark environment.

spark-hive-site Change values in the hive-site.xml
Spark file.

spark-log4j Change values in the log4j2.properties
Spark file.

emr-job-submitter Configuration for job submitter pod.

For use specifically with CreateManagedEndpoint APIs:

Classifications Descriptions

jeg-config Change values in Jupyter Enterprise Gateway
jupyter_enterprise_gateway_
config.py file.

jupyter-kernel-overrides Change value for the Kernel Image in Jupyter
Kernel Spec file.

Release notes 367

https://docs.aws.amazon.com/emr-on-eks/latest/APIReference/API_CreateManagedEndpoint.html

Amazon EMR Amazon EMR on EKS Development Guide

Configuration classifications allow you to customize applications. These often correspond
to a configuration XML file for the application, such as spark-hive-site.xml. For more
information, see Configure Applications.

Notable features

The following features are included with the 7.0 release of Amazon EMR on EKS.

• Application upgrades – Amazon EMR on EKS 7.0.0 application upgrades include Spark 3.5, Flink
1.18, and Flink Operator 1.6.1.

• Flink Autoscaler parameter auto-tuning – The default parameters that Flink Autoscaler uses for
its scaling calculations might not be the optimal value for a given job. Amazon EMR on EKS 7.0.0
uses historical trends of specific captured metrics to calculate the optimal parameter tailored for
the job.

Changes

The following changes are included with the 7.0 release of Amazon EMR on EKS.

• Amazon Linux 2023 – With Amazon EMR on EKS 7.0.0 and higher, all container images are based
on Amazon Linux 2023.

• Spark uses Java 17 as default runtime – Amazon EMR on EKS 7.0.0 Spark uses Java 17 as
default runtime. If you need to, you can switch to use Java 8 or Java 11 with the corresponding
release label as provided in the Amazon EMR on EKS 7.0 releases list.

emr-7.0.0-latest

Release notes: emr-7.0.0-latest currently points to emr-7.0.0-2024321.

Regions: emr-7.0.0-latest is available in all Regions supported by Amazon EMR on EKS. For
more information, see Amazon EMR on EKS service endpoints.

Container image tag: emr-7.0.0:latest

Features 368

https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-configure-apps.html
https://docs.aws.amazon.com/emr/latest/EMR-on-EKS-DevelopmentGuide/service-quotas.html#service-endpoints

Amazon EMR Amazon EMR on EKS Development Guide

emr-7.0.0-2024321

Release notes: 7.0.0-2024321 was released on March 11, 2024. Compared to the previous
release, this release has been refreshed with the recently updated Amazon Linux packages and
critical fixes.

Regions: emr-7.0.0-2024321 is available in all Regions supported by Amazon EMR on EKS. For
more information, see Amazon EMR on EKS service endpoints.

Container image tag: emr-7.0.0:2024321

emr-7.0.0-20231211

Release notes: 7.0.0-20231211 was released in December, 2023. This is the initial release of
Amazon EMR 7.0.0 (Spark).

Regions: emr-7.0.0-20231211 is available in all Regions supported by Amazon EMR on EKS. For
more information, see Amazon EMR on EKS service endpoints.

Container image tag: emr-7.0.0:20231211

emr-7.0.0-flink-latest

Release notes: emr-7.0.0-flink-latest currently points to emr-7.0.0-flink-2024321.

Regions: emr-7.0.0-flink-latest is available in all Regions supported by Amazon EMR on
EKS. For more information, see Amazon EMR on EKS service endpoints.

Container image tag: emr-7.0.0-flink:latest

emr-7.0.0-flink-2024321

Release notes: 7.0.0-flink-2024321 was released on March 11, 2024. Compared to the
previous release, this release has been refreshed with the recently updated Amazon Linux packages
and critical fixes.

Regions: emr-7.0.0-flink-2024321 is available in all Regions supported by Amazon EMR on
EKS. For more information, see Amazon EMR on EKS service endpoints.

Container image tag: emr-7.0.0-flink:2024321

emr-7.0.0-2024321 369

https://docs.aws.amazon.com/emr/latest/EMR-on-EKS-DevelopmentGuide/service-quotas.html#service-endpoints
https://docs.aws.amazon.com/emr/latest/EMR-on-EKS-DevelopmentGuide/service-quotas.html#service-endpoints
https://docs.aws.amazon.com/emr/latest/EMR-on-EKS-DevelopmentGuide/service-quotas.html#service-endpoints
https://docs.aws.amazon.com/emr/latest/EMR-on-EKS-DevelopmentGuide/service-quotas.html#service-endpoints

Amazon EMR Amazon EMR on EKS Development Guide

emr-7.0.0-flink-20231211

Release notes: 7.0.0-flink-20231211 was released in December 2023. This is the initial release
of Amazon EMR 7.0.0 (Flink).

Regions: emr-7.0.0-flink-20231211 is available in all Regions supported by Amazon EMR on
EKS. For more information, see Amazon EMR on EKS service endpoints.

Container image tag: emr-7.0.0-flink:20231211

Amazon EMR on EKS 6.15.0 releases

This page describes the new and updated functionality for Amazon EMR that is specific to the
Amazon EMR on EKS deployment. For details about Amazon EMR running on Amazon EC2 and
about the Amazon EMR 6.15.0 release in general, see Amazon EMR 6.15.0 in the Amazon EMR
Release Guide.

Amazon EMR on EKS 6.15 releases

The following Amazon EMR 6.15.0 releases are available for Amazon EMR on EKS. Select a specific
emr-6.15.0-XXXX release to view more details such as the related container image tag.

Flink releases

The following Amazon EMR 6.15.0 releases are available for Amazon EMR on EKS when you run
Flink applications.

• emr-6.15.0-flink-latest

• emr-6.15.0-flink-20240105

• emr-6.15.0-flink-20231109

Spark releases

The following Amazon EMR 6.15.0 releases are available for Amazon EMR on EKS when you run
Spark applications.

• emr-6.15.0-latest

• emr-6.15.0-20231109

emr-7.0.0-flink-20231211 370

https://docs.aws.amazon.com/emr/latest/EMR-on-EKS-DevelopmentGuide/service-quotas.html#service-endpoints
https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-6120-release.html

Amazon EMR Amazon EMR on EKS Development Guide

• emr-6.15.0-spark-rapids-latest

• emr-6.15.0-spark-rapids-20231109

• emr-6.15.0-java11-latest

• emr-6.15.0-java11-20231109

• emr-6.15.0-java17-latest

• emr-6.15.0-java17-20231109

• emr-6.15.0-java17-al2023-latest

• emr-6.15.0-java17-al2023-20231109

• emr-6.15.0-spark-rapids-java17-latest

• emr-6.15.0-spark-rapids-java17-20231109

• emr-6.15.0-spark-rapids-java17-al2023-latest

• emr-6.15.0-spark-rapids-java17-al2023-20231109

• notebook-spark/emr-6.15.0-latest

• notebook-spark/emr-6.15.0-20231109

• notebook-spark/emr-6.15.0-spark-rapids-latest

• notebook-spark/emr-6.15.0-spark-rapids-20231109

• notebook-spark/emr-6.15.0-java11-latest

• notebook-spark/emr-6.15.0-java11-20231109

• notebook-spark/emr-6.15.0-java17-latest

• notebook-spark/emr-6.15.0-java17-20231109

• notebook-spark/emr-6.15.0-java17-al2023-latest

• notebook-spark/emr-6.15.0-java17-al2023-20231109

• notebook-python/emr-6.15.0-latest

• notebook-python/emr-6.15.0-20231109

• notebook-python/emr-6.15.0-spark-rapids-latest

• notebook-python/emr-6.15.0-spark-rapids-20231109

• notebook-python/emr-6.15.0-java11-latest

• notebook-python/emr-6.15.0-java11-20231109

• notebook-python/emr-6.15.0-java17-latest

• notebook-python/emr-6.15.0-java17-20231109

Releases 371

Amazon EMR Amazon EMR on EKS Development Guide

• notebook-python/emr-6.15.0-java17-al2023-latest

• notebook-python/emr-6.15.0-java17-al2023-20231109

Release notes

Release notes for Amazon EMR on EKS 6.15.0

• Supported applications ‐ AWS SDK for Java 1.12.569, Apache Spark 3.4.1-amzn-2, Apache Flink
1.17.1-amzn-1, Apache Hudi 0.14.0-amzn-0, Apache Iceberg 1.4.0-amzn-0, Delta 2.4.0, Apache
Spark RAPIDS 23.08.01-amzn-0, Jupyter Enterprise Gateway 2.6.0

• Supported components ‐ aws-sagemaker-spark-sdk, emr-ddb, emr-goodies, emr-s3-
select, emrfs, hadoop-client, hudi, hudi-spark, iceberg, spark-kubernetes.

• Supported configuration classifications

For use with StartJobRun and CreateManagedEndpoint APIs:

Classifications Descriptions

core-site Change values in the core-site.xml
Hadoop file.

emrfs-site Change EMRFS settings.

spark-metrics Change values in the metrics.p
roperties Spark file.

spark-defaults Change values in the spark-def
aults.conf Spark file.

spark-env Change values in the Spark environment.

spark-hive-site Change values in the hive-site.xml
Spark file.

spark-log4j Change values in the log4j2.properties
Spark file.

emr-job-submitter Configuration for job submitter pod.

Release notes 372

https://docs.aws.amazon.com/emr-on-eks/latest/APIReference/API_StartJobRun.html
https://docs.aws.amazon.com/emr-on-eks/latest/APIReference/API_CreateManagedEndpoint.html

Amazon EMR Amazon EMR on EKS Development Guide

For use specifically with CreateManagedEndpoint APIs:

Classifications Descriptions

jeg-config Change values in Jupyter Enterprise Gateway
jupyter_enterprise_gateway_
config.py file.

jupyter-kernel-overrides Change value for the Kernel Image in Jupyter
Kernel Spec file.

Configuration classifications allow you to customize applications. These often correspond
to a configuration XML file for the application, such as spark-hive-site.xml. For more
information, see Configure Applications.

Notable features

The following features are included with the 6.15 release of Amazon EMR on EKS.

• Amazon EMR on EKS with Apache Flink - With Amazon EMR on EKS 6.15.0, you can run your
Apache Flink-based application along with other types of applications on the same Amazon EKS
cluster. This helps improve resource utilization and simplify infrastructure management. You can
leverage Spot Instances in a Flink application with graceful decommission, and achieve faster
restart times with fine-grained recovery and task-local recovery with Amazon EBS. Accessibility
and monitoring features include the ability to launch a Flink application with jars that are stored
in Amazon S3, access to the AWS Glue Data Catalog, monitoring integration with Amazon S3 and
Amazon CloudWatch, and container log rotation.

emr-6.15.0-latest

Release notes: emr-6.15.0-latest currently points to emr-6.15.0-20240105.

Regions: emr-6.15.0-latest is available in all Regions supported by Amazon EMR on EKS. For
more information, see Amazon EMR on EKS service endpoints.

Features 373

https://docs.aws.amazon.com/emr-on-eks/latest/APIReference/API_CreateManagedEndpoint.html
https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-configure-apps.html
https://docs.aws.amazon.com/emr/latest/EMR-on-EKS-DevelopmentGuide/run-flink-jobs.html
https://docs.aws.amazon.com/emr/latest/EMR-on-EKS-DevelopmentGuide/service-quotas.html#service-endpoints

Amazon EMR Amazon EMR on EKS Development Guide

Container image tag: emr-6.15.0:latest

emr-6.15.0-20240105

Release notes: 6.15.0-20240105 was released on January 17, 2024. Compared to the previous
release, this release has been refreshed with the recently updated Amazon Linux packages and
critical fixes.

Regions: emr-6.15.0-20240105 is available in all Regions supported by Amazon EMR on EKS.
For more information, see Amazon EMR on EKS service endpoints.

Container image tag: emr-6.15.0:20240105

emr-6.15.0-20231109

Release notes: 6.15.0-20231109 was released on November 17, 2023. This is the initial release
of Amazon EMR 6.15.0.

Regions: emr-6.15.0-20231109 is available in all Regions supported by Amazon EMR on EKS.
For more information, see Amazon EMR on EKS service endpoints.

Container image tag: emr-6.15.0:20231109

emr-6.15.0-flink-latest

Release notes: emr-6.15.0-flink-latest currently points to emr-6.15.0-flink-20240105.

Regions: emr-6.15.0-flink-latest is available in all Regions supported by Amazon EMR on
EKS. For more information, see Amazon EMR on EKS service endpoints.

Container image tag: emr-6.15.0-flink:latest

emr-6.15.0-flink-20240105

Release notes: 6.15.0-flink-20240105 was released on January 17, 2024. Compared to the
previous release, this release has been refreshed with the recently updated Amazon Linux packages
and critical fixes.

Regions: emr-6.15.0-flink-20240105 is available in all Regions supported by Amazon EMR on
EKS. For more information, see Amazon EMR on EKS service endpoints.

Container image tag: emr-6.15.0-flink:20240105

emr-6.15.0-20240105 374

https://docs.aws.amazon.com/emr/latest/EMR-on-EKS-DevelopmentGuide/service-quotas.html#service-endpoints
https://docs.aws.amazon.com/emr/latest/EMR-on-EKS-DevelopmentGuide/service-quotas.html#service-endpoints
https://docs.aws.amazon.com/emr/latest/EMR-on-EKS-DevelopmentGuide/service-quotas.html#service-endpoints
https://docs.aws.amazon.com/emr/latest/EMR-on-EKS-DevelopmentGuide/service-quotas.html#service-endpoints

Amazon EMR Amazon EMR on EKS Development Guide

emr-6.15.0-flink-20231109

Release notes: 6.15.0-flink-20231109 was released on November 17, 2023. This is the initial
release of Amazon EMR 6.15.0.

Regions: emr-6.15.0-flink-20231109 is available in all Regions supported by Amazon EMR on
EKS. For more information, see Amazon EMR on EKS service endpoints.

Container image tag: emr-6.15.0-flink:20231109

Amazon EMR on EKS 6.14.0 releases

This page describes the new and updated functionality for Amazon EMR that is specific to the
Amazon EMR on EKS deployment. For details about Amazon EMR running on Amazon EC2 and
about the Amazon EMR 6.14.0 release in general, see Amazon EMR 6.14.0 in the Amazon EMR
Release Guide.

Amazon EMR on EKS 6.14 releases

The following Amazon EMR 6.14.0 releases are available for Amazon EMR on EKS. Select a specific
emr-6.14.0-XXXX release to view more details such as the related container image tag.

• emr-6.14.0-latest

• emr-6.14.0-20231005

• emr-6.14.0-spark-rapids-latest

• emr-6.14.0-spark-rapids-20231005

• emr-6.14.0-java11-latest

• emr-6.14.0-java11-20231005

• emr-6.14.0-java17-latest

• emr-6.14.0-java17-20231005

• emr-6.14.0-java17-al2023-latest

• emr-6.14.0-java17-al2023-20231005

• emr-6.14.0-spark-rapids-java17-latest

• emr-6.14.0-spark-rapids-java17-20231005

• emr-6.14.0-spark-rapids-java17-al2023-latest

• emr-6.14.0-spark-rapids-java17-al2023-20231005

emr-6.15.0-flink-20231109 375

https://docs.aws.amazon.com/emr/latest/EMR-on-EKS-DevelopmentGuide/service-quotas.html#service-endpoints
https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-6120-release.html

Amazon EMR Amazon EMR on EKS Development Guide

• notebook-spark/emr-6.14.0-latest

• notebook-spark/emr-6.14.0-20231005

• notebook-spark/emr-6.14.0-spark-rapids-latest

• notebook-spark/emr-6.14.0-spark-rapids-20231005

• notebook-spark/emr-6.14.0-java11-latest

• notebook-spark/emr-6.14.0-java11-20231005

• notebook-spark/emr-6.14.0-java17-latest

• notebook-spark/emr-6.14.0-java17-20231005

• notebook-spark/emr-6.14.0-java17-al2023-latest

• notebook-spark/emr-6.14.0-java17-al2023-20231005

• notebook-python/emr-6.14.0-latest

• notebook-python/emr-6.14.0-20231005

• notebook-python/emr-6.14.0-spark-rapids-latest

• notebook-python/emr-6.14.0-spark-rapids-20231005

• notebook-python/emr-6.14.0-java11-latest

• notebook-python/emr-6.14.0-java11-20231005

• notebook-python/emr-6.14.0-java17-latest

• notebook-python/emr-6.14.0-java17-20231005

• notebook-python/emr-6.14.0-java17-al2023-latest

• notebook-python/emr-6.14.0-java17-al2023-20231005

Release notes

Release notes for Amazon EMR on EKS 6.14.0

• Supported applications ‐ AWS SDK for Java 1.12.543, Apache Spark 3.4.1-amzn-1, Apache
Hudi 0.13.1-amzn-2, Apache Iceberg 1.3.0-amzn-0, Delta 2.4.0, Apache Spark RAPIDS 23.06.0-
amzn-2, Jupyter Enterprise Gateway 2.7.0

• Supported components ‐ aws-sagemaker-spark-sdk, emr-ddb, emr-goodies, emr-s3-
select, emrfs, hadoop-client, hudi, hudi-spark, iceberg, spark-kubernetes.

