
User Guide for Aurora

Amazon Aurora

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon Aurora User Guide for Aurora

Amazon Aurora: User Guide for Aurora

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service
that is not Amazon's, in any manner that is likely to cause confusion among customers, or in any
manner that disparages or discredits Amazon. All other trademarks not owned by Amazon are
the property of their respective owners, who may or may not be affiliated with, connected to, or
sponsored by Amazon.

Amazon Aurora User Guide for Aurora

Table of Contents

What is Aurora? ... 1
Amazon RDS shared responsibility model .. 2
How Amazon Aurora works with Amazon RDS .. 2
Aurora DB clusters .. 3
Aurora versions ... 5

Relational databases that are available on Aurora .. 5
Differences in version numbers between community databases and Aurora 6
Amazon Aurora major versions .. 7
Amazon Aurora minor versions .. 7
Amazon Aurora patch versions .. 8
Learning what's new in each Amazon Aurora version ... 8
Specifying the Amazon Aurora database version for your database cluster 8
Default Amazon Aurora versions ... 8
Automatic minor version upgrades ... 8
How long Amazon Aurora major versions remain available .. 9
How often Amazon Aurora minor versions are released .. 9
How long Amazon Aurora minor versions remain available .. 9
Long-term support for selected Amazon Aurora minor versions ... 10
Amazon RDS Extended Support for selected Aurora versions .. 11
Manually controlling if and when your database cluster is upgraded to new versions 11
Required Amazon Aurora upgrades .. 12
Testing your DB cluster with a new Aurora version before upgrading 12

Regions and Availability Zones ... 13
AWS Regions .. 14
Availability Zones .. 22
Local time zone for DB clusters .. 23

Supported Aurora features by Region and engine ... 29
Table conventions ... 30
Blue/Green Deployments .. 30
Aurora cluster configurations ... 31
Database activity streams ... 31
Exporting cluster data to Amazon S3 .. 40
Exporting snapshot data to Amazon S3 .. 41
Aurora global databases ... 42

iii

Amazon Aurora User Guide for Aurora

IAM database authentication ... 51
Kerberos authentication .. 52
Aurora machine learning ... 57
Performance Insights ... 64
Zero-ETL integrations .. 72
RDS Proxy ... 75
Secrets Manager integration .. 84
Aurora Serverless v2 .. 84
Aurora Serverless v1 .. 89
RDS Data API ... 93
Zero-downtime patching (ZDP) ... 100
Engine-native features .. 101

Aurora connection management .. 101
Types of Aurora endpoints ... 102
Viewing endpoints .. 105
Using the cluster endpoint ... 105
Using the reader endpoint ... 106
Using custom endpoints ... 106
Creating a custom endpoint .. 110
Viewing custom endpoints ... 112
Editing a custom endpoint ... 115
Deleting a custom endpoint .. 117
End-to-end AWS CLI example for custom endpoints ... 118
Using the instance endpoints .. 124
Endpoints and high availability ... 125

DB instance classes .. 126
DB instance class types ... 126
Supported DB engines .. 129
Determining DB instance class support in AWS Regions ... 136
Hardware specifications .. 140

Aurora storage and reliability ... 145
Overview of Aurora storage ... 145
Cluster volume contents ... 146
Aurora cluster storage configurations .. 146
How storage resizes ... 147
Data billing .. 148

iv

Amazon Aurora User Guide for Aurora

Reliability .. 149
Aurora security ... 151

Using SSL with Aurora DB clusters ... 152
High availability for Amazon Aurora ... 153

High availability for Aurora data .. 153
High availability for Aurora DB instances .. 153
High availability across AWS Regions with Aurora global databases 154
Fault tolerance .. 154
High availability with Amazon RDS Proxy ... 156

Replication with Aurora .. 157
Aurora Replicas ... 157
Aurora MySQL ... 159
Aurora PostgreSQL ... 160

DB instance billing for Aurora .. 160
On-Demand DB instances ... 162
Reserved DB instances ... 163

Setting up your environment ... 178
Sign up for an AWS account ... 178
Create a user with administrative access .. 179
Grant programmatic access ... 180
Determine requirements ... 181
Provide access to the DB cluster .. 183

Getting started .. 186
Creating and connecting to an Aurora MySQL DB cluster .. 186

Prerequisites .. 188
Step 1: Create an EC2 instance ... 188
Step 2: Create an Aurora MySQL DB cluster .. 194
(Optional) Create VPC, EC2 instance, and Aurora MySQL cluster using AWS
CloudFormation .. 199
Step 3: Connect to an Aurora MySQL DB cluster .. 201
Step 4: Delete the EC2 instance and DB cluster .. 204
(Optional) Delete the EC2 instance and DB cluster created with CloudFormation 205
(Optional) Connect your DB cluster to a Lambda function ... 205

Creating and connecting to an Aurora PostgreSQL DB cluster .. 206
Prerequisites .. 207
Step 1: Create an EC2 instance ... 208

v

Amazon Aurora User Guide for Aurora

Step 2: Create an Aurora PostgreSQL DB cluster .. 214
(Optional) Create VPC, EC2 instance, and Aurora PostgreSQL cluster using AWS
CloudFormation .. 219
Step 3: Connect to an Aurora PostgreSQL DB cluster .. 221
Step 4: Delete the EC2 instance and DB cluster .. 224
(Optional) Delete the EC2 instance and DB cluster created with CloudFormation 225
(Optional) Connect your DB cluster to a Lambda function ... 225

Tutorial: Create a web server and an Amazon Aurora DB cluster .. 226
Launch an EC2 instance .. 227
Create a DB cluster .. 233
Install a web server .. 244

Tutorials and sample code .. 257
Tutorials in this guide ... 257
Tutorials in other AWS guides .. 258
AWS workshop and lab content portal for Amazon Aurora PostgreSQL 259
AWS workshop and lab content portal for Amazon Aurora MySQL .. 260
Tutorials and sample code in GitHub .. 261
Working with AWS SDKs .. 262

Configuring your Aurora DB cluster ... 264
Creating a DB cluster .. 265

Prerequisites .. 266
Creating a DB cluster ... 272
Available settings ... 282
Settings that don't apply to Aurora for DB clusters ... 303
Settings that don't apply to Aurora DB instances ... 304

Creating resources with AWS CloudFormation .. 307
Aurora and AWS CloudFormation templates .. 307
Learn more about AWS CloudFormation ... 307

Connecting to a DB cluster ... 308
Connecting to Aurora DB clusters with the AWS drivers ... 309
Connecting to Aurora MySQL .. 310
Connecting to Aurora PostgreSQL .. 317
Troubleshooting connections ... 319

Working with parameter groups .. 320
Overview of parameter groups ... 320
Working with DB cluster parameter groups ... 324

vi

Amazon Aurora User Guide for Aurora

Working with DB parameter groups ... 343
Comparing DB parameter groups ... 359
Specifying DB parameters .. 360

Migrating data to a DB cluster ... 365
Aurora MySQL ... 365
Aurora PostgreSQL ... 365

Creating an ElastiCache cache from Amazon RDS .. 366
Overview of ElastiCache cache creation with Aurora DB cluster settings 366
Creating an ElastiCache cache with settings from an Aurora DB cluster 367

Managing an Aurora DB cluster ... 370
Stopping and starting a cluster .. 371

Overview of stopping and starting a cluster .. 371
Limitations .. 372
Stopping a DB cluster ... 373
While a DB cluster is stopped .. 374
Starting a DB cluster ... 374

Connecting an AWS compute resource ... 376
Connecting an EC2 instance ... 376
Connecting a Lambda function ... 386

Modifying an Aurora DB cluster ... 403
Modifying the DB cluster by using the console, CLI, and API .. 403
Modifying a DB instance in a DB cluster ... 405
Changing the master user password .. 408
Available settings ... 410
Settings that don't apply to Aurora DB clusters .. 446
Settings that don't apply to Aurora DB instances ... 447

Adding Aurora Replicas .. 449
Using Auto Scaling with Aurora Replicas .. 456

Managing performance and scaling .. 478
Storage scaling .. 478
Instance scaling ... 485
Read scaling ... 485
Managing connections ... 486
Managing query execution plans .. 486

Cloning a volume for an Aurora DB cluster ... 487
Overview of Aurora cloning ... 487

vii

Amazon Aurora User Guide for Aurora

Limitations of Aurora cloning .. 488
How Aurora cloning works ... 489
Creating an Aurora clone .. 493
Cross-VPC cloning .. 503
Cross-account cloning .. 522

Integrating with AWS services .. 538
Aurora MySQL ... 538
Aurora PostgreSQL ... 538

Maintaining an Aurora DB cluster .. 540
Overview of DB cluster maintenance updates ... 540
Viewing pending maintenance .. 542
Applying updates .. 544
The maintenance window ... 546
Adjusting the maintenance window for a DB cluster ... 549
Automatic minor version upgrades for Aurora DB clusters .. 550
Choosing the frequency of Aurora MySQL maintenance updates ... 554
Working with operating system updates .. 556

Rebooting an Aurora DB cluster or instance .. 560
Rebooting a DB instance within an Aurora cluster .. 561
Rebooting an Aurora cluster with read availability ... 562
Rebooting an Aurora cluster without read availability ... 564
Checking uptime for Aurora clusters and instances .. 565
Examples of Aurora reboot operations .. 568

Deleting Aurora clusters and instances ... 584
Deleting an Aurora DB cluster ... 584
Deletion protection for Aurora clusters ... 592
Deleting a stopped Aurora cluster .. 593
Deleting Aurora MySQL clusters that are read replicas .. 593
The final snapshot when deleting a cluster ... 593
Deleting a DB instance from an Aurora DB cluster ... 593

Tagging Aurora and RDS resources .. 596
Why use RDS tags? .. 596
How RDS tags work ... 597
Best practices .. 600
Managing tags in Amazon RDS ... 600
Copying tags to DB cluster snapshots ... 605

viii

Amazon Aurora User Guide for Aurora

Tutorial: Use tags to specify which Aurora DB clusters to stop .. 606
Working with ARNs ... 609

Constructing an ARN ... 609
Getting an existing ARN .. 616

Aurora updates ... 619
Identifying your Amazon Aurora version ... 619

Using RDS Extended Support ... 621
RDS Extended Support overview ... 621

RDS Extended Support charges .. 622
Versions with RDS Extended Support .. 623
Responsibilities with RDS Extended Support ... 623

Creating an Aurora DB cluster or a global cluster .. 624
RDS Extended Support behavior ... 625
Considerations for RDS Extended Support ... 625
Create an Aurora DB cluster or a global cluster with RDS Extended Support 626

Viewing RDS Extended Support enrollment .. 627
Restoring an Aurora DB cluster or a global cluster .. 630

RDS Extended Support behavior ... 631
Considerations for RDS Extended Support ... 632
Restore an Aurora DB cluster DB cluster or a global cluster with RDS Extended Support ... 632

Using Blue/Green Deployments for database updates ... 634
Overview of Amazon RDS Blue/Green Deployments ... 635

Region and version availability .. 636
Benefits ... 636
Workflow .. 636
Authorizing access .. 642
Considerations ... 643
Best practices .. 645
Limitations .. 647

Creating a blue/green deployment .. 651
Preparing for a blue/green deployment ... 652
Specifying changes ... 653
Creating a blue/green deployment .. 654
Available settings ... 656

Viewing a blue/green deployment .. 657
Switching a blue/green deployment ... 661

ix

Amazon Aurora User Guide for Aurora

Switchover timeout .. 662
Switchover guardrails .. 662
Switchover actions ... 663
Switchover best practices ... 664
Verifying CloudWatch metrics before switchover .. 665
Monitoring replica lag prior to switchover .. 666
Switching over a blue/green deployment ... 666
After switchover .. 669

Deleting a blue/green deployment .. 670
Backing up and restoring an Aurora DB cluster .. 674

Overview of backing up and restoring .. 675
Backups ... 675
Backup window ... 676
Retaining automated backups ... 679
Restoring data ... 682
Database cloning .. 683
Backtrack .. 683

Backup storage ... 684
Automated backup storage .. 684
Snapshot storage .. 684
CloudWatch metrics for backup storage ... 685
Calculating backup storage usage .. 686
FAQs ... 687

Creating a DB cluster snapshot .. 690
Determining whether the snapshot is available .. 692

Restoring from a DB cluster snapshot .. 693
Parameter groups ... 693
Security groups ... 694
Aurora considerations .. 694
Restoring from a snapshot ... 695

Copying a DB cluster snapshot ... 698
Limitations .. 698
Snapshot retention ... 699
Copying shared snapshots .. 700
Handling encryption .. 700
Incremental snapshot copying ... 700

x

Amazon Aurora User Guide for Aurora

Cross-Region copying .. 700
Parameter groups ... 701
Copying a DB cluster snapshot .. 701

Sharing a DB cluster snapshot .. 714
Sharing a snapshot .. 715
Sharing public snapshots .. 718
Sharing encrypted snapshots ... 720
Stopping snapshot sharing ... 724

Exporting DB cluster data to Amazon S3 ... 726
Limitations .. 727
Overview of exporting DB cluster data ... 728
Setting up access to an S3 bucket ... 729
Exporting DB cluster data to S3 ... 732
Monitoring DB cluster exports ... 736
Canceling a DB cluster export ... 738
Failure messages ... 740
Troubleshooting PostgreSQL permissions errors ... 741
File naming convention ... 742
Data conversion ... 742

Exporting DB cluster snapshot data to Amazon S3 ... 743
Limitations .. 744
Overview of exporting snapshot data ... 745
Setting up access to an S3 bucket ... 746
Exporting a snapshot to an S3 bucket .. 751
Export performance in Aurora MySQL ... 755
Monitoring snapshot exports ... 755
Canceling a snapshot export .. 758
Failure messages ... 759
Troubleshooting PostgreSQL permissions errors ... 761
File naming convention ... 761
Data conversion ... 763

Point-in-time recovery .. 773
Point-in-time recovery from a retained automated backup .. 776
Point-in-time recovery using AWS Backup .. 779

Deleting a DB cluster snapshot .. 785
Deleting a DB cluster snapshot ... 785

xi

Amazon Aurora User Guide for Aurora

Tutorial: Restore a DB cluster from a snapshot .. 787
Restoring a DB cluster using the console .. 787
Restoring a DB cluster using the AWS CLI .. 792

Monitoring metrics in an Aurora DB cluster .. 799
Overview of monitoring ... 800

Monitoring plan .. 800
Performance baseline .. 800
Performance guidelines ... 801
Monitoring tools ... 802

Viewing cluster status ... 806
Viewing a DB cluster .. 807
Viewing DB cluster status ... 813
Viewing DB instance status in an Aurora cluster ... 817

Viewing and responding to Amazon Aurora recommendations ... 823
Viewing Amazon Aurora recommendations .. 825
Responding to Amazon Aurora recommendations .. 852

Viewing metrics in the Amazon RDS console .. 862
Viewing combined metrics in the Amazon RDS console ... 866

Choosing the new monitoring view in the Monitoring tab ... 866
Choosing the new monitoring view with Performance Insights in the navigation pane 867
Choosing the legacy view with Performance Insights in the navigation pane 869
Creating a custom dashboard with Performance Insights in the navigation pane 870
Choosing the preconfigured dashboard with Performance Insights in the navigation
pane ... 873

Monitoring Aurora with CloudWatch ... 875
Overview of Amazon Aurora and Amazon CloudWatch ... 876
Viewing CloudWatch metrics ... 878
Exporting Performance Insights metrics to CloudWatch ... 883
Creating CloudWatch alarms .. 889

Monitoring DB load with Performance Insights .. 891
Overview of Performance Insights ... 891
Turning Performance Insights on and off ... 902
Turning on the Performance Schema for Aurora MySQL ... 906
Performance Insights policies .. 911
Analyzing metrics with the Performance Insights dashboard ... 924
Viewing Performance Insights proactive recommendations ... 958

xii

Amazon Aurora User Guide for Aurora

Retrieving metrics with the Performance Insights API ... 961
Logging Performance Insights calls using AWS CloudTrail .. 985
VPC endpoints (AWS PrivateLink) ... 988

Analyzing performance with DevOps Guru for RDS ... 992
Benefits of DevOps Guru for RDS ... 992
How DevOps Guru for RDS works ... 993
Setting up DevOps Guru for RDS .. 995

Monitoring the OS with Enhanced Monitoring ... 1003
Overview of Enhanced Monitoring ... 1003
Setting up and enabling Enhanced Monitoring ... 1005
Viewing OS metrics in the RDS console .. 1010
Viewing OS metrics using CloudWatch Logs .. 1012

Aurora metrics reference ... 1013
CloudWatch metrics for Aurora .. 1013
CloudWatch dimensions for Aurora ... 1047
Availability of Aurora metrics in the Amazon RDS console ... 1048
CloudWatch metrics for Performance Insights .. 1052
Counter metrics for Performance Insights .. 1054
SQL statistics for Performance Insights .. 1081
OS metrics in Enhanced Monitoring .. 1089

Monitoring events, logs, and database activity streams ... 1097
Viewing logs, events, and streams in the Amazon RDS console .. 1098
Monitoring Aurora events .. 1103

Overview of events for Aurora .. 1103
Viewing Amazon RDS events ... 1105
Working with Amazon RDS event notification ... 1109
Creating a rule that triggers on an Amazon Aurora event .. 1135
Amazon RDS event categories and event messages for Aurora ... 1139

Monitoring Aurora logs .. 1163
Viewing and listing database log files ... 1163
Downloading a database log file .. 1165
Watching a database log file ... 1166
Publishing to CloudWatch Logs .. 1168
Reading log file contents using REST .. 1170
MySQL database log files ... 1172
PostgreSQL database log files .. 1181

xiii

Amazon Aurora User Guide for Aurora

Monitoring Aurora API calls in CloudTrail .. 1191
CloudTrail integration with Amazon Aurora ... 1191
Amazon Aurora log file entries ... 1192

Monitoring Aurora with Database Activity Streams ... 1196
Overview .. 1196
Aurora MySQL network prerequisites .. 1200
Starting a database activity stream ... 1201
Getting the activity stream status .. 1204
Stopping a database activity stream ... 1205
Monitoring activity streams ... 1207
Managing access to activity streams .. 1243

Monitoring threats with GuardDuty RDS Protection .. 1246
Working with Aurora MySQL .. 1248

Overview of Aurora MySQL ... 1248
Amazon Aurora MySQL performance enhancements ... 1249
Aurora MySQL and spatial data .. 1250
Aurora MySQL version 3 compatible with MySQL 8.0 ... 1251
Aurora MySQL version 2 compatible with MySQL 5.7 ... 1280

Security with Aurora MySQL ... 1283
Master user privileges with Aurora MySQL ... 1284
Using TLS with Aurora MySQL DB clusters ... 1285

Updating applications for new TLS certificates .. 1293
Determining whether any applications are connecting to your Aurora MySQL DB cluster
using TLS .. 1294
Determining whether a client requires certificate verification to connect 1294
Updating your application trust store ... 1295
Example Java code for establishing TLS connections .. 1296

Using Kerberos authentication for Aurora MySQL ... 1298
Overview of Kerberos authentication for Aurora MySQL .. 1299
Limitations ... 1300
Setting up Kerberos authentication for Aurora MySQL ... 1301
Connecting to Aurora MySQL with Kerberos authentication .. 1311
Managing a DB cluster in a domain ... 1315

Migrating data to Aurora MySQL ... 1317
Migrating from an external MySQL database to Aurora MySQL .. 1322
Migrating from a MySQL DB instance to Aurora MySQL ... 1348

xiv

Amazon Aurora User Guide for Aurora

Managing Aurora MySQL ... 1373
Managing performance and scaling for Amazon Aurora MySQL ... 1373
Backtracking a DB cluster .. 1383
Testing Amazon Aurora MySQL using fault injection queries ... 1403
Altering tables in Amazon Aurora using Fast DDL .. 1407
Displaying volume status for an Aurora DB cluster .. 1414

Tuning Aurora MySQL .. 1416
Essential concepts for Aurora MySQL tuning ... 1416
Tuning Aurora MySQL with wait events .. 1420
Tuning Aurora MySQL with thread states ... 1471
Tuning Aurora MySQL with Amazon DevOps Guru proactive insights 1478

Parallel query for Aurora MySQL ... 1484
Overview of parallel query .. 1485
Planning for a parallel query cluster ... 1489
Creating a parallel query cluster .. 1491
Turning parallel query on and off .. 1495
Upgrading a parallel query cluster ... 1498
Performance tuning ... 1499
Creating schema objects ... 1500
Verifying parallel query usage .. 1500
Monitoring ... 1505
Parallel query and SQL constructs ... 1511

Advanced Auditing with Aurora MySQL ... 1533
Enabling Advanced Auditing .. 1533
Viewing audit logs ... 1537
Audit log details ... 1537

Replication with Aurora MySQL ... 1539
Aurora Replicas ... 1539
Replication options .. 1541
Replication performance .. 1542
Zero-downtime restart (ZDR) ... 1542
Configuring replication filters .. 1544
Monitoring replication ... 1551
Using local write forwarding ... 1553
Cross-Region replication ... 1572
Using binary log (binlog) replication ... 1587

xv

Amazon Aurora User Guide for Aurora

Using GTID-based replication .. 1634
Integrating Aurora MySQL with AWS services .. 1641

Authorizing Aurora MySQL to access AWS services .. 1641
Loading data from text files in Amazon S3 ... 1659
Saving data into text files in Amazon S3 ... 1673
Invoking a Lambda function from Aurora MySQL .. 1685
Publishing Aurora MySQL logs to CloudWatch Logs .. 1696

Aurora MySQL lab mode ... 1702
Aurora lab mode features .. 1702

Best practices with Aurora MySQL .. 1704
Determining which DB instance you are connected to .. 1705
Best practices for Aurora MySQL performance and scaling .. 1705
Best practices for Aurora MySQL high availability .. 1714
Recommendations for Aurora MySQL ... 1716

Troubleshooting Aurora MySQL performance ... 1724
AWS monitoring options .. 1724
Most common reasons for DB performance issues ... 1725
Troubleshooting workload issues .. 1725
Logging for Aurora MySQL .. 1750
Troubleshooting query performance ... 1752

Aurora MySQL reference .. 1757
Configuration parameters .. 1757
Global status variables .. 1813
Wait events .. 1827
Thread states ... 1833
Isolation levels .. 1838
Hints .. 1844
Stored procedures .. 1848
information_schema tables .. 1895

Aurora MySQL updates .. 1903
Version Numbers and Special Versions ... 1903
Preparing for Aurora MySQL version 2 end of life .. 1907
Preparing for Aurora MySQL version 1 end of life .. 1912
Upgrading Amazon Aurora MySQL DB clusters ... 1916
Database engine updates and fixes for Amazon Aurora MySQL .. 1957

Working with Aurora PostgreSQL .. 1958

xvi

Amazon Aurora User Guide for Aurora

The database preview environment ... 1959
Supported DB instance class types .. 1960
Unsupported features in the preview environment .. 1960
Creating a new DB cluster in the preview environment ... 1961
PostgreSQL version 16 in the Database Preview environment ... 1963

Security with Aurora PostgreSQL ... 1964
Understanding PostgreSQL roles and permissions ... 1965
Securing Aurora PostgreSQL data with SSL/TLS .. 1980

Updating applications for new SSL/TLS certificates .. 1992
Determining whether applications are connecting to Aurora PostgreSQL DB clusters using
SSL ... 1993
Determining whether a client requires certificate verification in order to connect 1994
Updating your application trust store ... 1994
Using SSL/TLS connections for different types of applications ... 1995

Using Kerberos authentication ... 1996
Region and version availability ... 1997
Overview of Kerberos authentication .. 1997
Setting up .. 1999
Managing a DB cluster in a Domain .. 2012
Connecting with Kerberos authentication .. 2013
Using AD security groups for Aurora PostgreSQL access control ... 2017

Migrating data to Aurora PostgreSQL .. 2028
Migrating an RDS for PostgreSQL DB instance using a snapshot ... 2030
Migrating an RDS for PostgreSQL DB instance using an Aurora read replica 2037

Improving query performance with Aurora Optimized Reads ... 2050
Overview of Aurora Optimized Reads in PostgreSQL .. 2050
Using ... 2052
Use cases .. 2053
Monitoring ... 2053
Best practices .. 2055

Using Babelfish for Aurora PostgreSQL .. 2056
Babelfish limitations .. 2058
Understanding Babelfish architecture and configuration .. 2059
Creating a Babelfish for Aurora PostgreSQL DB cluster .. 2099
Migrating a SQL Server database to Babelfish .. 2109
Database authentication with Babelfish for Aurora PostgreSQL ... 2119

xvii

Amazon Aurora User Guide for Aurora

Connecting to a Babelfish DB cluster .. 2125
Working with Babelfish ... 2137
Troubleshooting Babelfish .. 2203
Turning off Babelfish ... 2205
Babelfish versions ... 2206
Babelfish reference .. 2224

Managing Aurora PostgreSQL ... 2282
Scaling Aurora PostgreSQL DB instances .. 2283
Maximum connections .. 2283
Temporary storage limits ... 2285
Huge pages for Aurora PostgreSQL ... 2288
Testing Amazon Aurora PostgreSQL by using fault injection queries 2288
Displaying volume status for an Aurora DB cluster .. 2294
Specifying the RAM disk for the stats_temp_directory .. 2295
Managing temporary files with PostgreSQL .. 2296

Tuning with wait events for Aurora PostgreSQL .. 2302
Essential concepts for Aurora PostgreSQL tuning .. 2303
Aurora PostgreSQL wait events .. 2308
Client:ClientRead .. 2310
Client:ClientWrite ... 2313
CPU .. 2316
IO:BufFileRead and IO:BufFileWrite ... 2322
IO:DataFileRead .. 2330
IO:XactSync .. 2344
IPC:DamRecordTxAck ... 2346
Lock:advisory ... 2347
Lock:extend .. 2350
Lock:Relation ... 2353
Lock:transactionid .. 2358
Lock:tuple ... 2361
LWLock:buffer_content (BufferContent) .. 2365
LWLock:buffer_mapping ... 2367
LWLock:BufferIO (IPC:BufferIO) ... 2370
LWLock:lock_manager ... 2372
LWLock:MultiXact ... 2376
Timeout:PgSleep ... 2380

xviii

Amazon Aurora User Guide for Aurora

Tuning Aurora PostgreSQL with Amazon DevOps Guru proactive insights 2381
Database has long running idle in transaction connection ... 2381

Best practices with Aurora PostgreSQL .. 2385
Avoiding slow performance, automatic restart, and failover for Aurora PostgreSQL DB
instances ... 2385
Diagnosing table and index bloat .. 2386
Improved memory management in Aurora PostgreSQL .. 2389
Fast failover ... 2391
Fast recovery after failover .. 2402
Managing connection churn .. 2409
Tuning memory parameters for Aurora PostgreSQL .. 2417
Analyze resource usage with CloudWatch metrics .. 2426
Using logical replication for a major version upgrade ... 2430
Troubleshooting storage issues ... 2439

Replication with Aurora PostgreSQL ... 2440
Aurora Replicas ... 2440
Improving the availability of Aurora Replicas .. 2441
Monitoring replication ... 2443
Using logical replication ... 2444

Using Aurora PostgreSQL as a knowledge base for Amazon Bedrock .. 2454
Prerequisites .. 2455
Preparing Aurora PostgreSQL to be a knowledge base ... 2455
Creating a knowledge base in the Bedrock console ... 2458

Integrating Aurora PostgreSQL with AWS services .. 2459
Importing data from Amazon S3 into Aurora PostgreSQL .. 2460
Exporting PostgreSQL data to Amazon S3 ... 2479
Invoking a Lambda function from Aurora PostgreSQL .. 2496
Publishing Aurora PostgreSQL logs to CloudWatch Logs .. 2512

Monitoring query execution plans for Aurora PostgreSQL ... 2523
Accessing query execution plans using Aurora functions .. 2523
Parameter reference for Aurora PostgreSQL query execution plans 2523

Managing query execution plans for Aurora PostgreSQL ... 2528
Overview of Aurora PostgreSQL query plan management ... 2528
Best practices for Aurora PostgreSQL query plan management .. 2536
Understanding query plan management .. 2539
Capturing Aurora PostgreSQL execution plans .. 2541

xix

Amazon Aurora User Guide for Aurora

Using Aurora PostgreSQL managed plans .. 2544
Examining Aurora PostgreSQL query plans in the dba_plans view 2549
Maintaining Aurora PostgreSQL execution plans .. 2550
Reference .. 2557
Advanced features in Query Plan Management .. 2578

Working with extensions and foreign data wrappers .. 2592
Using Amazon Aurora delegated extension support for PostgreSQL 2593
Managing large objects more efficiently with the lo module ... 2606
Managing spatial data with PostGIS .. 2609
Managing partitions with the pg_partman extension .. 2618
Scheduling maintenance with the pg_cron extension .. 2624
Using pgAudit to log database activity ... 2633
Using pglogical to synchronize data .. 2646
Supported foreign data wrappers .. 2660

Working with Trusted Language Extensions for PostgreSQL ... 2675
Terminology ... 2676
Requirements for using Trusted Language Extensions .. 2677
Setting up Trusted Language Extensions .. 2680
Overview of Trusted Language Extensions ... 2684
Creating TLE extensions ... 2685
Dropping your TLE extensions from a database ... 2690
Uninstalling Trusted Language Extensions ... 2691
Using PostgreSQL hooks with your TLE extensions .. 2692
Functions reference for Trusted Language Extensions ... 2698
Hooks reference for Trusted Language Extensions ... 2712

Aurora PostgreSQL reference .. 2715
Aurora PostgreSQL collations for EBCDIC and other mainframe migrations 2715
Collations supported in Aurora PostgreSQL ... 2717
Aurora PostgreSQL functions reference .. 2717
Aurora PostgreSQL parameters ... 2772
Aurora PostgreSQL wait events .. 2831

Aurora PostgreSQL updates .. 2859
Identifying versions of Amazon Aurora PostgreSQL .. 2859
Aurora PostgreSQL releases ... 2861
Extension versions for Aurora PostgreSQL ... 2862
Upgrading Amazon Aurora PostgreSQL DB clusters ... 2862

xx

Amazon Aurora User Guide for Aurora

Using a long-term support (LTS) release .. 2888
Using Aurora global databases ... 2890

Overview of Aurora global databases ... 2890
Advantages of Amazon Aurora global databases ... 2892
Region and version availability ... 2892
Limitations of Aurora global databases .. 2892
Getting started with Aurora global databases .. 2895

Configuration requirements of an Amazon Aurora global database 2896
Creating an Aurora global database .. 2897
Adding an AWS Region to an Aurora global database ... 2911
Creating a headless Aurora DB cluster in a secondary Region .. 2915
Using a snapshot for your Aurora global database .. 2918

Managing an Aurora global database ... 2919
Modifying an Aurora global database ... 2920
Modifying global database parameters ... 2921
Removing a cluster from an Aurora global database ... 2922
Deleting an Aurora global database .. 2925

Connecting to an Aurora global database ... 2927
Using write forwarding in an Aurora global database ... 2928

Using write forwarding in Aurora MySQL ... 2929
Using write forwarding in Aurora PostgreSQL ... 2950

Using switchover or failover in an Aurora global database .. 2965
Recovering an Aurora global database from an unplanned outage 2966
Performing switchovers for Aurora global databases .. 2975
Managing RPOs for Aurora PostgreSQL–based global databases .. 2981

Monitoring an Aurora global database ... 2986
Monitoring an Aurora global database with Performance Insights 2988
Monitoring Aurora global databases with Database Activity Streams 2988
Monitoring Aurora MySQL-based global databases .. 2989
Monitoring Aurora PostgreSQL-based global databases ... 2992

Using Aurora global databases with other AWS services .. 2995
Upgrading an Amazon Aurora global database .. 2997

Major version upgrades ... 2997
Minor version upgrades .. 2998

Using RDS Proxy .. 3001
Region and version availability ... 3002

xxi

Amazon Aurora User Guide for Aurora

Quotas and limitations ... 3002
MySQL limitations .. 3004
PostgreSQL limitations ... 3004

Planning where to use RDS Proxy ... 3005
RDS Proxy concepts and terminology ... 3006

Overview of RDS Proxy concepts ... 3007
Connection pooling .. 3008
Security ... 3009
Failover ... 3011
Transactions ... 3012

Getting started with RDS Proxy ... 3013
Set up a proxy network .. 3013
Setting up database credentials in Secrets Manager .. 3016
Setting up IAM policies ... 3020
Creating an RDS Proxy .. 3022
Viewing an RDS Proxy ... 3029
Connecting through RDS Proxy .. 3031

Managing an RDS Proxy ... 3034
Modifying an RDS Proxy ... 3035
Adding a database user .. 3042
Changing database passwords .. 3042
Client and database connections .. 3043
Configuring connection settings ... 3043
Avoiding pinning .. 3047
Deleting an RDS Proxy .. 3051

Working with RDS Proxy endpoints .. 3052
Overview of proxy endpoints .. 3053
Using reader endpoints with Aurora clusters ... 3054
Accessing Aurora databases across VPCs .. 3059
Creating a proxy endpoint ... 3060
Viewing proxy endpoints .. 3062
Modifying a proxy endpoint .. 3064
Deleting a proxy endpoint ... 3065
Limitations for proxy endpoints ... 3066

Monitoring RDS Proxy with CloudWatch .. 3067
Working with RDS Proxy events ... 3075

xxii

Amazon Aurora User Guide for Aurora

RDS Proxy events ... 3075
RDS Proxy examples ... 3078
Troubleshooting RDS Proxy ... 3081

Verifying connectivity for a proxy .. 3081
Common issues and solutions ... 3083

Using RDS Proxy with AWS CloudFormation ... 3091
Using RDS Proxy with Aurora global databases ... 3091

Limitations for RDS Proxy with global databases ... 3092
How RDS Proxy endpoints work with global databases .. 3092

Working with zero-ETL integrations .. 3094
Benefits .. 3095
Key concepts ... 3095
Limitations .. 3096

General limitations ... 3097
Aurora MySQL limitations .. 3098
Aurora PostgreSQL preview limitations .. 3098
Amazon Redshift limitations ... 3099

Quotas .. 3099
Supported Regions .. 3100
Getting started with zero-ETL integrations ... 3100

Step 1: Create a custom DB cluster parameter group .. 3101
Step 2: Select or create a source DB cluster .. 3102
Step 3: Create a target Amazon Redshift data warehouse .. 3103
Set up an integration using the AWS SDKs (Aurora MySQL only) .. 3104
Next steps .. 3110

Creating zero-ETL integrations ... 3110
Prerequisites .. 3110
Required permissions .. 3110
Creating zero-ETL integrations .. 3113
Next steps .. 3118

Data filtering for zero-ETL integrations ... 3118
Format of a data filter .. 3119
Filter logic .. 3121
Filter precedence .. 3121
Examples .. 3122
Adding data filters ... 3123

xxiii

Amazon Aurora User Guide for Aurora

Removing data filters .. 3125
Adding and querying data ... 3125

Creating a destination database in Amazon Redshift .. 3126
Adding data to the source DB cluster ... 3126
Querying your Aurora data in Amazon Redshift ... 3127
Data type differences .. 3128

Viewing and monitoring zero-ETL integrations .. 3136
Viewing integrations .. 3136
Monitoring using system tables .. 3138
Monitoring with EventBridge ... 3139

Modifying zero-ETL integrations .. 3139
Deleting zero-ETL integrations ... 3141
Troubleshooting zero-ETL integrations ... 3142

I can't create a zero-ETL integration .. 3143
My integration is stuck in a state of Syncing .. 3143
My tables aren't replicating to Amazon Redshift .. 3144
One or more of my Amazon Redshift tables requires a resync .. 3144

Using Aurora Serverless v2 ... 3148
Aurora Serverless v2 use cases ... 3148

Converting provisioned workloads ... 3150
Advantages of Aurora Serverless v2 ... 3151
How Aurora Serverless v2 works ... 3152

Overview .. 3152
Cluster configurations ... 3154
Capacity .. 3155
Scaling .. 3156
High availability .. 3158
Storage ... 3159
Configuration parameters .. 3160

Requirements and limitations for Aurora Serverless v2 .. 3160
Region and version availability ... 3160
Clusters that use Aurora Serverless v2 must have a capacity range specified 3161
Some provisioned features aren't supported in Aurora Serverless v2 3162
Some Aurora Serverless v2 aspects are different from Aurora Serverless v1 3162

Creating an Aurora Serverless v2 DB cluster ... 3162
Settings ... 3163

xxiv

Amazon Aurora User Guide for Aurora

Creating an Aurora Serverless v2 DB cluster .. 3164
Creating an Aurora Serverless v2 writer ... 3168

Managing Aurora Serverless v2 .. 3169
Setting the Aurora Serverless v2 capacity range for a cluster .. 3169
Checking the Aurora Serverless v2 capacity range ... 3174
Adding an Aurora Serverless v2 reader ... 3176
Converting from provisioned to Aurora Serverless v2 ... 3178
Converting from Aurora Serverless v2 to provisioned ... 3179
Choosing the promotion tier for an Aurora Serverless v2 reader .. 3180
Using TLS/SSL with Aurora Serverless v2 ... 3181
Viewing Aurora Serverless v2 writers and readers .. 3183
Logging for Aurora Serverless v2 ... 3184

Performance and scaling for Aurora Serverless v2 .. 3188
Choosing the capacity range ... 3189
Working with parameter groups for Aurora Serverless v2 .. 3203
Avoiding out-of-memory errors .. 3208
Important CloudWatch metrics ... 3209
Monitoring Aurora Serverless v2 performance with Performance Insights 3213
Troubleshooting Aurora Serverless v2 capacity issues ... 3214

Migrating to Aurora Serverless v2 ... 3215
Using Aurora Serverless v2 with an existing cluster ... 3216
Switching from a provisioned cluster .. 3220
Comparison of Aurora Serverless v2 and Aurora Serverless v1 .. 3225
Upgrading from Aurora Serverless v1 to Aurora Serverless v2 .. 3236
Migrating from an on-premises database to Aurora Serverless v2 .. 3238

Using Aurora Serverless v1 ... 3239
Region and version availability for Aurora Serverless v1 .. 3240
Advantages of Aurora Serverless v1 ... 3240
Use cases for Aurora Serverless v1 .. 3241
Limitations of Aurora Serverless v1 .. 3241
Configuration requirements for Aurora Serverless v1 ... 3243
Using TLS/SSL with Aurora Serverless v1 .. 3244

Supported cipher suites for connections to Aurora Serverless v1 DB clusters 3247
How Aurora Serverless v1 works ... 3248

Aurora Serverless v1 architecture ... 3248
Autoscaling .. 3250

xxv

Amazon Aurora User Guide for Aurora

Timeout action .. 3251
Pause and resume .. 3252
Determining max_connections .. 3253
Parameter groups ... 3256
Logging ... 3259
Maintenance .. 3262
Failover ... 3263
Snapshots ... 3263

Creating an Aurora Serverless v1 DB cluster ... 3264
Restoring an Aurora Serverless v1 DB cluster ... 3272
Modifying an Aurora Serverless v1 DB cluster .. 3278

Modifying the scaling configuration .. 3278
Upgrading the major version ... 3281
Converting from Aurora Serverless v1 to provisioned ... 3283

Scaling Aurora Serverless v1 DB cluster capacity manually ... 3286
Viewing Aurora Serverless v1 DB clusters .. 3288

Monitoring Aurora Serverless v1 DB clusters with CloudWatch ... 3291
Deleting an Aurora Serverless v1 DB cluster ... 3291
Aurora Serverless v1 and Aurora database engine versions ... 3294

Aurora MySQL Serverless ... 3295
Aurora PostgreSQL Serverless ... 3295

Using RDS Data API ... 3296
Region and version availability ... 3297
Limitations .. 3297
Comparison with Serverless v2 and provisioned, and Aurora Serverless v1 3298
Authorizing access ... 3303

Tag-based authorization ... 3304
Storing credentials in a secret ... 3306

Enabling RDS Data API ... 3306
Enabling RDS Data API when you create a database ... 3307
Enabling RDS Data API on an existing database ... 3308

Creating an Amazon VPC endpoint ... 3311
Calling RDS Data API .. 3314

Data API operations reference ... 3314
Calling RDS Data API with the AWS CLI .. 3318
Calling RDS Data API from a Python application .. 3328

xxvi

Amazon Aurora User Guide for Aurora

Calling RDS Data API from a Java application ... 3332
Controlling Data API timeout behavior ... 3336

Using the Java client library ... 3338
Downloading the Java client library for Data API ... 3338
Java client library examples .. 3339

Processing RDS Data API query results in JSON format ... 3341
Retrieving query results in JSON format .. 3341
Data Type Mapping ... 3342
Troubleshooting .. 3343
Examples .. 3343

Troubleshooting Data API issues .. 3348
Transaction <transaction_ID> is not found .. 3348
Packet for query is too large ... 3349
Database response exceeded size limit ... 3349
HttpEndpoint is not enabled for cluster <cluster_ID> ... 3349

Logging RDS Data API calls with AWS CloudTrail .. 3350
Working with Data API information in CloudTrail ... 3350
Including and excluding Data API events from a CloudTrail trail ... 3351
Understanding Data API log file entries ... 3353

Using the query editor .. 3356
Availability of the query editor .. 3356
Authorizing access ... 3356
Running queries ... 3358
DBQMS API reference ... 3362

CreateFavoriteQuery .. 3363
CreateQueryHistory ... 3363
CreateTab ... 3363
DeleteFavoriteQueries ... 3363
DeleteQueryHistory ... 3363
DeleteTab ... 3363
DescribeFavoriteQueries .. 3363
DescribeQueryHistory .. 3363
DescribeTabs .. 3364
GetQueryString ... 3364
UpdateFavoriteQuery .. 3364
UpdateQueryHistory .. 3364

xxvii

Amazon Aurora User Guide for Aurora

UpdateTab .. 3364
Using Aurora machine learning .. 3365

Using Aurora machine learning with Aurora MySQL ... 3366
Requirements for using Aurora machine learning ... 3367
Region and version availability ... 3368
Supported features and limitations ... 3368
Setting up your Aurora cluster for Aurora machine learning .. 3369
Using Amazon Bedrock with your Aurora MySQL DB cluster .. 3383
Using Amazon Comprehend with your Aurora MySQL DB cluster ... 3386
Using SageMaker with your Aurora MySQL DB cluster .. 3388
Performance considerations ... 3392
Monitoring ... 3394

Using Aurora machine learning with Aurora PostgreSQL ... 3395
Requirements for using Aurora machine learning ... 3396
Supported features and limitations ... 3397
Setting up your Aurora DB cluster to use Aurora machine learning 3397
Using Amazon Bedrock with your Aurora PostgreSQL DB cluster ... 3410
Using Amazon Comprehend with your Aurora PostgreSQL DB cluster 3412
Using SageMaker with your Aurora PostgreSQL DB cluster .. 3414
Exporting data to Amazon S3 for SageMaker model training (Advanced) 3419
Performance considerations ... 3419
Monitoring ... 3425

Code examples ... 3427
Actions ... 3438

CreateDBCluster ... 3439
CreateDBClusterParameterGroup .. 3457
CreateDBClusterSnapshot .. 3467
CreateDBInstance ... 3485
DeleteDBCluster ... 3503
DeleteDBClusterParameterGroup .. 3517
DeleteDBInstance ... 3532
DescribeDBClusterParameterGroups ... 3547
DescribeDBClusterParameters ... 3553
DescribeDBClusterSnapshots ... 3565
DescribeDBClusters .. 3571
DescribeDBEngineVersions .. 3590

xxviii

Amazon Aurora User Guide for Aurora

DescribeDBInstances .. 3600
DescribeOrderableDBInstanceOptions .. 3616
ModifyDBClusterParameterGroup .. 3627

Scenarios .. 3637
Get started with DB clusters ... 3637

Cross-service examples ... 3807
Create a lending library REST API .. 3807
Create an Aurora Serverless work item tracker ... 3808

Best practices with Aurora .. 3813
Basic operational guidelines for Amazon Aurora .. 3813
DB instance RAM recommendations .. 3814
AWS database drivers ... 3815
Monitoring Amazon Aurora ... 3815
Working with DB parameter groups and DB cluster parameter groups 3816
Amazon Aurora best practices video ... 3816

Performing an Aurora proof of concept .. 3817
Overview of an Aurora proof of concept ... 3817
1. Identify your objectives ... 3818
2. Understand your workload characteristics .. 3819
3. Practice with the console or CLI .. 3820

Practice with the console ... 3820
Practice with the AWS CLI .. 3821

4. Create your Aurora cluster .. 3821
5. Set up your schema ... 3822
6. Import your data .. 3823
7. Port your SQL code .. 3824
8. Specify configuration settings ... 3825
9. Connect to Aurora .. 3825
10. Run your workload ... 3827
11. Measure performance .. 3828
12. Exercise Aurora high availability ... 3830
13. What to do next ... 3832

Security .. 3835
Database authentication .. 3837

Password authentication .. 3838
IAM database authentication ... 3839

xxix

Amazon Aurora User Guide for Aurora

Kerberos authentication .. 3839
Password management with Aurora and Secrets Manager .. 3841

Region and version availability ... 3841
Limitations ... 3841
Overview .. 3842
Benefits ... 3842
Permissions required for Secrets Manager integration .. 3843
Enforcing Aurora management ... 3844
Managing the master user password for a DB cluster .. 3845
Rotating the master user password secret for a DB cluster .. 3849
Viewing the details about a secret for a DB cluster ... 3851

Data protection .. 3854
Data encryption .. 3855
Internetwork traffic privacy ... 3883

Identity and access management .. 3885
Audience ... 3885
Authenticating with identities ... 3886
Managing access using policies ... 3889
How Amazon Aurora works with IAM .. 3891
Identity-based policy examples ... 3899
AWS managed policies .. 3917
Policy updates ... 3922
Cross-service confused deputy prevention ... 3932
IAM database authentication ... 3934
Troubleshooting .. 3978

Logging and monitoring .. 3980
Compliance validation .. 3983
Resilience ... 3984

Backup and restore .. 3984
Replication ... 3984
Failover ... 3985

Infrastructure security .. 3986
Security groups ... 3986
Public accessibility ... 3986

VPC endpoints (AWS PrivateLink) .. 3988
Considerations ... 988

xxx

Amazon Aurora User Guide for Aurora

Availability .. 989
Creating an interface VPC endpoint ... 989
Creating a VPC endpoint policy .. 989

Security best practices ... 3991
Controlling access with security groups ... 3993

Overview of VPC security groups ... 3993
Security group scenario .. 3994
Creating a VPC security group .. 3995
Associating with a DB cluster .. 3996

Master user account privileges ... 3996
Service-linked roles ... 3998

Service-linked role permissions for Amazon Aurora ... 3998
Using Amazon Aurora with Amazon VPC ... 4002

Working with a DB cluster in a VPC ... 4002
Scenarios for accessing a DB cluster in a VPC ... 4017
Tutorial: Create a VPC for use with a DB cluster (IPv4 only) ... 4024
Tutorial: Create a VPC for use with a DB cluster (dual-stack mode) 4032

Quotas and constraints ... 4043
Quotas in Amazon Aurora ... 4043
Naming constraints in Amazon Aurora ... 4048
Amazon Aurora size limits ... 4049

Troubleshooting ... 4050
Can't connect to DB instance .. 4050

Testing the DB instance connection ... 4052
Troubleshooting connection authentication ... 4053

Security issues .. 4053
Error message "failed to retrieve account attributes, certain console functions may be
impaired." ... 4053

Resetting the DB instance owner password .. 4054
DB instance outage or reboot .. 4054
Parameter changes not taking effect .. 4055
Aurora freeable memory issues .. 4055
Aurora MySQL replication issues .. 4056

Diagnosing and resolving lag between read replicas ... 4056
Diagnosing and resolving a MySQL read replication failure ... 4059
Replication stopped error ... 4060

xxxi

Amazon Aurora User Guide for Aurora

Amazon RDS API reference ... 4062
Using the Query API ... 4062

Query parameters .. 4062
Query request authentication ... 4063

Troubleshooting applications .. 4063
Retrieving errors ... 4063
Troubleshooting tips .. 4064

Document history .. 4065
AWS Glossary ... 4145

xxxii

Amazon Aurora User Guide for Aurora

What is Amazon Aurora?

Amazon Aurora (Aurora) is a fully managed relational database engine that's compatible with
MySQL and PostgreSQL. You already know how MySQL and PostgreSQL combine the speed and
reliability of high-end commercial databases with the simplicity and cost-effectiveness of open-
source databases. The code, tools, and applications you use today with your existing MySQL and
PostgreSQL databases can be used with Aurora. With some workloads, Aurora can deliver up to
five times the throughput of MySQL and up to three times the throughput of PostgreSQL without
requiring changes to most of your existing applications.

Aurora includes a high-performance storage subsystem. Its MySQL- and PostgreSQL-compatible
database engines are customized to take advantage of that fast distributed storage. The underlying
storage grows automatically as needed. An Aurora cluster volume can grow to a maximum
size of 128 tebibytes (TiB). Aurora also automates and standardizes database clustering and
replication, which are typically among the most challenging aspects of database configuration and
administration.

Aurora is part of the managed database service Amazon Relational Database Service (Amazon
RDS). Amazon RDS makes it easier to set up, operate, and scale a relational database in the cloud.
If you are not already familiar with Amazon RDS, see the Amazon Relational Database Service User
Guide. To learn more about the variety of database options available on Amazon Web Services, see
Choosing the right database for your organization on AWS.

Topics

• Amazon RDS shared responsibility model

• How Amazon Aurora works with Amazon RDS

• Amazon Aurora DB clusters

• Amazon Aurora versions

• Regions and Availability Zones

• Supported features in Amazon Aurora by AWS Region and Aurora DB engine

• Amazon Aurora connection management

• Aurora DB instance classes

• Amazon Aurora storage and reliability

• Amazon Aurora security

• High availability for Amazon Aurora

1

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Welcome.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Welcome.html
https://aws.amazon.com/getting-started/decision-guides/databases-on-aws-how-to-choose/

Amazon Aurora User Guide for Aurora

• Replication with Amazon Aurora

• DB instance billing for Aurora

Amazon RDS shared responsibility model

Amazon RDS is responsible for hosting the software components and infrastructure of DB instances
and DB clusters. You are responsible for query tuning, which is the process of adjusting SQL queries
to improve performance. Query performance is highly dependent on database design, data size,
data distribution, application workload, and query patterns, which can vary greatly. Monitoring
and tuning are highly individualized processes that you own for your RDS databases. You can use
Amazon RDS Performance Insights and other tools to identify problematic queries.

How Amazon Aurora works with Amazon RDS

The following points illustrate how Amazon Aurora relates to the standard MySQL and PostgreSQL
engines available in Amazon RDS:

• You choose Aurora MySQL or Aurora PostgreSQL as the DB engine option when setting up new
database servers through Amazon RDS.

• Aurora takes advantage of the familiar Amazon Relational Database Service (Amazon RDS)
features for management and administration. Aurora uses the Amazon RDS AWS Management
Console interface, AWS CLI commands, and API operations to handle routine database tasks such
as provisioning, patching, backup, recovery, failure detection, and repair.

• Aurora management operations typically involve entire clusters of database servers that are
synchronized through replication, instead of individual database instances. The automatic
clustering, replication, and storage allocation make it simple and cost-effective to set up,
operate, and scale your largest MySQL and PostgreSQL deployments.

• You can bring data from Amazon RDS for MySQL and Amazon RDS for PostgreSQL into Aurora
by creating and restoring snapshots, or by setting up one-way replication. You can use push-
button migration tools to convert your existing RDS for MySQL and RDS for PostgreSQL
applications to Aurora.

Before using Amazon Aurora, complete the steps in Setting up your environment for Amazon
Aurora, and then review the concepts and features of Aurora in Amazon Aurora DB clusters.

Amazon RDS shared responsibility model 2

Amazon Aurora User Guide for Aurora

Amazon Aurora DB clusters

An Amazon Aurora DB cluster consists of one or more DB instances and a cluster volume that
manages the data for those DB instances. An Aurora cluster volume is a virtual database storage
volume that spans multiple Availability Zones, with each Availability Zone having a copy of the DB
cluster data. Two types of DB instances make up an Aurora DB cluster:

• Primary DB instance – Supports read and write operations, and performs all of the data
modifications to the cluster volume. Each Aurora DB cluster has one primary DB instance.

• Aurora Replica – Connects to the same storage volume as the primary DB instance and supports
only read operations. Each Aurora DB cluster can have up to 15 Aurora Replicas in addition
to the primary DB instance. Maintain high availability by locating Aurora Replicas in separate
Availability Zones. Aurora automatically fails over to an Aurora Replica in case the primary DB
instance becomes unavailable. You can specify the failover priority for Aurora Replicas. Aurora
Replicas can also offload read workloads from the primary DB instance.

The following diagram illustrates the relationship between the cluster volume, the primary DB
instance, and Aurora Replicas in an Aurora DB cluster.

Aurora DB clusters 3

Amazon Aurora User Guide for Aurora

Note

The preceding information applies to provisioned clusters, parallel query clusters,
global database clusters, Aurora Serverless clusters, and all MySQL 8.0-compatible, 5.7-
compatible, and PostgreSQL-compatible clusters.

The Aurora cluster illustrates the separation of compute capacity and storage. For example, an
Aurora configuration with only a single DB instance is still a cluster, because the underlying storage
volume involves multiple storage nodes distributed across multiple Availability Zones (AZs).

Input/output (I/O) operations in Aurora DB clusters are counted the same way, regardless
of whether they're on a writer or reader DB instance. For more information, see Storage
configurations for Amazon Aurora DB clusters.

Aurora DB clusters 4

Amazon Aurora User Guide for Aurora

Amazon Aurora versions

Amazon Aurora reuses code and maintains compatibility with the underlying MySQL and
PostgreSQL DB engines. However, Aurora has its own version numbers, release cycle, time line for
version deprecation, and so on. The following section explains the common points and differences.
This information can help you to decide such things as which version to choose and how to verify
which features and fixes are available in each version. It can also help you to decide how often to
upgrade and how to plan your upgrade process.

Topics

• Relational databases that are available on Aurora

• Differences in version numbers between community databases and Aurora

• Amazon Aurora major versions

• Amazon Aurora minor versions

• Amazon Aurora patch versions

• Learning what's new in each Amazon Aurora version

• Specifying the Amazon Aurora database version for your database cluster

• Default Amazon Aurora versions

• Automatic minor version upgrades

• How long Amazon Aurora major versions remain available

• How often Amazon Aurora minor versions are released

• How long Amazon Aurora minor versions remain available

• Long-term support for selected Amazon Aurora minor versions

• Amazon RDS Extended Support for selected Aurora versions

• Manually controlling if and when your database cluster is upgraded to new versions

• Required Amazon Aurora upgrades

• Testing your DB cluster with a new Aurora version before upgrading

Relational databases that are available on Aurora

The following relational databases are available on Aurora:

Aurora versions 5

Amazon Aurora User Guide for Aurora

• Amazon Aurora MySQL-Compatible Edition. For usage information, see Working with Amazon
Aurora MySQL. For a detailed list of available versions, see Database engine updates for Amazon
Aurora MySQL.

• Amazon Aurora PostgreSQL-Compatible Edition. For usage information, see Working with
Amazon Aurora PostgreSQL. For a detailed list of available versions, see Amazon Aurora
PostgreSQL updates.

Differences in version numbers between community databases and
Aurora

Each Amazon Aurora version is compatible with a specific community database version of either
MySQL or PostgreSQL. You can find the community version of your database using the version
function and the Aurora version using the aurora_version function.

Examples for Aurora MySQL and Aurora PostgreSQL are shown following.

mysql> select version();
+------------------+
| version() |
+------------------+
| 5.7.12 |
+------------------+

mysql> select aurora_version(), @@aurora_version;
+------------------+------------------+
| aurora_version() | @@aurora_version |
+------------------+------------------+
| 2.08.1 | 2.08.1 |
+------------------+------------------+

postgres=> select version();

PostgreSQL 11.7 on x86_64-pc-linux-gnu, compiled by gcc (GCC) 4.9.3, 64-bit
(1 row)

postgres=> select aurora_version();
aurora_version

3.2.2

Differences in version numbers between community databases and Aurora 6

Amazon Aurora User Guide for Aurora

For more information, see Checking Aurora MySQL versions using SQL and Identifying versions of
Amazon Aurora PostgreSQL.

Amazon Aurora major versions

Aurora versions use the major.minor.patch scheme. An Aurora major version refers to the
MySQL or PostgreSQL community major version that Aurora is compatible with. Aurora MySQL and
Aurora PostgreSQL major versions are available under standard support at least until community
end of life for the corresponding community version. You can continue running a major version
past its Aurora end of standard support date for a fee. For more information, see Using Amazon
RDS Extended Support and Amazon Aurora pricing.

For more information on Aurora MySQL major versions and the release calendar, see Release
calendar for Aurora MySQL major versions.

For more information on Aurora PostgreSQL major versions and the release calendar, see Release
calendar for Aurora PostgreSQL major versions.

Note

Amazon RDS Extended Support for Aurora MySQL version 2 starts on November 1, 2024,
but you won't be charged until December 1, 2024. Between November 1 and November
30, 2024, all Aurora MySQL version 2 DB clusters are covered under Amazon RDS Extended
Support.

Amazon Aurora minor versions

Aurora versions use the major.minor.patch scheme. An Aurora minor version provides
incremental community and Aurora-specific improvements to the service, for example new
features and fixes.

For more information on Aurora MySQL minor versions and the release calendar, see Release
calendar for Aurora MySQL minor versions.

For more information on Aurora PostgreSQL minor versions and the release calendar, see Release
calendar for Aurora PostgreSQL minor versions.

Amazon Aurora major versions 7

https://aws.amazon.com/rds/aurora/pricing/
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraMySQLReleaseNotes/AuroraMySQL.release-calendars.html#AuroraMySQL.release-calendars.major
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraMySQLReleaseNotes/AuroraMySQL.release-calendars.html#AuroraMySQL.release-calendars.major
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/aurorapostgresql-release-calendar.html#aurorapostgresql.major.versions.supported
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/aurorapostgresql-release-calendar.html#aurorapostgresql.major.versions.supported
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraMySQLReleaseNotes/AuroraMySQL.release-calendars.html#AuroraMySQL.release-calendars.minor
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraMySQLReleaseNotes/AuroraMySQL.release-calendars.html#AuroraMySQL.release-calendars.minor
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/aurorapostgresql-release-calendar.html#aurorapostgresql.minor.versions.supported
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/aurorapostgresql-release-calendar.html#aurorapostgresql.minor.versions.supported

Amazon Aurora User Guide for Aurora

Amazon Aurora patch versions

Aurora versions use the major.minor.patch scheme. An Aurora patch version includes important
fixes added to a minor version after its initial release (for example, Aurora MySQL 2.10.0, 2.10.1, ...,
2.10.3). While each new minor version provides new Aurora features, new patch versions within a
specific minor version are primarily used to resolve important issues.

For more information on patching, see Maintaining an Amazon Aurora DB cluster.

Learning what's new in each Amazon Aurora version

Each new Aurora version comes with release notes that list the new features, fixes, other
enhancements, and so on that apply to each version.

For Aurora MySQL release notes, see Release Notes for Aurora MySQL. For Aurora PostgreSQL
release notes, see Release Notes for Aurora PostgreSQL.

Specifying the Amazon Aurora database version for your database
cluster

You can specify any currently available version (major and minor) when creating a new DB cluster
using the Create database operation in the AWS Management Console, the AWS CLI, or the
CreateDBCluster API operation. Not every Aurora database version is available in every AWS
Region.

To learn how to create Aurora clusters, see Creating an Amazon Aurora DB cluster. To learn how to
change the version of an existing Aurora cluster, see Modifying an Amazon Aurora DB cluster.

Default Amazon Aurora versions

When a new Aurora minor version contains significant improvements compared to a previous one,
it's marked as the default version for new DB clusters. Typically, we release two default versions for
each major version per year.

We recommend that you keep your DB cluster upgraded to the most current default minor version,
because that version contains the latest security and functionality fixes.

Automatic minor version upgrades

You can stay up to date with Aurora minor versions by turning on Auto minor version upgrade
for every DB instance in the Aurora cluster. Aurora only performs the automatic upgrade if all DB

Amazon Aurora patch versions 8

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraMySQLReleaseNotes/Welcome.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/Welcome.html

Amazon Aurora User Guide for Aurora

instances in your cluster have this setting turned on. Auto minor version upgrades are performed to
the default minor version.

We typically schedule automatic upgrades twice a year for DB clusters that have the Auto minor
version upgrade setting set to Yes. These upgrades are started during the maintenance window
that you specify for your cluster. For more information, see Automatic minor version upgrades for
Aurora DB clusters.

Automatic minor version upgrades are communicated in advance through an Amazon RDS DB
cluster event with a category of maintenance and ID of RDS-EVENT-0156. For more information,
see Amazon RDS event categories and event messages for Aurora.

How long Amazon Aurora major versions remain available

Amazon Aurora major versions remain available at least until community end of life for the
corresponding community version. You can use Aurora end of standard support dates to plan your
testing and upgrade cycles. These dates represent the earliest date that an upgrade to a newer
version might be required. For more information on the dates, see Amazon Aurora major versions.

Before we ask that you upgrade to a newer major version and to help you plan, we generally
provide a reminder at least 12 months in advance. We do so to communicate the detailed upgrade
process. Details include the timing of certain milestones, the impact on your DB clusters, and the
actions that we recommend that you take. We always recommend that you thoroughly test your
applications with new database versions before performing a major version upgrade.

After the major version reaches the Aurora end of standard support, any DB cluster still running the
older version will be automatically upgraded to an Extended Support version during a scheduled
maintenance window. Extended Support charges may apply. For more information on Amazon RDS
Extended Support, see Using Amazon RDS Extended support.

How often Amazon Aurora minor versions are released

In general, Amazon Aurora minor versions are released quarterly. The release schedule might vary
to pick up additional features or fixes.

How long Amazon Aurora minor versions remain available

We intend to make each Amazon Aurora minor version of a particular major version available
for at least 12 months. At the end of this period, Aurora might apply an auto minor version

How long Amazon Aurora major versions remain available 9

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/extended-support.html

Amazon Aurora User Guide for Aurora

upgrade to the subsequent default minor version. Such an upgrade is started during the scheduled
maintenance window for any cluster that is still running the older minor version.

We might replace a minor version of a particular major version sooner than the usual 12-month
period if there are critical matters such as security issues, or if the major version has reached end of
life.

Before beginning automatic upgrades of minor versions that are approaching end of life, we
generally provide a reminder three months in advance. We do so to communicate the detailed
upgrade process. Details include the timing of certain milestones, the impact on your DB clusters,
and the actions that we recommend that you take. Notifications with less than three months notice
are used when there are critical matters, such as security issues, that necessitate quicker action.

If you don't have the Auto minor version upgrade setting enabled, you get a reminder but no RDS
event notification. Upgrades occur within a maintenance window after the mandatory upgrade
deadline has passed.

If you do have the Auto minor version upgrade setting enabled, you get a reminder and an
Amazon RDS DB cluster event with a category of maintenance and ID of RDS-EVENT-0156.
Upgrades occur during the next maintenance window.

For more information on auto minor version upgrades, see Automatic minor version upgrades for
Aurora DB clusters.

Long-term support for selected Amazon Aurora minor versions

For each Aurora major version, certain minor versions are designated as long-term-support (LTS)
versions and made available for at least three years. That is, at least one minor version per major
version is made available for longer than the typical 12 months. We generally provide a reminder
six months before the end of this period. We do so to communicate the detailed upgrade process.
Details include the timing of certain milestones, the impact on your DB clusters, and the actions
that we recommend that you take. Notifications with less than six months notice are used when
there are critical matters, such as security issues, that necessitate quicker action.

LTS minor versions include only critical fixes (through patch versions). An LTS version doesn't
include new features released after its introduction. Once a year, DB clusters running on an LTS
minor version are patched to the latest patch version of the LTS release. We do this patching
to help ensure that you benefit from cumulative security and stability fixes. We might patch an
LTS minor version more frequently if there are critical fixes, such as for security, that need to be
applied.

Long-term support for selected Amazon Aurora minor versions 10

Amazon Aurora User Guide for Aurora

Note

If you want to remain on an LTS minor version for the duration of its lifecycle, make sure
to turn off Auto minor version upgrade for your DB instances. To avoid automatically
upgrading your DB cluster from the LTS minor version, set Auto minor version upgrade to
No on any DB instance in your Aurora cluster.

For the version numbers of all Aurora LTS versions, see Aurora MySQL long-term support (LTS)
releases and Aurora PostgreSQL long-term support (LTS) releases.

Amazon RDS Extended Support for selected Aurora versions

With Amazon RDS Extended Support, you can continue running your database on a major engine
version past the Aurora end of standard support date for an additional cost. During RDS Extended
Support, Amazon RDS will supply patches for Critical and High CVEs as defined by the National
Vulnerability Database (NVD) CVSS severity ratings. For more information, see Using Amazon RDS
Extended Support.

RDS Extended Support is only available on certain Aurora versions. For more information, see
Amazon Aurora major versions.

Manually controlling if and when your database cluster is upgraded to
new versions

Auto minor version upgrades are performed to the default minor version. We typically schedule
automatic upgrades twice a year for DB clusters that have the Auto minor version upgrade setting
enabled. These upgrades are started during customer-specified maintenance windows. If you want
to turn off automatic minor version upgrades, disable Auto minor version upgrade on any DB
instance within an Aurora cluster. Aurora performs an automatic minor version upgrade only if all
DB instances in your cluster have the setting enabled.

Note

However, for mandatory upgrades such as minor-version end of life, the DB cluster will be
upgraded even if the Auto minor version upgrade setting is disabled. You get a reminder
but no RDS event notification. Upgrades occur within a maintenance window after the
mandatory upgrade deadline has passed.

Amazon RDS Extended Support for selected Aurora versions 11

Amazon Aurora User Guide for Aurora

Because major version upgrades involve some compatibility risk, they don't occur automatically.
You must initiate these, except in the case of a major version deprecation, as explained earlier. We
always recommend that you thoroughly test your applications with new database versions before
performing a major version upgrade.

For more information about upgrading a DB cluster to a new Aurora major version, see Upgrading
Amazon Aurora MySQL DB clusters and Upgrading Amazon Aurora PostgreSQL DB clusters.

Required Amazon Aurora upgrades

For certain critical fixes, we might perform a managed upgrade to a newer patch level within the
same minor version. These required upgrades happen even if Auto minor version upgrade is
turned off. Before doing so, we communicate the detailed upgrade process. Details include the
timing of certain milestones, the impact on your DB clusters, and the actions that we recommend
that you take. Such managed upgrades are performed automatically. Each such upgrade is started
within the cluster maintenance window.

Testing your DB cluster with a new Aurora version before upgrading

You can test the upgrade process and how the new version works with your application and
workload. Use one of the following methods:

• Clone your cluster using the Amazon Aurora fast database clone feature. Perform the upgrade
and any post-upgrade testing on the new cluster.

• Restore from a cluster snapshot to create a new Aurora cluster. You can create a cluster snapshot
yourself from an existing Aurora cluster. Aurora also automatically creates periodic snapshots
for you for each of your clusters. You can then initiate a version upgrade for the new cluster. You
can experiment on the upgraded copy of your cluster before deciding whether to upgrade your
original cluster.

For more information on these ways to create new clusters for testing, see Cloning a volume for an
Amazon Aurora DB cluster and Creating a DB cluster snapshot.

Required Amazon Aurora upgrades 12

Amazon Aurora User Guide for Aurora

Regions and Availability Zones

Amazon cloud computing resources are hosted in multiple locations world-wide. These locations
are composed of AWS Regions and Availability Zones. Each AWS Region is a separate geographic
area. Each AWS Region has multiple, isolated locations known as Availability Zones.

Note

For information about finding the Availability Zones for an AWS Region, see Describe your
Availability Zones in the Amazon EC2 documentation.

Amazon operates state-of-the-art, highly-available data centers. Although rare, failures can occur
that affect the availability of DB instances that are in the same location. If you host all your DB
instances in one location that is affected by such a failure, none of your DB instances will be
available.

It is important to remember that each AWS Region is completely independent. Any Amazon
RDS activity you initiate (for example, creating database instances or listing available database
instances) runs only in your current default AWS Region. The default AWS Region can be changed

Regions and Availability Zones 13

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-regions-availability-zones.html#availability-zones-describe
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-regions-availability-zones.html#availability-zones-describe

Amazon Aurora User Guide for Aurora

in the console, or by setting the AWS_DEFAULT_REGION environment variable. Or it can be
overridden by using the --region parameter with the AWS Command Line Interface (AWS CLI).
For more information, see Configuring the AWS Command Line Interface, specifically the sections
about environment variables and command line options.

Amazon RDS supports special AWS Regions called AWS GovCloud (US). These are designed to
allow US government agencies and customers to move more sensitive workloads into the cloud.
The AWS GovCloud (US) Regions address the US government's specific regulatory and compliance
requirements. For more information, see What is AWS GovCloud (US)?

To create or work with an Amazon RDS DB instance in a specific AWS Region, use the corresponding
regional service endpoint.

Note

Aurora doesn't support Local Zones.

AWS Regions

Each AWS Region is designed to be isolated from the other AWS Regions. This design achieves the
greatest possible fault tolerance and stability.

When you view your resources, you see only the resources that are tied to the AWS Region that you
specified. This is because AWS Regions are isolated from each other, and we don't automatically
replicate resources across AWS Regions.

Region availability

When you work with an Aurora DB cluster using the command line interface or API operations,
make sure that you specify its regional endpoint.

Topics

• Aurora MySQL Region availability

• Aurora PostgreSQL Region availability

AWS Regions 14

https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-quickstart.html#cli-configure-quickstart-region
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html
https://docs.aws.amazon.com/govcloud-us/latest/UserGuide/whatis.html

Amazon Aurora User Guide for Aurora

Aurora MySQL Region availability

The following table shows the AWS Regions where Aurora MySQL is currently available and the
endpoint for each Region.

Region
Name

Region Endpoint Protocol

US East
(Ohio)

us-east-2 rds.us-east-2.amazonaws.com HTTPS

US
East (N.
Virginia)

us-east-1 rds.us-east-1.amazonaws.com HTTPS

US
West (N.
Californi
a)

us-
west-1

rds.us-west-1.amazonaws.com HTTPS

US West
(Oregon)

us-
west-2

rds.us-west-2.amazonaws.com HTTPS

Africa
(Cape
Town)

af-south-
1

rds.af-south-1.amazonaws.com HTTPS

Asia
Pacific
(Hong
Kong)

ap-
east-1

rds.ap-east-1.amazonaws.com HTTPS

Asia
Pacific
(Hyderaba
d)

ap-
south-2

rds.ap-south-2.amazonaws.com HTTPS

AWS Regions 15

Amazon Aurora User Guide for Aurora

Region
Name

Region Endpoint Protocol

Asia
Pacific
(Jakarta)

ap-
southe
ast-3

rds.ap-southeast-3.amazonaws.com HTTPS

Asia
Pacific
(Melbourn
e)

ap-
southe
ast-4

rds.ap-southeast-4.amazonaws.com HTTPS

Asia
Pacific
(Mumbai)

ap-
south-1

rds.ap-south-1.amazonaws.com HTTPS

Asia
Pacific
(Osaka)

ap-
northe
ast-3

rds.ap-northeast-3.amazonaws.com HTTPS

Asia
Pacific
(Seoul)

ap-
northe
ast-2

rds.ap-northeast-2.amazonaws.com HTTPS

Asia
Pacific
(Singapor
e)

ap-
southe
ast-1

rds.ap-southeast-1.amazonaws.com HTTPS

Asia
Pacific
(Sydney)

ap-
southe
ast-2

rds.ap-southeast-2.amazonaws.com HTTPS

Asia
Pacific
(Tokyo)

ap-
northe
ast-1

rds.ap-northeast-1.amazonaws.com HTTPS

Canada
(Central)

ca-centra
l-1

rds.ca-central-1.amazonaws.com HTTPS

AWS Regions 16

Amazon Aurora User Guide for Aurora

Region
Name

Region Endpoint Protocol

Canada
West
(Calgary)

ca-
west-1

rds.ca-west-1.amazonaws.com HTTPS

Europe
(Frankfur
t)

eu-
central-1

rds.eu-central-1.amazonaws.com HTTPS

Europe
(Ireland)

eu-
west-1

rds.eu-west-1.amazonaws.com HTTPS

Europe
(London)

eu-
west-2

rds.eu-west-2.amazonaws.com HTTPS

Europe
(Milan)

eu-
south-1

rds.eu-south-1.amazonaws.com HTTPS

Europe
(Paris)

eu-
west-3

rds.eu-west-3.amazonaws.com HTTPS

Europe
(Spain)

eu-
south-2

rds.eu-south-2.amazonaws.com HTTPS

Europe
(Stockhol
m)

eu-
north-1

rds.eu-north-1.amazonaws.com HTTPS

Europe
(Zurich)

eu-
central-2

rds.eu-central-2.amazonaws.com HTTPS

Israel
(Tel Aviv)

il-centra
l-1

rds.il-central-1.amazonaws.com HTTPS

Middle
East
(Bahrain)

me-
south-1

rds.me-south-1.amazonaws.com HTTPS

AWS Regions 17

Amazon Aurora User Guide for Aurora

Region
Name

Region Endpoint Protocol

Middle
East
(UAE)

me-
central-1

rds.me-central-1.amazonaws.com HTTPS

South
America
(São
Paulo)

sa-east-1 rds.sa-east-1.amazonaws.com HTTPS

AWS
GovCloud
(US-East)

us-gov-
east-1

rds.us-gov-east-1.amazonaws.com HTTPS

AWS
GovCloud
(US-
West)

us-gov-
west-1

rds.us-gov-west-1.amazonaws.com HTTPS

Aurora PostgreSQL Region availability

The following table shows the AWS Regions where Aurora PostgreSQL is currently available and
the endpoint for each Region.

Region
Name

Region Endpoint Protocol

US East
(Ohio)

us-east-2 rds.us-east-2.amazonaws.com HTTPS

US
East (N.
Virginia)

us-east-1 rds.us-east-1.amazonaws.com HTTPS

US
West (N.

us-
west-1

rds.us-west-1.amazonaws.com HTTPS

AWS Regions 18

Amazon Aurora User Guide for Aurora

Region
Name

Region Endpoint Protocol

Californi
a)

US West
(Oregon)

us-
west-2

rds.us-west-2.amazonaws.com HTTPS

Africa
(Cape
Town)

af-south-
1

rds.af-south-1.amazonaws.com HTTPS

Asia
Pacific
(Hong
Kong)

ap-
east-1

rds.ap-east-1.amazonaws.com HTTPS

Asia
Pacific
(Hyderaba
d)

ap-
south-2

rds.ap-south-2.amazonaws.com HTTPS

Asia
Pacific
(Jakarta)

ap-
southe
ast-3

rds.ap-southeast-3.amazonaws.com HTTPS

Asia
Pacific
(Melbourn
e)

ap-
southe
ast-4

rds.ap-southeast-4.amazonaws.com HTTPS

Asia
Pacific
(Mumbai)

ap-
south-1

rds.ap-south-1.amazonaws.com HTTPS

Asia
Pacific
(Osaka)

ap-
northe
ast-3

rds.ap-northeast-3.amazonaws.com HTTPS

AWS Regions 19

Amazon Aurora User Guide for Aurora

Region
Name

Region Endpoint Protocol

Asia
Pacific
(Seoul)

ap-
northe
ast-2

rds.ap-northeast-2.amazonaws.com HTTPS

Asia
Pacific
(Singapor
e)

ap-
southe
ast-1

rds.ap-southeast-1.amazonaws.com HTTPS

Asia
Pacific
(Sydney)

ap-
southe
ast-2

rds.ap-southeast-2.amazonaws.com HTTPS

Asia
Pacific
(Tokyo)

ap-
northe
ast-1

rds.ap-northeast-1.amazonaws.com HTTPS

Canada
(Central)

ca-centra
l-1

rds.ca-central-1.amazonaws.com HTTPS

Canada
West
(Calgary)

ca-
west-1

rds.ca-west-1.amazonaws.com HTTPS

Europe
(Frankfur
t)

eu-
central-1

rds.eu-central-1.amazonaws.com HTTPS

Europe
(Ireland)

eu-
west-1

rds.eu-west-1.amazonaws.com HTTPS

Europe
(London)

eu-
west-2

rds.eu-west-2.amazonaws.com HTTPS

Europe
(Milan)

eu-
south-1

rds.eu-south-1.amazonaws.com HTTPS

AWS Regions 20

Amazon Aurora User Guide for Aurora

Region
Name

Region Endpoint Protocol

Europe
(Paris)

eu-
west-3

rds.eu-west-3.amazonaws.com HTTPS

Europe
(Spain)

eu-
south-2

rds.eu-south-2.amazonaws.com HTTPS

Europe
(Stockhol
m)

eu-
north-1

rds.eu-north-1.amazonaws.com HTTPS

Europe
(Zurich)

eu-
central-2

rds.eu-central-2.amazonaws.com HTTPS

Israel
(Tel Aviv)

il-centra
l-1

rds.il-central-1.amazonaws.com HTTPS

Middle
East
(Bahrain)

me-
south-1

rds.me-south-1.amazonaws.com HTTPS

Middle
East
(UAE)

me-
central-1

rds.me-central-1.amazonaws.com HTTPS

South
America
(São
Paulo)

sa-east-1 rds.sa-east-1.amazonaws.com HTTPS

AWS
GovCloud
(US-East)

us-gov-
east-1

rds.us-gov-east-1.amazonaws.com HTTPS

AWS Regions 21

Amazon Aurora User Guide for Aurora

Region
Name

Region Endpoint Protocol

AWS
GovCloud
(US-
West)

us-gov-
west-1

rds.us-gov-west-1.amazonaws.com HTTPS

Availability Zones

An Availability Zone is an isolated location in a given AWS Region. Each Region has multiple
Availability Zones (AZ) designed to provide high availability for the Region. An AZ is identified by
the AWS Region code followed by a letter identifier (for example, us-east-1a). If you create your
VPC and subnets rather than using the default VPC, you define each subnet in a specific AZ. When
you create an Aurora DB cluster, Aurora creates the primary instance in one of the subnets in the
VPC's DB subnet group. It thus associates that instance with a specific AZ chosen by Aurora.

Each Aurora DB cluster hosts copies of its storage in three separate AZs selected automatically by
Aurora from the AZs in your DB subnet group. Every DB instance in the cluster must be in one of
these three AZs.

When you create a DB instance in your cluster, Aurora automatically chooses an appropriate AZ for
that instance if you don't specify an AZ.

Use the describe-availability-zones Amazon EC2 command as follows to describe the Availability
Zones within the specified Region that are enabled for your account.

aws ec2 describe-availability-zones --region region-name

For example, to describe the Availability Zones within the US East (N. Virginia) Region (us-east-1)
that are enabled for your account, run the following command:

aws ec2 describe-availability-zones --region us-east-1

To learn how to specify the AZ when you create a cluster or add instances to it, see Configure the
network for the DB cluster.

Availability Zones 22

https://docs.aws.amazon.com/cli/latest/reference/ec2/describe-availability-zones.html

Amazon Aurora User Guide for Aurora

Local time zone for Amazon Aurora DB clusters

By default, the time zone for an Amazon Aurora DB cluster is Universal Time Coordinated
(UTC). You can set the time zone for instances in your DB cluster to the local time zone for your
application instead.

To set the local time zone for a DB cluster, set the time zone parameter to one of the supported
values. You set this parameter in the cluster parameter group for your DB cluster.

• For Aurora MySQL, the name of this parameter is time_zone. For information on best practices
for setting the time_zone parameter, see Optimizing timestamp operations.

• For Aurora PostgreSQL, the name of this parameter is timezone.

When you set the time zone parameter for a DB cluster, all instances in the DB cluster change to
use the new local time zone. In some cases, other Aurora DB clusters might be using the same
cluster parameter group. If so, all instances in those DB clusters change to use the new local time
zone also. For information on cluster-level parameters, see Amazon Aurora DB cluster and DB
instance parameters.

After you set the local time zone, all new connections to the database reflect the change. In some
cases, you might have open connections to your database when you change the local time zone. If
so, you don't see the local time zone update until after you close the connection and open a new
connection.

If you are replicating across AWS Regions, the replication source DB cluster and the replica use
different parameter groups. Parameter groups are unique to an AWS Region. To use the same local
time zone for each instance, make sure to set the time zone parameter in the parameter groups for
both the replication source and the replica.

When you restore a DB cluster from a DB cluster snapshot, the local time zone is set to UTC. You
can update the time zone to your local time zone after the restore is complete. In some cases, you
might restore a DB cluster to a point in time. If so, the local time zone for the restored DB cluster is
the time zone setting from the parameter group of the restored DB cluster.

The following table lists some of the values to which you can set your local time zone. To list all of
the available time zones, you can use the following SQL queries:

• Aurora MySQL: select * from mysql.time_zone_name;

• Aurora PostgreSQL: select * from pg_timezone_names;

Local time zone for DB clusters 23

Amazon Aurora User Guide for Aurora

Note

For some time zones, time values for certain date ranges can be reported incorrectly as
noted in the table. For Australia time zones, the time zone abbreviation returned is an
outdated value as noted in the table.

Time zone Notes

Africa/Harare This time zone setting can return incorrect values from 28 Feb 1903
21:49:40 GMT to 28 Feb 1903 21:55:48 GMT.

Africa/Monrovia

Africa/Nairobi This time zone setting can return incorrect values from 31 Dec 1939
21:30:00 GMT to 31 Dec 1959 21:15:15 GMT.

Africa/Windhoek

America/Bogota This time zone setting can return incorrect values from 23 Nov 1914
04:56:16 GMT to 23 Nov 1914 04:56:20 GMT.

America/Caracas

America/C
hihuahua

America/Cuiaba

America/Denver

America/F
ortaleza

In some cases, for a DB cluster in the South America (Sao Paulo)
Region, time doesn't show correctly for a recently changed Brazil time
zone. If so, reset the DB cluster's time zone parameter to America/F
ortaleza .

America/G
uatemala

Local time zone for DB clusters 24

Amazon Aurora User Guide for Aurora

Time zone Notes

America/Halifax This time zone setting can return incorrect values from 27 Oct 1918
05:00:00 GMT to 31 Oct 1918 05:00:00 GMT.

America/Manaus If your DB cluster is in the South America (Cuiaba) time zone and the
expected time doesn't show correctly for the recently changed Brazil
time zone, reset the DB cluster's time zone parameter to America/M
anaus .

America/M
atamoros

America/M
onterrey

America/M
ontevideo

America/Phoenix

America/Tijuana

Asia/Ashgabat

Asia/Baghdad

Asia/Baku

Asia/Bangkok

Asia/Beirut

Asia/Calcutta

Asia/Kabul

Asia/Karachi

Asia/Kathmandu

Local time zone for DB clusters 25

Amazon Aurora User Guide for Aurora

Time zone Notes

Asia/Muscat This time zone setting can return incorrect values from 31 Dec 1919
20:05:36 GMT to 31 Dec 1919 20:05:40 GMT.

Asia/Riyadh This time zone setting can return incorrect values from 13 Mar 1947
20:53:08 GMT to 31 Dec 1949 20:53:08 GMT.

Asia/Seoul This time zone setting can return incorrect values from 30 Nov 1904
15:30:00 GMT to 07 Sep 1945 15:00:00 GMT.

Asia/Shanghai This time zone setting can return incorrect values from 31 Dec 1927
15:54:08 GMT to 02 Jun 1940 16:00:00 GMT.

Asia/Singapore

Asia/Taipei This time zone setting can return incorrect values from 30 Sep 1937
16:00:00 GMT to 29 Sep 1979 15:00:00 GMT.

Asia/Tehran

Asia/Tokyo This time zone setting can return incorrect values from 30 Sep 1937
15:00:00 GMT to 31 Dec 1937 15:00:00 GMT.

Asia/Ulaa
nbaatar

Atlantic/Azores This time zone setting can return incorrect values from 24 May 1911
01:54:32 GMT to 01 Jan 1912 01:54:32 GMT.

Australia/
Adelaide

The abbreviation for this time zone is returned as CST instead of ACDT/
ACST.

Australia/
Brisbane

The abbreviation for this time zone is returned as EST instead of AEDT/
AEST.

Australia/
Darwin

The abbreviation for this time zone is returned as CST instead of ACDT/
ACST.

Local time zone for DB clusters 26

Amazon Aurora User Guide for Aurora

Time zone Notes

Australia/
Hobart

The abbreviation for this time zone is returned as EST instead of AEDT/
AEST.

Australia/Perth The abbreviation for this time zone is returned as WST instead of
AWDT/AWST.

Australia/
Sydney

The abbreviation for this time zone is returned as EST instead of AEDT/
AEST.

Brazil/East

Canada/Sa
skatchewan

This time zone setting can return incorrect values from 27 Oct 1918
08:00:00 GMT to 31 Oct 1918 08:00:00 GMT.

Europe/Am
sterdam

Europe/Athens

Europe/Dublin

Europe/Helsinki This time zone setting can return incorrect values from 30 Apr 1921
22:20:08 GMT to 30 Apr 1921 22:20:11 GMT.

Europe/Paris

Europe/Prague

Europe/Sarajevo

Pacific/A
uckland

Pacific/Guam

Pacific/H
onolulu

This time zone setting can return incorrect values from 21 May 1933
11:30:00 GMT to 30 Sep 1945 11:30:00 GMT.

Local time zone for DB clusters 27

Amazon Aurora User Guide for Aurora

Time zone Notes

Pacific/Samoa This time zone setting can return incorrect values from 01 Jan 1911
11:22:48 GMT to 01 Jan 1950 11:30:00 GMT.

US/Alaska

US/Central

US/Eastern

US/East-Indiana

US/Pacific

UTC

Local time zone for DB clusters 28

Amazon Aurora User Guide for Aurora

Supported features in Amazon Aurora by AWS Region and
Aurora DB engine

Aurora MySQL- and PostgreSQL-compatible database engines support several Amazon Aurora
and Amazon RDS features and options. The support varies across specific versions of each
database engine, and across AWS Regions. To identify Aurora database engine version support and
availability for a feature in a given AWS Region, you can use the following sections.

Some of these features are Aurora-only capabilities. For example, Aurora Serverless, Aurora global
databases, and support for integration with AWS machine learning services aren't supported by
Amazon RDS. Other features, such as Amazon RDS Proxy, are supported by both Amazon Aurora
and Amazon RDS.

Supported Regions and DB engines

• Table conventions

• Supported Regions and Aurora DB engines for Blue/Green Deployments

• Supported Regions and Aurora DB engines for cluster storage configurations

• Supported Regions and Aurora DB engines for database activity streams

• Supported Regions and Aurora DB engines for exporting cluster data to Amazon S3

• Supported Regions and Aurora DB engines for exporting snapshot data to Amazon S3

• Supported Regions and DB engines for Aurora global databases

• Supported Regions and Aurora DB engines for IAM database authentication

• Supported Regions and Aurora DB engines for Kerberos authentication

• Supported Regions and DB engines for Aurora machine learning

• Supported Regions and Aurora DB engines for Performance Insights

• Supported Regions and Aurora DB engines for zero-ETL integrations with Amazon Redshift

• Supported Regions and Aurora DB engines for Amazon RDS Proxy

• Supported Regions and Aurora DB engines for Secrets Manager integration

• Supported Regions and Aurora DB engines for Aurora Serverless v2

• Supported Regions and Aurora DB engines for Aurora Serverless v1

• Supported Regions and Aurora DB engines for RDS Data API

• Supported Regions and Aurora DB engines for zero-downtime patching (ZDP)

• Supported Regions and DB engines for Aurora engine-native features

Supported Aurora features by Region and engine 29

Amazon Aurora User Guide for Aurora

Table conventions

The tables in the feature sections use the following patterns to specify version numbers and level
of support:

• Version x.y – The specific version alone is supported.

• Version x.y and higher – The specified version and all higher minor versions of its major version
are supported. For example, "version 10.11 and higher" means that versions 10.11, 10.11.1, and
10.12 are supported.

• - – The feature is not currently available for that particular Aurora feature for the given Aurora
database engine, or in that specific AWS Region.

Supported Regions and Aurora DB engines for Blue/Green
Deployments

A blue/green deployment copies a production database environment in a separate, synchronized
staging environment. By using Amazon RDS Blue/Green Deployments, you can make changes
to the database in the staging environment without affecting the production environment. For
example, you can upgrade the major or minor DB engine version, change database parameters,
or make schema changes in the staging environment. When you are ready, you can promote the
staging environment to be the new production database environment. For more information, see
Using Amazon RDS Blue/Green Deployments for database updates.

Blue/Green Deployments with Aurora MySQL

The Blue/Green Deployments feature is available for all versions of Aurora MySQL in all AWS
Regions.

Blue/Green Deployments with Aurora PostgreSQL

The following Regions and engine versions are available for Blue/Green Deployments with Aurora
PostgreSQL.

Table conventions 30

Amazon Aurora User Guide for Aurora

Region Aurora
PostgreSQ
L 16

Aurora
PostgreSQ
L 15

Aurora
PostgreSQ
L 14

Aurora
PostgreSQ
L 13

Aurora
PostgreSQ
L 12

Aurora
PostgreSQ
L 11

All AWS
Regions

Version
16.1 and
higher

Version
15.4 and
higher

Version
14.9 and
higher

Version
13.12 and
higher

Version
12.16 and
higher

Version
11.21 and
higher

Supported Regions and Aurora DB engines for cluster storage
configurations

Amazon Aurora has two DB cluster storage configurations, Aurora I/O-Optimized and Aurora
Standard. For more information, see Storage configurations for Amazon Aurora DB clusters.

Aurora I/O-Optimized

Aurora I/O-Optimized is available in all AWS Regions for the following Amazon Aurora versions:

• Aurora MySQL version 3.03.1 and higher

• Aurora PostgreSQL versions 16.1 and higher, 15.2 and higher, 14.7 and higher, and 13.10 and
higher

Aurora Standard

Aurora Standard is available in all AWS Regions for all Aurora MySQL and Aurora PostgreSQL
versions.

Supported Regions and Aurora DB engines for database activity
streams

By using database activity streams in Aurora, you can monitor and set alarms for auditing activity
in your Aurora database. For more information, see Monitoring Amazon Aurora with Database
Activity Streams.

Database activity streams aren't supported for the following features:

• Aurora Serverless v1

Aurora cluster configurations 31

Amazon Aurora User Guide for Aurora

• Aurora Serverless v2

• Babelfish for Aurora PostgreSQL

Topics

• Database activity streams with Aurora MySQL

• Database activity streams with Aurora PostgreSQL

Database activity streams with Aurora MySQL

The following Regions and engine versions are available for database activity streams with Aurora
MySQL.

Region Aurora MySQL version 3 Aurora MySQL version 2

US East (Ohio) All available versions Aurora version 2.11 and
higher

US East (N. Virginia) All available versions Aurora version 2.11 and
higher

US West (N. California) All available versions Aurora version 2.11 and
higher

US West (Oregon) All available versions Aurora version 2.11 and
higher

Africa (Cape Town) All available versions Aurora version 2.11 and
higher

Asia Pacific (Hong Kong) All available versions Aurora version 2.11 and
higher

Asia Pacific (Hyderabad) All available versions Aurora version 2.11 and
higher

Asia Pacific (Jakarta) All available versions Aurora version 2.11 and
higher

Database activity streams 32

Amazon Aurora User Guide for Aurora

Region Aurora MySQL version 3 Aurora MySQL version 2

Asia Pacific (Mumbai) All available versions Aurora version 2.11 and
higher

Asia Pacific (Osaka) All available versions Aurora version 2.11 and
higher

Asia Pacific (Seoul) All available versions Aurora version 2.11 and
higher

Asia Pacific (Singapore) All available versions Aurora version 2.11 and
higher

Asia Pacific (Sydney) All available versions Aurora version 2.11 and
higher

Asia Pacific (Tokyo) All available versions Aurora version 2.11 and
higher

Canada (Central) All available versions Aurora version 2.11 and
higher

Canada West (Calgary) – –

China (Beijing) – –

China (Ningxia) – –

Europe (Frankfurt) All available versions Aurora version 2.11 and
higher

Europe (Ireland) All available versions Aurora version 2.11 and
higher

Europe (London) All available versions Aurora version 2.11 and
higher

Europe (Milan) All available versions Aurora version 2.11 and
higher

Database activity streams 33

Amazon Aurora User Guide for Aurora

Region Aurora MySQL version 3 Aurora MySQL version 2

Europe (Paris) All available versions Aurora version 2.11 and
higher

Europe (Spain) All available versions Aurora version 2.11 and
higher

Europe (Stockholm) All available versions Aurora version 2.11 and
higher

Europe (Zurich) – –

Israel (Tel Aviv) – –

Middle East (Bahrain) All available versions Aurora version 2.11 and
higher

Middle East (UAE) All available versions Aurora version 2.11 and
higher

South America (São Paulo) All available versions Aurora version 2.11 and
higher

Database activity streams with Aurora PostgreSQL

The following Regions and engine versions are available for database activity streams with Aurora
PostgreSQL.

Region Aurora
PostgreSQ
L 16

Aurora
PostgreSQ
L 15

Aurora
PostgreSQ
L 14

Aurora
PostgreSQ
L 13

Aurora
PostgreSQ
L 12

Aurora
PostgreSQ
L 11

US East
(Ohio)

Version
16.1 and
higher

Version
15.2 and
higher

All
available
versions

All
available
versions

All
available
versions

Version
11.9 and
version
11.13 and
higher

Database activity streams 34

Amazon Aurora User Guide for Aurora

Region Aurora
PostgreSQ
L 16

Aurora
PostgreSQ
L 15

Aurora
PostgreSQ
L 14

Aurora
PostgreSQ
L 13

Aurora
PostgreSQ
L 12

Aurora
PostgreSQ
L 11

US East (N.
Virginia)

Version
16.1 and
higher

Version
15.2 and
higher

All
available
versions

All
available
versions

All
available
versions

Version
11.9 and
version
11.13 and
higher

US
West (N.
California)

Version
16.1 and
higher

Version
15.2 and
higher

All
available
versions

All
available
versions

All
available
versions

Version
11.9 and
version
11.13 and
higher

US West
(Oregon)

Version
16.1 and
higher

Version
15.2 and
higher

All
available
versions

All
available
versions

All
available
versions

Version
11.9 and
version
11.13 and
higher

Africa
(Cape
Town)

Version
16.1 and
higher

Version
15.2 and
higher

All
available
versions

All
available
versions

All
available
versions

Version
11.9 and
version
11.13 and
higher

Asia Pacific
(Hong
Kong)

Version
16.1 and
higher

Version
15.2 and
higher

All
available
versions

All
available
versions

All
available
versions

Version
11.9 and
version
11.13 and
higher

Database activity streams 35

Amazon Aurora User Guide for Aurora

Region Aurora
PostgreSQ
L 16

Aurora
PostgreSQ
L 15

Aurora
PostgreSQ
L 14

Aurora
PostgreSQ
L 13

Aurora
PostgreSQ
L 12

Aurora
PostgreSQ
L 11

Asia Pacific
(Hyderaba
d)

Version
16.1 and
higher

Version
15.2 and
higher

All
available
versions

All
available
versions

All
available
versions

Version
11.9 and
version
11.13 and
higher

Asia Pacific
(Jakarta)

Version
16.1 and
higher

Version
15.2 and
higher

All
available
versions

All
available
versions

All
available
versions

Version
11.9 and
version
11.13 and
higher

Asia Pacific
(Melbourn
e)

– – – – – –

Asia Pacific
(Mumbai)

Version
16.1 and
higher

Version
15.2 and
higher

All
available
versions

All
available
versions

All
available
versions

Version
11.9 and
version
11.13 and
higher

Asia Pacific
(Osaka)

Version
16.1 and
higher

Version
15.2 and
higher

All
available
versions

All
available
versions

All
available
versions

Version
11.9 and
version
11.13 and
higher

Asia Pacific
(Seoul)

Version
16.1 and
higher

Version
15.2 and
higher

All
available
versions

All
available
versions

All
available
versions

Version
11.9 and
version
11.13 and
higher

Database activity streams 36

Amazon Aurora User Guide for Aurora

Region Aurora
PostgreSQ
L 16

Aurora
PostgreSQ
L 15

Aurora
PostgreSQ
L 14

Aurora
PostgreSQ
L 13

Aurora
PostgreSQ
L 12

Aurora
PostgreSQ
L 11

Asia Pacific
(Singapor
e)

Version
16.1 and
higher

Version
15.2 and
higher

All
available
versions

All
available
versions

All
available
versions

Version
11.9 and
version
11.13 and
higher

Asia Pacific
(Sydney)

Version
16.1 and
higher

Version
15.2 and
higher

All
available
versions

All
available
versions

All
available
versions

Version
11.9 and
version
11.13 and
higher

Asia Pacific
(Tokyo)

Version
16.1 and
higher

Version
15.2 and
higher

All
available
versions

All
available
versions

All
available
versions

Version
11.9 and
version
11.13 and
higher

Canada
(Central)

Version
16.1 and
higher

Version
15.2 and
higher

All
available
versions

All
available
versions

All
available
versions

Version
11.9 and
version
11.13 and
higher

Canada
West
(Calgary)

– – – – – –

China
(Beijing)

– – – – – –

China
(Ningxia)

– – – – – –

Database activity streams 37

Amazon Aurora User Guide for Aurora

Region Aurora
PostgreSQ
L 16

Aurora
PostgreSQ
L 15

Aurora
PostgreSQ
L 14

Aurora
PostgreSQ
L 13

Aurora
PostgreSQ
L 12

Aurora
PostgreSQ
L 11

Europe
(Frankfurt)

Version
16.1 and
higher

Version
15.2 and
higher

All
available
versions

All
available
versions

All
available
versions

Version
11.9 and
version
11.13 and
higher

Europe
(Ireland)

Version
16.1 and
higher

Version
15.2 and
higher

All
available
versions

All
available
versions

All
available
versions

Version
11.9 and
version
11.13 and
higher

Europe
(London)

Version
16.1 and
higher

Version
15.2 and
higher

All
available
versions

All
available
versions

All
available
versions

Version
11.9 and
version
11.13 and
higher

Europe
(Milan)

Version
16.1 and
higher

Version
15.2 and
higher

All
available
versions

All
available
versions

All
available
versions

Version
11.9 and
version
11.13 and
higher

Europe
(Paris)

Version
16.1 and
higher

Version
15.2 and
higher

All
available
versions

All
available
versions

All
available
versions

Version
11.9 and
version
11.13 and
higher

Database activity streams 38

Amazon Aurora User Guide for Aurora

Region Aurora
PostgreSQ
L 16

Aurora
PostgreSQ
L 15

Aurora
PostgreSQ
L 14

Aurora
PostgreSQ
L 13

Aurora
PostgreSQ
L 12

Aurora
PostgreSQ
L 11

Europe
(Spain)

Version
16.1 and
higher

Version
15.2 and
higher

All
available
versions

All
available
versions

All
available
versions

Version
11.9 and
version
11.13 and
higher

Europe
(Stockhol
m)

Version
16.1 and
higher

Version
15.2 and
higher

All
available
versions

All
available
versions

All
available
versions

Version
11.9 and
version
11.13 and
higher

Europe
(Zurich)

– – – – – –

Israel (Tel
Aviv)

– – – – – –

Middle
East
(Bahrain)

Version
16.1 and
higher

Version
15.2 and
higher

All
available
versions

All
available
versions

All
available
versions

Version
11.9 and
version
11.13 and
higher

Middle
East (UAE)

Version
16.1 and
higher

Version
15.2 and
higher

All
available
versions

All
available
versions

All
available
versions

Version
11.9 and
version
11.13 and
higher

Database activity streams 39

Amazon Aurora User Guide for Aurora

Region Aurora
PostgreSQ
L 16

Aurora
PostgreSQ
L 15

Aurora
PostgreSQ
L 14

Aurora
PostgreSQ
L 13

Aurora
PostgreSQ
L 12

Aurora
PostgreSQ
L 11

South
America
(São Paulo)

Version
16.1 and
higher

Version
15.2 and
higher

All
available
versions

All
available
versions

All
available
versions

Version
11.9 and
version
11.13 and
higher

Supported Regions and Aurora DB engines for exporting cluster data to
Amazon S3

You can export Aurora DB cluster data to an Amazon S3 bucket. After the data is exported, you
can analyze the exported data directly through tools like Amazon Athena or Amazon Redshift
Spectrum. For more information, see Exporting DB cluster data to Amazon S3.

Exporting cluster data to S3 is available in the following AWS Regions:

• Asia Pacific (Hong Kong)

• Asia Pacific (Mumbai)

• Asia Pacific (Osaka)

• Asia Pacific (Seoul)

• Asia Pacific (Singapore)

• Asia Pacific (Sydney)

• Asia Pacific (Tokyo)

• Canada (Central)

• Canada West (Calgary)

• China (Ningxia)

• Europe (Frankfurt)

• Europe (Ireland)

• Europe (London)

• Europe (Paris)

• Europe (Stockholm)

Exporting cluster data to Amazon S3 40

Amazon Aurora User Guide for Aurora

• South America (São Paulo)

• US East (N. Virginia)

• US East (Ohio)

• US West (N. California)

• US West (Oregon)

Topics

• Exporting cluster data to S3 with Aurora MySQL

• Exporting cluster data to S3 with Aurora PostgreSQL

Exporting cluster data to S3 with Aurora MySQL

All currently available Aurora MySQL engine versions support exporting DB cluster data to Amazon
S3. For more information about versions, see Release Notes for Aurora MySQL.

Exporting cluster data to S3 with Aurora PostgreSQL

All currently available Aurora PostgreSQL engine versions support exporting DB cluster data to
Amazon S3. For more information about versions, see the Release Notes for Aurora PostgreSQL.

Supported Regions and Aurora DB engines for exporting snapshot data
to Amazon S3

You can export Aurora DB cluster snapshot data to an Amazon S3 bucket. You can export manual
snapshots and automated system snapshots. After the data is exported, you can analyze the
exported data directly through tools like Amazon Athena or Amazon Redshift Spectrum. For more
information, see Exporting DB cluster snapshot data to Amazon S3.

Exporting snapshots to S3 is available in all AWS Regions except the following:

• AWS GovCloud (US-East)

• AWS GovCloud (US-West)

Topics

• Exporting snapshot data to S3 with Aurora MySQL

• Exporting snapshot data to S3 with Aurora PostgreSQL

Exporting snapshot data to Amazon S3 41

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraMySQLReleaseNotes/Welcome.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/Welcome.html

Amazon Aurora User Guide for Aurora

Exporting snapshot data to S3 with Aurora MySQL

All currently available Aurora MySQL engine versions support exporting DB cluster snapshot data
to Amazon S3. For more information about versions, see Release Notes for Aurora MySQL.

Exporting snapshot data to S3 with Aurora PostgreSQL

All currently available Aurora PostgreSQL engine versions support exporting DB cluster snapshot
data to Amazon S3. For more information about versions, see the Release Notes for Aurora
PostgreSQL.

Supported Regions and DB engines for Aurora global databases

An Aurora global database is a single database that spans multiple AWS Regions, enabling low-
latency global reads and disaster recovery from any Region-wide outage. It provides built-in fault
tolerance for your deployment because the DB instance relies not on a single AWS Region, but
upon multiple Regions and different Availability Zones. For more information, see Using Amazon
Aurora global databases.

Topics

• Aurora global databases with Aurora MySQL

• Aurora global databases with Aurora PostgreSQL

Aurora global databases with Aurora MySQL

The following Regions and engine versions are available for Aurora global databases with Aurora
MySQL.

Region Aurora MySQL version 3 Aurora MySQL version 2

US East (Ohio) Version 3.01.0 and higher Version 2.07.0 and higher

US East (N. Virginia) Version 3.01.0 and higher Version 2.07.0 and higher

US West (N. California) Version 3.01.0 and higher Version 2.07.0 and higher

US West (Oregon) Version 3.01.0 and higher Version 2.07.0 and higher

Africa (Cape Town) Version 3.01.0 and higher Version 2.07.1 and higher

Aurora global databases 42

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraMySQLReleaseNotes/Welcome.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/Welcome.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/Welcome.html

Amazon Aurora User Guide for Aurora

Region Aurora MySQL version 3 Aurora MySQL version 2

Asia Pacific (Hong Kong) Version 3.01.0 and higher Version 2.07.1 and higher

Asia Pacific (Hyderabad) Version 3.02.0 and higher Version 2.11.2 and higher

Asia Pacific (Jakarta) Version 3.01.0 and higher Version 2.07.6 and higher

Asia Pacific (Melbourne) Version 3.03.0 and higher –

Asia Pacific (Mumbai) Version 3.01.0 and higher Version 2.07.0 and higher

Asia Pacific (Osaka) Version 3.01.0 and higher Version 2.07.3 and higher

Asia Pacific (Seoul) Version 3.01.0 and higher Version 2.07.0 and higher

Asia Pacific (Singapore) Version 3.01.0 and higher Version 2.07.0 and higher

Asia Pacific (Sydney) Version 3.01.0 and higher Version 2.07.0 and higher

Asia Pacific (Tokyo) Version 3.01.0 and higher Version 2.07.0 and higher

Canada (Central) Version 3.01.0 and higher Version 2.07.0 and higher

Canada West (Calgary) Version 3.01.0 and higher Version 2.07.0 and higher

China (Beijing) Version 3.01.0 and higher Version 2.07.2 and higher

China (Ningxia) Version 3.01.0 and higher Version 2.07.2 and higher

Europe (Frankfurt) Version 3.01.0 and higher Version 2.07.0 and higher

Europe (Ireland) Version 3.01.0 and higher Version 2.07.0 and higher

Europe (London) Version 3.01.0 and higher Version 2.07.0 and higher

Europe (Milan) Version 3.01.0 and higher Version 2.07.1 and higher

Europe (Paris) Version 3.01.0 and higher Version 2.07.0 and higher

Europe (Spain) Version 3.02.0 and higher –

Aurora global databases 43

Amazon Aurora User Guide for Aurora

Region Aurora MySQL version 3 Aurora MySQL version 2

Europe (Stockholm) Version 3.01.0 and higher Version 2.07.0 and higher

Europe (Zurich) Version 3.02.0 and higher –

Israel (Tel Aviv) – –

Middle East (Bahrain) Version 3.01.0 and higher Version 2.07.1 and higher

Middle East (UAE) Version 3.02.0 and higher –

South America (São Paulo) Version 3.01.0 and higher Version 2.07.1 and higher

AWS GovCloud (US-East) Version 3.01.0 and higher Version 2.07.0 and higher

AWS GovCloud (US-West) Version 3.01.0 and higher Version 2.07.0 and higher

Aurora global databases with Aurora PostgreSQL

The following Regions and engine versions are available for Aurora global databases with Aurora
PostgreSQL.

Region Aurora
PostgreSQ
L 16

Aurora
PostgreSQ
L 15

Aurora
PostgreSQ
L 14

Aurora
PostgreSQ
L 13

Aurora
PostgreSQ
L 12

Aurora
PostgreSQ
L 11

US East
(Ohio)

Version
16.1 and
higher

Version
15.2 and
higher

Version
14.3 and
higher

Version
13.4 and
higher

Version
12.8 and
higher

Version
11.9 and
version
11.13 and
higher

US East (N.
Virginia)

Version
16.1 and
higher

Version
15.2 and
higher

Version
14.3 and
higher

Version
13.4 and
higher

Version
12.8 and
higher

Version
11.9 and
version
11.13 and
higher

Aurora global databases 44

Amazon Aurora User Guide for Aurora

Region Aurora
PostgreSQ
L 16

Aurora
PostgreSQ
L 15

Aurora
PostgreSQ
L 14

Aurora
PostgreSQ
L 13

Aurora
PostgreSQ
L 12

Aurora
PostgreSQ
L 11

US
West (N.
California)

Version
16.1 and
higher

Version
15.2 and
higher

Version
14.3 and
higher

Version
13.4 and
higher

Version
12.8 and
higher

Version
11.9 and
version
11.13 and
higher

US West
(Oregon)

Version
16.1 and
higher

Version
15.2 and
higher

Version
14.3 and
higher

Version
13.4 and
higher

Version
12.8 and
higher

Version
11.9 and
version
11.13 and
higher

Africa
(Cape
Town)

Version
16.1 and
higher

Version
15.2 and
higher

Version
14.3 and
higher

Version
13.4 and
higher

Version
12.8 and
higher

Version
11.9 and
version
11.13 and
higher

Asia Pacific
(Hong
Kong)

Version
16.1 and
higher

Version
15.2 and
higher

Version
14.3 and
higher

Version
13.4 and
higher

Version
12.8 and
higher

Version
11.9 and
version
11.13 and
higher

Asia Pacific
(Hyderaba
d)

Version
16.1 and
higher

Version
15.2 and
higher

Version
14.3 and
higher

Version
13.4 and
higher

Version
12.8 and
higher

Version
11.9 and
version
11.13 and
higher

Aurora global databases 45

Amazon Aurora User Guide for Aurora

Region Aurora
PostgreSQ
L 16

Aurora
PostgreSQ
L 15

Aurora
PostgreSQ
L 14

Aurora
PostgreSQ
L 13

Aurora
PostgreSQ
L 12

Aurora
PostgreSQ
L 11

Asia Pacific
(Jakarta)

Version
16.1 and
higher

Version
15.2 and
higher

Version
14.3 and
higher

Version
13.4 and
higher

Version
12.8 and
higher

Version
11.9 and
version
11.13 and
higher

Asia Pacific
(Melbourn
e)

Version
16.1 and
higher

Version
15.2 and
higher

Version
14.3 and
higher

Version
13.4 and
higher

Version
12.8 and
higher

Version
11.9 and
version
11.13 and
higher

Asia Pacific
(Mumbai)

Version
16.1 and
higher

Version
15.2 and
higher

Version
14.3 and
higher

Version
13.4 and
higher

Version
12.8 and
higher

Version
11.9 and
version
11.13 and
higher

Asia Pacific
(Osaka)

Version
16.1 and
higher

Version
15.2 and
higher

Version
14.3 and
higher

Version
13.4 and
higher

Version
12.8 and
higher

Version
11.9 and
version
11.13 and
higher

Asia Pacific
(Seoul)

Version
16.1 and
higher

Version
15.2 and
higher

Version
14.3 and
higher

Version
13.4 and
higher

Version
12.8 and
higher

Version
11.9 and
version
11.13 and
higher

Aurora global databases 46

Amazon Aurora User Guide for Aurora

Region Aurora
PostgreSQ
L 16

Aurora
PostgreSQ
L 15

Aurora
PostgreSQ
L 14

Aurora
PostgreSQ
L 13

Aurora
PostgreSQ
L 12

Aurora
PostgreSQ
L 11

Asia Pacific
(Singapor
e)

Version
16.1 and
higher

Version
15.2 and
higher

Version
14.3 and
higher

Version
13.4 and
higher

Version
12.8 and
higher

Version
11.9 and
version
11.13 and
higher

Asia Pacific
(Sydney)

Version
16.1 and
higher

Version
15.2 and
higher

Version
14.3 and
higher

Version
13.4 and
higher

Version
12.8 and
higher

Version
11.9 and
version
11.13 and
higher

Asia Pacific
(Tokyo)

Version
16.1 and
higher

Version
15.2 and
higher

Version
14.3 and
higher

Version
13.4 and
higher

Version
12.8 and
higher

Version
11.9 and
version
11.13 and
higher

Canada
(Central)

Version
16.1 and
higher

Version
15.2 and
higher

Version
14.3 and
higher

Version
13.4 and
higher

Version
12.8 and
higher

Version
11.9 and
version
11.13 and
higher

Canada
West
(Calgary)

Version
16.1 and
higher

Version
15.2 and
higher

Version
14.3 and
higher

Version
13.4 and
higher

Version
12.8 and
higher

Version
11.9 and
version
11.13 and
higher

Aurora global databases 47

Amazon Aurora User Guide for Aurora

Region Aurora
PostgreSQ
L 16

Aurora
PostgreSQ
L 15

Aurora
PostgreSQ
L 14

Aurora
PostgreSQ
L 13

Aurora
PostgreSQ
L 12

Aurora
PostgreSQ
L 11

China
(Beijing)

Version
16.1 and
higher

Version
15.2 and
higher

Version
14.3 and
higher

Version
13.4 and
higher

Version
12.8 and
higher

Version
11.9 and
version
11.13 and
higher

China
(Ningxia)

Version
16.1 and
higher

Version
15.2 and
higher

Version
14.3 and
higher

Version
13.4 and
higher

Version
12.8 and
higher

Version
11.9 and
version
11.13 and
higher

Europe
(Frankfurt)

Version
16.1 and
higher

Version
15.2 and
higher

Version
14.3 and
higher

Version
13.4 and
higher

Version
12.8 and
higher

Version
11.9 and
version
11.13 and
higher

Europe
(Ireland)

Version
16.1 and
higher

Version
15.2 and
higher

Version
14.3 and
higher

Version
13.4 and
higher

Version
12.8 and
higher

Version
11.9 and
version
11.13 and
higher

Europe
(London)

Version
16.1 and
higher

Version
15.2 and
higher

Version
14.3 and
higher

Version
13.4 and
higher

Version
12.8 and
higher

Version
11.9 and
version
11.13 and
higher

Aurora global databases 48

Amazon Aurora User Guide for Aurora

Region Aurora
PostgreSQ
L 16

Aurora
PostgreSQ
L 15

Aurora
PostgreSQ
L 14

Aurora
PostgreSQ
L 13

Aurora
PostgreSQ
L 12

Aurora
PostgreSQ
L 11

Europe
(Milan)

Version
16.1 and
higher

Version
15.2 and
higher

Version
14.3 and
higher

Version
13.4 and
higher

Version
12.8 and
higher

Version
11.9 and
version
11.13 and
higher

Europe
(Paris)

Version
16.1 and
higher

Version
15.2 and
higher

Version
14.3 and
higher

Version
13.4 and
higher

Version
12.8 and
higher

Version
11.9 and
version
11.13 and
higher

Europe
(Spain)

Version
16.1 and
higher

Version
15.2 and
higher

Version
14.3 and
higher

Version
13.4 and
higher

Version
12.8 and
higher

Version
11.9 and
version
11.13 and
higher

Europe
(Stockhol
m)

Version
16.1 and
higher

Version
15.2 and
higher

Version
14.3 and
higher

Version
13.4 and
higher

Version
12.8 and
higher

Version
11.9 and
version
11.13 and
higher

Europe
(Zurich)

Version
16.1 and
higher

Version
15.2 and
higher

Version
14.3 and
higher

Version
13.4 and
higher

Version
12.8 and
higher

Version
11.9 and
version
11.13 and
higher

Israel (Tel
Aviv)

– – – – – –

Aurora global databases 49

Amazon Aurora User Guide for Aurora

Region Aurora
PostgreSQ
L 16

Aurora
PostgreSQ
L 15

Aurora
PostgreSQ
L 14

Aurora
PostgreSQ
L 13

Aurora
PostgreSQ
L 12

Aurora
PostgreSQ
L 11

Middle
East
(Bahrain)

Version
16.1 and
higher

Version
15.2 and
higher

Version
14.3 and
higher

Version
13.4 and
higher

Version
12.8 and
higher

Version
11.9 and
version
11.13 and
higher

Middle
East (UAE)

Version
16.1 and
higher

Version
15.2 and
higher

Version
14.3 and
higher

Version
13.4 and
higher

Version
12.8 and
higher

Version
11.9 and
version
11.13 and
higher

South
America
(São Paulo)

Version
16.1 and
higher

Version
15.2 and
higher

Version
14.3 and
higher

Version
13.4 and
higher

Version
12.8 and
higher

Version
11.9 and
version
11.13 and
higher

AWS
GovCloud
(US-East)

Version
16.1 and
higher

Version
15.2 and
higher

Version
14.3 and
higher

Version
13.4 and
higher

Version
12.8 and
higher

Version
11.9 and
version
11.13 and
higher

AWS
GovCloud
(US-West)

Version
16.1 and
higher

Version
15.2 and
higher

Version
14.3 and
higher

Version
13.4 and
higher

Version
12.8 and
higher

Version
11.9 and
version
11.13 and
higher

Aurora global databases 50

Amazon Aurora User Guide for Aurora

Supported Regions and Aurora DB engines for IAM database
authentication

With IAM database authentication in Aurora, you can authenticate to your DB cluster using
AWS Identity and Access Management (IAM) database authentication. With this authentication
method, you don't need to use a password when you connect to a DB cluster. Instead, you use an
authentication token. For more information, see IAM database authentication.

Topics

• IAM database authentication with Aurora MySQL

• IAM database authentication with Aurora PostgreSQL

IAM database authentication with Aurora MySQL

IAM database authentication with Aurora MySQL is available in all Regions for the following
versions:

• Aurora MySQL 3 – All available versions

• Aurora MySQL 2 – All available versions

IAM database authentication with Aurora PostgreSQL

IAM database authentication with Aurora PostgreSQL is available in all Regions for the following
engine versions:

• Aurora PostgreSQL 16 – All available versions

• Aurora PostgreSQL 15 – All available versions

• Aurora PostgreSQL 14 – All available versions

• Aurora PostgreSQL 13 – All available versions

• Aurora PostgreSQL 12 – All available versions

• Aurora PostgreSQL 11 – All available versions

IAM database authentication 51

Amazon Aurora User Guide for Aurora

Supported Regions and Aurora DB engines for Kerberos authentication

By using Kerberos authentication with Aurora, you can support external authentication of database
users using Kerberos and Microsoft Active Directory. Using Kerberos and Active Directory provides
the benefits of single sign-on and centralized authentication of database users. Kerberos and
Active Directory are available with AWS Directory Service for Microsoft Active Directory, a feature
of AWS Directory Service. For more information, see Kerberos authentication.

Topics

• Kerberos authentication with Aurora MySQL

• Kerberos authentication with Aurora PostgreSQL

Kerberos authentication with Aurora MySQL

The following Regions and engine versions are available for Kerberos Authentication with Aurora
MySQL.

Region Aurora MySQL version 3

US East (Ohio) Version 3.03.0 and higher

US East (N. Virginia) Version 3.03.0 and higher

US West (N. California) Version 3.03.0 and higher

US West (Oregon) Version 3.03.0 and higher

Africa (Cape Town) –

Asia Pacific (Hong Kong) –

Asia Pacific (Jakarta) –

Asia Pacific (Mumbai) Version 3.03.0 and higher

Asia Pacific (Osaka) –

Asia Pacific (Seoul) Version 3.03.0 and higher

Kerberos authentication 52

Amazon Aurora User Guide for Aurora

Region Aurora MySQL version 3

Asia Pacific (Singapore) Version 3.03.0 and higher

Asia Pacific (Sydney) Version 3.03.0 and higher

Asia Pacific (Tokyo) Version 3.03.0 and higher

Canada (Central) Version 3.03.0 and higher

Canada West (Calgary) –

China (Beijing) Version 3.03.0 and higher

China (Ningxia) Version 3.03.0 and higher

Europe (Frankfurt) Version 3.03.0 and higher

Europe (Ireland) Version 3.03.0 and higher

Europe (London) Version 3.03.0 and higher

Europe (Milan) –

Europe (Paris) Version 3.03.0 and higher

Europe (Spain) –

Europe (Stockholm) Version 3.03.0 and higher

Europe (Zurich) –

Israel (Tel Aviv) –

Middle East (Bahrain) –

Middle East (UAE) –

South America (São Paulo) Version 3.03.0 and higher

AWS GovCloud (US-East) Version 3.03.0 and higher

Kerberos authentication 53

Amazon Aurora User Guide for Aurora

Region Aurora MySQL version 3

AWS GovCloud (US-West) Version 3.03.0 and higher

Kerberos authentication with Aurora PostgreSQL

The following Regions and engine versions are available for Kerberos Authentication with Aurora
PostgreSQL.

Region Aurora
PostgreSQ
L 16

Aurora
PostgreSQ
L 15

Aurora
PostgreSQ
L 14

Aurora
PostgreSQ
L 13

Aurora
PostgreSQ
L 12

Aurora
PostgreSQ
L 11

US East
(Ohio)

All
versions

All
versions

All
versions

All
versions

All
versions

All
versions

US East (N.
Virginia)

All
versions

All
versions

All
versions

All
versions

All
versions

All
versions

US
West (N.
California)

All
versions

All
versions

All
versions

All
versions

All
versions

All
versions

US West
(Oregon)

All
versions

All
versions

All
versions

All
versions

All
versions

All
versions

Africa
(Cape
Town)

– – – – – –

Asia Pacific
(Hong
Kong)

– – – – – –

Asia Pacific
(Hyderaba
d)

– – – – – –

Kerberos authentication 54

Amazon Aurora User Guide for Aurora

Region Aurora
PostgreSQ
L 16

Aurora
PostgreSQ
L 15

Aurora
PostgreSQ
L 14

Aurora
PostgreSQ
L 13

Aurora
PostgreSQ
L 12

Aurora
PostgreSQ
L 11

Asia Pacific
(Jakarta)

– – – – – –

Asia Pacific
(Melbourn
e)

– – – – – –

Asia Pacific
(Mumbai)

All
versions

All
versions

All
versions

All
versions

All
versions

All
versions

Asia Pacific
(Osaka)

– – – – – –

Asia Pacific
(Seoul)

All
versions

All
versions

All
versions

All
versions

All
versions

All
versions

Asia Pacific
(Singapor
e)

All
versions

All
versions

All
versions

All
versions

All
versions

All
versions

Asia Pacific
(Sydney)

All
versions

All
versions

All
versions

All
versions

All
versions

All
versions

Asia Pacific
(Tokyo)

All
versions

All
versions

All
versions

All
versions

All
versions

All
versions

Canada
(Central)

All
versions

All
versions

All
versions

All
versions

All
versions

All
versions

Canada
West
(Calgary)

– – – – – –

China
(Beijing)

All
versions

All
versions

All
versions

All
versions

All
versions

All
versions

Kerberos authentication 55

Amazon Aurora User Guide for Aurora

Region Aurora
PostgreSQ
L 16

Aurora
PostgreSQ
L 15

Aurora
PostgreSQ
L 14

Aurora
PostgreSQ
L 13

Aurora
PostgreSQ
L 12

Aurora
PostgreSQ
L 11

China
(Ningxia)

All
versions

All
versions

All
versions

All
versions

All
versions

All
versions

Europe
(Frankfurt)

All
versions

All
versions

All
versions

All
versions

All
versions

All
versions

Europe
(Ireland)

All
versions

All
versions

All
versions

All
versions

All
versions

All
versions

Europe
(London)

All
versions

All
versions

All
versions

All
versions

All
versions

All
versions

Europe
(Milan)

– – – – – –

Europe
(Paris)

All
versions

All
versions

All
versions

All
versions

All
versions

All
versions

Europe
(Spain)

– – – – – –

Europe
(Stockhol
m)

All
versions

All
versions

All
versions

All
versions

All
versions

All
versions

Europe
(Zurich)

– – – – – –

Israel (Tel
Aviv)

– – – – – –

Middle
East
(Bahrain)

– – – – – –

Kerberos authentication 56

Amazon Aurora User Guide for Aurora

Region Aurora
PostgreSQ
L 16

Aurora
PostgreSQ
L 15

Aurora
PostgreSQ
L 14

Aurora
PostgreSQ
L 13

Aurora
PostgreSQ
L 12

Aurora
PostgreSQ
L 11

Middle
East (UAE)

– – – – – –

South
America
(São Paulo)

All
versions

All
versions

All
versions

All
versions

All
versions

All
versions

AWS
GovCloud
(US-East)

All
versions

All
versions

All
versions

All
versions

All
versions

All
versions

AWS
GovCloud
(US-West)

All
versions

All
versions

All
versions

All
versions

All
versions

All
versions

Supported Regions and DB engines for Aurora machine learning

By using Amazon Aurora machine learning, you can integrate your Aurora DB cluster with Amazon
Comprehend or Amazon SageMaker, depending on your needs. Amazon Comprehend and
SageMaker each support different machine learning use cases. Amazon Comprehend is a natural
language processing (NLP) service that's used to extract insights from documents. By using Aurora
machine learning with Amazon Comprehend, you can determine the sentiment of text in your
database tables. SageMaker is a full-featured machine learning service. Data scientists use Amazon
SageMaker to build, train, and test machine learning models for a variety of inference tasks, such
as fraud detection. By using Aurora machine learning with SageMaker, database developers can
invoke the SageMaker functionality in SQL code.

Not all AWS Regions support both Amazon Comprehend and SageMaker, and only certain AWS
Regions support Aurora machine learning and thus provide access to these services from an Aurora
DB cluster. The integration process for Aurora machine learning also differs by database engine. For
more information, see Using Amazon Aurora machine learning.

Topics

Aurora machine learning 57

Amazon Aurora User Guide for Aurora

• Aurora machine learning with Aurora MySQL

• Aurora machine learning with Aurora PostgreSQL

Aurora machine learning with Aurora MySQL

Aurora machine learning is supported for Aurora MySQL in the AWS Regions listed in the table. In
addition to having your version of Aurora MySQL available, the AWS Region must also support the
service that you want to use. For a list of AWS Regions where Amazon SageMaker is available, see
Amazon SageMaker endpoints and quotas in the Amazon Web Services General Reference. For a list
of AWS Regions where Amazon Comprehend is available, see Amazon Comprehend endpoints and
quotas in the Amazon Web Services General Reference.

Region Aurora MySQL version 3 Aurora MySQL version 2

US East (Ohio) Version 3.01.0 and higher Version 2.07 and higher

US East (N. Virginia) Version 3.01.0 and higher Version 2.07 and higher

US West (N. California) Version 3.01.0 and higher Version 2.07 and higher

US West (Oregon) Version 3.01.0 and higher Version 2.07 and higher

Africa (Cape Town) – –

Asia Pacific (Hong Kong) Version 3.01.0 and higher Version 2.07 and higher

Asia Pacific (Hyderabad) Version 3.01.0 and higher Version 2.07 and higher

Asia Pacific (Jakarta) Version 3.01.0 and higher Version 2.07 and higher

Asia Pacific (Melbourne) Version 3.01.0 and higher Version 2.07 and higher

Asia Pacific (Mumbai) Version 3.01.0 and higher Version 2.07 and higher

Asia Pacific (Osaka) Version 3.01.0 and higher Version 2.07.3 and higher

Asia Pacific (Seoul) Version 3.01.0 and higher Version 2.07 and higher

Asia Pacific (Singapore) Version 3.01.0 and higher Version 2.07 and higher

Aurora machine learning 58

https://docs.aws.amazon.com/general/latest/gr/sagemaker.html
https://docs.aws.amazon.com/general/latest/gr/comprehend.html
https://docs.aws.amazon.com/general/latest/gr/comprehend.html

Amazon Aurora User Guide for Aurora

Region Aurora MySQL version 3 Aurora MySQL version 2

Asia Pacific (Sydney) Version 3.01.0 and higher Version 2.07 and higher

Asia Pacific (Tokyo) Version 3.01.0 and higher Version 2.07 and higher

Canada (Central) Version 3.01.0 and higher Version 2.07 and higher

Canada West (Calgary) Version 3.01.0 and higher Version 2.07 and higher

China (Beijing) Version 3.01.0 and higher Version 2.07 and higher

China (Ningxia) Version 3.01.0 and higher Version 2.07 and higher

Europe (Frankfurt) Version 3.01.0 and higher Version 2.07 and higher

Europe (Ireland) Version 3.01.0 and higher Version 2.07 and higher

Europe (London) Version 3.01.0 and higher Version 2.07 and higher

Europe (Milan) – –

Europe (Paris) Version 3.01.0 and higher Version 2.07 and higher

Europe (Spain) Version 3.01.0 and higher Version 2.07 and higher

Europe (Stockholm) Version 3.01.0 and higher Version 2.07 and higher

Europe (Zurich) Version 3.01.0 and higher Version 2.07 and higher

Israel (Tel Aviv) Version 3.01.0 and higher Version 2.07 and higher

Middle East (Bahrain) Version 3.01.0 and higher Version 2.07 and higher

Middle East (UAE) Version 3.01.0 and higher Version 2.07 and higher

South America (São Paulo) Version 3.01.0 and higher Version 2.07 and higher

AWS GovCloud (US-East) Version 3.01.0 and higher Version 2.07 and higher

AWS GovCloud (US-West) Version 3.01.0 and higher Version 2.07 and higher

Aurora machine learning 59

Amazon Aurora User Guide for Aurora

Aurora machine learning with Aurora PostgreSQL

Aurora machine learning is supported for Aurora PostgreSQL in the AWS Regions listed in the
table. In addition to having your version of Aurora PostgreSQL available, the AWS Region must
also support the service that you want to use. For a list of AWS Regions where Amazon SageMaker
is available, see Amazon SageMaker endpoints and quotas in the Amazon Web Services General
Reference. For a list of AWS Regions where Amazon Comprehend is available, see Amazon
Comprehend endpoints and quotas in the Amazon Web Services General Reference.

The following Regions and engine versions are available for Aurora machine learning with Aurora
PostgreSQL.

Region Aurora
PostgreSQ
L 16

Aurora
PostgreSQ
L 15

Aurora
PostgreSQ
L 14

Aurora
PostgreSQ
L 13

Aurora
PostgreSQ
L 12

Aurora
PostgreSQ
L 11

US East
(Ohio)

Version
16.1 and
higher

Version
15.2 and
higher

Version
14.3

Version
13.3 and
higher

Version
12.4 and
higher

Version
11.9, 11.12
and higher

US East (N.
Virginia)

Version
16.1 and
higher

Version
15.2 and
higher

Version
14.3

Version
13.3 and
higher

Version
12.4 and
higher

Version
11.9, 11.12
and higher

US
West (N.
California)

Version
16.1 and
higher

Version
15.2 and
higher

Version
14.3

Version
13.3 and
higher

Version
12.4 and
higher

Version
11.9, 11.12
and higher

US West
(Oregon)

Version
16.1 and
higher

Version
15.2 and
higher

Version
14.3

Version
13.3 and
higher

Version
12.4 and
higher

Version
11.9, 11.12
and higher

Africa
(Cape
Town)

– – – – – –

Asia Pacific
(Hong
Kong)

Version
16.1 and
higher

Version
15.2 and
higher

Version
14.3

Version
13.3 and
higher

Version
12.4 and
higher

Version
11.9, 11.12
and higher

Aurora machine learning 60

https://docs.aws.amazon.com/general/latest/gr/sagemaker.html
https://docs.aws.amazon.com/general/latest/gr/comprehend.html
https://docs.aws.amazon.com/general/latest/gr/comprehend.html

Amazon Aurora User Guide for Aurora

Region Aurora
PostgreSQ
L 16

Aurora
PostgreSQ
L 15

Aurora
PostgreSQ
L 14

Aurora
PostgreSQ
L 13

Aurora
PostgreSQ
L 12

Aurora
PostgreSQ
L 11

Asia Pacific
(Hyderaba
d)

Version
16.1 and
higher

Version
15.2 and
higher

Version
14.3

Version
13.3 and
higher

Version
12.4 and
higher

Version
11.9, 11.12
and higher

Asia Pacific
(Jakarta)

Version
16.1 and
higher

Version
15.2 and
higher

Version
14.3

Version
13.3 and
higher

Version
12.4 and
higher

Version
11.9, 11.12
and higher

Asia Pacific
(Melbourn
e)

Version
16.1 and
higher

Version
15.2 and
higher

Version
14.3

Version
13.3 and
higher

Version
12.4 and
higher

Version
11.9, 11.12
and higher

Asia Pacific
(Mumbai)

Version
16.1 and
higher

Version
15.2 and
higher

Version
14.3

Version
13.3 and
higher

Version
12.4 and
higher

Version
11.9, 11.12
and higher

Asia Pacific
(Osaka)

Version
16.1 and
higher

Version
15.2 and
higher

Version
14.3

Version
13.3 and
higher

Version
12.4 and
higher

Version
11.9, 11.12
and higher

Asia Pacific
(Seoul)

Version
16.1 and
higher

Version
15.2 and
higher

Version
14.3

Version
13.3 and
higher

Version
12.4 and
higher

Version
11.9, 11.12
and higher

Asia Pacific
(Singapor
e)

Version
16.1 and
higher

Version
15.2 and
higher

Version
14.3

Version
13.3 and
higher

Version
12.4 and
higher

Version
11.9, 11.12
and higher

Asia Pacific
(Sydney)

Version
16.1 and
higher

Version
15.2 and
higher

Version
14.3

Version
13.3 and
higher

Version
12.4 and
higher

Version
11.9, 11.12
and higher

Asia Pacific
(Tokyo)

Version
16.1 and
higher

Version
15.2 and
higher

Version
14.3

Version
13.3 and
higher

Version
12.4 and
higher

Version
11.9, 11.12
and higher

Aurora machine learning 61

Amazon Aurora User Guide for Aurora

Region Aurora
PostgreSQ
L 16

Aurora
PostgreSQ
L 15

Aurora
PostgreSQ
L 14

Aurora
PostgreSQ
L 13

Aurora
PostgreSQ
L 12

Aurora
PostgreSQ
L 11

Canada
(Central)

Version
16.1 and
higher

Version
15.2 and
higher

Version
14.3

Version
13.3 and
higher

Version
12.4 and
higher

Version
11.9, 11.12
and higher

Canada
West
(Calgary)

Version
16.1 and
higher

Version
15.2 and
higher

Version
14.3

Version
13.3 and
higher

Version
12.4 and
higher

Version
11.9, 11.12
and higher

China
(Beijing)

Version
16.1 and
higher

Version
15.2 and
higher

Version
14.3

Version
13.3 and
higher

Version
12.4 and
higher

Version
11.9, 11.12
and higher

China
(Ningxia)

Version
16.1 and
higher

Version
15.2 and
higher

Version
14.3

Version
13.3 and
higher

Version
12.4 and
higher

Version
11.9, 11.12
and higher

Europe
(Frankfurt)

Version
16.1 and
higher

Version
15.2 and
higher

Version
14.3

Version
13.3 and
higher

Version
12.4 and
higher

Version
11.9, 11.12
and higher

Europe
(Ireland)

Version
16.1 and
higher

Version
15.2 and
higher

Version
14.3

Version
13.3 and
higher

Version
12.4 and
higher

Version
11.9, 11.12
and higher

Europe
(London)

Version
16.1 and
higher

Version
15.2 and
higher

Version
14.3

Version
13.3 and
higher

Version
12.4 and
higher

Version
11.9, 11.12
and higher

Europe
(Milan)

– – – – – –

Europe
(Paris)

Version
16.1 and
higher

Version
15.2 and
higher

Version
14.3

Version
13.3 and
higher

Version
12.4 and
higher

Version
11.9, 11.12
and higher

Aurora machine learning 62

Amazon Aurora User Guide for Aurora

Region Aurora
PostgreSQ
L 16

Aurora
PostgreSQ
L 15

Aurora
PostgreSQ
L 14

Aurora
PostgreSQ
L 13

Aurora
PostgreSQ
L 12

Aurora
PostgreSQ
L 11

Europe
(Spain)

Version
16.1 and
higher

Version
15.2 and
higher

Version
14.3

Version
13.3 and
higher

Version
12.4 and
higher

Version
11.9, 11.12
and higher

Europe
(Stockhol
m)

Version
16.1 and
higher

Version
15.2 and
higher

Version
14.3

Version
13.3 and
higher

Version
12.4 and
higher

Version
11.9, 11.12
and higher

Europe
(Zurich)

Version
16.1 and
higher

Version
15.2 and
higher

Version
14.3

Version
13.3 and
higher

Version
12.4 and
higher

Version
11.9, 11.12
and higher

Israel (Tel
Aviv)

Version
16.1 and
higher

Version
15.2 and
higher

Version
14.3

Version
13.3 and
higher

Version
12.4 and
higher

Version
11.9, 11.12
and higher

Middle
East
(Bahrain)

Version
16.1 and
higher

Version
15.2 and
higher

Version
14.3

Version
13.3 and
higher

Version
12.4 and
higher

Version
11.9, 11.12
and higher

Middle
East (UAE)

Version
16.1 and
higher

Version
15.2 and
higher

Version
14.3

Version
13.3 and
higher

Version
12.4 and
higher

Version
11.9, 11.12
and higher

South
America
(São Paulo)

Version
16.1 and
higher

Version
15.2 and
higher

Version
14.3

Version
13.3 and
higher

Version
12.4 and
higher

Version
11.9, 11.12
and higher

AWS
GovCloud
(US-East)

Version
16.1 and
higher

Version
15.2 and
higher

Version
14.3

Version
13.3 and
higher

Version
12.4 and
higher

Version
11.9, 11.12
and higher

AWS
GovCloud
(US-West)

Version
16.1 and
higher

Version
15.2 and
higher

Version
14.3

Version
13.3 and
higher

Version
12.4 and
higher

Version
11.9, 11.12
and higher

Aurora machine learning 63

Amazon Aurora User Guide for Aurora

Supported Regions and Aurora DB engines for Performance Insights

Performance Insights expands on existing Amazon RDS monitoring features to illustrate and
help you analyze your database performance. With the Performance Insights dashboard, you can
visualize the database load on your Amazon RDS DB instance load and filter the load by waits,
SQL statements, hosts, or users. For more information, see Overview of Performance Insights on
Amazon Aurora.

For the region, DB engine, and instance class support information for Performance Insights
features, see Amazon Aurora DB engine, Region, and instance class support for Performance
Insights features.

Topics

• Performance Insights with Aurora MySQL

• Performance Insights with Aurora PostgreSQL

• Performance Insights with Aurora Serverless

Performance Insights with Aurora MySQL

Note

Engine version support is different for Performance Insights with Aurora MySQL if you have
parallel query turned on. For more information on parallel query, see Working with parallel
query for Amazon Aurora MySQL.

Topics

• Performance Insights with Aurora MySQL and parallel query turned off

• Performance Insights with Aurora MySQL and parallel query turned on

Performance Insights with Aurora MySQL and parallel query turned off

The following Regions and engine versions are available for Performance Insights with Aurora
MySQL and parallel query turned off.

Performance Insights 64

Amazon Aurora User Guide for Aurora

Region Aurora MySQL version 3 Aurora MySQL version 2

US East (Ohio) All versions All versions

US East (N. Virginia) All versions All versions

US West (N. California) All versions All versions

US West (Oregon) All versions All versions

Africa (Cape Town) All versions All versions

Asia Pacific (Hong Kong) All versions All versions

Asia Pacific (Hyderabad) All versions All versions

Asia Pacific (Jakarta) All versions All versions

Asia Pacific (Melbourne) All versions All versions

Asia Pacific (Mumbai) All versions All versions

Asia Pacific (Osaka) All versions All versions

Asia Pacific (Seoul) All versions All versions

Asia Pacific (Singapore) All versions All versions

Asia Pacific (Sydney) All versions All versions

Asia Pacific (Tokyo) All versions All versions

Canada (Central) All versions All versions

Canada West (Calgary) All versions All versions

China (Beijing) All versions All versions

China (Ningxia) All versions All versions

Europe (Frankfurt) All versions All versions

Performance Insights 65

Amazon Aurora User Guide for Aurora

Region Aurora MySQL version 3 Aurora MySQL version 2

Europe (Ireland) All versions All versions

Europe (London) All versions All versions

Europe (Milan) All versions All versions

Europe (Paris) All versions All versions

Europe (Spain) All versions All versions

Europe (Stockholm) All versions All versions

Europe (Zurich) All versions All versions

Israel (Tel Aviv) All versions All versions

Middle East (Bahrain) All versions All versions

Middle East (UAE) All versions All versions

South America (São Paulo) All versions All versions

AWS GovCloud (US-East) All versions All versions

AWS GovCloud (US-West) All versions All versions

Performance Insights with Aurora MySQL and parallel query turned on

The following Regions and engine versions are available for Performance Insights with Aurora
MySQL and parallel query turned on.

Region Aurora MySQL version 3 Aurora MySQL version 2

US East (Ohio) – Version 2.09.0 and higher

US East (N. Virginia) – Version 2.09.0 and higher

US West (N. California) – Version 2.09.0 and higher

Performance Insights 66

Amazon Aurora User Guide for Aurora

Region Aurora MySQL version 3 Aurora MySQL version 2

US West (Oregon) – Version 2.09.0 and higher

Africa (Cape Town) – Version 2.09.0 and higher

Asia Pacific (Hong Kong) – Version 2.09.0 and higher

Asia Pacific (Hyderabad) – All versions

Asia Pacific (Jakarta) – Version 2.09.0 and higher

Asia Pacific (Melbourne) – Version 2.09.0 and higher

Asia Pacific (Mumbai) – Version 2.09.0 and higher

Asia Pacific (Osaka) – Version 2.09.0 and higher

Asia Pacific (Seoul) – Version 2.09.0 and higher

Asia Pacific (Singapore) – Version 2.09.0 and higher

Asia Pacific (Sydney) – Version 2.09.0 and higher

Asia Pacific (Tokyo) – Version 2.09.0 and higher

Canada (Central) – Version 2.09.0 and higher

Canada West (Calgary) – Version 2.09.0 and higher

China (Beijing) – Version 2.09.0 and higher

China (Ningxia) – Version 2.09.0 and higher

Europe (Frankfurt) – Version 2.09.0 and higher

Europe (Ireland) – Version 2.09.0 and higher

Europe (London) – Version 2.09.0 and higher

Europe (Milan) – Version 2.09.0 and higher

Performance Insights 67

Amazon Aurora User Guide for Aurora

Region Aurora MySQL version 3 Aurora MySQL version 2

Europe (Paris) – Version 2.09.0 and higher

Europe (Spain) – Version 2.09.0 and higher

Europe (Stockholm) – Version 2.09.0 and higher

Europe (Zurich) – Version 2.09.0 and higher

Israel (Tel Aviv) – Version 2.09.0 and higher

Middle East (Bahrain) – Version 2.09.0 and higher

Middle East (UAE) – Version 2.09.0 and higher

South America (São Paulo) – Version 2.09.0 and higher

AWS GovCloud (US-East) – Version 2.09.0 and higher

AWS GovCloud (US-West) – Version 2.09.0 and higher

Performance Insights with Aurora PostgreSQL

The following Regions and engine versions are available for Performance Insights with Aurora
PostgreSQL.

Region Aurora
PostgreSQ
L 16

Aurora
PostgreSQ
L 15

Aurora
PostgreSQ
L 14

Aurora
PostgreSQ
L 13

Aurora
PostgreSQ
L 12

Aurora
PostgreSQ
L 11

Aurora
PostgreSQ
L 10

US East
(Ohio)

All
versions

All
versions

All
versions

All
versions

All
versions

All
versions

All
versions

US
East (N.
Virginia)

All
versions

All
versions

All
versions

All
versions

All
versions

All
versions

All
versions

US
West (N.

All
versions

All
versions

All
versions

All
versions

All
versions

All
versions

All
versions

Performance Insights 68

Amazon Aurora User Guide for Aurora

Region Aurora
PostgreSQ
L 16

Aurora
PostgreSQ
L 15

Aurora
PostgreSQ
L 14

Aurora
PostgreSQ
L 13

Aurora
PostgreSQ
L 12

Aurora
PostgreSQ
L 11

Aurora
PostgreSQ
L 10

Californi
a)

US West
(Oregon)

All
versions

All
versions

All
versions

All
versions

All
versions

All
versions

All
versions

Africa
(Cape
Town)

All
versions

All
versions

All
versions

All
versions

All
versions

All
versions

All
versions

Asia
Pacific
(Hong
Kong)

All
versions

All
versions

All
versions

All
versions

All
versions

All
versions

All
versions

Asia
Pacific
(Hyderaba
d)

All
versions

All
versions

All
versions

All
versions

All
versions

All
versions

All
versions

Asia
Pacific
(Jakarta)

All
versions

All
versions

All
versions

All
versions

All
versions

All
versions

All
versions

Asia
Pacific
(Melbourn
e)

All
versions

All
versions

All
versions

All
versions

All
versions

All
versions

All
versions

Asia
Pacific
(Mumbai)

All
versions

All
versions

All
versions

All
versions

All
versions

All
versions

All
versions

Performance Insights 69

Amazon Aurora User Guide for Aurora

Region Aurora
PostgreSQ
L 16

Aurora
PostgreSQ
L 15

Aurora
PostgreSQ
L 14

Aurora
PostgreSQ
L 13

Aurora
PostgreSQ
L 12

Aurora
PostgreSQ
L 11

Aurora
PostgreSQ
L 10

Asia
Pacific
(Osaka)

All
versions

All
versions

All
versions

All
versions

All
versions

All
versions

All
versions

Asia
Pacific
(Seoul)

All
versions

All
versions

All
versions

All
versions

All
versions

All
versions

All
versions

Asia
Pacific
(Singapor
e)

All
versions

All
versions

All
versions

All
versions

All
versions

All
versions

All
versions

Asia
Pacific
(Sydney)

All
versions

All
versions

All
versions

All
versions

All
versions

All
versions

All
versions

Asia
Pacific
(Tokyo)

All
versions

All
versions

All
versions

All
versions

All
versions

All
versions

All
versions

Canada
(Central)

All
versions

All
versions

All
versions

All
versions

All
versions

All
versions

All
versions

Canada
West
(Calgary)

All
versions

All
versions

All
versions

All
versions

All
versions

All
versions

All
versions

China
(Beijing)

All
versions

All
versions

All
versions

All
versions

All
versions

All
versions

All
versions

China
(Ningxia)

All
versions

All
versions

All
versions

All
versions

All
versions

All
versions

All
versions

Performance Insights 70

Amazon Aurora User Guide for Aurora

Region Aurora
PostgreSQ
L 16

Aurora
PostgreSQ
L 15

Aurora
PostgreSQ
L 14

Aurora
PostgreSQ
L 13

Aurora
PostgreSQ
L 12

Aurora
PostgreSQ
L 11

Aurora
PostgreSQ
L 10

Europe
(Frankfur
t)

All
versions

All
versions

All
versions

All
versions

All
versions

All
versions

All
versions

Europe
(Ireland)

All
versions

All
versions

All
versions

All
versions

All
versions

All
versions

All
versions

Europe
(London)

All
versions

All
versions

All
versions

All
versions

All
versions

All
versions

All
versions

Europe
(Milan)

All
versions

All
versions

All
versions

All
versions

All
versions

All
versions

All
versions

Europe
(Paris)

All
versions

All
versions

All
versions

All
versions

All
versions

All
versions

All
versions

Europe
(Spain)

All
versions

All
versions

All
versions

All
versions

All
versions

All
versions

All
versions

Europe
(Stockhol
m)

All
versions

All
versions

All
versions

All
versions

All
versions

All
versions

All
versions

Europe
(Zurich)

All
versions

All
versions

All
versions

All
versions

All
versions

All
versions

All
versions

Israel
(Tel Aviv)

All
versions

All
versions

All
versions

All
versions

All
versions

All
versions

All
versions

Middle
East
(Bahrain)

All
versions

All
versions

All
versions

All
versions

All
versions

All
versions

All
versions

Performance Insights 71

Amazon Aurora User Guide for Aurora

Region Aurora
PostgreSQ
L 16

Aurora
PostgreSQ
L 15

Aurora
PostgreSQ
L 14

Aurora
PostgreSQ
L 13

Aurora
PostgreSQ
L 12

Aurora
PostgreSQ
L 11

Aurora
PostgreSQ
L 10

Middle
East
(UAE)

All
versions

All
versions

All
versions

All
versions

All
versions

All
versions

All
versions

South
America
(São
Paulo)

All
versions

All
versions

All
versions

All
versions

All
versions

All
versions

All
versions

AWS
GovCloud
(US-East)

All
versions

All
versions

All
versions

All
versions

All
versions

All
versions

All
versions

AWS
GovCloud
(US-
West)

All
versions

All
versions

All
versions

All
versions

All
versions

All
versions

All
versions

Performance Insights with Aurora Serverless

Aurora Serverless v2 supports Performance Insights for all MySQL-compatible and PostgreSQL-
compatible versions. We recommend that you set the minimum capacity to at least 2 Aurora
capacity units (ACUs).

Aurora Serverless v1 doesn't support Performance Insights.

Supported Regions and Aurora DB engines for zero-ETL integrations
with Amazon Redshift

Amazon Aurora zero-ETL integrations with Amazon Redshift is a fully managed solution for making
transactional data available in Amazon Redshift after it's written to an Aurora cluster. For more
information, see Working with zero-ETL integrations .

Zero-ETL integrations 72

Amazon Aurora User Guide for Aurora

The following Regions and engine versions are available for zero-ETL integrations with Amazon
Redshift.

Topics

• Aurora MySQL Zero-ETL integrations

• Aurora PostgreSQL Zero-ETL integrations

Aurora MySQL Zero-ETL integrations

Region Aurora MySQL version 3

US East (N. Virginia) Version 3.05.2 and higher

US East (Ohio) Version 3.05.2 and higher

US West (Oregon) Version 3.05.2 and higher

US West (N. California) Version 3.05.2 and higher

Asia Pacific (Tokyo) Version 3.05.2 and higher

Asia Pacific (Singapore) Version 3.05.2 and higher

Asia Pacific (Seoul) Version 3.05.2 and higher

Asia Pacific (Mumbai) Version 3.05.2 and higher

Asia Pacific (Hong Kong) Version 3.05.2 and higher

Asia Pacific (Osaka) Version 3.05.2 and higher

Asia Pacific (Sydney) Version 3.05.2 and higher

Asia Pacific (Jakarta) Version 3.05.2 and higher

Asia Pacific (Hyderabad) Version 3.05.2 and higher

Asia Pacific (Melbourne) Version 3.05.2 and higher

Europe (Frankfurt) Version 3.05.2 and higher

Zero-ETL integrations 73

Amazon Aurora User Guide for Aurora

Region Aurora MySQL version 3

Europe (Stockholm) Version 3.05.2 and higher

Europe (Ireland) Version 3.05.2 and higher

Europe (Paris) Version 3.05.2 and higher

Europe (London) Version 3.05.2 and higher

Europe (Milan) Version 3.05.2 and higher

Europe (Spain) Version 3.05.2 and higher

Europe (Zurich) Version 3.05.2 and higher

South America (São Paulo) Version 3.05.2 and higher

Canada (Central) Version 3.05.2 and higher

Canada West (Calgary) Version 3.05.2 and higher

Middle East (Bahrain) Version 3.05.2 and higher

Middle East (UAE) Version 3.05.2 and higher

Israel (Tel Aviv) Version 3.05.2 and higher

Africa (Cape Town) Version 3.05.2 and higher

China (Beijing) Version 3.05.2 and higher

China (Ningxia) Version 3.05.2 and higher

Aurora PostgreSQL Zero-ETL integrations

For the preview release of Aurora PostgreSQL zero-ETL integrations with Amazon Redshift, you
must create integrations within the Amazon RDS Database Preview Environment, in the US East
(Ohio) (us-east-2) AWS Region. The preview environment allows you to test beta, release candidate,
and early production versions of PostgreSQL database engine software.

Zero-ETL integrations 74

https://aws.amazon.com/rds/databasepreview/

Amazon Aurora User Guide for Aurora

Your source DB cluster must be running Aurora PostgreSQL (compatible with PostgreSQL 15.4
and Zero-ETL Support).

Supported Regions and Aurora DB engines for Amazon RDS Proxy

Amazon RDS Proxy is a fully managed, highly available database proxy that makes applications
more scalable by pooling and sharing established database connections. For more information
about RDS Proxy, see Using Amazon RDS Proxy for Aurora.

Topics

• Amazon RDS Proxy with Aurora MySQL

• Amazon RDS Proxy with Aurora PostgreSQL

Amazon RDS Proxy with Aurora MySQL

The following Regions and engine versions are available for RDS Proxy with Aurora MySQL.

Region Aurora MySQL version 3 Aurora MySQL version 2

US East (Ohio) Version 3.01.0 and higher Version 2.07 and version 2.11
and higher

US East (N. Virginia) Version 3.01.0 and higher Version 2.07 and version 2.11
and higher

US West (N. California) Version 3.01.0 and higher Version 2.07 and version 2.11
and higher

US West (Oregon) Version 3.01.0 and higher Version 2.07 and version 2.11
and higher

Africa (Cape Town) Version 3.01.0 and higher Version 2.07 and version 2.11
and higher

Asia Pacific (Hong Kong) Version 3.01.0 and higher Version 2.07 and version 2.11
and higher

Asia Pacific (Hyderabad) Version 3.01.0 and higher Version 2.07 and version 2.11
and higher

RDS Proxy 75

Amazon Aurora User Guide for Aurora

Region Aurora MySQL version 3 Aurora MySQL version 2

Asia Pacific (Jakarta) Version 3.01.0 and higher Version 2.07 and version 2.11
and higher

Asia Pacific (Melbourne) Version 3.01.0 and higher Version 2.07 and version 2.11
and higher

Asia Pacific (Mumbai) Version 3.01.0 and higher Version 2.07 and version 2.11
and higher

Asia Pacific (Osaka) Version 3.01.0 and higher Version 2.07 and version 2.11
and higher

Asia Pacific (Seoul) Version 3.01.0 and higher Version 2.07 and version 2.11
and higher

Asia Pacific (Singapore) Version 3.01.0 and higher Version 2.07 and version 2.11
and higher

Asia Pacific (Sydney) Version 3.01.0 and higher Version 2.07 and version 2.11
and higher

Asia Pacific (Tokyo) Version 3.01.0 and higher Version 2.07 and version 2.11
and higher

Canada (Central) Version 3.01.0 and higher Version 2.07 and version 2.11
and higher

Canada West (Calgary) Version 3.01.0 and higher Version 2.07 and version 2.11
and higher

China (Beijing) Version 3.01.0 and higher Version 2.07 and version 2.11
and higher

China (Ningxia) Version 3.01.0 and higher Version 2.07 and version 2.11
and higher

Europe (Frankfurt) Version 3.01.0 and higher Version 2.07 and version 2.11
and higher

RDS Proxy 76

Amazon Aurora User Guide for Aurora

Region Aurora MySQL version 3 Aurora MySQL version 2

Europe (Ireland) Version 3.01.0 and higher Version 2.07 and version 2.11
and higher

Europe (London) Version 3.01.0 and higher Version 2.07 and version 2.11
and higher

Europe (Milan) Version 3.01.0 and higher Version 2.07 and version 2.11
and higher

Europe (Paris) Version 3.01.0 and higher Version 2.07 and version 2.11
and higher

Europe (Spain) Version 3.01.0 and higher Version 2.07 and version 2.11
and higher

Europe (Stockholm) Version 3.01.0 and higher Version 2.07 and version 2.11
and higher

Europe (Zurich) Version 3.01.0 and higher Version 2.07 and version 2.11
and higher

Israel (Tel Aviv) Version 3.01.0 and higher Version 2.07 and version 2.11
and higher

Middle East (Bahrain) Version 3.01.0 and higher Version 2.07 and version 2.11
and higher

Middle East (UAE) Version 3.01.0 and higher Version 2.07 and version 2.11
and higher

South America (São Paulo) Version 3.01.0 and higher Version 2.07 and version 2.11
and higher

AWS GovCloud (US-East) – –

AWS GovCloud (US-West) – –

RDS Proxy 77

Amazon Aurora User Guide for Aurora

Amazon RDS Proxy with Aurora PostgreSQL

The following Regions and engine versions are available for RDS Proxy with Aurora PostgreSQL.

Region Aurora
PostgreSQ
L 16

Aurora
PostgreSQ
L 15

Aurora
PostgreSQ
L 14

Aurora
PostgreSQ
L 13

Aurora
PostgreSQ
L 12

Aurora
PostgreSQ
L 11

US East
(Ohio)

Version
16.1 and
higher

Version
15.2 and
higher

Version
14.3 and
higher

Version
13.4 and
higher

Version
12.8 and
higher

Version
11.9 and
version
11.13 and
higher

US East (N.
Virginia)

Version
16.1 and
higher

Version
15.2 and
higher

Version
14.3 and
higher

Version
13.4 and
higher

Version
12.8 and
higher

Version
11.9 and
version
11.13 and
higher

US
West (N.
California)

Version
16.1 and
higher

Version
15.2 and
higher

Version
14.3 and
higher

Version
13.4 and
higher

Version
12.8 and
higher

Version
11.9 and
version
11.13 and
higher

US West
(Oregon)

Version
16.1 and
higher

Version
15.2 and
higher

Version
14.3 and
higher

Version
13.4 and
higher

Version
12.8 and
higher

Version
11.9 and
version
11.13 and
higher

Africa
(Cape
Town)

Version
16.1 and
higher

Version
15.2 and
higher

Version
14.3 and
higher

Version
13.4 and
higher

Version
12.8 and
higher

Version
11.9 and
version
11.13 and
higher

RDS Proxy 78

Amazon Aurora User Guide for Aurora

Region Aurora
PostgreSQ
L 16

Aurora
PostgreSQ
L 15

Aurora
PostgreSQ
L 14

Aurora
PostgreSQ
L 13

Aurora
PostgreSQ
L 12

Aurora
PostgreSQ
L 11

Asia Pacific
(Hong
Kong)

Version
16.1 and
higher

Version
15.2 and
higher

Version
14.3 and
higher

Version
13.4 and
higher

Version
12.8 and
higher

Version
11.9 and
version
11.13 and
higher

Asia Pacific
(Hyderaba
d)

Version
16.1 and
higher

Version
15.2 and
higher

Version
14.3 and
higher

Version
13.4 and
higher

Version
12.8 and
higher

Version
11.9 and
version
11.13 and
higher

Asia Pacific
(Jakarta)

Version
16.1 and
higher

Version
15.2 and
higher

Version
14.3 and
higher

Version
13.4 and
higher

Version
12.8 and
higher

Version
11.9 and
version
11.13 and
higher

Asia Pacific
(Melbourn
e)

Version
16.1 and
higher

Version
15.2 and
higher

Version
14.3 and
higher

Version
13.4 and
higher

Version
12.8 and
higher

Version
11.9 and
version
11.13 and
higher

Asia Pacific
(Mumbai)

Version
16.1 and
higher

Version
15.2 and
higher

Version
14.3 and
higher

Version
13.4 and
higher

Version
12.8 and
higher

Version
11.9 and
version
11.13 and
higher

RDS Proxy 79

Amazon Aurora User Guide for Aurora

Region Aurora
PostgreSQ
L 16

Aurora
PostgreSQ
L 15

Aurora
PostgreSQ
L 14

Aurora
PostgreSQ
L 13

Aurora
PostgreSQ
L 12

Aurora
PostgreSQ
L 11

Asia Pacific
(Osaka)

Version
16.1 and
higher

Version
15.2 and
higher

Version
14.3 and
higher

Version
13.4 and
higher

Version
12.8 and
higher

Version
11.9 and
version
11.13 and
higher

Asia Pacific
(Seoul)

Version
16.1 and
higher

Version
15.2 and
higher

Version
14.3 and
higher

Version
13.4 and
higher

Version
12.8 and
higher

Version
11.9 and
version
11.13 and
higher

Asia Pacific
(Singapor
e)

Version
16.1 and
higher

Version
15.2 and
higher

Version
14.3 and
higher

Version
13.4 and
higher

Version
12.8 and
higher

Version
11.9 and
version
11.13 and
higher

Asia Pacific
(Sydney)

Version
16.1 and
higher

Version
15.2 and
higher

Version
14.3 and
higher

Version
13.4 and
higher

Version
12.8 and
higher

Version
11.9 and
version
11.13 and
higher

Asia Pacific
(Tokyo)

Version
16.1 and
higher

Version
15.2 and
higher

Version
14.3 and
higher

Version
13.4 and
higher

Version
12.8 and
higher

Version
11.9 and
version
11.13 and
higher

RDS Proxy 80

Amazon Aurora User Guide for Aurora

Region Aurora
PostgreSQ
L 16

Aurora
PostgreSQ
L 15

Aurora
PostgreSQ
L 14

Aurora
PostgreSQ
L 13

Aurora
PostgreSQ
L 12

Aurora
PostgreSQ
L 11

Canada
(Central)

Version
16.1 and
higher

Version
15.2 and
higher

Version
14.3 and
higher

Version
13.4 and
higher

Version
12.8 and
higher

Version
11.9 and
version
11.13 and
higher

Canada
West
(Calgary)

Version
16.1 and
higher

Version
15.2 and
higher

Version
14.3 and
higher

Version
13.4 and
higher

Version
12.8 and
higher

Version
11.9 and
version
11.13 and
higher

China
(Beijing)

Version
16.1 and
higher

Version
15.2 and
higher

Version
14.3 and
higher

Version
13.4 and
higher

Version
12.8 and
higher

Version
11.9 and
version
11.13 and
higher

China
(Ningxia)

Version
16.1 and
higher

Version
15.2 and
higher

Version
14.3 and
higher

Version
13.4 and
higher

Version
12.8 and
higher

Version
11.9 and
version
11.13 and
higher

Europe
(Frankfurt)

Version
16.1 and
higher

Version
15.2 and
higher

Version
14.3 and
higher

Version
13.4 and
higher

Version
12.8 and
higher

Version
11.9 and
version
11.13 and
higher

RDS Proxy 81

Amazon Aurora User Guide for Aurora

Region Aurora
PostgreSQ
L 16

Aurora
PostgreSQ
L 15

Aurora
PostgreSQ
L 14

Aurora
PostgreSQ
L 13

Aurora
PostgreSQ
L 12

Aurora
PostgreSQ
L 11

Europe
(Ireland)

Version
16.1 and
higher

Version
15.2 and
higher

Version
14.3 and
higher

Version
13.4 and
higher

Version
12.8 and
higher

Version
11.9 and
version
11.13 and
higher

Europe
(London)

Version
16.1 and
higher

Version
15.2 and
higher

Version
14.3 and
higher

Version
13.4 and
higher

Version
12.8 and
higher

Version
11.9 and
version
11.13 and
higher

Europe
(Milan)

Version
16.1 and
higher

Version
15.2 and
higher

Version
14.3 and
higher

Version
13.4 and
higher

Version
12.8 and
higher

Version
11.9 and
version
11.13 and
higher

Europe
(Paris)

Version
16.1 and
higher

Version
15.2 and
higher

Version
14.3 and
higher

Version
13.4 and
higher

Version
12.8 and
higher

Version
11.9 and
version
11.13 and
higher

Europe
(Spain)

Version
16.1 and
higher

Version
15.2 and
higher

Version
14.3 and
higher

Version
13.4 and
higher

Version
12.8 and
higher

Version
11.9 and
version
11.13 and
higher

RDS Proxy 82

Amazon Aurora User Guide for Aurora

Region Aurora
PostgreSQ
L 16

Aurora
PostgreSQ
L 15

Aurora
PostgreSQ
L 14

Aurora
PostgreSQ
L 13

Aurora
PostgreSQ
L 12

Aurora
PostgreSQ
L 11

Europe
(Stockhol
m)

Version
16.1 and
higher

Version
15.2 and
higher

Version
14.3 and
higher

Version
13.4 and
higher

Version
12.8 and
higher

Version
11.9 and
version
11.13 and
higher

Europe
(Zurich)

Version
16.1 and
higher

Version
15.2 and
higher

Version
14.3 and
higher

Version
13.4 and
higher

Version
12.8 and
higher

Version
11.9 and
version
11.13 and
higher

Israel (Tel
Aviv)

Version
16.1 and
higher

Version
15.2 and
higher

Version
14.3 and
higher

Version
13.4 and
higher

Version
12.8 and
higher

Version
11.9 and
version
11.13 and
higher

Middle
East
(Bahrain)

Version
16.1 and
higher

Version
15.2 and
higher

Version
14.3 and
higher

Version
13.4 and
higher

Version
12.8 and
higher

Version
11.9 and
version
11.13 and
higher

Middle
East (UAE)

Version
16.1 and
higher

Version
15.2 and
higher

Version
14.3 and
higher

Version
13.4 and
higher

Version
12.8 and
higher

Version
11.9 and
version
11.13 and
higher

RDS Proxy 83

Amazon Aurora User Guide for Aurora

Region Aurora
PostgreSQ
L 16

Aurora
PostgreSQ
L 15

Aurora
PostgreSQ
L 14

Aurora
PostgreSQ
L 13

Aurora
PostgreSQ
L 12

Aurora
PostgreSQ
L 11

South
America
(São Paulo)

Version
16.1 and
higher

Version
15.2 and
higher

Version
14.3 and
higher

Version
13.4 and
higher

Version
12.8 and
higher

Version
11.9 and
version
11.13 and
higher

AWS
GovCloud
(US-East)

– – – – – –

AWS
GovCloud
(US-West)

– – – – – –

Supported Regions and Aurora DB engines for Secrets Manager
integration

With AWS Secrets Manager, you can replace hard-coded credentials in your code, including
database passwords, with an API call to Secrets Manager to retrieve the secret programmatically.
For more information about Secrets Manager, see AWS Secrets Manager User Guide.

You can specify that Amazon Aurora manages the master user password in Secrets Manager for
an Aurora DB cluster. Aurora generates the password, stores it in Secrets Manager, and rotates it
regularly. For more information, see Password management with Amazon Aurora and AWS Secrets
Manager.

Secrets Manager integration is available in all AWS Regions.

Supported Regions and Aurora DB engines for Aurora Serverless v2

Aurora Serverless v2 is an on-demand, auto-scaling feature designed to be a cost-effective
approach to running intermittent or unpredictable workloads on Amazon Aurora. It automatically
scales capacity up or down as needed by your applications. The scaling is faster and more granular
than with Aurora Serverless v1. With Aurora Serverless v2, each cluster can contain a writer DB

Secrets Manager integration 84

https://docs.aws.amazon.com/secretsmanager/latest/userguide/

Amazon Aurora User Guide for Aurora

instance and multiple reader DB instances. You can combine Aurora Serverless v2 and traditional
provisioned DB instances within the same cluster. For more information, see Using Aurora
Serverless v2.

Topics

• Aurora Serverless v2 with Aurora MySQL

• Aurora Serverless v2 with Aurora PostgreSQL

Aurora Serverless v2 with Aurora MySQL

The following Regions and engine versions are available for Aurora Serverless v2 with Aurora
MySQL.

Region Aurora MySQL version 3

US East (Ohio) Version 3.02.0 and higher

US East (N. Virginia) Version 3.02.0 and higher

US West (N. California) Version 3.02.0 and higher

US West (Oregon) Version 3.02.0 and higher

Africa (Cape Town) Version 3.02.0 and higher

Asia Pacific (Hong Kong) Version 3.02.0 and higher

Asia Pacific (Hyderabad) Version 3.02.3 and higher

Asia Pacific (Jakarta) Version 3.02.0 and higher

Asia Pacific (Melbourne) Version 3.02.3 and higher

Asia Pacific (Mumbai) Version 3.02.0 and higher

Asia Pacific (Osaka) Version 3.02.0 and higher

Asia Pacific (Seoul) Version 3.02.0 and higher

Asia Pacific (Singapore) Version 3.02.0 and higher

Aurora Serverless v2 85

Amazon Aurora User Guide for Aurora

Region Aurora MySQL version 3

Asia Pacific (Sydney) Version 3.02.0 and higher

Asia Pacific (Tokyo) Version 3.02.0 and higher

Canada (Central) Version 3.02.0 and higher

Canada West (Calgary) Versions 3.04.0, 3.04.1, 3.05.0, 3.05.1 and
higher

China (Beijing) Version 3.02.2 and higher

China (Ningxia) Version 3.02.2 and higher

Europe (Frankfurt) Version 3.02.0 and higher

Europe (Ireland) Version 3.02.0 and higher

Europe (London) Version 3.02.0 and higher

Europe (Milan) Version 3.02.0 and higher

Europe (Paris) Version 3.02.0 and higher

Europe (Spain) Version 3.02.3 and higher

Europe (Stockholm) Version 3.02.0 and higher

Europe (Zurich) Version 3.02.3 and higher

Israel (Tel Aviv) Versions 3.02.3 and higher, 3.03.1 and higher

Middle East (Bahrain) Version 3.02.0 and higher

Middle East (UAE) Version 3.02.3 and higher

South America (São Paulo) Version 3.02.0 and higher

AWS GovCloud (US-East) Version 3.02.2 and higher

AWS GovCloud (US-West) Version 3.02.2 and higher

Aurora Serverless v2 86

Amazon Aurora User Guide for Aurora

Aurora Serverless v2 with Aurora PostgreSQL

The following Regions and engine versions are available for Aurora Serverless v2 with Aurora
PostgreSQL.

Region Aurora
PostgreSQL 16

Aurora
PostgreSQL 15

Aurora
PostgreSQL 14

Aurora
PostgreSQL 13

US East (Ohio) Version 16.1 and
higher

Version 15.2 and
higher

Version 14.3 and
higher

Version 13.6 and
higher

US East (N.
Virginia)

Version 16.1 and
higher

Version 15.2 and
higher

Version 14.3 and
higher

Version 13.6 and
higher

US West (N.
California)

Version 16.1 and
higher

Version 15.2 and
higher

Version 14.3 and
higher

Version 13.6 and
higher

US West
(Oregon)

Version 16.1 and
higher

Version 15.2 and
higher

Version 14.3 and
higher

Version 13.6 and
higher

Africa (Cape
Town)

Version 16.1 and
higher

Version 15.2 and
higher

Version 14.3 and
higher

Version 13.6 and
higher

Asia Pacific
(Hong Kong)

Version 16.1 and
higher

Version 15.2 and
higher

Version 14.3 and
higher

Version 13.6 and
higher

Asia Pacific
(Hyderabad)

Version 16.1 and
higher

Version 15.2 and
higher

Version 14.6 and
higher

Version 13.9 and
higher

Asia Pacific
(Jakarta)

Version 16.1 and
higher

Version 15.2 and
higher

Version 14.3 and
higher

Version 13.6 and
higher

Asia Pacific
(Melbourne)

Version 16.1 and
higher

Version 15.2 and
higher

Version 14.6 and
higher

Version 13.9 and
higher

Asia Pacific
(Mumbai)

Version 16.1 and
higher

Version 15.2 and
higher

Version 14.3 and
higher

Version 13.6 and
higher

Asia Pacific
(Osaka)

Version 16.1 and
higher

Version 15.2 and
higher

Version 14.3 and
higher

Version 13.6 and
higher

Aurora Serverless v2 87

Amazon Aurora User Guide for Aurora

Region Aurora
PostgreSQL 16

Aurora
PostgreSQL 15

Aurora
PostgreSQL 14

Aurora
PostgreSQL 13

Asia Pacific
(Seoul)

Version 16.1 and
higher

Version 15.2 and
higher

Version 14.3 and
higher

Version 13.6 and
higher

Asia Pacific
(Singapore)

Version 16.1 and
higher

Version 15.2 and
higher

Version 14.3 and
higher

Version 13.6 and
higher

Asia Pacific
(Sydney)

Version 16.1 and
higher

Version 15.2 and
higher

Version 14.3 and
higher

Version 13.6 and
higher

Asia Pacific
(Tokyo)

Version 16.1 and
higher

Version 15.2 and
higher

Version 14.3 and
higher

Version 13.6 and
higher

Canada (Central) Version 16.1 and
higher

Version 15.2 and
higher

Version 14.3 and
higher

Version 13.6 and
higher

Canada West
(Calgary)

Version 16.1 and
higher

Version 15.3 and
higher

Version 14.6,
14.8 and higher

Version 13.9,
13.11 and
higher

China (Beijing) Version 16.1 and
higher

Version 15.2 and
higher

Version 14.3 and
higher

Version 13.6 and
higher

China (Ningxia) Version 16.1 and
higher

Version 15.2 and
higher

Version 14.3 and
higher

Version 13.6 and
higher

Europe (Frankfur
t)

Version 16.1 and
higher

Version 15.2 and
higher

Version 14.3 and
higher

Version 13.6 and
higher

Europe (Ireland) Version 16.1 and
higher

Version 15.2 and
higher

Version 14.3 and
higher

Version 13.6 and
higher

Europe (London) Version 16.1 and
higher

Version 15.2 and
higher

Version 14.3 and
higher

Version 13.6 and
higher

Europe (Milan) Version 16.1 and
higher

Version 15.2 and
higher

Version 14.3 and
higher

Version 13.6 and
higher

Aurora Serverless v2 88

Amazon Aurora User Guide for Aurora

Region Aurora
PostgreSQL 16

Aurora
PostgreSQL 15

Aurora
PostgreSQL 14

Aurora
PostgreSQL 13

Europe (Paris) Version 16.1 and
higher

Version 15.2 and
higher

Version 14.3 and
higher

Version 13.6 and
higher

Europe (Spain) Version 16.1 and
higher

Version 15.2 and
higher

Version 14.6 and
higher

Version 13.9 and
higher

Europe
(Stockholm)

Version 16.1 and
higher

Version 15.2 and
higher

Version 14.3 and
higher

Version 13.6 and
higher

Europe (Zurich) Version 16.1 and
higher

Version 15.2 and
higher

Version 14.6 and
higher

Version 13.9 and
higher

Israel (Tel Aviv) Version 16.1 and
higher

Version 15.2 and
higher

Version 14.6 and
higher

Version 13.9 and
higher

Middle East
(Bahrain)

Version 16.1 and
higher

Version 15.2 and
higher

Version 14.3 and
higher

Version 13.6 and
higher

Middle East
(UAE)

Version 16.1 and
higher

Version 15.2 and
higher

Version 14.6 and
higher

Version 13.9 and
higher

South America
(São Paulo)

Version 16.1 and
higher

Version 15.2 and
higher

Version 14.3 and
higher

Version 13.6 and
higher

AWS GovCloud
(US-East)

Version 16.1 and
higher

Version 15.2 and
higher

Version 14.3 and
higher

Version 13.6 and
higher

AWS GovCloud
(US-West)

Version 16.1 and
higher

Version 15.2 and
higher

Version 14.3 and
higher

Version 13.6 and
higher

Supported Regions and Aurora DB engines for Aurora Serverless v1

Aurora Serverless v1 is an on-demand, auto-scaling feature designed to be a cost-effective
approach to running intermittent or unpredictable workloads on Amazon Aurora. It automatically
starts up, shuts down, and scales capacity up or down, as needed by your applications, using a
single DB instance in each cluster. For more information, see Using Amazon Aurora Serverless v1.

Aurora Serverless v1 89

Amazon Aurora User Guide for Aurora

Topics

• Aurora Serverless v1 with Aurora MySQL

• Aurora Serverless v1 with Aurora PostgreSQL

Aurora Serverless v1 with Aurora MySQL

The following Regions and engine versions are available for Aurora Serverless v1 with Aurora
MySQL.

Region Aurora MySQL version 3 Aurora MySQL version 2

US East (Ohio) – Version 2.11.4

US East (N. Virginia) – Version 2.11.4

US West (N. California) – Version 2.11.4

US West (Oregon) – Version 2.11.4

Africa (Cape Town) – –

Asia Pacific (Hong Kong) – –

Asia Pacific (Hyderabad) – –

Asia Pacific (Jakarta) – –

Asia Pacific (Melbourne) – –

Asia Pacific (Mumbai) – Version 2.11.4

Asia Pacific (Osaka) – –

Asia Pacific (Seoul) – Version 2.11.4

Asia Pacific (Singapore) – Version 2.11.4

Asia Pacific (Sydney) – Version 2.11.4

Asia Pacific (Tokyo) – Version 2.11.4

Aurora Serverless v1 90

Amazon Aurora User Guide for Aurora

Region Aurora MySQL version 3 Aurora MySQL version 2

Canada (Central) – Version 2.11.4

Canada West (Calgary) – –

China (Beijing) – –

China (Ningxia) – Version 2.11.4

Europe (Frankfurt) – Version 2.11.4

Europe (Ireland) – Version 2.11.4

Europe (London) – Version 2.11.4

Europe (Milan) – –

Europe (Paris) – Version 2.11.4

Europe (Spain) – –

Europe (Stockholm) – –

Europe (Zurich) – –

Israel (Tel Aviv) – –

Middle East (Bahrain) – –

Middle East (UAE) – –

South America (São Paulo) – –

AWS GovCloud (US-East) – –

AWS GovCloud (US-West) – –

Aurora Serverless v1 91

Amazon Aurora User Guide for Aurora

Aurora Serverless v1 with Aurora PostgreSQL

The following Regions and engine versions are available for Aurora Serverless v1 with Aurora
PostgreSQL.

Region Aurora PostgreSQL 13

US East (Ohio) Version 13.12

US East (N. Virginia) Version 13.12

US West (N. California) Version 13.12

US West (Oregon) Version 13.12

Africa (Cape Town) –

Asia Pacific (Hong Kong) –

Asia Pacific (Hyderabad) –

Asia Pacific (Jakarta) –

Asia Pacific (Melbourne) –

Asia Pacific (Mumbai) Version 13.12

Asia Pacific (Osaka) –

Asia Pacific (Seoul) Version 13.12

Asia Pacific (Singapore) Version 13.12

Asia Pacific (Sydney) Version 13.12

Asia Pacific (Tokyo) Version 13.12

Canada (Central) Version 13.12

Canada West (Calgary) –

China (Beijing) –

Aurora Serverless v1 92

Amazon Aurora User Guide for Aurora

Region Aurora PostgreSQL 13

China (Ningxia) –

Europe (Frankfurt) Version 13.12

Europe (Ireland) Version 13.12

Europe (London) Version 13.12

Europe (Milan) –

Europe (Paris) Version 13.12

Europe (Spain) –

Europe (Stockholm) –

Europe (Zurich) –

Israel (Tel Aviv) –

Middle East (Bahrain) –

Middle East (UAE) –

South America (São Paulo) –

AWS GovCloud (US-East) –

AWS GovCloud (US-West) –

Supported Regions and Aurora DB engines for RDS Data API

RDS Data API (Data API) provides a web-services interface to an Amazon Aurora DB cluster. Instead
of managing database connections from client applications, you can run SQL commands against an
HTTPS endpoint. For more information, see Using RDS Data API.

For Aurora MySQL, Data API isn't supported for Aurora Serverless v2 or for provisioned DB clusters.

Topics

RDS Data API 93

Amazon Aurora User Guide for Aurora

• Data API with Aurora MySQL Serverless v1

• Data API with Aurora PostgreSQL Serverless v2 and provisioned

• Data API with Aurora PostgreSQL Serverless v1

Data API with Aurora MySQL Serverless v1

The following Regions and engine versions are available for Data API with Aurora MySQL Serverless
v1.

Region Aurora MySQL version 3 Aurora MySQL version 2

US East (Ohio) – Version 2.11.3

US East (N. Virginia) – Version 2.11.3

US West (N. California) – Version 2.11.3

US West (Oregon) – Version 2.11.3

Africa (Cape Town) – –

Asia Pacific (Hong Kong) – –

Asia Pacific (Hyderabad) – –

Asia Pacific (Jakarta) – –

Asia Pacific (Melbourne) – –

Asia Pacific (Mumbai) – Version 2.11.3

Asia Pacific (Osaka) – –

Asia Pacific (Seoul) – Version 2.11.3

Asia Pacific (Singapore) – Version 2.11.3

Asia Pacific (Sydney) – Version 2.11.3

Asia Pacific (Tokyo) – Version 2.11.3

RDS Data API 94

Amazon Aurora User Guide for Aurora

Region Aurora MySQL version 3 Aurora MySQL version 2

Canada (Central) – Version 2.11.3

Canada West (Calgary) – –

China (Beijing) – –

China (Ningxia) – Version 2.11.3

Europe (Frankfurt) – Version 2.11.3

Europe (Ireland) – Version 2.11.3

Europe (London) – Version 2.11.3

Europe (Milan) – –

Europe (Paris) – Version 2.11.3

Europe (Spain) – –

Europe (Stockholm) – –

Europe (Zurich) – –

Israel (Tel Aviv) – –

Middle East (Bahrain) – –

Middle East (UAE) – –

South America (São Paulo) – –

AWS GovCloud (US-East) – –

AWS GovCloud (US-West) – –

RDS Data API 95

Amazon Aurora User Guide for Aurora

Data API with Aurora PostgreSQL Serverless v2 and provisioned

The following Regions and engine versions are available for Data API with Aurora PostgreSQL
Serverless v2 and provisioned DB clusters.