• Supported configuration classifications

For use with StartJobRun and CreateManagedEndpoint APIs:

Release notes 376

https://docs.aws.amazon.com/emr-on-eks/latest/APIReference/API_StartJobRun.html
https://docs.aws.amazon.com/emr-on-eks/latest/APIReference/API_CreateManagedEndpoint.html

Amazon EMR Amazon EMR on EKS Development Guide

Classifications Descriptions

core-site Change values in the core-site.xml
Hadoop file.

emrfs-site Change EMRFS settings.

spark-metrics Change values in the metrics.p
roperties Spark file.

spark-defaults Change values in the spark-def
aults.conf Spark file.

spark-env Change values in the Spark environment.

spark-hive-site Change values in the hive-site.xml
Spark file.

spark-log4j Change values in the log4j2.properties
Spark file.

emr-job-submitter Configuration for job submitter pod.

For use specifically with CreateManagedEndpoint APIs:

Classifications Descriptions

jeg-config Change values in Jupyter Enterprise Gateway
jupyter_enterprise_gateway_
config.py file.

jupyter-kernel-overrides Change value for the Kernel Image in Jupyter
Kernel Spec file.

Release notes 377

https://docs.aws.amazon.com/emr-on-eks/latest/APIReference/API_CreateManagedEndpoint.html

Amazon EMR Amazon EMR on EKS Development Guide

Configuration classifications allow you to customize applications. These often correspond
to a configuration XML file for the application, such as spark-hive-site.xml. For more
information, see Configure Applications.

Notable features

The following features are included with the 6.14 release of Amazon EMR on EKS.

• Apache Livy support - Amazon EMR on EKS now supports Apache Livy with spark-submit.

emr-6.14.0-latest

Release notes: emr-6.14.0-latest currently points to emr-6.14.0-20231005.

Regions: emr-6.14.0-latest is available in all Regions supported by Amazon EMR on EKS. For
more information, see Amazon EMR on EKS service endpoints.

Container image tag: emr-6.14.0:latest

emr-6.14.0-20231005

Release notes: 6.14.0-20231005 was released on October 17, 2023. This is the initial release of
Amazon EMR 6.14.0.

Regions: emr-6.14.0-20231005 is available in all Regions supported by Amazon EMR on EKS.
For more information, see Amazon EMR on EKS service endpoints.

Container image tag: emr-6.14.0:20231005

Amazon EMR on EKS 6.13.0 releases

This page describes the new and updated functionality for Amazon EMR that is specific to the
Amazon EMR on EKS deployment. For details about Amazon EMR running on Amazon EC2 and
about the Amazon EMR 6.13.0 release in general, see Amazon EMR 6.13.0 in the Amazon EMR
Release Guide.

Features 378

https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-configure-apps.html
https://livy.incubator.apache.org/
https://docs.aws.amazon.com/emr/latest/EMR-on-EKS-DevelopmentGuide/service-quotas.html#service-endpoints
https://docs.aws.amazon.com/emr/latest/EMR-on-EKS-DevelopmentGuide/service-quotas.html#service-endpoints
https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-6120-release.html

Amazon EMR Amazon EMR on EKS Development Guide

Amazon EMR on EKS 6.13 releases

The following Amazon EMR 6.13.0 releases are available for Amazon EMR on EKS. Select a specific
emr-6.13.0-XXXX release to view more details such as the related container image tag.

• emr-6.13.0-latest

• emr-6.13.0-20230814

• emr-6.13.0-spark-rapids-latest

• emr-6.13.0-spark-rapids-20230814

• emr-6.13.0-java11-latest

• emr-6.13.0-java11-20230814

• emr-6.13.0-java17-latest

• emr-6.13.0-java17-20230814

• emr-6.13.0-java17-al2023-latest

• emr-6.13.0-java17-al2023-20230814

• emr-6.13.0-spark-rapids-java17-latest

• emr-6.13.0-spark-rapids-java17-20230814

• emr-6.13.0-spark-rapids-java17-al2023-latest

• emr-6.13.0-spark-rapids-java17-al2023-20230814

• notebook-spark/emr-6.13.0-latest

• notebook-spark/emr-6.13.0-20230814

• notebook-spark/emr-6.13.0-spark-rapids-latest

• notebook-spark/emr-6.13.0-spark-rapids-20230814

• notebook-spark/emr-6.13.0-java11-latest

• notebook-spark/emr-6.13.0-java11-20230814

• notebook-spark/emr-6.13.0-java17-latest

• notebook-spark/emr-6.13.0-java17-20230814

• notebook-spark/emr-6.13.0-java17-al2023-latest

• notebook-spark/emr-6.13.0-java17-al2023-20230814

• notebook-python/emr-6.13.0-latest

• notebook-python/emr-6.13.0-20230814

Releases 379

Amazon EMR Amazon EMR on EKS Development Guide

• notebook-python/emr-6.13.0-spark-rapids-latest

• notebook-python/emr-6.13.0-spark-rapids-20230814

• notebook-python/emr-6.13.0-java11-latest

• notebook-python/emr-6.13.0-java11-20230814

• notebook-python/emr-6.13.0-java17-latest

• notebook-python/emr-6.13.0-java17-20230814

• notebook-python/emr-6.13.0-java17-al2023-latest

• notebook-python/emr-6.13.0-java17-al2023-20230814

Release notes

Release notes for Amazon EMR on EKS 6.13.0

• Supported applications ‐ AWS SDK for Java 1.12.513, Apache Spark 3.4.1-amzn-0, Apache
Hudi 0.13.1-amzn-0, Apache Iceberg 1.3.0-amzn-0, Delta 2.4.0, Apache Spark RAPIDS 23.06.0-
amzn-1, Jupyter Enterprise Gateway 2.6.0.amzn

• Supported components ‐ aws-sagemaker-spark-sdk, emr-ddb, emr-goodies, emr-s3-
select, emrfs, hadoop-client, hudi, hudi-spark, iceberg, spark-kubernetes.

• Supported configuration classifications

For use with StartJobRun and CreateManagedEndpoint APIs:

Classifications Descriptions

core-site Change values in the core-site.xml
Hadoop file.

emrfs-site Change EMRFS settings.

spark-metrics Change values in the metrics.p
roperties Spark file.

spark-defaults Change values in the spark-def
aults.conf Spark file.

spark-env Change values in the Spark environment.

Release notes 380

https://docs.aws.amazon.com/emr-on-eks/latest/APIReference/API_StartJobRun.html
https://docs.aws.amazon.com/emr-on-eks/latest/APIReference/API_CreateManagedEndpoint.html

Amazon EMR Amazon EMR on EKS Development Guide

Classifications Descriptions

spark-hive-site Change values in the hive-site.xml
Spark file.

spark-log4j Change values in the log4j2.properties
Spark file.

emr-job-submitter Configuration for job submitter pod.

For use specifically with CreateManagedEndpoint APIs:

Classifications Descriptions

jeg-config Change values in Jupyter Enterprise Gateway
jupyter_enterprise_gateway_
config.py file.

jupyter-kernel-overrides Change value for the Kernel Image in Jupyter
Kernel Spec file.

Configuration classifications allow you to customize applications. These often correspond
to a configuration XML file for the application, such as spark-hive-site.xml. For more
information, see Configure Applications.

Notable features

The following features are included with the 6.13 release of Amazon EMR on EKS.

• Amazon Linux 2023 - With Amazon EMR on EKS 6.13 and higher, you can launch Spark with
AL2023 as operating system together with Java 17 runtime. To do this, use release label with
al2023 in its name. For example: emr-6.13.0-java17-al2023-latest. We recommend that
you validate and run performance tests before you move your production workloads to AL2023
and Java 17.

• Amazon EMR on EKS with Apache Flink (public preview) - Amazon EMR on EKS releases 6.13
and higher support Apache Flink, available in public preview. With this launch, you can run your

Features 381

https://docs.aws.amazon.com/emr-on-eks/latest/APIReference/API_CreateManagedEndpoint.html
https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-configure-apps.html

Amazon EMR Amazon EMR on EKS Development Guide

Apache Flink-based application along with other types of applications on the same Amazon EKS
cluster. This helps improve resource utilization and simplify infrastructure management. If you
already run big data frameworks on Amazon EKS, you can now let Amazon EMR automate your
provisioning and management.

emr-6.13.0-latest

Release notes: emr-6.13.0-latest currently points to emr-6.13.0-20230814.

Regions: emr-6.13.0-latest is available in all Regions supported by Amazon EMR on EKS. For
more information, see Amazon EMR on EKS service endpoints.

Container image tag: emr-6.13.0:latest

emr-6.13.0-20230814

Release notes: 6.13.0-20230814 was released on September 7, 2023. This is the initial release of
Amazon EMR 6.13.0.

Regions: emr-6.13.0-20230814 is available in all Regions supported by Amazon EMR on EKS.
For more information, see Amazon EMR on EKS service endpoints.

Container image tag: emr-6.13.0:20230814

Amazon EMR on EKS 6.12.0 releases

This page describes the new and updated functionality for Amazon EMR that is specific to the
Amazon EMR on EKS deployment. For details about Amazon EMR running on Amazon EC2 and
about the Amazon EMR 6.12.0 release in general, see Amazon EMR 6.12.0 in the Amazon EMR
Release Guide.

Amazon EMR on EKS 6.12 releases

The following Amazon EMR 6.12.0 releases are available for Amazon EMR on EKS. Select a specific
emr-6.12.0-XXXX release to view more details such as the related container image tag.

• emr-6.12.0-latest

• emr-6.12.0-20240321

emr-6.13.0-latest 382

https://docs.aws.amazon.com/emr/latest/EMR-on-EKS-DevelopmentGuide/service-quotas.html#service-endpoints
https://docs.aws.amazon.com/emr/latest/EMR-on-EKS-DevelopmentGuide/service-quotas.html#service-endpoints
https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-6120-release.html

Amazon EMR Amazon EMR on EKS Development Guide

• emr-6.12.0-20230701

• emr-6.12.0-spark-rapids-latest

• emr-6.12.0-spark-rapids-20230701

• emr-6.12.0-java11-latest

• emr-6.12.0-java11-20230701

• emr-6.12.0-java17-latest

• emr-6.12.0-java17-20230701

• emr-6.12.0-spark-rapids-java17-latest

• emr-6.12.0-spark-rapids-java17-20230701

• notebook-spark/emr-6.12.0-latest

• notebook-spark/emr-6.12.0-20230701

• notebook-spark/emr-6.12.0-spark-rapids-latest

• notebook-spark/emr-6.12.0-spark-rapids-20230701

• notebook-python/emr-6.12.0-latest

• notebook-python/emr-6.12.0-20230701

• notebook-python/emr-6.12.0-spark-rapids-latest

• notebook-python/emr-6.12.0-spark-rapids-20230701

Release notes

Release notes for Amazon EMR on EKS 6.12.0

• Supported applications ‐ AWS SDK for Java 1.12.490, Apache Spark 3.4.0-amzn-0, Apache
Hudi 0.13.1-amzn-0, Apache Iceberg 1.3.0-amzn-0, Delta 2.4.0, Apache Spark RAPIDS 23.06.0-
amzn-0, Jupyter Enterprise Gateway 2.6.0

• Supported components ‐ aws-sagemaker-spark-sdk, emr-ddb, emr-goodies, emr-s3-
select, emrfs, hadoop-client, hudi, hudi-spark, iceberg, spark-kubernetes.

• Supported configuration classifications

For use with StartJobRun and CreateManagedEndpoint APIs:

Release notes 383

https://docs.aws.amazon.com/emr-on-eks/latest/APIReference/API_StartJobRun.html
https://docs.aws.amazon.com/emr-on-eks/latest/APIReference/API_CreateManagedEndpoint.html

Amazon EMR Amazon EMR on EKS Development Guide

Classifications Descriptions

core-site Change values in the core-site.xml
Hadoop file.

emrfs-site Change EMRFS settings.

spark-metrics Change values in the metrics.p
roperties Spark file.

spark-defaults Change values in the spark-def
aults.conf Spark file.

spark-env Change values in the Spark environment.

spark-hive-site Change values in the hive-site.xml
Spark file.

spark-log4j Change values in the log4j2.properties
Spark file.

emr-job-submitter Configuration for job submitter pod.

For use specifically with CreateManagedEndpoint APIs:

Classifications Descriptions

jeg-config Change values in Jupyter Enterprise Gateway
jupyter_enterprise_gateway_
config.py file.

jupyter-kernel-overrides Change value for the Kernel Image in Jupyter
Kernel Spec file.

Release notes 384

https://docs.aws.amazon.com/emr-on-eks/latest/APIReference/API_CreateManagedEndpoint.html

Amazon EMR Amazon EMR on EKS Development Guide

Configuration classifications allow you to customize applications. These often correspond
to a configuration XML file for the application, such as spark-hive-site.xml. For more
information, see Configure Applications.

Notable features

The following features are included with the 6.12 release of Amazon EMR on EKS.

• Java 17 - With Amazon EMR on EKS 6.12 and higher, you can launch Spark with Java 17 runtime.
To do this, pass emr-6.12.0-java17-latest as a release label. We recommend that you
validate and run performance tests before you move your production workloads from earlier
versions of the Java image to the Java 17 image.

emr-6.12.0-latest

Release notes: emr-6.12.0-latest currently points to emr-6.12.0-20240321.

Regions: emr-6.12.0-latest is available in all Regions supported by Amazon EMR on EKS. For
more information, see Amazon EMR on EKS service endpoints.

Container image tag: emr-6.12.0:latest

emr-6.12.0-20240321

Release notes: 6.12.0-20240321 was released on March 11, 2024. Compared to the previous
release, this release has been refreshed with the recently updated Amazon Linux packages and
critical fixes.

Regions: emr-6.12.0-20240321 is available in all Regions supported by Amazon EMR on EKS.
For more information, see Amazon EMR on EKS service endpoints.

Container image tag: emr-6.12.0:20240321

emr-6.12.0-20230701

Release notes: 6.12.0-20230701 was released on July 1, 2023. This is the initial release of
Amazon EMR 6.12.0.

Features 385

https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-configure-apps.html
https://docs.aws.amazon.com/emr/latest/EMR-on-EKS-DevelopmentGuide/service-quotas.html#service-endpoints
https://docs.aws.amazon.com/emr/latest/EMR-on-EKS-DevelopmentGuide/service-quotas.html#service-endpoints

Amazon EMR Amazon EMR on EKS Development Guide

Regions: emr-6.12.0-20230701 is available in all Regions supported by Amazon EMR on EKS.
For more information, see Amazon EMR on EKS service endpoints.

Container image tag: emr-6.12.0:20230701

Amazon EMR on EKS 6.11.0 releases

This page describes the new and updated functionality for Amazon EMR that is specific to the
Amazon EMR on EKS deployment. For details about Amazon EMR running on Amazon EC2 and
about the Amazon EMR 6.11.0 release in general, see Amazon EMR 6.11.0 in the Amazon EMR
Release Guide.

Amazon EMR on EKS 6.11 releases

The following Amazon EMR 6.11.0 releases are available for Amazon EMR on EKS. Select a specific
emr-6.11.0-XXXX release to view more details such as the related container image tag.

• emr-6.11.0-latest

• emr-6.11.0-20230905

• emr-6.11.0-20230509

• emr-6.11.0-spark-rapids-latest

• emr-6.11.0-spark-rapids-20230509

• emr-6.11.0-java11-latest

• emr-6.11.0-java11-20230509

• notebook-spark/emr-6.11.0-latest

• notebook-spark/emr-6.11.0-20230509

• notebook-python/emr-6.11.0-latest

• notebook-python/emr-6.11.0-20230509

Release notes

Release notes for Amazon EMR on EKS 6.11.0

6.11.0 releases 386

https://docs.aws.amazon.com/emr/latest/EMR-on-EKS-DevelopmentGuide/service-quotas.html#service-endpoints
https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-6110-release.html

Amazon EMR Amazon EMR on EKS Development Guide

• Supported applications ‐ AWS SDK for Java 1.12.446, Apache Spark 3.3.2-amzn-0, Apache
Hudi 0.13.0-amzn-0, Apache Iceberg 1.2.0-amzn-0, Delta 2.2.0, Apache Spark RAPIDS 23.02.0-
amzn-0, Jupyter Enterprise Gateway 2.6.0

• Supported components ‐ aws-sagemaker-spark-sdk, emr-ddb, emr-goodies, emr-s3-
select, emrfs, hadoop-client, hudi, hudi-spark, iceberg, spark-kubernetes.

• Supported configuration classifications

For use with StartJobRun and CreateManagedEndpoint APIs:

Classifications Descriptions

core-site Change values in the core-site.xml
Hadoop file.

emrfs-site Change EMRFS settings.

spark-metrics Change values in the metrics.p
roperties Spark file.

spark-defaults Change values in the spark-def
aults.conf Spark file.

spark-env Change values in the Spark environment.

spark-hive-site Change values in the hive-site.xml
Spark file.

spark-log4j Change values in the log4j.properties
Spark file.

For use specifically with CreateManagedEndpoint APIs:

Classifications Descriptions

jeg-config Change values in Jupyter Enterprise Gateway
jupyter_enterprise_gateway_
config.py file.

Release notes 387

https://docs.aws.amazon.com/emr-on-eks/latest/APIReference/API_StartJobRun.html
https://docs.aws.amazon.com/emr-on-eks/latest/APIReference/API_CreateManagedEndpoint.html
https://docs.aws.amazon.com/emr-on-eks/latest/APIReference/API_CreateManagedEndpoint.html

Amazon EMR Amazon EMR on EKS Development Guide

Classifications Descriptions

jupyter-kernel-overrides Change value for the Kernel Image in Jupyter
Kernel Spec file.

Configuration classifications allow you to customize applications. These often correspond
to a configuration XML file for the application, such as spark-hive-site.xml. For more
information, see Configure Applications.

Notable features

The following features are included with the 6.11 release of Amazon EMR on EKS.

• Amazon EMR on EKS base image in Amazon ECR Public Gallery – If you use the custom image
capability, our base image provides the essential jars, configuration, and libraries to interact with
Amazon EMR on EKS. You can now find the base image in the Amazon ECR Public Gallery.

• Spark container log rotation – Amazon EMR on EKS 6.11 supports Spark container log rotation.
You can enable the capability with containerLogRotationConfiguration within the
MonitoringConfiguration operation of the StartJobRun API. You can configure the
rotationSize and maxFilestoKeep to specify the number and size of the log files that you
want Amazon EMR on EKS to keep in the Spark driver and executor pods. For more information,
see Using Spark container log rotation.

• Volcano support in Spark operator and spark-submit – Amazon EMR on EKS 6.11 supports
running Spark jobs with Volcano as Kubernetes custom scheduler in Spark operator and spark-
submit. You can use features like gang scheduling, queue management, preemption, and fair-
share scheduling to achieve high scheduling throughput and optimized capacity. For more
information, see Using Volcano as a custom scheduler for Apache Spark on Amazon EMR on EKS.

emr-6.11.0-latest

Release notes: emr-6.11.0-latest currently points to emr-20230905.

Regions: emr-6.11.0-latest is available in all Regions supported by Amazon EMR on EKS. For
more information, see Amazon EMR on EKS service endpoints.

Container image tag: emr-6.11.0:latest

Features 388

https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-configure-apps.html
https://gallery.ecr.aws/emr-on-eks
https://docs.aws.amazon.com/emr/latest/EMR-on-EKS-DevelopmentGuide/service-quotas.html#service-endpoints

Amazon EMR Amazon EMR on EKS Development Guide

emr-6.11.0-20230905

Release notes: 6.11.0-20230905 was released on September 29, 2023. Compared to the
previous release, this release has been refreshed with the recently updated Amazon Linux packages
and critical fixes.

Regions: emr-6.11.0-20230509 is available in all Regions supported by Amazon EMR on EKS.
For more information, see Amazon EMR on EKS service endpoints.

Container image tag: emr-6.11.0:20230509

emr-6.11.0-20230509

Release notes: 6.11.0-20230509 was released on May 9, 2023. This is the initial release of
Amazon EMR 6.11.0.

Regions: emr-6.11.0-20230509 is available in all Regions supported by Amazon EMR on EKS.
For more information, see Amazon EMR on EKS service endpoints.

Container image tag: emr-6.11.0:20230509

Amazon EMR on EKS 6.10.0 releases

The following Amazon EMR 6.10.0 releases are available for Amazon EMR on EKS. Select a specific
emr-6.10.0-XXXX release to view more details such as the related container image tag.

• emr-6.10.0-latest

• emr-6.10.0-20230905

• emr-6.10.0-20230624

• emr-6.10.0-20230421

• emr-6.10.0-20230403

• emr-6.10.0-20230220

• emr-6.10.0-spark-rapids-latest

• emr-6.10.0-spark-rapids-20230624

• emr-6.10.0-spark-rapids-20230220

• emr-6.10.0-java11-latest

emr-6.11.0-20230905 389

https://docs.aws.amazon.com/emr/latest/EMR-on-EKS-DevelopmentGuide/service-quotas.html#service-endpoints
https://docs.aws.amazon.com/emr/latest/EMR-on-EKS-DevelopmentGuide/service-quotas.html#service-endpoints

Amazon EMR Amazon EMR on EKS Development Guide

• emr-6.10.0-java11-20230624

• emr-6.10.0-java11-20230220

• notebook-spark/emr-6.10.0-latest

• notebook-spark/emr-6.10.0-20230624

• notebook-spark/emr-6.10.0-20230220

• notebook-python/emr-6.10.0-latest

• notebook-python/emr-6.10.0-20230624

• notebook-python/emr-6.10.0-20230220

Release notes for Amazon EMR 6.10.0

• Supported applications ‐ AWS SDK for Java 1.12.397, Spark 3.3.1-amzn-0, Hudi 0.12.2-amzn-0,
Iceberg 1.1.0-amzn-0, Delta 2.2.0.

• Supported components ‐ aws-sagemaker-spark-sdk, emr-ddb, emr-goodies, emr-s3-
select, emrfs, hadoop-client, hudi, hudi-spark, iceberg, spark-kubernetes.

• Supported configuration classifications:

For use with StartJobRun and CreateManagedEndpoint APIs:

Classifications Descriptions

core-site Change values in Hadoop’s core-site
.xml file.

emrfs-site Change EMRFS settings.

spark-metrics Change values in Spark's metrics.p
roperties file.

spark-defaults Change values in Spark's spark-def
aults.conf file.

spark-env Change values in the Spark environment.

spark-hive-site Change values in Spark's hive-site.xml
file.

6.10.0 releases 390

https://docs.aws.amazon.com/emr-on-eks/latest/APIReference/API_StartJobRun.html
https://docs.aws.amazon.com/emr-on-eks/latest/APIReference/API_CreateManagedEndpoint.html

Amazon EMR Amazon EMR on EKS Development Guide

Classifications Descriptions

spark-log4j Change values in Spark's log4j.pro
perties file.

For use specifically with CreateManagedEndpoint APIs:

Classifications Descriptions

jeg-config Change values in Jupyter Enterprise Gateway
jupyter_enterprise_gateway_
config.py file.

jupyter-kernel-overrides Change value for the Kernel Image in Jupyter
Kernel Spec file.

Configuration classifications allow you to customize applications. These often correspond
to a configuration XML file for the application, such as spark-hive-site.xml. For more
information, see Configure Applications.

Notable features

• Spark operator - With Amazon EMR on EKS 6.10.0 and higher, you can use the Kubernetes
operator for Apache Spark, or the Spark operator, to deploy and manage Spark applications with
the Amazon EMR release runtime on your own Amazon EKS clusters. For more information, see
Running Spark jobs with the Spark operator.

• Java 11 - With Amazon EMR on EKS 6.10 and higher, you can launch Spark with Java 11 runtime.
To do this, pass emr-6.10.0-java11-latest as a release label. We recommend that you
validate and run performance tests before you move your production workloads from the Java 8
image to the Java 11 image.

• For the Amazon Redshift integration for Apache Spark, Amazon EMR on EKS 6.10.0 removes the
dependency on minimal-json.jar, and automatically adds the required spark-redshift
related jars to the executor class path for Spark: spark-redshift.jar, spark-avro.jar, and
RedshiftJDBC.jar.

6.10.0 releases 391

https://docs.aws.amazon.com/emr-on-eks/latest/APIReference/API_CreateManagedEndpoint.html
https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-configure-apps.html

Amazon EMR Amazon EMR on EKS Development Guide

Changes

• EMRFS S3-optimized committer is now enabled by default for parquet, ORC, and text-based
formats (including CSV and JSON).

emr-6.10.0-latest

Release notes: emr-6.10.0-latest currently points to emr-6.10.0-20230905.

Regions: emr-6.10.0-latest is available in all Regions supported by Amazon EMR on EKS. For
more information, see Amazon EMR on EKS service endpoints.

Container image tag: emr-6.10.0:latest

emr-6.10.0-20230905

Release notes: 6.10.0-20230905 was released on September 29, 2023. Compared with the
previous release, this version has been refreshed with recently updated Amazon Linux packages
and critical fixes.

Regions: emr-6.10.0-20230905 is available in all Regions supported by Amazon EMR on EKS.
For more information, see Amazon EMR on EKS service endpoints.

Container image tag: emr-6.10.0:20230905

emr-6.10.0-20230624

Release notes: 6.10.0-20230624 was released on July 7, 2023. Compared with the previous
release, this version has been refreshed with recently updated Amazon Linux packages and critical
fixes.

Regions: emr-6.10.0-20230624 is available in all Regions supported by Amazon EMR on EKS.
For more information, see Amazon EMR on EKS service endpoints.

Container image tag: emr-6.10.0:20230624

emr-6.10.0-20230421

Release notes: 6.10.0-20230421 was released on April 28, 2023. Compared with the previous
release, this version has been refreshed with recently updated Amazon Linux packages and critical
fixes.

emr-6.10.0-latest 392

https://docs.aws.amazon.com/emr/latest/EMR-on-EKS-DevelopmentGuide/service-quotas.html#service-endpoints
https://docs.aws.amazon.com/emr/latest/EMR-on-EKS-DevelopmentGuide/service-quotas.html#service-endpoints
https://docs.aws.amazon.com/emr/latest/EMR-on-EKS-DevelopmentGuide/service-quotas.html#service-endpoints

Amazon EMR Amazon EMR on EKS Development Guide

Regions: emr-6.10.0-20230421 is available in all Regions supported by Amazon EMR on EKS.
For more information, see Amazon EMR on EKS service endpoints.

Container image tag: emr-6.10.0:20230421

emr-6.10.0-20230403

Release notes: 6.10.0-20230403 was released on April 12, 2023. Compared with the previous
release, this version has been refreshed with recently updated Amazon Linux packages and critical
fixes.

Regions: emr-6.10.0-20230403 is available in all Regions supported by Amazon EMR on EKS.
For more information, see Amazon EMR on EKS service endpoints.

Container image tag: emr-6.10.0:20230403

emr-6.10.0-20230220

Release notes: emr-6.10.0-20230220 was released on February 20, 2023. This is the initial
release of Amazon EMR 6.10.0.

Regions: emr-6.10.0-20230220 is available in all Regions supported by Amazon EMR on EKS.
For more information, see Amazon EMR on EKS service endpoints.

Container image tag: emr-6.10.0:20230220

Amazon EMR on EKS 6.9.0 releases

The following Amazon EMR 6.9.0 releases are available for Amazon EMR on EKS. Select a specific
emr-6.9.0-XXXX release to view more details such as the related container image tag.

• emr-6.9.0-latest

• emr-6.9.0-20230905

• emr-6.9.0-20230624

• emr-6.9.0-20221108

• emr-6.9.0-spark-rapids-latest

• emr-6.9.0-spark-rapids-20230624

• emr-6.9.0-spark-rapids-20221108

emr-6.10.0-20230403 393

https://docs.aws.amazon.com/emr/latest/EMR-on-EKS-DevelopmentGuide/service-quotas.html#service-endpoints
https://docs.aws.amazon.com/emr/latest/EMR-on-EKS-DevelopmentGuide/service-quotas.html#service-endpoints
https://docs.aws.amazon.com/emr/latest/EMR-on-EKS-DevelopmentGuide/service-quotas.html#service-endpoints

Amazon EMR Amazon EMR on EKS Development Guide

• notebook-spark/emr-6.9.0-latest

• notebook-spark/emr-6.9.0-20230624

• notebook-spark/emr-6.9.0-20221108

• notebook-python/emr-6.9.0-latest

• notebook-python/emr-6.9.0-20230624

• notebook-python/emr-6.9.0-20221108

Release notes for Amazon EMR 6.9.0

• Supported applications ‐ AWS SDK for Java 1.12.331, Spark 3.3.0-amzn-1, Hudi 0.12.1-amzn-0,
Iceberg 0.14.1-amzn-0, Delta 2.1.0.

• Supported components ‐ aws-sagemaker-spark-sdk, emr-ddb, emr-goodies, emr-s3-
select, emrfs, hadoop-client, hudi, hudi-spark, iceberg, spark-kubernetes.

• Supported configuration classifications:

For use with StartJobRun and CreateManagedEndpoint APIs:

Classifications Descriptions

core-site Change values in Hadoop’s core-site.xml file.

emrfs-site Change EMRFS settings.

spark-metrics Change values in Spark's metrics.properties
file.

spark-defaults Change values in Spark's spark-defaults.conf
file.

spark-env Change values in the Spark environment.

spark-hive-site Change values in Spark's hive-site.xml file.

spark-log4j Change values in Spark's log4j.properties file.

For use specifically with CreateManagedEndpoint APIs:

6.9.0 releases 394

https://docs.aws.amazon.com/emr-on-eks/latest/APIReference/API_StartJobRun.html
https://docs.aws.amazon.com/emr-on-eks/latest/APIReference/API_CreateManagedEndpoint.html
https://docs.aws.amazon.com/emr-on-eks/latest/APIReference/API_CreateManagedEndpoint.html

Amazon EMR Amazon EMR on EKS Development Guide

Classifications Descriptions

jeg-config Change values in Jupyter Enterprise Gateway
jupyter_enterprise_gateway_
config.py file.

jupyter-kernel-overrides Change value for the Kernel Image in Jupyter
Kernel Spec file.

Configuration classifications allow you to customize applications. These often correspond
to a configuration XML file for the application, such as spark-hive-site.xml. For more
information, see Configure Applications.

Notable features

• Nvidia RAPIDS Accelerator for Apache Spark ‐ Amazon EMR on EKS to accelerate Spark
using EC2 graphics processing unit (GPU) instance types. To use the Spark image with RAPIDS
Accelerator, specify release label as emr-6.9.0-spark-rapids-latest. Visit the documentation page
to learn more.

• Spark-Redshift connector ‐ The Amazon Redshift integration for Apache Spark is included in
Amazon EMR releases 6.9.0 and later. Previously an open-source tool, the native integration is a
Spark connector that you can use to build Apache Spark applications that read from and write
to data in Amazon Redshift and Amazon Redshift Serverless. For more information, see Using
Amazon Redshift integration for Apache Spark on Amazon EMR on EKS.

• Delta Lake ‐ Delta Lake is an open-source storage format that enables building data lakes with
transactional consistency, consistent definition of datasets, schema evolution changes, and data
mutations support. Visit Using Delta Lake to learn more.

• Modify PySpark parameters ‐ Interactive endpoints now support modifying Spark parameters
associated with PySpark sessions in the EMR Studio Jupyter Notebook. Visit Modifying PySpark
session parameters to learn more.

Resolved issues

6.9.0 releases 395

https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-configure-apps.html
https://delta.io/

Amazon EMR Amazon EMR on EKS Development Guide

• When you use the DynamoDB connector with Spark on Amazon EMR versions 6.6.0, 6.7.0, and
6.8.0, all reads from your table return an empty result, even though the input split references
non-empty data. Amazon EMR release 6.9.0 fixes this issue.

• Amazon EMR on EKS 6.8.0 incorrectly populates the build hash in Parquet files metadata
generated using Apache Spark. This issue may cause tools that parse the metadata version string
from Parquet files generated by Amazon EMR on EKS 6.8.0 to fail.

Known issue

• If you use the the Amazon Redshift integration for Apache Spark and have a time, timetz,
timestamp, or timestamptz with microsecond precision in Parquet format, the connector rounds
the time values to the nearest millisecond value. As a workaround, use the text unload format
unload_s3_format parameter.

emr-6.9.0-latest

Release notes: emr-6.9.0-latest currently points to emr-6.9.0-20230905.

Regions: emr-6.9.0-latest is available in all Regions supported by Amazon EMR on EKS. For
more information, see Amazon EMR on EKS service endpoints.

Container image tag: emr-6.9.0:latest

emr-6.9.0-20230905

Release notes: emr-6.9.0-20230905. Compared to the previous release, this release has been
refreshed with the recently updated Amazon Linux packages and critical fixes.

Regions: emr-6.9.0-20230905 is available in all Regions supported by Amazon EMR on EKS. For
more information, see Amazon EMR on EKS service endpoints.

Container image tag: emr-6.9.0:20230905

emr-6.9.0-20230624

Release notes: emr-6.9.0-20230624 was released on July 7, 2023.