Region Aurora
PostgreSQL 16

Aurora
PostgreSQL 15

Aurora
PostgreSQL 14

Aurora
PostgreSQL 13

US East (Ohio) Version 16.1 and
higher

Version 15.3 and
higher

Version 14.8 and
higher

Version 13.11
and higher

US East (N.
Virginia)

Version 16.1 and
higher

Version 15.3 and
higher

Version 14.8 and
higher

Version 13.11
and higher

US West (N.
California)

Version 16.1 and
higher

Version 15.3 and
higher

Version 14.8 and
higher

Version 13.11
and higher

US West
(Oregon)

Version 16.1 and
higher

Version 15.3 and
higher

Version 14.8 and
higher

Version 13.11
and higher

Africa (Cape
Town)

– – – –

Asia Pacific
(Hong Kong)

– – – –

Asia Pacific
(Hyderabad)

– – – –

Asia Pacific
(Jakarta)

– – – –

Asia Pacific
(Melbourne)

– – – –

Asia Pacific
(Mumbai)

Version 16.1 and
higher

Version 15.3 and
higher

Version 14.8 and
higher

Version 13.11
and higher

Asia Pacific
(Osaka)

– – – –

RDS Data API 96

Amazon Aurora User Guide for Aurora

Region Aurora
PostgreSQL 16

Aurora
PostgreSQL 15

Aurora
PostgreSQL 14

Aurora
PostgreSQL 13

Asia Pacific
(Seoul)

Version 16.1 and
higher

Version 15.3 and
higher

Version 14.8 and
higher

Version 13.11
and higher

Asia Pacific
(Singapore)

Version 16.1 and
higher

Version 15.3 and
higher

Version 14.8 and
higher

Version 13.11
and higher

Asia Pacific
(Sydney)

Version 16.1 and
higher

Version 15.3 and
higher

Version 14.8 and
higher

Version 13.11
and higher

Asia Pacific
(Tokyo)

Version 16.1 and
higher

Version 15.3 and
higher

Version 14.8 and
higher

Version 13.11
and higher

Canada (Central) Version 16.1 and
higher

Version 15.3 and
higher

Version 14.8 and
higher

Version 13.11
and higher

Canada West
(Calgary)

– – – –

China (Beijing) – – – –

China (Ningxia) – – – –

Europe (Frankfur
t)

Version 16.1 and
higher

Version 15.3 and
higher

Version 14.8 and
higher

Version 13.11
and higher

Europe (Ireland) Version 16.1 and
higher

Version 15.3 and
higher

Version 14.8 and
higher

Version 13.11
and higher

Europe (London) Version 16.1 and
higher

Version 15.3 and
higher

Version 14.8 and
higher

Version 13.11
and higher

Europe (Milan) – – – –

Europe (Paris) Version 16.1 and
higher

Version 15.3 and
higher

Version 14.8 and
higher

Version 13.11
and higher

Europe (Spain) – – – –

RDS Data API 97

Amazon Aurora User Guide for Aurora

Region Aurora
PostgreSQL 16

Aurora
PostgreSQL 15

Aurora
PostgreSQL 14

Aurora
PostgreSQL 13

Europe
(Stockholm)

– – – –

Europe (Zurich) – – – –

Israel (Tel Aviv) – – – –

Middle East
(Bahrain)

– – – –

Middle East
(UAE)

– – – –

South America
(São Paulo)

– – – –

AWS GovCloud
(US-East)

– – – –

AWS GovCloud
(US-West)

– – – –

Data API with Aurora PostgreSQL Serverless v1

The following Regions and engine versions are available for Data API with Aurora PostgreSQL
Serverless v1.

Region Aurora PostgreSQL 13 Aurora PostgreSQL 11

US East (Ohio) Version 13.9 Version 11.18

US East (N. Virginia) Version 13.9 Version 11.18

US West (N. California) Version 13.9 Version 11.18

US West (Oregon) Version 13.9 Version 11.18

RDS Data API 98

Amazon Aurora User Guide for Aurora

Region Aurora PostgreSQL 13 Aurora PostgreSQL 11

Africa (Cape Town) – –

Asia Pacific (Hong Kong) – –

Asia Pacific (Hyderabad) – –

Asia Pacific (Jakarta) – –

Asia Pacific (Melbourne) – –

Asia Pacific (Mumbai) Version 13.9 Version 11.18

Asia Pacific (Osaka) – –

Asia Pacific (Seoul) Version 13.9 Version 11.18

Asia Pacific (Singapore) Version 13.9 Version 11.18

Asia Pacific (Sydney) Version 13.9 Version 11.18

Asia Pacific (Tokyo) Version 13.9 Version 11.18

Canada (Central) Version 13.9 Version 11.18

China (Beijing) – –

China (Ningxia) – –

Europe (Frankfurt) Version 13.9 Version 11.18

Europe (Ireland) Version 13.9 Version 11.18

Europe (London) Version 13.9 Version 11.18

Europe (Milan) – –

Europe (Paris) Version 13.9 Version 11.18

Europe (Spain) – –

RDS Data API 99

Amazon Aurora User Guide for Aurora

Region Aurora PostgreSQL 13 Aurora PostgreSQL 11

Europe (Stockholm) – –

Europe (Zurich) – –

Israel (Tel Aviv) – –

Middle East (Bahrain) – –

Middle East (UAE) – –

South America (São Paulo) – –

AWS GovCloud (US-East) – –

AWS GovCloud (US-West) – –

Supported Regions and Aurora DB engines for zero-downtime patching
(ZDP)

Performing upgrades for Aurora DB clusters involves the possibility of an outage when the
database is shut down and while it's being upgraded. By default, if you start the upgrade while the
database is busy, you lose all the connections and transactions that the DB cluster is processing. If
you wait until the database is idle to perform the upgrade, you might have to wait a long time.

The zero-downtime patching (ZDP) feature attempts, on a best-effort basis, to preserve client
connections through an Aurora upgrade. If ZDP completes successfully, application sessions are
preserved and the database engine restarts while the upgrade is in progress. The database engine
restart can cause a drop in throughput lasting for a few seconds to approximately one minute.

For detailed information on the conditions and engine versions where ZDP is available for Aurora
MySQL upgrades, see Using zero-downtime patching.

For detailed information on the conditions and engine versions where ZDP is available for Aurora
PostgreSQL upgrades, see Minor release upgrades and zero-downtime patching.

Zero-downtime patching (ZDP) 100

Amazon Aurora User Guide for Aurora

Supported Regions and DB engines for Aurora engine-native features

Aurora database engines also support additional features and functionality specifically for Aurora.
Some engine-native features might have limited support or restricted privileges for a particular
Aurora DB engine, version, or Region.

Topics

• Engine-native features for Aurora MySQL

• Engine-native features for Aurora PostgreSQL

Engine-native features for Aurora MySQL

Following are the engine-native features for Aurora MySQL.

• Advanced Auditing

• Backtrack

• Fault injection queries

• In-cluster write forwarding

• Parallel query

Engine-native features for Aurora PostgreSQL

Following are the engine-native features for Aurora PostgreSQL.

• Babelfish

• Fault injection queries

• Query plan management

Amazon Aurora connection management

Amazon Aurora typically involves a cluster of DB instances instead of a single instance. Each
connection is handled by a specific DB instance. When you connect to an Aurora cluster, the host
name and port that you specify point to an intermediate handler called an endpoint. Aurora uses
the endpoint mechanism to abstract these connections. Thus, you don't have to hardcode all
the hostnames or write your own logic for balancing and rerouting connections when some DB
instances aren't available.

Engine-native features 101

Amazon Aurora User Guide for Aurora

For certain Aurora tasks, different instances or groups of instances perform different roles. For
example, the primary instance handles all data definition language (DDL) and data manipulation
language (DML) statements. Up to 15 Aurora Replicas handle read-only query traffic.

Using endpoints, you can map each connection to the appropriate instance or group of instances
based on your use case. For example, to perform DDL statements you can connect to whichever
instance is the primary instance. To perform queries, you can connect to the reader endpoint, with
Aurora automatically performing connection-balancing among all the Aurora Replicas. For clusters
with DB instances of different capacities or configurations, you can connect to custom endpoints
associated with different subsets of DB instances. For diagnosis or tuning, you can connect to a
specific instance endpoint to examine details about a specific DB instance.

Topics

• Types of Aurora endpoints

• Viewing the endpoints for an Aurora cluster

• Using the cluster endpoint

• Using the reader endpoint

• Using custom endpoints

• Creating a custom endpoint

• Viewing custom endpoints

• Editing a custom endpoint

• Deleting a custom endpoint

• End-to-end AWS CLI example for custom endpoints

• Using the instance endpoints

• How Aurora endpoints work with high availability

Types of Aurora endpoints

An endpoint is represented as an Aurora-specific URL that contains a host address and a port. The
following types of endpoints are available from an Aurora DB cluster.

Cluster endpoint

A cluster endpoint (or writer endpoint) for an Aurora DB cluster connects to the current primary
DB instance for that DB cluster. This endpoint is the only one that can perform write operations

Types of Aurora endpoints 102

Amazon Aurora User Guide for Aurora

such as DDL statements. Because of this, the cluster endpoint is the one that you connect to
when you first set up a cluster or when your cluster only contains a single DB instance.

Each Aurora DB cluster has one cluster endpoint and one primary DB instance.

You use the cluster endpoint for all write operations on the DB cluster, including inserts,
updates, deletes, and DDL changes. You can also use the cluster endpoint for read operations,
such as queries.

The cluster endpoint provides failover support for read/write connections to the DB cluster. If
the current primary DB instance of a DB cluster fails, Aurora automatically fails over to a new
primary DB instance. During a failover, the DB cluster continues to serve connection requests to
the cluster endpoint from the new primary DB instance, with minimal interruption of service.

The following example illustrates a cluster endpoint for an Aurora MySQL DB cluster.

mydbcluster.cluster-c7tj4example.us-east-1.rds.amazonaws.com:3306

Reader endpoint

A reader endpoint for an Aurora DB cluster provides connection-balancing support for read-
only connections to the DB cluster. Use the reader endpoint for read operations, such as queries.
By processing those statements on the read-only Aurora Replicas, this endpoint reduces the
overhead on the primary instance. It also helps the cluster to scale the capacity to handle
simultaneous SELECT queries, proportional to the number of Aurora Replicas in the cluster.
Each Aurora DB cluster has one reader endpoint.

If the cluster contains one or more Aurora Replicas, the reader endpoint balances each
connection request among the Aurora Replicas. In that case, you can only perform read-only
statements such as SELECT in that session. If the cluster only contains a primary instance and
no Aurora Replicas, the reader endpoint connects to the primary instance. In that case, you can
perform write operations through the endpoint.

The following example illustrates a reader endpoint for an Aurora MySQL DB cluster.

mydbcluster.cluster-ro-c7tj4example.us-east-1.rds.amazonaws.com:3306

Custom endpoint

A custom endpoint for an Aurora cluster represents a set of DB instances that you choose. When
you connect to the endpoint, Aurora performs connection balancing and chooses one of the

Types of Aurora endpoints 103

Amazon Aurora User Guide for Aurora

instances in the group to handle the connection. You define which instances this endpoint refers
to, and you decide what purpose the endpoint serves.

An Aurora DB cluster has no custom endpoints until you create one. You can create up to five
custom endpoints for each provisioned Aurora cluster or Aurora Serverless v2 cluster. You can't
use custom endpoints for Aurora Serverless v1 clusters.

The custom endpoint provides balanced database connections based on criteria other than the
read-only or read/write capability of the DB instances. For example, you might define a custom
endpoint to connect to instances that use a particular AWS instance class or a particular DB
parameter group. Then you might tell particular groups of users about this custom endpoint.
For example, you might direct internal users to low-capacity instances for report generation or
ad hoc (one-time) querying, and direct production traffic to high-capacity instances.

Because the connection can go to any DB instance that is associated with the custom endpoint,
we recommend that you make sure that all the DB instances within that group share some
similar characteristic. Doing so ensures that the performance, memory capacity, and so on, are
consistent for everyone who connects to that endpoint.

This feature is intended for advanced users with specialized kinds of workloads where it isn't
practical to keep all the Aurora Replicas in the cluster identical. With custom endpoints, you
can predict the capacity of the DB instance used for each connection. When you use custom
endpoints, you typically don't use the reader endpoint for that cluster.

The following example illustrates a custom endpoint for a DB instance in an Aurora MySQL DB
cluster.

myendpoint.cluster-custom-c7tj4example.us-east-1.rds.amazonaws.com:3306

Instance endpoint

An instance endpoint connects to a specific DB instance within an Aurora cluster. Each DB
instance in a DB cluster has its own unique instance endpoint. So there is one instance endpoint
for the current primary DB instance of the DB cluster, and there is one instance endpoint for
each of the Aurora Replicas in the DB cluster.

The instance endpoint provides direct control over connections to the DB cluster, for scenarios
where using the cluster endpoint or reader endpoint might not be appropriate. For example,
your client application might require more fine-grained connection balancing based on

Types of Aurora endpoints 104

Amazon Aurora User Guide for Aurora

workload type. In this case, you can configure multiple clients to connect to different Aurora
Replicas in a DB cluster to distribute read workloads. For an example that uses instance
endpoints to improve connection speed after a failover for Aurora PostgreSQL, see Fast failover
with Amazon Aurora PostgreSQL. For an example that uses instance endpoints to improve
connection speed after a failover for Aurora MySQL, see MariaDB Connector/J failover support -
case Amazon Aurora.

The following example illustrates an instance endpoint for a DB instance in an Aurora MySQL
DB cluster.

mydbinstance.c7tj4example.us-east-1.rds.amazonaws.com:3306

Viewing the endpoints for an Aurora cluster

In the AWS Management Console, you see the cluster endpoint, the reader endpoint, and any
custom endpoints in the detail page for each cluster. You see the instance endpoint in the
detail page for each instance. When you connect, you must append the associated port number,
following a colon, to the endpoint name shown on this detail page.

With the AWS CLI, you see the writer, reader, and any custom endpoints in the output of the
describe-db-clusters command. For example, the following command shows the endpoint
attributes for all clusters in your current AWS Region.

aws rds describe-db-clusters --query '*[].
{Endpoint:Endpoint,ReaderEndpoint:ReaderEndpoint,CustomEndpoints:CustomEndpoints}'

With the Amazon RDS API, you retrieve the endpoints by calling the DescribeDBClusterEndpoints
function.

Using the cluster endpoint

Because each Aurora cluster has a single built-in cluster endpoint, whose name and other
attributes are managed by Aurora, you can't create, delete, or modify this kind of endpoint.

You use the cluster endpoint when you administer your cluster, perform extract, transform, load
(ETL) operations, or develop and test applications. The cluster endpoint connects to the primary
instance of the cluster. The primary instance is the only DB instance where you can create tables
and indexes, run INSERT statements, and perform other DDL and DML operations.

Viewing endpoints 105

https://mariadb.org/mariadb-connectorj-failover-support-case-amazon-aurora/
https://mariadb.org/mariadb-connectorj-failover-support-case-amazon-aurora/
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-clusters.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DescribeDBClusterEndpoints.html

Amazon Aurora User Guide for Aurora

The physical IP address pointed to by the cluster endpoint changes when the failover mechanism
promotes a new DB instance to be the read/write primary instance for the cluster. If you use any
form of connection pooling or other multiplexing, be prepared to flush or reduce the time-to-
live for any cached DNS information. Doing so ensures that you don't try to establish a read/write
connection to a DB instance that became unavailable or is now read-only after a failover.

Using the reader endpoint

You use the reader endpoint for read-only connections for your Aurora cluster. This endpoint uses
a connection-balancing mechanism to help your cluster handle a query-intensive workload. The
reader endpoint is the endpoint that you supply to applications that do reporting or other read-
only operations on the cluster.

The reader endpoint balances connections to available Aurora Replicas in an Aurora DB cluster.
It doesn't balance individual queries. If you want to balance each query to distribute the read
workload for a DB cluster, open a new connection to the reader endpoint for each query.

Each Aurora cluster has a single built-in reader endpoint, whose name and other attributes are
managed by Aurora. You can't create, delete, or modify this kind of endpoint.

If your cluster contains only a primary instance and no Aurora Replicas, the reader endpoint
connects to the primary instance. In that case, you can perform write operations through this
endpoint.

Tip

Through RDS Proxy, you can create additional read-only endpoints for an Aurora cluster.
These endpoints perform the same kind of connection-balancing as the Aurora reader
endpoint. Applications can reconnect more quickly to the proxy endpoints than the Aurora
reader endpoint if reader instances become unavailable. The proxy endpoints can also take
advantage of other proxy features such as multiplexing. For more information, see Using
reader endpoints with Aurora clusters.

Using custom endpoints

You use custom endpoints to simplify connection management when your cluster contains DB
instances with different capacities and configuration settings.

Using the reader endpoint 106

Amazon Aurora User Guide for Aurora

Previously, you might have used the CNAMES mechanism to set up Domain Name Service (DNS)
aliases from your own domain to achieve similar results. By using custom endpoints, you can avoid
updating CNAME records when your cluster grows or shrinks. Custom endpoints also mean that you
can use encrypted Transport Layer Security/Secure Sockets Layer (TLS/SSL) connections.

Instead of using one DB instance for each specialized purpose and connecting to its instance
endpoint, you can have multiple groups of specialized DB instances. In this case, each group has
its own custom endpoint. This way, Aurora can perform connection balancing among all the
instances dedicated to tasks such as reporting or handling production or internal queries. The
custom endpoints distribute connections across instances passively, using DNS to return the IP
address of one of the instances randomly. If one of the DB instances within a group becomes
unavailable, Aurora directs subsequent custom endpoint connections to one of the other DB
instances associated with the same endpoint.

Topics

• Specifying properties for custom endpoints

• Membership rules for custom endpoints

• Managing custom endpoints

Specifying properties for custom endpoints

The maximum length for a custom endpoint name is 63 characters. The name format is the
following:

endpoint_name.cluster-custom-customer_DNS_identifier.AWS_Region.rds.amazonaws.com

You can't reuse the same custom endpoint name for more than one cluster in the same AWS
Region. The customer DNS identifier is a unique identifier associated with your AWS account in a
particular AWS Region.

Each custom endpoint has an associated type that determines which DB instances are eligible
to be associated with that endpoint. Currently, the type can be READER or ANY. The following
considerations apply to the custom endpoint types:

• You can't select the custom endpoint type in the AWS Management Console. All the custom
endpoints you create through the AWS Management Console have a type of ANY.

You can set and modify the custom endpoint type using the AWS CLI or Amazon RDS API.

Using custom endpoints 107

Amazon Aurora User Guide for Aurora

• Only reader DB instances can be part of a READER custom endpoint.

• Both reader and writer DB instances can be part of an ANY custom endpoint. Aurora directs
connections to cluster endpoints with type ANY to any associated DB instance with equal
probability. The ANY type applies to clusters using any replication topology.

• If you try to create a custom endpoint with a type that isn't appropriate based on the replication
configuration for a cluster, Aurora returns an error.

Membership rules for custom endpoints

When you add a DB instance to a custom endpoint or remove it from a custom endpoint, any
existing connections to that DB instance remain active.

You can define a list of DB instances to include in, or exclude from, a custom endpoint. We refer to
these lists as static and exclusion lists, respectively. You can use the inclusion/exclusion mechanism
to further subdivide the groups of DB instances, and to make sure that the set of custom endpoints
covers all the DB instances in the cluster. Each custom endpoint can contain only one of these list
types.

In the AWS Management Console:

• The choice is represented by the check box Attach future instances added to this cluster. When
you keep the check box clear, the custom endpoint uses a static list containing only the DB
instances specified on the page. When you choose the check box, the custom endpoint uses
an exclusion list. In this case, the custom endpoint represents all DB instances in the cluster
(including any that you add in the future) except the ones not selected on the page.

• The console doesn't allow you to specify the endpoint type. Any custom endpoint created using
the console is of type ANY.

Therefore, Aurora doesn't change the membership of the custom endpoint when DB instances
change roles between writer and reader due to failover or promotion.

In the AWS CLI and Amazon RDS API:

• You can specify the endpoint type. Therefore, when the endpoint type is set to READER,
endpoint membership is automatically adjusted during failovers and promotions.

Using custom endpoints 108

Amazon Aurora User Guide for Aurora

For example, a custom endpoint with type READER includes an Aurora Replica that is then
promoted to be a writer DB instance. The new writer instance is no longer part of the custom
endpoint.

• You can add individual members to and remove them from the lists after they change their
roles. Use the modify-db-cluster-endpoint AWS CLI command or ModifyDBClusterEndpoint API
operation.

You can associate a DB instance with more than one custom endpoint. For example, suppose that
you add a new DB instance to a cluster, or that Aurora adds a DB instance automatically through
the autoscaling mechanism. In these cases, the DB instance is added to all custom endpoints for
which it is eligible. Which endpoints the DB instance is added to is based on the custom endpoint
type of READER or ANY, plus any static or exclusion lists defined for each endpoint. For example,
if the endpoint includes a static list of DB instances, newly added Aurora Replicas aren't added to
that endpoint. Conversely, if the endpoint has an exclusion list, newly added Aurora Replicas are
added to the endpoint, if they aren't named in the exclusion list and their roles match the type of
the custom endpoint.

If an Aurora Replica becomes unavailable, it remains associated with any custom endpoints. For
example, it remains part of the custom endpoint when it is unhealthy, stopped, rebooting, and so
on. However, you can't connect to it through those endpoints until it becomes available again.

Managing custom endpoints

Because newly created Aurora clusters have no custom endpoints, you must create and manage
these objects yourself. You do so using the AWS Management Console, AWS CLI, or Amazon RDS
API.

Note

You must also create and manage custom endpoints for Aurora clusters restored from
snapshots. Custom endpoints are not included in the snapshot. You create them again after
restoring, and choose new endpoint names if the restored cluster is in the same region as
the original one.

To work with custom endpoints from the AWS Management Console, you navigate to the details
page for your Aurora cluster and use the controls under the Custom Endpoints section.

Using custom endpoints 109

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/rds/modify-db-cluster-endpoint.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBClusterEndpoint.html

Amazon Aurora User Guide for Aurora

To work with custom endpoints from the AWS CLI, you can use these operations:

• create-db-cluster-endpoint

• describe-db-cluster-endpoints

• modify-db-cluster-endpoint

• delete-db-cluster-endpoint

To work with custom endpoints through the Amazon RDS API, you can use the following functions:

• CreateDBClusterEndpoint

• DescribeDBClusterEndpoints

• ModifyDBClusterEndpoint

• DeleteDBClusterEndpoint

Creating a custom endpoint

Console

To create a custom endpoint with the AWS Management Console, go to the cluster detail page and
choose the Create custom endpoint action in the Endpoints section. Choose a name for the
custom endpoint, unique for your user ID and region. To choose a list of DB instances that remains
the same even as the cluster expands, keep the check box Attach future instances added to this
cluster clear. When you choose that check box, the custom endpoint dynamically adds any new
instances as you add them to the cluster.

Creating a custom endpoint 110

https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-cluster-endpoint.html
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-cluster-endpoints.html
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-cluster-endpoint.html
https://docs.aws.amazon.com/cli/latest/reference/rds/delete-db-cluster-endpoint.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateDBClusterEndpoint.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DescribeDBClusterEndpoints.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBClusterEndpoint.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DeleteDBClusterEndpoint.html

Amazon Aurora User Guide for Aurora

You can't select the custom endpoint type in the AWS Management Console. All custom endpoints
you create through the AWS Management Console have a type of ANY.

AWS CLI

To create a custom endpoint with the AWS CLI, run the create-db-cluster-endpoint command.

The following command creates a custom endpoint attached to a specific cluster. Initially, the
endpoint is associated with all the Aurora Replica instances in the cluster. A subsequent command
associates it with a specific set of DB instances in the cluster.

For Linux, macOS, or Unix:

aws rds create-db-cluster-endpoint --db-cluster-endpoint-identifier custom-endpoint-
doc-sample \
 --endpoint-type reader \
 --db-cluster-identifier cluster_id

aws rds modify-db-cluster-endpoint --db-cluster-endpoint-identifier custom-endpoint-
doc-sample \
 --static-members instance_name_1 instance_name_2

For Windows:

aws rds create-db-cluster-endpoint --db-cluster-endpoint-identifier custom-endpoint-
doc-sample ^

Creating a custom endpoint 111

https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-cluster-endpoint.html

Amazon Aurora User Guide for Aurora

 --endpoint-type reader ^
 --db-cluster-identifier cluster_id

aws rds modify-db-cluster-endpoint --db-cluster-endpoint-identifier custom-endpoint-
doc-sample ^
 --static-members instance_name_1 instance_name_2

RDS API

To create a custom endpoint with the RDS API, run the CreateDBClusterEndpoint operation.

Viewing custom endpoints

Console

To view custom endpoints with the AWS Management Console, go to the cluster detail page for the
cluster and look under the Endpoints section. This section contains information only about custom
endpoints. The details for the built-in endpoints are listed in the main Details section. To see the
details for a specific custom endpoint, select its name to bring up the detail page for that endpoint.

The following screenshot shows how the list of custom endpoints for an Aurora cluster is initially
empty.

After you create some custom endpoints for that cluster, they are shown under the Endpoints
section.

Clicking through to the detail page shows which DB instances the endpoint is currently associated
with.

Viewing custom endpoints 112

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateDBClusterEndpoint.html

Amazon Aurora User Guide for Aurora

To see the additional detail of whether new DB instances added to the cluster are automatically
added to the endpoint also, open the Edit page for the endpoint.

AWS CLI

To view custom endpoints with the AWS CLI, run the describe-db-cluster-endpoints command.

The following command shows the custom endpoints associated with a specified cluster in a
specified region. The output includes both the built-in endpoints and any custom endpoints.

For Linux, macOS, or Unix:

aws rds describe-db-cluster-endpoints --region region_name \
 --db-cluster-identifier cluster_id

For Windows:

aws rds describe-db-cluster-endpoints --region region_name ^
 --db-cluster-identifier cluster_id

The following shows some sample output from a describe-db-cluster-endpoints command.
The EndpointType of WRITER or READER denotes the built-in read/write and read-only endpoints
for the cluster. The EndpointType of CUSTOM denotes endpoints that you create and choose the
associated DB instances. One of the endpoints has a non-empty StaticMembers field, denoting
that it is associated with a precise set of DB instances. The other endpoint has a non-empty
ExcludedMembers field, denoting that the endpoint is associated with all DB instances other
than the ones listed under ExcludedMembers. This second kind of custom endpoint grows to
accommodate new instances as you add them to the cluster.

{

Viewing custom endpoints 113

https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-cluster-endpoints.html

Amazon Aurora User Guide for Aurora

 "DBClusterEndpoints": [
 {
 "Endpoint": "custom-endpoint-demo.cluster-c7tj4example.ca-
central-1.rds.amazonaws.com",
 "Status": "available",
 "DBClusterIdentifier": "custom-endpoint-demo",
 "EndpointType": "WRITER"
 },
 {
 "Endpoint": "custom-endpoint-demo.cluster-ro-c7tj4example.ca-
central-1.rds.amazonaws.com",
 "Status": "available",
 "DBClusterIdentifier": "custom-endpoint-demo",
 "EndpointType": "READER"
 },
 {
 "CustomEndpointType": "ANY",
 "DBClusterEndpointIdentifier": "powers-of-2",
 "ExcludedMembers": [],
 "DBClusterIdentifier": "custom-endpoint-demo",
 "Status": "available",
 "EndpointType": "CUSTOM",
 "Endpoint": "powers-of-2.cluster-custom-c7tj4example.ca-
central-1.rds.amazonaws.com",
 "StaticMembers": [
 "custom-endpoint-demo-04",
 "custom-endpoint-demo-08",
 "custom-endpoint-demo-01",
 "custom-endpoint-demo-02"
],
 "DBClusterEndpointResourceIdentifier": "cluster-endpoint-
W7PE3TLLFNSHXQKFU6J6NV5FHU",
 "DBClusterEndpointArn": "arn:aws:rds:ca-central-1:111122223333:cluster-
endpoint:powers-of-2"
 },
 {
 "CustomEndpointType": "ANY",
 "DBClusterEndpointIdentifier": "eight-and-higher",
 "ExcludedMembers": [
 "custom-endpoint-demo-04",
 "custom-endpoint-demo-02",
 "custom-endpoint-demo-07",
 "custom-endpoint-demo-05",
 "custom-endpoint-demo-03",

Viewing custom endpoints 114

Amazon Aurora User Guide for Aurora

 "custom-endpoint-demo-06",
 "custom-endpoint-demo-01"
],
 "DBClusterIdentifier": "custom-endpoint-demo",
 "Status": "available",
 "EndpointType": "CUSTOM",
 "Endpoint": "eight-and-higher.cluster-custom-123456789012.ca-
central-1.rds.amazonaws.com",
 "StaticMembers": [],
 "DBClusterEndpointResourceIdentifier": "cluster-endpoint-
W7PE3TLLFNSHYQKFU6J6NV5FHU",
 "DBClusterEndpointArn": "arn:aws:rds:ca-central-1:111122223333:cluster-
endpoint:eight-and-higher"
 }
]
}

RDS API

To view custom endpoints with the RDS API, run the DescribeDBClusterEndpoints.html operation.

Editing a custom endpoint

You can edit the properties of a custom endpoint to change which DB instances are associated with
the endpoint. You can also change an endpoint between a static list and an exclusion list. If you
need more details about these endpoint properties, see Membership rules for custom endpoints.

You can continue connecting to and using a custom endpoint while the changes from an edit action
are in progress.

Console

To edit a custom endpoint with the AWS Management Console, you can select the endpoint on the
cluster detail page, or bring up the detail page for the endpoint, and choose the Edit action.

Editing a custom endpoint 115

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DescribeDBClusterEndpoints.html.html

Amazon Aurora User Guide for Aurora

AWS CLI

To edit a custom endpoint with the AWS CLI, run the modify-db-cluster-endpoint command.

The following commands change the set of DB instances that apply to a custom endpoint and
optionally switches between the behavior of a static or exclusion list. The --static-members and
--excluded-members parameters take a space-separated list of DB instance identifiers.

For Linux, macOS, or Unix:

aws rds modify-db-cluster-endpoint --db-cluster-endpoint-identifier my-custom-endpoint
 \
 --static-members db-instance-id-1 db-instance-id-2 db-instance-id-3 \
 --region region_name

aws rds modify-db-cluster-endpoint --db-cluster-endpoint-identifier my-custom-endpoint
 \
 --excluded-members db-instance-id-4 db-instance-id-5 \
 --region region_name

For Windows:

aws rds modify-db-cluster-endpoint --db-cluster-endpoint-identifier my-custom-endpoint
 ^
 --static-members db-instance-id-1 db-instance-id-2 db-instance-id-3 ^
 --region region_name

aws rds modify-db-cluster-endpoint --db-cluster-endpoint-identifier my-custom-endpoint
 ^

Editing a custom endpoint 116

https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-cluster-endpoint.html

Amazon Aurora User Guide for Aurora

 --excluded-members db-instance-id-4 db-instance-id-5 ^
 --region region_name

RDS API

To edit a custom endpoint with the RDS API, run the ModifyDBClusterEndpoint.html operation.

Deleting a custom endpoint

Console

To delete a custom endpoint with the AWS Management Console, go to the cluster detail page,
select the appropriate custom endpoint, and select the Delete action.

AWS CLI

To delete a custom endpoint with the AWS CLI, run the delete-db-cluster-endpoint command.

The following command deletes a custom endpoint. You don't need to specify the associated
cluster, but you must specify the region.

For Linux, macOS, or Unix:

aws rds delete-db-cluster-endpoint --db-cluster-endpoint-identifier custom-end-point-id
 \
 --region region_name

For Windows:

aws rds delete-db-cluster-endpoint --db-cluster-endpoint-identifier custom-end-point-id
 ^
 --region region_name

RDS API

To delete a custom endpoint with the RDS API, run the DeleteDBClusterEndpoint operation.

Deleting a custom endpoint 117

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBClusterEndpoint.html.html
https://docs.aws.amazon.com/cli/latest/reference/rds/delete-db-cluster-endpoint.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DeleteDBClusterEndpoint.html

Amazon Aurora User Guide for Aurora

End-to-end AWS CLI example for custom endpoints

The following tutorial uses AWS CLI examples with Unix shell syntax to show you might define a
cluster with several "small" DB instances and a few "big" DB instances, and create custom endpoints
to connect to each set of DB instances. To run similar commands on your own system, you should
be familiar enough with the basics of working with Aurora clusters and AWS CLI usage to supply
your own values for parameters such as region, subnet group, and VPC security group.

This example demonstrates the initial setup steps: creating an Aurora cluster and adding DB
instances to it. This is a heterogeneous cluster, meaning not all the DB instances have the same
capacity. Most instances use the AWS instance class db.r4.4xlarge, but the last two DB instances
use db.r4.16xlarge. Each of these sample create-db-instance commands prints its output
to the screen and saves a copy of the JSON in a file for later inspection.

aws rds create-db-cluster --db-cluster-identifier custom-endpoint-demo --engine aurora-
mysql \
 --engine-version 8.0.mysql_aurora.3.02.0 --master-username $MASTER_USER --manage-
master-user-password \
 --db-subnet-group-name $SUBNET_GROUP --vpc-security-group-ids $VPC_SECURITY_GROUP
 \
 --region $REGION

for i in 01 02 03 04 05 06 07 08
do
 aws rds create-db-instance --db-instance-identifier custom-endpoint-demo-${i} \
 --engine aurora --db-cluster-identifier custom-endpoint-demo --db-instance-class
 db.r4.4xlarge \
 --region $REGION \
 | tee custom-endpoint-demo-${i}.json
done

for i in 09 10
do
 aws rds create-db-instance --db-instance-identifier custom-endpoint-demo-${i} \
 --engine aurora --db-cluster-identifier custom-endpoint-demo --db-instance-class
 db.r4.16xlarge \
 --region $REGION \
 | tee custom-endpoint-demo-${i}.json
done

End-to-end AWS CLI example for custom endpoints 118

Amazon Aurora User Guide for Aurora

The larger instances are reserved for specialized kinds of reporting queries. To make it unlikely for
them to be promoted to the primary instance, the following example changes their promotion tier
to the lowest priority. This example specifies the --manage-master-user-password option to
generate the master user password and manage it in Secrets Manager. For more information, see
Password management with Amazon Aurora and AWS Secrets Manager. Alternatively, you can use
the --master-password option to specify and manage the password yourself.

for i in 09 10
do
 aws rds modify-db-instance --db-instance-identifier custom-endpoint-demo-${i} \
 --region $REGION --promotion-tier 15
done

Suppose that you want to use the two "bigger" instances only for the most resource-intensive
queries. To do this, you can first create a custom read-only endpoint. Then you can add a static list
of members so that the endpoint connects only to those DB instances. Those instances are already
in the lowest promotion tier, making it unlikely either of them will be promoted to the primary
instance. If one of them is promoted to the primary instance, it becomes unreachable through this
endpoint because we specified the READER type instead of the ANY type.

The following example demonstrates the create and modify endpoint commands, and sample
JSON output showing the initial and modified state of the custom endpoint.

$ aws rds create-db-cluster-endpoint --region $REGION \
 --db-cluster-identifier custom-endpoint-demo \
 --db-cluster-endpoint-identifier big-instances --endpoint-type reader
{
 "EndpointType": "CUSTOM",
 "Endpoint": "big-instances.cluster-custom-c7tj4example.ca-
central-1.rds.amazonaws.com",
 "DBClusterEndpointIdentifier": "big-instances",
 "DBClusterIdentifier": "custom-endpoint-demo",
 "StaticMembers": [],
 "DBClusterEndpointResourceIdentifier": "cluster-endpoint-
W7PE3TLLFNSHXQKFU6J6NV5FHU",
 "ExcludedMembers": [],
 "CustomEndpointType": "READER",
 "Status": "creating",
 "DBClusterEndpointArn": "arn:aws:rds:ca-central-1:111122223333:cluster-
endpoint:big-instances"
}

End-to-end AWS CLI example for custom endpoints 119

Amazon Aurora User Guide for Aurora

$ aws rds modify-db-cluster-endpoint --db-cluster-endpoint-identifier big-instances \
 --static-members custom-endpoint-demo-09 custom-endpoint-demo-10 --region $REGION
{
 "EndpointType": "CUSTOM",
 "ExcludedMembers": [],
 "DBClusterEndpointIdentifier": "big-instances",
 "DBClusterEndpointResourceIdentifier": "cluster-endpoint-
W7PE3TLLFNSHXQKFU6J6NV5FHU",
 "CustomEndpointType": "READER",
 "DBClusterEndpointArn": "arn:aws:rds:ca-central-1:111122223333:cluster-
endpoint:big-instances",
 "StaticMembers": [
 "custom-endpoint-demo-10",
 "custom-endpoint-demo-09"
],
 "Status": "modifying",
 "Endpoint": "big-instances.cluster-custom-c7tj4example.ca-
central-1.rds.amazonaws.com",
 "DBClusterIdentifier": "custom-endpoint-demo"
}

The default READER endpoint for the cluster can connect to either the "small" or "big" DB instances,
making it impractical to predict query performance and scalability when the cluster becomes
busy. To divide the workload cleanly between the sets of DB instances, you can ignore the default
READER endpoint and create a second custom endpoint that connects to all other DB instances.
The following example does so by creating a custom endpoint and then adding an exclusion list.
Any other DB instances you add to the cluster later will be added to this endpoint automatically.
The ANY type means that this endpoint is associated with eight instances in total: the primary
instance and another seven Aurora Replicas. If the example used the READER type, the custom
endpoint would only be associated with the seven Aurora Replicas.

$ aws rds create-db-cluster-endpoint --region $REGION --db-cluster-identifier custom-
endpoint-demo \
 --db-cluster-endpoint-identifier small-instances --endpoint-type any
{
 "Status": "creating",
 "DBClusterEndpointIdentifier": "small-instances",
 "CustomEndpointType": "ANY",
 "EndpointType": "CUSTOM",
 "Endpoint": "small-instances.cluster-custom-c7tj4example.ca-
central-1.rds.amazonaws.com",

End-to-end AWS CLI example for custom endpoints 120

Amazon Aurora User Guide for Aurora

 "StaticMembers": [],
 "ExcludedMembers": [],
 "DBClusterIdentifier": "custom-endpoint-demo",
 "DBClusterEndpointArn": "arn:aws:rds:ca-central-1:111122223333:cluster-
endpoint:small-instances",
 "DBClusterEndpointResourceIdentifier": "cluster-
endpoint-6RDDXQOC3AKKZT2PRD7ST37BMY"
}

$ aws rds modify-db-cluster-endpoint --db-cluster-endpoint-identifier small-instances \
 --excluded-members custom-endpoint-demo-09 custom-endpoint-demo-10 --region $REGION
{
 "DBClusterEndpointIdentifier": "small-instances",
 "DBClusterEndpointArn": "arn:aws:rds:ca-central-1:c7tj4example:cluster-
endpoint:small-instances",
 "DBClusterEndpointResourceIdentifier": "cluster-
endpoint-6RDDXQOC3AKKZT2PRD7ST37BMY",
 "CustomEndpointType": "ANY",
 "Endpoint": "small-instances.cluster-custom-c7tj4example.ca-
central-1.rds.amazonaws.com",
 "EndpointType": "CUSTOM",
 "ExcludedMembers": [
 "custom-endpoint-demo-09",
 "custom-endpoint-demo-10"
],
 "StaticMembers": [],
 "DBClusterIdentifier": "custom-endpoint-demo",
 "Status": "modifying"
}

The following example checks the state of the endpoints for this cluster. The cluster still has
its original cluster endpoint, with EndPointType of WRITER, which you would still use for
administration, ETL, and other write operations. It still has its original READER endpoint, which you
wouldn't use because each connection to it might be directed to a "small" or "big" DB instance. The
custom endpoints make this behavior predictable, with connections guaranteed to use one of the
"small" or "big" DB instances based on the endpoint you specify.

$ aws rds describe-db-cluster-endpoints --region $REGION
{
 "DBClusterEndpoints": [
 {
 "EndpointType": "WRITER",

End-to-end AWS CLI example for custom endpoints 121

Amazon Aurora User Guide for Aurora

 "Endpoint": "custom-endpoint-demo.cluster-c7tj4example.ca-
central-1.rds.amazonaws.com",
 "Status": "available",
 "DBClusterIdentifier": "custom-endpoint-demo"
 },
 {
 "EndpointType": "READER",
 "Endpoint": "custom-endpoint-demo.cluster-ro-c7tj4example.ca-
central-1.rds.amazonaws.com",
 "Status": "available",
 "DBClusterIdentifier": "custom-endpoint-demo"
 },
 {
 "Endpoint": "small-instances.cluster-custom-c7tj4example.ca-
central-1.rds.amazonaws.com",
 "CustomEndpointType": "ANY",
 "DBClusterEndpointArn": "arn:aws:rds:ca-central-1:111122223333:cluster-
endpoint:small-instances",
 "ExcludedMembers": [
 "custom-endpoint-demo-09",
 "custom-endpoint-demo-10"
],
 "DBClusterEndpointResourceIdentifier": "cluster-
endpoint-6RDDXQOC3AKKZT2PRD7ST37BMY",
 "DBClusterIdentifier": "custom-endpoint-demo",
 "StaticMembers": [],
 "EndpointType": "CUSTOM",
 "DBClusterEndpointIdentifier": "small-instances",
 "Status": "modifying"
 },
 {
 "Endpoint": "big-instances.cluster-custom-c7tj4example.ca-
central-1.rds.amazonaws.com",
 "CustomEndpointType": "READER",
 "DBClusterEndpointArn": "arn:aws:rds:ca-central-1:111122223333:cluster-
endpoint:big-instances",
 "ExcludedMembers": [],
 "DBClusterEndpointResourceIdentifier": "cluster-endpoint-
W7PE3TLLFNSHXQKFU6J6NV5FHU",
 "DBClusterIdentifier": "custom-endpoint-demo",
 "StaticMembers": [
 "custom-endpoint-demo-10",
 "custom-endpoint-demo-09"
],

End-to-end AWS CLI example for custom endpoints 122

Amazon Aurora User Guide for Aurora

 "EndpointType": "CUSTOM",
 "DBClusterEndpointIdentifier": "big-instances",
 "Status": "available"
 }
]
}

The final examples demonstrate how successive database connections to the custom endpoints
connect to the various DB instances in the Aurora cluster. The small-instances endpoint always
connects to the db.r4.4xlarge DB instances, which are the lower-numbered hosts in this cluster.

$ mysql -h small-instances.cluster-custom-c7tj4example.ca-central-1.rds.amazonaws.com -
u $MYUSER -p
mysql> select @@aurora_server_id;
+-------------------------+
| @@aurora_server_id |
+-------------------------+
| custom-endpoint-demo-02 |
+-------------------------+

$ mysql -h small-instances.cluster-custom-c7tj4example.ca-central-1.rds.amazonaws.com -
u $MYUSER -p
mysql> select @@aurora_server_id;
+-------------------------+
| @@aurora_server_id |
+-------------------------+
| custom-endpoint-demo-07 |
+-------------------------+

$ mysql -h small-instances.cluster-custom-c7tj4example.ca-central-1.rds.amazonaws.com -
u $MYUSER -p
mysql> select @@aurora_server_id;
+-------------------------+
| @@aurora_server_id |
+-------------------------+
| custom-endpoint-demo-01 |
+-------------------------+

The big-instances endpoint always connects to the db.r4.16xlarge DB instances, which are
the two highest-numbered hosts in this cluster.

End-to-end AWS CLI example for custom endpoints 123

Amazon Aurora User Guide for Aurora

$ mysql -h big-instances.cluster-custom-c7tj4example.ca-central-1.rds.amazonaws.com -u
 $MYUSER -p
mysql> select @@aurora_server_id;
+-------------------------+
| @@aurora_server_id |
+-------------------------+
| custom-endpoint-demo-10 |
+-------------------------+

$ mysql -h big-instances.cluster-custom-c7tj4example.ca-central-1.rds.amazonaws.com -u
 $MYUSER -p
mysql> select @@aurora_server_id;
+-------------------------+
| @@aurora_server_id |
+-------------------------+
| custom-endpoint-demo-09 |
+-------------------------+

Using the instance endpoints

Each DB instance in an Aurora cluster has its own built-in instance endpoint, whose name and
other attributes are managed by Aurora. You can't create, delete, or modify this kind of endpoint.
You might be familiar with instance endpoints if you use Amazon RDS. However, with Aurora you
typically use the writer and reader endpoints more often than the instance endpoints.

In day-to-day Aurora operations, the main way that you use instance endpoints is to diagnose
capacity or performance issues that affect one specific instance in an Aurora cluster. While
connected to a specific instance, you can examine its status variables, metrics, and so on. Doing this
can help you determine what's happening for that instance that's different from what's happening
for other instances in the cluster.

In advanced use cases, you might configure some DB instances differently than others. In this case,
use the instance endpoint to connect directly to an instance that is smaller, larger, or otherwise
has different characteristics than the others. Also, set up failover priority so that this special DB
instance is the last choice to take over as the primary instance. We recommend that you use
custom endpoints instead of the instance endpoint in such cases. Doing so simplifies connection
management and high availability as you add more DB instances to your cluster.

Using the instance endpoints 124

Amazon Aurora User Guide for Aurora

How Aurora endpoints work with high availability

For clusters where high availability is important, use the writer endpoint for read/write or general-
purpose connections and the reader endpoint for read-only connections. The writer and reader
endpoints manage DB instance failover better than instance endpoints do. Unlike the instance
endpoints, the writer and reader endpoints automatically change which DB instance they connect
to if a DB instance in your cluster becomes unavailable.

If the primary DB instance of a DB cluster fails, Aurora automatically fails over to a new primary DB
instance. It does so by either promoting an existing Aurora Replica to a new primary DB instance
or creating a new primary DB instance. If a failover occurs, you can use the writer endpoint to
reconnect to the newly promoted or created primary DB instance, or use the reader endpoint to
reconnect to one of the Aurora Replicas in the DB cluster. During a failover, the reader endpoint
might direct connections to the new primary DB instance of a DB cluster for a short time after an
Aurora Replica is promoted to the new primary DB instance.

If you design your own application logic to manage connections to instance endpoints, you can
manually or programmatically discover the resulting set of available DB instances in the DB cluster.
Use the describe-db-clusters AWS CLI command or DescribeDBClusters RDS API operation to
find the DB cluster and reader endpoints, DB instances, whether DB instances are readers, and
their promotion tiers. You can then confirm their instance classes after failover and connect to an
appropriate instance endpoint.

For more information about failovers, see Fault tolerance for an Aurora DB cluster.

Endpoints and high availability 125

https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-clusters.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DescribeDBClusters.html

Amazon Aurora User Guide for Aurora

Aurora DB instance classes

The DB instance class determines the computation and memory capacity of an Amazon Aurora
DB instance. The DB instance class that you need depends on your processing power and memory
requirements.

A DB instance class consists of both the DB instance class type and the size. For example, db.r6g
is a memory-optimized DB instance class type powered by AWS Graviton2 processors. Within the
db.r6g instance class type, db.r6g.2xlarge is a DB instance class. The size of this class is 2xlarge.

For more information about instance class pricing, see Amazon RDS pricing.

Topics

• DB instance class types

• Supported DB engines for DB instance classes

• Determining DB instance class support in AWS Regions

• Hardware specifications for DB instance classes for Aurora

DB instance class types

Amazon Aurora supports DB instance classes for the following use cases:

• Aurora Serverless v2

• Memory-optimized

• Burstable-performance

• Optimized Reads

For more information about Amazon EC2 instance types, see Instance types in the Amazon EC2
documentation.

Aurora Serverless v2 instance class type

The following Aurora Serverless v2 type is available:

• db.serverless – A special DB instance class type used by Aurora Serverless v2. Aurora adjusts
the compute, memory, and network resources dynamically as the workload changes. For usage
details, see Using Aurora Serverless v2.

DB instance classes 126

https://aws.amazon.com/rds/pricing/
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instance-types.html

Amazon Aurora User Guide for Aurora

Memory-optimized instance class type

The memory-optimized X family supports the following instance classes:

• db.x2g – Instance classes optimized for memory-intensive applications and powered by AWS
Graviton2 processors. These instance classes offer low cost per GiB of memory.

You can modify a DB instance to use one of the DB instance classes powered by AWS Graviton2
processors. To do so, complete the same steps as with any other DB instance modification.

The memory-optimized R family supports the following instance class types:

• db.r7g – Instance classes powered by AWS Graviton3 processors. These instance classes are ideal
for running memory-intensive workloads.

You can modify a DB instance to use one of the DB instance classes powered by AWS Graviton3
processors. To do so, complete the same steps as with any other DB instance modification.

• db.r6g – Instance classes powered by AWS Graviton2 processors. These instance classes are ideal
for running memory-intensive workloads.

You can modify a DB instance to use one of the DB instance classes powered by AWS Graviton2
processors. To do so, complete the same steps as with any other DB instance modification.

• db.r6i – Instance classes powered by 3rd Generation Intel Xeon Scalable processors. These
instance classes are SAP-Certified and are an ideal fit for memory-intensive workloads in open-
source databases such as MySQL and PostgreSQL.

• db.r4 – These instance classes are supported only for Aurora PostgreSQL 11 and 12 versions. For
all Aurora PostgreSQL DB clusters that use db.r4 DB instance classes, we recommend that you
upgrade to a higher generation instance class as soon as possible.

The db.r4 instance classes aren't available for the Aurora I/O-Optimized cluster storage
configuration.

• db.r3 – Instance classes that provide memory optimization.

Amazon Aurora has started the end-of-life process for db.r3 DB instance classes using the
following schedule, which includes upgrade recommendations. For all Aurora MySQL DB clusters
that use db.r3 DB instance classes, we recommend that you upgrade to a db.r5 or higher DB
instance class as soon as possible.

DB instance class types 127

Amazon Aurora User Guide for Aurora

Action or recommendation Dates

You can no longer create Aurora MySQL DB
clusters that use db.r3 DB instance classes.

Now

Amazon Aurora started automatic upgrades of
Aurora MySQL DB clusters that use db.r3 DB
instance classes to equivalent db.r5 or higher DB
instance classes.

January 31, 2023

Burstable-performance instance class types

The following burstable-performance DB instance class types are available:

• db.t4g – General-purpose instance classes powered by Arm-based AWS Graviton2 processors.
These instance classes deliver better price performance than previous burstable-performance
DB instance classes for a broad set of burstable general-purpose workloads. Amazon RDS
db.t4g instances are configured for Unlimited mode. This means that they can burst beyond the
baseline over a 24-hour window for an additional charge.

You can modify a DB instance to use one of the DB instance classes powered by AWS Graviton2
processors. To do so, complete the same steps as with any other DB instance modification.

• db.t3 – Instance classes that provide a baseline performance level, with the ability to burst to
full CPU usage. The db.t3 instances are configured for Unlimited mode. These instance classes
provide more computing capacity than the previous db.t2 instance classes. They are powered
by the AWS Nitro System, a combination of dedicated hardware and lightweight hypervisor. We
recommend using these instance classes only for development and test servers, or other non-
production servers.

• db.t2 – Instance classes that provide a baseline performance level, with the ability to burst to full
CPU usage. The db.t2 instances are configured for Unlimited mode. We recommend using these
instance classes only for development and test servers, or other non-production servers.

The db.t2 instance classes aren't available for the Aurora I/O-Optimized cluster storage
configuration.

DB instance class types 128

Amazon Aurora User Guide for Aurora

Note

We recommend using the T DB instance classes only for development, test, or other
nonproduction servers. For more detailed recommendations for the T instance classes, see
Using T instance classes for development and testing.

For DB instance class hardware specifications, see Hardware specifications for DB instance classes
for Aurora.

Optimized Reads instance class type

The following Optimized Reads instance class types are available:

• db.r6gd – Instance classes powered by AWS Graviton2 processors. These instance classes are
ideal for running memory-intensive workloads and offer local NVMe-based SSD block-level
storage for applications that need high-speed, low latency local storage.

• db.r6id – Instance classes powered by 3rd Generation Intel Xeon Scalable processors. These
instance classes are SAP-Certified and are an ideal fit for memory-intensive workloads. They
offer a maximum memory of 1 TiB and up to 7.6 TB of direct-attached NVMe-based SSD storage.

Supported DB engines for DB instance classes

The following tables show the supported DB instance classes for the Amazon Aurora DB engines.

db.serverless – Aurora Serverless v2 instance class with automatic capacity scaling

Instance class Aurora MySQL Aurora PostgreSQL

db.serverless See Supported Regions and
Aurora DB engines for Aurora
Serverless v2.

See Supported Regions and Aurora
DB engines for Aurora Serverless v2.

Supported DB engines 129

Amazon Aurora User Guide for Aurora

db.x2g – memory-optimized instance classes powered by AWS Graviton2 processors

Instance class Aurora MySQL Aurora PostgreSQL

db.x2g.16xlarge All currently available versions 15.2 and higher, 14.3 and higher,
13.3 and higher, 12.8 and higher,
11.9, 11.12 and higher

db.x2g.12xlarge All currently available versions 15.2 and higher, 14.3 and higher,
13.3 and higher, 12.8 and higher,
11.9, 11.12 and higher

db.x2g.8xlarge All currently available versions 15.2 and higher, 14.3 and higher,
13.3 and higher, 12.8 and higher,
11.9, 11.12 and higher

db.x2g.4xlarge All currently available versions 15.2 and higher, 14.3 and higher,
13.3 and higher, 12.8 and higher,
11.9, 11.12 and higher

db.x2g.2xlarge All currently available versions 15.2 and higher, 14.3 and higher,
13.3 and higher, 12.8 and higher,
11.9, 11.12 and higher

db.x2g.xlarge All currently available versions 15.2 and higher, 14.3 and higher,
13.3 and higher, 12.8 and higher,
11.9, 11.12 and higher

db.x2g.large All currently available versions 15.2 and higher, 14.3 and higher,
13.3 and higher, 12.8 and higher,
11.9, 11.12 and higher

db.r6gd – Optimized Reads instance classes powered by AWS Graviton2 processors

Instance class Aurora MySQL Aurora PostgreSQL

db.r6gd.1
6xlarge

3.07.1 and higher 15.4 and higher, 14.9 and higher

Supported DB engines 130

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraMySQLReleaseNotes/AuroraMySQL.release-calendars.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraMySQLReleaseNotes/AuroraMySQL.release-calendars.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraMySQLReleaseNotes/AuroraMySQL.release-calendars.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraMySQLReleaseNotes/AuroraMySQL.release-calendars.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraMySQLReleaseNotes/AuroraMySQL.release-calendars.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraMySQLReleaseNotes/AuroraMySQL.release-calendars.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraMySQLReleaseNotes/AuroraMySQL.release-calendars.html

Amazon Aurora User Guide for Aurora

Instance class Aurora MySQL Aurora PostgreSQL

db.r6gd.1
2xlarge

3.07.1 and higher 15.4 and higher, 14.9 and higher

db.r6gd.8xlarge 3.07.1 and higher 15.4 and higher, 14.9 and higher

db.r6gd.4xlarge 3.07.1 and higher 15.4 and higher, 14.9 and higher

db.r6gd.2xlarge 3.07.1 and higher 15.4 and higher, 14.9 and higher

db.r6gd.xlarge 3.07.1 and higher 15.4 and higher, 14.9 and higher

db.r6id – Optimized Reads instance classes

Instance class Aurora MySQL Aurora PostgreSQL

db.r6id.32xlarge 3.07.1 and higher 15.4 and higher, 14.9 and higher

db.r6id.24xlarge 3.07.1 and higher 15.4 and higher, 14.9 and higher

db.r7g – memory-optimized instance classes powered by AWS Graviton3 processors

Instance class Aurora MySQL Aurora PostgreSQL

db.r7g.16xlarge 2.12.0 and higher, 3.03.1 and
higher

15.2 and higher, 14.7 and higher,
13.10 and higher

db.r7g.12xlarge 2.12.0 and higher, 3.03.1 and
higher

15.2 and higher, 14.7 and higher,
13.10 and higher

db.r7g.8xlarge 2.12.0 and higher, 3.03.1 and
higher

15.2 and higher, 14.7 and higher,
13.10 and higher

db.r7g.4xlarge 2.12.0 and higher, 3.03.1 and
higher

15.2 and higher, 14.7 and higher,
13.10 and higher

Supported DB engines 131

Amazon Aurora User Guide for Aurora

Instance class Aurora MySQL Aurora PostgreSQL

db.r7g.2xlarge 2.12.0 and higher, 3.03.1 and
higher

15.2 and higher, 14.7 and higher,
13.10 and higher

db.r7g.xlarge 2.12.0 and higher, 3.03.1 and
higher

15.2 and higher, 14.7 and higher,
13.10 and higher

db.r7g.large 2.12.0 and higher, 3.03.1 and
higher

15.2 and higher, 14.7 and higher,
13.10 and higher

db.r6g – memory-optimized instance classes powered by AWS Graviton2 processors

Instance class Aurora MySQL Aurora PostgreSQL

db.r6g.16xlarge All currently available versions 15.2 and higher, 14.3 and higher,
13.3 and higher, 12.8 and higher,
11.9, 11.12 and higher

db.r6g.12xlarge All currently available versions 15.2 and higher, 14.3 and higher,
13.3 and higher, 12.8 and higher,
11.9, 11.12 and higher

db.r6g.8xlarge All currently available versions 15.2 and higher, 14.3 and higher,
13.3 and higher, 12.8 and higher,
11.9, 11.12 and higher

db.r6g.4xlarge All currently available versions 15.2 and higher, 14.3 and higher,
13.3 and higher, 12.8 and higher,
11.9, 11.12 and higher

db.r6g.2xlarge All currently available versions 15.2 and higher, 14.3 and higher,
13.3 and higher, 12.8 and higher,
11.9, 11.12 and higher

db.r6g.xlarge All currently available versions 15.2 and higher, 14.3 and higher,
13.3 and higher, 12.8 and higher,
11.9, 11.12 and higher

Supported DB engines 132

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraMySQLReleaseNotes/AuroraMySQL.release-calendars.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraMySQLReleaseNotes/AuroraMySQL.release-calendars.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraMySQLReleaseNotes/AuroraMySQL.release-calendars.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraMySQLReleaseNotes/AuroraMySQL.release-calendars.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraMySQLReleaseNotes/AuroraMySQL.release-calendars.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraMySQLReleaseNotes/AuroraMySQL.release-calendars.html

Amazon Aurora User Guide for Aurora

Instance class Aurora MySQL Aurora PostgreSQL

db.r6g.large All currently available versions 15.2 and higher, 14.3 and higher,
13.3 and higher, 12.8 and higher,
11.9, 11.12 and higher

db.r6i – memory-optimized instance classes

Instance class Aurora MySQL Aurora PostgreSQL

db.r6i.32xlarge All currently available versions 15.2 and higher, 14.3 and higher,
13.5 and higher, 12.9 and higher

db.r6i.24xlarge All currently available versions 15.2 and higher, 14.3 and higher,
13.5 and higher, 12.9 and higher

db.r6i.16xlarge All currently available versions 15.2 and higher, 14.3 and higher,
13.5 and higher, 12.9 and higher

db.r6i.12xlarge All currently available versions 15.2 and higher, 14.3 and higher,
13.5 and higher, 12.9 and higher

db.r6i.8xlarge All currently available versions 15.2 and higher, 14.3 and higher,
13.5 and higher, 12.9 and higher

db.r6i.4xlarge All currently available versions 15.2 and higher, 14.3 and higher,
13.5 and higher, 12.9 and higher

db.r6i.2xlarge All currently available versions 15.2 and higher, 14.3 and higher,
13.5 and higher, 12.9 and higher

db.r6i.xlarge All currently available versions 15.2 and higher, 14.3 and higher,
13.5 and higher, 12.9 and higher

db.r6i.large All currently available versions 15.2 and higher, 14.3 and higher,
13.5 and higher, 12.9 and higher

Supported DB engines 133

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraMySQLReleaseNotes/AuroraMySQL.release-calendars.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraMySQLReleaseNotes/AuroraMySQL.release-calendars.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraMySQLReleaseNotes/AuroraMySQL.release-calendars.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraMySQLReleaseNotes/AuroraMySQL.release-calendars.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraMySQLReleaseNotes/AuroraMySQL.release-calendars.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraMySQLReleaseNotes/AuroraMySQL.release-calendars.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraMySQLReleaseNotes/AuroraMySQL.release-calendars.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraMySQLReleaseNotes/AuroraMySQL.release-calendars.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraMySQLReleaseNotes/AuroraMySQL.release-calendars.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraMySQLReleaseNotes/AuroraMySQL.release-calendars.html

Amazon Aurora User Guide for Aurora

db.r5 – memory-optimized instance classes

Instance class Aurora MySQL Aurora PostgreSQL

db.r5.24xlarge All currently available versions All currently available versions

db.r5.16xlarge All currently available versions All currently available versions

db.r5.12xlarge All currently available versions All currently available versions

db.r5.8xlarge All currently available versions All currently available versions

db.r5.4xlarge All currently available versions All currently available versions

db.r5.2xlarge All currently available versions All currently available versions

db.r5.xlarge All currently available versions All currently available versions

db.r5.large All currently available versions All currently available versions

db.r4 – memory-optimized instance classes

Instance class Aurora MySQL Aurora PostgreSQL

db.r4.16xlarge All 2.x versions; not supported in
3.x versions

No

db.r4.8xlarge All 2.x versions; not supported in
3.x versions

No

db.r4.4xlarge All 2.x versions; not supported in
3.x versions

No

db.r4.2xlarge All 2.x versions; not supported in
3.x versions

No

db.r4.xlarge All 2.x versions; not supported in
3.x versions

No

Supported DB engines 134

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraMySQLReleaseNotes/AuroraMySQL.release-calendars.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraMySQLReleaseNotes/AuroraMySQL.release-calendars.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraMySQLReleaseNotes/AuroraMySQL.release-calendars.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraMySQLReleaseNotes/AuroraMySQL.release-calendars.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraMySQLReleaseNotes/AuroraMySQL.release-calendars.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraMySQLReleaseNotes/AuroraMySQL.release-calendars.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraMySQLReleaseNotes/AuroraMySQL.release-calendars.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraMySQLReleaseNotes/AuroraMySQL.release-calendars.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html

Amazon Aurora User Guide for Aurora

Instance class Aurora MySQL Aurora PostgreSQL

db.r4.large All 2.x versions; not supported in
3.x versions

No

db.t4g – burstable-performance instance classes powered by AWS Graviton2 processors

Instance class Aurora MySQL Aurora PostgreSQL

db.t4g.2xlarge No No

db.t4g.xlarge No No

db.t4g.large All currently available versions 15.2 and higher, 14.3 and higher,
13.3 and higher, 12.7 and higher,
11.12 and higher

db.t4g.medium All currently available versions 15.2 and higher, 14.3 and higher,
13.3 and higher, 12.7 and higher,
11.12 and higher

db.t4g.small No No

db.t3 – burstable-performance instance classes

Instance class Aurora MySQL Aurora PostgreSQL

db.t3.2xlarge No No

db.t3.xlarge No No

db.t3.large All currently available versions 15.2 and higher, 14.3 and higher,
13.3 and higher, 12.7 and higher,
11.12 and higher

Supported DB engines 135

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraMySQLReleaseNotes/AuroraMySQL.release-calendars.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraMySQLReleaseNotes/AuroraMySQL.release-calendars.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraMySQLReleaseNotes/AuroraMySQL.release-calendars.html

Amazon Aurora User Guide for Aurora

Instance class Aurora MySQL Aurora PostgreSQL

db.t3.medium All currently available versions 15.2 and higher, 14.3 and higher,
13.3 and higher, 12.7 and higher,
11.12 and higher

db.t3.small All 2.x versions; not supported in
3.x versions

No

db.t3.micro No No

db.t2 – burstable-performance instance classes

Instance class Aurora MySQL Aurora PostgreSQL

db.t2.medium All 2.x versions; not supported in
3.x versions

No

db.t2.small All 2.x versions; not supported in
3.x versions

No

Determining DB instance class support in AWS Regions

To determine the DB instance classes supported by each DB engine in a specific AWS Region, you
can take one of several approaches. You can use the AWS Management Console, the Amazon RDS
Pricing page, or the describe-orderable-db-instance-options AWS CLI command.

Note

When you perform operations with the AWS Management Console, it automatically shows
the supported DB instance classes for a specific DB engine, DB engine version, and AWS
Region. Examples of the operations that you can perform include creating and modifying a
DB instance.

Contents

• Using the Amazon RDS pricing page to determine DB instance class support in AWS Regions

Determining DB instance class support in AWS Regions 136

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraMySQLReleaseNotes/AuroraMySQL.release-calendars.html
https://aws.amazon.com/rds/pricing/
https://aws.amazon.com/rds/pricing/
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-orderable-db-instance-options.html

Amazon Aurora User Guide for Aurora

• Using the AWS CLI to determine DB instance class support in AWS Regions

• Listing the DB instance classes that are supported by a specific DB engine version in an AWS
Region

• Listing the DB engine versions that support a specific DB instance class in an AWS Region

Using the Amazon RDS pricing page to determine DB instance class support in
AWS Regions

You can use the Amazon Aurora Pricing page to determine the DB instance classes supported by
each DB engine in a specific AWS Region.

To use the pricing page to determine the DB instance classes supported by each engine in a
Region

1. Go to Amazon Aurora Pricing.

2. Choose an Amazon Aurora engine in the AWS Pricing Calculator section.

3. In Choose a Region, choose an AWS Region.

4. In Cluster Configuration Option, choose a configuration option.

5. Use the section for compatible instances to view the supported DB instance classes.

6. (Optional) Choose other options in the calculator, and then choose Save and view summary or
Save and add service.

Using the AWS CLI to determine DB instance class support in AWS Regions

You can use the AWS CLI to determine which DB instance classes are supported for specific DB
engines and DB engine versions in an AWS Region.

To use the AWS CLI examples following, enter valid values for the DB engine, DB engine version, DB
instance class, and AWS Region. The following table shows the valid DB engine values.

Engine name Engine value in CLI
commands

More information about versions

MySQL 5.7-compa
tible and 8.0-compa
tible Aurora

aurora-mysql Database engine updates for Amazon Aurora
MySQL version 2 and Database engine

Determining DB instance class support in AWS Regions 137

https://aws.amazon.com/rds/pricing/
https://aws.amazon.com/rds/aurora/pricing/
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraMySQLReleaseNotes/AuroraMySQL.Updates.20Updates.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraMySQLReleaseNotes/AuroraMySQL.Updates.20Updates.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraMySQLReleaseNotes/AuroraMySQL.Updates.30Updates.html

Amazon Aurora User Guide for Aurora

Engine name Engine value in CLI
commands

More information about versions

updates for Amazon Aurora MySQL version 3
in the Release Notes for Aurora MySQL

Aurora PostgreSQL aurora-po
stgresql

Release Notes for Aurora PostgreSQL

For information about AWS Region names, see AWS Regions.

The following examples demonstrate how to determine DB instance class support in an AWS
Region using the describe-orderable-db-instance-options AWS CLI command.

Topics

• Listing the DB instance classes that are supported by a specific DB engine version in an AWS
Region

• Listing the DB engine versions that support a specific DB instance class in an AWS Region

Listing the DB instance classes that are supported by a specific DB engine version in an AWS
Region

To list the DB instance classes that are supported by a specific DB engine version in an AWS Region,
run the following command.

For Linux, macOS, or Unix:

aws rds describe-orderable-db-instance-options --engine engine --engine-version version
 \
 --query "OrderableDBInstanceOptions[].
{DBInstanceClass:DBInstanceClass,SupportedEngineModes:SupportedEngineModes[0]}" \
 --output table \
 --region region

For Windows:

aws rds describe-orderable-db-instance-options --engine engine --engine-version version
 ^

Determining DB instance class support in AWS Regions 138

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraMySQLReleaseNotes/AuroraMySQL.Updates.30Updates.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/Welcome.html
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-orderable-db-instance-options.html

Amazon Aurora User Guide for Aurora

 --query "OrderableDBInstanceOptions[].
{DBInstanceClass:DBInstanceClass,SupportedEngineModes:SupportedEngineModes[0]}" ^
 --output table ^
 --region region

The output also shows the engine modes that are supported for each DB instance class.

For example, the following command lists the supported DB instance classes for version 13.6 of the
Aurora PostgreSQL DB engine in US East (N. Virginia).

For Linux, macOS, or Unix:

aws rds describe-orderable-db-instance-options --engine aurora-postgresql --engine-
version 15.3 \
 --query "OrderableDBInstanceOptions[].
{DBInstanceClass:DBInstanceClass,SupportedEngineModes:SupportedEngineModes[0]}" \
 --output table \
 --region us-east-1

For Windows:

aws rds describe-orderable-db-instance-options --engine aurora-postgresql --engine-
version 15.3 ^
 --query "OrderableDBInstanceOptions[].
{DBInstanceClass:DBInstanceClass,SupportedEngineModes:SupportedEngineModes[0]}" ^
 --output table ^
 --region us-east-1

Listing the DB engine versions that support a specific DB instance class in an AWS Region

To list the DB engine versions that support a specific DB instance class in an AWS Region, run the
following command.

For Linux, macOS, or Unix:

aws rds describe-orderable-db-instance-options --engine engine --db-instance-
class DB_instance_class \
 --query "OrderableDBInstanceOptions[].
{EngineVersion:EngineVersion,SupportedEngineModes:SupportedEngineModes[0]}" \
 --output table \
 --region region

Determining DB instance class support in AWS Regions 139

Amazon Aurora User Guide for Aurora

For Windows:

aws rds describe-orderable-db-instance-options --engine engine --db-instance-
class DB_instance_class ^
 --query "OrderableDBInstanceOptions[].
{EngineVersion:EngineVersion,SupportedEngineModes:SupportedEngineModes[0]}" ^
 --output table ^
 --region region

The output also shows the engine modes that are supported for each DB engine version.

For example, the following command lists the DB engine versions of the Aurora PostgreSQL DB
engine that support the db.r5.large DB instance class in US East (N. Virginia).

For Linux, macOS, or Unix:

aws rds describe-orderable-db-instance-options --engine aurora-postgresql --db-
instance-class db.r7g.large \
 --query "OrderableDBInstanceOptions[].
{EngineVersion:EngineVersion,SupportedEngineModes:SupportedEngineModes[0]}" \
 --output table \
 --region us-east-1

For Windows:

aws rds describe-orderable-db-instance-options --engine aurora-postgresql --db-
instance-class db.r7g.large ^
 --query "OrderableDBInstanceOptions[].
{EngineVersion:EngineVersion,SupportedEngineModes:SupportedEngineModes[0]}" ^
 --output table ^
 --region us-east-1

Hardware specifications for DB instance classes for Aurora

In the table in this section, you can find hardware details about the Amazon RDS DB instance
classes for Aurora.

For information about Aurora DB engine support for each DB instance class, see Supported DB
engines for DB instance classes.

Topics

Hardware specifications 140

Amazon Aurora User Guide for Aurora

• Hardware terminology for DB instance classes for Aurora

Hardware terminology for DB instance classes for Aurora

The following terminology is used to describe hardware specifications for DB instance classes:

vCPU

The number of virtual central processing units (CPUs). A virtual CPU is a unit of capacity that
you can use to compare DB instance classes. Instead of purchasing or leasing a particular
processor to use for several months or years, you are renting capacity by the hour. Our goal is to
make a consistent and specific amount of CPU capacity available, within the limits of the actual
underlying hardware.

ECU

The relative measure of the integer processing power of an Amazon EC2 instance. To make
it easy for developers to compare CPU capacity between different instance classes, we have
defined an Amazon EC2 Compute Unit. The amount of CPU that is allocated to a particular
instance is expressed in terms of these EC2 Compute Units. One ECU currently provides CPU
capacity equivalent to a 1.0–1.2 GHz 2007 Opteron or 2007 Xeon processor.

Memory (GiB)

The RAM, in gibibytes, allocated to the DB instance. There is often a consistent ratio between
memory and vCPU. As an example, take the db.r4 instance class, which has a memory to vCPU
ratio similar to the db.r5 instance class. However, for most use cases the db.r5 instance class
provides better, more consistent performance than the db.r4 instance class.

Max. EBS bandwidth (Mbps)

The maximum EBS bandwidth in megabits per second. Divide by 8 to get the expected
throughput in megabytes per second.

Note

This figure refers to I/O bandwidth for local storage within the DB instance. It doesn't
apply to communication with the Aurora cluster volume.

Hardware specifications 141

Amazon Aurora User Guide for Aurora

Network bandwidth

The network speed relative to other DB instance classes.

Instance class vCPU ECU Memory
(GiB)

Max.
bandwidth
(Mbps) of
local storage

Network
performance
(Gbps)

db.x2g – memory-optimized instance classes

db.x2g.16xlarge 64 — 1024 19,000 25

db.x2g.12xlarge 48 — 768 14,250 20

db.x2g.8xlarge 32 — 512 9,500 12

db.x2g.4xlarge 16 — 256 4,750 Up to 10

db.x2g.2xlarge 8 — 128 Up to 4,750 Up to 10

db.x2g.xlarge 4 — 64 Up to 4,750 Up to 10

db.x2g.large 2 — 32 Up to 4,750 Up to 10

db.r7g – memory-optimized instance classes powered by AWS Graviton3 processors

db.r7g.16xlarge 64 — 512 20,000 30

db.r7g.12xlarge 48 — 384 15,000 22.5

db.r7g.8xlarge 32 — 256 10,000 15

db.r7g.4xlarge 16 — 128 Up to 10,000 Up to 15

db.r7g.2xlarge 8 — 64 Up to 10,000 Up to 15

db.r7g.xlarge 4 — 32 Up to 10,000 Up to 12.5

db.r7g.large 2 — 16 Up to 10,000 Up to 12.5

Hardware specifications 142

Amazon Aurora User Guide for Aurora

Instance class vCPU ECU Memory
(GiB)

Max.
bandwidth
(Mbps) of
local storage

Network
performance
(Gbps)

db.r6g – memory-optimized instance classes powered by AWS Graviton2 processors

db.r6g.16xlarge 64 — 512 19,000 25

db.r6g.12xlarge 48 — 384 13,500 20

db.r6g.8xlarge 32 — 256 9,000 12

db.r6g.4xlarge 16 — 128 4,750 Up to 10

db.r6g.2xlarge 8 — 64 Up to 4,750 Up to 10

db.r6g.xlarge 4 — 32 Up to 4,750 Up to 10

db.r6g.large 2 — 16 Up to 4,750 Up to 10

db.r6i – memory-optimized instance classes

db.r6i.32xlarge 128 — 1,024 40,000 50

db.r6i.24xlarge 96 — 768 30,000 37.5

db.r6i.16xlarge 64 — 512 20,000 25

db.r6i.12xlarge 48 — 384 15,000 18.75

db.r6i.8xlarge 32 — 256 10,000 12.5

db.r6i.4xlarge 16 — 128 Up to 10,000 Up to 12.5

db.r6i.2xlarge 8 — 64 Up to 10,000 Up to 12.5

db.r6i.xlarge 4 — 32 Up to 10,000 Up to 12.5

db.r6i.large 2 — 16 Up to 10,000 Up to 12.5

db.r5 – memory-optimized instance classes

Hardware specifications 143

Amazon Aurora User Guide for Aurora

Instance class vCPU ECU Memory
(GiB)

Max.
bandwidth
(Mbps) of
local storage

Network
performance
(Gbps)

db.r5.24xlarge 96 347 768 19,000 25

db.r5.16xlarge 64 264 512 13,600 20

db.r5.12xlarge 48 173 384 9,500 12

db.r5.8xlarge 32 132 256 6,800 10

db.r5.4xlarge 16 71 128 4,750 Up to 10

db.r5.2xlarge 8 38 64 Up to 4,750 Up to 10

db.r5.xlarge 4 19 32 Up to 4,750 Up to 10

db.r5.large 2 10 16 Up to 4,750 Up to 10

db.r4 – memory-optimized instance classes

db.r4.16xlarge 64 195 488 14,000 25

db.r4.8xlarge 32 99 244 7,000 10

db.r4.4xlarge 16 53 122 3,500 Up to 10

db.r4.2xlarge 8 27 61 1,700 Up to 10

db.r4.xlarge 4 13.5 30.5 850 Up to 10

db.r4.large 2 7 15.25 425 Up to 10

db.t4g – burstable-performance instance classes

db.t4g.large 2 — 8 Up to 2,780 Up to 5

db.t4g.medium 2 — 4 Up to 2,085 Up to 5

db.t3 – burstable-performance instance classes

Hardware specifications 144

Amazon Aurora User Guide for Aurora

Instance class vCPU ECU Memory
(GiB)

Max.
bandwidth
(Mbps) of
local storage

Network
performance
(Gbps)

db.t3.large 2 Variable 8 Up to 2,048 Up to 5

db.t3.medium 2 Variable 4 Up to 1,536 Up to 5

db.t3.small 2 Variable 2 Up to 1,536 Up to 5

db.t2 – burstable-performance instance classes

db.t2.medium 2 Variable 4 — Moderate

db.t2.small 1 Variable 2 — Low

Amazon Aurora storage and reliability

Following, you can learn about the Aurora storage subsystem. Aurora uses a distributed and shared
storage architecture that is an important factor in performance, scalability, and reliability for
Aurora clusters.

Topics

• Overview of Amazon Aurora storage

• What the cluster volume contains

• Storage configurations for Amazon Aurora DB clusters

• How Aurora storage automatically resizes

• How Aurora data storage is billed

• Amazon Aurora reliability

Overview of Amazon Aurora storage

Aurora data is stored in the cluster volume, which is a single, virtual volume that uses solid state
drives (SSDs). A cluster volume consists of copies of the data across three Availability Zones in a
single AWS Region. Because the data is automatically replicated across Availability Zones, your data

Aurora storage and reliability 145

Amazon Aurora User Guide for Aurora

is highly durable with less possibility of data loss. This replication also ensures that your database
is more available during a failover. It does so because the data copies already exist in the other
Availability Zones and continue to serve data requests to the DB instances in your DB cluster. The
amount of replication is independent of the number of DB instances in your cluster.

Aurora uses separate local storage for nonpersistent, temporary files. This includes files that are
used for such purposes as sorting large data sets during query processing, and building indexes. For
more information, see Temporary storage limits for Aurora MySQL and Temporary storage limits
for Aurora PostgreSQL.

What the cluster volume contains

The Aurora cluster volume contains all your user data, schema objects, and internal metadata such
as the system tables and the binary log. For example, Aurora stores all the tables, indexes, binary
large objects (BLOBs), stored procedures, and so on for an Aurora cluster in the cluster volume.

The Aurora shared storage architecture makes your data independent from the DB instances in the
cluster. For example, you can add a DB instance quickly because Aurora doesn't make a new copy
of the table data. Instead, the DB instance connects to the shared volume that already contains all
your data. You can remove a DB instance from a cluster without removing any of the underlying
data from the cluster. Only when you delete the entire cluster does Aurora remove the data.

Storage configurations for Amazon Aurora DB clusters

Amazon Aurora has two DB cluster storage configurations:

• Aurora I/O-Optimized – Improved price performance and predictability for I/O-intensive
applications. You pay only for the usage and storage of your DB clusters, with no additional
charges for read and write I/O operations.

Aurora I/O-Optimized is the best choice when your I/O spending is 25% or more of your total
Aurora database spending.

You can choose Aurora I/O-Optimized when you create or modify a DB cluster with a DB engine
version that supports the Aurora I/O-Optimized cluster configuration. You can switch from
Aurora I/O-Optimized to Aurora Standard at any time.

• Aurora Standard – Cost-effective pricing for many applications with moderate I/O usage. In
addition to the usage and storage of your DB clusters, you also pay a standard rate per 1 million
requests for I/O operations.

Cluster volume contents 146

Amazon Aurora User Guide for Aurora

Aurora Standard is the best choice when your I/O spending is less than 25% of your total Aurora
database spending.

You can switch from Aurora Standard to Aurora I/O-Optimized once every 30 days. There's no
downtime when you switch from Aurora Standard to Aurora I/O-Optimized, or from Aurora I/O-
Optimized to Aurora Standard.

For information on AWS Region and version support, see Supported Regions and Aurora DB
engines for cluster storage configurations.

For more information on pricing for Amazon Aurora storage configurations, see Amazon Aurora
pricing.

For information on choosing the storage configuration when creating a DB cluster, see Creating a
DB cluster. For information on modifying the storage configuration for a DB cluster, see Settings
for Amazon Aurora.

How Aurora storage automatically resizes

Aurora cluster volumes automatically grow as the amount of data in your database increases. The
maximum size for an Aurora cluster volume is 128 tebibytes (TiB) or 64 TiB, depending on the DB
engine version. For details about the maximum size for a specific version, see Amazon Aurora size
limits. This automatic storage scaling is combined with a high-performance and highly distributed
storage subsystem. These make Aurora a good choice for your important enterprise data when
your main objectives are reliability and high availability.

To display the volume status, see Displaying volume status for an Aurora MySQL DB cluster or
Displaying volume status for an Aurora PostgreSQL DB cluster. For ways to balance storage costs
against other priorities, Storage scaling describes how to monitor the Amazon Aurora metrics
AuroraVolumeBytesLeftTotal and VolumeBytesUsed in CloudWatch.

When Aurora data is removed, the space allocated for that data is freed. Examples of removing
data include dropping or truncating a table. This automatic reduction in storage usage helps you to
minimize storage charges.

Note

The storage limits and dynamic resizing behavior discussed here apply to persistent tables
and other data stored in the cluster volume.

How storage resizes 147

https://aws.amazon.com/rds/aurora/pricing/
https://aws.amazon.com/rds/aurora/pricing/

Amazon Aurora User Guide for Aurora

For Aurora PostgreSQL, temporary table data is stored in the local DB instance.
For Aurora MySQL version 2, temporary table data is stored by default in the cluster
volume for writer instances and in local storage for reader instances. For more information,
see Storage engine for on-disk temporary tables.
For Aurora MySQL version 3, temporary table data is stored in the local DB instance or in
the cluster volume. For more information, see New temporary table behavior in Aurora
MySQL version 3.
The maximum size of temporary tables that reside in local storage is limited by the
maximum local storage size of the DB instance. The local storage size depends on the
instance class that you use. For more information, see Temporary storage limits for Aurora
MySQL and Temporary storage limits for Aurora PostgreSQL.

Some storage features, such as the maximum size of a cluster volume and automatic resizing when
data is removed, depend on the Aurora version of your cluster. For more information, see Storage
scaling. You can also learn how to avoid storage issues and how to monitor the allocated storage
and free space in your cluster.

How Aurora data storage is billed

Even though an Aurora cluster volume can grow up to 128 tebibytes (TiB), you are only charged for
the space that you use in an Aurora cluster volume. In earlier Aurora versions, the cluster volume
could reuse space that was freed up when you removed data, but the allocated storage space
would never decrease. Now when Aurora data is removed, such as by dropping a table or database,
the overall allocated space decreases by a comparable amount. Thus, you can reduce storage
charges by dropping tables, indexes, databases, and so on that you no longer need.

Tip

For earlier versions without the dynamic resizing feature, resetting the storage usage for
a cluster involved doing a logical dump and restoring to a new cluster. That operation can
take a long time for a substantial volume of data. If you encounter this situation, consider
upgrading your cluster to a version that supports dynamic volume resizing.

For information about which Aurora versions support dynamic resizing, and how to minimize
storage charges by monitoring storage usage for your cluster, see Storage scaling. For information

Data billing 148

Amazon Aurora User Guide for Aurora

about Aurora backup storage billing, see Understanding Amazon Aurora backup storage usage. For
pricing information about Aurora data storage, see Amazon RDS for Aurora pricing.

Amazon Aurora reliability

Aurora is designed to be reliable, durable, and fault tolerant. You can architect your Aurora DB
cluster to improve availability by doing things such as adding Aurora Replicas and placing them
in different Availability Zones, and also Aurora includes several automatic features that make it a
reliable database solution.

Topics

• Storage auto-repair

• Survivable page cache

• Recovery from unplanned restarts

Storage auto-repair

Because Aurora maintains multiple copies of your data in three Availability Zones, the chance of
losing data as a result of a disk failure is greatly minimized. Aurora automatically detects failures in
the disk volumes that make up the cluster volume. When a segment of a disk volume fails, Aurora
immediately repairs the segment. When Aurora repairs the disk segment, it uses the data in the
other volumes that make up the cluster volume to ensure that the data in the repaired segment
is current. As a result, Aurora avoids data loss and reduces the need to perform a point-in-time
restore to recover from a disk failure.

Survivable page cache

In Aurora, each DB instance's page cache is managed in a separate process from the database,
which allows the page cache to survive independently of the database. (The page cache is also
called the InnoDB buffer pool on Aurora MySQL and the buffer cache on Aurora PostgreSQL.)

In the unlikely event of a database failure, the page cache remains in memory, which keeps current
data pages "warm" in the page cache when the database restarts. This provides a performance gain
by bypassing the need for the initial queries to execute read I/O operations to "warm up" the page
cache.

For Aurora MySQL, page cache behavior when rebooting and failing over is the following:

Reliability 149

https://aws.amazon.com/rds/aurora/pricing

Amazon Aurora User Guide for Aurora

• Versions earlier than 2.10 – When the writer DB instance reboots, the page cache on the writer
instance survives, but reader DB instances lose their page caches.

• Version 2.10 and higher – You can reboot the writer instance without rebooting the reader
instances.

• If the reader instances don't reboot when the writer instance reboots, they don't lose their
page caches.

• If the reader instances reboot when the writer instance reboots, they do lose their page caches.

• When a reader instance reboots, the page caches on the writer and reader instances both survive.

• When the DB cluster fails over, the effect is similar to when a writer instance reboots. On the
new writer instance (previously the reader instance) the page cache survives, but on the reader
instance (previously the writer instance), the page cache doesn't survive.

For Aurora PostgreSQL, you can use cluster cache management to preserve the page cache of a
designated reader instance that becomes the writer instance after failover. For more information,
see Fast recovery after failover with cluster cache management for Aurora PostgreSQL.

Recovery from unplanned restarts

Aurora is designed to recover from an unplanned restart almost instantaneously and continue to
serve your application data without the binary log. Aurora recovers asynchronously on parallel
threads, so that your database is open and available immediately after an unplanned restart.

For more information, see Fault tolerance for an Aurora DB cluster and Optimizations to reduce
database restart time.

The following are considerations for binary logging and unplanned restart recovery on Aurora
MySQL:

• Enabling binary logging on Aurora directly affects the recovery time after an unplanned restart,
because it forces the DB instance to perform binary log recovery.

• The type of binary logging used affects the size and efficiency of logging. For the same amount
of database activity, some formats log more information than others in the binary logs. The
following settings for the binlog_format parameter result in different amounts of log data:

• ROW – The most log data

• STATEMENT – The least log data

Reliability 150

Amazon Aurora User Guide for Aurora

• MIXED – A moderate amount of log data that usually provides the best combination of data
integrity and performance

The amount of binary log data affects recovery time. If there is more data logged in the binary
logs, the DB instance must process more data during recovery, which increases recovery time.

• To reduce computational overhead and improve recovery times with binary logging, you can use
enhanced binlog. Enhanced binlog improves the database recovery time by up to 99%. For more
information, see Setting up enhanced binlog.

• Aurora does not need the binary logs to replicate data within a DB cluster or to perform point-in-
time restore (PITR).

• If you don't need the binary log for external replication (or an external binary log stream), we
recommend that you set the binlog_format parameter to OFF to disable binary logging. Doing
so reduces recovery time.

For more information about Aurora binary logging and replication, see Replication with Amazon
Aurora. For more information about the implications of different MySQL replication types, see
Advantages and disadvantages of statement-based and row-based replication in the MySQL
documentation.

Amazon Aurora security

Security for Amazon Aurora is managed at three levels:

• To control who can perform Amazon RDS management actions on Aurora DB clusters and DB
instances, you use AWS Identity and Access Management (IAM). When you connect to AWS using
IAM credentials, your AWS account must have IAM policies that grant the permissions required
to perform Amazon RDS management operations. For more information, see Identity and access
management for Amazon Aurora.

If you are using IAM to access the Amazon RDS console, you must first log on to the AWS
Management Console with your user credentials, and then go to the Amazon RDS console at
https://console.aws.amazon.com/rds.

• Aurora DB clusters must be created in a virtual private cloud (VPC) based on the Amazon VPC
service. To control which devices and Amazon EC2 instances can open connections to the
endpoint and port of the DB instance for Aurora DB clusters in a VPC, you use a VPC security
group. You can make these endpoint and port connections using Transport Layer Security (TLS)/

Aurora security 151

https://dev.mysql.com/doc/refman/8.0/en/replication-sbr-rbr.html
https://console.aws.amazon.com/rds

Amazon Aurora User Guide for Aurora

Secure Sockets Layer (SSL). In addition, firewall rules at your company can control whether
devices running at your company can open connections to a DB instance. For more information
on VPCs, see Amazon VPC and Amazon Aurora.

• To authenticate logins and permissions for an Amazon Aurora DB cluster, you can take either of
the following approaches, or a combination of them.

• You can take the same approach as with a stand-alone DB instance of MySQL or PostgreSQL.

Techniques for authenticating logins and permissions for stand-alone DB instances of MySQL
or PostgreSQL, such as using SQL commands or modifying database schema tables, also work
with Aurora. For more information, see Security with Amazon Aurora MySQL or Security with
Amazon Aurora PostgreSQL.

• You can use IAM database authentication.

With IAM database authentication, you authenticate to your Aurora DB cluster by using
a user or IAM role and an authentication token. An authentication token is a unique value
that is generated using the Signature Version 4 signing process. By using IAM database
authentication, you can use the same credentials to control access to your AWS resources and
your databases. For more information, see IAM database authentication.

• You can use Kerberos authentication for Aurora PostgreSQL and Aurora MySQL.

You can use Kerberos to authenticate users when they connect to your Aurora PostgreSQL
and Aurora MySQLDB cluster. In this case, your DB cluster works with AWS Directory Service
for Microsoft Active Directory to enable Kerberos authentication. AWS Directory Service for
Microsoft Active Directory is also called AWS Managed Microsoft AD. Keeping all of your
credentials in the same directory can save you time and effort. You have a centralized place for
storing and managing credentials for multiple DB clusters. Using a directory can also improve
your overall security profile. For more information, see Using Kerberos authentication with
Aurora PostgreSQL and Using Kerberos authentication for Aurora MySQL.

For information about configuring security, see Security in Amazon Aurora.

Using SSL with Aurora DB clusters

Amazon Aurora DB clusters support Secure Sockets Layer (SSL) connections from applications
using the same process and public key as Amazon RDS DB instances. For more information, see
Security with Amazon Aurora MySQL, Security with Amazon Aurora PostgreSQL, or Using TLS/SSL
with Aurora Serverless v1.

Using SSL with Aurora DB clusters 152

Amazon Aurora User Guide for Aurora

High availability for Amazon Aurora

The Amazon Aurora architecture involves separation of storage and compute. Aurora includes some
high availability features that apply to the data in your DB cluster. The data remains safe even if
some or all of the DB instances in the cluster become unavailable. Other high availability features
apply to the DB instances. These features help to make sure that one or more DB instances are
ready to handle database requests from your application.

Topics

• High availability for Aurora data

• High availability for Aurora DB instances

• High availability across AWS Regions with Aurora global databases

• Fault tolerance for an Aurora DB cluster

• High availability with Amazon RDS Proxy

High availability for Aurora data

Aurora stores copies of the data in a DB cluster across multiple Availability Zones in a single AWS
Region. Aurora stores these copies regardless of whether the instances in the DB cluster span
multiple Availability Zones. For more information on Aurora, see Managing an Amazon Aurora DB
cluster.

When data is written to the primary DB instance, Aurora synchronously replicates the data across
Availability Zones to six storage nodes associated with your cluster volume. Doing so provides
data redundancy, eliminates I/O freezes, and minimizes latency spikes during system backups.
Running a DB instance with high availability can enhance availability during planned system
maintenance, and help protect your databases against failure and Availability Zone disruption. For
more information on Availability Zones, see Regions and Availability Zones.

High availability for Aurora DB instances

After you create the primary (writer) instance, you can create up to 15 read-only Aurora Replicas.
The Aurora Replicas are also known as reader instances.

During day-to-day operations, you can offload some of the work for read-intensive applications
by using the reader instances to process SELECT queries. When a problem affects the primary
instance, one of these reader instances takes over as the primary instance. This mechanism is

High availability for Amazon Aurora 153

Amazon Aurora User Guide for Aurora

known as failover. Many Aurora features apply to the failover mechanism. For example, Aurora
detects database problems and activates the failover mechanism automatically when necessary.
Aurora also has features that reduce the time for failover to complete. Doing so minimizes the time
that the database is unavailable for writing during a failover.

Aurora is designed to recover as quickly as possible, and the fastest path to recovery is often to
restart or to fail over to the same DB instance. Restarting is faster and involves less overhead than
failover.

To use a connection string that stays the same even when a failover promotes a new primary
instance, you connect to the cluster endpoint. The cluster endpoint always represents the current
primary instance in the cluster. For more information about the cluster endpoint, see Amazon
Aurora connection management.

Tip

Within each AWS Region, Availability Zones (AZs) represent locations that are distinct from
each other to provide isolation in case of outages. We recommend that you distribute the
primary instance and reader instances in your DB cluster over multiple Availability Zones
to improve the availability of your DB cluster. That way, an issue that affects an entire
Availability Zone doesn't cause an outage for your cluster.
You can set up a Multi-AZ DB cluster by making a simple choice when you create the
cluster. You can use the AWS Management Console, the AWS CLI, or the Amazon RDS API.
You can also convert an existing Aurora DB cluster into a Multi-AZ DB cluster by adding a
new reader DB instance and specifying a different Availability Zone.

High availability across AWS Regions with Aurora global databases

For high availability across multiple AWS Regions, you can set up Aurora global databases. Each
Aurora global database spans multiple AWS Regions, enabling low latency global reads and
disaster recovery from outages across an AWS Region. Aurora automatically handles replicating
all data and updates from the primary AWS Region to each of the secondary Regions. For more
information, see Using Amazon Aurora global databases.

Fault tolerance for an Aurora DB cluster

An Aurora DB cluster is fault tolerant by design. The cluster volume spans multiple Availability
Zones (AZs) in a single AWS Region, and each Availability Zone contains a copy of the cluster

High availability across AWS Regions with Aurora global databases 154

Amazon Aurora User Guide for Aurora

volume data. This functionality means that your DB cluster can tolerate a failure of an Availability
Zone without any loss of data and only a brief interruption of service.

If the primary instance in a DB cluster fails, Aurora automatically fails over to a new primary
instance in one of two ways:

• By promoting an existing Aurora Replica to the new primary instance

• By creating a new primary instance

If the DB cluster has one or more Aurora Replicas, then an Aurora Replica is promoted to the
primary instance during a failure event. A failure event results in a brief interruption, during which
read and write operations fail with an exception. However, service is typically restored in less
than 60 seconds, and often less than 30 seconds. To increase the availability of your DB cluster,
we recommend that you create at least one or more Aurora Replicas in two or more different
Availability Zones.

Tip

In Aurora MySQL 2.10 and higher, you can improve availability during a failover by having
more than one reader DB instance in a cluster. In Aurora MySQL 2.10 and higher, Aurora
restarts only the writer DB instance and the reader instance to which it fails over. Other
reader instances in the cluster remain available during a failover to continue processing
queries through connections to the reader endpoint.
You can also improve availability during a failover by using RDS Proxy with your Aurora DB
cluster. For more information, see High availability with Amazon RDS Proxy.

You can customize the order in which your Aurora Replicas are promoted to the primary instance
after a failure by assigning each replica a priority. Priorities range from 0 for the highest priority to
15 for the lowest priority. If the primary instance fails, Amazon RDS promotes the Aurora Replica
with the highest priority to the new primary instance. You can modify the priority of an Aurora
Replica at any time. Modifying the priority doesn't trigger a failover.

More than one Aurora Replica can share the same priority, resulting in promotion tiers. If two
or more Aurora Replicas share the same priority, then Amazon RDS promotes the replica that is
largest in size. If two or more Aurora Replicas share the same priority and size, then Amazon RDS
promotes an arbitrary replica in the same promotion tier.

Fault tolerance 155

Amazon Aurora User Guide for Aurora

If the DB cluster doesn't contain any Aurora Replicas, then the primary instance is recreated in
the same AZ during a failure event. A failure event results in an interruption during which read
and write operations fail with an exception. Service is restored when the new primary instance is
created, which typically takes less than 10 minutes. Promoting an Aurora Replica to the primary
instance is much faster than creating a new primary instance.

Suppose that the primary instance in your cluster is unavailable because of an outage that affects
an entire AZ. In this case, the way to bring a new primary instance online depends on whether your
cluster uses a Multi-AZ configuration:

• If your provisioned or Aurora Serverless v2 cluster contains any reader instances in other AZs,
Aurora uses the failover mechanism to promote one of those reader instances to be the new
primary instance.

• If your provisioned or Aurora Serverless v2 cluster only contains a single DB instance, or if the
primary instance and all reader instances are in the same AZ, make sure to manually create one
or more new DB instances in another AZ.

• If your cluster uses Aurora Serverless v1, Aurora automatically creates a new DB instance in
another AZ. However, this process involves a host replacement and thus takes longer than a
failover.

Note

Amazon Aurora also supports replication with an external MySQL database, or an RDS
MySQL DB instance. For more information, see Replication between Aurora and MySQL or
between Aurora and another Aurora DB cluster (binary log replication).

High availability with Amazon RDS Proxy

With RDS Proxy, you can build applications that can transparently tolerate database failures
without needing to write complex failure handling code. The proxy automatically routes traffic to
a new database instance while preserving application connections. It also bypasses Domain Name
System (DNS) caches to reduce failover times by up to 66% for Aurora Multi-AZ databases. For
more information, see Using Amazon RDS Proxy for Aurora.

High availability with Amazon RDS Proxy 156

Amazon Aurora User Guide for Aurora

Replication with Amazon Aurora

There are several replication options with Aurora. Each Aurora DB cluster has built-in replication
between multiple DB instances in the same cluster. You can also set up replication with your
Aurora cluster as the source or the target. When you replicate data into or out of an Aurora cluster,
you can choose between built-in features such as Aurora global databases or the traditional
replication mechanisms for the MySQL or PostgreSQL DB engines. You can choose the appropriate
options based on which one provides the right combination of high availability, convenience,
and performance for your needs. The following sections explain how and when to choose each
technique.

Topics

• Aurora Replicas

• Replication with Aurora MySQL

• Replication with Aurora PostgreSQL

Aurora Replicas

When you create a second, third, and so on DB instance in an Aurora provisioned DB cluster, Aurora
automatically sets up replication from the writer DB instance to all the other DB instances. These
other DB instances are read-only and are known as Aurora Replicas. We also refer to them as reader
instances when discussing the ways that you can combine writer and reader DB instances within a
cluster.

Aurora Replicas have two main purposes. You can issue queries to them to scale the read
operations for your application. You typically do so by connecting to the reader endpoint of the
cluster. That way, Aurora can spread the load for read-only connections across as many Aurora
Replicas as you have in the cluster. Aurora Replicas also help to increase availability. If the writer
instance in a cluster becomes unavailable, Aurora automatically promotes one of the reader
instances to take its place as the new writer.

An Aurora DB cluster can contain up to 15 Aurora Replicas. The Aurora Replicas can be distributed
across the Availability Zones that a DB cluster spans within an AWS Region.

The data in your DB cluster has its own high availability and reliability features, independent of
the DB instances in the cluster. If you aren't familiar with Aurora storage features, see Overview of
Amazon Aurora storage. The DB cluster volume is physically made up of multiple copies of the data

Replication with Aurora 157

Amazon Aurora User Guide for Aurora

for the DB cluster. The primary instance and the Aurora Replicas in the DB cluster all see the data in
the cluster volume as a single logical volume.

As a result, all Aurora Replicas return the same data for query results with minimal replica lag. This
lag is usually much less than 100 milliseconds after the primary instance has written an update.
Replica lag varies depending on the rate of database change. That is, during periods where a large
amount of write operations occur for the database, you might see an increase in replica lag.

Note

Aurora Replica restarts, when it loses communication with the writer DB instance for more
than 60 seconds in the following Aurora PostgreSQL versions:

• 14.6 and older versions

• 13.9 and older versions

• 12.13 and older versions

• All Aurora PostgreSQL 11 versions

Aurora Replicas work well for read scaling because they are fully dedicated to read operations on
your cluster volume. Write operations are managed by the primary instance. Because the cluster
volume is shared among all DB instances in your DB cluster, minimal additional work is required to
replicate a copy of the data for each Aurora Replica.

To increase availability, you can use Aurora Replicas as failover targets. That is, if the primary
instance fails, an Aurora Replica is promoted to the primary instance. There is a brief interruption
during which read and write requests made to the primary instance fail with an exception.

Promoting an Aurora Replica by failover is much faster than recreating the primary instance. If your
Aurora DB cluster doesn't include any Aurora Replicas, then your DB cluster isn't available while
your DB instance is recovering from the failure.

When failover happens, some of the Aurora Replicas might be rebooted, depending on the DB
engine version. For example, in Aurora MySQL 2.10 and higher, Aurora restarts only the writer
DB instance and the failover target during a failover. For more information about the rebooting
behavior of different Aurora DB engine versions, see Rebooting an Amazon Aurora DB cluster or
Amazon Aurora DB instance. For information about what happens to page caches when rebooting
or failover, see Survivable page cache.

Aurora Replicas 158

Amazon Aurora User Guide for Aurora

For high-availability scenarios, we recommend that you create one or more Aurora Replicas. These
should be of the same DB instance class as the primary instance and in different Availability Zones
for your Aurora DB cluster. For more information about Aurora Replicas as failover targets, see
Fault tolerance for an Aurora DB cluster.

You can't create an encrypted Aurora Replica for an unencrypted Aurora DB cluster. You can't
create an unencrypted Aurora Replica for an encrypted Aurora DB cluster.

Tip

You can use Aurora Replicas within an Aurora cluster as your only form of replication
to keep your data highly available. You can also combine the built-in Aurora replication
with the other types of replication. Doing so can help to provide an extra level of high
availability and geographic distribution of your data.

For details on how to create an Aurora Replica, see Adding Aurora Replicas to a DB cluster.

Replication with Aurora MySQL

In addition to Aurora Replicas, you have the following options for replication with Aurora MySQL:

• Aurora MySQL DB clusters in different AWS Regions.

• You can replicate data across multiple Regions by using an Aurora global database. For details,
see High availability across AWS Regions with Aurora global databases

• You can create an Aurora read replica of an Aurora MySQL DB cluster in a different AWS
Region, by using MySQL binary log (binlog) replication. Each cluster can have up to five read
replicas created this way, each in a different Region.

• Two Aurora MySQL DB clusters in the same Region, by using MySQL binary log (binlog)
replication.

• An RDS for MySQL DB instance as the source of data and an Aurora MySQL DB cluster, by
creating an Aurora read replica of an RDS for MySQL DB instance. Typically, you use this
approach for migration to Aurora MySQL, rather than for ongoing replication.

For more information about replication with Aurora MySQL, see Replication with Amazon Aurora
MySQL.

Aurora MySQL 159

Amazon Aurora User Guide for Aurora

Replication with Aurora PostgreSQL

In addition to Aurora Replicas, you have the following options for replication with Aurora
PostgreSQL:

• An Aurora primary DB cluster in one Region and up to five read-only secondary DB clusters
in different Regions by using an Aurora global database. Aurora PostgreSQL doesn't support
cross-Region Aurora Replicas. However, you can use Aurora global database to scale your Aurora
PostgreSQL DB cluster's read capabilities to more than one AWS Region and to meet availability
goals. For more information, see Using Amazon Aurora global databases.

• Two Aurora PostgreSQL DB clusters in the same Region, by using PostgreSQL's logical replication
feature.

• An RDS for PostgreSQL DB instance as the source of data and an Aurora PostgreSQL DB cluster,
by creating an Aurora read replica of an RDS for PostgreSQL DB instance. Typically, you use this
approach for migration to Aurora PostgreSQL, rather than for ongoing replication.

For more information about replication with Aurora PostgreSQL, see Replication with Amazon
Aurora PostgreSQL.

DB instance billing for Aurora

Amazon RDS provisioned instances in an Amazon Aurora cluster are billed based on the following
components:

• DB instance hours (per hour) – Based on the DB instance class of the DB instance (for example,
db.t2.small or db.m4.large). Pricing is listed on a per-hour basis, but bills are calculated down to
the second and show times in decimal form. RDS usage is billed in 1-second increments, with a
minimum of 10 minutes. For more information, see Aurora DB instance classes.

• Storage (per GiB per month) – Storage capacity that you have provisioned to your DB instance.
If you scale your provisioned storage capacity within the month, your bill is prorated. For more
information, see Amazon Aurora storage and reliability.

• Input/output (I/O) requests (per 1 million requests) – Total number of storage I/O requests that
you have made in a billing cycle, for the Aurora Standard DB cluster configuration only.

For more information on Amazon Aurora I/O billing, see Storage configurations for Amazon
Aurora DB clusters.

Aurora PostgreSQL 160

Amazon Aurora User Guide for Aurora

• Backup storage (per GiB per month) – Backup storage is the storage that is associated with
automated database backups and any active database snapshots that you have taken. Increasing
your backup retention period or taking additional database snapshots increases the backup
storage consumed by your database. Per second billing doesn't apply to backup storage (metered
in GB-month).

For more information, see Backing up and restoring an Amazon Aurora DB cluster.

• Data transfer (per GB) – Data transfer in and out of your DB instance from or to the internet and
other AWS Regions. For useful examples, see the AWS blog post Exploring Data Transfer Costs
for AWS Managed Databases.

Amazon RDS provides the following purchasing options to enable you to optimize your costs based
on your needs:

• On-Demand instances – Pay by the hour for the DB instance hours that you use. Pricing is listed
on a per-hour basis, but bills are calculated down to the second and show times in decimal form.
RDS usage is now billed in 1-second increments, with a minimum of 10 minutes.

• Reserved instances – Reserve a DB instance for a one-year or three-year term and get a
significant discount compared to the on-demand DB instance pricing. With Reserved Instance
usage, you can launch, delete, start, or stop multiple instances within an hour and get the
Reserved Instance benefit for all of the instances.

• Aurora Serverless v2 – Aurora Serverless v2 provides on-demand capacity where the billing
unit is Aurora capacity unit (ACU) hours instead of DB instance hours. Aurora Serverless v2
capacity increases and decreases, within a range that you specify, depending on the load
on your database. You can configure a cluster where all the capacity is Aurora Serverless v2.
Or you can configure a combination of Aurora Serverless v2 and on-demand or reserved
provisioned instances. For information about how Aurora Serverless v2 ACUs work, see How
Aurora Serverless v2 works.

For Aurora pricing information, see the Aurora pricing page.

Topics

• On-Demand DB instances for Aurora

• Reserved DB instances for Aurora

DB instance billing for Aurora 161

https://aws.amazon.com/blogs/architecture/exploring-data-transfer-costs-for-aws-managed-databases
https://aws.amazon.com/blogs/architecture/exploring-data-transfer-costs-for-aws-managed-databases
https://aws.amazon.com/rds/aurora/pricing

Amazon Aurora User Guide for Aurora

On-Demand DB instances for Aurora

Amazon RDS on-demand DB instances are billed based on the class of the DB instance (for
example, db.t3.small or db.m5.large). For Amazon RDS pricing information, see the Amazon RDS
product page.

Billing starts for a DB instance as soon as the DB instance is available. Pricing is listed on a per-hour
basis, but bills are calculated down to the second and show times in decimal form. Amazon RDS
usage is billed in one-second increments, with a minimum of 10 minutes. In the case of billable
configuration change, such as scaling compute or storage capacity, you're charged a 10-minute
minimum. Billing continues until the DB instance terminates, which occurs when you delete the DB
instance or if the DB instance fails.

If you no longer want to be charged for your DB instance, you must stop or delete it to avoid being
billed for additional DB instance hours. For more information about the DB instance states for
which you are billed, see Viewing DB instance status in an Aurora cluster.

Stopped DB instances

While your DB instance is stopped, you're charged for provisioned storage, including Provisioned
IOPS. You are also charged for backup storage, including storage for manual snapshots and
automated backups within your specified retention window. You aren't charged for DB instance
hours.

Multi-AZ DB instances

If you specify that your DB instance should be a Multi-AZ deployment, you're billed according to
the Multi-AZ pricing posted on the Amazon RDS pricing page.

On-Demand DB instances 162

https://aws.amazon.com/rds/pricing
https://aws.amazon.com/rds/pricing

Amazon Aurora User Guide for Aurora

Reserved DB instances for Aurora

Using reserved DB instances, you can reserve a DB instance for a one- or three-year term. Reserved
DB instances provide you with a significant discount compared to on-demand DB instance pricing.
Reserved DB instances are not physical instances, but rather a billing discount applied to the use
of certain on-demand DB instances in your account. Discounts for reserved DB instances are tied to
instance type and AWS Region.

The general process for working with reserved DB instances is: First get information about available
reserved DB instance offerings, then purchase a reserved DB instance offering, and finally get
information about your existing reserved DB instances.

Overview of reserved DB instances

When you purchase a reserved DB instance in Amazon RDS, you purchase a commitment to getting
a discounted rate, on a specific DB instance type, for the duration of the reserved DB instance. To
use an Amazon RDS reserved DB instance, you create a new DB instance just like you do for an on-
demand instance.

The new DB instance that you create must have the same specifications as the reserved DB instance
for the following:

• AWS Region

• DB engine (The DB engine's version number doesn't need to match.)

• DB instance type

If the specifications of the new DB instance match an existing reserved DB instance for your
account, you are billed at the discounted rate offered for the reserved DB instance. Otherwise, the
DB instance is billed at an on-demand rate.

You can modify a DB instance that you're using as a reserved DB instance. If the modification is
within the specifications of the reserved DB instance, part or all of the discount still applies to
the modified DB instance. If the modification is outside the specifications, such as changing the
instance class, the discount no longer applies. For more information, see Size-flexible reserved DB
instances.

Topics

• Offering types

Reserved DB instances 163

Amazon Aurora User Guide for Aurora

• Aurora DB cluster configuration flexibility

• Size-flexible reserved DB instances

• Aurora reserved DB instance billing examples

• Deleting a reserved DB instance

For more information about reserved DB instances, including pricing, see Amazon RDS reserved
instances.

Offering types

Reserved DB instances are available in three varieties—No Upfront, Partial Upfront, and All Upfront
—that let you optimize your Amazon RDS costs based on your expected usage.

No Upfront

This option provides access to a reserved DB instance without requiring an upfront payment.
Your No Upfront reserved DB instance bills a discounted hourly rate for every hour within the
term, regardless of usage, and no upfront payment is required. This option is only available as a
one-year reservation.

Partial Upfront

This option requires a part of the reserved DB instance to be paid upfront. The remaining
hours in the term are billed at a discounted hourly rate, regardless of usage. This option is the
replacement for the previous Heavy Utilization option.

All Upfront

Full payment is made at the start of the term, with no other costs incurred for the remainder of
the term regardless of the number of hours used.

If you are using consolidated billing, all the accounts in the organization are treated as one
account. This means that all accounts in the organization can receive the hourly cost benefit
of reserved DB instances that are purchased by any other account. For more information
about consolidated billing, see Amazon RDS reserved DB instances in the AWS Billing and Cost
Management User Guide.

Aurora DB cluster configuration flexibility

You can use Aurora reserved DB instances with both DB cluster configurations:

Reserved DB instances 164

http://aws.amazon.com/rds/reserved-instances/#2
http://aws.amazon.com/rds/reserved-instances/#2
https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/consolidatedbilling-other.html#consolidatedbilling-rds

Amazon Aurora User Guide for Aurora

• Aurora I/O-Optimized – You pay only for the usage and storage of your DB clusters, with no
additional charges for read and write I/O operations.

• Aurora Standard – In addition to the usage and storage of your DB clusters, you also pay a
standard rate per 1 million requests for I/O operations.

Aurora automatically accounts for the price difference between these configurations. Aurora I/O-
Optimized consumes 30% more normalized units per hour than Aurora Standard.

For more information about Aurora cluster storage configurations, see Storage configurations
for Amazon Aurora DB clusters. For more information about pricing for Aurora cluster storage
configurations, see Amazon Aurora pricing.

Size-flexible reserved DB instances

When you purchase a reserved DB instance, one thing that you specify is the instance class, for
example db.r5.large. For more information about DB instance classes, see Aurora DB instance
classes.

If you have a DB instance, and you need to scale it to larger capacity, your reserved DB instance
is automatically applied to your scaled DB instance. That is, your reserved DB instances are
automatically applied across all DB instance class sizes. Size-flexible reserved DB instances are
available for DB instances with the same AWS Region and database engine. Size-flexible reserved
DB instances can only scale in their instance class type. For example, a reserved DB instance for
a db.r5.large can apply to a db.r5.xlarge, but not to a db.r6g.large, because db.r5 and db.r6g are
different instance class types.

Reserved DB instance benefits also apply for both Multi-AZ and Single-AZ configurations.
Flexibility means that you can move freely between configurations within the same DB instance
class type. For example, you can move from a Single-AZ deployment running on one large DB
instance (four normalized units per hour) to a Multi-AZ deployment running on two medium DB
instances (2+2 = 4 normalized units per hour).

Size-flexible reserved DB instances are available for the following Aurora database engines:

• Aurora MySQL

• Aurora PostgreSQL

You can compare usage for different reserved DB instance sizes by using normalized units per hour.
For example, one unit of usage on two db.r3.large DB instances is equivalent to eight normalized

Reserved DB instances 165

https://aws.amazon.com/rds/aurora/pricing/

Amazon Aurora User Guide for Aurora

units per hour of usage on one db.r3.small. The following table shows the number of normalized
units per hour for each DB instance size.

Instance size Normalized
units per hour
for one DB
instance, Aurora
Standard

Normalized
units per hour
for one DB
instance, Aurora
I/O-Optimized

Normalize
d units per
hour for three
DB instances
(writer and two
readers), Aurora
Standard

Normalize
d units per
hour for three
DB instances
(writer and two
readers), Aurora
I/O-Optimized

small 1 1.3 3 3.9

medium 2 2.6 6 7.8

large 4 5.2 12 15.6

xlarge 8 10.4 24 31.2

2xlarge 16 20.8 48 62.4

4xlarge 32 41.6 96 124.8

8xlarge 64 83.2 192 249.6

12xlarge 96 124.8 288 374.4

16xlarge 128 166.4 384 499.2

24xlarge 192 249.6 576 748.8

32xlarge 256 332.8 768 998.4

For example, suppose that you purchase a db.t2.medium reserved DB instance, and you have
two running db.t2.small DB instances in your account in the same AWS Region. In this case, the
billing benefit is applied in full to both instances.

Reserved DB instances 166

Amazon Aurora User Guide for Aurora

Alternatively, if you have one db.t2.large instance running in your account in the same AWS
Region, the billing benefit is applied to 50 percent of the usage of the DB instance.

Reserved DB instances 167

Amazon Aurora User Guide for Aurora

Note

We recommend using the T DB instance classes only for development and test servers, or
other non-production servers. For more details on the T instance classes, see DB instance
class types.

Aurora reserved DB instance billing examples

The following examples illustrate the pricing for reserved DB instances for Aurora DB clusters using
both the Aurora Standard and Aurora I/O-Optimized DB cluster configurations.

Example using Aurora Standard

The price for a reserved DB instance doesn't provide a discount for the costs associated with
storage, backups, and I/O. The following example illustrates the total cost per month for a
reserved DB instance:

• An Aurora MySQL reserved Single-AZ db.r5.large DB instance class in US East (N. Virginia) at a
cost of $0.19 per hour, or $138.70 per month

• Aurora storage at a cost of $0.10 per GiB per month (assume $45.60 per month for this example)

• Aurora I/O at a cost of $0.20 per 1 million requests (assume $20 per month for this example)

• Aurora backup storage at $0.021 per GiB per month (assume $30 per month for this example)

Add all of these options ($138.70 + $45.60 + $20 + $30) with the reserved DB instance, and the
total cost per month is $234.30.

If you choose to use an on-demand DB instance instead of a reserved DB instance, an Aurora
MySQL Single-AZ db.r5.large DB instance class in US East (N. Virginia) costs $0.29 per hour, or
$217.50 per month. So, for an on-demand DB instance, add all of these options ($217.50 + $45.60
+ $20 + $30), and the total cost per month is $313.10. You save nearly $79 per month by using the
reserved DB instance.

Example using an Aurora Standard DB cluster with two reader instances

To use reserved instances for Aurora DB clusters, simply purchase one reserved instance for each
DB instance in the cluster.

Reserved DB instances 168

Amazon Aurora User Guide for Aurora

Extending the first example, you have an Aurora MySQL DB cluster with one writer DB instance and
two Aurora Replicas, for a total of three DB instances in the cluster. The two Aurora Replicas incur
no extra storage or backups charges. If you purchase three db.r5.large Aurora MySQL reserved
DB instances, your cost will be $234.30 (for the writer DB instance) + 2 * ($138.70 + $20 I/O per
Aurora Replica), for a total of $551.70 per month.

The corresponding on-demand cost for an Aurora MySQL DB cluster with one writer DB instance
and two Aurora Replicas is $313.10 + 2 * ($217.50 + $20 I/O per instance) for a total of $788.10
per month. You save $236.40 per month by using the reserved DB instances.

Example using Aurora I/O-Optimized

You can reuse your existing Aurora Standard reserved DB instances with Aurora I/O-Optimized. To
fully use the benefits of your reserved instance discounts with Aurora I/O-Optimized, you can buy
30% additional reserved instances similar to your current reserved instances.

The following table shows examples of how to estimate the additional reserved instances when
using Aurora I/O-Optimized. If the required reserved instances are a fraction, you can take
advantage of the size flexibility available with reserved instances to get to a whole number. In
these examples, "current" refers to the Aurora Standard reserved instances that you have now.
Additional reserved instances are the number of Aurora Standard reserved instances that you must
buy to maintain your current reserved instance discounts when using Aurora I/O-Optimized.

DB instance
class

Current Aurora
Standard
reserved
instances

Reserved
instances
required for
Aurora I/O-
Optimized

Additiona
l reserved
instances
needed

Additiona
l reserved
instances
needed, using
size flexibility

db.r6g.large 10 10 * 1.3 = 13 3 * db.r6g.large 3 * db.r6g.large

db.r6g.4xlarge 20 20 * 1.3 = 26 6 * db.r6g.4x
large

6 * db.r6g.4x
large

db.r6g.12xlarge 5 5 * 1.3 = 6.5 1.5 * db.r6g.12
xlarge

One each of
db.r6g.12xlarge,
r6g.4xlarge, and
r6g.2xlarge

Reserved DB instances 169

Amazon Aurora User Guide for Aurora

DB instance
class

Current Aurora
Standard
reserved
instances

Reserved
instances
required for
Aurora I/O-
Optimized

Additiona
l reserved
instances
needed

Additiona
l reserved
instances
needed, using
size flexibility

(0.5 * db.r6g.12
xlarge = 1 *
db.r6g.4xlarge
+ 1 * db.r6g.2x
large)

db.r6i.24xlarge 15 15 * 1.3 = 19.5 4.5 * db.r6i.24
xlarge

4 * db.r6i.24
xlarge + 1 *
db.r6i.12xlarge

(0.5 * db.r6i.24
xlarge = 1 *
db.r6i.12xlarge)

Example using an Aurora I/O-Optimized DB cluster with two reader instances

You have an Aurora MySQL DB cluster with one writer DB instance and two Aurora Replicas,
for a total of three DB instances in the cluster. They use the Aurora I/O-Optimized DB cluster
configuration. To use reserved DB instances for this cluster, you would need to buy four reserved
DB instances of the same DB instance class. Three DB instances using Aurora I/O-Optimized
consume 3.9 normalized units per hour, compared to 3 normalized units per hour for three DB
instances using Aurora Standard. However, you save the monthly I/O costs for each DB instance.

Note

The prices in these examples are sample prices and might not match actual prices. For
Aurora pricing information, see Amazon Aurora pricing.

Reserved DB instances 170

https://aws.amazon.com/rds/aurora/pricing

Amazon Aurora User Guide for Aurora

Deleting a reserved DB instance

The terms for a reserved DB instance involve a one-year or three-year commitment. You can't
cancel a reserved DB instance. However, you can delete a DB instance that is covered by a reserved
DB instance discount. The process for deleting a DB instance that is covered by a reserved DB
instance discount is the same as for any other DB instance.

You're billed for the upfront costs regardless of whether you use the resources.

If you delete a DB instance that is covered by a reserved DB instance discount, you can launch
another DB instance with compatible specifications. In this case, you continue to get the discounted
rate during the reservation term (one or three years).

Working with reserved DB instances

You can use the AWS Management Console, the AWS CLI, and the RDS API to work with reserved
DB instances.

Console

You can use the AWS Management Console to work with reserved DB instances as shown in the
following procedures.

To get pricing and information about available reserved DB instance offerings

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Reserved instances.

3. Choose Purchase Reserved DB Instance.

4. For Product description, choose the DB engine and licensing type.

5. For DB instance class, choose the DB instance class.

6. For Deployment Option, choose whether you want a Single-AZ or Multi-AZ DB instance
deployment.

Note

Reserved Amazon Aurora instances always have the deployment option set to
Single-AZ DB instance. However, when you create an Aurora DB cluster, the default
deployment option is Create an Aurora Replica or Reader in a different AZ (Multi-AZ).

Reserved DB instances 171

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Aurora User Guide for Aurora

You must purchase a reserved DB instance for each instance that you plan to use,
including Aurora Replicas. Therefore, for Multi-AZ deployments on Aurora, you must
purchase extra reserved DB instances.

7. For Term, choose the length of time to reserve the the DB instance.

8. For Offering type, choose the offering type.

After you select the offering type, you can see the pricing information.

Important

Choose Cancel to avoid purchasing the reserved DB instance and incurring any charges.

After you have information about the available reserved DB instance offerings, you can use the
information to purchase an offering as shown in the following procedure.

To purchase a reserved DB instance

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Reserved instances.

3. Choose Purchase reserved DB instance.

4. For Product description, choose the DB engine and licensing type.

5. For DB instance class, choose the DB instance class.

6. For Multi-AZ deployment, choose whether you want a Single-AZ or Multi-AZ DB instance
deployment.

Note

Reserved Amazon Aurora instances always have the deployment option set to Single-
AZ DB instance. When you create an Amazon Aurora DB cluster from your reserved DB
instance, the DB cluster is automatically created as Multi-AZ. Make sure to purchase
a reserved DB instance for each DB instance that you plan to use, including Aurora
Replicas.

7. For Term, choose the length of time you want the DB instance reserved.

Reserved DB instances 172

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Aurora User Guide for Aurora

8. For Offering type, choose the offering type.

After you choose the offering type, you can see the pricing information.

9. (Optional) You can assign your own identifier to the reserved DB instances that you purchase
to help you track them. For Reserved Id, type an identifier for your reserved DB instance.

10. Choose Submit.

Your reserved DB instance is purchased, then displayed in the Reserved instances list.

After you have purchased reserved DB instances, you can get information about your reserved DB
instances as shown in the following procedure.

To get information about reserved DB instances for your AWS account

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the Navigation pane, choose Reserved instances.

The reserved DB instances for your account appear. To see detailed information about a
particular reserved DB instance, choose that instance in the list. You can then see detailed
information about that instance in the detail pane at the bottom of the console.

AWS CLI

You can use the AWS CLI to work with reserved DB instances as shown in the following examples.

Example of getting available reserved DB instance offerings

To get information about available reserved DB instance offerings, call the AWS CLI command
describe-reserved-db-instances-offerings.

aws rds describe-reserved-db-instances-offerings

This call returns output similar to the following:

OFFERING OfferingId Class Multi-AZ Duration Fixed
 Price Usage Price Description Offering Type

Reserved DB instances 173

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-reserved-db-instances-offerings.html

Amazon Aurora User Guide for Aurora

OFFERING 438012d3-4052-4cc7-b2e3-8d3372e0e706 db.r3.large y 1y
 1820.00 USD 0.368 USD mysql Partial Upfront
OFFERING 649fd0c8-cf6d-47a0-bfa6-060f8e75e95f db.r3.small n 1y
 227.50 USD 0.046 USD mysql Partial Upfront
OFFERING 123456cd-ab1c-47a0-bfa6-12345667232f db.r3.small n 1y
 162.00 USD 0.00 USD mysql All Upfront
 Recurring Charges: Amount Currency Frequency
 Recurring Charges: 0.123 USD Hourly
OFFERING 123456cd-ab1c-37a0-bfa6-12345667232d db.r3.large y 1y
 700.00 USD 0.00 USD mysql All Upfront
 Recurring Charges: Amount Currency Frequency
 Recurring Charges: 1.25 USD Hourly
OFFERING 123456cd-ab1c-17d0-bfa6-12345667234e db.r3.xlarge n 1y
 4242.00 USD 2.42 USD mysql No Upfront

After you have information about the available reserved DB instance offerings, you can use the
information to purchase an offering.

To purchase a reserved DB instance, use the AWS CLI command purchase-reserved-db-
instances-offering with the following parameters:

• --reserved-db-instances-offering-id – The ID of the offering that you want to
purchase. See the preceding example to get the offering ID.

• --reserved-db-instance-id – You can assign your own identifier to the reserved DB
instances that you purchase to help track them.

Example of purchasing a reserved DB instance

The following example purchases the reserved DB instance offering with ID 649fd0c8-
cf6d-47a0-bfa6-060f8e75e95f, and assigns the identifier of MyReservation.

For Linux, macOS, or Unix:

aws rds purchase-reserved-db-instances-offering \
 --reserved-db-instances-offering-id 649fd0c8-cf6d-47a0-bfa6-060f8e75e95f \
 --reserved-db-instance-id MyReservation

For Windows:

aws rds purchase-reserved-db-instances-offering ^

Reserved DB instances 174

https://docs.aws.amazon.com/cli/latest/reference/rds/purchase-reserved-db-instances-offering.html
https://docs.aws.amazon.com/cli/latest/reference/rds/purchase-reserved-db-instances-offering.html

Amazon Aurora User Guide for Aurora

 --reserved-db-instances-offering-id 649fd0c8-cf6d-47a0-bfa6-060f8e75e95f ^
 --reserved-db-instance-id MyReservation

The command returns output similar to the following:

RESERVATION ReservationId Class Multi-AZ Start Time
 Duration Fixed Price Usage Price Count State Description Offering Type
RESERVATION MyReservation db.r3.small y 2011-12-19T00:30:23.247Z 1y
 455.00 USD 0.092 USD 1 payment-pending mysql Partial Upfront

After you have purchased reserved DB instances, you can get information about your reserved DB
instances.

To get information about reserved DB instances for your AWS account, call the AWS CLI command
describe-reserved-db-instances, as shown in the following example.

Example of getting your reserved DB instances

aws rds describe-reserved-db-instances

The command returns output similar to the following:

RESERVATION ReservationId Class Multi-AZ Start Time
 Duration Fixed Price Usage Price Count State Description Offering Type
RESERVATION MyReservation db.r3.small y 2011-12-09T23:37:44.720Z 1y
 455.00 USD 0.092 USD 1 retired mysql Partial Upfront

RDS API

You can use the RDS API to work with reserved DB instances:

• To get information about available reserved DB instance offerings, call the Amazon RDS API
operation DescribeReservedDBInstancesOfferings.

• After you have information about the available reserved DB instance offerings, you can use the
information to purchase an offering. Call the PurchaseReservedDBInstancesOffering RDS
API operation with the following parameters:

• --reserved-db-instances-offering-id – The ID of the offering that you want to
purchase.

Reserved DB instances 175

https://docs.aws.amazon.com/cli/latest/reference/rds/describe-reserved-db-instances.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DescribeReservedDBInstancesOfferings.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_PurchaseReservedDBInstancesOffering.html

Amazon Aurora User Guide for Aurora

• --reserved-db-instance-id – You can assign your own identifier to the reserved DB
instances that you purchase to help track them.

• After you have purchased reserved DB instances, you can get information about your reserved
DB instances. Call the DescribeReservedDBInstances RDS API operation.

Viewing the billing for your reserved DB instances

You can view the billing for your reserved DB instances in the Billing Dashboard in the AWS
Management Console.

To view reserved DB instance billing

1. Sign in to the AWS Management Console.

2. From the account menu at the upper right, choose Billing Dashboard.

3. Choose Bill Details at the upper right of the dashboard.

4. Under AWS Service Charges, expand Relational Database Service.

5. Expand the AWS Region where your reserved DB instances are, for example US West (Oregon).

Your reserved DB instances and their hourly charges for the current month are shown under
Amazon Relational Database Service for Database Engine Reserved Instances.

The reserved DB instance in this example was purchased All Upfront, so there are no hourly
charges.

6. Choose the Cost Explorer (bar graph) icon next to the Reserved Instances heading.

The Cost Explorer displays the Monthly EC2 running hours costs and usage graph.

7. Clear the Usage Type Group filter to the right of the graph.

8. Choose the time period and time unit for which you want to examine usage costs.

The following example shows usage costs for on-demand and reserved DB instances for the
year to date by month.

Reserved DB instances 176

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DescribeReservedDBInstances.html

Amazon Aurora User Guide for Aurora

The reserved DB instance costs from January through June 2021 are monthly charges for a
Partial Upfront instance, while the cost in August 2021 is a one-time charge for an All Upfront
instance.

The reserved instance discount for the Partial Upfront instance expired in June 2021, but the
DB instance wasn't deleted. After the expiration date, it was simply charged at the on-demand
rate.

Reserved DB instances 177

Amazon Aurora User Guide for Aurora

Setting up your environment for Amazon Aurora

Before you use Amazon Aurora for the first time, complete the following tasks.

Topics

• Sign up for an AWS account

• Create a user with administrative access

• Grant programmatic access

• Determine requirements

• Provide access to the DB cluster in the VPC by creating a security group

If you already have an AWS account, know your Aurora requirements, and prefer to use the defaults
for IAM and VPC security groups, skip ahead to Getting started with Amazon Aurora.

Sign up for an AWS account

If you do not have an AWS account, complete the following steps to create one.

To sign up for an AWS account

1. Open https://portal.aws.amazon.com/billing/signup.

2. Follow the online instructions.

Part of the sign-up procedure involves receiving a phone call and entering a verification code
on the phone keypad.

When you sign up for an AWS account, an AWS account root user is created. The root user
has access to all AWS services and resources in the account. As a security best practice, assign
administrative access to a user, and use only the root user to perform tasks that require root
user access.

AWS sends you a confirmation email after the sign-up process is complete. At any time, you can
view your current account activity and manage your account by going to https://aws.amazon.com/
and choosing My Account.

Sign up for an AWS account 178

https://portal.aws.amazon.com/billing/signup
https://docs.aws.amazon.com/accounts/latest/reference/root-user-tasks.html
https://docs.aws.amazon.com/accounts/latest/reference/root-user-tasks.html
https://aws.amazon.com/

Amazon Aurora User Guide for Aurora

Create a user with administrative access

After you sign up for an AWS account, secure your AWS account root user, enable AWS IAM Identity
Center, and create an administrative user so that you don't use the root user for everyday tasks.

Secure your AWS account root user

1. Sign in to the AWS Management Console as the account owner by choosing Root user and
entering your AWS account email address. On the next page, enter your password.

For help signing in by using root user, see Signing in as the root user in the AWS Sign-In User
Guide.

2. Turn on multi-factor authentication (MFA) for your root user.

For instructions, see Enable a virtual MFA device for your AWS account root user (console) in
the IAM User Guide.

Create a user with administrative access

1. Enable IAM Identity Center.

For instructions, see Enabling AWS IAM Identity Center in the AWS IAM Identity Center User
Guide.

2. In IAM Identity Center, grant administrative access to a user.

For a tutorial about using the IAM Identity Center directory as your identity source, see
Configure user access with the default IAM Identity Center directory in the AWS IAM Identity
Center User Guide.

Sign in as the user with administrative access

• To sign in with your IAM Identity Center user, use the sign-in URL that was sent to your email
address when you created the IAM Identity Center user.

For help signing in using an IAM Identity Center user, see Signing in to the AWS access portal in
the AWS Sign-In User Guide.

Create a user with administrative access 179

https://console.aws.amazon.com/
https://docs.aws.amazon.com/signin/latest/userguide/console-sign-in-tutorials.html#introduction-to-root-user-sign-in-tutorial
https://docs.aws.amazon.com/IAM/latest/UserGuide/enable-virt-mfa-for-root.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/get-set-up-for-idc.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/quick-start-default-idc.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/quick-start-default-idc.html
https://docs.aws.amazon.com/signin/latest/userguide/iam-id-center-sign-in-tutorial.html

Amazon Aurora User Guide for Aurora

Assign access to additional users

1. In IAM Identity Center, create a permission set that follows the best practice of applying least-
privilege permissions.

For instructions, see Create a permission set in the AWS IAM Identity Center User Guide.

2. Assign users to a group, and then assign single sign-on access to the group.

For instructions, see Add groups in the AWS IAM Identity Center User Guide.

Grant programmatic access

Users need programmatic access if they want to interact with AWS outside of the AWS
Management Console. The way to grant programmatic access depends on the type of user that's
accessing AWS.

To grant users programmatic access, choose one of the following options.

Which user needs
programmatic access?

To By

Workforce identity

(Users managed in IAM
Identity Center)

Use temporary credentials to
sign programmatic requests
to the AWS CLI, AWS SDKs, or
AWS APIs.

Following the instructions for
the interface that you want to
use.

• For the AWS CLI, see
Configuring the AWS
CLI to use AWS IAM
Identity Center in the AWS
Command Line Interface
User Guide.

• For AWS SDKs, tools, and
AWS APIs, see IAM Identity
Center authentication in
the AWS SDKs and Tools
Reference Guide.

Grant programmatic access 180

https://docs.aws.amazon.com/singlesignon/latest/userguide/get-started-create-a-permission-set.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/addgroups.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-sso.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-sso.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-sso.html
https://docs.aws.amazon.com/sdkref/latest/guide/access-sso.html
https://docs.aws.amazon.com/sdkref/latest/guide/access-sso.html

Amazon Aurora User Guide for Aurora

Which user needs
programmatic access?

To By

IAM Use temporary credentials to
sign programmatic requests
to the AWS CLI, AWS SDKs, or
AWS APIs.

Following the instructions in
Using temporary credentia
ls with AWS resources in the
IAM User Guide.

IAM (Not recommended)
Use long-term credentials to
sign programmatic requests
to the AWS CLI, AWS SDKs, or
AWS APIs.

Following the instructions for
the interface that you want to
use.

• For the AWS CLI, see
Authenticating using IAM
user credentials in the AWS
Command Line Interface
User Guide.

• For AWS SDKs and tools,
see Authenticate using
long-term credentials in
the AWS SDKs and Tools
Reference Guide.

• For AWS APIs, see
Managing access keys for
IAM users in the IAM User
Guide.

Determine requirements

The basic building block of Aurora is the DB cluster. One or more DB instances can belong to a
DB cluster. A DB cluster provides a network address called the cluster endpoint. Your applications
connect to the cluster endpoint exposed by the DB cluster whenever they need to access the
databases created in that DB cluster. The information you specify when you create the DB
cluster controls configuration elements such as memory, database engine and version, network
configuration, security, and maintenance periods.

Determine requirements 181

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_use-resources.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_use-resources.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-authentication-user.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-authentication-user.html
https://docs.aws.amazon.com/sdkref/latest/guide/access-iam-users.html
https://docs.aws.amazon.com/sdkref/latest/guide/access-iam-users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html

Amazon Aurora User Guide for Aurora

Before you create a DB cluster and a security group, you must know your DB cluster and network
needs. Here are some important things to consider:

• Resource requirements – What are the memory and processor requirements for your application
or service? You will use these settings when you determine what DB instance class you will use
when you create your DB cluster. For specifications about DB instance classes, see Aurora DB
instance classes.

• VPC, subnet, and security group – Your DB cluster will be in a virtual private cloud (VPC).
Security group rules must be configured to connect to a DB cluster. The following list describes
the rules for each VPC option:

• Default VPC — If your AWS account has a default VPC in the AWS Region, that VPC is
configured to support DB clusters. If you specify the default VPC when you create the DB
cluster:

• Make sure to create a VPC security group that authorizes connections from the application or
service to the Aurora DB cluster. Use the Security Group option on the VPC console or the
AWS CLI to create VPC security groups. For information, see Step 3: Create a VPC security
group.

• You must specify the default DB subnet group. If this is the first DB cluster you have created
in the AWS Region, Amazon RDS will create the default DB subnet group when it creates the
DB cluster.

• User-defined VPC — If you want to specify a user-defined VPC when you create a DB cluster:

• Make sure to create a VPC security group that authorizes connections from the application or
service to the Aurora DB cluster. Use the Security Group option on the VPC console or the
AWS CLI to create VPC security groups. For information, see Step 3: Create a VPC security
group.

• The VPC must meet certain requirements in order to host DB clusters, such as having at least
two subnets, each in a separate availability zone. For information, see Amazon VPC and
Amazon Aurora.

• You must specify a DB subnet group that defines which subnets in that VPC can be used
by the DB cluster. For information, see the DB Subnet Group section in Working with a DB
cluster in a VPC.

• High availability: Do you need failover support? On Aurora, a Multi-AZ deployment creates
a primary instance and Aurora Replicas. You can configure the primary instance and Aurora
Replicas to be in different Availability Zones for failover support. We recommend Multi-AZ
deployments for production workloads to maintain high availability. For development and test

Determine requirements 182

Amazon Aurora User Guide for Aurora

purposes, you can use a non-Multi-AZ deployment. For more information, see High availability
for Amazon Aurora.

• IAM policies: Does your AWS account have policies that grant the permissions needed to
perform Amazon RDS operations? If you are connecting to AWS using IAM credentials, your IAM
account must have IAM policies that grant the permissions required to perform Amazon RDS
operations. For more information, see Identity and access management for Amazon Aurora.

• Open ports: What TCP/IP port will your database be listening on? The firewall at some
companies might block connections to the default port for your database engine. If your
company firewall blocks the default port, choose another port for the new DB cluster. Note
that once you create a DB cluster that listens on a port you specify, you can change the port by
modifying the DB cluster.

• AWS Region: What AWS Region do you want your database in? Having the database close in
proximity to the application or web service could reduce network latency. For more information,
see Regions and Availability Zones.

Once you have the information you need to create the security group and the DB cluster, continue
to the next step.

Provide access to the DB cluster in the VPC by creating a
security group

Your DB cluster will be created in a VPC. Security groups provide access to the DB cluster in the
VPC. They act as a firewall for the associated DB cluster, controlling both inbound and outbound
traffic at the cluster level. DB clusters are created by default with a firewall and a default security
group that prevents access to the DB cluster. You must therefore add rules to a security group
that enable you to connect to your DB cluster. Use the network and configuration information you
determined in the previous step to create rules to allow access to your DB cluster.

For example, if you have an application that will access a database on your DB cluster in a VPC, you
must add a custom TCP rule that specifies the port range and IP addresses that application will use
to access the database. If you have an application on an Amazon EC2 instance, you can use the VPC
security group you set up for the Amazon EC2 instance.

You can configure connectivity between an Amazon EC2 instance a DB cluster when you create
the DB cluster. For more information, see Configure automatic network connectivity with an EC2
instance.

Provide access to the DB cluster 183

Amazon Aurora User Guide for Aurora

Tip

You can set up network connectivity between an Amazon EC2 instance and a DB cluster
automatically when you create the DB cluster. For more information, see Configure
automatic network connectivity with an EC2 instance.

For more information about creating a VPC for use with Aurora, see Tutorial: Create a VPC for use
with a DB cluster (IPv4 only). For information about common scenarios for accessing a DB instance,
see Scenarios for accessing a DB cluster in a VPC.

To create a VPC security group

1. Sign in to the AWS Management Console and open the Amazon VPC console at https://
console.aws.amazon.com/vpc.

Note

Make sure you are in the VPC console, not the RDS console.

2. In the top right corner of the AWS Management Console, choose the AWS Region where you
want to create your VPC security group and DB cluster. In the list of Amazon VPC resources for
that AWS Region, you should see at least one VPC and several subnets. If you don't, you don't
have a default VPC in that AWS Region.

3. In the navigation pane, choose Security Groups.

4. Choose Create security group.

The Create security group page appears.

5. In Basic details, enter the Security group name and Description. For VPC, choose the VPC
that you want to create your DB cluster in.

6. In Inbound rules, choose Add rule.

a. For Type, choose Custom TCP.

b. For Port range, enter the port value to use for your DB cluster.

c. For Source, choose a security group name or type the IP address range (CIDR value) from
where you access the DB cluster. If you choose My IP, this allows access to the DB cluster
from the IP address detected in your browser.

Provide access to the DB cluster 184

https://console.aws.amazon.com/vpc
https://console.aws.amazon.com/vpc

Amazon Aurora User Guide for Aurora

7. If you need to add more IP addresses or different port ranges, choose Add rule and enter the
information for the rule.

8. (Optional) In Outbound rules, add rules for outbound traffic. By default, all outbound traffic is
allowed.

9. Choose Create security group.

You can use the VPC security group you just created as the security group for your DB cluster when
you create it.

Note

If you use a default VPC, a default subnet group spanning all of the VPC's subnets is
created for you. When you create a DB cluster, you can select the default VPC and use
default for DB Subnet Group.

Once you have completed the setup requirements, you can create a DB cluster using your
requirements and security group by following the instructions in Creating an Amazon Aurora DB
cluster. For information about getting started by creating a DB cluster that uses a specific DB
engine, see Getting started with Amazon Aurora.

Provide access to the DB cluster 185

Amazon Aurora User Guide for Aurora

Getting started with Amazon Aurora

In this section, you can find out how to create and connect to an Aurora DB cluster using Amazon
RDS.

The following procedures are tutorials that demonstrate the basics of getting started with Aurora.
Later sections introduce more advanced Aurora concepts and procedures, such as the different
kinds of endpoints and how to scale Aurora clusters up and down.

Important

Before you can create or connect to a DB cluster, make sure to complete the tasks in
Setting up your environment for Amazon Aurora.

Topics

• Creating and connecting to an Aurora MySQL DB cluster

• Creating and connecting to an Aurora PostgreSQL DB cluster

• Tutorial: Create a web server and an Amazon Aurora DB cluster

Creating and connecting to an Aurora MySQL DB cluster

This tutorial creates an EC2 instance and an Aurora MySQL DB cluster. The tutorial shows you how
to access the DB cluster from the EC2 instance using a standard MySQL client. As a best practice,
this tutorial creates a private DB cluster in a virtual private cloud (VPC). In most cases, other
resources in the same VPC, such as EC2 instances, can access the DB cluster, but resources outside
of the VPC can't access it.

After you complete the tutorial, there is a public and private subnet in each Availability Zone in
your VPC. In one Availability Zone, the EC2 instance is in the public subnet, and the DB instance is
in the private subnet.

Creating and connecting to an Aurora MySQL DB cluster 186

Amazon Aurora User Guide for Aurora

Important

There's no charge for creating an AWS account. However, by completing this tutorial, you
might incur costs for the AWS resources that you use. You can delete these resources after
you complete the tutorial if they are no longer needed.

The following diagram shows the configuration when the tutorial is complete.

This tutorial allows you to create your resources by using one of the following methods:

1. Use the AWS Management Console ‐ Step 1: Create an EC2 instance and Step 2: Create an
Aurora MySQL DB cluster

2. Use AWS CloudFormation to create the database instance and EC2 instance ‐ (Optional) Create
VPC, EC2 instance, and Aurora MySQL cluster using AWS CloudFormation

The first method uses Easy create to create a private Aurora MySQL DB cluster with the AWS
Management Console. Here, you specify only the DB engine type, DB instance size, and DB cluster
identifier. Easy create uses the default settings for the other configuration options.

When you use Standard create instead, you can specify more configuration options when
you create a DB cluster. These options include settings for availability, security, backups, and

Creating and connecting to an Aurora MySQL DB cluster 187

Amazon Aurora User Guide for Aurora

maintenance. To create a public DB cluster, you must use Standard create. For information, see the
section called “Creating a DB cluster”.

Topics

• Prerequisites

• Step 1: Create an EC2 instance

• Step 2: Create an Aurora MySQL DB cluster

• (Optional) Create VPC, EC2 instance, and Aurora MySQL cluster using AWS CloudFormation

• Step 3: Connect to an Aurora MySQL DB cluster

• Step 4: Delete the EC2 instance and DB cluster

• (Optional) Delete the EC2 instance and DB cluster created with CloudFormation

• (Optional) Connect your DB cluster to a Lambda function

Prerequisites

Before you begin, complete the steps in the following sections:

• Sign up for an AWS account

• Create a user with administrative access

Step 1: Create an EC2 instance

Create an Amazon EC2 instance that you will use to connect to your database.

To create an EC2 instance

1. Sign in to the AWS Management Console and open the Amazon EC2 console at https://
console.aws.amazon.com/ec2/.

2. In the upper-right corner of the AWS Management Console, choose the AWS Region in which
you want to create the EC2 instance.

3. Choose EC2 Dashboard, and then choose Launch instance, as shown in the following image.

Prerequisites 188

https://console.aws.amazon.com/ec2/
https://console.aws.amazon.com/ec2/

Amazon Aurora User Guide for Aurora

The Launch an instance page opens.

4. Choose the following settings on the Launch an instance page.

a. Under Name and tags, for Name, enter ec2-database-connect.

b. Under Application and OS Images (Amazon Machine Image), choose Amazon Linux,
and then choose the Amazon Linux 2023 AMI. Keep the default selections for the other
choices.

Step 1: Create an EC2 instance 189

Amazon Aurora User Guide for Aurora

c. Under Instance type, choose t2.micro.

d. Under Key pair (login), choose a Key pair name to use an existing key pair. To create a
new key pair for the Amazon EC2 instance, choose Create new key pair and then use the
Create key pair window to create it.

For more information about creating a new key pair, see Create a key pair in the Amazon
EC2 User Guide.

e. For Allow SSH traffic in Network settings, choose the source of SSH connections to the
EC2 instance.

You can choose My IP if the displayed IP address is correct for SSH connections.
Otherwise, you can determine the IP address to use to connect to EC2 instances in your

Step 1: Create an EC2 instance 190

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/get-set-up-for-amazon-ec2.html#create-a-key-pair

Amazon Aurora User Guide for Aurora

VPC using Secure Shell (SSH). To determine your public IP address, in a different browser
window or tab, you can use the service at https://checkip.amazonaws.com. An example of
an IP address is 192.0.2.1/32.

In many cases, you might connect through an internet service provider (ISP) or from
behind your firewall without a static IP address. If so, make sure to determine the range of
IP addresses used by client computers.

Warning

If you use 0.0.0.0/0 for SSH access, you make it possible for all IP addresses
to access your public EC2 instances using SSH. This approach is acceptable for a
short time in a test environment, but it's unsafe for production environments. In
production, authorize only a specific IP address or range of addresses to access
your EC2 instances using SSH.

The following image shows an example of the Network settings section.

Step 1: Create an EC2 instance 191

https://checkip.amazonaws.com/

Amazon Aurora User Guide for Aurora

f. Leave the default values for the remaining sections.

g. Review a summary of your EC2 instance configuration in the Summary panel, and when
you're ready, choose Launch instance.

5. On the Launch Status page, note the identifier for your new EC2 instance, for example:
i-1234567890abcdef0.

Step 1: Create an EC2 instance 192

Amazon Aurora User Guide for Aurora

6. Choose the EC2 instance identifier to open the list of EC2 instances, and then select your EC2
instance.

7. In the Details tab, note the following values, which you need when you connect using SSH:

a. In Instance summary, note the value for Public IPv4 DNS.

b. In Instance details, note the value for Key pair name.

Step 1: Create an EC2 instance 193

Amazon Aurora User Guide for Aurora

8. Wait until the Instance state for your EC2 instance has a status of Running before continuing.

Step 2: Create an Aurora MySQL DB cluster

In this example, you use Easy create to create an Aurora MySQL DB cluster with a db.r6g.large DB
instance class.

To create an Aurora MySQL DB cluster with Easy create

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the upper-right corner of the Amazon RDS console, choose the AWS Region in which you
want to create the DB cluster.

3. In the navigation pane, choose Databases.

4. Choose Create database and make sure that Easy create is chosen.

5. In Configuration, choose Aurora (MySQL Compatible) for Engine type.

6. For DB instance size, choose Dev/Test.

7. For DB cluster identifier, enter database-test1.

The Create database page should look similar to the following image.

Step 2: Create an Aurora MySQL DB cluster 194

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Aurora User Guide for Aurora

8. For Master username, enter a name for the master user, or keep the default name.

9. To use an automatically generated master password for the DB cluster, select Auto generate a
password.

Step 2: Create an Aurora MySQL DB cluster 195

Amazon Aurora User Guide for Aurora

To enter your master password, make sure that Auto generate a password is cleared, and then
enter the same password in Master password and Confirm password.

10. To set up a connection with the EC2 instance you created previously, open Set up EC2
connection - optional.

Select Connect to an EC2 compute resource. Choose the EC2 instance you created previously.

11. Open View default settings for Easy create.

Step 2: Create an Aurora MySQL DB cluster 196

Amazon Aurora User Guide for Aurora

You can examine the default settings used with Easy create. The Editable after database is
created column shows which options you can change after you create the database.

Step 2: Create an Aurora MySQL DB cluster 197

Amazon Aurora User Guide for Aurora

• If a setting has No in that column, and you want a different setting, you can use Standard
create to create the DB cluster.

• If a setting has Yes in that column, and you want a different setting, you can either use
Standard create to create the DB cluster, or modify the DB cluster after you create it to
change the setting.

12. Choose Create database.

To view the master username and password for the DB cluster, choose View credential details.

You can use the username and password that appears to connect to the DB cluster as the
master user.

Important

You can't view the master user password again. If you don't record it, you might have
to change it.
If you need to change the master user password after the DB cluster is available,
you can modify the DB cluster to do so. For more information about modifying a DB
cluster, see Modifying an Amazon Aurora DB cluster.

13. In the Databases list, choose the name of the new Aurora MySQL DB cluster to show its
details.

The writer instance has a status of Creating until the DB cluster is ready to use.

When the status of the writer instance changes to Available, you can connect to the DB
cluster. Depending on the DB instance class and the amount of storage, it can take up to 20
minutes before the new DB cluster is available.

Step 2: Create an Aurora MySQL DB cluster 198

Amazon Aurora User Guide for Aurora

(Optional) Create VPC, EC2 instance, and Aurora MySQL cluster using
AWS CloudFormation

Instead of using the console to create your VPC, EC2 instance, and Aurora MySQL DB cluster, you
can use AWS CloudFormation to provision AWS resources by treating infrastructure as code. To help
you organize your AWS resources into smaller and more manageable units, you can use the AWS
CloudFormation nested stack functionality. For more information, see Creating a stack on the AWS
CloudFormation console and Working with nested stacks.

Important

AWS CloudFormation is free, but the resources that CloudFormation creates are live. You
incur the standard usage fees for these resources until you terminate them. The total
charges will be minimal. For information about how you might minimize any charges, go to
AWS Free Tier.

To create your resources using the AWS CloudFormation console, complete the following steps:

• Step 1: Download the CloudFormation template

• Step 2: Configure your resources using CloudFormation

Download the CloudFormation template

A CloudFormation template is a JSON or YAML text file that contains the configuration information
about the resources you want to create in the stack. This template also creates a VPC and a bastion
host for you along with the Aurora cluster.

To download the template file, open the following link, Aurora MySQL CloudFormation template.

In the Github page, click the Download raw file button to save the template YAML file.

Configure your resources using CloudFormation

Note

Before starting this process, make sure you have a Key pair for an EC2 instance in your AWS
account. For more information, see Amazon EC2 key pairs and Linux instances.

(Optional) Create VPC, EC2 instance, and Aurora MySQL cluster using AWS CloudFormation 199

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/cfn-console-create-stack.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/cfn-console-create-stack.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/using-cfn-nested-stacks.html
http://aws.amazon.com/free/
https://github.com/aws-ia/cfn-ps-amazon-aurora-mysql/blob/main/templates/aurora_mysql-main.template.yaml
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-key-pairs.html

Amazon Aurora User Guide for Aurora

When you use the AWS CloudFormation template, you must select the correct parameters to make
sure your resources are created properly. Follow the steps below:

1. Sign in to the AWS Management Console and open the AWS CloudFormation console at https://
console.aws.amazon.com/cloudformation.

2. Choose Create Stack.

3. In the Specify template section, select Upload a template file from your computer, and then
choose Next.

4. In the Specify stack details page, set the following parameters:

a. Set Stack name to AurMySQLTestStack.

b. Under Parameters, set Availability Zones by selecting two availability zones.

c. Under Linux Bastion Host configuration, for Key Name, select a key pair to login to your EC2
instance.

d. In Linux Bastion Host configuration settings, set the Permitted IP range to your IP address.
To connect to EC2 instances in your VPC using Secure Shell (SSH), determine your public IP
address using the service at https://checkip.amazonaws.com. An example of an IP address is
192.0.2.1/32.

Warning

If you use 0.0.0.0/0 for SSH access, you make it possible for all IP addresses to
access your public EC2 instances using SSH. This approach is acceptable for a short
time in a test environment, but it's unsafe for production environments. In production,
authorize only a specific IP address or range of addresses to access your EC2 instances
using SSH.

e. Under Database General configuration, set Database instance class to db.r6g.large.

f. Set Database name to database-test1.

g. For Database master username, enter a name for the master user.

h. Set Manage DB master user password with Secrets Manager to false for this tutorial.

i. For Database password, set a password of your choice. Remember this password for further
steps in the tutorial.

j. Set Multi-AZ deployment to false.

k. Leave all other settings as the default values. Click Next to continue.
(Optional) Create VPC, EC2 instance, and Aurora MySQL cluster using AWS CloudFormation 200

https://console.aws.amazon.com/cloudformation/
https://console.aws.amazon.com/cloudformation/
https://checkip.amazonaws.com

Amazon Aurora User Guide for Aurora

5. In the Configure stack options page, leave all the default options. Click Next to continue.

6. In the Review stack page, select Submit after checking the database and Linux bastion host
options.

After the stack creation process completes, view the stacks with names BastionStack and AMSNS
to note the information you need to connect to the database. For more information, see Viewing
AWS CloudFormation stack data and resources on the AWS Management Console.

Step 3: Connect to an Aurora MySQL DB cluster

You can use any standard SQL client application to connect to the DB cluster. In this example, you
connect to the Aurora MySQL DB cluster using the mysql command line client.

To connect to the Aurora MySQL DB cluster

1. Find the endpoint (DNS name) and port number of the writer instance for your DB cluster.

a. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

b. In the upper-right corner of the Amazon RDS console, choose the AWS Region for the DB
cluster.

c. In the navigation pane, choose Databases.

d. Choose the Aurora MySQL DB cluster name to display its details.

e. On the Connectivity & security tab, copy the endpoint of the writer instance. Also, note
the port number. You need both the endpoint and the port number to connect to the DB
cluster.

Step 3: Connect to an Aurora MySQL DB cluster 201

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/cfn-console-view-stack-data-resources.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/cfn-console-view-stack-data-resources.html
https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Aurora User Guide for Aurora

2. Connect to the EC2 instance that you created earlier by following the steps in Connect to your
Linux instance in the Amazon EC2 User Guide.

We recommend that you connect to your EC2 instance using SSH. If the SSH client utility
is installed on Windows, Linux, or Mac, you can connect to the instance using the following
command format:

ssh -i location_of_pem_file ec2-user@ec2-instance-public-dns-name

For example, suppose that ec2-database-connect-key-pair.pem is
stored in /dir1 on Linux, and the public IPv4 DNS for your EC2 instance is
ec2-12-345-678-90.compute-1.amazonaws.com. Then, your SSH command would look
as follows:

Step 3: Connect to an Aurora MySQL DB cluster 202

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AccessingInstances.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AccessingInstances.html

Amazon Aurora User Guide for Aurora

ssh -i /dir1/ec2-database-connect-key-pair.pem ec2-
user@ec2-12-345-678-90.compute-1.amazonaws.com

3. Get the latest bug fixes and security updates by updating the software on your EC2 instance.
To do so, use the following command.

Note

The -y option installs the updates without asking for confirmation. To examine
updates before installing, omit this option.

sudo dnf update -y

4. To install the mysql command line client from MariaDB on Amazon Linux 2023, run the
following command:

sudo dnf install mariadb105

5. Connect to the Aurora MySQL DB cluster. For example, enter the following command. This
action lets you connect to the Aurora MySQL DB cluster using the MySQL client.

Substitute the endpoint of the writer instance for endpoint, and substitute the master
username that you used for admin. Provide the master password that you used when
prompted for a password.

mysql -h endpoint -P 3306 -u admin -p

After you enter the password for the user, you should see output similar to the following.

Welcome to the MariaDB monitor. Commands end with ; or \g.
Your MySQL connection id is 217
Server version: 8.0.23 Source distribution

Copyright (c) 2000, 2018, Oracle, MariaDB Corporation Ab and others.

Type 'help;' or '\h' for help. Type '\c' to clear the current input statement.

Step 3: Connect to an Aurora MySQL DB cluster 203

Amazon Aurora User Guide for Aurora

MySQL [(none)]>

For more information about connecting to an Aurora MySQL DB cluster, see Connecting to an
Amazon Aurora MySQL DB cluster. If you can't connect to your DB cluster, see Can't connect to
Amazon RDS DB instance.

For security, it is a best practice to use encrypted connections. Only use an unencrypted
MySQL connection when the client and server are in the same VPC and the network is trusted.
For information about using encrypted connections, see Connecting to Aurora MySQL using
SSL.

6. Run SQL commands.

For example, the following SQL command shows the current date and time:

SELECT CURRENT_TIMESTAMP;

Step 4: Delete the EC2 instance and DB cluster

After you connect to and explore the sample EC2 instance and DB cluster that you created, delete
them so you're no longer charged for them.

If you used AWS CloudFormation to create resources, skip this step and go to the next step.

To delete the EC2 instance

1. Sign in to the AWS Management Console and open the Amazon EC2 console at https://
console.aws.amazon.com/ec2/.

2. In the navigation pane, choose Instances.

3. Select the EC2 instance, and choose Instance state, Terminate instance.

4. Choose Terminate when prompted for confirmation.

For more information about deleting an EC2 instance, see Terminate your instance in the Amazon
EC2 User Guide.

Step 4: Delete the EC2 instance and DB cluster 204

https://console.aws.amazon.com/ec2/
https://console.aws.amazon.com/ec2/
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/terminating-instances.html

Amazon Aurora User Guide for Aurora

To delete the DB cluster

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. Choose Databases and then choose the DB instance associated with the DB cluster.

3. For Actions, choose Delete.

4. Clear Create final snapshot?.

5. Complete the acknowledgement and choose Delete.

After all of the DB instances associated with a DB cluster are deleted, the DB cluster is deleted
automatically.

(Optional) Delete the EC2 instance and DB cluster created with
CloudFormation

If you used AWS CloudFormation to create resources, delete the CloudFormation stack after you
connect to and explore the sample EC2 instance and DB cluster, so you're no longer charged for
them.

To delete the CloudFormation resources

1. Open the AWS CloudFormation console.

2. On the Stacks page in the CloudFormation console, select the root stack (the stack without the
name VPCStack, BastionStack or AMSNS).

3. Choose Delete.

4. Select Delete stack when prompted for confirmation.

For more information about deleting a stack in CloudFormation, see Deleting a stack on the AWS
CloudFormation console in the AWS CloudFormation User Guide.

(Optional) Connect your DB cluster to a Lambda function

You can also connect your Aurora MySQL DB cluster to a Lambda serverless compute resource.
Lambda functions allow you to run code without provisioning or managing infrastructure. A
Lambda function also allows you to automatically respond to code execution requests at any scale,

(Optional) Delete the EC2 instance and DB cluster created with CloudFormation 205

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/cfn-console-delete-stack.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/cfn-console-delete-stack.html

Amazon Aurora User Guide for Aurora

from a dozen events a day to hundreds of per second. For more information, see Automatically
connecting a Lambda function and an Aurora DB cluster.

Creating and connecting to an Aurora PostgreSQL DB cluster

This tutorial creates an EC2 instance and an Aurora PostgreSQL DB cluster. The tutorial shows you
how to access the DB cluster from the EC2 instance using a standard PostgreSQL client. As a best
practice, this tutorial creates a private DB cluster in a virtual private cloud (VPC). In most cases,
other resources in the same VPC, such as EC2 instances, can access the DB cluster, but resources
outside of the VPC can't access it.

After you complete the tutorial, there is a public and private subnet in each Availability Zone in
your VPC. In one Availability Zone, the EC2 instance is in the public subnet, and the DB instance is
in the private subnet.

Important

There's no charge for creating an AWS account. However, by completing this tutorial, you
might incur costs for the AWS resources that you use. You can delete these resources after
you complete the tutorial if they are no longer needed.

The following diagram shows the configuration when the tutorial is complete.

Creating and connecting to an Aurora PostgreSQL DB cluster 206

Amazon Aurora User Guide for Aurora

This tutorial allows you to create your resources by using one of the following methods:

1. Use the AWS Management Console ‐ Step 1: Create an EC2 instanceand Step 2: Create an Aurora
PostgreSQL DB cluster

2. Use AWS CloudFormation to create the database instance and EC2 instance ‐ (Optional) Create
VPC, EC2 instance, and Aurora PostgreSQL cluster using AWS CloudFormation

The first method uses Easy create to create a private Aurora PostgreSQL DB cluster with the AWS
Management Console. Here, you specify only the DB engine type, DB instance size, and DB cluster
identifier. Easy create uses the default settings for the other configuration options.

When you use Standard create instead, you can specify more configuration options when
you create a DB cluster. These options include settings for availability, security, backups, and
maintenance. To create a public DB cluster, you must use Standard create. For information, see the
section called “Creating a DB cluster”.

Topics

• Prerequisites

• Step 1: Create an EC2 instance

• Step 2: Create an Aurora PostgreSQL DB cluster

• (Optional) Create VPC, EC2 instance, and Aurora PostgreSQL cluster using AWS CloudFormation

• Step 3: Connect to an Aurora PostgreSQL DB cluster

• Step 4: Delete the EC2 instance and DB cluster

• (Optional) Delete the EC2 instance and DB cluster created with CloudFormation

• (Optional) Connect your DB cluster to a Lambda function

Prerequisites

Before you begin, complete the steps in the following sections:

• Sign up for an AWS account

• Create a user with administrative access

Prerequisites 207

Amazon Aurora User Guide for Aurora

Step 1: Create an EC2 instance

Create an Amazon EC2 instance that you will use to connect to your database.

To create an EC2 instance

1. Sign in to the AWS Management Console and open the Amazon EC2 console at https://
console.aws.amazon.com/ec2/.

2. In the upper-right corner of the AWS Management Console, choose the AWS Region in which
you want to create the EC2 instance.

3. Choose EC2 Dashboard, and then choose Launch instance, as shown in the following image.

Step 1: Create an EC2 instance 208

https://console.aws.amazon.com/ec2/
https://console.aws.amazon.com/ec2/

Amazon Aurora User Guide for Aurora

The Launch an instance page opens.

4. Choose the following settings on the Launch an instance page.

a. Under Name and tags, for Name, enter ec2-database-connect.

b. Under Application and OS Images (Amazon Machine Image), choose Amazon Linux,
and then choose the Amazon Linux 2023 AMI. Keep the default selections for the other
choices.

Step 1: Create an EC2 instance 209

Amazon Aurora User Guide for Aurora

c. Under Instance type, choose t2.micro.

d. Under Key pair (login), choose a Key pair name to use an existing key pair. To create a
new key pair for the Amazon EC2 instance, choose Create new key pair and then use the
Create key pair window to create it.

For more information about creating a new key pair, see Create a key pair in the Amazon
EC2 User Guide.

e. For Allow SSH traffic in Network settings, choose the source of SSH connections to the
EC2 instance.

You can choose My IP if the displayed IP address is correct for SSH connections.
Otherwise, you can determine the IP address to use to connect to EC2 instances in your

Step 1: Create an EC2 instance 210

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/get-set-up-for-amazon-ec2.html#create-a-key-pair

Amazon Aurora User Guide for Aurora

VPC using Secure Shell (SSH). To determine your public IP address, in a different browser
window or tab, you can use the service at https://checkip.amazonaws.com. An example of
an IP address is 192.0.2.1/32.

In many cases, you might connect through an internet service provider (ISP) or from
behind your firewall without a static IP address. If so, make sure to determine the range of
IP addresses used by client computers.

Warning

If you use 0.0.0.0/0 for SSH access, you make it possible for all IP addresses
to access your public EC2 instances using SSH. This approach is acceptable for a
short time in a test environment, but it's unsafe for production environments. In
production, authorize only a specific IP address or range of addresses to access
your EC2 instances using SSH.

The following image shows an example of the Network settings section.

Step 1: Create an EC2 instance 211

https://checkip.amazonaws.com/

Amazon Aurora User Guide for Aurora

f. Leave the default values for the remaining sections.

g. Review a summary of your EC2 instance configuration in the Summary panel, and when
you're ready, choose Launch instance.

5. On the Launch Status page, note the identifier for your new EC2 instance, for example:
i-1234567890abcdef0.

Step 1: Create an EC2 instance 212

Amazon Aurora User Guide for Aurora

6. Choose the EC2 instance identifier to open the list of EC2 instances, and then select your EC2
instance.

7. In the Details tab, note the following values, which you need when you connect using SSH:

a. In Instance summary, note the value for Public IPv4 DNS.

b. In Instance details, note the value for Key pair name.

Step 1: Create an EC2 instance 213

Amazon Aurora User Guide for Aurora

8. Wait until the Instance state for your EC2 instance has a status of Running before continuing.

Step 2: Create an Aurora PostgreSQL DB cluster

In this example, you use Easy create to create an Aurora PostgreSQL DB cluster with a db.t4g.large
DB instance class.

To create an Aurora PostgreSQL DB cluster with Easy create

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the upper-right corner of the Amazon RDS console, choose the AWS Region in which you
want to create the DB cluster.

3. In the navigation pane, choose Databases.

4. Choose Create database, and make sure that Easy create is chosen.

5. In Configuration, choose Aurora (PostgreSQL Compatible) for Engine type.

6. For DB instance size, choose Dev/Test.

7. For DB cluster identifier, enter database-test1.

The Create database page should look similar to the following image.

Step 2: Create an Aurora PostgreSQL DB cluster 214

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Aurora User Guide for Aurora

8. For Master username, enter a name for the user, or keep the default name (postgres).

9. To use an automatically generated master password for the DB cluster, select Auto generate a
password.

To enter your master password, make sure Auto generate a password is cleared, and then
enter the same password in Master password and Confirm password.

10. To set up a connection with the EC2 instance you created previously, open Set up EC2
connection - optional.

Step 2: Create an Aurora PostgreSQL DB cluster 215

Amazon Aurora User Guide for Aurora

Select Connect to an EC2 compute resource. Choose the EC2 instance you created previously.

11. Open View default settings for Easy create.

Step 2: Create an Aurora PostgreSQL DB cluster 216

Amazon Aurora User Guide for Aurora

Step 2: Create an Aurora PostgreSQL DB cluster 217

Amazon Aurora User Guide for Aurora

You can examine the default settings used with Easy create. The Editable after database is
created column shows which options you can change after you create the database.

• If a setting has No in that column, and you want a different setting, you can use Standard
create to create the DB cluster.

• If a setting has Yes in that column, and you want a different setting, you can either use
Standard create to create the DB cluster, or modify the DB cluster after you create it to
change the setting.

12. Choose Create database.

To view the master username and password for the DB cluster, choose View credential details.

You can use the username and password that appears to connect to the DB cluster as the
master user.

Important

You can't view the master user password again. If you don't record it, you might have
to change it.
If you need to change the master user password after the DB cluster is available,
you can modify the DB cluster to do so. For more information about modifying a DB
cluster, see Modifying an Amazon Aurora DB cluster.

13. In the Databases list, choose the name of the new Aurora PostgreSQL DB cluster to show its
details.

The writer instance has a status of Creating until the DB cluster is ready to use.

Step 2: Create an Aurora PostgreSQL DB cluster 218

Amazon Aurora User Guide for Aurora

When the status of the writer instance changes to Available, you can connect to the DB
cluster. Depending on the DB instance class and the amount of storage, it can take up to 20
minutes before the new DB cluster is available.

(Optional) Create VPC, EC2 instance, and Aurora PostgreSQL cluster
using AWS CloudFormation

Instead of using the console to create your VPC, EC2 instance, and Aurora PostgreSQL DB cluster,
you can use AWS CloudFormation to provision AWS resources by treating infrastructure as code. To
help you organize your AWS resources into smaller and more manageable units, you can use the
AWS CloudFormation nested stack functionality. For more information, see Creating a stack on the
AWS CloudFormation console and Working with nested stacks.

Important

AWS CloudFormation is free, but the resources that CloudFormation creates are live. You
incur the standard usage fees for these resources until you terminate them. The total
charges will be minimal. For information about how you might minimize any charges, go to
AWS Free Tier.

To create your resources using the AWS CloudFormation console, complete the following steps:

• Step 1: Download the CloudFormation template

• Step 2: Configure your resources using CloudFormation

Download the CloudFormation template

A CloudFormation template is a JSON or YAML text file that contains the configuration information
about the resources you want to create in the stack. This template also creates a VPC and a bastion
host for you along with the Aurora cluster.

To download the template file, open the following link, Aurora PostgreSQL CloudFormation
template.

In the Github page, click the Download raw file button to save the template YAML file.

(Optional) Create VPC, EC2 instance, and Aurora PostgreSQL cluster using AWS CloudFormation 219

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/cfn-console-create-stack.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/cfn-console-create-stack.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/using-cfn-nested-stacks.html
http://aws.amazon.com/free/
https://github.com/aws-ia/cfn-ps-amazon-aurora-postgresql/blob/main/templates/aurora_postgres-main.template.yaml
https://github.com/aws-ia/cfn-ps-amazon-aurora-postgresql/blob/main/templates/aurora_postgres-main.template.yaml

Amazon Aurora User Guide for Aurora

Configure your resources using CloudFormation

Note

Before starting this process, make sure you have a Key pair for an EC2 instance in your AWS
account. For more information, see Amazon EC2 key pairs and Linux instances.

When you use the AWS CloudFormation template, you must select the correct parameters to make
sure your resources are created properly. Follow the steps below:

1. Sign in to the AWS Management Console and open the AWS CloudFormation console at https://
console.aws.amazon.com/cloudformation.

2. Choose Create Stack.

3. In the Specify template section, select Upload a template file from your computer, and then
choose Next.

4. In the Specify stack details page, set the following parameters:

a. Set Stack name to AurPostgreSQLTestStack.

b. Under Parameters, set Availability Zones by selecting two availability zones.

c. Under Linux Bastion Host configuration, for Key Name, select a key pair to login to your EC2
instance.

d. In Linux Bastion Host configuration settings, set the Permitted IP range to your IP address.
To connect to EC2 instances in your VPC using Secure Shell (SSH), determine your public IP
address using the service at https://checkip.amazonaws.com. An example of an IP address is
192.0.2.1/32.

Warning

If you use 0.0.0.0/0 for SSH access, you make it possible for all IP addresses to
access your public EC2 instances using SSH. This approach is acceptable for a short
time in a test environment, but it's unsafe for production environments. In production,
authorize only a specific IP address or range of addresses to access your EC2 instances
using SSH.

e. Under Database General configuration, set Database instance class to db.t4g.large.

f. Set Database name to database-test1.

(Optional) Create VPC, EC2 instance, and Aurora PostgreSQL cluster using AWS CloudFormation 220

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-key-pairs.html
https://console.aws.amazon.com/cloudformation/
https://console.aws.amazon.com/cloudformation/
https://checkip.amazonaws.com

Amazon Aurora User Guide for Aurora

g. For Database master username, enter a name for the master user.

h. Set Manage DB master user password with Secrets Manager to false for this tutorial.

i. For Database password, set a password of your choice. Remember this password for further
steps in the tutorial.

j. Set Multi-AZ deployment to false.

k. Leave all other settings as the default values. Click Next to continue.

5. In the Configure stack options page, leave all the default options. Click Next to continue.

6. In the Review stack page, select Submit after checking the database and Linux bastion host
options.

After the stack creation process completes, view the stacks with names BastionStack and APGNS
to note the information you need to connect to the database. For more information, see Viewing
AWS CloudFormation stack data and resources on the AWS Management Console.

Step 3: Connect to an Aurora PostgreSQL DB cluster

You can use any standard PostgreSQL client application to connect to the DB cluster. In this
example, you connect to the Aurora PostgreSQL DB cluster using the psql command line client.

To connect to the Aurora PostgreSQL DB cluster

1. Find the endpoint (DNS name) and port number of the writer instance for your DB cluster.

a. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

b. In the upper-right corner of the Amazon RDS console, choose the AWS Region for the DB
cluster.

c. In the navigation pane, choose Databases.

d. Choose the Aurora PostgreSQL DB cluster name to display its details.

e. On the Connectivity & security tab, copy the endpoint of the writer instance. Also, note
the port number. You need both the endpoint and the port number to connect to the DB
cluster.

Step 3: Connect to an Aurora PostgreSQL DB cluster 221

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/cfn-console-view-stack-data-resources.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/cfn-console-view-stack-data-resources.html
https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Aurora User Guide for Aurora

2. Connect to the EC2 instance that you created earlier by following the steps in Connect to your
Linux instance in the Amazon EC2 User Guide.

We recommend that you connect to your EC2 instance using SSH. If the SSH client utility
is installed on Windows, Linux, or Mac, you can connect to the instance using the following
command format:

ssh -i location_of_pem_file ec2-user@ec2-instance-public-dns-name

For example, assume that ec2-database-connect-key-pair.pem is
stored in /dir1 on Linux, and the public IPv4 DNS for your EC2 instance is
ec2-12-345-678-90.compute-1.amazonaws.com. Your SSH command would look as
follows:

ssh -i /dir1/ec2-database-connect-key-pair.pem ec2-
user@ec2-12-345-678-90.compute-1.amazonaws.com

3. Get the latest bug fixes and security updates by updating the software on your EC2 instance.
To do so, use the following command.

Step 3: Connect to an Aurora PostgreSQL DB cluster 222

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AccessingInstances.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AccessingInstances.html

Amazon Aurora User Guide for Aurora

Note

The -y option installs the updates without asking for confirmation. To examine
updates before installing, omit this option.

sudo dnf update -y

4. Install the psql command line client from PostgreSQL on Amazon Linux 2023, using the
following command:

sudo dnf install postgresql15

5. Connect to the Aurora PostgreSQL DB cluster. For example, enter the following command. This
action lets you connect to the Aurora PostgreSQL DB cluster using the psql client.

Substitute the endpoint of the writer instance for endpoint, substitute the database name
--dbname that you want to connect to for postgres, and substitute the master username
that you used for postgres. Provide the master password that you used when prompted for a
password.

psql --host=endpoint --port=5432 --dbname=postgres --username=postgres

After you enter the password for the user, you should see output similar to the following.

psql (14.3, server 14.6)
SSL connection (protocol: TLSv1.2, cipher: ECDHE-RSA-AES256-GCM-SHA384, bits: 256,
 compression: off)
Type "help" for help.

postgres=>

For more information about connecting to an Aurora PostgreSQL DB cluster, see Connecting
to an Amazon Aurora PostgreSQL DB cluster. If you can't connect to your DB cluster, see Can't
connect to Amazon RDS DB instance.

For security, it is a best practice to use encrypted connections. Only use an unencrypted
PostgreSQL connection when the client and server are in the same VPC and the network is

Step 3: Connect to an Aurora PostgreSQL DB cluster 223

Amazon Aurora User Guide for Aurora

trusted. For information about using encrypted connections, see Securing Aurora PostgreSQL
data with SSL/TLS.

6. Run SQL commands.

For example, the following SQL command shows the current date and time:

SELECT CURRENT_TIMESTAMP;

Step 4: Delete the EC2 instance and DB cluster

After you connect to and explore the sample EC2 instance and DB cluster that you created, delete
them so you're no longer charged for them.

If you used AWS CloudFormation to create resources, skip this step and go to the next step.

To delete the EC2 instance

1. Sign in to the AWS Management Console and open the Amazon EC2 console at https://
console.aws.amazon.com/ec2/.

2. In the navigation pane, choose Instances.

3. Select the EC2 instance, and choose Instance state, Terminate instance.

4. Choose Terminate when prompted for confirmation.

For more information about deleting an EC2 instance, see Terminate your instance in the Amazon
EC2 User Guide.

To delete a DB cluster

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. Choose Databases and then choose the DB instance associated with the DB cluster.

3. For Actions, choose Delete.

4. Choose Delete.

After all of the DB instances associated with a DB cluster are deleted, the DB cluster is deleted
automatically.

Step 4: Delete the EC2 instance and DB cluster 224

https://console.aws.amazon.com/ec2/
https://console.aws.amazon.com/ec2/
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/terminating-instances.html
https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Aurora User Guide for Aurora

(Optional) Delete the EC2 instance and DB cluster created with
CloudFormation

If you used AWS CloudFormation to create resources, delete the CloudFormation stack after you
connect to and explore the sample EC2 instance and DB cluster, so you're no longer charged for
them.

To delete the CloudFormation resources

1. Open the AWS CloudFormation console.

2. On the Stacks page in the CloudFormation console, select the root stack (the stack without the
name VPCStack, BastionStack or APGNS).

3. Choose Delete.

4. Select Delete stack when prompted for confirmation.

For more information about deleting a stack in CloudFormation, see Deleting a stack on the AWS
CloudFormation console in the AWS CloudFormation User Guide.

(Optional) Connect your DB cluster to a Lambda function

You can also connect your Aurora PostgreSQL DB cluster to a Lambda serverless compute resource.
Lambda functions allow you to run code without provisioning or managing infrastructure. A
Lambda function also allows you to automatically respond to code execution requests at any scale,
from a dozen events a day to hundreds of per second. For more information, see Automatically
connecting a Lambda function and an Aurora DB cluster.

(Optional) Delete the EC2 instance and DB cluster created with CloudFormation 225

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/cfn-console-delete-stack.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/cfn-console-delete-stack.html

Amazon Aurora User Guide for Aurora

Tutorial: Create a web server and an Amazon Aurora DB cluster

This tutorial shows you how to install an Apache web server with PHP and create a MariaDB,
MySQL, or PostgreSQL database. The web server runs on an Amazon EC2 instance using Amazon
Linux 2023, and you can choose between an Aurora MySQL or Aurora PostgreSQL DB cluster. Both
the Amazon EC2 instance and the DB cluster run in a virtual private cloud (VPC) based on the
Amazon VPC service.

Important

There's no charge for creating an AWS account. However, by completing this tutorial, you
might incur costs for the AWS resources you use. You can delete these resources after you
complete the tutorial if they are no longer needed.

Note

This tutorial works with Amazon Linux 2023 and might not work for other versions of
Linux.

In the tutorial that follows, you create an EC2 instance that uses the default VPC, subnets, and
security group for your AWS account. This tutorial shows you how to create the DB cluster and
automatically set up connectivity with the EC2 instance that you created. The tutorial then shows
you how to install the web server on the EC2 instance. You connect your web server to your DB
cluster in the VPC using the DB cluster writer endpoint.

1. Launch an EC2 instance

2. Create an Amazon Aurora DB cluster

3. Install a web server on your EC2 instance

The following diagram shows the configuration when the tutorial is complete.

Tutorial: Create a web server and an Amazon Aurora DB cluster 226

Amazon Aurora User Guide for Aurora

Note

After you complete the tutorial, there is a public and private subnet in each Availability
Zone in your VPC. This tutorial uses the default VPC for your AWS account and
automatically sets up connectivity between your EC2 instance and DB cluster. If you would
rather configure a new VPC for this scenario instead, complete the tasks in Tutorial: Create
a VPC for use with a DB cluster (IPv4 only).

Launch an EC2 instance

Create an Amazon EC2 instance in the public subnet of your VPC.

Launch an EC2 instance 227

Amazon Aurora User Guide for Aurora

To launch an EC2 instance

1. Sign in to the AWS Management Console and open the Amazon EC2 console at https://
console.aws.amazon.com/ec2/.

2. In the upper-right corner of the AWS Management Console, choose the AWS Region where you
want to create the EC2 instance.

3. Choose EC2 Dashboard, and then choose Launch instance, as shown following.

4. Choose the following settings in the Launch an instance page.

Launch an EC2 instance 228

https://console.aws.amazon.com/ec2/
https://console.aws.amazon.com/ec2/

Amazon Aurora User Guide for Aurora

a. Under Name and tags, for Name, enter tutorial-ec2-instance-web-server.

b. Under Application and OS Images (Amazon Machine Image), choose Amazon Linux, and
then choose the Amazon Linux 2023 AMI. Keep the defaults for the other choices.

c. Under Instance type, choose t2.micro.

d. Under Key pair (login), choose a Key pair name to use an existing key pair. To create a
new key pair for the Amazon EC2 instance, choose Create new key pair and then use the
Create key pair window to create it.