Regions: emr-6.9.0-20230624 is available in all Regions supported by Amazon EMR on EKS. For
more information, see Amazon EMR on EKS service endpoints.

emr-6.9.0-latest 396

https://aws.amazon.com/emr/features/spark
https://docs.aws.amazon.com/emr/latest/EMR-on-EKS-DevelopmentGuide/service-quotas.html#service-endpoints
https://docs.aws.amazon.com/emr/latest/EMR-on-EKS-DevelopmentGuide/service-quotas.html#service-endpoints
https://docs.aws.amazon.com/emr/latest/EMR-on-EKS-DevelopmentGuide/service-quotas.html#service-endpoints

Amazon EMR Amazon EMR on EKS Development Guide

Container image tag: emr-6.9.0:20230624

emr-6.9.0-20221108

Release notes: emr-6.9.0-20221108 was released on December 08, 2022. This is the initial
release of Amazon EMR 6.9.0.

Regions: emr-6.9.0-20221108 is available in all Regions supported by Amazon EMR on EKS. For
more information, see Amazon EMR on EKS service endpoints.

Container image tag: emr-6.9.0:20221108

Amazon EMR on EKS 6.8.0 releases

The following Amazon EMR 6.8.0 releases are available for Amazon EMR on EKS. Select a specific
emr-6.8.0-XXXX release to view more details such as the related container image tag.

• emr-6.8.0-latest

• emr-6.8.0-20230905

• emr-6.8.0-20230624

• emr-6.8.0-20221219

• emr-6.8.0-20220802

Release notes for Amazon EMR 6.8.0

• Supported applications ‐ AWS SDK for Java 1.12.170, Spark 3.3.0-amzn-0, Hudi 0.11.1-amzn-0,
Iceberg 0.14.0-amzn-0.

• Supported components ‐ aws-sagemaker-spark-sdk, emr-ddb, emr-goodies, emr-s3-
select, emrfs, hadoop-client, hudi, hudi-spark, iceberg, spark-kubernetes.

• Supported configuration classifications:

Classifications Descriptions

core-site Change values in Hadoop’s core-site.xml file.

emrfs-site Change EMRFS settings.

emr-6.9.0-20221108 397

https://docs.aws.amazon.com/emr/latest/EMR-on-EKS-DevelopmentGuide/service-quotas.html#service-endpoints

Amazon EMR Amazon EMR on EKS Development Guide

Classifications Descriptions

spark-metrics Change values in Spark's metrics.properties
file.

spark-defaults Change values in Spark's spark-defaults.conf
file.

spark-env Change values in the Spark environment.

spark-hive-site Change values in Spark's hive-site.xml file.

spark-log4j Change values in Spark's log4j.properties file.

Configuration classifications allow you to customize applications. These often correspond
to a configuration XML file for the application, such as spark-hive-site.xml. For more
information, see Configure Applications.

Notable features

• Spark3.3.0 ‐ Amazon EMR on EKS 6.8 includes Spark 3.3.0, which supports using separate node
selector labels for Spark driver executor pods. These new labels enable you to define the node
types for the driver and executor pods separately in the StartJobRun API, without using pod
templates.

• Driver node selector property: spark.kubernetes.driver.node.selector.[labelKey]

• Executor node selector property: spark.kubernetes.executor.node.selector.[labelKey]

• Enhanced job failure message ‐ This release introduces the configuration
spark.stage.extraDetailsOnFetchFailures.enabled and
spark.stage.extraDetailsOnFetchFailures.maxFailuresToInclude to track task
failures due to user code. These details will be used to enhance the failure message displayed in
the driver log when a stage is aborted due to shuffle fetch failure.

Property name Default value Meaning Since version

spark.sta
ge.extraD

false If set to true, this
property is used

emr-6.8

6.8.0 releases 398

https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-configure-apps.html

Amazon EMR Amazon EMR on EKS Development Guide

Property name Default value Meaning Since version

etailsOnF
etchFailu
res.enabled

to enhance the job
failure message
displayed in the
driver log when a
stage is aborted
due to Shuffle Fetch
Failures. By default
the last 5 task
failures caused by
user code is tracked,
and the failure error
message is appended
in the Driver Logs.

To increase the
number of task
failures with user
exceptions to
track, see the
config spark.sta
ge.extraD
etailsOnF
etchFailu
res.maxFa
iluresToI
nclude .

6.8.0 releases 399

Amazon EMR Amazon EMR on EKS Development Guide

Property name Default value Meaning Since version

spark.sta
ge.extraD
etailsOnF
etchFailu
res.maxFa
iluresToI
nclude

5 Number of task
failures to track per
stage and attempt.
This property is used
to enhance the job
failure message
with user exception
s displayed in the
driver log when a
stage is aborted
due to Shuffle Fetch
Failures.

This property works
only if Config
spark.stage.extraD
etailsOnFetchFailu
res.enabled is set to
true.

emr-6.8

For more information see the Apache Spark configuration documentation.

Known issue

• Amazon EMR on EKS 6.8.0 incorrectly populates the build hash in Parquet files metadata
generated using Apache Spark. This issue may cause tools that parse the metadata version string
from Parquet files generated by Amazon EMR on EKS 6.8.0 to fail. Customers who parse the
version string from Parquet metadata and depend on build hash should switch to a different
Amazon EMR version and rewrite the file.

Resolved issue

• Interrupt Kernel capability for pySpark kernels ‐ In progress interactive workloads that are
triggered by executing cells in a notebook can be stopped by using the Interrupt Kernel
capability. A fix has been introduced so that this functionality works for pySpark kernels. This is

6.8.0 releases 400

https://spark.apache.org/docs/latest/running-on-kubernetes.html#configuration
https://aws.amazon.com/emr/features/spark/

Amazon EMR Amazon EMR on EKS Development Guide

also available in open source at Changes for handling interrupts for PySpark Kubernetes Kernel
#1115.

emr-6.8.0-latest

Release notes: emr-6.8.0-latest currently points to emr-6.8.0-20230624.

Regions: emr-6.8.0-latest is available in all Regions supported by Amazon EMR on EKS. For
more information, see Amazon EMR on EKS service endpoints.

Container image tag: emr-6.8.0:latest

emr-6.8.0-20230905

Release notes: emr-6.8.0-20230905 was released on September 29, 2023. Compared to the
previous release, this release has been refreshed with the recently updated Amazon Linux packages
and critical fixes.

Regions: emr-6.8.0-20230905 is available in all Regions supported by Amazon EMR on EKS. For
more information, see Amazon EMR on EKS service endpoints.

Container image tag: emr-6.8.0:20230905

emr-6.8.0-20230624

Release notes: emr-6.8.0-20230624 was released on July 7, 2023. Compared to the previous
release, this release has been refreshed with the recently updated Amazon Linux packages and
critical fixes.

Regions: emr-6.8.0-20230624 is available in all Regions supported by Amazon EMR on EKS. For
more information, see Amazon EMR on EKS service endpoints.

Container image tag: emr-6.8.0:20230624

emr-6.8.0-20221219

Release notes: emr-6.8.0-20221219 was released on Jan 19, 2023. Compared to the previous
release, this release has been refreshed with the recently updated Amazon Linux packages and
critical fixes.

emr-6.8.0-latest 401

https://github.com/jupyter-server/enterprise_gateway/pull/1115
https://github.com/jupyter-server/enterprise_gateway/pull/1115
https://docs.aws.amazon.com/emr/latest/EMR-on-EKS-DevelopmentGuide/service-quotas.html#service-endpoints
https://docs.aws.amazon.com/emr/latest/EMR-on-EKS-DevelopmentGuide/service-quotas.html#service-endpoints
https://docs.aws.amazon.com/emr/latest/EMR-on-EKS-DevelopmentGuide/service-quotas.html#service-endpoints

Amazon EMR Amazon EMR on EKS Development Guide

Regions: emr-6.8.0-20221219 is available in all Regions supported by Amazon EMR on EKS. For
more information, see Amazon EMR on EKS service endpoints.

Container image tag: emr-6.8.0:20221219

emr-6.8.0-20220802

Release notes: emr-6.8.0-20220802 was released on Sep 27, 2022. This is the initial release of
Amazon EMR 6.8.0.

Regions: emr-6.8.0-20220802 is available in all Regions supported by Amazon EMR on EKS. For
more information, see Amazon EMR on EKS service endpoints.

Container image tag: emr-6.8.0:20220802

Amazon EMR on EKS 6.7.0 releases

The following Amazon EMR 6.7.0 releases are available for Amazon EMR on EKS. Select a specific
emr-6.7.0-XXXX release to view more details such as the related container image tag.

• emr-6.7.0-latest

• emr-6.7.0-20240321

• emr-6.7.0-20230624

• emr-6.7.0-20221219

• emr-6.7.0-20220630

Release notes for Amazon EMR 6.7.0

• Supported applications ‐ Spark 3.2.1-amzn-0, Jupyter Enterprise Gateway 2.6, Hudi 0.11-
amzn-0, Iceberg 0.13.1.

• Supported components ‐ aws-hm-client (Glue connector), aws-sagemaker-spark-sdk,
emr-s3-select, emrfs, emr-ddb, hudi-spark.

• With the upgrade to JEG 2.6, kernel management is now asynchronous, which means that JEG
does not block transactions when a kernel launch is in progress. This greatly improves the user
experience by providing the following:

• capability to execute commands in currently running notebooks when other kernel launches
are in progress

emr-6.8.0-20220802 402

https://docs.aws.amazon.com/emr/latest/EMR-on-EKS-DevelopmentGuide/service-quotas.html#service-endpoints
https://docs.aws.amazon.com/emr/latest/EMR-on-EKS-DevelopmentGuide/service-quotas.html#service-endpoints

Amazon EMR Amazon EMR on EKS Development Guide

• capability to launch multiple kernels simultaneously without impacting already running
kernels

• Supported configuration classifications:

Classifications Descriptions

core-site Change values in the Hadoop core-site
.xml file.

emrfs-site Change EMRFS settings.

spark-metrics Change values in the Spark metrics.p
roperties file.

spark-defaults Change values in the Spark spark-def
aults.conf file.

spark-env Change values in the Spark environment.

spark-hive-site Change values in the Spark hive-site
.xml file.

spark-log4j Change values in the Spark log4j.pro
perties file.

Configuration classifications allow you to customize applications. These often correspond
to a configuration XML file for the application, such as spark-hive-site.xml. For more
information, see Configuring Applications.

Resolved issues

• Amazon EMR on EKS 6.7 fixes an issue in 6.6 when using Apache Spark's pod templates
functionality with interactive endpoints. The issue was present in Amazon EMR on EKS releases
6.4, 6.5 and 6.6. You can now use pod templates to define how your Spark driver and executor
pods start when using interactive endpoints to run interactive analytics.

• In previous Amazon EMR on EKS releases, Jupyter Enterprise Gateway would block transactions
when kernel launch was in progress, and this impeded the execution of currently running

6.7.0 releases 403

https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-configure-apps.html

Amazon EMR Amazon EMR on EKS Development Guide

notebook sessions. You can now execute commands in currently running notebooks when other
kernel launches are in progress. You can also launch multiple kernels simultaneously without the
risk of losing connectivity to kernels that are already running.

emr-6.7.0-latest

Release notes: emr-6.7.0-latest currently points to emr-6.7.0-20240321.

Regions: emr-6.7.0-latest is available in all Regions supported by Amazon EMR on EKS. For
more information, see Amazon EMR on EKS service endpoints.

Container image tag: emr-6.7.0:latest

emr-6.7.0-20240321

Release notes: emr-6.7.0-20240321 was released on March 11, 2024. Compared to the previous
release, this release has been refreshed with the recently updated Amazon Linux packages and
critical fixes.

Regions: emr-6.7.0-20240321 is available in all Regions supported by Amazon EMR on EKS. For
more information, see Amazon EMR on EKS service endpoints.

Container image tag: emr-6.7.0:20240321

emr-6.7.0-20230624

Release notes: emr-6.7.0-20230624 was released on July 7, 2023. Compared to the previous
version, this version has been refreshed with the recently updated Amazon Linux packages and
critical fixes.

Regions: emr-6.7.0-20230624 is available in all Regions supported by Amazon EMR on EKS. For
more information, see Amazon EMR on EKS service endpoints.

Container image tag: emr-6.7.0:20230624

emr-6.7.0-20221219

Release notes: emr-6.7.0-20221219 was released on Jan. 19, 2023. Compared to the previous
version, this version has been refreshed with the recently updated Amazon Linux packages and
critical fixes.

emr-6.7.0-latest 404

https://docs.aws.amazon.com/emr/latest/EMR-on-EKS-DevelopmentGuide/service-quotas.html#service-endpoints
https://docs.aws.amazon.com/emr/latest/EMR-on-EKS-DevelopmentGuide/service-quotas.html#service-endpoints
https://docs.aws.amazon.com/emr/latest/EMR-on-EKS-DevelopmentGuide/service-quotas.html#service-endpoints

Amazon EMR Amazon EMR on EKS Development Guide

Regions: emr-6.7.0-20221219 is available in all Regions supported by Amazon EMR on EKS. For
more information, see Amazon EMR on EKS service endpoints.

Container image tag: emr-6.7.0:20221219

emr-6.7.0-20220630

Release notes: emr-6.7.0-20220630 was released on July 12, 2022. This is the initial release of
Amazon EMR 6.7.0.

Regions: emr-6.7.0-20220630 is available in all Regions supported by Amazon EMR on EKS. For
more information, see Amazon EMR on EKS service endpoints.

Container image tag: emr-6.7.0:20220630

Amazon EMR on EKS 6.6.0 releases

The following Amazon EMR 6.6.0 releases are available for Amazon EMR on EKS. Select a specific
emr-6.6.0-XXXX release to view more details such as the related container image tag.

• emr-6.6.0-latest

• emr-6.6.0-20240321

• emr-6.6.0-20230624

• emr-6.6.0-20221219

• emr-6.6.0-20220411

Release notes for Amazon EMR 6.6.0

• Supported applications ‐ Spark 3.2.0-amzn-0, Jupyter Enterprise Gateway (endpoints, public
preview), Hudi 0.10.1-amzn-0, Iceberg 0.13.1.

• Supported components ‐ aws-hm-client (Glue connector), aws-sagemaker-spark-sdk,
emr-s3-select, emrfs, emr-ddb, hudi-spark.

• Supported configuration classifications:

Classifications Descriptions

core-site Change values in Hadoop’s core-site.xml file.

emr-6.7.0-20220630 405

https://docs.aws.amazon.com/emr/latest/EMR-on-EKS-DevelopmentGuide/service-quotas.html#service-endpoints
https://docs.aws.amazon.com/emr/latest/EMR-on-EKS-DevelopmentGuide/service-quotas.html#service-endpoints

Amazon EMR Amazon EMR on EKS Development Guide

Classifications Descriptions

emrfs-site Change EMRFS settings.

spark-metrics Change values in Spark's metrics.properties
file.

spark-defaults Change values in Spark's spark-defaults.conf
file.

spark-env Change values in the Spark environment.

spark-hive-site Change values in Spark's hive-site.xml file.

spark-log4j Change values in Spark's log4j.properties file.

Configuration classifications allow you to customize applications. These often correspond to a
configuration XML file for the application, such as spark-hive-site.xml. For more information, see
Configuring Applications.

Known issue

• Spark pod template functionality with interactive endpoints is not working in Amazon EMR on
EKS release 6.4, 6.5, and 6.6.

Resolved issue

• Interactive endpoint logs are uploaded to Cloudwatch and S3.

emr-6.6.0-latest

Release notes: emr-6.6.0-latest currently points to emr-6.6.0-20240321.

Regions: emr-6.6.0-latest is available in all Regions supported by Amazon EMR on EKS. For
more information, see Amazon EMR on EKS service endpoints.

Container image tag: emr-6.6.0:latest

emr-6.6.0-latest 406

https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-configure-apps.html
https://docs.aws.amazon.com/emr/latest/EMR-on-EKS-DevelopmentGuide/service-quotas.html#service-endpoints

Amazon EMR Amazon EMR on EKS Development Guide

emr-6.6.0-20240321

Release notes: emr-6.6.0-20240321 was released on March 11, 2024. Compared to the previous
release, this release has been refreshed with the recently updated Amazon Linux packages and
critical fixes.

Regions: emr-6.6.0-20240321 is available in all Regions supported by Amazon EMR on EKS. For
more information, see Amazon EMR on EKS service endpoints.

Container image tag: emr-6.6.0:20240321

emr-6.6.0-20230624

Release notes: emr-6.6.0-20230624 was released on Jan 27, 2023. Compared to the previous
version, this version has been refreshed with the recently updated Amazon Linux packages and
critical fixes.

Regions: emr-6.6.0-20230624 is available in all Regions supported by Amazon EMR on EKS. For
more information, see Amazon EMR on EKS service endpoints.

Container image tag: emr-6.6.0:20230624

emr-6.6.0-20221219

Release notes: emr-6.6.0-20221219 was released on Jan 27, 2023. Compared to the previous
version, this version has been refreshed with the recently updated Amazon Linux packages and
critical fixes.

Regions: emr-6.6.0-20221219 is available in all Regions supported by Amazon EMR on EKS. For
more information, see Amazon EMR on EKS service endpoints.