For more information about creating a new key pair, see Create a key pair in the Amazon
EC2 User Guide.

Launch an EC2 instance 229

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/get-set-up-for-amazon-ec2.html#create-a-key-pair

Amazon Aurora User Guide for Aurora

e. Under Network settings, set these values and keep the other values as their defaults:

• For Allow SSH traffic from, choose the source of SSH connections to the EC2 instance.

You can choose My IP if the displayed IP address is correct for SSH connections.

Otherwise, you can determine the IP address to use to connect to EC2 instances in
your VPC using Secure Shell (SSH). To determine your public IP address, in a different
browser window or tab, you can use the service at https://checkip.amazonaws.com. An
example of an IP address is 203.0.113.25/32.

In many cases, you might connect through an internet service provider (ISP) or from
behind your firewall without a static IP address. If so, make sure to determine the range
of IP addresses used by client computers.

Warning

If you use 0.0.0.0/0 for SSH access, you make it possible for all IP addresses
to access your public instances using SSH. This approach is acceptable for a
short time in a test environment, but it's unsafe for production environments. In
production, authorize only a specific IP address or range of addresses to access
your instances using SSH.

• Turn on Allow HTTPs traffic from the internet.

• Turn on Allow HTTP traffic from the internet.

Launch an EC2 instance 230

https://checkip.amazonaws.com

Amazon Aurora User Guide for Aurora

f. Leave the default values for the remaining sections.

g. Review a summary of your instance configuration in the Summary panel, and when you're
ready, choose Launch instance.

5. On the Launch Status page, note the identifier for your new EC2 instance, for example:
i-1234567890abcdef0.

Launch an EC2 instance 231

Amazon Aurora User Guide for Aurora

6. Choose the EC2 instance identifier to open the list of EC2 instances, and then select your EC2
instance.

7. In the Details tab, note the following values, which you need when you connect using SSH:

a. In Instance summary, note the value for Public IPv4 DNS.

b. In Instance details, note the value for Key pair name.

Launch an EC2 instance 232

Amazon Aurora User Guide for Aurora

8. Wait until Instance state for your instance is Running before continuing.

9. Complete Create an Amazon Aurora DB cluster.

Create an Amazon Aurora DB cluster

Create an Amazon Aurora MySQL or Aurora PostgreSQL DB cluster that maintains the data used by
a web application.

Aurora MySQL

To create an Aurora MySQL DB cluster

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the upper-right corner of the AWS Management Console, make sure the AWS Region is
the same as the one where you created your EC2 instance.

3. In the navigation pane, choose Databases.

4. Choose Create database.

5. On the Create database page, choose Standard create.

6. For Engine options, choose Aurora (MySQL Compatible).

Create a DB cluster 233

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Aurora User Guide for Aurora

Keep the default values for Version and the other engine options.

7. In the Templates section, choose Dev/Test.

Create a DB cluster 234

Amazon Aurora User Guide for Aurora

8. In the Settings section, set these values:

• DB cluster identifier – Type tutorial-db-cluster.

• Master username – Type tutorial_user.

• Auto generate a password – Leave the option turned off.

• Master password – Type a password.

• Confirm password – Retype the password.

9. In the Instance configuration section, set these values:

• Burstable classes (includes t classes)

• db.t3.small or db.t3.medium

Create a DB cluster 235

Amazon Aurora User Guide for Aurora

Note

We recommend using the T DB instance classes only for development and test
servers, or other non-production servers. For more details on the T instance
classes, see DB instance class types.

10. In the Availability and durability section, use the default values.

11. In the Connectivity section, set these values and keep the other values as their defaults:

• For Compute resource, choose Connect to an EC2 compute resource.

• For EC2 instance, choose the EC2 instance you created previously, such as tutorial-ec2-
instance-web-server.

Create a DB cluster 236

Amazon Aurora User Guide for Aurora

12. Open the Additional configuration section, and enter sample for Initial database name.
Keep the default settings for the other options.

13. To create your Aurora MySQL DB cluster, choose Create database.

Your new DB cluster appears in the Databases list with the status Creating.

14. Wait for the Status of your new DB cluster to show as Available. Then choose the DB
cluster name to show its details.

15. In the Connectivity & security section, view the Endpoint and Port of the writer DB
instance.

Create a DB cluster 237

Amazon Aurora User Guide for Aurora

Note the endpoint and port for your writer DB instance. You use this information to
connect your web server to your DB cluster.

16. Complete Install a web server on your EC2 instance.

Aurora PostgreSQL

To create an Aurora PostgreSQL DB cluster

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the upper-right corner of the AWS Management Console, make sure the AWS Region is
the same as the one where you created your EC2 instance.

3. In the navigation pane, choose Databases.

4. Choose Create database.

Create a DB cluster 238

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Aurora User Guide for Aurora

5. On the Create database page, choose Standard create.

6. For Engine options, choose Aurora (PostgreSQL Compatible).

Keep the default values for Version and the other engine options.

7. In the Templates section, choose Dev/Test.

Create a DB cluster 239

Amazon Aurora User Guide for Aurora

8. In the Settings section, set these values:

• DB cluster identifier – Type tutorial-db-cluster.

• Master username – Type tutorial_user.

• Auto generate a password – Leave the option turned off.

• Master password – Type a password.

• Confirm password – Retype the password.

Create a DB cluster 240

Amazon Aurora User Guide for Aurora

9. In the Instance configuration section, set these values:

• Burstable classes (includes t classes)

• db.t3.small or db.t3.medium

Note

We recommend using the T DB instance classes only for development and test
servers, or other non-production servers. For more details on the T instance
classes, see DB instance class types.

Create a DB cluster 241

Amazon Aurora User Guide for Aurora

10. In the Availability and durability section, use the default values.

11. In the Connectivity section, set these values and keep the other values as their defaults:

• For Compute resource, choose Connect to an EC2 compute resource.

• For EC2 instance, choose the EC2 instance you created previously, such as tutorial-ec2-
instance-web-server.

Create a DB cluster 242

Amazon Aurora User Guide for Aurora

12. Open the Additional configuration section, and enter sample for Initial database name.
Keep the default settings for the other options.

13. To create your Aurora PostgreSQL DB cluster, choose Create database.

Your new DB cluster appears in the Databases list with the status Creating.

14. Wait for the Status of your new DB cluster to show as Available. Then choose the DB
cluster name to show its details.

15. In the Connectivity & security section, view the Endpoint and Port of the writer DB
instance.

Create a DB cluster 243

Amazon Aurora User Guide for Aurora

Note the endpoint and port for your writer DB instance. You use this information to
connect your web server to your DB cluster.

16. Complete Install a web server on your EC2 instance.

Install a web server on your EC2 instance

Install a web server on the EC2 instance you created in Launch an EC2 instance. The web server
connects to the Amazon Aurora DB cluster that you created in Create an Amazon Aurora DB cluster.

Install an Apache web server with PHP and MariaDB

Connect to your EC2 instance and install the web server.

To connect to your EC2 instance and install the Apache web server with PHP

1. Connect to the EC2 instance that you created earlier by following the steps in Connect to your
Linux instance in the Amazon EC2 User Guide.

Install a web server 244

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AccessingInstances.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AccessingInstances.html

Amazon Aurora User Guide for Aurora

We recommend that you connect to your EC2 instance using SSH. If the SSH client utility
is installed on Windows, Linux, or Mac, you can connect to the instance using the following
command format:

ssh -i location_of_pem_file ec2-user@ec2-instance-public-dns-name

For example, assume that ec2-database-connect-key-pair.pem is
stored in /dir1 on Linux, and the public IPv4 DNS for your EC2 instance is
ec2-12-345-678-90.compute-1.amazonaws.com. Your SSH command would look as
follows:

ssh -i /dir1/ec2-database-connect-key-pair.pem ec2-
user@ec2-12-345-678-90.compute-1.amazonaws.com

2. Get the latest bug fixes and security updates by updating the software on your EC2 instance.
To do this, use the following command.

Note

The -y option installs the updates without asking for confirmation. To examine
updates before installing, omit this option.

sudo dnf update -y

3. After the updates complete, install the Apache web server, PHP, and MariaDB or PostgreSQL
software using the following commands. This command installs multiple software packages
and related dependencies at the same time.

MariaDB & MySQL

sudo dnf install -y httpd php php-mysqli mariadb105

PostgreSQL

sudo dnf install -y httpd php php-pgsql postgresql15

Install a web server 245

Amazon Aurora User Guide for Aurora

If you receive an error, your instance probably wasn't launched with an Amazon Linux 2023
AMI. You might be using the Amazon Linux 2 AMI instead. You can view your version of
Amazon Linux using the following command.

cat /etc/system-release

For more information, see Updating instance software.

4. Start the web server with the command shown following.

sudo systemctl start httpd

You can test that your web server is properly installed and started. To do this, enter the public
Domain Name System (DNS) name of your EC2 instance in the address bar of a web browser,
for example: http://ec2-42-8-168-21.us-west-1.compute.amazonaws.com. If your
web server is running, then you see the Apache test page.

If you don't see the Apache test page, check your inbound rules for the VPC security group that
you created in Tutorial: Create a VPC for use with a DB cluster (IPv4 only). Make sure that your
inbound rules include one allowing HTTP (port 80) access for the IP address to connect to the
web server.

Note

The Apache test page appears only when there is no content in the document root
directory, /var/www/html. After you add content to the document root directory,
your content appears at the public DNS address of your EC2 instance. Before this point,
it appears on the Apache test page.

5. Configure the web server to start with each system boot using the systemctl command.

sudo systemctl enable httpd

To allow ec2-user to manage files in the default root directory for your Apache web server,
modify the ownership and permissions of the /var/www directory. There are many ways to

Install a web server 246

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/install-updates.html

Amazon Aurora User Guide for Aurora

accomplish this task. In this tutorial, you add ec2-user to the apache group, to give the apache
group ownership of the /var/www directory and assign write permissions to the group.

To set file permissions for the Apache web server

1. Add the ec2-user user to the apache group.

sudo usermod -a -G apache ec2-user

2. Log out to refresh your permissions and include the new apache group.

exit

3. Log back in again and verify that the apache group exists with the groups command.

groups

Your output looks similar to the following:

ec2-user adm wheel apache systemd-journal

4. Change the group ownership of the /var/www directory and its contents to the apache
group.

sudo chown -R ec2-user:apache /var/www

5. Change the directory permissions of /var/www and its subdirectories to add group write
permissions and set the group ID on subdirectories created in the future.

sudo chmod 2775 /var/www
find /var/www -type d -exec sudo chmod 2775 {} \;

6. Recursively change the permissions for files in the /var/www directory and its subdirectories
to add group write permissions.

find /var/www -type f -exec sudo chmod 0664 {} \;

Install a web server 247

Amazon Aurora User Guide for Aurora

Now, ec2-user (and any future members of the apache group) can add, delete, and edit files in
the Apache document root. This makes it possible for you to add content, such as a static website
or a PHP application.

Note

A web server running the HTTP protocol provides no transport security for the data
that it sends or receives. When you connect to an HTTP server using a web browser,
much information is visible to eavesdroppers anywhere along the network pathway. This
information includes the URLs that you visit, the content of web pages that you receive,
and the contents (including passwords) of any HTML forms.
The best practice for securing your web server is to install support for HTTPS (HTTP
Secure). This protocol protects your data with SSL/TLS encryption. For more information,
see Tutorial: Configure SSL/TLS with the Amazon Linux AMI in the Amazon EC2 User Guide.

Connect your Apache web server to your DB cluster

Next, you add content to your Apache web server that connects to your Amazon Aurora DB cluster.

To add content to the Apache web server that connects to your DB cluster

1. While still connected to your EC2 instance, change the directory to /var/www and create a
new subdirectory named inc.

cd /var/www
mkdir inc
cd inc

2. Create a new file in the inc directory named dbinfo.inc, and then edit the file by calling
nano (or the editor of your choice).

>dbinfo.inc
nano dbinfo.inc

3. Add the following contents to the dbinfo.inc file. Here, db_instance_endpoint is DB
cluster writer endpoint, without the port, for your DB cluster.

Install a web server 248

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/SSL-on-amazon-linux-ami.html

Amazon Aurora User Guide for Aurora

Note

We recommend placing the user name and password information in a folder that isn't
part of the document root for your web server. Doing this reduces the possibility of
your security information being exposed.
Make sure to change master password to a suitable password in your application.

<?php

define('DB_SERVER', 'db_cluster_writer_endpoint');
define('DB_USERNAME', 'tutorial_user');
define('DB_PASSWORD', 'master password');
define('DB_DATABASE', 'sample');
?>

4. Save and close the dbinfo.inc file. If you are using nano, save and close the file by using Ctrl
+S and Ctrl+X.

5. Change the directory to /var/www/html.

cd /var/www/html

6. Create a new file in the html directory named SamplePage.php, and then edit the file by
calling nano (or the editor of your choice).

>SamplePage.php
nano SamplePage.php

7. Add the following contents to the SamplePage.php file:

MariaDB & MySQL

<?php include "../inc/dbinfo.inc"; ?>
<html>
<body>
<h1>Sample page</h1>
<?php

 /* Connect to MySQL and select the database. */

Install a web server 249

Amazon Aurora User Guide for Aurora

 $connection = mysqli_connect(DB_SERVER, DB_USERNAME, DB_PASSWORD);

 if (mysqli_connect_errno()) echo "Failed to connect to MySQL: " .
 mysqli_connect_error();

 $database = mysqli_select_db($connection, DB_DATABASE);

 /* Ensure that the EMPLOYEES table exists. */
 VerifyEmployeesTable($connection, DB_DATABASE);

 /* If input fields are populated, add a row to the EMPLOYEES table. */
 $employee_name = htmlentities($_POST['NAME']);
 $employee_address = htmlentities($_POST['ADDRESS']);

 if (strlen($employee_name) || strlen($employee_address)) {
 AddEmployee($connection, $employee_name, $employee_address);
 }
?>

<!-- Input form -->
<form action="<?PHP echo $_SERVER['SCRIPT_NAME'] ?>" method="POST">
 <table border="0">
 <tr>
 <td>NAME</td>
 <td>ADDRESS</td>
 </tr>
 <tr>
 <td>
 <input type="text" name="NAME" maxlength="45" size="30" />
 </td>
 <td>
 <input type="text" name="ADDRESS" maxlength="90" size="60" />
 </td>
 <td>
 <input type="submit" value="Add Data" />
 </td>
 </tr>
 </table>
</form>

<!-- Display table data. -->
<table border="1" cellpadding="2" cellspacing="2">
 <tr>
 <td>ID</td>

Install a web server 250

Amazon Aurora User Guide for Aurora

 <td>NAME</td>
 <td>ADDRESS</td>
 </tr>

<?php

$result = mysqli_query($connection, "SELECT * FROM EMPLOYEES");

while($query_data = mysqli_fetch_row($result)) {
 echo "<tr>";
 echo "<td>",$query_data[0], "</td>",
 "<td>",$query_data[1], "</td>",
 "<td>",$query_data[2], "</td>";
 echo "</tr>";
}
?>

</table>

<!-- Clean up. -->
<?php

 mysqli_free_result($result);
 mysqli_close($connection);

?>

</body>
</html>

<?php

/* Add an employee to the table. */
function AddEmployee($connection, $name, $address) {
 $n = mysqli_real_escape_string($connection, $name);
 $a = mysqli_real_escape_string($connection, $address);

 $query = "INSERT INTO EMPLOYEES (NAME, ADDRESS) VALUES ('$n', '$a');";

 if(!mysqli_query($connection, $query)) echo("<p>Error adding employee data.</
p>");
}

Install a web server 251

Amazon Aurora User Guide for Aurora

/* Check whether the table exists and, if not, create it. */
function VerifyEmployeesTable($connection, $dbName) {
 if(!TableExists("EMPLOYEES", $connection, $dbName))
 {
 $query = "CREATE TABLE EMPLOYEES (
 ID int(11) UNSIGNED AUTO_INCREMENT PRIMARY KEY,
 NAME VARCHAR(45),
 ADDRESS VARCHAR(90)
)";

 if(!mysqli_query($connection, $query)) echo("<p>Error creating table.</
p>");
 }
}

/* Check for the existence of a table. */
function TableExists($tableName, $connection, $dbName) {
 $t = mysqli_real_escape_string($connection, $tableName);
 $d = mysqli_real_escape_string($connection, $dbName);

 $checktable = mysqli_query($connection,
 "SELECT TABLE_NAME FROM information_schema.TABLES WHERE TABLE_NAME = '$t'
 AND TABLE_SCHEMA = '$d'");

 if(mysqli_num_rows($checktable) > 0) return true;

 return false;
}
?>

PostgreSQL

<?php include "../inc/dbinfo.inc"; ?>

<html>
<body>
<h1>Sample page</h1>
<?php

/* Connect to PostgreSQL and select the database. */
$constring = "host=" . DB_SERVER . " dbname=" . DB_DATABASE . " user=" .
 DB_USERNAME . " password=" . DB_PASSWORD ;

Install a web server 252

Amazon Aurora User Guide for Aurora

$connection = pg_connect($constring);

if (!$connection){
 echo "Failed to connect to PostgreSQL";
 exit;
}

/* Ensure that the EMPLOYEES table exists. */
VerifyEmployeesTable($connection, DB_DATABASE);

/* If input fields are populated, add a row to the EMPLOYEES table. */
$employee_name = htmlentities($_POST['NAME']);
$employee_address = htmlentities($_POST['ADDRESS']);

if (strlen($employee_name) || strlen($employee_address)) {
 AddEmployee($connection, $employee_name, $employee_address);
}

?>

<!-- Input form -->
<form action="<?PHP echo $_SERVER['SCRIPT_NAME'] ?>" method="POST">
 <table border="0">
 <tr>
 <td>NAME</td>
 <td>ADDRESS</td>
 </tr>
 <tr>
 <td>
 <input type="text" name="NAME" maxlength="45" size="30" />
 </td>
 <td>
 <input type="text" name="ADDRESS" maxlength="90" size="60" />
 </td>
 <td>
 <input type="submit" value="Add Data" />
 </td>
 </tr>
 </table>
</form>
<!-- Display table data. -->
<table border="1" cellpadding="2" cellspacing="2">
 <tr>
 <td>ID</td>

Install a web server 253

Amazon Aurora User Guide for Aurora

 <td>NAME</td>
 <td>ADDRESS</td>
 </tr>

<?php

$result = pg_query($connection, "SELECT * FROM EMPLOYEES");

while($query_data = pg_fetch_row($result)) {
 echo "<tr>";
 echo "<td>",$query_data[0], "</td>",
 "<td>",$query_data[1], "</td>",
 "<td>",$query_data[2], "</td>";
 echo "</tr>";
}
?>
</table>

<!-- Clean up. -->
<?php

 pg_free_result($result);
 pg_close($connection);
?>
</body>
</html>

<?php

/* Add an employee to the table. */
function AddEmployee($connection, $name, $address) {
 $n = pg_escape_string($name);
 $a = pg_escape_string($address);
 echo "Forming Query";
 $query = "INSERT INTO EMPLOYEES (NAME, ADDRESS) VALUES ('$n', '$a');";

 if(!pg_query($connection, $query)) echo("<p>Error adding employee data.</
p>");
}

/* Check whether the table exists and, if not, create it. */
function VerifyEmployeesTable($connection, $dbName) {
 if(!TableExists("EMPLOYEES", $connection, $dbName))

Install a web server 254

Amazon Aurora User Guide for Aurora

 {
 $query = "CREATE TABLE EMPLOYEES (
 ID serial PRIMARY KEY,
 NAME VARCHAR(45),
 ADDRESS VARCHAR(90)
)";

 if(!pg_query($connection, $query)) echo("<p>Error creating table.</p>");
 }
}
/* Check for the existence of a table. */
function TableExists($tableName, $connection, $dbName) {
 $t = strtolower(pg_escape_string($tableName)); //table name is case sensitive
 $d = pg_escape_string($dbName); //schema is 'public' instead of 'sample' db
 name so not using that

 $query = "SELECT TABLE_NAME FROM information_schema.TABLES WHERE TABLE_NAME =
 '$t';";
 $checktable = pg_query($connection, $query);

 if (pg_num_rows($checktable) >0) return true;
 return false;

}
?>

8. Save and close the SamplePage.php file.

9. Verify that your web server successfully connects to your DB cluster by opening a web browser
and browsing to http://EC2 instance endpoint/SamplePage.php, for example:
http://ec2-12-345-67-890.us-west-2.compute.amazonaws.com/SamplePage.php.

You can use SamplePage.php to add data to your DB cluster. The data that you add is then
displayed on the page. To verify that the data was inserted into the table, install MySQL client on
the Amazon EC2 instance. Then connect to the DB cluster and query the table.

For information about connecting to a DB cluster, see Connecting to an Amazon Aurora DB cluster.

To make sure that your DB cluster is as secure as possible, verify that sources outside of the VPC
can't connect to your DB cluster.

After you have finished testing your web server and your database, you should delete your DB
cluster and your Amazon EC2 instance.

Install a web server 255

Amazon Aurora User Guide for Aurora

• To delete a DB cluster, follow the instructions in Deleting Aurora DB clusters and DB instances.
You don't need to create a final snapshot.

• To terminate an Amazon EC2 instance, follow the instruction in Terminate your instance in the
Amazon EC2 User Guide.

Install a web server 256

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/terminating-instances.html

Amazon Aurora User Guide for Aurora

Amazon Aurora tutorials and sample code

The AWS documentation includes several tutorials that guide you through common Amazon
Aurora use cases. Many of these tutorials show you how to use Amazon Aurora with other AWS
services. In addition, you can access sample code in GitHub.

Note

You can find more tutorials at the AWS Database Blog. For information about training, see
AWS Training and Certification.

Topics

• Tutorials in this guide

• Tutorials in other AWS guides

• AWS workshop and lab content portal for Amazon Aurora PostgreSQL

• AWS workshop and lab content portal for Amazon Aurora MySQL

• Tutorials and sample code in GitHub

• Using this service with an AWS SDK

Tutorials in this guide

The following tutorials in this guide show you how to perform common tasks with Amazon Aurora:

• Tutorial: Create a VPC for use with a DB cluster (IPv4 only)

Learn how to include a DB cluster in a virtual private cloud (VPC) based on the Amazon VPC
service. In this case, the VPC shares data with a web server that is running on an Amazon EC2
instance in the same VPC.

• Tutorial: Create a VPC for use with a DB cluster (dual-stack mode)

Learn how to include a DB cluster in a virtual private cloud (VPC) based on the Amazon VPC
service. In this case, the VPC shares data with an Amazon EC2 instance in the same VPC. In this
tutorial, you create the VPC for this scenario that works with a database running in dual-stack
mode.

Tutorials in this guide 257

https://aws.amazon.com/blogs/database/
https://www.aws.training/

Amazon Aurora User Guide for Aurora

• Tutorial: Create a web server and an Amazon Aurora DB cluster

Learn how to install an Apache web server with PHP and create a MySQL database. The web
server runs on an Amazon EC2 instance using Amazon Linux, and the MySQL database is an
Aurora MySQL DB cluster. Both the Amazon EC2 instance and the DB cluster run in an Amazon
VPC.

• Tutorial: Restore an Amazon Aurora DB cluster from a DB cluster snapshot

Learn how to restore a DB cluster from a DB cluster snapshot.

• Tutorial: Use tags to specify which Aurora DB clusters to stop

Learn how to use tags to specify which Aurora DB clusters to stop.

• Tutorial: Log DB instance state changes using Amazon EventBridge

Learn how to log a DB instance state change using Amazon EventBridge and AWS Lambda.

Tutorials in other AWS guides

The following tutorials in other AWS guides show you how to perform common tasks with Amazon
Aurora:

Note

Some of the tutorials use Amazon RDS DB instances, but they can be adapted to use Aurora
DB clusters.

• Tutorial: Aurora Serverless in the AWS AppSync Developer Guide

Learn how to use AWS AppSync to provide a data source for running SQL commands against
Aurora Serverless DB clusters with the Data API enabled. You can use AWS AppSync resolvers to
run SQL statements against the Data API with GraphQL queries, mutations, and subscriptions.

• Tutorial: Rotating a Secret for an AWS Database in the AWS Secrets Manager User Guide

Learn how to create a secret for an AWS database and configure the secret to rotate on a
schedule. You trigger one rotation manually, and then confirm that the new version of the secret
continues to provide access.

• Tutorials and samples in the AWS Elastic Beanstalk Developer Guide

Tutorials in other AWS guides 258

https://docs.aws.amazon.com/appsync/latest/devguide/tutorial-rds-resolvers.html
https://docs.aws.amazon.com/secretsmanager/latest/userguide/tutorials_db-rotate.html
https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/tutorials.html

Amazon Aurora User Guide for Aurora

Learn how to deploy applications that use Amazon RDS databases with AWS Elastic Beanstalk.

• Using Data from an Amazon RDS Database to Create an Amazon ML Datasource in the Amazon
Machine Learning Developer Guide

Learn how to create an Amazon Machine Learning (Amazon ML) datasource object from data
stored in a MySQL DB instance.

• Manually Enabling Access to an Amazon RDS Instance in a VPC in the Amazon QuickSight User
Guide

Learn how to enable Amazon QuickSight access to an Amazon RDS DB instance in a VPC.

AWS workshop and lab content portal for Amazon Aurora
PostgreSQL

The following collection of workshops and other hands-on content helps you to gain an
understanding of the Amazon Aurora PostgreSQL features and capabilities:

• Creating an Aurora Cluster

Learn how to create an Amazon Aurora PostgreSQL cluster manually.

• Creating a Cloud9 Cloud-based IDE environment to connect to your database

Learn how to configure Cloud9 and initialize the PostgreSQL database.

• Fast Cloning

Learn how to create an Aurora fast clone.

• Query Plan Management

Learn how to control execution plans for a set of statements using query plan management.

• Cluster Cache Management

Learn about Cluster Cache Management feature in Aurora PostgreSQL.

• Database Activity Streaming

Learn how to monitor and audit your database activity with this feature.

• Using Performance Insights

AWS workshop and lab content portal for Amazon Aurora PostgreSQL 259

https://docs.aws.amazon.com/machine-learning/latest/dg/using-amazon-rds-with-amazon-ml.html
https://docs.aws.amazon.com/quicksight/latest/user/rds-vpc-access.html
https://catalog.us-east-1.prod.workshops.aws/workshops/098605dc-8eee-4e84-85e9-c5c6c9e43de2/en-US/lab1-create-aurora-cluster
https://catalog.us-east-1.prod.workshops.aws/workshops/098605dc-8eee-4e84-85e9-c5c6c9e43de2/en-US/lab1-5-client
https://catalog.us-east-1.prod.workshops.aws/workshops/098605dc-8eee-4e84-85e9-c5c6c9e43de2/en-US/lab2-fast-cloning
https://catalog.us-east-1.prod.workshops.aws/workshops/098605dc-8eee-4e84-85e9-c5c6c9e43de2/en-US/lab3-query-plan-mgmt
https://catalog.us-east-1.prod.workshops.aws/workshops/098605dc-8eee-4e84-85e9-c5c6c9e43de2/en-US/lab4-cluster-cache-mgmt
https://catalog.us-east-1.prod.workshops.aws/workshops/098605dc-8eee-4e84-85e9-c5c6c9e43de2/en-US/lab5-db-activity-stream
https://catalog.us-east-1.prod.workshops.aws/workshops/098605dc-8eee-4e84-85e9-c5c6c9e43de2/en-US/lab6-perf-insights

Amazon Aurora User Guide for Aurora

Learn how to monitor and tune your DB instance using Performance insights.

• Performance Monitoring with RDS Tools

Learn how to use AWS and Postgres tools(Cloudwatch, Enhanced Monitoring, Slow Query Logs,
Performance Insights, PostgreSQL Catalog Views) to understand performance issues and identify
ways to improve performance of your database.

• Auto Scaling Read Replicas

Learn how Aurora read replica auto scaling works in practice using a load generator script.

• Testing Fault Tolerance

Learn how a DB cluster can tolerate a failure.

• Aurora Global Database

Learn about Aurora Global Database.

• Using Machine Learning

Learn about Aurora Machine Learning.

• Aurora Serverless v2

Learn about Aurora Serverless v2.

• Trusted Language Extensions for Aurora PostgreSQL

Learn how to build high-performance extensions that run safely on Aurora PostgreSQL.

AWS workshop and lab content portal for Amazon Aurora
MySQL

The following collection of workshops and other hands-on content helps you to gain an
understanding of the Amazon Aurora MySQL features and capabilities:

• Creating an Aurora Cluster

Learn how to create an Amazon Aurora MySQL cluster manually.

• Creating a Cloud9 Cloud-based IDE environment to connect to your database

Learn how to configure Cloud9 and initialize the MySQL database.

AWS workshop and lab content portal for Amazon Aurora MySQL 260

https://catalog.us-east-1.prod.workshops.aws/workshops/31babd91-aa9a-4415-8ebf-ce0a6556a216/en-US
https://catalog.us-east-1.prod.workshops.aws/workshops/098605dc-8eee-4e84-85e9-c5c6c9e43de2/en-US/lab7-load-data-auto-scale
https://catalog.us-east-1.prod.workshops.aws/workshops/098605dc-8eee-4e84-85e9-c5c6c9e43de2/en-US/lab8-fault-tolerance
https://catalog.us-east-1.prod.workshops.aws/workshops/098605dc-8eee-4e84-85e9-c5c6c9e43de2/en-US/lab9-aurora-global-db
https://catalog.us-east-1.prod.workshops.aws/workshops/098605dc-8eee-4e84-85e9-c5c6c9e43de2/en-US/lab11-aurora-pg-ml
https://catalog.us-east-1.prod.workshops.aws/workshops/098605dc-8eee-4e84-85e9-c5c6c9e43de2/en-US/lab13-aurora-serverless-v2
https://catalog.us-east-1.prod.workshops.aws/workshops/098605dc-8eee-4e84-85e9-c5c6c9e43de2/en-US/lab14-trustedlanguageextension
https://catalog.workshops.aws/awsauroramysql/en-US/provisioned/create/
https://catalog.workshops.aws/awsauroramysql/en-US/prereqs/connect

Amazon Aurora User Guide for Aurora

• Fast Cloning

Learn how to create an Aurora fast clone.

• Backtrack a Cluster

Learn how to backtrack a DB cluster.

• Using Performance Insights

Learn how to monitor and tune your DB instance using Performance insights.

• Performance Monitoring with RDS Tools

Learn how to use AWS and SQL tools to understand performance issues and identify ways to
improve performance of your database.

• Analyze Query Performance

Learn how to troubleshoot SQL performance related issues using different tools.

• Auto Scaling Read Replicas

Learn how auto scaling read replicas work.

• Testing Fault Tolerance

Learn about high availability and fault tolerance features in Aurora MySQL.

• Aurora Global Database

Learn about Aurora Global Database.

• Aurora Serverless v2

Learn about Aurora Serverless v2.

• Using Machine Learning

Learn about Aurora Machine Learning.

Tutorials and sample code in GitHub

The following tutorials and sample code in GitHub show you how to perform common tasks with
Amazon Aurora:

• Creating an Aurora Serverless v2 lending library

Tutorials and sample code in GitHub 261

https://catalog.workshops.aws/awsauroramysql/en-US/provisioned/clone/
https://catalog.workshops.aws/awsauroramysql/en-US/provisioned/backtrack/
https://catalog.workshops.aws/awsauroramysql/en-US/provisioned/pi/
https://catalog.workshops.aws/awsauroramysql/en-US/provisioned/perfobserve/
https://catalog.workshops.aws/awsauroramysql/en-US/provisioned/perfanalyze/
https://catalog.workshops.aws/awsauroramysql/en-US/provisioned/autoscale/
https://catalog.workshops.aws/awsauroramysql/en-US/provisioned/ft/
https://catalog.workshops.aws/awsauroramysql/en-US/global
https://catalog.workshops.aws/awsauroramysql/en-US/sv2
https://catalog.workshops.aws/awsauroramysql/en-US/ml
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/cross_service/aurora_rest_lending_library

Amazon Aurora User Guide for Aurora

Learn how to create a lending library application where patrons can borrow and return books.
The example uses Aurora Serverless v2 and AWS SDK for Python (Boto3).

• Creating an Amazon Aurora item tracker application with a Spring REST API that queries Aurora
Serverless v2 data using SDK for Java 2.x

Learn how to create a Spring REST API that queries Aurora Serverless v2 data. It's for use by a
React application using SDK for Java 2.x.

• Creating an Amazon Aurora item tracker application that queries Aurora Serverless v2 data using
AWS SDK for PHP

Learn how to create an application that uses the RdsDataClient of the Data API and Aurora
Serverless v2 to track and report on work items. The example uses AWS SDK for PHP.

• Creating an Amazon Aurora item tracker application that queries Aurora Serverless v2 data using
AWS SDK for Python (Boto3)

Learn how to create an application that uses the RdsDataClient of the Data API and Aurora
Serverless v2 to track and report on work items. The example uses AWS SDK for Python (Boto3).

Using this service with an AWS SDK

AWS software development kits (SDKs) are available for many popular programming languages.
Each SDK provides an API, code examples, and documentation that make it easier for developers to
build applications in their preferred language.

SDK documentation Code examples

AWS SDK for C++ AWS SDK for C++ code examples

AWS CLI AWS CLI code examples

AWS SDK for Go AWS SDK for Go code examples

AWS SDK for Java AWS SDK for Java code examples

AWS SDK for JavaScript AWS SDK for JavaScript code examples

AWS SDK for Kotlin AWS SDK for Kotlin code examples

Working with AWS SDKs 262

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/usecases/Creating_Spring_RDS_Rest
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/usecases/Creating_Spring_RDS_Rest
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/php/cross_service/aurora_item_tracker
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/php/cross_service/aurora_item_tracker
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/cross_service/aurora_item_tracker
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/cross_service/aurora_item_tracker
https://docs.aws.amazon.com/sdk-for-cpp
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/cpp
https://docs.aws.amazon.com/cli
https://docs.aws.amazon.com/code-library/latest/ug/cli_2_code_examples.html
https://docs.aws.amazon.com/sdk-for-go
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/gov2
https://docs.aws.amazon.com/sdk-for-java
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2
https://docs.aws.amazon.com/sdk-for-javascript
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3
https://docs.aws.amazon.com/sdk-for-kotlin
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/kotlin

Amazon Aurora User Guide for Aurora

SDK documentation Code examples

AWS SDK for .NET AWS SDK for .NET code examples

AWS SDK for PHP AWS SDK for PHP code examples

AWS Tools for PowerShell Tools for PowerShell code examples

AWS SDK for Python (Boto3) AWS SDK for Python (Boto3) code examples

AWS SDK for Ruby AWS SDK for Ruby code examples

AWS SDK for Rust AWS SDK for Rust code examples

AWS SDK for SAP ABAP AWS SDK for SAP ABAP code examples

AWS SDK for Swift AWS SDK for Swift code examples

For examples specific to this service, see Code examples for Aurora using AWS SDKs.

Example availability

Can't find what you need? Request a code example by using the Provide feedback link at
the bottom of this page.

Working with AWS SDKs 263

https://docs.aws.amazon.com/sdk-for-net
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3
https://docs.aws.amazon.com/sdk-for-php
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/php
https://docs.aws.amazon.com/powershell
https://docs.aws.amazon.com/code-library/latest/ug/powershell_4_code_examples.html
https://docs.aws.amazon.com/pythonsdk
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python
https://docs.aws.amazon.com/sdk-for-ruby
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby
https://docs.aws.amazon.com/sdk-for-rust
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/rustv1
https://docs.aws.amazon.com/sdk-for-sapabap
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/sap-abap
https://docs.aws.amazon.com/sdk-for-swift
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/swift

Amazon Aurora User Guide for Aurora

Configuring your Amazon Aurora DB cluster

This section shows how to set up your Aurora DB cluster. Before creating an Aurora DB cluster,
decide on the DB instance class that will run the DB cluster. Also, decide where the DB cluster will
run by choosing an AWS Region. Next, create the DB cluster. If you have data outside of Aurora, you
can migrate the data into an Aurora DB cluster.

Topics

• Creating an Amazon Aurora DB cluster

• Creating Amazon Aurora resources with AWS CloudFormation

• Connecting to an Amazon Aurora DB cluster

• Working with parameter groups

• Migrating data to an Amazon Aurora DB cluster

• Creating an Amazon ElastiCache cache using Aurora DB cluster settings

264

Amazon Aurora User Guide for Aurora

Creating an Amazon Aurora DB cluster

An Amazon Aurora DB cluster consists of a DB instance, compatible with either MySQL or
PostgreSQL, and a cluster volume that holds the data for the DB cluster, copied across three
Availability Zones as a single, virtual volume. By default, an Aurora DB cluster contains a primary
DB instance that performs reads and writes, and, optionally, up to 15 Aurora Replicas (reader DB
instances). For more information about Aurora DB clusters, see Amazon Aurora DB clusters.

Aurora has two main types of DB cluster:

• Aurora provisioned – You choose the DB instance class for the writer and reader instances based
on your expected workload. For more information, see Aurora DB instance classes. Aurora
provisioned has several options, including Aurora global databases. For more information, see
Using Amazon Aurora global databases.

• Aurora Serverless – Aurora Serverless v1 and Aurora Serverless v2 are on-demand automatic
scaling configurations for Aurora. Capacity is adjusted automatically based on application
demand. You're charged only for the resources that your DB cluster consumes. This automation
is especially useful for environments with highly variable and unpredictable workloads. For more
information, see Using Amazon Aurora Serverless v1 and Using Aurora Serverless v2.

Following, you can find out how to create an Aurora DB cluster. To get started, first see DB cluster
prerequisites.

For instructions on connecting to your Aurora DB cluster, see Connecting to an Amazon Aurora DB
cluster.

Contents

• DB cluster prerequisites

• Configure the network for the DB cluster

• Configure automatic network connectivity with an EC2 instance

• Configure the network manually

• Additional prerequisites

• Creating a DB cluster

• Creating a primary (writer) DB instance

• Settings for Aurora DB clusters

• Settings that don't apply to Amazon Aurora for DB clusters

Creating a DB cluster 265

Amazon Aurora User Guide for Aurora

• Settings that don't apply to Amazon Aurora DB instances

DB cluster prerequisites

Important

Before you can create an Aurora DB cluster, you must complete the tasks in Setting up your
environment for Amazon Aurora.

The following are prerequisites to complete before creating a DB cluster.

Topics

• Configure the network for the DB cluster

• Additional prerequisites

Configure the network for the DB cluster

You can create an Amazon Aurora DB cluster only in a virtual private cloud (VPC) based on
the Amazon VPC service, in an AWS Region that has at least two Availability Zones. The DB
subnet group that you choose for the DB cluster must cover at least two Availability Zones. This
configuration ensures that your DB cluster always has at least one DB instance available for
failover, in the unlikely event of an Availability Zone failure.

If you plan to set up connectivity between your new DB cluster and an EC2 instance in the same
VPC, you can do so during DB cluster creation. If you plan to connect to your DB cluster from
resources other than EC2 instances in the same VPC, you can configure the network connections
manually.

Topics

• Configure automatic network connectivity with an EC2 instance

• Configure the network manually

Configure automatic network connectivity with an EC2 instance

When you create an Aurora DB cluster, you can use the AWS Management Console to set up
connectivity between an Amazon EC2 instance and the new DB cluster. When you do so, RDS

Prerequisites 266

Amazon Aurora User Guide for Aurora

configures your VPC and network settings automatically. The DB cluster is created in the same VPC
as the EC2 instance so that the EC2 instance can access the DB cluster.

The following are requirements for connecting an EC2 instance with the DB cluster:

• The EC2 instance must exist in the AWS Region before you create the DB cluster.

If no EC2 instances exist in the AWS Region, the console provides a link to create one.

• Currently, the DB cluster can't be an Aurora Serverless DB cluster or part of an Aurora global
database.

• The user who is creating the DB instance must have permissions to perform the following
operations:

• ec2:AssociateRouteTable

• ec2:AuthorizeSecurityGroupEgress

• ec2:AuthorizeSecurityGroupIngress

• ec2:CreateRouteTable

• ec2:CreateSubnet

• ec2:CreateSecurityGroup

• ec2:DescribeInstances

• ec2:DescribeNetworkInterfaces

• ec2:DescribeRouteTables

• ec2:DescribeSecurityGroups

• ec2:DescribeSubnets

• ec2:ModifyNetworkInterfaceAttribute

• ec2:RevokeSecurityGroupEgress

Using this option creates a private DB cluster. The DB cluster uses a DB subnet group with only
private subnets to restrict access to resources within the VPC.

To connect an EC2 instance to the DB cluster, choose Connect to an EC2 compute resource in the
Connectivity section on the Create database page.

Prerequisites 267

Amazon Aurora User Guide for Aurora

When you choose Connect to an EC2 compute resource, RDS sets the following options
automatically. You can't change these settings unless you choose not to set up connectivity with an
EC2 instance by choosing Don't connect to an EC2 compute resource.

Console option Automatic setting

Network type RDS sets network type to IPv4. Currently, dual-stack mode
isn't supported when you set up a connection between an EC2
instance and the DB cluster.

Virtual Private Cloud (VPC) RDS sets the VPC to the one associated with the EC2 instance.

DB subnet group RDS requires a DB subnet group with a private subnet in the
same Availability Zone as the EC2 instance. If a DB subnet
group that meets this requirement exists, then RDS uses the
existing DB subnet group. By default, this option is set to
Automatic setup.

When you choose Automatic setup and there is no DB subnet
group that meets this requirement, the following action
happens. RDS uses three available private subnets in three
Availability Zones where one of the Availability Zones is the

Prerequisites 268

Amazon Aurora User Guide for Aurora

Console option Automatic setting

same as the EC2 instance. If a private subnet isn’t available
in an Availability Zone, RDS creates a private subnet in the
Availability Zone. Then RDS creates the DB subnet group.

When a private subnet is available, RDS uses the route table
associated with the subnet and adds any subnets it creates
to this route table. When no private subnet is available, RDS
creates a route table without internet gateway access and adds
the subnets it creates to the route table.

RDS also allows you to use existing DB subnet groups. Select
Choose existing if you want to use an existing DB subnet
group of your choice.

Public access RDS chooses No so that the DB cluster isn't publicly accessible.

For security, it is a best practice to keep the database private
and make sure it isn't accessible from the internet.

Prerequisites 269

Amazon Aurora User Guide for Aurora

Console option Automatic setting

VPC security group (firewall) RDS creates a new security group that is associated with the DB
cluster. The security group is named rds-ec2-n, where n is a
number. This security group includes an inbound rule with the
EC2 VPC security group (firewall) as the source. This security
group that is associated with the DB cluster allows the EC2
instance to access the DB cluster.

RDS also creates a new security group that is associated with
the EC2 instance. The security group is named ec2-rds-n,
where n is a number. This security group includes an outbound
rule with the VPC security group of the DB cluster as the
source. This security group allows the EC2 instance to send
traffic to the DB cluster.

You can add another new security group by choosing Create
new and typing the name of the new security group.

You can add existing security groups by choosing Choose
existing and selecting security groups to add.

Availability Zone When you don't create an Aurora Replica in Availability &
durability during DB cluster creation (Single-AZ deployment),
RDS chooses the Availability Zone of the EC2 instance.

When you create an Aurora Replica during DB cluster creation
(Multi-AZ deployment), RDS chooses the Availability Zone of
the EC2 instance for one DB instance in the DB cluster. RDS
randomly chooses a different Availability Zone for the other
DB instance in the DB cluster. Either the primary DB instance
or the Aurora Replica is created in the same Availability Zone
as the EC2 instance. There is the possibility of cross Availability
Zone costs if the primary DB instance and EC2 instance are in
different Availability Zones.

For more information about these settings, see Settings for Aurora DB clusters.

Prerequisites 270

Amazon Aurora User Guide for Aurora

If you make any changes to these settings after the DB cluster is created, the changes might affect
the connection between the EC2 instance and the DB cluster.

Configure the network manually

If you plan to connect to your DB cluster from resources other than EC2 instances in the same VPC,
you can configure the network connections manually. If you use the AWS Management Console to
create your DB cluster, you can have Amazon RDS automatically create a VPC for you. Or you can
use an existing VPC or create a new VPC for your Aurora DB cluster. Whichever approach you take,
your VPC must have at least one subnet in each of at least two Availability Zones for you to use it
with an Amazon Aurora DB cluster.

By default, Amazon RDS creates the primary DB instance and the Aurora Replica in the Availability
Zones automatically for you. To choose a specific Availability Zone, you need to change the
Availability & durability Multi-AZ deployment setting to Don't create an Aurora Replica. Doing
so exposes an Availability Zone setting that lets you choose from among the Availability Zones in
your VPC. However, we strongly recommend that you keep the default setting and let Amazon RDS
create a Multi-AZ deployment and choose Availability Zones for you. By doing so, your Aurora DB
cluster is created with the fast failover and high availability features that are two of Aurora's key
benefits.

If you don't have a default VPC or you haven't created a VPC, you can have Amazon RDS
automatically create a VPC for you when you create a DB cluster using the console. Otherwise, you
must do the following:

• Create a VPC with at least one subnet in each of at least two of the Availability Zones in the AWS
Region where you want to deploy your DB cluster. For more information, see Working with a DB
cluster in a VPC and Tutorial: Create a VPC for use with a DB cluster (IPv4 only).

• Specify a VPC security group that authorizes connections to your DB cluster. For more
information, see Provide access to the DB cluster in the VPC by creating a security group and
Controlling access with security groups.

• Specify an RDS DB subnet group that defines at least two subnets in the VPC that can be used by
the DB cluster. For more information, see Working with DB subnet groups.

For information on VPCs, see Amazon VPC and Amazon Aurora. For a tutorial that configures the
network for a private DB cluster, see Tutorial: Create a VPC for use with a DB cluster (IPv4 only).

Prerequisites 271

Amazon Aurora User Guide for Aurora

If you want to connect to a resource that isn't in the same VPC as the Aurora DB cluster, see the
appropriate scenarios in Scenarios for accessing a DB cluster in a VPC.

Additional prerequisites

Before you create your DB cluster, consider the following additional prerequisites:

• If you are connecting to AWS using AWS Identity and Access Management (IAM) credentials, your
AWS account must have IAM policies that grant the permissions required to perform Amazon
RDS operations. For more information, see Identity and access management for Amazon Aurora.

If you are using IAM to access the Amazon RDS console, you must first sign on to the AWS
Management Console with your user credentials. Then go to the Amazon RDS console at https://
console.aws.amazon.com/rds/.

• If you want to tailor the configuration parameters for your DB cluster, you must specify a DB
cluster parameter group and DB parameter group with the required parameter settings. For
information about creating or modifying a DB cluster parameter group or DB parameter group,
see Working with parameter groups.

• Determine the TCP/IP port number to specify for your DB cluster. The firewalls at some
companies block connections to the default ports (3306 for MySQL, 5432 for PostgreSQL) for
Aurora. If your company firewall blocks the default port, choose another port for your DB cluster.
All instances in a DB cluster use the same port.

• If the major engine version for your database has reached the RDS end of standard support date,
you must use the Extended Support CLI option or the RDS API parameter. For more information,
see RDS Extended Support in Settings for Aurora DB clusters.

Creating a DB cluster

You can create an Aurora DB cluster using the AWS Management Console, the AWS CLI, or the RDS
API.

Console

You can create a DB cluster using the AWS Management Console with Easy create enabled or not
enabled. With Easy create enabled, you specify only the DB engine type, DB instance size, and DB
instance identifier. Easy create uses the default setting for other configuration options. With Easy
create not enabled, you specify more configuration options when you create a database, including
ones for availability, security, backups, and maintenance.

Creating a DB cluster 272

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Aurora User Guide for Aurora

Note

For this example, Standard create is enabled, and Easy create isn't enabled. For
information about creating a DB cluster with Easy create enabled, see Getting started with
Amazon Aurora.

To create an Aurora DB cluster using the console

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the upper-right corner of the AWS Management Console, choose the AWS Region in which
you want to create the DB cluster.

Aurora is not available in all AWS Regions. For a list of AWS Regions where Aurora is available,
see Region availability.

3. In the navigation pane, choose Databases.

4. Choose Create database.

5. For Choose a database creation method, choose Standard create.

6. For Engine type, choose one of the following:

• Aurora (MySQL Compatible)

• Aurora (PostgreSQL Compatible)

Creating a DB cluster 273

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Aurora User Guide for Aurora

7. Choose the Engine version.

For more information, see Amazon Aurora versions. You can use the filters to choose versions
that are compatible with features that you want, such as Aurora Serverless v2. For more
information, see Using Aurora Serverless v2.

8. In Templates, choose the template that matches your use case.

9. To enter your master password, do the following:

a. In the Settings section, expand Credential Settings.

Creating a DB cluster 274

Amazon Aurora User Guide for Aurora

b. Clear the Auto generate a password check box.

c. (Optional) Change the Master username value and enter the same password in Master
password and Confirm password.

By default, the new DB instance uses an automatically generated password for the master user.

10. In the Connectivity section under VPC security group (firewall), if you select Create new, a
VPC security group is created with an inbound rule that allows your local computer's IP address
to access the database.

11. For Cluster storage configuration, choose either Aurora I/O-Optimized or Aurora Standard.
For more information, see Storage configurations for Amazon Aurora DB clusters.

12. (Optional) Set up a connection to a compute resource for this DB cluster.

You can configure connectivity between an Amazon EC2 instance and the new DB cluster
during DB cluster creation. For more information, see Configure automatic network
connectivity with an EC2 instance.

13. For the remaining sections, specify your DB cluster settings. For information about each
setting, see Settings for Aurora DB clusters.

14. Choose Create database.

If you chose to use an automatically generated password, the View credential details button
appears on the Databases page.

To view the master user name and password for the DB cluster, choose View credential
details.

To connect to the DB instance as the master user, use the user name and password that
appear.

Creating a DB cluster 275

Amazon Aurora User Guide for Aurora

Important

You can't view the master user password again. If you don't record it, you might have
to change it. If you need to change the master user password after the DB instance
is available, you can modify the DB instance to do so. For more information about
modifying a DB instance, see Modifying an Amazon Aurora DB cluster.

15. For Databases, choose the name of the new Aurora DB cluster.

On the RDS console, the details for new DB cluster appear. The DB cluster and its DB instance
have a status of creating until the DB cluster is ready to use.

When the state changes to available for both, you can connect to the DB cluster. Depending
on the DB instance class and the amount of storage, it can take up to 20 minutes before the
new DB cluster is available.

To view the newly created cluster, choose Databases from the navigation pane in the Amazon
RDS console. Then choose the DB cluster to show the DB cluster details. For more information,
see Viewing an Amazon Aurora DB cluster.

Creating a DB cluster 276

Amazon Aurora User Guide for Aurora

On the Connectivity & security tab, note the port and the endpoint of the writer DB instance.
Use the endpoint and port of the cluster in your JDBC and ODBC connection strings for any
application that performs write or read operations.

AWS CLI

Note

Before you can create an Aurora DB cluster using the AWS CLI, you must fulfill the required
prerequisites, such as creating a VPC and an RDS DB subnet group. For more information,
see DB cluster prerequisites.

You can use the AWS CLI to create an Aurora MySQL DB cluster or an Aurora PostgreSQL DB cluster.

Creating a DB cluster 277

Amazon Aurora User Guide for Aurora

To create an Aurora MySQL DB cluster using the AWS CLI

When you create an Aurora MySQL 8.0-compatible or 5.7-compatible DB cluster or DB instance,
you specify aurora-mysql for the --engine option.

Complete the following steps:

1. Identify the DB subnet group and VPC security group ID for your new DB cluster, and then call
the create-db-cluster AWS CLI command to create the Aurora MySQL DB cluster.

For example, the following command creates a new MySQL 8.0–compatible DB cluster named
sample-cluster. The cluster uses the default engine version and the Aurora I/O-Optimized
storage type.

For Linux, macOS, or Unix:

aws rds create-db-cluster --db-cluster-identifier sample-cluster \
 --engine aurora-mysql --engine-version 8.0 \
 --storage-type aurora-iopt1 \
 --master-username user-name --manage-master-user-password \
 --db-subnet-group-name mysubnetgroup --vpc-security-group-ids sg-c7e5b0d2

For Windows:

aws rds create-db-cluster --db-cluster-identifier sample-cluster ^
 --engine aurora-mysql --engine-version 8.0 ^
 --storage-type aurora-iopt1 ^
 --master-username user-name --manage-master-user-password ^
 --db-subnet-group-name mysubnetgroup --vpc-security-group-ids sg-c7e5b0d2

The following command creates a new MySQL 5.7–compatible DB cluster named sample-
cluster. The cluster uses the default engine version and the Aurora Standard storage type.

For Linux, macOS, or Unix:

aws rds create-db-cluster --db-cluster-identifier sample-cluster \
 --engine aurora-mysql --engine-version 5.7 \
 --storage-type aurora \
 --master-username user-name --manage-master-user-password \
 --db-subnet-group-name mysubnetgroup --vpc-security-group-ids sg-c7e5b0d2

Creating a DB cluster 278

https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-cluster.html

Amazon Aurora User Guide for Aurora

For Windows:

aws rds create-db-cluster --db-cluster-identifier sample-cluster sample-cluster ^
 --engine aurora-mysql --engine-version 5.7 ^
 --storage-type aurora ^
 --master-username user-name --manage-master-user-password ^
 --db-subnet-group-name mysubnetgroup --vpc-security-group-ids sg-c7e5b0d2

2. If you use the console to create a DB cluster, then Amazon RDS automatically creates the
primary instance (writer) for your DB cluster. If you use the AWS CLI to create a DB cluster, you
must explicitly create the primary instance for your DB cluster. The primary instance is the first
instance that is created in a DB cluster. Until you create the primary DB instance, the DB cluster
endpoints remain in the Creating status.

Call the create-db-instance AWS CLI command to create the primary instance for your DB
cluster. Include the name of the DB cluster as the --db-cluster-identifier option value.

Note

You can't set the --storage-type option for DB instances. You can set it only for DB
clusters.

For example, the following command creates a new MySQL 5.7–compatible or MySQL 8.0–
compatible DB instance named sample-instance.

For Linux, macOS, or Unix:

aws rds create-db-instance --db-instance-identifier sample-instance \
 --db-cluster-identifier sample-cluster --engine aurora-mysql --db-instance-
class db.r5.large

For Windows:

aws rds create-db-instance --db-instance-identifier sample-instance ^
 --db-cluster-identifier sample-cluster --engine aurora-mysql --db-instance-
class db.r5.large

Creating a DB cluster 279

https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-instance.html

Amazon Aurora User Guide for Aurora

To create an Aurora PostgreSQL DB cluster using the AWS CLI

1. Identify the DB subnet group and VPC security group ID for your new DB cluster, and then call
the create-db-cluster AWS CLI command to create the Aurora PostgreSQL DB cluster.

For example, the following command creates a new DB cluster named sample-cluster. The
cluster uses the default engine version and the Aurora I/O-Optimized storage type.

For Linux, macOS, or Unix:

aws rds create-db-cluster --db-cluster-identifier sample-cluster \
 --engine aurora-postgresql \
 --storage-type aurora-iopt1 \
 --master-username user-name --manage-master-user-password \
 --db-subnet-group-name mysubnetgroup --vpc-security-group-ids sg-c7e5b0d2

For Windows:

aws rds create-db-cluster --db-cluster-identifier sample-cluster ^
 --engine aurora-postgresql ^
 --storage-type aurora-iopt1 ^
 --master-username user-name --manage-master-user-password ^
 --db-subnet-group-name mysubnetgroup --vpc-security-group-ids sg-c7e5b0d2

2. If you use the console to create a DB cluster, then Amazon RDS automatically creates the
primary instance (writer) for your DB cluster. If you use the AWS CLI to create a DB cluster, you
must explicitly create the primary instance for your DB cluster. The primary instance is the first
instance that is created in a DB cluster. Until you create the primary DB instance, the DB cluster
endpoints remain in the Creating status.

Call the create-db-instance AWS CLI command to create the primary instance for your DB
cluster. Include the name of the DB cluster as the --db-cluster-identifier option value.

For Linux, macOS, or Unix:

aws rds create-db-instance --db-instance-identifier sample-instance \
 --db-cluster-identifier sample-cluster --engine aurora-postgresql --db-
instance-class db.r5.large

For Windows:

Creating a DB cluster 280

https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-cluster.html
https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-instance.html

Amazon Aurora User Guide for Aurora

aws rds create-db-instance --db-instance-identifier sample-instance ^
 --db-cluster-identifier sample-cluster --engine aurora-postgresql --db-
instance-class db.r5.large

These examples specify the --manage-master-user-password option to generate the
master user password and manage it in Secrets Manager. For more information, see Password
management with Amazon Aurora and AWS Secrets Manager. Alternatively, you can use the --
master-password option to specify and manage the password yourself.

RDS API

Note

Before you can create an Aurora DB cluster using the AWS CLI, you must fulfill the required
prerequisites, such as creating a VPC and an RDS DB subnet group. For more information,
see DB cluster prerequisites.

Identify the DB subnet group and VPC security group ID for your new DB cluster, and then call the
CreateDBCluster operation to create the DB cluster.

When you create an Aurora MySQL version 2 or 3 DB cluster or DB instance, specify aurora-
mysql for the Engine parameter.

When you create an Aurora PostgreSQL DB cluster or DB instance, specify aurora-postgresql
for the Engine parameter.

If you use the console to create a DB cluster, then Amazon RDS automatically creates the primary
instance (writer) for your DB cluster. If you use the RDS API to create a DB cluster, you must
explicitly create the primary instance for your DB cluster using the CreateDBInstance. The primary
instance is the first instance that is created in a DB cluster. Until you create the primary DB
instance, the DB cluster endpoints remain in the Creating status.

Creating a primary (writer) DB instance

If you use the AWS Management Console to create a DB cluster, then Amazon RDS automatically
creates the primary instance (writer) for your DB cluster. If you use the AWS CLI or RDS API to
create a DB cluster, you must explicitly create the primary instance for your DB cluster. The

Creating a DB cluster 281

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateDBCluster.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateDBInstance.html

Amazon Aurora User Guide for Aurora

primary instance is the first instance that is created in a DB cluster. Until you create the primary DB
instance, the DB cluster endpoints remain in the Creating status.

For more information, see Creating a DB cluster.

Note

If you have a DB cluster without a writer DB instance, also called a headless cluster, you
can't use the console to create a writer instance. You must use the AWS CLI or RDS API.

The following example uses the create-db-instance AWS CLI command to create a writer instance
for an Aurora PostgreSQL DB cluster named headless-test.

aws rds create-db-instance \
 --db-instance-identifier no-longer-headless \
 --db-cluster-identifier headless-test \
 --engine aurora-postgresql \
 --db-instance-class db.t4g.medium

Settings for Aurora DB clusters

The following table contains details about settings that you choose when you create an Aurora DB
cluster.

Note

Additional settings are available if you are creating an Aurora Serverless v1 DB cluster. For
information about these settings, see Creating an Aurora Serverless v1 DB cluster. Also,
some settings aren't available for Aurora Serverless v1 because of Aurora Serverless v1
limitations. For more information, see Limitations of Aurora Serverless v1.

Console setting Setting description CLI option and RDS API
parameter

Auto minor version
upgrade

Choose Enable auto minor
version upgrade if you want to

Set this value for every DB
instance in your Aurora cluster.

Available settings 282

https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-instance.html

Amazon Aurora User Guide for Aurora

Console setting Setting description CLI option and RDS API
parameter

enable your Aurora DB cluster to
receive preferred minor version
upgrades to the DB engine
automatically when they become
available.

The Auto minor version upgrade
setting applies to both Aurora
PostgreSQL and Aurora MySQL
DB clusters.

For more information about
engine updates for Aurora
PostgreSQL, see Amazon Aurora
PostgreSQL updates.

For more information about
engine updates for Aurora
MySQL, see Database engine
updates for Amazon Aurora
MySQL.

If any DB instance in your cluster
has this setting turned off,
the cluster isn't automatically
upgraded.

Using the AWS CLI, run create-
db-instance and set the
--auto-minor-version-
upgrade|--no-auto-
minor-version-upgrade
option.

Using the RDS API, call
CreateDBInstance and set the
AutoMinorVersionUpgrade
parameter.

AWS KMS key Only available if Encryption is
set to Enable encryption. Choose
the AWS KMS key to use for
encrypting this DB cluster. For
more information, see Encrypting
Amazon Aurora resources.

Using the AWS CLI, run create-
db-cluster and set the --
kms-key-id option.

Using the RDS API, call
CreateDBCluster and set the
KmsKeyId parameter.

Available settings 283

https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-instance.html
https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-instance.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateDBInstance.html
https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-cluster.html
https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-cluster.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateDBCluster.html

Amazon Aurora User Guide for Aurora

Console setting Setting description CLI option and RDS API
parameter

Backtrack Applies only to Aurora MySQL.
Choose Enable Backtrack to
enable backtracking or Disable
Backtrack to disable backtrack
ing. Using backtracking, you
can rewind a DB cluster to a
specific time, without creating a
new DB cluster. It is disabled by
default. If you enable backtrack
ing, also specify the amount of
time that you want to be able to
backtrack your DB cluster (the
target backtrack window). For
more information, see Backtrack
ing an Aurora DB cluster.

Using the AWS CLI, run create-
db-cluster and set the --
backtrack-window option.

Using the RDS API, call
CreateDBCluster and set the
BacktrackWindow parameter.

Certificate authority The certificate authority (CA) for
the server certificate used by the
DB instances in the DB cluster.

For more information, see Using
SSL/TLS to encrypt a connection
to a DB cluster.

Using the AWS CLI, run create-
db-instance and set the
--ca-certificate-i
dentifier option.

Using the RDS API, call
CreateDBInstance and set the
CACertificateIdentifier
parameter.

Cluster storage
configuration

The storage type for the DB
cluster: Aurora I/O-Optimized or
Aurora Standard.

For more information, see Storage
configurations for Amazon Aurora
DB clusters.

Using the AWS CLI, run create-
db-cluster and set the --
storage-type option.

Using the RDS API, call
CreateDBCluster and set the
StorageType parameter.

Available settings 284

https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-cluster.html
https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-cluster.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateDBCluster.html
https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-instance.html
https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-instance.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateDBInstance.html
https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-cluster.html
https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-cluster.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateDBCluster.html

Amazon Aurora User Guide for Aurora

Console setting Setting description CLI option and RDS API
parameter

Copy tags to
snapshots

Choose this option to copy any
DB instance tags to a DB snapshot
when you create a snapshot.

For more information, see
Tagging Amazon Aurora and
Amazon RDS resources.

Using the AWS CLI, run create-
db-cluster and set the --
copy-tags-to-snapshot
| --no-copy-tags-to-
snapshot option.

Using the RDS API, call
CreateDBCluster and set
the CopyTagsToSnapshot
parameter.

Available settings 285

https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-cluster.html
https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-cluster.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateDBCluster.html

Amazon Aurora User Guide for Aurora

Console setting Setting description CLI option and RDS API
parameter

Database authentic
ation

The database authentication you
want to use.

For MySQL:

• Choose Password authentic
ation to authenticate database
users with database passwords
 only.

• Choose Password and IAM
database authentication to
authenticate database users
with database passwords and
user credentials through IAM
users and roles. For more
information, see IAM database
authentication.

For PostgreSQL:

• Choose IAM database
authentication to authenticate
database users with database
passwords and user credentia
ls through users and roles. For
more information, see IAM
database authentication.

• Choose Kerberos authentic
ation to authenticate database
passwords and user credentials
using Kerberos authentication.
For more information, see Using

To use IAM database authentic
ation with the AWS CLI, run
create-db-cluster and set
the --enable-iam-datab
ase-authentication | --
no-enable-iam-database-
authentication option.

To use IAM database authentic
ation with the RDS API, call
CreateDBCluster and set
the EnableIAMDatabaseA
uthentication parameter.

To use Kerberos authentication
with the AWS CLI, run create-
db-cluster and set the --
domain and --domain-iam-
role-name options.

To use Kerberos authentication
with the RDS API, call CreateDBC
luster and set the Domain
and DomainIAMRoleName
parameters.

Available settings 286

https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-cluster.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateDBCluster.html
https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-cluster.html
https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-cluster.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateDBCluster.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateDBCluster.html

Amazon Aurora User Guide for Aurora

Console setting Setting description CLI option and RDS API
parameter

Kerberos authentication with
Aurora PostgreSQL.

Database port Specify the port for applicati
ons and utilities to use to access
the database. Aurora MySQL DB
clusters default to the default
MySQL port, 3306, and Aurora
PostgreSQL DB clusters default
to the default PostgreSQL port,
5432. The firewalls at some
companies block connections
to these default ports. If your
company firewall blocks the
default port, choose another port
for the new DB cluster.

Using the AWS CLI, run create-
db-cluster and set the --
port option.

Using the RDS API, call
CreateDBCluster and set the
Port parameter.

Available settings 287

https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-cluster.html
https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-cluster.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateDBCluster.html

Amazon Aurora User Guide for Aurora

Console setting Setting description CLI option and RDS API
parameter

DB cluster identifier Enter a name for your DB cluster
that is unique for your account in
the AWS Region that you chose.
This identifier is used in the
cluster endpoint address for your
DB cluster. For information on
the cluster endpoint, see Amazon
Aurora connection management.

The DB cluster identifier has the
following constraints:

• It must contain from 1 to 63
alphanumeric characters or
hyphens.

• Its first character must be a
letter.

• It cannot end with a hyphen
or contain two consecutive
hyphens.

• It must be unique for all DB
clusters per AWS account, per
AWS Region.

Using the AWS CLI, run create-
db-cluster and set the --db-
cluster-identifier option.

Using the RDS API, call
CreateDBCluster and set
the DBClusterIdentifier
parameter.

DB cluster
parameter group

Choose a DB cluster parameter
group. Aurora has a default DB
cluster parameter group you
can use, or you can create your
own DB cluster parameter group.
For more information about DB
cluster parameter groups, see
Working with parameter groups.

Using the AWS CLI, run create-
db-cluster and set the --db-
cluster-parameter-grou
p-name option.

Using the RDS API, call
CreateDBCluster and set
the DBClusterParameter
GroupName parameter.

Available settings 288

https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-cluster.html
https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-cluster.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateDBCluster.html
https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-cluster.html
https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-cluster.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateDBCluster.html

Amazon Aurora User Guide for Aurora

Console setting Setting description CLI option and RDS API
parameter

DB instance class Applies only to the provision
ed capacity type. Choose a
DB instance class that defines
the processing and memory
requirements for each instance in
the DB cluster. For more informati
on about DB instance classes, see
Aurora DB instance classes.

Set this value for every DB
instance in your Aurora cluster.

Using the AWS CLI, run create-
db-instance and set the --
db-instance-class option.

Using the RDS API, call
CreateDBInstance and set the
DBInstanceClass parameter.

DB parameter group Choose a parameter group.
Aurora has a default parameter
group you can use, or you can
create your own parameter group.
For more information about
parameter groups, see Working
with parameter groups.

Set this value for every DB
instance in your Aurora cluster.

Using the AWS CLI, run create-
db-instance and set the --
db-parameter-group-name
option.

Using the RDS API, call
CreateDBInstance and set
the DBParameterGroupName
parameter.

Available settings 289

https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-instance.html
https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-instance.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateDBInstance.html
https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-instance.html
https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-instance.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateDBInstance.html

Amazon Aurora User Guide for Aurora

Console setting Setting description CLI option and RDS API
parameter

DB subnet group The DB subnet group you want to
use for the DB cluster.
Select Choose existing to use an
existing DB subnet group. Then
choose the required subnet group
from the Existing DB subnet
groups dropdown list.

Choose Automatic setup to
let RDS select a compatible DB
subnet group. If none exist, RDS
creates a new subnet group for
your cluster.

For more information, see DB
cluster prerequisites.

Using the AWS CLI, run create-
db-cluster and set the --db-
subnet-group-name option.

Using the RDS API, call
CreateDBCluster and set
the DBSubnetGroupName
parameter.

Enable deletion
protection

Choose Enable deletion protectio
n to prevent your DB cluster from
being deleted. If you create a
production DB cluster with the
console, deletion protection is
enabled by default.

Using the AWS CLI, run create-
db-cluster and set the --
deletion-protection
| --no-deletion-prot
ection option.

Using the RDS API, call
CreateDBCluster and set
the DeletionProtection
parameter.

Available settings 290

https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-cluster.html
https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-cluster.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateDBCluster.html
https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-cluster.html
https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-cluster.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateDBCluster.html

Amazon Aurora User Guide for Aurora

Console setting Setting description CLI option and RDS API
parameter

Enable encryption Choose Enable encryption
to enable encryption at rest for
this DB cluster. For more informati
on, see Encrypting Amazon
Aurora resources.

Using the AWS CLI, run create-
db-cluster and set the --
storage-encrypted | --
no-storage-encrypted
option.

Using the RDS API, call
CreateDBCluster and set the
StorageEncrypted parameter.

Enable Enhanced
Monitoring

Choose Enable enhanced
monitoring to enable gathering
 metrics in real time for the
operating system that your
DB cluster runs on. For more
information, see Monitoring OS
metrics with Enhanced Monitorin
g.

Set these values for every DB
instance in your Aurora cluster.

Using the AWS CLI, run create-
db-instance and set the --
monitoring-interval and
--monitoring-role-arn
options.

Using the RDS API, call
CreateDBInstance and set
the MonitoringInterval

 and MonitoringRoleArn
parameters.

Enable the RDS Data
API

Choose Enable the RDS Data API
to enable RDS Data API (Data
API). Data API provides a secure
HTTP endpoint for running SQL
statements without managing
connections. For more informati
on, see Using RDS Data API.

Using the AWS CLI, run create-
db-cluster and set the --
enable-http-endpoint
| --no-enable-http-e
ndpoint option.

Using the RDS API, call
CreateDBCluster and set
the EnableHttpEndpoint
parameter.

Available settings 291

https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-cluster.html
https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-cluster.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateDBCluster.html
https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-instance.html
https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-instance.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateDBInstance.html
https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-cluster.html
https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-cluster.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateDBCluster.html

Amazon Aurora User Guide for Aurora

Console setting Setting description CLI option and RDS API
parameter

Engine type Choose the database engine to be
used for this DB cluster.

Using the AWS CLI, run create-
db-cluster and set the --
engine option.

Using the RDS API, call
CreateDBCluster and set the
Engine parameter.

Engine version Applies only to the provisioned
capacity type. Choose the version
number of your DB engine.

Using the AWS CLI, run create-
db-cluster and set the --
engine-version option.

Using the RDS API, call
CreateDBCluster and set the
EngineVersion parameter.

Failover priority Choose a failover priority for the
instance. If you don't choose a
value, the default is tier-1. This
priority determines the order
in which Aurora Replicas are
promoted when recovering from a
primary instance failure. For more
information, see Fault tolerance
for an Aurora DB cluster.

Set this value for every DB
instance in your Aurora cluster.

Using the AWS CLI, run create-
db-instance and set the --
promotion-tier option.

Using the RDS API, call
CreateDBInstance and set the
PromotionTier parameter.

Available settings 292

https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-cluster.html
https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-cluster.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateDBCluster.html
https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-cluster.html
https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-cluster.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateDBCluster.html
https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-instance.html
https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-instance.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateDBInstance.html

Amazon Aurora User Guide for Aurora

Console setting Setting description CLI option and RDS API
parameter

Initial database
name

Enter a name for your default
database. If you don't provide
a name for an Aurora MySQL
DB cluster, Amazon RDS doesn't
create a database on the DB
cluster you are creating. If you
don't provide a name for an
Aurora PostgreSQL DB cluster,
Amazon RDS creates a database
named postgres.

For Aurora MySQL, the default
database name has these
constraints:

• It must contain 1–64
alphanumeric characters.

• It can't be a word reserved by
the database engine.

For Aurora PostgreSQL, the
default database name has these
constraints:

• It must contain 1–63
alphanumeric characters.

• It must begin with a letter.
Subsequent characters can be
letters, underscores, or digits
(0–9).

• It can't be a word reserved by
the database engine.

Using the AWS CLI, run create-
db-cluster and set the --
database-name option.

Using the RDS API, call
CreateDBCluster and set the
DatabaseName parameter.

Available settings 293

https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-cluster.html
https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-cluster.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateDBCluster.html

Amazon Aurora User Guide for Aurora

Console setting Setting description CLI option and RDS API
parameter

To create additional databases
, connect to the DB cluster and
use the SQL command CREATE
DATABASE. For more informati
on about connecting to the DB
cluster, see Connecting to an
Amazon Aurora DB cluster.

Log exports In the Log exports section,
choose the logs that you want
to start publishing to Amazon
CloudWatch Logs. For more
information about publishing
Aurora MySQL logs to CloudWatc
h Logs, see Publishing Amazon
Aurora MySQL logs to Amazon
CloudWatch Logs. For more
information about publishin
g Aurora PostgreSQL logs to
CloudWatch Logs, see Publishin
g Aurora PostgreSQL logs to
Amazon CloudWatch Logs.

Using the AWS CLI, run create-
db-cluster and set the --
enable-cloudwatch-logs-
exports option.

Using the RDS API, call
CreateDBCluster and set
the EnableCloudwatchLo
gsExports parameter.

Maintenance
window

Choose Select window and
specify the weekly time range
during which system maintenan
ce can occur. Or choose No
preference for Amazon RDS to
assign a period randomly.

Using the AWS CLI, run create-
db-cluster and set the --
preferred-maintenance-
window option.

Using the RDS API, call
CreateDBCluster and set
the PreferredMaintenan
ceWindow parameter.

Available settings 294

https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-cluster.html
https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-cluster.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateDBCluster.html
https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-cluster.html
https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-cluster.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateDBCluster.html

Amazon Aurora User Guide for Aurora

Console setting Setting description CLI option and RDS API
parameter

Manage master
credentials in AWS
Secrets Manager

Select Manage master credentia
ls in AWS Secrets Manager to
manage the master user password
in a secret in Secrets Manager.

Optionally, choose a KMS key
to use to protect the secret.
Choose from the KMS keys in your
account, or enter the key from a
different account.

For more information, see
Password management with
Amazon Aurora and AWS Secrets
Manager.

Using the AWS CLI, run create-
db-cluster and set the --
manage-master-user-
password | --no-manage-
master-user-password and
--master-user-secret-
kms-key-id options.

Using the RDS API, call
CreateDBCluster and set
the ManageMasterUserPa
ssword and MasterUse
rSecretKmsKeyId parameter
s.

Master password Enter a password to log on to
your DB cluster:

• For Aurora MySQL, the
password must contain 8–41
printable ASCII characters.

• For Aurora PostgreSQL, it must
contain 8–99 printable ASCII
characters.

• It can't contain /, ", @, or a
space.

Using the AWS CLI, run create-
db-cluster and set the --
master-user-password
option.

Using the RDS API, call
CreateDBCluster and set
the MasterUserPassword
parameter.

Available settings 295

https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-cluster.html
https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-cluster.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateDBCluster.html
https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-cluster.html
https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-cluster.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateDBCluster.html

Amazon Aurora User Guide for Aurora

Console setting Setting description CLI option and RDS API
parameter

Master username Enter a name to use as the master
user name to log on to your DB
cluster:

• For Aurora MySQL, the name
must contain 1–16 alphanume
ric characters.

• For Aurora PostgreSQL, it must
contain 1–63 alphanumeric
characters.

• The first character must be a
letter.

• The name can't be a word
reserved by the database
engine.

You can't change the master
user name after the DB cluster is
created.

Using the AWS CLI, run create-
db-cluster and set the --
master-username option.

Using the RDS API, call
CreateDBCluster and set the
MasterUsername parameter.

Available settings 296

https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-cluster.html
https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-cluster.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateDBCluster.html

Amazon Aurora User Guide for Aurora

Console setting Setting description CLI option and RDS API
parameter

Multi-AZ deploymen
t

Applies only to the provisioned
capacity type. Determine if you
want to create Aurora Replicas
in other Availability Zones for
failover support. If you choose
Create Replica in Different Zone,
then Amazon RDS creates an
Aurora Replica for you in your DB
cluster in a different Availability
Zone than the primary instance
for your DB cluster. For more
information about multiple
Availability Zones, see Regions
and Availability Zones.

Using the AWS CLI, run create-
db-cluster and set the --
availability-zones option.

Using the RDS API, call
CreateDBCluster and set
the AvailabilityZones
parameter.

Available settings 297

https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-cluster.html
https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-cluster.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateDBCluster.html

Amazon Aurora User Guide for Aurora

Console setting Setting description CLI option and RDS API
parameter

Network type The IP addressing protocols
supported by the DB cluster.

IPv4 to specify that resources can
communicate with the DB cluster
only over the IPv4 addressing
protocol.

Dual-stack mode to specify that
resources can communicate with
the DB cluster over IPv4, IPv6,
or both. Use dual-stack mode
if you have any resources that
must communicate with your DB
cluster over the IPv6 addressing
protocol. To use dual-stack mode,
make sure at least two subnets
spanning two Availability Zones
that support both the IPv4 and
IPv6 network protocol. Also, make
sure you associate an IPv6 CIDR
block with subnets in the DB
subnet group you specify.

For more information, see
Amazon Aurora IP addressing.

Using the AWS CLI, run create-
db-cluster and set the -
network-type option.

Using the RDS API, call
CreateDBCluster and set the
NetworkType parameter.

Available settings 298

https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-cluster.html
https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-cluster.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateDBCluster.html

Amazon Aurora User Guide for Aurora

Console setting Setting description CLI option and RDS API
parameter

Public access Choose Publicly accessible to
give the DB cluster a public IP
address, or choose Not publicly
accessible. The instances in your
DB cluster can be a mix of both
public and private DB instances
. For more information about
hiding instances from public
access, see Hiding a DB cluster in
a VPC from the internet.

To connect to a DB instance from
outside of its Amazon VPC, the
DB instance must be publicly
accessible, access must be granted
using the inbound rules of the
DB instance's security group, and
other requirements must be met.
For more information, see Can't
connect to Amazon RDS DB in
stance.

If your DB instance is isn't publicly
accessible, you can also use an
AWS Site-to-Site VPN connectio
n or an AWS Direct Connect
connection to access it from
a private network. For more
information, see Internetwork
traffic privacy.

Set this value for every DB
instance in your Aurora cluster.

Using the AWS CLI, run create-
db-instance and set the
--publicly-accessible
| --no-publicly-acce
ssible option.

Using the RDS API, call
CreateDBInstance and set
the PubliclyAccessible
parameter.

Available settings 299

https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-instance.html
https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-instance.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateDBInstance.html

Amazon Aurora User Guide for Aurora

Console setting Setting description CLI option and RDS API
parameter

RDS Extended
Support

Select Enable RDS Extended
Support to allow supported
major engine versions to continue
running past the Aurora end of
standard support date.

When you create a DB cluster,
Amazon Aurora defaults to RDS
Extended Support. To prevent
the creation of a new DB cluster
after the Aurora end of standard
support date and to avoid charges
for RDS Extended Support,
disable this setting. Your existing
DB clusters won't incur charges
until the RDS Extended Support
pricing start date.

For more information, see Using
Amazon RDS Extended Support.

Using the AWS CLI, run create-
db-cluster and set the
--engine-lifecycle-
support option.

Using the RDS API, call
CreateDBCluster and set the
EngineLifecycleSupport
parameter.

RDS Proxy Choose Create an RDS Proxy
to create a proxy for your DB
cluster. Amazon RDS automatic
ally creates an IAM role and a
Secrets Manager secret for the
proxy.

For more information, see Using
Amazon RDS Proxy for Aurora.

Not available when creating a DB
cluster.

Available settings 300

https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-cluster.html
https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-cluster.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateDBCluster.html

Amazon Aurora User Guide for Aurora

Console setting Setting description CLI option and RDS API
parameter

Retention period Choose the length of time, from
1 to 35 days, that Aurora retains
backup copies of the database.
Backup copies can be used for
point-in-time restores (PITR)
of your database down to the
second.

Using the AWS CLI, run create-
db-cluster and set the --
backup-retention-period
option.

Using the RDS API, call
CreateDBCluster and set the
BackupRetentionPeriod
parameter.

Turn on
DevOps Guru

Choose Turn on DevOps Guru
to turn on Amazon DevOps Guru
for your Aurora database. For
DevOps Guru for RDS to provide
detailed analysis of performance
anomalies, Performance Insights
must be turned on. For more
information, see Setting up
DevOps Guru for RDS.

You can turn on DevOps Guru for
RDS from within the RDS console,
but not by using the RDS API or
CLI. For more information about
turning on DevOps Guru, see the
Amazon DevOps Guru User Guide.

Available settings 301

https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-cluster.html
https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-cluster.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateDBCluster.html
https://docs.aws.amazon.com/devops-guru/latest/userguide/getting-started.html

Amazon Aurora User Guide for Aurora

Console setting Setting description CLI option and RDS API
parameter

Turn on Performance
Insights

Choose Turn on Performance
Insights to turn on Amazon RDS
Performance Insights. For more
information, see Monitoring DB
load with Performance Insights on
Amazon Aurora.

Set these values for every DB
instance in your Aurora cluster.

Using the AWS CLI, run create-
db-instance and set the
--enable-performance-
insights | --no-enable-
performance-insights , --
performance-insights-
kms-key-id , and --perform
ance-insights-rete
ntion-period options.

Using the RDS API, call
CreateDBInstance and set
the EnablePerformanceI
nsights , Performan
ceInsightsKMSKeyId ,
and PerformanceInsight
sRetentionPeriod
parameters.

Virtual Private Cloud
(VPC)

Choose the VPC to host the DB
cluster. Choose Create a New VPC
to have Amazon RDS create a VPC
for you. For more information, see
DB cluster prerequisites.

For the AWS CLI and API, you
specify the VPC security group
IDs.

Available settings 302

https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-instance.html
https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-instance.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateDBInstance.html

Amazon Aurora User Guide for Aurora

Console setting Setting description CLI option and RDS API
parameter

VPC security group
(firewall)

Choose Create new to have
Amazon RDS create a VPC security
group for you. Or choose Choose
existing and specify one or more
VPC security groups to secure
network access to the DB cluster.

When you choose Create new in
the RDS console, a new security
group is created with an inbound
rule that allows access to the
DB instance from the IP address
detected in your browser.

For more information, see DB
cluster prerequisites.

Using the AWS CLI, run create-
db-cluster and set the --
vpc-security-group-ids
option.

Using the RDS API, call
CreateDBCluster and set
the VpcSecurityGroupIds
parameter.

Settings that don't apply to Amazon Aurora for DB clusters

The following settings in the AWS CLI command create-db-cluster and the RDS API operation
CreateDBCluster don't apply to Amazon Aurora DB clusters.

Note

The AWS Management Console doesn't show these settings for Aurora DB clusters.

AWS CLI setting RDS API setting

--allocated-storage AllocatedStorage

--auto-minor-version-upgrade |
--no-auto-minor-version-upgrade

AutoMinorVersionUpgrade

Settings that don't apply to Aurora for DB clusters 303

https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-cluster.html
https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-cluster.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateDBCluster.html
https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-cluster.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateDBCluster.html

Amazon Aurora User Guide for Aurora

AWS CLI setting RDS API setting

--db-cluster-instance-class DBClusterInstanceClass

--enable-performance-insights |
--no-enable-performance-insights

EnablePerformanceInsights

--iops Iops

--monitoring-interval MonitoringInterval

--monitoring-role-arn MonitoringRoleArn

--option-group-name OptionGroupName

--performance-insights-kms-key-
id

PerformanceInsightsKMSKeyId

--performance-insights-rete
ntion-period

PerformanceInsightsRetentio
nPeriod

--publicly-accessible | --no-publ
icly-accessible

PubliclyAccessible

Settings that don't apply to Amazon Aurora DB instances

The following settings in the AWS CLI command create-db-instance and the RDS API
operation CreateDBInstance don't apply to DB instances Amazon Aurora DB cluster.

Note

The AWS Management Console doesn't show these settings for Aurora DB instances.

AWS CLI setting RDS API setting

--allocated-storage AllocatedStorage

Settings that don't apply to Aurora DB instances 304

https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-instance.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateDBInstance.html

Amazon Aurora User Guide for Aurora

AWS CLI setting RDS API setting

--availability-zone AvailabilityZone

--backup-retention-period BackupRetentionPeriod

--backup-target BackupTarget

--character-set-name CharacterSetName

--character-set-name CharacterSetName

--custom-iam-instance-profile CustomIamInstanceProfile

--db-security-groups DBSecurityGroups

--deletion-protection | --no-dele
tion-protection

DeletionProtection

--domain Domain

--domain-iam-role-name DomainIAMRoleName

--enable-cloudwatch-logs-exports EnableCloudwatchLogsExports

--enable-customer-owned-ip | --
no-enable-customer-owned-ip

EnableCustomerOwnedIp

--enable-iam-database-authe
ntication | --no-enable-iam-da
tabase-authentication

EnableIAMDatabaseAuthentication

--engine-version EngineVersion

--iops Iops

--kms-key-id KmsKeyId

--master-username MasterUsername

--master-user-password MasterUserPassword

Settings that don't apply to Aurora DB instances 305

Amazon Aurora User Guide for Aurora

AWS CLI setting RDS API setting

--max-allocated-storage MaxAllocatedStorage

--multi-az | --no-multi-az MultiAZ

--nchar-character-set-name NcharCharacterSetName

--network-type NetworkType

--option-group-name OptionGroupName

--preferred-backup-window PreferredBackupWindow

--processor-features ProcessorFeatures

--storage-encrypted | --no-stor
age-encrypted

StorageEncrypted

--storage-type StorageType

--tde-credential-arn TdeCredentialArn

--tde-credential-password TdeCredentialPassword

--timezone Timezone

--vpc-security-group-ids VpcSecurityGroupIds

Settings that don't apply to Aurora DB instances 306

Amazon Aurora User Guide for Aurora

Creating Amazon Aurora resources with AWS CloudFormation

Amazon Aurora is integrated with AWS CloudFormation, a service that helps you to model and set
up your AWS resources so that you can spend less time creating and managing your resources and
infrastructure. You create a template that describes all the AWS resources that you want (such as
DB clusters and DB cluster parameter groups), and AWS CloudFormation provisions and configures
those resources for you.

When you use AWS CloudFormation, you can reuse your template to set up your Aurora resources
consistently and repeatedly. Describe your resources once, and then provision the same resources
over and over in multiple AWS accounts and Regions.

Aurora and AWS CloudFormation templates

To provision and configure resources for Aurora and related services, you must understand AWS
CloudFormation templates. Templates are formatted text files in JSON or YAML. These templates
describe the resources that you want to provision in your AWS CloudFormation stacks. If you're
unfamiliar with JSON or YAML, you can use AWS CloudFormation Designer to help you get started
with AWS CloudFormation templates. For more information, see What is AWS CloudFormation
Designer? in the AWS CloudFormation User Guide.

Aurora supports creating resources in AWS CloudFormation. For more information, including
examples of JSON and YAML templates for these resources, see the RDS resource type reference in
the AWS CloudFormation User Guide.

Learn more about AWS CloudFormation

To learn more about AWS CloudFormation, see the following resources:

• AWS CloudFormation

• AWS CloudFormation User Guide

• AWS CloudFormation API Reference

• AWS CloudFormation Command Line Interface User Guide

Creating resources with AWS CloudFormation 307

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/template-guide.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/template-guide.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/working-with-templates-cfn-designer.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/working-with-templates-cfn-designer.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/AWS_RDS.html
https://aws.amazon.com/cloudformation/
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/Welcome.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/APIReference/Welcome.html
https://docs.aws.amazon.com/cloudformation-cli/latest/userguide/what-is-cloudformation-cli.html

Amazon Aurora User Guide for Aurora

Connecting to an Amazon Aurora DB cluster

You can connect to an Aurora DB cluster using the same tools that you use to connect to a MySQL
or PostgreSQL database. You specify a connection string with any script, utility, or application that
connects to a MySQL or PostgreSQL DB instance. You use the same public key for Secure Sockets
Layer (SSL) connections.

In the connection string, you typically use the host and port information from special endpoints
associated with the DB cluster. With these endpoints, you can use the same connection parameters
regardless of how many DB instances are in the cluster. You also use the host and port information
from a specific DB instance in your Aurora DB cluster for specialized tasks, such as troubleshooting.

Note

For Aurora Serverless DB clusters, you connect to the database endpoint rather than to the
DB instance. You can find the database endpoint for an Aurora Serverless DB cluster on the
Connectivity & security tab of the AWS Management Console. For more information, see
Using Amazon Aurora Serverless v1.

Regardless of the Aurora DB engine and specific tools you use to work with the DB cluster or
instance, the endpoint must be accessible. An Aurora DB cluster can be created only in a virtual
private cloud (VPC) based on the Amazon VPC service. That means that you access the endpoint
from either inside the VPC or outside the VPC using one of the following approaches.

• Access the Aurora DB cluster inside the VPC – Enable access to the Aurora DB cluster through
the VPC. You do so by editing the Inbound rules on the Security group for the VPC to allow
access to your specific Aurora DB cluster. To learn more, including how to configure your VPC
for different Aurora DB cluster scenarios, see Amazon Virtual Private Cloud VPCs and Amazon
Aurora.

• Access the Aurora DB cluster outside the VPC – To access an Aurora DB cluster from outside the
VPC, use the public endpoint address of the DB cluster.

For more information, see Troubleshooting Aurora connection failures.

Contents

• Connecting to Aurora DB clusters with the AWS drivers

Connecting to a DB cluster 308

https://docs.aws.amazon.com/en_us/AmazonRDS/latest/AuroraUserGuide/USER_VPC.html
https://docs.aws.amazon.com/en_us/AmazonRDS/latest/AuroraUserGuide/USER_VPC.html

Amazon Aurora User Guide for Aurora

• Connecting to an Amazon Aurora MySQL DB cluster

• Connection utilities for Aurora MySQL

• Connecting to Aurora MySQL with the MySQL utility

• Connecting to Aurora MySQL with the Amazon Web Services (AWS) JDBC Driver

• Connecting to Aurora MySQL with the Amazon Web Services (AWS) Python Driver

• Connecting to Aurora MySQL with the Amazon Web Services (AWS) ODBC Driver for MySQL

• Connecting to Aurora MySQL using SSL

• Connecting to an Amazon Aurora PostgreSQL DB cluster

• Connection utilities for Aurora PostgreSQL

• Connecting to Aurora PostgreSQL with the Amazon Web Services (AWS) JDBC Driver

• Connecting to Aurora PostgreSQL with the Amazon Web Services (AWS) Python Driver

• Troubleshooting Aurora connection failures

Connecting to Aurora DB clusters with the AWS drivers

The AWS suite of drivers has been designed to provide support for faster switchover and failover
times, and authentication with AWS Secrets Manager, AWS Identity and Access Management (IAM),
and Federated Identity. The AWS drivers rely on monitoring DB cluster status and being aware of
the cluster topology to determine the new writer. This approach reduces switchover and failover
times to single-digit seconds, compared to tens of seconds for open-source drivers.

The following table lists the features supported for each of the drivers. As new service features
are introduced, the goal of the AWS suite of drivers is to have built-in support for these service
features.

Feature AWS JDBC Driver AWS Python Driver AWS ODBC Driver
for MySQL

Failover support Yes Yes Yes

Enhanced failover
monitoring

Yes Yes Yes

Read/write splitting Yes Yes No

Connecting to Aurora DB clusters with the AWS drivers 309

https://github.com/awslabs/aws-advanced-jdbc-wrapper
https://github.com/awslabs/aws-advanced-python-wrapper
https://github.com/aws/aws-mysql-odbc
https://github.com/aws/aws-mysql-odbc
https://github.com/awslabs/aws-advanced-jdbc-wrapper/blob/main/docs/using-the-jdbc-driver/using-plugins/UsingTheFailoverPlugin.md
https://github.com/awslabs/aws-advanced-python-wrapper/blob/main/docs/using-the-python-driver/using-plugins/UsingTheFailoverPlugin.md
https://github.com/aws/aws-mysql-odbc/blob/main/docs/using-the-aws-driver/UsingTheAwsDriver.md#failover-process
https://github.com/awslabs/aws-advanced-jdbc-wrapper/blob/main/docs/using-the-jdbc-driver/using-plugins/UsingTheHostMonitoringPlugin.md
https://github.com/awslabs/aws-advanced-python-wrapper/blob/main/docs/using-the-python-driver/using-plugins/UsingTheHostMonitoringPlugin.md
https://github.com/aws/aws-mysql-odbc/blob/main/docs/using-the-aws-driver/HostMonitoring.md#enhanced-failure-monitoring
https://github.com/awslabs/aws-advanced-jdbc-wrapper/blob/main/docs/using-the-jdbc-driver/using-plugins/UsingTheReadWriteSplittingPlugin.md
https://github.com/awslabs/aws-advanced-python-wrapper/blob/main/docs/using-the-python-driver/using-plugins/UsingTheReadWriteSplittingPlugin.md

Amazon Aurora User Guide for Aurora

Feature AWS JDBC Driver AWS Python Driver AWS ODBC Driver
for MySQL

Aurora connection
tracker

Yes Yes No

Driver metadata
connection

Yes N/A N/A

Telemetry Yes Yes No

Secrets Manager Yes Yes Yes

IAM authentication Yes Yes Yes

Federated Identity
(AD FS)

Yes Yes No

Federated Identity
(Okta)

Yes No No

For more information on the AWS drivers, see the corresponding language driver for your Aurora
MySQL or Aurora PostgreSQL DB cluster.

Connecting to an Amazon Aurora MySQL DB cluster

To authenticate to your Aurora MySQL DB cluster, you can use either MySQL user name and
password authentication or AWS Identity and Access Management (IAM) database authentication.
For more information on using MySQL user name and password authentication, see Access control
and account management in the MySQL documentation. For more information on using IAM
database authentication, see IAM database authentication.

When you have a connection to your Amazon Aurora DB cluster with MySQL 8.0 compatibility, you
can run SQL commands that are compatible with MySQL version 8.0. The minimum compatible
version is MySQL 8.0.23. For more information about MySQL 8.0 SQL syntax, see the MySQL 8.0
reference manual. For information about limitations that apply to Aurora MySQL version 3, see
Comparing Aurora MySQL version 3 and MySQL 8.0 Community Edition.

Connecting to Aurora MySQL 310

https://github.com/awslabs/aws-advanced-jdbc-wrapper
https://github.com/awslabs/aws-advanced-python-wrapper
https://github.com/aws/aws-mysql-odbc
https://github.com/aws/aws-mysql-odbc
https://github.com/awslabs/aws-advanced-jdbc-wrapper/blob/main/docs/using-the-jdbc-driver/using-plugins/UsingTheAuroraConnectionTrackerPlugin.md
https://github.com/awslabs/aws-advanced-python-wrapper/blob/main/docs/using-the-python-driver/using-plugins/UsingTheAuroraConnectionTrackerPlugin.md
https://github.com/awslabs/aws-advanced-jdbc-wrapper/blob/main/docs/using-the-jdbc-driver/using-plugins/UsingTheDriverMetadataConnectionPlugin.md
https://github.com/awslabs/aws-advanced-jdbc-wrapper/blob/main/docs/using-the-jdbc-driver/Telemetry.md
https://github.com/aws/aws-advanced-python-wrapper/blob/main/docs/using-the-python-driver/Telemetry.md
https://github.com/awslabs/aws-advanced-jdbc-wrapper/blob/main/docs/using-the-jdbc-driver/using-plugins/UsingTheAwsSecretsManagerPlugin.md
https://github.com/awslabs/aws-advanced-python-wrapper/blob/main/docs/using-the-python-driver/using-plugins/UsingTheAwsSecretsManagerPlugin.md
https://github.com/aws/aws-mysql-odbc/blob/main/docs/using-the-aws-driver/UsingTheAwsDriver.md#secrets-manager-authentication
https://github.com/awslabs/aws-advanced-jdbc-wrapper/blob/main/docs/using-the-jdbc-driver/using-plugins/UsingTheIamAuthenticationPlugin.md
https://github.com/awslabs/aws-advanced-python-wrapper/blob/main/docs/using-the-python-driver/using-plugins/UsingTheIamAuthenticationPlugin.md
https://github.com/aws/aws-mysql-odbc/blob/main/docs/using-the-aws-driver/UsingTheAwsDriver.md#iam-authentication
https://github.com/awslabs/aws-advanced-jdbc-wrapper/blob/main/docs/using-the-jdbc-driver/using-plugins/UsingTheFederatedAuthPlugin.md
https://github.com/awslabs/aws-advanced-python-wrapper/blob/main/docs/using-the-python-driver/using-plugins/UsingTheFederatedAuthenticationPlugin.md
https://github.com/awslabs/aws-advanced-jdbc-wrapper/blob/main/docs/using-the-jdbc-driver/using-plugins/UsingTheFederatedAuthPlugin.md
https://dev.mysql.com/doc/refman/5.7/en/access-control.html
https://dev.mysql.com/doc/refman/5.7/en/access-control.html
http://dev.mysql.com/doc/refman/8.0/en/index.html
http://dev.mysql.com/doc/refman/8.0/en/index.html

Amazon Aurora User Guide for Aurora

When you have a connection to your Amazon Aurora DB cluster with MySQL 5.7 compatibility, you
can run SQL commands that are compatible with MySQL version 5.7. For more information about
MySQL 5.7 SQL syntax, see the MySQL 5.7 reference manual. For information about limitations
that apply to Aurora MySQL 5.7, see Aurora MySQL version 2 compatible with MySQL 5.7.

Note

For a helpful and detailed guide on connecting to an Amazon Aurora MySQL DB cluster, you
can see the Aurora connection management handbook.

In the details view for your DB cluster, you can find the cluster endpoint, which you can use in
your MySQL connection string. The endpoint is made up of the domain name and port for your
DB cluster. For example, if an endpoint value is mycluster.cluster-123456789012.us-
east-1.rds.amazonaws.com:3306, then you specify the following values in a MySQL
connection string:

• For host or host name, specify mycluster.cluster-123456789012.us-
east-1.rds.amazonaws.com

• For port, specify 3306 or the port value you used when you created the DB cluster

The cluster endpoint connects you to the primary instance for the DB cluster. You can perform both
read and write operations using the cluster endpoint. Your DB cluster can also have up to 15 Aurora
Replicas that support read-only access to the data in your DB cluster. The primary instance and
each Aurora Replica has a unique endpoint that is independent of the cluster endpoint and allows
you to connect to a specific DB instance in the cluster directly. The cluster endpoint always points
to the primary instance. If the primary instance fails and is replaced, then the cluster endpoint
points to the new primary instance.

To view the cluster endpoint (writer endpoint), choose Databases on the Amazon RDS console and
choose the name of the DB cluster to show the DB cluster details.

Connecting to Aurora MySQL 311

http://dev.mysql.com/doc/refman/5.7/en/index.html
https://d1.awsstatic.com/whitepapers/RDS/amazon-aurora-connection-management-handbook.pdf

Amazon Aurora User Guide for Aurora

Topics

• Connection utilities for Aurora MySQL

• Connecting to Aurora MySQL with the MySQL utility

• Connecting to Aurora MySQL with the Amazon Web Services (AWS) JDBC Driver

• Connecting to Aurora MySQL with the Amazon Web Services (AWS) Python Driver

• Connecting to Aurora MySQL with the Amazon Web Services (AWS) ODBC Driver for MySQL

• Connecting to Aurora MySQL using SSL

Connecting to Aurora MySQL 312

Amazon Aurora User Guide for Aurora

Connection utilities for Aurora MySQL

Some connection utilities you can use are the following:

• Command line – You can connect to an Amazon Aurora DB cluster by using tools like the MySQL
command line utility. For more information on using the MySQL utility, see mysql — the MySQL
command-line client in the MySQL documentation.

• GUI – You can use the MySQL Workbench utility to connect by using a UI interface. For more
information, see the Download MySQL workbench page.

• AWS drivers:

• Connecting to Aurora MySQL with the Amazon Web Services (AWS) JDBC Driver

• Connecting to Aurora MySQL with the Amazon Web Services (AWS) Python Driver

• Connecting to Aurora MySQL with the Amazon Web Services (AWS) ODBC Driver for MySQL

Connecting to Aurora MySQL with the MySQL utility

Use the following procedure. It assumes that you configured your DB cluster in a private subnet
in your VPC. You connect using an Amazon EC2 instance that you configured according to the
tutorials in Tutorial: Create a web server and an Amazon Aurora DB cluster.

Note

This procedure doesn't require installing the web server in the tutorial, but it does require
installing MariaDB 10.5.

To connect to a DB cluster using the MySQL utility

1. Log in to the EC2 instance that you're using to connect to your DB cluster.

You should see output similar to the following.

Last login: Thu Jun 23 13:32:52 2022 from xxx.xxx.xxx.xxx

 __| __|_)
 _| (/ Amazon Linux 2 AMI
 ___|___|___|

Connecting to Aurora MySQL 313

http://dev.mysql.com/doc/refman/8.0/en/mysql.html
http://dev.mysql.com/doc/refman/8.0/en/mysql.html
http://dev.mysql.com/downloads/workbench/

Amazon Aurora User Guide for Aurora

https://aws.amazon.com/amazon-linux-2/
[ec2-user@ip-10-0-xxx.xxx ~]$

2. Type the following command at the command prompt to connect to the primary DB instance
of your DB cluster.

For the -h parameter, substitute the endpoint DNS name for your primary instance. For the -u
parameter, substitute the user ID of a database user account.

mysql -h primary-instance-endpoint.AWS_account.AWS_Region.rds.amazonaws.com -P 3306
 -u database_user -p

For example:

mysql -h my-aurora-cluster-instance.c1xy5example.123456789012.eu-
central-1.rds.amazonaws.com -P 3306 -u admin -p

3. Enter the password for the database user.

You should see output similar to the following.

Welcome to the MariaDB monitor. Commands end with ; or \g.
Your MySQL connection id is 1770
Server version: 8.0.23 Source distribution

Copyright (c) 2000, 2018, Oracle, MariaDB Corporation Ab and others.

Type 'help;' or '\h' for help. Type '\c' to clear the current input statement.

MySQL [(none)]>

4. Enter your SQL commands.

Connecting to Aurora MySQL with the Amazon Web Services (AWS) JDBC Driver

The Amazon Web Services (AWS) JDBC Driver is designed as an advanced JDBC wrapper. This
wrapper is complementary to and extends the functionality of an existing JDBC driver to help
applications take advantage of the features of clustered databases such as Aurora MySQL. The
driver is drop-in compatible with the community MySQL Connector/J driver and the community
MariaDB Connector/J driver.

Connecting to Aurora MySQL 314

Amazon Aurora User Guide for Aurora

To install the AWS JDBC Driver, append the AWS JDBC Driver .jar file (located in the application
CLASSPATH), and keep references to the respective community driver. Update the respective
connection URL prefix as follows:

• jdbc:mysql:// to jdbc:aws-wrapper:mysql://

• jdbc:mariadb:// to jdbc:aws-wrapper:mariadb://

For more information about the AWS JDBC Driver and complete instructions for using it, see the
Amazon Web Services (AWS) JDBC Driver GitHub repository.

Note

Version 3.0.3 of the MariaDB Connector/J utility drops support for Aurora DB clusters, so
we highly recommend moving to the AWS JDBC Driver.

Connecting to Aurora MySQL with the Amazon Web Services (AWS) Python Driver

The Amazon Web Services (AWS) Python Driver is designed as an advanced Python wrapper.
This wrapper is complementary to and extends the functionality of the open-source Psycopg
driver. The AWS Python Driver supports Python versions 3.8 and higher. You can install the aws-
advanced-python-wrapper package using the pip command, along with the psycopg open-
source packages.

For more information about the AWS Python Driver and complete instructions for using it, see the
Amazon Web Services (AWS) Python Driver GitHub repository.

Connecting to Aurora MySQL with the Amazon Web Services (AWS) ODBC Driver
for MySQL

The AWS ODBC Driver for MySQL is a client driver designed for the high availability of Aurora
MySQL. The driver can exist alongside the MySQL Connector/ODBC driver and is compatible with
the same workflows.

For more information about the AWS ODBC Driver for MySQL and complete instructions for
installing and using it, see the Amazon Web Services (AWS) ODBC Driver for MySQL GitHub
repository.

Connecting to Aurora MySQL 315

https://github.com/awslabs/aws-advanced-jdbc-wrapper
https://github.com/awslabs/aws-advanced-python-wrapper
https://github.com/aws/aws-mysql-odbc

Amazon Aurora User Guide for Aurora

Connecting to Aurora MySQL using SSL

You can use SSL encryption on connections to an Aurora MySQL DB instance. For information, see
Using TLS with Aurora MySQL DB clusters.

To connect using SSL, use the MySQL utility as described in the following procedure. If you are
using IAM database authentication, you must use an SSL connection. For information, see IAM
database authentication.

Note

To connect to the cluster endpoint using SSL, your client connection utility must support
Subject Alternative Names (SAN). If your client connection utility doesn't support SAN, you
can connect directly to the instances in your Aurora DB cluster. For more information on
Aurora endpoints, see Amazon Aurora connection management.

To connect to a DB cluster with SSL using the MySQL utility

1. Download the public key for the Amazon RDS signing certificate.

For information about downloading certificates, see Using SSL/TLS to encrypt a connection to a
DB cluster.

2. Type the following command at a command prompt to connect to the primary instance of a DB
cluster with SSL using the MySQL utility. For the -h parameter, substitute the endpoint DNS
name for your primary instance. For the -u parameter, substitute the user ID of a database user
account. For the --ssl-ca parameter, substitute the SSL certificate file name as appropriate.
Type the master user password when prompted.

mysql -h mycluster-primary.123456789012.us-east-1.rds.amazonaws.com -u
admin_user -p --ssl-ca=[full path]global-bundle.pem --ssl-verify-server-
cert

You should see output similar to the following.

Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 350
Server version: 8.0.26-log MySQL Community Server (GPL)

Connecting to Aurora MySQL 316

Amazon Aurora User Guide for Aurora

Type 'help;' or '\h' for help. Type '\c' to clear the buffer.

mysql>

For general instructions on constructing RDS for MySQL connection strings and finding the public
key for SSL connections, see Connecting to a DB instance running the MySQL database engine.

Connecting to an Amazon Aurora PostgreSQL DB cluster

You can connect to a DB instance in your Amazon Aurora PostgreSQL DB cluster using the same
tools that you use to connect to a PostgreSQL database. As part of this, you use the same public
key for Secure Sockets Layer (SSL) connections. You can use the endpoint and port information
from the primary instance or Aurora Replicas in your Aurora PostgreSQL DB cluster in the
connection string of any script, utility, or application that connects to a PostgreSQL DB instance.
In the connection string, specify the DNS address from the primary instance or Aurora Replica
endpoint as the host parameter. Specify the port number from the endpoint as the port parameter.

When you have a connection to a DB instance in your Amazon Aurora PostgreSQL DB cluster, you
can run any SQL command that is compatible with PostgreSQL.

In the details view for your Aurora PostgreSQL DB cluster you can find the cluster
endpoint name, status, type, and port number. You use the endpoint and port
number in your PostgreSQL connection string. For example, if an endpoint value is
mycluster.cluster-123456789012.us-east-1.rds.amazonaws.com, then you specify the
following values in a PostgreSQL connection string:

• For host or host name, specify mycluster.cluster-123456789012.us-
east-1.rds.amazonaws.com

• For port, specify 5432 or the port value you used when you created the DB cluster

The cluster endpoint connects you to the primary instance for the DB cluster. You can perform both
read and write operations using the cluster endpoint. Your DB cluster can also have up to 15 Aurora
Replicas that support read-only access to the data in your DB cluster. Each DB instance in the
Aurora cluster (that is, the primary instance and each Aurora Replica) has a unique endpoint that is
independent of the cluster endpoint. This unique endpoint allows you to connect to a specific DB
instance in the cluster directly. The cluster endpoint always points to the primary instance. If the
primary instance fails and is replaced, the cluster endpoint points to the new primary instance.

Connecting to Aurora PostgreSQL 317

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_ConnectToInstance.html

Amazon Aurora User Guide for Aurora

To view the cluster endpoint (writer endpoint), choose Databases on the Amazon RDS console and
choose the name of the DB cluster to show the DB cluster details.

Connection utilities for Aurora PostgreSQL

Some connection utilities you can use are the following:

• Command line – You can connect to Aurora PostgreSQL DB clusters by using tools like psql,
the PostgreSQL interactive terminal. For more information on using the PostgreSQL interactive
terminal, see psql in the PostgreSQL documentation.

• GUI – You can use the pgAdmin utility to connect to Aurora PostgreSQL DB clusters by using a UI
interface. For more information, see the Download page from the pgAdmin website.

• AWS drivers:

• Connecting to Aurora PostgreSQL with the Amazon Web Services (AWS) JDBC Driver

• Connecting to Aurora PostgreSQL with the Amazon Web Services (AWS) Python Driver

Connecting to Aurora PostgreSQL with the Amazon Web Services (AWS) JDBC
Driver

The Amazon Web Services (AWS) JDBC Driver is designed as an advanced JDBC wrapper. This
wrapper is complementary to and extends the functionality of an existing JDBC driver to help
applications take advantage of the features of clustered databases such as Aurora PostgreSQL. The
driver is drop-in compatible with the community pgJDBC driver.

To install the AWS JDBC Driver, append the AWS JDBC Driver .jar file (located in the application
CLASSPATH), and keep references to the pgJDBC community driver. Update the connection URL
prefix from jdbc:postgresql:// to jdbc:aws-wrapper:postgresql://.

For more information about the AWS JDBC Driver and complete instructions for using it, see the
Amazon Web Services (AWS) JDBC Driver GitHub repository.

Connecting to Aurora PostgreSQL with the Amazon Web Services (AWS) Python
Driver

The Amazon Web Services (AWS) Python Driver is designed as an advanced Python wrapper.
This wrapper is complementary to and extends the functionality of the open-source Psycopg
driver. The AWS Python Driver supports Python versions 3.8 and higher. You can install the aws-

Connecting to Aurora PostgreSQL 318

https://www.postgresql.org/docs/current/app-psql.html
https://www.pgadmin.org/download/
https://github.com/awslabs/aws-advanced-jdbc-wrapper

Amazon Aurora User Guide for Aurora

advanced-python-wrapper package using the pip command, along with the psycopg open-
source packages.

For more information about the AWS Python Driver and complete instructions for using it, see the
Amazon Web Services (AWS) Python Driver GitHub repository.

Troubleshooting Aurora connection failures

Common causes of connection failures to a new Aurora DB cluster include the following:

• Security group in the VPC doesn't allow access – Your VPC needs to allow connections from
your device or from an Amazon EC2 instance by proper configuration of the security group in the
VPC. To resolve, modify your VPC's Security group Inbound rules to allow connections. For an
example, see Tutorial: Create a VPC for use with a DB cluster (IPv4 only).

• Port blocked by firewall rules – Check the value of the port configured for your Aurora DB
cluster. If a firewall rule blocks that port, you can re-create the instance using a different port.

• Incomplete or incorrect IAM configuration – If you created your Aurora DB instance to use IAM–
based authentication, make sure that it's properly configured. For more information, see IAM
database authentication.

For more information about troubleshooting Aurora DB connection issues, see Can't connect to
Amazon RDS DB instance.

Troubleshooting connections 319

https://github.com/awslabs/aws-advanced-python-wrapper

Amazon Aurora User Guide for Aurora

Working with parameter groups

Database parameters specify how the database is configured. For example, database parameters
can specify the amount of resources, such as memory, to allocate to a database.

You manage your database configuration by associating your DB instances and Aurora DB clusters
with parameter groups. Aurora defines parameter groups with default settings. You can also define
your own parameter groups with customized settings.

Topics

• Overview of parameter groups

• Working with DB cluster parameter groups

• Working with DB parameter groups in a DB instance

• Comparing DB parameter groups

• Specifying DB parameters

Overview of parameter groups

A DB cluster parameter group acts as a container for engine configuration values that apply
to every DB instance in an Aurora DB cluster. For example, the Aurora shared storage model
requires that every DB instance in an Aurora cluster use the same setting for parameters such as
innodb_file_per_table. Thus, parameters that affect the physical storage layout are part of
the cluster parameter group. The DB cluster parameter group also includes default values for all
instance-level parameters.

A DB parameter group acts as a container for engine configuration values that are applied to one or
more DB instances. DB parameter groups apply to DB instances in both Amazon RDS and Aurora.
These configuration settings apply to properties that can vary among the DB instances within an
Aurora cluster, such as the sizes for memory buffers.

Topics

• Default and custom parameter groups

• Static and dynamic DB cluster parameters

• Static and dynamic DB instance parameters

• Character set parameters

Working with parameter groups 320

Amazon Aurora User Guide for Aurora

• Supported parameters and parameter values

Default and custom parameter groups

If you create a DB instance without specifying a DB parameter group, the DB instance uses a
default DB parameter group. Likewise, if you create an Aurora DB cluster without specifying a DB
cluster parameter group, the DB cluster uses a default DB cluster parameter group. Each default
parameter group contains database engine defaults and Amazon RDS system defaults based on the
engine, compute class, and allocated storage of the instance.

You can't modify the parameter settings of a default parameter group. Instead, you can do the
following:

1. Create a new parameter group.

2. Change the settings of your desired parameters. Not all DB engine parameters in a parameter
group are eligible to be modified.

3. Modify your DB instance or DB cluster to associate the new parameter group.

For information about modifying a DB cluster or DB instance, see Modifying an Amazon Aurora
DB cluster.

Note

If you have modified your DB instance to use a custom parameter group, and you start
the DB instance, RDS automatically reboots the DB instance as part of the startup
process.

RDS applies the modified static and dynamic parameters in a newly associated parameter
group only after the DB instance is rebooted. However, if you modify dynamic parameters in
the DB parameter group after you associate it with the DB instance, these changes are applied
immediately without a reboot. For more information about changing the DB parameter group, see
Modifying an Amazon Aurora DB cluster.

If you update parameters within a DB parameter group, the changes apply to all DB instances that
are associated with that parameter group. Likewise, if you update parameters within an Aurora DB
cluster parameter group, the changes apply to all Aurora DB clusters that are associated with that
DB cluster parameter group.

Overview of parameter groups 321

Amazon Aurora User Guide for Aurora

If you don't want to create a parameter group from scratch, you can copy an existing parameter
group with the AWS CLI copy-db-parameter-group command or copy-db-cluster-parameter-group
command. You might find that copying a parameter group is useful in some cases. For example,
you might want to include most of an existing parameter group's custom parameters and values in
a new parameter group.

Static and dynamic DB cluster parameters

DB cluster parameters are either static or dynamic. They differ in the following ways:

• When you change a static parameter and save the DB cluster parameter group, the parameter
change takes effect after you manually reboot the DB instances in each associated DB cluster.
When you use the AWS Management Console to change static DB cluster parameter values, it
always uses pending-reboot for the ApplyMethod.

• When you change a dynamic parameter, by default the parameter change takes effect
immediately, without requiring a reboot. When you use the console, it always uses immediate
for the ApplyMethod. To defer the parameter change until after you reboot the DB instances
in an associated DB cluster, use the AWS CLI or RDS API. Set the ApplyMethod to pending-
reboot for the parameter change.

For more information about using the AWS CLI to change a parameter value, see modify-db-
cluster-parameter-group. For more information about using the RDS API to change a parameter
value, see ModifyDBClusterParameterGroup.

If you change the DB cluster parameter group associated with a DB cluster, reboot the DB instances
in the DB cluster. The reboot applies the changes to all DB instances in the DB cluster. To determine
whether the DB instances of a DB cluster must be rebooted to apply changes, run the following
AWS CLI command.

aws rds describe-db-clusters --db-cluster-identifier db_cluster_identifier

Check the DBClusterParameterGroupStatus value for the primary DB instance in the output. If
the value is pending-reboot, then reboot the DB instances of the DB cluster.

Static and dynamic DB instance parameters

DB instance parameters are either static or dynamic. They differ as follows:

Overview of parameter groups 322

https://docs.aws.amazon.com/cli/latest/reference/rds/copy-db-parameter-group.html
https://docs.aws.amazon.com/cli/latest/reference/rds/copy-db-cluster-parameter-group.html
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-cluster-parameter-group.html
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-cluster-parameter-group.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBClusterParameterGroup.html

Amazon Aurora User Guide for Aurora

• When you change a static parameter and save the DB parameter group, the parameter change
takes effect after you manually reboot the associated DB instances. For static parameters, the
console always uses pending-reboot for the ApplyMethod.

• When you change a dynamic parameter, by default the parameter change takes effect
immediately, without requiring a reboot. When you use the AWS Management Console to change
DB instance parameter values, it always uses immediate for the ApplyMethod for dynamic
parameters. To defer the parameter change until after you reboot an associated DB instance, use
the AWS CLI or RDS API. Set the ApplyMethod to pending-reboot for the parameter change.

For more information about using the AWS CLI to change a parameter value, see modify-db-
parameter-group. For more information about using the RDS API to change a parameter value, see
ModifyDBParameterGroup.

If a DB instance isn't using the latest changes to its associated DB parameter group, the console
shows a status of pending-reboot for the DB parameter group. This status doesn't result in an
automatic reboot during the next maintenance window. To apply the latest parameter changes to
that DB instance, manually reboot the DB instance.

Character set parameters

Before you create a DB cluster, set any parameters that relate to the character set or collation of
your database in your parameter group. Also do so before you create a database in it. In this way,
you ensure that the default database and new databases use the character set and collation values
that you specify. If you change character set or collation parameters, the parameter changes aren't
applied to existing databases.

For some DB engines, you can change character set or collation values for an existing database
using the ALTER DATABASE command, for example:

ALTER DATABASE database_name CHARACTER SET character_set_name COLLATE collation;

For more information about changing the character set or collation values for a database, check
the documentation for your DB engine.

Supported parameters and parameter values

To determine the supported parameters for your DB engine, view the parameters in the DB
parameter group and DB cluster parameter group used by the DB instance or DB cluster. For more

Overview of parameter groups 323

https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-parameter-group.html
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-parameter-group.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBParameterGroup.html

Amazon Aurora User Guide for Aurora

information, see Viewing parameter values for a DB parameter group and Viewing parameter
values for a DB cluster parameter group.

In many cases, you can specify integer and Boolean parameter values using expressions, formulas,
and functions. Functions can include a mathematical log expression. However, not all parameters
support expressions, formulas, and functions for parameter values. For more information, see
Specifying DB parameters.

For an Aurora global database, you can specify different configuration settings for the individual
Aurora clusters. Make sure that the settings are similar enough to produce consistent behavior if
you promote a secondary cluster to be the primary cluster. For example, use the same settings for
time zones and character sets across all the clusters of an Aurora global database.

Improperly setting parameters in a parameter group can have unintended adverse effects,
including degraded performance and system instability. Always be cautious when modifying
database parameters, and back up your data before modifying a parameter group. Try parameter
group setting changes on a test DB instance or DB cluster before applying those parameter group
changes to a production DB instance or DB cluster.

Working with DB cluster parameter groups

Amazon Aurora DB clusters use DB cluster parameter groups. The following sections describe
configuring and managing DB cluster parameter groups.

Topics

• Amazon Aurora DB cluster and DB instance parameters

• Creating a DB cluster parameter group

• Associating a DB cluster parameter group with a DB cluster

• Modifying parameters in a DB cluster parameter group

• Resetting parameters in a DB cluster parameter group

• Copying a DB cluster parameter group

• Listing DB cluster parameter groups

• Viewing parameter values for a DB cluster parameter group

• Deleting a DB cluster parameter group

Working with DB cluster parameter groups 324

Amazon Aurora User Guide for Aurora

Amazon Aurora DB cluster and DB instance parameters

Aurora uses a two-level system of configuration settings:

• Parameters in a DB cluster parameter group apply to every DB instance in a DB cluster. Your
data is stored in the Aurora shared storage subsystem. Because of this, all parameters related to
physical layout of table data must be the same for all DB instances in an Aurora cluster. Likewise,
because Aurora DB instances are connected by replication, all the parameters for replication
settings must be identical throughout an Aurora cluster.

• Parameters in a DB parameter group apply to a single DB instance in an Aurora DB cluster. These
parameters are related to aspects such as memory usage that you can vary across DB instances
in the same Aurora cluster. For example, a cluster often contains DB instances with different AWS
instance classes.

Every Aurora cluster is associated with a DB cluster parameter group. This parameter group
assigns default values for every configuration value for the corresponding DB engine. The cluster
parameter group includes defaults for both the cluster-level and instance-level parameters. Each
DB instance within a provisioned or Aurora Serverless v2 cluster inherits the settings from that DB
cluster parameter group.

Each DB instance is also associated with a DB parameter group. The values in the DB parameter
group can override default values from the cluster parameter group. For example, if one instance
in a cluster experienced issues, you might assign a custom DB parameter group to that instance.
The custom parameter group might have specific settings for parameters related to debugging or
performance tuning.

Aurora assigns default parameter groups when you create a cluster or a new DB instance, based on
the specified database engine and version. You can specify custom parameter groups instead. You
create those parameter groups yourself, and you can edit the parameter values. You can specify
these custom parameter groups at creation time. You can also modify a DB cluster or instance later
to use a custom parameter group.

For provisioned and Aurora Serverless v2 instances, any configuration values that you modify in
the DB cluster parameter group override default values in the DB parameter group. If you edit the
corresponding values in the DB parameter group, those values override the settings from the DB
cluster parameter group.

Working with DB cluster parameter groups 325

Amazon Aurora User Guide for Aurora

Any DB parameter settings that you modify take precedence over the DB cluster parameter group
values, even if you change the configuration parameters back to their default values. You can
see which parameters are overridden by using the describe-db-parameters AWS CLI command or
the DescribeDBParameters RDS API operation. The Source field contains the value user if you
modified that parameter. To reset one or more parameters so that the value from the DB cluster
parameter group takes precedence, use the reset-db-parameter-group AWS CLI command or the
ResetDBParameterGroup RDS API operation.

The DB cluster and DB instance parameters available to you in Aurora vary depending on database
engine compatibility.

Database engine Parameters

Aurora MySQL See Aurora MySQL configuration parameters.

For Aurora Serverless clusters, see additional details in Working
with parameter groups for Aurora Serverless v2 and Parameter
groups for Aurora Serverless v1.

Aurora PostgreSQL See Amazon Aurora PostgreSQL parameters.

For Aurora Serverless clusters, see additional details in Working
with parameter groups for Aurora Serverless v2 and Parameter
groups for Aurora Serverless v1.

Note

Aurora Serverless v1 clusters have only DB cluster parameter groups, not DB parameter
groups. For Aurora Serverless v2 clusters, you make all your changes to custom parameters
in the DB cluster parameter group.
Aurora Serverless v2 uses both DB cluster parameter groups and DB parameter groups.
With Aurora Serverless v2, you can modify almost all of the configuration parameters.
Aurora Serverless v2 overrides the settings of some capacity-related configuration
parameters so that your workload isn't interrupted when Aurora Serverless v2 instances
scale down.

Working with DB cluster parameter groups 326

https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-parameters.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DescribeDBParameters.html
https://docs.aws.amazon.com/cli/latest/reference/rds/reset-db-parameter-group.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ResetDBParameterGroup.html

Amazon Aurora User Guide for Aurora

To learn more about Aurora Serverless configuration settings and which settings you can
modify, see Working with parameter groups for Aurora Serverless v2 and Parameter groups
for Aurora Serverless v1.

Creating a DB cluster parameter group

You can create a new DB cluster parameter group using the AWS Management Console, the AWS
CLI, or the RDS API.

After you create a DB cluster parameter group, wait at least 5 minutes before creating a DB cluster
that uses that DB cluster parameter group. Doing this allows Amazon RDS to fully create the
parameter group before it is used by the new DB cluster. You can use the Parameter groups page
in the Amazon RDS console or the describe-db-cluster-parameters command to verify that your DB
cluster parameter group is created.

The following limitations apply to the DB cluster parameter group name:

• The name must be 1 to 255 letters, numbers, or hyphens.

Default parameter group names can include a period, such as default.aurora-mysql5.7.
However, custom parameter group names can't include a period.

• The first character must be a letter.

• The name can't end with a hyphen or contain two consecutive hyphens.

Console

To create a DB cluster parameter group

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Parameter groups.

3. Choose Create parameter group.

The Create parameter group window appears.

4. In the Parameter group family list, select a DB parameter group family

5. In the Type list, select DB cluster parameter group.

Working with DB cluster parameter groups 327

https://console.aws.amazon.com/rds/
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-cluster-parameters.html
https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Aurora User Guide for Aurora

6. In the Group name box, enter the name of the new DB cluster parameter group.

7. In the Description box, enter a description for the new DB cluster parameter group.

8. Choose Create.

AWS CLI

To create a DB cluster parameter group, use the AWS CLI create-db-cluster-parameter-
group command.

The following example creates a DB cluster parameter group named mydbclusterparametergroup
for Aurora MySQL version 5.7 with a description of "My new cluster parameter group."

Include the following required parameters:

• --db-cluster-parameter-group-name

• --db-parameter-group-family

• --description

To list all of the available parameter group families, use the following command:

aws rds describe-db-engine-versions --query "DBEngineVersions[].DBParameterGroupFamily"

Note

The output contains duplicates.

Example

For Linux, macOS, or Unix:

aws rds create-db-cluster-parameter-group \
 --db-cluster-parameter-group-name mydbclusterparametergroup \
 --db-parameter-group-family aurora-mysql5.7 \
 --description "My new cluster parameter group"

For Windows:

Working with DB cluster parameter groups 328

https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-cluster-parameter-group.html
https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-cluster-parameter-group.html

Amazon Aurora User Guide for Aurora

aws rds create-db-cluster-parameter-group ^
 --db-cluster-parameter-group-name mydbclusterparametergroup ^
 --db-parameter-group-family aurora-mysql5.7 ^
 --description "My new cluster parameter group"

This command produces output similar to the following:

{
 "DBClusterParameterGroup": {
 "DBClusterParameterGroupName": "mydbclusterparametergroup",
 "DBParameterGroupFamily": "aurora-mysql5.7",
 "Description": "My new cluster parameter group",
 "DBClusterParameterGroupArn": "arn:aws:rds:us-east-1:123456789012:cluster-
pg:mydbclusterparametergroup"
 }
}

RDS API

To create a DB cluster parameter group, use the RDS API CreateDBClusterParameterGroup
action.

Include the following required parameters:

• DBClusterParameterGroupName

• DBParameterGroupFamily

• Description

Associating a DB cluster parameter group with a DB cluster

You can create your own DB cluster parameter groups with customized settings. You can associate
a DB cluster parameter group with a DB cluster using the AWS Management Console, the AWS CLI,
or the RDS API. You can do so when you create or modify a DB cluster.

For information about creating a DB cluster parameter group, see Creating a DB cluster parameter
group. For information about creating a DB cluster, see Creating an Amazon Aurora DB cluster. For
information about modifying a DB cluster, see Modifying an Amazon Aurora DB cluster.

Working with DB cluster parameter groups 329

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateDBClusterParameterGroup.html

Amazon Aurora User Guide for Aurora

Note

For Aurora PostgreSQL 15.2, 14.7, 13.10, 12.14, and all 11 versions, when you change the
DB cluster parameter group associated with a DB cluster, reboot each replica instance to
apply the changes.
To determine whether the primary DB instance of a DB cluster must be rebooted to apply
changes, run the following AWS CLI command:
aws rds describe-db-clusters --db-cluster-identifier
db_cluster_identifier
Check the DBClusterParameterGroupStatus value for the primary DB instance in the
output. If the value is pending-reboot, then reboot the primary DB instance of the DB
cluster.

Console

To associate a DB cluster parameter group with a DB cluster

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Databases, and then select the DB cluster that you want to
modify.

3. Choose Modify. The Modify DB cluster page appears.

4. Change the DB cluster parameter group setting.

5. Choose Continue and check the summary of modifications.

The change is applied immediately regardless of the Scheduling of modifications setting.

6. On the confirmation page, review your changes. If they are correct, choose Modify cluster to
save your changes.

Alternatively, choose Back to edit your changes, or choose Cancel to cancel your changes.

AWS CLI

To associate a DB cluster parameter group with a DB cluster, use the AWS CLI modify-db-
cluster command with the following options:

Working with DB cluster parameter groups 330

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-cluster.html
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-cluster.html

Amazon Aurora User Guide for Aurora

• --db-cluster-name

• --db-cluster-parameter-group-name

The following example associates the mydbclpg DB parameter group with the mydbcluster DB
cluster.

Example

For Linux, macOS, or Unix:

aws rds modify-db-cluster \
 --db-cluster-identifier mydbcluster \
 --db-cluster-parameter-group-name mydbclpg

For Windows:

aws rds modify-db-cluster ^
 --db-cluster-identifier mydbcluster ^
 --db-cluster-parameter-group-name mydbclpg

RDS API

To associate a DB cluster parameter group with a DB cluster, use the RDS API ModifyDBCluster
operation with the following parameters:

• DBClusterIdentifier

• DBClusterParameterGroupName

Modifying parameters in a DB cluster parameter group

You can modify parameter values in a customer-created DB cluster parameter group. You can't
change the parameter values in a default DB cluster parameter group. Changes to parameters in
a customer-created DB cluster parameter group are applied to all DB clusters that are associated
with the DB cluster parameter group.

Working with DB cluster parameter groups 331

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBCluster.html

Amazon Aurora User Guide for Aurora

Console

To modify a DB cluster parameter group

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Parameter groups.

3. In the list, choose the parameter group that you want to modify.

4. For Parameter group actions, choose Edit.

5. Change the values of the parameters you want to modify. You can scroll through the
parameters using the arrow keys at the top right of the dialog box.

You can't change values in a default parameter group.

6. Choose Save changes.

7. Reboot the primary (writer) DB instance in the cluster to apply the changes to it.

8. Then reboot the reader DB instances to apply the changes to them.

AWS CLI

To modify a DB cluster parameter group, use the AWS CLI modify-db-cluster-parameter-
group command with the following required parameters:

• --db-cluster-parameter-group-name

• --parameters

The following example modifies the server_audit_logging and
server_audit_logs_upload values in the DB cluster parameter group named
mydbclusterparametergroup.

Example

For Linux, macOS, or Unix:

aws rds modify-db-cluster-parameter-group \
 --db-cluster-parameter-group-name mydbclusterparametergroup \
 --parameters
 "ParameterName=server_audit_logging,ParameterValue=1,ApplyMethod=immediate" \

Working with DB cluster parameter groups 332

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-cluster-parameter-group.html
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-cluster-parameter-group.html

Amazon Aurora User Guide for Aurora

 "ParameterName=server_audit_logs_upload,ParameterValue=1,ApplyMethod=immediate"

For Windows:

aws rds modify-db-cluster-parameter-group ^
 --db-cluster-parameter-group-name mydbclusterparametergroup ^
 --parameters
 "ParameterName=server_audit_logging,ParameterValue=1,ApplyMethod=immediate" ^

 "ParameterName=server_audit_logs_upload,ParameterValue=1,ApplyMethod=immediate"

The command produces output like the following:

DBCLUSTERPARAMETERGROUP mydbclusterparametergroup

RDS API

To modify a DB cluster parameter group, use the RDS API ModifyDBClusterParameterGroup
command with the following required parameters:

• DBClusterParameterGroupName

• Parameters

Resetting parameters in a DB cluster parameter group

You can reset parameters to their default values in a customer-created DB cluster parameter group.
Changes to parameters in a customer-created DB cluster parameter group are applied to all DB
clusters that are associated with the DB cluster parameter group.

Note

In a default DB cluster parameter group, parameters are always set to their default values.

Working with DB cluster parameter groups 333

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBClusterParameterGroup.html

Amazon Aurora User Guide for Aurora

Console

To reset parameters in a DB cluster parameter group to their default values

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Parameter groups.

3. In the list, choose the parameter group.

4. For Parameter group actions, choose Edit.

5. Choose the parameters that you want to reset to their default values. You can scroll through
the parameters using the arrow keys at the top right of the dialog box.

You can't reset values in a default parameter group.

6. Choose Reset and then confirm by choosing Reset parameters.

7. Reboot the primary DB instance in the DB cluster to apply the changes to all of the DB
instances in the DB cluster.

AWS CLI

To reset parameters in a DB cluster parameter group to their default values, use the AWS CLI
reset-db-cluster-parameter-group command with the following required option: --db-
cluster-parameter-group-name.

To reset all of the parameters in the DB cluster parameter group, specify the --reset-all-
parameters option. To reset specific parameters, specify the --parameters option.

The following example resets all of the parameters in the DB parameter group named
mydbparametergroup to their default values.

Example

For Linux, macOS, or Unix:

aws rds reset-db-cluster-parameter-group \
 --db-cluster-parameter-group-name mydbparametergroup \
 --reset-all-parameters

For Windows:

Working with DB cluster parameter groups 334

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/
https://docs.aws.amazon.com/cli/latest/reference/rds/reset-db-cluster-parameter-group.html

Amazon Aurora User Guide for Aurora

aws rds reset-db-cluster-parameter-group ^
 --db-cluster-parameter-group-name mydbparametergroup ^
 --reset-all-parameters

The following example resets the server_audit_logging and server_audit_logs_upload
to their default values in the DB cluster parameter group named mydbclusterparametergroup.

Example

For Linux, macOS, or Unix:

aws rds reset-db-cluster-parameter-group \
 --db-cluster-parameter-group-name mydbclusterparametergroup \
 --parameters "ParameterName=server_audit_logging,ApplyMethod=immediate" \
 "ParameterName=server_audit_logs_upload,ApplyMethod=immediate"

For Windows:

aws rds reset-db-cluster-parameter-group ^
 --db-cluster-parameter-group-name mydbclusterparametergroup ^
 --parameters
 "ParameterName=server_audit_logging,ParameterValue=1,ApplyMethod=immediate" ^

 "ParameterName=server_audit_logs_upload,ParameterValue=1,ApplyMethod=immediate"

The command produces output like the following:

DBClusterParameterGroupName mydbclusterparametergroup

RDS API

To reset parameters in a DB cluster parameter group to their default values, use the RDS
API ResetDBClusterParameterGroup command with the following required parameter:
DBClusterParameterGroupName.

To reset all of the parameters in the DB cluster parameter group, set the ResetAllParameters
parameter to true. To reset specific parameters, specify the Parameters parameter.

Working with DB cluster parameter groups 335

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ResetDBClusterParameterGroup.html

Amazon Aurora User Guide for Aurora

Copying a DB cluster parameter group

You can copy custom DB cluster parameter groups that you create. Copying a parameter group
is a convenient solution when you have already created a DB cluster parameter group and you
want to include most of the custom parameters and values from that group in a new DB cluster
parameter group. You can copy a DB cluster parameter group by using the AWS CLI copy-db-
cluster-parameter-group command or the RDS API CopyDBClusterParameterGroup operation.

After you copy a DB cluster parameter group, wait at least 5 minutes before creating a DB cluster
that uses that DB cluster parameter group. Doing this allows Amazon RDS to fully copy the
parameter group before it is used by the new DB cluster. You can use the Parameter groups page
in the Amazon RDS console or the describe-db-cluster-parameters command to verify that your DB
cluster parameter group is created.

Note

You can't copy a default parameter group. However, you can create a new parameter group
that is based on a default parameter group.
You can't copy a DB cluster parameter group to a different AWS account or AWS Region.

Console

To copy a DB cluster parameter group

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Parameter groups.

3. In the list, choose the custom parameter group that you want to copy.

4. For Parameter group actions, choose Copy.

5. In New DB parameter group identifier, enter a name for the new parameter group.

6. In Description, enter a description for the new parameter group.

7. Choose Copy.

Working with DB cluster parameter groups 336

https://docs.aws.amazon.com/cli/latest/reference/rds/copy-db-cluster-parameter-group.html
https://docs.aws.amazon.com/cli/latest/reference/rds/copy-db-cluster-parameter-group.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CopyDBParameterGroup.html
https://console.aws.amazon.com/rds/
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-cluster-parameters.html
https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Aurora User Guide for Aurora

AWS CLI

To copy a DB cluster parameter group, use the AWS CLI copy-db-cluster-parameter-group
command with the following required parameters:

• --source-db-cluster-parameter-group-identifier

• --target-db-cluster-parameter-group-identifier

• --target-db-cluster-parameter-group-description

The following example creates a new DB cluster parameter group named mygroup2 that is a copy
of the DB cluster parameter group mygroup1.

Example

For Linux, macOS, or Unix:

aws rds copy-db-cluster-parameter-group \
 --source-db-cluster-parameter-group-identifier mygroup1 \
 --target-db-cluster-parameter-group-identifier mygroup2 \
 --target-db-cluster-parameter-group-description "DB parameter group 2"

For Windows:

aws rds copy-db-cluster-parameter-group ^
 --source-db-cluster-parameter-group-identifier mygroup1 ^
 --target-db-cluster-parameter-group-identifier mygroup2 ^
 --target-db-cluster-parameter-group-description "DB parameter group 2"

RDS API

To copy a DB cluster parameter group, use the RDS API CopyDBClusterParameterGroup
operation with the following required parameters:

• SourceDBClusterParameterGroupIdentifier

• TargetDBClusterParameterGroupIdentifier

• TargetDBClusterParameterGroupDescription

Working with DB cluster parameter groups 337

https://docs.aws.amazon.com/cli/latest/reference/rds/copy-db-cluster-parameter-group.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CopyDBClusterParameterGroup.html

Amazon Aurora User Guide for Aurora

Listing DB cluster parameter groups

You can list the DB cluster parameter groups you've created for your AWS account.

Note

Default parameter groups are automatically created from a default parameter template
when you create a DB cluster for a particular DB engine and version. These default
parameter groups contain preferred parameter settings and can't be modified. When you
create a custom parameter group, you can modify parameter settings.

Console

To list all DB cluster parameter groups for an AWS account

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Parameter groups.

The DB cluster parameter groups appear in the list with DB cluster parameter group for Type.

AWS CLI

To list all DB cluster parameter groups for an AWS account, use the AWS CLI describe-db-
cluster-parameter-groups command.

Example

The following example lists all available DB cluster parameter groups for an AWS account.

aws rds describe-db-cluster-parameter-groups

The following example describes the mydbclusterparametergroup parameter group.

For Linux, macOS, or Unix:

aws rds describe-db-cluster-parameter-groups \
 --db-cluster-parameter-group-name mydbclusterparametergroup

Working with DB cluster parameter groups 338

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-clusterparameter-groups.html
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-clusterparameter-groups.html

Amazon Aurora User Guide for Aurora

For Windows:

aws rds describe-db-cluster-parameter-groups ^
 --db-cluster-parameter-group-name mydbclusterparametergroup

The command returns a response like the following:

{
 "DBClusterParameterGroups": [
 {
 "DBClusterParameterGroupName": "mydbclusterparametergroup",
 "DBParameterGroupFamily": "aurora-mysql5.7",
 "Description": "My new cluster parameter group",
 "DBClusterParameterGroupArn": "arn:aws:rds:us-east-1:123456789012:cluster-
pg:mydbclusterparametergroup"
 }
]
}

RDS API

To list all DB cluster parameter groups for an AWS account, use the RDS API
DescribeDBClusterParameterGroups action.

Viewing parameter values for a DB cluster parameter group

You can get a list of all parameters in a DB cluster parameter group and their values.

Console

To view the parameter values for a DB cluster parameter group

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Parameter groups.

The DB cluster parameter groups appear in the list with DB cluster parameter group for Type.

3. Choose the name of the DB cluster parameter group to see its list of parameters.

Working with DB cluster parameter groups 339

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DescribeDBClusterParameterGroups.html
https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Aurora User Guide for Aurora

AWS CLI

To view the parameter values for a DB cluster parameter group, use the AWS CLI describe-db-
cluster-parameters command with the following required parameter.

• --db-cluster-parameter-group-name

Example

The following example lists the parameters and parameter values for a DB cluster parameter group
named mydbclusterparametergroup, in JSON format.

The command returns a response like the following:

aws rds describe-db-cluster-parameters --db-cluster-parameter-group-
name mydbclusterparametergroup

{
 "Parameters": [
 {
 "ParameterName": "allow-suspicious-udfs",
 "Description": "Controls whether user-defined functions that have only an
 xxx symbol for the main function can be loaded",
 "Source": "engine-default",
 "ApplyType": "static",
 "DataType": "boolean",
 "AllowedValues": "0,1",
 "IsModifiable": false,
 "ApplyMethod": "pending-reboot",
 "SupportedEngineModes": [
 "provisioned"
]
 },
 {
 "ParameterName": "aurora_binlog_read_buffer_size",
 "ParameterValue": "5242880",
 "Description": "Read buffer size used by master dump thread when the switch
 aurora_binlog_use_large_read_buffer is ON.",
 "Source": "engine-default",
 "ApplyType": "dynamic",
 "DataType": "integer",
 "AllowedValues": "8192-536870912",

Working with DB cluster parameter groups 340

https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-cluster-parameters.html
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-cluster-parameters.html

Amazon Aurora User Guide for Aurora

 "IsModifiable": true,
 "ApplyMethod": "pending-reboot",
 "SupportedEngineModes": [
 "provisioned"
]
 },

...

RDS API

To view the parameter values for a DB cluster parameter group, use the RDS API
DescribeDBClusterParameters command with the following required parameter.

• DBClusterParameterGroupName

In some cases, the allowed values for a parameter aren't shown. These are always parameters
where the source is the database engine default.

To view the values of these parameters, you can run the following SQL statements:

• MySQL:

-- Show the value of a particular parameter
mysql$ SHOW VARIABLES LIKE '%parameter_name%';

-- Show the values of all parameters
mysql$ SHOW VARIABLES;

• PostgreSQL:

-- Show the value of a particular parameter
postgresql=> SHOW parameter_name;

-- Show the values of all parameters
postgresql=> SHOW ALL;

Working with DB cluster parameter groups 341

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DescribeDBParameters.html

Amazon Aurora User Guide for Aurora

Deleting a DB cluster parameter group

You can delete a DB cluster parameter group using the AWS Management Console, AWS CLI, or
RDS API. A DB cluster parameter group parameter group is eligible for deletion only if it isn't
associated with a DB cluster.

Console

To delete parameter groups

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Parameter groups.

The parameter groups appear in a list.

3. Choose the name of the DB cluster parameter groups to be deleted.

4. Choose Actions and then Delete.

5. Review the parameter group names and then choose Delete.

AWS CLI

To delete a DB cluster parameter group, use the AWS CLI delete-db-cluster-parameter-
group command with the following required parameter.

• --db-parameter-group-name

Example

The following example deletes a DB cluster parameter group named mydbparametergroup.

aws rds delete-db-cluster-parameter-group --db-parameter-group-name mydbparametergroup

RDS API

To delete a DB cluster parameter group, use the RDS API DeleteDBClusterParameterGroup
command with the following required parameter.

• DBParameterGroupName

Working with DB cluster parameter groups 342

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/
https://docs.aws.amazon.com/cli/latest/reference/rds/delete-db-cluster-parameter-group.html
https://docs.aws.amazon.com/cli/latest/reference/rds/delete-db-cluster-parameter-group.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DeleteDBClusterParameterGroup.html

Amazon Aurora User Guide for Aurora

Working with DB parameter groups in a DB instance

DB instances use DB parameter groups. The following sections describe configuring and managing
DB instance parameter groups.

Topics

• Creating a DB parameter group

• Associating a DB parameter group with a DB instance

• Modifying parameters in a DB parameter group

• Resetting parameters in a DB parameter group to their default values

• Copying a DB parameter group

• Listing DB parameter groups

• Viewing parameter values for a DB parameter group

• Deleting a DB parameter group

Creating a DB parameter group

You can create a new DB parameter group using the AWS Management Console, the AWS CLI, or
the RDS API.

The following limitations apply to the DB parameter group name:

• The name must be 1 to 255 letters, numbers, or hyphens.

Default parameter group names can include a period, such as default.mysql8.0. However,
custom parameter group names can't include a period.

• The first character must be a letter.

• The name can't end with a hyphen or contain two consecutive hyphens.

Console

To create a DB parameter group

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Parameter groups.

Working with DB parameter groups 343

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Aurora User Guide for Aurora

3. Choose Create parameter group.

4. For Parameter group name, enter the name of your new DB parameter group.

5. For Description, enter a description for your new DB parameter group.

6. For Engine type, choose your DB engine.

7. For Parameter group family, choose a DB parameter group family.

8. For Type, if applicable, choose DB Parameter Group.

9. Choose Create.

AWS CLI

To create a DB parameter group, use the AWS CLI create-db-parameter-group command. The
following example creates a DB parameter group named mydbparametergroup for MySQL version
8.0 with a description of "My new parameter group."

Include the following required parameters:

• --db-parameter-group-name

• --db-parameter-group-family

• --description

To list all of the available parameter group families, use the following command:

aws rds describe-db-engine-versions --query "DBEngineVersions[].DBParameterGroupFamily"

Note

The output contains duplicates.

Example

For Linux, macOS, or Unix:

aws rds create-db-parameter-group \
 --db-parameter-group-name mydbparametergroup \
 --db-parameter-group-family aurora-mysql5.7 \

Working with DB parameter groups 344

https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-parameter-group.html

Amazon Aurora User Guide for Aurora

 --description "My new parameter group"

For Windows:

aws rds create-db-parameter-group ^
 --db-parameter-group-name mydbparametergroup ^
 --db-parameter-group-family aurora-mysql5.7 ^
 --description "My new parameter group"

This command produces output similar to the following:

DBPARAMETERGROUP mydbparametergroup aurora-mysql5.7 My new parameter group

RDS API

To create a DB parameter group, use the RDS API CreateDBParameterGroup operation.

Include the following required parameters:

• DBParameterGroupName

• DBParameterGroupFamily

• Description

Associating a DB parameter group with a DB instance

You can create your own DB parameter groups with customized settings. You can associate a DB
parameter group with a DB instance using the AWS Management Console, the AWS CLI, or the RDS
API. You can do so when you create or modify a DB instance.

For information about creating a DB parameter group, see Creating a DB parameter group. For
information about modifying a DB instance, see Modifying a DB instance in a DB cluster.

Note

When you associate a new DB parameter group with a DB instance, the modified static and
dynamic parameters are applied only after the DB instance is rebooted. However, if you
modify dynamic parameters in the DB parameter group after you associate it with the DB
instance, these changes are applied immediately without a reboot.

Working with DB parameter groups 345

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateDBParameterGroup.html

Amazon Aurora User Guide for Aurora

Console

To associate a DB parameter group with a DB instance

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Databases, and then choose the DB instance that you want to
modify.

3. Choose Modify. The Modify DB instance page appears.

4. Change the DB parameter group setting.

5. Choose Continue and check the summary of modifications.

6. (Optional) Choose Apply immediately to apply the changes immediately. Choosing this option
can cause an outage in some cases.

7. On the confirmation page, review your changes. If they are correct, choose Modify DB instance
to save your changes.

Or choose Back to edit your changes or Cancel to cancel your changes.

AWS CLI

To associate a DB parameter group with a DB instance, use the AWS CLI modify-db-instance
command with the following options:

• --db-instance-identifier

• --db-parameter-group-name

The following example associates the mydbpg DB parameter group with the database-1 DB
instance. The changes are applied immediately by using --apply-immediately. Use --no-
apply-immediately to apply the changes during the next maintenance window.

Example

For Linux, macOS, or Unix:

aws rds modify-db-instance \
 --db-instance-identifier database-1 \
 --db-parameter-group-name mydbpg \

Working with DB parameter groups 346

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-instance.html

Amazon Aurora User Guide for Aurora

 --apply-immediately

For Windows:

aws rds modify-db-instance ^
 --db-instance-identifier database-1 ^
 --db-parameter-group-name mydbpg ^
 --apply-immediately

RDS API

To associate a DB parameter group with a DB instance, use the RDS API ModifyDBInstance
operation with the following parameters:

• DBInstanceName

• DBParameterGroupName

Modifying parameters in a DB parameter group

You can modify parameter values in a customer-created DB parameter group; you can't change the
parameter values in a default DB parameter group. Changes to parameters in a customer-created
DB parameter group are applied to all DB instances that are associated with the DB parameter
group.

Changes to some parameters are applied to the DB instance immediately without a reboot.
Changes to other parameters are applied only after the DB instance is rebooted. The RDS console
shows the status of the DB parameter group associated with a DB instance on the Configuration
tab. For example, suppose that the DB instance isn't using the latest changes to its associated DB
parameter group. If so, the RDS console shows the DB parameter group with a status of pending-
reboot. To apply the latest parameter changes to that DB instance, manually reboot the DB
instance.

Working with DB parameter groups 347

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBInstance.html

Amazon Aurora User Guide for Aurora

Console

To modify the parameters in a DB parameter group

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Parameter groups.

3. In the list, choose the name of the parameter group that you want to modify.

4. For Parameter group actions, choose Edit.

Working with DB parameter groups 348

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Aurora User Guide for Aurora

5. Change the values of the parameters that you want to modify. You can scroll through the
parameters using the arrow keys at the top right of the dialog box.

You can't change values in a default parameter group.

6. Choose Save changes.

AWS CLI

To modify a DB parameter group, use the AWS CLI modify-db-parameter-group command
with the following required options:

• --db-parameter-group-name

• --parameters

The following example modifies the max_connections and max_allowed_packet values in the
DB parameter group named mydbparametergroup.

Example

For Linux, macOS, or Unix:

aws rds modify-db-parameter-group \
 --db-parameter-group-name mydbparametergroup \
 --parameters
 "ParameterName=max_connections,ParameterValue=250,ApplyMethod=immediate" \

 "ParameterName=max_allowed_packet,ParameterValue=1024,ApplyMethod=immediate"

For Windows:

aws rds modify-db-parameter-group ^
 --db-parameter-group-name mydbparametergroup ^
 --parameters
 "ParameterName=max_connections,ParameterValue=250,ApplyMethod=immediate" ^

 "ParameterName=max_allowed_packet,ParameterValue=1024,ApplyMethod=immediate"

The command produces output like the following:

Working with DB parameter groups 349

https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-parameter-group.html

Amazon Aurora User Guide for Aurora

DBPARAMETERGROUP mydbparametergroup

RDS API

To modify a DB parameter group, use the RDS API ModifyDBParameterGroup operation with the
following required parameters:

• DBParameterGroupName

• Parameters

Resetting parameters in a DB parameter group to their default values

You can reset parameter values in a customer-created DB parameter group to their default values.
Changes to parameters in a customer-created DB parameter group are applied to all DB instances
that are associated with the DB parameter group.

When you use the console, you can reset specific parameters to their default values. However, you
can't easily reset all of the parameters in the DB parameter group at once. When you use the AWS
CLI or RDS API, you can reset specific parameters to their default values. You can also reset all of
the parameters in the DB parameter group at once.

Changes to some parameters are applied to the DB instance immediately without a reboot.
Changes to other parameters are applied only after the DB instance is rebooted. The RDS console
shows the status of the DB parameter group associated with a DB instance on the Configuration
tab. For example, suppose that the DB instance isn't using the latest changes to its associated DB
parameter group. If so, the RDS console shows the DB parameter group with a status of pending-
reboot. To apply the latest parameter changes to that DB instance, manually reboot the DB
instance.

Working with DB parameter groups 350

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBParameterGroup.html

Amazon Aurora User Guide for Aurora

Note

In a default DB parameter group, parameters are always set to their default values.

Working with DB parameter groups 351

Amazon Aurora User Guide for Aurora

Console

To reset parameters in a DB parameter group to their default values

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Parameter groups.

3. In the list, choose the parameter group.

4. For Parameter group actions, choose Edit.

5. Choose the parameters that you want to reset to their default values. You can scroll through
the parameters using the arrow keys at the top right of the dialog box.

You can't reset values in a default parameter group.

6. Choose Reset and then confirm by choosing Reset parameters.

AWS CLI

To reset some or all of the parameters in a DB parameter group, use the AWS CLI reset-db-
parameter-group command with the following required option: --db-parameter-group-
name.

To reset all of the parameters in the DB parameter group, specify the --reset-all-parameters
option. To reset specific parameters, specify the --parameters option.

The following example resets all of the parameters in the DB parameter group named
mydbparametergroup to their default values.

Example

For Linux, macOS, or Unix:

aws rds reset-db-parameter-group \
 --db-parameter-group-name mydbparametergroup \
 --reset-all-parameters

For Windows:

aws rds reset-db-parameter-group ^

Working with DB parameter groups 352

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/
https://docs.aws.amazon.com/cli/latest/reference/rds/reset-db-parameter-group.html
https://docs.aws.amazon.com/cli/latest/reference/rds/reset-db-parameter-group.html

Amazon Aurora User Guide for Aurora

 --db-parameter-group-name mydbparametergroup ^
 --reset-all-parameters

The following example resets the max_connections and max_allowed_packet options to their
default values in the DB parameter group named mydbparametergroup.

Example

For Linux, macOS, or Unix:

aws rds reset-db-parameter-group \
 --db-parameter-group-name mydbparametergroup \
 --parameters "ParameterName=max_connections,ApplyMethod=immediate" \
 "ParameterName=max_allowed_packet,ApplyMethod=immediate"

For Windows:

aws rds reset-db-parameter-group ^
 --db-parameter-group-name mydbparametergroup ^
 --parameters "ParameterName=max_connections,ApplyMethod=immediate" ^
 "ParameterName=max_allowed_packet,ApplyMethod=immediate"

The command produces output like the following:

DBParameterGroupName mydbparametergroup

RDS API

To reset parameters in a DB parameter group to their default values, use the RDS
API ResetDBParameterGroup command with the following required parameter:
DBParameterGroupName.

To reset all of the parameters in the DB parameter group, set the ResetAllParameters
parameter to true. To reset specific parameters, specify the Parameters parameter.

Copying a DB parameter group

You can copy custom DB parameter groups that you create. Copying a parameter group can be
convenient solution. An example is when you have created a DB parameter group and want to
include most of its custom parameters and values in a new DB parameter group. You can copy a DB

Working with DB parameter groups 353

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ResetDBParameterGroup.html

Amazon Aurora User Guide for Aurora

parameter group by using the AWS Management Console. You can also use the AWS CLI copy-db-
parameter-group command or the RDS API CopyDBParameterGroup operation.

After you copy a DB parameter group, wait at least 5 minutes before creating your first DB instance
that uses that DB parameter group as the default parameter group. Doing this allows Amazon RDS
to fully complete the copy action before the parameter group is used. This is especially important
for parameters that are critical when creating the default database for a DB instance. An example is
the character set for the default database defined by the character_set_database parameter.
Use the Parameter Groups option of the Amazon RDS console or the describe-db-parameters
command to verify that your DB parameter group is created.

Note

You can't copy a default parameter group. However, you can create a new parameter group
that is based on a default parameter group.
You can't copy a DB parameter group to a different AWS account or AWS Region.

Console

To copy a DB parameter group

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Parameter groups.

3. In the list, choose the custom parameter group that you want to copy.

4. For Parameter group actions, choose Copy.

5. In New DB parameter group identifier, enter a name for the new parameter group.

6. In Description, enter a description for the new parameter group.

7. Choose Copy.

AWS CLI

To copy a DB parameter group, use the AWS CLI copy-db-parameter-group command with the
following required options:

• --source-db-parameter-group-identifier

Working with DB parameter groups 354

https://docs.aws.amazon.com/cli/latest/reference/rds/copy-db-parameter-group.html
https://docs.aws.amazon.com/cli/latest/reference/rds/copy-db-parameter-group.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CopyDBParameterGroup.html
https://console.aws.amazon.com/rds/
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-parameters.html
https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/
https://docs.aws.amazon.com/cli/latest/reference/rds/copy-db-parameter-group.html

Amazon Aurora User Guide for Aurora

• --target-db-parameter-group-identifier

• --target-db-parameter-group-description

The following example creates a new DB parameter group named mygroup2 that is a copy of the
DB parameter group mygroup1.

Example

For Linux, macOS, or Unix:

aws rds copy-db-parameter-group \
 --source-db-parameter-group-identifier mygroup1 \
 --target-db-parameter-group-identifier mygroup2 \
 --target-db-parameter-group-description "DB parameter group 2"

For Windows:

aws rds copy-db-parameter-group ^
 --source-db-parameter-group-identifier mygroup1 ^
 --target-db-parameter-group-identifier mygroup2 ^
 --target-db-parameter-group-description "DB parameter group 2"

RDS API

To copy a DB parameter group, use the RDS API CopyDBParameterGroup operation with the
following required parameters:

• SourceDBParameterGroupIdentifier

• TargetDBParameterGroupIdentifier

• TargetDBParameterGroupDescription

Listing DB parameter groups

You can list the DB parameter groups you've created for your AWS account.

Note

Default parameter groups are automatically created from a default parameter template
when you create a DB instance for a particular DB engine and version. These default

Working with DB parameter groups 355

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CopyDBParameterGroup.html

Amazon Aurora User Guide for Aurora

parameter groups contain preferred parameter settings and can't be modified. When you
create a custom parameter group, you can modify parameter settings.

Console

To list all DB parameter groups for an AWS account

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Parameter groups.

The DB parameter groups appear in a list.

AWS CLI

To list all DB parameter groups for an AWS account, use the AWS CLI describe-db-parameter-
groups command.

Example

The following example lists all available DB parameter groups for an AWS account.

aws rds describe-db-parameter-groups

The command returns a response like the following:

DBPARAMETERGROUP default.mysql8.0 mysql8.0 Default parameter group for MySQL8.0
DBPARAMETERGROUP mydbparametergroup mysql8.0 My new parameter group

The following example describes the mydbparamgroup1 parameter group.

For Linux, macOS, or Unix:

aws rds describe-db-parameter-groups \
 --db-parameter-group-name mydbparamgroup1

For Windows:

Working with DB parameter groups 356

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-parameter-groups.html
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-parameter-groups.html

Amazon Aurora User Guide for Aurora

aws rds describe-db-parameter-groups ^
 --db-parameter-group-name mydbparamgroup1

The command returns a response like the following:

DBPARAMETERGROUP mydbparametergroup1 mysql8.0 My new parameter group

RDS API

To list all DB parameter groups for an AWS account, use the RDS API
DescribeDBParameterGroups operation.

Viewing parameter values for a DB parameter group

You can get a list of all parameters in a DB parameter group and their values.

Console

To view the parameter values for a DB parameter group

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Parameter groups.

The DB parameter groups appear in a list.

3. Choose the name of the parameter group to see its list of parameters.

AWS CLI

To view the parameter values for a DB parameter group, use the AWS CLI describe-db-
parameters command with the following required parameter.

• --db-parameter-group-name

Example

The following example lists the parameters and parameter values for a DB parameter group named
mydbparametergroup.

Working with DB parameter groups 357

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DescribeDBParameterGroups.html
https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-parameters.html
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-parameters.html

Amazon Aurora User Guide for Aurora

aws rds describe-db-parameters --db-parameter-group-name mydbparametergroup

The command returns a response like the following:

DBPARAMETER Parameter Name Parameter Value Source Data Type
 Apply Type Is Modifiable
DBPARAMETER allow-suspicious-udfs engine-default boolean
 static false
DBPARAMETER auto_increment_increment engine-default integer
 dynamic true
DBPARAMETER auto_increment_offset engine-default integer
 dynamic true
DBPARAMETER binlog_cache_size 32768 system integer
 dynamic true
DBPARAMETER socket /tmp/mysql.sock system string
 static false

RDS API

To view the parameter values for a DB parameter group, use the RDS API
DescribeDBParameters command with the following required parameter.

• DBParameterGroupName

Deleting a DB parameter group

You can delete a DB parameter group using the AWS Management Console, AWS CLI, or RDS API. A
parameter group is eligible for deletion only if it isn't associated with a DB instance.

Console

To delete a DB parameter group

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Parameter groups.

The DB parameter groups appear in a list.

3. Choose the name of the parameter groups to be deleted.

4. Choose Actions and then Delete.

Working with DB parameter groups 358

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DescribeDBParameters.html
https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Aurora User Guide for Aurora

5. Review the parameter group names and then choose Delete.

AWS CLI

To delete a DB parameter group, use the AWS CLI delete-db-parameter-group command with
the following required parameter.

• --db-parameter-group-name

Example

The following example deletes a DB parameter group named mydbparametergroup.

aws rds delete-db-parameter-group --db-parameter-group-name mydbparametergroup

RDS API

To delete a DB parameter group, use the RDS API DeleteDBParameterGroup command with the
following required parameter.

• DBParameterGroupName

Comparing DB parameter groups

You can use the AWS Management Console to view the differences between two DB parameter
groups.

The specified parameter groups must both be DB parameter groups, or they both must be DB
cluster parameter groups. This is true even when the DB engine and version are the same. For
example, you can't compare an aurora-mysql8.0 (Aurora MySQL version 3) DB parameter group
and an aurora-mysql8.0 DB cluster parameter group.

You can compare Aurora MySQL and RDS for MySQL DB parameter groups, even for different
versions, but you can't compare Aurora PostgreSQL and RDS for PostgreSQL DB parameter groups.

To compare two DB parameter groups

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

Comparing DB parameter groups 359

https://docs.aws.amazon.com/cli/latest/reference/rds/delete-db-parameter-group.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DeleteDBParameterGroup.html
https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Aurora User Guide for Aurora

2. In the navigation pane, choose Parameter groups.

3. In the list, choose the two parameter groups that you want to compare.

Note

To compare a default parameter group to a custom parameter group, first choose the
default parameter group on the Default tab, then choose the custom parameter group
on the Custom tab.

4. From Actions, choose Compare.

Specifying DB parameters

DB parameter types include the following:

• Integer

• Boolean

• String

• Long

• Double

• Timestamp

• Object of other defined data types

• Array of values of type integer, Boolean, string, long, double, timestamp, or object

You can also specify integer and Boolean parameters using expressions, formulas, and functions.

Contents

• DB parameter formulas

• DB parameter formula variables

• DB parameter formula operators

• DB parameter functions

• DB parameter log expressions

• DB parameter value examples

Specifying DB parameters 360

Amazon Aurora User Guide for Aurora

DB parameter formulas

A DB parameter formula is an expression that resolves to an integer value or a Boolean value. You
enclose the expression in braces: {}. You can use a formula for either a DB parameter value or as an
argument to a DB parameter function.

Syntax

{FormulaVariable}
{FormulaVariable*Integer}
{FormulaVariable*Integer/Integer}
{FormulaVariable/Integer}

DB parameter formula variables

Each formula variable returns an integer or a Boolean value. The names of the variables are case-
sensitive.

AllocatedStorage

Returns an integer representing the size, in bytes, of the data volume.

DBInstanceClassMemory

Returns an integer for the number of bytes of memory available to the database process.
This number is internally calculated by starting with the total amount of memory for the DB
instance class. From this, the calculation subtracts memory reserved for the operating system
and the RDS processes that manage the instance. Therefore, the number is always somewhat
lower than the memory figures shown in the instance class tables in Aurora DB instance classes.
The exact value depends on a combination of factors. These include instance class, DB engine,
and whether it applies to an RDS instance or an instance that's part of an Aurora cluster.

DBInstanceVCPU

Returns an integer representing the number of virtual central processing units (vCPUs) used by
Amazon RDS to manage the instance.

EndPointPort

Returns an integer representing the port used when connecting to the DB instance.

Specifying DB parameters 361

Amazon Aurora User Guide for Aurora

TrueIfReplica

Returns 1 if the DB instance is a read replica and 0 if it is not. This is the default value for the
read_only parameter in Aurora MySQL.

DB parameter formula operators

DB parameter formulas support two operators: division and multiplication.

Division operator: /

Divides the dividend by the divisor, returning an integer quotient. Decimals in the quotient are
truncated, not rounded.

Syntax

dividend / divisor

The dividend and divisor arguments must be integer expressions.

Multiplication operator: *

Multiplies the expressions, returning the product of the expressions. Decimals in the expressions
are truncated, not rounded.

Syntax

expression * expression

Both expressions must be integers.

DB parameter functions

You specify the arguments of DB parameter functions as either integers or formulas. Each function
must have at least one argument. Specify multiple arguments as a comma-separated list. The
list can't have any empty members, such as argument1,,argument3. Function names are case-
insensitive.

IF

Returns an argument.

Specifying DB parameters 362

Amazon Aurora User Guide for Aurora

Syntax

IF(argument1, argument2, argument3)

Returns the second argument if the first argument evaluates to true. Returns the third
argument otherwise.

GREATEST

Returns the largest value from a list of integers or parameter formulas.

Syntax

GREATEST(argument1, argument2,...argumentn)

Returns an integer.

LEAST

Returns the smallest value from a list of integers or parameter formulas.

Syntax

LEAST(argument1, argument2,...argumentn)

Returns an integer.

SUM

Adds the values of the specified integers or parameter formulas.

Syntax

SUM(argument1, argument2,...argumentn)

Returns an integer.

DB parameter log expressions

You can set an integer DB parameter value to a log expression. You enclose the expression in
braces: {}. For example:

Specifying DB parameters 363

Amazon Aurora User Guide for Aurora

{log(DBInstanceClassMemory/8187281418)*1000}

The log function represents log base 2. This example also uses the DBInstanceClassMemory
formula variable. See DB parameter formula variables.

DB parameter value examples

These examples show using formulas, functions, and expressions for the values of DB parameters.

Warning

Improperly setting parameters in a DB parameter group can have unintended adverse
effects. These might include degraded performance and system instability. Use caution
when modifying database parameters and back up your data before modifying your DB
parameter group. Try out parameter group changes on a test DB instance, created using
point-in-time-restores, before applying those parameter group changes to your production
DB instances.

Example using the DB parameter function LEAST

You can specify the LEAST function in an Aurora MySQL table_definition_cache parameter
value. Use it to set the number of table definitions that can be stored in the definition cache to the
lesser of DBInstanceClassMemory/393040 or 20,000.

LEAST({DBInstanceClassMemory/393040}, 20000)

Specifying DB parameters 364

Amazon Aurora User Guide for Aurora

Migrating data to an Amazon Aurora DB cluster

You have several options for migrating data from your existing database to an Amazon Aurora DB
cluster, depending on database engine compatibility. Your migration options also depend on the
database that you are migrating from and the size of the data that you are migrating.

Migrating data to an Amazon Aurora MySQL DB cluster

You can migrate data from one of the following sources to an Amazon Aurora MySQL DB cluster.

• An RDS for MySQL DB instance

• A MySQL database external to Amazon RDS

• A database that is not MySQL-compatible

For more information, see Migrating data to an Amazon Aurora MySQL DB cluster.

Migrating data to an Amazon Aurora PostgreSQL DB cluster

You can migrate data from one of the following sources to an Amazon Aurora PostgreSQL DB
cluster.

• An Amazon RDS PostgreSQL DB instance

• A database that is not PostgreSQL-compatible

For more information, see Migrating data to Amazon Aurora with PostgreSQL compatibility.

Migrating data to a DB cluster 365

Amazon Aurora User Guide for Aurora

Creating an Amazon ElastiCache cache using Aurora DB cluster
settings

ElastiCache is a fully managed, in-memory caching service that provides microsecond read and
write latencies that support flexible, real-time use cases. ElastiCache can help you accelerate
application and database performance. You can use ElastiCache as a primary data store for
use cases that don't require data durability, such as gaming leaderboards, streaming, and data
analytics. ElastiCache helps remove the complexity associated with deploying and managing a
distributed computing environment. For more information, see Common ElastiCache Use Cases
and How ElastiCache Can Help for Memcached and Common ElastiCache Use Cases and How
ElastiCache Can Help for Redis. You can use the Amazon RDS console for creating ElastiCache
cache.

You can operate Amazon ElastiCache in two formats. You can get started with a serverless cache
or choose to design your own cache cluster. If you choose to design your own cache cluster,
ElastiCache works with both the Redis and Memcached engines. If you're unsure which engine
you want to use, see Comparing Memcached and Redis. For more information about Amazon
ElastiCache, see the Amazon ElastiCache User Guide.

Topics

• Overview of ElastiCache cache creation with Aurora DB cluster settings

• Creating an ElastiCache cache with settings from an Aurora DB cluster

Overview of ElastiCache cache creation with Aurora DB cluster settings

You can create an ElastiCache cache from Amazon RDS using the same configuration settings as a
newly created or existing Aurora DB cluster.

Some use cases to associate an ElastiCache cache with your DB cluster:

• You can save costs and improve your performance by using ElastiCache with RDS versus running
on RDS alone.

• You can use the ElastiCache cache as a primary data store for applications that don't require data
durability. Your applications that use Redis or Memcached can use ElastiCache with almost no
modification.

Creating an ElastiCache cache from Amazon RDS 366

https://docs.aws.amazon.com/AmazonElastiCache/latest/mem-ug/elasticache-use-cases.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/mem-ug/elasticache-use-cases.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/elasticache-use-cases.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/elasticache-use-cases.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/SelectEngine.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/UserGuide/

Amazon Aurora User Guide for Aurora

When you create an ElastiCache cache from RDS, the ElastiCache cache inherits the following
settings from the associated Aurora DB cluster:

• ElastiCache connectivity settings

• ElastiCache security settings

You can also set the cache configuration settings according to your requirements.

Setting up ElastiCache in your applications

Your applications must be set up to utilize ElastiCache cache. You can also optimize and improve
cache performance by setting up your applications to use caching strategies depending on your
requirements.

• To access your ElastiCache cache and get started, see Getting started with ElastiCache (Redis
OSS) and Getting started with ElastiCache (Memcached).

• For more information about caching strategies, see Caching strategies and best practices for
Memcached and Caching strategies and best practices for Redis OSS.

• For more information about high availability in ElastiCache (Redis OSS) clusters, see High
availability using replication groups.

• You might incur costs associated with backup storage, data transfer within or across regions, or
use of AWS Outposts. For pricing details, see Amazon ElastiCache pricing.

Creating an ElastiCache cache with settings from an Aurora DB cluster

You can create an ElastiCache cache for your Aurora DB clusters with settings for inherited from the
DB cluster.

Create an ElastiCache cache with settings from a DB cluster

1. To create a DB cluster, follow the instructions in Creating an Amazon Aurora DB cluster.

2. After creating an Aurora DB cluster, the console displays the Suggested add-ons window.
Select Create an ElastiCache cluster from RDS using your DB settings.

For an existing database, in the Databases page, select the required DB cluster. In the Actions
dropdown menu, choose Create ElastiCache cluster to create an ElastiCache cache in RDS that
has the same settings as your existing Aurora DB cluster.

Creating an ElastiCache cache with settings from an Aurora DB cluster 367

https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/GettingStarted.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/GettingStarted.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/mem-ug/GettingStarted.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/mem-ug/BestPractices.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/BestPractices.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/BestPractices.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/BestPractices.html
https://aws.amazon.com/elasticache/pricing/

Amazon Aurora User Guide for Aurora

In the ElastiCache configuration section, the Source DB identifier displays which DB cluster
the ElastiCache cache inherits settings from.

3. Choose whether you want to create a Redis OSS or Memcached cluster. For more information,
see Comparing Memcached and Redis OSS.

4. After this, choose whether you want to create a Serverless cache or Design your own cache.
For more information, see Choosing between deployment options.

If you choose Serverless cache:

a. In Cache settings, enter values for Name and Description.

b. Under View default settings, leave the default settings to establish the connection
between your cache and DB cluster.

c. You can also edit the default settings by choosing Customize default settings. Select the
ElastiCache connectivity settings, ElastiCache security settings, and Maximum usage
limits.

5. If you choose Design your own cache:

a. If you chose Redis OSS cluster, choose whether you want to keep the cluster mode
Enabled or Disabled. For more information, see Replication: Redis OSS (Cluster Mode
Disabled) vs. Redis OSS (Cluster Mode Enabled).

b. Enter values for Name, Description, and Engine version.

Creating an ElastiCache cache with settings from an Aurora DB cluster 368

https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/SelectEngine.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/WhatIs.deployment.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/Replication.Redis-RedisCluster.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/Replication.Redis-RedisCluster.html

Amazon Aurora User Guide for Aurora

For Engine version, the recommended default value is the latest engine version. You
can also choose an Engine version for the ElastiCache cache that best meets your
requirements.

c. Choose the node type in the Node type option. For more information, see Managing
nodes.

If you choose to create a Redis OSS cluster with the Cluster mode set to Enabled, then
enter the number of shards (partitions/node groups) in the Number of shards option.

Enter the number of replicas of each shard in Number of replicas.

Note

The selected node type, the number of shards, and the number of replicas all
affect your cache performance and resource costs. Be sure these settings match
your database needs. For pricing information, see Amazon ElastiCache pricing.

d. Select the ElastiCache connectivity settings and ElastiCache security settings. You can
keep the default settings or customize these settings per your requirements.

6. Verify the default and inherited settings of your ElastiCache cache. Some settings can't be
changed after creation.

Note

RDS might adjust the backup window of your ElastiCache cache to meet the minimum
window requirement of 60 minutes. The backup window of your source database
remains the same.

7. When you're ready, choose Create ElastiCache cache.

The console displays a confirmation banner for the ElastiCache cache creation. Follow the link in
the banner to the ElastiCache console to view the cache details. The ElastiCache console displays
the newly created ElastiCache cache.

Creating an ElastiCache cache with settings from an Aurora DB cluster 369

https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/CacheNodes.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/CacheNodes.html
https://aws.amazon.com/elasticache/pricing/

Amazon Aurora User Guide for Aurora

Managing an Amazon Aurora DB cluster

This section shows how to manage and maintain your Aurora DB cluster. Aurora involves clusters
of database servers that are connected in a replication topology. Thus, managing Aurora often
involves deploying changes to multiple servers and making sure that all Aurora Replicas are
keeping up with the master server. Because Aurora transparently scales the underlying storage as
your data grows, managing Aurora requires relatively little management of disk storage. Likewise,
because Aurora automatically performs continuous backups, an Aurora cluster does not require
extensive planning or downtime for performing backups.

Topics

• Stopping and starting an Amazon Aurora DB cluster

• Automatically connecting an AWS compute resource and an Aurora DB cluster

• Modifying an Amazon Aurora DB cluster

• Adding Aurora Replicas to a DB cluster

• Managing performance and scaling for Aurora DB clusters

• Cloning a volume for an Amazon Aurora DB cluster

• Integrating Aurora with other AWS services

• Maintaining an Amazon Aurora DB cluster

• Rebooting an Amazon Aurora DB cluster or Amazon Aurora DB instance

• Deleting Aurora DB clusters and DB instances

• Tagging Amazon Aurora and Amazon RDS resources

• Working with Amazon Resource Names (ARNs) in Amazon RDS

• Amazon Aurora updates

370

Amazon Aurora User Guide for Aurora

Stopping and starting an Amazon Aurora DB cluster

Stopping and starting Aurora DB clusters helps you manage costs for development and test
environments. You can temporarily stop all the DB instances in your cluster, instead of setting up
and tearing down all the DB instances each time that you use the cluster.

Topics

• Overview of stopping and starting an Aurora DB cluster

• Limitations for stopping and starting Aurora DB clusters

• Stopping an Aurora DB cluster

• Possible operations while an Aurora DB cluster is stopped

• Starting an Aurora DB cluster

Overview of stopping and starting an Aurora DB cluster

During periods where you don't need an Aurora DB cluster, you can stop all instances in that cluster
at once. You can start the cluster again anytime you need to use it. Starting and stopping simplifies
the setup and teardown processes for clusters used for development, testing, or similar activities
that don't require continuous availability. You can perform all the AWS Management Console
procedures involved with only a single action, regardless of how many instances are in the cluster.

While your DB cluster is stopped, you're charged only for cluster storage, manual snapshots, and
automated backup storage within your specified retention window. You aren't charged for any DB
instance hours.

Important

You can stop a DB cluster for up to seven days. If you don't manually start your DB cluster
after seven days, your DB cluster is automatically started so that it doesn't fall behind any
required maintenance updates.

To minimize charges for a lightly loaded Aurora cluster, you can stop the cluster instead of deleting
all of its Aurora Replicas. For clusters with more than one or two instances, frequently deleting
and recreating the DB instances is only practical using the AWS CLI or Amazon RDS API. Such a
sequence of operations can also be difficult to perform in the right order, for example to delete all
Aurora Replicas before deleting the primary instance to avoid activating the failover mechanism.

Stopping and starting a cluster 371

Amazon Aurora User Guide for Aurora

Don't use starting and stopping if you need to keep your DB cluster running but it has more
capacity than you need. If your cluster is too costly or not very busy, delete one or more DB
instances or change all your DB instances to a small instance class. You can't stop an individual
Aurora DB instance.

The time to stop your DB cluster varies depending on factors such as DB instance classes, network
state, DB engine type, and database state. The process can take several minutes. The Amazon RDS
service performs the following actions:

• Shuts down the database engine processes.

• Shuts down the RDS platform processes.

• Terminates the underlying Amazon EC2 instances.

The time to restart your DB cluster varies depending on factors such as database size, DB instance
classes, network state, DB engine type, and the database state when the cluster was shut down.
The startup process can take minutes to hours, but usually takes several minutes. We recommend
that you consider the variability in startup time when creating your availability plan.

To start the DB cluster, the service performs actions such as the following:

• Provisions the underlying Amazon EC2 instances.

• Starts the RDS platform processes.

• Starts the database engine processes.

• Recovers the DB instances (recovery occurs even after a normal shutdown).

Limitations for stopping and starting Aurora DB clusters

Some Aurora clusters can't be stopped and started:

• You can't stop and start a cluster that's part of an Aurora global database.

• You can't stop and start a cluster that has a cross-Region read replica.

• You can't stop and start a cluster that is part of a blue/green deployment.

• You can't stop and start an Aurora Serverless v1 cluster. With Aurora Serverless v2, you can stop
and start the cluster.

Limitations 372

Amazon Aurora User Guide for Aurora

Stopping an Aurora DB cluster

To use an Aurora DB cluster or perform administration, you always begin with a running Aurora
DB cluster, then stop the cluster, and then start the cluster again. While your cluster is stopped,
you are charged for cluster storage, manual snapshots, and automated backup storage within your
specified retention window, but not for DB instance hours.

The stop operation stops the Aurora Replica instances first, then the primary instance, to avoid
activating the failover mechanism.

Console

To stop an Aurora cluster

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Databases, and then choose a cluster. You can perform the stop
operation from this page, or navigate to the details page for the DB cluster that you want to
stop.

3. For Actions, choose Stop temporarily.

4. In the Stop DB cluster temporarily window, select the acknowledgement that the DB cluster
will restart automatically after 7 days.

5. Choose Stop temporarily to stop the DB cluster, or choose Cancel to cancel the operation.

AWS CLI

To stop a DB instance by using the AWS CLI, call the stop-db-cluster command with the following
parameters:

• --db-cluster-identifier – the name of the Aurora cluster.

Example

aws rds stop-db-cluster --db-cluster-identifier mydbcluster

Stopping a DB cluster 373

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/
https://docs.aws.amazon.com/cli/latest/reference/rds/stop-db-cluster.html

Amazon Aurora User Guide for Aurora

RDS API

To stop a DB instance by using the Amazon RDS API, call the StopDBCluster operation with the
following parameter:

• DBClusterIdentifier – the name of the Aurora cluster.

Possible operations while an Aurora DB cluster is stopped

While an Aurora cluster is stopped, you can do a point-in-time restore to any point within your
specified automated backup retention window. For details about doing a point-in-time restore, see
Restoring data.

You can't modify the configuration of an Aurora DB cluster, or any of its DB instances, while the
cluster is stopped. You also can't add or remove DB instances from the cluster, or delete the cluster
if it still has any associated DB instances. You must start the cluster before performing any such
administrative actions.

Stopping a DB cluster removes pending actions, except for the DB cluster parameter group or for
the DB parameter groups of the DB cluster instances.

Aurora applies any scheduled maintenance to your stopped cluster after it's started again.
Remember that after seven days, Aurora automatically starts any stopped clusters so that they
don't fall too far behind in their maintenance status.

Aurora also doesn't perform any automated backups, because the underlying data can't change
while the cluster is stopped. Aurora doesn't extend the backup retention period while the cluster is
stopped.

Starting an Aurora DB cluster

You always start an Aurora DB cluster beginning with an Aurora cluster that is already in the
stopped state. When you start the cluster, all its DB instances become available again. The cluster
keeps its configuration settings such as endpoints, parameter groups, and VPC security groups.

Starting your DB cluster usually takes several minutes.

While a DB cluster is stopped 374

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_StopDBCluster.html

Amazon Aurora User Guide for Aurora

Console

To start an Aurora cluster

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Databases, and then choose a cluster. You can perform the
start operation from this page, or navigate to the details page for the DB cluster that you want
to start.

3. For Actions, choose Start.

AWS CLI

To start a DB cluster by using the AWS CLI, call the start-db-cluster command with the following
parameters:

• --db-cluster-identifier – the name of the Aurora cluster. This name is either a specific
cluster identifier you chose when creating the cluster, or the DB instance identifier you chose
with -cluster appended to the end.

Example

aws rds start-db-cluster --db-cluster-identifier mydbcluster

RDS API

To start an Aurora DB cluster by using the Amazon RDS API, call the StartDBCluster operation with
the following parameter:

• DBCluster – the name of the Aurora cluster. This name is either a specific cluster identifier
you chose when creating the cluster, or the DB instance identifier you chose with -cluster
appended to the end.

Starting a DB cluster 375

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/
https://docs.aws.amazon.com/cli/latest/reference/rds/start-db-cluster.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_StartDBCluster.html

Amazon Aurora User Guide for Aurora

Automatically connecting an AWS compute resource and an
Aurora DB cluster

You can automatically connect an Aurora DB cluster and AWS compute resources such as Amazon
Elastic Compute Cloud (Amazon EC2) instances and AWS Lambda functions.

Topics

• Automatically connecting an EC2 instance and an Aurora DB cluster

• Automatically connecting a Lambda function and an Aurora DB cluster

Automatically connecting an EC2 instance and an Aurora DB cluster

You can use the Amazon RDS console to simplify setting up a connection between an Amazon
Elastic Compute Cloud (Amazon EC2) instance and an Aurora DB cluster. Often, your DB cluster is in
a private subnet and your EC2 instance is in a public subnet within a VPC. You can use a SQL client
on your EC2 instance to connect to your DB cluster. The EC2 instance can also run web servers or
applications that access your private DB cluster.

Connecting an AWS compute resource 376

Amazon Aurora User Guide for Aurora

If you want to connect to an EC2 instance that isn't in the same VPC as the Aurora DB cluster, see
the scenarios in Scenarios for accessing a DB cluster in a VPC.

Topics

• Overview of automatic connectivity with an EC2 instance

• Automatically connecting an EC2 instance and an Aurora DB cluster

• Viewing connected compute resources

• Connecting to a DB instance that is running a specific DB engine

Overview of automatic connectivity with an EC2 instance

When you set up a connection between an EC2 instance and an Aurora DB cluster, Amazon
RDSautomatically configures the VPC security group for your EC2 instance and for your DB cluster.

The following are requirements for connecting an EC2 instance with an Aurora DB cluster:

• The EC2 instance must exist in the same VPC as the DB cluster.

If no EC2 instances exist in the same VPC, then the console provides a link to create one.

• Currently, the DB cluster can't be an Aurora Serverless DB cluster or part of an Aurora global
database.

• The user who sets up connectivity must have permissions to perform the following Amazon EC2
operations:

• ec2:AuthorizeSecurityGroupEgress

• ec2:AuthorizeSecurityGroupIngress

• ec2:CreateSecurityGroup

• ec2:DescribeInstances

• ec2:DescribeNetworkInterfaces

• ec2:DescribeSecurityGroups

• ec2:ModifyNetworkInterfaceAttribute

• ec2:RevokeSecurityGroupEgress

If the DB instance and EC2 instance are in different Availability Zones, your account may incur
cross-Availability Zone costs.
Connecting an EC2 instance 377

Amazon Aurora User Guide for Aurora

When you set up a connection to an EC2 instance, Amazon RDS acts according to the current
configuration of the security groups associated with the DB cluster and EC2 instance, as described
in the following table.

Current RDS security group
configuration

Current EC2 security group
configuration

RDS action

There are one or more
security groups associate
d with the DB cluster with
a name that matches the
pattern rds-ec2-n (where n
is a number). A security group
that matches the pattern
hasn't been modified. This
security group has only one
inbound rule with the VPC
security group of the EC2
instance as the source.

There are one or more
security groups associated
with the EC2 instance with
a name that matches the
pattern ec2-rds-n (where n
is a number). A security group
that matches the pattern
hasn't been modified. This
security group has only one
outbound rule with the VPC
security group of the DB
cluster as the source.

RDS takes no action.

A connection was already
configured automatically
between the EC2 instance
and DB cluster. Because a
connection already exists
between the EC2 instance
and the RDS database,
the security groups aren't
modified.

Either of the following
conditions apply:

• There is no security group
associated with the DB
cluster with a name that
matches the pattern rds-
ec2-n.

• There are one or more
security groups associate
d with the DB cluster with
a name that matches
the pattern rds-ec2-n.
However, Amazon RDS can't
use any of these security
groups for the connectio
n with the EC2 instance.

Either of the following
conditions apply:

• There is no security group
associated with the EC2
instance with a name that
matches the pattern ec2-
rds-n.

• There are one or more
security groups associate
d with the EC2 instance
with a name that matches
the pattern ec2-rds-n.
However, Amazon RDS can't
use any of these security
groups for the connectio
n with the DB cluster.

RDS action: create new
security groups

Connecting an EC2 instance 378

Amazon Aurora User Guide for Aurora

Current RDS security group
configuration

Current EC2 security group
configuration

RDS action

 Amazon RDS can't use a
security group that doesn't
have one inbound rule with
the VPC security group of
the EC2 instance as the
source. Amazon RDS also
can't use a security group
that has been modified.
Examples of modifications
include adding a rule or
changing the port of an
existing rule.

Amazon RDS can't use a
security group that doesn't
have one outbound rule
with the VPC security group
of the DB cluster as the
source. Amazon RDS also
can't use a security group
that has been modified.

There are one or more
security groups associate
d with the DB cluster with
a name that matches the
pattern rds-ec2-n. A
security group that matches
the pattern hasn't been
modified. This security group
has only one inbound rule
with the VPC security group
of the EC2 instance as the
source.

There are one or more
security groups associate
d with the EC2 instance
with a name that matches
the pattern ec2-rds-n.
However, Amazon RDS can't
use any of these security
groups for the connection
with the DB cluster. Amazon
RDS can't use a security
group that doesn't have
one outbound rule with the
VPC security group of the
DB cluster as the source.
Amazon RDS also can't use a
security group that has been
modified.

RDS action: create new
security groups

Connecting an EC2 instance 379

Amazon Aurora User Guide for Aurora

Current RDS security group
configuration

Current EC2 security group
configuration

RDS action

There are one or more
security groups associate
d with the DB cluster with
a name that matches the
pattern rds-ec2-n. A
security group that matches
the pattern hasn't been
modified. This security group
has only one inbound rule
with the VPC security group
of the EC2 instance as the
source.

A valid EC2 security group for
the connection exists, but it is
not associated with the EC2
instance. This security group
has a name that matches the
pattern ec2-rds-n. It hasn't
been modified. It has only
one outbound rule with the
VPC security group of the DB
cluster as the source.

RDS action: associate EC2
security group

Connecting an EC2 instance 380

Amazon Aurora User Guide for Aurora

Current RDS security group
configuration

Current EC2 security group
configuration

RDS action

Either of the following
conditions apply:

• There is no security group
associated with the DB
cluster with a name that
matches the pattern rds-
ec2-n.

• There are one or more
security groups associate
d with the DB cluster with
a name that matches
the pattern rds-ec2-n.
However, Amazon RDS can't
use any of these security
groups for the connectio
n with the EC2 instance.
 Amazon RDS can't use a
security group that doesn't
have one inbound rule with
the VPC security group of
the EC2 instance as the
source. Amazon RDS also
can't use security group
that has been modified.

There are one or more
security groups associate
d with the EC2 instance
with a name that matches
the pattern ec2-rds-n. A
security group that matches
the pattern hasn't been
modified. This security group
has only one outbound rule
with the VPC security group
of the DB cluster as the
source.

RDS action: create new
security groups

 RDS action: create new security groups

Amazon RDS takes the following actions:

• Creates a new security group that matches the pattern rds-ec2-n. This security group has an
inbound rule with the VPC security group of the EC2 instance as the source. This security group is
associated with the DB cluster and allows the EC2 instance to access the DB cluster.

Connecting an EC2 instance 381

Amazon Aurora User Guide for Aurora

• Creates a new security group that matches the pattern ec2-rds-n. This security group has an
outbound rule with the VPC security group of the DB cluster as the target. This security group is
associated with the EC2 instance and allows the EC2 instance to send traffic to the DB cluster.

 RDS action: associate EC2 security group

Amazon RDS associates the valid, existing EC2 security group with the EC2 instance. This security
group allows the EC2 instance to send traffic to the DB cluster.

Automatically connecting an EC2 instance and an Aurora DB cluster

Before setting up a connection between an EC2 instance and an Aurora DB cluster, make sure you
meet the requirements described in Overview of automatic connectivity with an EC2 instance.

If you make changes to security groups after you configure connectivity, the changes might affect
the connection between the EC2 instance and the Aurora DB cluster.

Note

You can only set up a connection between an EC2 instance and an Aurora DB cluster
automatically by using the AWS Management Console. You can't set up a connection
automatically with the AWS CLI or RDS API.

To connect an EC2 instance and an Aurora DB cluster automatically

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Databases, and then choose the DB cluster.

3. From Actions, choose Set up EC2 connection.

The Set up EC2 connection page appears.

4. On the Set up EC2 connection page, choose the EC2 instance.

Connecting an EC2 instance 382

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Aurora User Guide for Aurora

If no EC2 instances exist in the same VPC, choose Create EC2 instance to create one. In this
case, make sure the new EC2 instance is in the same VPC as the DB cluster.

5. Choose Continue.

The Review and confirm page appears.

Connecting an EC2 instance 383

Amazon Aurora User Guide for Aurora

6. On the Review and confirm page, review the changes that RDS will make to set up
connectivity with the EC2 instance.

If the changes are correct, choose Confirm and set up.

If the changes aren't correct, choose Previous or Cancel.

Connecting an EC2 instance 384

Amazon Aurora User Guide for Aurora

Viewing connected compute resources

You can use the AWS Management Console to view the compute resources that are connected to
an Aurora DB cluster. The resources shown include compute resource connections that were set up
automatically. You can set up connectivity with compute resources automatically in the following
ways:

• You can select the compute resource when you create the database.

For more information, see Creating an Amazon Aurora DB cluster.

• You can set up connectivity between an existing database and a compute resource.

For more information, see Automatically connecting an EC2 instance and an Aurora DB cluster.

The listed compute resources don't include ones that were connected to the database manually.
For example, you can allow a compute resource to access a database manually by adding a rule to
the VPC security group associated with the database.

For a compute resource to be listed, the following conditions must apply:

• The name of the security group associated with the compute resource matches the pattern ec2-
rds-n (where n is a number).

• The security group associated with the compute resource has an outbound rule with the port
range set to the port that the DB cluster uses.

• The security group associated with the compute resource has an outbound rule with the source
set to a security group associated with the DB cluster.

• The name of the security group associated with the DB cluster matches the pattern rds-ec2-n
(where n is a number).

• The security group associated with the DB cluster has an inbound rule with the port range set to
the port that the DB cluster uses.

• The security group associated with the DB cluster has an inbound rule with the source set to a
security group associated with the compute resource.

To view compute resources connected to an Aurora DB cluster

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

Connecting an EC2 instance 385

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Aurora User Guide for Aurora

2. In the navigation pane, choose Databases, and then choose the name of the DB cluster.

3. On the Connectivity & security tab, view the compute resources in the Connected compute
resources.

Connecting to a DB instance that is running a specific DB engine

For information about connecting to a DB instance that is running a specific DB engine, follow the
instructions for your DB engine:

• Connecting to an Amazon Aurora MySQL DB cluster

• Connecting to an Amazon Aurora PostgreSQL DB cluster

Automatically connecting a Lambda function and an Aurora DB cluster

You can use the Amazon RDS console to simplify setting up a connection between a Lambda
function and an Aurora DB cluster. Often, your DB cluster is in a private subnet within a VPC. The
Lambda function can be used by applications to access your private DB cluster.

The following image shows a direct connection between your DB cluster and your Lambda
function.

Connecting a Lambda function 386

Amazon Aurora User Guide for Aurora

You can set up the connection between your Lambda function and your DB cluster through RDS
Proxy to improve your database performance and resiliency. Often, Lambda functions make
frequent, short database connections that benefit from connection pooling that RDS Proxy offers.
You can take advantage of any AWS Identity and Access Management (IAM) authentication that
you already have for Lambda functions, instead of managing database credentials in your Lambda
application code. For more information, see Using Amazon RDS Proxy for Aurora.

When you use the console to connect with an existing proxy, Amazon RDS updates the proxy
security group to allow connections from your DB cluster and Lambda function.

You can also create a new proxy from the same console page. When you create a proxy in the
console, to access the DB cluster, you must input your database credentials or select an AWS
Secrets Manager secret.

Connecting a Lambda function 387

Amazon Aurora User Guide for Aurora

Topics

• Overview of automatic connectivity with a Lambda function

• Automatically connecting a Lambda function and an Aurora DB cluster

• Viewing connected compute resources

Overview of automatic connectivity with a Lambda function

The following are requirements for connecting a Lambda function with an Aurora DB cluster:

• The Lambda function must exist in the same VPC as the DB cluster.

• Currently, the DB cluster can't be an Aurora Serverless DB cluster or part of an Aurora global
database.

• The user who sets up connectivity must have permissions to perform the following Amazon RDS,
Amazon EC2, Lambda, Secrets Manager, and IAM operations:

• Amazon RDS

Connecting a Lambda function 388

Amazon Aurora User Guide for Aurora

• rds:CreateDBProxies

• rds:DescribeDBClusters

• rds:DescribeDBProxies

• rds:ModifyDBCluster

• rds:ModifyDBProxy

• rds:RegisterProxyTargets

• Amazon EC2

• ec2:AuthorizeSecurityGroupEgress

• ec2:AuthorizeSecurityGroupIngress

• ec2:CreateSecurityGroup

• ec2:DeleteSecurityGroup

• ec2:DescribeSecurityGroups

• ec2:RevokeSecurityGroupEgress

• ec2:RevokeSecurityGroupIngress

• Lambda

• lambda:CreateFunctions

• lambda:ListFunctions

• lambda:UpdateFunctionConfiguration

• Secrets Manager

• secretsmanager:CreateSecret

• secretsmanager:DescribeSecret

• IAM

• iam:AttachPolicy

• iam:CreateRole

• iam:CreatePolicy

• AWS KMS

• kms:describeKey

Connecting a Lambda function 389

Amazon Aurora User Guide for Aurora

Note

If the DB cluster and Lambda function are in different Availability Zones, your account
might incur cross-Availability Zone costs.

When you set up a connection between a Lambda function and an Aurora DB cluster, Amazon
RDS configures the VPC security group for your function and for your DB cluster. If you use RDS
Proxy, then Amazon RDS also configures the VPC security group for the proxy. Amazon RDS acts
according to the current configuration of the security groups associated with the DB cluster,
Lambda function, and proxy, as described in the following table.

Current RDS security
group configuration

Current Lambda
security group
configuration

Current proxy
security group
configuration

RDS action

There are one or
more security groups
associated with the
DB cluster with a
name that matches
the pattern rds-
lambda- n or if
a proxy is already
connected to your DB
cluster, RDS checks if
the TargetHealth
of an associated
proxy is AVAILABLE

.

A security group that
matches the pattern
hasn't been modified.
This security group
has only one inbound
rule with the VPC

There are one or
more security groups
associated with the
Lambda function
with a name that
matches the pattern
lambda-rds- n
or lambda-rd
sproxy- n (where n
is a number).

A security group
that matches the
pattern hasn't been
modified. This
security group has
only one outbound
rule with either the
VPC security group of
the DB cluster or the

There are one or
more security groups
associated with the
proxy with a name
that matches the
pattern rdsproxy-
lambda- n (where n
is a number).

A security group that
matches the pattern
hasn't been modified.
This security group
has inbound and
outbound rules with
the VPC security
groups of the
Lambda function and
the DB cluster.

Amazon RDS takes no
action.

A connection was
already configure
d automatically
between the Lambda
function, the proxy
(optional), and DB
cluster. Because a
connection already
exists between the
function, proxy, and
the database, the
security groups aren't
modified.

Connecting a Lambda function 390

Amazon Aurora User Guide for Aurora

Current RDS security
group configuration

Current Lambda
security group
configuration

Current proxy
security group
configuration

RDS action

security group of the
Lambda function or
proxy as the source.

proxy as the destinati
on.

Connecting a Lambda function 391

Amazon Aurora User Guide for Aurora

Current RDS security
group configuration

Current Lambda
security group
configuration

Current proxy
security group
configuration

RDS action

Either of the
following conditions
apply:

• There is no security
group associate
d with the DB
cluster with a
name that matches
the pattern rds-
lambda- n or if
the TargetHea
lth of an
associated proxy is
AVAILABLE .

• There are one
or more security
groups associate
d with the DB
cluster with a
name that matches
the pattern rds-
lambda- n or if
the TargetHea
lth of an
associated proxy
is AVAILABLE .
However, none
of these security
groups can be used
for the connectio

Either of the
following conditions
apply:

• There is no security
group associated
with the Lambda
function with a
name that matches
the pattern
lambda-rds- n
or lambda-rd
sproxy- n.

• There are one
or more security
groups associated
with the Lambda
function with a
name that matches
the pattern
lambda-rds- n
or lambda-rd
sproxy- n.
However, Amazon
RDS can't use any
of these security
groups for the
connection with
the DB cluster.

Amazon RDS can't
use a security group

Either of the
following conditions
apply:

• There is no security
group associate
d with the proxy
with a name
that matches
the pattern
rdsproxy-
lambda- n.

• There are one
or more security
groups associate
d with the proxy
with a name
that matches
rdsproxy-
lambda- n.
However, Amazon
RDS can't use any
of these security
groups for the
connection with
the DB cluster or
Lambda function.

Amazon RDS can't
use a security
group that doesn't
have inbound and

RDS action: create
new security groups

Connecting a Lambda function 392

Amazon Aurora User Guide for Aurora

Current RDS security
group configuration

Current Lambda
security group
configuration

Current proxy
security group
configuration

RDS action

n with the Lambda
function.

Amazon RDS can't
use a security group
that doesn't have
one inbound rule
with the VPC security
group of the Lambda
function or proxy
as the source.
Amazon RDS also
can't use a security
group that has been
modified. Examples
of modifications
include adding a rule
or changing the port
of an existing rule.

that doesn't have
one outbound rule
with the VPC security
group of the DB
cluster or proxy as
the destination.
Amazon RDS also
can't use a security
group that has been
modified.

outbound rules with
the VPC security
group of the DB
cluster and the
Lambda function.
Amazon RDS also
can't use a security
group that has been
modified.

Connecting a Lambda function 393

Amazon Aurora User Guide for Aurora

Current RDS security
group configuration

Current Lambda
security group
configuration

Current proxy
security group
configuration

RDS action

There are one or
more security groups
associated with the
DB cluster with a
name that matches
the pattern rds-
lambda- n or if the
TargetHealth of
an associated proxy is
AVAILABLE .

A security group that
matches the pattern
hasn't been modified.
This security group
has only one inbound
rule with the VPC
security group of the
Lambda function or
proxy as the source.

There are one or
more security groups
associated with the
Lambda function
with a name that
matches the pattern
lambda-rds- n
or lambda-rd
sproxy- n.

However, Amazon
RDS can't use any of
these security groups
for the connection
with the DB cluster.
Amazon RDS can't
use a security group
that doesn't have
one outbound rule
with the VPC security
group of the DB
cluster or proxy as
the destination.
Amazon RDS also
can't use a security
group that has been
modified.

There are one or
more security groups
associated with the
proxy with a name
that matches the
pattern rdsproxy-
lambda- n.

However, Amazon
RDS can't use any
of these security
groups for the
connection with the
DB cluster or Lambda
function. Amazon
RDS can't use a
security group that
doesn't have inbound
and outbound rules
with the VPC security
group of the DB
cluster and the
Lambda function.
Amazon RDS also
can't use a security
group that has been
modified.

RDS action: create
new security groups

Connecting a Lambda function 394

Amazon Aurora User Guide for Aurora

Current RDS security
group configuration

Current Lambda
security group
configuration

Current proxy
security group
configuration

RDS action

There are one or
more security groups
associated with the
DB cluster with a
name that matches
the pattern rds-
lambda- n or if the
TargetHealth of
an associated proxy is
AVAILABLE .

A security group that
matches the pattern
hasn't been modified.
This security group
has only one inbound
rule with the VPC
security group of the
Lambda function or
proxy as the source.

A valid Lambda
security group for
the connection
exists, but it isn't
associated with the
Lambda function.
This security group
has a name that
matches the pattern
lambda-rds- n
or lambda-rd
sproxy- n. It hasn't
been modified. It has
only one outbound
rule with the VPC
security group of the
DB cluster or proxy as
the destination.

A valid proxy
security group for
the connection
exists, but it isn't
associated with the
proxy. This security
group has a name
that matches the
pattern rdsproxy-
lambda- n. It hasn't
been modified. It
has inbound and
outbound rules with
the VPC security
group of the DB
cluster and the
Lambda function.

RDS action: associate
Lambda security
group

Connecting a Lambda function 395

Amazon Aurora User Guide for Aurora

Current RDS security
group configuration

Current Lambda
security group
configuration

Current proxy
security group
configuration

RDS action

Either of the
following conditions
apply:

• There is no security
group associate
d with the DB
cluster with a
name that matches
the pattern rds-
lambda- n or if
the TargetHea
lth of an
associated proxy is
AVAILABLE .

• There are one
or more security
groups associate
d with the DB
cluster with a
name that matches
the pattern rds-
lambda- n or if
the TargetHea
lth of an
associated proxy
is AVAILABLE .
However, Amazon
RDS can't use
any of these
security groups
for the connectio

There are one or
more security groups
associated with the
Lambda function
with a name that
matches the pattern
lambda-rds- n
or lambda-rd
sproxy- n.

A security group
that matches the
pattern hasn't been
modified. This
security group has
only one outbound
rule with the VPC
security group of the
DB instance or proxy
as the destination.

There are one or
more security groups
associated with the
proxy with a name
that matches the
pattern rdsproxy-
lambda- n.

A security group that
matches the pattern
hasn't been modified.
This security group
has inbound and
outbound rules with
the VPC security
group of the DB
cluster and the
Lambda function.

RDS action: create
new security groups

Connecting a Lambda function 396

Amazon Aurora User Guide for Aurora

Current RDS security
group configuration

Current Lambda
security group
configuration

Current proxy
security group
configuration

RDS action

n with the Lambda
function or proxy.

Amazon RDS can't
use a security group
that doesn't have
one inbound rule
with the VPC security
group of the Lambda
function or proxy as
the source. Amazon
RDS also can't use a
security group that
has been modified.

Connecting a Lambda function 397

Amazon Aurora User Guide for Aurora

Current RDS security
group configuration

Current Lambda
security group
configuration

Current proxy
security group
configuration

RDS action

Either of the
following conditions
apply:

• There is no security
group associate
d with the DB
cluster with a
name that matches
the pattern rds-
lambda- n or if
the TargetHea
lth of an
associated proxy is
AVAILABLE .

• There are one
or more security
groups associate
d with the DB
cluster with a
name that matches
the pattern rds-
lambda- n or if
the TargetHea
lth of an
associated proxy
is AVAILABLE .
However, Amazon
RDS can't use
any of these
security groups
for the connectio

Either of the
following conditions
apply:

• There is no security
group associated
with the Lambda
function with a
name that matches
the pattern
lambda-rds- n
or lambda-rd
sproxy- n.

• There are one
or more security
groups associated
with the Lambda
function with a
name that matches
the pattern
lambda-rds- n
or lambda-rd
sproxy- n.
However, Amazon
RDS can't use any
of these security
groups for the
connection with
the DB DB cluster.

Amazon RDS can't
use a security group

Either of the
following conditions
apply:

• There is no security
group associate
d with the proxy
with a name
that matches
the pattern
rdsproxy-
lambda- n.

• There are one
or more security
groups associate
d with the proxy
with a name
that matches
rdsproxy-
lambda- n.
However, Amazon
RDS can't use any
of these security
groups for the
connection with
the DB cluster or
Lambda function.

Amazon RDS can't
use a security
group that doesn't
have inbound and

RDS action: create
new security groups

Connecting a Lambda function 398

Amazon Aurora User Guide for Aurora

Current RDS security
group configuration

Current Lambda
security group
configuration

Current proxy
security group
configuration

RDS action

n with the Lambda
function or proxy.

Amazon RDS can't
use a security group
that doesn't have
one inbound rule
with the VPC security
group of the Lambda
function or proxy as
the source. Amazon
RDS also can't use a
security group that
has been modified.

that doesn't have
one outbound rule
with the VPC security
group of the DB
cluster or proxy as
the source. Amazon
RDS also can't use a
security group that
has been modified.

outbound rules with
the VPC security
group of the DB
cluster and the
Lambda function.
Amazon RDS also
can't use a security
group that has been
modified.

 RDS action: create new security groups

Amazon RDS takes the following actions:

• Creates a new security group that matches the pattern rds-lambda-n or rds-rdsproxy-n
(if you choose to use RDS Proxy). This security group has an inbound rule with the VPC security
group of the Lambda function or proxy as the source. This security group is associated with the
DB cluster and allows the function or proxy to access the DB cluster.

• Creates a new security group that matches the pattern lambda-rds-n or lambda-
rdsproxy-n. This security group has an outbound rule with the VPC security group of the DB
cluster or proxy as the destination. This security group is associated with the Lambda function
and allows the function to send traffic to the DB cluster or send traffic through a proxy.

• Creates a new security group that matches the pattern rdsproxy-lambda-n. This security
group has inbound and outbound rules with the VPC security group of the DB cluster and the
Lambda function.

 RDS action: associate Lambda security group

Connecting a Lambda function 399

Amazon Aurora User Guide for Aurora

Amazon RDS associates the valid, existing Lambda security group with the Lambda function. This
security group allows the function to send traffic to the DB cluster or send traffic through a proxy.

Automatically connecting a Lambda function and an Aurora DB cluster

You can use the Amazon RDS console to automatically connect a Lambda function to your DB
cluster. This simplifies the process of setting up a connection between these resources.

You can also use RDS Proxy to include a proxy in your connection. Lambda functions make frequent
short database connections that benefit from the connection pooling that RDS Proxy offers. You
can also use any IAM authentication that you've already set up for your Lambda function, instead
of managing database credentials in your Lambda application code.

You can connect an existing DB cluster to new and existing Lambda functions using the Set up
Lambda connection page. The setup process automatically sets up the required security groups for
you.

Before setting up a connection between a Lambda function and a DB cluster, make sure that:

• Your Lambda function and DB cluster are in the same VPC.

• You have the right permissions for your user account. For more information about the
requirements, see Overview of automatic connectivity with a Lambda function.

If you change security groups after you configure connectivity, the changes might affect the
connection between the Lambda function and the DB cluster.

Note

You can automatically set up a connection between a DB cluster and a Lambda function
only in the AWS Management Console. To connect a Lambda function, all instances in the
DB cluster must be in the Available state.

To automatically connect a Lambda function and a DB cluster

<result>

After you confirm the setup, Amazon RDS begins the process of connecting your Lambda function,
RDS Proxy (if you used a proxy), and DB cluster. The console shows the Connection details dialog
box, which lists the security group changes that allow connections between your resources.

Connecting a Lambda function 400

Amazon Aurora User Guide for Aurora

</result>

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Databases, and then choose the DB cluster that you want to
connect to a Lambda function.

3. For Actions, choose Set up Lambda connection.

4. On the Set up Lambda connection page, under Select Lambda function, do either of the
following:

• If you have an existing Lambda function in the same VPC as your DB cluster, choose
Choose existing function, and then choose the function.

• If you don't have a Lambda function in the same VPC, choose Create new function, and
then enter a Function name. The default runtime is set to Nodejs.18. You can modify the
settings for your new Lambda function in the Lambda console after you complete the
connection setup.

5. (Optional) Under RDS Proxy, select Connect using RDS Proxy, and then do any of the
following:

• If you have an existing proxy that you want to use, choose Choose existing proxy, and
then choose the proxy.

• If you don't have a proxy, and you want Amazon RDS to automatically create one for you,
choose Create new proxy. Then, for Database credentials, do either of the following:

a. Choose Database username and password, and then enter the Username and
Password for your DB cluster.

b. Choose Secrets Manager secret. Then, for Select secret, choose an AWS Secrets
Manager secret. If you don't have a Secrets Manager secret, choose Create new
Secrets Manager secret to create a new secret. After you create the secret, for Select
secret, choose the new secret.

After you create the new proxy, choose Choose existing proxy, and then choose the proxy.
Note that it might take some time for your proxy to be available for connection.

6. (Optional) Expand Connection summary and verify the highlighted updates for your
resources.

7. Choose Set up.

Connecting a Lambda function 401

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/
https://docs.aws.amazon.com/secretsmanager/latest/userguide/create_secret.html

Amazon Aurora User Guide for Aurora

Viewing connected compute resources

You can use the AWS Management Console to view the Lambda functions that are connected to
your DB cluster. The resources shown include compute resource connections that Amazon RDS set
up automatically.

The listed compute resources don't include those that are manually connected to the DB cluster.
For example, you can allow a compute resource to access your DB cluster manually by adding a rule
to your VPC security group associated with the database.

For the console to list a Lambda function, the following conditions must apply:

• The name of the security group associated with the compute resource matches the pattern
lambda-rds-n or lambda-rdsproxy-n (where n is a number).

• The security group associated with the compute resource has an outbound rule with the port
range set to the port of the DB cluster or an associated proxy. The destination for the outbound
rule must be set to a security group associated with the DB cluster or an associated proxy.

• If the configuration includes a proxy, the name of the security group attached to the proxy
associated with your database matches the pattern rdsproxy-lambda-n (where n is a number).

• The security group associated with the function has an outbound rule with the port set to the
port that the DB cluster or associated proxy uses. The destination must be set to a security group
associated with the DB cluster or associated proxy.

To view compute resources automatically connected to an DB cluster

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Databases, and then choose the DB cluster.

3. On the Connectivity & security tab, view the compute resources under Connected compute
resources.

Connecting a Lambda function 402

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Aurora User Guide for Aurora

Modifying an Amazon Aurora DB cluster

You can change the settings of a DB cluster to accomplish tasks such as changing its backup
retention period or its database port. You can also modify DB instances in a DB cluster to
accomplish tasks such as changing its DB instance class or enabling Performance Insights for it.
This topic guides you through modifying an Aurora DB cluster and its DB instances, and describes
the settings for each.

We recommend that you test any changes on a test DB cluster or DB instance before modifying a
production DB cluster or DB instance, so that you fully understand the impact of each change. This
is especially important when upgrading database versions.

Topics

• Modifying the DB cluster by using the console, CLI, and API

• Modifying a DB instance in a DB cluster

• Changing the password for the database master user

• Settings for Amazon Aurora

• Settings that don't apply to Amazon Aurora DB clusters

• Settings that don't apply to Amazon Aurora DB instances

Modifying the DB cluster by using the console, CLI, and API

You can modify a DB cluster using the AWS Management Console, the AWS CLI, or the RDS API.

Note

Most modifications can be applied immediately or during the next scheduled maintenance
window. Some modifications, such as turning on deletion protection, are applied
immediately—regardless of when you choose to apply them.
Changing the master password in the AWS Management Console is always applied
immediately. However, when using the AWS CLI or RDS API, you can choose whether to
apply this change immediately or during the next scheduled maintenance window.
If you're using SSL endpoints and change the DB cluster identifier, stop and restart the DB
cluster to update the SSL endpoints. For more information, see Stopping and starting an
Amazon Aurora DB cluster.

Modifying an Aurora DB cluster 403

Amazon Aurora User Guide for Aurora

Console

To modify a DB cluster

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Databases, and then select the DB cluster that you want to
modify.

3. Choose Modify. The Modify DB cluster page appears.

4. Change any of the settings that you want. For information about each setting, see Settings for
Amazon Aurora.

Note

In the AWS Management Console, some instance level changes only apply to the
current DB instance, while others apply to the entire DB cluster. For information about
whether a setting applies to the DB instance or the DB cluster, see the scope for the
setting in Settings for Amazon Aurora. To change a setting that modifies the entire DB
cluster at the instance level in the AWS Management Console, follow the instructions
in Modifying a DB instance in a DB cluster.

5. When all the changes are as you want them, choose Continue and check the summary of
modifications.

6. To apply the changes immediately, select Apply immediately.

7. On the confirmation page, review your changes. If they are correct, choose Modify cluster to
save your changes.

Alternatively, choose Back to edit your changes, or choose Cancel to cancel your changes.

AWS CLI

To modify a DB cluster using the AWS CLI, call the modify-db-cluster command. Specify the DB
cluster identifier, and the values for the settings that you want to modify. For information about
each setting, see Settings for Amazon Aurora.

Modifying the DB cluster by using the console, CLI, and API 404

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-cluster.html

Amazon Aurora User Guide for Aurora

Note

Some settings only apply to DB instances. To change those settings, follow the instructions
in Modifying a DB instance in a DB cluster.

Example

The following command modifies mydbcluster by setting the backup retention period to 1 week
(7 days).

For Linux, macOS, or Unix:

aws rds modify-db-cluster \
 --db-cluster-identifier mydbcluster \
 --backup-retention-period 7

For Windows:

aws rds modify-db-cluster ^
 --db-cluster-identifier mydbcluster ^
 --backup-retention-period 7

RDS API

To modify a DB cluster using the Amazon RDS API, call the ModifyDBCluster operation. Specify
the DB cluster identifier, and the values for the settings that you want to modify. For information
about each parameter, see Settings for Amazon Aurora.

Note

Some settings only apply to DB instances. To change those settings, follow the instructions
in Modifying a DB instance in a DB cluster.

Modifying a DB instance in a DB cluster

You can modify a DB instance in a DB cluster using the AWS Management Console, the AWS CLI, or
the RDS API.

Modifying a DB instance in a DB cluster 405

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBCluster.html

Amazon Aurora User Guide for Aurora

When you modify a DB instance, you can apply the changes immediately. To apply changes
immediately, you select the Apply Immediately option in the AWS Management Console,
you use the --apply-immediately parameter when calling the AWS CLI, or you set the
ApplyImmediately parameter to true when using the Amazon RDS API.

If you don't choose to apply changes immediately, the changes are deferred until the next
maintenance window. During the next maintenance window, any of these deferred changes
are applied. If you choose to apply changes immediately, your new changes and any previously
deferred changes are applied.

To see the modifications that are pending for the next maintenance window, use the describe-db-
clusters AWS CLI command and check the PendingModifiedValues field.

Important

If any of the deferred modifications require downtime, choosing Apply immediately can
cause unexpected downtime for the DB instance. There is no downtime for the other DB
instances in the DB cluster.
Modifications that you defer aren't listed in the output of the describe-pending-
maintenance-actions CLI command. Maintenance actions only include system upgrades
that you schedule for the next maintenance window.

Console

To modify a DB instance in a DB cluster

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Databases, and then select the DB instance that you want to
modify.

3. For Actions, choose Modify. The Modify DB instance page appears.

4. Change any of the settings that you want. For information about each setting, see Settings for
Amazon Aurora.

Modifying a DB instance in a DB cluster 406

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/rds/describe-db-clusters.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/rds/describe-db-clusters.html
https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Aurora User Guide for Aurora

Note

Some settings apply to the entire DB cluster and must be changed at the cluster level.
To change those settings, follow the instructions in Modifying the DB cluster by using
the console, CLI, and API.
In the AWS Management Console, some instance level changes only apply to the
current DB instance, while others apply to the entire DB cluster. For information about
whether a setting applies to the DB instance or the DB cluster, see the scope for the
setting in Settings for Amazon Aurora.

5. When all the changes are as you want them, choose Continue and check the summary of
modifications.

6. To apply the changes immediately, select Apply immediately.

7. On the confirmation page, review your changes. If they are correct, choose Modify DB instance
to save your changes.

Alternatively, choose Back to edit your changes, or choose Cancel to cancel your changes.

AWS CLI

To modify a DB instance in a DB cluster by using the AWS CLI, call the modify-db-instance
command. Specify the DB instance identifier, and the values for the settings that you want to
modify. For information about each parameter, see Settings for Amazon Aurora.

Note

Some settings apply to the entire DB cluster. To change those settings, follow the
instructions in Modifying the DB cluster by using the console, CLI, and API.

Example

The following code modifies mydbinstance by setting the DB instance class to db.r4.xlarge.
The changes are applied during the next maintenance window by using --no-apply-
immediately. Use --apply-immediately to apply the changes immediately.

For Linux, macOS, or Unix:

Modifying a DB instance in a DB cluster 407

https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-instance.html

Amazon Aurora User Guide for Aurora

aws rds modify-db-instance \
 --db-instance-identifier mydbinstance \
 --db-instance-class db.r4.xlarge \
 --no-apply-immediately

For Windows:

aws rds modify-db-instance ^
 --db-instance-identifier mydbinstance ^
 --db-instance-class db.r4.xlarge ^
 --no-apply-immediately

RDS API

To modify a DB instance by using the Amazon RDS API, call the ModifyDBInstance operation.
Specify the DB instance identifier, and the values for the settings that you want to modify. For
information about each parameter, see Settings for Amazon Aurora.

Note

Some settings apply to the entire DB cluster. To change those settings, follow the
instructions in Modifying the DB cluster by using the console, CLI, and API.

Changing the password for the database master user

You can use the AWS Management Console or the AWS CLI to change the master user password.

Console

You modify the writer DB instance to change the master user password using the AWS
Management Console.

To change the master user password

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Databases, and then select the DB instance that you want to
modify.

Changing the master user password 408

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBInstance.html
https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Aurora User Guide for Aurora

3. For Actions, choose Modify.

The Modify DB instance page appears.

4. Enter a New master password.

5. For Confirm master password, enter the same new password.

6. Choose Continue and check the summary of modifications.

Note

Password changes are always applied immediately.

7. On the confirmation page, choose Modify DB instance.

Changing the master user password 409

Amazon Aurora User Guide for Aurora

CLI

You call the modify-db-cluster command to change the master user password using the AWS CLI.
Specify the DB cluster identifier and the new password, as shown in the following examples.

You don't need to specify --apply-immediately|--no-apply-immediately, because
password changes are always applied immediately.

For Linux, macOS, or Unix:

aws rds modify-db-cluster \
 --db-cluster-identifier mydbcluster \
 --master-user-password mynewpassword

For Windows:

aws rds modify-db-cluster ^
 --db-cluster-identifier mydbcluster ^
 --master-user-password mynewpassword

Settings for Amazon Aurora

The following table contains details about which settings you can modify, the methods for
modifying the setting, and the scope of the setting. The scope determines whether the setting
applies to the entire DB cluster or if it can be set only for specific DB instances.

Note

Additional settings are available if you are modifying an Aurora Serverless v1 or Aurora
Serverless v2 DB cluster. For information about these settings, see Modifying an Aurora
Serverless v1 DB cluster and Managing Aurora Serverless v2 DB clusters.
Some settings aren't available for Aurora Serverless v1 and Aurora Serverless v2 because
of their limitations. For more information, see Limitations of Aurora Serverless v1 and
Requirements and limitations for Aurora Serverless v2.

Available settings 410

https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-cluster.html

Amazon Aurora User Guide for Aurora

Setting and descripti
on

Method Scope Downtime notes

Auto minor version
upgrade

Whether you want
the DB instance to
receive preferred
minor engine version
upgrades automatic
ally when they
become available
. Upgrades are
installed only during
your scheduled
maintenance window.

For more informati
on about engine
updates, see Amazon
Aurora PostgreSQ
L updates and
Database engine
updates for Amazon
Aurora MySQL. For
more information
about the Auto
minor version
upgrade setting for
Aurora MySQL, see
Enabling automatic
upgrades between
minor Aurora MySQL
versions.

Note

This setting
is enabled
by default.
For each
new cluster,
choose the
appropria
te value for
this setting
based on its
importanc
e, expected
lifetime, and
the amount
of verification
testing that
you do after
each upgrade.

When you change
this setting, perform
this modification for
every DB instance in
your Aurora cluster.
If any DB instance
in your cluster has
this setting turned
off, the cluster
isn't automatically
upgraded.

The entire DB cluster An outage doesn't
occur during this
change. Outages
do occur during
future maintenan
ce windows when
Aurora applies
automatic upgrades.

Available settings 411

Amazon Aurora User Guide for Aurora

Setting and descripti
on

Method Scope Downtime notes

Using the AWS
Management
Console, Modifying a
DB instance in a DB
cluster.

Using the AWS CLI,
run modify-db-
instance and set the
--auto-minor-
version-upgrad
e|--no-auto-
minor-version-u
pgrade option.

Using the RDS API,
call ModifyDBI
nstance and set
the AutoMinor
VersionUpgrade
parameter.

Available settings 412

https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-instance.html
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-instance.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBInstance.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBInstance.html

Amazon Aurora User Guide for Aurora

Setting and descripti
on

Method Scope Downtime notes

Backup retention
period

The number of days
that automatic
backups are retained.
The minimum value is
1.

For more informati
on, see Backups.

Using the AWS
Management
Console, Modifying
the DB cluster by
using the console,
CLI, and API.

Using the AWS
CLI, run modify-
db-cluster and set
the --backup-
retention-
period option.

Using the RDS API,
call ModifyDBC
luster and set
the BackupRet
entionPeriod
parameter.

The entire DB cluster An outage doesn't
occur during this
change.

Available settings 413

https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-cluster.html
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-cluster.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBCluster.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBCluster.html

Amazon Aurora User Guide for Aurora

Setting and descripti
on

Method Scope Downtime notes

Backup window
(Start time)

The time range
during which
automated backups
of your database
occurs. The backup
window is a start
time in Universal
Coordinated Time
(UTC), and a duration
in hours.

Aurora backups
are continuous and
incremental, but
the backup window
is used to create a
daily system backup
that is preserved
within the backup
retention period.
You can copy it to
preserve it outside of
the retention period.

The maintenance
window and the
backup window for
the DB cluster can't
overlap.

Using the AWS
Management
Console, Modifying
the DB cluster by
using the console,
CLI, and API.

Using the AWS CLI,
run modify-db-
cluster and set the
--preferred-
backup-window
option.

Using the RDS API,
call ModifyDBC
luster and set
the Preferred
BackupWindow
parameter.

The entire DB cluster. An outage doesn't
occur during this
change.

Available settings 414

https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-cluster.html
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-cluster.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBCluster.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBCluster.html

Amazon Aurora User Guide for Aurora

Setting and descripti
on

Method Scope Downtime notes

For more informati
on, see Backup
window.

Capacity settings

The scaling propertie
s of an Aurora
Serverless v1
DB cluster. You
can only modify
scaling properties
for DB clusters in
serverless DB
engine mode.

For informati
on about Aurora
Serverless v1, see
Using Amazon Aurora
Serverless v1.

Using the AWS
Management
Console, Modifying
the DB cluster by
using the console,
CLI, and API.

Using the AWS
CLI, run modify-
db-cluster and set
the --scaling-
configuration
option.

Using the RDS API,
call ModifyDBC
luster and set
the ScalingCo
nfiguration
parameter.

The entire DB cluster An outage doesn't
occur during this
change.

The change occurs
immediately. This
setting ignores the
apply immediately
setting.

Available settings 415

https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-cluster.html
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-cluster.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBCluster.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBCluster.html

Amazon Aurora User Guide for Aurora

Setting and descripti
on

Method Scope Downtime notes

Certificate authority

The certificate
authority (CA) for the
server certificate used
by the DB instance.

Using the AWS
Management
Console, Modifying a
DB instance in a DB
cluster.

Using the AWS
CLI, run modify-
db-instance and
set the --ca-
certificate-
identifier
option.

Using the RDS API,
call ModifyDBI
nstance and set
the CACertifi
cateIdentifier
parameter.

Only the specified DB
instance

An outage only
occurs if the DB
engine doesn't
support rotation
without restart. You
can use the describe-
db-engine-versions
 AWS CLI command
to determine whether
the DB engine
supports rotation
without restart.

Available settings 416

https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-instance.html
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-instance.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBInstance.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBInstance.html
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-engine-versions.html
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-engine-versions.html
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-engine-versions.html

Amazon Aurora User Guide for Aurora

Setting and descripti
on

Method Scope Downtime notes

Cluster storage
configuration

The storage type
for the DB cluster:
Aurora I/O-Optim
ized or Aurora
Standard.

For more informati
on, see Storage
configurations for
Amazon Aurora DB
clusters.

Using the AWS
Management
Console, Modifying
the DB cluster by
using the console,
CLI, and API.

Using the AWS CLI,
run modify-db-
cluster and set the
--storage-type
option.

Using the RDS API,
call ModifyDBC
luster and set the
StorageType
parameter.

The entire DB cluster Changing the
storage type of an
Aurora PostgreSQ
L DB cluster with
Optimized Reads
instance classes
causes an outage.
This does not occur
when changing
storage types for
clusters with other
instance class types.
For more informati
on on the DB instance
class types, see DB
instance class types.

Available settings 417

https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-cluster.html
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-cluster.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBCluster.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBCluster.html

Amazon Aurora User Guide for Aurora

Setting and descripti
on

Method Scope Downtime notes

Copy tags to
snapshots

Select to specify that
tags defined for this
DB cluster are copied
to DB snapshots
created from this
DB cluster. For more
information, see
Tagging Amazon
Aurora and Amazon
RDS resources.

Using the AWS
Management
Console, Modifying
the DB cluster by
using the console,
CLI, and API.

Using the AWS CLI,
run https://docs.aws.
amazon.com/cli/
latest/reference/
rds/modify-db-clu
ster.html and set the
--copy-tags-to-
snapshot or --no-
copy-tags-to-
snapshot option.

Using the RDS API,
call https://docs.aws.
amazon.com/Amazon
RDS/latest/APIRe
ference/API_Modif
yDBCluster.html and
set the CopyTagsT
oSnapshot
parameter.

The entire DB cluster An outage doesn't
occur during this
change.

Available settings 418

https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-cluster.html
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-cluster.html
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-cluster.html
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-cluster.html
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-cluster.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBCluster.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBCluster.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBCluster.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBCluster.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBCluster.html

Amazon Aurora User Guide for Aurora

Setting and descripti
on

Method Scope Downtime notes

Data API

You can access
Aurora Serverless v1
with web services–
based applicati
ons, including AWS
Lambda and AWS
AppSync.

This setting only
applies to an Aurora
Serverless v1 DB
cluster.

For more informati
on, see Using RDS
Data API.

Using the AWS
Management
Console, Modifying
the DB cluster by
using the console,
CLI, and API.

Using the AWS CLI,
run modify-db-
cluster and set the
--enable-http-
endpoint option.

Using the RDS API,
call ModifyDBC
luster and set
the EnableHtt
pEndpoint
parameter.

The entire DB cluster An outage doesn't
occur during this
change.

Available settings 419

https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-cluster.html
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-cluster.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBCluster.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBCluster.html

Amazon Aurora User Guide for Aurora

Setting and descripti
on

Method Scope Downtime notes

Database authentic
ation

The database
authentication you
want to use.

For MySQL:

• Choose Password
authentication
to authenticate
database users
with database
passwords only.

• Choose Password
and IAM database
authentication
to authenticate
database users
with database
passwords and
user credentia
ls through IAM
users and roles. For
more information,
see IAM database
authentication.

For PostgreSQL:

• Choose IAM
database
authentication

Using the AWS
Management
Console, Modifying
the DB cluster by
using the console,
CLI, and API.

Using the AWS CLI,
run modify-db-
cluster and set the
following options:

• For IAM authentic
ation, set the
--enable-
iam-datab
ase-authe
ntication|--
no-enable-
iam-database-
authentica
tion option.

• For Kerberos
authentication, set
the --domain and
--domain-iam-
role-name
options.

Using the RDS API,
call ModifyDBCluster
and set the following
parameters:

The entire DB cluster An outage doesn't
occur during this
change.

Available settings 420

https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-cluster.html
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-cluster.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBCluster.html

Amazon Aurora User Guide for Aurora

Setting and descripti
on

Method Scope Downtime notes

to authenticate
database users
with database
passwords and user
credentials through
users and roles. For
more information,
see IAM database
authentication.

• Choose Kerberos
authentication
to authentic
ate database
passwords and user
credentials using
Kerberos authentic
ation. For more
information, see
Using Kerberos
authentication with
Aurora PostgreSQL.

• For IAM authentic
ation, set the
EnableIAM
DatabaseA
uthentica
tion parameter.

• For Kerberos
authentication,
set the Domain
and DomainIAM
RoleName
parameters.

Available settings 421

Amazon Aurora User Guide for Aurora

Setting and descripti
on

Method Scope Downtime notes

Database port

The port that you
want to use to access
the DB cluster.

Using the AWS
Management
Console, Modifying
the DB cluster by
using the console,
CLI, and API.

Using the AWS CLI,
run modify-db-
cluster and set the
--port option.

Using the RDS API,
call ModifyDBC
luster and set the
Port parameter.

The entire DB cluster An outage occurs
during this change.
All of the DB
instances in the DB
cluster are rebooted
immediately.

Available settings 422

https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-cluster.html
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-cluster.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBCluster.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBCluster.html

Amazon Aurora User Guide for Aurora

Setting and descripti
on

Method Scope Downtime notes

DB cluster identifier

The DB cluster
identifier. This
value is stored as a
lowercase string.

When you change the
DB cluster identifie
r, the DB cluster
endpoints change.
The endpoints of
the DB instances in
the DB cluster don't
change.

Using the AWS
Management
Console, Modifying
the DB cluster by
using the console,
CLI, and API.

Using the AWS CLI,
run modify-db
-cluster and
set the --new-
db-cluster-
identifier
option.

Using the RDS API,
call ModifyDBC
luster and set
the NewDBClus
terIdentifier
parameter.

The entire DB cluster An outage doesn't
occur during this
change.

Available settings 423

https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-cluster.html
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-cluster.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBCluster.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBCluster.html

Amazon Aurora User Guide for Aurora

Setting and descripti
on

Method Scope Downtime notes

DB cluster
parameter group

The DB cluster
parameter group that
you want associated
with the DB cluster.

For more informati
on, see Working with
parameter groups.

Using the AWS
Management
Console, Modifying
the DB cluster by
using the console,
CLI, and API.

Using the AWS CLI,
run modify-db-
cluster and set the
--db-cluster-
parameter-grou
p-name option.

Using the RDS API,
call ModifyDBC
luster and set
the DBCluster
Parameter
GroupName
parameter.

The entire DB cluster An outage doesn't
occur during this
change. When
you change the
parameter group,
changes to some
parameters are
applied to the DB
instances in the DB
cluster immediate
ly without a reboot.
Changes to other
parameters are
applied only after
the DB instances in
the DB cluster are
rebooted.

Available settings 424

https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-cluster.html
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-cluster.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBCluster.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBCluster.html

Amazon Aurora User Guide for Aurora

Setting and descripti
on

Method Scope Downtime notes

DB instance class

The DB instance class
that you want to use.

For more informati
on, see Aurora DB
instance classes.

Using the AWS
Management
Console, Modifying a
DB instance in a DB
cluster.

Using the AWS CLI,
run modify-db-
instance and
set the --db-inst
ance-class
option.

Using the RDS API,
call ModifyDBI
nstance and set
the DBInstanc
eClass parameter.

Only the specified DB
instance

An outage occurs
during this change.

Available settings 425

https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-instance.html
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-instance.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBInstance.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBInstance.html

Amazon Aurora User Guide for Aurora

Setting and descripti
on

Method Scope Downtime notes

DB instance identifie
r

The DB instance
identifier. This
value is stored as a
lowercase string.

Using the AWS
Management
Console, Modifying a
DB instance in a DB
cluster.

Using the AWS CLI,
run modify-db-
instance and
set the --new-
db-instance-
identifier
option.

Using the RDS API,
call ModifyDBI
nstance and set
the NewDBInst
anceIdentifier
parameter.

Only the specified DB
instance

Downtime occurs
during this change.

RDS restarts the DB
instance to update
the following:

• Aurora MySQL
– SERVER_ID

 column in the
informati
on_schema
.replica_
host_status
table

• Aurora PostgreSQ
L – server_id

 column in the
aurora_re
plica_sta
tus() function

Available settings 426

https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-instance.html
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-instance.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBInstance.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBInstance.html

Amazon Aurora User Guide for Aurora

Setting and descripti
on

Method Scope Downtime notes

DB parameter group

The DB parameter
group that you want
associated with the
DB instance.

For more informati
on, see Working with
parameter groups.

Using the AWS
Management
Console, Modifying a
DB instance in a DB
cluster.

Using the AWS CLI,
run modify-db-
instance and
set the --db-para
meter-group-
name option.

Using the RDS API,
call ModifyDBI
nstance and set
the DBParamet
erGroupName
parameter.

Only the specified DB
instance

An outage doesn't
occur during this
change.

When you associate
a new DB parameter
group with a DB
instance, the
modified static and
dynamic parameters
are applied only after
the DB instance is
rebooted. However, if
you modify dynamic
parameters in the
DB parameter group
after you associate it
with the DB instance,
these changes are
applied immediately
without a reboot.

For more informati
on, see Working with
parameter groups
and Rebooting an
Amazon Aurora DB
cluster or Amazon
Aurora DB instance.

Available settings 427

https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-instance.html
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-instance.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBInstance.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBInstance.html

Amazon Aurora User Guide for Aurora

Setting and descripti
on

Method Scope Downtime notes

Deletion protection

Enable deletion
protection to prevent
your DB cluster
from being deleted.
For more informati
on, see Deletion
protection for Aurora
clusters.

Using the AWS
Management
Console, Modifying
the DB cluster by
using the console,
CLI, and API.

Using the AWS CLI,
run modify-db-
cluster and set
the --deletion-
protection|--
no-deletion-
protection
option.

Using the RDS API,
call ModifyDBC
luster and set
the DeletionP
rotection
parameter.

The entire DB cluster An outage doesn't
occur during this
change.

Available settings 428

https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-cluster.html
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-cluster.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBCluster.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBCluster.html

Amazon Aurora User Guide for Aurora

Setting and descripti
on

Method Scope Downtime notes

Engine version

The version of the
DB engine that
you want to use.
Before you upgrade
your productio
n DB cluster, we
recommend that
you test the upgrade
process on a test
DB cluster to verify
its duration and
to validate your
applications.

Using the AWS
Management
Console, Modifying
the DB cluster by
using the console,
CLI, and API.

Using the AWS CLI,
run modify-db-
cluster and set
the --engine-
version option.

Using the RDS API,
call ModifyDBC
luster and set the
EngineVersion
parameter.

The entire DB cluster An outage occurs
during this change.

Available settings 429

https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-cluster.html
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-cluster.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBCluster.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBCluster.html

Amazon Aurora User Guide for Aurora

Setting and descripti
on

Method Scope Downtime notes

Enhanced monitorin
g

Enable enhanced
monitoring to enable
gathering metrics
in real time for the
operating system
that your DB instance
runs on.

For more informati
on, see Monitorin
g OS metrics with
Enhanced Monitoring.

Using the AWS
Management
Console, Modifying a
DB instance in a DB
cluster.

Using the AWS CLI,
run modify-db-
instance and
set the --monitor
ing-role-arn
and --monitor
ing-interval
options.

Using the RDS API,
call ModifyDBI
nstance and set
the Monitorin
gRoleArn
and Monitorin
gInterval
parameters.

Only the specified DB
instance

An outage doesn't
occur during this
change.

Available settings 430

https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-instance.html
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-instance.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBInstance.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBInstance.html

Amazon Aurora User Guide for Aurora

Setting and descripti
on

Method Scope Downtime notes

Log exports

Select the log types
to publish to Amazon
CloudWatch Logs.

For more informati
on, see Aurora
MySQL database log
files.

Using the AWS
Management
Console, Modifying
the DB cluster by
using the console,
CLI, and API.

Using the AWS CLI,
run modify-db-
cluster and set the
--cloudwatch-
logs-export-co
nfiguration
option.

Using the RDS API,
call ModifyDBC
luster and set
the Cloudwatc
hLogsExpo
rtConfigu
ration parameter.

The entire DB cluster An outage doesn't
occur during this
change.

Available settings 431

https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-cluster.html
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-cluster.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBCluster.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBCluster.html

Amazon Aurora User Guide for Aurora

Setting and descripti
on

Method Scope Downtime notes

Maintenance
window

The time range
during which system
maintenance occurs.
System maintenan
ce includes upgrades,
if applicable. The
maintenance window
is a start time in
Universal Coordinat
ed Time (UTC), and a
duration in hours.

If you set the window
to the current time,
there must be at least
30 minutes between
the current time and
end of the window to
ensure any pending
changes are applied.

You can set the
maintenance window
independently for
the DB cluster and
for each DB instance
in the DB cluster.
When the scope
of a modification
is the entire DB
cluster, the modificat

To change the
maintenance
window for the DB
cluster using the
AWS Management
Console, Modifying
the DB cluster by
using the console,
CLI, and API.

To change the
maintenance
window for a DB
instance using the
AWS Management
Console, Modifying a
DB instance in a DB
cluster.

To change the
maintenance window
for the DB cluster
using the AWS CLI,
run modify-db-
cluster and set the
--preferred-
maintenance-win
dow option.

To change the
maintenance window
for a DB instance
using the AWS CLI,
run modify-db-

The entire DB cluster
or a single DB
instance

If there are one or
more pending actions
that cause an outage,
and the maintenance
window is changed
to include the current
time, then those
pending actions are
applied immediately,
and an outage occurs.

Available settings 432

https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-cluster.html
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-cluster.html
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-instance.html

Amazon Aurora User Guide for Aurora

Setting and descripti
on

Method Scope Downtime notes

ion is performed
during the DB cluster
maintenance window.
When the scope of
a modification is
the a DB instance,
the modification is
performed during
maintenance window
of that DB instance.

The maintenance
window and the
backup window for
the DB cluster can't
overlap.

For more informati
on, see The Amazon
RDS maintenance
window.

instance and set
the --preferred-
maintenance-win
dow option.

To change the
maintenance window
for the DB cluster
using the RDS API,
call ModifyDBC
luster and set
the Preferred
Maintenan
ceWindow
parameter.

To change the
maintenance window
for a DB instance
using the RDS API,
call ModifyDBI
nstance and set
the Preferred
Maintenan
ceWindow
parameter.

Available settings 433

https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-instance.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBCluster.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBCluster.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBInstance.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBInstance.html

Amazon Aurora User Guide for Aurora

Setting and descripti
on

Method Scope Downtime notes

Manage master
credentials in AWS
Secrets Manager

Select Manage
master credentia
ls in AWS Secrets
Manager to manage
the master user
password in a secret
in Secrets Manager.

Optionally, choose
a KMS key to use to
protect the secret.
Choose from the KMS
keys in your account,
or enter the key from
a different account.

For more informati
on, see Password
management with
Amazon Aurora
and AWS Secrets
Manager.

If Aurora is already
managing the master
user password for
the DB cluster, you
can rotate the master
user password by
choosing Rotate
secret immediately.

Using the AWS
Management
Console, Modifying a
DB instance in a DB
cluster.

Using the AWS CLI,
run modify-db-
cluster and set
the --manage-
master-user-
password | --
no-manage-
master-user-
password and --
master-user-
secret-kms-ke
y-id options. To
rotate the master
user password
immediately, set
the --rotate-
master-user-
password option.

Using the RDS API,
call ModifyDBC
luster and set
the ManageMas
terUserPa
ssword and
MasterUse
rSecretKm
sKeyId parameter

The entire DB cluster An outage doesn't
occur during this
change.

Available settings 434

https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-cluster.html
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-cluster.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBCluster.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBCluster.html

Amazon Aurora User Guide for Aurora

Setting and descripti
on

Method Scope Downtime notes

For more informati
on, see Password
management with
Amazon Aurora
and AWS Secrets
Manager.

s. To rotate the
master user password
immediately, set
the RotateMas
terUserPa
ssword parameter
to true.

Available settings 435

Amazon Aurora User Guide for Aurora

Setting and descripti
on

Method Scope Downtime notes

Network type

The IP addressing
protocols supported
by the DB cluster.

IPv4 to specify
that resources
can communicate
with the DB cluster
only over the IPv4
addressing protocol.

Dual-stack mode to
specify that resources
can communicate
with the DB cluster
over IPv4, IPv6, or
both. Use dual-stack
mode if you have any
resources that must
communicate with
your DB cluster over
the IPv6 addressing
protocol. To use dual-
stack mode, make
sure at least two
subnets spanning two
Availability Zones
that support both
the IPv4 and IPv6
network protocol.
Also, make sure you
associate an IPv6

Using the AWS
Management
Console, Modifying
the DB cluster by
using the console,
CLI, and API.

Using the AWS CLI,
run modify-db-
cluster and set the
--network-type
option.

Using the RDS API,
call ModifyDBC
luster and set
the NetworkType
parameter.

The entire DB cluster An outage doesn't
occur during this
change.

Available settings 436

https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-cluster.html
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-cluster.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBCluster.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBCluster.html

Amazon Aurora User Guide for Aurora

Setting and descripti
on

Method Scope Downtime notes

CIDR block with
subnets in the DB
subnet group you
specify.

For more informati
on, see Amazon
Aurora IP addressing.

New master
password

The password for
your master user.

• For Aurora MySQL,
the password
must contain 8–
41 printable ASCII
characters.

• For Aurora
PostgreSQL, it
must contain 8–
99 printable ASCII
characters.

• It can't contain /, ",
@, or a space.

Using the AWS
Management
Console, Modifying a
DB instance in a DB
cluster.

Using the AWS CLI,
run modify-db-
cluster and set the
--master-user-
password option.

Using the RDS API,
call ModifyDBC
luster and set
the MasterUse
rPassword
parameter.

The entire DB cluster An outage doesn't
occur during this
change.

Available settings 437

https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-cluster.html
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-cluster.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBCluster.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBCluster.html

Amazon Aurora User Guide for Aurora

Setting and descripti
on

Method Scope Downtime notes

Performance
Insights

Whether to enable
Performance Insights,
a tool that monitors
your DB instance
load so that you
can analyze and
troubleshoot your
database performan
ce.

For more informati
on, see Monitorin
g DB load with
Performance Insights
on Amazon Aurora.

Using the AWS
Management
Console, Modifying a
DB instance in a DB
cluster.

Using the AWS CLI,
run modify-db-
instance and
set the --enable-
performance-
insights|--
no-enable-
performance-
insights option.

Using the RDS API,
call ModifyDBI
nstance and set
the EnablePer
formanceI
nsights parameter
.

Only the specified DB
instance

An outage doesn't
occur during this
change.

Available settings 438

https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-instance.html
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-instance.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBInstance.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBInstance.html

Amazon Aurora User Guide for Aurora

Setting and descripti
on

Method Scope Downtime notes

Performance
Insights AWS KMS
key

The AWS KMS
key identifier for
encryption of
Performance Insights
data. The KMS key
identifier is the
Amazon Resource
Name (ARN), key
identifier, or key alias
for the KMS key.

For more informati
on, see Turning
Performance Insights
on and off for Aurora.

Using the AWS
Management
Console, Modifying a
DB instance in a DB
cluster.

Using the AWS CLI,
run modify-db-
instance and
set the --perform
ance-insights-
kms-key-id
option.

Using the RDS API,
call ModifyDBI
nstance and set
the Performan
ceInsight
sKMSKeyId
parameter.

Only the specified DB
instance

An outage doesn't
occur during this
change.

Available settings 439

https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-instance.html
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-instance.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBInstance.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBInstance.html

Amazon Aurora User Guide for Aurora

Setting and descripti
on

Method Scope Downtime notes

Performance
Insights retention
period

The amount of time,
in days, to retain
Performance Insights
data. The retention
setting in the free
tier is Default (7
days). To retain your
performance data
for longer, specify
1–24 months. For
more information
about retention
periods, see Pricing
and data retention
for Performance
Insights.

For more informati
on, see Turning
Performance Insights
on and off for Aurora.

Using the AWS
Management
Console, Modifying a
DB instance in a DB
cluster.

Using the AWS CLI,
run modify-db-
instance and
set the --perform
ance-insights-
retention-per
iod option.

Using the RDS API,
call ModifyDBI
nstance and set
the Performan
ceInsight
sRetentio
nPeriod parameter
.

Only the specified DB
instance

An outage doesn't
occur during this
change.

Available settings 440

https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-instance.html
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-instance.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBInstance.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBInstance.html

Amazon Aurora User Guide for Aurora

Setting and descripti
on

Method Scope Downtime notes

Promotion tier

A value that specifies
the order in which
an Aurora Replica
is promoted to the
primary instance in
a DB cluster, after a
failure of the existing
primary instance.

For more informati
on, see Fault
tolerance for an
Aurora DB cluster.

Using the AWS
Management
Console, Modifying a
DB instance in a DB
cluster.

Using the AWS CLI,
run modify-db-
instance and set
the --promotion-
tier option.

Using the RDS API,
call ModifyDBI
nstance and set
the Promotion
Tier parameter.

Only the specified DB
instance

An outage doesn't
occur during this
change.

Available settings 441

https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-instance.html
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-instance.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBInstance.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBInstance.html

Amazon Aurora User Guide for Aurora

Setting and descripti
on

Method Scope Downtime notes

Public access

Publicly accessible to
give the DB instance
a public IP address,
meaning that it's
accessible outside the
VPC. To be publicly
accessible, the DB
instance also has to
be in a public subnet
in the VPC.

Not publicly
accessible to make
the DB instance
accessible only from
inside the VPC.

For more informati
on, see Hiding a DB
cluster in a VPC from
the internet.

To connect to a DB
instance from outside
of its Amazon VPC,
the DB instance must
be publicly accessibl
e, access must be
granted using the
inbound rules of
the DB instance's
security group, and
other requirements

Using the AWS
Management
Console, Modifying a
DB instance in a DB
cluster.

Using the AWS CLI,
run modify-db-
instance and set
the --publicly-
accessible|--
no-publicly-
accessible
option.

Using the RDS API,
call ModifyDBI
nstance and set
the PubliclyA
ccessible
parameter.

Only the specified DB
instance

An outage doesn't
occur during this
change.

Available settings 442

https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-instance.html
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-instance.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBInstance.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBInstance.html

Amazon Aurora User Guide for Aurora

Setting and descripti
on

Method Scope Downtime notes

must be met. For
more information,
see Can't connect to
Amazon RDS DB in
stance.

If your DB instance is
isn't publicly accessibl
e, you can also use
an AWS Site-to-S
ite VPN connectio
n or an AWS Direct
Connect connectio
n to access it from
a private network.
For more informati
on, see Internetwork
traffic privacy.

Available settings 443

Amazon Aurora User Guide for Aurora

Setting and descripti
on

Method Scope Downtime notes

Serverless v2
capacity settings

The database
capacity of an Aurora
Serverless v2 DB
cluster, measured in
Aurora Capacity Units
(ACUs).

For more informati
on, see Setting the
Aurora Serverless v2
capacity range for a
cluster.

Using the AWS
Management
Console, Modifying
the DB cluster by
using the console,
CLI, and API.

Using the AWS CLI,
run modify-db-
cluster and set the
--serverless-
v2-scaling-con
figuration
option.

Using the RDS API,
call ModifyDBC
luster and set
the Serverles
sV2Scalin
gConfiguration
parameter.

The entire DB cluster An outage doesn't
occur during this
change.

The change occurs
immediately. This
setting ignores the
apply immediately
setting.

Available settings 444

https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-cluster.html
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-cluster.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBCluster.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBCluster.html

Amazon Aurora User Guide for Aurora

Setting and descripti
on

Method Scope Downtime notes

Security group

The security group
you want associated
with the DB cluster.

For more informati
on, see Controlling
access with security
groups.

Using the AWS
Management
Console, Modifying
the DB cluster by
using the console,
CLI, and API.

Using the AWS CLI,
run modify-db-
cluster and set the
--vpc-security-
group-ids option.

Using the RDS API,
call ModifyDBC
luster and set
the VpcSecuri
tyGroupIds
parameter.

The entire DB cluster An outage doesn't
occur during this
change.

Available settings 445

https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-cluster.html
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-cluster.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBCluster.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBCluster.html

Amazon Aurora User Guide for Aurora

Setting and descripti
on

Method Scope Downtime notes

Target Backtrack
window

The amount of time
you want to be
able to backtrack
your DB cluster, in
seconds. This setting
is available only for
Aurora MySQL and
only if the DB cluster
was created with
Backtrack enabled.

Using the AWS
Management
Console, Modifying
the DB cluster by
using the console,
CLI, and API.

Using the AWS CLI,
run modify-db-
cluster and set the
--backtrack-
window option.

Using the RDS API,
call ModifyDBC
luster and set the
BacktrackWindow
parameter.

The entire DB cluster An outage doesn't
occur during this
change.

Settings that don't apply to Amazon Aurora DB clusters

The following settings in the AWS CLI command modify-db-cluster and the RDS API operation
ModifyDBCluster don't apply to Amazon Aurora DB clusters.

Note

You can't use the AWS Management Console to modify these settings for Aurora DB
clusters.

AWS CLI setting RDS API setting

--allocated-storage AllocatedStorage

Settings that don't apply to Aurora DB clusters 446

https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-cluster.html
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-cluster.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBCluster.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBCluster.html
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-cluster.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBCluster.html

Amazon Aurora User Guide for Aurora

AWS CLI setting RDS API setting

--auto-minor-version-upgrade |
--no-auto-minor-version-upgrade

AutoMinorVersionUpgrade

--db-cluster-instance-class DBClusterInstanceClass

--enable-performance-insights |
--no-enable-performance-insights

EnablePerformanceInsights

--iops Iops

--monitoring-interval MonitoringInterval

--monitoring-role-arn MonitoringRoleArn

--option-group-name OptionGroupName

--performance-insights-kms-key-
id

PerformanceInsightsKMSKeyId

--performance-insights-rete
ntion-period

PerformanceInsightsRetentio
nPeriod

Settings that don't apply to Amazon Aurora DB instances

The following settings in the AWS CLI command modify-db-instance and the RDS API
operation ModifyDBInstance don't apply to Amazon Aurora DB instances.

Note

You can't use the AWS Management Console to modify these settings for Aurora DB
instances.

AWS CLI setting RDS API setting

--allocated-storage AllocatedStorage

Settings that don't apply to Aurora DB instances 447

https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-instance.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBInstance.html

Amazon Aurora User Guide for Aurora

AWS CLI setting RDS API setting

--allow-major-version-upgrade|--
no-allow-major-version-upgrade

AllowMajorVersionUpgrade

--copy-tags-to-snapshot|--no-
copy-tags-to-snapshot

CopyTagsToSnapshot

--domain Domain

--db-security-groups DBSecurityGroups

--db-subnet-group-name DBSubnetGroupName

--domain-iam-role-name DomainIAMRoleName

--multi-az|--no-multi-az MultiAZ

--iops Iops

--license-model LicenseModel

--network-type NetworkType

--option-group-name OptionGroupName

--processor-features ProcessorFeatures

--storage-type StorageType

--tde-credential-arn TdeCredentialArn

--tde-credential-password TdeCredentialPassword

--use-default-processor-fea
tures|--no-use-default-proc
essor-features

UseDefaultProcessorFeatures

Settings that don't apply to Aurora DB instances 448

Amazon Aurora User Guide for Aurora

Adding Aurora Replicas to a DB cluster

An Aurora DB cluster with replication has one primary DB instance and up to 15 Aurora Replicas.
The primary DB instance supports read and write operations, and performs all data modifications
to the cluster volume. Aurora Replicas connect to the same storage volume as the primary DB
instance, but support read operations only. You use Aurora Replicas to offload read workloads from
the primary DB instance. For more information, see Aurora Replicas.

Amazon Aurora Replicas have the following limitations:

• You can't create an Aurora Replica for an Aurora Serverless v1 DB cluster. Aurora Serverless v1
has a single DB instance that scales up and down automatically to support all database read and
write operations.

However, you can add reader instances to Aurora Serverless v2 DB clusters. For more
information, see Adding an Aurora Serverless v2 reader.

We recommend that you distribute the primary instance and Aurora Replicas of your Aurora DB
cluster over multiple Availability Zones to improve the availability of your DB cluster. For more
information, see Region availability.

To remove an Aurora Replica from an Aurora DB cluster, delete the Aurora Replica by following the
instructions in Deleting a DB instance from an Aurora DB cluster.

Note

Amazon Aurora also supports replication with an external database, such as an RDS DB
instance. The RDS DB instance must be in the same AWS Region as Amazon Aurora. For
more information, see Replication with Amazon Aurora.

You can add Aurora Replicas to a DB cluster using the AWS Management Console, the AWS CLI, or
the RDS API.

Adding Aurora Replicas 449

Amazon Aurora User Guide for Aurora

Console

To add an Aurora replica to a DB cluster

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Databases, and then select the DB cluster where you want to
add the new DB instance.

3. Make sure that both the cluster and the primary instance are in the Available state. If the DB
cluster or the primary instance are in a transitional state such as Creating, you can't add a
replica.

If the cluster doesn't have a primary instance, create one using the create-db-instance AWS CLI
command. This situation can arise if you used the CLI to restore a DB cluster snapshot and then
view the cluster in the AWS Management Console.

4. For Actions, choose Add reader.

The Add reader page appears.

5. On the Add reader page, specify options for your Aurora Replica. The following table shows
settings for an Aurora Replica.

For this option Do this

Availability zone Determine if you want to specify a particular Availabil
ity Zone. The list includes only those Availability
Zones that are mapped to the DB subnet group that
you chose when you created the DB cluster. For more
information about Availability Zones, see Regions and
Availability Zones.

Publicly accessible Select Yes to give the Aurora Replica a public IP
address; otherwise, select No. For more information
about hiding Aurora Replicas from public access, see
Hiding a DB cluster in a VPC from the internet.

Adding Aurora Replicas 450

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/
https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-instance.html

Amazon Aurora User Guide for Aurora

For this option Do this

Encryption Select Enable encryption to enable encryption
at rest for this Aurora Replica. For more information,
see Encrypting Amazon Aurora resources.

DB instance class Select a DB instance class that defines the processing
and memory requirements for the Aurora Replica. For
more information about DB instance class options,
see Aurora DB instance classes.

Aurora replica source Select the identifier of the primary instance to create
an Aurora Replica for.

DB instance identifier Enter a name for the instance that is unique for your
account in the AWS Region you selected. You might
choose to add some intelligence to the name such
as including the AWS Region and DB engine you
selected, for example aurora-read-instance1 .

Priority Choose a failover priority for the instance. If you
don't select a value, the default is tier-1. This priority
determines the order in which Aurora Replicas are
promoted when recovering from a primary instance
failure. For more information, see Fault tolerance for
an Aurora DB cluster.

Database port The port for an Aurora Replica is the same as the port
for the DB cluster.

DB parameter group Select a parameter group. Aurora has a default
parameter group you can use, or you can create
your own parameter group. For more information
about parameter groups, see Working with parameter
groups.

Adding Aurora Replicas 451

Amazon Aurora User Guide for Aurora

For this option Do this

Performance Insights The Turn on Performance Insights check box is
selected by default. The value isn't inherited from the
writer instance. For more information, see Monitorin
g DB load with Performance Insights on Amazon
Aurora.

Enhanced monitoring Choose Enable enhanced monitoring to enable
gathering metrics in real time for the operating
system that your DB cluster runs on. For more
information, see Monitoring OS metrics with
Enhanced Monitoring.

Monitoring Role Only available if Enhanced Monitoring is set to
Enable enhanced monitoring. Choose the IAM
role that you created to permit Amazon RDS to
communicate with Amazon CloudWatch Logs for
you, or choose Default to have RDS create a role
for you named rds-monitoring-role . For
more information, see Monitoring OS metrics with
Enhanced Monitoring.

Granularity Only available if Enhanced Monitoring is set to
Enable enhanced monitoring. Set the interval, in
seconds, between when metrics are collected for your
DB cluster.

Adding Aurora Replicas 452

Amazon Aurora User Guide for Aurora

For this option Do this

Auto minor version upgrade Select Enable auto minor version upgrade if you
want to enable your Aurora DB cluster to receive
minor DB Engine version upgrades automatically
when they become available.

The Auto minor version upgrade setting applies
to both Aurora PostgreSQL and Aurora MySQL DB
clusters. For Aurora MySQL 2.x clusters, this setting
upgrades the clusters to a maximum version of
2.07.2.

For more information about engine updates for
Aurora PostgreSQL, see Amazon Aurora PostgreSQL
updates.

For more information about engine updates for
Aurora MySQL, see Database engine updates for
Amazon Aurora MySQL.

6. Choose Add reader to create the Aurora Replica.

AWS CLI

To create an Aurora Replica in your DB cluster, run the create-db-instance AWS CLI command.
Include the name of the DB cluster as the --db-cluster-identifier option. You can optionally
specify an Availability Zone for the Aurora Replica using the --availability-zone parameter,
as shown in the following examples.

For example, the following command creates a new MySQL 5.7–compatible Aurora Replica named
sample-instance-us-west-2a.

For Linux, macOS, or Unix:

aws rds create-db-instance --db-instance-identifier sample-instance-us-west-2a \
 --db-cluster-identifier sample-cluster --engine aurora-mysql --db-instance-class
 db.r5.large \
 --availability-zone us-west-2a

Adding Aurora Replicas 453

https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-instance.html

Amazon Aurora User Guide for Aurora

For Windows:

aws rds create-db-instance --db-instance-identifier sample-instance-us-west-2a ^
 --db-cluster-identifier sample-cluster --engine aurora-mysql --db-instance-class
 db.r5.large ^
 --availability-zone us-west-2a

The following command creates a new MySQL 5.7–compatible Aurora Replica named sample-
instance-us-west-2a.

For Linux, macOS, or Unix:

aws rds create-db-instance --db-instance-identifier sample-instance-us-west-2a \
 --db-cluster-identifier sample-cluster --engine aurora-mysql --db-instance-class
 db.r5.large \
 --availability-zone us-west-2a

For Windows:

aws rds create-db-instance --db-instance-identifier sample-instance-us-west-2a ^
 --db-cluster-identifier sample-cluster --engine aurora --db-instance-class
 db.r5.large ^
 --availability-zone us-west-2a

The following command creates a new PostgreSQL-compatible Aurora Replica named sample-
instance-us-west-2a.

For Linux, macOS, or Unix:

aws rds create-db-instance --db-instance-identifier sample-instance-us-west-2a \
 --db-cluster-identifier sample-cluster --engine aurora-postgresql --db-instance-
class db.r5.large \
 --availability-zone us-west-2a

For Windows:

aws rds create-db-instance --db-instance-identifier sample-instance-us-west-2a ^
 --db-cluster-identifier sample-cluster --engine aurora-postgresql --db-instance-
class db.r5.large ^
 --availability-zone us-west-2a

Adding Aurora Replicas 454

Amazon Aurora User Guide for Aurora

RDS API

To create an Aurora Replica in your DB cluster, call the CreateDBInstance operation. Include the
name of the DB cluster as the DBClusterIdentifier parameter. You can optionally specify an
Availability Zone for the Aurora Replica using the AvailabilityZone parameter.

Adding Aurora Replicas 455

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateDBInstance.html

Amazon Aurora User Guide for Aurora

Using Amazon Aurora Auto Scaling with Aurora Replicas

To meet your connectivity and workload requirements, Aurora Auto Scaling dynamically adjusts
the number of Aurora Replicas (reader DB instances) provisioned for an Aurora DB cluster. Aurora
Auto Scaling is available for both Aurora MySQL and Aurora PostgreSQL. Aurora Auto Scaling
enables your Aurora DB cluster to handle sudden increases in connectivity or workload. When the
connectivity or workload decreases, Aurora Auto Scaling removes unnecessary Aurora Replicas so
that you don't pay for unused provisioned DB instances.

You define and apply a scaling policy to an Aurora DB cluster. The scaling policy defines the
minimum and maximum number of Aurora Replicas that Aurora Auto Scaling can manage. Based
on the policy, Aurora Auto Scaling adjusts the number of Aurora Replicas up or down in response to
actual workloads, determined by using Amazon CloudWatch metrics and target values.

Note

Aurora Auto Scaling doesn't apply to the workload on the writer DB instance. Aurora Auto
Scaling helps with the workload only on the reader instances.

You can use the AWS Management Console to apply a scaling policy based on a predefined metric.
Alternatively, you can use either the AWS CLI or Aurora Auto Scaling API to apply a scaling policy
based on a predefined or custom metric.

Topics

• Before you begin

• Aurora Auto Scaling policies

• Adding a scaling policy to an Aurora DB cluster

• Editing a scaling policy

• Deleting a scaling policy

• DB instance IDs and tagging

• Aurora Auto Scaling and Performance Insights

Using Auto Scaling with Aurora Replicas 456

Amazon Aurora User Guide for Aurora

Before you begin

Before you can use Aurora Auto Scaling with an Aurora DB cluster, you must first create an Aurora
DB cluster with a primary (writer) DB instance. For more information about creating an Aurora DB
cluster, see Creating an Amazon Aurora DB cluster.

Aurora Auto Scaling only scales a DB cluster if the DB cluster is in the available state.

When Aurora Auto Scaling adds a new Aurora Replica, the new Aurora Replica is the same DB
instance class as the one used by the primary instance. For more information about DB instance
classes, see Aurora DB instance classes. Also, the promotion tier for new Aurora Replicas is set to
the last priority, which is 15 by default. This means that during a failover, a replica with a better
priority, such as one created manually, would be promoted first. For more information, see Fault
tolerance for an Aurora DB cluster.

Aurora Auto Scaling only removes Aurora Replicas that it created.

To benefit from Aurora Auto Scaling, your applications must support connections to new Aurora
Replicas. To do so, we recommend using the Aurora reader endpoint. You can use a driver such as
the AWS JDBC Driver. For more information, see Connecting to an Amazon Aurora DB cluster.

Note

Aurora global databases currently don't support Aurora Auto Scaling for secondary DB
clusters.

Aurora Auto Scaling policies

Aurora Auto Scaling uses a scaling policy to adjust the number of Aurora Replicas in an Aurora DB
cluster. Aurora Auto Scaling has the following components:

• A service-linked role

• A target metric

• Minimum and maximum capacity

• A cooldown period

Topics

Using Auto Scaling with Aurora Replicas 457

Amazon Aurora User Guide for Aurora

• Service linked role

• Target metric

• Minimum and maximum capacity

• Cooldown period

• Enable or disable scale-in activities

Service linked role

Aurora Auto Scaling uses the AWSServiceRoleForApplicationAutoScaling_RDSCluster
service-linked role. For more information, see Service-linked roles for Application Auto Scaling in
the Application Auto Scaling User Guide.

Target metric

In this type of policy, a predefined or custom metric and a target value for the metric is specified
in a target-tracking scaling policy configuration. Aurora Auto Scaling creates and manages
CloudWatch alarms that trigger the scaling policy and calculates the scaling adjustment based
on the metric and target value. The scaling policy adds or removes Aurora Replicas as required to
keep the metric at, or close to, the specified target value. In addition to keeping the metric close
to the target value, a target-tracking scaling policy also adjusts to fluctuations in the metric due
to a changing workload. Such a policy also minimizes rapid fluctuations in the number of available
Aurora Replicas for your DB cluster.

For example, take a scaling policy that uses the predefined average CPU utilization metric. Such
a policy can keep CPU utilization at, or close to, a specified percentage of utilization, such as 40
percent.

Note

For each Aurora DB cluster, you can create only one Auto Scaling policy for each target
metric.

Minimum and maximum capacity

You can specify the maximum number of Aurora Replicas to be managed by Application Auto
Scaling. This value must be set to 0–15, and must be equal to or greater than the value specified
for the minimum number of Aurora Replicas.

Using Auto Scaling with Aurora Replicas 458

https://docs.aws.amazon.com/autoscaling/application/userguide/application-auto-scaling-service-linked-roles.html

Amazon Aurora User Guide for Aurora

You can also specify the minimum number of Aurora Replicas to be managed by Application Auto
Scaling. This value must be set to 0–15, and must be equal to or less than the value specified for
the maximum number of Aurora Replicas.

There must be at least one reader DB instance for Aurora Auto Scaling to work. If the DB cluster
has no reader instance, and you set the minimum capacity to 0, then Aurora Auto Scaling won't
work.

Note

The minimum and maximum capacity are set for an Aurora DB cluster. The specified values
apply to all of the policies associated with that Aurora DB cluster.

Cooldown period

You can tune the responsiveness of a target-tracking scaling policy by adding cooldown periods
that affect scaling your Aurora DB cluster in and out. A cooldown period blocks subsequent scale-
in or scale-out requests until the period expires. These blocks slow the deletions of Aurora Replicas
in your Aurora DB cluster for scale-in requests, and the creation of Aurora Replicas for scale-out
requests.

You can specify the following cooldown periods:

• A scale-in activity reduces the number of Aurora Replicas in your Aurora DB cluster. A scale-in
cooldown period specifies the amount of time, in seconds, after a scale-in activity completes
before another scale-in activity can start.

• A scale-out activity increases the number of Aurora Replicas in your Aurora DB cluster. A
scale-out cooldown period specifies the amount of time, in seconds, after a scale-out activity
completes before another scale-out activity can start.

Note

A scale-out cooldown period is ignored if a subsequent scale-out request is for a larger
number of Aurora Replicas than the first request.

If you don't set the scale-in or scale-out cooldown period, the default for each is 300 seconds.

Using Auto Scaling with Aurora Replicas 459

Amazon Aurora User Guide for Aurora

Enable or disable scale-in activities

You can enable or disable scale-in activities for a policy. Enabling scale-in activities allows the
scaling policy to delete Aurora Replicas. When scale-in activities are enabled, the scale-in cooldown
period in the scaling policy applies to scale-in activities. Disabling scale-in activities prevents the
scaling policy from deleting Aurora Replicas.

Note

Scale-out activities are always enabled so that the scaling policy can create Aurora Replicas
as needed.

Adding a scaling policy to an Aurora DB cluster

You can add a scaling policy using the AWS Management Console, the AWS CLI, or the Application
Auto Scaling API.

Note

For an example that adds a scaling policy using AWS CloudFormation, see Declaring a
scaling policy for an Aurora DB cluster in the AWS CloudFormation User Guide.

Console

You can add a scaling policy to an Aurora DB cluster by using the AWS Management Console.

To add an auto scaling policy to an Aurora DB cluster

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Databases.

3. Choose the Aurora DB cluster that you want to add a policy for.

4. Choose the Logs & events tab.

5. In the Auto scaling policies section, choose Add.

The Add Auto Scaling policy dialog box appears.

Using Auto Scaling with Aurora Replicas 460

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/quickref-autoscaling.html#w2ab1c19c22c15c21c11
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/quickref-autoscaling.html#w2ab1c19c22c15c21c11
https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Aurora User Guide for Aurora

6. For Policy Name, type the policy name.

7. For the target metric, choose one of the following:

• Average CPU utilization of Aurora Replicas to create a policy based on the average CPU
utilization.

• Average connections of Aurora Replicas to create a policy based on the average number of
connections to Aurora Replicas.

8. For the target value, type one of the following:

• If you chose Average CPU utilization of Aurora Replicas in the previous step, type the
percentage of CPU utilization that you want to maintain on Aurora Replicas.

• If you chose Average connections of Aurora Replicas in the previous step, type the number
of connections that you want to maintain.

Aurora Replicas are added or removed to keep the metric close to the specified value.

9. (Optional) Expand Additional Configuration to create a scale-in or scale-out cooldown period.

10. For Minimum capacity, type the minimum number of Aurora Replicas that the Aurora Auto
Scaling policy is required to maintain.

11. For Maximum capacity, type the maximum number of Aurora Replicas the Aurora Auto Scaling
policy is required to maintain.

12. Choose Add policy.

The following dialog box creates an Auto Scaling policy based an average CPU utilization of
40 percent. The policy specifies a minimum of 5 Aurora Replicas and a maximum of 15 Aurora
Replicas.

Using Auto Scaling with Aurora Replicas 461

Amazon Aurora User Guide for Aurora

The following dialog box creates an auto scaling policy based an average number of connections
of 100. The policy specifies a minimum of two Aurora Replicas and a maximum of eight Aurora
Replicas.

Using Auto Scaling with Aurora Replicas 462

Amazon Aurora User Guide for Aurora

AWS CLI or Application Auto Scaling API

You can apply a scaling policy based on either a predefined or custom metric. To do so, you can use
the AWS CLI or the Application Auto Scaling API. The first step is to register your Aurora DB cluster
with Application Auto Scaling.

Using Auto Scaling with Aurora Replicas 463

Amazon Aurora User Guide for Aurora

Registering an Aurora DB cluster

Before you can use Aurora Auto Scaling with an Aurora DB cluster, you register your Aurora DB
cluster with Application Auto Scaling. You do so to define the scaling dimension and limits to be
applied to that cluster. Application Auto Scaling dynamically scales the Aurora DB cluster along the
rds:cluster:ReadReplicaCount scalable dimension, which represents the number of Aurora
Replicas.

To register your Aurora DB cluster, you can use either the AWS CLI or the Application Auto Scaling
API.

AWS CLI

To register your Aurora DB cluster, use the register-scalable-target AWS CLI command with
the following parameters:

• --service-namespace – Set this value to rds.

• --resource-id – The resource identifier for the Aurora DB cluster. For this parameter, the
resource type is cluster and the unique identifier is the name of the Aurora DB cluster, for
example cluster:myscalablecluster.

• --scalable-dimension – Set this value to rds:cluster:ReadReplicaCount.

• --min-capacity – The minimum number of reader DB instances to be managed by Application
Auto Scaling. For information about the relationship between --min-capacity, --max-
capacity, and the number of DB instances in your cluster, see Minimum and maximum capacity.

• --max-capacity – The maximum number of reader DB instances to be managed by Application
Auto Scaling. For information about the relationship between --min-capacity, --max-
capacity, and the number of DB instances in your cluster, see Minimum and maximum capacity.

Example

In the following example, you register an Aurora DB cluster named myscalablecluster. The
registration indicates that the DB cluster should be dynamically scaled to have from one to eight
Aurora Replicas.

For Linux, macOS, or Unix:

aws application-autoscaling register-scalable-target \
 --service-namespace rds \
 --resource-id cluster:myscalablecluster \

Using Auto Scaling with Aurora Replicas 464

https://docs.aws.amazon.com/cli/latest/reference/application-autoscaling/register-scalable-target.html

Amazon Aurora User Guide for Aurora

 --scalable-dimension rds:cluster:ReadReplicaCount \
 --min-capacity 1 \
 --max-capacity 8 \

For Windows:

aws application-autoscaling register-scalable-target ^
 --service-namespace rds ^
 --resource-id cluster:myscalablecluster ^
 --scalable-dimension rds:cluster:ReadReplicaCount ^
 --min-capacity 1 ^
 --max-capacity 8 ^

Application Auto Scaling API

To register your Aurora DB cluster with Application Auto Scaling, use the
RegisterScalableTarget Application Auto Scaling API operation with the following
parameters:

• ServiceNamespace – Set this value to rds.

• ResourceID – The resource identifier for the Aurora DB cluster. For this parameter, the resource
type is cluster and the unique identifier is the name of the Aurora DB cluster, for example
cluster:myscalablecluster.

• ScalableDimension – Set this value to rds:cluster:ReadReplicaCount.

• MinCapacity – The minimum number of reader DB instances to be managed by Application
Auto Scaling. For information about the relationship between MinCapacity, MaxCapacity,
and the number of DB instances in your cluster, see Minimum and maximum capacity.

• MaxCapacity – The maximum number of reader DB instances to be managed by Application
Auto Scaling. For information about the relationship between MinCapacity, MaxCapacity,
and the number of DB instances in your cluster, see Minimum and maximum capacity.

Example

In the following example, you register an Aurora DB cluster named myscalablecluster with the
Application Auto Scaling API. This registration indicates that the DB cluster should be dynamically
scaled to have from one to eight Aurora Replicas.

Using Auto Scaling with Aurora Replicas 465

https://docs.aws.amazon.com/ApplicationAutoScaling/latest/APIReference/API_RegisterScalableTarget.html

Amazon Aurora User Guide for Aurora

POST / HTTP/1.1
Host: autoscaling.us-east-2.amazonaws.com
Accept-Encoding: identity
Content-Length: 219
X-Amz-Target: AnyScaleFrontendService.RegisterScalableTarget
X-Amz-Date: 20160506T182145Z
User-Agent: aws-cli/1.10.23 Python/2.7.11 Darwin/15.4.0 botocore/1.4.8
Content-Type: application/x-amz-json-1.1
Authorization: AUTHPARAMS

{
 "ServiceNamespace": "rds",
 "ResourceId": "cluster:myscalablecluster",
 "ScalableDimension": "rds:cluster:ReadReplicaCount",
 "MinCapacity": 1,
 "MaxCapacity": 8
}

Defining a scaling policy for an Aurora DB cluster

A target-tracking scaling policy configuration is represented by a JSON block that the
metrics and target values are defined in. You can save a scaling policy configuration
as a JSON block in a text file. You use that text file when invoking the AWS CLI or the
Application Auto Scaling API. For more information about policy configuration syntax, see
TargetTrackingScalingPolicyConfiguration in the Application Auto Scaling API Reference.

The following options are available for defining a target-tracking scaling policy configuration.

Topics

• Using a predefined metric

• Using a custom metric

• Using cooldown periods

• Disabling scale-in activity

Using a predefined metric

By using predefined metrics, you can quickly define a target-tracking scaling policy for an Aurora
DB cluster that works well with both target tracking and dynamic scaling in Aurora Auto Scaling.

Currently, Aurora supports the following predefined metrics in Aurora Auto Scaling:

Using Auto Scaling with Aurora Replicas 466

https://docs.aws.amazon.com/ApplicationAutoScaling/latest/APIReference/API_TargetTrackingScalingPolicyConfiguration.html

Amazon Aurora User Guide for Aurora

• RDSReaderAverageCPUUtilization – The average value of the CPUUtilization metric in
CloudWatch across all Aurora Replicas in the Aurora DB cluster.

• RDSReaderAverageDatabaseConnections – The average value of the DatabaseConnections
metric in CloudWatch across all Aurora Replicas in the Aurora DB cluster.

For more information about the CPUUtilization and DatabaseConnections metrics, see
Amazon CloudWatch metrics for Amazon Aurora.

To use a predefined metric in your scaling policy, you create a target tracking configuration for
your scaling policy. This configuration must include a PredefinedMetricSpecification for the
predefined metric and a TargetValue for the target value of that metric.

Example

The following example describes a typical policy configuration for target-tracking scaling for an
Aurora DB cluster. In this configuration, the RDSReaderAverageCPUUtilization predefined
metric is used to adjust the Aurora DB cluster based on an average CPU utilization of 40 percent
across all Aurora Replicas.

{
 "TargetValue": 40.0,
 "PredefinedMetricSpecification":
 {
 "PredefinedMetricType": "RDSReaderAverageCPUUtilization"
 }
}

Using a custom metric

By using custom metrics, you can define a target-tracking scaling policy that meets your custom
requirements. You can define a custom metric based on any Aurora metric that changes in
proportion to scaling.

Not all Aurora metrics work for target tracking. The metric must be a valid utilization metric and
describe how busy an instance is. The value of the metric must increase or decrease in proportion
to the number of Aurora Replicas in the Aurora DB cluster. This proportional increase or decrease is
necessary to use the metric data to proportionally scale out or in the number of Aurora Replicas.

Using Auto Scaling with Aurora Replicas 467

Amazon Aurora User Guide for Aurora

Example

The following example describes a target-tracking configuration for a scaling policy. In this
configuration, a custom metric adjusts an Aurora DB cluster based on an average CPU utilization of
50 percent across all Aurora Replicas in an Aurora DB cluster named my-db-cluster.

{
 "TargetValue": 50,
 "CustomizedMetricSpecification":
 {
 "MetricName": "CPUUtilization",
 "Namespace": "AWS/RDS",
 "Dimensions": [
 {"Name": "DBClusterIdentifier","Value": "my-db-cluster"},
 {"Name": "Role","Value": "READER"}
],
 "Statistic": "Average",
 "Unit": "Percent"
 }
}

Using cooldown periods

You can specify a value, in seconds, for ScaleOutCooldown to add a cooldown period
for scaling out your Aurora DB cluster. Similarly, you can add a value, in seconds, for
ScaleInCooldown to add a cooldown period for scaling in your Aurora DB cluster.
For more information about ScaleInCooldown and ScaleOutCooldown, see
TargetTrackingScalingPolicyConfiguration in the Application Auto Scaling API Reference.

Example

The following example describes a target-tracking configuration for a scaling policy. In this
configuration, the RDSReaderAverageCPUUtilization predefined metric is used to adjust an
Aurora DB cluster based on an average CPU utilization of 40 percent across all Aurora Replicas in
that Aurora DB cluster. The configuration provides a scale-in cooldown period of 10 minutes and a
scale-out cooldown period of 5 minutes.

{
 "TargetValue": 40.0,
 "PredefinedMetricSpecification":
 {

Using Auto Scaling with Aurora Replicas 468

https://docs.aws.amazon.com/ApplicationAutoScaling/latest/APIReference/API_TargetTrackingScalingPolicyConfiguration.html

Amazon Aurora User Guide for Aurora

 "PredefinedMetricType": "RDSReaderAverageCPUUtilization"
 },
 "ScaleInCooldown": 600,
 "ScaleOutCooldown": 300
}

Disabling scale-in activity

You can prevent the target-tracking scaling policy configuration from scaling in your Aurora DB
cluster by disabling scale-in activity. Disabling scale-in activity prevents the scaling policy from
deleting Aurora Replicas, while still allowing the scaling policy to create them as needed.

You can specify a Boolean value for DisableScaleIn to enable or disable scale in
activity for your Aurora DB cluster. For more information about DisableScaleIn, see
TargetTrackingScalingPolicyConfiguration in the Application Auto Scaling API Reference.

Example

The following example describes a target-tracking configuration for a scaling policy. In this
configuration, the RDSReaderAverageCPUUtilization predefined metric adjusts an Aurora DB
cluster based on an average CPU utilization of 40 percent across all Aurora Replicas in that Aurora
DB cluster. The configuration disables scale-in activity for the scaling policy.

{
 "TargetValue": 40.0,
 "PredefinedMetricSpecification":
 {
 "PredefinedMetricType": "RDSReaderAverageCPUUtilization"
 },
 "DisableScaleIn": true
}

Applying a scaling policy to an Aurora DB cluster

After registering your Aurora DB cluster with Application Auto Scaling and defining a scaling policy,
you apply the scaling policy to the registered Aurora DB cluster. To apply a scaling policy to an
Aurora DB cluster, you can use the AWS CLI or the Application Auto Scaling API.

AWS CLI

To apply a scaling policy to your Aurora DB cluster, use the put-scaling-policy AWS CLI
command with the following parameters:

Using Auto Scaling with Aurora Replicas 469

https://docs.aws.amazon.com/ApplicationAutoScaling/latest/APIReference/API_TargetTrackingScalingPolicyConfiguration.html
https://docs.aws.amazon.com/cli/latest/reference/application-autoscaling/put-scaling-policy.html

Amazon Aurora User Guide for Aurora

• --policy-name – The name of the scaling policy.

• --policy-type – Set this value to TargetTrackingScaling.

• --resource-id – The resource identifier for the Aurora DB cluster. For this parameter, the
resource type is cluster and the unique identifier is the name of the Aurora DB cluster, for
example cluster:myscalablecluster.

• --service-namespace – Set this value to rds.

• --scalable-dimension – Set this value to rds:cluster:ReadReplicaCount.

• --target-tracking-scaling-policy-configuration – The target-tracking scaling policy
configuration to use for the Aurora DB cluster.

Example

In the following example, you apply a target-tracking scaling policy named myscalablepolicy
to an Aurora DB cluster named myscalablecluster with Application Auto Scaling. To do so, you
use a policy configuration saved in a file named config.json.

For Linux, macOS, or Unix:

aws application-autoscaling put-scaling-policy \
 --policy-name myscalablepolicy \
 --policy-type TargetTrackingScaling \
 --resource-id cluster:myscalablecluster \
 --service-namespace rds \
 --scalable-dimension rds:cluster:ReadReplicaCount \
 --target-tracking-scaling-policy-configuration file://config.json

For Windows:

aws application-autoscaling put-scaling-policy ^
 --policy-name myscalablepolicy ^
 --policy-type TargetTrackingScaling ^
 --resource-id cluster:myscalablecluster ^
 --service-namespace rds ^
 --scalable-dimension rds:cluster:ReadReplicaCount ^
 --target-tracking-scaling-policy-configuration file://config.json

Using Auto Scaling with Aurora Replicas 470

Amazon Aurora User Guide for Aurora

Application Auto Scaling API

To apply a scaling policy to your Aurora DB cluster with the Application Auto Scaling API, use the
PutScalingPolicy Application Auto Scaling API operation with the following parameters:

• PolicyName – The name of the scaling policy.

• ServiceNamespace – Set this value to rds.

• ResourceID – The resource identifier for the Aurora DB cluster. For this parameter, the resource
type is cluster and the unique identifier is the name of the Aurora DB cluster, for example
cluster:myscalablecluster.

• ScalableDimension – Set this value to rds:cluster:ReadReplicaCount.

• PolicyType – Set this value to TargetTrackingScaling.

• TargetTrackingScalingPolicyConfiguration – The target-tracking scaling policy
configuration to use for the Aurora DB cluster.

Example

In the following example, you apply a target-tracking scaling policy named myscalablepolicy to
an Aurora DB cluster named myscalablecluster with Application Auto Scaling. You use a policy
configuration based on the RDSReaderAverageCPUUtilization predefined metric.

POST / HTTP/1.1
Host: autoscaling.us-east-2.amazonaws.com
Accept-Encoding: identity
Content-Length: 219
X-Amz-Target: AnyScaleFrontendService.PutScalingPolicy
X-Amz-Date: 20160506T182145Z
User-Agent: aws-cli/1.10.23 Python/2.7.11 Darwin/15.4.0 botocore/1.4.8
Content-Type: application/x-amz-json-1.1
Authorization: AUTHPARAMS

{
 "PolicyName": "myscalablepolicy",
 "ServiceNamespace": "rds",
 "ResourceId": "cluster:myscalablecluster",
 "ScalableDimension": "rds:cluster:ReadReplicaCount",
 "PolicyType": "TargetTrackingScaling",
 "TargetTrackingScalingPolicyConfiguration": {

Using Auto Scaling with Aurora Replicas 471

https://docs.aws.amazon.com/ApplicationAutoScaling/latest/APIReference/API_PutScalingPolicy.html

Amazon Aurora User Guide for Aurora

 "TargetValue": 40.0,
 "PredefinedMetricSpecification":
 {
 "PredefinedMetricType": "RDSReaderAverageCPUUtilization"
 }
 }
}

Editing a scaling policy

You can edit a scaling policy using the AWS Management Console, the AWS CLI, or the Application
Auto Scaling API.

Console

You can edit a scaling policy by using the AWS Management Console.

To edit an auto scaling policy for an Aurora DB cluster

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Databases.

3. Choose the Aurora DB cluster whose auto scaling policy you want to edit.

4. Choose the Logs & events tab.

5. In the Auto scaling policies section, choose the auto scaling policy, and then choose Edit.

6. Make changes to the policy.

7. Choose Save.

The following is a sample Edit Auto Scaling policy dialog box.

Using Auto Scaling with Aurora Replicas 472

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Aurora User Guide for Aurora

AWS CLI or Application Auto Scaling API

You can use the AWS CLI or the Application Auto Scaling API to edit a scaling policy in the same
way that you apply a scaling policy:

Using Auto Scaling with Aurora Replicas 473

Amazon Aurora User Guide for Aurora

• When using the AWS CLI, specify the name of the policy you want to edit in the --policy-name
parameter. Specify new values for the parameters you want to change.

• When using the Application Auto Scaling API, specify the name of the policy you want to edit in
the PolicyName parameter. Specify new values for the parameters you want to change.

For more information, see Applying a scaling policy to an Aurora DB cluster.

Deleting a scaling policy

You can delete a scaling policy using the AWS Management Console, the AWS CLI, or the
Application Auto Scaling API.

Console

You can delete a scaling policy by using the AWS Management Console.

To delete an auto scaling policy for an Aurora DB cluster

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Databases.

3. Choose the Aurora DB cluster whose auto scaling policy you want to delete.

4. Choose the Logs & events tab.

5. In the Auto scaling policies section, choose the auto scaling policy, and then choose Delete.

AWS CLI

To delete a scaling policy from your Aurora DB cluster, use the delete-scaling-policy AWS CLI
command with the following parameters:

• --policy-name – The name of the scaling policy.

• --resource-id – The resource identifier for the Aurora DB cluster. For this parameter, the
resource type is cluster and the unique identifier is the name of the Aurora DB cluster, for
example cluster:myscalablecluster.

• --service-namespace – Set this value to rds.

• --scalable-dimension – Set this value to rds:cluster:ReadReplicaCount.

Using Auto Scaling with Aurora Replicas 474

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/
https://docs.aws.amazon.com/cli/latest/reference/application-autoscaling/delete-scaling-policy.html

Amazon Aurora User Guide for Aurora

Example

In the following example, you delete a target-tracking scaling policy named myscalablepolicy
from an Aurora DB cluster named myscalablecluster.

For Linux, macOS, or Unix:

aws application-autoscaling delete-scaling-policy \
 --policy-name myscalablepolicy \
 --resource-id cluster:myscalablecluster \
 --service-namespace rds \
 --scalable-dimension rds:cluster:ReadReplicaCount \

For Windows:

aws application-autoscaling delete-scaling-policy ^
 --policy-name myscalablepolicy ^
 --resource-id cluster:myscalablecluster ^
 --service-namespace rds ^
 --scalable-dimension rds:cluster:ReadReplicaCount ^

Application Auto Scaling API

To delete a scaling policy from your Aurora DB cluster, use the DeleteScalingPolicy the
Application Auto Scaling API operation with the following parameters:

• PolicyName – The name of the scaling policy.

• ServiceNamespace – Set this value to rds.

• ResourceID – The resource identifier for the Aurora DB cluster. For this parameter, the resource
type is cluster and the unique identifier is the name of the Aurora DB cluster, for example
cluster:myscalablecluster.

• ScalableDimension – Set this value to rds:cluster:ReadReplicaCount.

Using Auto Scaling with Aurora Replicas 475

https://docs.aws.amazon.com/ApplicationAutoScaling/latest/APIReference/API_DeleteScalingPolicy.html

Amazon Aurora User Guide for Aurora

Example

In the following example, you delete a target-tracking scaling policy named myscalablepolicy
from an Aurora DB cluster named myscalablecluster with the Application Auto Scaling API.

POST / HTTP/1.1
Host: autoscaling.us-east-2.amazonaws.com
Accept-Encoding: identity
Content-Length: 219
X-Amz-Target: AnyScaleFrontendService.DeleteScalingPolicy
X-Amz-Date: 20160506T182145Z
User-Agent: aws-cli/1.10.23 Python/2.7.11 Darwin/15.4.0 botocore/1.4.8
Content-Type: application/x-amz-json-1.1
Authorization: AUTHPARAMS

{
 "PolicyName": "myscalablepolicy",
 "ServiceNamespace": "rds",
 "ResourceId": "cluster:myscalablecluster",
 "ScalableDimension": "rds:cluster:ReadReplicaCount"
}

DB instance IDs and tagging

When a replica is added by Aurora Auto Scaling, its DB instance ID is prefixed by application-
autoscaling-, for example, application-autoscaling-61aabbcc-4e2f-4c65-b620-
ab7421abc123.

The following tag is automatically added to the DB instance. You can view it on the Tags tab of the
DB instance detail page.

Tag Value

application-autoscaling:resourceId cluster:mynewcluster-cluster

For more information on Amazon RDS resource tags, see Tagging Amazon Aurora and Amazon RDS
resources.

Using Auto Scaling with Aurora Replicas 476

Amazon Aurora User Guide for Aurora

Aurora Auto Scaling and Performance Insights

You can use Performance Insights to monitor replicas that have been added by Aurora Auto
Scaling, the same as with any Aurora reader DB instance.

You can't turn on Performance Insights for an Aurora DB cluster. You can manually turn on
Performance Insights for each DB instance in the DB cluster.

When you turn on Performance Insights for the writer DB instance in your Aurora DB cluster,
Performance Insights isn't turned on automatically for reader DB instances. You have to turn on
Performance Insights manually for the existing reader DB instances and new replicas added by
Aurora Auto Scaling.

For more information on using Performance Insights to monitor Aurora DB clusters, see Monitoring
DB load with Performance Insights on Amazon Aurora.

Using Auto Scaling with Aurora Replicas 477

Amazon Aurora User Guide for Aurora

Managing performance and scaling for Aurora DB clusters

You can use the following options to manage performance and scaling for Aurora DB clusters and
DB instances:

Topics

• Storage scaling

• Instance scaling

• Read scaling

• Managing connections

• Managing query execution plans

Storage scaling

Aurora storage automatically scales with the data in your cluster volume. As your data grows, your
cluster volume storage expands up to a maximum of 128 tebibytes (TiB) or 64 TiB. The maximum
size depends on the DB engine version. To learn what kinds of data are included in the cluster
volume, see Amazon Aurora storage and reliability. For details about the maximum size for a
specific version, see Amazon Aurora size limits.

The size of your cluster volume is evaluated on an hourly basis to determine your storage costs. For
pricing information, see the Aurora pricing page.

Even though an Aurora cluster volume can scale up in size to many tebibytes, you are only charged
for the space that you use in the volume. The mechanism for determining billed storage space
depends on the version of your Aurora cluster.

• When Aurora data is removed from the cluster volume, the overall billed space decreases by
a comparable amount. This dynamic resizing behavior happens when underlying tablespaces
are dropped or reorganized to require less space. Thus, you can reduce storage charges by
dropping tables and databases that you no longer need. Dynamic resizing applies to certain
Aurora versions. The following are the Aurora versions where the cluster volume dynamically
resizes as you remove data:

Managing performance and scaling 478

https://aws.amazon.com/rds/aurora/pricing

Amazon Aurora User Guide for Aurora

Database engine Versions with dynamic resizing

Aurora MySQL • Version 3 (compatible with MySQL 8.0): all
supported versions

• Version 2 (compatible with MySQL 5.7):
2.11 and higher

Aurora PostgreSQL All supported versions

Aurora Serverless v2 All supported versions

Aurora Serverless v1 All supported versions

• In Aurora versions lower than those in the preceding list, the cluster volume can reuse space
that's freed up when you remove data, but the volume itself never decreases in size.

• This feature is being deployed in phases to the AWS Regions where Aurora is available.
Depending on the Region where your cluster is, this feature might not be available yet.

Dynamic resizing applies to operations that physically remove or resize tablespaces within the
cluster volume. Thus, it applies to SQL statements such as DROP TABLE, DROP DATABASE,
TRUNCATE TABLE, and ALTER TABLE ... DROP PARTITION. It doesn't apply to deleting rows
using the DELETE statement. If you delete a large number of rows from a table, you can run the
Aurora MySQL OPTIMIZE TABLE statement or use the Aurora PostgreSQL pg_repack extension
afterward to reorganize the table and dynamically resize the cluster volume.

For Aurora MySQL, the following considerations apply:

• After you upgrade your DB cluster to a DB engine version that supports dynamic resizing, and
when the feature is enabled in that specific AWS Region, any space that's later freed by certain
SQL statements, such as DROP TABLE, is reclaimable.

If the feature is explicitly disabled in a particular AWS Region, the space might only be reusable
—and not reclaimable—even on versions that support dynamic resizing.

The feature was enabled for specific DB engine versions (1.23.0–1.23.4, 2.09.0–2.09.3, and
2.10.0) between November 2020 and March 2022, and is enabled by default on any subsequent
versions.

Storage scaling 479

Amazon Aurora User Guide for Aurora

• A table is stored internally in one or more contiguous fragments of varying sizes. While running
TRUNCATE TABLE operations, the space corresponding to the first fragment is reusable and
not reclaimable. Other fragments are reclaimable. During DROP TABLE operations, space
corresponding to the entire tablespace is reclaimable.

• The innodb_file_per_table parameter affects how table storage is organized. When tables
are part of the system tablespace, dropping the table doesn't reduce the size of the system
tablespace. Thus, make sure to set innodb_file_per_table to 1 for Aurora MySQL DB
clusters to take full advantage of dynamic resizing.

• In version 2.11 and higher, the InnoDB temporary tablespace is dropped and re-created on
restart. This releases the space occupied by the temporary tablespace to the system, and
then the cluster volume resizes. To take full advantage of the dynamic resizing feature, we
recommend that you upgrade your DB cluster to version 2.11 or higher.

Note

The dynamic resizing feature doesn't reclaim space immediately when tables in tablespaces
are dropped, but gradually at a rate of approximately 10 TB per day. Space in the system
tablespace isn't reclaimed, because the system tablespace is never removed. Unreclaimed
free space in a tablespace is reused when an operation needs space in that tablespace. The
dynamic resizing feature can reclaim storage space only when the cluster is in an available
state.

You can check how much storage space a cluster is using by monitoring the VolumeBytesUsed
metric in CloudWatch. For more information on storage billing, see How Aurora data storage is
billed.

• In the AWS Management Console, you can see this figure in a chart by viewing the Monitoring
tab on the details page for the cluster.

• With the AWS CLI, you can run a command similar to the following Linux example. Substitute
your own values for the start and end times and the name of the cluster.

aws cloudwatch get-metric-statistics --metric-name "VolumeBytesUsed" \
 --start-time "$(date -d '6 hours ago')" --end-time "$(date -d 'now')" --period 60 \
 --namespace "AWS/RDS" \
 --statistics Average Maximum Minimum \

Storage scaling 480

Amazon Aurora User Guide for Aurora

 --dimensions Name=DBClusterIdentifier,Value=my_cluster_identifier

That command produces output similar to the following.

{
 "Label": "VolumeBytesUsed",
 "Datapoints": [
 {
 "Timestamp": "2020-08-04T21:25:00+00:00",
 "Average": 182871982080.0,
 "Minimum": 182871982080.0,
 "Maximum": 182871982080.0,
 "Unit": "Bytes"
 }
]
}

The following examples show how you might track storage usage for an Aurora cluster over time
using AWS CLI commands on a Linux system. The --start-time and --end-time parameters
define the overall time interval as one day. The --period parameter requests the measurements
at one hour intervals. It doesn't make sense to choose a --period value that's small, because the
metrics are collected at intervals, not continuously. Also, Aurora storage operations sometimes
continue for some time in the background after the relevant SQL statement finishes.

The first example returns output in the default JSON format. The data points are returned in
arbitrary order, not sorted by timestamp. You might import this JSON data into a charting tool to
do sorting and visualization.

$ aws cloudwatch get-metric-statistics --metric-name "VolumeBytesUsed" \
 --start-time "$(date -d '1 day ago')" --end-time "$(date -d 'now')" --period 3600
 --namespace "AWS/RDS" --statistics Maximum --dimensions
 Name=DBClusterIdentifier,Value=my_cluster_id
{
 "Label": "VolumeBytesUsed",
 "Datapoints": [
 {
 "Timestamp": "2020-08-04T19:40:00+00:00",
 "Maximum": 182872522752.0,
 "Unit": "Bytes"
 },

Storage scaling 481

Amazon Aurora User Guide for Aurora

 {
 "Timestamp": "2020-08-05T00:40:00+00:00",
 "Maximum": 198573719552.0,
 "Unit": "Bytes"
 },
 {
 "Timestamp": "2020-08-05T05:40:00+00:00",
 "Maximum": 206827454464.0,
 "Unit": "Bytes"
 },
 {
 "Timestamp": "2020-08-04T17:40:00+00:00",
 "Maximum": 182872522752.0,
 "Unit": "Bytes"
 },
... output omitted ...

This example returns the same data as the previous one. The --output parameter represents the
data in compact plain text format. The aws cloudwatch command pipes its output to the sort
command. The -k parameter of the sort command sorts the output by the third field, which is the
timestamp in Universal Coordinated Time (UTC) format.

$ aws cloudwatch get-metric-statistics --metric-name "VolumeBytesUsed" \
 --start-time "$(date -d '1 day ago')" --end-time "$(date -d 'now')" --period 3600 \
 --namespace "AWS/RDS" --statistics Maximum --dimensions
 Name=DBClusterIdentifier,Value=my_cluster_id \
 --output text | sort -k 3
VolumeBytesUsed
DATAPOINTS 182872522752.0 2020-08-04T17:41:00+00:00 Bytes
DATAPOINTS 182872522752.0 2020-08-04T18:41:00+00:00 Bytes
DATAPOINTS 182872522752.0 2020-08-04T19:41:00+00:00 Bytes
DATAPOINTS 182872522752.0 2020-08-04T20:41:00+00:00 Bytes
DATAPOINTS 187667791872.0 2020-08-04T21:41:00+00:00 Bytes
DATAPOINTS 190981029888.0 2020-08-04T22:41:00+00:00 Bytes
DATAPOINTS 195587244032.0 2020-08-04T23:41:00+00:00 Bytes
DATAPOINTS 201048915968.0 2020-08-05T00:41:00+00:00 Bytes
DATAPOINTS 205368492032.0 2020-08-05T01:41:00+00:00 Bytes
DATAPOINTS 206827454464.0 2020-08-05T02:41:00+00:00 Bytes
DATAPOINTS 206827454464.0 2020-08-05T03:41:00+00:00 Bytes
DATAPOINTS 206827454464.0 2020-08-05T04:41:00+00:00 Bytes
DATAPOINTS 206827454464.0 2020-08-05T05:41:00+00:00 Bytes
DATAPOINTS 206827454464.0 2020-08-05T06:41:00+00:00 Bytes
DATAPOINTS 206827454464.0 2020-08-05T07:41:00+00:00 Bytes

Storage scaling 482

Amazon Aurora User Guide for Aurora

DATAPOINTS 206827454464.0 2020-08-05T08:41:00+00:00 Bytes
DATAPOINTS 206827454464.0 2020-08-05T09:41:00+00:00 Bytes
DATAPOINTS 206827454464.0 2020-08-05T10:41:00+00:00 Bytes
DATAPOINTS 206827454464.0 2020-08-05T11:41:00+00:00 Bytes
DATAPOINTS 206827454464.0 2020-08-05T12:41:00+00:00 Bytes
DATAPOINTS 206827454464.0 2020-08-05T13:41:00+00:00 Bytes
DATAPOINTS 206827454464.0 2020-08-05T14:41:00+00:00 Bytes
DATAPOINTS 206833664000.0 2020-08-05T15:41:00+00:00 Bytes
DATAPOINTS 206833664000.0 2020-08-05T16:41:00+00:00 Bytes

The sorted output shows how much storage was used at the start and end of the monitoring
period. You can also find the points during that period when Aurora allocated more storage for
the cluster. The following example uses Linux commands to reformat the starting and ending
VolumeBytesUsed values as gigabytes (GB) and as gibibytes (GiB). Gigabytes represent units
measured in powers of 10 and are commonly used in discussions of storage for rotational hard
drives. Gibibytes represent units measured in powers of 2. Aurora storage measurements and limits
are typically stated in the power-of-2 units, such as gibibytes and tebibytes.

$ GiB=$((1024*1024*1024))
$ GB=$((1000*1000*1000))
$ echo "Start: $((182872522752/$GiB)) GiB, End: $((206833664000/$GiB)) GiB"
Start: 170 GiB, End: 192 GiB
$ echo "Start: $((182872522752/$GB)) GB, End: $((206833664000/$GB)) GB"
Start: 182 GB, End: 206 GB

The VolumeBytesUsed metric tells you how much storage in the cluster is incurring charges.
Thus, it's best to minimize this number when practical. However, this metric doesn't include
some storage that Aurora uses internally in the cluster and doesn't charge for. If your cluster
is approaching the storage limit and might run out of space, it's more helpful to monitor the
AuroraVolumeBytesLeftTotal metric and try to maximize that number. The following example
runs a similar calculation as the previous one, but for AuroraVolumeBytesLeftTotal instead of
VolumeBytesUsed.

$ aws cloudwatch get-metric-statistics --metric-name "AuroraVolumeBytesLeftTotal" \
 --start-time "$(date -d '1 hour ago')" --end-time "$(date -d 'now')" --period 3600 \
 --namespace "AWS/RDS" --statistics Maximum --dimensions
 Name=DBClusterIdentifier,Value=my_old_cluster_id \
 --output text | sort -k 3
AuroraVolumeBytesLeftTotal
DATAPOINTS 140530528288768.0 2023-02-23T19:25:00+00:00 Count

Storage scaling 483

Amazon Aurora User Guide for Aurora

$ TiB=$((1024*1024*1024*1024))
$ TB=$((1000*1000*1000*1000))
$ echo "$((69797067915264 / $TB)) TB remaining for this cluster"
69 TB remaining for this cluster
$ echo "$((69797067915264 / $TiB)) TiB remaining for this cluster"
63 TiB remaining for this cluster

For a cluster running Aurora MySQL version 2.09 or higher, or Aurora PostgreSQL, the free
size reported by VolumeBytesUsed increases when data is added and decreases when data is
removed. The following example shows how. This report shows the maximum and minimum
storage size for a cluster at 15-minute intervals as tables with temporary data are created and
dropped. The report lists the maximum value before the minimum value. Thus, to understand how
storage usage changed within the 15-minute interval, interpret the numbers from right to left.

$ aws cloudwatch get-metric-statistics --metric-name "VolumeBytesUsed" \
 --start-time "$(date -d '4 hours ago')" --end-time "$(date -d 'now')" --period 1800 \
 --namespace "AWS/RDS" --statistics Maximum Minimum --dimensions
 Name=DBClusterIdentifier,Value=my_new_cluster_id
 --output text | sort -k 4
VolumeBytesUsed
DATAPOINTS 14545305600.0 14545305600.0 2020-08-05T20:49:00+00:00 Bytes
DATAPOINTS 14545305600.0 14545305600.0 2020-08-05T21:19:00+00:00 Bytes
DATAPOINTS 22022176768.0 14545305600.0 2020-08-05T21:49:00+00:00 Bytes
DATAPOINTS 22022176768.0 22022176768.0 2020-08-05T22:19:00+00:00 Bytes
DATAPOINTS 22022176768.0 22022176768.0 2020-08-05T22:49:00+00:00 Bytes
DATAPOINTS 22022176768.0 15614263296.0 2020-08-05T23:19:00+00:00 Bytes
DATAPOINTS 15614263296.0 15614263296.0 2020-08-05T23:49:00+00:00 Bytes
DATAPOINTS 15614263296.0 15614263296.0 2020-08-06T00:19:00+00:00 Bytes

The following example shows how with a cluster running Aurora MySQL version 2.09 or higher, or
Aurora PostgreSQL, the free size reported by AuroraVolumeBytesLeftTotal reflects the 128-
TiB size limit.

$ aws cloudwatch get-metric-statistics --region us-east-1 --metric-name
 "AuroraVolumeBytesLeftTotal" \
 --start-time "$(date -d '4 hours ago')" --end-time "$(date -d 'now')" --period 1800 \
 --namespace "AWS/RDS" --statistics Minimum --dimensions
 Name=DBClusterIdentifier,Value=pq-57 \
 --output text | sort -k 3
AuroraVolumeBytesLeftTotal
DATAPOINTS 140515818864640.0 2020-08-05T20:56:00+00:00 Count

Storage scaling 484

Amazon Aurora User Guide for Aurora

DATAPOINTS 140515818864640.0 2020-08-05T21:26:00+00:00 Count
DATAPOINTS 140515818864640.0 2020-08-05T21:56:00+00:00 Count
DATAPOINTS 140514866757632.0 2020-08-05T22:26:00+00:00 Count
DATAPOINTS 140511020580864.0 2020-08-05T22:56:00+00:00 Count
DATAPOINTS 140503168843776.0 2020-08-05T23:26:00+00:00 Count
DATAPOINTS 140503168843776.0 2020-08-05T23:56:00+00:00 Count
DATAPOINTS 140515818864640.0 2020-08-06T00:26:00+00:00 Count
$ TiB=$((1024*1024*1024*1024))
$ TB=$((1000*1000*1000*1000))
$ echo "$((140515818864640 / $TB)) TB remaining for this cluster"
140 TB remaining for this cluster
$ echo "$((140515818864640 / $TiB)) TiB remaining for this cluster"
127 TiB remaining for this cluster

Instance scaling

You can scale your Aurora DB cluster as needed by modifying the DB instance class for each DB
instance in the DB cluster. Aurora supports several DB instance classes optimized for Aurora,
depending on database engine compatibility.

Database engine Instance scaling

Amazon Aurora MySQL See Scaling Aurora MySQL DB instances

Amazon Aurora PostgreSQL See Scaling Aurora PostgreSQL DB instances

Read scaling

You can achieve read scaling for your Aurora DB cluster by creating up to 15 Aurora Replicas in a
DB cluster. Each Aurora Replica returns the same data from the cluster volume with minimal replica
lag—usually considerably less than 100 milliseconds after the primary instance has written an
update. As your read traffic increases, you can create additional Aurora Replicas and connect to
them directly to distribute the read load for your DB cluster. Aurora Replicas don't have to be of the
same DB instance class as the primary instance.

For information about adding Aurora Replicas to a DB cluster, see Adding Aurora Replicas to a DB
cluster.

Instance scaling 485

Amazon Aurora User Guide for Aurora

Managing connections

The maximum number of connections allowed to an Aurora DB instance is determined by the
max_connections parameter in the instance-level parameter group for the DB instance. The
default value of that parameter varies depends on the DB instance class used for the DB instance
and database engine compatibility.

Database engine max_connections default value

Amazon Aurora MySQL See Maximum connections to an Aurora MySQL DB instance

Amazon Aurora PostgreSQL See Maximum connections to an Aurora PostgreSQL DB
instance

Tip

If your applications frequently open and close connections, or keep a large number of
long-lived connections open, we recommend that you use Amazon RDS Proxy. RDS Proxy
is a fully managed, highly available database proxy that uses connection pooling to share
database connections securely and efficiently. To learn more about RDS Proxy, see Using
Amazon RDS Proxy for Aurora.

Managing query execution plans

If you use query plan management for Aurora PostgreSQL, you gain control over which plans the
optimizer runs. For more information, see Managing query execution plans for Aurora PostgreSQL.

Managing connections 486

Amazon Aurora User Guide for Aurora

Cloning a volume for an Amazon Aurora DB cluster

By using Aurora cloning, you can create a new cluster that initially shares the same data pages as
the original, but is a separate and independent volume. The process is designed to be fast and cost-
effective. The new cluster with its associated data volume is known as a clone. Creating a clone is
faster and more space-efficient than physically copying the data using other techniques, such as
restoring a snapshot.

Topics

• Overview of Aurora cloning

• Limitations of Aurora cloning

• How Aurora cloning works

• Creating an Amazon Aurora clone

• Cross-VPC cloning with Amazon Aurora

• Cross-account cloning with AWS RAM and Amazon Aurora

Overview of Aurora cloning

Aurora uses a copy-on-write protocol to create a clone. This mechanism uses minimal additional
space to create an initial clone. When the clone is first created, Aurora keeps a single copy of
the data that is used by the source Aurora DB cluster and the new (cloned) Aurora DB cluster.
Additional storage is allocated only when changes are made to data (on the Aurora storage
volume) by the source Aurora DB cluster or the Aurora DB cluster clone. To learn more about the
copy-on-write protocol, see How Aurora cloning works.

Aurora cloning is especially useful for quickly setting up test environments using your production
data, without risking data corruption. You can use clones for many types of applications, such as
the following:

• Experiment with potential changes (schema changes and parameter group changes, for example)
to assess all impacts.

• Run workload-intensive operations, such as exporting data or running analytical queries on the
clone.

• Create a copy of your production DB cluster for development, testing, or other purposes.

Cloning a volume for an Aurora DB cluster 487

Amazon Aurora User Guide for Aurora

You can create more than one clone from the same Aurora DB cluster. You can also create multiple
clones from another clone.

After creating an Aurora clone, you can configure the Aurora DB instances differently from the
source Aurora DB cluster. For example, you might not need a clone for development purposes to
meet the same high availability requirements as the source production Aurora DB cluster. In this
case, you can configure the clone with a single Aurora DB instance rather than the multiple DB
instances used by the Aurora DB cluster.

When you create a clone using a different deployment configuration from the source, the clone is
created using the latest minor version of the source's Aurora DB engine.

When you create clones from your Aurora DB clusters, the clones are created in your AWS account
—the same account that owns the source Aurora DB cluster. However, you can also share Aurora
Serverless v2 and provisioned Aurora DB clusters and clones with other AWS accounts. For more
information, see Cross-account cloning with AWS RAM and Amazon Aurora.

When you finish using the clone for your testing, development, or other purposes, you can delete
it.

Limitations of Aurora cloning

Aurora cloning currently has the following limitations:

• You can create as many clones as you want, up to the maximum number of DB clusters allowed
in the AWS Region.

You can create the clones using the copy-on-write protocol or the full-copy protocol. The full-
copy protocol acts like a point-in-time recovery.

• You can't create a clone in a different AWS Region from the source Aurora DB cluster.

• You can't create a clone from an Aurora DB cluster without the parallel query feature to a cluster
that uses parallel query. To bring data into a cluster that uses parallel query, create a snapshot of
the original cluster and restore it to the cluster that's using the parallel query feature.

• You can't create a clone from an Aurora DB cluster that has no DB instances. You can only clone
Aurora DB clusters that have at least one DB instance.

• You can create a clone in a different virtual private cloud (VPC) than that of the Aurora DB
cluster. If you do, the subnets of the VPCs must map to the same Availability Zones.

• You can create an Aurora provisioned clone from a provisioned Aurora DB cluster.

Limitations of Aurora cloning 488

Amazon Aurora User Guide for Aurora

• Clusters with Aurora Serverless v2 instances follow the same rules as provisioned clusters.

• For Aurora Serverless v1:

• You can create a provisioned clone from an Aurora Serverless v1 DB cluster.

• You can create an Aurora Serverless v1 clone from an Aurora Serverless v1 or provisioned DB
cluster.

• You can't create an Aurora Serverless v1 clone from an unencrypted, provisioned Aurora DB
cluster.

• Cross-account cloning currently doesn't support cloning Aurora Serverless v1 DB clusters. For
more information, see Limitations of cross-account cloning.

• A cloned Aurora Serverless v1 DB cluster has the same behavior and limitations as any Aurora
Serverless v1 DB cluster. For more information, see Using Amazon Aurora Serverless v1.

• Aurora Serverless v1 DB clusters are always encrypted. When you clone an Aurora Serverless
v1 DB cluster into a provisioned Aurora DB cluster, the provisioned Aurora DB cluster is
encrypted. You can choose the encryption key, but you can't disable the encryption. To clone
from a provisioned Aurora DB cluster to an Aurora Serverless v1, you must start with an
encrypted provisioned Aurora DB cluster.

How Aurora cloning works

Aurora cloning works at the storage layer of an Aurora DB cluster. It uses a copy-on-write protocol
that's both fast and space-efficient in terms of the underlying durable media supporting the Aurora
storage volume. You can learn more about Aurora cluster volumes in the Overview of Amazon
Aurora storage.

Topics

• Understanding the copy-on-write protocol

• Deleting a source cluster volume

Understanding the copy-on-write protocol

An Aurora DB cluster stores data in pages in the underlying Aurora storage volume.

For example, in the following diagram you can find an Aurora DB cluster (A) that has four data
pages, 1, 2, 3, and 4. Imagine that a clone, B, is created from the Aurora DB cluster. When the clone

How Aurora cloning works 489

Amazon Aurora User Guide for Aurora

is created, no data is copied. Rather, the clone points to the same set of pages as the source Aurora
DB cluster.

When the clone is created, no additional storage is usually needed. The copy-on-write protocol
uses the same segment on the physical storage media as the source segment. Additional storage is
required only if the capacity of the source segment isn't sufficient for the entire clone segment. If
that's the case, the source segment is copied to another physical device.

In the following diagrams, you can find an example of the copy-on-write protocol in action using
the same cluster A and its clone, B, as shown preceding. Let's say that you make a change to your
Aurora DB cluster (A) that results in a change to data held on page 1. Instead of writing to the
original page 1, Aurora creates a new page 1[A]. The Aurora DB cluster volume for cluster (A) now
points to page 1[A], 2, 3, and 4, while the clone (B) still references the original pages.

How Aurora cloning works 490

Amazon Aurora User Guide for Aurora

On the clone, a change is made to page 4 on the storage volume. Instead of writing to the original
page 4, Aurora creates a new page, 4[B]. The clone now points to pages 1, 2, 3, and to page 4[B],
while the cluster (A) continues pointing to 1[A], 2, 3, and 4.

How Aurora cloning works 491

Amazon Aurora User Guide for Aurora

As more changes occur over time in both the source Aurora DB cluster volume and the clone, more
storage is needed to capture and store the changes.

Deleting a source cluster volume

Initially, the clone volume shares the same data pages as the original volume from which the clone
is created. As long as the original volume exists, the clone volume is only considered the owner of
the pages that the clone created or modified. Thus, the VolumeBytesUsed metric for the clone
volume starts out small and only grows as the data diverges between the original cluster and the
clone. For pages that are identical between the source volume and the clone, the storage charges
apply only to the original cluster. For more information about the VolumeBytesUsed metric, see
Cluster-level metrics for Amazon Aurora.

When you delete a source cluster volume that has one or more clones associated with it, the data
in the cluster volumes of the clones isn't changed. Aurora preserves the pages that were previously
owned by the source cluster volume. Aurora redistributes the storage billing for the pages that
were owned by the deleted cluster. For example, suppose that an original cluster had two clones

How Aurora cloning works 492

Amazon Aurora User Guide for Aurora

and then the original cluster was deleted. Half of the data pages owned by the original cluster
would now be owned by one clone. The other half of the pages would be owned by the other
clone.

If you delete the original cluster, then as you create or delete more clones, Aurora continues to
redistribute ownership of the data pages among all the clones that share the same pages. Thus,
you might find that the value of the VolumeBytesUsed metric changes for the cluster volume of
a clone. The metric value can decrease as more clones are created and page ownership is spread
across more clusters. The metric value can also increase as clones are deleted and page ownership
is assigned to a smaller number of clusters. For information about how write operations affect data
pages on clone volumes, see Understanding the copy-on-write protocol.

When the original cluster and the clones are owned by the same AWS account, all the storage
charges for those clusters apply to that same AWS account. If some of the clusters are cross-
account clones, deleting the original cluster can result in additional storage charges to the AWS
accounts that own the cross-account clones.

For example, suppose that a cluster volume has 1000 used data pages before you create any
clones. When you clone that cluster, initially the clone volume has zero used pages. If the clone
makes modifications to 100 data pages, only those 100 pages are stored on the clone volume
and marked as used. The other 900 unchanged pages from the parent volume are shared by both
clusters. In this case, the parent cluster has storage charges for 1000 pages and the clone volume
for 100 pages.

If you delete the source volume, the storage charges for the clone include the 100 pages that it
changed, plus the 900 shared pages from the original volume, for a total of 1000 pages.

Creating an Amazon Aurora clone

You can create a clone in the same AWS account as the source Aurora DB cluster. To do so, you can
use the AWS Management Console or the AWS CLI and the procedures following.

To allow another AWS account to create a clone or to share a clone with another AWS account, use
the procedures in Cross-account cloning with AWS RAM and Amazon Aurora.

Console

The following procedure describes how to clone an Aurora DB cluster using the AWS Management
Console.

Creating an Aurora clone 493

Amazon Aurora User Guide for Aurora

Creating a clone using the AWS Management Console results in an Aurora DB cluster with one
Aurora DB instance.

These instructions apply for DB clusters owned by the same AWS account that is creating the clone.
If the DB cluster is owned by a different AWS account, see Cross-account cloning with AWS RAM
and Amazon Aurora instead.

To create a clone of a DB cluster owned by your AWS account using the AWS Management
Console

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Databases.

3. Choose your Aurora DB cluster from the list, and for Actions, choose Create clone.

The Create clone page opens, where you can configure Settings, Connectivity, and other
options for the Aurora DB cluster clone.

4. For DB instance identifier, enter the name that you want to give to your cloned Aurora DB
cluster.

5. For Aurora Serverless v1 DB clusters, choose Provisioned or Serverless for Capacity type.

You can choose Serverless only if the source Aurora DB cluster is an Aurora Serverless v1 DB
cluster or is a provisioned Aurora DB cluster that is encrypted.

Creating an Aurora clone 494

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Aurora User Guide for Aurora

6. For Aurora Serverless v2 or provisioned DB clusters, choose either Aurora I/O-Optimized or
Aurora Standard for Cluster storage configuration.

For more information, see Storage configurations for Amazon Aurora DB clusters.

7. Choose the DB instance size or DB cluster capacity:

• For a provisioned clone, choose a DB instance class.

You can accept the provided setting, or you can use a different DB instance class for your
clone.

• For an Aurora Serverless v1 or Aurora Serverless v2 clone, choose the Capacity settings.

You can accept the provided settings, or you can change them for your clone.

8. Choose other settings as needed for your clone. To learn more about Aurora DB cluster and
instance settings, see Creating an Amazon Aurora DB cluster.

9. Choose Create clone.

Creating an Aurora clone 495

Amazon Aurora User Guide for Aurora

When the clone is created, it's listed with your other Aurora DB clusters in the console Databases
section and displays its current state. Your clone is ready to use when its state is Available.

AWS CLI

Using the AWS CLI for cloning your Aurora DB cluster involves separate steps for creating the clone
cluster and adding one or more DB instances to it.

The restore-db-cluster-to-point-in-time AWS CLI command that you use results in an
Aurora DB cluster with the same storage data as the original cluster, but no Aurora DB instances.
You create the DB instances separately after the clone is available. You can choose the number of
DB instances and their instance classes to give the clone more or less compute capacity than the
original cluster. The steps in the process are as follows:

1. Create the clone by using the restore-db-cluster-to-point-in-time CLI command.

2. Create the writer DB instance for the clone by using the create-db-instance CLI command.

3. (Optional) Run additional create-db-instance CLI commands to add one or more reader instances
to the clone cluster. Using reader instances helps improve the high availability and read
scalability aspects of the clone. You might skip this step if you only intend to use the clone for
development and testing.

Topics

• Creating the clone

• Checking the status and getting clone details

• Creating the Aurora DB instance for your clone

• Parameters to use for cloning

Creating the clone

Use the restore-db-cluster-to-point-in-time CLI command to create the initial clone
cluster.

To create a clone from a source Aurora DB cluster

• Use the restore-db-cluster-to-point-in-time CLI command. Specify values for the
following parameters. In this typical case, the clone uses the same engine mode as the original
cluster, either provisioned or Aurora Serverless v1.

Creating an Aurora clone 496

https://docs.aws.amazon.com/cli/latest/reference/rds/restore-db-cluster-to-point-in-time.html
https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-instance.html
https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-instance.html
https://docs.aws.amazon.com/cli/latest/reference/rds/restore-db-cluster-to-point-in-time.html
https://docs.aws.amazon.com/cli/latest/reference/rds/restore-db-cluster-to-point-in-time.html

Amazon Aurora User Guide for Aurora

• --db-cluster-identifier – Choose a meaningful name for your clone. You name the
clone when you use the restore-db-cluster-to-point-in-time CLI command. You then pass the
name of the clone in the create-db-instance CLI command.

• --restore-type – Use copy-on-write to create a clone of the source DB cluster.
Without this parameter, the restore-db-cluster-to-point-in-time restores the
Aurora DB cluster rather than creating a clone.

• --source-db-cluster-identifier – Use the name of the source Aurora DB cluster that
you want to clone.

• --use-latest-restorable-time – This value points to the latest restorable volume
data for the source DB cluster. Use it to create clones.

The following example creates a clone named my-clone from a cluster named my-source-
cluster.

For Linux, macOS, or Unix:

aws rds restore-db-cluster-to-point-in-time \
 --source-db-cluster-identifier my-source-cluster \
 --db-cluster-identifier my-clone \
 --restore-type copy-on-write \
 --use-latest-restorable-time

For Windows:

aws rds restore-db-cluster-to-point-in-time ^
 --source-db-cluster-identifier my-source-cluster ^
 --db-cluster-identifier my-clone ^
 --restore-type copy-on-write ^
 --use-latest-restorable-time

The command returns the JSON object containing details of the clone. Check to make sure that
your cloned DB cluster is available before trying to create the DB instance for your clone. For more
information, see Checking the status and getting clone details.

For example, suppose you have a cluster named tpch100g that you want to clone. The following
Linux example creates a cloned cluster named tpch100g-clone, an Aurora Serverless v2
writer instance named tpch100g-clone-instance, and a provisioned reader instance named
tpch100g-clone-instance-2 for the new cluster.

Creating an Aurora clone 497

https://docs.aws.amazon.com/cli/latest/reference/rds/restore-db-cluster-to-point-in-time.html
https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-instance.html

Amazon Aurora User Guide for Aurora

You don't need to supply some parameters, such as --master-username and --master-user-
password. Aurora automatically determines those from the original cluster. You do need to specify
the DB engine to use. Thus, the example tests the new cluster to determine the right value to use
for the --engine parameter.

This example also includes the --serverless-v2-scaling-configuration option when
creating the clone cluster. That way, you can add Aurora Serverless v2 instances to the clone even if
the original cluster didn't use Aurora Serverless v2.

$ aws rds restore-db-cluster-to-point-in-time \
 --source-db-cluster-identifier tpch100g \
 --db-cluster-identifier tpch100g-clone \
 --serverless-v2-scaling-configuration MinCapacity=0.5,MaxCapacity=16 \
 --restore-type copy-on-write \
 --use-latest-restorable-time

$ aws rds describe-db-clusters \
 --db-cluster-identifier tpch100g-clone \
 --query '*[].[Engine]' \
 --output text
aurora-mysql

$ aws rds create-db-instance \
 --db-instance-identifier tpch100g-clone-instance \
 --db-cluster-identifier tpch100g-clone \
 --db-instance-class db.serverless \
 --engine aurora-mysql

$ aws rds create-db-instance \
 --db-instance-identifier tpch100g-clone-instance-2 \
 --db-cluster-identifier tpch100g-clone \
 --db-instance-class db.r6g.2xlarge \
 --engine aurora-mysql

To create a clone with a different engine mode from the source Aurora DB cluster

• This procedure only applies to older engine versions that support Aurora Serverless v1.
Suppose that you have an Aurora Serverless v1 cluster and you want to create a clone that's
a provisioned cluster. In that case, use the restore-db-cluster-to-point-in-time CLI
command and specify values similar parameter values as in the previous example, plus these
additional parameters:

Creating an Aurora clone 498

https://docs.aws.amazon.com/cli/latest/reference/rds/restore-db-cluster-to-point-in-time.html

Amazon Aurora User Guide for Aurora

• --engine-mode – Use this parameter only to create clones that are of a different engine
mode from the source Aurora DB cluster. This parameter only applies to the older engine
versions that support Aurora Serverless v1. Choose the value to pass with --engine-mode
as follows:

• Use --engine-mode provisioned to create a provisioned Aurora DB cluster clone from
an Aurora Serverless DB cluster.

Note

If you intend to use Aurora Serverless v2 with a cluster that was cloned
from Aurora Serverless v1, you still specify the engine mode for the clone as
provisioned. Then you perform additional upgrade and migration steps
afterward.

• Use --engine-mode serverless to create an Aurora Serverless v1 clone from a
provisioned Aurora DB cluster. When you specify the serverless engine mode, you can
also choose the --scaling-configuration.

• --scaling-configuration – (Optional) Use with --engine-mode serverless to
configure the minimum and maximum capacity for an Aurora Serverless v1 clone. If you
don't use this parameter, Aurora creates an Aurora Serverless v1 clone using the default
Aurora Serverless v1 capacity values for the DB engine.

The following example creates a provisioned clone named my-clone, from an Aurora Serverless v1
DB cluster named my-source-cluster.

For Linux, macOS, or Unix:

aws rds restore-db-cluster-to-point-in-time \
 --source-db-cluster-identifier my-source-cluster \
 --db-cluster-identifier my-clone \
 --engine-mode provisioned \
 --restore-type copy-on-write \
 --use-latest-restorable-time

For Windows:

aws rds restore-db-cluster-to-point-in-time ^

Creating an Aurora clone 499

Amazon Aurora User Guide for Aurora

 --source-db-cluster-identifier my-source-cluster ^
 --db-cluster-identifier my-clone ^
 --engine-mode provisioned ^
 --restore-type copy-on-write ^
 --use-latest-restorable-time

These commands return the JSON object containing details of the clone that you need to create
the DB instance. You can't do that until the status of the clone (the empty Aurora DB cluster) has
the status Available.

Note

The restore-db-cluster-to-point-in-time AWS CLI command only restores the DB cluster,
not the DB instances for that DB cluster. You run the create-db-instance command to create
DB instances for the restored DB cluster. With that command, you specify the identifier of
the restored DB cluster as the --db-cluster-identifier parameter. You can create
DB instances only after the restore-db-cluster-to-point-in-time command has
completed and the DB cluster is available.
Suppose that you start with an Aurora Serverless v1 cluster and intend to migrate it to an
Aurora Serverless v2 cluster. You create a provisioned clone of the Aurora Serverless v1
cluster as the initial step in the migration. For the full procedure, including any required
version upgrades, see Upgrading from an Aurora Serverless v1 cluster to Aurora Serverless
v2.

Checking the status and getting clone details

You can use the following command to check the status of your newly created clone cluster.

$ aws rds describe-db-clusters --db-cluster-identifier my-clone --query '*[].[Status]'
 --output text

Or you can obtain the status and the other values that you need to create the DB instance for your
clone by using the following AWS CLI query.

For Linux, macOS, or Unix:

aws rds describe-db-clusters --db-cluster-identifier my-clone \

Creating an Aurora clone 500

https://docs.aws.amazon.com/cli/latest/reference/rds/restore-db-cluster-to-point-in-time.html
https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-instance.html

Amazon Aurora User Guide for Aurora

 --query '*[].
{Status:Status,Engine:Engine,EngineVersion:EngineVersion,EngineMode:EngineMode}'

For Windows:

aws rds describe-db-clusters --db-cluster-identifier my-clone ^
 --query "*[].
{Status:Status,Engine:Engine,EngineVersion:EngineVersion,EngineMode:EngineMode}"

This query returns output similar to the following.

[
 {
 "Status": "available",
 "Engine": "aurora-mysql",
 "EngineVersion": "8.0.mysql_aurora.3.04.1",
 "EngineMode": "provisioned"
 }
]

Creating the Aurora DB instance for your clone

Use the create-db-instance CLI command to create the DB instance for your Aurora Serverless v2 or
provisioned clone. You don't create a DB instance for an Aurora Serverless v1 clone.

The DB instance inherits the --master-username and --master-user-password properties
from the source DB cluster.

The following example creates a DB instance for a provisioned clone.

For Linux, macOS, or Unix:

aws rds create-db-instance \
 --db-instance-identifier my-new-db \
 --db-cluster-identifier my-clone \
 --db-instance-class db.r6g.2xlarge \
 --engine aurora-mysql

For Windows:

aws rds create-db-instance ^

Creating an Aurora clone 501

https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-instance.html

Amazon Aurora User Guide for Aurora

 --db-instance-identifier my-new-db ^
 --db-cluster-identifier my-clone ^
 --db-instance-class db.r6g.2xlarge ^
 --engine aurora-mysql

The following example creates an Aurora Serverless v2 DB instance, for a clone that uses an engine
version that supports Aurora Serverless v2.

For Linux, macOS, or Unix:

aws rds create-db-instance \
 --db-instance-identifier my-new-db \
 --db-cluster-identifier my-clone \
 --db-instance-class db.serverless \
 --engine aurora-postgresql

For Windows:

aws rds create-db-instance ^
 --db-instance-identifier my-new-db ^
 --db-cluster-identifier my-clone ^
 --db-instance-class db.serverless ^
 --engine aurora-mysql

Parameters to use for cloning

The following table summarizes the various parameters used with restore-db-cluster-to-
point-in-time to clone Aurora DB clusters.

Parameter Description

--source-db-
cluster-identif
ier

Use the name of the source Aurora DB cluster that you want to clone.

--db-cluster-
identifier

Choose a meaningful name for your clone when you create it with the
restore-db-cluster-to-point-in-time command. Then you
pass this name to the create-db-instance command.

Creating an Aurora clone 502

Amazon Aurora User Guide for Aurora

Parameter Description

--restore-type Specify copy-on-write as the --restore-type to create a clone
of the source DB cluster rather than restoring the source Aurora DB
cluster.

--use-latest-
restorable-tim
e

This value points to the latest restorable volume data for the source DB
cluster. Use it to create clones.

--serverless-
v2-scaling-con
figuration

(Newer versions that support Aurora Serverless v2) Use this parameter
to configure the minimum and maximum capacity for an Aurora
Serverless v2 clone. If you don't specify this parameter, you can't create
any Aurora Serverless v2 instances in the clone cluster until you modify
the cluster to add this attribute.

--engine-mode (Older versions that support Aurora Serverless v1 only) Use this
parameter to create clones that are of a different type from the source
Aurora DB cluster, with one of the following values:

• Use provisioned to create a provisioned clone from an Aurora
Serverless v1 DB cluster.

• Use serverless to create an Aurora Serverless v1 clone from a
provisioned or Aurora Serverless v2 DB cluster.

When you specify the serverless engine mode, you can also
choose the --scaling-configuration .

--scaling-
configuration

(Older versions that support Aurora Serverless v1 only) Use this
parameter to configure the minimum and maximum capacity for an
Aurora Serverless v1 clone. If you don't specify this parameter, Aurora
creates the clone using the default capacity values for the DB engine.

Cross-VPC cloning with Amazon Aurora

Suppose that you want to impose different network access controls on the original cluster and
the clone. For example, you might use cloning to make a copy of a production Aurora cluster in a

Cross-VPC cloning 503

Amazon Aurora User Guide for Aurora

different VPC for development and testing. Or you might create a clone as part of a migration from
public subnets to private subnets, to enhance your database security.

The following sections demonstrate how to set up the network configuration for the clone so
that the original cluster and the clone can both access the same Aurora storage nodes, even from
different subnets or different VPCs. Verifying the network resources in advance can avoid errors
during cloning that might be difficult to diagnose.

If you aren’t familiar with how Aurora interacts with VPCs, subnets, and DB subnet groups, see
Amazon VPC and Amazon Aurora first. You can work through the tutorials in that section to create
these kinds of resources in the AWS console, and understand how they fit together.

Because the steps involve switching between the RDS and EC2 services, the examples use AWS CLI
commands to help you understand how to automate such operations and save the output.

• Before you begin
• Gathering information about the network environment
• Creating network resources for the clone
• Creating an Aurora clone with new network settings

Before you begin

Before you start setting up a cross-VPC clone, make sure to have the following resources:

• An Aurora DB cluster to use as the source for cloning. If this is your first time creating an Aurora
DB cluster, consult the tutorials in Getting started with Amazon Aurora to set up a cluster using
either the MySQL or PostgreSQL database engine.

• A second VPC, if you intend to create a cross-VPC clone. If you don’t have a VPC to use for the
clone, see Tutorial: Create a VPC for use with a DB cluster (IPv4 only) or Tutorial: Create a VPC for
use with a DB cluster (dual-stack mode).

Gathering information about the network environment

With cross-VPC cloning, the network environment can differ substantially between the original
cluster and its clone. Before you create the clone, collect and record information about the VPC,
subnets, DB subnet group, and AZs used in the original cluster. That way, you can minimize
the chances of problems. If a network problem does occur, you won’t have to interrupt any
troubleshooting activities to search for diagnostic information. The following sections show CLI

Cross-VPC cloning 504

Amazon Aurora User Guide for Aurora

examples to gather these types of information. You can save the details in whichever format is
convenient to consult while creating the clone and doing any troubleshooting.

• Step 1: Check the Availability Zones of the original cluster
• Step 2: Check the DB subnet group of the original cluster
• Step 3: Check the subnets of the original cluster
• Step 4: Check the Availability Zones of the DB instances in the original cluster
• Step 5: Check the VPCs you can use for the clone

Step 1: Check the Availability Zones of the original cluster

Before you create the clone, verify which AZs the original cluster uses for its storage. As explained
in Amazon Aurora storage and reliability, the storage for each Aurora cluster is associated with
exactly three AZs. Because the Amazon Aurora DB clusters takes advantage of the separation of
compute and storage, this rule is true regardless of how many instances are in the cluster.

For example, run a CLI command such as the following, substituting your own cluster name for
my_cluster. The following example produces a list sorted alphabetically by the AZ name.

aws rds describe-db-clusters \
 --db-cluster-identifier my_cluster \
 --query 'sort_by(*[].AvailabilityZones[].{Zone:@},&Zone)' \
 --output text

The following example shows sample output from the preceding describe-db-clusters
command. It demonstrates that the storage for the Aurora cluster always uses three AZs.

us-east-1c
us-east-1d
us-east-1e

To create a clone in a network environment that doesn’t have all the resources in place to connect
to these AZs, you must create subnets associated with at least two of those AZs, and then create a
DB subnet group containing those two or three subnets. The following examples show how.

Step 2: Check the DB subnet group of the original cluster

If you want to use the same number of subnets for the clone as in the original cluster, you can
get the number of subnets from the DB subnet group of the original cluster. An Aurora DB subnet

Cross-VPC cloning 505

Amazon Aurora User Guide for Aurora

group contains at least two subnets, each associated with a different AZ. Make a note of which AZs
the subnets are associated with.

The following example shows how to find the DB subnet group of the original cluster, and then
work backwards to the corresponding AZs. Substitute the name of your cluster for my_cluster
in the first command. Substitute the name of the DB subnet group for my_subnet in the second
command.

aws rds describe-db-clusters --db-cluster-identifier my_cluster \
 --query '*[].DBSubnetGroup' --output text

aws rds describe-db-subnet-groups --db-subnet-group-name my_subnet_group \
 --query '*[].Subnets[].[SubnetAvailabilityZone.Name]' --output text

Sample output might look similar to the following, for a cluster with a DB subnet group containing
containing two subnets. In this case, two-subnets is a name that was specified when creating the
DB subnet group.

two-subnets

us-east-1d
us-east-1c

For a cluster where the DB subnet group contains three subnets, the output might look similar to
the following.

three-subnets

us-east-1f
us-east-1d
us-east-1c

Step 3: Check the subnets of the original cluster

If you need more details about the subnets in the original cluster, run AWS CLI commands similar
to the following. You can examine the subnet attributes such as IP address ranges, owner, and
so on. That way, you can determine whether to use different subnets in the same VPC, or create
subnets with similar characteristics in a different VPC.

Find the subnet IDs of all the subnets that are available in your VPC.

Cross-VPC cloning 506

Amazon Aurora User Guide for Aurora

aws ec2 describe-subnets --filters Name=vpc-id,Values=my_vpc \
 --query '*[].[SubnetId]' --output text

Find the exact subnets used in your DB subnet group.

aws rds describe-db-subnet-groups --db-subnet-group-name my_subnet_group \
 --query '*[].Subnets[].[SubnetIdentifier]' --output text

Then specify the subnets that you want to investigate in a list, as in the following command.
Substitute the names of your subnets for my_subnet_1 and so on.

aws ec2 describe-subnets \
 --subnet-ids '["my_subnet_1","my_subnet2","my_subnet3"]'

The following example shows partial output from such a describe-subnets command. The
output shows some of the important attributes you can see for each subnet, such as its associated
AZ and the VPC that it’s part of.

{
 'Subnets': [
 {
 'AvailabilityZone': 'us-east-1d',
 'AvailableIpAddressCount': 54,
 'CidrBlock': '10.0.0.64/26',
 'State': 'available',
 'SubnetId': 'subnet-000a0bca00e0b0000',
 'VpcId': 'vpc-3f3c3fc3333b3ffb3',
 ...
 },
 {
 'AvailabilityZone': 'us-east-1c',
 'AvailableIpAddressCount': 55,
 'CidrBlock': '10.0.0.0/26',
 'State': 'available',
 'SubnetId': 'subnet-4b4dbfe4d4a4fd4c4',
 'VpcId': 'vpc-3f3c3fc3333b3ffb3',
 ...

Cross-VPC cloning 507

Amazon Aurora User Guide for Aurora

Step 4: Check the Availability Zones of the DB instances in the original cluster

You can use this procedure to understand the AZs used for the DB instances in the original cluster.
That way, you can set up the exact same AZs for the DB instances in the clone. You can also use
more or fewer DB instances in the clone depending on whether the clone is used for production,
development and testing, and so on.

For each instance in the original cluster, run a command such as the following. Make sure that the
instance has finished creating and is in the Available state first. Substitute the instance identifier
for my_instance.

aws rds describe-db-instances --db-instance-identifier my_instance \
 --query '*[].AvailabilityZone' --output text

The following example shows the output of running the preceding describe-db-instances
command. The Aurora cluster has four database instances. Therefore, we run the command four
times, substituting a different DB instance identifier each time. The output shows how those DB
instances are spread across a maximum of three AZs.

us-east-1a
us-east-1c
us-east-1d
us-east-1a

After the clone is created and you are adding DB instances to it, you can specify these same AZ
names in the create-db-instance commands. You might do so to set up DB instances in the
new cluster configured for exactly the same AZs as in the original cluster.

Step 5: Check the VPCs you can use for the clone

If you intend to create the clone in a different VPC than the original, you can get a list of the VPC
IDs available for your account. You might also do this step if you need to create any additional
subnets in the same VPC as the original cluster. When you run the command to create a subnet,
you specify the VPC ID as a parameter.

To list all the VPCs for your account, run the following CLI command:

aws ec2 describe-vpcs --query '*[].[VpcId]' --output text

Cross-VPC cloning 508

Amazon Aurora User Guide for Aurora

The following example shows sample output from the preceding describe-vpcs command. The
output demonstrates that there are four VPCs in the current AWS account that can be used as the
source or the destination for cross-VPC cloning.

vpc-fd111111
vpc-2222e2cd2a222f22e
vpc-33333333a33333d33
vpc-4ae4d4de4a4444dad

You can use the same VPC as the destination for the clone, or a different VPC. If the original cluster
and the clone are in the same VPC, you can reuse the same DB subnet group for the clone. You can
also create a different DB subnet group. For example, the new DB subnet group might use private
subnets, while the original cluster’s DB subnet group might use public subnets. If you create the
clone in a different VPC, make sure that there are enough subnets in the new VPC and that the
subnets are associated with the right AZs from the original cluster.

Creating network resources for the clone

If while collecting the network information you discovered that additional network resources
are needed for the clone, you can create those resources before trying to set up the clone. For
example, you might need to create more subnets, subnets associated with specific AZs, or a new DB
subnet group.

• Step 1: Create the subnets for the clone

• Step 2: Create the DB subnet group for the clone

Step 1: Create the subnets for the clone

If you need to create new subnets for the clone, run a command similar to the following. You might
need to do this when creating the clone in a different VPC, or when making some other network
change such as using private subnets instead of public subnets.

AWS automatically generates the ID of the subnet. Substitute the name of the clone's VPC for
my_vpc. Choose the address range for the --cidr-block option to allow at least 16 IP addresses
in the range. You can include any other properties that you want to specify. Run the command aws
ec2 create-subnet help to see all the choices.

aws ec2 create-subnet --vpc-id my_vpc \

Cross-VPC cloning 509

Amazon Aurora User Guide for Aurora

 --availability-zone AZ_name --cidr-block IP_range

The following example shows some important attributes of a newly created subnet.

{
 'Subnet': {
 'AvailabilityZone': 'us-east-1b',
 'AvailableIpAddressCount': 59,
 'CidrBlock': '10.0.0.64/26',
 'State': 'available',
 'SubnetId': 'subnet-44b4a44f4e44db444',
 'VpcId': 'vpc-555fc5df555e555dc',
 ...
 }
}

Step 2: Create the DB subnet group for the clone

If you are creating the clone in a different VPC, or a different set of subnets within the same VPC,
then you create a new DB subnet group and specify it when creating the clone.

Make sure that you know all the following details. You can find all of these from the output of the
preceding examples.

1. VPC of the original cluster. For instructions, see Step 3: Check the subnets of the original cluster.
2. VPC of the clone, if you are creating it in a different VPC. For instructions, see Step 5: Check the

VPCs you can use for the clone.
3. Three AZs associated with the Aurora storage for the original cluster. For instructions, see Step 1:

Check the Availability Zones of the original cluster.
4. Two or three AZs associated with the DB subnet group for the original cluster. For instructions,

see Step 2: Check the DB subnet group of the original cluster.
5. The subnet IDs and associated AZs of all the subnets in the VPC you intend to use for the clone.

Use the same describe-subnets command as in Step 3: Check the subnets of the original
cluster, substituting the VPC ID of the destination VPC.

Check how many AZs are both associated with the storage of the original cluster, and associated
with subnets in the destination VPC. To successfully create the clone, there must be two or three
AZs in common. If you have fewer than two AZs in common, go back to Step 1: Create the subnets
for the clone. Create one, two, or three new subnets that are associated with the AZs associated
with the storage of the original cluster.

Cross-VPC cloning 510

Amazon Aurora User Guide for Aurora

Choose subnets in the destination VPC that are associated with the same AZs as the Aurora storage
in the originally cluster. Ideally, choose three AZs. Doing so gives you the most flexibility to spread
the DB instances of the clone across multiple AZs for high availability of compute resources.

Run a command similar to the following to create the new DB subnet group. Substitute the IDs
of your subnets in the list. If you specify the subnet IDs using environment variables, be careful
to quote the --subnet-ids parameter list in a way that preserves the double quotation marks
around the IDs.

aws rds create-db-subnet-group --db-subnet-group-name my_subnet_group \
 --subnet-ids '["my_subnet_1","my_subnet_2","my_subnet3"]' \
 --db-subnet-group-description 'DB subnet group with 3 subnets for clone'

The following example shows partial output of the create-db-subnet-group command.

{
 'DBSubnetGroup': {
 'DBSubnetGroupName': 'my_subnet_group',
 'DBSubnetGroupDescription': 'DB subnet group with 3 subnets for clone',
 'VpcId': 'vpc-555fc5df555e555dc',
 'SubnetGroupStatus': 'Complete',
 'Subnets': [
 {
 'SubnetIdentifier': 'my_subnet_1',
 'SubnetAvailabilityZone': {
 'Name': 'us-east-1c'
 },
 'SubnetStatus': 'Active'
 },
 {
 'SubnetIdentifier': 'my_subnet_2',
 'SubnetAvailabilityZone': {
 'Name': 'us-east-1d'
 },
 'SubnetStatus': 'Active'
 }
 ...
],
 'SupportedNetworkTypes': [
 'IPV4'
]
 }

Cross-VPC cloning 511

Amazon Aurora User Guide for Aurora

}

At this point, you haven’t actually created the clone yet. You have created all the relevant VPC
and subnet resources so that you can specify the appropriate parameters to the restore-db-
cluster-to-point-in-time and create-db-instance commands when creating the clone.

Creating an Aurora clone with new network settings

Once you have made sure that the right configuration of VPCs, subnets, AZs, and subnet groups
is in place for the new cluster to use, you can perform the actual cloning operation. The following
CLI examples highlight the options such as --db-subnet-group-name, --availability-zone,
and --vpc-security-group-ids that you specify on the commands to set up the clone and its
DB instances.

• Step 1: Specify the DB subnet group for the clone

• Step 2: Specify network settings for instances in the clone

• Step 3: Establishing connectivity from a client system to a clone

Step 1: Specify the DB subnet group for the clone

When you create the clone, you can configure all the right VPC, subnet, and AZ settings by
specifying a DB subnet group. Use the commands in the preceding examples to verify all the
relationships and mappings that go into the DB subnet group.

For example, the following commands demonstrate cloning an original cluster to a clone. In the
first example, the source cluster is associated with two subnets and the clone is associated with
three subnets. The second example shows the opposite case, cloning from a cluster with three
subnets to a cluster with two subnets.

aws rds restore-db-cluster-to-point-in-time \
 --source-db-cluster-identifier cluster-with-3-subnets \
 --db-cluster-identifier cluster-cloned-to-2-subnets \
 --restore-type copy-on-write --use-latest-restorable-time \
 --db-subnet-group-name two-subnets

If you intend to use Aurora Serverless v2 instances in the clone, include a --serverless-v2-
scaling-configuration option when you create the clone, as shown. Doing so lets you use
the db.serverless class when creating DB instances in the clone. You can also modify the clone

Cross-VPC cloning 512

Amazon Aurora User Guide for Aurora

later to add this scaling configuration attribute. The capacity numbers in this example allow each
Serverless v2 instance in the cluster to scale between 2 and 32 Aurora Capacity Units (ACUs). For
information about the Aurora Serverless v2 feature and how to choose the capacity range, see
Using Aurora Serverless v2.

aws rds restore-db-cluster-to-point-in-time \
 --source-db-cluster-identifier cluster-with-2-subnets \
 --db-cluster-identifier cluster-cloned-to-3-subnets \
 --restore-type copy-on-write --use-latest-restorable-time \
 --db-subnet-group-name three-subnets \
 --serverless-v2-scaling-configuration 'MinCapacity=2,MaxCapacity=32'

Regardless of the number of subnets used by the DB instances, the Aurora storage for the source
cluster and the clone is associated with three AZs. The following example lists the AZs associated
with both the original cluster and the clone, for both of the restore-db-cluster-to-point-
in-time commands in the preceding examples.

aws rds describe-db-clusters --db-cluster-identifier cluster-with-3-subnets \
 --query 'sort_by(*[].AvailabilityZones[].{Zone:@},&Zone)' --output text

us-east-1c
us-east-1d
us-east-1f

aws rds describe-db-clusters --db-cluster-identifier cluster-cloned-to-2-subnets \
 --query 'sort_by(*[].AvailabilityZones[].{Zone:@},&Zone)' --output text

us-east-1c
us-east-1d
us-east-1f

aws rds describe-db-clusters --db-cluster-identifier cluster-with-2-subnets \
 --query 'sort_by(*[].AvailabilityZones[].{Zone:@},&Zone)' --output text

us-east-1a
us-east-1c
us-east-1d

aws rds describe-db-clusters --db-cluster-identifier cluster-cloned-to-3-subnets \
 --query 'sort_by(*[].AvailabilityZones[].{Zone:@},&Zone)' --output text

us-east-1a

Cross-VPC cloning 513

Amazon Aurora User Guide for Aurora

us-east-1c
us-east-1d

Because at least two of the AZs overlap between each pair of original and clone clusters, both
clusters can access the same underlying Aurora storage.

Step 2: Specify network settings for instances in the clone

When you create DB instances in the clone, by default they inherit the DB subnet group from
the cluster itself. That way, Aurora automatically assigns each instance to a particular subnet,
and creates it in the AZ that’s associated with the subnet. This choice is convenient, especially for
development and test systems, because you don’t have to keep track of the subnet IDs or the AZs
while adding new instances to the clone.

As an alternative, you can specify the AZ when you create an Aurora DB instance for the clone.
The AZ that you specify must be from the set of AZs that are associated with the clone. If the DB
subnet group you use for the clone only contains two subnets, then you can only pick from the AZs
associated with those two subnets. This choice offers flexibility and resilience for highly available
systems, because you can make sure that the writer instance and the standby reader instance are
in different AZs. Or if you add additional readers to the cluster, you can make sure that they are
spread across three AZs. That way, even in the rare case of an AZ failure, you still have a writer
instance and another reader instance in two other AZs.

The following example adds a provisioned DB instance to a cloned Aurora PostgreSQL cluster that
uses a custom DB subnet group.

aws rds create-db-instance --db-cluster-identifier my_aurora_postgresql_clone \
 --db-instance-identifier my_postgres_instance \
 --db-subnet-group-name my_new_subnet \
 --engine aurora-postgresql \
 --db-instance-class db.t4g.medium

The following example shows partial output from such a command.

{
 'DBInstanceIdentifier': 'my_postgres_instance',
 'DBClusterIdentifier': 'my_aurora_postgresql_clone',
 'DBInstanceClass': 'db.t4g.medium',
 'DBInstanceStatus': 'creating'
 ...

Cross-VPC cloning 514

Amazon Aurora User Guide for Aurora

}

The following example adds an Aurora Serverless v2 DB instance to an Aurora MySQL clone that
uses a custom DB subnet group. To be able to use Serverless v2 instances, make sure to specify
the --serverless-v2-scaling-configuration option for the restore-db-cluster-to-
point-in-time command, as shown in preceding examples.

aws rds create-db-instance --db-cluster-identifier my_aurora_mysql_clone \
 --db-instance-identifier my_mysql_instance \
 --db-subnet-group-name my_other_new_subnet \
 --engine aurora-mysql \
 --db-instance-class db.serverless

The following example shows partial output from such a command.

{
 'DBInstanceIdentifier': 'my_mysql_instance',
 'DBClusterIdentifier': 'my_aurora_mysql_clone',
 'DBInstanceClass': 'db.serverless',
 'DBInstanceStatus': 'creating'
 ...
}

Step 3: Establishing connectivity from a client system to a clone

If you are already connecting to an Aurora cluster from a client system, you might want to allow
the same type of connectivity to a new clone. For example, you might connect to the original
cluster from an Amazon Cloud9 instance or EC2 instance. To allow connections from the same
client systems, or new ones that you create in the destination VPC, set up equivalent DB subnet
groups and VPC security groups as in the VPC. Then specify the subnet group and security groups
when you create the clone.

The following examples set up an Aurora Serverless v2 clone. That configuration is based on
the combination of --engine-mode provisioned and --serverless-v2-scaling-
configuration when creating the DB cluster, and then --db-instance-class
db.serverless when creating each DB instance in the cluster. The provisioned engine mode is
the default, so you can omit that option if you prefer.

aws rds restore-db-cluster-to-point-in-time \

Cross-VPC cloning 515

Amazon Aurora User Guide for Aurora

 --source-db-cluster-identifier serverless-sql-postgres\
 --db-cluster-identifier serverless-sql-postgres-clone \
 --db-subnet-group-name 'default-vpc-1234' \
 --vpc-security-group-ids 'sg-4567' \
 --serverless-v2-scaling-configuration 'MinCapacity=0.5,MaxCapacity=16' \
 --restore-type copy-on-write \
 --use-latest-restorable-time

Then, when creating the DB instances in the clone, specify the same --db-subnet-group-name
option. Optionally, you can include the --availability-zone option and specify one of the AZs
associated with the subnets in that subnet group. That AZ must also be one of the AZs associated
with the original cluster.

aws rds create-db-instance \
 --db-cluster-identifier serverless-sql-postgres-clone \
 --db-instance-identifier serverless-sql-postgres-clone-instance \
 --db-instance-class db.serverless \
 --db-subnet-group-name 'default-vpc-987zyx654' \
 --availability-zone 'us-east-1c' \
 --engine aurora-postgresql

Moving a cluster from public subnets to private ones

You can use cloning to migrate a cluster between public and private subnets. You might do this
when adding additional layers of security to your application before deploying it to production. For
this example, you should already have the private subnets and NAT gateway set up before starting
the cloning process with Aurora.

For the steps involving Aurora, you can follow the same general steps as in the preceding examples
to Gathering information about the network environment and Creating an Aurora clone with new
network settings. The main difference is that even if you have public subnets that map to all the
AZs from the original cluster, now you must verify that you have enough private subnets for an
Aurora cluster, and that those subnets are associated with all the same AZs that are used for Aurora
storage in the original cluster. Similar to other cloning use cases, you can make the DB subnet
group for the clone with either three or two private subnets that are associated with the required
AZs. However, if you use two private subnets in the DB subnet group, you must have a third private
subnet that’s associated with the third AZ used for Aurora storage in the original cluster.

You can consult this checklist to verify that all the requirements are in place to perform this type of
cloning operation.

Cross-VPC cloning 516

Amazon Aurora User Guide for Aurora

• Record the three AZs that are associated with the original cluster. For instructions, see Step 1:
Check the Availability Zones of the original cluster.

• Record the three or two AZs that are associated with the public subnets in the DB subnet group
for the original cluster. For instructions, see Step 3: Check the subnets of the original cluster.

• Create private subnets that map to all three of the AZs that are associated with the original
cluster. Also do any other networking setup, such as creating a NAT gateway, to be able to
communicate with the private subnets. For instructions, see Create a subnet in the Amazon
Virtual Private Cloud User Guide.

• Create a new DB subnet group containing three or two of the private subnets that are associated
with the AZs from the first point. For instructions, see Step 2: Create the DB subnet group for the
clone.

When all the prerequisites are in place, you can pause database activity on the original cluster
while you create the clone and switch your application to use it. After the clone is created and you
verify that you can connect to it, run your application code, and so on, you can discontinue use of
the original cluster.

End-to-end example of creating a cross-VPC clone

Creating a clone in a different VPC than the original uses the same general steps as in the
preceding examples. Because the VPC ID is a property of the subnets, you don’t actually specify
the VPC ID as a parameter when running any of the RDS CLI commands. The main difference is
that you are more likely to need to create new subnets, new subnets mapped to specific AZs, a VPC
security group, and a new DB subnet group. That’s especially true if this is the first Aurora cluster
that you create in that VPC.

You can consult this checklist to verify that all the requirements are in place to perform this type of
cloning operation.

• Record the three AZs that are associated with the original cluster. For instructions, see Step 1:
Check the Availability Zones of the original cluster.

• Record the three or two AZs that are associated with the subnets in the DB subnet group for the
original cluster. For instructions, see Step 2: Check the DB subnet group of the original cluster.

• Create subnets that map to all three of the AZs that are associated with the original cluster. For
instructions, see Step 1: Create the subnets for the clone.

• Do any other networking setup, such as setting up a VPC security group, for client systems,
application servers, and so on to be able to communicate with the DB instances in the clone. For
instructions, see Controlling access with security groups.

Cross-VPC cloning 517

https://docs.aws.amazon.com/vpc/latest/userguide/create-subnets.html

Amazon Aurora User Guide for Aurora

• Create a new DB subnet group containing three or two of the subnets that are associated with
the AZs from the first point. For instructions, see Step 2: Create the DB subnet group for the
clone.

When all the prerequisites are in place, you can pause database activity on the original cluster
while you create the clone and switch your application to use it. After the clone is created and you
verify that you can connect to it, run your application code, and so on, you can consider whether to
keep both the original and clones running, or discontinue use of the original cluster.

The following Linux examples show the sequence of AWS CLI operations to clone an Aurora DB
cluster from one VPC to another. Some fields that aren’t relevant to the examples aren’t shown in
the command output.

First, we check the IDs of the source and destination VPCs. The descriptive name that you assign to
a VPC when you create it is represented as a tag in the VPC metadata.

$ aws ec2 describe-vpcs --query '*[].[VpcId,Tags]'
[
 [
 'vpc-0f0c0fc0000b0ffb0',
 [
 {
 'Key': 'Name',
 'Value': 'clone-vpc-source'
 }
]
],
 [
 'vpc-9e99d9f99a999bd99',
 [
 {
 'Key': 'Name',
 'Value': 'clone-vpc-dest'
 }
]
]
]

The original cluster already exists in the source VPC. To set up the clone using the same set of AZs
for the Aurora storage, we check the AZs used by the original cluster.

Cross-VPC cloning 518

Amazon Aurora User Guide for Aurora

$ aws rds describe-db-clusters --db-cluster-identifier original-cluster \
 --query 'sort_by(*[].AvailabilityZones[].{Zone:@},&Zone)' --output text

us-east-1c
us-east-1d
us-east-1f

We make sure there are subnets that correspond to the AZs used by the original cluster: us-
east-1c, us-east-1d, and us-east-1f.

$ aws ec2 create-subnet --vpc-id vpc-9e99d9f99a999bd99 \
 --availability-zone us-east-1c --cidr-block 10.0.0.128/28
{
 'Subnet': {
 'AvailabilityZone': 'us-east-1c',
 'SubnetId': 'subnet-3333a33be3ef3e333',
 'VpcId': 'vpc-9e99d9f99a999bd99',
 }
}

$ aws ec2 create-subnet --vpc-id vpc-9e99d9f99a999bd99 \
--availability-zone us-east-1d --cidr-block 10.0.0.160/28
{
 'Subnet': {
 'AvailabilityZone': 'us-east-1d',
 'SubnetId': 'subnet-4eeb444cd44b4d444',
 'VpcId': 'vpc-9e99d9f99a999bd99',
 }
}

$ aws ec2 create-subnet --vpc-id vpc-9e99d9f99a999bd99 \
--availability-zone us-east-1f --cidr-block 10.0.0.224/28
{
 'Subnet': {
 'AvailabilityZone': 'us-east-1f',
 'SubnetId': 'subnet-66eea6666fb66d66c',
 'VpcId': 'vpc-9e99d9f99a999bd99',
 }
}

This example confirms that there are subnets that map to the necessary AZs in the destination VPC.

Cross-VPC cloning 519

Amazon Aurora User Guide for Aurora

aws ec2 describe-subnets --query 'sort_by(*[] | [?VpcId == `vpc-9e99d9f99a999bd99`] |
[].{SubnetId:SubnetId,VpcId:VpcId,AvailabilityZone:AvailabilityZone},
 &AvailabilityZone)' --output table

| DescribeSubnets |
+------------------+----------------------------+-------------------------+
| AvailabilityZone | SubnetId | VpcId |
+------------------+----------------------------+-------------------------+
us-east-1a	subnet-000ff0e00000c0aea	vpc-9e99d9f99a999bd99
us-east-1b	subnet-1111d111111ca11b1	vpc-9e99d9f99a999bd99
us-east-1c	subnet-3333a33be3ef3e333	vpc-9e99d9f99a999bd99
us-east-1d	subnet-4eeb444cd44b4d444	vpc-9e99d9f99a999bd99
us-east-1f	subnet-66eea6666fb66d66c	vpc-9e99d9f99a999bd99
+------------------+----------------------------+-------------------------+

Before creating an Aurora DB cluster in the VPC, you must have a DB subnet group with subnets
that map to the AZs used for Aurora storage. When you create a regular cluster, you can use any set
of three AZs. When you clone an existing cluster, the subnet group must match at least two of the
three AZs that it uses for Aurora storage.

$ aws rds create-db-subnet-group \
 --db-subnet-group-name subnet-group-in-other-vpc \
 --subnet-ids
 '["subnet-3333a33be3ef3e333","subnet-4eeb444cd44b4d444","subnet-66eea6666fb66d66c"]' \
 --db-subnet-group-description 'DB subnet group with 3 subnets:
 subnet-3333a33be3ef3e333,subnet-4eeb444cd44b4d444,subnet-66eea6666fb66d66c'

{
 'DBSubnetGroup': {
 'DBSubnetGroupName': 'subnet-group-in-other-vpc',
 'DBSubnetGroupDescription': 'DB subnet group with 3 subnets:
 subnet-3333a33be3ef3e333,subnet-4eeb444cd44b4d444,subnet-66eea6666fb66d66c',
 'VpcId': 'vpc-9e99d9f99a999bd99',
 'SubnetGroupStatus': 'Complete',
 'Subnets': [
 {
 'SubnetIdentifier': 'subnet-4eeb444cd44b4d444',
 'SubnetAvailabilityZone': { 'Name': 'us-east-1d' }
 },
 {
 'SubnetIdentifier': 'subnet-3333a33be3ef3e333',

Cross-VPC cloning 520

Amazon Aurora User Guide for Aurora

 'SubnetAvailabilityZone': { 'Name': 'us-east-1c' }
 },
 {
 'SubnetIdentifier': 'subnet-66eea6666fb66d66c',
 'SubnetAvailabilityZone': { 'Name': 'us-east-1f' }
 }
]
 }
}

Now the subnets and DB subnet group are in place. The following example shows the restore-
db-cluster-to-point-in-time that clones the cluster. The --db-subnet-group-name
option associates the clone with the correct set of subnets that map to the correct set of AZs from
the original cluster.

$ aws rds restore-db-cluster-to-point-in-time \
 --source-db-cluster-identifier original-cluster \
 --db-cluster-identifier clone-in-other-vpc \
 --restore-type copy-on-write --use-latest-restorable-time \
 --db-subnet-group-name subnet-group-in-other-vpc

{
 'DBClusterIdentifier': 'clone-in-other-vpc',
 'DBSubnetGroup': 'subnet-group-in-other-vpc',
 'Engine': 'aurora-postgresql',
 'EngineVersion': '15.4',
 'Status': 'creating',
 'Endpoint': 'clone-in-other-vpc.cluster-c0abcdef.us-east-1.rds.amazonaws.com'
}

The following example confirms that the Aurora storage in the clone uses the same set of AZs as in
the original cluster.

$ aws rds describe-db-clusters --db-cluster-identifier clone-in-other-vpc \
 --query 'sort_by(*[].AvailabilityZones[].{Zone:@},&Zone)' --output text

us-east-1c
us-east-1d
us-east-1f

Cross-VPC cloning 521

Amazon Aurora User Guide for Aurora

At this point, you can create DB instances for the clone. Make sure that the VPC security group
associated with each instance allows connections from the IP address ranges you use for the EC2
instances, application servers, and so on that are in the destination VPC.