Container image tag: emr-6.6.0:20221219

emr-6.6.0-20220411

Release notes: emr-6.6.0-20220411 was released on May 20, 2022. This is the initial release of
Amazon EMR 6.6.0.

Regions: emr-6.6.0-20220411 is available in all Regions supported by Amazon EMR on EKS. For
more information, see Amazon EMR on EKS service endpoints.

emr-6.6.0-20240321 407

https://docs.aws.amazon.com/emr/latest/EMR-on-EKS-DevelopmentGuide/service-quotas.html#service-endpoints
https://docs.aws.amazon.com/emr/latest/EMR-on-EKS-DevelopmentGuide/service-quotas.html#service-endpoints
https://docs.aws.amazon.com/emr/latest/EMR-on-EKS-DevelopmentGuide/service-quotas.html#service-endpoints
https://docs.aws.amazon.com/emr/latest/EMR-on-EKS-DevelopmentGuide/service-quotas.html#service-endpoints

Amazon EMR Amazon EMR on EKS Development Guide

Container image tag: emr-6.6.0:20220411

Amazon EMR on EKS 6.5.0 releases

The following Amazon EMR 6.5.0 releases are available for Amazon EMR on EKS. Select a specific
emr-6.5.0-XXXX release to view more details such as the related container image tag.

• emr-6.5.0-latest

• emr-6.5.0-20240321

• emr-6.5.0-20221219

• emr-6.5.0-20220802

• emr-6.5.0-20211119

Release notes for Amazon EMR 6.5.0

• Supported applications ‐ Spark 3.1.2-amzn-1, Jupyter Enterprise Gateway (endpoints, public
preview).

• Supported components ‐ aws-hm-client (Glue connector), aws-sagemaker-spark-sdk,
emr-s3-select, emrfs, emr-ddb, hudi-spark.

• Supported configuration classifications:

Classifications Descriptions

core-site Change values in Hadoop’s core-site.xml file.

emrfs-site Change EMRFS settings.

spark-metrics Change values in Spark's metrics.properties
file.

spark-defaults Change values in Spark's spark-defaults.conf
file.

spark-env Change values in the Spark environment.

spark-hive-site Change values in Spark's hive-site.xml file.

6.5.0 releases 408

Amazon EMR Amazon EMR on EKS Development Guide

Classifications Descriptions

spark-log4j Change values in Spark's log4j.properties file.

Configuration classifications allow you to customize applications. These often correspond to a
configuration XML file for the application, such as spark-hive-site.xml. For more information, see
Configuring Applications.

Known Issue

• Spark pod template functionality with interactive endpoints is not working in Amazon EMR on
EKS releases 6.4 and 6.5.

emr-6.5.0-latest

Release notes: emr-6.5.0-latest currently points to emr-6.5.0-20240321.

Regions: emr-6.5.0-latest is available in all Regions supported by Amazon EMR on EKS. For
more information, see Amazon EMR on EKS service endpoints.

Container image tag: emr-6.5.0:latest

emr-6.5.0-20240321

Release notes: emr-6.5.0-20240321 was released on March 11, 2024. Compared to the previous
version, this version has been refreshed with the recently updated Amazon Linux packages and
critical fixes.

Regions: emr-6.5.0-20240321 is available in all Regions supported by Amazon EMR on EKS. For
more information, see Amazon EMR on EKS service endpoints.

Container image tag: emr-6.5.0:20240321

emr-6.5.0-20221219

Release notes: emr-6.5.0-20221219 was released on Jan 19, 2023. Compared to the previous
version, this version has been refreshed with the recently updated Amazon Linux packages and
critical fixes.

emr-6.5.0-latest 409

https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-configure-apps.html
https://docs.aws.amazon.com/emr/latest/EMR-on-EKS-DevelopmentGuide/service-quotas.html#service-endpoints
https://docs.aws.amazon.com/emr/latest/EMR-on-EKS-DevelopmentGuide/service-quotas.html#service-endpoints

Amazon EMR Amazon EMR on EKS Development Guide

Regions: emr-6.5.0-20221219 is available in all Regions supported by Amazon EMR on EKS. For
more information, see Amazon EMR on EKS service endpoints.

Container image tag: emr-6.5.0:20221219

emr-6.5.0-20220802

Release notes: emr-6.5.0-20220802 was released on Aug 24, 2022. Compared to the previous
version, this version has been refreshed with the recently updated Amazon Linux packages.

Regions: emr-6.5.0-20220802 is available in all Regions supported by Amazon EMR on EKS. For
more information, see Amazon EMR on EKS service endpoints.

Container image tag: emr-6.5.0:20220802

emr-6.5.0-20211119

Release notes: emr-6.5.0-20211119 was released on Jan 20, 2022. This is the initial release of
Amazon EMR 6.5.0.

Regions: emr-6.5.0-20211119 is available in all Regions supported by Amazon EMR on EKS. For
more information, see Amazon EMR on EKS service endpoints.

Container image tag: emr-6.5.0:20211119

Amazon EMR on EKS 6.4.0 releases

The following Amazon EMR 6.4.0 releases are available for Amazon EMR on EKS. Select a specific
emr-6.4.0-XXXX release to view more details such as the related container image tag.

• emr-6.4.0-latest

• emr-6.4.0-20240321

• emr-6.4.0-20221219

• emr-6.4.0-20210830

Release notes for Amazon EMR 6.4.0

• Supported applications ‐ Spark 3.1.2-amzn-0, Jupyter Enterprise Gateway (endpoints, public
preview).

emr-6.5.0-20220802 410

https://docs.aws.amazon.com/emr/latest/EMR-on-EKS-DevelopmentGuide/service-quotas.html#service-endpoints
https://docs.aws.amazon.com/emr/latest/EMR-on-EKS-DevelopmentGuide/service-quotas.html#service-endpoints
https://docs.aws.amazon.com/emr/latest/EMR-on-EKS-DevelopmentGuide/service-quotas.html#service-endpoints

Amazon EMR Amazon EMR on EKS Development Guide

• Supported components ‐ aws-hm-client (Glue connector), aws-sagemaker-spark-sdk,
emr-s3-select, emrfs, emr-ddb, hudi-spark.

• Supported configuration classifications:

Classifications Descriptions

core-site Change values in Hadoop’s core-site.xml file.

emrfs-site Change EMRFS settings.

spark-metrics Change values in Spark's metrics.properties
file.

spark-defaults Change values in Spark's spark-defaults.conf
file.

spark-env Change values in the Spark environment.

spark-hive-site Change values in Spark's hive-site.xml file.

spark-log4j Change values in Spark's log4j.properties file.

Configuration classifications allow you to customize applications. These often correspond to a
configuration XML file for the application, such as spark-hive-site.xml. For more information, see
Configuring Applications.

Known issue

• Spark pod template functionality with interactive endpoints is not working in Amazon EMR on
EKS release 6.4.

emr-6.4.0-latest

Release notes: emr-6.4.0-latest currently points to emr-6.4.0-20240321.

Regions: emr-6.4.0-latest is available in all Regions supported by Amazon EMR on EKS. For
more information, see Amazon EMR on EKS service endpoints.

emr-6.4.0-latest 411

https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-configure-apps.html
https://docs.aws.amazon.com/emr/latest/EMR-on-EKS-DevelopmentGuide/service-quotas.html#service-endpoints

Amazon EMR Amazon EMR on EKS Development Guide

Container image tag: emr-6.4.0:latest

emr-6.4.0-20240321

Release notes: emr-6.4.0-20240321 was released on March 11, 2024. Compared to the previous
release, this release has been refreshed with the recently updated Amazon Linux packages and
critical fixes.

Regions: emr-6.4.0-20240321 is available in all Regions supported by Amazon EMR on EKS. For
more information, see Amazon EMR on EKS service endpoints.

Container image tag: emr-6.4.0:20240321

emr-6.4.0-20221219

Release notes: emr-6.4.0-20221219 was released on Jan 27, 2023. Compared to the previous
version, this version has been refreshed with the recently added Amazon Linux packages.

Regions: emr-6.4.0-20221219 is available in all Regions supported by Amazon EMR on EKS. For
more information, see Amazon EMR on EKS service endpoints.

Container image tag: emr-6.4.0:20221219

emr-6.4.0-20210830

Release notes: emr-6.4.0-20210830 was released on Dec 9, 2021. This is the initial release of
Amazon EMR 6.4.0.

Regions: emr-6.4.0-20210830 is available in all Regions supported by Amazon EMR on EKS. For
more information, see Amazon EMR on EKS service endpoints.

Container image tag: emr-6.4.0:20210830

Amazon EMR on EKS 6.3.0 releases

The following Amazon EMR 6.3.0 releases are available for Amazon EMR on EKS. Select a specific
emr-6.3.0-XXXX release to view more details such as the related container image tag.

• emr-6.3.0-latest

emr-6.4.0-20240321 412

https://docs.aws.amazon.com/emr/latest/EMR-on-EKS-DevelopmentGuide/service-quotas.html#service-endpoints
https://docs.aws.amazon.com/emr/latest/EMR-on-EKS-DevelopmentGuide/service-quotas.html#service-endpoints
https://docs.aws.amazon.com/emr/latest/EMR-on-EKS-DevelopmentGuide/service-quotas.html#service-endpoints

Amazon EMR Amazon EMR on EKS Development Guide

• emr-6.3.0-20240321

• emr-6.3.0-20220802

• emr-6.3.0-20211008

• emr-6.3.0-20210802

• emr-6.3.0-20210429

Release notes for Amazon EMR 6.3.0

• New features ‐ Beginning with Amazon EMR 6.3.0 in the 6.x release series, Amazon EMR on EKS
supports Spark’s pod template feature. You can also turn on the Spark event log rotation feature
for Amazon EMR on EKS. For more information, see Using pod templates and Using Spark event
log rotation.

• Supported applications ‐ Spark 3.1.1-amzn-0, Jupyter Enterprise Gateway (endpoints, public
preview).

• Supported components ‐ aws-hm-client (Glue connector), aws-sagemaker-spark-sdk,
emr-s3-select, emrfs, emr-ddb, hudi-spark.

• Supported configuration classifications:

Classifications Descriptions

core-site Change values in Hadoop’s core-site.xml file.

emrfs-site Change EMRFS settings.

spark-metrics Change values in Spark's metrics.properties
file.

spark-defaults Change values in Spark's spark-defaults.conf
file.

spark-env Change values in the Spark environment.

spark-hive-site Change values in Spark's hive-site.xml file.

spark-log4j Change values in Spark's log4j.properties file.

6.3.0 releases 413

Amazon EMR Amazon EMR on EKS Development Guide

Configuration classifications allow you to customize applications. These often correspond to a
configuration XML file for the application, such as spark-hive-site.xml. For more information, see
Configuring Applications.

emr-6.3.0-latest

Release notes: emr-6.3.0-latest currently points to emr-6.3.0-20240321.

Regions: emr-6.3.0-latest is available in all Regions supported by Amazon EMR on EKS. For
more information, see Amazon EMR on EKS service endpoints.

Container image tag: emr-6.3.0:latest

emr-6.3.0-20240321

Release notes: emr-6.3.0-20240321 was released on March 11, 2024. Compared to the previous
release, this release has been refreshed with the recently updated Amazon Linux packages and
critical fixes.

Regions: emr-6.3.0-20240321 is available in all Regions supported by Amazon EMR on EKS. For
more information, see Amazon EMR on EKS service endpoints.

Container image tag: emr-6.3.0:20240321

emr-6.3.0-20220802

Release notes: emr-6.3.0-20220802 was released on Sep 27, 2022. Compared to the previous
version, this version has been refreshed with the recently updated Amazon Linux packages.

Regions: emr-6.3.0-20220802 is available in all Regions supported by Amazon EMR on EKS. For
more information, see Amazon EMR on EKS service endpoints.

Container image tag: emr-6.3.0:20220802

emr-6.3.0-20211008

Release notes: emr-6.3.0-20211008 was released on Dec 9, 2021. Compared to the previous
version, this version contains issue fixes and security updates.

emr-6.3.0-latest 414

https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-configure-apps.html
https://docs.aws.amazon.com/emr/latest/EMR-on-EKS-DevelopmentGuide/service-quotas.html#service-endpoints
https://docs.aws.amazon.com/emr/latest/EMR-on-EKS-DevelopmentGuide/service-quotas.html#service-endpoints
https://docs.aws.amazon.com/emr/latest/EMR-on-EKS-DevelopmentGuide/service-quotas.html#service-endpoints

Amazon EMR Amazon EMR on EKS Development Guide

Regions: emr-6.3.0-20211008 is available in all Regions supported by Amazon EMR on EKS. For
more information, see Amazon EMR on EKS service endpoints.

Container image tag: emr-6.3.0:20211008

emr-6.3.0-20210802

Release notes: emr-6.3.0-20210802 was released on Aug 2, 2021. Compared to the previous
version, this version contains issue fixes and security updates.

Regions: emr-6.3.0-20210802 is available in all Regions supported by Amazon EMR on EKS. For
more information, see Amazon EMR on EKS service endpoints.

Container image tag: emr-6.3.0:20210802

emr-6.3.0-20210429

Release notes: emr-6.3.0-20210429 was released on April 29, 2021. This is the initial release of
Amazon EMR 6.3.0.

Regions: emr-6.3.0-20210429 is available in all Regions supported by Amazon EMR on EKS. For
more information, see Amazon EMR on EKS service endpoints.

Container image tag: emr-6.3.0:20210429

Amazon EMR on EKS 6.2.0 releases

The following Amazon EMR 6.2.0 releases are available for Amazon EMR on EKS. Select a specific
emr-6.2.0-XXXX release to view more details such as the related container image tag.

• emr-6.2.0-latest

• emr-6.2.0-20240321

• emr-6.2.0-20220802

• emr-6.2.0-20211008

• emr-6.2.0-20210802

• emr-6.2.0-20210615

• emr-6.2.0-20210129

• emr-6.2.0-20201218

• emr-6.2.0-20201201

emr-6.3.0-20210802 415

https://docs.aws.amazon.com/emr/latest/EMR-on-EKS-DevelopmentGuide/service-quotas.html#service-endpoints
https://docs.aws.amazon.com/emr/latest/EMR-on-EKS-DevelopmentGuide/service-quotas.html#service-endpoints
https://docs.aws.amazon.com/emr/latest/EMR-on-EKS-DevelopmentGuide/service-quotas.html#service-endpoints

Amazon EMR Amazon EMR on EKS Development Guide

Release notes for Amazon EMR 6.2.0

• Supported applications ‐ Spark 3.0.1-amzn-0, Jupyter Enterprise Gateway (endpoints, public
preview).

• Supported components ‐ aws-hm-client (Glue connector), aws-sagemaker-spark-sdk,
emr-s3-select, emrfs, emr-ddb, hudi-spark.

• Supported configuration classifications:

Classifications Descriptions

core-site Change values in Hadoop’s core-site.xml file.

emrfs-site Change EMRFS settings.

spark-metrics Change values in Spark's metrics.properties
file.

spark-defaults Change values in Spark's spark-defaults.conf
file.

spark-env Change values in the Spark environment.

spark-hive-site Change values in Spark's hive-site.xml file.

spark-log4j Change values in Spark's log4j.properties file.

Configuration classifications allow you to customize applications. These often correspond to a
configuration XML file for the application, such as spark-hive-site.xml. For more information, see
Configuring Applications.

emr-6.2.0-latest

Release notes: emr-6.2.0-latest currently points to emr-6.2.0-20240321.

Regions: emr-6.2.0-latest is available in all Regions supported by Amazon EMR on EKS. For
more information, see Amazon EMR on EKS service endpoints.

Container image tag: emr-6.2.0:20240321

emr-6.2.0-latest 416

https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-configure-apps.html
https://docs.aws.amazon.com/emr/latest/EMR-on-EKS-DevelopmentGuide/service-quotas.html#service-endpoints

Amazon EMR Amazon EMR on EKS Development Guide

emr-6.2.0-20240321

Release notes: emr-6.2.0-20240321 was released on March 11, 2024. Compared to the previous
release, this release has been refreshed with the recently updated Amazon Linux packages and
critical fixes.

Regions: emr-6.2.0-20240321 is available in all Regions supported by Amazon EMR on EKS. For
more information, see Amazon EMR on EKS service endpoints.

Container image tag: emr-6.2.0:20240321

emr-6.2.0-20220802

Release notes: emr-6.2.0-20220802 was released on Sep 27, 2022. Compared to the previous
version, this version has been refreshed with the recently updated Amazon Linux packages.

Regions: emr-6.2.0-20220802 is available in all Regions supported by Amazon EMR on EKS. For
more information, see Amazon EMR on EKS service endpoints.

Container image tag: emr-6.2.0:20220802

emr-6.2.0-20211008

Release notes: emr-6.2.0-20211008 was released on Dec 9, 2021. Compared to the previous
version, this version contains issue fixes and security updates.

Regions: emr-6.2.0-20211008 is available in the following Regions: US East (N. Virginia), US
West (Oregon), Asia Pacific (Tokyo), Europe (Ireland), South America (Sao Paulo).