Cross-account cloning with AWS RAM and Amazon Aurora

By using AWS Resource Access Manager (AWS RAM) with Amazon Aurora, you can share Aurora DB
clusters and clones that belong to your AWS account with another AWS account or organization.
Such cross-account cloning is much faster than creating and restoring a database snapshot. You can
create a clone of one of your Aurora DB clusters and share the clone. Or you can share your Aurora
DB cluster with another AWS account and let the account holder create the clone. The approach
that you choose depends on your use case.

For example, you might need to regularly share a clone of your financial database with your
organization's internal auditing team. In this case, your auditing team has its own AWS account
for the applications that it uses. You can give the auditing team's AWS account the permission to
access your Aurora DB cluster and clone it as needed.

On the other hand, if an outside vendor audits your financial data you might prefer to create the
clone yourself. You then give the outside vendor access to the clone only.

You can also use cross-account cloning to support many of the same use cases for cloning within
the same AWS account, such as development and testing. For example, your organization might
use different AWS accounts for production, development, testing, and so on. For more information,
see Overview of Aurora cloning.

Thus, you might want to share a clone with another AWS account or allow another AWS account to
create clones of your Aurora DB clusters. In either case, start by using AWS RAM to create a share
object. For complete information about sharing AWS resources between AWS accounts, see the
AWS RAM User Guide.

Creating a cross-account clone requires actions from the AWS account that owns the original
cluster, and the AWS account that creates the clone. First, the original cluster owner modifies the
cluster to allow one or more other accounts to clone it. If any of the accounts is in a different AWS
organization, AWS generates a sharing invitation. The other account must accept the invitation
before proceeding. Then each authorized account can clone the cluster. Throughout this process,
the cluster is identified by its unique Amazon Resource Name (ARN).

As with cloning within the same AWS account, additional storage space is used only if changes are
made to the data by the source or the clone. Charges for storage are then applied at that time.

Cross-account cloning 522

https://docs.aws.amazon.com/ram/latest/userguide/

Amazon Aurora User Guide for Aurora

If the source cluster is deleted, storage costs are distributed equally among remaining cloned
clusters.

Topics

• Limitations of cross-account cloning

• Allowing other AWS accounts to clone your cluster

• Cloning a cluster that is owned by another AWS account

Limitations of cross-account cloning

Aurora cross-account cloning has the following limitations:

• You can't clone an Aurora Serverless v1 cluster across AWS accounts.

• You can't view or accept invitations to shared resources with the AWS Management Console. Use
the AWS CLI, the Amazon RDS API, or the AWS RAM console to view and accept invitations to
shared resources.

• You can create only one new clone from a clone that's been shared with your AWS account.

• You can't share resources (clones or Aurora DB clusters) that have been shared with your AWS
account.

• You can create a maximum of 15 cross-account clones from any single Aurora DB cluster.

• Each of the 15 cross-account clones must be owned by a different AWS account. That is, you can
only create one cross-account clone of a cluster within any AWS account.

• After you clone a cluster, the original cluster and its clone are considered to be the same for
purposes of enforcing limits on cross-account clones. You can't create cross-account clones of
both the original cluster and the cloned cluster within the same AWS account. The total number
of cross-account clones for the original cluster and any of its clones can't exceed 15.

• You can't share an Aurora DB cluster with other AWS accounts unless the cluster is in an ACTIVE
state.

• You can't rename an Aurora DB cluster that's been shared with other AWS accounts.

• You can't create a cross-account clone of a cluster that is encrypted with the default RDS key.

• You can't create nonencrypted clones in one AWS account from encrypted Aurora DB clusters
that have been shared by another AWS account. The cluster owner must grant permission to
access the source cluster's AWS KMS key. However, you can use a different key when you create
the clone.

Cross-account cloning 523

Amazon Aurora User Guide for Aurora

Allowing other AWS accounts to clone your cluster

To allow other AWS accounts to clone a cluster that you own, use AWS RAM to set the sharing
permission. Doing so also sends an invitation to each of the other accounts that's in a different
AWS organization.

For the procedures to share resources owned by you in the AWS RAM console, see Sharing
resources owned by you in the AWS RAM User Guide.

Topics

• Granting permission to other AWS accounts to clone your cluster

• Checking if a cluster that you own is shared with other AWS accounts

Granting permission to other AWS accounts to clone your cluster

If the cluster that you're sharing is encrypted, you also share the AWS KMS key for the cluster. You
can allow AWS Identity and Access Management (IAM) users or roles in one AWS account to use a
KMS key in a different account.

To do this, you first add the external account (root user) to the KMS key's key policy through AWS
KMS. You don't add the individual users or roles to the key policy, only the external account that
owns them. You can only share a KMS key that you create, not the default RDS service key. For
information about access control for KMS keys, see Authentication and access control for AWS KMS.

Console

To grant permission to clone your cluster

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Databases.

3. Choose the DB cluster that you want to share to see its Details page, and choose the
Connectivity & security tab.

4. In the Share DB cluster with other AWS accounts section, enter the numeric account ID for
the AWS account that you want to allow to clone this cluster. For account IDs in the same
organization, you can begin typing in the box and then choose from the menu.

Cross-account cloning 524

https://docs.aws.amazon.com/ram/latest/userguide/working-with-sharing.html
https://docs.aws.amazon.com/ram/latest/userguide/working-with-sharing.html
https://docs.aws.amazon.com/kms/latest/developerguide/control-access.html
https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Aurora User Guide for Aurora

Important

In some cases, you might want an account that is not in the same AWS organization as
your account to clone a cluster. In these cases, for security reasons the console doesn't
report who owns that account ID or whether the account exists.
Be careful entering account numbers that are not in the same AWS organization as
your AWS account. Immediately verify that you shared with the intended account.

5. On the confirmation page, verify that the account ID that you specified is correct. Enter share
in the confirmation box to confirm.

On the Details page, an entry appears that shows the specified AWS account ID under
Accounts that this DB cluster is shared with. The Status column initially shows a status of
Pending.

6. Contact the owner of the other AWS account, or sign in to that account if you own both of
them. Instruct the owner of the other account to accept the sharing invitation and clone the
DB cluster, as described following.

AWS CLI

To grant permission to clone your cluster

1. Gather the information for the required parameters. You need the ARN for your cluster and the
numeric ID for the other AWS account.

2. Run the AWS RAM CLI command create-resource-share.

For Linux, macOS, or Unix:

aws ram create-resource-share --name descriptive_name \
 --region region \
 --resource-arns cluster_arn \
 --principals other_account_ids

For Windows:

aws ram create-resource-share --name descriptive_name ^
 --region region ^
 --resource-arns cluster_arn ^

Cross-account cloning 525

https://docs.aws.amazon.com/cli/latest/reference/ram/create-resource-share.html

Amazon Aurora User Guide for Aurora

 --principals other_account_ids

To include multiple account IDs for the --principals parameter, separate IDs from each
other with spaces. To specify whether the permitted account IDs can be outside your AWS
organization, include the --allow-external-principals or --no-allow-external-
principals parameter for create-resource-share.

AWS RAM API

To grant permission to clone your cluster

1. Gather the information for the required parameters. You need the ARN for your cluster and the
numeric ID for the other AWS account.

2. Call the AWS RAM API operation CreateResourceShare, and specify the following values:

• Specify the account ID for one or more AWS accounts as the principals parameter.

• Specify the ARN for one or more Aurora DB clusters as the resourceArns parameter.

• Specify whether the permitted account IDs can be outside your AWS organization by
including a Boolean value for the allowExternalPrincipals parameter.

Recreating a cluster that uses the default RDS key

If the encrypted cluster that you plan to share uses the default RDS key, make sure to recreate the
cluster. To do this, create a manual snapshot of your DB cluster, use an AWS KMS key, and then
restore the cluster to a new cluster. Then share the new cluster. To perform this process, take the
following steps.

To recreate an encrypted cluster that uses the default RDS key

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. Choose Snapshots from the navigation pane.

3. Choose your snapshot.

4. For Actions, choose Copy Snapshot, and then choose Enable encryption.

5. For AWS KMS key, choose the new encryption key that you want to use.

Cross-account cloning 526

https://docs.aws.amazon.com/ram/latest/APIReference/API_CreateResourceShare.html
https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Aurora User Guide for Aurora

6. Restore the copied snapshot. To do so, follow the procedure in Restoring from a DB cluster
snapshot. The new DB instance uses your new encryption key.

7. (Optional) Delete the old DB cluster if you no longer need it. To do so, follow the procedure in
Deleting a DB cluster snapshot. Before you do, confirm that your new cluster has all necessary
data and that your application can access it successfully.

Checking if a cluster that you own is shared with other AWS accounts

You can check if other users have permission to share a cluster. Doing so can help you understand
whether the cluster is approaching the limit for the maximum number of cross-account clones.

For the procedures to share resources using the AWS RAM console, see Sharing resources owned by
you in the AWS RAM User Guide.

AWS CLI

To find out if a cluster that you own is shared with other AWS accounts

• Call the AWS RAM CLI command list-principals, using your account ID as the resource
owner and the ARN of your cluster as the resource ARN. You can see all shares with the
following command. The results indicate which AWS accounts are allowed to clone the cluster.

aws ram list-principals \
 --resource-arns your_cluster_arn \
 --principals your_aws_id

AWS RAM API

To find out if a cluster that you own is shared with other AWS accounts

• Call the AWS RAM API operation ListPrincipals. Use your account ID as the resource owner and
the ARN of your cluster as the resource ARN.

Cloning a cluster that is owned by another AWS account

To clone a cluster that's owned by another AWS account, use AWS RAM to get permission to make
the clone. After you have the required permission, use the standard procedure for cloning an
Aurora cluster.

Cross-account cloning 527

https://docs.aws.amazon.com/ram/latest/userguide/working-with-sharing.html
https://docs.aws.amazon.com/ram/latest/userguide/working-with-sharing.html
https://docs.aws.amazon.com/cli/latest/reference/ram/list-principals.html
https://docs.aws.amazon.com/ram/latest/APIReference/API_ListPrincipals.html

Amazon Aurora User Guide for Aurora

You can also check whether a cluster that you own is a clone of a cluster owned by a different AWS
account.

For the procedures to work with resources owned by others in the AWS RAM console, see Accessing
resources shared with you in the AWS RAM User Guide.

Topics

• Viewing invitations to clone clusters that are owned by other AWS accounts

• Accepting invitations to share clusters owned by other AWS accounts

• Cloning an Aurora cluster that is owned by another AWS account

• Checking if a DB cluster is a cross-account clone

Viewing invitations to clone clusters that are owned by other AWS accounts

To work with invitations to clone clusters owned by AWS accounts in other AWS organizations,
use the AWS CLI, the AWS RAM console, or the AWS RAM API. Currently, you can't perform this
procedure using the Amazon RDS console.

For the procedures to work with invitations in the AWS RAM console, see Accessing resources
shared with you in the AWS RAM User Guide.

AWS CLI

To see invitations to clone clusters that are owned by other AWS accounts

1. Run the AWS RAM CLI command get-resource-share-invitations.

aws ram get-resource-share-invitations --region region_name

The results from the preceding command show all invitations to clone clusters, including any
that you already accepted or rejected.

2. (Optional) Filter the list so you see only the invitations that require action from you. To do so,
add the parameter --query 'resourceShareInvitations[?status==`PENDING`]'.

Cross-account cloning 528

https://docs.aws.amazon.com/ram/latest/userguide/working-with-shared.html
https://docs.aws.amazon.com/ram/latest/userguide/working-with-shared.html
https://docs.aws.amazon.com/ram/latest/userguide/working-with-shared.html
https://docs.aws.amazon.com/ram/latest/userguide/working-with-shared.html
https://docs.aws.amazon.com/cli/latest/reference/ram/get-resource-share-invitations.html

Amazon Aurora User Guide for Aurora

AWS RAM API

To see invitations to clone clusters that are owned by other AWS accounts

1. Call the AWS RAM API operation GetResourceShareInvitations. This operation returns
all such invitations, including any that you already accepted or rejected.

2. (Optional) Find only the invitations that require action from you by checking the
resourceShareAssociations return field for a status value of PENDING.

Accepting invitations to share clusters owned by other AWS accounts

You can accept invitations to share clusters owned by other AWS accounts that are in different AWS
organizations. To work with these invitations, use the AWS CLI, the AWS RAM and RDS APIs, or the
AWS RAM console. Currently, you can't perform this procedure using the RDS console.

For the procedures to work with invitations in the AWS RAM console, see Accessing resources
shared with you in the AWS RAM User Guide.

AWS CLI

To accept an invitation to share a cluster from another AWS account

1. Find the invitation ARN by running the AWS RAM CLI command get-resource-share-
invitations, as shown preceding.

2. Accept the invitation by calling the AWS RAM CLI command accept-resource-share-
invitation, as shown following.

For Linux, macOS, or Unix:

aws ram accept-resource-share-invitation \
 --resource-share-invitation-arn invitation_arn \
 --region region

For Windows:

aws ram accept-resource-share-invitation ^
 --resource-share-invitation-arn invitation_arn ^
 --region region

Cross-account cloning 529

https://docs.aws.amazon.com/ram/latest/APIReference/API_GetResourceShareInvitations.html
https://docs.aws.amazon.com/ram/latest/userguide/working-with-shared.html
https://docs.aws.amazon.com/ram/latest/userguide/working-with-shared.html
https://docs.aws.amazon.com/cli/latest/reference/ram/get-resource-share-invitations.html
https://docs.aws.amazon.com/cli/latest/reference/ram/get-resource-share-invitations.html
https://docs.aws.amazon.com/cli/latest/reference/ram/accept-resource-share-invitation.html
https://docs.aws.amazon.com/cli/latest/reference/ram/accept-resource-share-invitation.html

Amazon Aurora User Guide for Aurora

AWS RAM and RDS API

To accept invitations to share somebody's cluster

1. Find the invitation ARN by calling the AWS RAM API operation
GetResourceShareInvitations, as shown preceding.

2. Pass that ARN as the resourceShareInvitationArn parameter to the RDS API operation
AcceptResourceShareInvitation.

Cloning an Aurora cluster that is owned by another AWS account

After you accept the invitation from the AWS account that owns the DB cluster, as shown
preceding, you can clone the cluster.

Console

To clone an Aurora cluster that is owned by another AWS account

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Databases.

At the top of the database list, you should see one or more items with a Role value of Shared
from account #account_id. For security reasons, you can only see limited information
about the original clusters. The properties that you can see are the ones such as database
engine and version that must be the same in your cloned cluster.

3. Choose the cluster that you intend to clone.

4. For Actions, choose Create clone.

5. Follow the procedure in Console to finish setting up the cloned cluster.

6. As needed, enable encryption for the cloned cluster. If the cluster that you are cloning is
encrypted, you must enable encryption for the cloned cluster. The AWS account that shared
the cluster with you must also share the KMS key that was used to encrypt the cluster. You
can use the same KMS key to encrypt the clone, or your own KMS key. You can't create a cross-
account clone for a cluster that is encrypted with the default KMS key.

The account that owns the encryption key must grant permission to use the key to the
destination account by using a key policy. This process is similar to how encrypted snapshots

Cross-account cloning 530

https://docs.aws.amazon.com/ram/latest/APIReference/API_GetResourceShareInvitations.html
https://docs.aws.amazon.com/ram/latest/APIReference/API_AcceptResourceShareInvitation.html
https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Aurora User Guide for Aurora

are shared, by using a key policy that grants permission to the destination account to use the
key.

AWS CLI

To clone an Aurora cluster owned by another AWS account

1. Accept the invitation from the AWS account that owns the DB cluster, as shown preceding.

2. Clone the cluster by specifying the full ARN of the source cluster in the source-db-
cluster-identifier parameter of the RDS CLI command restore-db-cluster-to-
point-in-time, as shown following.

If the ARN passed as the source-db-cluster-identifier hasn't been shared, the same
error is returned as if the specified cluster doesn't exist.

For Linux, macOS, or Unix:

aws rds restore-db-cluster-to-point-in-time \
 --source-db-cluster-identifier=arn:aws:rds:arn_details \
 --db-cluster-identifier=new_cluster_id \
 --restore-type=copy-on-write \
 --use-latest-restorable-time

For Windows:

aws rds restore-db-cluster-to-point-in-time ^
 --source-db-cluster-identifier=arn:aws:rds:arn_details ^
 --db-cluster-identifier=new_cluster_id ^
 --restore-type=copy-on-write ^
 --use-latest-restorable-time

3. If the cluster that you are cloning is encrypted, encrypt your cloned cluster by including a kms-
key-id parameter. This kms-key-id value can be the same one used to encrypt the original
DB cluster, or your own KMS key. Your account must have permission to use that encryption
key.

For Linux, macOS, or Unix:

aws rds restore-db-cluster-to-point-in-time \
 --source-db-cluster-identifier=arn:aws:rds:arn_details \

Cross-account cloning 531

https://docs.aws.amazon.com/cli/latest/reference/rds/restore-db-cluster-to-point-in-time.html
https://docs.aws.amazon.com/cli/latest/reference/rds/restore-db-cluster-to-point-in-time.html

Amazon Aurora User Guide for Aurora

 --db-cluster-identifier=new_cluster_id \
 --restore-type=copy-on-write \
 --use-latest-restorable-time \
 --kms-key-id=arn:aws:kms:arn_details

For Windows:

aws rds restore-db-cluster-to-point-in-time ^
 --source-db-cluster-identifier=arn:aws:rds:arn_details ^
 --db-cluster-identifier=new_cluster_id ^
 --restore-type=copy-on-write ^
 --use-latest-restorable-time ^
 --kms-key-id=arn:aws:kms:arn_details

The account that owns the encryption key must grant permission to use the key to the
destination account by using a key policy. This process is similar to how encrypted snapshots
are shared, by using a key policy that grants permission to the destination account to use the
key. An example of a key policy follows.

{
 "Id": "key-policy-1",
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "Allow use of the key",
 "Effect": "Allow",
 "Principal": {"AWS": [
 "arn:aws:iam::account_id:user/KeyUser",
 "arn:aws:iam::account_id:root"
]},
 "Action": [
 "kms:CreateGrant",
 "kms:Encrypt",
 "kms:Decrypt",
 "kms:ReEncrypt*",
 "kms:GenerateDataKey*",
 "kms:DescribeKey"
],
 "Resource": "*"
 },
 {
 "Sid": "Allow attachment of persistent resources",

Cross-account cloning 532

Amazon Aurora User Guide for Aurora

 "Effect": "Allow",
 "Principal": {"AWS": [
 "arn:aws:iam::account_id:user/KeyUser",
 "arn:aws:iam::account_id:root"
]},
 "Action": [
 "kms:CreateGrant",
 "kms:ListGrants",
 "kms:RevokeGrant"
],
 "Resource": "*",
 "Condition": {"Bool": {"kms:GrantIsForAWSResource": true}}
 }
]
}

Note

The restore-db-cluster-to-point-in-time AWS CLI command restores only the DB cluster,
not the DB instances for that DB cluster. To create DB instances for the restored DB cluster,
invoke the create-db-instance command. Specify the identifier of the restored DB cluster in
--db-cluster-identifier.
You can create DB instances only after the restore-db-cluster-to-point-in-time
command has completed and the DB cluster is available.

RDS API

To clone an Aurora cluster owned by another AWS account

1. Accept the invitation from the AWS account that owns the DB cluster, as shown preceding.

2. Clone the cluster by specifying the full ARN of the source cluster in the
SourceDBClusterIdentifier parameter of the RDS API operation
RestoreDBClusterToPointInTime.

If the ARN passed as the SourceDBClusterIdentifier hasn't been shared, then the same
error is returned as if the specified cluster doesn't exist.

Cross-account cloning 533

https://docs.aws.amazon.com/cli/latest/reference/rds/restore-db-cluster-to-point-in-time.html
https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-instance.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_RestoreDBClusterToPointInTime.html

Amazon Aurora User Guide for Aurora

3. If the cluster that you are cloning is encrypted, include a KmsKeyId parameter to encrypt your
cloned cluster. This kms-key-id value can be the same one used to encrypt the original DB
cluster, or your own KMS key. Your account must have permission to use that encryption key.

When you clone a volume, the destination account must have permission to use the encryption
key used to encrypt the source cluster. Aurora encrypts the new cloned cluster with the
encryption key specified in KmsKeyId.

The account that owns the encryption key must grant permission to use the key to the
destination account by using a key policy. This process is similar to how encrypted snapshots
are shared, by using a key policy that grants permission to the destination account to use the
key. An example of a key policy follows.

{
 "Id": "key-policy-1",
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "Allow use of the key",
 "Effect": "Allow",
 "Principal": {"AWS": [
 "arn:aws:iam::account_id:user/KeyUser",
 "arn:aws:iam::account_id:root"
]},
 "Action": [
 "kms:CreateGrant",
 "kms:Encrypt",
 "kms:Decrypt",
 "kms:ReEncrypt*",
 "kms:GenerateDataKey*",
 "kms:DescribeKey"
],
 "Resource": "*"
 },
 {
 "Sid": "Allow attachment of persistent resources",
 "Effect": "Allow",
 "Principal": {"AWS": [
 "arn:aws:iam::account_id:user/KeyUser",
 "arn:aws:iam::account_id:root"
]},
 "Action": [

Cross-account cloning 534

Amazon Aurora User Guide for Aurora

 "kms:CreateGrant",
 "kms:ListGrants",
 "kms:RevokeGrant"
],
 "Resource": "*",
 "Condition": {"Bool": {"kms:GrantIsForAWSResource": true}}
 }
]
}

Note

The RestoreDBClusterToPointInTime RDS API operation restores only the DB cluster,
not the DB instances for that DB cluster. To create DB instances for the restored DB
cluster, invoke the CreateDBInstance RDS API operation. Specify the identifier of the
restored DB cluster in DBClusterIdentifier. You can create DB instances only after
the RestoreDBClusterToPointInTime operation has completed and the DB cluster is
available.

Checking if a DB cluster is a cross-account clone

The DBClusters object identifies whether each cluster is a cross-account clone. You can see the
clusters that you have permission to clone by using the include-shared option when you run the
RDS CLI command describe-db-clusters. However, you can't see most of the configuration
details for such clusters.

AWS CLI

To check if a DB cluster is a cross-account clone

• Call the RDS CLI command describe-db-clusters.

The following example shows how actual or potential cross-account clone DB clusters appear
in describe-db-clusters output. For existing clusters owned by your AWS account, the
CrossAccountClone field indicates whether the cluster is a clone of a DB cluster that is
owned by another AWS account.

Cross-account cloning 535

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_RestoreDBClusterToPointInTime.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateDBInstance.html
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-clusters.html
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-clusters.html

Amazon Aurora User Guide for Aurora

In some cases, an entry might have a different AWS account number than yours in the
DBClusterArn field. In this case, that entry represents a cluster that is owned by a different
AWS account and that you can clone. Such entries have few fields other than DBClusterArn.
When creating the cloned cluster, specify the same StorageEncrypted, Engine, and
EngineVersion values as in the original cluster.

$aws rds describe-db-clusters --include-shared --region us-east-1
{
 "DBClusters": [
 {
 "EarliestRestorableTime": "2023-02-01T21:17:54.106Z",
 "Engine": "aurora-mysql",
 "EngineVersion": "8.0.mysql_aurora.3.02.0",
 "CrossAccountClone": false,
...
 },
 {
 "EarliestRestorableTime": "2023-02-09T16:01:07.398Z",
 "Engine": "aurora-mysql",
 "EngineVersion": "8.0.mysql_aurora.3.02.0",
 "CrossAccountClone": true,
...
 },
 {
 "StorageEncrypted": false,
 "DBClusterArn": "arn:aws:rds:us-east-1:12345678:cluster:cluster-
abcdefgh",
 "Engine": "aurora-mysql",
 "EngineVersion": "8.0.mysql_aurora.3.02.0
]
}

RDS API

To check if a DB cluster is a cross-account clone

• Call the RDS API operation DescribeDBClusters.

For existing clusters owned by your AWS account, the CrossAccountClone field indicates
whether the cluster is a clone of a DB cluster owned by another AWS account. Entries with a

Cross-account cloning 536

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DescribeDBClusters.html

Amazon Aurora User Guide for Aurora

different AWS account number in the DBClusterArn field represent clusters that you can
clone and that are owned by other AWS accounts. These entries have few fields other than
DBClusterArn. When creating the cloned cluster, specify the same StorageEncrypted,
Engine, and EngineVersion values as in the original cluster.

The following example shows a return value that demonstrates both actual and potential
cloned clusters.

{
 "DBClusters": [
 {
 "EarliestRestorableTime": "2023-02-01T21:17:54.106Z",
 "Engine": "aurora-mysql",
 "EngineVersion": "8.0.mysql_aurora.3.02.0",
 "CrossAccountClone": false,
...
 },
 {
 "EarliestRestorableTime": "2023-02-09T16:01:07.398Z",
 "Engine": "aurora-mysql",
 "EngineVersion": "8.0.mysql_aurora.3.02.0",
 "CrossAccountClone": true,
...
 },
 {
 "StorageEncrypted": false,
 "DBClusterArn": "arn:aws:rds:us-east-1:12345678:cluster:cluster-
abcdefgh",
 "Engine": "aurora-mysql",
 "EngineVersion": "8.0.mysql_aurora.3.02.0"
 }
]
}

Cross-account cloning 537

Amazon Aurora User Guide for Aurora

Integrating Aurora with other AWS services

Integrate Amazon Aurora with other AWS services so that you can extend your Aurora DB cluster to
use additional capabilities in the AWS Cloud.

Topics

• Integrating AWS services with Amazon Aurora MySQL

• Integrating AWS services with Amazon Aurora PostgreSQL

Integrating AWS services with Amazon Aurora MySQL

Amazon Aurora MySQL integrates with other AWS services so that you can extend your Aurora
MySQL DB cluster to use additional capabilities in the AWS Cloud. Your Aurora MySQL DB cluster
can use AWS services to do the following:

• Synchronously or asynchronously invoke an AWS Lambda function using the native functions
lambda_sync or lambda_async. Or, asynchronously invoke an AWS Lambda function using the
mysql.lambda_async procedure.

• Load data from text or XML files stored in an Amazon S3 bucket into your DB cluster using the
LOAD DATA FROM S3 or LOAD XML FROM S3 command.

• Save data to text files stored in an Amazon S3 bucket from your DB cluster using the SELECT
INTO OUTFILE S3 command.

• Automatically add or remove Aurora Replicas with Application Auto Scaling. For more
information, see Using Amazon Aurora Auto Scaling with Aurora Replicas.

For more information about integrating Aurora MySQL with other AWS services, see Integrating
Amazon Aurora MySQL with other AWS services.

Integrating AWS services with Amazon Aurora PostgreSQL

Amazon Aurora PostgreSQL integrates with other AWS services so that you can extend your Aurora
PostgreSQL DB cluster to use additional capabilities in the AWS Cloud. Your Aurora PostgreSQL DB
cluster can use AWS services to do the following:

• Quickly collect, view, and assess performance on your relational database workloads with
Performance Insights.

Integrating with AWS services 538

Amazon Aurora User Guide for Aurora

• Automatically add or remove Aurora Replicas with Aurora Auto Scaling. For more information,
see Using Amazon Aurora Auto Scaling with Aurora Replicas.

For more information about integrating Aurora PostgreSQL with other AWS services, see
Integrating Amazon Aurora PostgreSQL with other AWS services.

Aurora PostgreSQL 539

Amazon Aurora User Guide for Aurora

Maintaining an Amazon Aurora DB cluster

Periodically, Amazon RDS performs maintenance on Amazon RDS resources.

Topics

• Overview of DB cluster maintenance updates

• Viewing pending maintenance updates

• Applying updates for a DB cluster

• The Amazon RDS maintenance window

• Adjusting the preferred DB cluster maintenance window

• Automatic minor version upgrades for Aurora DB clusters

• Choosing the frequency of Aurora MySQL maintenance updates

• Working with operating system updates

Overview of DB cluster maintenance updates

Maintenance most often involves updates to the following resources in your DB cluster:

• Underlying hardware

• Underlying operating system (OS)

• Database engine version

Updates to the operating system most often occur for security issues. We recommend that you do
them as soon as possible.

Topics

• Offline resources during maintenance updates

• Deferred DB instance and DB cluster modifications

• Eventual consistency for the DescribePendingMaintenanceActions API

Offline resources during maintenance updates

Some maintenance items require that Amazon RDS take your DB cluster offline for a short time.
Maintenance items that require a resource to be offline include required operating system or

Maintaining an Aurora DB cluster 540

Amazon Aurora User Guide for Aurora

database patching. Required patching is automatically scheduled only for patches that are related
to security and instance reliability. Such patching occurs infrequently, typically once every few
months. It seldom requires more than a fraction of your maintenance window.

Deferred DB instance and DB cluster modifications

Deferred DB cluster and instance modifications that you have chosen not to apply immediately are
applied during the maintenance window. For example, you might choose to change DB instance
classes or cluster or DB parameter groups during the maintenance window. Such modifications that
you specify using the pending reboot setting don't show up in the Pending maintenance list. For
information about modifying a DB cluster, see Modifying an Amazon Aurora DB cluster.

To see the modifications that are pending for the next maintenance window, use the describe-db-
clusters AWS CLI command and check the PendingModifiedValues field.

Eventual consistency for the DescribePendingMaintenanceActions API

The Amazon RDS DescribePendingMaintenanceActions API follows an eventual consistency
model. This means that the result of the DescribePendingMaintenanceActions command
might not be immediately visible to all subsequent RDS commands. Keep this in mind when you
use DescribePendingMaintenanceActions immediately after using a previous API command.

Eventual consistency can affect the way you managed your maintenance updates. For example,
if you run the ApplyPendingMaintenanceActions command to update the database engine
version for a DB cluster, it will eventually be visible to DescribePendingMaintenanceActions.
In this scenario, DescribePendingMaintenanceActions might show that the maintenance
action wasn't applied even though it was.

To manage eventual consistency, you can do the following:

• Confirm the state of your DB cluster before you run a command to modify it. Run the
appropriate DescribePendingMaintenanceActions command using an exponential backoff
algorithm to ensure that you allow enough time for the previous command to propagate
through the system. To do this, run the DescribePendingMaintenanceActions command
repeatedly, starting with a couple of seconds of wait time, and increasing gradually up to five
minutes of wait time.

• Add wait time between subsequent commands, even if a
DescribePendingMaintenanceActions command returns an accurate response. Apply

Overview of DB cluster maintenance updates 541

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/rds/describe-db-clusters.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/rds/describe-db-clusters.html

Amazon Aurora User Guide for Aurora

an exponential backoff algorithm starting with a couple of seconds of wait time, and increase
gradually up to about five minutes of wait time.

Viewing pending maintenance updates

View whether a maintenance update is available for your DB cluster by using the RDS console, the
AWS CLI, or the RDS API. If an update is available, it is indicated in the Maintenance column for the
DB cluster on the Amazon RDS console, as shown following.

If no maintenance update is available for a DB cluster, the column value is none for it.

If a maintenance update is available for a DB cluster, the following column values are possible:

• required – The maintenance action will be applied to the resource and can't be deferred
indefinitely.

• available – The maintenance action is available, but it will not be applied to the resource
automatically. You can apply it manually.

• next window – The maintenance action will be applied to the resource during the next
maintenance window.

• In progress – The maintenance action is in the process of being applied to the resource.

If an update is available, you can take one of the actions:

Viewing pending maintenance 542

Amazon Aurora User Guide for Aurora

• If the maintenance value is next window, defer the maintenance items by choosing Defer
upgrade from Actions. You can't defer a maintenance action if it has already started.

• Apply the maintenance items immediately.

• Schedule the maintenance items to start during your next maintenance window.

• Take no action.

To take an action, choose the DB cluster to show its details, then choose Maintenance & backups.
The pending maintenance items appear.

The maintenance window determines when pending operations start, but doesn't limit the total
run time of these operations. Maintenance operations aren't guaranteed to finish before the
maintenance window ends, and can continue beyond the specified end time. For more information,
see The Amazon RDS maintenance window.

For information about updates to Amazon Aurora engines and instructions for upgrading and
patching them, see Database engine updates for Amazon Aurora MySQL and Amazon Aurora
PostgreSQL updates.

You can also view whether a maintenance update is available for your DB cluster by running the
describe-pending-maintenance-actions AWS CLI command.

Viewing pending maintenance 543

https://docs.aws.amazon.com/cli/latest/reference/rds/describe-pending-maintenance-actions.html

Amazon Aurora User Guide for Aurora

Applying updates for a DB cluster

With Amazon RDS, you can choose when to apply maintenance operations. You can decide when
Amazon RDS applies updates by using the RDS console, AWS Command Line Interface (AWS CLI), or
RDS API.

Console

To manage an update for a DB cluster

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Databases.

3. Choose the DB cluster that has a required update.

4. For Actions, choose one of the following:

• Upgrade now

• Upgrade at next window

Note

If you choose Upgrade at next window and later want to delay the update, you can
choose Defer upgrade. You can't defer a maintenance action if it has already started.
To cancel a maintenance action, modify the DB instance and disable Auto minor
version upgrade.

AWS CLI

To apply a pending update to a DB cluster, use the apply-pending-maintenance-action AWS CLI
command.

Example

For Linux, macOS, or Unix:

aws rds apply-pending-maintenance-action \
 --resource-identifier arn:aws:rds:us-west-2:001234567890:db:mysql-db \

Applying updates 544

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/
https://docs.aws.amazon.com/cli/latest/reference/rds/apply-pending-maintenance-action.html

Amazon Aurora User Guide for Aurora

 --apply-action system-update \
 --opt-in-type immediate

For Windows:

aws rds apply-pending-maintenance-action ^
 --resource-identifier arn:aws:rds:us-west-2:001234567890:db:mysql-db ^
 --apply-action system-update ^
 --opt-in-type immediate

Note

To defer a maintenance action, specify undo-opt-in for --opt-in-type. You can't
specify undo-opt-in for --opt-in-type if the maintenance action has already started.
To cancel a maintenance action, run the modify-db-instance AWS CLI command and specify
--no-auto-minor-version-upgrade.

To return a list of resources that have at least one pending update, use the describe-pending-
maintenance-actions AWS CLI command.

Example

For Linux, macOS, or Unix:

aws rds describe-pending-maintenance-actions \
 --resource-identifier arn:aws:rds:us-west-2:001234567890:db:mysql-db

For Windows:

aws rds describe-pending-maintenance-actions ^
 --resource-identifier arn:aws:rds:us-west-2:001234567890:db:mysql-db

You can also return a list of resources for a DB cluster by specifying the --filters parameter
of the describe-pending-maintenance-actions AWS CLI command. The format for the --
filters command is Name=filter-name,Value=resource-id,....

The following are the accepted values for the Name parameter of a filter:

Applying updates 545

https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-instance.html
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-pending-maintenance-actions.html
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-pending-maintenance-actions.html

Amazon Aurora User Guide for Aurora

• db-instance-id – Accepts a list of DB instance identifiers or Amazon Resource Names (ARNs).
The returned list only includes pending maintenance actions for the DB instances identified by
these identifiers or ARNs.

• db-cluster-id – Accepts a list of DB cluster identifiers or ARNs for Amazon Aurora. The
returned list only includes pending maintenance actions for the DB clusters identified by these
identifiers or ARNs.

For example, the following example returns the pending maintenance actions for the sample-
cluster1 and sample-cluster2 DB clusters.

Example

For Linux, macOS, or Unix:

aws rds describe-pending-maintenance-actions \
 --filters Name=db-cluster-id,Values=sample-cluster1,sample-cluster2

For Windows:

aws rds describe-pending-maintenance-actions ^
 --filters Name=db-cluster-id,Values=sample-cluster1,sample-cluster2

RDS API

To apply an update to a DB cluster, call the Amazon RDS API ApplyPendingMaintenanceAction
operation.

To return a list of resources that have at least one pending update, call the Amazon RDS API
DescribePendingMaintenanceActions operation.

The Amazon RDS maintenance window

The maintenance windows is a weekly time interval during which any system changes are applied.
Every DB cluster has a weekly maintenance window. The maintenance window as an opportunity to
control when modifications and software patching occur.

RDS consumes some of the resources on your DB cluster while maintenance is being applied. You
might observe a minimal effect on performance. For a DB instance, on rare occasions, a Multi-AZ
failover might be required for a maintenance update to complete.

The maintenance window 546

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ApplyPendingMaintenanceAction.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DescribePendingMaintenanceActions.html

Amazon Aurora User Guide for Aurora

If a maintenance event is scheduled for a given week, it's initiated during the 30-minute
maintenance window you identify. Most maintenance events also complete during the 30-minute
maintenance window, although larger maintenance events may take more than 30 minutes to
complete. The maintenance window is paused when the DB cluster is stopped.

The 30-minute maintenance window is selected at random from an 8-hour block of time per
region. If you don't specify a maintenance window when you create the DB cluster, RDS assigns a
30-minute maintenance window on a randomly selected day of the week.

Following, you can find the time blocks for each region from which default maintenance windows
are assigned.

Region Name Region Time Block

US East (Ohio) us-east-2 03:00–11:00 UTC

US East (N. Virginia) us-east-1 03:00–11:00 UTC

US West (N. Californi
a)

us-west-1 06:00–14:00 UTC

US West (Oregon) us-west-2 06:00–14:00 UTC

Africa (Cape Town) af-south-1 03:00–11:00 UTC

Asia Pacific (Hong
Kong)

ap-east-1 06:00–14:00 UTC

Asia Pacific
(Hyderabad)

ap-south-2 06:30–14:30 UTC

Asia Pacific (Jakarta) ap-southeast-3 08:00–16:00 UTC

Asia Pacific
(Melbourne)

ap-southeast-4 11:00–19:00 UTC

Asia Pacific (Mumbai) ap-south-1 06:00–14:00 UTC

Asia Pacific (Osaka) ap-northeast-3 22:00–23:59 UTC

Asia Pacific (Seoul) ap-northeast-2 13:00–21:00 UTC

The maintenance window 547

Amazon Aurora User Guide for Aurora

Region Name Region Time Block

Asia Pacific (Singapor
e)

ap-southeast-1 14:00–22:00 UTC

Asia Pacific (Sydney) ap-southeast-2 12:00–20:00 UTC

Asia Pacific (Tokyo) ap-northeast-1 13:00–21:00 UTC

Canada (Central) ca-central-1 03:00–11:00 UTC

Canada West
(Calgary)

ca-west-1 18:00–02:00 UTC

China (Beijing) cn-north-1 06:00–14:00 UTC

China (Ningxia) cn-northwest-1 06:00–14:00 UTC

Europe (Frankfurt) eu-central-1 21:00–05:00 UTC

Europe (Ireland) eu-west-1 22:00–06:00 UTC

Europe (London) eu-west-2 22:00–06:00 UTC

Europe (Milan) eu-south-1 02:00–10:00 UTC

Europe (Paris) eu-west-3 23:59–07:29 UTC

Europe (Spain) eu-south-2 02:00–10:00 UTC

Europe (Stockholm) eu-north-1 23:00–07:00 UTC

Europe (Zurich) eu-central-2 02:00–10:00 UTC

Israel (Tel Aviv) il-central-1 03:00–11:00 UTC

Middle East (Bahrain) me-south-1 06:00–14:00 UTC

Middle East (UAE) me-central-1 05:00–13:00 UTC

South America (São
Paulo)

sa-east-1 00:00–08:00 UTC

The maintenance window 548

Amazon Aurora User Guide for Aurora

Region Name Region Time Block

AWS GovCloud (US-
East)

us-gov-east-1 17:00–01:00 UTC

AWS GovCloud (US-
West)

us-gov-west-1 06:00–14:00 UTC

Adjusting the preferred DB cluster maintenance window

The Aurora DB cluster maintenance window should fall at the time of lowest usage and thus might
need modification from time to time. Your DB cluster is unavailable during this time only if the
updates that are being applied require an outage. The outage is for the minimum amount of time
required to make the necessary updates.

Console

To adjust the preferred DB cluster maintenance window

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Databases.

3. Choose the DB cluster for which you want to change the maintenance window.

4. Choose Modify.

5. In the Maintenance section, update the maintenance window.

6. Choose Continue.

On the confirmation page, review your changes.

7. To apply the changes to the maintenance window immediately, choose Immediately in the
Schedule of modifications section.

8. Choose Modify cluster to save your changes.

Alternatively, choose Back to edit your changes, or choose Cancel to cancel your changes.

Adjusting the maintenance window for a DB cluster 549

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Aurora User Guide for Aurora

AWS CLI

To adjust the preferred DB cluster maintenance window, use the AWS CLI modify-db-cluster
command with the following parameters:

• --db-cluster-identifier

• --preferred-maintenance-window

Example

The following code example sets the maintenance window to Tuesdays from 4:00–4:30 AM UTC.

For Linux, macOS, or Unix:

aws rds modify-db-cluster \
--db-cluster-identifier my-cluster \
--preferred-maintenance-window Tue:04:00-Tue:04:30

For Windows:

aws rds modify-db-cluster ^
--db-cluster-identifier my-cluster ^
--preferred-maintenance-window Tue:04:00-Tue:04:30

RDS API

To adjust the preferred DB cluster maintenance window, use the Amazon RDS ModifyDBCluster
API operation with the following parameters:

• DBClusterIdentifier

• PreferredMaintenanceWindow

Automatic minor version upgrades for Aurora DB clusters

The Auto minor version upgrade setting specifies whether Aurora automatically applies upgrades
to your DB cluster. These upgrades include new minor versions containing additional features and
patches containing bug fixes.

Automatic minor version upgrades for Aurora DB clusters 550

https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-cluster.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBCluster.html

Amazon Aurora User Guide for Aurora

This setting is turned on by default. For each new DB cluster, choose the appropriate value for this
setting. This value is based on its importance, expected lifetime, and the amount of verification
testing that you do after each upgrade.

For instructions on turning the Auto minor version upgrade setting on or off, see the following:

• Enabling automatic minor version upgrades for an Aurora DB cluster

• Enabling automatic minor version upgrades for individual DB instances in an Aurora DB cluster

Important

We strongly recommend that for new and existing DB clusters, you apply this setting to the
DB cluster and not to the DB instances in the cluster individually. If any DB instance in your
cluster has this setting turned off, the DB cluster isn't automatically upgraded.

The following table shows how the Auto minor version upgrade setting works when applied at the
cluster and instance levels.

Action Cluster setting Instance settings Cluster upgraded
automatically?

You set it to True on
the DB cluster.

True True for all new and
existing instances

Yes

You set it to False on
the DB cluster.

False False for all new and
existing instances

No

It was set previousl
y to True on the DB
cluster.

You set it to False
on at least one DB
instance.

Changes to False False for one or more
instances

No

Automatic minor version upgrades for Aurora DB clusters 551

Amazon Aurora User Guide for Aurora

Action Cluster setting Instance settings Cluster upgraded
automatically?

It was set previousl
y to False on the DB
cluster.

You set it to True
on at least one DB
instance, but not all
instances.

False True for one or more
instances, but not all
instances

No

It was set previousl
y to False on the DB
cluster.

You set it to True on
all DB instances.

Changes to True True for all instances Yes

Automatic minor version upgrades are communicated in advance through an Amazon RDS DB
cluster event with a category of maintenance and ID of RDS-EVENT-0156. For more information,
see Amazon RDS event categories and event messages for Aurora.

Automatic upgrades occur during the maintenance window. If the individual DB instances in the
DB cluster have different maintenance windows from the cluster maintenance window, then the
cluster maintenance window takes precedence.

For more information about engine updates for Aurora PostgreSQL, see Amazon Aurora
PostgreSQL updates.

For more information about the Auto minor version upgrade setting for Aurora MySQL, see
Enabling automatic upgrades between minor Aurora MySQL versions. For general information
about engine updates for Aurora MySQL, see Database engine updates for Amazon Aurora MySQL.

Enabling automatic minor version upgrades for an Aurora DB cluster

Follow the general procedure in Modifying the DB cluster by using the console, CLI, and API.

Automatic minor version upgrades for Aurora DB clusters 552

Amazon Aurora User Guide for Aurora

Console

On the Modify DB cluster page, in the Maintenance section, select the Enable auto minor
version upgrade check box.

AWS CLI

Call the modify-db-cluster AWS CLI command. Specify the name of your DB cluster for the --
db-cluster-identifier option and true for the --auto-minor-version-upgrade
option. Optionally, specify the --apply-immediately option to immediately enable this
setting for your DB cluster.

RDS API

Call the ModifyDBCluster API operation and specify the name of your DB cluster for the
DBClusterIdentifier parameter and true for the AutoMinorVersionUpgrade
parameter. Optionally, set the ApplyImmediately parameter to true to immediately enable
this setting for your DB cluster.

Enabling automatic minor version upgrades for individual DB instances in an
Aurora DB cluster

Follow the general procedure in Modifying a DB instance in a DB cluster.

Console

On the Modify DB instance page, in the Maintenance section, select the Enable auto minor
version upgrade check box.

AWS CLI

Call the modify-db-instance AWS CLI command. Specify the name of your DB instance for the
--db-instance-identifier option and true for the --auto-minor-version-upgrade
option. Optionally, specify the --apply-immediately option to immediately enable this
setting for your DB instance. Run a separate modify-db-instance command for each DB
instance in the cluster.

RDS API

Call the ModifyDBInstance API operation and specify the name of your DB cluster for the
DBInstanceIdentifier parameter and true for the AutoMinorVersionUpgrade
parameter. Optionally, set the ApplyImmediately parameter to true to immediately enable

Automatic minor version upgrades for Aurora DB clusters 553

https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-cluster.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBCluster.html
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-instance.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBInstance.html

Amazon Aurora User Guide for Aurora

this setting for your DB instance. Call a separate ModifyDBInstance operation for each DB
instance in the cluster.

You can use a CLI command such as the following to check the status of the
AutoMinorVersionUpgrade setting for all of the DB instances in your Aurora MySQL clusters.

aws rds describe-db-instances \
 --query '*[].
{DBClusterIdentifier:DBClusterIdentifier,DBInstanceIdentifier:DBInstanceIdentifier,AutoMinorVersionUpgrade:AutoMinorVersionUpgrade}'

That command produces output similar to the following:

[
 {
 "DBInstanceIdentifier": "db-writer-instance",
 "DBClusterIdentifier": "my-db-cluster-57",
 "AutoMinorVersionUpgrade": true
 },
 {
 "DBInstanceIdentifier": "db-reader-instance1",
 "DBClusterIdentifier": "my-db-cluster-57",
 "AutoMinorVersionUpgrade": false
 },
 {
 "DBInstanceIdentifier": "db-writer-instance2",
 "DBClusterIdentifier": "my-db-cluster-80",
 "AutoMinorVersionUpgrade": true
 },
... output omitted ...

In this example, Enable auto minor version upgrade is turned off for the DB cluster my-db-
cluster-57, because it's turned off for one of the DB instances in the cluster.

Choosing the frequency of Aurora MySQL maintenance updates

You can control whether Aurora MySQL upgrades happen frequently or rarely for each DB cluster.
The best choice depends on your usage of Aurora MySQL and the priorities for your applications
that run on Aurora. For information about the Aurora MySQL long-term stability (LTS) releases that
require less frequent upgrades, see Aurora MySQL long-term support (LTS) releases.

Choosing the frequency of Aurora MySQL maintenance updates 554

Amazon Aurora User Guide for Aurora

You might choose to upgrade an Aurora MySQL cluster rarely if some or all of the following
conditions apply:

• Your testing cycle for your application takes a long time for each update to the Aurora MySQL
database engine.

• You have many DB clusters or many applications all running on the same Aurora MySQL version.
You prefer to upgrade all of your DB clusters and associated applications at the same time.

• You use both Aurora MySQL and RDS for MySQL. You prefer to keep the Aurora MySQL clusters
and RDS for MySQL DB instances compatible with the same level of MySQL.

• Your Aurora MySQL application is in production or is otherwise business-critical. You can't afford
downtime for upgrades outside of rare occurrences for critical patches.

• Your Aurora MySQL application isn't limited by performance issues or feature gaps that are
addressed in subsequent Aurora MySQL versions.

If the preceding factors apply to your situation, you can limit the number of forced upgrades for
an Aurora MySQL DB cluster. You do so by choosing a specific Aurora MySQL version known as the
"Long-Term Support" (LTS) version when you create or upgrade that DB cluster. Doing so minimizes
the number of upgrade cycles, testing cycles, and upgrade-related outages for that DB cluster.

You might choose to upgrade an Aurora MySQL cluster frequently if some or all of the following
conditions apply:

• The testing cycle for your application is straightforward and brief.

• Your application is still in the development stage.

• Your database environment uses a variety of Aurora MySQL versions, or Aurora MySQL and RDS
for MySQL versions. Each Aurora MySQL cluster has its own upgrade cycle.

• You are waiting for specific performance or feature improvements before you increase your
usage of Aurora MySQL.

If the preceding factors apply to your situation, you can enable Aurora to apply important
upgrades more frequently. To do so, upgrade an Aurora MySQL DB cluster to a more recent Aurora
MySQL version than the LTS version. Doing so makes the latest performance enhancements, bug
fixes, and features available to you more quickly.

Choosing the frequency of Aurora MySQL maintenance updates 555

Amazon Aurora User Guide for Aurora

Working with operating system updates

DB instances in Aurora MySQL and Aurora PostgreSQL DB clusters occasionally require operating
system updates. Amazon RDS upgrades the operating system to a newer version to improve
database performance and customers’ overall security posture. Typically, the updates take about
10 minutes. Operating system updates don't change the DB engine version or DB instance class of
a DB instance.

We recommend that you update the reader DB instances in a DB cluster first, then the writer DB
instance. We don't recommend updating reader and writer instances at the same time, because you
might incur downtime in the event of a failover.

We recommend that you use the AWS drivers to achieve faster database failover. For more
information, see Connecting to Aurora DB clusters with the AWS drivers.

There are two types of operating system updates, differentiated by the description visible in the
pending maintenance action on the DB instance:

• Operating system distribution upgrade – Used to migrate to the latest supported major version
of Amazon Linux. Its description in the pending maintenance action is New Operating System
upgrade is available.

• Operating system patch – Used to apply various security fixes and sometimes to improve
database performance. Its description in the pending maintenance action is New Operating
System patch is available.

Operating system updates can be either optional or mandatory:

• An optional update can be applied at any time. While these updates are optional, we
recommend that you apply them periodically to keep your RDS fleet up to date. RDS does not
apply these updates automatically.

To be notified when a new, optional operating system patch becomes available, you can
subscribe to RDS-EVENT-0230 in the security patching event category. For information about
subscribing to RDS events, see Subscribing to Amazon RDS event notification.

Note

RDS-EVENT-0230 doesn't apply to operating system distribution upgrades.

Working with operating system updates 556

Amazon Aurora User Guide for Aurora

• A mandatory update is required, and we send a notification before the mandatory update. The
notification might contain a due date. Plan to schedule your update before this due date. After
the specified due date, Amazon RDS automatically upgrades the operating system for your DB
instance to the latest version during one of your assigned maintenance windows.

Operating system distribution upgrades are mandatory.

Note

Staying current on all optional and mandatory updates might be required to meet various
compliance obligations. We recommend that you apply all updates made available by RDS
routinely during your maintenance windows.

You can use the AWS Management Console or the AWS CLI to get information about the type of
operating system upgrade.

Console

To get update information using the AWS Management Console

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Databases, and then select the DB instance.

3. Choose Maintenance.

4. In the Pending maintenance section, find the operating system update, and check the
Description value.

In the AWS Management Console, an operating system distribution upgrade has its Description set
to New Operating System upgrade is available, as shown in the following image. This upgrade is
mandatory.

Working with operating system updates 557

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Aurora User Guide for Aurora

An operating system patch has its Description set to New Operating System patch is available, as
shown in the following image.

AWS CLI

To get update information from the AWS CLI, use the describe-pending-maintenance-actions
command.

aws rds describe-pending-maintenance-actions

The following output shows an operating system distribution upgrade.

{
 "ResourceIdentifier": "arn:aws:rds:us-east-1:123456789012:db:mydb1",
 "PendingMaintenanceActionDetails": [
 {
 "Action": "system-update",
 "Description": "New Operating System upgrade is available"

Working with operating system updates 558

https://docs.aws.amazon.com/cli/latest/reference/rds/describe-pending-maintenance-actions.html

Amazon Aurora User Guide for Aurora

 }
]
}

The following output shows an operating system patch.

{
 "ResourceIdentifier": "arn:aws:rds:us-east-1:123456789012:db:mydb2",
 "PendingMaintenanceActionDetails": [
 {
 "Action": "system-update",
 "Description": "New Operating System patch is available"
 }
]
}

Availability of operating system updates

Operating system updates are specific to DB engine version and DB instance class. Therefore,
DB instances receive or require updates at different times. When an operating system update is
available for your DB instance based on its engine version and instance class, the update appears
in the console. It can also be viewed by running AWS CLI describe-pending-maintenance-actions
command or by calling the RDS DescribePendingMaintenanceActions API operation. If an update is
available for your instance, you can update your operating system by following the instructions in
Applying updates for a DB cluster.

Working with operating system updates 559

https://docs.aws.amazon.com/cli/latest/reference/rds/describe-pending-maintenance-actions.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DescribePendingMaintenanceActions.html

Amazon Aurora User Guide for Aurora

Rebooting an Amazon Aurora DB cluster or Amazon Aurora DB
instance

You might need to reboot your DB cluster or some instances within the cluster, usually for
maintenance reasons. For example, suppose that you modify the parameters within a parameter
group or associate a different parameter group with your cluster. In these cases, you must reboot
the cluster for the changes to take effect. Similarly, you might reboot one or more reader DB
instances within the cluster. You can arrange the reboot operations for individual instances to
minimize downtime for the entire cluster.

The time required to reboot each DB instance in your cluster depends on the database activity
at the time of reboot. It also depends on the recovery process of your specific DB engine. If it's
practical, reduce database activity on that particular instance before starting the reboot process.
Doing so can reduce the time needed to restart the database.

You can only reboot each DB instance in your cluster when it's in the available state. A DB
instance can be unavailable for several reasons. These include the cluster being stopped state, a
modification being applied to the instance, and a maintenance-window action such as a version
upgrade.

Rebooting a DB instance restarts the database engine process. Rebooting a DB instance results in a
momentary outage, during which the DB instance status is set to rebooting.

Note

If a DB instance isn't using the latest changes to its associated DB parameter group, the
AWS Management Console shows the DB parameter group with a status of pending-
reboot. The pending-reboot parameter groups status doesn't result in an automatic reboot
during the next maintenance window. To apply the latest parameter changes to that DB
instance, manually reboot the DB instance. For more information about parameter groups,
see Working with parameter groups.

Topics

• Rebooting a DB instance within an Aurora cluster

• Rebooting an Aurora cluster with read availability

• Rebooting an Aurora cluster without read availability

Rebooting an Aurora DB cluster or instance 560

Amazon Aurora User Guide for Aurora

• Checking uptime for Aurora clusters and instances

• Examples of Aurora reboot operations

Rebooting a DB instance within an Aurora cluster

This procedure is the most important operation that you take when performing reboots with
Aurora. Many of the maintenance procedures involve rebooting one or more Aurora DB instances in
a particular order.

Console

To reboot a DB instance

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Databases, and then choose the DB instance that you want to
reboot.

3. For Actions, choose Reboot.

The Reboot DB Instance page appears.

4. Choose Reboot to reboot your DB instance.

Or choose Cancel.

AWS CLI

To reboot a DB instance by using the AWS CLI, call the reboot-db-instance command.

Example

For Linux, macOS, or Unix:

aws rds reboot-db-instance \
 --db-instance-identifier mydbinstance

For Windows:

aws rds reboot-db-instance ^

Rebooting a DB instance within an Aurora cluster 561

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/
https://docs.aws.amazon.com/cli/latest/reference/rds/reboot-db-instance.html

Amazon Aurora User Guide for Aurora

 --db-instance-identifier mydbinstance

RDS API

To reboot a DB instance by using the Amazon RDS API, call the RebootDBInstance operation.

Rebooting an Aurora cluster with read availability

With the read availability feature, you can reboot the writer instance of your Aurora cluster
without rebooting the reader instances in the primary or secondary DB cluster. Doing so can help
maintain high availability of the cluster for read operations while you reboot the writer instance.
You can reboot the reader instances later, on a schedule that's convenient for you. For example,
in a production cluster you might reboot the reader instances one at a time, starting only after
the reboot of the primary instance is finished. For each DB instance that you reboot, follow the
procedure in Rebooting a DB instance within an Aurora cluster.

The read availability feature for primary DB clusters is available in Aurora MySQL version 2.10 and
higher. Read availability for secondary DB clusters is available in Aurora MySQL version 3.06 and
higher.

For Aurora PostgreSQL this feature is available by default in the following versions:

• 15.2 and higher 15 versions

• 14.7 and higher 14 versions

• 13.10 and higher 13 versions

• 12.14 and higher 12 versions

For more information on the read availability feature in Aurora PostgreSQL, see Improving the read
availability of Aurora Replicas.

Before this feature, rebooting the primary instance caused a reboot for each reader instance at
the same time. If your Aurora cluster is running an older version, use the reboot procedure in
Rebooting an Aurora cluster without read availability instead.

Note

The change to reboot behavior in Aurora DB clusters with read availability is different for
Aurora global databases in Aurora MySQL versions lower than 3.06. If you reboot the writer

Rebooting an Aurora cluster with read availability 562

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_RebootDBInstance.html

Amazon Aurora User Guide for Aurora

instance for the primary cluster in an Aurora global database, the reader instances in the
primary cluster remain available. However, the DB instances in any secondary clusters
reboot at the same time.
A limited version of the improved read availability feature is supported by Aurora global
databases for Aurora PostgreSQL versions 12.16, 13.12, 14.9, 15.4, and higher.

You frequently reboot the cluster after making changes to cluster parameter groups. You make
parameter changes by following the procedures in Working with parameter groups. Suppose that
you reboot the writer DB instance in an Aurora cluster to apply changes to cluster parameters.
Some or all of the reader DB instances might continue using the old parameter settings. However,
the different parameter settings don't affect the data integrity of the cluster. Any cluster
parameters that affect the organization of data files are only used by the writer DB instance.

For example, in an Aurora MySQL cluster, you can update cluster parameters such as
binlog_format and innodb_purge_threads on the writer instance before the reader
instances. Only the writer instance is writing binary logs and purging undo records. For parameters
that change how queries interpret SQL statements or query output, you might need to take care
to reboot the reader instances immediately. You do this to avoid unexpected application behavior
during queries. For example, suppose that you change the lower_case_table_names parameter
and reboot the writer instance. In this case, the reader instances might not be able to access a
newly created table until they are all rebooted.

For a list of all the Aurora MySQL cluster parameters, see Cluster-level parameters.

For a list of all the Aurora PostgreSQL cluster parameters, see Aurora PostgreSQL cluster-level
parameters.

Tip

Aurora MySQL might still reboot some of the reader instances along with the writer
instance if your cluster is processing a workload with high throughput.
The reduction in the number of reboots applies during failover operations also. Aurora
MySQL only restarts the writer DB instance and the failover target during a failover. Other
reader DB instances in the cluster remain available to continue processing queries through
connections to the reader endpoint. Thus, you can improve availability during a failover by
having more than one reader DB instance in a cluster.

Rebooting an Aurora cluster with read availability 563

Amazon Aurora User Guide for Aurora

Rebooting an Aurora cluster without read availability

Without the read availability feature, you reboot an entire Aurora DB cluster by rebooting the
writer DB instance of that cluster. To do so, follow the procedure in Rebooting a DB instance within
an Aurora cluster.

Rebooting the writer DB instance also initiates a reboot for each reader DB instance in the cluster.
That way, any cluster-wide parameter changes are applied to all DB instances at the same time.
However, the reboot of all DB instances causes a brief outage for the cluster. The reader DB
instances remain unavailable until the writer DB instance finishes rebooting and becomes available.

This reboot behavior applies to all DB clusters created in Aurora MySQL version 2.09 and lower.

For Aurora PostgreSQL this behavior applies to the following versions:

• 14.6 and lower 14 versions

• 13.9 and lower 13 versions

• 12.13 and lower 12 versions

• All PostgreSQL 11 versions

In the RDS console, the writer DB instance has the value Writer under the Role column on the
Databases page. In the RDS CLI, the output of the describe-db-clusters command includes
a section DBClusterMembers. The DBClusterMembers element representing the writer DB
instance has a value of true for the IsClusterWriter field.

Important

With the read availability feature, the reboot behavior is different in Aurora MySQL and
Aurora PostgreSQL: the reader DB instances typically remain available while you reboot
the writer instance. Then you can reboot the reader instances at a convenient time. You
can reboot the reader instances on a staggered schedule if you want some reader instances
to always be available. For more information, see Rebooting an Aurora cluster with read
availability.

Rebooting an Aurora cluster without read availability 564

Amazon Aurora User Guide for Aurora

Checking uptime for Aurora clusters and instances

You can check and monitor the length of time since the last reboot for each DB instance in your
Aurora cluster. The Amazon CloudWatch metric EngineUptime reports the number of seconds
since the last time a DB instance was started. You can examine this metric at a point in time to find
out the uptime for the DB instance. You can also monitor this metric over time to detect when the
instance is rebooted.

You can also examine the EngineUptime metric at the cluster level. The Minimum and Maximum
dimensions report the smallest and largest uptime values for all DB instances in the cluster. To
check the most recent time when any reader instance in a cluster was rebooted, or restarted for
another reason, monitor the cluster-level metric using the Minimum dimension. To check which
instance in the cluster has gone the longest without a reboot, monitor the cluster-level metric
using the Maximum dimension. For example, you might want to confirm that all DB instances in the
cluster were rebooted after a configuration change.

Tip

For long-term monitoring, we recommend monitoring the EngineUptime metric for
individual instances instead of at the cluster level. The cluster-level EngineUptime metric
is set to zero when a new DB instance is added to the cluster. Such cluster changes can
happen as part of maintenance and scaling operations such as those performed by Auto
Scaling.

The following CLI examples show how to examine the EngineUptime metric for the writer and
reader instances in a cluster. The examples use a cluster named tpch100g. This cluster has a
writer DB instance instance-1234. It also has two reader DB instances, instance-7448 and
instance-6305.

First, the reboot-db-instance command reboots one of the reader instances. The wait
command waits until the instance is finished rebooting.

$ aws rds reboot-db-instance --db-instance-identifier instance-6305
{
 "DBInstance": {
 "DBInstanceIdentifier": "instance-6305",
 "DBInstanceStatus": "rebooting",
...

Checking uptime for Aurora clusters and instances 565

Amazon Aurora User Guide for Aurora

$ aws rds wait db-instance-available --db-instance-id instance-6305

The CloudWatch get-metric-statistics command examines the EngineUptime metric over
the last five minutes at one-minute intervals. The uptime for the instance-6305 instance is reset
to zero and begins counting upwards again. This AWS CLI example for Linux uses $() variable
substitution to insert the appropriate timestamps into the CLI commands. It also uses the Linux
sort command to order the output by the time the metric was collected. That timestamp value is
the third field in each line of output.

$ aws cloudwatch get-metric-statistics --metric-name "EngineUptime" \
 --start-time "$(date -d '5 minutes ago')" --end-time "$(date -d 'now')" \
 --period 60 --namespace "AWS/RDS" --statistics Maximum \
 --dimensions Name=DBInstanceIdentifier,Value=instance-6305 --output text \
 | sort -k 3
EngineUptime
DATAPOINTS 231.0 2021-03-16T18:19:00+00:00 Seconds
DATAPOINTS 291.0 2021-03-16T18:20:00+00:00 Seconds
DATAPOINTS 351.0 2021-03-16T18:21:00+00:00 Seconds
DATAPOINTS 411.0 2021-03-16T18:22:00+00:00 Seconds
DATAPOINTS 471.0 2021-03-16T18:23:00+00:00 Seconds

The minimum uptime for the cluster is reset to zero because one of the instances in the cluster was
rebooted. The maximum uptime for the cluster isn't reset because at least one of the DB instances
in the cluster remained available.

$ aws cloudwatch get-metric-statistics --metric-name "EngineUptime" \
 --start-time "$(date -d '5 minutes ago')" --end-time "$(date -d 'now')" \
 --period 60 --namespace "AWS/RDS" --statistics Minimum \
 --dimensions Name=DBClusterIdentifier,Value=tpch100g --output text \
 | sort -k 3
EngineUptime
DATAPOINTS 63099.0 2021-03-16T18:12:00+00:00 Seconds
DATAPOINTS 63159.0 2021-03-16T18:13:00+00:00 Seconds
DATAPOINTS 63219.0 2021-03-16T18:14:00+00:00 Seconds
DATAPOINTS 63279.0 2021-03-16T18:15:00+00:00 Seconds
DATAPOINTS 51.0 2021-03-16T18:16:00+00:00 Seconds

$ aws cloudwatch get-metric-statistics --metric-name "EngineUptime" \
 --start-time "$(date -d '5 minutes ago')" --end-time "$(date -d 'now')" \
 --period 60 --namespace "AWS/RDS" --statistics Maximum \
 --dimensions Name=DBClusterIdentifier,Value=tpch100g --output text \

Checking uptime for Aurora clusters and instances 566

Amazon Aurora User Guide for Aurora

 | sort -k 3
EngineUptime
DATAPOINTS 63389.0 2021-03-16T18:16:00+00:00 Seconds
DATAPOINTS 63449.0 2021-03-16T18:17:00+00:00 Seconds
DATAPOINTS 63509.0 2021-03-16T18:18:00+00:00 Seconds
DATAPOINTS 63569.0 2021-03-16T18:19:00+00:00 Seconds
DATAPOINTS 63629.0 2021-03-16T18:20:00+00:00 Seconds

Then another reboot-db-instance command reboots the writer instance of the cluster. Another
wait command pauses until the writer instance is finished rebooting.

$ aws rds reboot-db-instance --db-instance-identifier instance-1234
{
 "DBInstanceIdentifier": "instance-1234",
 "DBInstanceStatus": "rebooting",
...
$ aws rds wait db-instance-available --db-instance-id instance-1234

Now the EngineUptime metric for the writer instance shows that the instance instance-1234
was rebooted recently. The reader instance instance-6305 was also rebooted automatically
along with the writer instance. This cluster is running Aurora MySQL 2.09, which doesn't keep the
reader instances running as the writer instance reboots.

$ aws cloudwatch get-metric-statistics --metric-name "EngineUptime" \
 --start-time "$(date -d '5 minutes ago')" --end-time "$(date -d 'now')" \
 --period 60 --namespace "AWS/RDS" --statistics Maximum \
 --dimensions Name=DBInstanceIdentifier,Value=instance-1234 --output text \
 | sort -k 3
EngineUptime
DATAPOINTS 63749.0 2021-03-16T18:22:00+00:00 Seconds
DATAPOINTS 63809.0 2021-03-16T18:23:00+00:00 Seconds
DATAPOINTS 63869.0 2021-03-16T18:24:00+00:00 Seconds
DATAPOINTS 41.0 2021-03-16T18:25:00+00:00 Seconds
DATAPOINTS 101.0 2021-03-16T18:26:00+00:00 Seconds

$ aws cloudwatch get-metric-statistics --metric-name "EngineUptime" \
 --start-time "$(date -d '5 minutes ago')" --end-time "$(date -d 'now')" \
 --period 60 --namespace "AWS/RDS" --statistics Maximum \
 --dimensions Name=DBInstanceIdentifier,Value=instance-6305 --output text \
 | sort -k 3
EngineUptime
DATAPOINTS 411.0 2021-03-16T18:22:00+00:00 Seconds

Checking uptime for Aurora clusters and instances 567

Amazon Aurora User Guide for Aurora

DATAPOINTS 471.0 2021-03-16T18:23:00+00:00 Seconds
DATAPOINTS 531.0 2021-03-16T18:24:00+00:00 Seconds
DATAPOINTS 49.0 2021-03-16T18:26:00+00:00 Seconds

Examples of Aurora reboot operations

The following Aurora MySQL examples show different combinations of reboot operations for
reader and writer DB instances in an Aurora DB cluster. After each reboot, SQL queries demonstrate
the uptime for the instances in the cluster.

Topics

• Finding the writer and reader instances for an Aurora cluster

• Rebooting a single reader instance

• Rebooting the writer instance

• Rebooting the writer and readers independently

• Applying a cluster parameter change to an Aurora MySQL version 2.10 cluster

Finding the writer and reader instances for an Aurora cluster

In an Aurora MySQL cluster with multiple DB instances, it's important to know which one is the
writer and which ones are the readers. The writer and reader instances also can switch roles
when a failover operation happens. Thus, it's best to perform a check like the following before
doing any operation that requires a writer or reader instance. In this case, the False values for
IsClusterWriter identify the reader instances, instance-6305 and instance-7448. The
True value identifies the writer instance, instance-1234.

$ aws rds describe-db-clusters --db-cluster-id tpch100g \
 --query "*[].['Cluster:',DBClusterIdentifier,DBClusterMembers[*].
['Instance:',DBInstanceIdentifier,IsClusterWriter]]" \
 --output text
Cluster: tpch100g
Instance: instance-6305 False
Instance: instance-7448 False
Instance: instance-1234 True

Before we start the examples of rebooting, the writer instance has an uptime of approximately
one week. The SQL query in this example shows a MySQL-specific way to check the uptime. You

Examples of Aurora reboot operations 568

Amazon Aurora User Guide for Aurora

might use this technique in a database application. For another technique that uses the AWS CLI
and works for both Aurora engines, see Checking uptime for Aurora clusters and instances.

$ mysql -h instance-7448.a12345.us-east-1.rds.amazonaws.com -P 3306 -u my-user -p
...
mysql> select date_sub(now(), interval variable_value second) "Last Startup",
 -> time_format(sec_to_time(variable_value),'%Hh %im') as "Uptime"
 -> from performance_schema.global_status
 -> where variable_name='Uptime';
+----------------------------+---------+
| Last Startup | Uptime |
+----------------------------+---------+
| 2021-03-08 17:49:06.000000 | 174h 42m|
+----------------------------+---------+

Rebooting a single reader instance

This example reboots one of the reader DB instances. Perhaps this instance was overloaded by a
huge query or many concurrent connections. Or perhaps it fell behind the writer instance because
of a network issue. After starting the reboot operation, the example uses a wait command to
pause until the instance becomes available. By that point, the instance has an uptime of a few
minutes.

$ aws rds reboot-db-instance --db-instance-identifier instance-6305
{
 "DBInstance": {
 "DBInstanceIdentifier": "instance-6305",
 "DBInstanceStatus": "rebooting",
...
 }
}
$ aws rds wait db-instance-available --db-instance-id instance-6305
$ mysql -h instance-6305.a12345.us-east-1.rds.amazonaws.com -P 3306 -u my-user -p
...
mysql> select date_sub(now(), interval variable_value second) "Last Startup",
 -> time_format(sec_to_time(variable_value),'%Hh %im') as "Uptime"
 -> from performance_schema.global_status
 -> where variable_name='Uptime';
+----------------------------+---------+
| Last Startup | Uptime |
+----------------------------+---------+
| 2021-03-16 00:35:02.000000 | 00h 03m |

Examples of Aurora reboot operations 569

Amazon Aurora User Guide for Aurora

+----------------------------+---------+

Rebooting the reader instance didn't affect the uptime of the writer instance. It still has an uptime
of about one week.

$ mysql -h instance-7448.a12345.us-east-1.rds.amazonaws.com -P 3306 -u my-user -p
...
mysql> select date_sub(now(), interval variable_value second) "Last Startup",
 -> time_format(sec_to_time(variable_value),'%Hh %im') as "Uptime"
 -> from performance_schema.global_status where variable_name='Uptime';
+----------------------------+----------+
| Last Startup | Uptime |
+----------------------------+----------+
| 2021-03-08 17:49:06.000000 | 174h 49m |
+----------------------------+----------+

Rebooting the writer instance

This example reboots the writer instance. This cluster is running Aurora MySQL version 2.09.
Because the Aurora MySQL version is lower than 2.10, rebooting the writer instance also reboots
any reader instances in the cluster.

A wait command pauses until the reboot is finished. Now the uptime for that instance is reset
to zero. It's possible that a reboot operation might take substantially different times for writer
and reader DB instances. The writer and reader DB instances perform different kinds of cleanup
operations depending on their roles.

$ aws rds reboot-db-instance --db-instance-identifier instance-1234
{
 "DBInstance": {
 "DBInstanceIdentifier": "instance-1234",
 "DBInstanceStatus": "rebooting",
...
 }
}
$ aws rds wait db-instance-available --db-instance-id instance-1234
$ mysql -h instance-1234.a12345.us-east-1.rds.amazonaws.com -P 3306 -u my-user -p
...
mysql> select date_sub(now(), interval variable_value second) "Last Startup",
 -> time_format(sec_to_time(variable_value),'%Hh %im') as "Uptime"
 -> from performance_schema.global_status where variable_name='Uptime';

Examples of Aurora reboot operations 570

Amazon Aurora User Guide for Aurora

+----------------------------+---------+
| Last Startup | Uptime |
+----------------------------+---------+
| 2021-03-16 00:40:27.000000 | 00h 00m |
+----------------------------+---------+

After the reboot for the writer DB instance, both of the reader DB instances also have their uptime
reset. Rebooting the writer instance caused the reader instances to reboot also. This behavior
applies to Aurora PostgreSQL clusters and to Aurora MySQL clusters before version 2.10.

$ mysql -h instance-7448.a12345.us-east-1.rds.amazonaws.com -P 3306 -u my-user -p
...
mysql> select date_sub(now(), interval variable_value second) "Last Startup",
 -> time_format(sec_to_time(variable_value),'%Hh %im') as "Uptime"
 -> from performance_schema.global_status where variable_name='Uptime';
+----------------------------+---------+
| Last Startup | Uptime |
+----------------------------+---------+
| 2021-03-16 00:40:35.000000 | 00h 00m |
+----------------------------+---------+

$ mysql -h instance-6305.a12345.us-east-1.rds.amazonaws.com -P 3306 -u my-user -p
...
mysql> select date_sub(now(), interval variable_value second) "Last Startup",
 -> time_format(sec_to_time(variable_value),'%Hh %im') as "Uptime"
 -> from performance_schema.global_status where variable_name='Uptime';
+----------------------------+---------+
| Last Startup | Uptime |
+----------------------------+---------+
| 2021-03-16 00:40:33.000000 | 00h 01m |
+----------------------------+---------+

Rebooting the writer and readers independently

These next examples show a cluster that runs Aurora MySQL version 2.10. In this Aurora MySQL
version and higher, you can reboot the writer instance without causing reboots for all the reader
instances. That way, your query-intensive applications don't experience any outage when you
reboot the writer instance. You can reboot the reader instances later. You might do those reboots
at a time of low query traffic. You might also reboot the reader instances one at a time. That way,
at least one reader instance is always available for the query traffic of your application.

Examples of Aurora reboot operations 571

Amazon Aurora User Guide for Aurora

The following example uses a cluster named cluster-2393, running Aurora MySQL version
5.7.mysql_aurora.2.10.0. This cluster has a writer instance named instance-9404 and
three reader instances named instance-6772, instance-2470, and instance-5138.

$ aws rds describe-db-clusters --db-cluster-id cluster-2393 \
 --query "*[].['Cluster:',DBClusterIdentifier,DBClusterMembers[*].
['Instance:',DBInstanceIdentifier,IsClusterWriter]]" \
 --output text
Cluster: cluster-2393
Instance: instance-5138 False
Instance: instance-2470 False
Instance: instance-6772 False
Instance: instance-9404 True

Checking the uptime value of each database instance through the mysql command shows that
each one has roughly the same uptime. For example, here is the uptime for instance-5138.

mysql> SHOW GLOBAL STATUS LIKE 'uptime';
+---------------+-------+
| Variable_name | Value |
+---------------+-------+
| Uptime | 3866 |
+---------------+-------+

By using CloudWatch, we can get the corresponding uptime information without actually logging
into the instances. That way, an administrator can monitor the database but can't view or change
any table data. In this case, we specify a time period spanning five minutes, and check the uptime
value every minute. The increasing uptime values demonstrate that the instances weren't restarted
during that period.

$ aws cloudwatch get-metric-statistics --metric-name "EngineUptime" \
 --start-time "$(date -d '5 minutes ago')" --end-time "$(date -d 'now')" --period 60 \
 --namespace "AWS/RDS" --statistics Minimum --dimensions
 Name=DBInstanceIdentifier,Value=instance-9404 \
 --output text | sort -k 3
EngineUptime
DATAPOINTS 4648.0 2021-03-17T23:42:00+00:00 Seconds
DATAPOINTS 4708.0 2021-03-17T23:43:00+00:00 Seconds
DATAPOINTS 4768.0 2021-03-17T23:44:00+00:00 Seconds
DATAPOINTS 4828.0 2021-03-17T23:45:00+00:00 Seconds
DATAPOINTS 4888.0 2021-03-17T23:46:00+00:00 Seconds

Examples of Aurora reboot operations 572

Amazon Aurora User Guide for Aurora

$ aws cloudwatch get-metric-statistics --metric-name "EngineUptime" \
 --start-time "$(date -d '5 minutes ago')" --end-time "$(date -d 'now')" --period 60 \
 --namespace "AWS/RDS" --statistics Minimum --dimensions
 Name=DBInstanceIdentifier,Value=instance-6772 \
 --output text | sort -k 3
EngineUptime
DATAPOINTS 4315.0 2021-03-17T23:42:00+00:00 Seconds
DATAPOINTS 4375.0 2021-03-17T23:43:00+00:00 Seconds
DATAPOINTS 4435.0 2021-03-17T23:44:00+00:00 Seconds
DATAPOINTS 4495.0 2021-03-17T23:45:00+00:00 Seconds
DATAPOINTS 4555.0 2021-03-17T23:46:00+00:00 Seconds

Now we reboot one of the reader instances, instance-5138. We wait for the instance to become
available again after the reboot. Now monitoring the uptime over a five-minute period shows that
the uptime was reset to zero during that time. The most recent uptime value was measured five
seconds after the reboot finished.

$ aws rds reboot-db-instance --db-instance-identifier instance-5138
{
 "DBInstanceIdentifier": "instance-5138",
 "DBInstanceStatus": "rebooting"
}
$ aws rds wait db-instance-available --db-instance-id instance-5138

$ aws cloudwatch get-metric-statistics --metric-name "EngineUptime" \
 --start-time "$(date -d '5 minutes ago')" --end-time "$(date -d 'now')" --period 60 \
 --namespace "AWS/RDS" --statistics Minimum --dimensions
 Name=DBInstanceIdentifier,Value=instance-5138 \
 --output text | sort -k 3
EngineUptime
DATAPOINTS 4500.0 2021-03-17T23:46:00+00:00 Seconds
DATAPOINTS 4560.0 2021-03-17T23:47:00+00:00 Seconds
DATAPOINTS 4620.0 2021-03-17T23:48:00+00:00 Seconds
DATAPOINTS 4680.0 2021-03-17T23:49:00+00:00 Seconds
DATAPOINTS 5.0 2021-03-17T23:50:00+00:00 Seconds

Next, we perform a reboot for the writer instance, instance-9404. We compare the uptime
values for the writer instance and one of the reader instances. By doing so, we can see that
rebooting the writer didn't cause a reboot for the readers. In versions before Aurora MySQL 2.10,
the uptime values for all the readers would be reset at the same time as the writer.

Examples of Aurora reboot operations 573

Amazon Aurora User Guide for Aurora

$ aws rds reboot-db-instance --db-instance-identifier instance-9404
{
 "DBInstanceIdentifier": "instance-9404",
 "DBInstanceStatus": "rebooting"
}
$ aws rds wait db-instance-available --db-instance-id instance-9404

$ aws cloudwatch get-metric-statistics --metric-name "EngineUptime" \
 --start-time "$(date -d '5 minutes ago')" --end-time "$(date -d 'now')" --period 60 \
 --namespace "AWS/RDS" --statistics Minimum --dimensions
 Name=DBInstanceIdentifier,Value=instance-9404 \
 --output text | sort -k 3
EngineUptime
DATAPOINTS 371.0 2021-03-17T23:57:00+00:00 Seconds
DATAPOINTS 431.0 2021-03-17T23:58:00+00:00 Seconds
DATAPOINTS 491.0 2021-03-17T23:59:00+00:00 Seconds
DATAPOINTS 551.0 2021-03-18T00:00:00+00:00 Seconds
DATAPOINTS 37.0 2021-03-18T00:01:00+00:00 Seconds

$ aws cloudwatch get-metric-statistics --metric-name "EngineUptime" \
 --start-time "$(date -d '5 minutes ago')" --end-time "$(date -d 'now')" --period 60 \
 --namespace "AWS/RDS" --statistics Minimum --dimensions
 Name=DBInstanceIdentifier,Value=instance-6772 \
 --output text | sort -k 3
EngineUptime
DATAPOINTS 5215.0 2021-03-17T23:57:00+00:00 Seconds
DATAPOINTS 5275.0 2021-03-17T23:58:00+00:00 Seconds
DATAPOINTS 5335.0 2021-03-17T23:59:00+00:00 Seconds
DATAPOINTS 5395.0 2021-03-18T00:00:00+00:00 Seconds
DATAPOINTS 5455.0 2021-03-18T00:01:00+00:00 Seconds

To make sure that all the reader instances have all the same changes to configuration parameters
as the writer instance, reboot all the reader instances after the writer. This example reboots all the
readers and then waits until all of them are available before proceeding.

$ aws rds reboot-db-instance --db-instance-identifier instance-6772
{
 "DBInstanceIdentifier": "instance-6772",
 "DBInstanceStatus": "rebooting"
}

$ aws rds reboot-db-instance --db-instance-identifier instance-2470

Examples of Aurora reboot operations 574

Amazon Aurora User Guide for Aurora

{
 "DBInstanceIdentifier": "instance-2470",
 "DBInstanceStatus": "rebooting"
}

$ aws rds reboot-db-instance --db-instance-identifier instance-5138
{
 "DBInstanceIdentifier": "instance-5138",
 "DBInstanceStatus": "rebooting"
}

$ aws rds wait db-instance-available --db-instance-id instance-6772
$ aws rds wait db-instance-available --db-instance-id instance-2470
$ aws rds wait db-instance-available --db-instance-id instance-5138

Now we can see that the writer DB instance has the highest uptime. This instance's uptime value
increased steadily throughout the monitoring period. The reader DB instances were all rebooted
after the reader. We can see the point within the monitoring period when each reader was
rebooted and its uptime was reset to zero.

$ aws cloudwatch get-metric-statistics --metric-name "EngineUptime" \
 --start-time "$(date -d '5 minutes ago')" --end-time "$(date -d 'now')" --period 60 \
 --namespace "AWS/RDS" --statistics Minimum --dimensions
 Name=DBInstanceIdentifier,Value=instance-9404 \
 --output text | sort -k 3
EngineUptime
DATAPOINTS 457.0 2021-03-18T00:08:00+00:00 Seconds
DATAPOINTS 517.0 2021-03-18T00:09:00+00:00 Seconds
DATAPOINTS 577.0 2021-03-18T00:10:00+00:00 Seconds
DATAPOINTS 637.0 2021-03-18T00:11:00+00:00 Seconds
DATAPOINTS 697.0 2021-03-18T00:12:00+00:00 Seconds

$ aws cloudwatch get-metric-statistics --metric-name "EngineUptime" \
 --start-time "$(date -d '5 minutes ago')" --end-time "$(date -d 'now')" --period 60 \
 --namespace "AWS/RDS" --statistics Minimum --dimensions
 Name=DBInstanceIdentifier,Value=instance-2470 \
 --output text | sort -k 3
EngineUptime
DATAPOINTS 5819.0 2021-03-18T00:08:00+00:00 Seconds
DATAPOINTS 35.0 2021-03-18T00:09:00+00:00 Seconds
DATAPOINTS 95.0 2021-03-18T00:10:00+00:00 Seconds
DATAPOINTS 155.0 2021-03-18T00:11:00+00:00 Seconds
DATAPOINTS 215.0 2021-03-18T00:12:00+00:00 Seconds

Examples of Aurora reboot operations 575

Amazon Aurora User Guide for Aurora

$ aws cloudwatch get-metric-statistics --metric-name "EngineUptime" \
 --start-time "$(date -d '5 minutes ago')" --end-time "$(date -d 'now')" --period 60 \
 --namespace "AWS/RDS" --statistics Minimum --dimensions
 Name=DBInstanceIdentifier,Value=instance-5138 \
 --output text | sort -k 3
EngineUptime
DATAPOINTS 1085.0 2021-03-18T00:08:00+00:00 Seconds
DATAPOINTS 1145.0 2021-03-18T00:09:00+00:00 Seconds
DATAPOINTS 1205.0 2021-03-18T00:10:00+00:00 Seconds
DATAPOINTS 49.0 2021-03-18T00:11:00+00:00 Seconds
DATAPOINTS 109.0 2021-03-18T00:12:00+00:00 Seconds

Applying a cluster parameter change to an Aurora MySQL version 2.10 cluster

The following example demonstrates how to apply a parameter change to all DB instances in your
Aurora MySQL 2.10 cluster. With this Aurora MySQL version, you reboot the writer instance and all
the reader instances independently.

The example uses the MySQL configuration parameter lower_case_table_names for
illustration. When this parameter setting is different between the writer and reader DB instances,
a query might not be able to access a table declared with an uppercase or mixed-case name. Or if
two table names differ only in terms of uppercase and lowercase letters, a query might access the
wrong table.

This example shows how to determine the writer and reader instances in the cluster by examining
the IsClusterWriter attribute of each instance. The cluster is named cluster-2393. The
cluster has a writer instance named instance-9404. The reader instances in the cluster are
named instance-5138 and instance-2470.

$ aws rds describe-db-clusters --db-cluster-id cluster-2393 \
 --query '*[].[DBClusterIdentifier,DBClusterMembers[*].
[DBInstanceIdentifier,IsClusterWriter]]' \
 --output text
cluster-2393
instance-5138 False
instance-2470 False
instance-9404 True

To demonstrate the effects of changing the lower_case_table_names parameter, we set up
two DB cluster parameter groups. The lower-case-table-names-0 parameter group has this

Examples of Aurora reboot operations 576

Amazon Aurora User Guide for Aurora

parameter set to 0. The lower-case-table-names-1 parameter group has this parameter group
set to 1.

$ aws rds create-db-cluster-parameter-group --description 'lower-case-table-names-0' \
 --db-parameter-group-family aurora-mysql5.7 \
 --db-cluster-parameter-group-name lower-case-table-names-0
{
 "DBClusterParameterGroup": {
 "DBClusterParameterGroupName": "lower-case-table-names-0",
 "DBParameterGroupFamily": "aurora-mysql5.7",
 "Description": "lower-case-table-names-0"
 }
}

$ aws rds create-db-cluster-parameter-group --description 'lower-case-table-names-1' \
 --db-parameter-group-family aurora-mysql5.7 \
 --db-cluster-parameter-group-name lower-case-table-names-1
{
 "DBClusterParameterGroup": {
 "DBClusterParameterGroupName": "lower-case-table-names-1",
 "DBParameterGroupFamily": "aurora-mysql5.7",
 "Description": "lower-case-table-names-1"
 }
}

$ aws rds modify-db-cluster-parameter-group \
 --db-cluster-parameter-group-name lower-case-table-names-0 \
 --parameters
 ParameterName=lower_case_table_names,ParameterValue=0,ApplyMethod=pending-reboot
{
 "DBClusterParameterGroupName": "lower-case-table-names-0"
}

$ aws rds modify-db-cluster-parameter-group \
 --db-cluster-parameter-group-name lower-case-table-names-1 \
 --parameters
 ParameterName=lower_case_table_names,ParameterValue=1,ApplyMethod=pending-reboot
{
 "DBClusterParameterGroupName": "lower-case-table-names-1"
}

The default value of lower_case_table_names is 0. With this parameter setting, the table foo
is distinct from the table FOO. This example verifies that the parameter is still at its default setting.

Examples of Aurora reboot operations 577

Amazon Aurora User Guide for Aurora

Then the example creates three tables that differ only in uppercase and lowercase letters in their
names.

mysql> create database lctn;
Query OK, 1 row affected (0.07 sec)

mysql> use lctn;
Database changed
mysql> select @@lower_case_table_names;
+--------------------------+
| @@lower_case_table_names |
+--------------------------+
| 0 |
+--------------------------+

mysql> create table foo (s varchar(128));
mysql> insert into foo values ('Lowercase table name foo');

mysql> create table Foo (s varchar(128));
mysql> insert into Foo values ('Mixed-case table name Foo');

mysql> create table FOO (s varchar(128));
mysql> insert into FOO values ('Uppercase table name FOO');

mysql> select * from foo;
+--------------------------+
| s |
+--------------------------+
| Lowercase table name foo |
+--------------------------+

mysql> select * from Foo;
+---------------------------+
| s |
+---------------------------+
| Mixed-case table name Foo |
+---------------------------+

mysql> select * from FOO;
+--------------------------+
| s |
+--------------------------+
| Uppercase table name FOO |

Examples of Aurora reboot operations 578

Amazon Aurora User Guide for Aurora

+--------------------------+

Next, we associate the DB parameter group with the cluster to set the lower_case_table_names
parameter to 1. This change only takes effect after each DB instance is rebooted.

$ aws rds modify-db-cluster --db-cluster-identifier cluster-2393 \
 --db-cluster-parameter-group-name lower-case-table-names-1
{
 "DBClusterIdentifier": "cluster-2393",
 "DBClusterParameterGroup": "lower-case-table-names-1",
 "Engine": "aurora-mysql",
 "EngineVersion": "5.7.mysql_aurora.2.10.0"
}

The first reboot we do is for the writer DB instance. Then we wait for the instance to become
available again. At that point, we connect to the writer endpoint and verify that the writer instance
has the changed parameter value. The SHOW TABLES command confirms that the database
contains the three different tables. However, queries that refer to tables named foo, Foo, or FOO
all access the table whose name is all-lowercase, foo.

Rebooting the writer instance
$ aws rds reboot-db-instance --db-instance-identifier instance-9404
$ aws rds wait db-instance-available --db-instance-id instance-9404

Now, queries using the cluster endpoint show the effects of the parameter change. Whether the
table name in the query is uppercase, lowercase, or mixed case, the SQL statement accesses the
table whose name is all lowercase.

mysql> select @@lower_case_table_names;
+--------------------------+
| @@lower_case_table_names |
+--------------------------+
| 1 |
+--------------------------+

mysql> use lctn;
mysql> show tables;
+----------------+
| Tables_in_lctn |
+----------------+

Examples of Aurora reboot operations 579

Amazon Aurora User Guide for Aurora

| FOO |
| Foo |
| foo |
+----------------+

mysql> select * from foo;
+--------------------------+
| s |
+--------------------------+
| Lowercase table name foo |
+--------------------------+

mysql> select * from Foo;
+--------------------------+
| s |
+--------------------------+
| Lowercase table name foo |
+--------------------------+

mysql> select * from FOO;
+--------------------------+
| s |
+--------------------------+
| Lowercase table name foo |
+--------------------------+

The next example shows the same queries as the previous one. In this case, the queries use the
reader endpoint and run on one of the reader DB instances. Those instances haven't been rebooted
yet. Thus, they still have the original setting for the lower_case_table_names parameter. That
means that queries can access each of the foo, Foo, and FOO tables.

mysql> select @@lower_case_table_names;
+--------------------------+
| @@lower_case_table_names |
+--------------------------+
| 0 |
+--------------------------+

mysql> use lctn;

mysql> select * from foo;
+--------------------------+
| s |

Examples of Aurora reboot operations 580

Amazon Aurora User Guide for Aurora

+--------------------------+
| Lowercase table name foo |
+--------------------------+

mysql> select * from Foo;
+---------------------------+
| s |
+---------------------------+
| Mixed-case table name Foo |
+---------------------------+

mysql> select * from FOO;
+--------------------------+
| s |
+--------------------------+
| Uppercase table name FOO |
+--------------------------+

Next, we reboot one of the reader instances and wait for it to become available again.

$ aws rds reboot-db-instance --db-instance-identifier instance-2470
{
 "DBInstanceIdentifier": "instance-2470",
 "DBInstanceStatus": "rebooting"
}
$ aws rds wait db-instance-available --db-instance-id instance-2470

While connected to the instance endpoint for instance-2470, a query shows that the new
parameter is in effect.

mysql> select @@lower_case_table_names;
+--------------------------+
| @@lower_case_table_names |
+--------------------------+
| 1 |
+--------------------------+

At this point, the two reader instances in the cluster are running with different
lower_case_table_names settings. Thus, any connection to the reader endpoint of the cluster
uses a value for this setting that's unpredictable. It's important to immediately reboot the other
reader instance so that they both have consistent settings.

Examples of Aurora reboot operations 581

Amazon Aurora User Guide for Aurora

$ aws rds reboot-db-instance --db-instance-identifier instance-5138
{
 "DBInstanceIdentifier": "instance-5138",
 "DBInstanceStatus": "rebooting"
}
$ aws rds wait db-instance-available --db-instance-id instance-5138

The following example confirms that all the reader instances have the same setting for the
lower_case_table_names parameter. The commands check the lower_case_table_names
setting value on each reader instance. Then the same command using the reader endpoint
demonstrates that each connection to the reader endpoint uses one of the reader instances, but
which one isn't predictable.

Check lower_case_table_names setting on each reader instance.

$ mysql -h instance-5138.a12345.us-east-1.rds.amazonaws.com \
 -u my-user -p -e 'select @@aurora_server_id, @@lower_case_table_names'
+--------------------------+--------------------------+
| @@aurora_server_id | @@lower_case_table_names |
+--------------------------+--------------------------+
| instance-5138 | 1 |
+--------------------------+--------------------------+

$ mysql -h instance-2470.a12345.us-east-1.rds.amazonaws.com \
 -u my-user -p -e 'select @@aurora_server_id, @@lower_case_table_names'
+--------------------------+--------------------------+
| @@aurora_server_id | @@lower_case_table_names |
+--------------------------+--------------------------+
| instance-2470 | 1 |
+--------------------------+--------------------------+

Check lower_case_table_names setting on the reader endpoint of the cluster.

$ mysql -h cluster-2393.cluster-ro-a12345.us-east-1.rds.amazonaws.com \
 -u my-user -p -e 'select @@aurora_server_id, @@lower_case_table_names'
+--------------------------+--------------------------+
| @@aurora_server_id | @@lower_case_table_names |
+--------------------------+--------------------------+
| instance-5138 | 1 |
+--------------------------+--------------------------+

Run query on writer instance

Examples of Aurora reboot operations 582

Amazon Aurora User Guide for Aurora

$ mysql -h cluster-2393.cluster-a12345.us-east-1.rds.amazonaws.com \
 -u my-user -p -e 'select @@aurora_server_id, @@lower_case_table_names'
+--------------------------+--------------------------+
| @@aurora_server_id | @@lower_case_table_names |
+--------------------------+--------------------------+
| instance-9404 | 1 |
+--------------------------+--------------------------+

With the parameter change applied everywhere, we can see the effect of setting
lower_case_table_names=1. Whether the table is referred to as foo, Foo, or FOO the query
converts the name to foo and accesses the same table in each case.

mysql> use lctn;

mysql> select * from foo;
+--------------------------+
| s |
+--------------------------+
| Lowercase table name foo |
+--------------------------+

mysql> select * from Foo;
+--------------------------+
| s |
+--------------------------+
| Lowercase table name foo |
+--------------------------+

mysql> select * from FOO;
+--------------------------+
| s |
+--------------------------+
| Lowercase table name foo |
+--------------------------+

Examples of Aurora reboot operations 583

Amazon Aurora User Guide for Aurora

Deleting Aurora DB clusters and DB instances

You can delete an Aurora DB cluster when you no longer need it. Deleting the cluster removes the
cluster volume containing all your data. Before deleting the cluster, you can save a snapshot of
your data. You can restore the snapshot later to create a new cluster containing the same data.

You can also delete DB instances from a cluster while preserving the cluster itself and the data that
it contains. Deleting DB instances can help you reduce your charges if the cluster isn't busy, or you
don't need the computation capacity of multiple DB instances.

Topics

• Deleting an Aurora DB cluster

• Deletion protection for Aurora clusters

• Deleting a stopped Aurora cluster

• Deleting Aurora MySQL clusters that are read replicas

• The final snapshot when deleting a cluster

• Deleting a DB instance from an Aurora DB cluster

Deleting an Aurora DB cluster

Aurora doesn't provide a single-step method to delete a DB cluster. This design choice is intended
to prevent you from accidentally losing data or taking your application offline. Aurora applications
are typically mission-critical and require high availability. Thus, Aurora makes it easy to scale the
capacity of the cluster up and down by adding and removing DB instances. Removing the DB
cluster itself requires you to make a separate deletion.

Use the following general procedure to remove all the DB instances from a cluster and then delete
the cluster itself.

1. Delete any reader instances in the cluster. Use the procedure in Deleting a DB instance from an
Aurora DB cluster.

If the cluster has any reader instances, deleting one of the instances only reduces the
computation capacity of the cluster. Deleting the reader instances first ensures that the
cluster remains available throughout the procedure and doesn't perform unnecessary failover
operations.

Deleting Aurora clusters and instances 584

Amazon Aurora User Guide for Aurora

2. Delete the writer instance from the cluster. Again, use the procedure in Deleting a DB instance
from an Aurora DB cluster.

When you delete the DB instances, the cluster and its associated cluster volume remain even
after you delete all the DB instances.

3. Delete the DB cluster.

• AWS Management Console – Choose the cluster, then choose Delete from the Actions menu.
You can choose the following options to preserve the data from the cluster in case you need it
later:

• Create a final snapshot of the cluster volume. The default setting is to create a final
snapshot.

• Retain automated backups. The default setting is not to retain automated backups.

Note

Automated backups for Aurora Serverless v1 DB clusters aren't retained.

Aurora also requires you to confirm that you intend to delete the cluster.

• CLI and API – Call the delete-db-cluster CLI command or DeleteDBCluster API
operation. You can choose the following options to preserve the data from the cluster in case
you need it later:

• Create a final snapshot of the cluster volume.

• Retain automated backups.

Note

Automated backups for Aurora Serverless v1 DB clusters aren't retained.

Topics

• Deleting an empty Aurora cluster

• Deleting an Aurora cluster with a single DB instance

• Deleting an Aurora cluster with multiple DB instances

Deleting an Aurora DB cluster 585

Amazon Aurora User Guide for Aurora

Deleting an empty Aurora cluster

You can delete an empty DB cluster using the AWS Management Console, AWS CLI, or Amazon RDS
API.

Tip

You can keep a cluster with no DB instances to preserve your data without incurring CPU
charges for the cluster. You can quickly start using the cluster again by creating one or
more new DB instances for the cluster. You can perform Aurora-specific administrative
operations on the cluster while it doesn't have any associated DB instances. You just can't
access the data or perform any operations that require connecting to a DB instance.

Console

To delete a DB cluster

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Databases, and then choose the DB cluster that you want to
delete.

3. For Actions, choose Delete.

4. To create a final DB snapshot for the DB cluster, choose Create final snapshot?. This is the
default setting.

5. If you chose to create a final snapshot, enter the Final snapshot name.

6. To retain automated backups, choose Retain automated backups. This is not the default
setting.

7. Enter delete me in the box.

8. Choose Delete.

CLI

To delete an empty Aurora DB cluster by using the AWS CLI, call the delete-db-cluster command.

Suppose that the empty cluster deleteme-zero-instances was only used for development and
testing and doesn't contain any important data. In that case, you don't need to preserve a snapshot

Deleting an Aurora DB cluster 586

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/
https://docs.aws.amazon.com/cli/latest/reference/rds/delete-db-cluster.html

Amazon Aurora User Guide for Aurora

of the cluster volume when you delete the cluster. The following example demonstrates that a
cluster doesn't contain any DB instances, and then deletes the empty cluster without creating a
final snapshot or retaining automated backups.

$ aws rds describe-db-clusters --db-cluster-identifier deleteme-zero-instances --output
 text \
 --query '*[].["Cluster:",DBClusterIdentifier,DBClusterMembers[*].
["Instance:",DBInstanceIdentifier,IsClusterWriter]]
Cluster: deleteme-zero-instances

$ aws rds delete-db-cluster --db-cluster-identifier deleteme-zero-instances \
 --skip-final-snapshot \
 --delete-automated-backups
{
 "DBClusterIdentifier": "deleteme-zero-instances",
 "Status": "available",
 "Engine": "aurora-mysql"
}

RDS API

To delete an empty Aurora DB cluster by using the Amazon RDS API, call the DeleteDBCluster
operation.

Deleting an Aurora cluster with a single DB instance

You can delete the last DB instance, even if the DB cluster has deletion protection enabled. In this
case, the DB cluster itself still exists and your data is preserved. You can access the data again by
attaching a new DB instance to the cluster.

The following example shows how the delete-db-cluster command doesn't work when the
cluster still has any associated DB instances. This cluster has a single writer DB instance. When
we examine the DB instances in the cluster, we check the IsClusterWriter attribute of each
one. The cluster could have zero or one writer DB instance. A value of true signifies a writer
DB instance. A value of false signifies a reader DB instance. The cluster could have zero, one,
or many reader DB instances. In this case, we delete the writer DB instance using the delete-
db-instance command. As soon as the DB instance goes into deleting state, we can delete
the cluster also. For this example also, suppose that the cluster doesn't contain any data worth
preserving. Therefore, we don't create a snapshot of the cluster volume or retain automated
backups.

Deleting an Aurora DB cluster 587

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DeleteDBCluster.html

Amazon Aurora User Guide for Aurora

$ aws rds delete-db-cluster --db-cluster-identifier deleteme-writer-only --skip-final-
snapshot
An error occurred (InvalidDBClusterStateFault) when calling the DeleteDBCluster
 operation:
 Cluster cannot be deleted, it still contains DB instances in non-deleting state.

$ aws rds describe-db-clusters --db-cluster-identifier deleteme-writer-only \
 --query '*[].[DBClusterIdentifier,Status,DBClusterMembers[*].
[DBInstanceIdentifier,IsClusterWriter]]'
[
 [
 "deleteme-writer-only",
 "available",
 [
 [
 "instance-2130",
 true
]
]
]
]

$ aws rds delete-db-instance --db-instance-identifier instance-2130
{
 "DBInstanceIdentifier": "instance-2130",
 "DBInstanceStatus": "deleting",
 "Engine": "aurora-mysql"
}

$ aws rds delete-db-cluster --db-cluster-identifier deleteme-writer-only \
 --skip-final-snapshot \
 --delete-automated-backups
{
 "DBClusterIdentifier": "deleteme-writer-only",
 "Status": "available",
 "Engine": "aurora-mysql"
}

Deleting an Aurora cluster with multiple DB instances

If your cluster contains multiple DB instances, typically there is a single writer instance and one
or more reader instances. The reader instances help with high availability, by being on standby to

Deleting an Aurora DB cluster 588

Amazon Aurora User Guide for Aurora

take over if the writer instance encounters a problem. You can also use reader instances to scale the
cluster up to handle a read-intensive workload without adding overhead to the writer instance.

To delete a cluster with multiple reader DB instances, you delete the reader instances first and then
the writer instance. Deleting the writer instance leaves the cluster and its data in place. You delete
the cluster through a separate action.

• For the procedure to delete an Aurora DB instance, see Deleting a DB instance from an Aurora DB
cluster.

• For the procedure to delete the writer DB instance in an Aurora cluster, see Deleting an Aurora
cluster with a single DB instance.

• For the procedure to delete an empty Aurora cluster, see Deleting an empty Aurora cluster.

This CLI example shows how to delete a cluster containing both a writer DB instance and a single
reader DB instance. The describe-db-clusters output shows that instance-7384 is the
writer instance and instance-1039 is the reader instance. The example deletes the reader
instance first, because deleting the writer instance while a reader instance still existed would cause
a failover operation. It doesn't make sense to promote the reader instance to a writer if you plan
to delete that instance also. Again, suppose that these db.t2.small instances are only used for
development and testing, and so the delete operation skips the final snapshot and doesn't retain
automated backups..

$ aws rds delete-db-cluster --db-cluster-identifier deleteme-writer-and-reader --skip-
final-snapshot

An error occurred (InvalidDBClusterStateFault) when calling the DeleteDBCluster
 operation:
 Cluster cannot be deleted, it still contains DB instances in non-deleting state.

$ aws rds describe-db-clusters --db-cluster-identifier deleteme-writer-and-reader --
output text \
 --query '*[].["Cluster:",DBClusterIdentifier,DBClusterMembers[*].
["Instance:",DBInstanceIdentifier,IsClusterWriter]]
Cluster: deleteme-writer-and-reader
Instance: instance-1039 False
Instance: instance-7384 True

$ aws rds delete-db-instance --db-instance-identifier instance-1039
{
 "DBInstanceIdentifier": "instance-1039",

Deleting an Aurora DB cluster 589

Amazon Aurora User Guide for Aurora

 "DBInstanceStatus": "deleting",
 "Engine": "aurora-mysql"
}

$ aws rds delete-db-instance --db-instance-identifier instance-7384
{
 "DBInstanceIdentifier": "instance-7384",
 "DBInstanceStatus": "deleting",
 "Engine": "aurora-mysql"
}

$ aws rds delete-db-cluster --db-cluster-identifier deleteme-writer-and-reader \
 --skip-final-snapshot \
 --delete-automated-backups
{
 "DBClusterIdentifier": "deleteme-writer-and-reader",
 "Status": "available",
 "Engine": "aurora-mysql"
}

The following example shows how to delete a DB cluster containing a writer DB instance and
multiple reader DB instances. It uses concise output from the describe-db-clusters command
to get a report of the writer and reader instances. Again, we delete all reader DB instances before
deleting the writer DB instance. It doesn't matter what order we delete the reader DB instances in.

Suppose that this cluster with several DB instances does contain data worth preserving. Thus, the
delete-db-cluster command in this example includes the --no-skip-final-snapshot
and --final-db-snapshot-identifier parameters to specify the details of the snapshot to
create. It also includes the --no-delete-automated-backups parameter to retain automated
backups.

$ aws rds describe-db-clusters --db-cluster-identifier deleteme-multiple-readers --
output text \
 --query '*[].["Cluster:",DBClusterIdentifier,DBClusterMembers[*].
["Instance:",DBInstanceIdentifier,IsClusterWriter]]
Cluster: deleteme-multiple-readers
Instance: instance-1010 False
Instance: instance-5410 False
Instance: instance-9948 False
Instance: instance-8451 True

$ aws rds delete-db-instance --db-instance-identifier instance-1010

Deleting an Aurora DB cluster 590

Amazon Aurora User Guide for Aurora

{
 "DBInstanceIdentifier": "instance-1010",
 "DBInstanceStatus": "deleting",
 "Engine": "aurora-mysql"
}

$ aws rds delete-db-instance --db-instance-identifier instance-5410
{
 "DBInstanceIdentifier": "instance-5410",
 "DBInstanceStatus": "deleting",
 "Engine": "aurora-mysql"
}

$ aws rds delete-db-instance --db-instance-identifier instance-9948
{
 "DBInstanceIdentifier": "instance-9948",
 "DBInstanceStatus": "deleting",
 "Engine": "aurora-mysql"
}

$ aws rds delete-db-instance --db-instance-identifier instance-8451
{
 "DBInstanceIdentifier": "instance-8451",
 "DBInstanceStatus": "deleting",
 "Engine": "aurora-mysql"
}

$ aws rds delete-db-cluster --db-cluster-identifier deleteme-multiple-readers \
 --no-delete-automated-backups \
 --no-skip-final-snapshot \
 --final-db-snapshot-identifier deleteme-multiple-readers-final-snapshot
{
 "DBClusterIdentifier": "deleteme-multiple-readers",
 "Status": "available",
 "Engine": "aurora-mysql"
}

The following example shows how to confirm that Aurora created the requested snapshot. You
can request details for the specific snapshot by specifying its identifier deleteme-multiple-
readers-final-snapshot. You can also get a report of all snapshots for the cluster that
was deleted by specifying the cluster identifier deleteme-multiple-readers. Both of those
commands return information about the same snapshot.

Deleting an Aurora DB cluster 591

Amazon Aurora User Guide for Aurora

$ aws rds describe-db-cluster-snapshots \
 --db-cluster-snapshot-identifier deleteme-multiple-readers-final-snapshot
{
 "DBClusterSnapshots": [
 {
 "AvailabilityZones": [],
 "DBClusterSnapshotIdentifier": "deleteme-multiple-readers-final-snapshot",
 "DBClusterIdentifier": "deleteme-multiple-readers",
 "SnapshotCreateTime": "11T01:40:07.354000+00:00",
 "Engine": "aurora-mysql",
...

$ aws rds describe-db-cluster-snapshots --db-cluster-identifier deleteme-multiple-
readers
{
 "DBClusterSnapshots": [
 {
 "AvailabilityZones": [],
 "DBClusterSnapshotIdentifier": "deleteme-multiple-readers-final-snapshot",
 "DBClusterIdentifier": "deleteme-multiple-readers",
 "SnapshotCreateTime": "11T01:40:07.354000+00:00",
 "Engine": "aurora-mysql",
...

Deletion protection for Aurora clusters

You can't delete clusters that have deletion protection enabled. You can delete DB instances within
the cluster, but not the cluster itself. That way, the cluster volume containing all your data is safe
from accidental deletion. Aurora enforces deletion protection for a DB cluster whether you try to
delete the cluster using the console, the AWS CLI, or the RDS API.

Deletion protection is enabled by default when you create a production DB cluster using the AWS
Management Console. However, deletion protection is disabled by default if you create a cluster
using the AWS CLI or API. Enabling or disabling deletion protection doesn't cause an outage. To be
able to delete the cluster, modify the cluster and disable deletion protection. For more information
about turning deletion protection on and off, see Modifying the DB cluster by using the console,
CLI, and API.

Deletion protection for Aurora clusters 592

Amazon Aurora User Guide for Aurora

Tip

Even if all the DB instances are deleted, you can access the data by creating a new DB
instance in the cluster.

Deleting a stopped Aurora cluster

You can't delete a cluster if it's in the stopped state. In this case, start the cluster before deleting
it. For more information, see Starting an Aurora DB cluster.

Deleting Aurora MySQL clusters that are read replicas

For Aurora MySQL, you can't delete a DB instance in a DB cluster if both of the following conditions
are true:

• The DB cluster is a read replica of another Aurora DB cluster.

• The DB instance is the only instance in the DB cluster.

To delete a DB instance in this case, first promote the DB cluster so that it's no longer a read
replica. After the promotion completes, you can delete the final DB instance in the DB cluster. For
more information, see Replicating Amazon Aurora MySQL DB clusters across AWS Regions.

The final snapshot when deleting a cluster

Throughout this section, the examples show how you can choose whether to take a final snapshot
when you delete an Aurora cluster. If you choose to take a final snapshot but the name you specify
matches an existing snapshot, the operation stops with an error. In this case, examine the snapshot
details to confirm if it represents your current detail or if it is an older snapshot. If the existing
snapshot doesn't have the latest data that you want to preserve, rename the snapshot and try
again, or specify a different name for the final snapshot parameter.

Deleting a DB instance from an Aurora DB cluster

You can delete a DB instance from an Aurora DB cluster as part of the process of deleting the
entire cluster. If your cluster contains a certain number of DB instances, then deleting the cluster
requires deleting each of those DB instances. You can also delete one or more reader instances

Deleting a stopped Aurora cluster 593

Amazon Aurora User Guide for Aurora

from a cluster while leaving the cluster running. You might do so to reduce compute capacity and
associated charges if your cluster isn't busy.

To delete a DB instance, you specify the name of the instance.

You can delete a DB instance using the AWS Management Console, the AWS CLI, or the RDS API.

Note

When an Aurora Replica is deleted, its instance endpoint is removed immediately, and the
Aurora Replica is removed from the reader endpoint. If there are statements running on
the Aurora Replica that is being deleted, there is a three-minute grace period. Existing
statements can finish during the grace period. When the grace period ends, the Aurora
Replica is shut down and deleted.

For Aurora DB clusters, deleting a DB instance doesn't necessarily delete the entire cluster. You can
delete a DB instance in an Aurora cluster to reduce compute capacity and associated charges when
the cluster isn't busy. For information about the special circumstances for Aurora clusters that have
one DB instance or zero DB instances, see Deleting an Aurora cluster with a single DB instance and
Deleting an empty Aurora cluster.

Note

You can't delete a DB cluster when deletion protection is enabled for it. For more
information, see Deletion protection for Aurora clusters.
You can disable deletion protection by modifying the DB cluster. For more information, see
Modifying an Amazon Aurora DB cluster.

Console

To delete a DB instance in a DB cluster

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Databases, and then choose the DB instance that you want to
delete.

3. For Actions, choose Delete.

Deleting a DB instance from an Aurora DB cluster 594

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Aurora User Guide for Aurora

4. Enter delete me in the box.

5. Choose Delete.

AWS CLI

To delete a DB instance by using the AWS CLI, call the delete-db-instance command and specify
the --db-instance-identifier value.

Example

For Linux, macOS, or Unix:

aws rds delete-db-instance \
 --db-instance-identifier mydbinstance

For Windows:

aws rds delete-db-instance ^
 --db-instance-identifier mydbinstance

RDS API

To delete a DB instance by using the Amazon RDS API, call the DeleteDBInstance operation and
specify the DBInstanceIdentifier parameter.

Note

When the status for a DB instance is deleting, its CA certificate value doesn't appear
in the RDS console or in output for AWS CLI commands or RDS API operations. For more
information about CA certificates, see Using SSL/TLS to encrypt a connection to a DB
cluster.

Deleting a DB instance from an Aurora DB cluster 595

https://docs.aws.amazon.com/cli/latest/reference/rds/delete-db-instance.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DeleteDBInstance.html

Amazon Aurora User Guide for Aurora

Tagging Amazon Aurora and Amazon RDS resources

An Amazon RDS tag is a name-value pair that you define and associate with an Amazon RDS
resource such as a DB instance or DB snapshot. The name is referred to as the key. Optionally, you
can supply a value for the key.

You can use the AWS Management Console, the AWS CLI, or the Amazon RDS API to add, list,
and delete tags on Amazon RDS resources. When using the CLI or API, make sure to provide the
Amazon Resource Name (ARN) for the RDS resource to work with. For more information about
constructing an ARN, see Constructing an ARN for Amazon RDS.

Topics

• Why use Amazon RDS resource tags?

• How Amazon RDS resource tags work

• Best practices for tagging Amazon RDS resources

• Managing tags in Amazon RDS

• Copying tags to DB cluster snapshots

• Tutorial: Use tags to specify which Aurora DB clusters to stop

Why use Amazon RDS resource tags?

You can use tags to do the following:

• Categorize your RDS resources by application, project, department, environment, and so on.
For example, you could use a tag key to define a category, where the tag value is an item in
this category. You might create the tag environment=prod. Or you might define a tag key of
project and a tag value of Salix, which indicates that an Amazon RDS resource is assigned to
the Salix project.

• Automate resource management tasks. For example, you could create a maintenance window
for instances tagged environment=prod that differs from the window for instances tagged
environment=test. You could also configure automatic DB snapshots for instances tagged
environment=prod.

• Control access to RDS resources within an IAM policy. You can do this by using the global
aws:ResourceTag/tag-key condition key. For example, a policy might allow only users in the
DBAdmin group to modify DB instances tagged with environment=prod. For information about

Tagging Aurora and RDS resources 596

Amazon Aurora User Guide for Aurora

managing access to tagged resources with IAM policies, see Identity and access management
for Amazon Aurora and Controlling access to AWS resources in the AWS Identity and Access
Management User Guide.

• Monitor resources based on a tag. For example, you can create an Amazon CloudWatch
dashboard for DB instances tagged with environment=prod.

• Track costs by grouping expenses for similarly tagged resources. For example, if you tag RDS
resources associated with the Salix project with project=Salix, you can generate cost reports
for and allocate expenses to this project. For more information, see How AWS billing works with
tags in Amazon RDS.

How Amazon RDS resource tags work

AWS doesn't apply any semantic meaning to your tags. Tags are interpreted strictly as character
strings.

Topics

• Tag sets in Amazon RDS

• Tag structure in Amazon RDS

• Amazon RDS resources eligible for tagging

• How AWS billing works with tags in Amazon RDS

Tag sets in Amazon RDS

Every Amazon RDS resource has a container called a tag set. The container includes all the tags that
are assigned to the resource. A resource has exactly one tag set.

A tag set contains 0—50 tags. If you add a tag to an RDS resource with the same key as an existing
resource tag, the new value overwrites the old.

Tag structure in Amazon RDS

The structure of an RDS tag is as follows:

Tag key

The key is the required name of the tag. The string value must be 1—128 Unicode characters
in length and cannot be prefixed with aws: or rds:. The string can contain only the set of

How RDS tags work 597

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_tags.html#access_tags_control-resources

Amazon Aurora User Guide for Aurora

Unicode letters, digits, whitespace, _, ., :, /, =, +, -, and @. The Java regex is "^([\\p{L}\
\p{Z}\\p{N}_.:/=+\\-@]*)$". Tag keys are case-sensitive. Thus, the keys project and
Project are distinct.

A key is unique to a tag set. For example, you cannot have a key-pair in a tag set with the key
the same but with different values, such as project=Trinity and project=Xanadu.

Tag value

The value is an optional string value of the tag. The string value must be 1—256 Unicode
characters in length. The string can contain only the set of Unicode letters, digits, whitespace,
, ., :, /, =, +, -, and @. The Java regex is "^([\\p{L}\\p{Z}\\p{N}.:/=+\\-@]*)$". Tag
values are case-sensitive. Thus, the values prod and Prod are distinct.

Values don't need to be unique in a tag set and can be null. For example, you can have a key-
value pair in a tag set of project=Trinity and cost-center=Trinity.

Amazon RDS resources eligible for tagging

You can tag the following Amazon RDS resources:

• DB instances

• DB clusters

• DB cluster endpoints

• Read replicas

• DB snapshots

• DB cluster snapshots

• Reserved DB instances

• Event subscriptions

• DB option groups

• DB parameter groups

• DB cluster parameter groups

• DB subnet groups

• RDS Proxies

• RDS Proxy endpoints

How RDS tags work 598

Amazon Aurora User Guide for Aurora

Note

Currently, you can't tag RDS Proxies and RDS Proxy endpoints by using the AWS
Management Console.

• Blue/green deployments

• Zero-ETL integrations (preview)

How AWS billing works with tags in Amazon RDS

Use tags to organize your AWS bill to reflect your own cost structure. To do this, sign up to get
your AWS account bill with tag key values included. Then, to see the cost of combined resources,
organize your billing information according to resources with the same tag key values. For example,
you can tag several resources with a specific application name, and then organize your billing
information to see the total cost of that application across several services. For more information,
see Using Cost Allocation Tags in the AWS Billing User Guide.

How cost allocation tags work with DB cluster snapshots

You can add a tag to a DB cluster snapshot. However, your bill won't reflect this grouping. For cost
allocation tags to apply to DB cluster snapshots, the following conditions must be met:

• The tags must be attached to the parent DB instance.

• The parent DB instance must exist in the same AWS account as the DB cluster snapshot.

• The parent DB instance must exist in the same AWS Region as the DB cluster snapshot.

DB cluster snapshots are considered orphaned if they don't exist in the same Region as the parent
DB instance, or if the parent DB instance is deleted. Orphaned DB snapshots don't support cost
allocation tags. Costs for orphaned snapshots are aggregated in a single untagged line item. Cross-
account DB cluster snapshots aren't considered orphaned when the following conditions are met:

• They exist in the same Region as the parent DB instance.

• The parent DB instance is owned by the source account.

How RDS tags work 599

https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/cost-alloc-tags.html

Amazon Aurora User Guide for Aurora

Note

If the parent DB instance is owned by a different account, cost allocation tags don't apply
to cross-account snapshots in the destination account.

Best practices for tagging Amazon RDS resources

When you use tags, we recommend that you adhere to the following best practices:

• Document conventions for tag use that are followed by all teams in your organization. In
particular, ensure the names are both descriptive and consistent. For example, standardize on the
format environment:prod rather than tagging some resources with env:production.

Important

Do not store personally identifiable information (PII) or other confidential or sensitive
information in tags.

• Automate tagging to ensure consistency. For example, you can use the following techniques:

• Include tags in an AWS CloudFormation template. When you create resources with the
template, the resources are tagged automatically.

• Define and apply tags using AWS Lambda functions.

• Create an SSM document that includes steps to add tags to your RDS resources.

• Use tags only when necessary. You can add up to 50 tags for a single RDS resource, but a best
practice is to avoid unnecessary tag proliferation and complexity.

• Review tags periodically for relevance and accuracy. Remove or modify outdated tags as needed.

• Consider creating tags with the AWS Tag Editor in the AWS Management Console. You can use
the Tag Editor to add tags to multiple supported AWS resources, including RDS resources, at the
same time. For more information, see Tag Editor in the AWS Resource Groups User Guide.

Managing tags in Amazon RDS

You can do the following:

Best practices 600

https://docs.aws.amazon.com/ARG/latest/userguide/tag-editor.html

Amazon Aurora User Guide for Aurora

• Create tags when you create a resource, for example, when you run the AWS CLI command
create-db-instance.

• Add tags to an existing resource using the command add-tags-to-resource.

• List tags associated with a specific resource using the command list-tags-for-resource.

• Update tags using the command add-tags-to-resource.

• Remove tags from a resource using the command remove-tags-from-resource.

The following procedures show how you can perform typical tagging operations on resources
related to DB instances and Aurora DB clusters. Note that tags are cached for authorization
purposes. For this reason, when you add or update tags on Amazon RDS resources, several minutes
can pass before the modifications are available.

Console

The process to tag an Amazon RDS resource is similar for all resources. The following procedure
shows how to tag an Amazon RDS DB instance.

To add a tag to a DB instance

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Databases.

Note

To filter the list of DB instances in the Databases pane, enter a text string for Filter
databases. Only DB instances that contain the string appear.

3. Choose the name of the DB instance that you want to tag to show its details.

4. In the details section, scroll down to the Tags section.

5. Choose Add. The Add tags window appears.

Managing tags in Amazon RDS 601

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Aurora User Guide for Aurora

6. Enter a value for Tag key and Value.

7. To add another tag, you can choose Add another Tag and enter a value for its Tag key and
Value.

Repeat this step as many times as necessary.

8. Choose Add.

To delete a tag from a DB instance

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Databases.

Note

To filter the list of DB instances in the Databases pane, enter a text string in the Filter
databases box. Only DB instances that contain the string appear.

3. Choose the name of the DB instance to show its details.

4. In the details section, scroll down to the Tags section.

5. Choose the tag you want to delete.

Managing tags in Amazon RDS 602

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Aurora User Guide for Aurora

6. Choose Delete, and then choose Delete in the Delete tags window.

AWS CLI

You can add, list, or remove tags for a DB instance using the AWS CLI.

• To add one or more tags to an Amazon RDS resource, use the AWS CLI command add-tags-to-
resource.

• To list the tags on an Amazon RDS resource, use the AWS CLI command list-tags-for-
resource.

• To remove one or more tags from an Amazon RDS resource, use the AWS CLI command remove-
tags-from-resource.

To learn more about how to construct the required ARN, see Constructing an ARN for Amazon RDS.

RDS API

You can add, list, or remove tags for a DB instance using the Amazon RDS API.

• To add a tag to an Amazon RDS resource, use the AddTagsToResource operation.

• To list tags that are assigned to an Amazon RDS resource, use the ListTagsForResource.

• To remove tags from an Amazon RDS resource, use the RemoveTagsFromResource operation.

To learn more about how to construct the required ARN, see Constructing an ARN for Amazon RDS.

When working with XML using the Amazon RDS API, tags use the following schema:

<Tagging>
 <TagSet>
 <Tag>

Managing tags in Amazon RDS 603

https://docs.aws.amazon.com/cli/latest/reference/rds/add-tags-to-resource.html
https://docs.aws.amazon.com/cli/latest/reference/rds/add-tags-to-resource.html
https://docs.aws.amazon.com/cli/latest/reference/rds/list-tags-for-resource.html
https://docs.aws.amazon.com/cli/latest/reference/rds/list-tags-for-resource.html
https://docs.aws.amazon.com/cli/latest/reference/rds/remove-tags-from-resource.html
https://docs.aws.amazon.com/cli/latest/reference/rds/remove-tags-from-resource.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_AddTagsToResource.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ListTagsForResource.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_RemoveTagsFromResource.html

Amazon Aurora User Guide for Aurora

 <Key>Project</Key>
 <Value>Trinity</Value>
 </Tag>
 <Tag>
 <Key>User</Key>
 <Value>Jones</Value>
 </Tag>
 </TagSet>
</Tagging>

The following table provides a list of the allowed XML tags and their characteristics. Values for
Key and Value are case-sensitive. For example, project=Trinity and PROJECT=Trinity are
distinct tags.

Tagging
element

Description

TagSet A tag set is a container for all tags assigned to an Amazon RDS resource. There
can be only one tag set per resource. You work with a TagSet only through the
Amazon RDS API.

Tag A tag is a user-defined key-value pair. There can be from 1 to 50 tags in a tag set.

Key A key is the required name of the tag. For restrictions, see Tag structure in
Amazon RDS.

The string value can be from 1 to 128 Unicode characters in length and cannot
be prefixed with aws: or rds:. The string can only contain only the set of
Unicode letters, digits, white space, '_', '.', '/', '=', '+', '-' (Java regex: "^([\\p{L}\
\p{Z}\\p{N}_.:/=+\\-]*)$").

Keys must be unique to a tag set. For example, you cannot have a key-pair in a
tag set with the key the same but with different values, such as project/Trinity
and project/Xanadu.

Value A value is the optional value of the tag. For restrictions, see Tag structure in
Amazon RDS.

The string value can be from 1 to 256 Unicode characters in length and cannot
be prefixed with aws: or rds:. The string can only contain only the set of

Managing tags in Amazon RDS 604

Amazon Aurora User Guide for Aurora

Tagging
element

Description

Unicode letters, digits, white space, '_', '.', '/', '=', '+', '-' (Java regex: "^([\\p{L}\
\p{Z}\\p{N}_.:/=+\\-]*)$").

Values do not have to be unique in a tag set and can be null. For example, you
can have a key-value pair in a tag set of project/Trinity and cost-center/Trinity.

Copying tags to DB cluster snapshots

When you create or restore a DB cluster, you can specify that the tags from the cluster are copied
to snapshots of the DB cluster. Copying tags ensures that the metadata for the DB snapshots
matches that of the source DB cluster. It also ensures any access policies for the DB snapshot also
match those of the source DB cluster. Tags are not copied by default.

You can specify that tags are copied to DB snapshots for the following actions:

• Creating a DB cluster

• Restoring a DB cluster

• Creating a read replica

• Copying a DB cluster snapshot

Note

In some cases, you might include a value for the --tags parameter of the create-
db-snapshot AWS CLI command. Or you might supply at least one tag to the
CreateDBSnapshot API operation. In these cases, RDS doesn't copy tags from the source DB
instance to the new DB snapshot. This functionality applies even if the source DB instance
has the --copy-tags-to-snapshot (CopyTagsToSnapshot) option turned on.
If you take this approach, you can create a copy of a DB instance from a DB snapshot.
This approach avoids adding tags that don't apply to the new DB instance. You create
your DB snapshot using the AWS CLI create-db-snapshot command (or the
CreateDBSnapshot RDS API operation). After you create your DB snapshot, you can add
tags as described later in this topic.

Copying tags to DB cluster snapshots 605

https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-snapshot.html
https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-snapshot.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateDBSnapshot.html

Amazon Aurora User Guide for Aurora

Tutorial: Use tags to specify which Aurora DB clusters to stop

Suppose that you're creating a number of Aurora DB clusters in a development or test
environment. You need to keep all of these clusters for several days. Some of the clusters run
tests overnight. Other clusters can be stopped overnight and started again the next day. The
following example shows how to assign a tag to those clusters that are suitable to stop overnight.
Then the example shows how a script can detect which clusters have that tag and then stop those
clusters. In this example, the value portion of the key-value pair doesn't matter. The presence of
the stoppable tag signifies that the cluster has this user-defined property.

To specify which Aurora DB clusters to stop

1. Determine the ARN of a cluster that you want to designate as stoppable.

The commands and APIs for tagging work with ARNs. That way, they can work seamlessly
across AWS Regions, AWS accounts, and different types of resources that might have identical
short names. You can specify the ARN instead of the cluster ID in CLI commands that operate
on clusters. Substitute the name of your own cluster for dev-test-cluster. In subsequent
commands that use ARN parameters, substitute the ARN of your own cluster. The ARN includes
your own AWS account ID and the name of the AWS Region where your cluster is located.

$ aws rds describe-db-clusters --db-cluster-identifier dev-test-cluster \
 --query "*[].{DBClusterArn:DBClusterArn}" --output text
arn:aws:rds:us-east-1:123456789:cluster:dev-test-cluster

2. Add the tag stoppable to this cluster.

You choose the name for this tag. This approach means that you can avoid devising a naming
convention that encodes all relevant information in names. In such a convention, you might
encode information in the DB instance name or names of other resources. Because this
example treats the tag as an attribute that is either present or absent, it omits the Value=
part of the --tags parameter.

$ aws rds add-tags-to-resource \
 --resource-name arn:aws:rds:us-east-1:123456789:cluster:dev-test-cluster \
 --tags Key=stoppable

3. Confirm that the tag is present in the cluster.

Tutorial: Use tags to specify which Aurora DB clusters to stop 606

Amazon Aurora User Guide for Aurora

These commands retrieve the tag information for the cluster in JSON format and in plain tab-
separated text.

$ aws rds list-tags-for-resource \
 --resource-name arn:aws:rds:us-east-1:123456789:cluster:dev-test-cluster
{
 "TagList": [
 {
 "Key": "stoppable",
 "Value": ""

 }
]
}
$ aws rds list-tags-for-resource \
 --resource-name arn:aws:rds:us-east-1:123456789:cluster:dev-test-cluster --output
 text
TAGLIST stoppable

4. To stop all the clusters that are designated as stoppable, prepare a list of all your clusters.
Loop through the list and check if each cluster is tagged with the relevant attribute.

This Linux example uses shell scripting to save the list of cluster ARNs to a temporary file and
then perform CLI commands for each cluster.

$ aws rds describe-db-clusters --query "*[].[DBClusterArn]" --output text >/tmp/
cluster_arns.lst
$ for arn in $(cat /tmp/cluster_arns.lst)
do
 match="$(aws rds list-tags-for-resource --resource-name $arn --output text | grep
 'TAGLIST\tstoppable')"
 if [[! -z "$match"]]
 then
 echo "Cluster $arn is tagged as stoppable. Stopping it now."
Note that you can specify the full ARN value as the parameter instead of the
 short ID 'dev-test-cluster'.
 aws rds stop-db-cluster --db-cluster-identifier $arn
 fi
done

Cluster arn:aws:rds:us-east-1:123456789:cluster:dev-test-cluster is tagged as
 stoppable. Stopping it now.

Tutorial: Use tags to specify which Aurora DB clusters to stop 607

Amazon Aurora User Guide for Aurora

{
 "DBCluster": {
 "AllocatedStorage": 1,
 "AvailabilityZones": [
 "us-east-1e",
 "us-east-1c",
 "us-east-1d"
],
 "BackupRetentionPeriod": 1,
 "DBClusterIdentifier": "dev-test-cluster",
 ...

You can run a script like this at the end of each day to make sure that nonessential clusters are
stopped. You might also schedule a job using a utility such as cron to perform such a check each
night. For example, you might do this in case some clusters were left running by mistake. Here, you
might fine-tune the command that prepares the list of clusters to check.

The following command produces a list of your clusters, but only the ones in available state. The
script can ignore clusters that are already stopped, because they will have different status values
such as stopped or stopping.

$ aws rds describe-db-clusters \
 --query '*[].{DBClusterArn:DBClusterArn,Status:Status}|[?Status == `available`]|[].
{DBClusterArn:DBClusterArn}' \
 --output text
arn:aws:rds:us-east-1:123456789:cluster:cluster-2447
arn:aws:rds:us-east-1:123456789:cluster:cluster-3395
arn:aws:rds:us-east-1:123456789:cluster:dev-test-cluster
arn:aws:rds:us-east-1:123456789:cluster:pg2-cluster

Tip

You can use assigning tags and finding clusters that have those tags to reduce costs in
other ways. For example, take the scenario with Aurora DB clusters used for development
and testing. Here, you might designate some clusters to be deleted at the end of each
day, or to have only their reader DB instances deleted. Or you might designate some to
have their DB instances changed to small DB instance classes during times of expected low
usage.

Tutorial: Use tags to specify which Aurora DB clusters to stop 608

Amazon Aurora User Guide for Aurora

Working with Amazon Resource Names (ARNs) in Amazon RDS

Resources created in Amazon Web Services are each uniquely identified with an Amazon Resource
Name (ARN). For certain Amazon RDS operations, you must uniquely identify an Amazon RDS
resource by specifying its ARN. For example, when you create an RDS DB instance read replica, you
must supply the ARN for the source DB instance.

Constructing an ARN for Amazon RDS

Resources created in Amazon Web Services are each uniquely identified with an Amazon Resource
Name (ARN). You can construct an ARN for an Amazon RDS resource using the following syntax.

arn:aws:rds:<region>:<account number>:<resourcetype>:<name>

Region
Name

Region Endpoint Protocol

US East
(Ohio)

us-east-2 rds.us-east-2.amazonaws.com

rds-fips.us-east-2.api.aws

rds.us-east-2.api.aws

rds-fips.us-east-2.amazonaws.com

HTTPS

HTTPS

HTTPS

HTTPS

US
East (N.
Virginia)

us-east-1 rds.us-east-1.amazonaws.com

rds-fips.us-east-1.api.aws

rds-fips.us-east-1.amazonaws.com

rds.us-east-1.api.aws

HTTPS

HTTPS

HTTPS

HTTPS

US
West (N.
Californi
a)

us-
west-1

rds.us-west-1.amazonaws.com

rds.us-west-1.api.aws

rds-fips.us-west-1.amazonaws.com

rds-fips.us-west-1.api.aws

HTTPS

HTTPS

HTTPS

HTTPS

Working with ARNs 609

Amazon Aurora User Guide for Aurora

Region
Name

Region Endpoint Protocol

US West
(Oregon)

us-
west-2

rds.us-west-2.amazonaws.com

rds-fips.us-west-2.amazonaws.com

rds.us-west-2.api.aws

rds-fips.us-west-2.api.aws

HTTPS

HTTPS

HTTPS

HTTPS

Africa
(Cape
Town)

af-south-
1

rds.af-south-1.amazonaws.com

rds.af-south-1.api.aws

HTTPS

HTTPS

Asia
Pacific
(Hong
Kong)

ap-
east-1

rds.ap-east-1.amazonaws.com

rds.ap-east-1.api.aws

HTTPS

HTTPS

Asia
Pacific
(Hyderaba
d)

ap-
south-2

rds.ap-south-2.amazonaws.com

rds.ap-south-2.api.aws

HTTPS

HTTPS

Asia
Pacific
(Jakarta)

ap-
southe
ast-3

rds.ap-southeast-3.amazonaws.com

rds.ap-southeast-3.api.aws

HTTPS

HTTPS

Asia
Pacific
(Melbourn
e)

ap-
southe
ast-4

rds.ap-southeast-4.amazonaws.com

rds.ap-southeast-4.api.aws

HTTPS

HTTPS

Asia
Pacific
(Mumbai)

ap-
south-1

rds.ap-south-1.amazonaws.com

rds.ap-south-1.api.aws

HTTPS

HTTPS

Constructing an ARN 610

Amazon Aurora User Guide for Aurora

Region
Name

Region Endpoint Protocol

Asia
Pacific
(Osaka)

ap-
northe
ast-3

rds.ap-northeast-3.amazonaws.com

rds.ap-northeast-3.api.aws

HTTPS

HTTPS

Asia
Pacific
(Seoul)

ap-
northe
ast-2

rds.ap-northeast-2.amazonaws.com

rds.ap-northeast-2.api.aws

HTTPS

HTTPS

Asia
Pacific
(Singapor
e)

ap-
southe
ast-1

rds.ap-southeast-1.amazonaws.com

rds.ap-southeast-1.api.aws

HTTPS

HTTPS

Asia
Pacific
(Sydney)

ap-
southe
ast-2

rds.ap-southeast-2.amazonaws.com

rds.ap-southeast-2.api.aws

HTTPS

HTTPS

Asia
Pacific
(Tokyo)

ap-
northe
ast-1

rds.ap-northeast-1.amazonaws.com

rds.ap-northeast-1.api.aws

HTTPS

HTTPS

Canada
(Central)

ca-centra
l-1

rds.ca-central-1.amazonaws.com

rds.ca-central-1.api.aws

rds-fips.ca-central-1.api.aws

rds-fips.ca-central-1.amazonaws.com

HTTPS

HTTPS

HTTPS

HTTPS

Canada
West
(Calgary)

ca-
west-1

rds.ca-west-1.amazonaws.com

rds-fips.ca-west-1.amazonaws.com

HTTPS

HTTPS

Europe
(Frankfur
t)

eu-
central-1

rds.eu-central-1.amazonaws.com

rds.eu-central-1.api.aws

HTTPS

HTTPS

Constructing an ARN 611

Amazon Aurora User Guide for Aurora

Region
Name

Region Endpoint Protocol

Europe
(Ireland)

eu-
west-1

rds.eu-west-1.amazonaws.com

rds.eu-west-1.api.aws

HTTPS

HTTPS

Europe
(London)

eu-
west-2

rds.eu-west-2.amazonaws.com

rds.eu-west-2.api.aws

HTTPS

HTTPS

Europe
(Milan)

eu-
south-1

rds.eu-south-1.amazonaws.com

rds.eu-south-1.api.aws

HTTPS

HTTPS

Europe
(Paris)

eu-
west-3

rds.eu-west-3.amazonaws.com

rds.eu-west-3.api.aws

HTTPS

HTTPS

Europe
(Spain)

eu-
south-2

rds.eu-south-2.amazonaws.com

rds.eu-south-2.api.aws

HTTPS

HTTPS

Europe
(Stockhol
m)

eu-
north-1

rds.eu-north-1.amazonaws.com

rds.eu-north-1.api.aws

HTTPS

HTTPS

Europe
(Zurich)

eu-
central-2

rds.eu-central-2.amazonaws.com

rds.eu-central-2.api.aws

HTTPS

HTTPS

Israel
(Tel Aviv)

il-centra
l-1

rds.il-central-1.amazonaws.com

rds.il-central-1.api.aws

HTTPS

HTTPS

Middle
East
(Bahrain)

me-
south-1

rds.me-south-1.amazonaws.com

rds.me-south-1.api.aws

HTTPS

HTTPS

Constructing an ARN 612

Amazon Aurora User Guide for Aurora

Region
Name

Region Endpoint Protocol

Middle
East
(UAE)

me-
central-1

rds.me-central-1.amazonaws.com

rds.me-central-1.api.aws

HTTPS

HTTPS

South
America
(São
Paulo)

sa-east-1 rds.sa-east-1.amazonaws.com

rds.sa-east-1.api.aws

HTTPS

HTTPS

AWS
GovCloud
(US-East)

us-gov-
east-1

rds.us-gov-east-1.amazonaws.com

rds.us-gov-east-1.api.aws

HTTPS

HTTPS

AWS
GovCloud
(US-
West)

us-gov-
west-1

rds.us-gov-west-1.amazonaws.com

rds.us-gov-west-1.api.aws

HTTPS

HTTPS

The following table shows the format that you should use when constructing an ARN for a
particular Amazon RDS resource type.

Resource type ARN format

DB instance arn:aws:rds:<region>:<account> :db:<name>

For example:

arn:aws:rds: us-east-2 :123456789012 :db:my-mysql-
instance-1

DB cluster arn:aws:rds:<region>:<account> :cluster:<name>

For example:

Constructing an ARN 613

Amazon Aurora User Guide for Aurora

Resource type ARN format

arn:aws:rds: us-east-2 :123456789012 :cluster: my-
aurora-cluster-1

Event subscription arn:aws:rds:<region>:<account> :es:<name>

For example:

arn:aws:rds: us-east-2 :123456789012 :es:my-subscr
iption

DB parameter group arn:aws:rds:<region>:<account> :pg:<name>

For example:

arn:aws:rds: us-east-2 :123456789012 :pg:my-param-
enable-logs

DB cluster parameter group arn:aws:rds:<region>:<account> :cluster-pg:<name>

For example:

arn:aws:rds: us-east-2 :123456789012 :cluster-pg: my-
cluster-param-timezone

Reserved DB instance arn:aws:rds:<region>:<account> :ri:<name>

For example:

arn:aws:rds: us-east-2 :123456789012 :ri:my-reserved-
postgresql

DB security group arn:aws:rds:<region>:<account> :secgrp:<name>

For example:

arn:aws:rds: us-east-2 :123456789012 :secgrp:my-public

Constructing an ARN 614

Amazon Aurora User Guide for Aurora

Resource type ARN format

Automated DB snapshot arn:aws:rds:<region>:<account> :snapshot:rds:<name>

For example:

arn:aws:rds: us-east-2 :123456789012 :snapshot:rds: my-
mysql-db-2019-07-22-07-23

Automated DB cluster
snapshot

arn:aws:rds:<region>:<account> :cluster-snapshot:
rds:<name>

For example:

arn:aws:rds: us-east-2 :123456789012 :cluster-
snapshot:rds: my-aurora-cluster-2019-07-22-16-16

Manual DB snapshot arn:aws:rds:<region>:<account> :snapshot:<name>

For example:

arn:aws:rds: us-east-2 :123456789012 :snapshot: my-
mysql-db-snap

Manual DB cluster snapshot arn:aws:rds:<region>:<account> :cluster-snapshot:<name>

For example:

arn:aws:rds: us-east-2 :123456789012 :cluster-
snapshot: my-aurora-cluster-snap

DB subnet group arn:aws:rds:<region>:<account> :subgrp:<name>

For example:

arn:aws:rds: us-east-2 :123456789012 :subgrp:my-subnet
-10

Constructing an ARN 615

Amazon Aurora User Guide for Aurora

Getting an existing ARN

You can get the ARN of an RDS resource by using the AWS Management Console, AWS Command
Line Interface (AWS CLI), or RDS API.

Console

To get an ARN from the AWS Management Console, navigate to the resource you want an ARN for,
and view the details for that resource.

For example, you can get the ARN for a DB cluster from the Configuration tab of the DB cluster
details.

AWS CLI

To get an ARN from the AWS CLI for a particular RDS resource, you use the describe command
for that resource. The following table shows each AWS CLI command, and the ARN property used
with the command to get an ARN.

AWS CLI command ARN property

describe-event-subscriptions EventSubscriptionArn

describe-certificates CertificateArn

describe-db-parameter-groups DBParameterGroupArn

describe-db-cluster-parameter-
groups

DBClusterParameterGroupArn

describe-db-instances DBInstanceArn

describe-db-security-groups DBSecurityGroupArn

describe-db-snapshots DBSnapshotArn

describe-events SourceArn

describe-reserved-db-instances ReservedDBInstanceArn

describe-db-subnet-groups DBSubnetGroupArn

Getting an existing ARN 616

https://docs.aws.amazon.com/cli/latest/reference/rds/describe-event-subscriptions.html
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-certificates.html
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-parameter-groups.html
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-cluster-parameter-groups.html
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-cluster-parameter-groups.html
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-instances.html
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-security-groups.html
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-snapshots.html
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-events.html
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-reserved-db-instances.html
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-subnet-groups.html

Amazon Aurora User Guide for Aurora

AWS CLI command ARN property

describe-db-clusters DBClusterArn

describe-db-cluster-snapshots DBClusterSnapshotArn

For example, the following AWS CLI command gets the ARN for a DB instance.

Example

For Linux, macOS, or Unix:

aws rds describe-db-instances \
--db-instance-identifier DBInstanceIdentifier \
--region us-west-2 \
--query "*[].{DBInstanceIdentifier:DBInstanceIdentifier,DBInstanceArn:DBInstanceArn}"

For Windows:

aws rds describe-db-instances ^
--db-instance-identifier DBInstanceIdentifier ^
--region us-west-2 ^
--query "*[].{DBInstanceIdentifier:DBInstanceIdentifier,DBInstanceArn:DBInstanceArn}"

The output of that command is like the following:

[
 {
 "DBInstanceArn": "arn:aws:rds:us-west-2:account_id:db:instance_id",
 "DBInstanceIdentifier": "instance_id"
 }
]

RDS API

To get an ARN for a particular RDS resource, you can call the following RDS API operations and use
the ARN properties shown following.

Getting an existing ARN 617

https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-clusters.html
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-cluster-snapshots.html

Amazon Aurora User Guide for Aurora

RDS API operation ARN property

DescribeEventSubscriptions EventSubscriptionArn

DescribeCertificates CertificateArn

DescribeDBParameterGroups DBParameterGroupArn

DescribeDBClusterParameterG
roups

DBClusterParameterGroupArn

DescribeDBInstances DBInstanceArn

DescribeDBSecurityGroups DBSecurityGroupArn

DescribeDBSnapshots DBSnapshotArn

DescribeEvents SourceArn

DescribeReservedDBInstances ReservedDBInstanceArn

DescribeDBSubnetGroups DBSubnetGroupArn

DescribeDBClusters DBClusterArn

DescribeDBClusterSnapshots DBClusterSnapshotArn

Getting an existing ARN 618

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DescribeEventSubscriptions.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DescribeCertificates.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DescribeDBParameterGroups.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DescribeDBClusterParameterGroups.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DescribeDBClusterParameterGroups.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DescribeDBInstances.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DescribeDBSecurityGroups.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DescribeDBSnapshots.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DescribeEvents.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DescribeReservedDBInstances.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DescribeDBSubnetGroups.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DescribeDBClusters.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DescribeDBClusterSnapshots.html

Amazon Aurora User Guide for Aurora

Amazon Aurora updates

Amazon Aurora releases updates regularly. Updates are applied to Amazon Aurora DB clusters
during system maintenance windows. The timing when updates are applied depends on the Region
and maintenance window setting for the DB cluster, and also the type of update. Updates require a
database restart, so you typically experience 20–30 seconds of downtime. After this downtime, you
can resume using your DB cluster or clusters. You can view or change your maintenance window
settings from the AWS Management Console.

Note

The time required to reboot your DB instance depends on the crash recovery process,
database activity at the time of reboot, and the behavior of your specific DB engine. To
improve the reboot time, we recommend that you reduce database activity as much as
possible during the reboot process. Reducing database activity reduces rollback activity for
in-transit transactions.

For information on operating system updates for Amazon Aurora, see Working with operating
system updates.

Some updates are specific to a database engine supported by Aurora. For more information about
database engine updates, see the following table.

Database engine Updates

Amazon Aurora MySQL See Database engine updates for Amazon Aurora MySQL

Amazon Aurora PostgreSQL See Amazon Aurora PostgreSQL updates

Identifying your Amazon Aurora version

Amazon Aurora includes certain features that are general to Aurora and available to all Aurora DB
clusters. Aurora includes other features that are specific to a particular database engine that Aurora
supports. These features are available only to those Aurora DB clusters that use that database
engine, such as Aurora PostgreSQL.

Aurora updates 619

https://console.aws.amazon.com/

Amazon Aurora User Guide for Aurora

An Aurora DB instance provides two version numbers, the Aurora version number and the Aurora
database engine version number. Aurora version numbers use the following format.

<major version>.<minor version>.<patch version>

To get the Aurora version number from an Aurora DB instance using a particular database engine,
use one of the following queries.

Database engine Queries

Amazon Aurora MySQL SELECT AURORA_VERSION();

SHOW @@aurora_version;

Amazon Aurora PostgreSQL SELECT AURORA_VERSION();

Identifying your Amazon Aurora version 620

Amazon Aurora User Guide for Aurora

Using Amazon RDS Extended Support

With Amazon RDS Extended Support, you can continue running your database on a major engine
version past the Aurora end of standard support date for an additional cost. On the Aurora end
of standard support date, Amazon Aurora automatically enrolls your databases in RDS Extended
Support. Automatic enrollment into RDS Extended Support doesn't change the database engine
and doesn't impact the uptime or performance of your DB instance.

This paid offering gives you more time to upgrade to a supported major engine version.

For example, the Aurora end of standard support date for Aurora MySQL version 2 is October
31, 2024. However, you aren't ready to manually upgrade to Aurora MySQL version 3 before that
date. In this case, Amazon Aurora automatically enrolls your cluster in RDS Extended Support on
October 31, 2024, and you can continue to run Aurora MySQL version 2. Starting December 1,
2024, Amazon Aurora automatically charges you for RDS Extended Support.

RDS Extended Support is available for up to 3 years past the Aurora end of standard support date
for a major engine version (3 years and 4 months for Aurora MySQL version 2). After this time, if
you haven't upgraded your major engine version to a supported version, then Amazon Aurora will
automatically upgrade your major engine version. We recommend that you upgrade to a supported
major engine version as soon as possible.

Topics

• Overview of Amazon RDS Extended Support

• Creating an Aurora DB cluster or a global cluster with Amazon RDS Extended Support

• Viewing the enrollment of your Aurora DB clusters or global clusters in Amazon RDS Extended
Support

• Restoring an Aurora DB cluster or a global cluster with Amazon RDS Extended Support

Overview of Amazon RDS Extended Support

After the Aurora end of standard support date, Amazon Aurora will automatically enroll your
databases in RDS Extended Support. Aurora automatically upgrades your DB instance to the last
minor version released before the Aurora end of standard support date, if you aren't already
running that version. Amazon Aurora won't upgrade your minor version until after the Aurora end
of standard support date for your major engine version.

RDS Extended Support overview 621

Amazon Aurora User Guide for Aurora

You can create new databases with major engine versions that have reached the Aurora end of
standard support date. Aurora automatically enrolls these new databases in RDS Extended Support
and charges you for this offering.

If you upgrade to an engine that's still under Aurora standard support before the Aurora end of
standard support date, Amazon Aurora won't enroll your engine in RDS Extended Support.

If you attempt to restore a snapshot of a database compatible with an engine that's past the
Aurora end of standard support date but isn't enrolled in RDS Extended Support, then Amazon
Aurora will attempt to upgrade the snapshot to be compatible with the latest engine version that
is still under Aurora standard support. If the restore fails, then Amazon Aurora will automatically
enroll your engine in RDS Extended Support with a version that's compatible with the snapshot.

You can end enrollment in RDS Extended Support at any time. To end enrollment, upgrade each
enrolled engine to a newer engine version that's still under Aurora standard support. The end of
RDS Extended Support enrollment will be effective the day that you complete an upgrade to a
newer engine version that's still under Aurora standard support.

Topics

• Amazon RDS Extended Support charges

• Versions with Amazon RDS Extended Support

• Amazon Aurora and customer responsibilities with Amazon RDS Extended Support

Amazon RDS Extended Support charges

You will incur charges for all engines enrolled in RDS Extended Support beginning the day after the
Aurora end of standard support date. For the Aurora end of standard support date, see Amazon
Aurora major versions.

The additional charge for RDS Extended Support automatically stops when you take one of the
following actions:

• Upgrade to an engine version that's covered under standard support.

• Delete the database that's running a major version past the Aurora end of standard support date.

The charges will restart if your target engine version enters RDS Extended Support in the future.

RDS Extended Support charges 622

Amazon Aurora User Guide for Aurora

For example, Aurora PostgreSQL 11 enters Extended Support on March 1, 2024, but charges
don't start until April 1, 2024. You upgrade your Aurora PostgreSQL 11 database to Aurora
PostgreSQL 12 on April 30, 2024. You will only be charged for 30 days of Extended Support on
Aurora PostgreSQL 11. You continue running Aurora PostgreSQL 12 on this DB instance past
the RDS end of standard support date of February 28, 2025. Your database will again incur RDS
Extended Support charges starting on March 1, 2025.

For more information, see Amazon Aurora pricing.

Avoiding charges for Amazon RDS Extended Support

You can avoid being charged for RDS Extended Support by preventing Aurora from creating or
restoring an Aurora DB cluster or a global cluster past the Aurora end of standard support date. To
do this, use the AWS CLI or the RDS API.

In the AWS CLI, specify open-source-rds-extended-support-disabled for the --engine-
lifecycle-support option. In the RDS API, specify open-source-rds-extended-support-
disabled for the LifeCycleSupport parameter. For more information, see Creating an Aurora
DB cluster or a global cluster or Restoring an Aurora DB cluster or a global cluster.

Versions with Amazon RDS Extended Support

RDS Extended Support is available for Aurora MySQL versions 2 and 3, and for Aurora PostgreSQL
version 11 and higher. For more information, see Amazon Aurora major versions.

RDS Extended Support is only available on certain minor versions. For more information, see
Amazon Aurora minor versions.

RDS Extended Support is only available on Aurora Serverless v2. It isn't available on Aurora
Serverless v1.

Amazon Aurora and customer responsibilities with Amazon RDS
Extended Support

The following content describes the responsibilities of Amazon Aurora and your responsibilities
with RDS Extended Support.

Topics

• Amazon Aurora responsibilities

• Your responsibilities

Versions with RDS Extended Support 623

https://aws.amazon.com/rds/aurora/pricing/

Amazon Aurora User Guide for Aurora

Amazon Aurora responsibilities

After the Aurora end of standard support date, Amazon Aurora will supply patches, bug fixes, and
upgrades for engines that are enrolled in RDS Extended Support. This will occur for up to 3 years,
or until you stop using the engines, whichever happens first.

The patches will be for Critical and High CVEs as defined by the National Vulnerability Database
(NVD) CVSS severity ratings. For more information, see Vulnerability Metrics.

Your responsibilities

You're responsible for applying the patches, bug fixes, and upgrades given for Aurora DB clusters
or global clusters enrolled in RDS Extended Support. Amazon Aurora reserves the right to change,
replace, or withdraw such patches, bug fixes, and upgrades at any time. If a patch is necessary to
address security or critical stability issues, Amazon Aurora reserves the right to update your Aurora
DB clusters or global clusters with the patch, or to require that you install the patch.

You're also responsible for upgrading your engine to a newer engine version before the RDS end
of Extended Support date. The RDS end of Extended Support date is typically 3 years after the
community end of life. . For the RDS end of Extended Support date for your database major engine
version, see Amazon Aurora major versions.

If you don't upgrade your engine, then after the RDS end of Extended Support date, Amazon
Aurora will attempt to upgrade your engine to the latest engine version that's supported under
Aurora standard support. If the upgrade fails, then Amazon Aurora reserves the right to delete
the Aurora DB cluster or global cluster that's running the engine past the Aurora end of standard
support date. However, before doing so, Amazon Aurora will preserve your data from that engine.

Creating an Aurora DB cluster or a global cluster with Amazon
RDS Extended Support

When you create an Aurora DB cluster or a global cluster, select Enable RDS Extended Support
in the console, or use the Extended Support option in the AWS CLI or the parameter in the RDS
API. When you enroll an Aurora DB cluster or a global cluster in Amazon RDS Extended Support,
it is permanently enrolled in RDS Extended Support for the life of the Aurora DB cluster or global
cluster.

If you use the console, you must select Enable RDS Extended Support. The setting isn't selected by
default.

Creating an Aurora DB cluster or a global cluster 624

https://nvd.nist.gov/vuln-metrics/cvss#

Amazon Aurora User Guide for Aurora

If you use the AWS CLI or the RDS API and don't specify the RDS Extended Support setting,
Amazon RDS defaults to enabling RDS Extended Support. When you automate by using AWS
CloudFormation or other services, this default behavior maintains the availability of your database
past the Aurora end of standard support date.

You can prevent enrollment in RDS Extended Support by using the AWS CLI or the RDS API to
create an Aurora DB cluster or a global cluster.

Topics

• RDS Extended Support behavior

• Considerations for RDS Extended Support

• Create an Aurora DB cluster or a global cluster with RDS Extended Support

RDS Extended Support behavior

The following table summarizes what happens when a major engine version reaches the Aurora
end of standard support.

RDS Extended
Support status*

Behavior

Enabled Amazon RDS charges you for RDS Extended Support.

Disabled** Amazon RDS upgrades your Aurora DB cluster or global cluster to a
supported engine version. This upgrade takes place on or shortly after
the Aurora end of standard support date.

* In the RDS console, the RDS Extended Support status appears as Yes or No. In the AWS CLI or RDS
API, the RDS Extended Support status appears as open-source-rds-extended-support or
open-source-rds-extended-support-disabled.

** This option is only available when creating an Aurora DB cluster or a global cluster running
PostgreSQL 12 and higher.

Considerations for RDS Extended Support

Before creating an Aurora DB cluster or a global cluster, consider the following items:

RDS Extended Support behavior 625

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-rds-dbinstance.html#aws-resource-rds-dbinstance-return-values:~:text=EngineLifecycleSupport
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-rds-dbinstance.html#aws-resource-rds-dbinstance-return-values:~:text=EngineLifecycleSupport

Amazon Aurora User Guide for Aurora

• After the Aurora end of standard support date has passed, you can prevent the creation of a
new Aurora DB cluster or a new global cluster and avoid RDS Extended Support charges. To do
this, use the AWS CLI or the RDS API. In the AWS CLI, specify open-source-rds-extended-
support-disabled for the --engine-lifecycle-support option. In the RDS API, specify
open-source-rds-extended-support-disabled for the LifeCycleSupport parameter.
If you specify open-source-rds-extended-support-disabled and the Aurora end of
standard support date has passed, creating an Aurora DB cluster or a global cluster will always
fail.

• RDS Extended Support is set at the cluster level. Members of a cluster will always have the same
setting for RDS Extended Support in the RDS console, --engine-lifecycle-support in the
AWS CLI, and EngineLifecycleSupport in the RDS API.

For more information, see Amazon Aurora versions.

Create an Aurora DB cluster or a global cluster with RDS Extended
Support

You can create an Aurora DB cluster or a global cluster with an RDS Extended Support version
using the AWS Management Console, the AWS CLI, or the RDS API.

Note

The AWS CLI --engine-lifecycle-support option and the RDS API
EngineLifeCycle parameter are currently only available for Aurora PostgreSQL. They
will become available for Aurora MySQL closer to the Aurora end of standard support date.

Console

When you create an Aurora DB cluster or a global cluster, in the Engine options section, select
Enable RDS Extended Support. This setting isn't selected by default.

The following image shows the Enable RDS Extended Support setting:

Create an Aurora DB cluster or a global cluster with RDS Extended Support 626

Amazon Aurora User Guide for Aurora

AWS CLI

When you run the create-db-cluster or create-global-cluster AWS CLI command, select RDS
Extended Support by specifying open-source-rds-extended-support for the --engine-
lifecycle-support option. By default, this option is set to open-source-rds-extended-
support.

To prevent the creation of a new Aurora DB cluster or a global cluster after the Aurora end of
standard support date, specify open-source-rds-extended-support-disabled for the --
engine-lifecycle-support option. By doing so, you will avoid any associated RDS Extended
Support charges.

RDS API

When you use the CreateDBCluster or CreateGlobalCluster Amazon RDS API operation, select
RDS Extended Support by setting the EngineLifecycleSupport parameter to open-source-
rds-extended-support. By default, this parameter is set to open-source-rds-extended-
support.

To prevent the creation of a new Aurora DB cluster or a global cluster after the Aurora end of
standard support date, specify open-source-rds-extended-support-disabled for the
EngineLifecycleSupport parameter. By doing so, you will avoid any associated RDS Extended
Support charges.

For more information, see the following topics:

• To create an Aurora DB cluster, follow the instructions for your DB engine in Creating an Amazon
Aurora DB cluster.

• To create a global cluster, follow the instructions for your DB engine in Creating an Amazon
Aurora global database.

Viewing the enrollment of your Aurora DB clusters or global
clusters in Amazon RDS Extended Support

You can view the enrollment of your Aurora DB clusters or global clusters in RDS Extended Support
using the AWS Management Console, the AWS CLI, or the RDS API.

Viewing RDS Extended Support enrollment 627

https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-cluster.html
https://docs.aws.amazon.com/cli/latest/reference/rds/create-global-cluster.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateDBCluster.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateGlobalCluster.html

Amazon Aurora User Guide for Aurora

Note

The RDS Extended Support column in the console, the --engine-lifecycle-support
option in the AWS CLI, and the EngineLifecycleSupport parameter in the RDS API only
indicate enrollment in RDS Extended Support. Charges for RDS Extended Support only
start when your DB engine version has reached the Aurora end of standard support. For
more information, see Amazon Aurora major versions.
For example, you have an Aurora PostgreSQL 11 database that is enrolled in RDS Extended
Support. On April 1, 2024, Amazon RDS started charging you for RDS Extended Support
for this database. On July 31, 2024, you upgraded this database to Aurora PostgreSQL
12. The RDS Extended Support status for this database remains enabled. However, the
RDS Extended Support charges for this database stopped because Aurora PostgreSQL 12
hadn't reached Aurora end of standard support yet. Amazon RDS won't charge you for RDS
Extended Support for this database until March 1, 2025, which is when Aurora standard
support ends for Aurora PostgreSQL 12.

Console

To view the enrollment of your Aurora DB clusters or global clusters in RDS Extended Support

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Databases. The value under RDS Extended Support indicates if
an Aurora DB cluster or global cluster is enrolled in RDS Extended Support. If no value appears,
then RDS Extended Support isn't available for your database.

Tip

If the RDS Extended Support column doesn't appear, choose the Preferences icon, and
then turn on RDS Extended Support.

Viewing RDS Extended Support enrollment 628

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Aurora User Guide for Aurora

3. You can also view the enrollment on the Configuration tab for each database. Choose a
database under DB identifier. On the Configuration tab, look under Extended Support to see
if the database is enrolled or not.

AWS CLI

To view the enrollment of your databases in RDS Extended Support by using the AWS CLI, run the
describe-db-clusters or describe-global-clusters command.

Viewing RDS Extended Support enrollment 629

https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-clusters.html
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-global-clusters.html

Amazon Aurora User Guide for Aurora

If RDS Extended Support is available for a database, then the response includes the parameter
EngineLifecycleSupport. The value open-source-rds-extended-support indicates
that an Aurora DB cluster or global cluster is enrolled in RDS Extended Support. The value open-
source-rds-extended-support-disabled indicates that enrollment of the Aurora DB cluster
or global cluster in RDS Extended Support was disabled.

Example

The following command returns information for all of your Aurora DB clusters:

aws rds describe-db-clusters

The following response shows that an Aurora PostgreSQL engine running on the Aurora DB cluster
database-1 is enrolled in RDS Extended Support:

{
 "DBClusterIdentifier": "database-1",
 ...
 "Engine": "aurora-postgresql",
 ...
 "EngineLifecycleSupport": "open-source-rds-extended-support"
}

RDS API

To view the enrollment of your databases in RDS Extended Support by using the Amazon RDS API,
use the DescribeDBClusters or DescribeGlobalClusters operation.

If RDS Extended Support is available for a database, then the response includes the parameter
EngineLifecycleSupport. The value open-source-rds-extended-support indicates
that an Aurora DB cluster or global cluster is enrolled in RDS Extended Support. The value open-
source-rds-extended-support-disabled indicates that enrollment of the Aurora DB cluster
or global cluster in RDS Extended Support was disabled.

Restoring an Aurora DB cluster or a global cluster with Amazon
RDS Extended Support

When you restore an Aurora DB cluster or a global cluster, select Enable RDS Extended Support
in the console, or use the Extended Support option in the AWS CLI or the parameter in the RDS

Restoring an Aurora DB cluster or a global cluster 630

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DescribeDBClusters.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DescribeGlobalClusters.html

Amazon Aurora User Guide for Aurora

API. When you enroll an Aurora DB cluster or a global cluster in RDS Extended Support, it is
permanently enrolled in RDS Extended Support for the life of the Aurora DB cluster or global
cluster.

The default for the RDS Extended Support setting depends on whether you use the console, the
AWS CLI, or the RDS API to restore your database. If you use the console, you don't select Enable
RDS Extended Support, and the major engine version you are restoring is past the Aurora end of
standard support, then Amazon Aurora automatically upgrades your DB instance to a newer engine
version. If you use the AWS CLI or the RDS API and you don't specify the RDS Extended Support
setting, then Amazon RDS defaults to enabling RDS Extended Support. When you automate by
using AWS CloudFormation or other services, this default behavior maintains the availability
of your database past the Aurora end of standard support date. You can disable RDS Extended
Support by using the AWS CLI or the RDS API.

Topics

• RDS Extended Support behavior

• Considerations for RDS Extended Support

• Restore an Aurora DB cluster DB cluster or a global cluster with RDS Extended Support

RDS Extended Support behavior

The following table summarizes what happens when a major engine version of an Aurora DB
cluster or a global cluster that you are restoring has reached the Aurora end of standard support.

RDS Extended
Support status*

Behavior

Enabled Amazon RDS charges you for RDS Extended Support.

Disabled After the restore finishes, Amazon RDS automatically upgrades your
Aurora DB cluster or global cluster to a newer engine version (in a
future maintenance window).

* In the RDS console, the RDS Extended Support status appears as Yes or No. In the AWS CLI or RDS
API, the RDS Extended Support status appears as open-source-rds-extended-support or
open-source-rds-extended-support-disabled.

RDS Extended Support behavior 631

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-rds-dbinstance.html#aws-resource-rds-dbinstance-return-values:~:text=EngineLifecycleSupport

Amazon Aurora User Guide for Aurora

Considerations for RDS Extended Support

Before restoring an Aurora DB cluster or a global cluster, consider the following items:

• After the Aurora end of standard support date has passed, if you want to restore an Aurora DB
cluster or a global cluster from Amazon S3, you can only do so by using the AWS CLI or the RDS
API. Use the --engine-lifecycle-support option in the restore-db-cluster-from-s3 AWS CLI
command or the EngineLifecycleSupport parameter in the RestoreDBClusterFromS3 RDS
API operation.

• If you want to prevent Aurora from restoring your databases to RDS Extended Support versions,
specify open-source-rds-extended-support-disabled in the AWS CLI or the RDS API. By
doing so, you will avoid any associated RDS Extended Support charges.

If you specify this setting, Amazon Aurora will automatically upgrade your restored database to
a newer, supported major version. If the upgrade fails pre-upgrade checks, Amazon Aurora will
safely roll back to the RDS Extended Support engine version. This database will remain in RDS
Extended Support mode, and Amazon Aurora will charge you for RDS Extended Support until
you manually upgrade your database.

• RDS Extended Support is set at the cluster level. Members of a cluster will always have the same
setting for RDS Extended Support in the RDS console, --engine-lifecycle-support in the
AWS CLI, and EngineLifecycleSupport in the RDS API.

For more information, see Amazon Aurora versions.

Restore an Aurora DB cluster DB cluster or a global cluster with RDS
Extended Support

You can restore an Aurora DB cluster or a global cluster with an RDS Extended Support version
using the AWS Management Console, the AWS CLI, or the RDS API.

Console

When you restore an Aurora DB cluster or a global cluster, select Enable RDS Extended Support
in the Engine options section. If you don't select this setting and the major engine version that
you are restoring is past the Aurora end of standard support, then Amazon Aurora automatically
upgrades your Aurora DB cluster or global cluster to a version under Aurora standard support.

The following image shows the Enable RDS Extended Support setting:

Considerations for RDS Extended Support 632

https://docs.aws.amazon.com/cli/latest/reference/rds/restore-db-cluster-from-s3.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_RestoreDBClusterFromS3.html

Amazon Aurora User Guide for Aurora

AWS CLI

When you run the restore-db-cluster-from-snapshot AWS CLI command, select RDS Extended
Support by specifying open-source-rds-extended-support for the --engine-lifecycle-
support option.

If you want to avoid charges associated with RDS Extended Support, set the --engine-
lifecycle-support option to open-source-rds-extended-support-disabled. By default,
this option is set to open-source-rds-extended-support.

You can also specify this value using the following AWS CLI commands:

• restore-db-cluster-from-s3

• restore-db-cluster-to-point-in-time

RDS API

When you use the RestoreDBClusterFromSnapshot Amazon RDS API operation, select RDS
Extended Support by setting the EngineLifecycleSupport parameter to open-source-rds-
extended-support.

If you want to avoid charges associated with RDS Extended Support, set the
EngineLifecycleSupport parameter to open-source-rds-extended-support-disabled.
By default, this parameter is set to open-source-rds-extended-support.

You can also specify this value using the following RDS API operations:

• RestoreDBClusterFromS3

• RestoreDBClusterToPointInTime

For more information about restoring an Aurora DB cluster, follow the instructions for your DB
engine in Backing up and restoring an Amazon Aurora DB cluster.

Restore an Aurora DB cluster DB cluster or a global cluster with RDS Extended Support 633

https://docs.aws.amazon.com/cli/latest/reference/rds/restore-db-cluster-from-snapshot.html
https://docs.aws.amazon.com/cli/latest/reference/rds/restore-db-cluster-from-s3.html
https://docs.aws.amazon.com/cli/latest/reference/rds/restore-db-cluster-to-point-in-time.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_RestoreDBClusterFromSnapshot.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_RestoreDBClusterFromS3.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_RestoreDBClusterToPointInTime.html

Amazon Aurora User Guide for Aurora

Using Amazon RDS Blue/Green Deployments for
database updates

A blue/green deployment copies a production database environment to a separate, synchronized
staging environment. By using Amazon RDS Blue/Green Deployments, you can make changes
to the database in the staging environment without affecting the production environment. For
example, you can upgrade the major or minor DB engine version, change database parameters,
or make schema changes in the staging environment. When you're ready, you can promote the
staging environment to be the new production database environment, with downtime typically
under one minute.

Amazon Aurora creates the staging environment by cloning the underlying Aurora storage volume
in the production environment. The cluster volume in the staging environment only stores
incremental changes made to that environment.

Note

Currently, Blue/Green Deployments are supported for Aurora MySQL and Aurora
PostgreSQL. For Amazon RDS engine availability, see Using Amazon RDS Blue/Green
Deployments for database updates in the Amazon RDS User Guide.

Topics

• Overview of Amazon RDS Blue/Green Deployments for Aurora

• Creating a blue/green deployment

• Viewing a blue/green deployment

• Switching a blue/green deployment

• Deleting a blue/green deployment

634

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/blue-green-deployments.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/blue-green-deployments.html

Amazon Aurora User Guide for Aurora

Overview of Amazon RDS Blue/Green Deployments for Aurora

By using Amazon RDS Blue/Green Deployments, you can make and test database changes
before implementing them in a production environment. A blue/green deployment creates a
staging environment that copies the production environment. In a blue/green deployment, the
blue environment is the current production environment. The green environment is the staging
environment. The staging environment stays in sync with the current production environment
using logical replication.

You can make changes to the Aurora DB cluster in the green environment without affecting
production workloads. For example, you can upgrade the major or minor DB engine version or
change database parameters in the staging environment. You can thoroughly test changes in the
green environment. When ready, you can switch over the environments to promote the green
environment to be the new production environment. The switchover typically takes under a minute
with no data loss and no need for application changes.

Because the green environment is a copy of the topology of the production environment, the
DB cluster and all of its DB instances are copied in the deployment. The green environment also
includes the features used by the DB cluster, such as DB cluster snapshots, Performance Insights,
Enhanced Monitoring, and Aurora Serverless v2.

Note

Blue/Green Deployments are supported for Aurora MySQL and Aurora PostgreSQL. For
Amazon RDS availability, see Using Amazon RDS Blue/Green Deployments for database
updates in the Amazon RDS User Guide.

Topics

• Region and version availability

• Benefits of using Amazon RDS Blue/Green Deployments

• Workflow of a blue/green deployment

• Authorizing access to blue/green deployment operations

• Considerations for blue/green deployments

• Best practices for blue/green deployments

• Limitations for blue/green deployments

Overview of Amazon RDS Blue/Green Deployments 635

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/blue-green-deployments.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/blue-green-deployments.html

Amazon Aurora User Guide for Aurora

Region and version availability

Feature availability and support varies across specific versions of each database engine, and across
AWS Regions. For more information, see the section called “Blue/Green Deployments”.

Benefits of using Amazon RDS Blue/Green Deployments

By using Amazon RDS Blue/Green Deployments, you can stay current on security patches, improve
database performance, and adopt newer database features with short, predictable downtime.
Blue/green deployments reduce the risks and downtime for database updates, such as major or
minor engine version upgrades.

Blue/green deployments provide the following benefits:

• Easily create a production-ready staging environment.

• Automatically replicate database changes from the production environment to the staging
environment.

• Test database changes in a safe staging environment without affecting the production
environment.

• Stay current with database patches and system updates.

• Implement and test newer database features.

• Switch over your staging environment to be the new production environment without changes to
your application.

• Safely switch over through the use of built-in switchover guardrails.

• Eliminate data loss during switchover.

• Switch over quickly, typically under a minute depending on your workload.

Workflow of a blue/green deployment

Complete the following major steps when you use a blue/green deployment for Aurora DB cluster
updates.

1. Identify a production DB cluster that requires updates.

The following image shows an example of a production DB cluster.

Region and version availability 636

Amazon Aurora User Guide for Aurora

2. Create the blue/green deployment. For instructions, see Creating a blue/green deployment.

The following image shows an example of a blue/green deployment of the production
environment from step 1. While creating the blue/green deployment, RDS copies the complete
topology and configuration of the Aurora DB cluster to create the green environment. The
names of the copied DB cluster and DB instances are appended with -green-random-
characters. The staging environment in the image contains the DB cluster (auroradb-
green-abc123). It also contains the three DB instances in the DB cluster (auroradb-instance1-
green-abc123, auroradb-instance2-green-abc123, and auroradb-instance3-green-abc123).

Workflow 637

Amazon Aurora User Guide for Aurora

Workflow 638

Amazon Aurora User Guide for Aurora

When you create the blue/green deployment, you can specify a higher DB engine version and a
different DB cluster parameter group for the DB cluster in the green environment. You can also
specify a different DB parameter group for the DB instances in the DB cluster.

RDS also configures replication from the primary DB instance in the blue environment to the
primary DB instance in the green environment.

Important

For Aurora MySQL version 3, after you create the blue/green deployment, the DB cluster
in the green environment does not allow write operations by default. However, this
doesn't apply for users who have the CONNECTION_ADMIN privilege, including the
Aurora master user. Users with this privilege can override the read_only behaviour. For
more information, see Role-based privilege model.

3. Make changes to the staging environment.

For example, you might make schema changes to your database or change the DB instance class
used by one or more DB instances in the green environment.

For information about modifying a DB cluster, see Modifying an Amazon Aurora DB cluster.

4. Test your staging environment.

During testing, we recommend that you keep your databases in the green environment
read only. Enable write operations on the green environment with caution because
they can result in replication conflicts. They can also result in unintended data in the
production databases after switchover. To enable write operations for Aurora MySQL, set the
read_only parameter to 0, then reboot the DB instance. For Aurora PostgreSQL, set the
default_transaction_read_only parameter to off at the session level.

5. When ready, switch over to promote the staging environment to be the new production
environment. For instructions, see Switching a blue/green deployment.

The switchover results in downtime. The downtime is usually under one minute, but it can be
longer depending on your workload.

The following image shows the DB clusters after the switchover.

Workflow 639

Amazon Aurora User Guide for Aurora

Workflow 640

Amazon Aurora User Guide for Aurora

After the switchover, the Aurora DB cluster in the green environment becomes the new
production DB cluster. The names and endpoints in the current production environment
are assigned to the newly promoted production environment, requiring no changes to your
application. As a result, your production traffic now flows to the new production environment.
The DB cluster and DB instances in the blue environment are renamed by appending -oldn to
the current name, where n is a number. For example, assume the name of the DB instance in the
blue environment is auroradb-instance-1. After switchover, the DB instance name might be
auroradb-instance-1-old1.

In the example in the image, the following changes occur during switchover:

• The green environment DB cluster auroradb-green-abc123 becomes the production DB
cluster named auroradb.

• The green environment DB instance named auroradb-instance1-green-abc123 becomes
the production DB instance auroradb-instance1.

• The green environment DB instance named auroradb-instance2-green-abc123 becomes
the production DB instance auroradb-instance2.

• The green environment DB instance named auroradb-instance3-green-abc123 becomes
the production DB instance auroradb-instance3.

• The blue environment DB cluster named auroradb becomes auroradb-old1.

• The blue environment DB instance named auroradb-instance1 becomes auroradb-
instance1-old1.

• The blue environment DB instance named auroradb-instance2 becomes auroradb-
instance2-old1.

• The blue environment DB instance named auroradb-instance3 becomes auroradb-
instance3-old1.

6. If you no longer need a blue/green deployment, you can delete it. For instructions, see Deleting
a blue/green deployment.

After switchover, the previous production environment isn't deleted so that you can use it for
regression testing, if necessary.

Workflow 641

Amazon Aurora User Guide for Aurora

Authorizing access to blue/green deployment operations

Users must have the required permissions to perform operations related to blue/green
deployments. You can create IAM policies that grant users and roles permission to perform specific
API operations on the specified resources they need. You can then attach those policies to the IAM
permission sets or roles that require those permissions. For more information, see Identity and
access management for Amazon Aurora.

The user who creates a blue/green deployment must have permissions to perform the following
RDS operations:

• rds:AddTagsToResource

• rds:CreateDBCluster

• rds:CreateDBInstance

• rds:CreateDBClusterEndpoint

The user who switches over a blue/green deployment must have permissions to perform the
following RDS operations:

• rds:ModifyDBCluster

• rds:PromoteReadReplicaDBCluster

The user who deletes a blue/green deployment must have permissions to perform the following
RDS operations:

• rds:DeleteDBCluster

• rds:DeleteDBInstance

• rds:DeleteDBClusterEndpoint

Aurora provisions and modifies resources in the staging environment on your behalf. These
resources include DB instances that use an internally defined naming convention. Therefore,
attached IAM policies can't contain partial resource name patterns such as my-db-prefix-*. Only
wildcards (*) are supported. In general, we recommend using resource tags and other supported
attributes to control access to these resources, rather than wildcards. For more information, see
Actions, resources, and condition keys for Amazon RDS.

Authorizing access 642

https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonrds.html

Amazon Aurora User Guide for Aurora

Considerations for blue/green deployments

Amazon RDS tracks resources in blue/green deployments with the DbiResourceId and
DbClusterResourceId of each resource. This resource ID is an AWS Region-unique, immutable
identifier for the resource.

The resource ID is separate from the DB cluster ID:

The name (cluster ID) of a resource changes when you switch over a blue/green deployment, but
each resource keeps the same resource ID. For example, a DB cluster identifier might have been
mycluster in the blue environment. After switchover, the same DB cluster might be renamed to
mycluster-old1. However, the resource ID of the DB cluster doesn't change during switchover.
So, when the green resources are promoted to be the new production resources, their resource IDs
don't match the blue resource IDs that were previously in production.

After switching over a blue/green deployment, consider updating the resource IDs to those of the
newly promoted production resources for integrated features and services that you used with the
production resources. Specifically, consider the following updates:

Considerations 643

Amazon Aurora User Guide for Aurora

• If you perform filtering using the RDS API and resource IDs, adjust the resource IDs used in
filtering after switchover.

• If you use CloudTrail for auditing resources, adjust the consumers of the CloudTrail to track the
new resource IDs after switchover. For more information, see Monitoring Amazon Aurora API
calls in AWS CloudTrail.

• If you use Database Activity Streams for resources in the blue environment, adjust your
application to monitor database events for the new stream after switchover. For more
information, see Supported Regions and Aurora DB engines for database activity streams.

• If you use the Performance Insights API, adjust the resource IDs in calls to the API after
switchover. For more information, see Monitoring DB load with Performance Insights on Amazon
Aurora.

You can monitor a database with the same name after switchover, but it doesn't contain the data
from before the switchover.

• If you use resource IDs in IAM policies, make sure you add the resource IDs of the newly
promoted resources when necessary. For more information, see Identity and access management
for Amazon Aurora.

• If you have IAM roles associated with your DB cluster, make sure to reassociate them after
switchover. Attached roles aren't automatically copied to the green environment.

• If you authenticate to your DB cluster using IAM database authentication, make sure that the
IAM policy used for database access has both the blue and the green databases listed under the
Resource element of the policy. This is required in order to connect to the green database after
switchover. For more information, see the section called “Creating and using an IAM policy for
IAM database access”.

• If you want to restore a manual DB cluster snapshot for a DB cluster that was part of a blue/
green deployment, make sure you restore the correct DB cluster snapshot by examining the time
when the snapshot was taken. For more information, see Restoring from a DB cluster snapshot.

• Amazon Aurora creates the green environment by cloning the underlying Aurora storage volume
in the blue environment. The green cluster volume only stores incremental changes made to
the green environment. If you delete the DB cluster in the blue environment, the size of the
underlying Aurora storage volume in the green environment grows to the full size. For more
information, see the section called “Cloning a volume for an Aurora DB cluster”.

• When you add a DB instance to the DB cluster in the green environment of a blue/green
deployment, the new DB instance won't replace a DB instance in the blue environment when

Considerations 644

Amazon Aurora User Guide for Aurora

you switch over. However, the new DB instance is retained in the DB cluster and becomes a DB
instance in the new production environment.

• When you delete a DB instance in the DB cluster in the green environment of a blue/green
deployment, you can't create a new DB instance to replace it in the blue/green deployment.

If you create a new DB instance with the same name and ARN as the deleted DB instance, it has a
different DbiResourceId, so it isn't part of the green environment.

The following behavior results if you delete a DB instance in the DB cluster in the green
environment:

• If the DB instance in the blue environment with the same name exists, it won't be switched
over to the DB instance in the green environment. This DB instance won't be renamed by
appending -oldn to the DB instance name.

• Any application that points to the DB instance in the blue environment continues to use the
same DB instance after switchover.

Best practices for blue/green deployments

The following are best practices for blue/green deployments.

Topics

• General best practices

• Aurora PostgreSQL best practices

General best practices

• Thoroughly test the Aurora DB cluster in the green environment before switching over.

• Keep your databases in the green environment read only. We recommend that you enable
write operations on the green environment with caution because they can result in replication
conflicts. They can also result in unintended data in the production databases after switchover.

• When using a blue/green deployment to implement schema changes, make only replication-
compatible changes.

For example, you can add new columns at the end of a table without disrupting replication from
the blue deployment to the green deployment. However, schema changes, such as renaming
columns or renaming tables, break replication to the green deployment.

Best practices 645

Amazon Aurora User Guide for Aurora

For more information about replication-compatible changes, see Replication with Differing
Table Definitions on Source and Replica in the MySQL documentation and Restrictions in the
PostgreSQL logical replication documentation.

• Use the cluster endpoint, reader endpoint, or custom endpoint for all connections in both
environments. Don't use instance endpoints or custom endpoints with static or exclusion lists.

• When you switch over a blue/green deployment, follow the switchover best practices. For more
information, see the section called “Switchover best practices”.

Aurora PostgreSQL best practices

• Monitor the Aurora PostgreSQL logical replication write-through cache and make adjustments
to the cache buffer if necessary. For more information, see the section called “Monitoring the
logical replication write-through cache”.

• If your database has sufficient freeable memory, increase the value of the
logical_decoding_work_mem DB parameter in the blue environment. Doing so allows for
less decoding on disk and instead uses memory. You can monitor freeable memory with the
FreeableMemory CloudWatch metric. For more information, see the section called “CloudWatch
metrics for Aurora”.

• Update all of your PostgreSQL extensions to the latest version before you create a blue/green
deployment. For more information, see the section called “Upgrading PostgreSQL extensions”.

• If you’re using the aws_s3 extension, make sure to give the green DB cluster access to Amazon
S3 through an IAM role after the green environment is created. This allows the import and
export commands to continue functioning after switchover. For instructions, see the section
called “Setting up access to an Amazon S3 bucket”.

• If you specify a higher engine version for the green environment, run the ANALYZE operation on
all databases to refresh the pg_statistic table. Optimizer statistics aren't transferred during
a major version upgrade, so you must regenerate all statistics to avoid performance issues. For
additional best practices during major version upgrades, see the section called “How to perform
a major version upgrade”.

• Avoid configuring triggers as ENABLE REPLICA or ENABLE ALWAYS if the trigger is used on the
source to manipulate data. Otherwise, the replication system propagates changes and executes
the trigger, which leads to duplication.

• Long-running transactions can cause significant replica lag. To reduce replica lag, consider doing
the following:

Best practices 646

https://dev.mysql.com/doc/refman/8.0/en/replication-features-differing-tables.html
https://dev.mysql.com/doc/refman/8.0/en/replication-features-differing-tables.html
https://www.postgresql.org/docs/current/logical-replication-restrictions.html

Amazon Aurora User Guide for Aurora

• Reduce long-running transactions that can be delayed until after the green environment
catches up to the blue environment.

• Initiate a manual vacuum freeze operation on busy tables prior to creating the blue/green
deployment.

• For PostgreSQL version 12 and higher, disable the index_cleanup parameter on large or
busy tables to increase the rate of normal maintenance on blue databases.

• Slow replication can cause senders and receivers to restart often, which delays synchronization.
To ensure that they remain active, disable timeouts by setting the wal_sender_timeout
parameter to 0 in the blue environment, and the wal_receiver_timeout parameter to 0 in
the green environment.

Limitations for blue/green deployments

The following limitations apply to blue/green deployments.

Topics

• General limitations for blue/green deployments

• Aurora MySQL limitations for blue/green deployments

• Aurora PostgreSQL limitations for blue/green deployments

General limitations for blue/green deployments

The following general limitations apply to blue/green deployments:

• You can't stop and start a cluster that is part of a blue/green deployment.

• Blue/green deployments don't support managing master user passwords with AWS Secrets
Manager.

• If you attempt to force a backtrack on the blue DB cluster, the blue/green deployment breaks
and switchover is blocked.

• During switchover, the blue and green environments can't have zero-ETL integrations with
Amazon Redshift. You must delete the integration first and switch over, then recreate the
integration.

• The Event Scheduler (event_scheduler parameter) must be disabled on the green
environment when you create a blue/green deployment. This prevents events from being
generated in the green environment and causing inconsistencies.

Limitations 647

Amazon Aurora User Guide for Aurora

• Any Aurora Auto Scaling policies that are defined on the blue DB cluster aren't copied to the
green environment.

• You can't change an unencrypted DB cluster into an encrypted DB cluster. In addition, you can't
change an encrypted DB cluster into an unencrypted DB cluster.

• You can't change a blue DB cluster to a higher engine version than its corresponding green DB
cluster.

• The resources in the blue environment and green environment must be in the same AWS
account.

• Blue/green deployments aren't supported for the following features:

• Amazon RDS Proxy

• Cross-Region read replicas

• Aurora Serverless v1 DB clusters

• DB clusters that are part of an Aurora global database

• Babelfish for Aurora PostgreSQL

• AWS CloudFormation

Aurora MySQL limitations for blue/green deployments

The following limitations apply to MySQL blue/green deployments:

• Aurora MySQL versions 2.08 and 2.09 aren't supported as upgrade source or target versions.

• The source DB cluster can't contain any databases named tmp. Databases with this name will not
be copied to the green environment.

• The blue DB cluster can't be an external binlog replica.

• If the source DB cluster that has backtrack enabled, the green DB cluster is created without
backtracking support. This is because backtracking doesn't work with binary log (binlog)
replication, which is required for blue/green deployments. For more information, see the section
called “Backtracking a DB cluster”.

• Blue/green deployments don't support the AWS JDBC Driver for MySQL. For more information,
see Known Limitations on GitHub.

Aurora PostgreSQL limitations for blue/green deployments

The following limitations apply to PostgreSQL blue/green deployments:

Limitations 648

https://github.com/awslabs/aws-mysql-jdbc?tab=readme-ov-file#known-limitations

Amazon Aurora User Guide for Aurora

• The following versions of Aurora PostgreSQL are supported as upgrade source and target
versions: 11.21 and higher, 12.16 and higher, 13.12 and higher, 14.9 and higher, and 15.4 and
higher. For lower versions, you can perform a minor version upgrade to a supported version.

• Unlogged tables aren't replicated to the green environment unless the
rds.logically_replicate_unlogged_tables parameter is set to 1 on the blue DB cluster.
We recommend that you don't modify this parameter value after you create a blue/green
deployment to avoid possible replication errors on unlogged tables.

• The blue DB cluster can't be a self-managed logical source (publisher) or replica (subscriber).

• If the blue DB cluster is configured as the foreign server of a foreign data wrapper (FDW)
extension, you must use the cluster endpoint name instead of IP addresses. This allows the
configuration to remain functional after switchover.

• The pg_partman extension must be disabled on the blue environment when you create a blue/
green deployment. The extension performs DDL operations such as CREATE TABLE, which break
logical replication from the blue environment to the green environment.

• The pg_cron extension must remain disabled on all green databases after the blue/green
deployment is created. The extension has background workers that run as superuser and bypass
the read-only setting of the green environment, which might cause replication conflicts.

• The apg_plan_mgmt extension must have the apg_plan_mgmt.capture_plan_baselines
parameter set to off on all green databases to avoid primary key conflicts if an identical plan
is captured in the blue environment. For more information, see the section called “Overview of
Aurora PostgreSQL query plan management”.

If you want to capture execution plans in Aurora Replicas, you must provide the blue DB cluster
endpoint when calling the apg_plan_mgmt.create_replica_plan_capture function. This
ensures that plan captures continue to work after switchover. For more information, see the
section called “Capturing Aurora PostgreSQL execution plans in Replicas”.

• The pglogical and pg_active extensions must be disabled on the blue environment when
you create a blue/green deployment. After you promote the green environment to be the new
production environment, you can enable the extensions again. In addition, the blue database
can’t be a logical subscriber of an external instance.

• If you're using the pgAudit extension, it must remain in the shared libraries
(shared_preload_libraries) on the custom DB parameter groups for both the blue and
the green DB instances. For more information, see the section called “Setting up the pgAudit
extension”.

Limitations 649

https://www.postgresql.org/docs/16/sql-createtable.html#SQL-CREATETABLE-UNLOGGED

Amazon Aurora User Guide for Aurora

PostgreSQL logical replication limitations for blue/green deployments

Blue/green deployments use logical replication to keep the staging environment in sync with the
production environment. PostgreSQL has certain restrictions related to logical replication, which
translate to limitations when creating blue/green deployments for Aurora PostgreSQL DB clusters.

The following table describes logical replication limitations that apply to blue/green deployments
for Aurora PostgreSQL.

Limitation Explanation

Data definitio
n language
(DDL) statement
s, such as
CREATE TABLE
and CREATE
SCHEMA, aren't
replicated
from the blue
environment
to the green
environment.

If Aurora detects a DDL change in the blue environment, your green
databases enter a state of Replication degraded.

You receive an event notifying you that DDL changes in the blue environme
nt can't be replicated to the green environment. You must delete the blue/
green deployment and all green databases, then recreate it. Otherwise, you
won't be able to switch over the blue/green deployment.

NEXTVAL
operations on
sequence objects
aren't synchroni
zed between the
blue environme
nt and the green
environment.

During switchover, Aurora increments sequence values in the green
environment to match those in the blue environment. If you have
thousands of sequences, this can delay switchover.

Creation or
modification of
large objects
in the blue
environment

If Aurora detects the creation or modification of large objects in the blue
environment that are stored in the pg_largeobject system table, your
green databases enter a state of Replication degraded.

Limitations 650

Amazon Aurora User Guide for Aurora

Limitation Explanation

aren't replicate
d to the green
environment.

Aurora generates an event notifying you that large object changes in the
blue environment can't be replicated to the green environment. You must
delete the blue/green deployment and all green databases, then recreate it.
Otherwise, you won't be able to switch over the blue/green deployment.

Materialized
views aren’t
automatically
refreshed on the
green environme
nt.

Refreshing materialized views in the blue environment doesn't refresh them
in the green environment. After switchover, you can manually refresh them
using the REFRESH MATERIALIZED VIEW command, or schedule a refresh.

UPDATE
and DELETE
operations aren't
permitted on
tables that don't
have a primary
key.

Before you create a blue/green deployment, make sure that all tables in the
DB cluster have a primary key.

For more information, see Restrictions in the PostgreSQL logical replication documentation.

Creating a blue/green deployment

When you create a blue/green deployment, you specify the DB cluster to copy in the deployment.
The DB cluster you choose is the production DB cluster, and it becomes the DB cluster in the
blue environment. RDS copies the blue environment's topology to a staging area, along with
its configured features. The DB cluster is copied to the green environment, and RDS configures
replication from the DB cluster in the blue environment to the DB cluster in the green environment.
RDS also copies all of the DB instances in the DB cluster.

Topics

• Preparing for a blue/green deployment

• Specifying changes when creating a blue/green deployment

• Creating a blue/green deployment

Creating a blue/green deployment 651

https://www.postgresql.org/docs/current/sql-refreshmaterializedview.html
https://www.postgresql.org/docs/current/logical-replication-restrictions.html

Amazon Aurora User Guide for Aurora

• Settings for creating blue/green deployments

Preparing for a blue/green deployment

There are certain steps you must take before you create a blue/green deployment, depending on
the engine that your Aurora DB cluster is running.

Topics

• Preparing an Aurora MySQL DB cluster for a blue/green deployment

• Preparing an Aurora PostgreSQL DB cluster for a blue/green deployment

Preparing an Aurora MySQL DB cluster for a blue/green deployment

Before you create a blue/green deployment for an Aurora MySQL DB cluster, the cluster must
be associated with a custom DB cluster parameter group with binary logging (binlog_format)
turned on. Binary logging is required for replication from the blue environment to the green
environment. While any binlog format works, we recommend ROW to reduce the risk of replication
inconsistencies. For information about creating a custom DB cluster parameter group and setting
parameters, see the section called “Working with DB cluster parameter groups”.

Note

Enabling binary logging increases the number of write disk I/O operations to the DB
cluster. You can monitor IOPS usage with the VolumeWriteIOPs CloudWatch metric.

After you enable binary logging, make sure to reboot the DB cluster so that your changes take
effect. Blue/green deployments require that the writer instance be in sync with the DB cluster
parameter group, otherwise creation fails. For more information, see Rebooting a DB instance
within an Aurora cluster.

In addition, we recommend changing the binary log retention period to a value other than NULL
to prevent binary log files from being purged. For more information, see the section called
“Configuring”.

Preparing for a blue/green deployment 652

Amazon Aurora User Guide for Aurora

Preparing an Aurora PostgreSQL DB cluster for a blue/green deployment

Before you create a blue/green deployment for an Aurora PostgreSQL DB cluster, make sure to do
the following:

• Associate the cluster with a custom DB cluster parameter group that has logical replication
(rds.logical_replication) enabled. Logical replication is required for replication from the
blue environment to the green environment.

When you enable logical replication, you also need to tune certain cluster parameters,
such as max_replication_slots, max_logical_replication_workers, and
max_worker_processes. For instructions to enable logical replication and tune these
parameters, see the section called “Setting up logical replication”.

In addition, make sure that the synchronous_commit parameter is set to on.

After you configure the required parameters, make sure to reboot the DB cluster so that your
changes take effect. Blue/green deployments require that the writer instance be in sync with the
DB cluster parameter group, otherwise creation fails. For more information, see Rebooting a DB
instance within an Aurora cluster.

• Make sure that your DB cluster is running a version of Aurora PostgreSQL that's compatible with
Blue/Green Deployments. For a list of compatible versions, see the section called “Blue/Green
Deployments with Aurora PostgreSQL”.

• Make sure that all tables in the DB cluster have a primary key. PostgreSQL logical replication
doesn't allow UPDATE or DELETE operations on tables that don't have a primary key.

• If you're using triggers, make sure they don't interfere with the creating, updating, and
dropping of pg_catalog.pg_publication, pg_catalog.pg_subscription, and
pg_catalog.pg_replication_slots objects whose names start with 'rds'.

Specifying changes when creating a blue/green deployment

You can make the following changes to the DB cluster in the green environment when you create
the blue/green deployment.

You can make other modifications to the DB cluster and its DB instances in the green environment
after it is deployed. For example, you might make schema changes to your database.

For information about modifying a DB cluster, see Modifying an Amazon Aurora DB cluster.

Specifying changes 653

Amazon Aurora User Guide for Aurora

Specify a higher engine version

You can specify a higher engine version if you want to test a DB engine upgrade. Upon switchover,
the database is upgraded to the major or minor DB engine version that you specify.

Specify a different DB parameter group

Specify a DB cluster parameter group that is different from the one used by the DB cluster. You can
test how parameter changes affect the DB cluster in the green environment or specify a parameter
group for a new major DB engine version in the case of an upgrade.

If you specify a different DB cluster parameter group, the specified parameter group is associated
with the DB cluster in the green environment. If you don't specify a different DB cluster parameter
group, the DB cluster in the green environment is associated with the same parameter group as the
blue DB cluster.

Creating a blue/green deployment

You can create a blue/green deployment using the AWS Management Console, the AWS CLI, or the
RDS API.

Console

To create a blue/green deployment

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Databases, and then choose the DB cluster that you want to
copy to a green environment.

3. Choose Actions, Create Blue/Green Deployment.

If you choose an Aurora PostgreSQL DB cluster, review and acknowledge the logical replication
limitations. For more information, see the section called “PostgreSQL logical replication
limitations”.

The Create Blue/Green Deployment page appears.

Creating a blue/green deployment 654

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Aurora User Guide for Aurora

4. Review the blue database identifiers. Make sure that they match the DB instances that you
expect in the blue environment. If they don't, choose Cancel.

5. For Blue/Green Deployment identifier, enter a name for your blue/green deployment.

6. In the remaining sections, specify the settings for the green environment. For information
about each setting, see the section called “Available settings”.

You can make other modifications to the databases in the green environment after it is
deployed.

7. Choose Create staging environment.

Creating a blue/green deployment 655

Amazon Aurora User Guide for Aurora

AWS CLI

To create a blue/green deployment using the AWS CLI, use the create-blue-green-deployment
command. For information about each option, see the section called “Available settings”.

Example

For Linux, macOS, or Unix:

aws rds create-blue-green-deployment \
 --blue-green-deployment-name aurora-blue-green-deployment \
 --source arn:aws:rds:us-east-2:123456789012:cluster:auroradb \
 --target-engine-version 8.0 \
 --target-db-cluster-parameter-group-name mydbclusterparametergroup

For Windows:

aws rds create-blue-green-deployment ^
 --blue-green-deployment-name aurora-blue-green-deployment ^
 --source arn:aws:rds:us-east-2:123456789012:cluster:auroradb ^
 --target-engine-version 8.0 ^
 --target-db-cluster-parameter-group-name mydbclusterparametergroup

RDS API

To create a blue/green deployment by using the Amazon RDS API, use the
CreateBlueGreenDeployment operation. For information about each option, see the section
called “Available settings”.

Settings for creating blue/green deployments

The following table explains the settings that you can choose when you create a blue/green
deployment. For more information about the AWS CLI options, see create-blue-green-deployment.
For more information about the RDS API parameters, see CreateBlueGreenDeployment.

Console setting Setting description CLI option and RDS API parameter

Blue/Green
Deployment
identifier

A name for the blue/green
deployment.

CLI option:

--blue-green-deployment-nam
e

Available settings 656

https://docs.aws.amazon.com/cli/latest/reference/rds/create-blue-green-deployment.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateBlueGreenDeployment.html
https://docs.aws.amazon.com/cli/latest/reference/rds/create-blue-green-deployment.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateBlueGreenDeployment.html

Amazon Aurora User Guide for Aurora

Console setting Setting description CLI option and RDS API parameter

API parameter:

BlueGreenDeploymentName

Blue database
identifier

The identifier of the cluster that
you want to copy to the green
environment. When using the CLI
or API, specify the cluster Amazon
Resource Name (ARN).

CLI option:

--source

API parameter:

Source

DB cluster
parameter
group
for green
databases

A parameter group to associate
with the databases in the green
environment.

CLI option:

--target-db-cluster-paramet
er-group-name

API parameter:

TargetDBClusterParameterGro
upName

Engine version
for green
databases

Upgrade the cluster in the green
environment to the specified DB
engine version.

CLI option:

--target-engine-version

RDS API parameter:

TargetEngineVersion

Viewing a blue/green deployment

You can view the details about a blue/green deployment using the AWS Management Console, the
AWS CLI, or the RDS API.

You can also view and subscribe to events for information about a blue/green deployment. For
more information, see Blue/green deployment events.

Viewing a blue/green deployment 657

Amazon Aurora User Guide for Aurora

Console

To view the details about a blue/green deployment

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Databases, and then find the blue/green deployment in the
list.

The Role value for the blue/green deployment is Blue/Green Deployment.

3. Choose the name of blue/green deployment that you want to view to display its details.

Each tab has a section for the blue deployment and a section for the green deployment. For
example, on the Configuration tab, the DB engine version might be different in the blue
environment and in the green environment if you're upgrading the DB engine version in the
green environment.

Viewing a blue/green deployment 658

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Aurora User Guide for Aurora

The following image shows an example of the Connectivity & security tab:

The Connectivity & security tab also includes a section called Replication, which shows the
current state of logical replication and replica lag between the blue and green environments. If
the replication state is Replicating, the blue/green deployment is replicating successfully.

For Aurora PostgreSQL blue/green deployments, the replication state can change to
Replication degraded if you make unsupported DDL or large object changes in the blue
environment. For more information, see the section called “PostgreSQL logical replication
limitations”.

The following image shows an example of the Configuration tab:

Viewing a blue/green deployment 659

Amazon Aurora User Guide for Aurora

The following image shows an example of the Status tab:

Viewing a blue/green deployment 660

Amazon Aurora User Guide for Aurora

AWS CLI

To view the details about a blue/green deployment by using the AWS CLI, use the describe-blue-
green-deployments command.

Example View the details about a blue/green deployment by filtering on its name

When you use the describe-blue-green-deployments command, you can filter on the --blue-
green-deployment-name. The following example shows the details for a blue/green deployment
named my-blue-green-deployment.

aws rds describe-blue-green-deployments --filters Name=blue-green-deployment-
name,Values=my-blue-green-deployment

Example View the details about a blue/green deployment by specifying its identifier

When you use the describe-blue-green-deployments command, you can specify the --blue-
green-deployment-identifier. The following example shows the details for a blue/green
deployment with the identifier bgd-1234567890abcdef.

aws rds describe-blue-green-deployments --blue-green-deployment-
identifier bgd-1234567890abcdef

RDS API

To view the details about a blue/green deployment by using the Amazon RDS
API, use the DescribeBlueGreenDeployments operation and specify the
BlueGreenDeploymentIdentifier.

Switching a blue/green deployment

A switchover promotes the DB cluster, including its DB instances, in the green environment to be
the production DB cluster. Before you switch over, production traffic is routed to the cluster in the
blue environment. After you switch over, production traffic is routed to the DB cluster in the green
environment.

Switching over a blue/green deployment is not the same as promoting the green DB cluster within
the blue/green deployment. If you manually promote the green DB cluster by choosing Promote
from the Actions menu, replication between the blue and green environments breaks and the
blue/green deployment enters a state of Invalid configuration.

Switching a blue/green deployment 661

https://docs.aws.amazon.com/cli/latest/reference/rds/describe-blue-green-deployments.html
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-blue-green-deployments.html
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-blue-green-deployments.html
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-blue-green-deployments.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DescribeBlueGreenDeployments.html

Amazon Aurora User Guide for Aurora

Topics

• Switchover timeout

• Switchover guardrails

• Switchover actions

• Switchover best practices

• Verifying CloudWatch metrics before switchover

• Monitoring replica lag prior to switchover

• Switching over a blue/green deployment

• After switchover

Switchover timeout

You can specify a switchover timeout period between 30 seconds and 3,600 seconds (one hour). If
the switchover takes longer than the specified duration, then any changes are rolled back and no
changes are made to either environment. The default timeout period is 300 seconds (five minutes).

Switchover guardrails

When you start a switchover, Amazon RDS runs some basic checks to test the readiness of the blue
and green environments for switchover. These checks are known as switchover guardrails. These
switchover guardrails prevent a switchover if the environments aren't ready for it. Therefore, they
avoid longer than expected downtime and prevent the loss of data between the blue and green
environments that might result if the switchover started.

Amazon RDS runs the following guardrail checks on the green environment:

• Replication health – Checks if green DB cluster replication status is healthy. The green DB cluster
is a replica of the blue DB cluster.

• Replication lag – Checks if the replica lag of the green DB cluster is within allowable limits for
switchover. The allowable limits are based on the specified timeout period. Replica lag indicates
how far the green DB cluster is lagging behind its blue DB cluster. For more information, see the
section called “Diagnosing and resolving lag between read replicas” for Aurora MySQL and the
section called “Monitoring replication” for Aurora PostgreSQL.

• Active writes – Makes sure there are no active writes on the green DB cluster.

Switchover timeout 662

Amazon Aurora User Guide for Aurora

Amazon RDS runs the following guardrail checks on the blue environment:

• External replication – For Aurora PostgreSQL, makes sure that the blue environment isn't
a self-managed logical source (publisher) or replica (subscriber). If it is, we recommend that
you drop the self-managed replication slots and subscriptions across all databases in the blue
environment, proceed with switchover, then recreate them to resume replication. For Aurora
MySQL, checks whether the blue database isn't an external binlog replica. If it is, make sure that
it is not actively replicating.

• Long-running active writes – Makes sure there are no long-running active writes on the blue DB
cluster because they can increase replica lag.

• Long-running DDL statements – Makes sure there are no long-running DDL statements on the
blue DB cluster because they can increase replica lag.

• Unsupported PostgreSQL changes – For Aurora PostgreSQL DB clusters, makes sure that no
DDL changes and no additions or modifications of large objects have been performed on the
blue environment. For more information, see the section called “PostgreSQL logical replication
limitations”.

If Amazon RDS detects unsupported PostgreSQL changes, it changes the replication state to
Replication degraded and notifies you that switchover is not available for the blue/green
deployment. To proceed with switchover, we recommend that you delete and recreate the
blue/green deployment and all green databases. To do so, choose Actions, Delete with green
databases.

Switchover actions

When you switch over a blue/green deployment, RDS performs the following actions:

1. Runs guardrail checks to verify if the blue and green environments are ready for switchover.

2. Stops new write operations on the DB cluster in both environments.

3. Drops connections to the DB instances in both environments and doesn't allow new connections.

4. Waits for replication to catch up in the green environment so that the green environment is in
sync with the blue environment.

5. Renames the DB cluster and DB instances in the both environments.

RDS renames the DB cluster and DB instances in the green environment to match the
corresponding DB cluster and DB instances in the blue environment. For example, assume

Switchover actions 663

Amazon Aurora User Guide for Aurora

the name of a DB instance in the blue environment is mydb. Also assume the name of the
corresponding DB instance in the green environment is mydb-green-abc123. During
switchover, the name of the DB instance in the green environment is changed to mydb.

RDS renames the DB cluster and DB instances in the blue environment by appending -oldn to
the current name, where n is a number. For example, assume the name of a DB instance in the
blue environment is mydb. After switchover, the DB instance name might be mydb-old1.

RDS also renames the endpoints in the green environment to match the corresponding
endpoints in the blue environment so that application changes aren't required.

6. Allows connections to databases in both environments.

7. Allows write operations on the DB cluster in the new production environment.

After switchover, the previous production DB cluster only allows read operations. Even if you
disable the read_only parameter on the DB cluster, it remains read-only until you delete the
blue/green deployment.

You can monitor the status of a switchover using Amazon EventBridge. For more information, see
the section called “Blue/green deployment events”.

If you have tags configured in the blue environment, these tags are copied to the new production
environment during switchover. For more information about tags, see Tagging Amazon Aurora and
Amazon RDS resources.

If the switchover starts and then stops before finishing for any reason, then any changes are rolled
back, and no changes are made to either environment.

Switchover best practices

Before you switch over, we strongly recommend that you adhere to best practices by completing
the following tasks:

• Thoroughly test the resources in the green environment. Make sure they function properly and
efficiently.

• Monitor relevant Amazon CloudWatch metrics. For more information, see the section called
“Verifying CloudWatch metrics before switchover”.

• Identify the best time for the switchover.

Switchover best practices 664

Amazon Aurora User Guide for Aurora

During the switchover, writes are cut off from databases in both environments. Identify a time
when traffic is lowest on your production environment. Long-running transactions, such as
active DDLs, can increase your switchover time, resulting in longer downtime for your production
workloads.

If there's a large number of connections on your DB cluster and DB instances, consider manually
reducing them to the minimum amount necessary for your application before you switch over
the blue/green deployment. One way to achieve this is to create a script that monitors the status
of the blue/green deployment and starts cleaning up connections when it detects that the status
has changed to SWITCHOVER_IN_PROGRESS.

• Make sure the DB cluster and DB instances in both environments are in Available state.

• Make sure the DB cluster in the green environment is healthy and replicating.

• Make sure that your network and client configurations don’t increase the DNS cache Time-To-
Live (TTL) beyond five seconds, which is the default for Aurora DNS zones.
Otherwise, applications will continue to send write traffic to the blue environment after
switchover.

• For Aurora PostgreSQL DB clusters, do the following:

• Review the logical replication limitations and take any required actions prior to switchover. For
more information, see the section called “PostgreSQL logical replication limitations”.

• Run the ANALYZE operation to refresh the pg_statistics table. This reduces the risk of
performance issues after switchover.

Note

During a switchover, you can't modify any DB cluster included in the switchover.

Verifying CloudWatch metrics before switchover

Before you switch over a blue/green deployment, we recommend that you check the values of the
following metrics within Amazon CloudWatch.

• DatabaseConnections – Use this metric to estimate the level of activity on the blue/green
deployment, and make sure that the value is at an acceptable level for your deployment before
you switch over. If Performance Insights is turned on, DBLoad is a more accurate metric.

Verifying CloudWatch metrics before switchover 665

Amazon Aurora User Guide for Aurora

• ActiveTransactions – If innodb_monitor_enable is set to all in the DB parameter group
for any of your DB instances, use this metric to see if there's a high number of active transactions
that might block switchover.

For more information about these metrics, see the section called “CloudWatch metrics for Aurora”.

Monitoring replica lag prior to switchover

Before you switch over a blue/green deployment, make sure that replica lag on the green database
is close to zero in order to reduce downtime.

• For Aurora MySQL, use the AuroraBinlogReplicaLag CloudWatch metric to identify the
current replication lag on the green environment.

• For Aurora PostgreSQL, use the following SQL query:

SELECT slot_name,
 confirmed_flush_lsn as flushed,
 pg_current_wal_lsn(),
 (pg_current_wal_lsn() - confirmed_flush_lsn) AS lsn_distance
FROM pg_catalog.pg_replication_slots
WHERE slot_type = 'logical';

slot_name | flushed | pg_current_wal_lsn | lsn_distance
-----------------+---------------+--------------------+------------
logical_replica1 | 47D97/CF32980 | 47D97/CF3BAC8 | 37192

The confirmed_flush_lsn represents the last log sequence number (LSN) that was
sent to the replica. The pg_current_wal_lsn represents where the database is now. An
lsn_distance of 0 means that the replica is caught up.

Switching over a blue/green deployment

You can switch over a blue/green deployment using the AWS Management Console, the AWS CLI,
or the RDS API.

Monitoring replica lag prior to switchover 666

Amazon Aurora User Guide for Aurora

Console

To switch over a blue/green deployment

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Databases, and then choose the blue/green deployment that
you want to switch over.

3. For Actions, choose Switch over.

The Switch over page appears.

Switching over a blue/green deployment 667

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Aurora User Guide for Aurora

4. On the Switch over page, review the switchover summary. Make sure the resources in both
environments match what you expect. If they don't, choose Cancel.

5. For Timeout settings, enter the time limit for switchover.

6. If your cluster is running Aurora PostgreSQL, review and acknowledge the pre-switchover
recommendations. For more information, see the section called “PostgreSQL logical replication
limitations”.

7. Choose Switch over.

AWS CLI

To switch over a blue/green deployment by using the AWS CLI, use the switchover-blue-green-
deployment command with the following options:

• --blue-green-deployment-identifier – Specify the resource ID of the blue/green
deployment.

• --switchover-timeout – Specify the time limit for the switchover, in seconds. The default is
300.

Example Switch over a blue/green deployment

For Linux, macOS, or Unix:

aws rds switchover-blue-green-deployment \
 --blue-green-deployment-identifier bgd-1234567890abcdef \
 --switchover-timeout 600

For Windows:

aws rds switchover-blue-green-deployment ^
 --blue-green-deployment-identifier bgd-1234567890abcdef ^
 --switchover-timeout 600

RDS API

To switch over a blue/green deployment by using the Amazon RDS API, use the
SwitchoverBlueGreenDeployment operation with the following parameters:

• BlueGreenDeploymentIdentifier – Specify the resource ID of the blue/green deployment.

Switching over a blue/green deployment 668

https://docs.aws.amazon.com/cli/latest/reference/rds/switchover-blue-green-deployment.html
https://docs.aws.amazon.com/cli/latest/reference/rds/switchover-blue-green-deployment.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_SwitchoverBlueGreenDeployment.html

Amazon Aurora User Guide for Aurora

• SwitchoverTimeout – Specify the time limit for the switchover, in seconds. The default is 300.

After switchover

After a switchover, the DB cluster and DB instances in the previous blue environment are retained.
Standard costs apply to these resources. Replication and binary logging between the blue and
green environments stops.

RDS renames the DB cluster and DB instances in the blue environment by appending -oldn to the
current resource name, where n is a number. The DB cluster is forced into a read-only state. Even if
you disable the read_only parameter on the DB cluster, it remains read-only until you delete the
blue/green deployment.

Updating the parent node for consumers

After you switch over an Aurora MySQL blue/green deployment, if the blue DB cluster had any
external replicas or binary log consumers prior to switchover, you must update their parent node
after switchover in order to maintain replication continuity.

After switchover 669

Amazon Aurora User Guide for Aurora

After switchover, the writer DB instance that was previously in the green environment emits an
event that contains the master log file name and master log position. For example:

aws rds describe-events --output json --source-type db-instance --source-identifier db-
instance-identifier

{
 "Events": [
...
 {
 "SourceIdentifier": "db-instance-identifier",
 "SourceType": "db-instance",
 "Message": "Binary log coordinates in green environment after switchover:
 file mysql-bin-changelog.000003 and position 804",
 "EventCategories": [],
 "Date": "2023-11-10T01:33:41.911Z",
 "SourceArn": "arn:aws:rds:us-east-1:123456789012:db:db-instance-identifier"
 }
]
}

First, make sure that the consumer or replica has applied all binary logs from the old blue
environment. Then, use the provided binary log coordinates to resume application on the
consumers. For example, if you're running a MySQL replica on EC2, you can use the CHANGE
MASTER TO command:

CHANGE MASTER TO MASTER_HOST='{new-writer-endpoint}', MASTER_LOG_FILE='mysql-bin-
changelog.000003', MASTER_LOG_POS=804;

Deleting a blue/green deployment

You can delete a blue/green deployment before or after you switch it over.

When you delete a blue/green deployment before switching it over, Amazon RDS optionally
deletes the DB cluster in the green environment:

• If you choose to delete the DB cluster in the green environment (--delete-target), it must
have deletion protection turned off.

• If you don't delete the DB cluster in the green environment (--no-delete-target), the
cluster is retained, but it's no longer part of a blue/green deployment. For Aurora MySQL,

Deleting a blue/green deployment 670

Amazon Aurora User Guide for Aurora

replication continues between the environments. For Aurora PostgreSQL, the green environment
is promoted to a standalone environment, so replication stops.

The option to delete the green databases isn't available in the console after switchover. When
you delete blue/green deployments using the AWS CLI, you can't specify the --delete-target
option if the deployment status is SWITCHOVER_COMPLETED.

Important

After you delete a blue/green deployment, RDS removes read-only protections from the
previous production DB cluster. If the read_only parameter is disabled for the DB cluster,
it starts to allow write operations again.

You can delete a blue/green deployment using the AWS Management Console, the AWS CLI, or the
RDS API.

Console

To delete a blue/green deployment

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Databases, and then choose the blue/green deployment that
you want to delete.

3. For Actions, choose Delete.

The Delete Blue/Green Deployment? window appears.

Deleting a blue/green deployment 671

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_BlueGreenDeployment.html
https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Aurora User Guide for Aurora

To delete the green databases, select Delete the green databases in this Blue/Green
Deployment.

4. Enter delete me in the box.

5. Choose Delete.

AWS CLI

To delete a blue/green deployment by using the AWS CLI, use the delete-blue-green-deployment
command with the following options:

• --blue-green-deployment-identifier – The resource ID of the blue/green deployment to
be deleted.

• --delete-target – Specifies that the DB cluster in the green environment is deleted. You can't
specify this option if the blue/green deployment has a status of SWITCHOVER_COMPLETED.

• --no-delete-target – Specifies that the DB cluster in the green environment is retained.

Deleting a blue/green deployment 672

https://docs.aws.amazon.com/cli/latest/reference/rds/delete-blue-green-deployment.html

Amazon Aurora User Guide for Aurora

Example Delete a blue/green deployment and the DB cluster in the green environment

For Linux, macOS, or Unix:

aws rds delete-blue-green-deployment \
 --blue-green-deployment-identifier bgd-1234567890abcdef \
 --delete-target

For Windows:

aws rds delete-blue-green-deployment ^
 --blue-green-deployment-identifier bgd-1234567890abcdef ^
 --delete-target

Example Delete a blue/green deployment but retain the DB cluster in the green environment

For Linux, macOS, or Unix:

aws rds delete-blue-green-deployment \
 --blue-green-deployment-identifier bgd-1234567890abcdef \
 --no-delete-target

For Windows:

aws rds delete-blue-green-deployment ^
 --blue-green-deployment-identifier bgd-1234567890abcdef ^
 --no-delete-target

RDS API

To delete a blue/green deployment by using the Amazon RDS API, use the
DeleteBlueGreenDeployment operation with the following parameters:

• BlueGreenDeploymentIdentifier – The resource ID of the blue/green deployment to be
deleted.

• DeleteTarget – Specify TRUE to delete the DB cluster in the green environment
or FALSE to retain it. Cannot be TRUE if the blue/green deployment has a status of
SWITCHOVER_COMPLETED.

Deleting a blue/green deployment 673

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DeleteBlueGreenDeployment.html

Amazon Aurora User Guide for Aurora

Backing up and restoring an Amazon Aurora DB cluster

These topics provide information about backing up and restoring Amazon Aurora DB clusters.

Tip

The Aurora high availability features and automatic backup capabilities help to keep your
data safe without requiring extensive setup from you. Before you implement a backup
strategy, learn about the ways that Aurora maintains multiple copies of your data and helps
you to access them across multiple DB instances and AWS Regions. For details, see High
availability for Amazon Aurora.

Topics

• Overview of backing up and restoring an Aurora DB cluster

• Understanding Amazon Aurora backup storage usage

• Creating a DB cluster snapshot

• Restoring from a DB cluster snapshot

• Copying a DB cluster snapshot

• Sharing a DB cluster snapshot

• Exporting DB cluster data to Amazon S3

• Exporting DB cluster snapshot data to Amazon S3

• Restoring a DB cluster to a specified time

• Deleting a DB cluster snapshot

• Tutorial: Restore an Amazon Aurora DB cluster from a DB cluster snapshot

674

Amazon Aurora User Guide for Aurora

Overview of backing up and restoring an Aurora DB cluster

The following topics describe Aurora backups and how to restore your Aurora DB cluster.

Contents

• Backups

• Using AWS Backup

• Backup window

• Retaining automated backups

• Retention period

• Viewing retained backups

• Retention costs

• Limitations

• Deleting retained automated backups

• Restoring data

• Database cloning for Aurora

• Backtrack

Backups

Aurora backs up your cluster volume automatically and retains restore data for the length of
the backup retention period. Aurora automated backups are continuous and incremental, so you
can quickly restore to any point within the backup retention period. No performance impact or
interruption of database service occurs as backup data is being written. You can specify a backup
retention period from 1–35 days when you create or modify a DB cluster. Aurora automated
backups are stored in Amazon S3.

If you want to retain data beyond the backup retention period, you can take a snapshot of the data
in your cluster volume. Aurora DB cluster snapshots don't expire. You can create a new DB cluster
from the snapshot. For more information, see Creating a DB cluster snapshot.

Note

• For Amazon Aurora DB clusters, the default backup retention period is one day regardless
of how the DB cluster is created.

Overview of backing up and restoring 675

Amazon Aurora User Guide for Aurora

• You can't disable automated backups on Aurora. The backup retention period for Aurora
is managed by the DB cluster.

Your costs for backup storage depend upon the amount of Aurora backup and snapshot data
you keep and how long you keep it. For information about the storage associated with Aurora
backups and snapshots, see Understanding Amazon Aurora backup storage usage. For pricing
information about Aurora backup storage, see Amazon RDS for Aurora pricing. After the Aurora
cluster associated with a snapshot is deleted, storing that snapshot incurs the standard backup
storage charges for Aurora.

Using AWS Backup

You can use AWS Backup to manage backups of Amazon Aurora DB clusters.

Snapshots managed by AWS Backup are considered manual DB cluster snapshots, but don't count
toward the DB cluster snapshot quota for Aurora. Snapshots that were created with AWS Backup
have names with awsbackup:job-AWS-Backup-job-number. For more information about AWS
Backup, see the AWS Backup Developer Guide.

You can also use AWS Backup to manage automated backups of Amazon Aurora DB clusters. If your
DB cluster is associated with a backup plan in AWS Backup, you can use that backup plan for point-
in-time recovery. Automated (continuous) backups that are managed by AWS Backup have names
with continuous:cluster-AWS-Backup-job-number. For more information, see Restoring a
DB cluster to a specified time using AWS Backup.

Backup window

Automated backups occur daily during the preferred backup window. If the backup requires more
time than allotted to the backup window, the backup continues after the window ends, until it
finishes. The backup window can't overlap with the weekly maintenance window for the DB cluster.

Aurora automated backups are continuous and incremental, but the backup window is used to
create a daily system backup that is preserved within the backup retention period. You can copy
the backup to preserve it outside of the retention period.

Backup window 676

https://aws.amazon.com/rds/aurora/pricing
https://docs.aws.amazon.com/aws-backup/latest/devguide

Amazon Aurora User Guide for Aurora

Note

When you create a DB cluster using the AWS Management Console, you can't specify a
backup window. However, you can specify a backup window when you create a DB cluster
using the AWS CLI or RDS API.

If you don't specify a preferred backup window when you create the DB cluster, Aurora assigns a
default 30-minute backup window. This window is selected at random from an 8-hour block of
time for each AWS Region. The following table lists the time blocks for each AWS Region from
which the default backup windows are assigned.

Region Name Region Time Block

US East (Ohio) us-east-2 03:00–11:00 UTC

US East (N. Virginia) us-east-1 03:00–11:00 UTC

US West (N. Californi
a)

us-west-1 06:00–14:00 UTC

US West (Oregon) us-west-2 06:00–14:00 UTC

Africa (Cape Town) af-south-1 03:00–11:00 UTC

Asia Pacific (Hong
Kong)

ap-east-1 06:00–14:00 UTC

Asia Pacific
(Hyderabad)

ap-south-2 06:30–14:30 UTC

Asia Pacific (Jakarta) ap-southeast-3 08:00–16:00 UTC

Asia Pacific
(Melbourne)

ap-southeast-4 11:00–19:00 UTC

Asia Pacific (Mumbai) ap-south-1 16:30–00:30 UTC

Asia Pacific (Osaka) ap-northeast-3 00:00–08:00 UTC

Backup window 677

Amazon Aurora User Guide for Aurora

Region Name Region Time Block

Asia Pacific (Seoul) ap-northeast-2 13:00–21:00 UTC

Asia Pacific (Singapor
e)

ap-southeast-1 14:00–22:00 UTC

Asia Pacific (Sydney) ap-southeast-2 12:00–20:00 UTC

Asia Pacific (Tokyo) ap-northeast-1 13:00–21:00 UTC

Canada (Central) ca-central-1 03:00–11:00 UTC

Canada West
(Calgary)

ca-west-1 18:00–02:00 UTC

China (Beijing) cn-north-1 06:00–14:00 UTC

China (Ningxia) cn-northwest-1 06:00–14:00 UTC

Europe (Frankfurt) eu-central-1 20:00–04:00 UTC

Europe (Ireland) eu-west-1 22:00–06:00 UTC

Europe (London) eu-west-2 22:00–06:00 UTC

Europe (Milan) eu-south-1 02:00–10:00 UTC

Europe (Paris) eu-west-3 07:29–14:29 UTC

Europe (Spain) eu-south-2 02:00–10:00 UTC

Europe (Stockholm) eu-north-1 23:00–07:00 UTC

Europe (Zurich) eu-central-2 02:00–10:00 UTC

Israel (Tel Aviv) il-central-1 03:00–11:00 UTC

Middle East (Bahrain) me-south-1 06:00–14:00 UTC

Middle East (UAE) me-central-1 05:00–13:00 UTC

Backup window 678

Amazon Aurora User Guide for Aurora

Region Name Region Time Block

South America (São
Paulo)

sa-east-1 23:00–07:00 UTC

AWS GovCloud (US-
East)

us-gov-east-1 17:00–01:00 UTC

AWS GovCloud (US-
West)

us-gov-west-1 06:00–14:00 UTC

Retaining automated backups

When you delete a provisioned or Aurora Serverless v2 DB cluster, you can retain automated
backups. This allows you to restore a DB cluster to a specific point in time within the backup
retention period, even after the cluster is deleted.

Retained automated backups contain system snapshots and transaction logs from a DB cluster.
They also include DB cluster properties, such as DB instance class, which are required to restore it
to an active cluster.

You can restore or remove retained automated backups using the AWS Management Console, RDS
API, and AWS CLI.

Note

You can't retain automated backups for Aurora Serverless v1 DB clusters.

Topics

• Retention period

• Viewing retained backups

• Retention costs

• Limitations

• Deleting retained automated backups

Retaining automated backups 679

Amazon Aurora User Guide for Aurora

Retention period

The system snapshots and transaction logs in a retained automated backup expire the same way
that they expire for the source DB cluster. The settings for the retention period of the source
cluster also apply to the automated backups. Because no new snapshots or logs are created for this
cluster, the retained automated backups eventually expire completely. After the retention period is
over, you continue to retain manual DB cluster snapshots, but all of the automated backups expire.

You can remove retained automated backups using the console, AWS CLI or RDS API. For more
information, see Deleting retained automated backups.

Unlike a retained automated backup, a final snapshot doesn't expire. We strongly suggest that
you take a final snapshot even if you retain automated backups, because the retained automated
backups eventually expire.

Viewing retained backups

To view your retained automated backups in the RDS console, choose Automated backups in the
navigation pane, then choose Retained. To view individual snapshots associated with a retained
automated backup, choose Snapshots in the navigation pane. Alternatively, you can describe
individual snapshots associated with a retained automated backup. From there, you can restore a
DB instance directly from one of those snapshots.

To describe your retained automated backups using the AWS CLI, use the following command:

aws rds describe-db-cluster-automated-backups --db-cluster-resource-
id DB_cluster_resource_ID

To describe your retained automated backups using the RDS API, call the
DescribeDBClusterAutomatedBackups action with the DbClusterResourceId parameter.

Retention costs

There is no additional charge for backup storage of up to 100% of your total Aurora database
storage for each Aurora DB cluster. There is also no additional charge up to one day when you
retain automated backups after deleting a DB cluster. Backups that you retain for more than one
day are charged.

There is no additional charge for transaction logs or instance metadata. All other pricing rules for
backups apply to restorable clusters. For more information, see the Amazon Aurora pricing page.

Retaining automated backups 680

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DescribeDBClusterAutomatedBackups.html
https://aws.amazon.com/rds/aurora/pricing

Amazon Aurora User Guide for Aurora

Limitations

The following limitations apply to retained automated backups:

• The maximum number of retained automated backups in one AWS Region is 40. It's not included
in the quota for DB clusters. You can have up to 40 running DB clusters, 40 running DB instances,
and 40 retained automated backups for DB clusters at the same time.

For more information, see Quotas in Amazon Aurora.

• Retained automated backups don't contain information about parameters or option groups.

• You can restore a deleted cluster to a point in time that is within the retention period at the time
of deletion.

• You can't modify a retained automated backup because it consists of system backups,
transaction logs, and the DB cluster properties that existed at the time that you deleted the
source cluster.

Deleting retained automated backups

You can delete retained automated backups when they are no longer needed.

Console

To delete a retained automated backup

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Automated backups.

3. Choose the Retained tab.

4. Choose the retained automated backup that you want to delete.

5. For Actions, choose Delete.

6. On the confirmation page, enter delete me and choose Delete.

Retaining automated backups 681

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Aurora User Guide for Aurora

AWS CLI

You can delete a retained automated backup by using the AWS CLI command delete-db-cluster-
automated-backup with the following option:

• --db-cluster-resource-id – The resource identifier for the source DB cluster.

You can find the resource identifier for the source DB cluster of a retained automated backup by
running the AWS CLI command describe-db-cluster-automated-backups.

Example

This example deletes the retained automated backup for the source DB cluster that has the
resource ID cluster-123ABCEXAMPLE.

For Linux, macOS, or Unix:

aws rds delete-db-cluster-automated-backup \
 --db-cluster-resource-id cluster-123ABCEXAMPLE

For Windows:

aws rds delete-db-cluster-automated-backup ^
 --db-cluster-resource-id cluster-123ABCEXAMPLE

RDS API

You can delete a retained automated backup by using the Amazon RDS API operation
DeleteDBClusterAutomatedBackup with the following parameter:

• DbClusterResourceId – The resource identifier for the source DB cluster.

You can find the resource identifier for the source DB instance of a retained automated backup
using the Amazon RDS API operation DescribeDBClusterAutomatedBackups.

Restoring data

You can recover your data by creating a new Aurora DB cluster from the backup data that Aurora
retains, from a DB cluster snapshot that you have saved, or from a retained automated backup.

Restoring data 682

https://docs.aws.amazon.com/cli/latest/reference/rds/delete-db-cluster-automated-backup.html
https://docs.aws.amazon.com/cli/latest/reference/rds/delete-db-cluster-automated-backup.html
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-cluster-automated-backups.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DeleteDBClusterAutomatedBackup.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DescribeDBClusterAutomatedBackups.html

Amazon Aurora User Guide for Aurora

You can quickly restore a new copy of a DB cluster created from backup data to any point in time
during your backup retention period. Because Aurora backups are continuous and incremental
during the backup retention period, you don't need to take frequent snapshots of your data to
improve restore times.

The latest restorable time for a DB cluster is the most recent point to which you can restore your DB
cluster. This is typically within 5 minutes of the current time for an active DB cluster, or 5 minutes
of the cluster deletion time for a retained automated backup.

The earliest restorable time specifies how far back within the backup retention period that you can
restore your cluster volume.

To determine the latest or earliest restorable time for a DB cluster, look for the Latest
restorable time or Earliest restorable time values on the RDS console. For information
about viewing these values, see Viewing retained backups.

You can determine when the restore of a DB cluster is complete by checking the Latest
restorable time and Earliest restorable time values. These values return NULL until
the restore operation is complete. You can't request a backup or restore operation if either Latest
restorable time or Earliest restorable time returns NULL.

For information about restoring a DB cluster to a specified time, see Restoring a DB cluster to a
specified time.

Database cloning for Aurora

You can also use database cloning to clone the databases of your Aurora DB cluster to a new DB
cluster, instead of restoring a DB cluster snapshot. The clone databases use only minimal additional
space when first created. Data is copied only as data changes, either on the source databases or on
the clone databases. You can make multiple clones from the same DB cluster, or create additional
clones even from other clones. For more information, see Cloning a volume for an Amazon Aurora
DB cluster.

Backtrack

Aurora MySQL now supports "rewinding" a DB cluster to a specific time, without restoring data
from a backup. For more information, see Backtracking an Aurora DB cluster.

Database cloning 683

Amazon Aurora User Guide for Aurora

Understanding Amazon Aurora backup storage usage

Amazon Aurora maintains two types of backup: automated (continuous) backups and snapshots.

Automated backup storage

The automated (continuous) backup for a cluster incrementally stores all database changes within
a specified retention period to be able to restore to any point in time within that retention period.
Retention periods can range from 1–35 days. Automated backups are incremental and charged
based on the amount of storage that’s required to restore to any time within the retention period.

Aurora also provides a free amount of backup usage. This free amount of usage is equal to the
latest cluster volume size (as represented by the VolumeBytesUsed Amazon CloudWatch metric).
This amount is subtracted from the calculated automated backup usage. There is also no charge for
an automated backup whose retention period is just 1 day.

For example, your automated backup has a retention period of 7 days, and you want to restore
your cluster to its state from four days ago. Aurora uses the incremental data stored in the
automated backup to re-create the state of the cluster at that exact time four days ago.

The automated backup stores all the required information to be able to restore the cluster at any
point in time in the retention window. That means that it stores all changes during the retention
window, including writes of new information or deletion of existing information. For databases
where many changes occur, the size of the automated backup grows over time. After a database
stops experiencing changes, you can expect the size of the automated backup to decrease, as the
previously stored changes exit the retention window.

The total billed usage for the automated backup never exceeds the cumulative cluster volume size
over the retention period. For example, if your retention period is 7 days, and your cluster volume
was 100 GB every day, then the billed automated backup usage never exceeds 700 GB (100 GB * 7).

Snapshot storage

DB cluster snapshots are always full backups whose size is that of the cluster volume at the time
the snapshot is taken. Snapshots, either taken manually by the user or automatically by an AWS
Backups plan, are treated as manual snapshots. Aurora provides unlimited free storage for all
snapshots that lie within the automated backup retention period. After a manual snapshot is
outside the retention period, it's billed per GB-month. Any automated system snapshot is never
charged unless copied and retained past the retention period.

Backup storage 684

https://docs.aws.amazon.com/aws-backup/latest/devguide/about-backup-plans.html
https://docs.aws.amazon.com/aws-backup/latest/devguide/about-backup-plans.html

Amazon Aurora User Guide for Aurora

For general information about Aurora backups, see Backups. For pricing information about Aurora
backup storage, see the Amazon Aurora pricing page.

Amazon CloudWatch metrics for Aurora backup storage

You can monitor your Aurora clusters and create reports using Amazon CloudWatch metrics
through the CloudWatch console. You can use the following CloudWatch metrics to review
and monitor the amount of storage used by your Aurora backups. These metrics are computed
independently for each Aurora DB cluster.

• BackupRetentionPeriodStorageUsed – Represents the amount of backup storage used, in
bytes, for storing automated backups at the current time.

• The value depends on the size of the cluster volume and the number of changes (writes and
updates) that are made to the DB cluster during the retention period. This is because the
automated backup must store all incremental changes made to the cluster to be able to
restore to any point in time.

• This metric doesn't subtract the free tier of backup usage that Aurora provides.

• This metric emits a single daily data point for the automated backup usage recorded on that
day.

• SnapshotStorageUsed – Represents the amount of backup storage used, in bytes, for storing
manual snapshots beyond the automated backup's retention period.

• The value depends on the number of snapshots you keep beyond the automated backup’s
retention period and the size of each snapshot.

• The size of each snapshot is the size of the cluster volume at the time you take the snapshot.

• Snapshots are full backups, not incremental.

• This metric emits one daily data point for each snapshot being charged. To retrieve your daily
total snapshot usage, take the sum of this metric over a period of 1 day.

• TotalBackupStorageBilled – Represents the metrics for all billed backup usage, in bytes, for
the given cluster:

BackupRetentionPeriodStorageUsed + SnapshotStorageUsed - free tier

• This metric emits one daily data point for the BackupRetentionPeriodStorageUsed value
minus the free tier of backup usage that Aurora provides. This free tier is equal to the latest
recorded size of the DB cluster volume. This data point represents the actual billed usage for
the automated backup.

CloudWatch metrics for backup storage 685

https://aws.amazon.com/rds/aurora/pricing
https://console.aws.amazon.com/cloudwatch/

Amazon Aurora User Guide for Aurora

• This metric emits individual daily data points for all of the SnapshotStorageUsed values.

• To retrieve your total daily billed backup usage, take the sum of this metric over a period of
1 day. This sums all of the billed snapshot usage with the billed automated backup usage, to
give your total billed backup usage.

For more information about how to use CloudWatch metrics, see Availability of Aurora metrics in
the Amazon RDS console.

Calculating backup storage usage

The usage for an automated backup is calculated by looking at all of the incremental records that
must be stored, to be able to restore to any point in time within the retention period of the backup.

For example, you have an automated backup with retention period of 7 days. Your cluster volume
size just before the retention period was 100 GB, so that’s the least amount that Aurora needs to
store. Then you have the following activity for the next 7 days, where the incremental record size is
the amount of storage needed to store the change records coming from your database’s writes and
updates.

Day Incremental record size (GB)

1 10

2 15

3 25

4 20

5 10

6 25

7 30

Total 135

This data means that the calculated automated backup usage for your backup is the following:

Calculating backup storage usage 686

Amazon Aurora User Guide for Aurora

100 GB (volume size before retention period) + 135 GB (size of incremental records) =
 235 GB total backup usage

The billed usage then subtracts the free tier of usage. Assume that the latest size of your volume is
200 GB:

235 GB total backup usage - 200 GB (latest volume size) = 35 GB billed backup usage

FAQs

When am I billed for snapshots?

You're billed for manual snapshots that are outside (older than) the retention period of the
automated backup.

What's a manual snapshot?

A manual snapshot is a snapshot to which one of the following conditions applies:

• Manually requested by you

• Taken by an automated backup service such as AWS Backup

• Copied from an automated system snapshot to preserve it outside the retention period

What happens to my manual snapshots if I delete my DB cluster?

Manual snapshots don't expire until you delete them.

When you delete your DB cluster, the manual snapshots that you previously took continue
to exist. If these snapshots previously weren't being billed because they were within the
automated backup retention period, now they're not covered anymore and all start to be billed
at their full size for their usage.

How can I reduce my backup storage costs?

There are a few ways to reduce backup usage related costs:

• Delete manual snapshots that lie outside your automated backup’s retention period. This
includes the snapshots you’ve taken, as well as the snapshots that your AWS Backup plan
might have taken. Make sure to check your AWS Backup plan to make sure it isn't keeping
snapshots outside the retention period that you don't expect.

• Evaluate your writes and updates to your database to see if you can reduce the number of
changes you're making. Because our automated backup stores all incremental changes within

FAQs 687

Amazon Aurora User Guide for Aurora

the retention period, reducing the number of updates that you're making also reduces your
automated backup charges.

• Evaluate whether reducing your automated backup’s retention period would make sense.
Reducing the retention period means that the backup stores fewer days of incremental data,
which could reduce the overall backup cost. However, reducing this retention period could
also cause some snapshots to start being billed because they're now outside the retention
period. Make sure to check all the extra snapshot costs that you might incur before deciding
whether this is the right course of action for you.

How is backup storage billed?

Backup storage is billed by the GB-month.

This means that the backup storage usage is charged as the weighted average of the usage over
the given month. Here are a few examples for a 30-day month:

• Billed backup usage is 100 GB for all 30 days of the month. Your charge is the following:

(100 GB * 30) / 30 = 100 GB-month

• Billed backup usage is 100 GB for the first 15 days of the month, then 0 GB for the last 15.
Your charge is the following:

(100 GB * 15 + 0 GB * 15) / 30 = 50 GB-month

• Billed backup usage is 50 GB for the first 10 days of the month, 100 GB for the next 10 days,
then 150 GB for the final 10. Your charge is the following:

(50 GB * 10 + 100 GB * 10 + 150 GB * 10) / 30 = 100 GB-month

How does the backtrack setting for my DB cluster affect backup storage usage?

The backtrack setting for an Aurora DB cluster doesn't affect the volume of backup data for
that cluster. Amazon bills the storage for backtracking data separately. For pricing information
about Aurora backtracking, see the Amazon Aurora pricing page.

How do storage costs apply to shared snapshots?

If you share a snapshot with another user, you're still the owner of that snapshot. The storage
costs apply to the snapshot owner. If you delete a shared snapshot that you own, nobody can
access it.

FAQs 688

https://aws.amazon.com/rds/aurora/pricing

Amazon Aurora User Guide for Aurora

To keep access to a shared snapshot owned by someone else, you can copy that snapshot. Doing
so makes you the owner of the new snapshot. Any storage costs for the copied snapshot apply
to your account.

For more information on sharing snapshots, see Sharing a DB cluster snapshot. For more
information on copying snapshots, see Copying a DB cluster snapshot.

FAQs 689

Amazon Aurora User Guide for Aurora

Creating a DB cluster snapshot

Amazon RDS creates a storage volume snapshot of your DB cluster, backing up the entire DB
cluster and not just individual databases. When you create a DB cluster snapshot, you need to
identify which DB cluster you are going to back up, and then give your DB cluster snapshot a name
so you can restore from it later. The amount of time it takes to create a DB cluster snapshot varies
with the size of your databases. Because the snapshot includes the entire storage volume, the size
of files, such as temporary files, also affects the amount of time it takes to create the snapshot.

Note

Your DB cluster must be in the available state to take a DB cluster snapshot.

Unlike automated backups, manual snapshots aren't subject to the backup retention period.
Snapshots don't expire.

For very long-term backups, we recommend exporting snapshot data to Amazon S3. If the major
version of your DB engine is no longer supported, you can't restore to that version from a snapshot.
For more information, see Exporting DB cluster snapshot data to Amazon S3.

You can create a DB cluster snapshot using the AWS Management Console, the AWS CLI, or the RDS
API.

Console

To create a DB cluster snapshot

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Snapshots.

The Manual snapshots list appears.

3. Choose Take snapshot.

The Take DB snapshot window appears.

4. For Snapshot type, select DB cluster.

5. Choose the DB cluster for which you want to take a snapshot.

Creating a DB cluster snapshot 690

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Aurora User Guide for Aurora

6. Enter the Snapshot name.

7. Choose Take snapshot.

The Manual snapshots list appears, with the new DB cluster snapshot's status shown as
Creating. After its status is Available, you can see its creation time.

AWS CLI

When you create a DB cluster snapshot using the AWS CLI, you need to identify which DB cluster
you are going to back up, and then give your DB cluster snapshot a name so you can restore from
it later. You can do this by using the AWS CLI create-db-cluster-snapshot command with the
following parameters:

• --db-cluster-identifier

• --db-cluster-snapshot-identifier

In this example, you create a DB cluster snapshot named mydbclustersnapshot for a DB cluster
called mydbcluster.

Example

For Linux, macOS, or Unix:

aws rds create-db-cluster-snapshot \
 --db-cluster-identifier mydbcluster \
 --db-cluster-snapshot-identifier mydbclustersnapshot

For Windows:

aws rds create-db-cluster-snapshot ^
 --db-cluster-identifier mydbcluster ^
 --db-cluster-snapshot-identifier mydbclustersnapshot

RDS API

When you create a DB cluster snapshot using the Amazon RDS API, you need to identify which
DB cluster you are going to back up, and then give your DB cluster snapshot a name so you can
restore from it later. You can do this by using the Amazon RDS API CreateDBClusterSnapshot
command with the following parameters:

Creating a DB cluster snapshot 691

https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-cluster-snapshot.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateDBClusterSnapshot.html

Amazon Aurora User Guide for Aurora

• DBClusterIdentifier

• DBClusterSnapshotIdentifier

Determining whether the DB cluster snapshot is available

You can check that the DB cluster snapshot is available by looking under Snapshots on the
Maintenance & backups tab on the detail page for the cluster in the AWS Management
Console, by using the describe-db-cluster-snapshots CLI command, or by using the
DescribeDBClusterSnapshots API action.

You can also use the wait db-cluster-snapshot-available CLI command to poll the API
every 30 seconds until the snapshot is available.

Determining whether the snapshot is available 692

https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-cluster-snapshots
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DescribeDBClusterSnapshots.html
https://docs.aws.amazon.com/cli/latest/reference/rds/wait/db-cluster-snapshot-available.html

Amazon Aurora User Guide for Aurora

Restoring from a DB cluster snapshot

Amazon RDS creates a storage volume snapshot of your DB cluster, backing up the entire DB
cluster and not just individual databases. You can create a new DB cluster by restoring from a DB
snapshot. You provide the name of the DB cluster snapshot to restore from, and then provide a
name for the new DB cluster that is created from the restore. You can't restore from a DB cluster
snapshot to an existing DB cluster; a new DB cluster is created when you restore.

Important

If you attempt to restore a snapshot to a deprecated DB engine version, an immediate
upgrade to the latest engine version will occur. Additionally, Extended Support charges
might apply if the version is on Extended Support or has reached the end of standard
support. For more information, see Using Amazon RDS Extended Support.

You can use the restored DB cluster as soon as its status is available.

You can use AWS CloudFormation to restore a DB cluster from a DB cluster snapshot. For more
information, see AWS::RDS::DBCluster in the AWS CloudFormation User Guide.

Note

Sharing a manual DB cluster snapshot, whether encrypted or unencrypted, enables
authorized AWS accounts to directly restore a DB cluster from the snapshot instead of
taking a copy of it and restoring from that. For more information, see Sharing a DB cluster
snapshot.

For information about restoring an Aurora DB cluster or a global cluster with an RDS Extended
Support version, see Restoring an Aurora DB cluster or a global cluster with Amazon RDS Extended
Support.

Parameter group considerations

We recommend that you retain the DB parameter group and DB cluster parameter group for any
DB cluster snapshots you create, so that you can associate your restored DB cluster with the correct
parameter groups.

Restoring from a DB cluster snapshot 693

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-rds-dbcluster.html

Amazon Aurora User Guide for Aurora

The default DB parameter group and DB cluster parameter group are associated with the restored
cluster, unless you choose different ones. No custom parameter settings are available in the default
parameter groups.

You can specify the parameter groups when you restore the DB cluster.

For more information about DB parameter groups and DB cluster parameter groups, see Working
with parameter groups.

Security group considerations

When you restore a DB cluster, the default virtual private cloud (VPC), DB subnet group, and VPC
security group are associated with the restored instance, unless you choose different ones.

• If you're using the Amazon RDS console, you can specify a custom VPC security group to
associate with the cluster or create a new VPC security group.

• If you're using the AWS CLI, you can specify a custom VPC security group to associate with the
cluster by including the --vpc-security-group-ids option in the restore-db-cluster-
from-snapshot command.

• If you're using the Amazon RDS API, you can include the
VpcSecurityGroupIds.VpcSecurityGroupId.N parameter in the
RestoreDBClusterFromSnapshot action.

As soon as the restore is complete and your new DB cluster is available, you can also change the
VPC settings by modifying the DB cluster. For more information, see Modifying an Amazon Aurora
DB cluster.

Amazon Aurora considerations

With Aurora, you restore a DB cluster snapshot to a DB cluster.

With both Aurora MySQL and Aurora PostgreSQL, you can also restore a DB cluster snapshot to
an Aurora Serverless DB cluster. For more information, see Restoring an Aurora Serverless v1 DB
cluster.

With Aurora MySQL, you can restore a DB cluster snapshot from a cluster without parallel query
to a cluster with parallel query. Because parallel query is typically used with very large tables,
the snapshot mechanism is the fastest way to ingest large volumes of data to an Aurora MySQL

Security groups 694

Amazon Aurora User Guide for Aurora

parallel query-enabled cluster. For more information, see Working with parallel query for Amazon
Aurora MySQL.

Restoring from a snapshot

You can restore a DB cluster from a DB cluster snapshot using the AWS Management Console, the
AWS CLI, or the RDS API.

Console

To restore a DB cluster from a DB cluster snapshot

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Snapshots.

3. Choose the DB cluster snapshot that you want to restore from.

4. For Actions, choose Restore snapshot.

The Restore snapshot page displays.

5. Choose the DB engine version to which you want to restore the DB cluster.

By default, the snapshot is restored to the same DB engine version as the source DB cluster, if
that version is available.

6. For DB instance identifier, enter the name for your restored DB cluster.

7. Specify other settings, such as the DB cluster storage configuration.

For information about each setting, see Settings for Aurora DB clusters.

8. Choose Restore DB cluster.

AWS CLI

To restore a DB cluster from a DB cluster snapshot, use the AWS CLI command restore-db-cluster-
from-snapshot.

In this example, you restore from a previously created DB cluster snapshot named
mydbclustersnapshot. You restore to a new DB cluster named mynewdbcluster.

You can specify other settings, such as the DB engine version. If you don't specify an engine
version, the DB cluster is restored to the default engine version.

Restoring from a snapshot 695

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/rds/restore-db-cluster-from-snapshot.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/rds/restore-db-cluster-from-snapshot.html

Amazon Aurora User Guide for Aurora

For information about each setting, see Settings for Aurora DB clusters.

Example

For Linux, macOS, or Unix:

aws rds restore-db-cluster-from-snapshot \
 --db-cluster-identifier mynewdbcluster \
 --snapshot-identifier mydbclustersnapshot \
 --engine aurora-mysql|aurora-postgresql

For Windows:

aws rds restore-db-cluster-from-snapshot ^
 --db-cluster-identifier mynewdbcluster ^
 --snapshot-identifier mydbclustersnapshot ^
 --engine aurora-mysql|aurora-postgresql

After the DB cluster has been restored, you must add the DB cluster to the security group used by
the DB cluster used to create the DB cluster snapshot if you want the same functionality as that of
the previous DB cluster.

Important

If you use the console to restore a DB cluster, then Amazon RDS automatically creates the
primary DB instance (writer) for your DB cluster. If you use the AWS CLI to restore a DB
cluster, you must explicitly create the primary instance for your DB cluster. The primary
instance is the first instance that is created in a DB cluster. If you don't create the primary
DB instance, the DB cluster endpoints remain in the creating status.
Call the create-db-instance AWS CLI command to create the primary instance for your DB
cluster. Include the name of the DB cluster as the --db-cluster-identifier option
value.

RDS API

To restore a DB cluster from a DB cluster snapshot, call the RDS API operation
RestoreDBClusterFromSnapshot with the following parameters:

Restoring from a snapshot 696

https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-instance.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_RestoreDBClusterFromSnapshot.html

Amazon Aurora User Guide for Aurora

• DBClusterIdentifier

• SnapshotIdentifier

Important

If you use the console to restore a DB cluster, then Amazon RDS automatically creates the
primary DB instance (writer) for your DB cluster. If you use the RDS API to restore a DB
cluster, you must explicitly create the primary instance for your DB cluster. The primary
instance is the first instance that is created in a DB cluster. If you don't create the primary
DB instance, the DB cluster endpoints remain in the creating status.
Call the RDS API operation CreateDBInstance to create the primary instance for your DB
cluster. Include the name of the DB cluster as the DBClusterIdentifier parameter
value.

Restoring from a snapshot 697

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateDBInstance.html

Amazon Aurora User Guide for Aurora

Copying a DB cluster snapshot

With Amazon Aurora, you can copy automated backups or manual DB cluster snapshots. After you
copy a snapshot, the copy is a manual snapshot. You can make multiple copies of an automated
backup or manual snapshot, but each copy must have a unique identifier.

You can copy a snapshot within the same AWS Region, you can copy a snapshot across AWS
Regions, and you can copy shared snapshots.

You can't copy a DB cluster snapshot across Regions and accounts in a single step. Perform one
step for each of these copy actions. As an alternative to copying, you can also share manual
snapshots with other AWS accounts. For more information, see Sharing a DB cluster snapshot.

Note

Amazon bills you based upon the amount of Amazon Aurora backup and snapshot data you
keep and the period of time that you keep it. For information about the storage associated
with Aurora backups and snapshots, see Understanding Amazon Aurora backup storage
usage. For pricing information about Aurora storage, see Amazon RDS for Aurora pricing.

Topics

• Limitations

• Snapshot retention

• Copying shared snapshots

• Handling encryption

• Incremental snapshot copying

• Cross-Region snapshot copying

• Parameter group considerations

• Copying a DB cluster snapshot

Limitations

The following are some limitations when you copy snapshots:

• You can't copy a snapshot to or from the following AWS Regions:

Copying a DB cluster snapshot 698

https://aws.amazon.com/rds/aurora/pricing

Amazon Aurora User Guide for Aurora

• China (Beijing)

• China (Ningxia)

• You can copy a snapshot between AWS GovCloud (US-East) and AWS GovCloud (US-West).
However, you can't copy a snapshot between these AWS GovCloud (US) Regions and commercial
AWS Regions.

• If you delete a source snapshot before the target snapshot becomes available, the snapshot copy
might fail. Verify that the target snapshot has a status of AVAILABLE before you delete a source
snapshot.

• You can have up to five snapshot copy requests in progress to a single destination Region per
account.

• When you request multiple snapshot copies for the same source DB instance, they're queued
internally. The copies requested later won't start until the previous snapshot copies are
completed. For more information, see Why is my EC2 AMI or EBS snapshot creation slow? in the
AWS Knowledge Center.

• Depending on the AWS Regions involved and the amount of data to be copied, a cross-Region
snapshot copy can take hours to complete. In some cases, there might be a large number of
cross-Region snapshot copy requests from a given source Region. In such cases, Amazon RDS
might put new cross-Region copy requests from that source Region into a queue until some in-
progress copies complete. No progress information is displayed about copy requests while they
are in the queue. Progress information is displayed when the copy starts.

Snapshot retention

Amazon RDS deletes automated backups in several situations:

• At the end of their retention period.

• When you disable automated backups for a DB cluster.

• When you delete a DB cluster.

If you want to keep an automated backup for a longer period, copy it to create a manual snapshot,
which is retained until you delete it. Amazon RDS storage costs might apply to manual snapshots if
they exceed your default storage space.

For more information about backup storage costs, see Amazon RDS pricing.

Snapshot retention 699

https://aws.amazon.com/premiumsupport/knowledge-center/ebs-snapshot-ec2-ami-creation-slow/
https://aws.amazon.com/rds/pricing/

Amazon Aurora User Guide for Aurora

Copying shared snapshots

You can copy snapshots shared to you by other AWS accounts. In some cases, you might copy an
encrypted snapshot that has been shared from another AWS account. In these cases, you must
have access to the AWS KMS key that was used to encrypt the snapshot.

You can only copy a shared DB cluster snapshot, whether encrypted or not, in the same AWS
Region. For more information, see Sharing encrypted snapshots.

Handling encryption

You can copy a snapshot that has been encrypted using a KMS key. If you copy an encrypted
snapshot, the copy of the snapshot must also be encrypted. If you copy an encrypted snapshot
within the same AWS Region, you can encrypt the copy with the same KMS key as the original
snapshot. Or you can specify a different KMS key.

If you copy an encrypted snapshot across Regions, you must specify a KMS key valid in the
destination AWS Region. It can be a Region-specific KMS key, or a multi-Region key. For more
information on multi-Region KMS keys, see Using multi-Region keys in AWS KMS.

The source snapshot remains encrypted throughout the copy process. For more information, see
Limitations of Amazon Aurora encrypted DB clusters.

Note

For Amazon Aurora DB cluster snapshots, you can't encrypt an unencrypted DB cluster
snapshot when you copy the snapshot.

Incremental snapshot copying

Aurora doesn't support incremental snapshot copying. Aurora DB cluster snapshot copies are
always full copies. A full snapshot copy contains all of the data and metadata required to restore
the DB cluster.

Cross-Region snapshot copying

You can copy DB cluster snapshots across AWS Regions. However, there are certain constraints and
considerations for cross-Region snapshot copying.

Copying shared snapshots 700

https://docs.aws.amazon.com/kms/latest/developerguide/multi-region-keys-overview.html

Amazon Aurora User Guide for Aurora

Depending on the AWS Regions involved and the amount of data to be copied, a cross-Region
snapshot copy can take hours to complete.

In some cases, there might be a large number of cross-Region snapshot copy requests from a
given source AWS Region. In such cases, Amazon RDS might put new cross-Region copy requests
from that source AWS Region into a queue until some in-progress copies complete. No progress
information is displayed about copy requests while they are in the queue. Progress information is
displayed when the copying starts.

Cross-Region snapshot copying creates full copies in the target data, but the data transfer charges
are incremental. Incremental data includes both the new data that has been added to a customer’s
database since the last copy, as well as any changes made to existing data. For more information,
see Creating backup copies across AWS Regions in the AWS Backup Developer Guide.

Parameter group considerations

When you copy a snapshot across Regions, the copy doesn't include the parameter group used by
the original DB cluster. When you restore a snapshot to create a new DB cluster, that DB cluster
gets the default parameter group for the AWS Region it is created in. To give the new DB cluster
the same parameters as the original, do the following:

1. In the destination AWS Region, create a DB cluster parameter group with the same settings as
the original DB cluster. If one already exists in the new AWS Region, you can use that one.

2. After you restore the snapshot in the destination AWS Region, modify the new DB cluster and
add the new or existing parameter group from the previous step.

Copying a DB cluster snapshot

Use the procedures in this topic to copy a DB cluster snapshot. If your source database engine is
Aurora, then your snapshot is a DB cluster snapshot.

For each AWS account, you can copy up to five DB cluster snapshots at a time from one AWS
Region to another. Copying both encrypted and unencrypted DB cluster snapshots is supported. If
you copy a DB cluster snapshot to another AWS Region, you create a manual DB cluster snapshot
that is retained in that AWS Region. Copying a DB cluster snapshot out of the source AWS Region
incurs Amazon RDS data transfer charges.

For more information about data transfer pricing, see Amazon RDS pricing.

Parameter groups 701

https://docs.aws.amazon.com/aws-backup/latest/devguide/cross-region-backup.html
https://aws.amazon.com/rds/pricing/

Amazon Aurora User Guide for Aurora

After the DB cluster snapshot copy has been created in the new AWS Region, the DB cluster
snapshot copy behaves the same as all other DB cluster snapshots in that AWS Region.

Console

This procedure works for copying encrypted or unencrypted DB cluster snapshots, in the same AWS
Region or across Regions.

To cancel a copy operation once it is in progress, delete the target DB cluster snapshot while that
DB cluster snapshot is in copying status.

To copy a DB cluster snapshot

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Snapshots.

3. Select the DB cluster snapshot you want to copy.

4. For Actions, choose Copy snapshot. The Copy snapshot page appears.

Copying a DB cluster snapshot 702

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Aurora User Guide for Aurora

5. (Optional) To copy the DB cluster snapshot to a different AWS Region, choose that AWS Region
for Destination Region.

6. Enter the name of the DB cluster snapshot copy in New DB Snapshot Identifier.

7. To copy tags and values from the snapshot to the copy of the snapshot, choose Copy Tags.

8. Choose Copy Snapshot.

Copying an unencrypted DB cluster snapshot by using the AWS CLI or Amazon
RDS API

Use the procedures in the following sections to copy an unencrypted DB cluster snapshot by using
the AWS CLI or Amazon RDS API.

Copying a DB cluster snapshot 703

Amazon Aurora User Guide for Aurora

To cancel a copy operation once it is in progress, delete the target DB cluster snapshot identified by
--target-db-cluster-snapshot-identifier or TargetDBClusterSnapshotIdentifier
while that DB cluster snapshot is in copying status.

AWS CLI

To copy a DB cluster snapshot, use the AWS CLI copy-db-cluster-snapshot command. If you are
copying the snapshot to another AWS Region, run the command in the AWS Region to which the
snapshot will be copied.

The following options are used to copy an unencrypted DB cluster snapshot:

• --source-db-cluster-snapshot-identifier – The identifier for the DB cluster snapshot
to be copied. If you are copying the snapshot to another AWS Region, this identifier must be in
the ARN format for the source AWS Region.

• --target-db-cluster-snapshot-identifier – The identifier for the new copy of the DB
cluster snapshot.

The following code creates a copy of DB cluster snapshot arn:aws:rds:us-
east-1:123456789012:cluster-snapshot:aurora-cluster1-snapshot-20130805
named myclustersnapshotcopy in the AWS Region in which the command is run. When the
copy is made, all tags on the original snapshot are copied to the snapshot copy.

Example

For Linux, macOS, or Unix:

aws rds copy-db-cluster-snapshot \
 --source-db-cluster-snapshot-identifier arn:aws:rds:us-east-1:123456789012:cluster-
snapshot:aurora-cluster1-snapshot-20130805 \
 --target-db-cluster-snapshot-identifier myclustersnapshotcopy \
 --copy-tags

For Windows:

aws rds copy-db-cluster-snapshot ^
 --source-db-cluster-snapshot-identifier arn:aws:rds:us-east-1:123456789012:cluster-
snapshot:aurora-cluster1-snapshot-20130805 ^

Copying a DB cluster snapshot 704

https://docs.aws.amazon.com/cli/latest/reference/rds/copy-db-cluster-snapshot.html

Amazon Aurora User Guide for Aurora

 --target-db-cluster-snapshot-identifier myclustersnapshotcopy ^
 --copy-tags

RDS API

To copy a DB cluster snapshot, use the Amazon RDS API CopyDBClusterSnapshot operation. If you
are copying the snapshot to another AWS Region, perform the action in the AWS Region to which
the snapshot will be copied.

The following parameters are used to copy an unencrypted DB cluster snapshot:

• SourceDBClusterSnapshotIdentifier – The identifier for the DB cluster snapshot to be
copied. If you are copying the snapshot to another AWS Region, this identifier must be in the
ARN format for the source AWS Region.

• TargetDBClusterSnapshotIdentifier – The identifier for the new copy of the DB cluster
snapshot.

The following code creates a copy of a snapshot arn:aws:rds:us-
east-1:123456789012:cluster-snapshot:aurora-cluster1-snapshot-20130805
named myclustersnapshotcopy in the US West (N. California) Region. When the copy is made,
all tags on the original snapshot are copied to the snapshot copy.

Example

https://rds.us-west-1.amazonaws.com/
 ?Action=CopyDBClusterSnapshot
 &CopyTags=true
 &SignatureMethod=HmacSHA256
 &SignatureVersion=4
 &SourceDBSnapshotIdentifier=arn%3Aaws%3Ards%3Aus-east-1%3A123456789012%3Acluster-
snapshot%3Aaurora-cluster1-snapshot-20130805
 &TargetDBSnapshotIdentifier=myclustersnapshotcopy
 &Version=2013-09-09
 &X-Amz-Algorithm=AWS4-HMAC-SHA256
 &X-Amz-Credential=AKIADQKE4SARGYLE/20140429/us-west-1/rds/aws4_request
 &X-Amz-Date=20140429T175351Z
 &X-Amz-SignedHeaders=content-type;host;user-agent;x-amz-content-sha256;x-amz-date
 &X-Amz-Signature=9164337efa99caf850e874a1cb7ef62f3cea29d0b448b9e0e7c53b288ddffed2

Copying a DB cluster snapshot 705

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CopyDBClusterSnapshot.html

Amazon Aurora User Guide for Aurora

Copying an encrypted DB cluster snapshot by using the AWS CLI or Amazon RDS
API

Use the procedures in the following sections to copy an encrypted DB cluster snapshot by using the
AWS CLI or Amazon RDS API.

To cancel a copy operation once it is in progress, delete the target DB cluster snapshot identified by
--target-db-cluster-snapshot-identifier or TargetDBClusterSnapshotIdentifier
while that DB cluster snapshot is in copying status.

AWS CLI

To copy a DB cluster snapshot, use the AWS CLI copy-db-cluster-snapshot command. If you are
copying the snapshot to another AWS Region, run the command in the AWS Region to which the
snapshot will be copied.

The following options are used to copy an encrypted DB cluster snapshot:

• --source-db-cluster-snapshot-identifier – The identifier for the encrypted DB cluster
snapshot to be copied. If you are copying the snapshot to another AWS Region, this identifier
must be in the ARN format for the source AWS Region.

• --target-db-cluster-snapshot-identifier – The identifier for the new copy of the
encrypted DB cluster snapshot.

• --kms-key-id – The KMS key identifier for the key to use to encrypt the copy of the DB cluster
snapshot.

You can optionally use this option if the DB cluster snapshot is encrypted, you copy the snapshot
in the same AWS Region, and you want to specify a new KMS key to encrypt the copy. Otherwise,
the copy of the DB cluster snapshot is encrypted with the same KMS key as the source DB cluster
snapshot.

You must use this option if the DB cluster snapshot is encrypted and you are copying the
snapshot to another AWS Region. In that case, you must specify a KMS key for the destination
AWS Region.

The following code example copies the encrypted DB cluster snapshot from the US West (Oregon)
Region to the US East (N. Virginia) Region. The command is called in the US East (N. Virginia)
Region.

Copying a DB cluster snapshot 706

https://docs.aws.amazon.com/cli/latest/reference/rds/copy-db-cluster-snapshot.html

Amazon Aurora User Guide for Aurora

Example

For Linux, macOS, or Unix:

aws rds copy-db-cluster-snapshot \
 --source-db-cluster-snapshot-identifier arn:aws:rds:us-west-2:123456789012:cluster-
snapshot:aurora-cluster1-snapshot-20161115 \
 --target-db-cluster-snapshot-identifier myclustersnapshotcopy \
 --kms-key-id my-us-east-1-key

For Windows:

aws rds copy-db-cluster-snapshot ^
 --source-db-cluster-snapshot-identifier arn:aws:rds:us-west-2:123456789012:cluster-
snapshot:aurora-cluster1-snapshot-20161115 ^
 --target-db-cluster-snapshot-identifier myclustersnapshotcopy ^
 --kms-key-id my-us-east-1-key

The --source-region parameter is required when you're copying an encrypted DB cluster
snapshot between the AWS GovCloud (US-East) and AWS GovCloud (US-West) Regions. For --
source-region, specify the AWS Region of the source DB instance. The AWS Region specified
in source-db-cluster-snapshot-identifier must match the AWS Region specified for --
source-region.

If --source-region isn't specified, specify a --pre-signed-url value. A presigned URL is a
URL that contains a Signature Version 4 signed request for the copy-db-cluster-snapshot
command that's called in the source AWS Region. To learn more about the pre-signed-url
option, see copy-db-cluster-snapshot in the AWS CLI Command Reference.

RDS API

To copy a DB cluster snapshot, use the Amazon RDS API CopyDBClusterSnapshot operation. If you
are copying the snapshot to another AWS Region, perform the action in the AWS Region to which
the snapshot will be copied.

The following parameters are used to copy an encrypted DB cluster snapshot:

• SourceDBClusterSnapshotIdentifier – The identifier for the encrypted DB cluster
snapshot to be copied. If you are copying the snapshot to another AWS Region, this identifier
must be in the ARN format for the source AWS Region.

Copying a DB cluster snapshot 707

https://docs.aws.amazon.com/cli/latest/reference/rds/copy-db-cluster-snapshot.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CopyDBClusterSnapshot.html

Amazon Aurora User Guide for Aurora

• TargetDBClusterSnapshotIdentifier – The identifier for the new copy of the encrypted
DB cluster snapshot.

• KmsKeyId – The KMS key identifier for the key to use to encrypt the copy of the DB cluster
snapshot.

You can optionally use this parameter if the DB cluster snapshot is encrypted, you copy the
snapshot in the same AWS Region, and you specify a new KMS key to use to encrypt the copy.
Otherwise, the copy of the DB cluster snapshot is encrypted with the same KMS key as the
source DB cluster snapshot.

You must use this parameter if the DB cluster snapshot is encrypted and you are copying the
snapshot to another AWS Region. In that case, you must specify a KMS key for the destination
AWS Region.

• PreSignedUrl – If you are copying the snapshot to another AWS Region, you must specify
the PreSignedUrl parameter. The PreSignedUrl value must be a URL that contains a
Signature Version 4 signed request for the CopyDBClusterSnapshot action to be called in the
source AWS Region where the DB cluster snapshot is copied from. To learn more about using a
presigned URL, see CopyDBClusterSnapshot.

The following code example copies the encrypted DB cluster snapshot from the US West (Oregon)
Region to the US East (N. Virginia) Region. The action is called in the US East (N. Virginia) Region.

Example

https://rds.us-east-1.amazonaws.com/
 ?Action=CopyDBClusterSnapshot
 &KmsKeyId=my-us-east-1-key
 &PreSignedUrl=https%253A%252F%252Frds.us-west-2.amazonaws.com%252F
 %253FAction%253DCopyDBClusterSnapshot
 %2526DestinationRegion%253Dus-east-1
 %2526KmsKeyId%253Dmy-us-east-1-key
 %2526SourceDBClusterSnapshotIdentifier%253Darn%25253Aaws%25253Ards
%25253Aus-west-2%25253A123456789012%25253Acluster-snapshot%25253Aaurora-cluster1-
snapshot-20161115
 %2526SignatureMethod%253DHmacSHA256
 %2526SignatureVersion%253D4
 %2526Version%253D2014-10-31
 %2526X-Amz-Algorithm%253DAWS4-HMAC-SHA256
 %2526X-Amz-Credential%253DAKIADQKE4SARGYLE%252F20161117%252Fus-west-2%252Frds
%252Faws4_request

Copying a DB cluster snapshot 708

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CopyDBClusterSnapshot.html

Amazon Aurora User Guide for Aurora

 %2526X-Amz-Date%253D20161117T215409Z
 %2526X-Amz-Expires%253D3600
 %2526X-Amz-SignedHeaders%253Dcontent-type%253Bhost%253Buser-agent%253Bx-amz-
content-sha256%253Bx-amz-date
 %2526X-Amz-Signature
%253D255a0f17b4e717d3b67fad163c3ec26573b882c03a65523522cf890a67fca613
 &SignatureMethod=HmacSHA256
 &SignatureVersion=4
 &SourceDBClusterSnapshotIdentifier=arn%3Aaws%3Ards%3Aus-
west-2%3A123456789012%3Acluster-snapshot%3Aaurora-cluster1-snapshot-20161115
 &TargetDBClusterSnapshotIdentifier=myclustersnapshotcopy
 &Version=2014-10-31
 &X-Amz-Algorithm=AWS4-HMAC-SHA256
 &X-Amz-Credential=AKIADQKE4SARGYLE/20161117/us-east-1/rds/aws4_request
 &X-Amz-Date=20161117T221704Z
 &X-Amz-SignedHeaders=content-type;host;user-agent;x-amz-content-sha256;x-amz-date
 &X-Amz-Signature=da4f2da66739d2e722c85fcfd225dc27bba7e2b8dbea8d8612434378e52adccf

The PreSignedUrl parameter is required when you are copying an encrypted DB cluster
snapshot between the AWS GovCloud (US-East) and AWS GovCloud (US-West) Regions. The
PreSignedUrl value must be a URL that contains a Signature Version 4 signed request for the
CopyDBClusterSnapshot operation to be called in the source AWS Region where the DB cluster
snapshot is copied from. To learn more about using a presigned URL, see CopyDBClusterSnapshot
in the Amazon RDS API Reference.

To automatically rather than manually generate a presigned URL, use the AWS CLI copy-db-cluster-
snapshot command with the --source-region option instead.

Copying a DB cluster snapshot across accounts

You can enable other AWS accounts to copy DB cluster snapshots that you specify by using the
Amazon RDS API ModifyDBClusterSnapshotAttribute and CopyDBClusterSnapshot
actions. You can only copy DB cluster snapshots across accounts in the same AWS Region. The
cross-account copying process works as follows, where Account A is making the snapshot available
to copy, and Account B is copying it.

1. Using Account A, call ModifyDBClusterSnapshotAttribute, specifying restore for the
AttributeName parameter, and the ID for Account B for the ValuesToAdd parameter.

2. (If the snapshot is encrypted) Using Account A, update the key policy for the KMS key, first
adding the ARN of Account B as a Principal, and then allow the kms:CreateGrant action.

Copying a DB cluster snapshot 709

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CopyDBClusterSnapshot.html
https://docs.aws.amazon.com/cli/latest/reference/rds/copy-db-cluster-snapshot.html
https://docs.aws.amazon.com/cli/latest/reference/rds/copy-db-cluster-snapshot.html

Amazon Aurora User Guide for Aurora

3. (If the snapshot is encrypted) Using Account B, choose or create a user and attach an IAM policy
to that user that allows it to copy an encrypted DB cluster snapshot using your KMS key.

4. Using Account B, call CopyDBClusterSnapshot and use the
SourceDBClusterSnapshotIdentifier parameter to specify the ARN of the DB cluster
snapshot to be copied, which must include the ID for Account A.

To list all of the AWS accounts permitted to restore a DB cluster snapshot, use the
DescribeDBSnapshotAttributes or DescribeDBClusterSnapshotAttributes API operation.

To remove sharing permission for an AWS account, use the ModifyDBSnapshotAttribute or
ModifyDBClusterSnapshotAttribute action with AttributeName set to restore and the ID
of the account to remove in the ValuesToRemove parameter.

Copying an unencrypted DB cluster snapshot to another account

Use the following procedure to copy an unencrypted DB cluster snapshot to another account in the
same AWS Region.

1. In the source account for the DB cluster snapshot, call
ModifyDBClusterSnapshotAttribute, specifying restore for the AttributeName
parameter, and the ID for the target account for the ValuesToAdd parameter.

Running the following example using the account 987654321 permits two AWS account
identifiers, 123451234512 and 123456789012, to restore the DB cluster snapshot named
manual-snapshot1.

https://rds.us-west-2.amazonaws.com/
 ?Action=ModifyDBClusterSnapshotAttribute
 &AttributeName=restore
 &DBClusterSnapshotIdentifier=manual-snapshot1
 &SignatureMethod=HmacSHA256&SignatureVersion=4
 &ValuesToAdd.member.1=123451234512
 &ValuesToAdd.member.2=123456789012
 &Version=2014-10-31
 &X-Amz-Algorithm=AWS4-HMAC-SHA256
 &X-Amz-Credential=AKIADQKE4SARGYLE/20150922/us-west-2/rds/aws4_request
 &X-Amz-Date=20150922T220515Z
 &X-Amz-SignedHeaders=content-type;host;user-agent;x-amz-content-sha256;x-amz-date
 &X-Amz-Signature=ef38f1ce3dab4e1dbf113d8d2a265c67d17ece1999ffd36be85714ed36dddbb3

Copying a DB cluster snapshot 710

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DescribeDBSnapshotAttributes.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DescribeDBSnapshotAttributes.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DescribeDBClusterSnapshotAttributes.html

Amazon Aurora User Guide for Aurora

2. In the target account, call CopyDBClusterSnapshot and use the
SourceDBClusterSnapshotIdentifier parameter to specify the ARN of the DB cluster
snapshot to be copied, which must include the ID for the source account.

Running the following example using the account 123451234512 copies the DB cluster
snapshot aurora-cluster1-snapshot-20130805 from account 987654321 and creates a
DB cluster snapshot named dbclustersnapshot1.

https://rds.us-west-2.amazonaws.com/
 ?Action=CopyDBClusterSnapshot
 &CopyTags=true
 &SignatureMethod=HmacSHA256
 &SignatureVersion=4
 &SourceDBClusterSnapshotIdentifier=arn:aws:rds:us-west-2:987654321:cluster-
snapshot:aurora-cluster1-snapshot-20130805
 &TargetDBClusterSnapshotIdentifier=dbclustersnapshot1
 &Version=2013-09-09
 &X-Amz-Algorithm=AWS4-HMAC-SHA256
 &X-Amz-Credential=AKIADQKE4SARGYLE/20150922/us-west-2/rds/aws4_request
 &X-Amz-Date=20140429T175351Z
 &X-Amz-SignedHeaders=content-type;host;user-agent;x-amz-content-sha256;x-amz-
date
 &X-Amz-
Signature=9164337efa99caf850e874a1cb7ef62f3cea29d0b448b9e0e7c53b288ddffed2

Copying an encrypted DB cluster snapshot to another account

Use the following procedure to copy an encrypted DB cluster snapshot to another account in the
same AWS Region.

1. In the source account for the DB cluster snapshot, call
ModifyDBClusterSnapshotAttribute, specifying restore for the AttributeName
parameter, and the ID for the target account for the ValuesToAdd parameter.

Running the following example using the account 987654321 permits two AWS account
identifiers, 123451234512 and 123456789012, to restore the DB cluster snapshot named
manual-snapshot1.

https://rds.us-west-2.amazonaws.com/
 ?Action=ModifyDBClusterSnapshotAttribute

Copying a DB cluster snapshot 711

Amazon Aurora User Guide for Aurora

 &AttributeName=restore
 &DBClusterSnapshotIdentifier=manual-snapshot1
 &SignatureMethod=HmacSHA256&SignatureVersion=4
 &ValuesToAdd.member.1=123451234512
 &ValuesToAdd.member.2=123456789012
 &Version=2014-10-31
 &X-Amz-Algorithm=AWS4-HMAC-SHA256
 &X-Amz-Credential=AKIADQKE4SARGYLE/20150922/us-west-2/rds/aws4_request
 &X-Amz-Date=20150922T220515Z
 &X-Amz-SignedHeaders=content-type;host;user-agent;x-amz-content-sha256;x-amz-date
 &X-Amz-Signature=ef38f1ce3dab4e1dbf113d8d2a265c67d17ece1999ffd36be85714ed36dddbb3

2. In the source account for the DB cluster snapshot, create a custom KMS key in the same AWS
Region as the encrypted DB cluster snapshot. While creating the customer managed key, you
give access to it for the target AWS account. For more information, see Create a customer
managed key and give access to it.

3. Copy and share the snapshot to the target AWS account. For more information, see Copy and
share the snapshot from the source account.

4. In the target account, call CopyDBClusterSnapshot and use the
SourceDBClusterSnapshotIdentifier parameter to specify the ARN of the DB cluster
snapshot to be copied, which must include the ID for the source account.

Running the following example using the account 123451234512 copies the DB cluster
snapshot aurora-cluster1-snapshot-20130805 from account 987654321 and creates a
DB cluster snapshot named dbclustersnapshot1.

https://rds.us-west-2.amazonaws.com/
 ?Action=CopyDBClusterSnapshot
 &CopyTags=true
 &SignatureMethod=HmacSHA256
 &SignatureVersion=4
 &SourceDBClusterSnapshotIdentifier=arn:aws:rds:us-west-2:987654321:cluster-
snapshot:aurora-cluster1-snapshot-20130805
 &TargetDBClusterSnapshotIdentifier=dbclustersnapshot1
 &Version=2013-09-09
 &X-Amz-Algorithm=AWS4-HMAC-SHA256
 &X-Amz-Credential=AKIADQKE4SARGYLE/20150922/us-west-2/rds/aws4_request
 &X-Amz-Date=20140429T175351Z
 &X-Amz-SignedHeaders=content-type;host;user-agent;x-amz-content-sha256;x-amz-
date

Copying a DB cluster snapshot 712

Amazon Aurora User Guide for Aurora

 &X-Amz-
Signature=9164337efa99caf850e874a1cb7ef62f3cea29d0b448b9e0e7c53b288ddffed2

Copying a DB cluster snapshot 713

Amazon Aurora User Guide for Aurora

Sharing a DB cluster snapshot

Using Amazon RDS, you can share a manual DB cluster snapshot in the following ways:

• Sharing a manual DB cluster snapshot, whether encrypted or unencrypted, enables authorized
AWS accounts to copy the snapshot.

• Sharing a manual DB cluster snapshot, whether encrypted or unencrypted, enables authorized
AWS accounts to directly restore a DB cluster from the snapshot instead of taking a copy of it
and restoring from that.

Note

To share an automated DB cluster snapshot, create a manual DB cluster snapshot by
copying the automated snapshot, and then share that copy. This process also applies to
AWS Backup–generated resources.

For more information on copying a snapshot, see Copying a DB cluster snapshot. For more
information on restoring a DB instance from a DB cluster snapshot, see Restoring from a DB cluster
snapshot.

For more information on restoring a DB cluster from a DB cluster snapshot, see Overview of
backing up and restoring an Aurora DB cluster.

You can share a manual snapshot with up to 20 other AWS accounts.

The following limitation applies when sharing manual snapshots with other AWS accounts:

• When you restore a DB cluster from a shared snapshot using the AWS Command Line Interface
(AWS CLI) or Amazon RDS API, you must specify the Amazon Resource Name (ARN) of the shared
snapshot as the snapshot identifier.

Contents

• Sharing a snapshot

• Sharing public snapshots

• Viewing public snapshots owned by other AWS accounts

• Viewing your own public snapshots

Sharing a DB cluster snapshot 714

Amazon Aurora User Guide for Aurora

• Sharing public snapshots from deprecated DB engine versions

• Sharing encrypted snapshots

• Create a customer managed key and give access to it

• Copy and share the snapshot from the source account

• Copy the shared snapshot in the target account

• Stopping snapshot sharing

Sharing a snapshot

You can share a DB cluster snapshot using the AWS Management Console, the AWS CLI, or the RDS
API.

Console

Using the Amazon RDS console, you can share a manual DB cluster snapshot with up to 20 AWS
accounts. You can also use the console to stop sharing a manual snapshot with one or more
accounts.

To share a manual DB cluster snapshot by using the Amazon RDS console

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Snapshots.

3. Select the manual snapshot that you want to share.

4. For Actions, choose Share snapshot.

5. Choose one of the following options for DB snapshot visibility.

• If the source is unencrypted, choose Public to permit all AWS accounts to restore a DB
cluster from your manual DB cluster snapshot, or choose Private to permit only AWS
accounts that you specify to restore a DB cluster from your manual DB cluster snapshot.

Warning

If you set DB snapshot visibility to Public, all AWS accounts can restore a DB cluster
from your manual DB cluster snapshot and have access to your data. Do not share
any manual DB cluster snapshots that contain private information as Public.

Sharing a snapshot 715

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Aurora User Guide for Aurora

For more information, see Sharing public snapshots.

• If the source is encrypted, DB snapshot visibility is set as Private because encrypted
snapshots can't be shared as public.

Note

Snapshots that have been encrypted with the default AWS KMS key can't be shared.
For information on how to work around this issue, see Sharing encrypted snapshots.

6. For AWS Account ID, enter the AWS account identifier for an account that you want to permit
to restore a DB cluster from your manual snapshot, and then choose Add. Repeat to include
additional AWS account identifiers, up to 20 AWS accounts.

If you make an error when adding an AWS account identifier to the list of permitted accounts,
you can delete it from the list by choosing Delete at the right of the incorrect AWS account
identifier.

7. After you have added identifiers for all of the AWS accounts that you want to permit to restore
the manual snapshot, choose Save to save your changes.

Sharing a snapshot 716

Amazon Aurora User Guide for Aurora

AWS CLI

To share a DB cluster snapshot, use the aws rds modify-db-cluster-snapshot-attribute
command. Use the --values-to-add parameter to add a list of the IDs for the AWS accounts
that are authorized to restore the manual snapshot.

Example of sharing a snapshot with a single account

The following example enables AWS account identifier 123456789012 to restore the DB cluster
snapshot named cluster-3-snapshot.

For Linux, macOS, or Unix:

aws rds modify-db-cluster-snapshot-attribute \
--db-cluster-snapshot-identifier cluster-3-snapshot \
--attribute-name restore \
--values-to-add 123456789012

For Windows:

aws rds modify-db-cluster-snapshot-attribute ^
--db-cluster-snapshot-identifier cluster-3-snapshot ^
--attribute-name restore ^
--values-to-add 123456789012

Example of sharing a snapshot with multiple accounts

The following example enables two AWS account identifiers, 111122223333 and 444455556666,
to restore the DB cluster snapshot named manual-cluster-snapshot1.

For Linux, macOS, or Unix:

aws rds modify-db-cluster-snapshot-attribute \
--db-cluster-snapshot-identifier manual-cluster-snapshot1 \
--attribute-name restore \
--values-to-add {"111122223333","444455556666"}

For Windows:

aws rds modify-db-cluster-snapshot-attribute ^
--db-cluster-snapshot-identifier manual-cluster-snapshot1 ^
--attribute-name restore ^

Sharing a snapshot 717

Amazon Aurora User Guide for Aurora

--values-to-add "[\"111122223333\",\"444455556666\"]"

Note

When using the Windows command prompt, you must escape double quotes (") in JSON
code by prefixing them with a backslash (\).

To list the AWS accounts enabled to restore a snapshot, use the describe-db-cluster-
snapshot-attributes AWS CLI command.

RDS API

You can also share a manual DB cluster snapshot with other AWS accounts by using the Amazon
RDS API. To do so, call the ModifyDBClusterSnapshotAttribute operation. Specify restore
for AttributeName, and use the ValuesToAdd parameter to add a list of the IDs for the AWS
accounts that are authorized to restore the manual snapshot.

To make a manual snapshot public and restorable by all AWS accounts, use the value all.
However, take care not to add the all value for any manual snapshots that contain private
information that you don't want to be available to all AWS accounts. Also, don't specify all for
encrypted snapshots, because making such snapshots public isn't supported.

To list all of the AWS accounts permitted to restore a snapshot, use the
DescribeDBClusterSnapshotAttributes API operation.

Sharing public snapshots

You can share an unencrypted manual snapshot as public, which makes the snapshot available
to all AWS accounts. Make sure when sharing a snapshot as public that none of your private
information is included in the public snapshot.

When a snapshot is shared publicly, it gives all AWS accounts permission both to copy the snapshot
and to create DB clusters from it.

You aren't billed for the backup storage of public snapshots owned by other accounts. You're billed
only for snapshots that you own.

If you copy a public snapshot, you own the copy. You're billed for the backup storage of your
snapshot copy. If you create a DB cluster from a public snapshot, you're billed for that DB cluster.
For Amazon Aurora pricing information, see the Aurora pricing page.

Sharing public snapshots 718

https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-cluster-snapshot-attributes.html
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-cluster-snapshot-attributes.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBClusterSnapshotAttribute.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DescribeDBClusterSnapshotAttributes.html
https://aws.amazon.com/rds/aurora/pricing

Amazon Aurora User Guide for Aurora

You can delete only the public snapshots that you own. To delete a shared or public snapshot,
make sure to log into the AWS account that owns the snapshot.

Viewing public snapshots owned by other AWS accounts

You can view public snapshots owned by other accounts in a particular AWS Region on the Public
tab of the Snapshots page in the Amazon RDS console. Your snapshots (those owned by your
account) don't appear on this tab.

To view public snapshots

1. Open the Amazon RDS console at https://console.aws.amazon.com/rds/.

2. In the navigation pane, choose Snapshots.

3. Choose the Public tab.

The public snapshots appear. You can see which account owns a public snapshot in the Owner
column.

Note

You might have to modify the page preferences, by selecting the gear icon at the upper
right of the Public snapshots list, to see this column.

Viewing your own public snapshots

You can use the following AWS CLI command (Unix only) to view the public snapshots owned by
your AWS account in a particular AWS Region.

aws rds describe-db-cluster-snapshots --snapshot-type public --include-public |
 grep account_number

The output returned is similar to the following example if you have public snapshots.

"DBClusterSnapshotArn": "arn:aws:rds:us-west-2:123456789012:cluster-
snapshot:myclustersnapshot1",
"DBClusterSnapshotArn": "arn:aws:rds:us-west-2:123456789012:cluster-
snapshot:myclustersnapshot2",

Sharing public snapshots 719

https://console.aws.amazon.com/rds/

Amazon Aurora User Guide for Aurora

Sharing public snapshots from deprecated DB engine versions

Restoring or copying public snapshots from deprecated DB engine versions isn't supported.
To make your existing unsupported public snapshot available to restore or copy, perform the
following steps:

1. Mark the snapshot as private.

2. Restore the snapshot.

3. Upgrade the restored DB cluster to a supported engine version.

4. Create a new snapshot.

5. Re-share the snapshot publicly.

Sharing encrypted snapshots

You can share DB cluster snapshots that have been encrypted "at rest" using the AES-256
encryption algorithm, as described in Encrypting Amazon Aurora resources.

The following restrictions apply to sharing encrypted snapshots:

• You can't share encrypted snapshots as public.

• You can't share a snapshot that has been encrypted using the default KMS key of the AWS
account that shared the snapshot.

To work around the default KMS key issue, perform the following tasks:

1. Create a customer managed key and give access to it.

2. Copy and share the snapshot from the source account.

3. Copy the shared snapshot in the target account.

Create a customer managed key and give access to it

First you create a custom KMS key in the same AWS Region as the encrypted DB cluster snapshot.
While creating the customer managed key, you give access to it for another AWS account.

To create a customer managed key and give access to it

1. Sign in to the AWS Management Console from the source AWS account.

Sharing encrypted snapshots 720

Amazon Aurora User Guide for Aurora

2. Open the AWS KMS console at https://console.aws.amazon.com/kms.

3. To change the AWS Region, use the Region selector in the upper-right corner of the page.

4. In the navigation pane, choose Customer managed keys.

5. Choose Create key.

6. On the Configure key page:

a. For Key type, select Symmetric.

b. For Key usage, select Encrypt and decrypt.

c. Expand Advanced options.

d. For Key material origin, select KMS.

e. For Regionality, select Single-Region key.

f. Choose Next.

7. On the Add labels page:

a. For Alias. enter a display name for your KMS key, for example share-snapshot.

b. (Optional) Enter a description for your KMS key.

c. (Optional) Add tags to your KMS key.

d. Choose Next.

8. On the Define key administrative permissions page, choose Next.

9. On the Define key usage permissions page:

a. For Other AWS accounts, choose Add another AWS account.

b. Enter the ID of the AWS account to which you want to give access.

You can give access to multiple AWS accounts.

c. Choose Next.

10. Review your KMS key, then choose Finish.

Copy and share the snapshot from the source account

Next you copy the source DB cluster snapshot to a new snapshot using the customer managed key.
Then you share it with the target AWS account.

Sharing encrypted snapshots 721

https://console.aws.amazon.com/kms

Amazon Aurora User Guide for Aurora

To copy and share the snapshot

1. Sign in to the AWS Management Console from the source AWS account.

2. Open the Amazon RDS console at https://console.aws.amazon.com/rds/

3. In the navigation pane, choose Snapshots.

4. Select the DB cluster snapshot you want to copy.

5. For Actions, choose Copy snapshot.

6. On the Copy snapshot page:

a. For Destination Region, choose the AWS Region where you created the customer
managed key in the previous procedure.

b. Enter the name of the DB cluster snapshot copy in New DB Snapshot Identifier.

c. For AWS KMS key, choose the customer managed key that you created.

Sharing encrypted snapshots 722

https://console.aws.amazon.com/rds/

Amazon Aurora User Guide for Aurora

d. Choose Copy snapshot.

7. When the snapshot copy is available, select it.

8. For Actions, choose Share snapshot.

9. On the Snapshot permissions page:

Sharing encrypted snapshots 723

Amazon Aurora User Guide for Aurora

a. Enter the AWS account ID with which you're sharing the snapshot copy, then choose Add.

b. Choose Save.

The snapshot is shared.

Copy the shared snapshot in the target account

Now you can copy the shared snapshot in the target AWS account.

To copy the shared snapshot

1. Sign in to the AWS Management Console from the target AWS account.

2. Open the Amazon RDS console at https://console.aws.amazon.com/rds/

3. In the navigation pane, choose Snapshots.

4. Choose the Shared with me tab.

5. Select the shared snapshot.

6. For Actions, choose Copy snapshot.

7. Choose your settings for copying the snapshot as in the previous procedure, but use an AWS
KMS key that belongs to the target account.

Choose Copy snapshot.

Stopping snapshot sharing

To stop sharing a DB cluster snapshot, you remove permission from the target AWS account.

Console

To stop sharing a manual DB cluster snapshot with an AWS account

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Snapshots.

3. Select the manual snapshot that you want to stop sharing.

4. Choose Actions, and then choose Share snapshot.

Stopping snapshot sharing 724

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Aurora User Guide for Aurora

5. To remove permission for an AWS account, choose Delete for the AWS account identifier for
that account from the list of authorized accounts.

6. Choose Save to save your changes.

CLI

To remove an AWS account identifier from the list, use the --values-to-remove parameter.

Example of stopping snapshot sharing

The following example prevents AWS account ID 444455556666 from restoring the snapshot.

For Linux, macOS, or Unix:

aws rds modify-db-cluster-snapshot-attribute \
--db-cluster-snapshot-identifier manual-cluster-snapshot1 \
--attribute-name restore \
--values-to-remove 444455556666

For Windows:

aws rds modify-db-cluster-snapshot-attribute ^
--db-cluster-snapshot-identifier manual-cluster-snapshot1 ^
--attribute-name restore ^
--values-to-remove 444455556666

RDS API

To remove sharing permission for an AWS account, use the
ModifyDBClusterSnapshotAttribute operation with AttributeName set to restore and
the ValuesToRemove parameter. To mark a manual snapshot as private, remove the value all
from the values list for the restore attribute.

Stopping snapshot sharing 725

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBClusterSnapshotAttribute.html

Amazon Aurora User Guide for Aurora

Exporting DB cluster data to Amazon S3

You can export data from a live Amazon Aurora DB cluster to an Amazon S3 bucket. The export
process runs in the background and doesn't affect the performance of your active DB cluster.

By default, all data in the DB cluster is exported. However, you can choose to export specific sets of
databases, schemas, or tables.

Amazon Aurora clones the DB cluster, extracts data from the clone, and stores the data in an
Amazon S3 bucket. The data is stored in an Apache Parquet format that is compressed and
consistent. Individual Parquet files are usually 1–10 MB in size.

The faster performance that you can get with exporting snapshot data for Aurora MySQL version 2
and version 3 doesn't apply to exporting DB cluster data. For more information, see Exporting DB
cluster snapshot data to Amazon S3.

You're charged for exporting the entire DB cluster, whether you export all or partial data. For more
information, see the Amazon Aurora pricing page.

After the data is exported, you can analyze the exported data directly through tools like Amazon
Athena or Amazon Redshift Spectrum. For more information on using Athena to read Parquet
data, see Parquet SerDe in the Amazon Athena User Guide. For more information on using Redshift
Spectrum to read Parquet data, see COPY from columnar data formats in the Amazon Redshift
Database Developer Guide.

Feature availability and support varies across specific versions of each database engine and across
AWS Regions. For more information on version and Region availability of exporting DB cluster data
to S3, see Supported Regions and Aurora DB engines for exporting cluster data to Amazon S3.

Topics

• Limitations

• Overview of exporting DB cluster data

• Setting up access to an Amazon S3 bucket

• Exporting DB cluster data to an Amazon S3 bucket

• Monitoring DB cluster export tasks

• Canceling a DB cluster export task

• Failure messages for Amazon S3 export tasks

• Troubleshooting PostgreSQL permissions errors

Exporting DB cluster data to Amazon S3 726

https://aws.amazon.com/rds/aurora/pricing/
https://docs.aws.amazon.com/athena/latest/ug/parquet-serde.html
https://docs.aws.amazon.com/redshift/latest/dg/copy-usage_notes-copy-from-columnar.html

Amazon Aurora User Guide for Aurora

• File naming convention

• Data conversion and storage format

Limitations

Exporting DB cluster data to Amazon S3 has the following limitations:

• You can't run multiple export tasks for the same DB cluster simultaneously. This applies to both
full and partial exports.

• You can have up to five concurrent DB snapshot export tasks in progress per AWS account.

• Aurora Serverless v1 DB clusters don't support exports to S3.

• Aurora MySQL and Aurora PostgreSQL support exports to S3 only for the provisioned engine
mode.

• Exports to S3 don't support S3 prefixes containing a colon (:).

• The following characters in the S3 file path are converted to underscores (_) during export:

\ ` " (space)

• If a database, schema, or table has characters in its name other than the following, partial export
isn't supported. However, you can export the entire DB cluster.

• Latin letters (A–Z)

• Digits (0–9)

• Dollar symbol ($)

• Underscore (_)

• Spaces () and certain characters aren't supported in database table column names. Tables with
the following characters in column names are skipped during export:

, ; { } () \n \t = (space)

• Tables with slashes (/) in their names are skipped during export.

• Aurora PostgreSQL temporary and unlogged tables are skipped during export.

• If the data contains a large object, such as a BLOB or CLOB, that is close to or greater than 500
MB, then the export fails.

• If a table contains a large row that is close to or greater than 2 GB, then the table is skipped
during export.

Limitations 727

Amazon Aurora User Guide for Aurora

• For partial exports, the ExportOnly list has a maximum size of 200 KB.

• We strongly recommend that you use a unique name for each export task. If you don't use a
unique task name, you might receive the following error message:

ExportTaskAlreadyExistsFault: An error occurred (ExportTaskAlreadyExists) when calling the
StartExportTask operation: The export task with the ID xxxxx already exists.

• Because some tables might be skipped, we recommend that you verify row and table counts in
the data after export.

Overview of exporting DB cluster data

You use the following process to export DB cluster data to an Amazon S3 bucket. For more details,
see the following sections.

1. Identify the DB cluster whose data you want to export.

2. Set up access to the Amazon S3 bucket.

A bucket is a container for Amazon S3 objects or files. To provide the information to access a
bucket, take the following steps:

a. Identify the S3 bucket where the DB cluster data is to be exported. The S3 bucket must
be in the same AWS Region as the DB cluster. For more information, see Identifying the
Amazon S3 bucket for export.

b. Create an AWS Identity and Access Management (IAM) role that grants the DB cluster
export task access to the S3 bucket. For more information, see Providing access to an
Amazon S3 bucket using an IAM role.

3. Create a symmetric encryption AWS KMS key for the server-side encryption. The KMS key is
used by the cluster export task to set up AWS KMS server-side encryption when writing the
export data to S3.

The KMS key policy must include both the kms:CreateGrant and kms:DescribeKey
permissions. For more information on using KMS keys in Amazon Aurora, see AWS KMS key
management.

If you have a deny statement in your KMS key policy, make sure to explicitly exclude the AWS
service principal export.rds.amazonaws.com.

Overview of exporting DB cluster data 728

Amazon Aurora User Guide for Aurora

You can use a KMS key within your AWS account, or you can use a cross-account KMS key. For
more information, see Using a cross-account AWS KMS key.

4. Export the DB cluster to Amazon S3 using the console or the start-export-task CLI
command. For more information, see Exporting DB cluster data to an Amazon S3 bucket.

5. To access your exported data in the Amazon S3 bucket, see Uploading, downloading, and
managing objects in the Amazon Simple Storage Service User Guide.

Setting up access to an Amazon S3 bucket

You identify the Amazon S3 bucket, then you give the DB cluster export task permission to access
it.

Topics

• Identifying the Amazon S3 bucket for export

• Providing access to an Amazon S3 bucket using an IAM role

• Using a cross-account Amazon S3 bucket

Identifying the Amazon S3 bucket for export

Identify the Amazon S3 bucket to export the DB cluster data to. Use an existing S3 bucket or create
a new S3 bucket.

Note

The S3 bucket must be in the same AWS Region as the DB cluster.

For more information about working with Amazon S3 buckets, see the following in the Amazon
Simple Storage Service User Guide:

• How do I view the properties for an S3 bucket?

• How do I enable default encryption for an Amazon S3 bucket?

• How do I create an S3 bucket?

Setting up access to an S3 bucket 729

https://docs.aws.amazon.com/AmazonS3/latest/user-guide/upload-download-objects.html
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/upload-download-objects.html
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/view-bucket-properties.html
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/default-bucket-encryption.html
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/create-bucket.html

Amazon Aurora User Guide for Aurora

Providing access to an Amazon S3 bucket using an IAM role

Before you export DB cluster data to Amazon S3, give the export tasks write-access permission to
the Amazon S3 bucket.

To grant this permission, create an IAM policy that provides access to the bucket, then create an
IAM role and attach the policy to the role. Later, you can assign the IAM role to your DB cluster
export task.

Important

If you plan to use the AWS Management Console to export your DB cluster, you can choose
to create the IAM policy and the role automatically when you export the DB cluster. For
instructions, see Exporting DB cluster data to an Amazon S3 bucket.

To give tasks access to Amazon S3

1. Create an IAM policy. This policy provides the bucket and object permissions that allow your
DB cluster export task to access Amazon S3.

In the policy, include the following required actions to allow the transfer of files from Amazon
Aurora to an S3 bucket:

• s3:PutObject*

• s3:GetObject*

• s3:ListBucket

• s3:DeleteObject*

• s3:GetBucketLocation

In the policy, include the following resources to identify the S3 bucket and objects in the
bucket. The following list of resources shows the Amazon Resource Name (ARN) format for
accessing Amazon S3.

• arn:aws:s3:::DOC-EXAMPLE-BUCKET

• arn:aws:s3:::DOC-EXAMPLE-BUCKET/*

Setting up access to an S3 bucket 730

Amazon Aurora User Guide for Aurora

For more information about creating an IAM policy for Amazon Aurora, see Creating and using
an IAM policy for IAM database access. See also Tutorial: Create and attach your first customer
managed policy in the IAM User Guide.

The following AWS CLI command creates an IAM policy named ExportPolicy with these
options. It grants access to a bucket named DOC-EXAMPLE-BUCKET.

Note

After you create the policy, note the ARN of the policy. You need the ARN for a
subsequent step when you attach the policy to an IAM role.

aws iam create-policy --policy-name ExportPolicy --policy-document '{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "ExportPolicy",
 "Effect": "Allow",
 "Action": [
 "s3:PutObject*",
 "s3:ListBucket",
 "s3:GetObject*",
 "s3:DeleteObject*",
 "s3:GetBucketLocation"
],
 "Resource": [
 "arn:aws:s3:::DOC-EXAMPLE-BUCKET",
 "arn:aws:s3:::DOC-EXAMPLE-BUCKET/*"
]
 }
]
}'

2. Create an IAM role, so that Aurora can assume this IAM role on your behalf to access your
Amazon S3 buckets. For more information, see Creating a role to delegate permissions to an
IAM user in the IAM User Guide.

Setting up access to an S3 bucket 731

https://docs.aws.amazon.com/IAM/latest/UserGuide/tutorial_managed-policies.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/tutorial_managed-policies.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-user.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-user.html

Amazon Aurora User Guide for Aurora

The following example shows using the AWS CLI command to create a role named rds-s3-
export-role.

aws iam create-role --role-name rds-s3-export-role --assume-role-policy-document
 '{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "export.rds.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }
]
 }'

3. Attach the IAM policy that you created to the IAM role that you created.

The following AWS CLI command attaches the policy created earlier to the role named rds-
s3-export-role. Replace your-policy-arn with the policy ARN that you noted in an
earlier step.

aws iam attach-role-policy --policy-arn your-policy-arn --role-name rds-s3-
export-role

Using a cross-account Amazon S3 bucket

You can use S3 buckets across AWS accounts. For more information, see Using a cross-account
Amazon S3 bucket.

Exporting DB cluster data to an Amazon S3 bucket

You can have up to five concurrent DB cluster export tasks in progress per AWS account.

Note

Exporting DB cluster data can take a while depending on your database type and size.
The export task first clones and scales the entire database before extracting the data to

Exporting DB cluster data to S3 732

Amazon Aurora User Guide for Aurora

Amazon S3. The task's progress during this phase displays as Starting. When the task
switches to exporting data to S3, progress displays as In progress.
The time it takes for the export to complete depends on the data stored in the database.
For example, tables with well-distributed numeric primary key or index columns export the
fastest. Tables that don't contain a column suitable for partitioning and tables with only
one index on a string-based column take longer because the export uses a slower single-
threaded process.

You can export DB cluster data to Amazon S3 using the AWS Management Console, the AWS CLI, or
the RDS API.

If you use a Lambda function to export the DB cluster data, add the kms:DescribeKey action to
the Lambda function policy. For more information, see AWS Lambda permissions.

Console

The Export to Amazon S3 console option appears only for DB clusters that can be exported to
Amazon S3. A DB cluster might not be available for export because of the following reasons:

• The DB engine isn't supported for S3 export.

• The DB cluster version isn't supported for S3 export.

• S3 export isn't supported in the AWS Region where the DB cluster was created.

To export DB cluster data

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Databases.

3. Choose the DB cluster whose data you want to export.

4. For Actions, choose Export to Amazon S3.

The Export to Amazon S3 window appears.

5. For Export identifier, enter a name to identify the export task. This value is also used for the
name of the file created in the S3 bucket.

6. Choose the data to be exported:

Exporting DB cluster data to S3 733

https://docs.aws.amazon.com/lambda/latest/dg/lambda-permissions.html
https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Aurora User Guide for Aurora

• Choose All to export all data in the DB cluster.

• Choose Partial to export specific parts of the DB cluster. To identify which parts of the
cluster to export, enter one or more databases, schemas, or tables for Identifiers, separated
by spaces.

Use the following format:

database[.schema][.table] database2[.schema2][.table2] ... databasen[.scheman]
[.tablen]

For example:

mydatabase mydatabase2.myschema1 mydatabase2.myschema2.mytable1
 mydatabase2.myschema2.mytable2

7. For S3 bucket, choose the bucket to export to.

To assign the exported data to a folder path in the S3 bucket, enter the optional path for S3
prefix.

8. For IAM role, either choose a role that grants you write access to your chosen S3 bucket, or
create a new role.

• If you created a role by following the steps in Providing access to an Amazon S3 bucket
using an IAM role, choose that role.

• If you didn't create a role that grants you write access to your chosen S3 bucket, then choose
Create a new role to create the role automatically. Next, enter a name for the role in IAM
role name.

9. For KMS key, enter the ARN for the key to use for encrypting the exported data.

10. Choose Export to Amazon S3.

AWS CLI

To export DB cluster data to Amazon S3 using the AWS CLI, use the start-export-task command
with the following required options:

• --export-task-identifier

• --source-arn – the Amazon Resource Name (ARN) of the DB cluster

Exporting DB cluster data to S3 734

https://docs.aws.amazon.com/cli/latest/reference/rds/start-export-task.html

Amazon Aurora User Guide for Aurora

• --s3-bucket-name

• --iam-role-arn

• --kms-key-id

In the following examples, the export task is named my-cluster-export, which exports the data
to an S3 bucket named DOC-EXAMPLE-DESTINATION-BUCKET.

Example

For Linux, macOS, or Unix:

aws rds start-export-task \
 --export-task-identifier my-cluster-export \
 --source-arn arn:aws:rds:us-west-2:123456789012:cluster:my-cluster \
 --s3-bucket-name DOC-EXAMPLE-DESTINATION-BUCKET \
 --iam-role-arn iam-role \
 --kms-key-id my-key

For Windows:

aws rds start-export-task ^
 --export-task-identifier my-DB-cluster-export ^
 --source-arn arn:aws:rds:us-west-2:123456789012:cluster:my-cluster ^
 --s3-bucket-name DOC-EXAMPLE-DESTINATION-BUCKET ^
 --iam-role-arn iam-role ^
 --kms-key-id my-key

Sample output follows.

{
 "ExportTaskIdentifier": "my-cluster-export",
 "SourceArn": "arn:aws:rds:us-west-2:123456789012:cluster:my-cluster",
 "S3Bucket": "DOC-EXAMPLE-DESTINATION-BUCKET",
 "IamRoleArn": "arn:aws:iam:123456789012:role/ExportTest",
 "KmsKeyId": "my-key",
 "Status": "STARTING",
 "PercentProgress": 0,
 "TotalExtractedDataInGB": 0,
}

Exporting DB cluster data to S3 735

Amazon Aurora User Guide for Aurora

To provide a folder path in the S3 bucket for the DB cluster export, include the --s3-prefix
option in the start-export-task command.

RDS API

To export DB cluster data to Amazon S3 using the Amazon RDS API, use the StartExportTask
operation with the following required parameters:

• ExportTaskIdentifier

• SourceArn – the ARN of the DB cluster

• S3BucketName

• IamRoleArn

• KmsKeyId

Monitoring DB cluster export tasks

You can monitor DB cluster exports using the AWS Management Console, the AWS CLI, or the RDS
API.

Console

To monitor DB cluster exports

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Exports in Amazon S3.

DB cluster exports are indicated in the Source type column. Export status is displayed in the
Status column.

3. To view detailed information about a specific DB cluster export, choose the export task.

AWS CLI

To monitor DB cluster export tasks using the AWS CLI, use the describe-export-tasks command.

The following example shows how to display current information about all of your DB cluster
exports.

Monitoring DB cluster exports 736

https://docs.aws.amazon.com/cli/latest/reference/rds/start-export-task.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_StartExportTask.html
https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-export-tasks.html

Amazon Aurora User Guide for Aurora

Example

aws rds describe-export-tasks

{
 "ExportTasks": [
 {
 "Status": "CANCELED",
 "TaskEndTime": "2022-11-01T17:36:46.961Z",
 "S3Prefix": "something",
 "S3Bucket": "DOC-EXAMPLE-BUCKET",
 "PercentProgress": 0,
 "KmsKeyId": "arn:aws:kms:us-west-2:123456789012:key/K7MDENG/
bPxRfiCYEXAMPLEKEY",
 "ExportTaskIdentifier": "anewtest",
 "IamRoleArn": "arn:aws:iam::123456789012:role/export-to-s3",
 "TotalExtractedDataInGB": 0,
 "SourceArn": "arn:aws:rds:us-west-2:123456789012:cluster:parameter-groups-
test"
 },
{
 "Status": "COMPLETE",
 "TaskStartTime": "2022-10-31T20:58:06.998Z",
 "TaskEndTime": "2022-10-31T21:37:28.312Z",
 "WarningMessage": "{\"skippedTables\":[],\"skippedObjectives\":[],\"general
\":[{\"reason\":\"FAILED_TO_EXTRACT_TABLES_LIST_FOR_DATABASE\"}]}",
 "S3Prefix": "",
 "S3Bucket": "DOC-EXAMPLE-BUCKET1",
 "PercentProgress": 100,
 "KmsKeyId": "arn:aws:kms:us-west-2:123456789012:key/2Zp9Utk/
h3yCo8nvbEXAMPLEKEY",
 "ExportTaskIdentifier": "thursday-events-test",
 "IamRoleArn": "arn:aws:iam::123456789012:role/export-to-s3",
 "TotalExtractedDataInGB": 263,
 "SourceArn": "arn:aws:rds:us-
west-2:123456789012:cluster:example-1-2019-10-31-06-44"
 },
 {
 "Status": "FAILED",
 "TaskEndTime": "2022-10-31T02:12:36.409Z",
 "FailureCause": "The S3 bucket DOC-EXAMPLE-BUCKET2 isn't located in the
 current AWS Region. Please, review your S3 bucket name and retry the export.",
 "S3Prefix": "",
 "S3Bucket": "DOC-EXAMPLE-BUCKET2",

Monitoring DB cluster exports 737

Amazon Aurora User Guide for Aurora

 "PercentProgress": 0,
 "KmsKeyId": "arn:aws:kms:us-west-2:123456789012:key/2Zp9Utk/
h3yCo8nvbEXAMPLEKEY",
 "ExportTaskIdentifier": "wednesday-afternoon-test",
 "IamRoleArn": "arn:aws:iam::123456789012:role/export-to-s3",
 "TotalExtractedDataInGB": 0,
 "SourceArn": "arn:aws:rds:us-
west-2:123456789012:cluster:example-1-2019-10-30-06-45"
 }
]
}

To display information about a specific export task, include the --export-task-identifier
option with the describe-export-tasks command. To filter the output, include the --
Filters option. For more options, see the describe-export-tasks command.

RDS API

To display information about DB cluster exports using the Amazon RDS API, use the
DescribeExportTasks operation.

To track completion of the export workflow or to initiate another workflow, you can subscribe to
Amazon Simple Notification Service topics. For more information on Amazon SNS, see Working
with Amazon RDS event notification.

Canceling a DB cluster export task

You can cancel a DB cluster export task using the AWS Management Console, the AWS CLI, or the
RDS API.

Note

Canceling an export task doesn't remove any data that was exported to Amazon S3. For
information about how to delete the data using the console, see How do I delete objects
from an S3 bucket? To delete the data using the CLI, use the delete-object command.

Canceling a DB cluster export 738

https://docs.aws.amazon.com/cli/latest/reference/rds/describe-export-tasks.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DescribeExportTasks.html
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/delete-objects.html
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/delete-objects.html
https://docs.aws.amazon.com/cli/latest/reference/s3api/delete-object.html

Amazon Aurora User Guide for Aurora

Console

To cancel a DB cluster export task

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Exports in Amazon S3.

DB cluster exports are indicated in the Source type column. Export status is displayed in the
Status column.

3. Choose the export task that you want to cancel.

4. Choose Cancel.

5. Choose Cancel export task on the confirmation page.

AWS CLI

To cancel an export task using the AWS CLI, use the cancel-export-task command. The command
requires the --export-task-identifier option.

Example

aws rds cancel-export-task --export-task-identifier my-export
{
 "Status": "CANCELING",
 "S3Prefix": "",
 "S3Bucket": "DOC-EXAMPLE-BUCKET",
 "PercentProgress": 0,
 "KmsKeyId": "arn:aws:kms:us-west-2:123456789012:key/K7MDENG/bPxRfiCYEXAMPLEKEY",
 "ExportTaskIdentifier": "my-export",
 "IamRoleArn": "arn:aws:iam::123456789012:role/export-to-s3",
 "TotalExtractedDataInGB": 0,
 "SourceArn": "arn:aws:rds:us-west-2:123456789012:cluster:export-example-1"
}

RDS API

To cancel an export task using the Amazon RDS API, use the CancelExportTask operation with the
ExportTaskIdentifier parameter.

Canceling a DB cluster export 739

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/
https://docs.aws.amazon.com/cli/latest/reference/rds/cancel-export-task.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CancelExportTask.html

Amazon Aurora User Guide for Aurora

Failure messages for Amazon S3 export tasks

The following table describes the messages that are returned when Amazon S3 export tasks fail.

Failure message Description

Failed to find or access the source DB
cluster: [cluster name]

The source DB cluster can't be cloned.

An unknown internal error occurred. The task has failed because of an unknown error,
exception, or failure.

An unknown internal error occurred
writing the export task's metadata to
the S3 bucket [bucket name].

The task has failed because of an unknown error,
exception, or failure.

The RDS export failed to write the
export task's metadata because it can't
assume the IAM role [role ARN].

The export task assumes your IAM role to validate
whether it is allowed to write metadata to your S3
bucket. If the task can't assume your IAM role, it fails.

The RDS export failed to write the
export task's metadata to the S3
bucket [bucket name] using the IAM
role [role ARN] with the KMS key [key
ID]. Error code: [error code]

One or more permissions are missing, so the export
task can't access the S3 bucket. This failure message
is raised when receiving one of the following error
codes:

• AWSSecurityTokenServiceException with
the error code AccessDenied

• AmazonS3Exception with the error code
NoSuchBucket , AccessDenied , KMS.KMSIn
validStateException , 403 Forbidden ,
or KMS.DisabledException

These error codes indicate that settings are misconfig
ured for the IAM role, S3 bucket, or KMS key.

The IAM role [role ARN] isn't authorize
d to call [S3 action] on the S3 bucket

The IAM policy is misconfigured. Permission for the
specific S3 action on the S3 bucket is missing, which
causes the export task to fail.

Failure messages 740

Amazon Aurora User Guide for Aurora

Failure message Description

[bucket name]. Review your permissio
ns and retry the export.

KMS key check failed. Check the
credentials on your KMS key and try
again.

The KMS key credential check failed.

S3 credential check failed. Check the
permissions on your S3 bucket and IAM
policy.

The S3 credential check failed.

The S3 bucket [bucket name] isn't
valid. Either it isn't located in the
current AWS Region or it doesn't exist.
Review your S3 bucket name and retry
the export.

The S3 bucket is invalid.

The S3 bucket [bucket name] isn't
located in the current AWS Region.
Review your S3 bucket name and retry
the export.

The S3 bucket is in the wrong AWS Region.

Troubleshooting PostgreSQL permissions errors

When exporting PostgreSQL databases to Amazon S3, you might see a
PERMISSIONS_DO_NOT_EXIST error stating that certain tables were skipped. This error usually
occurs when the superuser, which you specified when creating the DB cluster, doesn't have
permissions to access those tables.

To fix this error, run the following command:

GRANT ALL PRIVILEGES ON ALL TABLES IN SCHEMA schema_name TO superuser_name

For more information on superuser privileges, see Master user account privileges.

Troubleshooting PostgreSQL permissions errors 741

Amazon Aurora User Guide for Aurora

File naming convention

Exported data for specific tables is stored in the format base_prefix/files, where the base
prefix is the following:

export_identifier/database_name/schema_name.table_name/

For example:

export-1234567890123-459/rdststcluster/mycluster.DataInsert_7ADB5D19965123A2/

Output files use the following naming convention, where partition_index is alphanumeric:

partition_index/part-00000-random_uuid.format-based_extension

For example:

1/part-00000-c5a881bb-58ff-4ee6-1111-b41ecff340a3-c000.gz.parquet
a/part-00000-d7a881cc-88cc-5ab7-2222-c41ecab340a4-c000.gz.parquet

The file naming convention is subject to change. Therefore, when reading target tables, we
recommend that you read everything inside the base prefix for the table.

Data conversion and storage format

When you export a DB cluster to an Amazon S3 bucket, Amazon Aurora converts data to, exports
data in, and stores data in the Parquet format. For more information, see Data conversion when
exporting to an Amazon S3 bucket.

File naming convention 742

Amazon Aurora User Guide for Aurora

Exporting DB cluster snapshot data to Amazon S3

You can export DB cluster snapshot data to an Amazon S3 bucket. The export process runs in the
background and doesn't affect the performance of your active DB cluster.

When you export a DB cluster snapshot, Amazon Aurora extracts data from the snapshot and
stores it in an Amazon S3 bucket. You can export manual snapshots and automated system
snapshots. By default, all data in the snapshot is exported. However, you can choose to export
specific sets of databases, schemas, or tables.

The data is stored in an Apache Parquet format that is compressed and consistent. Individual
Parquet files are usually 1–10 MB in size.

After the data is exported, you can analyze the exported data directly through tools like Amazon
Athena or Amazon Redshift Spectrum. For more information on using Athena to read Parquet
data, see Parquet SerDe in the Amazon Athena User Guide. For more information on using Redshift
Spectrum to read Parquet data, see COPY from columnar data formats in the Amazon Redshift
Database Developer Guide.

Feature availability and support varies across specific versions of each database engine and across
AWS Regions. For more information on version and Region availability of exporting DB cluster
snapshot data to S3, see Supported Regions and Aurora DB engines for exporting snapshot data to
Amazon S3.

Topics

• Limitations

• Overview of exporting snapshot data

• Setting up access to an Amazon S3 bucket

• Exporting a snapshot to an Amazon S3 bucket

• Export performance in Aurora MySQL

• Monitoring snapshot exports

• Canceling a snapshot export task

• Failure messages for Amazon S3 export tasks

• Troubleshooting PostgreSQL permissions errors

• File naming convention

Exporting DB cluster snapshot data to Amazon S3 743

https://docs.aws.amazon.com/athena/latest/ug/parquet-serde.html
https://docs.aws.amazon.com/redshift/latest/dg/copy-usage_notes-copy-from-columnar.html

Amazon Aurora User Guide for Aurora

• Data conversion when exporting to an Amazon S3 bucket

Limitations

Exporting DB snapshot data to Amazon S3 has the following limitations:

• You can't run multiple export tasks for the same DB cluster snapshot simultaneously. This applies
to both full and partial exports.

• You can have up to five concurrent DB snapshot export tasks in progress per AWS account.

• You can't export snapshot data from Aurora Serverless v1 DB clusters to S3.

• Exports to S3 don't support S3 prefixes containing a colon (:).

• The following characters in the S3 file path are converted to underscores (_) during export:

\ ` " (space)

• If a database, schema, or table has characters in its name other than the following, partial export
isn't supported. However, you can export the entire DB snapshot.

• Latin letters (A–Z)

• Digits (0–9)

• Dollar symbol ($)

• Underscore (_)

• Spaces () and certain characters aren't supported in database table column names. Tables with
the following characters in column names are skipped during export:

, ; { } () \n \t = (space)

• Tables with slashes (/) in their names are skipped during export.

• Aurora PostgreSQL temporary and unlogged tables are skipped during export.

• If the data contains a large object, such as a BLOB or CLOB, that is close to or greater than 500
MB, then the export fails.

• If a table contains a large row that is close to or greater than 2 GB, then the table is skipped
during export.

• For partial exports, the ExportOnly list has a maximum size of 200 KB.

• We strongly recommend that you use a unique name for each export task. If you don't use a
unique task name, you might receive the following error message:

Limitations 744

Amazon Aurora User Guide for Aurora

ExportTaskAlreadyExistsFault: An error occurred (ExportTaskAlreadyExists) when calling the
StartExportTask operation: The export task with the ID xxxxx already exists.

• You can delete a snapshot while you're exporting its data to S3, but you're still charged for the
storage costs for that snapshot until the export task has completed.

• You can't restore exported snapshot data from S3 to a new DB cluster.

Overview of exporting snapshot data

You use the following process to export DB snapshot data to an Amazon S3 bucket. For more
details, see the following sections.

1. Identify the snapshot to export.

Use an existing automated or manual snapshot, or create a manual snapshot of a DB instance.

2. Set up access to the Amazon S3 bucket.

A bucket is a container for Amazon S3 objects or files. To provide the information to access a
bucket, take the following steps:

a. Identify the S3 bucket where the snapshot is to be exported to. The S3 bucket must be in
the same AWS Region as the snapshot. For more information, see Identifying the Amazon
S3 bucket for export.

b. Create an AWS Identity and Access Management (IAM) role that grants the snapshot
export task access to the S3 bucket. For more information, see Providing access to an
Amazon S3 bucket using an IAM role.

3. Create a symmetric encryption AWS KMS key for the server-side encryption. The KMS key is
used by the snapshot export task to set up AWS KMS server-side encryption when writing the
export data to S3.

The KMS key policy must include both the kms:CreateGrant and kms:DescribeKey
permissions. For more information on using KMS keys in Amazon Aurora, see AWS KMS key
management.

If you have a deny statement in your KMS key policy, make sure to explicitly exclude the AWS
service principal export.rds.amazonaws.com.

Overview of exporting snapshot data 745

Amazon Aurora User Guide for Aurora

You can use a KMS key within your AWS account, or you can use a cross-account KMS key. For
more information, see Using a cross-account AWS KMS key.

4. Export the snapshot to Amazon S3 using the console or the start-export-task CLI
command. For more information, see Exporting a snapshot to an Amazon S3 bucket.

5. To access your exported data in the Amazon S3 bucket, see Uploading, downloading, and
managing objects in the Amazon Simple Storage Service User Guide.

Setting up access to an Amazon S3 bucket

You identify the Amazon S3 bucket, then you give the snapshot permission to access it.

Topics

• Identifying the Amazon S3 bucket for export

• Providing access to an Amazon S3 bucket using an IAM role

• Using a cross-account Amazon S3 bucket

• Using a cross-account AWS KMS key

Identifying the Amazon S3 bucket for export

Identify the Amazon S3 bucket to export the DB snapshot to. Use an existing S3 bucket or create a
new S3 bucket.

Note

The S3 bucket to export to must be in the same AWS Region as the snapshot.

For more information about working with Amazon S3 buckets, see the following in the Amazon
Simple Storage Service User Guide:

• How do I view the properties for an S3 bucket?

• How do I enable default encryption for an Amazon S3 bucket?

• How do I create an S3 bucket?

Setting up access to an S3 bucket 746

https://docs.aws.amazon.com/AmazonS3/latest/user-guide/upload-download-objects.html
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/upload-download-objects.html
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/view-bucket-properties.html
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/default-bucket-encryption.html
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/create-bucket.html

Amazon Aurora User Guide for Aurora

Providing access to an Amazon S3 bucket using an IAM role

Before you export DB snapshot data to Amazon S3, give the snapshot export tasks write-access
permission to the Amazon S3 bucket.

To grant this permission, create an IAM policy that provides access to the bucket, then create an
IAM role and attach the policy to the role. Later, you can assign the IAM role to your snapshot
export task.

Important

If you plan to use the AWS Management Console to export your snapshot, you can choose
to create the IAM policy and the role automatically when you export the snapshot. For
instructions, see Exporting a snapshot to an Amazon S3 bucket.

To give DB snapshot tasks access to Amazon S3

1. Create an IAM policy. This policy provides the bucket and object permissions that allow your
snapshot export task to access Amazon S3.

In the policy, include the following required actions to allow the transfer of files from Amazon
Aurora to an S3 bucket:

• s3:PutObject*

• s3:GetObject*

• s3:ListBucket

• s3:DeleteObject*

• s3:GetBucketLocation

In the policy, include the following resources to identify the S3 bucket and objects in the
bucket. The following list of resources shows the Amazon Resource Name (ARN) format for
accessing Amazon S3.

• arn:aws:s3:::DOC-EXAMPLE-BUCKET

• arn:aws:s3:::DOC-EXAMPLE-BUCKET/*

Setting up access to an S3 bucket 747

Amazon Aurora User Guide for Aurora

For more information on creating an IAM policy for Amazon Aurora, see Creating and using an
IAM policy for IAM database access. See also Tutorial: Create and attach your first customer
managed policy in the IAM User Guide.

The following AWS CLI command creates an IAM policy named ExportPolicy with these
options. It grants access to a bucket named DOC-EXAMPLE-BUCKET.

Note

After you create the policy, note the ARN of the policy. You need the ARN for a
subsequent step when you attach the policy to an IAM role.

aws iam create-policy --policy-name ExportPolicy --policy-document '{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "ExportPolicy",
 "Effect": "Allow",
 "Action": [
 "s3:PutObject*",
 "s3:ListBucket",
 "s3:GetObject*",
 "s3:DeleteObject*",
 "s3:GetBucketLocation"
],
 "Resource": [
 "arn:aws:s3:::DOC-EXAMPLE-BUCKET",
 "arn:aws:s3:::DOC-EXAMPLE-BUCKET/*"
]
 }
]
}'

2. Create an IAM role, so that Aurora can assume this IAM role on your behalf to access your
Amazon S3 buckets. For more information, see Creating a role to delegate permissions to an
IAM user in the IAM User Guide.

Setting up access to an S3 bucket 748

https://docs.aws.amazon.com/IAM/latest/UserGuide/tutorial_managed-policies.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/tutorial_managed-policies.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-user.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-user.html

Amazon Aurora User Guide for Aurora

The following example shows using the AWS CLI command to create a role named rds-s3-
export-role.

aws iam create-role --role-name rds-s3-export-role --assume-role-policy-document
 '{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "export.rds.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }
]
 }'

3. Attach the IAM policy that you created to the IAM role that you created.

The following AWS CLI command attaches the policy created earlier to the role named rds-
s3-export-role. Replace your-policy-arn with the policy ARN that you noted in an
earlier step.

aws iam attach-role-policy --policy-arn your-policy-arn --role-name rds-s3-
export-role

Using a cross-account Amazon S3 bucket

You can use Amazon S3 buckets across AWS accounts. To use a cross-account bucket, add a bucket
policy to allow access to the IAM role that you're using for the S3 exports. For more information,
see Example 2: Bucket owner granting cross-account bucket permissions.

• Attach a bucket policy to your bucket, as shown in the following example.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {

Setting up access to an S3 bucket 749

https://docs.aws.amazon.com/AmazonS3/latest/userguide/example-walkthroughs-managing-access-example2.html

Amazon Aurora User Guide for Aurora

 "AWS": "arn:aws:iam::123456789012:role/Admin"
 },
 "Action": [
 "s3:PutObject*",
 "s3:ListBucket",
 "s3:GetObject*",
 "s3:DeleteObject*",
 "s3:GetBucketLocation"
],
 "Resource": [
 "arn:aws:s3:::DOC-EXAMPLE-DESTINATION-BUCKET",
 "arn:aws:s3:::DOC-EXAMPLE-DESTINATION-BUCKET/*"
]
 }
]
}

Using a cross-account AWS KMS key

You can use a cross-account AWS KMS key to encrypt Amazon S3 exports. First, you add a
key policy to the local account, then you add IAM policies in the external account. For more
information, see Allowing users in other accounts to use a KMS key.

To use a cross-account KMS key

1. Add a key policy to the local account.

The following example gives ExampleRole and ExampleUser in the external account
444455556666 permissions in the local account 123456789012.

{
 "Sid": "Allow an external account to use this KMS key",
 "Effect": "Allow",
 "Principal": {
 "AWS": [
 "arn:aws:iam::444455556666:role/ExampleRole",
 "arn:aws:iam::444455556666:user/ExampleUser"
]
 },
 "Action": [
 "kms:Encrypt",
 "kms:Decrypt",

Setting up access to an S3 bucket 750

https://docs.aws.amazon.com/kms/latest/developerguide/key-policy-modifying-external-accounts.html

Amazon Aurora User Guide for Aurora

 "kms:ReEncrypt*",
 "kms:GenerateDataKey*",
 "kms:CreateGrant",
 "kms:DescribeKey",
 "kms:RetireGrant"
],
 "Resource": "*"
}

2. Add IAM policies to the external account.

The following example IAM policy allows the principal to use the KMS key in account
123456789012 for cryptographic operations. To give this permission to ExampleRole and
ExampleUser in account 444455556666, attach the policy to them in that account.

{
 "Sid": "Allow use of KMS key in account 123456789012",
 "Effect": "Allow",
 "Action": [
 "kms:Encrypt",
 "kms:Decrypt",
 "kms:ReEncrypt*",
 "kms:GenerateDataKey*",
 "kms:CreateGrant",
 "kms:DescribeKey",
 "kms:RetireGrant"
],
 "Resource": "arn:aws:kms:us-
west-2:123456789012:key/1234abcd-12ab-34cd-56ef-1234567890ab"
}

Exporting a snapshot to an Amazon S3 bucket

You can have up to five concurrent DB snapshot export tasks in progress per AWS account.

Note

Exporting RDS snapshots can take a while depending on your database type and size.
The export task first restores and scales the entire database before extracting the data
to Amazon S3. The task's progress during this phase displays as Starting. When the task
switches to exporting data to S3, progress displays as In progress.

Exporting a snapshot to an S3 bucket 751

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-using.html#attach-managed-policy-console

Amazon Aurora User Guide for Aurora

The time it takes for the export to complete depends on the data stored in the database.
For example, tables with well-distributed numeric primary key or index columns export the
fastest. Tables that don't contain a column suitable for partitioning and tables with only
one index on a string-based column take longer. This longer export time occurs because the
export uses a slower single-threaded process.

You can export a DB snapshot to Amazon S3 using the AWS Management Console, the AWS CLI, or
the RDS API.

If you use a Lambda function to export a snapshot, add the kms:DescribeKey action to the
Lambda function policy. For more information, see AWS Lambda permissions.

Console

The Export to Amazon S3 console option appears only for snapshots that can be exported to
Amazon S3. A snapshot might not be available for export because of the following reasons:

• The DB engine isn't supported for S3 export.

• The DB instance version isn't supported for S3 export.

• S3 export isn't supported in the AWS Region where the snapshot was created.

To export a DB snapshot

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Snapshots.

3. From the tabs, choose the type of snapshot that you want to export.

4. In the list of snapshots, choose the snapshot that you want to export.

5. For Actions, choose Export to Amazon S3.

The Export to Amazon S3 window appears.

6. For Export identifier, enter a name to identify the export task. This value is also used for the
name of the file created in the S3 bucket.

7. Choose the data to be exported:

• Choose All to export all data in the snapshot.

Exporting a snapshot to an S3 bucket 752

https://docs.aws.amazon.com/lambda/latest/dg/lambda-permissions.html
https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Aurora User Guide for Aurora

• Choose Partial to export specific parts of the snapshot. To identify which parts of the
snapshot to export, enter one or more databases, schemas, or tables for Identifiers,
separated by spaces.

Use the following format:

database[.schema][.table] database2[.schema2][.table2] ... databasen[.scheman]
[.tablen]

For example:

mydatabase mydatabase2.myschema1 mydatabase2.myschema2.mytable1
 mydatabase2.myschema2.mytable2

8. For S3 bucket, choose the bucket to export to.

To assign the exported data to a folder path in the S3 bucket, enter the optional path for S3
prefix.

9. For IAM role, either choose a role that grants you write access to your chosen S3 bucket, or
create a new role.

• If you created a role by following the steps in Providing access to an Amazon S3 bucket
using an IAM role, choose that role.

• If you didn't create a role that grants you write access to your chosen S3 bucket, then choose
Create a new role to create the role automatically. Next, enter a name for the role in IAM
role name.

10. For AWS KMS key, enter the ARN for the key to use for encrypting the exported data.

11. Choose Export to Amazon S3.

AWS CLI

To export a DB snapshot to Amazon S3 using the AWS CLI, use the start-export-task command with
the following required options:

• --export-task-identifier

• --source-arn

• --s3-bucket-name

Exporting a snapshot to an S3 bucket 753

https://docs.aws.amazon.com/cli/latest/reference/rds/start-export-task.html

Amazon Aurora User Guide for Aurora

• --iam-role-arn

• --kms-key-id

In the following examples, the snapshot export task is named my-snapshot-export, which
exports a snapshot to an S3 bucket named DOC-EXAMPLE-DESTINATION-BUCKET.

Example

For Linux, macOS, or Unix:

aws rds start-export-task \
 --export-task-identifier my-snapshot-export \
 --source-arn arn:aws:rds:AWS_Region:123456789012:snapshot:snapshot-name \
 --s3-bucket-name DOC-EXAMPLE-DESTINATION-BUCKET \
 --iam-role-arn iam-role \
 --kms-key-id my-key

For Windows:

aws rds start-export-task ^
 --export-task-identifier my-snapshot-export ^
 --source-arn arn:aws:rds:AWS_Region:123456789012:snapshot:snapshot-name ^
 --s3-bucket-name DOC-EXAMPLE-DESTINATION-BUCKET ^
 --iam-role-arn iam-role ^
 --kms-key-id my-key

Sample output follows.

{
 "Status": "STARTING",
 "IamRoleArn": "iam-role",
 "ExportTime": "2019-08-12T01:23:53.109Z",
 "S3Bucket": "DOC-EXAMPLE-DESTINATION-BUCKET",
 "PercentProgress": 0,
 "KmsKeyId": "my-key",
 "ExportTaskIdentifier": "my-snapshot-export",
 "TotalExtractedDataInGB": 0,
 "TaskStartTime": "2019-11-13T19:46:00.173Z",
 "SourceArn": "arn:aws:rds:AWS_Region:123456789012:snapshot:snapshot-name"
}

Exporting a snapshot to an S3 bucket 754

Amazon Aurora User Guide for Aurora

To provide a folder path in the S3 bucket for the snapshot export, include the --s3-prefix
option in the start-export-task command.

RDS API

To export a DB snapshot to Amazon S3 using the Amazon RDS API, use the StartExportTask
operation with the following required parameters:

• ExportTaskIdentifier

• SourceArn

• S3BucketName

• IamRoleArn

• KmsKeyId

Export performance in Aurora MySQL

Aurora MySQL version 2 and version 3 DB cluster snapshots use an advanced export mechanism
to improve performance and reduce export time. The mechanism includes optimizations such as
multiple export threads and Aurora MySQL parallel query to take advantage of the Aurora shared
storage architecture. The optimizations are applied adaptively, depending on the data set size and
structure.

You don't need to turn on parallel query to use the faster export process, but the process does
have the same limitations as parallel query. In addition, some data values aren't supported, such as
dates where the day of the month is 0 or the year is 0000. For more information, see Working with
parallel query for Amazon Aurora MySQL.

When performance optimizations are applied, you might also see much larger (~200 GB) Parquet
files for Aurora MySQL version 2 and 3 exports.

If the faster export process can't be used, for example because of incompatible data types or
values, Aurora automatically switches to a single-threaded export mode without parallel query.
Depending on which process is used, and the amount of data to be exported, export performance
can vary.

Monitoring snapshot exports

You can monitor DB snapshot exports using the AWS Management Console, the AWS CLI, or the
RDS API.

Export performance in Aurora MySQL 755

https://docs.aws.amazon.com/cli/latest/reference/rds/start-export-task.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_StartExportTask.html

Amazon Aurora User Guide for Aurora

Console

To monitor DB snapshot exports

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Exports in Amazon S3.

DB snapshot exports are indicated in the Source type column. Export status is displayed in the
Status column.

3. To view detailed information about a specific snapshot export, choose the export task.

AWS CLI

To monitor DB snapshot exports using the AWS CLI, use the describe-export-tasks command.

The following example shows how to display current information about all of your snapshot
exports.

Example

aws rds describe-export-tasks

{
 "ExportTasks": [
 {
 "Status": "CANCELED",
 "TaskEndTime": "2019-11-01T17:36:46.961Z",
 "S3Prefix": "something",
 "ExportTime": "2019-10-24T20:23:48.364Z",
 "S3Bucket": "DOC-EXAMPLE-BUCKET",
 "PercentProgress": 0,
 "KmsKeyId": "arn:aws:kms:AWS_Region:123456789012:key/K7MDENG/
bPxRfiCYEXAMPLEKEY",
 "ExportTaskIdentifier": "anewtest",
 "IamRoleArn": "arn:aws:iam::123456789012:role/export-to-s3",
 "TotalExtractedDataInGB": 0,
 "TaskStartTime": "2019-10-25T19:10:58.885Z",
 "SourceArn": "arn:aws:rds:AWS_Region:123456789012:snapshot:parameter-
groups-test"
 },

Monitoring snapshot exports 756

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-export-tasks.html

Amazon Aurora User Guide for Aurora

{
 "Status": "COMPLETE",
 "TaskEndTime": "2019-10-31T21:37:28.312Z",
 "WarningMessage": "{\"skippedTables\":[],\"skippedObjectives\":[],\"general
\":[{\"reason\":\"FAILED_TO_EXTRACT_TABLES_LIST_FOR_DATABASE\"}]}",
 "S3Prefix": "",
 "ExportTime": "2019-10-31T06:44:53.452Z",
 "S3Bucket": "DOC-EXAMPLE-BUCKET1",
 "PercentProgress": 100,
 "KmsKeyId": "arn:aws:kms:AWS_Region:123456789012:key/2Zp9Utk/
h3yCo8nvbEXAMPLEKEY",
 "ExportTaskIdentifier": "thursday-events-test",
 "IamRoleArn": "arn:aws:iam::123456789012:role/export-to-s3",
 "TotalExtractedDataInGB": 263,
 "TaskStartTime": "2019-10-31T20:58:06.998Z",
 "SourceArn":
 "arn:aws:rds:AWS_Region:123456789012:snapshot:rds:example-1-2019-10-31-06-44"
 },
 {
 "Status": "FAILED",
 "TaskEndTime": "2019-10-31T02:12:36.409Z",
 "FailureCause": "The S3 bucket my-exports isn't located in the current AWS
 Region. Please, review your S3 bucket name and retry the export.",
 "S3Prefix": "",
 "ExportTime": "2019-10-30T06:45:04.526Z",
 "S3Bucket": "DOC-EXAMPLE-BUCKET2",
 "PercentProgress": 0,
 "KmsKeyId": "arn:aws:kms:AWS_Region:123456789012:key/2Zp9Utk/
h3yCo8nvbEXAMPLEKEY",
 "ExportTaskIdentifier": "wednesday-afternoon-test",
 "IamRoleArn": "arn:aws:iam::123456789012:role/export-to-s3",
 "TotalExtractedDataInGB": 0,
 "TaskStartTime": "2019-10-30T22:43:40.034Z",
 "SourceArn":
 "arn:aws:rds:AWS_Region:123456789012:snapshot:rds:example-1-2019-10-30-06-45"
 }
]
}

To display information about a specific snapshot export, include the --export-task-
identifier option with the describe-export-tasks command. To filter the output, include
the --Filters option. For more options, see the describe-export-tasks command.

Monitoring snapshot exports 757

https://docs.aws.amazon.com/cli/latest/reference/rds/describe-export-tasks.html

Amazon Aurora User Guide for Aurora

RDS API

To display information about DB snapshot exports using the Amazon RDS API, use the
DescribeExportTasks operation.

To track completion of the export workflow or to initiate another workflow, you can subscribe to
Amazon Simple Notification Service topics. For more information on Amazon SNS, see Working
with Amazon RDS event notification.

Canceling a snapshot export task

You can cancel a DB snapshot export task using the AWS Management Console, the AWS CLI, or the
RDS API.

Note

Canceling a snapshot export task doesn't remove any data that was exported to Amazon
S3. For information about how to delete the data using the console, see How do I delete
objects from an S3 bucket? To delete the data using the CLI, use the delete-object
command.

Console

To cancel a snapshot export task

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Exports in Amazon S3.

DB snapshot exports are indicated in the Source type column. Export status is displayed in the
Status column.

3. Choose the snapshot export task that you want to cancel.

4. Choose Cancel.

5. Choose Cancel export task on the confirmation page.

Canceling a snapshot export 758

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DescribeExportTasks.html
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/delete-objects.html
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/delete-objects.html
https://docs.aws.amazon.com/cli/latest/reference/s3api/delete-object.html
https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Aurora User Guide for Aurora

AWS CLI

To cancel a snapshot export task using the AWS CLI, use the cancel-export-task command. The
command requires the --export-task-identifier option.

Example

aws rds cancel-export-task --export-task-identifier my_export
{
 "Status": "CANCELING",
 "S3Prefix": "",
 "ExportTime": "2019-08-12T01:23:53.109Z",
 "S3Bucket": "DOC-EXAMPLE-BUCKET",
 "PercentProgress": 0,
 "KmsKeyId": "arn:aws:kms:AWS_Region:123456789012:key/K7MDENG/bPxRfiCYEXAMPLEKEY",
 "ExportTaskIdentifier": "my_export",
 "IamRoleArn": "arn:aws:iam::123456789012:role/export-to-s3",
 "TotalExtractedDataInGB": 0,
 "TaskStartTime": "2019-11-13T19:46:00.173Z",
 "SourceArn": "arn:aws:rds:AWS_Region:123456789012:snapshot:export-example-1"
}

RDS API

To cancel a snapshot export task using the Amazon RDS API, use the CancelExportTask operation
with the ExportTaskIdentifier parameter.

Failure messages for Amazon S3 export tasks

The following table describes the messages that are returned when Amazon S3 export tasks fail.

Failure message Description

An unknown internal error occurred. The task has failed because of an unknown error,
exception, or failure.

An unknown internal error occurred
writing the export task's metadata to
the S3 bucket [bucket name].

The task has failed because of an unknown error,
exception, or failure.

Failure messages 759

https://docs.aws.amazon.com/cli/latest/reference/rds/cancel-export-task.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CancelExportTask.html

Amazon Aurora User Guide for Aurora

Failure message Description

The RDS export failed to write the
export task's metadata because it can't
assume the IAM role [role ARN].

The export task assumes your IAM role to validate
whether it is allowed to write metadata to your S3
bucket. If the task can't assume your IAM role, it fails.

The RDS export failed to write the
export task's metadata to the S3
bucket [bucket name] using the IAM
role [role ARN] with the KMS key [key
ID]. Error code: [error code]

One or more permissions are missing, so the export
task can't access the S3 bucket. This failure message
is raised when receiving one of the following error
codes:

• AWSSecurityTokenServiceException with
the error code AccessDenied

• AmazonS3Exception with the error code
NoSuchBucket , AccessDenied , KMS.KMSIn
validStateException , 403 Forbidden ,
or KMS.DisabledException

These error codes indicate that settings are misconfig
ured for the IAM role, S3 bucket, or KMS key.

The IAM role [role ARN] isn't authorize
d to call [S3 action] on the S3 bucket
[bucket name]. Review your permissio
ns and retry the export.

The IAM policy is misconfigured. Permission for the
specific S3 action on the S3 bucket is missing, which
causes the export task to fail.

KMS key check failed. Check the
credentials on your KMS key and try
again.

The KMS key credential check failed.

S3 credential check failed. Check the
permissions on your S3 bucket and IAM
policy.

The S3 credential check failed.

Failure messages 760

Amazon Aurora User Guide for Aurora

Failure message Description

The S3 bucket [bucket name] isn't
valid. Either it isn't located in the
current AWS Region or it doesn't exist.
Review your S3 bucket name and retry
the export.

The S3 bucket is invalid.

The S3 bucket [bucket name] isn't
located in the current AWS Region.
Review your S3 bucket name and retry
the export.

The S3 bucket is in the wrong AWS Region.

Troubleshooting PostgreSQL permissions errors

When exporting PostgreSQL databases to Amazon S3, you might see a
PERMISSIONS_DO_NOT_EXIST error stating that certain tables were skipped. This error usually
occurs when the superuser, which you specified when creating the DB instance, doesn't have
permissions to access those tables.

To fix this error, run the following command:

GRANT ALL PRIVILEGES ON ALL TABLES IN SCHEMA schema_name TO superuser_name

For more information on superuser privileges, see Master user account privileges.

File naming convention

Exported data for specific tables is stored in the format base_prefix/files, where the base
prefix is the following:

export_identifier/database_name/schema_name.table_name/

For example:

export-1234567890123-459/rdststdb/rdststdb.DataInsert_7ADB5D19965123A2/

There are two conventions for how files are named.

Troubleshooting PostgreSQL permissions errors 761

Amazon Aurora User Guide for Aurora

• Current convention:

batch_index/part-partition_index-random_uuid.format-based_extension

The batch index is a sequence number that represents a batch of data read from the table. If
we can't partition your table into small chunks to be exported in parallel, there will be multiple
batch indexes. The same thing happens if your table is partitioned into multiple tables. There will
be multiple batch indexes, one for each of the table partitions of your main table.

If we can partition your table into small chunks to be read in parallel, there will be only the batch
index 1 folder.

Inside the batch index folder, there are one or more Parquet files that contain your table's data.
The prefix of the Parquet filename is part-partition_index. If your table is partitioned,
there will be multiple files starting with the partition index 00000.

There can be gaps in the partition index sequence. This happens because each partition is
obtained from a ranged query in your table. If there is no data in the range of that partition, then
that sequence number is skipped.

For example, suppose that the id column is the table's primary key, and its minimum and
maximum values are 100 and 1000. When we try to export this table with nine partitions, we
read it with parallel queries such as the following:

SELECT * FROM table WHERE id <= 100 AND id < 200
SELECT * FROM table WHERE id <= 200 AND id < 300

This should generate nine files, from part-00000-random_uuid.gz.parquet to
part-00008-random_uuid.gz.parquet. However, if there are no rows with IDs between 200
and 350, one of the completed partitions is empty, and no file is created for it. In the previous
example, part-00001-random_uuid.gz.parquet isn't created.

• Older convention:

part-partition_index-random_uuid.format-based_extension

This is the same as the current convention, but without the batch_index prefix, for example:

part-00000-c5a881bb-58ff-4ee6-1111-b41ecff340a3-c000.gz.parquet
File naming convention 762

Amazon Aurora User Guide for Aurora

part-00001-d7a881cc-88cc-5ab7-2222-c41ecab340a4-c000.gz.parquet
part-00002-f5a991ab-59aa-7fa6-3333-d41eccd340a7-c000.gz.parquet

The file naming convention is subject to change. Therefore, when reading target tables, we
recommend that you read everything inside the base prefix for the table.

Data conversion when exporting to an Amazon S3 bucket

When you export a DB snapshot to an Amazon S3 bucket, Amazon Aurora converts data to, exports
data in, and stores data in the Parquet format. For more information about Parquet, see the
Apache Parquet website.

Parquet stores all data as one of the following primitive types:

• BOOLEAN

• INT32

• INT64

• INT96

• FLOAT

• DOUBLE

• BYTE_ARRAY – A variable-length byte array, also known as binary

• FIXED_LEN_BYTE_ARRAY – A fixed-length byte array used when the values have a constant size

The Parquet data types are few to reduce the complexity of reading and writing the format.
Parquet provides logical types for extending primitive types. A logical type is implemented as an
annotation with the data in a LogicalType metadata field. The logical type annotation explains
how to interpret the primitive type.

When the STRING logical type annotates a BYTE_ARRAY type, it indicates that the byte array
should be interpreted as a UTF-8 encoded character string. After an export task completes,
Amazon Aurora notifies you if any string conversion occurred. The underlying data exported is
always the same as the data from the source. However, due to the encoding difference in UTF-8,
some characters might appear different from the source when read in tools such as Athena.

For more information, see Parquet logical type definitions in the Parquet documentation.

Topics

Data conversion 763

https://parquet.apache.org/docs/
https://github.com/apache/parquet-format/blob/master/LogicalTypes.md

Amazon Aurora User Guide for Aurora

• MySQL data type mapping to Parquet

• PostgreSQL data type mapping to Parquet

MySQL data type mapping to Parquet

The following table shows the mapping from MySQL data types to Parquet data types when data is
converted and exported to Amazon S3.

Source data type Parquet primitive
type

Logical type
annotation

Conversion notes

Numeric data types

BIGINT INT64

BIGINT UNSIGNED FIXED_LEN
_BYTE_ARRAY(9)

DECIMAL(20,0) Parquet supports
only signed types, so
the mapping requires
an additional byte (8
plus 1) to store the
BIGINT_UNSIGNED
 type.

BIT BYTE_ARRAY

INT32 DECIMAL(p,s) If the source value
is less than 231, it's
stored as INT32.

INT64 DECIMAL(p,s) If the source value
is 231 or greater, b
ut less than 263, it's
stored as INT64.

DECIMAL

FIXED_LEN
_BYTE_ARRAY(N)

DECIMAL(p,s) If the source value
is 263 or greater, it's
stored as FIXED_LEN
_BYTE_ARRAY(N).

Data conversion 764

Amazon Aurora User Guide for Aurora

Source data type Parquet primitive
type

Logical type
annotation

Conversion notes

BYTE_ARRAY STRING Parquet doesn't
support Decimal
precision greater
than 38. The Decimal
value is converted
to a string in a
BYTE_ARRAY type
and encoded as
UTF8.

DOUBLE DOUBLE

FLOAT DOUBLE

INT INT32

INT UNSIGNED INT64

MEDIUMINT INT32

MEDIUMINT
UNSIGNED

INT64

INT32 DECIMAL(p,s)
If the source value
is less than 231, it's
stored as INT32.

NUMERIC

INT64 DECIMAL(p,s) If the source value
is 231 or greater, b
ut less than 263, it's
stored as INT64.

Data conversion 765

Amazon Aurora User Guide for Aurora

Source data type Parquet primitive
type

Logical type
annotation

Conversion notes

FIXED_LEN_ARRAY(N) DECIMAL(p,s) If the source value
is 263 or greater, it's
stored as FIXED_LEN
_BYTE_ARRAY(N).

BYTE_ARRAY STRING Parquet doesn't
support Numeric
precision greater than
38. This Numeric
value is converted
to a string in a
BYTE_ARRAY type
and encoded as
UTF8.

SMALLINT INT32

SMALLINT UNSIGNED INT32

TINYINT INT32

TINYINT UNSIGNED INT32

String data types

BINARY BYTE_ARRAY

BLOB BYTE_ARRAY

CHAR BYTE_ARRAY

ENUM BYTE_ARRAY STRING

LINESTRING BYTE_ARRAY

LONGBLOB BYTE_ARRAY

Data conversion 766

Amazon Aurora User Guide for Aurora

Source data type Parquet primitive
type

Logical type
annotation

Conversion notes

LONGTEXT BYTE_ARRAY STRING

MEDIUMBLOB BYTE_ARRAY

MEDIUMTEXT BYTE_ARRAY STRING

MULTILINESTRING BYTE_ARRAY

SET BYTE_ARRAY STRING

TEXT BYTE_ARRAY STRING

TINYBLOB BYTE_ARRAY

TINYTEXT BYTE_ARRAY STRING

VARBINARY BYTE_ARRAY

VARCHAR BYTE_ARRAY STRING

Date and time data types

DATE BYTE_ARRAY STRING A date is converted
to a string in a
BYTE_ARRAY type
and encoded as
UTF8.

DATETIME INT64 TIMESTAMP_MICROS

TIME BYTE_ARRAY STRING A TIME type is
converted to a string
in a BYTE_ARRAY and
encoded as UTF8.

TIMESTAMP INT64 TIMESTAMP_MICROS

YEAR INT32

Data conversion 767

Amazon Aurora User Guide for Aurora

Source data type Parquet primitive
type

Logical type
annotation

Conversion notes

Geometric data types

GEOMETRY BYTE_ARRAY

GEOMETRYC
OLLECTION

BYTE_ARRAY

MULTIPOINT BYTE_ARRAY

MULTIPOLYGON BYTE_ARRAY

POINT BYTE_ARRAY

POLYGON BYTE_ARRAY

JSON data type

JSON BYTE_ARRAY STRING

PostgreSQL data type mapping to Parquet

The following table shows the mapping from PostgreSQL data types to Parquet data types when
data is converted and exported to Amazon S3.

PostgreSQL data
type

Parquet primitive
type

Logical type
annotation

Mapping notes

Numeric data types

BIGINT INT64

BIGSERIAL INT64

DECIMAL BYTE_ARRAY STRING A DECIMAL type is
converted to a string
in a BYTE_ARRAY

Data conversion 768

Amazon Aurora User Guide for Aurora

PostgreSQL data
type

Parquet primitive
type

Logical type
annotation

Mapping notes

type and encoded as
UTF8.

This conversion is to
avoid complications
due to data precision
and data values that
are not a number (N
aN).

DOUBLE PRECISION DOUBLE

INTEGER INT32

MONEY BYTE_ARRAY STRING

REAL FLOAT

SERIAL INT32

SMALLINT INT32 INT_16

SMALLSERIAL INT32 INT_16

String and related data types

Data conversion 769

Amazon Aurora User Guide for Aurora

PostgreSQL data
type

Parquet primitive
type

Logical type
annotation

Mapping notes

ARRAY BYTE_ARRAY STRING
An array is converted
to a string and
encoded as BINARY
 (UTF8).

This conversion is
to avoid complicat
ions due to data prec
ision, data values that
are not a number
(NaN), and time data
values.

BIT BYTE_ARRAY STRING

BIT VARYING BYTE_ARRAY STRING

BYTEA BINARY

CHAR BYTE_ARRAY STRING

CHAR(N) BYTE_ARRAY STRING

ENUM BYTE_ARRAY STRING

NAME BYTE_ARRAY STRING

TEXT BYTE_ARRAY STRING

TEXT SEARCH BYTE_ARRAY STRING

VARCHAR(N) BYTE_ARRAY STRING

XML BYTE_ARRAY STRING

Date and time data types

Data conversion 770

Amazon Aurora User Guide for Aurora

PostgreSQL data
type

Parquet primitive
type

Logical type
annotation

Mapping notes

DATE BYTE_ARRAY STRING

INTERVAL BYTE_ARRAY STRING

TIME BYTE_ARRAY STRING

TIME WITH TIME
ZONE

BYTE_ARRAY STRING

TIMESTAMP BYTE_ARRAY STRING

TIMESTAMP WITH
TIME ZONE

BYTE_ARRAY STRING

Geometric data types

BOX BYTE_ARRAY STRING

CIRCLE BYTE_ARRAY STRING

LINE BYTE_ARRAY STRING

LINESEGMENT BYTE_ARRAY STRING

PATH BYTE_ARRAY STRING

POINT BYTE_ARRAY STRING

POLYGON BYTE_ARRAY STRING

JSON data types

JSON BYTE_ARRAY STRING

JSONB BYTE_ARRAY STRING

Other data types

BOOLEAN BOOLEAN

Data conversion 771

Amazon Aurora User Guide for Aurora

PostgreSQL data
type

Parquet primitive
type

Logical type
annotation

Mapping notes

CIDR BYTE_ARRAY STRING Network data type

COMPOSITE BYTE_ARRAY STRING

DOMAIN BYTE_ARRAY STRING

INET BYTE_ARRAY STRING Network data type

MACADDR BYTE_ARRAY STRING

OBJECT IDENTIFIER N/A

PG_LSN BYTE_ARRAY STRING

RANGE BYTE_ARRAY STRING

UUID BYTE_ARRAY STRING

Data conversion 772

Amazon Aurora User Guide for Aurora

Restoring a DB cluster to a specified time

You can restore a DB cluster to a specific point in time, creating a new DB cluster.

When you restore a DB cluster to a point in time, you can choose the default virtual private cloud
(VPC) security group. Or you can apply a custom VPC security group to your DB cluster.

Restored DB clusters are automatically associated with the default DB cluster and DB parameter
groups. However, you can apply custom parameter groups by specifying them during a restore.

Amazon Aurora uploads log records for DB clusters to Amazon S3 continuously. To see the latest
restorable time for a DB cluster, use the AWS CLI describe-db-clusters command and look at the
value returned in the LatestRestorableTime field for the DB cluster.

You can restore to any point in time within your backup retention period. To see the earliest
restorable time for a DB cluster, use the AWS CLI describe-db-clusters command and look at the
value returned in the EarliestRestorableTime field for the DB cluster.

The backup retention period of the restored DB cluster is the same as that of the source DB cluster.

Note

Information in this topic applies to Amazon Aurora. For information on restoring an
Amazon RDS DB instance, see Restoring a DB instance to a specified time.
For more information about backing up and restoring an Aurora DB cluster, see Overview of
backing up and restoring an Aurora DB cluster.
For Aurora MySQL, you can restore a provisioned DB cluster to an Aurora Serverless DB
cluster. For more information, see Restoring an Aurora Serverless v1 DB cluster.
You can also use AWS Backup to manage backups of Amazon Aurora DB clusters. If your DB
cluster is associated with a backup plan in AWS Backup, that backup plan is used for point-
in-time recovery. For information, see Restoring a DB cluster to a specified time using AWS
Backup.

For information about restoring an Aurora DB cluster or a global cluster with an RDS Extended
Support version, see Restoring an Aurora DB cluster or a global cluster with Amazon RDS Extended
Support.

You can restore a DB cluster to a point in time using the AWS Management Console, the AWS CLI,
or the RDS API.

Point-in-time recovery 773

https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-clusters.html
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-clusters.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_PIT.html

Amazon Aurora User Guide for Aurora

Console

To restore a DB cluster to a specified time

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Automated backups.

The automated backups are displayed on the Current Region tab.

3. Choose the DB cluster that you want to restore.

4. For Actions, choose Restore to point in time.

The Restore to point in time window appears.

5. Choose Latest restorable time to restore to the latest possible time, or choose Custom to
choose a time.

If you chose Custom, enter the date and time to which you want to restore the cluster.

Note

Times are shown in your local time zone, which is indicated by an offset from
Coordinated Universal Time (UTC). For example, UTC-5 is Eastern Standard Time/
Central Daylight Time.

6. For DB cluster identifier, enter the name of the target restored DB cluster. The name must be
unique.

7. Choose other options as needed, such as the DB instance class and DB cluster storage
configuration.

For information about each setting, see Settings for Aurora DB clusters.

8. Choose Restore to point in time.

Point-in-time recovery 774

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Aurora User Guide for Aurora

AWS CLI

To restore a DB cluster to a specified time, use the AWS CLI command restore-db-cluster-to-point-
in-time to create a new DB cluster.

You can specify other settings. For information about each setting, see Settings for Aurora DB
clusters.

Resource tagging is supported for this operation. When you use the --tags option, the source DB
cluster tags are ignored and the provided ones are used. Otherwise, the latest tags from the source
cluster are used.

Example

For Linux, macOS, or Unix:

aws rds restore-db-cluster-to-point-in-time \
 --source-db-cluster-identifier mysourcedbcluster \
 --db-cluster-identifier mytargetdbcluster \
 --restore-to-time 2017-10-14T23:45:00.000Z

For Windows:

aws rds restore-db-cluster-to-point-in-time ^
 --source-db-cluster-identifier mysourcedbcluster ^
 --db-cluster-identifier mytargetdbcluster ^
 --restore-to-time 2017-10-14T23:45:00.000Z

Important

If you use the console to restore a DB cluster to a specified time, then Amazon RDS
automatically creates the primary instance (writer) for your DB cluster. If you use the
AWS CLI to restore a DB cluster to a specified time, you must explicitly create the primary
instance for your DB cluster. The primary instance is the first instance that is created in a DB
cluster.
To create the primary instance for your DB cluster, call the create-db-instance AWS CLI
command. Include the name of the DB cluster as the --db-cluster-identifier option
value.

Point-in-time recovery 775

https://docs.aws.amazon.com/cli/latest/reference/rds/restore-db-cluster-to-point-in-time.html
https://docs.aws.amazon.com/cli/latest/reference/rds/restore-db-cluster-to-point-in-time.html
https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-instance.html

Amazon Aurora User Guide for Aurora

RDS API

To restore a DB cluster to a specified time, call the Amazon RDS API
RestoreDBClusterToPointInTime operation with the following parameters:

• SourceDBClusterIdentifier

• DBClusterIdentifier

• RestoreToTime

Important

If you use the console to restore a DB cluster to a specified time, then Amazon RDS
automatically creates the primary instance (writer) for your DB cluster. If you use the RDS
API to restore a DB cluster to a specified time, make sure to explicitly create the primary
instance for your DB cluster. The primary instance is the first instance that is created in a DB
cluster.
To create the primary instance for your DB cluster, call the RDS API operation
CreateDBInstance. Include the name of the DB cluster as the DBClusterIdentifier
parameter value.

Restoring a DB cluster to a specified time from a retained automated
backup

You can restore a DB cluster from a retained automated backup after you delete the source DB
cluster, if the backup is within the retention period of the source cluster. The process is similar to
restoring a DB cluster from an automated backup.

Note

You can't restore an Aurora Serverless v1 DB cluster using this procedure, because
automated backups for Aurora Serverless v1 clusters aren't retained.

Point-in-time recovery from a retained automated backup 776

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_RestoreDBClusterToPointInTime.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateDBInstance.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateDBInstance.html

Amazon Aurora User Guide for Aurora

Console

To restore a DB cluster to a specified time

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Automated backups.