Container image tag: emr-6.2.0:20211008

emr-6.2.0-20210802

Release notes: emr-6.2.0-20210802 was released on Aug 2, 2021. Compared to the previous
version, this version contains issue fixes and security updates.

Regions: emr-6.2.0-20210802 is available in the following Regions: US East (N. Virginia), US
West (Oregon), Asia Pacific (Tokyo), Europe (Ireland), South America (Sao Paulo).

Container image tag: emr-6.2.0:20210802

emr-6.2.0-20240321 417

https://docs.aws.amazon.com/emr/latest/EMR-on-EKS-DevelopmentGuide/service-quotas.html#service-endpoints
https://docs.aws.amazon.com/emr/latest/EMR-on-EKS-DevelopmentGuide/service-quotas.html#service-endpoints

Amazon EMR Amazon EMR on EKS Development Guide

emr-6.2.0-20210615

Release notes: emr-6.2.0-20210615 was released on June 15, 2021. Compared to the previous
version, this version contains issue fixes and security updates.

Regions: emr-6.2.0-20210615 is available in the following Regions: US East (N. Virginia), US
West (Oregon), Asia Pacific (Tokyo), Europe (Ireland), South America (Sao Paulo).

Container image tag: emr-6.2.0:20210615

emr-6.2.0-20210129

Release notes: emr-6.2.0-20210129 was released on January 29, 2021. Compared to
emr-6.2.0-20201218, this version contains issue fixes and security updates.

Regions: emr-6.2.0-20210129 is available in the following Regions: US East (N. Virginia), US
West (Oregon), Asia Pacific (Tokyo), Europe (Ireland), South America (Sao Paulo).

Container image tag: emr-6.2.0-20210129

emr-6.2.0-20201218

Release notes: emr-6.2.0-20201218 was released on December 18, 2020. Compared to
emr-6.2.0-20201201, this version contains issue fixes and security updates.

Regions: emr-6.2.0-20201218 is available in the following Regions: US East (N. Virginia), US
West (Oregon), Asia Pacific (Tokyo), Europe (Ireland), South America (Sao Paulo).

Container image tag: emr-6.2.0-20201218

emr-6.2.0-20201201

Release notes: emr-6.2.0-20201201 was released on December 1, 2020. This is the initial
release of Amazon EMR 6.2.0.

Regions: emr-6.2.0-20201201 is available in the following Regions: US East (N. Virginia), US
West (Oregon), Asia Pacific (Tokyo), Europe (Ireland), South America (Sao Paulo).

Container image tag: emr-6.2.0-20201201

emr-6.2.0-20210615 418

Amazon EMR Amazon EMR on EKS Development Guide

Amazon EMR on EKS 5.36.0 releases

The following Amazon EMR 5.36.0 releases are available for Amazon EMR on EKS. Select a specific
emr-5.36.0-XXXX release to view more details such as the related container image tag.

• emr-5.36.0-latest

• emr-5.36.0-20240321

• emr-5.36.0-20221219

• emr-5.36.0-20220620

• emr-5.36.0-20220525

Release notes for Amazon EMR 5.36.0

• Fixed log4j2 security issues.

• Supported applications ‐ Spark 2.4.8-amzn-2, Jupyter Enterprise Gateway (endpoints, public
preview; Scala kernel is not supported), livy-0.7.1, fluentd-4.0.0.

• Supported components ‐ aws-hm-client, aws-sagemaker-spark-sdk, emr-ddb, emr-goodies, emr-
kinesis, kerberos-server.

• Supported configuration classifications:

Classifications Descriptions

core-site Change values in Hadoop’s core-site.xml file.

emrfs-site Change EMRFS settings.

spark-metrics Change values in Spark's metrics.properties
file.

spark-defaults Change values in Spark's spark-defaults.conf
file.

spark-env Change values in the Spark environment.

spark-hive-site Change values in Spark's hive-site.xml file.

spark-log4j Change values in Spark's log4j.properties file.

5.36.0 releases 419

Amazon EMR Amazon EMR on EKS Development Guide

Configuration classifications allow you to customize applications. These often correspond to a
configuration XML file for the application, such as spark-hive-site.xml. For more information, see
Configuring Applications.

emr-5.36.0-latest

Release notes: emr-5.36.0-latest currently points to emr-5.36.0-20240321.

Regions: emr-5.36.0-latest is available in all Regions supported by Amazon EMR on EKS. For
more information, see Amazon EMR on EKS service endpoints.

Container image tag: emr-5.36.0:latest

emr-5.36.0-20240321

Release notes: emr-5.36.0-20240321 was released on March 11, 2024. Compared to the
previous release, this release has been refreshed with the recently updated Amazon Linux packages
and critical fixes.

Regions: emr-5.36.0-20240321 is available in all Regions supported by Amazon EMR on EKS.
For more information, see Amazon EMR on EKS service endpoints.

Container image tag: emr-5.36.0:20240321

emr-5.36.0-20221219

Release notes: emr-5.36.0-20221219 was released on Jan 27, 2023. Compared to the previous
version, this version has been refreshed with the recently updated Amazon Linux packages.

Regions: emr-5.36.0-20221219 is available in all Regions supported by Amazon EMR on EKS.
For more information, see Amazon EMR on EKS service endpoints.

Container image tag: emr-5.36.0:20221219

emr-5.36.0-20220620

Release notes: emr-5.36.0-20220620 was released on July 27, 2022. Compared to the previous
version, this version has been refreshed with the recently updated Amazon Linux packages.

emr-5.36.0-latest 420

https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-configure-apps.html
https://docs.aws.amazon.com/emr/latest/EMR-on-EKS-DevelopmentGuide/service-quotas.html#service-endpoints
https://docs.aws.amazon.com/emr/latest/EMR-on-EKS-DevelopmentGuide/service-quotas.html#service-endpoints
https://docs.aws.amazon.com/emr/latest/EMR-on-EKS-DevelopmentGuide/service-quotas.html#service-endpoints

Amazon EMR Amazon EMR on EKS Development Guide

Regions: emr-5.36.0-20220620 is available in all Regions supported by Amazon EMR on EKS.
For more information, see Amazon EMR on EKS service endpoints.

Container image tag: emr-5.36.0:20220620

emr-5.36.0-20220525

Release notes: emr-5.36.0-20220525 was released on June 16, 2022. This is the initial release
of Amazon EMR 5.36.0.

Regions: emr-5.36.0-20220525 is available in all Regions supported by Amazon EMR on EKS.
For more information, see Amazon EMR on EKS service endpoints.

Container image tag: emr-5.36.0:20220525

Amazon EMR on EKS 5.35.0 releases

The following Amazon EMR 5.35.0 releases are available for Amazon EMR on EKS. Select a specific
emr-5.35.0-XXXX release to view more details such as the related container image tag.

• emr-5.35.0-latest

• emr-5.35.0-20240321

• emr-5.35.0-20221219

• emr-5.35.0-20220802

• emr-5.35.0-20220307

Release notes for Amazon EMR 5.35.0

• Fixed log4j2 security issues.

• Supported applications ‐ Spark 2.4.8-amzn-1, Hudi 0.9.0-amzn-2, Jupyter Enterprise Gateway
(endpoints, public preview; Scala kernel is not supported).

• Supported components ‐ aws-hm-client (Glue connector), aws-sagemaker-spark-sdk, emr-s3-
select, emrfs, emr-ddb, hudi-spark.

• Supported configuration classifications:

emr-5.36.0-20220525 421

https://docs.aws.amazon.com/emr/latest/EMR-on-EKS-DevelopmentGuide/service-quotas.html#service-endpoints
https://docs.aws.amazon.com/emr/latest/EMR-on-EKS-DevelopmentGuide/service-quotas.html#service-endpoints

Amazon EMR Amazon EMR on EKS Development Guide

Classifications Descriptions

core-site Change values in Hadoop’s core-site.xml file.

emrfs-site Change EMRFS settings.

spark-metrics Change values in Spark's metrics.properties
file.

spark-defaults Change values in Spark's spark-defaults.conf
file.

spark-env Change values in the Spark environment.

spark-hive-site Change values in Spark's hive-site.xml file.

spark-log4j Change values in Spark's log4j.properties file.

Configuration classifications allow you to customize applications. These often correspond to a
configuration XML file for the application, such as spark-hive-site.xml. For more information, see
Configuring Applications.

emr-5.35.0-latest

Release notes: emr-5.35.0-latest currently points to emr-5.35.0-20240321.

Regions: emr-5.35.0-latest is available in all Regions supported by Amazon EMR on EKS. For
more information, see Amazon EMR on EKS service endpoints.

Container image tag: emr-5.35.0:latest

emr-5.35.0-20240321

Release notes: emr-5.35.0-20240321 was released on March 11, 2024. Compared to the
previous release, this release has been refreshed with the recently updated Amazon Linux packages
and critical fixes.

emr-5.35.0-latest 422

https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-configure-apps.html
https://docs.aws.amazon.com/emr/latest/EMR-on-EKS-DevelopmentGuide/service-quotas.html#service-endpoints

Amazon EMR Amazon EMR on EKS Development Guide

Regions: emr-5.35.0-20240321 is available in all Regions supported by Amazon EMR on EKS.
For more information, see Amazon EMR on EKS service endpoints.

Container image tag: emr-5.35.0:20240321

emr-5.35.0-20221219

Release notes: emr-5.35.0-20221219 was released on Jan 27, 2023. Compared to the previous
version, this version has been refreshed with the recently updated Amazon Linux packages.

Regions: emr-5.35.0-20221219 is available in all Regions supported by Amazon EMR on EKS.
For more information, see Amazon EMR on EKS service endpoints.

Container image tag: emr-5.35.0:20221219

emr-5.35.0-20220802

Release notes: emr-5.35.0-20220802 was released on Sep 27, 2022. Compared to the previous
version, this version has been refreshed with the recently updated Amazon Linux packages.

Regions: emr-5.35.0-20220802 is available in all Regions supported by Amazon EMR on EKS.
For more information, see Amazon EMR on EKS service endpoints.

Container image tag: emr-5.35.0:20220802

emr-5.35.0-20220307

Release notes: emr-5.35.0-20220307 was released on Mar 30, 2022. Compared to the previous
version, this version has been refreshed with the recently updated Amazon Linux packages.

Regions: emr-5.35.0-20220307 is available in all Regions supported by Amazon EMR on EKS.
For more information, see Amazon EMR on EKS service endpoints.

Container image tag: emr-5.35.0:20220307

Amazon EMR on EKS 5.34.0 releases

The following Amazon EMR 5.34.0 releases are available for Amazon EMR on EKS. Select a specific
emr-5.34.0-XXXX release to view more details such as the related container image tag.

• emr-5.34.0-latest

emr-5.35.0-20221219 423

https://docs.aws.amazon.com/emr/latest/EMR-on-EKS-DevelopmentGuide/service-quotas.html#service-endpoints
https://docs.aws.amazon.com/emr/latest/EMR-on-EKS-DevelopmentGuide/service-quotas.html#service-endpoints
https://docs.aws.amazon.com/emr/latest/EMR-on-EKS-DevelopmentGuide/service-quotas.html#service-endpoints
https://docs.aws.amazon.com/emr/latest/EMR-on-EKS-DevelopmentGuide/service-quotas.html#service-endpoints

Amazon EMR Amazon EMR on EKS Development Guide

• emr-5.34.0-20240321

• emr-5.34.0-20220802

Release notes for Amazon EMR 5.34.0

• Supported applications ‐ Spark 2.4.8-amzn-0, Jupyter Enterprise Gateway (endpoints, public
preview; Scala kernel is not supported).

• Supported components ‐ aws-hm-client (Glue connector), aws-sagemaker-spark-sdk,
emr-s3-select, emrfs, emr-ddb, hudi-spark.

• Supported configuration classifications:

Classifications Descriptions

core-site Change values in Hadoop’s core-site.xml file.

emrfs-site Change EMRFS settings.

spark-metrics Change values in Spark's metrics.properties
file.

spark-defaults Change values in Spark's spark-defaults.conf
file.

spark-env Change values in the Spark environment.

spark-hive-site Change values in Spark's hive-site.xml file.

spark-log4j Change values in Spark's log4j.properties file.

Configuration classifications allow you to customize applications. These often correspond to a
configuration XML file for the application, such as spark-hive-site.xml. For more information, see
Configuring Applications.

emr-5.34.0-latest

Release notes: emr-5.34.0-latest currently points to emr-5.34.0-20220802.

emr-5.34.0-latest 424

https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-configure-apps.html

Amazon EMR Amazon EMR on EKS Development Guide

Regions: emr-5.34.0-latest is available in all Regions supported by Amazon EMR on EKS. For
more information, see Amazon EMR on EKS service endpoints.

Container image tag: emr-5.34.0:latest

emr-5.34.0-20240321

Release notes: emr-5.34.0-20240321 was released on March 11, 2024. Compared to the
previous release, this release has been refreshed with the recently updated Amazon Linux packages
and critical fixes.

Regions: emr-5.34.0-20240321 is available in all Regions supported by Amazon EMR on EKS.
For more information, see Amazon EMR on EKS service endpoints.

Container image tag: emr-5.34.0:20240321

emr-5.34.0-20220802

Release notes: emr-5.34.0-20220802 was released on Aug 24, 2022. Compared to the previous
version, this version has been refreshed with the recently updated Amazon Linux packages.

Regions: emr-5.34.0-20220802 is available in all Regions supported by Amazon EMR on EKS.
For more information, see Amazon EMR on EKS service endpoints.

Container image tag: emr-5.34.0:20220802

emr-5.34.0-20211208

Release notes: emr-5.34.0-20211208 was released on Jan 20, 2022. Compared to the previous
version, this version has been refreshed with the recently updated Amazon Linux packages.

Regions: emr-5.34.0-20211208 is available in all Regions supported by Amazon EMR on EKS.
For more information, see Amazon EMR on EKS service endpoints.

Container image tag: emr-5.34.0:20211208

Amazon EMR on EKS 5.33.0 releases

The following Amazon EMR 5.33.0 releases are available for Amazon EMR on EKS. Select a specific
emr-5.33.0-XXXX release to view more details such as the related container image tag.

emr-5.34.0-20240321 425

https://docs.aws.amazon.com/emr/latest/EMR-on-EKS-DevelopmentGuide/service-quotas.html#service-endpoints
https://docs.aws.amazon.com/emr/latest/EMR-on-EKS-DevelopmentGuide/service-quotas.html#service-endpoints
https://docs.aws.amazon.com/emr/latest/EMR-on-EKS-DevelopmentGuide/service-quotas.html#service-endpoints
https://docs.aws.amazon.com/emr/latest/EMR-on-EKS-DevelopmentGuide/service-quotas.html#service-endpoints

Amazon EMR Amazon EMR on EKS Development Guide

• emr-5.33.0-latest

• emr-5.33.0-20240321

• emr-5.33.0-20221219

• emr-5.33.0-20220802

• emr-5.33.0-20211008

• emr-5.33.0-20210802

• emr-5.33.0-20210615

• emr-5.33.0-20210323

Release notes for Amazon EMR 5.33.0

• New feature ‐ Beginning with Amazon EMR 5.33.0 in the 5.x release series, Amazon EMR on EKS
supports Spark’s pod template feature. For more information, see Using pod templates.

• Supported applications ‐ Spark 2.4.7-amzn-1, Jupyter Enterprise Gateway (endpoints, public
preview; Scala kernel is not supported).

• Supported components ‐ aws-hm-client (Glue connector), aws-sagemaker-spark-sdk,
emr-s3-select, emrfs, emr-ddb, hudi-spark.

• Supported configuration classifications:

Classifications Descriptions

core-site Change values in Hadoop’s core-site.xml file.

emrfs-site Change EMRFS settings.

spark-metrics Change values in Spark's metrics.properties
file.

spark-defaults Change values in Spark's spark-defaults.conf
file.

spark-env Change values in the Spark environment.

spark-hive-site Change values in Spark's hive-site.xml file.

spark-log4j Change values in Spark's log4j.properties file.

5.33.0 releases 426

Amazon EMR Amazon EMR on EKS Development Guide

Configuration classifications allow you to customize applications. These often correspond to a
configuration XML file for the application, such as spark-hive-site.xml. For more information, see
Configuring Applications.

emr-5.33.0-latest

Release notes: emr-5.33.0-latest currently points to emr-5.33.0-20240321.

Regions: emr-5.33.0-latest is available in all Regions supported by Amazon EMR on EKS. For
more information, see Amazon EMR on EKS service endpoints.

Container image tag: emr-5.33.0:latest

emr-5.33.0-20240321

Release notes: emr-5.33.0-20240321 was released on March 11, 2024. Compared to the
previous release, this release has been refreshed with the recently updated Amazon Linux packages
and critical fixes.

Regions: emr-5.33.0-20240321 is available in all Regions supported by Amazon EMR on EKS.
For more information, see Amazon EMR on EKS service endpoints.