3. Choose the Retained tab.

4. Choose the DB cluster that you want to restore.

5. For Actions, choose Restore to point in time.

The Restore to point in time window appears.

6. Choose Latest restorable time to restore to the latest possible time, or choose Custom to
choose a time.

If you chose Custom, enter the date and time to which you want to restore the cluster.

Note

Times are shown in your local time zone, which is indicated by an offset from
Coordinated Universal Time (UTC). For example, UTC-5 is Eastern Standard Time/
Central Daylight Time.

7. For DB cluster identifier, enter the name of the target restored DB cluster. The name must be
unique.

8. Choose other options as needed, such as DB instance class.

For information about each setting, see Settings for Aurora DB clusters.

9. Choose Restore to point in time.

Point-in-time recovery from a retained automated backup 777

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Aurora User Guide for Aurora

AWS CLI

To restore a DB cluster to a specified time, use the AWS CLI command restore-db-cluster-to-point-
in-time to create a new DB cluster.

You can specify other settings. For information about each setting, see Settings for Aurora DB
clusters.

Resource tagging is supported for this operation. When you use the --tags option, the source DB
cluster tags are ignored and the provided ones are used. Otherwise, the latest tags from the source
cluster are used.

Example

For Linux, macOS, or Unix:

aws rds restore-db-cluster-to-point-in-time \
 --source-db-cluster-resource-id cluster-123ABCEXAMPLE \
 --db-cluster-identifier mytargetdbcluster \
 --restore-to-time 2017-10-14T23:45:00.000Z

For Windows:

aws rds restore-db-cluster-to-point-in-time ^
 --source-db-cluster-resource-id cluster-123ABCEXAMPLE ^
 --db-cluster-identifier mytargetdbcluster ^
 --restore-to-time 2017-10-14T23:45:00.000Z

Important

If you use the console to restore a DB cluster to a specified time, then Amazon RDS
automatically creates the primary instance (writer) for your DB cluster. If you use the
AWS CLI to restore a DB cluster to a specified time, you must explicitly create the primary
instance for your DB cluster. The primary instance is the first instance that is created in a DB
cluster.
To create the primary instance for your DB cluster, call the create-db-instance AWS CLI
command. Include the name of the DB cluster as the --db-cluster-identifier option
value.

Point-in-time recovery from a retained automated backup 778

https://docs.aws.amazon.com/cli/latest/reference/rds/restore-db-cluster-to-point-in-time.html
https://docs.aws.amazon.com/cli/latest/reference/rds/restore-db-cluster-to-point-in-time.html
https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-instance.html

Amazon Aurora User Guide for Aurora

RDS API

To restore a DB cluster to a specified time, call the Amazon RDS API
RestoreDBClusterToPointInTime operation with the following parameters:

• SourceDbClusterResourceId

• DBClusterIdentifier

• RestoreToTime

Important

If you use the console to restore a DB cluster to a specified time, then Amazon RDS
automatically creates the primary instance (writer) for your DB cluster. If you use the RDS
API to restore a DB cluster to a specified time, make sure to explicitly create the primary
instance for your DB cluster. The primary instance is the first instance that is created in a DB
cluster.
To create the primary instance for your DB cluster, call the RDS API operation
CreateDBInstance. Include the name of the DB cluster as the DBClusterIdentifier
parameter value.

Restoring a DB cluster to a specified time using AWS Backup

You can use AWS Backup to manage your automated backups, and then to restore them to a
specified time. To do this, you create a backup plan in AWS Backup and assign your DB cluster as a
resource. Then you enable continuous backups for PITR in the backup rule. For more information
on backup plans and backup rules, see the AWS Backup Developer Guide.

Enabling continuous backups in AWS Backup

You enable continuous backups in backup rules.

To enable continuous backups for PITR

1. Sign in to the AWS Management Console, and open the AWS Backup console at https://
console.aws.amazon.com/backup.

2. In the navigation pane, choose Backup plans.

3. Under Backup plan name, select the backup plan that you use to back up your DB cluster.

Point-in-time recovery using AWS Backup 779

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_RestoreDBClusterToPointInTime.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateDBInstance.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateDBInstance.html
https://docs.aws.amazon.com/aws-backup/latest/devguide
https://console.aws.amazon.com/backup
https://console.aws.amazon.com/backup

Amazon Aurora User Guide for Aurora

4. Under the Backup rules section, choose Add backup rule.

The Add backup rule page displays.

5. Select the Enable continuous backups for point-in-time recovery (PITR) check box.

6. Choose other settings as needed, then choose Add backup rule.

Point-in-time recovery using AWS Backup 780

Amazon Aurora User Guide for Aurora

Restoring from a continuous backup in AWS Backup

You restore to a specified time from a backup vault.

Console

You can use the AWS Management Console to restore a DB cluster to a specified time.

To restore from a continuous backup in AWS Backup

1. Sign in to the AWS Management Console, and open the AWS Backup console at https://
console.aws.amazon.com/backup.

2. In the navigation pane, choose Backup vaults.

3. Choose the backup vault that contains your continuous backup, for example Default.

The backup vault detail page displays.

4. Under Recovery points, select the recovery point for the automated backup.

It has a backup type of Continuous and a name with continuous:cluster-AWS-Backup-
job-number.

5. For Actions, choose Restore.

The Restore backup page displays.

Point-in-time recovery using AWS Backup 781

https://console.aws.amazon.com/backup
https://console.aws.amazon.com/backup

Amazon Aurora User Guide for Aurora

Point-in-time recovery using AWS Backup 782

Amazon Aurora User Guide for Aurora

6. For Restore to point in time, select Specify date and time to restore to a specific point in
time.

7. Choose other settings as needed for restoring the DB cluster, then choose Restore backup.

The Jobs page displays, showing the Restore jobs pane. A message at the top of the page
provides information about the restore job.

After the DB cluster is restored, you must add the primary (writer) DB instance to it. To create the
primary instance for your DB cluster, call the create-db-instance AWS CLI command. Include the
name of the DB cluster as the --db-cluster-identifier parameter value.

CLI

You use the start-restore-job AWS CLI command to restore the DB cluster to a specified time. The
following parameters are required:

• --recovery-point-arn – The Amazon Resource Name (ARN) for the recovery point from
which to restore.

• --resource-type – Use Aurora.

• --iam-role-arn – The ARN for the IAM role that you use for AWS Backup operations.

• --metadata – The metadata that you use to restore the DB cluster. The following parameters
are required:

• DBClusterIdentifier

• Engine

• RestoreToTime or UseLatestRestorableTime

The following example shows how to restore a DB cluster to a specified time.

aws backup start-restore-job \
--recovery-point-arn arn:aws:backup:eu-central-1:123456789012:recovery-
point:continuous:cluster-itsreallyjustanexample1234567890-487278c2 \
--resource-type Aurora \
--iam-role-arn arn:aws:iam::123456789012:role/service-role/AWSBackupDefaultServiceRole
 \
--metadata '{"DBClusterIdentifier":"backup-pitr-test","Engine":"aurora-
mysql","RestoreToTime":"2023-09-01T17:00:00.000Z"}'

Point-in-time recovery using AWS Backup 783

https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-instance.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/backup/start-restore-job.html

Amazon Aurora User Guide for Aurora

The following example shows how to restore a DB cluster to the latest restorable time.

aws backup start-restore-job \
--recovery-point-arn arn:aws:backup:eu-central-1:123456789012:recovery-
point:continuous:cluster-itsreallyjustanexample1234567890-487278c2 \
--resource-type Aurora \
--iam-role-arn arn:aws:iam::123456789012:role/service-role/AWSBackupDefaultServiceRole
 \
--metadata '{"DBClusterIdentifier":"backup-pitr-latest","Engine":"aurora-
mysql","UseLatestRestorableTime":"true"}'

After the DB cluster is restored, you must add the primary (writer) DB instance to it. To create the
primary instance for your DB cluster, call the create-db-instance AWS CLI command. Include the
name of the DB cluster as the --db-cluster-identifier parameter value.

Point-in-time recovery using AWS Backup 784

https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-instance.html

Amazon Aurora User Guide for Aurora

Deleting a DB cluster snapshot

You can delete DB cluster snapshots managed by Amazon RDS when you no longer need them.

Note

To delete backups managed by AWS Backup, use the AWS Backup console. For information
about AWS Backup, see the AWS Backup Developer Guide.

Deleting a DB cluster snapshot

You can delete a DB cluster snapshot using the console, the AWS CLI, or the RDS API.

To delete a shared or public snapshot, you must sign in to the AWS account that owns the
snapshot.

Console

To delete a DB cluster snapshot

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Snapshots.

3. Choose the DB cluster snapshot that you want to delete.

4. For Actions, choose Delete snapshot.

5. Choose Delete on the confirmation page.

AWS CLI

You can delete a DB cluster snapshot by using the AWS CLI command delete-db-cluster-snapshot.

The following options are used to delete a DB cluster snapshot.

• --db-cluster-snapshot-identifier – The identifier for the DB cluster snapshot.

Example

The following code deletes the mydbclustersnapshot DB cluster snapshot.

Deleting a DB cluster snapshot 785

https://docs.aws.amazon.com/aws-backup/latest/devguide
https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/
https://docs.aws.amazon.com/cli/latest/reference/rds/delete-db-cluster-snapshot.html

Amazon Aurora User Guide for Aurora

For Linux, macOS, or Unix:

aws rds delete-db-cluster-snapshot \
 --db-cluster-snapshot-identifier mydbclustersnapshot

For Windows:

aws rds delete-db-cluster-snapshot ^
 --db-cluster-snapshot-identifier mydbclustersnapshot

RDS API

You can delete a DB cluster snapshot by using the Amazon RDS API operation
DeleteDBClusterSnapshot.

The following parameters are used to delete a DB cluster snapshot.

• DBClusterSnapshotIdentifier – The identifier for the DB cluster snapshot.

Deleting a DB cluster snapshot 786

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DeleteDBClusterSnapshot.html

Amazon Aurora User Guide for Aurora

Tutorial: Restore an Amazon Aurora DB cluster from a DB
cluster snapshot

A common scenario when working with Amazon Aurora is to have a DB instance that you work with
occasionally but that you don't need full time. For example, you might use a DB cluster to hold the
data for a report that you run only quarterly. One way to save money on such a scenario is to take a
DB cluster snapshot of the DB cluster after the report is completed. Then you delete the DB cluster,
and restore it when you need to upload new data and run the report during the next quarter.

When you restore a DB cluster, you provide the name of the DB cluster snapshot to restore from.
You then provide a name for the new DB cluster that's created from the restore operation. For
more detailed information on restoring DB clusters from snapshots, see Restoring from a DB
cluster snapshot.

In this tutorial, we also upgrade the restored DB cluster from Aurora MySQL version 2 (compatible
with MySQL 5.7) to Aurora MySQL version 3 (compatible with MySQL 8.0).

Restoring a DB cluster from a DB cluster snapshot using the Amazon
RDS console

When you restore a DB cluster from a snapshot using the AWS Management Console, the primary
(writer) DB instance is also created.

Note

While the primary DB instance is being created, it appears as a reader instance, but after
creation it's a writer instance.

To restore a DB cluster from a DB cluster snapshot

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Snapshots.

3. Choose the DB cluster snapshot that you want to restore from.

4. For Actions, choose Restore snapshot.

Tutorial: Restore a DB cluster from a snapshot 787

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Aurora User Guide for Aurora

The Restore snapshot page appears.

5. Under DB instance settings, do the following:

a. Use the default setting for DB engine.

b. For Available versions, choose a MySQL–8.0 compatible version, such as Aurora MySQL
3.02.0 (compatible with MySQL 8.0.23).

Restoring a DB cluster using the console 788

Amazon Aurora User Guide for Aurora

6. Under Settings, for DB cluster identifier enter the unique name that you want to use for the
restored DB cluster, for example my-80-cluster.

7. Under Connectivity, use the default settings for the following:

• Virtual private cloud (VPC)

• DB subnet group

• Public access

• VPC security group (firewall)

8. Choose the DB instance class.

For this tutorial, choose Burstable classes (includes t classes), and then choose
db.t3.medium.

Restoring a DB cluster using the console 789

Amazon Aurora User Guide for Aurora

Note

We recommend using the T DB instance classes only for development and test servers,
or other non-production servers. For more details on the T instance classes, see DB
instance class types.

9. For Database authentication, use the default setting.

10. For Encryption, use the default settings.

If the source DB cluster for the snapshot was encrypted, the restored DB cluster is also
encrypted. You can't make it unencrypted.

11. Expand Additional configuration at the bottom of the page.

Restoring a DB cluster using the console 790

Amazon Aurora User Guide for Aurora

12. Make the following choices:

a. For this tutorial, use the default value for DB cluster parameter group.

b. For this tutorial, use the default value for DB parameter group.

c. For Log exports, select all of the check boxes.

d. For Deletion protection, select the Enable deletion protection check box.

13. Choose Restore DB instance.

The Databases page displays the restored DB cluster, with a status of Creating.

Restoring a DB cluster using the console 791

Amazon Aurora User Guide for Aurora

While the primary DB instance is being created, it appears as a reader instance, but after creation
it's a writer instance.

Restoring a DB cluster from a DB cluster snapshot using the AWS CLI

Restoring a DB cluster from a snapshot using the AWS CLI has two steps:

1. Restoring the DB cluster using the restore-db-cluster-from-snapshot command

2. Creating the primary (writer) DB instance using the create-db-instance command

Restoring the DB cluster

You use the restore-db-cluster-from-snapshot command. The following options are
required:

• --db-cluster-identifier – The name of the restored DB cluster.

• --snapshot-identifier – The name of the DB snapshot to restore from.

• --engine – The database engine of the restored DB cluster. It must be compatible with the
database engine of the source DB cluster.

The choices are the following:

• aurora-mysql – Aurora MySQL 5.7 and 8.0 compatible.

• aurora-postgresql – Aurora PostgreSQL compatible.

In this example, we use aurora-mysql.

• --engine-version – The version of the restored DB cluster. In this example, we use a
MySQL-8.0 compatible version.

The following example restores an Aurora MySQL 8.0–compatible DB cluster named my-new-80-
cluster from a DB cluster snapshot named my-57-cluster-snapshot.

Restoring a DB cluster using the AWS CLI 792

https://docs.aws.amazon.com/cli/latest/reference/rds/restore-db-cluster-from-snapshot.html
https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-instance.html

Amazon Aurora User Guide for Aurora

To restore the DB cluster

• Use one of the following commands.

For Linux, macOS, or Unix:

aws rds restore-db-cluster-from-snapshot \
 --db-cluster-identifier my-new-80-cluster \
 --snapshot-identifier my-57-cluster-snapshot \
 --engine aurora-mysql \
 --engine-version 8.0.mysql_aurora.3.02.0

For Windows:

aws rds restore-db-cluster-from-snapshot ^
 --db-cluster-identifier my-new-80-cluster ^
 --snapshot-identifier my-57-cluster-snapshot ^
 --engine aurora-mysql ^
 --engine-version 8.0.mysql_aurora.3.02.0

The output resembles the following.

{
 "DBCluster": {
 "AllocatedStorage": 1,
 "AvailabilityZones": [
 "eu-central-1b",
 "eu-central-1c",
 "eu-central-1a"
],
 "BackupRetentionPeriod": 14,
 "DatabaseName": "",
 "DBClusterIdentifier": "my-new-80-cluster",
 "DBClusterParameterGroup": "default.aurora-mysql8.0",
 "DBSubnetGroup": "default",
 "Status": "creating",
 "Endpoint": "my-new-80-cluster.cluster-############.eu-
central-1.rds.amazonaws.com",
 "ReaderEndpoint": "my-new-80-cluster.cluster-ro-############.eu-
central-1.rds.amazonaws.com",
 "MultiAZ": false,

Restoring a DB cluster using the AWS CLI 793

Amazon Aurora User Guide for Aurora

 "Engine": "aurora-mysql",
 "EngineVersion": "8.0.mysql_aurora.3.02.0",
 "Port": 3306,
 "MasterUsername": "admin",
 "PreferredBackupWindow": "01:55-02:25",
 "PreferredMaintenanceWindow": "thu:21:14-thu:21:44",
 "ReadReplicaIdentifiers": [],
 "DBClusterMembers": [],
 "VpcSecurityGroups": [
 {
 "VpcSecurityGroupId": "sg-########",
 "Status": "active"
 }
],
 "HostedZoneId": "Z1RLNU0EXAMPLE",
 "StorageEncrypted": true,
 "KmsKeyId": "arn:aws:kms:eu-central-1:123456789012:key/#######-5ccc-49cc-8aaa-
############",
 "DbClusterResourceId": "cluster-ZZ12345678ITSJUSTANEXAMPLE",
 "DBClusterArn": "arn:aws:rds:eu-central-1:123456789012:cluster:my-new-80-
cluster",
 "AssociatedRoles": [],
 "IAMDatabaseAuthenticationEnabled": false,
 "ClusterCreateTime": "2022-07-05T20:45:42.171000+00:00",
 "EngineMode": "provisioned",
 "DeletionProtection": false,
 "HttpEndpointEnabled": false,
 "CopyTagsToSnapshot": false,
 "CrossAccountClone": false,
 "DomainMemberships": [],
 "TagList": []
 }
}

Creating the primary (writer) DB instance

To create the primary (writer) DB instance, you use the create-db-instance command. The
following options are required:

• --db-cluster-identifier – The name of the restored DB cluster.

• --db-instance-identifier – The name of the primary DB instance.

Restoring a DB cluster using the AWS CLI 794

Amazon Aurora User Guide for Aurora

• --db-instance-class – The instance class of the primary DB instance. In this example, we use
db.t3.medium.

Note

We recommend using the T DB instance classes only for development and test servers, or
other non-production servers. For more details on the T instance classes, see DB instance
class types.

• --engine – The database engine of the primary DB instance. It must be the same database
engine as the restored DB cluster uses.

The choices are the following:

• aurora-mysql – Aurora MySQL 5.7 and 8.0 compatible.

• aurora-postgresql – Aurora PostgreSQL compatible.

In this example, we use aurora-mysql.

The following example creates a primary (writer) DB instance named my-new-80-cluster-
instance in the restored Aurora MySQL 8.0–compatible DB cluster named my-new-80-cluster.

To create the primary DB instance

• Use one of the following commands.

For Linux, macOS, or Unix:

aws rds create-db-instance \
 --db-cluster-identifier my-new-80-cluster \
 --db-instance-identifier my-new-80-cluster-instance \
 --db-instance-class db.t3.medium \
 --engine aurora-mysql

For Windows:

aws rds create-db-instance ^
 --db-cluster-identifier my-new-80-cluster ^
 --db-instance-identifier my-new-80-cluster-instance ^
 --db-instance-class db.t3.medium ^

Restoring a DB cluster using the AWS CLI 795

Amazon Aurora User Guide for Aurora

 --engine aurora-mysql

The output resembles the following.

{
 "DBInstance": {
 "DBInstanceIdentifier": "my-new-80-cluster-instance",
 "DBInstanceClass": "db.t3.medium",
 "Engine": "aurora-mysql",
 "DBInstanceStatus": "creating",
 "MasterUsername": "admin",
 "AllocatedStorage": 1,
 "PreferredBackupWindow": "01:55-02:25",
 "BackupRetentionPeriod": 14,
 "DBSecurityGroups": [],
 "VpcSecurityGroups": [
 {
 "VpcSecurityGroupId": "sg-########",
 "Status": "active"
 }
],
 "DBParameterGroups": [
 {
 "DBParameterGroupName": "default.aurora-mysql8.0",
 "ParameterApplyStatus": "in-sync"
 }
],
 "DBSubnetGroup": {
 "DBSubnetGroupName": "default",
 "DBSubnetGroupDescription": "default",
 "VpcId": "vpc-2305ca49",
 "SubnetGroupStatus": "Complete",
 "Subnets": [
 {
 "SubnetIdentifier": "subnet-########",
 "SubnetAvailabilityZone": {
 "Name": "eu-central-1a"
 },
 "SubnetOutpost": {},
 "SubnetStatus": "Active"
 },
 {

Restoring a DB cluster using the AWS CLI 796

Amazon Aurora User Guide for Aurora

 "SubnetIdentifier": "subnet-########",
 "SubnetAvailabilityZone": {
 "Name": "eu-central-1b"
 },
 "SubnetOutpost": {},
 "SubnetStatus": "Active"
 },
 {
 "SubnetIdentifier": "subnet-########",
 "SubnetAvailabilityZone": {
 "Name": "eu-central-1c"
 },
 "SubnetOutpost": {},
 "SubnetStatus": "Active"
 }
]
 },
 "PreferredMaintenanceWindow": "sat:02:41-sat:03:11",
 "PendingModifiedValues": {},
 "MultiAZ": false,
 "EngineVersion": "8.0.mysql_aurora.3.02.0",
 "AutoMinorVersionUpgrade": true,
 "ReadReplicaDBInstanceIdentifiers": [],
 "LicenseModel": "general-public-license",
 "OptionGroupMemberships": [
 {
 "OptionGroupName": "default:aurora-mysql-8-0",
 "Status": "in-sync"
 }
],
 "PubliclyAccessible": false,
 "StorageType": "aurora",
 "DbInstancePort": 0,
 "DBClusterIdentifier": "my-new-80-cluster",
 "StorageEncrypted": true,
 "KmsKeyId": "arn:aws:kms:eu-central-1:534026745191:key/#######-5ccc-49cc-8aaa-
############",
 "DbiResourceId": "db-5C6UT5PU0YETANOTHEREXAMPLE",
 "CACertificateIdentifier": "rds-ca-2019",
 "DomainMemberships": [],
 "CopyTagsToSnapshot": false,
 "MonitoringInterval": 0,
 "PromotionTier": 1,

Restoring a DB cluster using the AWS CLI 797

Amazon Aurora User Guide for Aurora

 "DBInstanceArn": "arn:aws:rds:eu-central-1:123456789012:db:my-new-80-cluster-
instance",
 "IAMDatabaseAuthenticationEnabled": false,
 "PerformanceInsightsEnabled": false,
 "DeletionProtection": false,
 "AssociatedRoles": [],
 "TagList": []
 }
}

Restoring a DB cluster using the AWS CLI 798

Amazon Aurora User Guide for Aurora

Monitoring metrics in an Amazon Aurora cluster

Amazon Aurora uses a cluster of replicated database servers. Typically, monitoring an Aurora
cluster requires checking the health of multiple DB instances. The instances might have specialized
roles, handling mostly write operations, only read operations, or a combination. You also monitor
the overall health of the cluster by measuring the replication lag. This is the amount of time for
changes made by one DB instance to be available to the other instances.

Topics

• Overview of monitoring metrics in Amazon Aurora

• Viewing cluster status

• Viewing and responding to Amazon Aurora recommendations

• Viewing metrics in the Amazon RDS console

• Viewing combined metrics in the Amazon RDS console

• Monitoring Amazon Aurora metrics with Amazon CloudWatch

• Monitoring DB load with Performance Insights on Amazon Aurora

• Analyzing Aurora performance anomalies with Amazon DevOps Guru for Amazon RDS

• Monitoring OS metrics with Enhanced Monitoring

• Metrics reference for Amazon Aurora

799

Amazon Aurora User Guide for Aurora

Overview of monitoring metrics in Amazon Aurora

Monitoring is an important part of maintaining the reliability, availability, and performance of
Amazon Aurora and your AWS solutions. To more easily debug multi-point failures, we recommend
that you collect monitoring data from all parts of your AWS solution.

Topics

• Monitoring plan

• Performance baseline

• Performance guidelines

• Monitoring tools

Monitoring plan

Before you start monitoring Amazon Aurora, create a monitoring plan. This plan should answer the
following questions:

• What are your monitoring goals?

• Which resources will you monitor?

• How often will you monitor these resources?

• Which monitoring tools will you use?

• Who will perform the monitoring tasks?

• Whom should be notified when something goes wrong?

Performance baseline

To achieve your monitoring goals, you need to establish a baseline. To do this, measure
performance under different load conditions at various times in your Amazon Aurora environment.
You can monitor metrics such as the following:

• Network throughput

• Client connections

• I/O for read, write, or metadata operations

• Burst credit balances for your DB instances

Overview of monitoring 800

Amazon Aurora User Guide for Aurora

We recommend that you store historical performance data for Amazon Aurora. Using the stored
data, you can compare current performance against past trends. You can also distinguish normal
performance patterns from anomalies, and devise techniques to address issues.

Performance guidelines

In general, acceptable values for performance metrics depend on what your application is doing
relative to your baseline. Investigate consistent or trending variances from your baseline. The
following metrics are often the source of performance issues:

• High CPU or RAM consumption – High values for CPU or RAM consumption might be
appropriate, if they're in keeping with your goals for your application (like throughput or
concurrency) and are expected.

• Disk space consumption – Investigate disk space consumption if space used is consistently at or
above 85 percent of the total disk space. See if it is possible to delete data from the instance or
archive data to a different system to free up space.

• Network traffic – For network traffic, talk with your system administrator to understand what
expected throughput is for your domain network and internet connection. Investigate network
traffic if throughput is consistently lower than expected.

• Database connections – If you see high numbers of user connections and also decreases in
instance performance and response time, consider constraining database connections. The
best number of user connections for your DB instance varies based on your instance class and
the complexity of the operations being performed. To determine the number of database
connections, associate your DB instance with a parameter group where the User Connections
parameter is set to a value other than 0 (unlimited). You can either use an existing parameter
group or create a new one. For more information, see Working with parameter groups.

• IOPS metrics – The expected values for IOPS metrics depend on disk specification and server
configuration, so use your baseline to know what is typical. Investigate if values are consistently
different than your baseline. For best IOPS performance, make sure that your typical working set
fits into memory to minimize read and write operations.

When performance falls outside your established baseline, you might need to make changes to
optimize your database availability for your workload. For example, you might need to change the
instance class of your DB instance. Or you might need to change the number of DB instances and
read replicas that are available for clients.

Performance guidelines 801

Amazon Aurora User Guide for Aurora

Monitoring tools

Monitoring is an important part of maintaining the reliability, availability, and performance of
Amazon Aurora and your other AWS solutions. AWS provides various monitoring tools to watch
Amazon Aurora, report when something is wrong, and take automatic actions when appropriate.

Topics

• Automated monitoring tools

• Manual monitoring tools

Automated monitoring tools

We recommend that you automate monitoring tasks as much as possible.

Topics

• Amazon Aurora cluster status and recommendations

• Amazon CloudWatch metrics for Amazon Aurora

• Amazon RDS Performance Insights and operating-system monitoring

• Integrated services

Amazon Aurora cluster status and recommendations

You can use the following automated tools to watch Amazon Aurora and report when something is
wrong:

• Amazon Aurora cluster status — View details about the current status of your cluster by using
the Amazon RDS console, the AWS CLI, or the RDS API.

• Amazon Aurora recommendations — Respond to automated recommendations for database
resources, such as DB instances, DB clusters, and DB cluster parameter groups. For more
information, see Viewing and responding to Amazon Aurora recommendations.

Amazon CloudWatch metrics for Amazon Aurora

Amazon Aurora integrates with Amazon CloudWatch for additional monitoring capabilities.

Monitoring tools 802

Amazon Aurora User Guide for Aurora

• Amazon CloudWatch – This service monitors your AWS resources and the applications you run
on AWS in real time. You can use the following Amazon CloudWatch features with Amazon
Aurora:

• Amazon CloudWatch metrics – Amazon Aurora automatically sends metrics to CloudWatch
every minute for each active database. You don't get additional charges for Amazon RDS
metrics in CloudWatch. For more information, see Amazon CloudWatch metrics for Amazon
Aurora

• Amazon CloudWatch alarms – You can watch a single Amazon Aurora metric over a specific
time period. You can then perform one or more actions based on the value of the metric
relative to a threshold that you set.

Amazon RDS Performance Insights and operating-system monitoring

You can use the following automated tools to monitor Amazon Aurora performance:

• Amazon RDS Performance Insights – Assess the load on your database, and determine when
and where to take action. For more information, see Monitoring DB load with Performance
Insights on Amazon Aurora.

• Amazon RDS Enhanced Monitoring – Look at metrics in real time for the operating system. For
more information, see Monitoring OS metrics with Enhanced Monitoring.

Integrated services

The following AWS services are integrated with Amazon Aurora:

• Amazon EventBridge is a serverless event bus service that makes it easy to connect your
applications with data from a variety of sources. For more information, see Monitoring Amazon
Aurora events.

• Amazon CloudWatch Logs lets you monitor, store, and access your log files from Amazon Aurora
instances, CloudTrail, and other sources. For more information, see Monitoring Amazon Aurora
log files.

• AWS CloudTrail captures API calls and related events made by or on behalf of your AWS account
and delivers the log files to an Amazon S3 bucket that you specify. For more information, see
Monitoring Amazon Aurora API calls in AWS CloudTrail.

Monitoring tools 803

Amazon Aurora User Guide for Aurora

• Database Activity Streams is an Amazon Aurora feature that provides a near-real-time stream
of the activity in your DB cluster. For more information, see Monitoring Amazon Aurora with
Database Activity Streams.

• DevOps Guru for RDS is a capability of Amazon DevOps Guru that applies machine learning to
Performance Insights metrics for Amazon Aurora databases. For more information, see Analyzing
Aurora performance anomalies with Amazon DevOps Guru for Amazon RDS.

Manual monitoring tools

You need to manually monitor those items that the CloudWatch alarms don't cover. The Amazon
RDS, CloudWatch, AWS Trusted Advisor and other AWS console dashboards provide an at-a-glance
view of the state of your AWS environment. We recommend that you also check the log files on
your DB instance.

• From the Amazon RDS console, you can monitor the following items for your resources:

• The number of connections to a DB instance

• The amount of read and write operations to a DB instance

• The amount of storage that a DB instance is currently using

• The amount of memory and CPU being used for a DB instance

• The amount of network traffic to and from a DB instance

• From the Trusted Advisor dashboard, you can review the following cost optimization, security,
fault tolerance, and performance improvement checks:

• Amazon RDS Idle DB Instances

• Amazon RDS Security Group Access Risk

• Amazon RDS Backups

• Amazon RDS Multi-AZ

• Aurora DB Instance Accessibility

For more information on these checks, see Trusted Advisor best practices (checks).

• CloudWatch home page shows:

• Current alarms and status

• Graphs of alarms and resources

• Service health status
Monitoring tools 804

https://aws.amazon.com/premiumsupport/trustedadvisor/best-practices/

Amazon Aurora User Guide for Aurora

In addition, you can use CloudWatch to do the following:

• Create customized dashboards to monitor the services that you care about.

• Graph metric data to troubleshoot issues and discover trends.

• Search and browse all your AWS resource metrics.

• Create and edit alarms to be notified of problems.

Monitoring tools 805

https://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/CloudWatch_Dashboards.html

Amazon Aurora User Guide for Aurora

Viewing cluster status

Using the Amazon RDS console, you can quickly access the status of your DB cluster.

Topics

• Viewing an Amazon Aurora DB cluster

• Viewing DB cluster status

• Viewing DB instance status in an Aurora cluster

Viewing cluster status 806

Amazon Aurora User Guide for Aurora

Viewing an Amazon Aurora DB cluster

You have several options for viewing information about your Amazon Aurora DB clusters and the
DB instances in your DB clusters.

• You can view DB clusters and DB instances in the Amazon RDS console by choosing Databases
from the navigation pane.

• You can get DB cluster and DB instance information using the AWS Command Line Interface
(AWS CLI).

• You can get DB cluster and DB instance information using the Amazon RDS API.

Console

In the Amazon RDS console, you can see details about a DB cluster by choosing Databases from
the console's navigation pane. You can also see details about DB instances that are members of an
Amazon Aurora DB cluster.

To view or modify DB clusters in the Amazon RDS console

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Databases.

3. Choose the name of the Aurora DB cluster that you want to view from the list.

For example, the following image shows the details page for the DB cluster named aurora-
test. The DB cluster has four DB instances shown in the DB identifier list. The writer DB
instance, dbinstance4, is the primary DB instance for the DB cluster.

Viewing a DB cluster 807

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Aurora User Guide for Aurora

4. To modify a DB cluster, select the DB cluster from the list and choose Modify.

To view or modify DB instances of a DB cluster in the Amazon RDS console

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Databases.

3. Do one of the following:

• To view a DB instance, choose one from the list that is a member of the Aurora DB cluster.

Viewing a DB cluster 808

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Aurora User Guide for Aurora

For example, if you choose the dbinstance4 DB instance identifier, the console shows the
details page for the dbinstance4 DB instance, as shown in the following image.

• To modify a DB instance, choose the DB instance from the list and choose Modify. For more
information about modifying a DB cluster, see Modifying an Amazon Aurora DB cluster.

Viewing a DB cluster 809

Amazon Aurora User Guide for Aurora

AWS CLI

To view DB cluster information by using the AWS CLI, use the describe-db-clusters command. For
example, the following AWS CLI command lists the DB cluster information for all of the DB clusters
in the modify us-east-1 region for the configured AWS account.

aws rds describe-db-clusters --region us-east-1

The command returns the following output if your AWS CLI is configured for JSON output.

{
 "DBClusters": [
 {
 "Status": "available",
 "Engine": "aurora-mysql",
 "Endpoint": "sample-cluster1.cluster-123456789012.us-
east-1.rds.amazonaws.com"
 "AllocatedStorage": 1,
 "DBClusterIdentifier": "sample-cluster1",
 "MasterUsername": "mymasteruser",
 "EarliestRestorableTime": "2023-03-30T03:35:42.563Z",
 "DBClusterMembers": [
 {
 "IsClusterWriter": false,
 "DBClusterParameterGroupStatus": "in-sync",
 "DBInstanceIdentifier": "sample-replica"
 },
 {
 "IsClusterWriter": true,
 "DBClusterParameterGroupStatus": "in-sync",
 "DBInstanceIdentifier": "sample-primary"
 }
],
 "Port": 3306,
 "PreferredBackupWindow": "03:34-04:04",
 "VpcSecurityGroups": [
 {
 "Status": "active",
 "VpcSecurityGroupId": "sg-ddb65fec"
 }
],
 "DBSubnetGroup": "default",
 "StorageEncrypted": false,

Viewing a DB cluster 810

https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-clusters.html

Amazon Aurora User Guide for Aurora

 "DatabaseName": "sample",
 "EngineVersion": "5.7.mysql_aurora.2.11.0",
 "DBClusterParameterGroup": "default.aurora-mysql5.7",
 "BackupRetentionPeriod": 1,
 "AvailabilityZones": [
 "us-east-1b",
 "us-east-1c",
 "us-east-1d"
],
 "LatestRestorableTime": "2023-03-31T20:06:08.903Z",
 "PreferredMaintenanceWindow": "wed:08:15-wed:08:45"
 },
 {
 "Status": "available",
 "Engine": "aurora-mysql",
 "Endpoint": "aurora-sample.cluster-123456789012.us-
east-1.rds.amazonaws.com",
 "AllocatedStorage": 1,
 "DBClusterIdentifier": "aurora-sample-cluster",
 "MasterUsername": "mymasteruser",
 "EarliestRestorableTime": "2023-03-30T10:21:34.826Z",
 "DBClusterMembers": [
 {
 "IsClusterWriter": false,
 "DBClusterParameterGroupStatus": "in-sync",
 "DBInstanceIdentifier": "aurora-replica-sample"
 },
 {
 "IsClusterWriter": true,
 "DBClusterParameterGroupStatus": "in-sync",
 "DBInstanceIdentifier": "aurora-sample"
 }
],
 "Port": 3306,
 "PreferredBackupWindow": "10:20-10:50",
 "VpcSecurityGroups": [
 {
 "Status": "active",
 "VpcSecurityGroupId": "sg-55da224b"
 }
],
 "DBSubnetGroup": "default",
 "StorageEncrypted": false,
 "DatabaseName": "sample",

Viewing a DB cluster 811

Amazon Aurora User Guide for Aurora

 "EngineVersion": "5.7.mysql_aurora.2.11.0",
 "DBClusterParameterGroup": "default.aurora-mysql5.7",
 "BackupRetentionPeriod": 1,
 "AvailabilityZones": [
 "us-east-1b",
 "us-east-1c",
 "us-east-1d"
],
 "LatestRestorableTime": "2023-03-31T20:00:11.491Z",
 "PreferredMaintenanceWindow": "sun:03:53-sun:04:23"
 }
]
}

RDS API

To view DB cluster information using the Amazon RDS API, use the DescribeDBClusters operation.

Viewing a DB cluster 812

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DescribeDBClusters.html

Amazon Aurora User Guide for Aurora

Viewing DB cluster status

The status of a DB cluster indicates its health. You can view the status of a DB cluster and the
cluster instances by using the Amazon RDS console, the AWS CLI, or the API.

Note

Aurora also uses another status called maintenance status, which is shown in the
Maintenance column of the Amazon RDS console. This value indicates the status of
any maintenance patches that need to be applied to a DB cluster. Maintenance status is
independent of DB cluster status. For more information about maintenance status, see
Applying updates for a DB cluster.

Find the possible status values for DB clusters in the following table.

DB cluster status Billed Description

Available Billed The DB cluster is healthy and available. When
an Aurora Serverless cluster is available and
paused, you're billed for storage only.

Backing-up Billed The DB cluster is currently being backed up.

Backtracking Billed The DB cluster is currently being backtracked.
This status only applies to Aurora MySQL.

Cloning-failed Not billed Cloning a DB cluster failed.

Creating Not billed The DB cluster is being created. The DB cluster
is inaccessible while it is being created.

Deleting Not billed The DB cluster is being deleted.

Failing-over Billed A failover from the primary instance to an
Aurora Replica is being performed.

Inaccessible-encry
ption-credentials

Not billed The AWS KMS key used to encrypt or decrypt
the DB cluster can't be accessed or recovered.

Viewing DB cluster status 813

Amazon Aurora User Guide for Aurora

DB cluster status Billed Description

Inaccessible-encry
ption-credentials-
recoverable

Billed for storage The KMS key used to encrypt or decrypt the
DB cluster can't be accessed. However, if the
KMS key is active, restarting the DB cluster can
recover it.

For more information, see Encrypting an
Amazon Aurora DB cluster.

Maintenance Billed Amazon RDS is applying a maintenance
update to the DB cluster. This status is used
for DB cluster-level maintenance that RDS
schedules well in advance.

Migrating Billed A DB cluster snapshot is being restored to a
DB cluster.

Migration-failed Not billed A migration failed.

Modifying Billed The DB cluster is being modified because of a
customer request to modify the DB cluster.

Promoting Billed A read replica is being promoted to a
standalone DB cluster.

Preparing-data-mig
ration

Billed Amazon RDS is preparing to migrate data to
Aurora.

Renaming Billed The DB cluster is being renamed because of a
customer request to rename it.

Resetting-master-c
redentials

Billed The master credentials for the DB cluster are
being reset because of a customer request to
reset them.

Starting Billed for storage The DB cluster is starting.

Stopped Billed for storage The DB cluster is stopped.

Viewing DB cluster status 814

Amazon Aurora User Guide for Aurora

DB cluster status Billed Description

Stopping Billed for storage The DB cluster is being stopped.

Storage-optimizati
on

Billed Your DB instance is being modified to change
the storage size or type. The DB instance is
fully operational. However, while the status
of your DB instance is storage-optimization,
you can't request any changes to the storage
of your DB instance. The storage optimization
process is usually short, but can sometimes
take up to and even beyond 24 hours.

Update-iam-db-auth Billed IAM authorization for the DB cluster is being
updated.

Upgrading Billed The DB cluster engine version is being
upgraded.

Console

To view the status of a DB cluster

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Databases.

The Databases page appears with the list of DB clusters. For each DB cluster, the status value
is displayed.

Viewing DB cluster status 815

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Aurora User Guide for Aurora

CLI

To view just the status of the DB clusters, use the following query in AWS CLI.

aws rds describe-db-clusters --query 'DBClusters[*].[DBClusterIdentifier,Status]' --
output table

Viewing DB cluster status 816

Amazon Aurora User Guide for Aurora

Viewing DB instance status in an Aurora cluster

The status of a DB instance in an Aurora cluster indicates the health of the DB instance. You can use
the following procedures to view the DB instance status of a cluster in the Amazon RDS console,
the AWS CLI command, or the API operation.

Note

Amazon RDS also uses another status called maintenance status, which is shown in the
Maintenance column of the Amazon RDS console. This value indicates the status of any
maintenance patches that need to be applied to a DB instance. Maintenance status is
independent of DB instance status. For more information about maintenance status, see
Applying updates for a DB cluster.

Find the possible status values for DB instances in the following table. This table also shows
whether you will be billed for the DB instance and storage, billed only for storage, or not billed. For
all DB instance statuses, you are always billed for backup usage.

DB instance status Billed Description

Available Billed The DB instance is healthy and available.

Backing-up Billed The DB instance is currently being backed up.

Backtracking Billed The DB instance is currently being backtracked. This status
only applies to Aurora MySQL.

Configuring-enhanc
ed-monitoring

Billed Enhanced Monitoring is being enabled or disabled for this DB
instance.

Configuring-iam-da
tabase-auth

Billed AWS Identity and Access Management (IAM) database
authentication is being enabled or disabled for this DB
instance.

Configuring-log-ex
ports

Billed Publishing log files to Amazon CloudWatch Logs is being
enabled or disabled for this DB instance.

Viewing DB instance status in an Aurora cluster 817

Amazon Aurora User Guide for Aurora

DB instance status Billed Description

Converting-to-vpc Billed The DB instance is being converted from a DB instance that
is not in an Amazon Virtual Private Cloud (Amazon VPC) to a
DB instance that is in an Amazon VPC.

Creating Not
billed

The DB instance is being created. The DB instance is inaccessi
ble while it is being created.

Delete-precheck Not
billed

Amazon RDS is validating that read replicas are healthy and
are safe to delete.

Deleting Not
billed

The DB instance is being deleted.

Failed Not
billed

The DB instance has failed and Amazon RDS can't recover it.
Perform a point-in-time restore to the latest restorable time
of the DB instance to recover the data.

Inaccessible-encry
ption-credentials

Not
billed

The AWS KMS key used to encrypt or decrypt the DB instance
 can't be accessed or recovered.

Inaccessible-encry
ption-credentials-
recoverable

Billed
for
storage

The KMS key used to encrypt or decrypt the DB instance can't
be accessed. However, if the KMS key is active, restarting the
DB instance can recover it.

For more information, see Encrypting an Amazon Aurora DB
cluster.

Incompatible-netwo
rk

Not
billed

Amazon RDS is attempting to perform a recovery action on a
DB instance but can't do so because the VPC is in a state that
prevents the action from being completed. This status can
occur if, for example, all available IP addresses in a subnet
are in use and Amazon RDS can't get an IP address for the DB
instance.

Viewing DB instance status in an Aurora cluster 818

Amazon Aurora User Guide for Aurora

DB instance status Billed Description

Incompatible-option-
group

Billed Amazon RDS attempted to apply an option group change but
can't do so, and Amazon RDS can't roll back to the previous
option group state. For more information, check the Recent
Events list for the DB instance. This status can occur if, for
example, the option group contains an option such as TDE
and the DB instance doesn't contain encrypted information.

Incompatible-param
eters

Billed Amazon RDS can't start the DB instance because the
parameters specified in the DB instance's DB parameter group
aren't compatible with the DB instance. Revert the parameter
changes or make them compatible with the DB instance to
regain access to your DB instance. For more information about
the incompatible parameters, check the Recent Events list for
the DB instance.

Incompatible-restore Not
billed

Amazon RDS can't do a point-in-time restore. Common causes
for this status include using temp tables or using MyISAM
tables with MySQL.

Insufficient-capacity Not
billed

Amazon RDS can’t create your instance because sufficient
capacity isn’t currently available. To create your DB instance
in the same AZ with the same instance type, delete your DB
instance, wait a few hours, and try to create again. Alternati
vely, create a new instance using a different instance class or
AZ.

Maintenance Billed Amazon RDS is applying a maintenance update to the DB
instance. This status is used for instance-level maintenance
that RDS schedules well in advance.

Modifying Billed The DB instance is being modified because of a customer
request to modify the DB instance.

Moving-to-vpc Billed The DB instance is being moved to a new Amazon Virtual
Private Cloud (Amazon VPC).

Viewing DB instance status in an Aurora cluster 819

Amazon Aurora User Guide for Aurora

DB instance status Billed Description

Rebooting Billed The DB instance is being rebooted because of a customer
request or an Amazon RDS process that requires the
rebooting of the DB instance.

Resetting-master-c
redentials

Billed The master credentials for the DB instance are being reset
because of a customer request to reset them.

Renaming Billed The DB instance is being renamed because of a customer
request to rename it.

Restore-error Billed The DB instance encountered an error attempting to restore
to a point-in-time or from a snapshot.

Starting Billed
for
storage

The DB instance is starting.

Stopped Billed
for
storage

The DB instance is stopped.

Stopping Billed
for
storage

The DB instance is being stopped.

Storage-config-upg
rade

Billed The storage file system configuration of the DB instance is
being upgraded. This status only applies to green databases
within a blue/green deployment, or to DB instance read
replicas.

Storage-full Billed The DB instance has reached its storage capacity allocatio
n. This is a critical status, and we recommend that you fix
this issue immediately. To do so, scale up your storage
by modifying the DB instance. To avoid this situation, set
Amazon CloudWatch alarms to warn you when storage space
is getting low.

Viewing DB instance status in an Aurora cluster 820

Amazon Aurora User Guide for Aurora

DB instance status Billed Description

Storage-optimization Billed Amazon RDS is optimizing the storage of your DB instance.
The storage optimization process is usually short, but can
sometimes take up to and even beyond 24 hours.

During storage optimization, the DB instance remains
available. Storage optimization is a background process that
doesn't affect the instance's availability.

Upgrading Billed The database engine version is being upgraded.

Console

To view the status of a DB instance

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Databases.

The Databases page appears with the list of DB instances. For each DB instance in a cluster,
the status value is displayed.

CLI

To view DB instance and its status information by using the AWS CLI, use the describe-db-instances
command. For example, the following AWS CLI command lists all the DB instances information .

aws rds describe-db-instances

Viewing DB instance status in an Aurora cluster 821

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-instances.html

Amazon Aurora User Guide for Aurora

To view a specific DB instance and its status, call the describe-db-instances command with the
following option:

• DBInstanceIdentifier – The name of the DB instance.

aws rds describe-db-instances --db-instance-identifier mydbinstance

To view just the status of all the DB instances, use the following query in AWS CLI.

aws rds describe-db-instances --query 'DBInstances[*].
[DBInstanceIdentifier,DBInstanceStatus]' --output table

API

To view the status of the DB instance using the Amazon RDS API, call the DescribeDBInstances
operation.

Viewing DB instance status in an Aurora cluster 822

https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-instances.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DescribeDBInstances.html

Amazon Aurora User Guide for Aurora

Viewing and responding to Amazon Aurora recommendations

Amazon Aurora provides automated recommendations for database resources, such as DB
instances, DB clusters, and DB parameter groups. These recommendations provide best
practice guidance by analyzing DB cluster configuration, DB instance configuration, usage, and
performance data.

Amazon RDS Performance Insights monitors specific metrics and automatically creates thresholds
by analyzing what levels are considered potentially problematic for a specified resource. When
new metric values cross a predefined threshold over a given period of time, Performance Insights
generates a proactive recommendation. This recommendation helps to prevent future database
performance impact. For example, the "Idle In Transaction" recommendation is generated for
Aurora PostgreSQL instances when the sessions connected to the database are not performing
active work, but can keep database resources blocked. To receive proactive recommendations, you
must turn on Performance Insights with a paid tier retention period. For information about turning
on Performance Insights, see Turning Performance Insights on and off for Aurora. For information
about pricing and data retention for Performance Insights see Pricing and data retention for
Performance Insights.

DevOps Guru for RDS monitors certain metrics to detect when the metric's behavior becomes
highly unusual or anomalous. These anomalies are reported as reactive insights with
recommendations. For example, DevOps Guru for RDS might recommend you to consider
increasing CPU capacity or investigate wait events that are contributing to DB load. DevOps Guru
for RDS also provides threshold based proactive recommendations. For these recommendations,
you must turn on DevOps Guru for RDS. For information about turning on DevOps Guru for RDS,
see Turning on DevOps Guru and specifying resource coverage.

Recommendations will be in any of the following status: active, dismissed, pending, or resolved.
Resolved recommendations are available for 365 days.

You can view or dismiss the recommendations. You can apply a configuration based active
recommendation immediately, schedule it in the next maintenance window, or dismiss it. For
threshold based proactive and machine learning based reactive recommendations, you need to
review the suggested cause of the issue and then perform the recommended actions to fix the
issue.

Topics

• Viewing Amazon Aurora recommendations

Viewing and responding to Amazon Aurora recommendations 823

Amazon Aurora User Guide for Aurora

• Responding to Amazon Aurora recommendations

Viewing and responding to Amazon Aurora recommendations 824

Amazon Aurora User Guide for Aurora

Viewing Amazon Aurora recommendations

Amazon Aurora generates recommendations for a resource when the resource is created or
modified.

The configuration based recommendations are supported in the following regions:

• US East (Ohio)

• US East (N. Virginia)

• US West (N. California)

• US West (Oregon)

• Asia Pacific (Mumbai)

• Asia Pacific (Seoul)

• Asia Pacific (Singapore)

• Asia Pacific (Sydney)

• Asia Pacific (Tokyo)

• Canada (Central)

• Europe (Frankfurt)

• Europe (Ireland)

• Europe (London)

• Europe (Paris)

• South America (São Paulo)

You can find examples of the configuration based recommendations in the following table.

Type Description Recommendation Downtime
required

Additional informati
on

Resource
Automated
backups is
turned off

Automated backups
aren't turned on for
your DB instances.
Automated backups
are recommend
ed because they

Turn on automated
backups with a
retention period of
up to 14 days.

Yes Overview of backing
up and restoring an
Aurora DB cluster

Demystifying
Amazon RDS backup

Viewing Amazon Aurora recommendations 825

https://aws.amazon.com/blogs/database/demystifying-amazon-rds-backup-storage-costs/
https://aws.amazon.com/blogs/database/demystifying-amazon-rds-backup-storage-costs/

Amazon Aurora User Guide for Aurora

Type Description Recommendation Downtime
required

Additional informati
on

enable point-in-time
recovery of your DB
instances.

storage costs on the
AWS Database Blog

Engine minor
version
upgrade is
required

Your database
resources aren't
running the latest
minor DB engine
version. The latest
minor version
contains the latest
security fixes and
other improvements.

Upgrade to latest
engine version.

Yes Maintaining an
Amazon Aurora DB
cluster

Enhanced
Monitoring is
turned off

Your database
resources don't have
Enhanced Monitoring
turned on. Enhanced
Monitoring provides
real-time operating
system metrics for
monitoring and
troubleshooting.

Turn on Enhanced
Monitoring.

No Monitoring OS
metrics with
Enhanced Monitoring

Viewing Amazon Aurora recommendations 826

https://aws.amazon.com/blogs/database/demystifying-amazon-rds-backup-storage-costs/

Amazon Aurora User Guide for Aurora

Type Description Recommendation Downtime
required

Additional informati
on

Storage
encryption is
turned off

Amazon RDS
supports encryptio
n at rest for all
the database
engines by using
the keys that you
manage in AWS Key
Management Service
(AWS KMS). On an
active DB instance
with Amazon RDS
encryption, the
data stored at rest
in the storage is
encrypted, similar to
automated backups,
read replicas, and
snapshots.

If encryption isn't
turned on while
creating an Aurora
DB cluster, you must
restore a decrypted
snapshot to an
encrypted DB cluster.

Turn on encryption of
data at rest for your
DB cluster.

Yes Security in Amazon
Aurora

DB clusters
with all
instances
in the same
Availability
Zone

The DB clusters are
currently in a single
Availability Zone. Use
multiple Availability
Zones to improve the
availability.

Add the DB instances
to multiple Availabil
ity Zones in your DB
cluster.

No High availability for
Amazon Aurora

Viewing Amazon Aurora recommendations 827

Amazon Aurora User Guide for Aurora

Type Description Recommendation Downtime
required

Additional informati
on

DB instances
in the
clusters with
heterogen
eous instance
sizes

We recommend that
you use the same DB
instance class and
size for all the DB
instances in your DB
cluster.

Use the same
instance class and
size for all the DB
instances in your DB
cluster.

Yes Replication with
Amazon Aurora

DB instances
in the
clusters with
heterogen
eous instance
classes

We recommend that
you use the same DB
instance class and
size for all the DB
instances in your DB
cluster.

Use the same
instance class and
size for all the DB
instances in your DB
cluster.

Yes Replication with
Amazon Aurora

DB instances
in the
clusters with
heterogen
eous
parameter
groups

We recommend
that all of the DB
instances in the DB
cluster use the same
DB parameter group.

Associate the DB
instance with the
DB parameter group
associated with the
writer instance in
your DB cluster.

No Working with
parameter groups

Amazon RDS
DB clusters
have one DB
instance

Add at least one
more DB instance to
your DB cluster to
improve availability
and performance.

Add a reader DB
instance to your DB
cluster.

No High availability for
Amazon Aurora

Viewing Amazon Aurora recommendations 828

Amazon Aurora User Guide for Aurora

Type Description Recommendation Downtime
required

Additional informati
on

Performan
ce Insights is
turned off

Performance Insights
monitors your DB
instance load to help
you analyze and
resolve database
performance issues.
We recommend
that you turn on
Performance Insights.

Turn on Performance
Insights.

No Monitoring DB load
with Performance
Insights on Amazon
Aurora

RDS
resources
major
versions
update is
required

Databases with the
current major version
for the DB engine
won't be supported.
We recommend that
you upgrade to the
latest major version
which includes new
functionality and
enhancements.

Upgrade to the latest
major version for the
DB engine.

Yes Amazon Aurora
updates

Creating a blue/green
deployment

Viewing Amazon Aurora recommendations 829

Amazon Aurora User Guide for Aurora

Type Description Recommendation Downtime
required

Additional informati
on

DB clusters
support only
up to 64 TiB
volume

Your DB clusters
support volumes
up to 64 TiB. The
latest engine versions
support volumes
up to 128 TiB for
your DB cluster. We
recommend that you
upgrade the engine
version of your DB
cluster to the latest
versions to support
volumes up to 128
TiB.

Upgrade the engine
version of your DB
clusters to support
volumes up to 128
TiB.

Yes Amazon Aurora size
limits

Viewing Amazon Aurora recommendations 830

Amazon Aurora User Guide for Aurora

Type Description Recommendation Downtime
required

Additional informati
on

DB clusters
with all
reader
instances
in the same
Availability
Zone

Availability Zones
(AZs) are locations
that are distinct from
each other to provide
isolation in case of
outages within each
AWS Region. We
recommend that
you distribute the
primary instance and
reader instances in
your DB cluster across
multiple AZs to
improve the availabil
ity of your DB cluster.
You can create a
Multi-AZ cluster using
the AWS Managemen
t Console, AWS CLI,
or Amazon RDS API
when you create
the cluster. You can
modify the existing
Aurora cluster to
a Multi-AZ cluster
by adding a new
reader instance and
specifying a different
AZ.

Your DB cluster
has all of its read
instances in the same
Availability Zone. We
recommend that you
distribute the reader
instances across
multiple Availability
Zones. Distribution
increases availabil
ity and improves
response time by
reducing network
latency between
clients and the
database.

No High availability for
Amazon Aurora

Viewing Amazon Aurora recommendations 831

Amazon Aurora User Guide for Aurora

Type Description Recommendation Downtime
required

Additional informati
on

DB memory
parameters
are diverging
from default

The memory
parameters of the DB
instances are significa
ntly different from
the default values.
These settings can
impact performance
and cause errors.

We recommend that
you reset the custom
memory parameters
for the DB instance to
their default values
in the DB parameter
group.

Reset the memory
parameters to their
default values.

No Working with
parameter groups

Query cache
parameter is
turned on

When changes
require that your
query cache is
purged, your DB
instance will appear
to stall. Most
workloads don't
benefit from a query
cache. The query
cache was removed
from MySQL version
8.0. We recommend
that you set the
query_cache_type
parameter to 0.

Set the query_cac
he_type parameter
value to 0 in your DB
parameter groups.

Yes Working with
parameter groups

Viewing Amazon Aurora recommendations 832

Amazon Aurora User Guide for Aurora

Type Description Recommendation Downtime
required

Additional informati
on

log_outpu
t parameter
is set to table

When log_output
is set to TABLE, more
storage is used than
when log_outpu
t is set to FILE. We
recommend that you
set the parameter
to FILE, to avoid
reaching the storage
size limit.

Set the log_outpu
t parameter value
to FILE in your DB
parameter groups.

No Aurora MySQL
database log files

autovacuu
m parameter
is turned off

The autovacuum
parameter is turned
off for your DB
clusters. Turning
autovacuum off
increases the table
and index bloat
and impacts the
performance.

We recommend
that you turn on
autovacuum in your
DB parameter groups.

Turn on the
autovacuum
parameter in your
DB cluster parameter
groups.

No Understanding
autovacuum in
Amazon RDS
for PostgreSQL
environments on the
AWS Database Blog

Viewing Amazon Aurora recommendations 833

https://aws.amazon.com/blogs/database/understanding-autovacuum-in-amazon-rds-for-postgresql-environments/
https://aws.amazon.com/blogs/database/understanding-autovacuum-in-amazon-rds-for-postgresql-environments/
https://aws.amazon.com/blogs/database/understanding-autovacuum-in-amazon-rds-for-postgresql-environments/
https://aws.amazon.com/blogs/database/understanding-autovacuum-in-amazon-rds-for-postgresql-environments/
https://aws.amazon.com/blogs/database/understanding-autovacuum-in-amazon-rds-for-postgresql-environments/

Amazon Aurora User Guide for Aurora

Type Description Recommendation Downtime
required

Additional informati
on

synchrono
us_commit

 parameter
is turned off

When synchrono
us_commit
parameter is turned
off, data can be lost
in a database crash.
The durability of the
database is at risk.

We recommend
that you turn on
the synchrono
us_commit
parameter.

Turn on synchrono
us_commit
parameter in your DB
parameter groups.

Yes Amazon Aurora
PostgreSQL
parameters: Replicati
on, security, and
logging on the AWS
Database Blog

track_cou
nts
parameter is
turned off

When the
track_counts
parameter is turned
off, the database
doesn't collect the
database activity
statistics. Autovacuu
m requires these
statistics to work
correctly.

We recommend that
you set track_cou
nts parameter to 1.

Set track_counts
parameter to 1.

No Run-time Statistics
for PostgreSQL

Viewing Amazon Aurora recommendations 834

https://aws.amazon.com/blogs/database/amazon-aurora-postgresql-parameters-part-2-replication-security-and-logging/
https://aws.amazon.com/blogs/database/amazon-aurora-postgresql-parameters-part-2-replication-security-and-logging/
https://aws.amazon.com/blogs/database/amazon-aurora-postgresql-parameters-part-2-replication-security-and-logging/
https://aws.amazon.com/blogs/database/amazon-aurora-postgresql-parameters-part-2-replication-security-and-logging/
https://aws.amazon.com/blogs/database/amazon-aurora-postgresql-parameters-part-2-replication-security-and-logging/
https://www.postgresql.org/docs/current/runtime-config-statistics.html#GUC-TRACK-COUNTS
https://www.postgresql.org/docs/current/runtime-config-statistics.html#GUC-TRACK-COUNTS

Amazon Aurora User Guide for Aurora

Type Description Recommendation Downtime
required

Additional informati
on

enable_in
dexonlysc
an
parameter is
turned off

The query planner or
optimizer can't use
the index-only scan
plan type when it is
turned off.

We recommend
that you set
the enable_in
dexonlyscan
parameter value to 1.

Set the enable_in
dexonlyscan
parameter value to 1.

No Planner Method
Configuration for
PostgreSQL

enable_in
dexscan
parameter is
turned off

The query planner or
optimizer can't use
the index scan plan
type when it is turned
off.

We recommend
that you set
the enable_in
dexscan value to 1.

Set the enable_in
dexscan parameter
value to 1.

No Planner Method
Configuration for
PostgreSQL

Viewing Amazon Aurora recommendations 835

https://www.postgresql.org/docs/current/runtime-config-query.html#GUC-ENABLE-INDEXONLYSCAN
https://www.postgresql.org/docs/current/runtime-config-query.html#GUC-ENABLE-INDEXONLYSCAN
https://www.postgresql.org/docs/current/runtime-config-query.html#GUC-ENABLE-INDEXONLYSCAN
https://www.postgresql.org/docs/current/runtime-config-query.html#GUC-ENABLE-INDEXONLYSCAN
https://www.postgresql.org/docs/current/runtime-config-query.html#GUC-ENABLE-INDEXONLYSCAN
https://www.postgresql.org/docs/current/runtime-config-query.html#GUC-ENABLE-INDEXONLYSCAN

Amazon Aurora User Guide for Aurora

Type Description Recommendation Downtime
required

Additional informati
on

innodb_fl
ush_log_a
t_trx
parameter is
turned off

The value of
the innodb_fl
ush_log_at_trx
parameter of your
DB instance isn't
safe value. This
parameter controls
the persistence of
commit operations to
disk.

We recommend
that you set
the innodb_fl
ush_log_at_trx
parameter to 1.

Set the innodb_fl
ush_log_at_trx
parameter value to 1.

No Configuring how
frequently the log
buffer is flushed

Viewing Amazon Aurora recommendations 836

Amazon Aurora User Guide for Aurora

Type Description Recommendation Downtime
required

Additional informati
on

innodb_st
ats_persi
stent
parameter is
turned off

Your DB instance
isn't configured to
persist the InnoDB
statistics to the disk.
When the statistics
aren't stored, they
are recalculated each
time the instance
restarts and the table
accessed. This leads
to variations in the
query execution plan.
You can modify the
value of this global
parameter at the
table level.

We recommend
that you set
the innodb_st
ats_persistent
parameter value to
ON.

Set the innodb_st
ats_persistent
parameter value to
ON.

No Working with
parameter groups

Viewing Amazon Aurora recommendations 837

Amazon Aurora User Guide for Aurora

Type Description Recommendation Downtime
required

Additional informati
on

innodb_op
en_files
parameter is
low

The innodb_op
en_files
parameter controls
the number of files
InnoDB can open at
one time. InnoDB
opens all of the log
and system tablespac
e files when mysqld is
running.

Your DB instance has
a low value for the
maximum number
of files InnoDB can
open at one time. We
recommend that you
set the innodb_op
en_files
parameter to a
minimum value of
65.

Set the innodb_op
en_files
parameter to a
minimum value of
65.

Yes InnoDB open files for
MySQL

Viewing Amazon Aurora recommendations 838

https://dev.mysql.com/doc/refman/5.7/en/innodb-parameters.html#sysvar_innodb_open_files
https://dev.mysql.com/doc/refman/5.7/en/innodb-parameters.html#sysvar_innodb_open_files

Amazon Aurora User Guide for Aurora

Type Description Recommendation Downtime
required

Additional informati
on

max_user_
connectio
ns
parameter is
low

Your DB instance has
a low value for the
maximum number
of simultaneous
connections for each
database account.

We recommend
setting the
max_user_
connections
parameter to a
number greater than
5.

Increase the value
of the max_user_
connections
parameter to a
number greater than
5.

Yes Setting Account
Resource Limits for
MySQL

Read Replicas
are open
in writable
mode

Your DB instance
has a read replica in
writable mode, which
allows updates from
clients.

We recommend
that you set the
the read_only

 parameter to
TrueIfReplica so
that the read replicas
isn't in writable
mode.

Set the read_only
 parameter value to

TrueIfReplica .

No Working with
parameter groups

Viewing Amazon Aurora recommendations 839

https://dev.mysql.com/doc/refman/8.0/en/user-resources.html
https://dev.mysql.com/doc/refman/8.0/en/user-resources.html
https://dev.mysql.com/doc/refman/8.0/en/user-resources.html

Amazon Aurora User Guide for Aurora

Type Description Recommendation Downtime
required

Additional informati
on

innodb_de
fault_row
_format
parameter
setting is
unsafe

Your DB instance
encounters a known
issue: A table created
in a MySQL version
lower than 8.0.26
with the row_forma
t set to COMPACT
or REDUNDANT will
be inaccessible and
unrecoverable when
the index exceeds
767 bytes.

We recommend
that you set
the innodb_de
fault_row
_format parameter
value to DYNAMIC.

Set the innodb_de
fault_row
_format parameter
value to DYNAMIC.

No Changes in MySQL
8.0.26

Viewing Amazon Aurora recommendations 840

https://dev.mysql.com/doc/relnotes/mysql/8.0/en/news-8-0-26.html#mysqld-8-0-26-bug
https://dev.mysql.com/doc/relnotes/mysql/8.0/en/news-8-0-26.html#mysqld-8-0-26-bug

Amazon Aurora User Guide for Aurora

Type Description Recommendation Downtime
required

Additional informati
on

general_l
ogging
parameter is
turned on

The general logging
is turned on for your
DB instance. This
setting is useful while
troubleshooting
the database issues.
However, turning
on general logging
increases the amount
of I/O operations
and allocated storage
space, which might
result in contentio
n and performance
degradation.

Check your requireme
nts for general
logging usage. We
recommend that you
set the general_l
ogging parameter
value to 0.

Check your requireme
nts for general
logging usage. If
it isn't mandatory
, we recommend
that you to set the
general_logging
parameter value to 0.

No Overview of Aurora
MySQL database logs

Viewing Amazon Aurora recommendations 841

Amazon Aurora User Guide for Aurora

Type Description Recommendation Downtime
required

Additional informati
on

DB cluster
under-pro
visioned
for read
workload

We recommend that
you add a reader
DB instance to your
DB cluster with the
same instance class
and size as the writer
DB instance in the
cluster. The current
configuration has
one DB instance
with a continuou
sly high database
load caused mostly
by read operation
s. Distribute these
operations by adding
another DB instance
to the cluster and
directing the read
workload to the DB
cluster read-only
endpoint.

Add a reader DB
instance to the
cluster.

No Adding Aurora
Replicas to a DB
cluster

Managing performan
ce and scaling for
Aurora DB clusters

Amazon RDS pricing

Viewing Amazon Aurora recommendations 842

https://aws.amazon.com/rds/pricing/

Amazon Aurora User Guide for Aurora

Type Description Recommendation Downtime
required

Additional informati
on

RDS instance
under-pro
visioned
for system
memory
capacity

We recommend that
you tune your queries
to use lesser memory
or use a DB instance
type with higher
allocated memory.
When the instance
is running low on
memory, then the
database performan
ce is impacted.

Use a DB instance
with higher memory
capacity

Yes Scaling Your Amazon
RDS Instance Verticall
y and Horizontally on
the AWS Database
Blog

Amazon RDS instance
types

Amazon RDS pricing

RDS instance
under-pro
visioned for
system CPU
capacity

We recommend
that you tune your
queries to use less
CPU or modify your
DB instance to use
a DB instance class
with higher allocated
vCPUs. Database
performance might
decline when a DB
instance is running
low on CPU.

Use a DB instance
with higher CPU
capacity

Yes Scaling Your Amazon
RDS Instance Verticall
y and Horizontally on
the AWS Database
Blog

Amazon RDS instance
types

Amazon RDS pricing

Viewing Amazon Aurora recommendations 843

https://aws.amazon.com/blogs/database/scaling-your-amazon-rds-instance-vertically-and-horizontally/
https://aws.amazon.com/blogs/database/scaling-your-amazon-rds-instance-vertically-and-horizontally/
https://aws.amazon.com/blogs/database/scaling-your-amazon-rds-instance-vertically-and-horizontally/
https://aws.amazon.com/rds/instance-types/
https://aws.amazon.com/rds/instance-types/
https://aws.amazon.com/rds/pricing/
https://aws.amazon.com/blogs/database/scaling-your-amazon-rds-instance-vertically-and-horizontally/
https://aws.amazon.com/blogs/database/scaling-your-amazon-rds-instance-vertically-and-horizontally/
https://aws.amazon.com/blogs/database/scaling-your-amazon-rds-instance-vertically-and-horizontally/
https://aws.amazon.com/rds/instance-types/
https://aws.amazon.com/rds/instance-types/
https://aws.amazon.com/rds/pricing/

Amazon Aurora User Guide for Aurora

Type Description Recommendation Downtime
required

Additional informati
on

RDS
resources are
not utilizing
connectio
n pooling
correctly

We recommend that
you enable Amazon
RDS Proxy to efficient
ly pool and share
existing database
connections. If you
are already using
a proxy for your
database, configure it
correctly to improve
connection pooling
and load balancing
across multiple DB
instances. RDS Proxy
can help reduce the
risk of connectio
n exhaustion and
downtime while
improving availability
and scalability.

Enable RDS Proxy or
modify your existing
proxy configuration

No Scaling Your Amazon
RDS Instance Verticall
y and Horizontally on
the AWS Database
Blog

Using Amazon RDS
Proxy for Aurora

Amazon RDS Proxy
Pricing

Using the Amazon RDS console, you can view Amazon Aurora recommendations for your database
resources. For a DB cluster, the recommendations appear for the DB cluster and its instances.

Console

To view the Amazon Aurora recommendations

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, do any of the following:

• Choose Recommendations. The number of active recommendations for your resources and
the number of recommendations with the highest severity generated in the last month are

Viewing Amazon Aurora recommendations 844

https://aws.amazon.com/blogs/database/scaling-your-amazon-rds-instance-vertically-and-horizontally/
https://aws.amazon.com/blogs/database/scaling-your-amazon-rds-instance-vertically-and-horizontally/
https://aws.amazon.com/blogs/database/scaling-your-amazon-rds-instance-vertically-and-horizontally/
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/rds-proxy.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/rds-proxy.html
https://aws.amazon.com/rds/proxy/pricing/
https://aws.amazon.com/rds/proxy/pricing/
https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Aurora User Guide for Aurora

available next to Recommendations. To find the number of active recommendations for
each severity, choose the number that shows the highest severity.

By default, the Recommendations page displays a list of new recommendations in the last
month. Amazon Aurora gives recommendations for all the resources in your account and
sorts the recommendations by their severity.

Viewing Amazon Aurora recommendations 845

Amazon Aurora User Guide for Aurora

You can choose a recommendation to view a section at the bottom of the page which
contains the affected resources and details of how the recommendation will be applied.

• In the Databases page, choose Recommendations for a resource.

The Recommendations tab displays the recommendations and its details for the selected
resource.

Viewing Amazon Aurora recommendations 846

Amazon Aurora User Guide for Aurora

The following details are available for the recommendations:

• Severity – The implication level of the issue. The severity levels are High, Medium, Low, and
Informational.

• Detection – The number of affected resources and a short description of the issue. Choose
this link to view the recommendation and the analysis details.

• Recommendation – A short description of the recommended action to apply.

• Impact – A short description of the possible impact when the recommendation isn't applied.

• Category – The type of recommendation. The categories are Performance efficiency,
Security, Reliability, Cost optimization, Operational excellence, and Sustainability.

• Status – The current status of the recommendation. The possible statuses are All, Active,
Dismissed, Resolved, and Pending.

• Start time – The time when the issue began. For example, 18 hours ago.

• Last modified – The time when the recommendation was last updated by the system
because of a change in the Severity, or the time you responded to the recommendation. For
example, 10 hours ago.

• End time – The time when the issue ended. The time won't display for any continuing issues.

• Resource identifier – The name of one or more resources.

3. (Optional) Choose Severity or Category operators in the field to filter the list of
recommendations.

Viewing Amazon Aurora recommendations 847

Amazon Aurora User Guide for Aurora

The recommendations for the selected operation appear.

4. (Optional) Choose any of the following recommendation status:

• Active (default) – Shows the current recommendations that you can apply, schedule it for
the next maintenance window, or dismiss.

• All – Shows all the recommendations with the current status.

• Dismissed – Shows the dismissed recommendations.

• Resolved – Shows the recommendations that are resolved.

• Pending – Shows the recommendations whose recommended actions are in progress or
scheduled for the next maintenance window.

Viewing Amazon Aurora recommendations 848

Amazon Aurora User Guide for Aurora

5. (Optional) Choose Relative mode or Absolute mode in Last modified to modify the time
period. The Recommendations page displays the recommendations generated in the time
period. The default time period is the last month. In the Absolute mode, you can choose the
time period, or enter the time in Start date and End date fields.

Viewing Amazon Aurora recommendations 849

Amazon Aurora User Guide for Aurora

The recommendations for the set time period display.

Note that you can see all recommendations for resources in your account by setting the range
to All.

6. (Optional) Choose Preferences in the right to customize the details to display. You can choose
a page size, wrap the lines of the text, and allow or hide the columns.

7. (Optional) Choose a recommendation and then choose View details.

Viewing Amazon Aurora recommendations 850

Amazon Aurora User Guide for Aurora

The recommendation details page appears. The title provides the total count of the resources
with the issue detected and the severity.

For information about the components on the details page for an anomaly based reactive
recommendation, see Viewing reactive anomalies in the Amazon DevOps Guru User Guide.

For information about the components on the details page for a threshold based proactive
recommendation, see Viewing Performance Insights proactive recommendations.

The other automated recommendations display the following components on the
recommendation details page:

• Recommendation – A summary of the recommendation and whether downtime is required
to apply the recommendation.

• Resources affected – Details of the affected resources.

Viewing Amazon Aurora recommendations 851

https://docs.aws.amazon.com/devops-guru/latest/userguide/working-with-rds.analyzing.metrics.html

Amazon Aurora User Guide for Aurora

• Recommendation details – Supported engine information, any required associated cost to
apply the recommendation, and documentation link to learn more.

CLI

To view Amazon RDS recommendations of the DB instances or DB clusters, use the following
command in AWS CLI.

aws rds describe-db-recommendations

RDS API

To view Amazon RDS recommendations using the Amazon RDS API, use the
DescribeDBRecommendations operation.

Responding to Amazon Aurora recommendations

From the list of Aurora recommendations, you can:

• Apply a configuration based recommendation immediately or defer until the next maintenance
window.

• Dismiss one or more recommendations.

Responding to Amazon Aurora recommendations 852

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DescribeDBRecommendations.html

Amazon Aurora User Guide for Aurora

• Move one or more dismissed recommendations to active recommendations.

Applying an Amazon Aurora recommendation

Using the Amazon RDS console, select a configuration based recommendation or an affected
resource in the details page, and apply the recommendation immediately or schedule it for the
next maintenance window. The resource might need to restart for the change to take effect. For a
few DB parameter group recommendations, you might need to restart the resources.

The threshold based proactive or anomaly based reactive recommendations won't have the apply
option and might need additional review.

Console

To apply a configuration based recommendation

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, perform any of the following:

• Choose Recommendations.

The Recommendations page appears with the list of all recommendations.

• Choose Databases and then choose Recommendations for a resource in the databases page.

The details appear in the Recommendations tab for the selected recommendation.

• Choose Detection for an active recommendation in the Recommendations page or the
Recommendations tab in the Databases page.

The recommendation details page appears.

3. Choose a recommendation, or one or more affected resources in the recommendation details
page, and do any of the following:

• Choose Apply and then choose Apply immediately to apply the recommendation
immediately.

• Choose Apply and then choose Apply in next maintenance window to schedule in the next
maintenance window.

Responding to Amazon Aurora recommendations 853

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Aurora User Guide for Aurora

The selected recommendation status is updated to pending until the next maintainance
window.

A confirmation window appears.

4. Choose Confirm application to apply the recommendation. This window confirms whether the
resources need an automatic or manual restart for the changes to take effect.

The following example shows the confirmation window to apply the recommendation
immediately.

Responding to Amazon Aurora recommendations 854

Amazon Aurora User Guide for Aurora

The following example shows the confirmation window to schedule applying the
recommendation in the next maintenance window.

Responding to Amazon Aurora recommendations 855

Amazon Aurora User Guide for Aurora

A banner displays a message when the recommendation applied is successful or has failed.

The following example shows the banner with the successful message.

The following example shows the banner with the failure message.

Responding to Amazon Aurora recommendations 856

Amazon Aurora User Guide for Aurora

RDS API

To apply a configuration based Aurora recommendation using the Amazon RDS API

1. Use the DescribeDBRecommendations operation. The RecommendedActions in the output
can have one or more recommended actions.

2. Use the RecommendedAction object for each recommended action from step 1. The output
contains Operation and Parameters.

The following example shows the output with one recommended action.

 "RecommendedActions": [
 {
 "ActionId": "0b19ed15-840f-463c-a200-b10af1b552e3",
 "Title": "Turn on auto backup", // localized
 "Description": "Turn on auto backup for my-mysql-instance-1", //
 localized
 "Operation": "ModifyDbInstance",
 "Parameters": [
 {
 "Key": "DbInstanceIdentifier",
 "Value": "my-mysql-instance-1"
 },
 {
 "Key": "BackupRetentionPeriod",
 "Value": "7"
 }
],
 "ApplyModes": ["immediately", "next-maintenance-window"],
 "Status": "applied"
 },
 ... // several others
],

3. Use the operation for each recommended action from the output in step 2 and input the
Parameters values.

4. After the operation in step 2 is successful, use the ModifyDBRecommendation operation to
modify the recommendation status.

Responding to Amazon Aurora recommendations 857

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DescribeDBRecommendations.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_RecommendedAction.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBRecommendation.html

Amazon Aurora User Guide for Aurora

Dismissing the Amazon Aurora recommendations

You can dismiss one or more recommendations.

Console

To dismiss one or more recommendations

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, perform any of the following:

• Choose Recommendations.

The Recommendations page appears with the list of all recommendations.

• Choose Databases and then choose Recommendations for a resource in the databases page.

The details appear in the Recommendations tab for the selected recommendation.

• Choose Detection for an active recommendation in the Recommendations page or the
Recommendations tab in the Databases page.

The recommendation details page displays the list of affected resources.

3. Choose one or more recommendation, or one or more affected resources in the
recommendation details page, and then choose Dismiss.

The following example shows the Recommendations page with multiple active
recommendations selected to dismiss.

Responding to Amazon Aurora recommendations 858

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Aurora User Guide for Aurora

A banner displays a message when the selected one or more recommendations are dismissed.

The following example shows the banner with the successful message.

The following example shows the banner with the failure message.

CLI

To dismiss an Aurora recommendation using the AWS CLI

1. Run the command aws rds describe-db-recommendations --filters
"Name=status,Values=active".

The output provides a list of recommendations in active status.

2. Find the recommendationId for the recommendation that you want to dismiss from step 1.

3. Run the command >aws rds modify-db-recommendation --status dismissed
--recommendationId <ID> with the recommendationId from step 2 to dismiss the
recommendation.

Responding to Amazon Aurora recommendations 859

Amazon Aurora User Guide for Aurora

RDS API

To dismiss an Aurora recommendation using the Amazon RDS API, use the
ModifyDBRecommendation operation.

Modifying the dismissed Amazon Aurora recommendations to active
recommendations

You can move one or more dismissed recommendations to active recommendations.

Console

To move one or more dismissed recommendations to active recommendations

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, perform any of the following:

• Choose Recommendations.

The Recommendations page displays a list of recommendations sorted by the severity for
all the resources in your account.

• Choose Databases and then choose Recommendations for a resource in the databases page.

The Recommendations tab displays the recommendations and its details for the selected
resource.

3. Choose one or more dismissed recommendations from the list and then choose Move to
active.

A banner displays a successful or failure message when the moving the selected
recommendations from dismissed to active status.

Responding to Amazon Aurora recommendations 860

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBRecommendation.html
https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Aurora User Guide for Aurora

The following example shows the banner with the successful message.

The following example shows the banner with the failure message.

CLI

To change a dismissed Aurora recommendation to active recommendation using the AWS CLI

1. Run the command aws rds describe-db-recommendations --filters
"Name=status,Values=dismissed".

The output provides a list of recommendations in dismissed status.

2. Find the recommendationId for the recommendation that you want to change the status
from step 1.

3. Run the command >aws rds modify-db-recommendation --status active --
recommendationId <ID> with the recommendationId from step 2 to change to active
recommendation.

RDS API

To change a dismissed Aurora recommendation to active recommendation using the Amazon RDS
API, use the ModifyDBRecommendation operation.

Responding to Amazon Aurora recommendations 861

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBRecommendation.html

Amazon Aurora User Guide for Aurora

Viewing metrics in the Amazon RDS console

Amazon RDS integrates with Amazon CloudWatch to display a variety of Aurora DB cluster metrics
in the RDS console. Some metrics are apply at the cluster level, whereas others apply at the
instance level. For descriptions of the instance-level and cluster-level metrics, see Metrics reference
for Amazon Aurora.

For your Aurora DB cluster, the following categories of metrics are monitored:

• CloudWatch – Shows the Amazon CloudWatch metrics for Aurora that you can access in the
RDS console. You can also access these metrics in the CloudWatch console. Each metric includes
a graph that shows the metric monitored over a specific time span. For a list of CloudWatch
metrics, see Amazon CloudWatch metrics for Amazon Aurora.

• Enhanced monitoring – Shows a summary of operating-system metrics when your Aurora DB
cluster has turned on Enhanced Monitoring. RDS delivers the metrics from Enhanced Monitoring
to your Amazon CloudWatch Logs account. Each OS metric includes a graph showing the metric
monitored over a specific time span. For an overview, see Monitoring OS metrics with Enhanced
Monitoring. For a list of Enhanced Monitoring metrics, see OS metrics in Enhanced Monitoring.

• OS Process list – Shows details for each process running in your DB cluster.

• Performance Insights – Opens the Amazon RDS Performance Insights dashboard for a DB
instance in your Aurora DB cluster. Performance Insights isn't supported at the cluster level.
For an overview of Performance Insights, see Monitoring DB load with Performance Insights on
Amazon Aurora. For a list of Performance Insights metrics, see Amazon CloudWatch metrics for
Amazon RDS Performance Insights.

Amazon RDS now provides a consolidated view of Performance Insights and CloudWatch metrics in
the Performance Insights dashboard. Performance Insights must be turned on for your DB cluster
to use this view. You can choose the new monitoring view in the Monitoring tab or Performance
Insights in the navigation pane. To view the instructions for choosing this view, see Viewing
combined metrics in the Amazon RDS console.

If you want to continue with the legacy monitoring view, continue with this procedure.

Note

The legacy monitoring view will be discontinued on December 15, 2023.

Viewing metrics in the Amazon RDS console 862

Amazon Aurora User Guide for Aurora

To view metrics for your DB cluster in the legacy monitoring view:

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Databases.

3. Choose the name of the Aurora DB cluster that you want to monitor.

The database page appears. The following example shows an Amazon Aurora PostgreSQL
database named apga.

4. Scroll down and choose Monitoring.

The monitoring section appears. By default, CloudWatch metrics are shown. For descriptions of
these metrics, see Amazon CloudWatch metrics for Amazon Aurora.

Viewing metrics in the Amazon RDS console 863

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Aurora User Guide for Aurora

5. Choose Monitoring to see the metric categories.

6. Choose the category of metrics that you want to see.

The following example shows Enhanced Monitoring metrics. For descriptions of these metrics,
see OS metrics in Enhanced Monitoring.

Viewing metrics in the Amazon RDS console 864

Amazon Aurora User Guide for Aurora

Tip

To choose the time range of the metrics represented by the graphs, you can use the
time range list.
To bring up a more detailed view, you can choose any graph. You can also apply metric-
specific filters to the data.

Viewing metrics in the Amazon RDS console 865

Amazon Aurora User Guide for Aurora

Viewing combined metrics in the Amazon RDS console

Amazon RDS now provides a consolidated view of Performance Insights and CloudWatch metrics
for your DB instance in the Performance Insights dashboard. You can use the preconfigured
dashboard or create a custom dashboard. The preconfigured dashboard provides the most
commonly used metrics to help diagnose performance issues for a database engine. Alternatively,
you can create a custom dashboard with the metrics for a database engine that meet your analysis
requirements. Then, use this dashboard for all the DB instances of that database engine type in
your AWS account.

You can choose the new monitoring view in the Monitoring tab or Performance Insights in the
navigation pane. When you navigate to the Performance Insights page, you see the options to
choose between the new monitoring view and legacy view. The option you choose is saved as the
default view.

Performance Insights must be turned on for your DB cluster to view the combined metrics in the
Performance Insights dashboard. For more information about turning on Performance Insights, see
Turning Performance Insights on and off for Aurora.

Note

We recommend that you choose the new monitoring view. You can continue to use the
legacy monitoring view until it is discontinued on December 15, 2023.

Choosing the new monitoring view in the Monitoring tab

To choose the new monitoring view in the Monitoring tab:

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the left navigation pane, choose Databases.

3. Choose the Aurora DB cluster that you want to monitor.

The database page appears.

4. Scroll down and choose the Monitoring tab.

Viewing combined metrics in the Amazon RDS console 866

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Aurora User Guide for Aurora

A banner appears with the option to choose the new monitoring view. The following example
shows the banner to choose the new monitoring view.

5. Choose Go to new monitoring view to open the Performance Insights dashboard with
Performance Insights and CloudWatch metrics for your DB cluster.

6. (Optional) If Performance Insights is turned off for your DB instance, a banner appears with
the option to modify your DB instance and turn on Performance Insights.

The following example shows the banner to modify the DB instance in the Monitoring tab .

Choose Modify to modify your DB instance and turn on Performance Insights. For more
information about turning on Performance Insights, see Turning Performance Insights on and
off for Aurora

Choosing the new monitoring view with Performance Insights in the
navigation pane

To choose the new monitoring view with Performance Insights in the navigation pane:

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the left navigation pane, choose Performance Insights.

3. Choose a DB instance to open a window that has the monitoring view options.

The following example shows the window with the monitoring view options.

Choosing the new monitoring view with Performance Insights in the navigation pane 867

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Aurora User Guide for Aurora

4. Choose the Performance Insights and CloudWatch metrics view (New) option, and then
choose Continue.

You can now view the Performance Insights dashboard that shows both Performance Insights
and CloudWatch metrics for your DB instance. The following example shows the Performance
Insights and CloudWatch metrics in the dashboard.

Choosing the new monitoring view with Performance Insights in the navigation pane 868

Amazon Aurora User Guide for Aurora

Choosing the legacy view with Performance Insights in the navigation
pane

You can choose the legacy monitoring view to view only the Performance Insights metrics for your
DB instance.

Note

This view will be discontinued on December 15, 2023.

To choose the legacy monitoring view with Performance Insights in the navigation pane:

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the left navigation pane, choose Performance Insights.

3. Choose a DB instance.

4. Choose the settings icon on the Performance Insights dashboard.

Choosing the legacy view with Performance Insights in the navigation pane 869

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Aurora User Guide for Aurora

You can now see the Settings window that shows the option to choose the legacy
Performance Insights view.

The following example shows the window with the option for the legacy monitoring view.

5. Select the Performance Insights view option and choose Continue.

A warning message appears. Any dashboard configurations that you saved won't be available
in this view.

6. Choose Confirm to continue to the legacy Performance Insights view.

You can now view the Performance Insights dashboard that shows only Performance Insights
metrics for the DB instance.

Creating a custom dashboard with Performance Insights in the
navigation pane

In the new monitoring view, you can create a custom dashboard with the metrics you need to meet
your analysis requirements.

Creating a custom dashboard with Performance Insights in the navigation pane 870

Amazon Aurora User Guide for Aurora

You can create a custom dashboard by selecting Performance Insights and CloudWatch metrics for
your DB instance. You can use this custom dashboard for other DB instances of the same database
engine type in your AWS account.

Note

The customized dashboard supports up to 50 metrics.

Use the widget settings menu to edit or delete the dashboard, and move or resize the widget
window.

To create a custom dashboard with Performance Insights in the navigation pane:

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the left navigation pane, choose Performance Insights.

3. Choose a DB instance.

4. Scroll down to the Metrics tab in the window.

5. Select the custom dashboard from the drop down list. The following example shows the
custom dashboard creation.

6. Choose Add widget to open the Add widget window. You can open and view the available
operating system (OS) metrics, database metrics, and CloudWatch metrics in the window.

The following example shows the Add widget window with the metrics.

Creating a custom dashboard with Performance Insights in the navigation pane 871

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Aurora User Guide for Aurora

7. Select the metrics that you want to view in the dashboard and choose Add widget. You can
use the search field to find a specific metric.

The selected metrics appear on your dashboard.

Creating a custom dashboard with Performance Insights in the navigation pane 872

Amazon Aurora User Guide for Aurora

8. (Optional) If you want to modify or delete your dashboard, choose the settings icon on the
upper right of the widget, and then select one of the following actions in the menu.

• Edit – Modify the metrics list in the window. Choose Update widget after you select the
metrics for your dashboard.

• Delete – Deletes the widget. Choose Delete in the confirmation window.

Choosing the preconfigured dashboard with Performance Insights in
the navigation pane

You can view the most commonly used metrics with the preconfigured dashboard. This dashboard
helps diagnose performance issues with a database engine and reduce the average recovery time
from hours to minutes.

Note

This dashboard can't be edited.

To choose the preconfigured dashboard with Performance Insights in the navigation pane:

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the left navigation pane, choose Performance Insights.

3. Choose a DB instance.

4. Scroll down to the Metrics tab in the window

5. Select a preconfigured dashboard from the drop down list.

You can view the metrics for the DB instance in the dashboard. The following example shows a
preconfigured metrics dashboard.

Choosing the preconfigured dashboard with Performance Insights in the navigation pane 873

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Aurora User Guide for Aurora

Choosing the preconfigured dashboard with Performance Insights in the navigation pane 874

Amazon Aurora User Guide for Aurora

Monitoring Amazon Aurora metrics with Amazon CloudWatch

Amazon CloudWatch is a metrics repository. The repository collects and processes raw data from
Amazon Aurora into readable, near real-time metrics. For a complete list of Amazon Aurora metrics
sent to CloudWatch, see Metrics reference for Amazon Aurora.

Topics

• Overview of Amazon Aurora and Amazon CloudWatch

• Viewing DB cluster metrics in the CloudWatch console and AWS CLI

• Exporting Performance Insights metrics to CloudWatch

• Creating CloudWatch alarms to monitor Amazon Aurora

Monitoring Aurora with CloudWatch 875

https://docs.aws.amazon.com/en_us/AmazonRDS/latest/AuroraUserGuide/metrics-reference.html

Amazon Aurora User Guide for Aurora

Overview of Amazon Aurora and Amazon CloudWatch

By default, Amazon Aurora automatically sends metric data to CloudWatch in 1-minute periods.
For example, the CPUUtilization metric records the percentage of CPU utilization for a DB
instance over time. Data points with a period of 60 seconds (1 minute) are available for 15 days.
This means that you can access historical information and see how your web application or service
is performing.

You can now export Performance Insights metrics dashboards from Amazon RDS to Amazon
CloudWatch. You can export either the preconfigured or customized metrics dashboards as a new
dashboard or add them to an existing CloudWatch dashboard. The exported dashboard is available
to view in the CloudWatch console. For more information on how to export the Performance
Insights metrics dashboards to CloudWatch, see Exporting Performance Insights metrics to
CloudWatch.

As shown in the following diagram, you can set up alarms for your CloudWatch metrics. For
example, you might create an alarm that signals when the CPU utilization for an instance is over
70%. You can configure Amazon Simple Notification Service to email you when the threshold is
passed.

Overview of Amazon Aurora and Amazon CloudWatch 876

Amazon Aurora User Guide for Aurora

Amazon RDS publishes the following types of metrics to Amazon CloudWatch:

• Aurora metrics at both the cluster and instance level

For a table of these metrics, see Amazon CloudWatch metrics for Amazon Aurora.

• Performance Insights metrics

For a table of these metrics, see Amazon CloudWatch metrics for Amazon RDS Performance
Insights and Performance Insights counter metrics.

• Enhanced Monitoring metrics (published to Amazon CloudWatch Logs)

For a table of these metrics, see OS metrics in Enhanced Monitoring.

• Usage metrics for the Amazon RDS service quotas in your AWS account

For a table of these metrics, see Amazon CloudWatch usage metrics for Amazon Aurora. For
more information about Amazon RDS quotas, see Quotas and constraints for Amazon Aurora.

Overview of Amazon Aurora and Amazon CloudWatch 877

Amazon Aurora User Guide for Aurora

For more information about CloudWatch, see What is Amazon CloudWatch? in the Amazon
CloudWatch User Guide. For more information about CloudWatch metrics retention, see Metrics
retention.

Viewing DB cluster metrics in the CloudWatch console and AWS CLI

Following, you can find details about how to view metrics for your DB instance using CloudWatch.
For information on monitoring metrics for your DB instance's operating system in real time using
CloudWatch Logs, see Monitoring OS metrics with Enhanced Monitoring.

When you use Amazon Aurora resources, Amazon Aurora sends metrics and dimensions to Amazon
CloudWatch every minute.

You can now export Performance Insights metrics dashboards from Amazon RDS to Amazon
CloudWatch and view these metrics in the CloudWatch console. For more information on how to
export the Performance Insights metrics dashboards to CloudWatch, see Exporting Performance
Insights metrics to CloudWatch.

Use the following procedures to view the metrics for Amazon Aurora in the CloudWatch console
and CLI.

Console

To view metrics using the Amazon CloudWatch console

Metrics are grouped first by the service namespace, and then by the various dimension
combinations within each namespace.

1. Open the CloudWatch console at https://console.aws.amazon.com/cloudwatch/.

The CloudWatch overview home page appears.

Viewing CloudWatch metrics 878

https://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/WhatIsCloudWatch.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/cloudwatch_concepts.html#metrics-retention
https://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/cloudwatch_concepts.html#metrics-retention
https://console.aws.amazon.com/cloudwatch/

Amazon Aurora User Guide for Aurora

2. If necessary, change the AWS Region. From the navigation bar, choose the AWS Region where
your AWS resources are. For more information, see Regions and endpoints.

3. In the navigation pane, choose Metrics and then All metrics.

4. Scroll down and choose the RDS metric namespace.

Viewing CloudWatch metrics 879

https://docs.aws.amazon.com/general/latest/gr/rande.html

Amazon Aurora User Guide for Aurora

The page displays the Amazon Aurora dimensions. For descriptions of these dimensions, see
Amazon CloudWatch dimensions for Aurora.

5. Choose a metric dimension, for example By Database Class.

6. Do any of the following actions:

• To sort the metrics, use the column heading.

• To graph a metric, select the check box next to the metric.

• To filter by resource, choose the resource ID, and then choose Add to search.

• To filter by metric, choose the metric name, and then choose Add to search.

Viewing CloudWatch metrics 880

Amazon Aurora User Guide for Aurora

The following example filters on the db.t3.medium class and graphs the CPUUtilization
metric.

You can find details about how to analyze resource usage for Aurora PostgreSQL using CloudWatch
metrics. For more information, see Using Amazon CloudWatch metrics to analyze resource usage
for Aurora PostgreSQL

AWS CLI

To obtain metric information by using the AWS CLI, use the CloudWatch command list-metrics.
In the following example, you list all metrics in the AWS/RDS namespace.

aws cloudwatch list-metrics --namespace AWS/RDS

To obtain metric data, use the command get-metric-data.

The following example gets CPUUtilization statistics for instance my-instance over the
specific 24-hour period, with a 5-minute granularity.

Viewing CloudWatch metrics 881

https://docs.aws.amazon.com/cli/latest/reference/cloudwatch/list-metrics.html
https://docs.aws.amazon.com/cli/latest/reference/cloudwatch/get-metric-data.html

Amazon Aurora User Guide for Aurora

Create a JSON file CPU_metric.json with the following contents.

{
 "StartTime" : "2023-12-25T00:00:00Z",
 "EndTime" : "2023-12-26T00:00:00Z",
 "MetricDataQueries" : [{
 "Id" : "cpu",
 "MetricStat" : {
 "Metric" : {
 "Namespace" : "AWS/RDS",
 "MetricName" : "CPUUtilization",
 "Dimensions" : [{ "Name" : "DBInstanceIdentifier" , "Value" : my-instance}]
 },
 "Period" : 360,
 "Stat" : "Minimum"
 }
 }]
}

Example

For Linux, macOS, or Unix:

aws cloudwatch get-metric-data \
 --cli-input-json file://CPU_metric.json

For Windows:

aws cloudwatch get-metric-data ^
 --cli-input-json file://CPU_metric.json

Sample output appears as follows:

{
 "MetricDataResults": [
 {
 "Id": "cpu",
 "Label": "CPUUtilization",
 "Timestamps": [
 "2023-12-15T23:48:00+00:00",
 "2023-12-15T23:42:00+00:00",
 "2023-12-15T23:30:00+00:00",

Viewing CloudWatch metrics 882

Amazon Aurora User Guide for Aurora

 "2023-12-15T23:24:00+00:00",
 ...
],
 "Values": [
 13.299778337027714,
 13.677507543049558,
 14.24976250395827,
 13.02521708695145,
 ...
],
 "StatusCode": "Complete"
 }
],
 "Messages": []
}

For more information, see Getting statistics for a metric in the Amazon CloudWatch User Guide.

Exporting Performance Insights metrics to CloudWatch

Performance Insights lets you export the preconfigured or custom metrics dashboard for your DB
instance to Amazon CloudWatch. You can export the metrics dashboard as a new dashboard or
add it to an existing CloudWatch dashboard. When you choose to add the dashboard to an existing
CloudWatch dashboard, you can create a header label so that the metrics appear in a separate
section in the CloudWatch dashboard.

You can view the exported metrics dashboard in the CloudWatch console. If you add new metrics
to a Performance Insights metrics dashboard after you export it, you must export this dashboard
again to view the new metrics in the CloudWatch console.

You can also select a metric widget in the Performance Insights dashboard and view the metrics
data in the CloudWatch console.

For more information about viewing the metrics in the CloudWatch console, see Viewing DB cluster
metrics in the CloudWatch console and AWS CLI.

Exporting Performance Insights metrics as a new dashboard to CloudWatch

Choose a preconfigured or custom metrics dashboard from the Performance Insights dashboard
and export it as a new dashboard to CloudWatch. You can view the exported dashboard in the
CloudWatch console.

Exporting Performance Insights metrics to CloudWatch 883

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/getting-metric-data.html

Amazon Aurora User Guide for Aurora

To export a Performance Insights metric dashboard as a new dashboard to CloudWatch

1. Open the Amazon RDS console at https://console.aws.amazon.com/rds/.

2. In the left navigation pane, choose Performance Insights.

3. Choose a DB instance.

The Performance Insights dashboard appears for the DB instance.

4. Scroll down and choose Metrics.

By default, the preconfigured dashboard with Performance Insights metrics appears.

5. Choose a preconfigured or custom dashboard and then choose Export to CloudWatch.

The Export to CloudWatch window appears.

6. Choose Export as new dashboard.

Exporting Performance Insights metrics to CloudWatch 884

https://console.aws.amazon.com/rds/

Amazon Aurora User Guide for Aurora

7. Enter a name for the new dashboard in the Dashboard name field and choose Confirm.

A banner displays a message after the dashboard export is successful.

8. Choose the link or View in CloudWatch in the banner to view the metrics dashboard in the
CloudWatch console.

Adding Performance Insights metrics to an existing CloudWatch dashboard

Add a preconfigured or custom metrics dashboard to an existing CloudWatch dashboard. You can
add a label to the metrics dashboard to appear in a separate section in the CloudWatch dashboard.

Exporting Performance Insights metrics to CloudWatch 885

Amazon Aurora User Guide for Aurora

To export the metrics to an existing CloudWatch dashboard

1. Open the Amazon RDS console at https://console.aws.amazon.com/rds/.

2. In the left navigation pane, choose Performance Insights.

3. Choose a DB instance.

The Performance Insights dashboard appears for the DB instance.

4. Scroll down and choose Metrics.

By default, the preconfigured dashboard with Performance Insights metrics appears.

5. Choose the preconfigured or custom dashboard and then choose Export to CloudWatch.

The Export to CloudWatch window appears.

6. Choose Add to existing dashboard.

Exporting Performance Insights metrics to CloudWatch 886

https://console.aws.amazon.com/rds/

Amazon Aurora User Guide for Aurora

7. Specify the dashboard destination and label, and then choose Confirm.

• CloudWatch dashboard destination - Choose an existing CloudWatch dashboard.

• CloudWatch dashboard section label - optional - Enter a name for the Performance
Insights metrics to appear in this section in the CloudWatch dashboard.

A banner displays a message after the dashboard export is successful.

8. Choose the link or View in CloudWatch in the banner to view the metrics dashboard in the
CloudWatch console.

Exporting Performance Insights metrics to CloudWatch 887

Amazon Aurora User Guide for Aurora

Viewing a Performance Insights metric widget in CloudWatch

Select a Performance Insights metric widget in the Amazon RDS Performance Insights dashboard
and view the metric data in the CloudWatch console.

To export a metric widget and view the metrics data in the CloudWatch console

1. Open the Amazon RDS console at https://console.aws.amazon.com/rds/.

2. In the left navigation pane, choose Performance Insights.

3. Choose a DB instance.

The Performance Insights dashboard appears for the DB instance.

4. Scroll down to Metrics.

By default, the preconfigured dashboard with Performance Insights metrics appears.

5. Choose a metric widget and then choose View in CloudWatch in the menu.

The metric data appears in the CloudWatch console.

Exporting Performance Insights metrics to CloudWatch 888

https://console.aws.amazon.com/rds/

Amazon Aurora User Guide for Aurora

Creating CloudWatch alarms to monitor Amazon Aurora

You can create a CloudWatch alarm that sends an Amazon SNS message when the alarm changes
state. An alarm watches a single metric over a time period that you specify. The alarm can also
perform one or more actions based on the value of the metric relative to a given threshold over a
number of time periods. The action is a notification sent to an Amazon SNS topic or Amazon EC2
Auto Scaling policy.

Alarms invoke actions for sustained state changes only. CloudWatch alarms don't invoke actions
simply because they are in a particular state. The state must have changed and have been
maintained for a specified number of time periods.

Note

For Aurora, use WRITER or READER role metrics to set up alarms instead of relying on
metrics for specific DB instances. Aurora DB instance roles can change roles over time. You
can find these role-based metrics in the CloudWatch console.
Aurora Auto Scaling automatically sets alarms based on READER role metrics. For more
information about Aurora Auto Scaling, see Using Amazon Aurora Auto Scaling with Aurora
Replicas.

You can use the DB_PERF_INSIGHTS metric math function in the CloudWatch console to query
Amazon RDS for Performance Insights counter metrics. The DB_PERF_INSIGHTS function also
includes the DBLoad metric at sub-minute intervals. You can set CloudWatch alarms on these
metrics.

For more details on how to create an alarm, see Create an alarm on Performance Insights counter
metrics from an AWS database.

To set an alarm using the AWS CLI

• Call put-metric-alarm. For more information, see AWS CLI Command Reference.

To set an alarm using the CloudWatch API

• Call PutMetricAlarm. For more information, see Amazon CloudWatch API Reference

Creating CloudWatch alarms 889

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/CloudWatch_alarm_database_performance_insights.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/CloudWatch_alarm_database_performance_insights.html
https://docs.aws.amazon.com/cli/latest/reference/cloudwatch/put-metric-alarm.html
https://docs.aws.amazon.com/cli/latest/reference/
https://docs.aws.amazon.com/AmazonCloudWatch/latest/APIReference/API_PutMetricAlarm.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/APIReference/

Amazon Aurora User Guide for Aurora

For more information about setting up Amazon SNS topics and creating alarms, see Using Amazon
CloudWatch alarms.

Creating CloudWatch alarms 890

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/AlarmThatSendsEmail.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/AlarmThatSendsEmail.html

Amazon Aurora User Guide for Aurora

Monitoring DB load with Performance Insights on Amazon
Aurora

Performance Insights expands on existing Amazon Aurora monitoring features to illustrate and
help you analyze your cluster performance. With the Performance Insights dashboard, you can
visualize the database load on your Amazon Aurora cluster load and filter the load by waits, SQL
statements, hosts, or users. For information about using Performance Insights with Amazon
DocumentDB, see Amazon DocumentDB Developer Guide.

Topics

• Overview of Performance Insights on Amazon Aurora

• Turning Performance Insights on and off for Aurora

• Turning on the Performance Schema for Performance Insights on Aurora MySQL

• Configuring access policies for Performance Insights

• Analyzing metrics with the Performance Insights dashboard

• Viewing Performance Insights proactive recommendations

• Retrieving metrics with the Performance Insights API for Aurora

• Logging Performance Insights calls using AWS CloudTrail

• Performance Insights API and interface VPC endpoints (AWS PrivateLink)

Overview of Performance Insights on Amazon Aurora

By default, RDS enables Performance Insights in the console create wizard for all Amazon RDS
engines. If you turn on Performance Insights at the DB cluster level, RDS enables Performance
Insights for every DB instance in the cluster. If you have more than one database on a DB instance,
Performance Insights aggregates performance data.

You can find an overview of Performance Insights for Amazon Aurora in the following video.

Using Performance Insights to Analyze Performance of Amazon Aurora PostgreSQL

Topics

• Database load

• Maximum CPU

Monitoring DB load with Performance Insights 891

https://docs.aws.amazon.com/documentdb/latest/developerguide/performance-insights.html
https://www.youtube.com/embed/yOeWcPBT458

Amazon Aurora User Guide for Aurora

• Amazon Aurora DB engine, Region, and instance class support for Performance Insights

• Pricing and data retention for Performance Insights

Database load

Database load (DB load) measures the level of session activity in your database. DBLoad is the key
metric in Performance Insights, and Performance Insights collects DB load every second.

Topics

• Active sessions

• Average active sessions

• Average active executions

• Dimensions

Active sessions

A database session represents an application's dialogue with a relational database. An active session
is a connection that has submitted work to the DB engine and is waiting for a response.

A session is active when it's either running on CPU or waiting for a resource to become available so
that it can proceed. For example, an active session might wait for a page (or block) to be read into
memory, and then consume CPU while it reads data from the page.

Average active sessions

The average active sessions (AAS) is the unit for the DBLoad metric in Performance Insights. It
measures how many sessions are concurrently active on the database.

Every second, Performance Insights samples the number of sessions concurrently running a query.
For each active session, Performance Insights collects the following data:

• SQL statement

• Session state (running on CPU or waiting)

• Host

• User running the SQL

Overview of Performance Insights 892

Amazon Aurora User Guide for Aurora

Performance Insights calculates the AAS by dividing the total number of sessions by the number of
samples for a specific time period. For example, the following table shows 5 consecutive samples of
a running query taken at 1-second intervals.

Sample Number of sessions
running query

AAS Calculation

1 2 2 2 total sessions / 1 sample

2 0 1 2 total sessions / 2 samples

3 4 2 6 total sessions / 3 samples

4 0 1.5 6 total sessions / 4 samples

5 4 2 10 total sessions / 5
samples

In the preceding example, the DB load for the time interval was 2 AAS. This measurement means
that, on average, 2 sessions were active at any given time during the interval when the 5 samples
were taken.

Average active executions

The average active executions (AAE) per second is related to AAS. To calculate the AAE, Performance
Insights divides the total execution time of a query by the time interval. The following table shows
the AAE calculation for the same query in the preceding table.

Elapsed time
(sec)

Total execution time
(sec)

AAE Calculation

60 120 2 120 execution
seconds/60 elapsed
seconds

120 120 1 120 execution
seconds/120 elapsed
seconds

Overview of Performance Insights 893

Amazon Aurora User Guide for Aurora

Elapsed time
(sec)

Total execution time
(sec)

AAE Calculation

180 380 2.11 380 execution
seconds/180 elapsed
seconds

240 380 1.58 380 execution
seconds/240 elapsed
seconds

300 600 2 600 execution
seconds/300 elapsed
seconds

In most cases, the AAS and AAE for a query are approximately the same. However, because the
inputs to the calculations are different data sources, the calculations often vary slightly.

Dimensions

The db.load metric is different from the other time-series metrics because you can break it into
subcomponents called dimensions. You can think of dimensions as "slice by" categories for the
different characteristics of the DBLoad metric.

When you are diagnosing performance issues, the following dimensions are often the most useful:

Topics

• Wait events

• Top SQL

For a complete list of dimensions for the Aurora engines, see DB load sliced by dimensions.

Wait events

A wait event causes a SQL statement to wait for a specific event to happen before it can continue
running. Wait events are an important dimension, or category, for DB load because they indicate
where work is impeded.

Overview of Performance Insights 894

Amazon Aurora User Guide for Aurora

Every active session is either running on the CPU or waiting. For example, sessions consume CPU
when they search memory for a buffer, perform a calculation, or run procedural code. When
sessions aren't consuming CPU, they might be waiting for a memory buffer to become free, a data
file to be read, or a log to be written to. The more time that a session waits for resources, the less
time it runs on the CPU.

When you tune a database, you often try to find out the resources that sessions are waiting for. For
example, two or three wait events might account for 90 percent of DB load. This measure means
that, on average, active sessions are spending most of their time waiting for a small number of
resources. If you can find out the cause of these waits, you can attempt a solution.

Wait events vary by DB engine:

• For a list of the common wait events for Aurora MySQL, see Aurora MySQL wait events. To learn
how to tune using these wait events, see Tuning Aurora MySQL.

• For information about all MySQL wait events, see Wait Event Summary Tables in the MySQL
documentation.

• For a list of common wait events for Aurora PostgreSQL, see Amazon Aurora PostgreSQL wait
events. To learn how to tune using these wait events, see Tuning with wait events for Aurora
PostgreSQL.

• For information about all PostgreSQL wait events, see The Statistics Collector > Wait Event
tables in the PostgreSQL documentation.

Top SQL

Where wait events show bottlenecks, top SQL shows which queries are contributing the most to
DB load. For example, many queries might be currently running on the database, but a single query
might consume 99 percent of the DB load. In this case, the high load might indicate a problem with
the query.

By default, the Performance Insights console displays top SQL queries that are contributing to
the database load. The console also shows relevant statistics for each statement. To diagnose
performance problems for a specific statement, you can examine its execution plan.

Maximum CPU

In the dashboard, the Database load chart collects, aggregates, and displays session information.
To see whether active sessions are exceeding the maximum CPU, look at their relationship to the

Overview of Performance Insights 895

https://dev.mysql.com/doc/refman/8.0/en/performance-schema-wait-summary-tables.html
https://www.postgresql.org/docs/current/monitoring-stats.html#WAIT-EVENT-TABLE
https://www.postgresql.org/docs/current/monitoring-stats.html#WAIT-EVENT-TABLE

Amazon Aurora User Guide for Aurora

Max vCPU line. Performance Insights determines the Max vCPU value by the number of vCPU
(virtual CPU) cores for your DB instance. For Aurora Serverless v2, Max vCPU represents the
estimated number of vCPUs.

One process can run on a vCPU at a time. If the number of processes exceed the number of vCPUs,
the processes start queuing. When the queuing increase, the performance is impacted. If the DB
load is often above the Max vCPU line, and the primary wait state is CPU, the CPU is overloaded.
In this case, you might want to throttle connections to the instance, tune any SQL queries with a
high CPU load, or consider a larger instance class. High and consistent instances of any wait state
indicate that there might be bottlenecks or resource contention issues to resolve. This can be true
even if the DB load doesn't cross the Max vCPU line.

Amazon Aurora DB engine, Region, and instance class support for Performance
Insights

The following table provides Amazon Aurora DB engines that support Performance Insights.

Amazon Aurora DB
engine

Supported engine versions and
Regions

Instance class restrictions

Amazon Aurora
MySQL-Compatible
Edition

For more information on version
and Region availability of
Performance Insights with Aurora
MySQL, see Performance Insights
with Aurora MySQL.

Performance Insights has the
following engine class restrictions:

•
db.t2 – Not supported

•
db.t3 – Not supported

•
db.t4g.micro and db.t4g.small –
Not supported

Amazon Aurora
PostgreSQL-
Compatible Edition

For more information on version
and Region availability of
Performance Insights with Aurora
PostgreSQL, see Performance
Insights with Aurora PostgreSQL.

N/A

Overview of Performance Insights 896

Amazon Aurora User Guide for Aurora

Amazon Aurora DB engine, Region, and instance class support for Performance Insights
features

The following table provides Amazon Aurora DB engines that support Performance Insights
features.

Feature Pricing tier
Supported
regions

Supported DB
engines

Supported
instance classes

SQL statistics
for Performance
Insights

All All All All

Analyzing
database
performance for
a period of time

Paid tier only • US East (Ohio)

• US East (N.
Virginia)

• US West (N.
California)

• US West
(Oregon)

• Asia Pacific
(Mumbai)

• Asia Pacific
(Seoul)

• Asia Pacific
(Singapore)

• Asia Pacific
(Sydney)

• Asia Pacific
(Tokyo)

• Canada
(Central)

• Europe
(Frankfurt)

All All except
db.server
less (Aurora
Serverless v2)

Overview of Performance Insights 897

https://aws.amazon.com/rds/performance-insights/pricing/
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Concepts.RegionsAndAvailabilityZones.html#Concepts.RegionsAndAvailabilityZones.Regions
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Concepts.RegionsAndAvailabilityZones.html#Concepts.RegionsAndAvailabilityZones.Regions
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Concepts.DBInstanceClass.html#Concepts.DBInstanceClass.Types
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Concepts.DBInstanceClass.html#Concepts.DBInstanceClass.Types

Amazon Aurora User Guide for Aurora

Feature Pricing tier
Supported
regions

Supported DB
engines

Supported
instance classes

• Europe
(Ireland)

• Europe
(London)

• Europe (Paris)

• Europe
(Stockholm)

Overview of Performance Insights 898

https://aws.amazon.com/rds/performance-insights/pricing/
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Concepts.RegionsAndAvailabilityZones.html#Concepts.RegionsAndAvailabilityZones.Regions
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Concepts.RegionsAndAvailabilityZones.html#Concepts.RegionsAndAvailabilityZones.Regions
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Concepts.DBInstanceClass.html#Concepts.DBInstanceClass.Types
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Concepts.DBInstanceClass.html#Concepts.DBInstanceClass.Types

Amazon Aurora User Guide for Aurora

Feature Pricing tier
Supported
regions

Supported DB
engines

Supported
instance classes

Viewing
Performan
ce Insights
proactive
recommend
ations

Paid tier only • US East (Ohio)

• US East (N.
Virginia)

• US West (N.
California)

• US West
(Oregon)

• Asia Pacific
(Mumbai)

• Asia Pacific
(Seoul)

• Asia Pacific
(Singapore)

• Asia Pacific
(Sydney)

• Asia Pacific
(Tokyo)

• Canada
(Central)

• Europe
(Frankfurt)

• Europe
(Ireland)

• Europe
(London)

• Europe (Paris)

• Europe
(Stockholm)

All All except
db.server
less (Aurora
Serverless v2)

Overview of Performance Insights 899

https://aws.amazon.com/rds/performance-insights/pricing/
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Concepts.RegionsAndAvailabilityZones.html#Concepts.RegionsAndAvailabilityZones.Regions
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Concepts.RegionsAndAvailabilityZones.html#Concepts.RegionsAndAvailabilityZones.Regions
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Concepts.DBInstanceClass.html#Concepts.DBInstanceClass.Types
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Concepts.DBInstanceClass.html#Concepts.DBInstanceClass.Types

Amazon Aurora User Guide for Aurora

Feature Pricing tier
Supported
regions

Supported DB
engines

Supported
instance classes

• South America
(São Paulo)

Pricing and data retention for Performance Insights

By default, Performance Insights offers a free tier that includes 7 days of performance data
history and 1 million API requests per month. You can also purchase longer retention periods. For
complete pricing information, see Performance Insights Pricing.

In the RDS console, you can choose any of the following retention periods for your Performance
Insights data:

• Default (7 days)

• n months, where n is a number from 1–24

Overview of Performance Insights 900

https://aws.amazon.com/rds/performance-insights/pricing/
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Concepts.RegionsAndAvailabilityZones.html#Concepts.RegionsAndAvailabilityZones.Regions
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Concepts.RegionsAndAvailabilityZones.html#Concepts.RegionsAndAvailabilityZones.Regions
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Concepts.DBInstanceClass.html#Concepts.DBInstanceClass.Types
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Concepts.DBInstanceClass.html#Concepts.DBInstanceClass.Types
https://aws.amazon.com/rds/performance-insights/pricing/

Amazon Aurora User Guide for Aurora

To learn how to set a retention period using the AWS CLI, see AWS CLI.

Overview of Performance Insights 901

Amazon Aurora User Guide for Aurora

Turning Performance Insights on and off for Aurora

You can turn on Performance Insights for your DB cluster when you create it. If needed, you can
turn it off later at the instance level for any instance in your DB cluster. Turning Performance
Insights on and off doesn't cause downtime, a reboot, or a failover.

Note

Performance Schema is an optional performance tool used by Aurora MySQL. If you turn
Performance Schema on or off, you need to reboot. If you turn Performance Insights
on or off, however, you don't need to reboot. For more information, see Turning on the
Performance Schema for Performance Insights on Aurora MySQL.

If you use Performance Insights with Aurora global databases, turn on Performance Insights
individually for the DB instances in each AWS Region. For details, see Monitoring an Amazon Aurora
global database with Amazon RDS Performance Insights.

The Performance Insights agent consumes limited CPU and memory on the DB host. When the DB
load is high, the agent limits the performance impact by collecting data less frequently.

Console

In the console, you can turn Performance Insights on or off when you create a DB cluster. You can
modify a DB instance in the cluster to turn Performance Insights on or off for the instance.

Turning Performance Insights on or off when creating a DB cluster

When you create a new DB cluster, turn on Performance Insights by choosing Enable Performance
Insights in the Performance Insights section. Or choose Disable Performance Insights. To create a
DB cluster, follow the instructions for your DB engine in Creating an Amazon Aurora DB cluster.

The following screenshot shows the Performance Insights section.

Turning Performance Insights on and off 902

Amazon Aurora User Guide for Aurora

If you choose Enable Performance Insights, you have the following options:

• Retention – The amount of time to retain Performance Insights data. The retention setting in the
free tier is Default (7 days). To retain your performance data for longer, specify 1–24 months.
For more information about retention periods, see Pricing and data retention for Performance
Insights.

• AWS KMS key – Specify your AWS KMS key. Performance Insights encrypts all potentially
sensitive data using your KMS key. Data is encrypted in flight and at rest. For more information,
see Configuring an AWS KMS policy for Performance Insights.

Turning Performance Insights on or off when modifying a DB instance in your DB cluster

In the console, you can modify a DB instance in your DB cluster to turn Performance Insights on
or off. You can't turn Performance Insights on or off at the cluster level: you must do it for each
instance in the cluster.

To turn Performance Insights on or off for a DB instance in your DB cluster using the console

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. Choose Databases.

3. Choose a DB instance, and choose Modify.

4. In the Performance Insights section, choose either Enable Performance Insights or Disable
Performance Insights.

If you choose Enable Performance Insights, you have the following options:

• Retention – The amount of time to retain Performance Insights data. The retention setting
in the free tier is Default (7 days). To retain your performance data for longer, specify 1–24
months. For more information about retention periods, see Pricing and data retention for
Performance Insights.

• AWS KMS key – Specify your KMS key. Performance Insights encrypts all potentially
sensitive data using your KMS key. Data is encrypted in flight and at rest. For more
information, see Encrypting Amazon Aurora resources.

5. Choose Continue.

Turning Performance Insights on and off 903

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Aurora User Guide for Aurora

6. For Scheduling of Modifications, choose Apply immediately. If you choose Apply during
the next scheduled maintenance window, your instance ignores this setting and turns on
Performance Insights immediately.

7. Choose Modify instance.

AWS CLI

When you use the create-db-instance AWS CLI command, turn on Performance Insights by
specifying --enable-performance-insights. Or turn off Performance Insights by specifying
--no-enable-performance-insights.

You can also specify these values using the following AWS CLI commands:

• create-db-instance-read-replica

• modify-db-instance

• restore-db-instance-from-s3

The following procedure describes how to turn Performance Insights on or off for an existing DB
instance in your DB cluster using the AWS CLI.

To turn Performance Insights on or off for a DB instance in your DB cluster using the AWS CLI

• Call the modify-db-instance AWS CLI command and supply the following values:

• --db-instance-identifier – The name of the DB instance in your DB cluster.

• --enable-performance-insights to turn on or --no-enable-performance-
insights to turn off

The following example turns on Performance Insights for sample-db-instance.

For Linux, macOS, or Unix:

aws rds modify-db-instance \
 --db-instance-identifier sample-db-instance \
 --enable-performance-insights

For Windows:

Turning Performance Insights on and off 904

https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-instance.html
https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-instance-read-replica.html
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-instance.html
https://docs.aws.amazon.com/cli/latest/reference/rds/restore-db-instance-from-s3.html
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-instance.html

Amazon Aurora User Guide for Aurora

aws rds modify-db-instance ^
 --db-instance-identifier sample-db-instance ^
 --enable-performance-insights

When you turn on Performance Insights in the CLI, you can optionally specify the number of
days to retain Performance Insights data with the --performance-insights-retention-
period option. You can specify 7, month * 31 (where month is a number from 1–23), or 731. For
example, if you want to retain your performance data for 3 months, specify 93, which is 3 * 31. The
default is 7 days. For more information about retention periods, see Pricing and data retention for
Performance Insights.

The following example turns on Performance Insights for sample-db-instance and specifies
that Performance Insights data is retained for 93 days (3 months).

For Linux, macOS, or Unix:

aws rds modify-db-instance \
 --db-instance-identifier sample-db-instance \
 --enable-performance-insights \
 --performance-insights-retention-period 93

For Windows:

aws rds modify-db-instance ^
 --db-instance-identifier sample-db-instance ^
 --enable-performance-insights ^
 --performance-insights-retention-period 93

If you specify a retention period such as 94 days, which isn't a valid value, RDS issues an error.

An error occurred (InvalidParameterValue) when calling the CreateDBInstance operation:
Invalid Performance Insights retention period. Valid values are: [7, 31, 62, 93, 124,
 155, 186, 217,
248, 279, 310, 341, 372, 403, 434, 465, 496, 527, 558, 589, 620, 651, 682, 713, 731]

RDS API

When you create a new DB instance in your DB cluster using the CreateDBInstance
operation Amazon RDS API operation, turn on Performance Insights by setting

Turning Performance Insights on and off 905

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateDBInstance.html

Amazon Aurora User Guide for Aurora

EnablePerformanceInsights to True. To turn off Performance Insights, set
EnablePerformanceInsights to False.

You can also specify the EnablePerformanceInsights value using the following API operations:

• ModifyDBInstance

• CreateDBInstanceReadReplica

• RestoreDBInstanceFromS3

When you turn on Performance Insights, you can optionally specify the amount of time, in
days, to retain Performance Insights data with the PerformanceInsightsRetentionPeriod
parameter. You can specify 7, month * 31 (where month is a number from 1–23), or 731. For
example, if you want to retain your performance data for 3 months, specify 93, which is 3 * 31. The
default is 7 days. For more information about retention periods, see Pricing and data retention for
Performance Insights.

Turning on the Performance Schema for Performance Insights on
Aurora MySQL

The Performance Schema is an optional feature for monitoring Aurora MySQL runtime
performance at a low level of detail. The Performance Schema is designed to have minimal impact
on database performance. Performance Insights is a separate feature that you can use with or
without the Performance Schema.

Topics

• Overview of the Performance Schema

• Performance Insights and the Performance Schema

• Automatic management of the Performance Schema by Performance Insights

• Effect of a reboot on the Performance Schema

• Determining whether Performance Insights is managing the Performance Schema

• Configuring the Performance Schema for automatic management

Turning on the Performance Schema for Aurora MySQL 906

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBInstance.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateDBInstanceReadReplica.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_RestoreDBInstanceFromS3.html

Amazon Aurora User Guide for Aurora

Overview of the Performance Schema

The Performance Schema monitors events in Aurora MySQL databases. An event is a database
server action that consumes time and has been instrumented so that timing information can be
collected. Examples of events include the following:

• Function calls

• Waits for the operating system

• Stages of SQL execution

• Groups of SQL statements

The PERFORMANCE_SCHEMA storage engine is a mechanism for implementing the Performance
Schema feature. This engine collects event data using instrumentation in the database source code.
The engine stores events in memory-only tables in the performance_schema database. You can
query performance_schema just as you can query any other tables. For more information, see
MySQL Performance Schema in the MySQL Reference Manual.

Performance Insights and the Performance Schema

Performance Insights and the Performance Schema are separate features, but they are connected.
The behavior of Performance Insights for Aurora MySQL depends on whether the Performance
Schema is turned on, and if so, whether Performance Insights manages the Performance Schema
automatically. The following table describes the behavior.

Performance
Schema turned
on

Performan
ce Insights
management
mode

Performance Insights behavior

Yes Automatic •
Collects detailed, low-level monitoring information

•
Collects active session metrics every second

•
Displays DB load categorized by detailed wait events,
which you can use to identify bottlenecks

Yes Manual •

Turning on the Performance Schema for Aurora MySQL 907

https://dev.mysql.com/doc/refman/8.0/en/performance-schema.html

Amazon Aurora User Guide for Aurora

Performance
Schema turned
on

Performan
ce Insights
management
mode

Performance Insights behavior

Collects wait events and per-SQL metrics

•
Collects active session metrics every five seconds
instead of every second

•
Reports user states such as inserting and sending,
which don't help you identify bottlenecks

No N/A •
Doesn't collect wait events, per-SQL metrics, or other
detailed, low-level monitoring information

•
Collects active session metrics every five seconds
instead of every second

•
Reports user states such as inserting and sending,
which don't help you identify bottlenecks

Automatic management of the Performance Schema by Performance Insights

When you create an Aurora MySQL DB instance with Performance Insights turned on, the
Performance Schema is also turned on. In this case, Performance Insights automatically manages
your Performance Schema parameters. This is the recommended configuration.

When Performance Insights manages the Performance Schema automatically, the Source of
performance_schema is System.

Note

Automatic management of the Performance Schema isn't supported for the t4g.medium
instance class.

Turning on the Performance Schema for Aurora MySQL 908

Amazon Aurora User Guide for Aurora

You can also manage the Performance Schema manually. If you choose this option, set the
parameters according to the values in the following table.

Parameter name Parameter value

performance_schema 1 (Source column has the value Modified)

performance-schema-consumer-
events-waits-current

ON

performance-schema-instrument wait/%=ON

performance_schema_consumer
_global_instrumentation

1

performance_schema_consumer
_thread_instrumentation

1

If you change the performance_schema parameter value manually, and then later want to
change to automatic management, see Configuring the Performance Schema for automatic
management.

Important

When Performance Insights turns on the Performance Schema, it doesn't change the
parameter group values. However, the values are changed on the DB instances that are
running. The only way to see the changed values is to run the SHOW GLOBAL VARIABLES
command.

Effect of a reboot on the Performance Schema

Performance Insights and the Performance Schema differ in their requirements for DB instance
reboots:

Performance Schema

To turn this feature on or off, you must reboot the DB instance.

Turning on the Performance Schema for Aurora MySQL 909

Amazon Aurora User Guide for Aurora

Performance Insights

To turn this feature on or off, you don't need to reboot the DB instance.

If the Performance Schema isn't currently turned on, and you turn on Performance Insights without
rebooting the DB instance, the Performance Schema won't be turned on.

Determining whether Performance Insights is managing the Performance Schema

To find out whether Performance Insights is currently managing the Performance Schema for
major engine versions 5.6, 5.7, and 8.0, review the following table.

Setting of performan
ce_schema parameter

Setting of the Source
column

Performance Insights is
managing the Performance
Schema?

0 System Yes

0 or 1 Modified No

To determine whether Performance Insights is managing the Performance Schema
automatically

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. Choose Parameter groups.

3. Select the name of the parameter group for your DB instance.

4. Enter performance_schema in the search bar.

5. Check whether Source is the system default and Values is 0. If so, Performance Insights is
managing the Performance Schema automatically. If not, Performance Insights isn't managing
the Performance Schema automatically.

Turning on the Performance Schema for Aurora MySQL 910

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Aurora User Guide for Aurora

Configuring the Performance Schema for automatic management

Assume that Performance Insights is turned on for your DB instance but isn't currently managing
the Performance Schema. If you want to allow Performance Insights to manage the Performance
Schema automatically, complete the following steps.

To configure the Performance Schema for automatic management

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. Choose Parameter groups.

3. Select the name of the parameter group for your DB instance.

4. Enter performance_schema in the search bar.

5. Select the performance_schema parameter.

6. Choose Edit parameters.

7. Select the performance_schema parameter.

8. In Values, choose 0.

9. Choose Save changes.

10. Reboot the DB instance.

Important

Whenever you turn the Performance Schema on or off, make sure to reboot the DB
instance.

For more information about modifying instance parameters, see Modifying parameters in a DB
parameter group. For more information about the dashboard, see Analyzing metrics with the
Performance Insights dashboard. For more information about the MySQL performance schema, see
MySQL 8.0 Reference Manual.

Configuring access policies for Performance Insights

To access Performance Insights, a principal must have the appropriate permissions from AWS
Identity and Access Management (IAM). You can grant access in the following ways:

Performance Insights policies 911

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/
https://dev.mysql.com/doc/refman/8.0/en/performance-schema.html

Amazon Aurora User Guide for Aurora

• Attach the AmazonRDSPerformanceInsightsReadOnly managed policy to a permission set
or role to access all read-only operations of the Performance Insights API.

• Attach the AmazonRDSPerformanceInsightsFullAccess managed policy to a permission
set or role to access all operations of the Performance Insights API.

• Create a custom IAM policy and attach it to a permission set or role.

If you specified a customer managed key when you turned on Performance Insights, make sure that
users in your account have the kms:Decrypt and kms:GenerateDataKey permissions on the
AWS KMS key

Attaching the AmazonRDSPerformanceInsightsReadOnly policy to an IAM
principal

AmazonRDSPerformanceInsightsReadOnly is an AWS managed policy that grants access to all
read-only operations of the Amazon RDS Performance Insights API.

If you attach AmazonRDSPerformanceInsightsReadOnly to a permission set or role, the
recipient can use Performance Insights with other console features.

For more information, see AWS managed policy: AmazonRDSPerformanceInsightsReadOnly.

Attaching the AmazonRDSPerformanceInsightsFullAccess policy to an IAM
principal

AmazonRDSPerformanceInsightsFullAccess is an AWS managed policy that grants access to
all operations of the Amazon RDS Performance Insights API.

If you attach AmazonRDSPerformanceInsightsFullAccess to a permission set or role, the
recipient can use Performance Insights with other console features.

For more information, see AWS managed policy: AmazonRDSPerformanceInsightsFullAccess.

Creating a custom IAM policy for Performance Insights

For users who don't have either the AmazonRDSPerformanceInsightsReadOnly or
AmazonRDSPerformanceInsightsFullAccess policy, you can grant access to Performance
Insights by creating or modifying a user-managed IAM policy. When you attach the policy to an
IAM permission set or role, the recipient can use Performance Insights.

Performance Insights policies 912

Amazon Aurora User Guide for Aurora

To create a custom policy

1. Open the IAM console at https://console.aws.amazon.com/iam/.

2. In the navigation pane, choose Policies.

3. Choose Create policy.

4. On the Create Policy page, choose the JSON option.

5. Copy and paste the text provided in the JSON policy document section in the AWS
Managed Policy Reference Guide for AmazonRDSPerformanceInsightsReadOnly or
AmazonRDSPerformanceInsightsFullAccess policy.

6. Choose Review policy.

7. Provide a name for the policy and optionally a description, and then choose Create policy.

You can now attach the policy to a permission set or role. The following procedure assumes that
you already have a user available for this purpose.

To attach the policy to a user

1. Open the IAM console at https://console.aws.amazon.com/iam/.

2. In the navigation pane, choose Users.

3. Choose an existing user from the list.

Important

To use Performance Insights, make sure that you have access to
Amazon RDS in addition to the custom policy. For example, the
AmazonRDSPerformanceInsightsReadOnly predefined policy provides read-only
access to Amazon RDS. For more information, see Managing access using policies.

4. On the Summary page, choose Add permissions.

5. Choose Attach existing policies directly. For Search, type the first few characters of your
policy name, as shown in the following image.

Performance Insights policies 913

https://console.aws.amazon.com/iam/
https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AmazonRDSPerformanceInsightsReadOnly.html
https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AmazonRDSPerformanceInsightsFullAccess.html
https://console.aws.amazon.com/iam/

Amazon Aurora User Guide for Aurora

6. Choose your policy, and then choose Next: Review.

7. Choose Add permissions.

Configuring an AWS KMS policy for Performance Insights

Performance Insights uses an AWS KMS key to encrypt sensitive data. When you enable
Performance Insights through the API or the console, you can do either of the following:

• Choose the default AWS managed key.

Amazon RDS uses the AWS managed key for your new DB instance. Amazon RDS creates an AWS
managed key for your AWS account. Your AWS account has a different AWS managed key for
Amazon RDS for each AWS Region.

• Choose a customer managed key.

If you specify a customer managed key, users in your account that call the Performance Insights
API need the kms:Decrypt and kms:GenerateDataKey permissions on the KMS key. You can
configure these permissions through IAM policies. However, we recommend that you manage
these permissions through your KMS key policy. For more information, see Key policies in AWS
KMS in the AWS Key Management Service Developer Guide.

Performance Insights policies 914

https://docs.aws.amazon.com/kms/latest/developerguide/key-policies.html
https://docs.aws.amazon.com/kms/latest/developerguide/key-policies.html

Amazon Aurora User Guide for Aurora

Example

The following example shows how to add statements to your KMS key policy. These statements
allow access to Performance Insights. Depending on how you use the KMS key, you might want to
change some restrictions. Before adding statements to your policy, remove all comments.

{
"Version" : "2012-10-17",
 "Id" : "your-policy",
 "Statement" : [{
 //This represents a statement that currently exists in your policy.
 }
,
 //Starting here, add new statement to your policy for Performance Insights.
 //We recommend that you add one new statement for every RDS instance
{
 "Sid" : "Allow viewing RDS Performance Insights",
 "Effect": "Allow",
 "Principal": {
 "AWS": [
 //One or more principals allowed to access Performance Insights
 "arn:aws:iam::444455556666:role/Role1"
]
 },
 "Action": [
 "kms:Decrypt",
 "kms:GenerateDataKey"
],
 "Resource": "*",
 "Condition" : {
 "StringEquals" : {
 //Restrict access to only RDS APIs (including Performance Insights).
 //Replace region with your AWS Region.
 //For example, specify us-west-2.
 "kms:ViaService" : "rds.region.amazonaws.com"
 },
 "ForAnyValue:StringEquals": {
 //Restrict access to only data encrypted by Performance Insights.
 "kms:EncryptionContext:aws:pi:service": "rds",
 "kms:EncryptionContext:service": "pi",

 //Restrict access to a specific RDS instance.
 //The value is a DbiResourceId.

Performance Insights policies 915

Amazon Aurora User Guide for Aurora

 "kms:EncryptionContext:aws:rds:db-id": "db-AAAAABBBBBCCCCDDDDDEEEEE"
 }
 }
}

How Performance Insights uses AWS KMS customer managed key

Performance Insights uses customer managed keys to encrypt sensitive data. When you turn on
Performance Insights, you can provide an AWS KMS key through the API. Performance Insights
creates KMS permissions on this key. It uses the key and performs the necessary operations to
process sensitive data. Sensitive data includes fields such as user, database, application, and SQL
query text. Performance Insights ensures that the data remains encrypted both at rest and in-
flight.

How Performance Insights IAM works with AWS KMS

IAM gives permissions to specific APIs. Performance Insights has the following public APIs, which
you can restrict using IAM policies:

• DescribeDimensionKeys

• GetDimensionKeyDetails

• GetResourceMetadata

• GetResourceMetrics

• ListAvailableResourceDimensions

• ListAvailableResourceMetrics

You can use the following API requests to get sensitive data.

• DescribeDimensionKeys

• GetDimensionKeyDetails

• GetResourceMetrics

When you use the API to get sensitive data, Performance Insights leverages the caller's credentials.
This check ensures that access to sensitive data is limited to those with access to the KMS key.

When calling these APIs, you need permissions to call the API through the IAM policy and
permissions to invoke the kms:decrypt action through the AWS KMS key policy.

Performance Insights policies 916

Amazon Aurora User Guide for Aurora

The GetResourceMetrics API can return both sensitive and non-sensitive data. The request
parameters determine whether the response should include sensitive data. The API returns
sensitive data when the request includes a sensitive dimension in either the filter or group-by
parameters.

For more information about the dimensions that you can use with the GetResourceMetrics API,
see DimensionGroup.

Example Examples

The following example requests the sensitive data for the db.user group:

POST / HTTP/1.1
Host: <Hostname>
Accept-Encoding: identity
X-Amz-Target: PerformanceInsightsv20180227.GetResourceMetrics
Content-Type: application/x-amz-json-1.1
User-Agent: <UserAgentString>
X-Amz-Date: <Date>
Authorization: AWS4-HMAC-SHA256 Credential=<Credential>, SignedHeaders=<Headers>,
 Signature=<Signature>
Content-Length: <PayloadSizeBytes>
{
 "ServiceType": "RDS",
 "Identifier": "db-ABC1DEFGHIJKL2MNOPQRSTUV3W",
 "MetricQueries": [
 {
 "Metric": "db.load.avg",
 "GroupBy": {
 "Group": "db.user",
 "Limit": 2
 }
 }
],
 "StartTime": 1693872000,
 "EndTime": 1694044800,
 "PeriodInSeconds": 86400
}

Performance Insights policies 917

https://docs.aws.amazon.com/performance-insights/latest/APIReference/API_DimensionGroup.html

Amazon Aurora User Guide for Aurora

Example

The following example requests the non-sensitive data for the db.load.avg metric:

POST / HTTP/1.1
Host: <Hostname>
Accept-Encoding: identity
X-Amz-Target: PerformanceInsightsv20180227.GetResourceMetrics
Content-Type: application/x-amz-json-1.1
User-Agent: <UserAgentString>
X-Amz-Date: <Date>
Authorization: AWS4-HMAC-SHA256 Credential=<Credential>, SignedHeaders=<Headers>,
 Signature=<Signature>
Content-Length: <PayloadSizeBytes>
{
 "ServiceType": "RDS",
 "Identifier": "db-ABC1DEFGHIJKL2MNOPQRSTUV3W",
 "MetricQueries": [
 {
 "Metric": "db.load.avg"
 }
],
 "StartTime": 1693872000,
 "EndTime": 1694044800,
 "PeriodInSeconds": 86400
}

Granting fine-grained access for Performance Insights

Fine-grained access control offers additional ways of controlling access to Performance Insights.
This access control can allow or deny access to individual dimensions for GetResourceMetrics,
DescribeDimensionKeys, and GetDimensionKeyDetails Performance Insights actions.
To use fine-grained access, specify dimensions in the IAM policy by using condition keys. The
evaluation of the access follows the IAM policy evaluation logic. For more information, see Policy
evaluation logic in the IAM User Guide. If the IAM policy statement doesn't specify any dimension,
then the statement controls access to all the dimensions for the specified action. For the list of
available dimensions, see DimensionGroup.

Performance Insights policies 918

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_evaluation-logic.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_evaluation-logic.html
https://docs.aws.amazon.com/performance-insights/latest/APIReference/API_DimensionGroup.html

Amazon Aurora User Guide for Aurora

To find out the dimensions that your credentials are authorized to access, use the
AuthorizedActions parameter in ListAvailableResourceDimensions and specify the
action. The allowed values for AuthorizedActions are as follows:

• GetResourceMetrics

• DescribeDimensionKeys

• GetDimensionKeyDetails

For example, if you specify GetResourceMetrics to the AuthorizedActions
parameter, ListAvailableResourceDimensions returns the list of dimensions that the
GetResourceMetrics action is authorized to access. If you specify multiple actions in the
AuthorizedActions parameter, then ListAvailableResourceDimensions returns an
intersection of dimensions that those actions are authorized to access.

Example

The following example provides access to the specified dimensions for GetResourceMetrics and
DescribeDimensionKeys actions.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "AllowToDiscoverDimensions",
 "Effect": "Allow",
 "Action": [
 "pi:ListAvailableResourceDimensions"
],
 "Resource": [
 "arn:aws:pi:us-east-1:123456789012:metrics/rds/db-
ABC1DEFGHIJKL2MNOPQRSTUV3W"
]
 },
 {
 "Sid": "SingleAllow",
 "Effect": "Allow",
 "Action": [
 "pi:GetResourceMetrics",
 "pi:DescribeDimensionKeys"
],
 "Resource": [

Performance Insights policies 919

Amazon Aurora User Guide for Aurora

 "arn:aws:pi:us-east-1:123456789012:metrics/rds/db-
ABC1DEFGHIJKL2MNOPQRSTUV3W"
],
 "Condition": {
 "ForAllValues:StringEquals": {
 // only these dimensions are allowed. Dimensions not included in
 // a policy with "Allow" effect will be denied
 "pi:Dimensions": [
 "db.sql_tokenized.id",
 "db.sql_tokenized.statement"
]
 }
 }
 }

]
}

The following is the response for the requested dimension:

 // ListAvailableResourceDimensions API
// Request
{
 "ServiceType": "RDS",
 "Identifier": "db-ABC1DEFGHIJKL2MNOPQRSTUV3W",
 "Metrics": ["db.load"],
 "AuthorizedActions": ["DescribeDimensionKeys"]
}

// Response
{
 "MetricDimensions": [{
 "Metric": "db.load",
 "Groups": [
 {
 "Group": "db.sql_tokenized",
 "Dimensions": [
 { "Identifier": "db.sql_tokenized.id" },
 // { "Identifier": "db.sql_tokenized.db_id" }, // not included
 because not allows in the IAM Policy

Performance Insights policies 920

Amazon Aurora User Guide for Aurora

 { "Identifier": "db.sql_tokenized.statement" }
]
 }

] }
]
}

The following example specifies one allow and two deny access for the dimensions.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "AllowToDiscoverDimensions",
 "Effect": "Allow",
 "Action": [
 "pi:ListAvailableResourceDimensions"
],
 "Resource": [
 "arn:aws:pi:us-east-1:123456789012:metrics/rds/db-
ABC1DEFGHIJKL2MNOPQRSTUV3W"
]
 },

 {
 "Sid": "O01AllowAllWithoutSpecifyingDimensions",
 "Effect": "Allow",
 "Action": [
 "pi:GetResourceMetrics",
 "pi:DescribeDimensionKeys"
],
 "Resource": [
 "arn:aws:pi:us-east-1:123456789012:metrics/rds/db-
ABC1DEFGHIJKL2MNOPQRSTUV3W"
]
 },

 {
 "Sid": "O01DenyAppDimensionForAll",
 "Effect": "Deny",
 "Action": [
 "pi:GetResourceMetrics",

Performance Insights policies 921

Amazon Aurora User Guide for Aurora

 "pi:DescribeDimensionKeys"
],
 "Resource": [
 "arn:aws:pi:us-east-1:123456789012:metrics/rds/db-
ABC1DEFGHIJKL2MNOPQRSTUV3W"
],
 "Condition": {
 "ForAnyValue:StringEquals": {
 "pi:Dimensions": [
 "db.application.name"
]
 }
 }
 },

 {
 "Sid": "O01DenySQLForGetResourceMetrics",
 "Effect": "Deny",
 "Action": [
 "pi:GetResourceMetrics"
],
 "Resource": [
 "arn:aws:pi:us-east-1:123456789012:metrics/rds/db-
ABC1DEFGHIJKL2MNOPQRSTUV3W"
],
 "Condition": {
 "ForAnyValue:StringEquals": {
 "pi:Dimensions": [
 "db.sql_tokenized.statement"
]
 }
 }
 }
]
}

The following are the responses for the requested dimensions:

 // ListAvailableResourceDimensions API
// Request
{

Performance Insights policies 922

Amazon Aurora User Guide for Aurora

 "ServiceType": "RDS",
 "Identifier": "db-ABC1DEFGHIJKL2MNOPQRSTUV3W",
 "Metrics": ["db.load"],
 "AuthorizedActions": ["GetResourceMetrics"]
}

// Response
{
 "MetricDimensions": [{
 "Metric": "db.load",
 "Groups": [
 {
 "Group": "db.application",
 "Dimensions": [

 // removed from response because denied by the IAM Policy
 // { "Identifier": "db.application.name" }
]
 },
 {
 "Group": "db.sql_tokenized",
 "Dimensions": [
 { "Identifier": "db.sql_tokenized.id" },
 { "Identifier": "db.sql_tokenized.db_id" },

 // removed from response because denied by the IAM Policy
 // { "Identifier": "db.sql_tokenized.statement" }
]
 },
 ...
] }
]
}

// ListAvailableResourceDimensions API
// Request
{
 "ServiceType": "RDS",
 "Identifier": "db-ABC1DEFGHIJKL2MNOPQRSTUV3W",
 "Metrics": ["db.load"],
 "AuthorizedActions": ["DescribeDimensionKeys"]
}

Performance Insights policies 923

Amazon Aurora User Guide for Aurora

// Response
{
 "MetricDimensions": [{
 "Metric": "db.load",
 "Groups": [
 {
 "Group": "db.application",
 "Dimensions": [
 // removed from response because denied by the IAM Policy
 // { "Identifier": "db.application.name" }
]
 },
 {
 "Group": "db.sql_tokenized",
 "Dimensions": [
 { "Identifier": "db.sql_tokenized.id" },
 { "Identifier": "db.sql_tokenized.db_id" },

 // allowed for DescribeDimensionKeys because our IAM Policy
 // denies it only for GetResourceMetrics
 { "Identifier": "db.sql_tokenized.statement" }
]
 },
 ...
] }
]
}

Analyzing metrics with the Performance Insights dashboard

The Performance Insights dashboard contains database performance information to help you
analyze and troubleshoot performance issues. On the main dashboard page, you can view
information about the database load. You can "slice" DB load by dimensions such as wait events or
SQL.

Performance Insights dashboard

• Overview of the Performance Insights dashboard

• Accessing the Performance Insights dashboard

• Analyzing DB load by wait events

• Analyzing database performance for a period of time

Analyzing metrics with the Performance Insights dashboard 924

Amazon Aurora User Guide for Aurora

• Analyzing queries in the Performance Insights dashboard

Overview of the Performance Insights dashboard

The dashboard is the easiest way to interact with Performance Insights. The following example
shows the dashboard for a MySQL DB instance.

Topics

• Time range filter

• Counter metrics chart

• Database load chart

• Top dimensions table

Analyzing metrics with the Performance Insights dashboard 925

Amazon Aurora User Guide for Aurora

Time range filter

By default, the Performance Insights dashboard shows DB load for the last hour. You can adjust
this range to be as short as 5 minutes or as long as 2 years. You can also select a custom relative
range.

You can select an absolute range with a beginning and ending date and time. The following
example shows the time range beginning at midnight on 4/11/22 and ending at 11:59 PM on
4/14/22.

Counter metrics chart

With counter metrics, you can customize the Performance Insights dashboard to include up to 10
additional graphs. These graphs show a selection of dozens of operating system and database
performance metrics. You can correlate this information with DB load to help identify and analyze
performance problems.

The Counter metrics chart displays data for performance counters. The default metrics depend on
the DB engine:

• Aurora MySQL– db.SQL.Innodb_rows_read.avg

• Aurora PostgreSQL – db.Transactions.xact_commit.avg

To change the performance counters, choose Manage Metrics. You can select multiple OS metrics
or Database metrics, as shown in the following screenshot. To see details for any metric, hover
over the metric name.

Analyzing metrics with the Performance Insights dashboard 926

Amazon Aurora User Guide for Aurora

For descriptions of the counter metrics that you can add for each DB engine, see Performance
Insights counter metrics.

Database load chart

The Database load chart shows how the database activity compares to DB instance capacity as
represented by the Max vCPU line. By default, the stacked line chart represents DB load as average
active sessions per unit of time. The DB load is sliced (grouped) by wait states.

Analyzing metrics with the Performance Insights dashboard 927

Amazon Aurora User Guide for Aurora

DB load sliced by dimensions

You can choose to display load as active sessions grouped by any supported dimensions. The
following table shows which dimensions are supported for the different engines.

Dimension Aurora PostgreSQL Aurora MySQL

Host Yes Yes

SQL Yes Yes

User Yes Yes

Waits Yes Yes

Application Yes No

Database Yes Yes

Session type Yes No

The following image shows the dimensions for a PostgreSQL DB instance.

Analyzing metrics with the Performance Insights dashboard 928

Amazon Aurora User Guide for Aurora

DB load details for a dimension item

To see details about a DB load item within a dimension, hover over the item name. The following
image shows details for a SQL statement.

Analyzing metrics with the Performance Insights dashboard 929

Amazon Aurora User Guide for Aurora

To see details for any item for the selected time period in the legend, hover over that item.

Top dimensions table

The Top dimensions table slices DB load by different dimensions. A dimension is a category or
"slice by" for different characteristics of DB load. If the dimension is SQL, Top SQL shows the SQL
statements that contribute the most to DB load.

Choose any of the following dimension tabs.

Analyzing metrics with the Performance Insights dashboard 930

Amazon Aurora User Guide for Aurora

Tab Description Supported engines

Top SQL The SQL statements that are
currently running

All

Top waits The event for which the
database backend is waiting

All

Top hosts The host name of the
connected client

All

Top users The user logged in to the
database

All

Top applications The name of the applicati
on that is connected to the
database

Aurora PostgreSQL only

Top session types The type of the current
session

Aurora PostgreSQL only

To learn how to analyze queries by using the Top SQL tab, see Overview of the Top SQL tab.

Accessing the Performance Insights dashboard

Amazon RDS provides a consolidated view of Performance Insights and CloudWatch metrics in the
Performance Insights dashboard.

To access the Performance Insights dashboard, use the following procedure.

To view the Performance Insights dashboard in the AWS Management Console

1. Open the Amazon RDS console at https://console.aws.amazon.com/rds/.

2. In the left navigation pane, choose Performance Insights.

3. Choose a DB instance.

4. Choose the default monitoring view in the displayed window.

• Select the Performance Insights and CloudWatch metrics view (New) option and choose
Continue to view Performance Insights and CloudWatch metrics.

Analyzing metrics with the Performance Insights dashboard 931

https://console.aws.amazon.com/rds/

Amazon Aurora User Guide for Aurora

• Select the Performance Insights view option and choose Continue for the legacy
monitoring view. Then, continue with this procedure.

Note

This view will be discontinued on December 15, 2023.

The Performance Insights dashboard appears for the DB instance.

For DB instances with Performance Insights turned on, you can also access the dashboard by
choosing the Sessions item in the list of DB instances. Under Current activity, the Sessions
item shows the database load in average active sessions over the last five minutes. The
bar graphically shows the load. When the bar is empty, the DB instance is idle. As the load
increases, the bar fills with blue. When the load passes the number of virtual CPUs (vCPUs) on
the DB instance class, the bar turns red, indicating a potential bottleneck.

5. (Optional) Choose the date or time range in the upper right and specify a different relative
or absolute time interval. You can now specify a time period, and generate a database
performance analysis report. The report provides the identified insights and recommendations.
For more information, see Creating a performance analysis report.

Analyzing metrics with the Performance Insights dashboard 932

Amazon Aurora User Guide for Aurora

In the following screenshot, the DB load interval is 5 hours.

6. (Optional) To zoom in on a portion of the DB load chart, choose the start time and drag to the
end of the time period you want.

The selected area is highlighted in the DB load chart.

Analyzing metrics with the Performance Insights dashboard 933

Amazon Aurora User Guide for Aurora

When you release the mouse, the DB load chart zooms in on the selected AWS Region, and the
Top dimensions table is recalculated.

Analyzing metrics with the Performance Insights dashboard 934

Amazon Aurora User Guide for Aurora

7. (Optional) To refresh your data automatically, select Auto refresh.

The Performance Insights dashboard automatically refreshes with new data. The refresh rate
depends on the amount of data displayed:

• 5 minutes refreshes every 10 seconds.

• 1 hour refreshes every 5 minutes.

• 5 hours refreshes every 5 minutes.

• 24 hours refreshes every 30 minutes.

• 1 week refreshes every day.

Analyzing metrics with the Performance Insights dashboard 935

Amazon Aurora User Guide for Aurora

• 1 month refreshes every day.

Analyzing DB load by wait events

If the Database load chart shows a bottleneck, you can find out where the load is coming from. To
do so, look at the top load items table below the Database load chart. Choose a particular item,
like a SQL query or a user, to drill down into that item and see details about it.

DB load grouped by waits and top SQL queries is the default Performance Insights dashboard view.
This combination typically provides the most insight into performance issues. DB load grouped by
waits shows if there are any resource or concurrency bottlenecks in the database. In this case, the
SQL tab of the top load items table shows which queries are driving that load.

Your typical workflow for diagnosing performance issues is as follows:

1. Review the Database load chart and see if there are any incidents of database load exceeding
the Max CPU line.

2. If there is, look at the Database load chart and identify which wait state or states are primarily
responsible.

3. Identify the digest queries causing the load by seeing which of the queries the SQL tab on the
top load items table are contributing most to those wait states. You can identify these by the DB
Load by Wait column.

4. Choose one of these digest queries in the SQL tab to expand it and see the child queries that it is
composed of.

For example, in the dashboard following, log file sync waits account for most of the DB load. The
LGWR all worker groups wait is also high. The Top SQL chart shows what is causing the log file
sync waits: frequent COMMIT statements. In this case, committing less frequently will reduce DB
load.

Analyzing metrics with the Performance Insights dashboard 936

Amazon Aurora User Guide for Aurora

Analyzing database performance for a period of time

Analyze database performance with on-demand analysis by creating a performance analysis
report for a period of time. View performance analysis reports to find performance issues, such
as resource bottlenecks or changes in a query in your DB instance. The Performance Insights
dashboard allows you to select a time period and create a performance analysis report. You can
also add one or more tags to the report.

To use this feature, you must be using the paid tier retention period. For more information, see
Pricing and data retention for Performance Insights

The report is available in the Performance analysis reports - new tab to select and view. The
report contains the insights, related metrics, and recommendations to resolve the performance
issue. The report is available to view for the duration of Performance Insights retention period.

The report is deleted if the start time of the report analysis period is outside of the retention
period. You can also delete the report before the retention period ends.

Analyzing metrics with the Performance Insights dashboard 937

Amazon Aurora User Guide for Aurora

To detect the performance issues and generate the analysis report for your DB instance, you must
turn on Performance Insights. For more information about turning on Performance Insights, see
Turning Performance Insights on and off for Aurora.

For the region, DB engine, and instance class support information for this feature, see Amazon
Aurora DB engine, Region, and instance class support for Performance Insights features

Creating a performance analysis report

You can create a performance analysis report for a specific period in the Performance Insights
dashboard. You can select a time period and add one or more tags to the analysis report.

The analysis period can range from 5 minutes to 6 days. There must be at least 24 hours of
performance data before the analysis start time.

To create a performance analysis report for a time period

1. Open the Amazon RDS console at https://console.aws.amazon.com/rds/.

2. In the left navigation pane, choose Performance Insights.

3. Choose a DB instance.

The Performance Insights dashboard appears for the DB instance.

4. Choose Analyze performance in Database load section on the dashboard.

The fields to set the time period and add one or more tags to the performance analysis report
are displayed.

5. Choose the time period. If you set a time period in the Relative range or Absolute range in
the upper right, you can only enter or select the analysis report date and time within this time
period. If you select the analysis period outside of this time period, an error message displays.

Analyzing metrics with the Performance Insights dashboard 938

https://console.aws.amazon.com/rds/

Amazon Aurora User Guide for Aurora

To set the time period, you can do any of the following:

• Press and drag any of the sliders on the DB load chart.

The Performance analysis period box displays the selected time period and DB load chart
highlights the selected time period.

• Choose the Start date, Start time, End date, and End time in the Performance analysis
period box.

Analyzing metrics with the Performance Insights dashboard 939

Amazon Aurora User Guide for Aurora

6. (Optional) Enter Key and Value-optional to add a tag for the report.

7. Choose Analyze performance.

A banner displays a message whether the report generation is successful or failed. The
message also provides the link to view the report.

The following example shows the banner with the report creation successful message.

The report is available to view in Performance analysis reports - new tab.

You can create a performance analysis report using the AWS CLI. For an example on how to create
a report using AWS CLI, see Creating a performance analysis report for a time period.

Viewing a performance analysis report

The Performance analysis reports - new tab lists all the reports that are created for the DB
instance. The following are displayed for each report:

• ID: Unique identifier of the report.

• Name: Tag key added to the report.

• Report creation time: Time you created the report.

• Analysis start time: Start time of the analysis in the report.

• Analysis end time: End time of the analysis in the report.

To view a performance analysis report

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

Analyzing metrics with the Performance Insights dashboard 940

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Aurora User Guide for Aurora

2. In the left navigation pane, choose Performance Insights.

3. Choose a DB instance for which you want to view the analysis report.

The Performance Insights dashboard appears for the DB instance.

4. Scroll down and choose Performance analysis reports - new tab.

All the analysis reports for the different time periods are displayed.

5. Choose ID of the report you want to view.

The DB load chart displays the entire analysis period by default if more than one insight is
identified. If the report has identified one insight then the DB load chart displays the insight by
default.

The dashboard also lists the tags for the report in the Tags section.

The following example shows the entire analysis period for the report.

6. Choose the insight in the Database load insights list you want to view if more than one insight
is identified in the report.

The dashboard displays the insight message, DB load chart highlighting the time period of the
insight, analysis and recommendations, and the list of report tags.

The following example shows the DB load insight in the report.

Analyzing metrics with the Performance Insights dashboard 941

Amazon Aurora User Guide for Aurora

Adding tags to a performance analysis report

You can add a tag when you create or view a report. You can add up to 50 tags for a report.

You need permissions to add the tags. For more information about the access policies for
Performance Insights, see Configuring access policies for Performance Insights

To add one or more tags while creating a report, see step 6 in the procedure Creating a
performance analysis report.

To add one or more tags when viewing a report

1. Open the Amazon RDS console at https://console.aws.amazon.com/rds/.

2. In the left navigation pane, choose Performance Insights.

3. Choose a DB instance.

The Performance Insights dashboard appears for the DB instance.

4. Scroll down and choose Performance analysis reports - new tab.

Analyzing metrics with the Performance Insights dashboard 942

https://console.aws.amazon.com/rds/

Amazon Aurora User Guide for Aurora

5. Choose the report for which you want to add the tags.

The dashboard displays the report.

6. Scroll down to Tags and choose Manage tags.

7. Choose Add new tag.

8. Enter the Key and Value - optional, and choose Add new tag.

The following example provides the option to add a new tag for the selected report.

A new tag is created for the report.

The list of tags for the report is displayed in the Tags section on the dashboard. If you want to
remove a tag from the report, choose Remove next to the tag.

Deleting a performance analysis report

You can delete a report from the list of reports displayed in the Performance analysis reports tab
or while viewing a report.

To delete a report

1. Open the Amazon RDS console at https://console.aws.amazon.com/rds/.

Analyzing metrics with the Performance Insights dashboard 943

https://console.aws.amazon.com/rds/

Amazon Aurora User Guide for Aurora

2. In the left navigation pane, choose Performance Insights.

3. Choose a DB instance.

The Performance Insights dashboard appears for the DB instance.

4. Scroll down and choose Performance analysis reports - new tab.

5. Select the report you want to delete and choose Delete in the upper right.

A confirmation window is displayed. The report is deleted after you choose confirm.

6. (Optional) Choose ID of the report you want to delete.

In the report page, choose Delete in the upper right.

A confirmation window is displayed. The report is deleted after you choose confirm.

Analyzing queries in the Performance Insights dashboard

In the Amazon RDS Performance Insights dashboard, you can find information about running and
recent queries in the Top SQL tab in the Top dimensions table. You can use this information to
tune your queries.

Topics

• Overview of the Top SQL tab

• Accessing more SQL text in the Performance Insights dashboard

• Viewing SQL statistics in the Performance Insights dashboard

Overview of the Top SQL tab

By default, the Top SQL tab shows the 25 queries that are contributing the most to DB load. To
help tune your queries, you can analyze information such as the query text and SQL statistics. You
can also choose the statistics that you want to appear in the Top SQL tab.

Analyzing metrics with the Performance Insights dashboard 944

Amazon Aurora User Guide for Aurora

Topics

• SQL text

• SQL statistics

• Load by waits (AAS)

• SQL information

• Preferences

SQL text

By default, each row in the Top SQL table shows 500 bytes of text for each statement.

To learn how to see more than the default 500 bytes of SQL text, see Accessing more SQL text in
the Performance Insights dashboard.

A SQL digest is a composite of multiple actual queries that are structurally similar but might have
different literal values. The digest replaces hardcoded values with a question mark. For example, a
digest might be SELECT * FROM emp WHERE lname= ?. This digest might include the following
child queries:

SELECT * FROM emp WHERE lname = 'Sanchez'
SELECT * FROM emp WHERE lname = 'Olagappan'
SELECT * FROM emp WHERE lname = 'Wu'

To see the literal SQL statements in a digest, select the query, and then choose the plus symbol (+).
In the following example, the selected query is a digest.

Analyzing metrics with the Performance Insights dashboard 945

Amazon Aurora User Guide for Aurora

Note

A SQL digest groups similar SQL statements, but doesn't redact sensitive information.

SQL statistics

SQL statistics are performance-related metrics about SQL queries. For example, Performance
Insights might show executions per second or rows processed per second. Performance Insights
collects statistics for only the most common queries. Typically, these match the top queries by load
shown in the Performance Insights dashboard.

Every line in the Top SQL table shows relevant statistics for the SQL statement or digest, as shown
in the following example.

Performance Insights can report 0.00 and - (unknown) for SQL statistics. This situation occurs
under the following conditions:

• Only one sample exists. For example, Performance Insights calculates rates of change for Aurora
PostgreSQL queries based on multiple samples from the pg_stat_statements view. When

Analyzing metrics with the Performance Insights dashboard 946

Amazon Aurora User Guide for Aurora

a workload runs for a short time, Performance Insights might collect only one sample, which
means that it can't calculate a rate of change. The unknown value is represented with a dash (-).

• Two samples have the same values. Performance Insights can't calculate a rate of change
because no change has occurred, so it reports the rate as 0.00.

• An Aurora PostgreSQL statement lacks a valid identifier. PostgreSQL creates a identifier for a
statement only after parsing and analysis. Thus, a statement can exist in the PostgreSQL internal
in-memory structures with no identifier. Because Performance Insights samples internal in-
memory structures once per second, low-latency queries might appear for only a single sample.
If the query identifier isn't available for this sample, Performance Insights can't associate this
statement with its statistics. The unknown value is represented with a dash (-).

For a description of the SQL statistics for the Aurora engines, see SQL statistics for Performance
Insights.

Load by waits (AAS)

In Top SQL, the Load by waits (AAS) column illustrates the percentage of the database load
associated with each top load item. This column reflects the load for that item by whatever
grouping is currently selected in the DB Load Chart. For more information about Average active
sessions (AAS), see Average active sessions.

For example, you might group the DB load chart by wait states. You examine SQL queries in the
top load items table. In this case, the DB Load by Waits bar is sized, segmented, and color-coded to
show how much of a given wait state that query is contributing to. It also shows which wait states
are affecting the selected query.

Analyzing metrics with the Performance Insights dashboard 947

Amazon Aurora User Guide for Aurora

SQL information

In the Top SQL table, you can open a statement to view its information. The information appears in
the bottom pane.

Analyzing metrics with the Performance Insights dashboard 948

Amazon Aurora User Guide for Aurora

The following types of identifiers (IDs) that are associated with SQL statements:

• Support SQL ID – A hash value of the SQL ID. This value is only for referencing a SQL ID when
you are working with AWS Support. AWS Support doesn't have access to your actual SQL IDs and
SQL text.

• Support Digest ID – A hash value of the digest ID. This value is only for referencing a digest ID
when you are working with AWS Support. AWS Support doesn't have access to your actual digest
IDs and SQL text.

Analyzing metrics with the Performance Insights dashboard 949

Amazon Aurora User Guide for Aurora

Preferences

You can control the statistics displayed in the Top SQL tab by choosing the Preferences icon.

When you choose the Preferences icon, the Preferences window opens. The following screenshot
is an example of the Preferences window.

Analyzing metrics with the Performance Insights dashboard 950

Amazon Aurora User Guide for Aurora

To enable the statistics that you want to appear in the Top SQL tab, use your mouse to scroll to the
bottom of the window, and then choose Continue.

For more information about per-second or per-call statistics for the Aurora engines, see the engine
specific SQL statistics section in SQL statistics for Performance Insights

Accessing more SQL text in the Performance Insights dashboard

By default, each row in the Top SQL table shows 500 bytes of SQL text for each SQL statement.

Analyzing metrics with the Performance Insights dashboard 951

Amazon Aurora User Guide for Aurora

When a SQL statement exceeds 500 bytes, you can view more text in the SQL text section below
the Top SQL table. In this case, the maximum length for the text displayed in SQL text is 4 KB. This
limit is introduced by the console and is subject to the limits set by the database engine. To save
the text shown in SQL text, choose Download.

Topics

• Text size limits for Aurora MySQL

• Setting the SQL text limit for Aurora PostgreSQL DB instances

• Viewing and downloading SQL text in the Performance Insights dashboard

Text size limits for Aurora MySQL

When you download SQL text, the database engine determines its maximum length. You can
download SQL text up to the following per-engine limits.

DB engine Maximum length of downloaded text

Aurora MySQL 4,096 bytes

The SQL text section of the Performance Insights console displays up to the maximum that the
engine returns. For example, if Aurora MySQL returns at most 1 KB to Performance Insights, it can
only collect and show 1 KB, even if the original query is larger. Thus, when you view the query in
SQL text or download it, Performance Insights returns the same number of bytes.

If you use the AWS CLI or API, Performance Insights doesn't have the 4 KB limit enforced by the
console. DescribeDimensionKeys and GetResourceMetrics return at most 500 bytes.

Note

GetDimensionKeyDetails returns the full query, but the size is subject to the engine
limit.

Analyzing metrics with the Performance Insights dashboard 952

Amazon Aurora User Guide for Aurora

Setting the SQL text limit for Aurora PostgreSQL DB instances

Aurora PostgreSQL handles text differently. You can set the text size limit with the DB instance
parameter track_activity_query_size. This parameter has the following characteristics:

Default text size

On Aurora PostgreSQL version 9.6, the default setting for the track_activity_query_size
parameter is 1,024 bytes. On Aurora PostgreSQL version 10 or higher, the default is 4,096
bytes.

Maximum text size

The limit for track_activity_query_size is 102,400 bytes for Aurora PostgreSQL version
12 and lower. The maximum is 1 MB for version 13 and higher.

If the engine returns 1 MB to Performance Insights, the console displays only the first 4 KB. If
you download the query, you get the full 1 MB. In this case, viewing and downloading return
different numbers of bytes. For more information about the track_activity_query_size
DB instance parameter, see Run-time Statistics in the PostgreSQL documentation.

To increase the SQL text size, increase the track_activity_query_size limit. To modify the
parameter, change the parameter setting in the parameter group that is associated with the Aurora
PostgreSQL DB instance.

To change the setting when the instance uses the default parameter group

1. Create a new DB instance parameter group for the appropriate DB engine and DB engine
version.

2. Set the parameter in the new parameter group.

3. Associate the new parameter group with the DB instance.

For information about setting a DB instance parameter, see Modifying parameters in a DB
parameter group.

Viewing and downloading SQL text in the Performance Insights dashboard

In the Performance Insights dashboard, you can view or download SQL text.

Analyzing metrics with the Performance Insights dashboard 953

https://www.postgresql.org/docs/current/runtime-config-statistics.html

Amazon Aurora User Guide for Aurora

To view more SQL text in the Performance Insights dashboard

1. Open the Amazon RDS console at https://console.aws.amazon.com/rds/.

2. In the navigation pane, choose Performance Insights.

3. Choose a DB instance.

The Performance Insights dashboard is displayed for your DB instance.

4. Scroll down to the Top SQL tab.

5. Choose the plus sign to expand a SQL digest and choose one of the digest's child queries.

SQL statements with text larger than 500 bytes look similar to the following image.

6. Scroll down to the SQL text tab.

Analyzing metrics with the Performance Insights dashboard 954

https://console.aws.amazon.com/rds/

Amazon Aurora User Guide for Aurora

The Performance Insights dashboard can display up to 4,096 bytes for each SQL statement.

7. (Optional) Choose Copy to copy the displayed SQL statement, or choose Download to
download the SQL statement to view the SQL text up to the DB engine limit.

Note

To copy or download the SQL statement, disable pop-up blockers.

Viewing SQL statistics in the Performance Insights dashboard

In the Performance Insights dashboard, SQL statistics are available in the Top SQL tab of the
Database load chart.

To view SQL statistics

1. Open the Amazon RDS console at https://console.aws.amazon.com/rds/.

2. In the left navigation pane, choose Performance Insights.

3. At the top of the page, choose the database whose SQL statistics you want to see.

4. Scroll to the bottom of the page and choose the Top SQL tab.

5. Choose an individual statement (Aurora MySQL only) or digest query.

Analyzing metrics with the Performance Insights dashboard 955

https://console.aws.amazon.com/rds/

Amazon Aurora User Guide for Aurora

6. Choose which statistics to display by choosing the gear icon in the upper-right corner of the
chart. For descriptions of the SQL statistics for the Amazon RDSAurora engines, see SQL
statistics for Performance Insights.

The following example shows the preferences for Aurora PostgreSQL.

Analyzing metrics with the Performance Insights dashboard 956

Amazon Aurora User Guide for Aurora

The following example shows the preferences for Aurora MySQL DB instances.

Analyzing metrics with the Performance Insights dashboard 957

Amazon Aurora User Guide for Aurora

7. Choose Save to save your preferences.

The Top SQL table refreshes.

Viewing Performance Insights proactive recommendations

Amazon RDS Performance Insights monitors specific metrics and automatically creates thresholds
by analyzing what levels might be potentially problematic for a specified resource. When the
new metric values cross a predefined threshold over a given period of time, Performance Insights
generates a proactive recommendation. This recommendation helps to prevent future database
performance impact. To receive these proactive recommendations, you must turn on Performance
Insights with a paid tier retention period.

For more information about turning on Performance Insights, see Turning Performance Insights on
and off for Aurora. For information about pricing and data retention for Performance Insights, see
Pricing and data retention for Performance Insights.

Viewing Performance Insights proactive recommendations 958

Amazon Aurora User Guide for Aurora

To find out the regions, DB engines, and instance classes supported for the proactive
recommendations, see Amazon Aurora DB engine, Region, and instance class support for
Performance Insights features.

You can view the detailed analysis and recommended investigations of proactive recommendations
in the recommendation details page.

For more information about recommendations, see Viewing and responding to Amazon Aurora
recommendations.

To view the detailed analysis of a proactive recommendation

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, do any of the following:

• Choose Recommendations.

The Recommendations page displays a list of recommendations sorted by the severity for
all the resources in your account.

• Choose Databases and then choose Recommendations for a resource in the databases page.

The Recommendations tab displays the recommendations and its details for the selected
resource.

3. Find a proactive recommendation and choose View details.

The recommendation details page appears. The title provides the name of the affected
resource with the issue detected and the severity.

The following are the components on the recommendation details page:

• Recommendation summary – The detected issue, recommendation and issue status, issue
start and end time, recommendation modified time, and the engine type.

Viewing Performance Insights proactive recommendations 959

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Aurora User Guide for Aurora

• Metrics – The graphs of the detected issue. Each graph displays a threshold determined by
the resource's baseline behavior and data of the metric reported from the issue start time.

• Analysis and recommendations – The recommendation and the reason for the suggested
recommendation.

Viewing Performance Insights proactive recommendations 960

Amazon Aurora User Guide for Aurora

You can review the cause of the issue and then perform the suggested recommended actions
to fix the issue, or choose Dismiss in the upper right to dismiss the recommendation.

Retrieving metrics with the Performance Insights API for Aurora

When Performance Insights is turned on, the API provides visibility into instance performance.
Amazon CloudWatch Logs provides the authoritative source for vended monitoring metrics for
AWS services.

Performance Insights offers a domain-specific view of database load measured as average active
sessions (AAS). This metric appears to API consumers as a two-dimensional time-series dataset. The
time dimension of the data provides DB load data for each time point in the queried time range.
Each time point decomposes overall load in relation to the requested dimensions, such as SQL,
Wait-event, User, or Host, measured at that time point.

Amazon RDS Performance Insights monitors your Amazon Aurora cluster so that you can analyze
and troubleshoot database performance. One way to view Performance Insights data is in the AWS
Management Console. Performance Insights also provides a public API so that you can query your
own data. You can use the API to do the following:

• Offload data into a database

• Add Performance Insights data to existing monitoring dashboards

• Build monitoring tools

To use the Performance Insights API, enable Performance Insights on one of your Amazon RDS DB
instances. For information about enabling Performance Insights, see Turning Performance Insights
on and off for Aurora. For more information about the Performance Insights API, see the Amazon
RDS Performance Insights API Reference.

The Performance Insights API provides the following operations.

Performance Insights action AWS CLI command Description

CreatePerformanceA
nalysisReport

aws pi create-p
erformance-analysi
s-report

Creates a performance
analysis report for a specific
time period for the DB

Retrieving metrics with the Performance Insights API 961

https://docs.aws.amazon.com/performance-insights/latest/APIReference/Welcome.html
https://docs.aws.amazon.com/performance-insights/latest/APIReference/Welcome.html
https://docs.aws.amazon.com/performance-insights/latest/APIReference/API_CreatePerformanceAnalysisReport.html
https://docs.aws.amazon.com/performance-insights/latest/APIReference/API_CreatePerformanceAnalysisReport.html
https://docs.aws.amazon.com/cli/latest/reference/pi/CreatePerformanceAnalysisReport.html
https://docs.aws.amazon.com/cli/latest/reference/pi/CreatePerformanceAnalysisReport.html
https://docs.aws.amazon.com/cli/latest/reference/pi/CreatePerformanceAnalysisReport.html

Amazon Aurora User Guide for Aurora

Performance Insights action AWS CLI command Description

instance. The result is
AnalysisReportId which
is the unique identifier of the
report.

DeletePerformanceA
nalysisReport

aws pi delete-p
erformance-analysi
s-report

Deletes a performance
analysis report.

DescribeDimensionK
eys

aws pi describe-
dimension-keys

Retrieves the top N dimension
keys for a metric for a specific
time period.

GetDimensionKeyDet
ails

aws pi get-di
mension-key-details

Retrieves the attributes of
the specified dimension
group for a DB instance or
data source. For example
, if you specify a SQL ID,
and if the dimension details
are available, GetDimens
ionKeyDetails retrieves
the full text of the dimension
 db.sql.statement
associated with this ID. This
operation is useful because
 GetResourceMetrics
and DescribeDimensionK
eys don't support retrieval
of large SQL statement text.

GetPerformanceAnal
ysisReport

aws pi get-perf
ormance-analysis-r
eport

Retrieves the report including
the insights for the report.
The result includes the report
status, report ID, report
time details, insights, and
 recommendations.

Retrieving metrics with the Performance Insights API 962

https://docs.aws.amazon.com/performance-insights/latest/APIReference/API_DeletePerformanceAnalysisReport.html
https://docs.aws.amazon.com/performance-insights/latest/APIReference/API_DeletePerformanceAnalysisReport.html
https://docs.aws.amazon.com/cli/latest/reference/pi/DeletePerformanceAnalysisReport.html
https://docs.aws.amazon.com/cli/latest/reference/pi/DeletePerformanceAnalysisReport.html
https://docs.aws.amazon.com/cli/latest/reference/pi/DeletePerformanceAnalysisReport.html
https://docs.aws.amazon.com/performance-insights/latest/APIReference/API_DescribeDimensionKeys.html
https://docs.aws.amazon.com/performance-insights/latest/APIReference/API_DescribeDimensionKeys.html
https://docs.aws.amazon.com/cli/latest/reference/pi/describe-dimension-keys.html
https://docs.aws.amazon.com/cli/latest/reference/pi/describe-dimension-keys.html
https://docs.aws.amazon.com/performance-insights/latest/APIReference/API_GetDimensionKeyDetails.html
https://docs.aws.amazon.com/performance-insights/latest/APIReference/API_GetDimensionKeyDetails.html
https://docs.aws.amazon.com/cli/latest/reference/pi/get-dimension-key-details.html
https://docs.aws.amazon.com/cli/latest/reference/pi/get-dimension-key-details.html
https://docs.aws.amazon.com/performance-insights/latest/APIReference/API_GetPerformanceAnalysisReport.html
https://docs.aws.amazon.com/performance-insights/latest/APIReference/API_GetPerformanceAnalysisReport.html
https://docs.aws.amazon.com/cli/latest/reference/pi/GetPerformanceAnalysisReport.html
https://docs.aws.amazon.com/cli/latest/reference/pi/GetPerformanceAnalysisReport.html
https://docs.aws.amazon.com/cli/latest/reference/pi/GetPerformanceAnalysisReport.html

Amazon Aurora User Guide for Aurora

Performance Insights action AWS CLI command Description

GetResourceMetadata aws pi get-re
source-metadata

Retrieve the metadata
for different features. For
example, the metadata might
indicate that a feature is
turned on or off on a specific
DB instance.

GetResourceMetrics aws pi get-res
ource-metrics

Retrieves Performance
Insights metrics for a set
of data sources over a time
period. You can provide
specific dimension groups
and dimensions, and provide
aggregation and filtering
criteria for each group.

ListAvailableResou
rceDimensions

aws pi list-a
vailable-resource-
dimensions

Retrieve the dimensions
that can be queried for each
specified metric type on a
specified instance.

ListAvailableResou
rceMetrics

aws pi list-a
vailable-resource-
metrics

Retrieve all available metrics
of the specified metric types
that can be queried for a
specified DB instance.

ListPerformanceAna
lysisReports

aws pi list-per
formance-analysis-
reports

Retrieves all the analysis
reports available for the DB
instance. The reports are
listed based on the start time
of each report.

ListTagsForResource aws pi list-tags-
for-resource

Lists all the metadata tags
added to the resource. The
list includes the name and
value of the tag.

Retrieving metrics with the Performance Insights API 963

https://docs.aws.amazon.com/performance-insights/latest/APIReference/API_GetResourceMetadata.html
https://docs.aws.amazon.com/cli/latest/reference/pi/get-resource-metadata.html
https://docs.aws.amazon.com/cli/latest/reference/pi/get-resource-metadata.html
https://docs.aws.amazon.com/performance-insights/latest/APIReference/API_GetResourceMetrics.html
https://docs.aws.amazon.com/cli/latest/reference/pi/get-resource-metrics.html
https://docs.aws.amazon.com/cli/latest/reference/pi/get-resource-metrics.html
https://docs.aws.amazon.com/performance-insights/latest/APIReference/API_ListAvailableResourceDimensions.html
https://docs.aws.amazon.com/performance-insights/latest/APIReference/API_ListAvailableResourceDimensions.html
https://docs.aws.amazon.com/cli/latest/reference/pi/list-available-resource-dimensions.html
https://docs.aws.amazon.com/cli/latest/reference/pi/list-available-resource-dimensions.html
https://docs.aws.amazon.com/cli/latest/reference/pi/list-available-resource-dimensions.html
https://docs.aws.amazon.com/performance-insights/latest/APIReference/API_ListAvailableResourceMetrics.html
https://docs.aws.amazon.com/performance-insights/latest/APIReference/API_ListAvailableResourceMetrics.html
https://docs.aws.amazon.com/cli/latest/reference/pi/list-available-resource-metrics.html
https://docs.aws.amazon.com/cli/latest/reference/pi/list-available-resource-metrics.html
https://docs.aws.amazon.com/cli/latest/reference/pi/list-available-resource-metrics.html
https://docs.aws.amazon.com/performance-insights/latest/APIReference/API_ListPerformanceAnalysisReports.html
https://docs.aws.amazon.com/performance-insights/latest/APIReference/API_ListPerformanceAnalysisReports.html
https://docs.aws.amazon.com/cli/latest/reference/pi/list-performance-analysis-reports.html
https://docs.aws.amazon.com/cli/latest/reference/pi/list-performance-analysis-reports.html
https://docs.aws.amazon.com/cli/latest/reference/pi/list-performance-analysis-reports.html
https://docs.aws.amazon.com/performance-insights/latest/APIReference/API_ListTagsForResource.html
https://docs.aws.amazon.com/cli/latest/reference/pi/list-tags-for-resource.html
https://docs.aws.amazon.com/cli/latest/reference/pi/list-tags-for-resource.html

Amazon Aurora User Guide for Aurora

Performance Insights action AWS CLI command Description

TagResource aws pi tag-resource Adds metadata tags to the
Amazon RDS resource. The
tag includes a name and a
value.

UntagResource aws pi untag-re
source

Removes the metadata tag
from the resource.