Container image tag: emr-5.33.0:20240321

emr-5.33.0-20221219

Release notes: emr-5.33.0-20221219 was released on Jan 19, 2023. Compared to the previous
version, this version has been refreshed with the recently updated Amazon Linux packages and
critical fixes.

Regions: emr-5.33.0-20221219 is available in all Regions supported by Amazon EMR on EKS.
For more information, see Amazon EMR on EKS service endpoints.

Container image tag: emr-5.33.0:20221219

emr-5.33.0-20220802

Release notes: emr-5.33.0-20220802 was released on Aug 24, 2022. Compared to the previous
version, this version has been refreshed with the recently updated Amazon Linux packages.

emr-5.33.0-latest 427

https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-configure-apps.html
https://docs.aws.amazon.com/emr/latest/EMR-on-EKS-DevelopmentGuide/service-quotas.html#service-endpoints
https://docs.aws.amazon.com/emr/latest/EMR-on-EKS-DevelopmentGuide/service-quotas.html#service-endpoints
https://docs.aws.amazon.com/emr/latest/EMR-on-EKS-DevelopmentGuide/service-quotas.html#service-endpoints

Amazon EMR Amazon EMR on EKS Development Guide

Regions: emr-5.33.0-20220802 is available in all Regions supported by Amazon EMR on EKS.
For more information, see Amazon EMR on EKS service endpoints.

Container image tag: emr-5.33.0:20220802

emr-5.33.0-20211008

Release notes: emr-5.33.0-20211008 was released on Dec 9, 2021. Compared to the previous
version, this version contains issue fixes and security updates.

Regions: emr-5.33.0-20211008 is available in all Regions supported by Amazon EMR on EKS.
For more information, see Amazon EMR on EKS service endpoints.

Container image tag: emr-5.33.0:20211008

emr-5.33.0-20210802

Release notes: emr-5.33.0-20210802 was released on Aug 2, 2021. Compared to the previous
version, this version contains issue fixes and security updates.

Regions: emr-5.33.0-20210802 is available in all Regions supported by Amazon EMR on EKS.
For more information, see Amazon EMR on EKS service endpoints.

Container image tag: emr-5.33.0:20210802

emr-5.33.0-20210615

Release notes: emr-5.33.0-20210615 was released on June 15, 2021. Compared to the previous
version, this version contains issue fixes and security updates.

Regions: emr-5.33.0-20210615 is available in all Regions supported by Amazon EMR on EKS.
For more information, see Amazon EMR on EKS service endpoints.

Container image tag: emr-5.33.0:20210615

emr-5.33.0-20210323

Release notes: emr-5.33.0-20210323 was released on March 23, 2021. This is the initial release
of Amazon EMR 5.33.0.

emr-5.33.0-20211008 428

https://docs.aws.amazon.com/emr/latest/EMR-on-EKS-DevelopmentGuide/service-quotas.html#service-endpoints
https://docs.aws.amazon.com/emr/latest/EMR-on-EKS-DevelopmentGuide/service-quotas.html#service-endpoints
https://docs.aws.amazon.com/emr/latest/EMR-on-EKS-DevelopmentGuide/service-quotas.html#service-endpoints
https://docs.aws.amazon.com/emr/latest/EMR-on-EKS-DevelopmentGuide/service-quotas.html#service-endpoints

Amazon EMR Amazon EMR on EKS Development Guide

Regions: emr-5.33.0-20210323 is available in all Regions supported by Amazon EMR on EKS.
For more information, see Amazon EMR on EKS service endpoints.

Container image tag: emr-5.33.0-20210323

Amazon EMR on EKS 5.32.0 releases

The following Amazon EMR 5.32.0 releases are available for Amazon EMR on EKS. Select a specific
emr-5.32.0-XXXX release to view more details such as the related container image tag.

• emr-5.32.0-latest

• emr-5.32.0-20240321

• emr-5.32.0-20220802

• emr-5.32.0-20211008

• emr-5.32.0-20210802

• emr-5.32.0-20210615

• emr-5.32.0-20210129

• emr-5.32.0-20201218

• emr-5.32.0-20201201

Release notes for Amazon EMR 5.32.0

• Supported applications ‐ Spark 2.4.7-amzn-0, Jupyter Enterprise Gateway (endpoints, public
preview; Scala kernel is not supported).

• Supported components ‐ aws-hm-client (Glue connector), aws-sagemaker-spark-sdk,
emr-s3-select, emrfs, emr-ddb, hudi-spark.

• Supported configuration classifications:

Classifications Descriptions

core-site Change values in Hadoop’s core-site.xml file.

emrfs-site Change EMRFS settings.

spark-metrics Change values in Spark's metrics.properties
file.

5.32.0 releases 429

https://docs.aws.amazon.com/emr/latest/EMR-on-EKS-DevelopmentGuide/service-quotas.html#service-endpoints

Amazon EMR Amazon EMR on EKS Development Guide

Classifications Descriptions

spark-defaults Change values in Spark's spark-defaults.conf
file.

spark-env Change values in the Spark environment.

spark-hive-site Change values in Spark's hive-site.xml file.

spark-log4j Change values in Spark's log4j.properties file.

Configuration classifications allow you to customize applications. These often correspond to a
configuration XML file for the application, such as spark-hive-site.xml. For more information, see
Configuring Applications.

emr-5.32.0-latest

Release notes: emr-5.32.0-latest currently points to emr-5.32.0-20240321.

Regions: emr-5.32.0-latest is available in all Regions supported by Amazon EMR on EKS. For
more information, see Amazon EMR on EKS service endpoints.

Container image tag: emr-5.32.0:latest

emr-5.32.0-20240321

Release notes: emr-5.32.0-20240321 was released on March 11, 2024. Compared to the
previous release, this release has been refreshed with the recently updated Amazon Linux packages
and critical fixes.

Regions: emr-5.32.0-20240321 is available in all Regions supported by Amazon EMR on EKS.
For more information, see Amazon EMR on EKS service endpoints.

Container image tag: emr-5.32.0:20240321

emr-5.32.0-20220802

Release notes: emr-5.32.0-20220802 was released on Aug 24, 2022. Compared to the previous
version, this version has been refreshed with the recently updated Amazon Linux packages.

emr-5.32.0-latest 430

https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-configure-apps.html
https://docs.aws.amazon.com/emr/latest/EMR-on-EKS-DevelopmentGuide/service-quotas.html#service-endpoints
https://docs.aws.amazon.com/emr/latest/EMR-on-EKS-DevelopmentGuide/service-quotas.html#service-endpoints

Amazon EMR Amazon EMR on EKS Development Guide

Regions: emr-5.32.0-20220802 is available in all Regions supported by Amazon EMR on EKS.
For more information, see Amazon EMR on EKS service endpoints.

Container image tag: emr-5.32.0:20220802

emr-5.32.0-20211008

Release notes: emr-5.32.0-20211008 was released on Dec 9, 2021. Compared to the previous
version, this version contains issue fixes and security updates.

Regions: emr-5.32.0-20211008 is available in the following Regions: US East (N. Virginia), US
West (Oregon), Asia Pacific (Tokyo), Europe (Ireland), South America (Sao Paulo).

Container image tag: emr-5.32.0:20211008

emr-5.32.0-20210802

Release notes: emr-5.32.0-20210802 was released on Aug 2, 2021. Compared to the previous
version, this version contains issue fixes and security updates.

Regions: emr-5.32.0-20210802 is available in the following Regions: US East (N. Virginia), US
West (Oregon), Asia Pacific (Tokyo), Europe (Ireland), South America (Sao Paulo).

Container image tag: emr-5.32.0:20210802

emr-5.32.0-20210615

Release notes: emr-5.32.0-20210615 was released on June 15, 2021. Compared to the previous
version, this version contains issue fixes and security updates.

Regions: emr-5.32.0-20210615 is available in the following Regions: US East (N. Virginia), US
West (Oregon), Asia Pacific (Tokyo), Europe (Ireland), South America (Sao Paulo).

Container image tag: emr-5.32.0:20210615

emr-5.32.0-20210129

Release notes: emr-5.32.0-20210129 was released on January 29, 2021. Compared to
emr-5.32.0-20201218, this version contains issue fixes and security updates.

Regions: emr-5.32.0-20210129 is available in the following Regions: US East (N. Virginia), US
West (Oregon), Asia Pacific (Tokyo), Europe (Ireland), South America (Sao Paulo).

emr-5.32.0-20211008 431

https://docs.aws.amazon.com/emr/latest/EMR-on-EKS-DevelopmentGuide/service-quotas.html#service-endpoints

Amazon EMR Amazon EMR on EKS Development Guide

Container image tag: emr-5.32.0-20210129

emr-5.32.0-20201218

Release notes: 5.32.0-20201218 was released on December 18, 2020. Compared to
5.32.0-20201201, this version contains issue fixes and security updates.

Regions: emr-5.32.0-20201218 is available in the following Regions: US East (N. Virginia), US
West (Oregon), Asia Pacific (Tokyo), Europe (Ireland), South America (Sao Paulo).

Container image tag: emr-5.32.0-20201218

emr-5.32.0-20201201

Release notes: 5.32.0-20201201 was released on December 1, 2020. This is the initial release of
Amazon EMR 5.32.0.

Regions: 5.32.0-20201201d is available in the following Regions: US East (N. Virginia), US West
(Oregon), Asia Pacific (Tokyo), Europe (Ireland), South America (Sao Paulo).

Container image tag: emr-5.32.0-20201201

emr-5.32.0-20201218 432

Amazon EMR Amazon EMR on EKS Development Guide

Document history

The following table describes the important changes to the documentation since the last release
of Amazon EMR on EKS. For more information about updates to this documentation, you can
subscribe to an RSS feed.

Change Description Date

New release Amazon EMR on EKS 7.2.0 releases July 25, 2024

New release Amazon EMR on EKS 7.1.0 releases April 17, 2024

New release Amazon EMR on EKS 7.0.0 releases December 22, 2023

New release Amazon EMR on EKS 6.15.0 releases November 17, 2023

New release Amazon EMR on EKS 6.14.0 releases October 17, 2023

Update content Rename "managed endpoints" to
interactive endpoints; Interactive
endpoints general availability

September 29, 2023

New release Amazon EMR on EKS 6.13.0 releases,
and public preview docs for Running
Flink jobs with Amazon EMR on EKS

September 12, 2023

New release Amazon EMR on EKS 6.12.0 releases July 21, 2023

New content Added Using Volcano as a custom
scheduler for Apache Spark on Amazon
EMR on EKS

June 13, 2023

New content Added Using Volcano as a custom
scheduler for Apache Spark on Amazon
EMR on EKS

June 13, 2023

New content Added Using Spark container log
rotation

June 12, 2023

433

Amazon EMR Amazon EMR on EKS Development Guide

Change Description Date

Update content Updated the custom image documenta
tion for finding base image information
in the Amazon ECR Public Gallery.

June 8, 2023

New release Amazon EMR on EKS 6.11.0 releases June 8, 2023

New content Added Running Spark jobs with the
Spark operator and re-organized the
Job Runs sections under Running jobs
with Amazon EMR on EKS.

June 5, 2023

New content Added two sections: Using vertical
autoscaling with Amazon EMR Spark
jobs and Using self-hosted Jupyter
notebooks

May 4, 2023

Document history page Created a document history page for
Amazon EMR on EKS.

March 13, 2023

Managed policies page Created a managed policies page for
Amazon EMR on EKS.

March 13, 2023

434

	Amazon EMR
	Table of Contents
	What is Amazon EMR on EKS?
	Architecture
	Concepts
	Kubernetes namespace
	Virtual cluster
	Job run
	Amazon EMR containers

	How the components work together

	Getting started
	Run a Spark application

	Links to the Amazon EMR on EKS best practices guides on GitHub
	Security
	Pyspark job submission
	Storage
	Metastore integration
	Debugging
	Troubleshooting Amazon EMR on EKS issues
	Node placement
	Performance
	Cost optimization
	Using AWS Outposts

	Customizing Docker images for Amazon EMR on EKS
	How to customize Docker images
	Prerequisites
	Step 1: Retrieve a base image from Amazon Elastic Container Registry (Amazon ECR)
	Step 2: Customize a base image
	Step 3: (Optional but recommended) Validate a custom image
	Step 4: Publish a custom image
	Step 5: Submit a Spark workload in Amazon EMR using a custom image
	Customize Docker images for interactive endpoints
	Work with multi-architecture images

	How to select a base image URI
	Amazon ECR registry accounts by Region

	Considerations

	Running Flink jobs with Amazon EMR on EKS
	Flink Kubernetes operator
	Setting up the Flink Kubernetes operator for Amazon EMR on EKS
	Getting started with the Flink Kubernetes operator for Amazon EMR on EKS
	Installing the operator

	Running a Flink application
	Security
	RBAC
	Operator role
	Job role

	Uninstalling the Flink Kubernetes operator for Amazon EMR on EKS

	Native Kubernetes
	Setting up Flink Native Kubernetes for Amazon EMR on EKS
	Getting started with Flink native Kubernetes for Amazon EMR on EKS
	Run a Flink application

	Flink JobManager service account security requirements for Native Kubernetes

	Customizing Docker images for Amazon EMR on EKS with Apache Flink
	Customizing Docker images for Flink and FluentD
	Prerequisites
	Step 1: Retrieve a base image from Amazon Elastic Container Registry
	Step 2: Customize a base image
	Step 3: Publish your custom image
	Step 4: Submit a Flink workload in Amazon EMR using a custom image

	Monitoring Flink Kubernetes operator and Flink jobs
	Using Amazon Managed Service for Prometheus to monitor Flink jobs
	Using the Flink UI to monitor Flink jobs
	Using monitoring configuration to monitor Flink Kubernetes operator and Flink jobs
	Flink application logs
	Flink operator logs

	Job resiliency
	Using high availability (HA) for Flink Operators and Flink Applications
	Flink operator high-availability
	Flink Job Manager
	Flink job - native Kubernetes

	Optimizing Flink job restart times for task recovery and scaling operations with Amazon EMR on EKS
	Task-local recovery
	Task-local recovery by Amazon EBS volume mount
	Generic log-based incremental checkpoint
	Fine-grained recovery
	Combined restart mechanism in adaptive scheduler

	Graceful decommission of Spot Instances with Flink on Amazon EMR on EKS
	Overview
	How it works
	Prerequisites
	Configuration

	Using Autoscaler for Flink applications
	Autoscaler parameter autotuning

	Maintenance and troubleshooting
	Migrating Flink applications
	Upgrade modes

	Troubleshooting
	Troubleshooting Apache Flink on Amazon EMR on EKS
	Resource mapping not found when installing the Helm chart
	AWS service access denied error
	FlinkDeployment is stuck
	s3a AWSBadRequestException issue when running a Flink application in an opt-in AWS Region

	Supported releases for Amazon EMR on EKS with Apache Flink

	Running jobs with Amazon EMR on EKS
	Running Spark jobs with StartJobRun
	Setting up Amazon EMR on EKS
	Enable cluster access for Amazon EMR on EKS
	Enable cluster access using EKS Access Entry (recommended)
	Prerequisites
	Setup
	Concepts and terminology

	Enable cluster access using aws-auth
	Manual steps to enable cluster access for Amazon EMR on EKS

	Enable IAM Roles for Service Accounts (IRSA) on the EKS cluster
	To create an IAM OIDC identity provider for your cluster with eksctl
	To create an IAM OIDC identity provider for your cluster with the AWS Management Console

	Create a job execution role
	Update the trust policy of the job execution role
	Grant users access to Amazon EMR on EKS
	Creating a new IAM policy and attaching it to a user in the IAM console
	Permissions for managing virtual clusters
	Permissions for submitting jobs
	Permissions for debugging and monitoring

	Register the Amazon EKS cluster with Amazon EMR

	Submit a job run with StartJobRun

	Running Spark jobs with the Spark operator
	Setting up the Spark operator for Amazon EMR on EKS
	Getting started with the Spark operator for Amazon EMR on EKS
	Install the Spark operator
	Run a Spark application
	Use Amazon S3 for storage

	Using vertical autoscaling with the Spark operator for Amazon EMR on EKS
	Prerequisites
	Run a job with vertical autoscaling on the Spark operator
	Verifying the vertical autoscaling functionality

	Uninstalling the Spark operator for Amazon EMR on EKS
	Security and the Spark operator with Amazon EMR on EKS
	Setting up cluster access permissions with role-based access control (RBAC)
	Operator service account and role
	Spark service account and role

	Setting up cluster access permissions with IAM roles for service accounts (IRSA)
	Prerequisites
	Configure a Kubernetes service account to assume an IAM role
	Running an application from the Spark operator

	Running Spark jobs with spark-submit
	Setting up spark-submit for Amazon EMR on EKS
	Getting started with spark-submit for Amazon EMR on EKS
	Run a Spark application

	Spark driver service account security requirements for spark-submit
	Setting up IAM roles for service accounts (IRSA) for spark-submit
	Prerequisites
	Configuring a Kubernetes service account to assume an IAM role
	Running the Spark application
	Cleanup

	Using Apache Livy with Amazon EMR on EKS
	Setting up Apache Livy for Amazon EMR on EKS
	Getting started with Apache Livy on Amazon EMR on EKS
	Running a Spark application with Apache Livy for Amazon EMR on EKS
	Running batch sessions
	Running interactive sessions
	Monitoring Spark applications

	Uninstalling Apache Livy with Amazon EMR on EKS
	Security for Apache Livy with Amazon EMR on EKS
	Setting up a secure Apache Livy endpoint with TLS/SSL
	Setting up TLS and SSL encryption
	Setting up a JKS certificate with a key and a keystore password for AWS Secrets Manager

	Getting started with SSL-enabled Apache Livy

	Setting up the Apache Livy and Spark application permissions with role-based access control (RBAC)
	Setting up access permissions with IAM roles for service accounts (IRSA)
	Setting up IRSA while installing Apache Livy (for server service account)
	Mapping IRSA to a Spark service account

	Installation properties for Apache Livy on Amazon EMR on EKS releases
	Amazon EMR 7.1.0 installation properties

	Troubleshooting

	Managing Amazon EMR on EKS job runs
	Managing job runs with the AWS CLI
	Options for configuring a job run
	Configure a job run to use Amazon S3 logs
	Configure a job run to use Amazon CloudWatch Logs
	List job runs
	Describe a job run
	Cancel a job run

	Running Spark SQL scripts through the StartJobRun API
	Job run states
	Viewing jobs in the Amazon EMR console
	Common errors when running jobs

	Using job submitter classification
	Overview
	Job submitter classification examples
	StartJobRun request with On-Demand node placement for the job submitter pod
	StartJobRun request with single-AZ node placement for the job submitter pod
	StartJobRun request with single-AZ and Amazon EC2 instance type placement for the job submitter pod

	Using job templates
	Creating and using a job template to start a job run
	Defining job template parameters
	Controlling access to job templates

	Using pod templates
	Common scenarios
	Enabling pod templates with Amazon EMR on EKS
	Pod template fields
	Sidecar container considerations

	Using job retry policies
	Setting a retry policy for a job
	Retry policy configuration values

	Retrieving a retry policy status for a job
	Monitoring a job with a retry policy
	Finding logs for drivers and executors

	Using Spark event log rotation
	Using Spark container log rotation
	Using vertical autoscaling with Amazon EMR Spark jobs
	Setting up vertical autoscaling for Amazon EMR on EKS
	Prerequisites
	Install the Operator Lifecycle Manager (OLM) on your Amazon EKS cluster
	Install the Amazon EMR on EKS vertical autoscaling operator

	Getting started with vertical autoscaling for Amazon EMR on EKS
	Submitting a Spark job with vertical autoscaling
	Verifying the vertical autoscaling functionality

	Configuring vertical autoscaling for Amazon EMR on EKS
	Required parameters
	Optional parameters
	Vertical autoscaling modes
	Resource scaling
	Resource minimums and maximums (Bounds)

	Monitoring vertical autoscaling for Amazon EMR on EKS
	List the vertical autoscaling recommendations for your cluster
	Query and delete the vertical autoscaling recommendations for your cluster

	Uninstall the Amazon EMR on EKS vertical autoscaling operator

	Running interactive workloads on Amazon EMR on EKS
	Overview of interactive endpoints
	Prerequisites to create an interactive endpoint on Amazon EMR on EKS
	AWS CLI
	Installing eksctl
	Amazon EKS cluster
	Grant Cluster access for Amazon EMR on EKS
	Activate IRSA on the Amazon EKS cluster
	Create IAM job execution role
	Grant users access to Amazon EMR on EKS
	Register the Amazon EKS cluster with Amazon EMR
	Deploy AWS Load Balancer Controller to Amazon EKS cluster

	Creating an interactive endpoint for your virtual cluster
	Create an interactive endpoint with the create-managed-endpoint command
	Create an interactive endpoint with specified parameters in a JSON file
	Output of create interactive endpoint
	Parameters for creating an interactive endpoint
	Required parameters for interactive endpoints
	Optional parameters for interactive endpoints

	Configuring settings for interactive endpoints
	Monitoring Spark jobs
	Specifying custom pod templates with interactive endpoints
	Deploying a JEG pod to a node group
	Associating a JEG pod to a managed node group
	Associating a JEG pod to a self-managed node group
	Associating a JEG pod to a managed node group with On-Demand instances

	Jupyter Enterprise Gateway (JEG) configuration options
	Modifying PySpark session parameters
	Custom kernel image with interactive endpoint

	Monitoring interactive endpoints
	Examples
	To access the total number of kernels launched for an interactive endpoint on a given day:
	To access the number of kernel failures for an interactive endpoint on a given day:

	Using self-hosted Jupyter notebooks
	Create a security group
	Create an Amazon EMR on EKS interactive endpoint
	Retrieve the gateway server URL of your interactive endpoint
	Retrieve an auth token to connect to the interactive endpoint
	Example: Deploy a JupyterLab notebook
	Delete a self-hosted Jupyter notebook

	Other operations on an interactive endpoint
	Fetch interactive endpoint details
	List all interactive endpoints associated with a virtual cluster
	Delete an interactive endpoint

	Uploading data into Amazon S3 Express One Zone with Amazon EMR on EKS
	Prerequisites
	Getting started with S3 Express One Zone

	Monitoring jobs
	Monitor jobs with Amazon CloudWatch Events
	Automate Amazon EMR on EKS with CloudWatch Events
	Example: Set up a rule that invokes Lambda
	Monitor job’s driver pod with a retry policy using Amazon CloudWatch Events

	Managing virtual clusters
	Create a virtual cluster
	List virtual clusters
	Describe a virtual cluster
	Delete a virtual cluster
	Virtual cluster states

	Tutorials for Amazon EMR on EKS
	Using Delta Lake with Amazon EMR on EKS
	Using Apache Iceberg with Amazon EMR on EKS
	Using PyFlink
	Using AWS Glue with Flink
	Using Apache Hudi with Apache Flink
	Submit an Apache Hudi job

	Using RAPIDS Accelerator for Apache Spark with Amazon EMR on EKS
	Using Amazon Redshift integration for Apache Spark on Amazon EMR on EKS
	Launching a Spark application using the Amazon Redshift integration for Apache Spark
	Authenticating with the Amazon Redshift integration for Apache Spark
	Use AWS Secrets Manager to retrieve credentials and connect to Amazon Redshift
	Use IAM based authentication with Amazon EMR on EKS job execution role
	Authenticate to Amazon Redshift with a JDBC driver

	Reading and writing from and to Amazon Redshift
	Considerations and limitations when using the Spark connector

	Using Volcano as a custom scheduler for Apache Spark on Amazon EMR on EKS
	Overview
	Install and set up Volcano
	Run a Spark application with Volcano scheduler with the Spark operator
	Run a Spark application with Volcano scheduler with spark-submit

	Using YuniKorn as a custom scheduler for Apache Spark on Amazon EMR on EKS
	Overview
	Create your cluster and get set up for YuniKorn
	Install and set up YuniKorn
	Run a Spark application with YuniKorn scheduler with the Spark operator
	Run a Spark application with YuniKorn scheduler with spark-submit

	Security in Amazon EMR on EKS
	Amazon EMR on EKS security best practices
	Apply principle of least privilege
	Access control list for endpoints
	Get the latest security updates for custom images
	Limit pod credential access
	Isolate untrusted application code
	Role-based access control (RBAC) permissions
	Restrict access to nodegroup IAM role or instance profile credentials

	Data protection
	Encryption at rest
	Encryption at rest for EMRFS data in Amazon S3
	Amazon S3 server-side encryption
	Amazon S3 client-side encryption
	Local disk encryption
	Key management

	Encryption in transit

	Identity and Access Management
	Audience
	Authenticating with identities
	AWS account root user
	Federated identity
	IAM users and groups
	IAM roles

	Managing access using policies
	Identity-based policies
	Resource-based policies
	Access control lists (ACLs)
	Other policy types
	Multiple policy types

	How Amazon EMR on EKS works with IAM
	Identity-based policies for Amazon EMR on EKS
	Identity-based policy examples for Amazon EMR on EKS

	Resource-based policies within Amazon EMR on EKS
	Policy actions for Amazon EMR on EKS
	Policy resources for Amazon EMR on EKS
	Policy condition keys for Amazon EMR on EKS
	Access control lists (ACLs) in Amazon EMR on EKS
	Attribute-based access control (ABAC) with Amazon EMR on EKS
	Using Temporary credentials with Amazon EMR on EKS
	Cross-service principal permissions for Amazon EMR on EKS
	Service roles for Amazon EMR on EKS
	Service-linked roles for Amazon EMR on EKS

	Using service-linked roles for Amazon EMR on EKS
	Service-linked role permissions for Amazon EMR on EKS
	Creating a service-linked role for Amazon EMR on EKS
	Editing a service-linked role for Amazon EMR on EKS
	Deleting a service-linked role for Amazon EMR on EKS
	Supported Regions for Amazon EMR on EKS service-linked roles

	Managed policies for Amazon EMR on EKS
	Using job execution roles with Amazon EMR on EKS
	Identity-based policy examples for Amazon EMR on EKS
	Policy best practices
	Using the Amazon EMR on EKS console
	Allow users to view their own permissions

	Policies for tag-based access control
	Allow actions only on resources with specific tag values
	Require tagging when a resource is created
	Deny access to add and remove tags

	Troubleshooting Amazon EMR on EKS identity and access
	I am not authorized to perform an action in Amazon EMR on EKS
	I am not authorized to perform iam:PassRole
	I want to allow people outside of my AWS account to access my Amazon EMR on EKS resources

	Logging and monitoring
	Logging Amazon EMR on EKS API calls using AWS CloudTrail
	Amazon EMR on EKS information in CloudTrail
	Understanding Amazon EMR on EKS log file entries

	Using Amazon S3 Access Grants with Amazon EMR on EKS
	S3 Access Grants overview for Amazon EMR on EKS
	Launch an Amazon EMR on EKS cluster with S3 Access Grants for data management
	S3 Access Grants considerations with Amazon EMR on EKS

	Compliance validation for Amazon EMR on EKS
	Resilience in Amazon EMR on EKS
	Infrastructure security in Amazon EMR on EKS
	Configuration and vulnerability analysis
	Connect to Amazon EMR on EKS Using an interface VPC endpoint
	Create a VPC Endpoint Policy for Amazon EMR on EKS

	Set up cross-account access for Amazon EMR on EKS
	Prerequisites
	How to access a cross-account Amazon S3 bucket or DynamoDB table

	Tagging your Amazon EMR on EKS resources
	Tag basics
	Tag your resources
	Tag restrictions
	Work with tags using the AWS CLI and the Amazon EMR on EKS API

	Troubleshooting for Amazon EMR on EKS
	Troubleshooting jobs that use PersistentVolumeClaims (PVC)
	Verification
	Patch
	Manual patch

	Troubleshooting Amazon EMR on EKS vertical autoscaling
	403 Forbidden error
	Kubernetes namespace not found
	Error saving Docker credentials

	Troubleshooting Amazon EMR on EKS Spark operator
	Error on Helm chart installation
	UnsupportedFileSystemException: No FileSystem for scheme "s3"

	Amazon EMR on EKS service endpoints and quotas
	Service endpoints
	Service quotas

	Amazon EMR on EKS releases
	Amazon EMR on EKS 7.2.0 releases
	Amazon EMR on EKS 7.2 releases
	Release notes
	Notable features
	emr-7.2.0-latest
	emr-7.2.0-20240610
	emr-7.2.0-flink-latest
	emr-7.2.0-flink-20240610

	Amazon EMR on EKS 7.1.0 releases
	Amazon EMR on EKS 7.1 releases
	Release notes
	Notable features
	emr-7.1.0-latest
	emr-7.1.0-20240321
	emr-7.1.0-flink-latest
	emr-7.1.0-flink-20240321

	Amazon EMR on EKS 7.0.0 releases
	Amazon EMR on EKS 7.0 releases
	Release notes
	Notable features
	Changes
	emr-7.0.0-latest
	emr-7.0.0-2024321
	emr-7.0.0-20231211
	emr-7.0.0-flink-latest
	emr-7.0.0-flink-2024321
	emr-7.0.0-flink-20231211

	Amazon EMR on EKS 6.15.0 releases
	Amazon EMR on EKS 6.15 releases
	Release notes
	Notable features
	emr-6.15.0-latest
	emr-6.15.0-20240105
	emr-6.15.0-20231109
	emr-6.15.0-flink-latest
	emr-6.15.0-flink-20240105
	emr-6.15.0-flink-20231109

	Amazon EMR on EKS 6.14.0 releases
	Amazon EMR on EKS 6.14 releases
	Release notes
	Notable features
	emr-6.14.0-latest
	emr-6.14.0-20231005

	Amazon EMR on EKS 6.13.0 releases
	Amazon EMR on EKS 6.13 releases
	Release notes
	Notable features
	emr-6.13.0-latest
	emr-6.13.0-20230814

	Amazon EMR on EKS 6.12.0 releases
	Amazon EMR on EKS 6.12 releases
	Release notes
	Notable features
	emr-6.12.0-latest
	emr-6.12.0-20240321
	emr-6.12.0-20230701

	Amazon EMR on EKS 6.11.0 releases
	Amazon EMR on EKS 6.11 releases
	Release notes
	Notable features
	emr-6.11.0-latest
	emr-6.11.0-20230905
	emr-6.11.0-20230509

	Amazon EMR on EKS 6.10.0 releases
	emr-6.10.0-latest
	emr-6.10.0-20230905
	emr-6.10.0-20230624
	emr-6.10.0-20230421
	emr-6.10.0-20230403
	emr-6.10.0-20230220

	Amazon EMR on EKS 6.9.0 releases
	emr-6.9.0-latest
	emr-6.9.0-20230905
	emr-6.9.0-20230624
	emr-6.9.0-20221108

	Amazon EMR on EKS 6.8.0 releases
	emr-6.8.0-latest
	emr-6.8.0-20230905
	emr-6.8.0-20230624
	emr-6.8.0-20221219
	emr-6.8.0-20220802

	Amazon EMR on EKS 6.7.0 releases
	emr-6.7.0-latest
	emr-6.7.0-20240321
	emr-6.7.0-20230624
	emr-6.7.0-20221219
	emr-6.7.0-20220630

	Amazon EMR on EKS 6.6.0 releases
	emr-6.6.0-latest
	emr-6.6.0-20240321
	emr-6.6.0-20230624
	emr-6.6.0-20221219
	emr-6.6.0-20220411

	Amazon EMR on EKS 6.5.0 releases
	emr-6.5.0-latest
	emr-6.5.0-20240321
	emr-6.5.0-20221219
	emr-6.5.0-20220802
	emr-6.5.0-20211119

	Amazon EMR on EKS 6.4.0 releases
	emr-6.4.0-latest
	emr-6.4.0-20240321
	emr-6.4.0-20221219
	emr-6.4.0-20210830

	Amazon EMR on EKS 6.3.0 releases
	emr-6.3.0-latest
	emr-6.3.0-20240321
	emr-6.3.0-20220802
	emr-6.3.0-20211008
	emr-6.3.0-20210802
	emr-6.3.0-20210429

	Amazon EMR on EKS 6.2.0 releases
	emr-6.2.0-latest
	emr-6.2.0-20240321
	emr-6.2.0-20220802
	emr-6.2.0-20211008
	emr-6.2.0-20210802
	emr-6.2.0-20210615
	emr-6.2.0-20210129
	emr-6.2.0-20201218
	emr-6.2.0-20201201

	Amazon EMR on EKS 5.36.0 releases
	emr-5.36.0-latest
	emr-5.36.0-20240321
	emr-5.36.0-20221219
	emr-5.36.0-20220620
	emr-5.36.0-20220525

	Amazon EMR on EKS 5.35.0 releases
	emr-5.35.0-latest
	emr-5.35.0-20240321
	emr-5.35.0-20221219
	emr-5.35.0-20220802
	emr-5.35.0-20220307

	Amazon EMR on EKS 5.34.0 releases
	emr-5.34.0-latest
	emr-5.34.0-20240321
	emr-5.34.0-20220802
	emr-5.34.0-20211208

	Amazon EMR on EKS 5.33.0 releases
	emr-5.33.0-latest
	emr-5.33.0-20240321
	emr-5.33.0-20221219
	emr-5.33.0-20220802
	emr-5.33.0-20211008
	emr-5.33.0-20210802
	emr-5.33.0-20210615
	emr-5.33.0-20210323

	Amazon EMR on EKS 5.32.0 releases
	emr-5.32.0-latest
	emr-5.32.0-20240321
	emr-5.32.0-20220802
	emr-5.32.0-20211008
	emr-5.32.0-20210802
	emr-5.32.0-20210615
	emr-5.32.0-20210129
	emr-5.32.0-20201218
	emr-5.32.0-20201201

	Document history