Topics

• AWS CLI for Performance Insights

• Retrieving time-series metrics

• AWS CLI examples for Performance Insights

AWS CLI for Performance Insights

You can view Performance Insights data using the AWS CLI. You can view help for the AWS CLI
commands for Performance Insights by entering the following on the command line.

aws pi help

If you don't have the AWS CLI installed, see Installing the AWS CLI in the AWS CLI User Guide for
information about installing it.

Retrieving time-series metrics

The GetResourceMetrics operation retrieves one or more time-series metrics from the
Performance Insights data. GetResourceMetrics requires a metric and time period, and returns
a response with a list of data points.

For example, the AWS Management Console uses GetResourceMetrics to populate the Counter
Metrics chart and the Database Load chart, as seen in the following image.

Retrieving metrics with the Performance Insights API 964

https://docs.aws.amazon.com/performance-insights/latest/APIReference/API_TagResource.html
https://docs.aws.amazon.com/cli/latest/reference/pi/tag-resource.html
https://docs.aws.amazon.com/performance-insights/latest/APIReference/API_UntagResource.html
https://docs.aws.amazon.com/cli/latest/reference/pi/untag-resource.html
https://docs.aws.amazon.com/cli/latest/reference/pi/untag-resource.html
https://docs.aws.amazon.com/cli/latest/userguide/installing.html

Amazon Aurora User Guide for Aurora

All metrics returned by GetResourceMetrics are standard time-series metrics, with the
exception of db.load. This metric is displayed in the Database Load chart. The db.load metric is
different from the other time-series metrics because you can break it into subcomponents called
dimensions. In the previous image, db.load is broken down and grouped by the waits states that
make up the db.load.

Note

GetResourceMetrics can also return the db.sampleload metric, but the db.load
metric is appropriate in most cases.

For information about the counter metrics returned by GetResourceMetrics, see Performance
Insights counter metrics.

The following calculations are supported for the metrics:

• Average – The average value for the metric over a period of time. Append .avg to the metric
name.

• Minimum – The minimum value for the metric over a period of time. Append .min to the metric
name.

Retrieving metrics with the Performance Insights API 965

Amazon Aurora User Guide for Aurora

• Maximum – The maximum value for the metric over a period of time. Append .max to the metric
name.

• Sum – The sum of the metric values over a period of time. Append .sum to the metric name.

• Sample count – The number of times the metric was collected over a period of time. Append
.sample_count to the metric name.

For example, assume that a metric is collected for 300 seconds (5 minutes), and that the metric is
collected one time each minute. The values for each minute are 1, 2, 3, 4, and 5. In this case, the
following calculations are returned:

• Average – 3

• Minimum – 1

• Maximum – 5

• Sum – 15

• Sample count – 5

For information about using the get-resource-metrics AWS CLI command, see get-
resource-metrics.

For the --metric-queries option, specify one or more queries that you want to get results for.
Each query consists of a mandatory Metric and optional GroupBy and Filter parameters. The
following is an example of a --metric-queries option specification.

{
 "Metric": "string",
 "GroupBy": {
 "Group": "string",
 "Dimensions": ["string", ...],
 "Limit": integer
 },
 "Filter": {"string": "string"
 ...}

AWS CLI examples for Performance Insights

The following examples show how to use the AWS CLI for Performance Insights.

Topics

Retrieving metrics with the Performance Insights API 966

https://docs.aws.amazon.com/cli/latest/reference/pi/get-resource-metrics.html
https://docs.aws.amazon.com/cli/latest/reference/pi/get-resource-metrics.html

Amazon Aurora User Guide for Aurora

• Retrieving counter metrics

• Retrieving the DB load average for top wait events

• Retrieving the DB load average for top SQL

• Retrieving the DB load average filtered by SQL

• Retrieving the full text of a SQL statement

• Creating a performance analysis report for a time period

• Retrieving a performance analysis report

• Listing all the performance analysis reports for the DB instance

• Deleting a performance analysis report

• Adding tag to a performance analysis report

• Listing all the tags for a performance analysis report

• Deleting tags from a performance analysis report

Retrieving counter metrics

The following screenshot shows two counter metrics charts in the AWS Management Console.

The following example shows how to gather the same data that the AWS Management Console
uses to generate the two counter metric charts.

For Linux, macOS, or Unix:

Retrieving metrics with the Performance Insights API 967

Amazon Aurora User Guide for Aurora

aws pi get-resource-metrics \
 --service-type RDS \
 --identifier db-ID \
 --start-time 2018-10-30T00:00:00Z \
 --end-time 2018-10-30T01:00:00Z \
 --period-in-seconds 60 \
 --metric-queries '[{"Metric": "os.cpuUtilization.user.avg" },
 {"Metric": "os.cpuUtilization.idle.avg"}]'

For Windows:

aws pi get-resource-metrics ^
 --service-type RDS ^
 --identifier db-ID ^
 --start-time 2018-10-30T00:00:00Z ^
 --end-time 2018-10-30T01:00:00Z ^
 --period-in-seconds 60 ^
 --metric-queries '[{"Metric": "os.cpuUtilization.user.avg" },
 {"Metric": "os.cpuUtilization.idle.avg"}]'

You can also make a command easier to read by specifying a file for the --metrics-query
option. The following example uses a file called query.json for the option. The file has the
following contents.

[
 {
 "Metric": "os.cpuUtilization.user.avg"
 },
 {
 "Metric": "os.cpuUtilization.idle.avg"
 }
]

Run the following command to use the file.

For Linux, macOS, or Unix:

aws pi get-resource-metrics \
 --service-type RDS \
 --identifier db-ID \
 --start-time 2018-10-30T00:00:00Z \
 --end-time 2018-10-30T01:00:00Z \

Retrieving metrics with the Performance Insights API 968

Amazon Aurora User Guide for Aurora

 --period-in-seconds 60 \
 --metric-queries file://query.json

For Windows:

aws pi get-resource-metrics ^
 --service-type RDS ^
 --identifier db-ID ^
 --start-time 2018-10-30T00:00:00Z ^
 --end-time 2018-10-30T01:00:00Z ^
 --period-in-seconds 60 ^
 --metric-queries file://query.json

The preceding example specifies the following values for the options:

• --service-type – RDS for Amazon RDS

• --identifier – The resource ID for the DB instance

• --start-time and --end-time – The ISO 8601 DateTime values for the period to query, with
multiple supported formats

It queries for a one-hour time range:

• --period-in-seconds – 60 for a per-minute query

• --metric-queries – An array of two queries, each just for one metric.

The metric name uses dots to classify the metric in a useful category, with the final element
being a function. In the example, the function is avg for each query. As with Amazon
CloudWatch, the supported functions are min, max, total, and avg.

The response looks similar to the following.

{
 "Identifier": "db-XXX",
 "AlignedStartTime": 1540857600.0,
 "AlignedEndTime": 1540861200.0,
 "MetricList": [
 { //A list of key/datapoints
 "Key": {
 "Metric": "os.cpuUtilization.user.avg" //Metric1

Retrieving metrics with the Performance Insights API 969

Amazon Aurora User Guide for Aurora

 },
 "DataPoints": [
 //Each list of datapoints has the same timestamps and same number of
 items
 {
 "Timestamp": 1540857660.0, //Minute1
 "Value": 4.0
 },
 {
 "Timestamp": 1540857720.0, //Minute2
 "Value": 4.0
 },
 {
 "Timestamp": 1540857780.0, //Minute 3
 "Value": 10.0
 }
 //... 60 datapoints for the os.cpuUtilization.user.avg metric
]
 },
 {
 "Key": {
 "Metric": "os.cpuUtilization.idle.avg" //Metric2
 },
 "DataPoints": [
 {
 "Timestamp": 1540857660.0, //Minute1
 "Value": 12.0
 },
 {
 "Timestamp": 1540857720.0, //Minute2
 "Value": 13.5
 },
 //... 60 datapoints for the os.cpuUtilization.idle.avg metric
]
 }
] //end of MetricList
} //end of response

The response has an Identifier, AlignedStartTime, and AlignedEndTime. B the --period-
in-seconds value was 60, the start and end times have been aligned to the minute. If the --
period-in-seconds was 3600, the start and end times would have been aligned to the hour.

Retrieving metrics with the Performance Insights API 970

Amazon Aurora User Guide for Aurora

The MetricList in the response has a number of entries, each with a Key and a DataPoints
entry. Each DataPoint has a Timestamp and a Value. Each Datapoints list has 60 data
points because the queries are for per-minute data over an hour, with Timestamp1/Minute1,
Timestamp2/Minute2, and so on, up to Timestamp60/Minute60.

Because the query is for two different counter metrics, there are two elements in the response
MetricList.

Retrieving the DB load average for top wait events

The following example is the same query that the AWS Management Console uses to generate
a stacked area line graph. This example retrieves the db.load.avg for the last hour with load
divided according to the top seven wait events. The command is the same as the command in
Retrieving counter metrics. However, the query.json file has the following contents.

[
 {
 "Metric": "db.load.avg",
 "GroupBy": { "Group": "db.wait_event", "Limit": 7 }
 }
]

Run the following command.

For Linux, macOS, or Unix:

aws pi get-resource-metrics \
 --service-type RDS \
 --identifier db-ID \
 --start-time 2018-10-30T00:00:00Z \
 --end-time 2018-10-30T01:00:00Z \
 --period-in-seconds 60 \
 --metric-queries file://query.json

For Windows:

aws pi get-resource-metrics ^
 --service-type RDS ^
 --identifier db-ID ^
 --start-time 2018-10-30T00:00:00Z ^
 --end-time 2018-10-30T01:00:00Z ^
 --period-in-seconds 60 ^

Retrieving metrics with the Performance Insights API 971

Amazon Aurora User Guide for Aurora

 --metric-queries file://query.json

The example specifies the metric of db.load.avg and a GroupBy of the top seven wait events.
For details about valid values for this example, see DimensionGroup in the Performance Insights API
Reference.

The response looks similar to the following.

{
 "Identifier": "db-XXX",
 "AlignedStartTime": 1540857600.0,
 "AlignedEndTime": 1540861200.0,
 "MetricList": [
 { //A list of key/datapoints
 "Key": {
 //A Metric with no dimensions. This is the total db.load.avg
 "Metric": "db.load.avg"
 },
 "DataPoints": [
 //Each list of datapoints has the same timestamps and same number of
 items
 {
 "Timestamp": 1540857660.0, //Minute1
 "Value": 0.5166666666666667
 },
 {
 "Timestamp": 1540857720.0, //Minute2
 "Value": 0.38333333333333336
 },
 {
 "Timestamp": 1540857780.0, //Minute 3
 "Value": 0.26666666666666666
 }
 //... 60 datapoints for the total db.load.avg key
]
 },
 {
 "Key": {
 //Another key. This is db.load.avg broken down by CPU
 "Metric": "db.load.avg",
 "Dimensions": {
 "db.wait_event.name": "CPU",
 "db.wait_event.type": "CPU"

Retrieving metrics with the Performance Insights API 972

https://docs.aws.amazon.com/performance-insights/latest/APIReference/API_DimensionGroup.html

Amazon Aurora User Guide for Aurora

 }
 },
 "DataPoints": [
 {
 "Timestamp": 1540857660.0, //Minute1
 "Value": 0.35
 },
 {
 "Timestamp": 1540857720.0, //Minute2
 "Value": 0.15
 },
 //... 60 datapoints for the CPU key
]
 },
 //... In total we have 8 key/datapoints entries, 1) total, 2-8) Top Wait Events
] //end of MetricList
} //end of response

In this response, there are eight entries in the MetricList. There is one entry for the total
db.load.avg, and seven entries each for the db.load.avg divided according to one of the top
seven wait events. Unlike in the first example, because there was a grouping dimension, there must
be one key for each grouping of the metric. There can't be only one key for each metric, as in the
basic counter metric use case.

Retrieving the DB load average for top SQL

The following example groups db.wait_events by the top 10 SQL statements. There are two
different groups for SQL statements:

• db.sql – The full SQL statement, such as select * from customers where customer_id
= 123

• db.sql_tokenized – The tokenized SQL statement, such as select * from customers
where customer_id = ?

When analyzing database performance, it can be useful to consider SQL statements that only
differ by their parameters as one logic item. So, you can use db.sql_tokenized when querying.
However, especially when you're interested in explain plans, sometimes it's more useful to examine
full SQL statements with parameters, and query grouping by db.sql. There is a parent-child
relationship between tokenized and full SQL, with multiple full SQL (children) grouped under the
same tokenized SQL (parent).

Retrieving metrics with the Performance Insights API 973

Amazon Aurora User Guide for Aurora

The command in this example is the similar to the command in Retrieving the DB load average for
top wait events. However, the query.json file has the following contents.

[
 {
 "Metric": "db.load.avg",
 "GroupBy": { "Group": "db.sql_tokenized", "Limit": 10 }
 }
]

The following example uses db.sql_tokenized.

For Linux, macOS, or Unix:

aws pi get-resource-metrics \
 --service-type RDS \
 --identifier db-ID \
 --start-time 2018-10-29T00:00:00Z \
 --end-time 2018-10-30T00:00:00Z \
 --period-in-seconds 3600 \
 --metric-queries file://query.json

For Windows:

aws pi get-resource-metrics ^
 --service-type RDS ^
 --identifier db-ID ^
 --start-time 2018-10-29T00:00:00Z ^
 --end-time 2018-10-30T00:00:00Z ^
 --period-in-seconds 3600 ^
 --metric-queries file://query.json

This example queries over 24 hours, with a one hour period-in-seconds.

The example specifies the metric of db.load.avg and a GroupBy of the top seven wait events.
For details about valid values for this example, see DimensionGroup in the Performance Insights API
Reference.

The response looks similar to the following.

{
 "AlignedStartTime": 1540771200.0,

Retrieving metrics with the Performance Insights API 974

https://docs.aws.amazon.com/performance-insights/latest/APIReference/API_DimensionGroup.html

Amazon Aurora User Guide for Aurora

 "AlignedEndTime": 1540857600.0,
 "Identifier": "db-XXX",

 "MetricList": [//11 entries in the MetricList
 {
 "Key": { //First key is total
 "Metric": "db.load.avg"
 }
 "DataPoints": [//Each DataPoints list has 24 per-hour Timestamps and a
 value
 {
 "Value": 1.6964980544747081,
 "Timestamp": 1540774800.0
 },
 //... 24 datapoints
]
 },
 {
 "Key": { //Next key is the top tokenized SQL
 "Dimensions": {
 "db.sql_tokenized.statement": "INSERT INTO authors (id,name,email)
 VALUES\n(nextval(?) ,?,?)",
 "db.sql_tokenized.db_id": "pi-2372568224",
 "db.sql_tokenized.id": "AKIAIOSFODNN7EXAMPLE"
 },
 "Metric": "db.load.avg"
 },
 "DataPoints": [//... 24 datapoints
]
 },
 // In total 11 entries, 10 Keys of top tokenized SQL, 1 total key
] //End of MetricList
} //End of response

This response has 11 entries in the MetricList (1 total, 10 top tokenized SQL), with each entry
having 24 per-hour DataPoints.

For tokenized SQL, there are three entries in each dimensions list:

• db.sql_tokenized.statement – The tokenized SQL statement.

• db.sql_tokenized.db_id – Either the native database ID used to refer to the SQL, or a
synthetic ID that Performance Insights generates for you if the native database ID isn't available.
This example returns the pi-2372568224 synthetic ID.

Retrieving metrics with the Performance Insights API 975

Amazon Aurora User Guide for Aurora

• db.sql_tokenized.id – The ID of the query inside Performance Insights.

In the AWS Management Console, this ID is called the Support ID. It's named this because the
ID is data that AWS Support can examine to help you troubleshoot an issue with your database.
AWS takes the security and privacy of your data extremely seriously, and almost all data is stored
encrypted with your AWS KMS key. Therefore, nobody inside AWS can look at this data. In the
example preceding, both the tokenized.statement and the tokenized.db_id are stored
encrypted. If you have an issue with your database, AWS Support can help you by referencing the
Support ID.

When querying, it might be convenient to specify a Group in GroupBy. However, for finer-grained
control over the data that's returned, specify the list of dimensions. For example, if all that is
needed is the db.sql_tokenized.statement, then a Dimensions attribute can be added to
the query.json file.

[
 {
 "Metric": "db.load.avg",
 "GroupBy": {
 "Group": "db.sql_tokenized",
 "Dimensions":["db.sql_tokenized.statement"],
 "Limit": 10
 }
 }
]

Retrieving metrics with the Performance Insights API 976

Amazon Aurora User Guide for Aurora

Retrieving the DB load average filtered by SQL

The preceding image shows that a particular query is selected, and the top average active sessions
stacked area line graph is scoped to that query. Although the query is still for the top seven overall
wait events, the value of the response is filtered. The filter causes it to take into account only
sessions that are a match for the particular filter.

The corresponding API query in this example is similar to the command in Retrieving the DB load
average for top SQL. However, the query.json file has the following contents.

[
 {
 "Metric": "db.load.avg",
 "GroupBy": { "Group": "db.wait_event", "Limit": 5 },
 "Filter": { "db.sql_tokenized.id": "AKIAIOSFODNN7EXAMPLE" }
 }
]

For Linux, macOS, or Unix:

aws pi get-resource-metrics \
 --service-type RDS \

Retrieving metrics with the Performance Insights API 977

Amazon Aurora User Guide for Aurora

 --identifier db-ID \
 --start-time 2018-10-30T00:00:00Z \
 --end-time 2018-10-30T01:00:00Z \
 --period-in-seconds 60 \
 --metric-queries file://query.json

For Windows:

aws pi get-resource-metrics ^
 --service-type RDS ^
 --identifier db-ID ^
 --start-time 2018-10-30T00:00:00Z ^
 --end-time 2018-10-30T01:00:00Z ^
 --period-in-seconds 60 ^
 --metric-queries file://query.json

The response looks similar to the following.

{
 "Identifier": "db-XXX",
 "AlignedStartTime": 1556215200.0,
 "MetricList": [
 {
 "Key": {
 "Metric": "db.load.avg"
 },
 "DataPoints": [
 {
 "Timestamp": 1556218800.0,
 "Value": 1.4878117913832196
 },
 {
 "Timestamp": 1556222400.0,
 "Value": 1.192823803967328
 }
]
 },
 {
 "Key": {
 "Metric": "db.load.avg",
 "Dimensions": {
 "db.wait_event.type": "io",
 "db.wait_event.name": "wait/io/aurora_redo_log_flush"

Retrieving metrics with the Performance Insights API 978

Amazon Aurora User Guide for Aurora

 }
 },
 "DataPoints": [
 {
 "Timestamp": 1556218800.0,
 "Value": 1.1360544217687074
 },
 {
 "Timestamp": 1556222400.0,
 "Value": 1.058051341890315
 }
]
 },
 {
 "Key": {
 "Metric": "db.load.avg",
 "Dimensions": {
 "db.wait_event.type": "io",
 "db.wait_event.name": "wait/io/table/sql/handler"
 }
 },
 "DataPoints": [
 {
 "Timestamp": 1556218800.0,
 "Value": 0.16241496598639457
 },
 {
 "Timestamp": 1556222400.0,
 "Value": 0.05163360560093349
 }
]
 },
 {
 "Key": {
 "Metric": "db.load.avg",
 "Dimensions": {
 "db.wait_event.type": "synch",
 "db.wait_event.name": "wait/synch/mutex/innodb/
aurora_lock_thread_slot_futex"
 }
 },
 "DataPoints": [
 {
 "Timestamp": 1556218800.0,

Retrieving metrics with the Performance Insights API 979

Amazon Aurora User Guide for Aurora

 "Value": 0.11479591836734694
 },
 {
 "Timestamp": 1556222400.0,
 "Value": 0.013127187864644107
 }
]
 },
 {
 "Key": {
 "Metric": "db.load.avg",
 "Dimensions": {
 "db.wait_event.type": "CPU",
 "db.wait_event.name": "CPU"
 }
 },
 "DataPoints": [
 {
 "Timestamp": 1556218800.0,
 "Value": 0.05215419501133787
 },
 {
 "Timestamp": 1556222400.0,
 "Value": 0.05805134189031505
 }
]
 },
 {
 "Key": {
 "Metric": "db.load.avg",
 "Dimensions": {
 "db.wait_event.type": "synch",
 "db.wait_event.name": "wait/synch/mutex/innodb/lock_wait_mutex"
 }
 },
 "DataPoints": [
 {
 "Timestamp": 1556218800.0,
 "Value": 0.017573696145124718
 },
 {
 "Timestamp": 1556222400.0,
 "Value": 0.002333722287047841
 }

Retrieving metrics with the Performance Insights API 980

Amazon Aurora User Guide for Aurora

]
 }
],
 "AlignedEndTime": 1556222400.0
} //end of response

In this response, all values are filtered according to the contribution of tokenized SQL
AKIAIOSFODNN7EXAMPLE specified in the query.json file. The keys also might follow a different
order than a query without a filter, because it's the top five wait events that affected the filtered
SQL.

Retrieving the full text of a SQL statement

The following example retrieves the full text of a SQL statement for DB instance
db-10BCD2EFGHIJ3KL4M5NO6PQRS5. The --group is db.sql, and the --group-identifier
is db.sql.id. In this example, my-sql-id represents a SQL ID retrieved by invoking pi get-
resource-metrics or pi describe-dimension-keys.

Run the following command.

For Linux, macOS, or Unix:

aws pi get-dimension-key-details \
 --service-type RDS \
 --identifier db-10BCD2EFGHIJ3KL4M5NO6PQRS5 \
 --group db.sql \
 --group-identifier my-sql-id \
 --requested-dimensions statement

For Windows:

aws pi get-dimension-key-details ^
 --service-type RDS ^
 --identifier db-10BCD2EFGHIJ3KL4M5NO6PQRS5 ^
 --group db.sql ^
 --group-identifier my-sql-id ^
 --requested-dimensions statement

In this example, the dimensions details are available. Thus, Performance Insights retrieves the full
text of the SQL statement, without truncating it.

Retrieving metrics with the Performance Insights API 981

Amazon Aurora User Guide for Aurora

{
 "Dimensions":[
 {
 "Value": "SELECT e.last_name, d.department_name FROM employees e, departments d
 WHERE e.department_id=d.department_id",
 "Dimension": "db.sql.statement",
 "Status": "AVAILABLE"
 },
 ...
]
}

Creating a performance analysis report for a time period

The following example creates a performance analysis report with the 1682969503 start time and
1682979503 end time for the db-loadtest-0 database.

aws pi create-performance-analysis-report \
 --service-type RDS \
 --identifier db-loadtest-0 \
 --start-time 1682969503 \
 --end-time 1682979503 \
 --region us-west-2

The response is the unique identifier report-0234d3ed98e28fb17 for the report.

{
 "AnalysisReportId": "report-0234d3ed98e28fb17"
}

Retrieving a performance analysis report

The following example retrieves the analysis report details for the report-0d99cc91c4422ee61
report.

aws pi get-performance-analysis-report \
--service-type RDS \
--identifier db-loadtest-0 \
--analysis-report-id report-0d99cc91c4422ee61 \
--region us-west-2

Retrieving metrics with the Performance Insights API 982

Amazon Aurora User Guide for Aurora

The response provides the report status, ID, time details, and insights.

 {
 "AnalysisReport": {
 "Status": "Succeeded",
 "ServiceType": "RDS",
 "Identifier": "db-loadtest-0",
 "StartTime": 1680583486.584,
 "AnalysisReportId": "report-0d99cc91c4422ee61",
 "EndTime": 1680587086.584,
 "CreateTime": 1680587087.139,
 "Insights": [
 ... (Condensed for space)
]
 }
}

Listing all the performance analysis reports for the DB instance

The following example lists all the available performance analysis reports for the db-loadtest-0
database.

aws pi list-performance-analysis-reports \
--service-type RDS \
--identifier db-loadtest-0 \
--region us-west-2

The response lists all the reports with the report ID, status, and time period details.

{
 "AnalysisReports": [
 {
 "Status": "Succeeded",
 "EndTime": 1680587086.584,
 "CreationTime": 1680587087.139,
 "StartTime": 1680583486.584,
 "AnalysisReportId": "report-0d99cc91c4422ee61"
 },
 {
 "Status": "Succeeded",
 "EndTime": 1681491137.914,

Retrieving metrics with the Performance Insights API 983

Amazon Aurora User Guide for Aurora

 "CreationTime": 1681491145.973,
 "StartTime": 1681487537.914,
 "AnalysisReportId": "report-002633115cc002233"
 },
 {
 "Status": "Succeeded",
 "EndTime": 1681493499.849,
 "CreationTime": 1681493507.762,
 "StartTime": 1681489899.849,
 "AnalysisReportId": "report-043b1e006b47246f9"
 },
 {
 "Status": "InProgress",
 "EndTime": 1682979503.0,
 "CreationTime": 1682979618.994,
 "StartTime": 1682969503.0,
 "AnalysisReportId": "report-01ad15f9b88bcbd56"
 }
]
}

Deleting a performance analysis report

The following example deletes the analysis report for the db-loadtest-0 database.

aws pi delete-performance-analysis-report \
--service-type RDS \
--identifier db-loadtest-0 \
--analysis-report-id report-0d99cc91c4422ee61 \
--region us-west-2

Adding tag to a performance analysis report

The following example adds a tag with a key name and value test-tag to the
report-01ad15f9b88bcbd56 report.

aws pi tag-resource \
--service-type RDS \
--resource-arn arn:aws:pi:us-west-2:356798100956:perf-reports/RDS/db-loadtest-0/
report-01ad15f9b88bcbd56 \
--tags Key=name,Value=test-tag \
--region us-west-2

Retrieving metrics with the Performance Insights API 984

Amazon Aurora User Guide for Aurora

Listing all the tags for a performance analysis report

The following example lists all the tags for the report-01ad15f9b88bcbd56 report.

aws pi list-tags-for-resource \
--service-type RDS \
--resource-arn arn:aws:pi:us-west-2:356798100956:perf-reports/RDS/db-loadtest-0/
report-01ad15f9b88bcbd56 \
--region us-west-2

The response lists the value and key for all the tags added to the report:

{
 "Tags": [
 {
 "Value": "test-tag",
 "Key": "name"
 }
]
}

Deleting tags from a performance analysis report

The following example deletes the name tag from the report-01ad15f9b88bcbd56 report.

aws pi untag-resource \
--service-type RDS \
--resource-arn arn:aws:pi:us-west-2:356798100956:perf-reports/RDS/db-loadtest-0/
report-01ad15f9b88bcbd56 \
--tag-keys name \
--region us-west-2

After the tag is deleted, calling the list-tags-for-resource API doesn't list this tag.

Logging Performance Insights calls using AWS CloudTrail

Performance Insights runs with AWS CloudTrail, a service that provides a record of actions taken
by a user, role, or an AWS service in Performance Insights. CloudTrail captures all API calls for
Performance Insights as events. This capture includes calls from the Amazon RDS console and from
code calls to the Performance Insights API operations.

Logging Performance Insights calls using AWS CloudTrail 985

Amazon Aurora User Guide for Aurora

If you create a trail, you can enable continuous delivery of CloudTrail events to an Amazon S3
bucket, including events for Performance Insights. If you don't configure a trail, you can still view
the most recent events in the CloudTrail console in Event history. Using the data collected by
CloudTrail, you can determine certain information. This information includes the request that was
made to Performance Insights, the IP address the request was made from, who made the request,
and when it was made. It also includes additional details.

To learn more about CloudTrail, see the AWS CloudTrail User Guide.

Working with Performance Insights information in CloudTrail

CloudTrail is enabled on your AWS account when you create the account. When activity occurs in
Performance Insights, that activity is recorded in a CloudTrail event along with other AWS service
events in the CloudTrail console in Event history. You can view, search, and download recent
events in your AWS account. For more information, see Viewing Events with CloudTrail Event
History in AWS CloudTrail User Guide.

For an ongoing record of events in your AWS account, including events for Performance Insights,
create a trail. A trail enables CloudTrail to deliver log files to an Amazon S3 bucket. By default,
when you create a trail in the console, the trail applies to all AWS Regions. The trail logs events
from all AWS Regions in the AWS partition and delivers the log files to the Amazon S3 bucket that
you specify. Additionally, you can configure other AWS services to further analyze and act upon
the event data collected in CloudTrail logs. For more information, see the following topics in AWS
CloudTrail User Guide:

• Overview for Creating a Trail

• CloudTrail Supported Services and Integrations

• Configuring Amazon SNS Notifications for CloudTrail

• Receiving CloudTrail Log Files from Multiple Regions and Receiving CloudTrail Log Files from
Multiple Accounts

All Performance Insights operations are logged by CloudTrail and are documented in the
Performance Insights API Reference. For example, calls to the DescribeDimensionKeys and
GetResourceMetrics operations generate entries in the CloudTrail log files.

Every event or log entry contains information about who generated the request. The identity
information helps you determine the following:

Logging Performance Insights calls using AWS CloudTrail 986

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/view-cloudtrail-events.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/view-cloudtrail-events.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-create-and-update-a-trail.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-aws-service-specific-topics.html#cloudtrail-aws-service-specific-topics-integrations
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/getting_notifications_top_level.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/receive-cloudtrail-log-files-from-multiple-regions.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-receive-logs-from-multiple-accounts.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-receive-logs-from-multiple-accounts.html
https://docs.aws.amazon.com/performance-insights/latest/APIReference/Welcome.html

Amazon Aurora User Guide for Aurora

• Whether the request was made with root or IAM user credentials.

• Whether the request was made with temporary security credentials for a role or federated user.

• Whether the request was made by another AWS service.

For more information, see the CloudTrail userIdentity Element.

Performance Insights log file entries

A trail is a configuration that enables delivery of events as log files to an Amazon S3 bucket that
you specify. CloudTrail log files contain one or more log entries. An event represents a single
request from any source. Each event includes information about the requested operation, the date
and time of the operation, request parameters, and so on. CloudTrail log files aren't an ordered
stack trace of the public API calls, so they don't appear in any specific order.

The following example shows a CloudTrail log entry that demonstrates the GetResourceMetrics
operation.

{
 "eventVersion": "1.05",
 "userIdentity": {
 "type": "IAMUser",
 "principalId": "AKIAIOSFODNN7EXAMPLE",
 "arn": "arn:aws:iam::123456789012:user/johndoe",
 "accountId": "123456789012",
 "accessKeyId": "AKIAI44QH8DHBEXAMPLE",
 "userName": "johndoe"
 },
 "eventTime": "2019-12-18T19:28:46Z",
 "eventSource": "pi.amazonaws.com",
 "eventName": "GetResourceMetrics",
 "awsRegion": "us-east-1",
 "sourceIPAddress": "72.21.198.67",
 "userAgent": "aws-cli/1.16.240 Python/3.7.4 Darwin/18.7.0 botocore/1.12.230",
 "requestParameters": {
 "identifier": "db-YTDU5J5V66X7CXSCVDFD2V3SZM",
 "metricQueries": [
 {
 "metric": "os.cpuUtilization.user.avg"
 },
 {
 "metric": "os.cpuUtilization.idle.avg"

Logging Performance Insights calls using AWS CloudTrail 987

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-event-reference-user-identity.html

Amazon Aurora User Guide for Aurora

 }
],
 "startTime": "Dec 18, 2019 5:28:46 PM",
 "periodInSeconds": 60,
 "endTime": "Dec 18, 2019 7:28:46 PM",
 "serviceType": "RDS"
 },
 "responseElements": null,
 "requestID": "9ffbe15c-96b5-4fe6-bed9-9fccff1a0525",
 "eventID": "08908de0-2431-4e2e-ba7b-f5424f908433",
 "eventType": "AwsApiCall",
 "recipientAccountId": "123456789012"
}

Performance Insights API and interface VPC endpoints (AWS
PrivateLink)

You can use AWS PrivateLink to create a private connection between your VPC and Amazon RDS
Performance Insights. You can access Performance Insights as if it were in your VPC, without
the use of an internet gateway, NAT device, VPN connection, or AWS Direct Connect connection.
Instances in your VPC don't need public IP addresses to access Performance Insights.

You establish this private connection by creating an interface endpoint, powered by AWS
PrivateLink. We create an endpoint network interface in each subnet that you enable for the
interface endpoint. These are requester-managed network interfaces that serve as the entry point
for traffic destined for Performance Insights.

For more information, see Access AWS services through AWS PrivateLink in the AWS PrivateLink
Guide.

Considerations for Performance Insights

Before you set up an interface endpoint for Performance Insights, review Considerations in the
AWS PrivateLink Guide.

Performance Insights supports making calls to all of its API actions through the interface endpoint.

By default, full access to Performance Insights is allowed through the interface endpoint. To
control traffic to Performance Insights through the interface endpoint, associate a security group
with the endpoint network interfaces.

VPC endpoints (AWS PrivateLink) 988

https://docs.aws.amazon.com/vpc/latest/privatelink/privatelink-access-aws-services.html
https://docs.aws.amazon.com/vpc/latest/privatelink/create-interface-endpoint.html#considerations-interface-endpoints

Amazon Aurora User Guide for Aurora

Availability

Performance Insights API currently supports VPC endpoints in AWS Regions that support
Performance Insights. For information about Performance Insights availability, see Supported
Regions and Aurora DB engines for Performance Insights.

Create an interface endpoint for Performance Insights

You can create an interface endpoint for Performance Insights using either the Amazon VPC
console or the AWS Command Line Interface (AWS CLI). For more information, see Create an
interface endpoint in the AWS PrivateLink Guide.

Create an interface endpoint for Performance Insights using the following service name:

If you enable private DNS for the interface endpoint, you can make API requests to Performance
Insights using its default Regional DNS name. For example, pi.us-east-1.amazonaws.com.

Creating a VPC endpoint policy for Performance Insights API

An endpoint policy is an IAM resource that you can attach to an interface endpoint. The default
endpoint policy allows full access to Performance Insights through the interface endpoint. To
control the access allowed to Performance Insights from your VPC, attach a custom endpoint policy
to the interface endpoint.

An endpoint policy specifies the following information:

• The principals that can perform actions (AWS accounts, IAM users, and IAM roles).

• The actions that can be performed.

• The resources on which the actions can be performed.

For more information, see Control access to services using endpoint policies in the AWS PrivateLink
Guide.

Example: VPC endpoint policy for Performance Insights actions

The following is an example of a custom endpoint policy. When you attach this policy to your
interface endpoint, it grants access to the listed Performance Insights actions for all principals on
all resources.

VPC endpoints (AWS PrivateLink) 989

https://docs.aws.amazon.com/vpc/latest/privatelink/create-interface-endpoint.html#create-interface-endpoint-aws
https://docs.aws.amazon.com/vpc/latest/privatelink/create-interface-endpoint.html#create-interface-endpoint-aws
https://docs.aws.amazon.com/vpc/latest/privatelink/vpc-endpoints-access.html

Amazon Aurora User Guide for Aurora

{
 "Statement":[
 {
 "Principal":"*",
 "Effect":"Allow",
 "Action":[
 "rds:CreatePerformanceAnalysisReport",
 "rds:DeletePerformanceAnalysisReport",
 "rds:GetPerformanceAnalysisReport"
],
 "Resource":"*"
 }
]
}

Example: VPC endpoint policy that denies all access from a specified AWS account

The following VPC endpoint policy denies AWS account 123456789012 all access to resources
using the endpoint. The policy allows all actions from other accounts.

{
 "Statement": [
 {
 "Action": "*",
 "Effect": "Allow",
 "Resource": "*",
 "Principal": "*"
 },
 {
 "Action": "*",
 "Effect": "Deny",
 "Resource": "*",
 "Principal": { "AWS": ["123456789012"] }
 }
]
}

IP addressing for Performance Insights

IP addresses enable resources in your VPC to communicate with each other, and with resources
over the internet. Performance Insights supports both IPv4 and IPv6 addressing protocols. By
default, Performance Insights and Amazon VPC use the IPv4 addressing protocol. You can't turn off

VPC endpoints (AWS PrivateLink) 990

Amazon Aurora User Guide for Aurora

this behavior. When you create a VPC, make sure to specify an IPv4 CIDR block (a range of private
IPv4 addresses).

You can optionally assign an IPv6 CIDR block to your VPC and subnets, and assign IPv6 addresses
from that block to RDS resources in your subnet. Support for the IPv6 protocol expands the
number of supported IP addresses. By using the IPv6 protocol, you ensure that you have sufficient
available addresses for the future growth of the internet. New and existing RDS resources can
use IPv4 and IPv6 addresses within your VPC. Configuring, securing, and translating network
traffic between the two protocols used in different parts of an application can cause operational
overhead. You can standardize on the IPv6 protocol for Amazon RDS resources to simplify your
network configuration. For more information about service endpoints and quotas, see Amazon
Relational Database Service endpoints and quotas.

For more information about Aurora IP addressing, see Aurora IP addressing.

VPC endpoints (AWS PrivateLink) 991

https://docs.aws.amazon.com/general/latest/gr/rds-service.html
https://docs.aws.amazon.com/general/latest/gr/rds-service.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/USER_VPC.WorkingWithRDSInstanceinaVPC.html#USER_VPC.IP_addressing

Amazon Aurora User Guide for Aurora

Analyzing Aurora performance anomalies with Amazon
DevOps Guru for Amazon RDS

Amazon DevOps Guru is a fully managed operations service that helps developers and operators
improve the performance and availability of their applications. DevOps Guru offloads the tasks
associated with identifying operational issues so that you can quickly implement recommendations
to improve your application. For more information, see What is Amazon DevOps Guru? in the
Amazon DevOps Guru User Guide.

DevOps Guru detects, analyzes, and makes recommendations for existing operational issues for
all Amazon RDS DB engines. DevOps Guru for RDS extends this capability by applying machine
learning to Performance Insights metrics for Amazon Aurora databases. These monitoring features
allow DevOps Guru for RDS to detect and diagnose performance bottlenecks and recommend
specific corrective actions. DevOps Guru for RDS can also detect problematic conditions in your
Aurora databases before they occur.

You can now view these recommendations in RDS console. For more information, see Viewing and
responding to Amazon Aurora recommendations.

The following video is an overview of DevOps Guru for RDS.

For a deep dive on this subject, see Amazon DevOps Guru for RDS under the hood.

Topics

• Benefits of DevOps Guru for RDS

• How DevOps Guru for RDS works

• Setting up DevOps Guru for RDS

Benefits of DevOps Guru for RDS

If you're responsible for an Amazon Aurora database, you might not know that an event or
regression that is affecting that database is occurring. When you learn about the issue, you might
not know why it's occurring or what to do about it. Rather than turning to a database administrator
(DBA) for help or relying on third-party tools, you can follow recommendations from DevOps Guru
for RDS.

You gain the following advantages from the detailed analysis of DevOps Guru for RDS:

Analyzing performance with DevOps Guru for RDS 992

https://docs.aws.amazon.com/devops-guru/latest/userguide/welcome.html
https://aws.amazon.com/blogs/database/amazon-devops-guru-for-rds-under-the-hood/

Amazon Aurora User Guide for Aurora

Fast diagnosis

DevOps Guru for RDS continuously monitors and analyzes database telemetry. Performance
Insights, Enhanced Monitoring, and Amazon CloudWatch collect telemetry data for your
database cluster. DevOps Guru for RDS uses statistical and machine learning techniques to
mine this data and detect anomalies. To learn more about telemetry data, see Monitoring DB
load with Performance Insights on Amazon Aurora and Monitoring OS metrics with Enhanced
Monitoring in the Amazon Aurora User Guide .

Fast resolution

Each anomaly identifies the performance issue and suggests avenues of investigation or
corrective actions. For example, DevOps Guru for RDS might recommend that you investigate
specific wait events. Or it might recommend that you tune your application pool settings to
limit the number of database connections. Based on these recommendations, you can resolve
performance issues more quickly than by troubleshooting manually.

Proactive insights

DevOps Guru for RDS uses metrics from your resources to detect potentially problematic
behavior before it becomes a bigger problem. For example, it can detect when your database
is using an increasing number of on-disk temporary tables, which could start to impact
performance. DevOps Guru then provides recommendations to help you address issues before
they become bigger problems.

Deep knowledge of Amazon engineers and machine learning

To detect performance issues and help you resolve bottlenecks, DevOps Guru for RDS relies
on machine learning (ML) and advanced mathematical formulas. Amazon database engineers
contributed to the development of the DevOps Guru for RDS findings, which encapsulate
many years of managing hundreds of thousands of databases. By drawing on this collective
knowledge, DevOps Guru for RDS can teach you best practices.

How DevOps Guru for RDS works

DevOps Guru for RDS collects data about your Aurora databases from Amazon RDS Performance
Insights. The most important metric is DBLoad. DevOps Guru for RDS consumes the Performance
Insights metrics, analyzes them with machine learning, and publishes insights to the dashboard.

An insight is a collection of related anomalies that were detected by DevOps Guru.

How DevOps Guru for RDS works 993

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/USER_PerfInsights.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/USER_PerfInsights.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/USER_Monitoring.OS.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/USER_Monitoring.OS.html

Amazon Aurora User Guide for Aurora

In DevOps Guru for RDS, an anomaly is a pattern that deviates from what is considered normal
performance for your Amazon Aurora database.

Proactive insights

A proactive insight lets you know about problematic behavior before it occurs. It contains anomalies
with recommendations and related metrics to help you address issues in your Amazon Aurora
databases before become bigger problems. These insights are published in the DevOps Guru
dashboard.

For example, DevOps Guru might detect that your Aurora PostgreSQL database is creating many
on-disk temporary tables. If not addressed, this trend might lead to performance issues. Each
proactive insight includes recommendations for corrective behavior and links to relevant topics
in either Tuning Aurora MySQL with Amazon DevOps Guru proactive insights or Tuning Aurora
PostgreSQL with Amazon DevOps Guru proactive insights. For more information, see Working with
insights in DevOps Guru in the Amazon DevOps Guru User Guide.

Reactive insights

A reactive insight identifies anomalous behavior as it occurs. If DevOps Guru for RDS finds
performance issues in your Amazon Aurora DB instances, it publishes a reactive insight in the
DevOps Guru dashboard. For more information, see Working with insights in DevOps Guru in the
Amazon DevOps Guru User Guide.

Causal anomalies

A causal anomaly is a top-level anomaly within a reactive insight. Database load (DB load) is the
causal anomaly for DevOps Guru for RDS.

An anomaly measures performance impact by assigning a severity level of High, Medium, or Low.
To learn more, see Key concepts for DevOps Guru for RDS in the Amazon DevOps Guru User Guide.

If DevOps Guru detects a current anomaly on your DB instance, you're alerted in the Databases
page of the RDS console. The console also alerts you to anomalies that occurred in the past 24
hours. To go to the anomaly page from the RDS console, choose the link in the alert message. The
RDS console also alerts you in the page for your Amazon Aurora DB cluster .

Contextual anomalies

A contextual anomaly is a finding within Database load (DB load) that is related to a reactive
insight. Each contextual anomaly describes a specific Amazon Aurora performance issue that

How DevOps Guru for RDS works 994

https://docs.aws.amazon.com/devops-guru/latest/userguide/working-with-insights.html
https://docs.aws.amazon.com/devops-guru/latest/userguide/working-with-insights.html
https://docs.aws.amazon.com/devops-guru/latest/userguide/working-with-insights.html
https://docs.aws.amazon.com/devops-guru/latest/userguide/working-with-rds.overview.definitions.html

Amazon Aurora User Guide for Aurora

requires investigation. For example, DevOps Guru for RDS might recommend that you consider
increasing CPU capacity or investigate wait events that are contributing to DB load.

Important

We recommend that you test any changes on a test instance before modifying a production
instance. In this way, you understand the impact of the change.

To learn more, see Analyzing anomalies in Amazon RDS in the Amazon DevOps Guru User Guide.

Setting up DevOps Guru for RDS

To allow DevOps Guru for Amazon RDS to publish insights for an Amazon Aurora database,
complete the following tasks.

Topics

• Configuring IAM access policies for DevOps Guru for RDS

• Turning on Performance Insights for your Aurora DB instances

• Turning on DevOps Guru and specifying resource coverage

Configuring IAM access policies for DevOps Guru for RDS

To view alerts from DevOps Guru in the RDS console, your AWS Identity and Access Management
(IAM) user or role must have either of the following policies:

• The AWS managed policy AmazonDevOpsGuruConsoleFullAccess

• The AWS managed policy AmazonDevOpsGuruConsoleReadOnlyAccess and either of the
following policies:

• The AWS managed policy AmazonRDSFullAccess

• A customer managed policy that includes pi:GetResourceMetrics and
pi:DescribeDimensionKeys

For more information, see Configuring access policies for Performance Insights.

Setting up DevOps Guru for RDS 995

https://docs.aws.amazon.com/devops-guru/latest/userguide/working-with-rds.analyzing.html

Amazon Aurora User Guide for Aurora

Turning on Performance Insights for your Aurora DB instances

DevOps Guru for RDS relies on Performance Insights for its data. Without Performance Insights,
DevOps Guru publishes anomalies, but doesn't include the detailed analysis and recommendations.

When you create an Aurora DB cluster or modify a cluster instance, you can turn on Performance
Insights. For more information, see Turning Performance Insights on and off for Aurora.

Turning on DevOps Guru and specifying resource coverage

You can turn on DevOps Guru to have it monitor your Amazon Aurora databases in either of the
following ways.

Topics

• Turning on DevOps Guru in the RDS console

• Adding Aurora resources in the DevOps Guru console

• Adding Aurora resources using AWS CloudFormation

Turning on DevOps Guru in the RDS console

You can take multiple paths in the Amazon RDS console to turn on DevOps Guru.

Topics

• Turning on DevOps Guru when you create an Aurora database

• Turning on DevOps Guru from the notification banner

• Responding to a permissions error when you turn on DevOps Guru

Turning on DevOps Guru when you create an Aurora database

The creation workflow includes a setting that turns on DevOps Guru coverage for your database.
This setting is turned on by default when you choose the Production template.

To turn on DevOps Guru when you create an Aurora database

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. Follow the steps in Creating a DB cluster, up to but not including the step where you choose
monitoring settings.

Setting up DevOps Guru for RDS 996

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Aurora User Guide for Aurora

3. In Monitoring, choose Turn on Performance Insights. For DevOps Guru for RDS to provide
detailed analysis of performance anomalies, Performance Insights must be turned on.

4. Choose Turn on DevOps Guru.

5. Create a tag for your database so that DevOps Guru can monitor it. Do the following:

• In the text field for Tag key, enter a name that begins with Devops-Guru-.

• In the text field for Tag value, enter any value. For example, if you enter rds-database-1
for the name of your Aurora database, you can also enter rds-database-1 as the tag
value.

Setting up DevOps Guru for RDS 997

Amazon Aurora User Guide for Aurora

For more information about tags, see "Use tags to identify resources in your DevOps Guru
applications" in the Amazon DevOps Guru User Guide.

6. Complete the remaining steps in Creating a DB cluster.

Turning on DevOps Guru from the notification banner

If your resources aren't covered by DevOps Guru, Amazon RDS notifies you with a banner in the
following locations:

• The Monitoring tab of a DB cluster instance

• The Performance Insights dashboard

To turn on DevOps Guru for your Aurora database

1. In the banner, choose Turn on DevOps Guru for RDS.

2. Enter a tag key name and value. For more information about tags, see "Use tags to identify
resources in your DevOps Guru applications" in the Amazon DevOps Guru User Guide.

Setting up DevOps Guru for RDS 998

https://docs.aws.amazon.com/devops-guru/latest/userguide/working-with-resource-tags.html
https://docs.aws.amazon.com/devops-guru/latest/userguide/working-with-resource-tags.html
https://docs.aws.amazon.com/devops-guru/latest/userguide/working-with-resource-tags.html
https://docs.aws.amazon.com/devops-guru/latest/userguide/working-with-resource-tags.html

Amazon Aurora User Guide for Aurora

3. Choose Turn on DevOps Guru.

Responding to a permissions error when you turn on DevOps Guru

If you turn on DevOps Guru from the RDS console when you create a database, RDS might display
the following banner about missing permissions.

To respond to a permissions error

1. Grant your IAM user or role the user managed role
AmazonDevOpsGuruConsoleFullAccess. For more information, see Configuring IAM access
policies for DevOps Guru for RDS.

2. Open the RDS console.

3. In the navigation pane, choose Performance Insights.

4. Choose a DB instance in the cluster that you just created.

5. Choose the switch to turn on DevOps Guru for RDS.

Setting up DevOps Guru for RDS 999

Amazon Aurora User Guide for Aurora

6. Choose a tag value. For more information, see "Use tags to identify resources in your
DevOps Guru applications" in the Amazon DevOps Guru User Guide.

7. Choose Turn on DevOps Guru.

Adding Aurora resources in the DevOps Guru console

You can specify your DevOps Guru resource coverage on the DevOps Guru console. Follow the step
described in Specify your DevOps Guru resource coverage in the Amazon DevOps Guru User Guide.
When you edit your analyzed resources, choose one of the following options:

• Choose All account resources to analyze all supported resources, including the Aurora
databases, in your AWS account and Region.

• Choose CloudFormation stacks to analyze the Aurora databases that are in stacks you choose.
For more information, see Use AWS CloudFormation stacks to identify resources in your
DevOps Guru applications in the Amazon DevOps Guru User Guide.

• Choose Tags to analyze the Aurora databases that you have tagged. For more information, see
Use tags to identify resources in your DevOps Guru applications in the Amazon DevOps Guru User
Guide.

Setting up DevOps Guru for RDS 1000

https://docs.aws.amazon.com/devops-guru/latest/userguide/working-with-resource-tags.html
https://docs.aws.amazon.com/devops-guru/latest/userguide/working-with-resource-tags.html
https://docs.aws.amazon.com/devops-guru/latest/userguide/choose-coverage.html
https://docs.aws.amazon.com/devops-guru/latest/userguide/working-with-cfn-stacks.html
https://docs.aws.amazon.com/devops-guru/latest/userguide/working-with-cfn-stacks.html
https://docs.aws.amazon.com/devops-guru/latest/userguide/working-with-resource-tags.html

Amazon Aurora User Guide for Aurora

For more information, see Enable DevOps Guru in the Amazon DevOps Guru User Guide.

Adding Aurora resources using AWS CloudFormation

You can use tags to add coverage for your Aurora resources to your CloudFormation templates. The
following procedure assumes that you have a CloudFormation template both for your Aurora DB
instance and DevOps Guru stack.

To specify an Aurora DB instance using a CloudFormation tag

1. In the CloudFormation template for your DB instance, define a tag using a key/value pair.

The following example assigns the value my-aurora-db-instance1 to Devops-guru-cfn-
default for an Aurora DB instance.

MyAuroraDBInstance1:
 Type: "AWS::RDS::DBInstance"
 Properties:
 DBClusterIdentifier: my-aurora-db-cluster
 DBInstanceIdentifier: my-aurora-db-instance1
 Tags:
 - Key: Devops-guru-cfn-default
 Value: devopsguru-my-aurora-db-instance1

2. In the CloudFormation template for your DevOps Guru stack, specify the same tag in your
resource collection filter.

The following example configures DevOps Guru to provide coverage for the resource with the
tag value my-aurora-db-instance1.

DevOpsGuruResourceCollection:
 Type: AWS::DevOpsGuru::ResourceCollection
 Properties:
 ResourceCollectionFilter:
 Tags:
 - AppBoundaryKey: "Devops-guru-cfn-default"
 TagValues:
 - "devopsguru-my-aurora-db-instance1"

The following example provides coverage for all resources within the application boundary
Devops-guru-cfn-default.

Setting up DevOps Guru for RDS 1001

https://docs.aws.amazon.com/devops-guru/latest/userguide/getting-started-enable-service.html

Amazon Aurora User Guide for Aurora

DevOpsGuruResourceCollection:
 Type: AWS::DevOpsGuru::ResourceCollection
 Properties:
 ResourceCollectionFilter:
 Tags:
 - AppBoundaryKey: "Devops-guru-cfn-default"
 TagValues:
 - "*"

For more information, see AWS::DevOpsGuru::ResourceCollection and AWS::RDS::DBInstance in the
AWS CloudFormation User Guide.

Setting up DevOps Guru for RDS 1002

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-devopsguru-resourcecollection.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-rds-dbinstance.html

Amazon Aurora User Guide for Aurora

Monitoring OS metrics with Enhanced Monitoring

With Enhanced Monitoring, you can monitor the operating system of your DB instance in real
time. When you want to see how different processes or threads use the CPU, Enhanced Monitoring
metrics are useful.

Topics

• Overview of Enhanced Monitoring

• Setting up and enabling Enhanced Monitoring

• Viewing OS metrics in the RDS console

• Viewing OS metrics using CloudWatch Logs

Overview of Enhanced Monitoring

Amazon RDS provides metrics in real time for the operating system (OS) that your DB instance runs
on. You can view all the system metrics and process information for your RDS DB instances on the
console. You can manage which metrics you want to monitor for each instance and customize the
dashboard according to your requirements. For descriptions of the Enhanced Monitoring metrics,
see OS metrics in Enhanced Monitoring.

RDS delivers the metrics from Enhanced Monitoring into your Amazon CloudWatch Logs account.
You can create metrics filters in CloudWatch from CloudWatch Logs and display the graphs on the
CloudWatch dashboard. You can consume the Enhanced Monitoring JSON output from CloudWatch
Logs in a monitoring system of your choice. For more information, see Enhanced Monitoring in the
Amazon RDS FAQs.

Topics

• Differences between CloudWatch and Enhanced Monitoring metrics

• Retention of Enhanced Monitoring metrics

• Cost of Enhanced Monitoring

Differences between CloudWatch and Enhanced Monitoring metrics

A hypervisor creates and runs virtual machines (VMs). Using a hypervisor, an instance can support
multiple guest VMs by virtually sharing memory and CPU. CloudWatch gathers metrics about CPU

Monitoring the OS with Enhanced Monitoring 1003

https://aws.amazon.com/rds/faqs/#Enhanced_Monitoring

Amazon Aurora User Guide for Aurora

utilization from the hypervisor for a DB instance. In contrast, Enhanced Monitoring gathers its
metrics from an agent on the DB instance.

You might find differences between the CloudWatch and Enhanced Monitoring measurements,
because the hypervisor layer performs a small amount of work. The differences can be greater if
your DB instances use smaller instance classes. In this scenario, more virtual machines (VMs) are
probably managed by the hypervisor layer on a single physical instance.

For descriptions of the Enhanced Monitoring metrics, see OS metrics in Enhanced Monitoring. For
more information about CloudWatch metrics, see the Amazon CloudWatch User Guide.

Retention of Enhanced Monitoring metrics

By default, Enhanced Monitoring metrics are stored for 30 days in the CloudWatch Logs. This
retention period is different from typical CloudWatch metrics.

To modify the amount of time the metrics are stored in the CloudWatch Logs, change the retention
for the RDSOSMetrics log group in the CloudWatch console. For more information, see Change
log data retention in CloudWatch logs in the Amazon CloudWatch Logs User Guide.

Cost of Enhanced Monitoring

Enhanced Monitoring metrics are stored in the CloudWatch Logs instead of in CloudWatch metrics.
The cost of Enhanced Monitoring depends on the following factors:

• You are charged for Enhanced Monitoring only if you exceed the free tier provided by Amazon
CloudWatch Logs. Charges are based on CloudWatch Logs data transfer and storage rates.

• The amount of information transferred for an RDS instance is directly proportional to the
defined granularity for the Enhanced Monitoring feature. A smaller monitoring interval results in
more frequent reporting of OS metrics and increases your monitoring cost. To manage costs, set
different granularities for different instances in your accounts.

• Usage costs for Enhanced Monitoring are applied for each DB instance that Enhanced Monitoring
is enabled for. Monitoring a large number of DB instances is more expensive than monitoring
only a few.

• DB instances that support a more compute-intensive workload have more OS process activity to
report and higher costs for Enhanced Monitoring.

For more information about pricing, see Amazon CloudWatch pricing.

Overview of Enhanced Monitoring 1004

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/working_with_metrics.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/Working-with-log-groups-and-streams.html#SettingLogRetention
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/Working-with-log-groups-and-streams.html#SettingLogRetention
https://aws.amazon.com/cloudwatch/pricing/

Amazon Aurora User Guide for Aurora

Setting up and enabling Enhanced Monitoring

To use Enhanced Monitoring, you must create an IAM role, and then enable Enhanced Monitoring.

Topics

• Creating an IAM role for Enhanced Monitoring

• Turning Enhanced Monitoring on and off

• Protecting against the confused deputy problem

Creating an IAM role for Enhanced Monitoring

Enhanced Monitoring requires permission to act on your behalf to send OS metric information to
CloudWatch Logs. You grant Enhanced Monitoring permissions using an AWS Identity and Access
Management (IAM) role. You can either create this role when you enable Enhanced Monitoring or
create it beforehand.

Topics

• Creating the IAM role when you enable Enhanced Monitoring

• Creating the IAM role before you enable Enhanced Monitoring

Creating the IAM role when you enable Enhanced Monitoring

When you enable Enhanced Monitoring in the RDS console, Amazon RDS can create the required
IAM role for you. The role is named rds-monitoring-role. RDS uses this role for the specified
DB instance, read replica, or Multi-AZ DB cluster.

To create the IAM role when enabling Enhanced Monitoring

1. Follow the steps in Turning Enhanced Monitoring on and off.

2. Set Monitoring Role to Default in the step where you choose a role.

Creating the IAM role before you enable Enhanced Monitoring

You can create the required role before you enable Enhanced Monitoring. When you enable
Enhanced Monitoring, specify your new role's name. You must create this required role if you
enable Enhanced Monitoring using the AWS CLI or the RDS API.

Setting up and enabling Enhanced Monitoring 1005

Amazon Aurora User Guide for Aurora

The user that enables Enhanced Monitoring must be granted the PassRole permission. For more
information, see Example 2 in Granting a user permissions to pass a role to an AWS service in the
IAM User Guide.

To create an IAM role for Amazon RDS enhanced monitoring

1. Open the IAM console at https://console.aws.amazon.com.

2. In the navigation pane, choose Roles.

3. Choose Create role.

4. Choose the AWS service tab, and then choose RDS from the list of services.

5. Choose RDS - Enhanced Monitoring, and then choose Next.

6. Ensure that the Permissions policies shows AmazonRDSEnhancedMonitoringRole, and then
choose Next.

7. For Role name, enter a name for your role. For example, enter emaccess.

The trusted entity for your role is the AWS service monitoring.rds.amazonaws.com.

8. Choose Create role.

Turning Enhanced Monitoring on and off

You can turn Enhanced Monitoring on and off using the AWS Management Console, AWS CLI, or
RDS API. You choose the RDS DB instances on which you want to turn on Enhanced Monitoring. You
can set different granularities for metric collection on each DB instance.

Console

You can turn on Enhanced Monitoring when you create a DB cluster or read replica, or when you
modify a DB instance. If you modify a DB instance to turn on Enhanced Monitoring, you don't need
to reboot your DB instance for the change to take effect.

You can turn on Enhanced Monitoring in the RDS console when you do one of the following actions
in the Databases page:

• Create a DB cluster – Choose Create database.

• Create a read replica – Choose Actions, then Create read replica.

• Modify a DB instance – Choose Modify.

Setting up and enabling Enhanced Monitoring 1006

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_passrole.html
https://console.aws.amazon.com/iam/home?#home
https://console.aws.amazon.com/

Amazon Aurora User Guide for Aurora

To turn Enhanced Monitoring on or off in the RDS console

1. Scroll to Additional configuration.

2. In Monitoring, choose Enable Enhanced Monitoring for your DB instance or read replica. To
turn Enhanced Monitoring off, choose Disable Enhanced Monitoring.

3. Set the Monitoring Role property to the IAM role that you created to permit Amazon RDS to
communicate with Amazon CloudWatch Logs for you, or choose Default to have RDS create a
role for you named rds-monitoring-role.

4. Set the Granularity property to the interval, in seconds, between points when metrics are
collected for your DB instance or read replica. The Granularity property can be set to one of
the following values: 1, 5, 10, 15, 30, or 60.

The fastest that the RDS console refreshes is every 5 seconds. If you set the granularity to 1
second in the RDS console, you still see updated metrics only every 5 seconds. You can retrieve
1-second metric updates by using CloudWatch Logs.

AWS CLI

To turn on Enhanced Monitoring using the AWS CLI, in the following commands, set the --
monitoring-interval option to a value other than 0 and set the --monitoring-role-arn
option to the role you created in Creating an IAM role for Enhanced Monitoring.

• create-db-instance

• create-db-instance-read-replica

• modify-db-instance

The --monitoring-interval option specifies the interval, in seconds, between points when
Enhanced Monitoring metrics are collected. Valid values for the option are 0, 1, 5, 10, 15, 30, and
60.

To turn off Enhanced Monitoring using the AWS CLI, set the --monitoring-interval option to
0 in these commands.

Example

The following example turns on Enhanced Monitoring for a DB instance:

For Linux, macOS, or Unix:

Setting up and enabling Enhanced Monitoring 1007

https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-instance.html
https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-instance-read-replica.html
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-instance.html

Amazon Aurora User Guide for Aurora

aws rds modify-db-instance \
 --db-instance-identifier mydbinstance \
 --monitoring-interval 30 \
 --monitoring-role-arn arn:aws:iam::123456789012:role/emaccess

For Windows:

aws rds modify-db-instance ^
 --db-instance-identifier mydbinstance ^
 --monitoring-interval 30 ^
 --monitoring-role-arn arn:aws:iam::123456789012:role/emaccess

Example

The following example turns on Enhanced Monitoring for a Multi-AZ DB cluster:

For Linux, macOS, or Unix:

aws rds modify-db-cluster \
 --db-cluster-identifier mydbcluster \
 --monitoring-interval 30 \
 --monitoring-role-arn arn:aws:iam::123456789012:role/emaccess

For Windows:

aws rds modify-db-cluster ^
 --db-cluster-identifier mydbcluster ^
 --monitoring-interval 30 ^
 --monitoring-role-arn arn:aws:iam::123456789012:role/emaccess

RDS API

To turn on Enhanced Monitoring using the RDS API, set the MonitoringInterval parameter to a
value other than 0 and set the MonitoringRoleArn parameter to the role you created in Creating
an IAM role for Enhanced Monitoring. Set these parameters in the following actions:

• CreateDBInstance

• CreateDBInstanceReadReplica

• ModifyDBInstance

Setting up and enabling Enhanced Monitoring 1008

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateDBInstance.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateDBInstanceReadReplica.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBInstance.html

Amazon Aurora User Guide for Aurora

The MonitoringInterval parameter specifies the interval, in seconds, between points when
Enhanced Monitoring metrics are collected. Valid values are 0, 1, 5, 10, 15, 30, and 60.

To turn off Enhanced Monitoring using the RDS API, set MonitoringInterval to 0.

Protecting against the confused deputy problem

The confused deputy problem is a security issue where an entity that doesn't have permission to
perform an action can coerce a more-privileged entity to perform the action. In AWS, cross-service
impersonation can result in the confused deputy problem. Cross-service impersonation can occur
when one service (the calling service) calls another service (the called service). The calling service
can be manipulated to use its permissions to act on another customer's resources in a way it should
not otherwise have permission to access. To prevent this, AWS provides tools that help you protect
your data for all services with service principals that have been given access to resources in your
account. For more information, see The confused deputy problem.

To limit the permissions to the resource that Amazon RDS can give another service, we recommend
using the aws:SourceArn and aws:SourceAccount global condition context keys in a trust
policy for your Enhanced Monitoring role. If you use both global condition context keys, they must
use the same account ID.

The most effective way to protect against the confused deputy problem is to use the
aws:SourceArn global condition context key with the full ARN of the resource. For Amazon RDS,
set aws:SourceArn to arn:aws:rds:Region:my-account-id:db:dbname.

The following example uses the aws:SourceArn and aws:SourceAccount global condition
context keys in a trust policy to prevent the confused deputy problem.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "monitoring.rds.amazonaws.com"
 },
 "Action": "sts:AssumeRole",
 "Condition": {
 "StringLike": {
 "aws:SourceArn": "arn:aws:rds:Region:my-account-id:db:dbname"

Setting up and enabling Enhanced Monitoring 1009

https://docs.aws.amazon.com/IAM/latest/UserGuide/confused-deputy.html

Amazon Aurora User Guide for Aurora

 },
 "StringEquals": {
 "aws:SourceAccount": "my-account-id"
 }
 }
 }
]
}

Viewing OS metrics in the RDS console

You can view OS metrics reported by Enhanced Monitoring in the RDS console by choosing
Enhanced monitoring for Monitoring.

The following example shows the Enhanced Monitoring page. For descriptions of the Enhanced
Monitoring metrics, see OS metrics in Enhanced Monitoring.

If you want to see details for the processes running on your DB instance, choose OS process list for
Monitoring.

The Process List view is shown following.

Viewing OS metrics in the RDS console 1010

Amazon Aurora User Guide for Aurora

The Enhanced Monitoring metrics shown in the Process list view are organized as follows:

• RDS child processes – Shows a summary of the RDS processes that support the DB instance,
for example aurora for Amazon Aurora DB clusters. Process threads appear nested beneath
the parent process. Process threads show CPU utilization only as other metrics are the same for
all threads for the process. The console displays a maximum of 100 processes and threads. The
results are a combination of the top CPU consuming and memory consuming processes and
threads. If there are more than 50 processes and more than 50 threads, the console displays the
top 50 consumers in each category. This display helps you identify which processes are having
the greatest impact on performance.

• RDS processes – Shows a summary of the resources used by the RDS management agent,
diagnostics monitoring processes, and other AWS processes that are required to support RDS DB
instances.

• OS processes – Shows a summary of the kernel and system processes, which generally have
minimal impact on performance.

The items listed for each process are:

• VIRT – Displays the virtual size of the process.

• RES – Displays the actual physical memory being used by the process.

• CPU% – Displays the percentage of the total CPU bandwidth being used by the process.

• MEM% – Displays the percentage of the total memory being used by the process.

Viewing OS metrics in the RDS console 1011

Amazon Aurora User Guide for Aurora

The monitoring data that is shown in the RDS console is retrieved from Amazon CloudWatch Logs.
You can also retrieve the metrics for a DB instance as a log stream from CloudWatch Logs. For more
information, see Viewing OS metrics using CloudWatch Logs.

Enhanced Monitoring metrics are not returned during the following:

• A failover of the DB instance.

• Changing the instance class of the DB instance (scale compute).

Enhanced Monitoring metrics are returned during a reboot of a DB instance because only the
database engine is rebooted. Metrics for the operating system are still reported.

Viewing OS metrics using CloudWatch Logs

After you have enabled Enhanced Monitoring for your DB cluster, you can view the metrics for
it using CloudWatch Logs, with each log stream representing a single DB instance or DB cluster
being monitored. The log stream identifier is the resource identifier (DbiResourceId) for the DB
instance or DB cluster.

To view Enhanced Monitoring log data

1. Open the CloudWatch console at https://console.aws.amazon.com/cloudwatch/.

2. If necessary, choose the AWS Region that your DB cluster is in. For more information, see
Regions and endpoints in the Amazon Web Services General Reference.

3. Choose Logs in the navigation pane.

4. Choose RDSOSMetrics from the list of log groups.

5. Choose the log stream that you want to view from the list of log streams.

Viewing OS metrics using CloudWatch Logs 1012

https://console.aws.amazon.com/cloudwatch/
https://docs.aws.amazon.com/general/latest/gr/index.html?rande.html

Amazon Aurora User Guide for Aurora

Metrics reference for Amazon Aurora

In this reference, you can find descriptions of Amazon Aurora metrics for Amazon CloudWatch,
Performance Insights, and Enhanced Monitoring.

Topics

• Amazon CloudWatch metrics for Amazon Aurora

• Amazon CloudWatch dimensions for Aurora

• Availability of Aurora metrics in the Amazon RDS console

• Amazon CloudWatch metrics for Amazon RDS Performance Insights

• Performance Insights counter metrics

• SQL statistics for Performance Insights

• OS metrics in Enhanced Monitoring

Amazon CloudWatch metrics for Amazon Aurora

The AWS/RDS namespace includes the following metrics that apply to database entities running
on Amazon Aurora. Some metrics apply to either Aurora MySQL, Aurora PostgreSQL, or both.
Furthermore, some metrics are specific to a DB cluster, primary DB instance, replica DB instance, or
all DB instances.

For Aurora global database metrics, see Amazon CloudWatch metrics for write forwarding in
Aurora MySQL and Amazon CloudWatch metrics for write forwarding in Aurora PostgreSQL. For
Aurora parallel query metrics, see Monitoring parallel query.

Topics

• Cluster-level metrics for Amazon Aurora

• Instance-level metrics for Amazon Aurora

• Amazon CloudWatch usage metrics for Amazon Aurora

Cluster-level metrics for Amazon Aurora

The following table describes metrics that are specific to Aurora clusters.

Aurora metrics reference 1013

Amazon Aurora User Guide for Aurora

Metric Description Applies to Units

AuroraGlobalDBData
TransferBytes

In an Aurora Global
Database, the amount of
redo log data transferr
ed from the source AWS
Region to a secondary AWS
Region.

Note

This metric is
available only in
secondary AWS
Region.

Aurora
MySQL
and Aurora
PostgreSQL

Bytes

AuroraGlobalDBProg
ressLag

In an Aurora Global
Database, the measure
of how far the secondary
cluster is behind the
primary cluster for both
user transactions and
system transactions.

Note

This metric is
available only in
secondary AWS
Region.

Aurora
MySQL
and Aurora
PostgreSQL

Milliseconds

AuroraGlobalDBRepl
icatedWriteIO

In an Aurora Global
Database, the number
of write I/O operations
replicated from the primary
AWS Region to the cluster

Aurora
MySQL
and Aurora
PostgreSQL

Count

CloudWatch metrics for Aurora 1014

Amazon Aurora User Guide for Aurora

Metric Description Applies to Units

volume in a secondary AWS
Region. The billing calculati
ons for the secondary
AWS Regions in a global
database use VolumeWri
teIOPs to account for
writes performed within
the cluster. The billing
calculations for the primary
AWS Region in a global
database use VolumeWri
teIOPs to account for the
write activity within that
cluster, and AuroraGlo
balDBReplicatedWri
teIO to account for cross-
Region replication within
the global database.

Note

This metric is
available only in
secondary AWS
Region.

CloudWatch metrics for Aurora 1015

Amazon Aurora User Guide for Aurora

Metric Description Applies to Units

AuroraGlobalDBRepl
icationLag

For an Aurora Global
Database, the amount
of lag when replicating
updates from the primary
AWS Region.

Note

This metric is
available only in
secondary AWS
Region.

Aurora
MySQL
and Aurora
PostgreSQL

Milliseconds

AuroraGlobalDBRPOLag In an Aurora Global
Database, the recovery
point objective (RPO) lag
time. This metric measures
how far the secondary
cluster is behind the
primary cluster for user
transactions.

Note

This metric is
available only in
secondary AWS
Region.

Aurora
MySQL
and Aurora
PostgreSQL

Milliseconds

CloudWatch metrics for Aurora 1016

Amazon Aurora User Guide for Aurora

Metric Description Applies to Units

AuroraVolumeBytesL
eftTotal

The remaining available
space for the cluster
volume. As the cluster
volume grows, this value
decreases. If it reaches zero,
the cluster reports an out-
of-space error.

If you want to detect
whether your Aurora
MySQL cluster is approachi
ng the size limit of 128
tebibytes (TiB), this value
is simpler and more
reliable to monitor than
VolumeBytesUsed .
AuroraVolumeBytesL
eftTotal takes into
account storage used for
internal housekeeping and
other allocations that don't
affect your storage billing.

Aurora
MySQL

Bytes

BacktrackChangeRec
ordsCreationRate

The number of backtrack
change records created
over 5 minutes for your DB
cluster.

Aurora
MySQL

Count per 5
minutes

BacktrackChangeRec
ordsStored

The number of backtrack
change records used by
your DB cluster.

Aurora
MySQL

Count

CloudWatch metrics for Aurora 1017

Amazon Aurora User Guide for Aurora

Metric Description Applies to Units

BackupRetentionPer
iodStorageUsed

The total amount of
backup storage used to
support the point-in-time
restore feature within
the Aurora DB cluster's
backup retention window.
This amount is included in
the total reported by the
TotalBackupStorage
Billed metric. It is
computed separately for
each Aurora cluster. For
instructions, see Understan
ding Amazon Aurora
backup storage usage.

Aurora
MySQL
and Aurora
PostgreSQL

Bytes

ServerlessDatabase
Capacity

The current capacity of
an Aurora Serverless DB
cluster.

Aurora
MySQL
and Aurora
PostgreSQL

Count

CloudWatch metrics for Aurora 1018

Amazon Aurora User Guide for Aurora

Metric Description Applies to Units

SnapshotStorageUsed The total amount of
backup storage consumed
by all Aurora snapshots
for an Aurora DB cluster
outside its backup retention
window. This amount
is included in the total
reported by the TotalBack
upStorageBilled
metric. It is computed
separately for each Aurora
cluster. For instructions,
see Understanding Amazon
Aurora backup storage
usage.

Aurora
MySQL
and Aurora
PostgreSQL

Bytes

TotalBackupStorage
Billed

The total amount of backup
storage in bytes for which
you are billed for a given
Aurora DB cluster. The
metric includes the backup
storage measured by the
BackupRetentionPer
iodStorageUsed and
SnapshotStorageUse
d metrics. This metric is
computed separately for
each Aurora cluster. For
instructions, see Understan
ding Amazon Aurora
backup storage usage.

Aurora
MySQL
and Aurora
PostgreSQL

Bytes

CloudWatch metrics for Aurora 1019

Amazon Aurora User Guide for Aurora

Metric Description Applies to Units

VolumeBytesUsed The amount of storage used
by your Aurora DB cluster.

This value affects the cost
of the Aurora DB cluster
(for pricing information, see
the Amazon RDS pricing
page).

This value doesn't reflect
some internal storage
allocations that don't affect
storage billing. For Aurora
MySQL you can anticipat
e out-of-space issues
more accurately by testing
whether AuroraVol
umeBytesLeftTotal is
approaching zero instead
of comparing VolumeByt
esUsed against the
storage limit of 128 TiB.

For clusters that are clones,
the value of this metric
depends on the amount of
data added or changed on
the clone. The metric can
also increase or decrease
when the original cluster is
deleted, or as new clones
are added or deleted. For
details, see Deleting a
source cluster volume

Aurora
MySQL
and Aurora
PostgreSQL

Bytes

CloudWatch metrics for Aurora 1020

http://aws.amazon.com/rds/pricing
http://aws.amazon.com/rds/pricing

Amazon Aurora User Guide for Aurora

Metric Description Applies to Units

VolumeReadIOPs The number of billed read
I/O operations from a
cluster volume within a 5-
minute interval.

Billed read operations are
calculated at the cluster
volume level, aggregate
d from all instances in
the Aurora DB cluster,
and then reported at 5-
minute intervals. The value
is calculated by taking
the value of the Read
operations metric over a
5-minute period. You can
determine the amount
of billed read operations
per second by taking the
value of the Billed read
operations metric and
dividing by 300 seconds.
For example, if the Billed
read operations returns
13,686, then the billed read
operations per second is 45
(13,686 / 300 = 45.62).

You accrue billed read
operations for queries that
request database pages
that aren't in the buffer
cache and must be loaded
from storage. You might
see spikes in billed read

Aurora
MySQL
and Aurora
PostgreSQL

Count per 5
minutes

CloudWatch metrics for Aurora 1021

Amazon Aurora User Guide for Aurora

Metric Description Applies to Units

operations as query results
are read from storage and
then loaded into the buffer
cache.

Tip

If your Aurora
MySQL cluster
uses parallel query,
you might see
an increase in
VolumeReadIOPS
values. Parallel
queries don't use
the buffer pool.
Thus, although the
queries are fast, this
optimized processin
g can result in an
increase in read
operations and
associated charges.

VolumeWriteIOPs The number of write disk I/
O operations to the cluster
volume, reported at 5-
minute intervals. For a
detailed description of how
billed write operations are
calculated, see VolumeRea
dIOPs .

Aurora
MySQL
and Aurora
PostgreSQL

Count per 5
minutes

CloudWatch metrics for Aurora 1022

Amazon Aurora User Guide for Aurora

Instance-level metrics for Amazon Aurora

The following instance-specific Amazon CloudWatch metrics apply to all Aurora MySQL and Aurora
PostgreSQL instances unless noted otherwise.

Metric Description Applies to Units

AbortedClients The number of client
connections that have not
been closed properly.

Aurora
MySQL

Count

ActiveTransactions The average number
of current transactions
executing on an Aurora
database instance per
second.

By default, Aurora doesn't
enable this metric. To begin
measuring this value, set
innodb_monitor_ena
ble='all' in the DB
parameter group for a
specific DB instance.

Aurora
MySQL

Count per
second

ACUUtilization The value of the Serverles
sDatabaseCapacity
metric divided by the
maximum ACU value of the
DB cluster.

This metric is applicable only
for Aurora Serverless v2.

Aurora
MySQL
and Aurora
PostgreSQL

Percentage

AuroraBinlogReplicaLag The amount of time that a
binary log replica DB cluster
running on Aurora MySQL
lags behind the binary log

Primary
for Aurora
MySQL

Seconds

CloudWatch metrics for Aurora 1023

Amazon Aurora User Guide for Aurora

Metric Description Applies to Units

replication source. A lag
means that the source is
generating records faster
than the replica can apply
them.

This metric reports different
values depending on the
engine version:

Aurora MySQL version 2

The Seconds_B
ehind_Master field
of the MySQL SHOW
SLAVE STATUS

Aurora MySQL version 3

SHOW REPLICA STATUS

You can use this metric to
monitor errors and replica
lag in a cluster that acts as a
binary log replica. The metric
value indicates the following
:

A high value

The replica is lagging the
replication source.

0 or a value close to 0

The replica process is
active and current.

CloudWatch metrics for Aurora 1024

Amazon Aurora User Guide for Aurora

Metric Description Applies to Units

-1

Aurora can't determine
the lag, which can
happen during replica
setup or when the replica
is in an error state.

Because binary log replicati
on only occurs on the writer
instance of the cluster,
we recommend using
the version of this metric
associated with the WRITER
role.

For more information about
administering replication,
see Replicating Amazon
Aurora MySQL DB clusters
across AWS Regions. For
more information about
troubleshooting, see
Amazon Aurora MySQL
replication issues.

AuroraDMLRejectedM
asterFull

The number of forwarded
queries that are rejected
because the session is full on
the writer DB instance.

Primary
for Aurora
MySQL
version 2

Count

AuroraDMLRejectedW
riterFull

The number of forwarded
queries that are rejected
because the session is full on
the writer DB instance.

Primary
for Aurora
MySQL
version 3

Count

CloudWatch metrics for Aurora 1025

Amazon Aurora User Guide for Aurora

Metric Description Applies to Units

AuroraEstimatedSha
redMemoryBytes

The estimated amount of
shared buffer or buffer
pool memory which was
actively used during the last
configured polling interval.

 Bytes

AuroraMemoryHealth
State

Indicates the memory health
state. A value of 0 equals
NORMAL. A value of 10
equals RESERVED, which
means that the server is
approaching a critical level
of memory usage.

For more information, see
Troubleshooting out-of-
memory issues for Aurora
MySQL databases.

Aurora
MySQL
version
3.06.1 and
higher

Gauge

AuroraMemoryNumDec
linedSqlTotal

The total number of queries
declined as part of out-of-
memory (OOM) avoidance.

For more information, see
Troubleshooting out-of-
memory issues for Aurora
MySQL databases.

Aurora
MySQL
version
3.06.1 and
higher

Count

AuroraMemoryNumKil
lConnTotal

The total number of
connections closed as part of
OOM avoidance.

For more information, see
Troubleshooting out-of-
memory issues for Aurora
MySQL databases.

Aurora
MySQL
version
3.06.1 and
higher

Count

CloudWatch metrics for Aurora 1026

Amazon Aurora User Guide for Aurora

Metric Description Applies to Units

AuroraMemoryNumKil
lQueryTotal

The total number of queries
ended as part of OOM
avoidance.

For more information, see
Troubleshooting out-of-
memory issues for Aurora
MySQL databases.

Aurora
MySQL
version
3.06.1 and
higher

Count

AuroraOptimizedRea
dsCacheHitRatio

The percentage of requests
that are served by the
Optimized Reads cache.

The value is calculated using
the following formula:

orcache_blks_hit/
(orcache_blks_hit +
storage_blks_read)

When AuroraOpt
imizedReadsCacheHi
tRatio is 100%, it means
that no pages were read
from the Optimized Reads
cache and the value will be
0.

Primary
for Aurora
PostgreSQL

Percentage

AuroraReplicaLag For an Aurora replica, the
amount of lag when replicati
ng updates from the primary
instance.

Replica for v
and Aurora
PostgreSQL

Milliseconds

CloudWatch metrics for Aurora 1027

Amazon Aurora User Guide for Aurora

Metric Description Applies to Units

AuroraReplicaLagMa
ximum

The maximum amount of
lag between the primary
instance and any of the
Aurora DB instance in the DB
cluster.

When read replicas are
deleted or renamed, there
can be a temporary spike
in replication lag as the
old resource undergoes
a recycling process. To
obtain an accurate represent
ation of the replication
lag during that period,
we recommend that you
monitor the AuroraRep
licaLag metric on each
read replica instance.

Primary
for Aurora
MySQL
and Aurora
PostgreSQL

Milliseconds

AuroraReplicaLagMi
nimum

The minimum amount of
lag between the primary
instance and any of the
Aurora DB instance in the DB
cluster.

Primary
for Aurora
MySQL
and Aurora
PostgreSQL

Milliseconds

AuroraSlowConnecti
onHandleCount

The number of connectio
ns that have waited two
seconds or longer to start
the handshake.

This metric applies only to
Aurora MySQL version 3.

Aurora
MySQL

Count

CloudWatch metrics for Aurora 1028

Amazon Aurora User Guide for Aurora

Metric Description Applies to Units

AuroraSlowHandshak
eCount

The number of connections
that have taken 50 milliseco
nds or longer to finish the
handshake.

This metric applies only to
Aurora MySQL version 3.

Aurora
MySQL

Count

BacktrackWindowActual The difference between the
target backtrack window and
the actual backtrack window.

Primary
for Aurora
MySQL

Minutes

BacktrackWindowAlert The number of times that
the actual backtrack window
is smaller than the target
backtrack window for a
given period of time.

Primary
for Aurora
MySQL

Count

BlockedTransactions The average number of
transactions in the database
that are blocked per second.

Aurora
MySQL

Count per
second

BufferCacheHitRatio The percentage of requests
that are served by the buffer
cache.

Aurora
MySQL
and Aurora
PostgreSQL

Percentage

CommitLatency The average duration taken
by the engine and storage
to complete the commit
operations.

Aurora
MySQL
and Aurora
PostgreSQL

Milliseconds

CommitThroughput The average number of
commit operations per
second.

Aurora
MySQL
and Aurora
PostgreSQL

Count per
second

CloudWatch metrics for Aurora 1029

Amazon Aurora User Guide for Aurora

Metric Description Applies to Units

ConnectionAttempts The number of attempts
to connect to an instance,
whether successful or not.

Aurora
MySQL

Count

CloudWatch metrics for Aurora 1030

Amazon Aurora User Guide for Aurora

Metric Description Applies to Units

CPUCreditBalance The number of CPU credits
that an instance has
accumulated, reported at 5-
minute intervals. You can
use this metric to determine
how long a DB instance can
burst beyond its baseline
performance level at a given
rate.

This metric applies only to
these instance classes:

• Aurora MySQL:
db.t2.small ,
db.t2.medium , db.t3,
and db.t4g

• Aurora PostgreSQL: db.t3
and db.t4g

Note

We recommend
using the T DB
instance classes only
for development
and test servers, or
other non-produ
ction servers. For
more details on the
T instance classes,
see DB instance class
types.

Aurora
MySQL
and Aurora
PostgreSQL

Count

CloudWatch metrics for Aurora 1031

Amazon Aurora User Guide for Aurora

Metric Description Applies to Units

Launch credits work the
same way in Amazon RDS
as they do in Amazon EC2.
For more information,
see Launch credits in the
Amazon Elastic Compute
Cloud User Guide for Linux
Instances.

CloudWatch metrics for Aurora 1032

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/burstable-performance-instances-standard-mode-concepts.html#launch-credits

Amazon Aurora User Guide for Aurora

Metric Description Applies to Units

CPUCreditUsage The number of CPU credits
consumed during the
specified period, reported
at 5-minute intervals.
This metric measures the
amount of time during which
physical CPUs have been
used for processing instructi
ons by virtual CPUs allocated
to the DB instance.

This metric applies only to
these instance classes:

• Aurora MySQL:
db.t2.small ,
db.t2.medium , db.t3,
and db.t4g

• Aurora PostgreSQL: db.t3
and db.t4g

Note

We recommend
using the T DB
instance classes only
for development
and test servers, or
other non-produ
ction servers. For
more details on the
T instance classes,

Aurora
MySQL
and Aurora
PostgreSQL

Count

CloudWatch metrics for Aurora 1033

Amazon Aurora User Guide for Aurora

Metric Description Applies to Units

see DB instance class
types.

CPUSurplusCreditBa
lance

The number of surplus
credits that have been spent
by an unlimited instance
when its CPUCredit
Balance value is zero.

The CPUSurplu
sCreditBalance value
is paid down by earned CPU
credits. If the number of
surplus credits exceeds the
maximum number of credits
that the instance can earn in
a 24-hour period, the spent
surplus credits above the
maximum incur an additiona
l charge.

CPU credit metrics are
available at a 5-minute
frequency only.

Aurora
MySQL
and Aurora
PostgreSQL

Credits
(vCPU-min
utes)

CloudWatch metrics for Aurora 1034

Amazon Aurora User Guide for Aurora

Metric Description Applies to Units

CPUSurplusCreditsC
harged

The number of spent surplus
credits that are not paid
down by earned CPU credits,
and which thus incur an
additional charge.

Spent surplus credits are
charged when any of the
following occurs:

• The spent surplus credits
exceed the maximum
number of credits that
the instance can earn in
a 24-hour period. Spent
surplus credits above the
maximum are charged at
the end of the hour.

• The instance is stopped or
terminated.

• The instance is switched
from unlimited to
standard.

CPU credit metrics are
available at a 5-minute
frequency only.

Aurora
MySQL
and Aurora
PostgreSQL

Credits
(vCPU-min
utes)

CPUUtilization The percentage of CPU used
by an Aurora DB instance.

Aurora
MySQL
and Aurora
PostgreSQL

Percentage

CloudWatch metrics for Aurora 1035

Amazon Aurora User Guide for Aurora

Metric Description Applies to Units

DatabaseConnections The number of client
network connections to the
database instance.

The number of database
sessions can be higher than
the metric value because the
metric value doesn't include
the following:

• Sessions that no longer
have a network connectio
n but which the database
hasn't cleaned up

• Sessions created by the
database engine for its
own purposes

• Sessions created by the
database engine's parallel
execution capabilities

• Sessions created by the
database engine job
scheduler

• Amazon Aurora connectio
ns

Aurora
MySQL
and Aurora
PostgreSQL

Count

DDLLatency The average duration of
requests such as example,
create, alter, and drop
requests.

Aurora
MySQL

Milliseconds

DDLThroughput The average number of DDL
requests per second.

Aurora
MySQL

Count per
second

CloudWatch metrics for Aurora 1036

Amazon Aurora User Guide for Aurora

Metric Description Applies to Units

Deadlocks The average number of
deadlocks in the database
per second.

Aurora
MySQL
and Aurora
PostgreSQL

Count per
second

DeleteLatency The average duration of
delete operations.

Aurora
MySQL

Milliseconds

DeleteThroughput The average number of
delete queries per second.

Aurora
MySQL

Count per
second

DiskQueueDepth The number of outstanding
read/write requests waiting
to access the disk.

Aurora
MySQL
and Aurora
PostgreSQL

Count

DMLLatency The average duration of
inserts, updates, and deletes.

Aurora
MySQL

Milliseconds

DMLThroughput The average number of
inserts, updates, and deletes
per second.

Aurora
MySQL

Count per
second

EngineUptime The amount of time that the
instance has been running.

Aurora
MySQL
and Aurora
PostgreSQL

Seconds

FreeableMemory The amount of available
random access memory.

Aurora
MySQL
and Aurora
PostgreSQL

Bytes

FreeEphemeralStorage The amount of available
Ephemeral NVMe storage.

Aurora
PostgreSQL

Bytes

CloudWatch metrics for Aurora 1037

Amazon Aurora User Guide for Aurora

Metric Description Applies to Units

FreeLocalStorage The amount of local storage
available.

Unlike for other DB engines,
for Aurora DB instances this
metric reports the amount of
storage available to each DB
instance. This value depends
on the DB instance class (for
pricing information, see the
Amazon RDS pricing page).
You can increase the amount
of free storage space for an
instance by choosing a larger
DB instance class for your
instance.

(This doesn't apply to Aurora
Serverless v2.)

Aurora
MySQL
and Aurora
PostgreSQL

Bytes

InsertLatency The average duration of
insert operations.

Aurora
MySQL

Milliseconds

InsertThroughput The average number of
insert operations per second.

Aurora
MySQL

Count per
second

LoginFailures The average number of
failed login attempts per
second.

Aurora
MySQL

Count per
second

CloudWatch metrics for Aurora 1038

http://aws.amazon.com/rds/pricing

Amazon Aurora User Guide for Aurora

Metric Description Applies to Units

MaximumUsedTransac
tionIDs

The age of the oldest
unvacuumed transaction
ID, in transactions. If this
value reaches 2,146,483
,648 (2^31 - 1,000,000), the
database is forced into read-
only mode, to avoid transacti
on ID wraparound. For more
information, see Preventin
g transaction ID wraparoun
d failures in the PostgreSQL
documentation.

Aurora
PostgreSQL

Count

NetworkReceiveThro
ughput

The amount of network
throughput received from
clients by each instance in
the Aurora DB cluster. This
throughput doesn't include
network traffic between
instances in the Aurora
DB cluster and the cluster
volume.

Aurora
MySQL
and Aurora
PostgreSQL

Bytes per
second
(console
shows
Megabytes
per second)

NetworkThroughput The amount of network
throughput both received
from and transmitted to
clients by each instance in
the Aurora DB cluster. This
throughput doesn't include
network traffic between
instances in the Aurora
DB cluster and the cluster
volume.

Aurora
MySQL
and Aurora
PostgreSQL

Bytes per
second

CloudWatch metrics for Aurora 1039

https://www.postgresql.org/docs/current/routine-vacuuming.html#VACUUM-FOR-WRAPAROUND
https://www.postgresql.org/docs/current/routine-vacuuming.html#VACUUM-FOR-WRAPAROUND
https://www.postgresql.org/docs/current/routine-vacuuming.html#VACUUM-FOR-WRAPAROUND

Amazon Aurora User Guide for Aurora

Metric Description Applies to Units

NetworkTransmitThr
oughput

The amount of network
throughput sent to clients by
each instance in the Aurora
DB cluster. This throughpu
t doesn't include network
traffic between instances
in the DB cluster and the
cluster volume.

Aurora
MySQL
and Aurora
PostgreSQL

Bytes per
second
(console
shows
Megabytes
per second)

NumBinaryLogFiles The number of binlog files
generated.

Aurora
MySQL

Count

OldestReplicationS
lotLag

The lagging size of the
replica lagging the most in
terms of write-ahead log
(WAL) data received.

Aurora
PostgreSQL

Bytes

PurgeBoundary Transaction number up
to which InnoDB purging
is allowed. If this metric
doesn't advance for
extended periods of time,
it's a good indication that
InnoDB purging is blocked by
long-running transactions.
To investigate, check the
active transactions on your
Aurora MySQL DB cluster.

Aurora
MySQL
version 2,
versions 2.11
and higher

Count

PurgeFinishedPoint Transaction number up to
which InnoDB purging is
performed. This metric can
help you examine how fast
InnoDB purging is progressi
ng.

Aurora
MySQL
version 2,
versions 2.11
and higher

Count

CloudWatch metrics for Aurora 1040

Amazon Aurora User Guide for Aurora

Metric Description Applies to Units

Queries The average number of
queries executed per second.

Aurora
MySQL

Count per
second

RDSToAuroraPostgre
SQLReplicaLag

The lag when replicating
updates from the primary
RDS PostgreSQL instance to
other nodes in the cluster.

Replica
for Aurora
PostgreSQL

Seconds

ReadIOPS The average number of disk
I/O operations per second
but the reports read and
write separately, in 1-minute
intervals.

Aurora
MySQL
and Aurora
PostgreSQL

Count per
second

ReadIOPSEphemeralS
torage

The average number of
disk read I/O operations to
Ephemeral NVMe storage.

Aurora
PostgreSQL

Count per
second

ReadLatency The average amount of time
taken per disk I/O operation.

Aurora
MySQL
and Aurora
PostgreSQL

Seconds

ReadLatencyEphemer
alStorage

The average amount of
time taken per disk read I/
O operation for Ephemeral
NVMe storage.

Aurora
PostgreSQL

Milliseconds

ReadThroughput The average number of
bytes read from disk per
second.

Aurora
MySQL
and Aurora
PostgreSQL

Bytes per
second

CloudWatch metrics for Aurora 1041

Amazon Aurora User Guide for Aurora

Metric Description Applies to Units

ReadThroughputEphe
meralStorage

The average number of
bytes read from disk per
second for Ephemeral NVMe
storage.

Aurora
PostgreSQL

Bytes per
second

ReplicationSlotDis
kUsage

The amount of disk space
consumed by replication slot
files.

Aurora
PostgreSQL

Bytes

ResultSetCacheHitRatio The percentage of requests
that are served by the
Resultset cache.

Aurora
MySQL

Percentage

RollbackSegmentHis
toryListLength

The undo logs that record
committed transactions
with delete-marked records.
These records are scheduled
to be processed by the
InnoDB purge operation.

Aurora
MySQL

Count

RowLockTime The total time spent
acquiring row locks for
InnoDB tables.

Aurora
MySQL

Milliseconds

SelectLatency The average amount of time
for select operations.

Aurora
MySQL

Milliseconds

SelectThroughput The average number of
select queries per second.

Aurora
MySQL

Count per
second

ServerlessDatabase
Capacity

The current capacity of an
Aurora Serverless DB cluster.

Aurora
MySQL
and Aurora
PostgreSQL

Count

CloudWatch metrics for Aurora 1042

Amazon Aurora User Guide for Aurora

Metric Description Applies to Units

StorageNetworkRece
iveThroughput

The amount of network
throughput received
from the Aurora storage
subsystem by each instance
in the DB cluster.

Aurora
MySQL
and Aurora
PostgreSQL

Bytes per
second

StorageNetworkThro
ughput

The amount of network
throughput received from
and sent to the Aurora
storage subsystem by each
instance in the Aurora DB
cluster.

Aurora
MySQL
and Aurora
PostgreSQL

Bytes per
second

StorageNetworkTran
smitThroughput

The amount of network
throughput sent to the
Aurora storage subsystem by
each instance in the Aurora
DB cluster.

Aurora
MySQL
and Aurora
PostgreSQL

Bytes per
second

SumBinaryLogSize The total size of the binlog
files.

Aurora
MySQL

Bytes

SwapUsage The amount of swap space
used. This metric isn't
available for the following
 DB instance classes:

• db.r3.*, db.r4.*, and
db.r7g.* (Aurora MySQL)

• db.r7g.* (Aurora
PostgreSQL)

Aurora
MySQL
and Aurora
PostgreSQL

Bytes

CloudWatch metrics for Aurora 1043

Amazon Aurora User Guide for Aurora

Metric Description Applies to Units

TempStorageIOPS The number of IOPS for
both read and writes on
local storage attached to
the DB instance. This metric
represents a count and is
measured once per second.

This metric is applicable only
for Aurora Serverless v2.

Aurora
MySQL
and Aurora
PostgreSQL

Count per
second

TempStorageThroughput The amount of data transferr
ed to and from local storage
associated with the DB
instance. This metric
represents bytes and is
measured once per second.

This metric is applicable only
for Aurora Serverless v2.

Aurora
MySQL
and Aurora
PostgreSQL

Bytes per
second

TransactionLogsDis
kUsage

The amount of disk space
consumed by transacti
on logs on the Aurora
PostgreSQL DB instance.

This metric is generated only
when Aurora PostgreSQL
is using logical replication
or AWS Database Migration
Service. By default, Aurora
PostgreSQL uses log records,
not transaction logs. When
transaction logs aren't in
use, the value for this metric
is -1.

Primary
for Aurora
PostgreSQL

Bytes

CloudWatch metrics for Aurora 1044

Amazon Aurora User Guide for Aurora

Metric Description Applies to Units

TruncateFinishedPoint Transaction identifier up to
which undo truncation is
performed.

Aurora
MySQL
version 2,
versions 2.11
and higher

Count

UpdateLatency The average amount of time
taken for update operations.

Aurora
MySQL

Milliseconds

UpdateThroughput The average number of
updates per second.

Aurora
MySQL

Count per
second

WriteIOPS The number of Aurora
storage write records
generated per second. This
is more or less the number
of log records generated
by the database. These do
not correspond to 8K page
writes, and do not correspon
d to network packets sent.

Aurora
MySQL
and Aurora
PostgreSQL

Count per
second

WriteIOPSEphemeral
Storage

The average number of
disk write I/O operations to
Ephemeral NVMe storage.

Aurora
PostgreSQL

Count per
second

WriteLatency The average amount of time
taken per disk I/O operation.

Aurora
MySQL
and Aurora
PostgreSQL

Seconds

WriteLatencyEpheme
ralStorage

The average amount of time
taken per disk write I/O
operation for Ephemeral
NVMe storage.

Aurora
PostgreSQL

Milliseconds

CloudWatch metrics for Aurora 1045

Amazon Aurora User Guide for Aurora

Metric Description Applies to Units

WriteThroughput The average number of
bytes written to persistent
storage every second.

Aurora
MySQL
and Aurora
PostgreSQL

Bytes per
second

WriteThroughputEph
emeralStorage

The average number of
bytes written to disk per
second for Ephemeral NVMe
storage.

Aurora
PostgreSQL

Bytes per
second

Amazon CloudWatch usage metrics for Amazon Aurora

The AWS/Usage namespace in Amazon CloudWatch includes account-level usage metrics for your
Amazon RDS service quotas. CloudWatch collects usage metrics automatically for all AWS Regions.

For more information, see CloudWatch usage metrics in the Amazon CloudWatch User Guide. For
more information about quotas, see Quotas and constraints for Amazon Aurora and Requesting a
quota increase in the Service Quotas User Guide.

Metric Description Units*

DBCluster
ParameterGroups

The number of DB cluster parameter groups in your AWS
account. The count excludes default parameter groups.

Count

DBClusters The number of Amazon Aurora DB clusters in your AWS
account.

Count

DBInstances The number of DB instances in your AWS account. Count

DBParamet
erGroups

The number of DB parameter groups in your AWS
account. The count excludes the default DB parameter
groups.

Count

DBSubnetGroups The number of DB subnet groups in your AWS account.
The count excludes the default subnet group.

Count

CloudWatch metrics for Aurora 1046

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/CloudWatch-Usage-Metrics.html
https://docs.aws.amazon.com/servicequotas/latest/userguide/request-quota-increase.html
https://docs.aws.amazon.com/servicequotas/latest/userguide/request-quota-increase.html

Amazon Aurora User Guide for Aurora

Metric Description Units*

ManualClu
sterSnapshots

The number of manually created DB cluster snapshots in
your AWS account. The count excludes invalid snapshots.

Count

OptionGroups The number of option groups in your AWS account. The
count excludes the default option groups.

Count

ReservedD
BInstances

The number of reserved DB instances in your AWS
account. The count excludes retired or declined instances.

Count

Note

Amazon RDS doesn't publish units for usage metrics to CloudWatch. The units only appear
in the documentation.

Amazon CloudWatch dimensions for Aurora

You can filter Aurora metrics data by using any dimension in the following table.

Dimension Filters the requested data for . . .

DBInstanceIdentifier A specific DB instance.

DBClusterIdentifier A specific Aurora DB cluster.

DBClusterIdentifier,
Role

A specific Aurora DB cluster, aggregating the metric by instance
role (WRITER/READER). For example, you can aggregate
metrics for all READER instances that belong to a cluster.

DbClusterIdentifier,
EngineName

A specific Aurora DB cluster and engine name combination.
For example, you can view the VolumeReadIOPs metric for
cluster ams1 and engine aurora.

DatabaseClass All instances in a database class. For example, you can
aggregate metrics for all instances that belong to the database
class db.r5.large .

CloudWatch dimensions for Aurora 1047

Amazon Aurora User Guide for Aurora

Dimension Filters the requested data for . . .

EngineName The identified engine name only. For example, you can
aggregate metrics for all instances that have the engine name
aurora-postgresql .

SourceRegion The specified Region only. For example, you can aggregate
metrics for all DB instances in the us-east-1 Region.

Availability of Aurora metrics in the Amazon RDS console

Not all metrics provided by Amazon Aurora are available in the Amazon RDS console. You can
view these metrics using tools such as the AWS CLI and CloudWatch API. Also, some metrics in the
Amazon RDS console are either shown only for specific instance classes, or with different names
and units of measurement.

Topics

• Aurora metrics available in the Last Hour view

• Aurora metrics available in specific cases

• Aurora metrics that aren't available in the console

Aurora metrics available in the Last Hour view

You can view a subset of categorized Aurora metrics in the default Last Hour view in the Amazon
RDS console. The following table lists the categories and associated metrics displayed in the
Amazon RDS console for an Aurora instance.

Category Metrics

SQL ActiveTransactions

BlockedTransactions

BufferCacheHitRatio

CommitLatency

Availability of Aurora metrics in the Amazon RDS console 1048

Amazon Aurora User Guide for Aurora

Category Metrics

CommitThroughput

DatabaseConnections

DDLLatency

DDLThroughput

Deadlocks

DMLLatency

DMLThroughput

LoginFailures

ResultSetCacheHitRatio

SelectLatency

SelectThroughput

System AuroraReplicaLag

AuroraReplicaLagMaximum

AuroraReplicaLagMinimum

CPUCreditBalance

CPUCreditUsage

CPUUtilization

FreeableMemory

FreeLocalStorage (This doesn't apply to Aurora Serverless v2.)

NetworkReceiveThroughput

Availability of Aurora metrics in the Amazon RDS console 1049

Amazon Aurora User Guide for Aurora

Category Metrics

Deployment AuroraReplicaLag

BufferCacheHitRatio

ResultSetCacheHitRatio

SelectThroughput

Aurora metrics available in specific cases

In addition, some Aurora metrics are either shown only for specific instance classes, or only for DB
instances, or with different names and different units of measurement:

• The CPUCreditBalance and CPUCreditUsage metrics are displayed only for Aurora MySQL
db.t2 instance classes and for Aurora PostgreSQL db.t3 instance classes.

• The following metrics that are displayed with different names, as listed:

Metric Display name

AuroraReplicaLagMaximum Replica lag maximum

AuroraReplicaLagMinimum Replica lag minimum

DDLThroughput DDL

NetworkReceiveThroughput Network throughput

VolumeBytesUsed [Billed] Volume bytes used

VolumeReadIOPs [Billed] Volume read IOPS

VolumeWriteIOPs [Billed] Volume write IOPS

• The following metrics apply to an entire Aurora DB cluster, but are displayed only when viewing
DB instances for an Aurora DB cluster in the Amazon RDS console:

• VolumeBytesUsed

• VolumeReadIOPs

Availability of Aurora metrics in the Amazon RDS console 1050

Amazon Aurora User Guide for Aurora

• VolumeWriteIOPs

• The following metrics are displayed in megabytes, instead of bytes, in the Amazon RDS console:

• FreeableMemory

• FreeLocalStorage

• NetworkReceiveThroughput

• NetworkTransmitThroughput

• The following metrics apply to an Aurora PostgreSQL DB cluster with Aurora Optimized Reads:

• AuroraOptimizedReadsCacheHitRatio

• FreeEphemeralStorage

• ReadIOPSEphemeralStorage

• ReadLatencyEphemeralStorage

• ReadThroughputEphemeralStorage

• WriteIOPSEphemeralStorage

• WriteLatencyEphemeralStorage

• WriteThroughputEphemeralStorage

Aurora metrics that aren't available in the console

The following Aurora metrics aren't available in the Amazon RDS console:

• AuroraBinlogReplicaLag

• DeleteLatency

• DeleteThroughput

• EngineUptime

• InsertLatency

• InsertThroughput

• NetworkThroughput

• Queries

• UpdateLatency

• UpdateThroughput
Availability of Aurora metrics in the Amazon RDS console 1051

Amazon Aurora User Guide for Aurora

Amazon CloudWatch metrics for Amazon RDS Performance Insights

Performance Insights automatically publishes some metrics to Amazon CloudWatch. The same
data can be queried from Performance Insights, but having the metrics in CloudWatch makes it
easy to add CloudWatch alarms. It also makes it easy to add the metrics to existing CloudWatch
Dashboards.

Metric Description

DBLoad The number of active sessions for the
database. Typically, you want the data for
the average number of active sessions. In
Performance Insights, this data is queried as
db.load.avg .

DBLoadCPU The number of active sessions where the wait
event type is CPU. In Performance Insights,
this data is queried as db.load.avg , filtered
by the wait event type CPU.

DBLoadNonCPU The number of active sessions where the wait
event type is not CPU.

DBLoadRelativeToNumVCPUs The ratio of the DB load to the number of
virtual CPUs for the database.

Note

These metrics are published to CloudWatch only if there is load on the DB instance.

You can examine these metrics using the CloudWatch console, the AWS CLI, or the CloudWatch
API. You can also examine other Performance Insights counter metrics using a special metric
math function. For more information, see Querying other Performance Insights counter metrics in
CloudWatch.

For example, you can get the statistics for the DBLoad metric by running the get-metric-statistics
command.

CloudWatch metrics for Performance Insights 1052

https://docs.aws.amazon.com/cli/latest/reference/cloudwatch/get-metric-statistics.html

Amazon Aurora User Guide for Aurora

aws cloudwatch get-metric-statistics \
 --region us-west-2 \
 --namespace AWS/RDS \
 --metric-name DBLoad \
 --period 60 \
 --statistics Average \
 --start-time 1532035185 \
 --end-time 1532036185 \
 --dimensions Name=DBInstanceIdentifier,Value=db-loadtest-0

This example generates output similar to the following.

{
 "Datapoints": [
 {
 "Timestamp": "2021-07-19T21:30:00Z",
 "Unit": "None",
 "Average": 2.1
 },
 {
 "Timestamp": "2021-07-19T21:34:00Z",
 "Unit": "None",
 "Average": 1.7
 },
 {
 "Timestamp": "2021-07-19T21:35:00Z",
 "Unit": "None",
 "Average": 2.8
 },
 {
 "Timestamp": "2021-07-19T21:31:00Z",
 "Unit": "None",
 "Average": 1.5
 },
 {
 "Timestamp": "2021-07-19T21:32:00Z",
 "Unit": "None",
 "Average": 1.8
 },
 {
 "Timestamp": "2021-07-19T21:29:00Z",
 "Unit": "None",
 "Average": 3.0

CloudWatch metrics for Performance Insights 1053

Amazon Aurora User Guide for Aurora

 },
 {
 "Timestamp": "2021-07-19T21:33:00Z",
 "Unit": "None",
 "Average": 2.4
 }
],
 "Label": "DBLoad"
 }

For more information about CloudWatch, see What is Amazon CloudWatch? in the Amazon
CloudWatch User Guide.

Querying other Performance Insights counter metrics in CloudWatch

You can query, alarm, and graphs on RDS Performance Insights metrics from CloudWatch. You can
access information about your DB cluster by using the DB_PERF_INSIGHTS metric math function
for CloudWatch. This function allows you to use the Performance Insights metrics that are not
directly reported to CloudWatch to create a new time series.

You can use the new Metric Math function by clicking on the Add Math drop-down menu in
the Select metric screen in the CloudWatch console. You can use it to create alarms and graphs
on Performance Insights metrics or on combinations of CloudWatch and Performance Insights
metrics, including high-resolution alarms for sub-minute metrics. You can also use the function
programmatically by including the Metric Math expression in a get-metric-data request. For
more information, see Metric math syntax and functions and Create an alarm on Performance
Insights counter metrics from an AWS database.

Performance Insights counter metrics

Counter metrics are operating system and database performance metrics in the Performance
Insights dashboard. To help identify and analyze performance problems, you can correlate counter
metrics with DB load. You can add a statistic function to the metric to get the metric values. For
example, the supported functions for os.memory.active metric are .avg, .min, .max, .sum,
and .sample_count.

The counter metrics are collected one time each minute. The OS metrics collection depends
on whether Enhanced Monitoring is turned on or off. If Enhanced Monitoring is turned off, the
OS metrics are collected one time each minute. If Enhanced Monitoring is turned on, the OS

Counter metrics for Performance Insights 1054

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/WhatIsCloudWatch.html
https://docs.aws.amazon.com/cli/latest/reference/cloudwatch/get-metric-data.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/using-metric-math.html#metric-math-syntax-functions-list
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/CloudWatch_alarm_database_performance_insights.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/CloudWatch_alarm_database_performance_insights.html

Amazon Aurora User Guide for Aurora

metrics are collected for the selected time period. For more information about turning Enhanced
Monitoring on or off, see Turning Enhanced Monitoring on and off.

Topics

• Performance Insights operating system counters

• Performance Insights counters for Aurora MySQL

• Performance Insights counters for Aurora PostgreSQL

Performance Insights operating system counters

The following operating system counters, which are prefixed with os, are available with
Performance Insights for Aurora PostgreSQL and Aurora MySQL.

You can use ListAvailableResourceMetrics API for the list of available counter metrics for
your DB instance. For more information, see ListAvailableResourceMetrics in the Amazon RDS
Performance Insights API Reference guide.

Counter Type Metric Description

Active Memory os.memory.active The amount of
assigned memory, in
kilobytes.

Buffers Memory os.memory.buffers The amount of
memory used
for buffering I/O
requests prior to
writing to the storage
device, in kilobytes.

Cached Memory os.memory.cached The amount of
memory used
for caching file
system–based I/O, in
kilobytes.

DB Cache Memory os.memory.db.cache The amount of
memory used for

Counter metrics for Performance Insights 1055

https://docs.aws.amazon.com/performance-insights/latest/APIReference/API_ListAvailableResourceMetrics

Amazon Aurora User Guide for Aurora

Counter Type Metric Description

page cache by
database process
 including tmpfs
(shmem), in bytes.

DB Resident Set Size Memory os.memory.db.resid
entSetSize

The amount of
memory used for
anonymous and swap
cache by database p
rocess not including
tmpfs (shmem), in
bytes.

DB Swap Memory os.memory.db.swap The amount of
memory used for
swap by database
process, in bytes.

Dirty Memory os.memory.dirty The amount of
memory pages in
RAM that have been
modified but not
written to their
related data block in
storage, in kilobytes.

Free Memory os.memory.free The amount of
unassigned memory,
in kilobytes.

Huge Pages Free Memory os.memory.hugePage
sFree

The number of free
huge pages. Huge
pages are a feature of
the Linux kernel.

Counter metrics for Performance Insights 1056

Amazon Aurora User Guide for Aurora

Counter Type Metric Description

Huge Pages Rsvd Memory os.memory.hugePage
sRsvd

The number of
committed huge
pages.

Huge Pages Size Memory os.memory.hugePage
sSize

The size for each
huge pages unit, in
kilobytes.

Huge Pages Surp Memory os.memory.hugePage
sSurp

The number of
available surplus
huge pages over the
total.

Huge Pages Total Memory os.memory.hugePage
sTotal

The total number of
huge pages.

Inactive Memory os.memory.inactive The amount of least-
frequently used
memory pages, in
kilobytes.

Mapped Memory os.memory.mapped The total amount of
file-system contents
that is memory
mapped inside a
process address
space, in kilobytes.s

Out of Memory Kill
Count

Memory os.memory
.outOfMemoryKillCo
unt

The number of OOM
kills that happened
over the last collectio
n interval.

Counter metrics for Performance Insights 1057

Amazon Aurora User Guide for Aurora

Counter Type Metric Description

Page Tables Memory os.memory.pageTabl
es

The amount of
memory used by
page tables, in
kilobytes.

Slab Memory os.memory.slab The amount of
reusable kernel
data structures, in
kilobytes.

Total Memory os.memory.total The total amount of
memory, in kilobytes.

Writeback Memory os.memory.writeback The amount of dirty
pages in RAM that
are still being written
to the backing
storage, in kilobytes.

Guest Cpu Utilization os.cpuUtilization.
guest

The percentage of
CPU in use by guest
programs.

Idle Cpu Utilization os.cpuUtilization.idle The percentage of
CPU that is idle.

Irq Cpu Utilization os.cpuUtilization.irq The percentage
of CPU in use by
software interrupts.

Nice Cpu Utilization os.cpuUtilization.nice The percentage
of CPU in use by
programs running at
lowest priority.

Counter metrics for Performance Insights 1058

Amazon Aurora User Guide for Aurora

Counter Type Metric Description

Steal Cpu Utilization os.cpuUtilization.
steal

The percentage of
CPU in use by other
virtual machines.

System Cpu Utilization os.cpuUtilization.
system

The percentage of
CPU in use by the
kernel.

Total Cpu Utilization os.cpuUtilization.
total

The total percentag
e of the CPU in use.
This value includes
the nice value.

User Cpu Utilization os.cpuUtilization.user The percentage of
CPU in use by user
programs.

Wait Cpu Utilization os.cpuUtilization.wait The percentage of
CPU unused while
waiting for I/O
access.

Aurora Storage
Aurora Storage Bytes
Rx

Disk IO os.diskIO.auroraSt
orage.auroraStorag
eBytesRx

The number of bytes
received for aurora
storage per second.

Aurora Storage
Aurora Storage Bytes
Tx

Disk IO os.diskIO.auroraSt
orage.auroraStorag
eBytesTx

The number of bytes
uploaded for aurora
storage per second.

Aurora Storage Disk
Queue Depth

Disk IO os.diskIO.auroraSt
orage.diskQueueDep
th

The length of aurora
storage disk queue.

Aurora Storage Read
IOs PS

Disk IO os.diskIO.auroraSt
orage.readIOsPS

The number of
read operations per
second.

Counter metrics for Performance Insights 1059

Amazon Aurora User Guide for Aurora

Counter Type Metric Description

Aurora Storage Read
Latency

Disk IO os.diskIO.auroraSt
orage.readLatency

The average latency
of a read I/O request
to Aurora storage, in
milliseconds.

Aurora Storage Read
Throughtput

Disk IO os.diskIO.auroraSt
orage.readThroughp
ut

The amount of
network throughpu
t used by requests
to the DB cluster, in
bytes per second.

Aurora Storage Write
IOs PS

Disk IO os.diskIO.auroraSt
orage.writeIOsPS

The number of
write operations per
second.

Aurora Storage Write
Latency

Disk IO os.diskIO.auroraSt
orage.writeLatency

The average latency
of a write I/O request
to Aurora storage, in
milliseconds.

Aurora Storage Write
Throughput

Disk IO os.diskIO.auroraSt
orage.writeThrough
put

The amount of
network throughpu
t used by responses
from the DB cluster,
in bytes per second.

Rdstemp Avg Queue
Len

Disk IO os.diskIO.rdstemp.
avgQueueLen

The number of
requests waiting
in the I/O device's
queue.

Rdstemp Avg Req Sz Disk IO os.diskIO.rdstemp.
avgReqSz

The number of
requests waiting
in the I/O device's
queue.

Counter metrics for Performance Insights 1060

Amazon Aurora User Guide for Aurora

Counter Type Metric Description

Rdstemp Await Disk IO os.diskIO.rdstemp.
await

The number of
milliseconds required
to respond to
requests, including
queue time and
service time.

Rdstemp Read IOs PS Disk IO os.diskIO.rdstemp.
readIOsPS

The number of
read operations per
second.

Rdstemp Read KB Disk IO os.diskIO.rdstemp.
readKb

The total number of
kilobytes read.

Rdstemp Read KB PS Disk IO os.diskIO.rdstemp.
readKbPS

The number of
kilobytes read per
second.

Rdstemp Rrqm PS Disk IO os.diskIO.rdstemp.
rrqmPS

The number of
merged read requests
queued per second.

Rdstemp TPS Disk IO os.diskIO.rdstemp.tps The number of I/
O transactions per
second.

Rdstemp Util Disk IO os.diskIO.rdstemp.util The percentage of
CPU time during
which requests were
issued.

Rdstemp Write IOs PS Disk IO os.diskIO.rdstemp.
writeIOsPS

The number of
write operations per
second.

Rdstemp Write KB Disk IO os.diskIO.rdstemp.
writeKb

The total number of
kilobytes written.

Counter metrics for Performance Insights 1061

Amazon Aurora User Guide for Aurora

Counter Type Metric Description

Rdstemp Write KB PS Disk IO os.diskIO.rdstemp.
writeKbPS

The number of
kilobytes written per
second.

Rdstemp Wrqm PS Disk IO os.diskIO.rdstemp.
wrqmPS

The number of
merged write
requests queued per
second.

Blocked Tasks os.tasks.blocked The number of tasks
that are blocked.

Running Tasks os.tasks.running The number of tasks
that are running.

Sleeping Tasks os.tasks.sleeping The number of tasks
that are sleeping.

Stopped Tasks os.tasks.stopped The number of tasks
that are stopped.

Total Tasks os.tasks.total The total number of
tasks.

Zombie Tasks os.tasks.zombie The number of child
tasks that are inactive
with an active parent
task.

One Load Average Minute os.loadAverageMinu
te.one

The number of
processes requestin
g CPU time over the
last minute.

Counter metrics for Performance Insights 1062

Amazon Aurora User Guide for Aurora

Counter Type Metric Description

Fifteen Load Average Minute os.loadAverageMinu
te.fifteen

The number of
processes requestin
g CPU time over the
last 15 minutes.

Five Load Average Minute os.loadAverageMinu
te.five

The number of
processes requestin
g CPU time over the
last 5 minutes.

Cached Swap os.swap.cached The amount of swap
memory, in kilobytes
, used as cache
memory.

Free Swap os.swap.free The amount of swap
memory free, in
kilobytes.

In Swap os.swap.in The amount of
memory, in kilobytes,
swapped in from disk.

Out Swap os.swap.out The amount of
memory, in kilobytes,
swapped out to disk.

Total Swap os.swap.total The total amount
of swap memory
available in kilobytes.

Max Files File Sys os.fileSys.maxFiles The maximum
number of files that
can be created for the
file system.

Counter metrics for Performance Insights 1063

Amazon Aurora User Guide for Aurora

Counter Type Metric Description

Used Files File Sys os.fileSys.usedFiles The number of files in
the file system.

Used File Percent File Sys os.fileSys.usedFil
ePercent

The percentage of
available files in use.

Used Percent File Sys os.fileSys.usedPer
cent

The percentage of
the file-system disk
space in use.

Used File Sys os.fileSys.used The amount of disk
space used by files
in the file system, in
kilobytes.

Total File Sys os.fileSys.total The total number of
disk space available
for the file system, in
kilobytes.

Rx Network os.network.rx The number of bytes
received per second.

Tx Network os.network.tx The number of bytes
uploaded per second.

Acu Utilization General os.general.acuUtil
ization

The percentage of
current capacity out
of the maximum
configured capacity.

Max Configured Acu General os.general.maxConf
iguredAcu

The maximum
capacity configured
by the user, in ACUs.

Counter metrics for Performance Insights 1064

Amazon Aurora User Guide for Aurora

Counter Type Metric Description

Min Configured Acu General os.general.minConf
iguredAcu

The minimum
capacity configured
by the user, in ACUs.

Num VCPUs General os.general.numVCPUs The number of virtual
CPUs for the DB
instance.

Serverless Database
Capacity

General os.general.serverl
essDatabaseCapacity

The current capacity
of the instance, in
ACUs.

Performance Insights counters for Aurora MySQL

The following database counters are available with Performance Insights for Aurora MySQL.

Topics

• Native counters for Aurora MySQL

• Non-native counters for Aurora MySQL

Native counters for Aurora MySQL

Native metrics are defined by the database engine and not by Amazon Aurora. You can find
definitions for these native metrics in Server status variables in the MySQL documentation.

Counter Type Unit Metric

Com_analyze SQL Queries
per
second

db.SQL.Com_analyze

Com_optimize SQL Queries
per
second

db.SQL.Com_optimize

Counter metrics for Performance Insights 1065

https://dev.mysql.com/doc/refman/8.0/en/server-status-variables.html

Amazon Aurora User Guide for Aurora

Counter Type Unit Metric

Com_select SQL Queries
per
second

db.SQL.Com_select

Innodb_rows_deleted SQL Rows per
second

db.SQL.Innodb_rows_deleted

Innodb_rows_inserted SQL Rows per
second

db.SQL.Innodb_rows_inserted

Innodb_rows_read SQL Rows per
second

db.SQL.Innodb_rows_read

Innodb_rows_updated SQL Rows per
second

db.SQL.Innodb_rows_updated

Queries SQL Queries
per
second

db.SQL.Queries

Questions SQL Queries
per
second

db.SQL.Questions

Select_full_join SQL Queries
per
second

db.SQL.Select_full_join

Select_full_range_join SQL Queries
per
second

db.SQL.Select_full_range_join

Select_range SQL Queries
per
second

db.SQL.Select_range

Counter metrics for Performance Insights 1066

Amazon Aurora User Guide for Aurora

Counter Type Unit Metric

Select_range_check SQL Queries
per
second

db.SQL.Select_range_check

Select_scan SQL Queries
per
second

db.SQL.Select_scan

Slow_queries SQL Queries
per
second

db.SQL.Slow_queries

Sort_merge_passes SQL Queries
per
second

db.SQL.Sort_merge_passes

Sort_range SQL Queries
per
second

db.SQL.Sort_range

Sort_rows SQL Queries
per
second

db.SQL.Sort_rows

Sort_scan SQL Queries
per
second

db.SQL.Sort_scan

Total_query_time SQL Milliseco
nds

db.SQL.Total_query_time

Table_locks_immediate Locks Requests
per
second

db.Locks.Table_locks_immediate

Counter metrics for Performance Insights 1067

Amazon Aurora User Guide for Aurora

Counter Type Unit Metric

Table_locks_waited Locks Requests
per
second

db.Locks.Table_locks_waited

Innodb_row_lock_time Locks Milliseco
nds
(average)

db.Locks.Innodb_row_lock_time

Aborted_clients Users Connectio
ns

db.Users.Aborted_clients

Aborted_connects Users Connectio
ns

db.Users.Aborted_connects

Connections Users Connectio
ns

db.Users.Connections

External_threads_connected Users Connectio
ns

db.Users.External_threads_connected

max_connections Users Connectio
ns

db.User.max_connections

Threads_connected Users Connectio
ns

db.Users.Threads_connected

Threads_created Users Connectio
ns

db.Users.Threads_created

Threads_running Users Connectio
ns

db.Users.Threads_running

Created_tmp_disk_tables Temp Tables per
second

db.Temp.Created_tmp_disk_tables

Created_tmp_tables Temp Tables per
second

db.Temp.Created_tmp_tables

Counter metrics for Performance Insights 1068

Amazon Aurora User Guide for Aurora

Counter Type Unit Metric

Innodb_buffer_pool
_pages_data

Cache Pages db.Cache.Innodb_buffer_pool
_pages_data

Innodb_buffer_pool_pages_to
tal

Cache Pages db.Cache.Innodb_buffer_pool
_pages_total

Innodb_buffer_pool_read_req
uests

Cache Pages per
second

db.Cache.Innodb_buffer_pool
_read_requests

Innodb_buffer_pool_reads Cache Pages per
second

db.Cache.Innodb_buffer_pool_reads

Opened_tables Cache Tables db.Cache.Opened_tables

Opened_table_definitions Cache Tables db.Cache.Opened_table_definitions

Qcache_hits Cache Queries db.Cache.Qcache_hits

Non-native counters for Aurora MySQL

Non-native counter metrics are counters defined by Amazon RDS. A non-native metric can be a
metric that you get with a specific query. A non-native metric also can be a derived metric, where
two or more native counters are used in calculations for ratios, hit rates, or latencies.

Counter Type Metric Description Definition

active_transactions Transacti
ons

db.Transa
ctions.ac
tive_tran
sactions

The total active
transactions.

SELECT COUNT(1)
AS active_tr
ansactions
FROM INFOR
MATION_SC
HEMA.INNODB_TRX

innodb_buffer_pool
_hit_rate

Cache db.Cache.
innoDB_bu

The percentage of
reads that InnoDB

100 * innodb_bu
ffer_pool
_read_req

Counter metrics for Performance Insights 1069

Amazon Aurora User Guide for Aurora

Counter Type Metric Description Definition

ffer_pool
_hit_rate

could satisfy from the
buffer pool.

uests /
 (innodb_
buffer_po
ol_read_r
equests +
innodb_bu
ffer_pool
_reads)

innodb_buffer_pool
_hits

Cache db.Cache.
innoDB_bu
ffer_pool
_hits

The number of reads
that InnoDB could
satisfy from the buffer
pool.

innodb_bu
ffer_pool
_read_requests
- innodb_bu
ffer_pool_reads

Counter metrics for Performance Insights 1070

Amazon Aurora User Guide for Aurora

Counter Type Metric Description Definition

innodb_buffer_pool
_usage

Cache db.Cache.
innoDB_bu
ffer_pool
_usage

The percentage of the
InnoDB buffer pool
that contains data
(pages).

Note

When using
compressed
tables, this
value can
vary. For more
informati
on, see the
informati
on about
Innodb_bu
ffer_pool
_pages_da
ta and
Innodb_bu
ffer_pool
_pages_to
tal in Server
status sariables
 in the MySQL
documentation.

Innodb_bu
ffer_pool
_pages_da
ta / Innodb_bu
ffer_pool
_pages_total *
 100.0

Counter metrics for Performance Insights 1071

https://dev.mysql.com/doc/refman/8.0/en/server-status-variables.html
https://dev.mysql.com/doc/refman/8.0/en/server-status-variables.html
https://dev.mysql.com/doc/refman/8.0/en/server-status-variables.html

Amazon Aurora User Guide for Aurora

Counter Type Metric Description Definition

innodb_deadlocks Locks db.Locks.
innodb_de
adlocks

The total number of
deadlocks.

SELECT COUNT
AS innodb_de
adlocks FROM
INFORMATION_SC
HEMA.INNO
DB_METRICS
WHERE NAME=
'lock_dea
dlocks'

innodb_lock_timeou
ts

Locks db.Locks.
innodb_lo
ck_timeou
ts

The total number of
deadlocks that timed
out.

SELECT COUNT
AS innodb_lo
ck_timeouts
FROM INFOR
MATION_SC
HEMA.INNO
DB_METRICS
WHERE NAME=
'lock_timeouts'

innodb_row_lock_wa
its

Locks db.Locks.
innodb_ro
w_lock_wa
its

The total number of
row locks that resulted
in a wait.

SELECT COUNT
AS innodb_ro
w_lock_waits
FROM INFOR
MATION_SC
HEMA.INNO
DB_METRICS
WHERE NAME
='lock_ro
w_lock_waits'

Counter metrics for Performance Insights 1072

Amazon Aurora User Guide for Aurora

Counter Type Metric Description Definition

innodb_ro
ws_changed

SQL db.SQL.in
nodb_rows
_changed

The total InnoDB row
operations.

db.SQL.In
nodb_rows
_inserted
+ db.SQL.In
nodb_rows
_deleted +
 db.SQL.I
nnodb_row
s_updated

query_cache_hit_ra
te

Cache db.Cache.
query_cac
he_hit_ra
te

The hit ratio for the
MySQL result set cache
(query cache).

Qcache_hits /
(QCache_hits +
Com_select) *
100

temp_disk_tables_p
ercent

Temp db.Temp.t
emp_disk_
tables_pe
rcent

The percentage of
temporary tables that
are created on disk
by the server when
running statements.

(db.Temp.
Created_t
mp_disk_t
ables /
db.Temp.C
reated_tm
p_tables) *
100

Counter metrics for Performance Insights 1073

Amazon Aurora User Guide for Aurora

Counter Type Metric Description Definition

trx_rseg_history_len Transacti
ons

db.Transa
ctions.tr
x_rseg_hi
story_len

A list of the undo log
pages for committed
transactions that is
maintained by the
InnoDB transaction
system to implement
multi-version
concurrency control.
For more informati
on about undo log
records details, see
https://dev.mysql
.com/doc/refman/
8.0/en/innodb-multi-
versioning.html in the
MySQL documentation.

SELECT COUNT
AS trx_rseg_
history_len
FROM INFORMATI
ON_SCHEMA
.INNODB_METRICS
WHERE NAME='trx
_rseg_his
tory_len'

Performance Insights counters for Aurora PostgreSQL

The following database counters are available with Performance Insights for Aurora PostgreSQL.

Topics

• Native counters for Aurora PostgreSQL

• Non-native counters for Aurora PostgreSQL

Native counters for Aurora PostgreSQL

Native metrics are defined by the database engine and not by Amazon Aurora. You can find
definitions for these native metrics in Viewing Statistics in the PostgreSQL documentation.

Counter Type Unit Metric

tup_deleted SQL Tuples per second db.SQL.tup_deleted

Counter metrics for Performance Insights 1074

https://dev.mysql.com/doc/refman/8.0/en/innodb-multi-versioning.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-multi-versioning.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-multi-versioning.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-multi-versioning.html
https://www.postgresql.org/docs/current/monitoring-stats.html#MONITORING-STATS-VIEWS

Amazon Aurora User Guide for Aurora

Counter Type Unit Metric

tup_fetched SQL Tuples per second db.SQL.tup_fetched

tup_inserted SQL Tuples per second db.SQL.tup_inserted

tup_returned SQL Tuples per second db.SQL.tup_returned

tup_updated SQL Tuples per second db.SQL.tup_updated

blks_hit Cache Blocks per second db.Cache.blks_hit

buffers_alloc Cache Blocks per second db.Cache.buffers_a
lloc

buffers_checkpoint Checkpoint Blocks per second db.Checkpoint.buff
ers_checkpoint

checkpoints_req Checkpoint Checkpoints per
minute

db.Checkpoint.chec
kpoints_req

checkpoint_sync_ti
me

Checkpoint Milliseconds per
checkpoint

db.Checkpoint.chec
kpoint_sync_time

checkpoints_timed Checkpoint Checkpoints per
minute

db.Checkpoint.chec
kpoints_timed

checkpoint_write_t
ime

Checkpoint Milliseconds per
checkpoint

db.Checkpoint.chec
kpoint_write_time

maxwritten_clean Checkpoint Bgwriter clean stops
per minute

db.Checkpoint.maxw
ritten_clean

deadlocks Concurrency Deadlocks per minute db.Concurrency.dea
dlocks

blk_read_time I/O Milliseconds db.IO.blk_read_time

blks_read I/O Blocks per second db.IO.blks_read

Counter metrics for Performance Insights 1075

Amazon Aurora User Guide for Aurora

Counter Type Unit Metric

buffers_backend I/O Blocks per second db.IO.buffers_back
end

buffers_backend_fs
ync

I/O Blocks per second db.IO.buffers_back
end_fsync

buffers_clean I/O Blocks per second db.IO.buffers_clean

temp_bytes Temp Bytes per second db.Temp.temp_bytes

temp_files Temp Files per minute db.Temp.temp_files

xact_commit Transactions Commits per second db.Transactions.xa
ct_commit

xact_rollback Transactions Rollbacks per second db.Transactions.xa
ct_rollback

numbackends User Connections db.User.numbackends

archived_count WAL Files per minute db.WAL.archived_co
unt

Non-native counters for Aurora PostgreSQL

Non-native counter metrics are counters defined by Amazon Aurora. A non-native metric can be a
metric that you get with a specific query. A non-native metric also can be a derived metric, where
two or more native counters are used in calculations for ratios, hit rates, or latencies.

Counter Type Metric Description Definition

checkpoin
t_sync_la
tency

Checkpoint db.Checkp
oint.chec
kpoint_sy
nc_latency

The total amount of time
that has been spent in
the portion of checkpoin
t processing where files
are synchronized to disk.

checkpoint_sync_ti
me / (checkpoi
nts_timed +
checkpoints_req)

Counter metrics for Performance Insights 1076

Amazon Aurora User Guide for Aurora

Counter Type Metric Description Definition

checkpoin
t_write_l
atency

Checkpoint db.Checkp
oint.chec
kpoint_wr
ite_latency

The total amount of time
that has been spent in
the portion of checkpoin
t processing where files
are written to disk.

checkpoint_write_t
ime / (checkpoi
nts_timed +
checkpoints_req)

local_blk
s_read

I/O db.IO.loc
al_blks_r
ead

Total number of local
blocks read.

–

local_blk
_read_time

I/O db.IO.loc
al_blk_re
ad_time

If track_io_timing
is enabled, it tracks the
total time spent reading
local data file blocks, in
milliseconds, otherwise
the value is zero. For
more information, see
track_io_timing.

–

orcache_b
lks_hit

I/O db.IO.orc
ache_blks
_hit

Total number of
shared blocks hits from
optimized reads cache.

–

orcache_b
lk_read_t
ime

I/O db.IO.orc
ache_blk_
read_time

If track_io_timing
is enabled, it tracks
the total time spent
reading data file blocks
from Optimized Reads
cache, in milliseconds,
otherwise the value is
zero. For more informati
on, see track_io_timing.

–

read_late
ncy

I/O db.IO.rea
d_latency

The time spent reading
data file blocks by
backends in this instance.

blk_read_time /
blks_read

Counter metrics for Performance Insights 1077

https://www.postgresql.org/docs/current/runtime-config-statistics.html#GUC-TRACK-IO-TIMING
https://www.postgresql.org/docs/current/runtime-config-statistics.html#GUC-TRACK-IO-TIMING

Amazon Aurora User Guide for Aurora

Counter Type Metric Description Definition

storage_b
lks_read

I/O db.IO.sto
rage_blks
_read

Total number of shared
blocks read from aurora
storage.

–

storage_b
lk_read_t
ime

I/O db.IO.sto
rage_blk_
read_time

If track_io_timing
is enabled, it tracks
the total time spent
reading data file blocks
from Aurora storage, in
milliseconds, otherwise
the value is zero. For
more information, see
track_io_timing.

–

active_co
unt

State db.state.
active_co
unt

The number of sessions
in the active state.

–

idle_count State db.state.
idle_count

The number of sessions
in the idle state.

–

idle_in_t
ransactio
n_aborted
_count

State db.state.
idle_in_t
ransactio
n_aborted
_count

The number of
sessions in the idle
in transaction
(aborted) state.

–

idle_in_t
ransactio
n_count

State db.state.
idle_in_t
ransactio
n_count

The number of sessions
in the idle in
transaction state.

–

Counter metrics for Performance Insights 1078

https://www.postgresql.org/docs/current/runtime-config-statistics.html#GUC-TRACK-IO-TIMING

Amazon Aurora User Guide for Aurora

Counter Type Metric Description Definition

idle_in_t
ransactio
n_max_tim
e

State db.state.
idle_in_t
ransactio
n_max_tim
e

The duration of the
longest running transacti
on in the idle in
transaction state, in
seconds.

–

logical_r
eads

SQL db.SQL.lo
gical_reads

The total number of
blocks hit and read.

blks_hit +
blks_read

queries_s
tarted

SQL db.SQL.qu
eries

The number of queries
started.

–

queries_f
inished

SQL db.SQL.qu
eries

The number of queries
finished.

–

total_que
ry_time

SQL db.SQL.to
tal_query
_time

The total time spent
executing statements, in
milliseconds.

–

active_tr
ansactions

Transacti
ons

db.Transa
ctions.ac
tive_tran
sactions

The number of active
transactions.

–

blocked_t
ransactio
ns

Transacti
ons

db.Transa
ctions.bl
ocked_tra
nsactions

The number of blocked
transactions.

–

commit_la
tency

Transacti
ons

db.Transa
ctions.co
mmit_late
ncy

The average duration of
commit operations.

db.Transactions.du
ration_commits /
db.Transactions.xa
ct_commit

Counter metrics for Performance Insights 1079

Amazon Aurora User Guide for Aurora

Counter Type Metric Description Definition

duration_
commits

Transacti
ons

db.Transa
ctions.du
ration_co
mmits

The total transaction
time spent in the last
minute, in milliseconds.

–

max_used_
xact_ids

Transacti
ons

db.Transa
ctions.ma
x_used_xa
ct_ids

The number of transacti
ons that haven't been
vacuumed.

–

oldest_in
active_lo
gical_rep
lication_
slot_xid_
age

Transacti
ons

db.Transa
ctions.ol
dest_inac
tive_logi
cal_repli
cation_sl
ot_xid_age

The age of the oldest
transaction in an inactive
logical replication slot.

–

oldest_ac
tive_logi
cal_repli
cation_sl
ot_xid_age

Transacti
ons

db.Transa
ctions.ol
dest_acti
ve_logica
l_replica
tion_slot
_xid_age

The age of the oldest
transaction in an active
logical replication slot.

–

oldest_re
ader_feed
back_xid_
age

Transacti
ons

db.Transa
ctions.ol
dest_read
er_feedba
ck_xid_age

The age of the oldest
transaction of a long‐
running transaction
on an Aurora reader
instance or Aurora global
DB reader instance.

–

Counter metrics for Performance Insights 1080

Amazon Aurora User Guide for Aurora

Counter Type Metric Description Definition

oldest_pr
epared_tr
ansaction
_xid_age

Transacti
ons

db.Transa
ctions.ol
dest_prep
ared_tran
saction_x
id_age

The age of the oldest
prepared transaction.

–

oldest_ru
nning_tra
nsaction_
xid_age

Transacti
ons

db.Transa
ctions.ol
dest_runn
ing_trans
action_xi
d_age

The age of the oldest
running transaction.

–

max_conne
ctions

Users db.User.m
ax_connec
tions

The maximum number of
connections allowed for
a database as configured
in max_connections
parameter.

–

total_aut
h_attempt
s

Users db.User.t
otal_auth
_attempts

The number of connectio
n attempts to this
instance.

–

archive_f
ailed_cou
nt

WAL db.WAL.ar
chive_fai
led_count

The number of failed
attempts for archiving
WAL files, in files per
minute.

–

SQL statistics for Performance Insights

SQL statistics are performance-related metrics about SQL queries that are collected by
Performance Insights. Performance Insights gathers statistics for each second that a query is
running and for each SQL call. The SQL statistics are an average for the selected time range.

SQL statistics for Performance Insights 1081

Amazon Aurora User Guide for Aurora

A SQL digest is a composite of all queries having a given pattern but not necessarily having the
same literal values. The digest replaces literal values with a question mark. For example, SELECT *
FROM emp WHERE lname= ?. This digest might consist of the following child queries:

 SELECT * FROM emp WHERE lname = 'Sanchez'
 SELECT * FROM emp WHERE lname = 'Olagappan'
 SELECT * FROM emp WHERE lname = 'Wu'

All engines support SQL statistics for digest queries.

For the region, DB engine, and instance class support information for this feature, see Amazon
Aurora DB engine, Region, and instance class support for Performance Insights features

Topics

• SQL statistics for Aurora MySQL

• SQL statistics for Aurora PostgreSQL

SQL statistics for Aurora MySQL

Aurora MySQL collect SQL statistics only at the digest level. No statistics are shown at the
statement level.

Topics

• Digest statistics for Aurora MySQL

• Per-second statistics for Aurora MySQL

• Per-call statistics for Aurora MySQL

Digest statistics for Aurora MySQL

Performance Insights collects SQL digest statistics from the
events_statements_summary_by_digest table. The
events_statements_summary_by_digest table is managed by your database.

The digest table doesn't have an eviction policy. When the table is full, the AWS Management
Console shows the following message:

SQL statistics for Performance Insights 1082

Amazon Aurora User Guide for Aurora

Performance Insights is unable to collect SQL Digest statistics on new queries because
 the table events_statements_summary_by_digest is full.
Please truncate events_statements_summary_by_digest table to clear the issue. Check the
 User Guide for more details.

In this situation, Aurora MySQL doesn't track SQL queries. To address this issue, Performance
Insights automatically truncates the digest table when both of the following conditions are met:

• The table is full.

• Performance Insights manages the Performance Schema automatically.

For automatic management, the performance_schema parameter must be set to 0 and the
Source must not be set to user. If Performance Insights isn't managing the Performance
Schema automatically, see Turning on the Performance Schema for Performance Insights on
Aurora MySQL.

In the AWS CLI, check the source of a parameter value by running the describe-db-parameters
command.

Per-second statistics for Aurora MySQL

The following SQL statistics are available for Aurora MySQL DB clusters.

Metric Unit

db.sql_tokenized.stats.count_star_per_sec Calls per second

db.sql_tokenized.stats.sum_timer_wai
t_per_sec

Average active executions per second (AAE)

db.sql_tokenized.stats.sum_select_full_join_p
er_sec

Select full join per second

db.sql_tokenized.stats.sum_select_ra
nge_check_per_sec

Select range check per second

db.sql_tokenized.stats.sum_select_sc
an_per_sec

Select scan per second

SQL statistics for Performance Insights 1083

https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-parameters.html

Amazon Aurora User Guide for Aurora

Metric Unit

db.sql_tokenized.stats.sum_sort_merg
e_passes_per_sec

Sort merge passes per second

db.sql_tokenized.stats.sum_sort_scan_per_sec Sort scans per second

db.sql_tokenized.stats.sum_sort_rang
e_per_sec

Sort ranges per second

db.sql_tokenized.stats.sum_sort_rows_per_sec Sort rows per second

db.sql_tokenized.stats.sum_rows_affe
cted_per_sec

Rows affected per second

db.sql_tokenized.stats.sum_rows_exam
ined_per_sec

Rows examined per second

db.sql_tokenized.stats.sum_rows_sent_per_sec Rows sent per second

db.sql_tokenized.stats.sum_created_t
mp_disk_tables_per_sec

Created temporary disk tables per second

db.sql_tokenized.stats.sum_created_t
mp_tables_per_sec

Created temporary tables per second

db.sql_tokenized.stats.sum_lock_time_per_sec Lock time per second (in ms)

Per-call statistics for Aurora MySQL

The following metrics provide per call statistics for a SQL statement.

Metric Unit

db.sql_tokenized.stats.sum_timer_wai
t_per_call

Average latency per call (in ms)

db.sql_tokenized.stats.sum_select_full_join_p
er_call

Select full joins per call

SQL statistics for Performance Insights 1084

Amazon Aurora User Guide for Aurora

Metric Unit

db.sql_tokenized.stats.sum_select_ra
nge_check_per_call

Select range check per call

db.sql_tokenized.stats.sum_select_sc
an_per_call

Select scans per call

db.sql_tokenized.stats.sum_sort_merg
e_passes_per_call

Sort merge passes per call

db.sql_tokenized.stats.sum_sort_scan_per_call Sort scans per call

db.sql_tokenized.stats.sum_sort_rang
e_per_call

Sort ranges per call

db.sql_tokenized.stats.sum_sort_rows_per_call Sort rows per call

db.sql_tokenized.stats.sum_rows_affe
cted_per_call

Rows affected per call

db.sql_tokenized.stats.sum_rows_exam
ined_per_call

Rows examined per call

db.sql_tokenized.stats.sum_rows_sent
_per_call

Rows sent per call

db.sql_tokenized.stats.sum_created_t
mp_disk_tables_per_call

Created temporary disk tables per call

db.sql_tokenized.stats.sum_created_t
mp_tables_per_call

Created temporary tables per call

db.sql_tokenized.stats.sum_lock_time_per_call Lock time per call (in ms)

SQL statistics for Aurora PostgreSQL

For each SQL call and for each second that a query runs, Performance Insights collects SQL
statistics. All Aurora engines collect statistics only at the digest-level.

SQL statistics for Performance Insights 1085

Amazon Aurora User Guide for Aurora

Following, you can find information about digest-level statistics for Aurora PostgreSQL.

Topics

• Digest statistics for Aurora PostgreSQL

• Per-second digest statistics for Aurora PostgreSQL

• Per-call digest statistics for Aurora PostgreSQL

Digest statistics for Aurora PostgreSQL

To view SQL digest statistics, the pg_stat_statements library must be loaded. For Aurora
PostgreSQL DB clusters that are compatible with PostgreSQL 10, this library is loaded by default.
For Aurora PostgreSQL DB clusters that are compatible with PostgreSQL 9.6, you enable this library
manually. To enable it manually, add pg_stat_statements to shared_preload_libraries in
the DB parameter group associated with the DB instance. Then reboot your DB instance. For more
information, see Working with parameter groups.

Note

Performance Insights can only collect statistics for queries in pg_stat_activity that
aren't truncated. By default, PostgreSQL databases truncate queries longer than 1,024
bytes. To increase the query size, change the track_activity_query_size parameter
in the DB parameter group associated with your DB instance. When you change this
parameter, a DB instance reboot is required.

Per-second digest statistics for Aurora PostgreSQL

The following SQL digest statistics are available for Aurora PostgreSQL DB instances.

Metric Unit

db.sql_tokenized.stats.calls_per_sec Calls per second

db.sql_tokenized.stats.rows_per_sec Rows per second

db.sql_tokenized.stats.total_time_per_sec Average active executions per second (AAE)

SQL statistics for Performance Insights 1086

Amazon Aurora User Guide for Aurora

Metric Unit

db.sql_tokenized.stats.shared_blks_hit_per_se
c

Block hits per second

db.sql_tokenized.stats.shared_blks_read_per_s
ec

Block reads per second

db.sql_tokenized.stats.shared_blks_dirtied_pe
r_sec

Blocks dirtied per second

db.sql_tokenized.stats.shared_blks_written_pe
r_sec

Block writes per second

db.sql_tokenized.stats.local_blks_hit_per_sec Local block hits per second

db.sql_tokenized.stats.local_blks_read_per_se
c

Local block reads per second

db.sql_tokenized.stats.local_blks_dirtied_per
_sec

Local block dirty per second

db.sql_tokenized.stats.local_blks_written_per
_sec

Local block writes per second

db.sql_tokenized.stats.temp_blks_wri
tten_per_sec

Temporary writes per second

db.sql_tokenized.stats.temp_blks_rea
d_per_sec

Temporary reads per second

db.sql_tokenized.stats.blk_read_time_per_sec Average concurrent reads per second

db.sql_tokenized.stats.blk_write_time_per_sec Average concurrent writes per second

Per-call digest statistics for Aurora PostgreSQL

The following metrics provide per call statistics for a SQL statement.

SQL statistics for Performance Insights 1087

Amazon Aurora User Guide for Aurora

Metric Unit

db.sql_tokenized.stats.rows_per_call Rows per call

db.sql_tokenized.stats.avg_latency_per_call Average latency per call (in ms)

db.sql_tokenized.stats.shared_blks_hit_per_ca
ll

Block hits per call

db.sql_tokenized.stats.shared_blks_read_per_c
all

Block reads per call

db.sql_tokenized.stats.shared_blks_written_pe
r_call

Block writes per call

db.sql_tokenized.stats.shared_blks_dirtied_pe
r_call

Blocks dirtied per call

db.sql_tokenized.stats.local_blks_hit_per_call Local block hits per call

db.sql_tokenized.stats.local_blks_read_per_ca
ll

Local block reads per call

db.sql_tokenized.stats.local_blks_dirtied_per
_call

Local block dirty per call

db.sql_tokenized.stats.local_blks_written_per
_call

Local block writes per call

db.sql_tokenized.stats.temp_blks_wri
tten_per_call

Temporary block writes per call

db.sql_tokenized.stats.temp_blks_rea
d_per_call

Temporary block reads per call

db.sql_tokenized.stats.blk_read_time_per_call Read time per call (in ms)

db.sql_tokenized.stats.blk_write_time_per_call Write time per call (in ms)

SQL statistics for Performance Insights 1088

Amazon Aurora User Guide for Aurora

For more information about these metrics, see pg_stat_statements in the PostgreSQL
documentation.

OS metrics in Enhanced Monitoring

Amazon Aurora provides metrics in real time for the operating system (OS) that your DB cluster
runs on. Aurora delivers the metrics from Enhanced Monitoring to your Amazon CloudWatch Logs
account. The following tables list the OS metrics available using Amazon CloudWatch Logs.

Topics

• OS metrics for Aurora

OS metrics for Aurora

Group Metric Console
name

Description

engine Not
applicable

The database engine for the DB instance.

instanceI
D

Not
applicable

The DB instance identifier.

instanceR
esourceID

Not
applicable

An immutable identifier for the DB instance that is
unique to an AWS Region, also used as the log stream
identifier.

numVCPUs Not
applicable

The number of virtual CPUs for the DB instance.

timestamp Not
applicable

The time at which the metrics were taken.

uptime Not
applicable

The amount of time that the DB instance has been
active.

General

version Not
applicable

The version of the OS metrics' stream JSON format.

OS metrics in Enhanced Monitoring 1089

https://www.postgresql.org/docs/current/pgstatstatements.html

Amazon Aurora User Guide for Aurora

Group Metric Console
name

Description

guest CPU Guest The percentage of CPU in use by guest programs.

idle CPU Idle The percentage of CPU that is idle.

irq CPU IRQ The percentage of CPU in use by software interrupts.

nice CPU Nice The percentage of CPU in use by programs running at
lowest priority.

steal CPU Steal The percentage of CPU in use by other virtual
machines.

system CPU
System

The percentage of CPU in use by the kernel.

total CPU Total The total percentage of the CPU in use. This value
includes the nice value.

user CPU User The percentage of CPU in use by user programs.

cpuUtiliz
ation

wait CPU Wait The percentage of CPU unused while waiting for I/O
access.

avgQueueL
en

Avg Queue
Size

The number of requests waiting in the I/O device's
queue.

avgReqSz Ave
Request
Size

The average request size, in kilobytes.

await Disk I/O
Await

The number of milliseconds required to respond to
requests, including queue time and service time.

diskIO

device Not
applicable

The identifier of the disk device in use.

OS metrics in Enhanced Monitoring 1090

Amazon Aurora User Guide for Aurora

Group Metric Console
name

Description

readIOsPS Read IO/s The number of read operations per second.

readKb Read Total The total number of kilobytes read.

readKbPS Read Kb/s The number of kilobytes read per second.

readLaten
cy

Read
Latency

The elapsed time between the submission of a read I/
O request and its completion, in milliseconds.

This metric is only available for Amazon Aurora.

readThrou
ghput

Read
Throughpu
t

The amount of network throughput used by requests
to the DB cluster, in bytes per second.

This metric is only available for Amazon Aurora.

rrqmPS Rrqms The number of merged read requests queued per
second.

tps TPS The number of I/O transactions per second.

util Disk I/O
Util

The percentage of CPU time during which requests
were issued.

writeIOsP
S

Write IO/s The number of write operations per second.

writeKb Write
Total

The total number of kilobytes written.

writeKbPS Write Kb/s The number of kilobytes written per second.

OS metrics in Enhanced Monitoring 1091

Amazon Aurora User Guide for Aurora

Group Metric Console
name

Description

writeLate
ncy

Write
Latency

The average elapsed time between the submission of
a write I/O request and its completion, in milliseco
nds.

This metric is only available for Amazon Aurora.

writeThro
ughput

Write
Throughpu
t

The amount of network throughput used by
responses from the DB cluster, in bytes per second.

This metric is only available for Amazon Aurora.

wrqmPS Wrqms The number of merged write requests queued per
second.

maxFiles Max
Inodes

The maximum number of files that can be created for
the file system.

mountPoin
t

Not
applicable

The path to the file system.

name Not
applicable

The name of the file system.

total Total
Filesystem

The total number of disk space available for the file
system, in kilobytes.

used Used
Filesystem

The amount of disk space used by files in the file
system, in kilobytes.

usedFileP
ercent

Used
Inodes

The percentage of available files in use.

usedFiles Used% The number of files in the file system.

fileSys

usedPerce
nt

Used
Filesystem

The percentage of the file-system disk space in use.

OS metrics in Enhanced Monitoring 1092

Amazon Aurora User Guide for Aurora

Group Metric Console
name

Description

fifteen Load Avg
15 min

The number of processes requesting CPU time over
the last 15 minutes.

five Load Avg
5 min

The number of processes requesting CPU time over
the last 5 minutes.

loadAvera
geMinute

one Load Avg
1 min

The number of processes requesting CPU time over
the last minute.

active Active
Memory

The amount of assigned memory, in kilobytes.

buffers Buffered
Memory

The amount of memory used for buffering I/O
requests prior to writing to the storage device, in
kilobytes.

cached Cached
Memory

The amount of memory used for caching file system–
based I/O.

dirty Dirty
Memory

The amount of memory pages in RAM that have been
modified but not written to their related data block in
storage, in kilobytes.

free Free
Memory

The amount of unassigned memory, in kilobytes.

hugePages
Free

Huge
Pages Free

The number of free huge pages. Huge pages are a
feature of the Linux kernel.

hugePages
Rsvd

Huge
Pages
Rsvd

The number of committed huge pages.

memory

hugePages
Size

Huge
Pages Size

The size for each huge pages unit, in kilobytes.

OS metrics in Enhanced Monitoring 1093

Amazon Aurora User Guide for Aurora

Group Metric Console
name

Description

hugePages
Surp

Huge
Pages
Surp

The number of available surplus huge pages over the
total.

hugePages
Total

Huge
Pages
Total

The total number of huge pages.

inactive Inactive
Memory

The amount of least-frequently used memory pages,
in kilobytes.

mapped Mapped
Memory

The total amount of file-system contents that is
memory mapped inside a process address space, in
kilobytes.

pageTable
s

Page
Tables

The amount of memory used by page tables, in
kilobytes.

slab Slab
Memory

The amount of reusable kernel data structures, in
kilobytes.

total Total
Memory

The total amount of memory, in kilobytes.

writeback Writeback
Memory

The amount of dirty pages in RAM that are still being
written to the backing storage, in kilobytes.

interface Not
applicable

The identifier for the network interface being used
for the DB instance.

rx RX The number of bytes received per second.

network

tx TX The number of bytes uploaded per second.

processLi
st

cpuUsedPc CPU % The percentage of CPU used by the process.

OS metrics in Enhanced Monitoring 1094

Amazon Aurora User Guide for Aurora

Group Metric Console
name

Description

id Not
applicable

The identifier of the process.

memoryUse
dPc

MEM% The percentage of memory used by the process.

name Not
applicable

The name of the process.

parentID Not
applicable

The process identifier for the parent process of the
process.

rss RES The amount of RAM allocated to the process, in
kilobytes.

tgid Not
applicable

The thread group identifier, which is a number
representing the process ID to which a thread
belongs. This identifier is used to group threads from
the same process.

vss VIRT The amount of virtual memory allocated to the
process, in kilobytes.

swap Swap The amount of swap memory available, in kilobytes.

swap in Swaps in The amount of memory, in kilobytes, swapped in
from disk.

swap out Swaps out The amount of memory, in kilobytes, swapped out to
disk.

free Free Swap The amount of swap memory free, in kilobytes.

swap

committed Committed
Swap

The amount of swap memory, in kilobytes, used as
cache memory.

OS metrics in Enhanced Monitoring 1095

Amazon Aurora User Guide for Aurora

Group Metric Console
name

Description

blocked Tasks
Blocked

The number of tasks that are blocked.

running Tasks
Running

The number of tasks that are running.

sleeping Tasks
Sleeping

The number of tasks that are sleeping.

stopped Tasks
Stopped

The number of tasks that are stopped.

total Tasks
Total

The total number of tasks.

tasks

zombie Tasks
Zombie

The number of child tasks that are inactive with an
active parent task.

OS metrics in Enhanced Monitoring 1096

Amazon Aurora User Guide for Aurora

Monitoring events, logs, and streams in an Amazon
Aurora DB cluster

When you monitor your Amazon Aurora databases and your other AWS solutions, your goal is to
maintain the following:

• Reliability

• Availability

• Performance

• Security

Monitoring metrics in an Amazon Aurora cluster explains how to monitor your cluster using
metrics. A complete solution must also monitor database events, log files, and activity streams.
AWS provides you with the following monitoring tools:

• Amazon EventBridge is a serverless event bus service that makes it easy to connect your
applications with data from a variety of sources. EventBridge delivers a stream of real-time
data from your own applications, Software-as-a-Service (SaaS) applications, and AWS services.
EventBridge routes that data to targets such as AWS Lambda. This way, you can monitor events
that happen in services and build event-driven architectures. For more information, see the
Amazon EventBridge User Guide.

• Amazon CloudWatch Logs provides a way to monitor, store, and access your log files from
Amazon Aurora instances, AWS CloudTrail, and other sources. Amazon CloudWatch Logs can
monitor information in the log files and notify you when certain thresholds are met. You can
also archive your log data in highly durable storage. For more information, see the Amazon
CloudWatch Logs User Guide.

• AWS CloudTrail captures API calls and related events made by or on behalf of your AWS account.
CloudTrail delivers the log files to an Amazon S3 bucket that you specify. You can identify which
users and accounts called AWS, the source IP address from which the calls were made, and when
the calls occurred. For more information, see the AWS CloudTrail User Guide.

• Database Activity Streams is an Amazon Aurora feature that provides a near real-time stream
of the activity in your DB cluster. Amazon Aurora pushes activities to an Amazon Kinesis data
stream. The Kinesis stream is created automatically. From Kinesis, you can configure AWS

1097

https://docs.aws.amazon.com/eventbridge/latest/userguide/
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/

Amazon Aurora User Guide for Aurora

services such as Amazon Data Firehose and AWS Lambda to consume the stream and store the
data.

Topics

• Viewing logs, events, and streams in the Amazon RDS console

• Monitoring Amazon Aurora events

• Monitoring Amazon Aurora log files

• Monitoring Amazon Aurora API calls in AWS CloudTrail

• Monitoring Amazon Aurora with Database Activity Streams

• Monitoring threats with Amazon GuardDuty RDS Protection

Viewing logs, events, and streams in the Amazon RDS console

Amazon RDS integrates with AWS services to show information about logs, events, and database
activity streams in the RDS console.

The Logs & events tab for your Aurora DB cluster shows the following information:

• Auto scaling policies and activities – Shows policies and activities relating to the Aurora Auto
Scaling feature. This information only appears in the Logs & events tab at the cluster level.

• Amazon CloudWatch alarms – Shows any metric alarms that you have configured for the DB
instance in your Aurora cluster. If you haven't configured alarms, you can create them in the RDS
console.

• Recent events – Shows a summary of events (environment changes) for your Aurora DB instance
or cluster. For more information, see Viewing Amazon RDS events.

• Logs – Shows database log files generated by a DB instance in your Aurora cluster. For more
information, see Monitoring Amazon Aurora log files.

The Configuration tab displays information about database activity streams.

To view logs, events, and streams for your Aurora DB cluster in the RDS console

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Databases.

Viewing logs, events, and streams in the Amazon RDS console 1098

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Aurora User Guide for Aurora

3. Choose the name of the Aurora DB cluster that you want to monitor.

The database page appears. The following example shows an Amazon Aurora PostgreSQL DB
cluster named apga.

4. Scroll down and choose Configuration.

The following example shows the status of the database activity streams for your cluster.

Viewing logs, events, and streams in the Amazon RDS console 1099

Amazon Aurora User Guide for Aurora

5. Choose Logs & events.

The Logs & events section appears.

Viewing logs, events, and streams in the Amazon RDS console 1100

Amazon Aurora User Guide for Aurora

6. Choose a DB instance in your Aurora cluster, and then choose Logs & events for the instance.

The following example shows that the contents are different between the DB instance page
and the DB cluster page. The DB instance page shows logs and alarms.

Viewing logs, events, and streams in the Amazon RDS console 1101

Amazon Aurora User Guide for Aurora

Viewing logs, events, and streams in the Amazon RDS console 1102

Amazon Aurora User Guide for Aurora

Monitoring Amazon Aurora events

An event indicates a change in an environment. This can be an AWS environment, an SaaS partner
service or application, or a custom application or service. For descriptions of the Aurora events, see
Amazon RDS event categories and event messages for Aurora.

Topics

• Overview of events for Aurora

• Viewing Amazon RDS events

• Working with Amazon RDS event notification

• Creating a rule that triggers on an Amazon Aurora event

• Amazon RDS event categories and event messages for Aurora

Overview of events for Aurora

An RDS event indicates a change in the Aurora environment. For example, Amazon Aurora
generates an event when a DB cluster is patched. Amazon Aurora delivers events to EventBridge in
near-real time.

Note

Amazon RDS emits events on a best effort basis. We recommend that you avoid writing
programs that depend on the order or existence of notification events, because they might
be out of sequence or missing.

Amazon RDS records events that relate to the following resources:

• DB clusters

For a list of cluster events, see DB cluster events.

• DB instances

For a list of DB instance events, see DB instance events.

• DB parameter groups

For a list of DB parameter group events, see DB parameter group events.

Monitoring Aurora events 1103

Amazon Aurora User Guide for Aurora

• DB security groups

For a list of DB security group events, see DB security group events.

• DB cluster snapshots

For a list of DB cluster snapshot events, see DB cluster snapshot events.

• RDS Proxy events

For a list of RDS Proxy events, see RDS Proxy events.

• Blue/green deployment events

For a list of blue/green deployment events, see Blue/green deployment events.

This information includes the following:

• The date and time of the event

• The source name and source type of the event

• A message associated with the event

• Event notifications include tags from when the message was sent and may not reflect tags at the
time when the event occurred

Overview of events for Aurora 1104

Amazon Aurora User Guide for Aurora

Viewing Amazon RDS events

You can retrieve the following event information for your Amazon Aurora resources:

• Resource name

• Resource type

• Time of the event

• Message summary of the event

You can access events in the following parts of the AWS Management Console:

• The Events tab, which shows events from the past 24 hours.

• The Recent events table in the Logs & events section in the Databases tab, which can show
events for up to the past 2 weeks.

You can also retrieve events by using the describe-events AWS CLI command, or the DescribeEvents
RDS API operation. If you use the AWS CLI or the RDS API to view events, you can retrieve events
for up to the past 14 days.

Note

If you need to store events for longer periods of time, you can send Amazon RDS events to
EventBridge. For more information, see Creating a rule that triggers on an Amazon Aurora
event

For descriptions of the Amazon Aurora events, see Amazon RDS event categories and event
messages for Aurora.

To access detailed information about events using AWS CloudTrail, including request parameters,
see CloudTrail events.

Console

To view all Amazon RDS events for the past 24 hours

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

Viewing Amazon RDS events 1105

https://docs.aws.amazon.com/cli/latest/reference/rds/describe-events.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DescribeEvents.html
https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Aurora User Guide for Aurora

2. In the navigation pane, choose Events.

The available events appear in a list.

3. (Optional) Enter a search term to filter your results.

The following example shows a list of events filtered by the characters apg.

AWS CLI

To view all events generated in the last hour, call describe-events with no parameters.

aws rds describe-events

The following sample output shows that a DB cluster instance has started recovery.

{
 "Events": [
 {
 "EventCategories": [
 "recovery"

Viewing Amazon RDS events 1106

https://docs.aws.amazon.com/cli/latest/reference/rds/describe-events.html

Amazon Aurora User Guide for Aurora

],
 "SourceType": "db-instance",
 "SourceArn": "arn:aws:rds:us-east-1:123456789012:db:mycluster-instance-1",
 "Date": "2022-04-20T15:02:38.416Z",
 "Message": "Recovery of the DB instance has started. Recovery time will
 vary with the amount of data to be recovered.",
 "SourceIdentifier": "mycluster-instance-1"
 }, ...

To view all Amazon RDS events for the past 10080 minutes (7 days), call the describe-events AWS
CLI command and set the --duration parameter to 10080.

aws rds describe-events --duration 10080

The following example shows the events in the specified time range for DB instance test-
instance.

aws rds describe-events \
 --source-identifier test-instance \
 --source-type db-instance \
 --start-time 2022-03-13T22:00Z \
 --end-time 2022-03-13T23:59Z

The following sample output shows the status of a backup.

{
 "Events": [
 {
 "SourceType": "db-instance",
 "SourceIdentifier": "test-instance",
 "EventCategories": [
 "backup"
],
 "Message": "Backing up DB instance",
 "Date": "2022-03-13T23:09:23.983Z",
 "SourceArn": "arn:aws:rds:us-east-1:123456789012:db:test-instance"
 },
 {
 "SourceType": "db-instance",
 "SourceIdentifier": "test-instance",
 "EventCategories": [
 "backup"

Viewing Amazon RDS events 1107

https://docs.aws.amazon.com/cli/latest/reference/rds/describe-events.html

Amazon Aurora User Guide for Aurora

],
 "Message": "Finished DB Instance backup",
 "Date": "2022-03-13T23:15:13.049Z",
 "SourceArn": "arn:aws:rds:us-east-1:123456789012:db:test-instance"
 }
]
}

API

You can view all Amazon RDS instance events for the past 14 days by calling the DescribeEvents
RDS API operation and setting the Duration parameter to 20160.

Viewing Amazon RDS events 1108

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DescribeEvents.html

Amazon Aurora User Guide for Aurora

Working with Amazon RDS event notification

Amazon RDS uses the Amazon Simple Notification Service (Amazon SNS) to provide notification
when an Amazon RDS event occurs. These notifications can be in any notification form supported
by Amazon SNS for an AWS Region, such as an email, a text message, or a call to an HTTP
endpoint.

Topics

• Overview of Amazon RDS event notification

• Granting permissions to publish notifications to an Amazon SNS topic

• Subscribing to Amazon RDS event notification

• Amazon RDS event notification tags and attributes

• Listing Amazon RDS event notification subscriptions

• Modifying an Amazon RDS event notification subscription

• Adding a source identifier to an Amazon RDS event notification subscription

• Removing a source identifier from an Amazon RDS event notification subscription

• Listing the Amazon RDS event notification categories

• Deleting an Amazon RDS event notification subscription

Overview of Amazon RDS event notification

Amazon RDS groups events into categories that you can subscribe to so that you can be notified
when an event in that category occurs.

Topics

• RDS resources eligible for event subscription

• Basic process for subscribing to Amazon RDS event notifications

• Delivery of RDS event notifications

• Billing for Amazon RDS event notifications

• Examples of Aurora events using Amazon EventBridge

Working with Amazon RDS event notification 1109

Amazon Aurora User Guide for Aurora

RDS resources eligible for event subscription

For Amazon Aurora, events occur at both the DB cluster and the DB instance level. You can
subscribe to an event category for the following resources:

• DB instance

• DB cluster

• DB cluster snapshot

• DB parameter group

• DB security group

• RDS Proxy

• Custom engine version

For example, if you subscribe to the backup category for a given DB instance, you're notified
whenever a backup-related event occurs that affects the DB instance. If you subscribe to a
configuration change category for a DB instance, you're notified when the DB instance is changed.
You also receive notification when an event notification subscription changes.

You might want to create several different subscriptions. For example, you might create one
subscription that receives all event notifications for all DB instances and another subscription that
includes only critical events for a subset of the DB instances. For the second subscription, specify
one or more DB instances in the filter.

Basic process for subscribing to Amazon RDS event notifications

The process for subscribing to Amazon RDS event notification is as follows:

1. You create an Amazon RDS event notification subscription by using the Amazon RDS console,
AWS CLI, or API.

Amazon RDS uses the ARN of an Amazon SNS topic to identify each subscription. The Amazon
RDS console creates the ARN for you when you create the subscription. Create the ARN by using
the Amazon SNS console, the AWS CLI, or the Amazon SNS API.

2. Amazon RDS sends an approval email or SMS message to the addresses you submitted with your
subscription.

3. You confirm your subscription by choosing the link in the notification you received.

Working with Amazon RDS event notification 1110

Amazon Aurora User Guide for Aurora

4. The Amazon RDS console updates the My Event Subscriptions section with the status of your
subscription.

5. Amazon RDS begins sending the notifications to the addresses that you provided when you
created the subscription.

To learn about identity and access management when using Amazon SNS, see Identity and access
management in Amazon SNS in the Amazon Simple Notification Service Developer Guide.

You can use AWS Lambda to process event notifications from a DB instance. For more information,
see Using AWS Lambda with Amazon RDS in the AWS Lambda Developer Guide.

Delivery of RDS event notifications

Amazon RDS sends notifications to the addresses that you provide when you create the
subscription. The notification can include message attributes which provide structured metadata
about the message. For more information about message attributes, see Amazon RDS event
categories and event messages for Aurora.

Event notifications might take up to five minutes to be delivered.

Important

Amazon RDS doesn't guarantee the order of events sent in an event stream. The event
order is subject to change.

When Amazon SNS sends a notification to a subscribed HTTP or HTTPS endpoint, the POST
message sent to the endpoint has a message body that contains a JSON document. For more
information, see Amazon SNS message and JSON formats in the Amazon Simple Notification
Service Developer Guide.

You can configure SNS to notify you with text messages. For more information, see Mobile text
messaging (SMS) in the Amazon Simple Notification Service Developer Guide.

To turn off notifications without deleting a subscription, choose No for Enabled in the Amazon RDS
console. Or you can set the Enabled parameter to false using the AWS CLI or Amazon RDS API.

Working with Amazon RDS event notification 1111

https://docs.aws.amazon.com/sns/latest/dg/sns-authentication-and-access-control.html
https://docs.aws.amazon.com/sns/latest/dg/sns-authentication-and-access-control.html
https://docs.aws.amazon.com/lambda/latest/dg/services-rds.html
https://docs.aws.amazon.com/sns/latest/dg/sns-message-and-json-formats.html
https://docs.aws.amazon.com/sns/latest/dg/sns-mobile-phone-number-as-subscriber.html
https://docs.aws.amazon.com/sns/latest/dg/sns-mobile-phone-number-as-subscriber.html

Amazon Aurora User Guide for Aurora

Billing for Amazon RDS event notifications

Billing for Amazon RDS event notification is through Amazon SNS. Amazon SNS fees apply when
using event notification. For more information about Amazon SNS billing, see Amazon Simple
Notification Service pricing.

Examples of Aurora events using Amazon EventBridge

The following examples illustrate different types of Aurora events in JSON format. For a tutorial
that shows you how to capture and view events in JSON format, see Tutorial: Log DB instance state
changes using Amazon EventBridge.

Topics

• Example of a DB cluster event

• Example of a DB parameter group event

• Example of a DB cluster snapshot event

Example of a DB cluster event

The following is an example of a DB cluster event in JSON format. The event shows that the cluster
named my-db-cluster was patched. The event ID is RDS-EVENT-0173.

{
 "version": "0",
 "id": "844e2571-85d4-695f-b930-0153b71dcb42",
 "detail-type": "RDS DB Cluster Event",
 "source": "aws.rds",
 "account": "123456789012",
 "time": "2018-10-06T12:26:13Z",
 "region": "us-east-1",
 "resources": [
 "arn:aws:rds:us-east-1:123456789012:cluster:my-db-cluster"
],
 "detail": {
 "EventCategories": [
 "notification"
],
 "SourceType": "CLUSTER",
 "SourceArn": "arn:aws:rds:us-east-1:123456789012:cluster:my-db-cluster",
 "Date": "2018-10-06T12:26:13.882Z",
 "Message": "Database cluster has been patched",

Working with Amazon RDS event notification 1112

http://aws.amazon.com/sns/#pricing
http://aws.amazon.com/sns/#pricing

Amazon Aurora User Guide for Aurora

 "SourceIdentifier": "my-db-cluster",
 "EventID": "RDS-EVENT-0173"
 }
}

Example of a DB parameter group event

The following is an example of a DB parameter group event in JSON format. The event shows that
the parameter time_zone was updated in parameter group my-db-param-group. The event ID is
RDS-EVENT-0037.

{
 "version": "0",
 "id": "844e2571-85d4-695f-b930-0153b71dcb42",
 "detail-type": "RDS DB Parameter Group Event",
 "source": "aws.rds",
 "account": "123456789012",
 "time": "2018-10-06T12:26:13Z",
 "region": "us-east-1",
 "resources": [
 "arn:aws:rds:us-east-1:123456789012:pg:my-db-param-group"
],
 "detail": {
 "EventCategories": [
 "configuration change"
],
 "SourceType": "DB_PARAM",
 "SourceArn": "arn:aws:rds:us-east-1:123456789012:pg:my-db-param-group",
 "Date": "2018-10-06T12:26:13.882Z",
 "Message": "Updated parameter time_zone to UTC with apply method immediate",
 "SourceIdentifier": "my-db-param-group",
 "EventID": "RDS-EVENT-0037"
 }
}

Example of a DB cluster snapshot event

The following is an example of a DB cluster snapshot event in JSON format. The event shows the
creation of the snapshot named my-db-cluster-snapshot. The event ID is RDS-EVENT-0074.

{
 "version": "0",

Working with Amazon RDS event notification 1113

Amazon Aurora User Guide for Aurora

 "id": "844e2571-85d4-695f-b930-0153b71dcb42",
 "detail-type": "RDS DB Cluster Snapshot Event",
 "source": "aws.rds",
 "account": "123456789012",
 "time": "2018-10-06T12:26:13Z",
 "region": "us-east-1",
 "resources": [
 "arn:aws:rds:us-east-1:123456789012:cluster-snapshot:rds:my-db-cluster-snapshot"
],
 "detail": {
 "EventCategories": [
 "backup"
],
 "SourceType": "CLUSTER_SNAPSHOT",
 "SourceArn": "arn:aws:rds:us-east-1:123456789012:cluster-snapshot:rds:my-db-
cluster-snapshot",
 "Date": "2018-10-06T12:26:13.882Z",
 "SourceIdentifier": "my-db-cluster-snapshot",
 "Message": "Creating manual cluster snapshot",
 "EventID": "RDS-EVENT-0074"
 }
}

Working with Amazon RDS event notification 1114

Amazon Aurora User Guide for Aurora

Granting permissions to publish notifications to an Amazon SNS topic

To grant Amazon RDS permissions to publish notifications to an Amazon Simple Notification
Service (Amazon SNS) topic, attach an AWS Identity and Access Management (IAM) policy to the
destination topic. For more information about permissions, see Example cases for Amazon Simple
Notification Service access control in the Amazon Simple Notification Service Developer Guide.

By default, an Amazon SNS topic has a policy allowing all Amazon RDS resources within the
same account to publish notifications to it. You can attach a custom policy to allow cross-account
notifications, or to restrict access to certain resources.

The following is an example of an IAM policy that you attach to the destination Amazon SNS topic.
It restricts the topic to DB instances with names that match the specified prefix. To use this policy,
specify the following values:

• Resource – The Amazon Resource Name (ARN) for your Amazon SNS topic

• SourceARN – Your RDS resource ARN

• SourceAccount – Your AWS account ID

To see a list of resource types and their ARNs, see Resources Defined by Amazon RDS in the Service
Authorization Reference.

{
 "Version": "2008-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "events.rds.amazonaws.com"
 },
 "Action": [
 "sns:Publish"
],
 "Resource": "arn:aws:sns:us-east-1:123456789012:topic_name",
 "Condition": {
 "ArnLike": {
 "aws:SourceArn": "arn:aws:rds:us-east-1:123456789012:db:prefix-*"
 },
 "StringEquals": {
 "aws:SourceAccount": "123456789012"

Working with Amazon RDS event notification 1115

https://docs.aws.amazon.com/sns/latest/dg/sns-access-policy-use-cases.html
https://docs.aws.amazon.com/sns/latest/dg/sns-access-policy-use-cases.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonrds.html#amazonrds-resources-for-iam-policies

Amazon Aurora User Guide for Aurora

 }
 }
 }
]
}

Working with Amazon RDS event notification 1116

Amazon Aurora User Guide for Aurora

Subscribing to Amazon RDS event notification

The simplest way to create a subscription is with the RDS console. If you choose to create event
notification subscriptions using the CLI or API, you must create an Amazon Simple Notification
Service topic and subscribe to that topic with the Amazon SNS console or Amazon SNS API.
You will also need to retain the Amazon Resource Name (ARN) of the topic because it is used
when submitting CLI commands or API operations. For information on creating an SNS topic and
subscribing to it, see Getting started with Amazon SNS in the Amazon Simple Notification Service
Developer Guide.

You can specify the type of source you want to be notified of and the Amazon RDS source that
triggers the event:

Source type

The type of source. For example, Source type might be Instances. You must choose a source
type.

Resources to include

The Amazon RDS resources that are generating the events. For example, you might choose
Select specific instances and then myDBInstance1.

The following table explains the result when you specify or don't specify Resources to include.

Resources to
include

Description Example

Specified RDS notifies you about all events for the
specified resource only.

If your Source type is Instances
 and your resource is myDBInsta
nce1, RDS notifies you about all
events for myDBInstance1 only.

Not specified RDS notifies you about the events for the
specified source type for all your Amazon
RDS resources.

If your Source type is Instances
, RDS notifies you about all
instance-related events in your
account.

Working with Amazon RDS event notification 1117

https://docs.aws.amazon.com/sns/latest/dg/GettingStarted.html

Amazon Aurora User Guide for Aurora

An Amazon SNS topic subscriber receives every message published to the topic by default. To
receive only a subset of the messages, the subscriber must assign a filter policy to the topic
subscription. For more information about SNS message filtering, see Amazon SNS message
filtering in the Amazon Simple Notification Service Developer Guide

Console

To subscribe to RDS event notification

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In navigation pane, choose Event subscriptions.

3. In the Event subscriptions pane, choose Create event subscription.

4. Enter your subscription details as follows:

a. For Name, enter a name for the event notification subscription.

b. For Send notifications to, do one of the following:

• Choose New email topic. Enter a name for your email topic and a list of recipients.
We recommend that you configure the events subscriptions to the same email address
as your primary account contact. The recommendations, service events, and personal
health messages are sent using different channels. The subscriptions to the same email
address ensures that all the messages are consolidated in one location.

• Choose Amazon Resource Name (ARN). Then choose existing Amazon SNS ARN for an
Amazon SNS topic.

If you want to use a topic that has been enabled for server-side encryption (SSE),
grant Amazon RDS the necessary permissions to access the AWS KMS key. For more
information, see Enable compatibility between event sources from AWS services and
encrypted topics in the Amazon Simple Notification Service Developer Guide.

c. For Source type, choose a source type. For example, choose Clusters or Cluster
snapshots.

d. Choose the event categories and resources that you want to receive event notifications for.

The following example configures event notifications for the DB instance named
testinst.

Working with Amazon RDS event notification 1118

https://docs.aws.amazon.com/sns/latest/dg/sns-message-filtering.html
https://docs.aws.amazon.com/sns/latest/dg/sns-message-filtering.html
https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/
https://docs.aws.amazon.com/sns/latest/dg/sns-key-management.html#compatibility-with-aws-services
https://docs.aws.amazon.com/sns/latest/dg/sns-key-management.html#compatibility-with-aws-services

Amazon Aurora User Guide for Aurora

e. Choose Create.

The Amazon RDS console indicates that the subscription is being created.

AWS CLI

To subscribe to RDS event notification, use the AWS CLI create-event-subscription
command. Include the following required parameters:

• --subscription-name

• --sns-topic-arn

Example

For Linux, macOS, or Unix:

aws rds create-event-subscription \

Working with Amazon RDS event notification 1119

https://docs.aws.amazon.com/cli/latest/reference/rds/create-event-subscription.html

Amazon Aurora User Guide for Aurora

 --subscription-name myeventsubscription \
 --sns-topic-arn arn:aws:sns:us-east-1:123456789012:myawsuser-RDS \
 --enabled

For Windows:

aws rds create-event-subscription ^
 --subscription-name myeventsubscription ^
 --sns-topic-arn arn:aws:sns:us-east-1:123456789012:myawsuser-RDS ^
 --enabled

API

To subscribe to Amazon RDS event notification, call the Amazon RDS API function
CreateEventSubscription. Include the following required parameters:

• SubscriptionName

• SnsTopicArn

Working with Amazon RDS event notification 1120

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateEventSubscription.html

Amazon Aurora User Guide for Aurora

Amazon RDS event notification tags and attributes

When Amazon RDS sends an event notification to Amazon Simple Notification Service (SNS) or
Amazon EventBridge, the notification contains message attributes and event tags. RDS sends the
message attributes separately along with the message, while the event tags are in the body of the
message. Use the message attributes and the Amazon RDS tags to add metadata to your resources.
You can modify these tags with your own notations about the DB instances, Aurora clusters, and so
on. For more information about tagging Amazon RDS resources, see Tagging Amazon Aurora and
Amazon RDS resources.

By default, the Amazon SNS and Amazon EventBridge receives every message sent to them. SNS
and EventBridge can filter the message and send the notifications to the preferred communication
mode, such as an email, a text message, or a call to an HTTP endpoint.

Note

The notification sent in an email or a text message will not have event tags.

The following table shows the message attributes for RDS events sent to the topic subscriber.

Amazon RDS event attribute Description

EventID Identifier for the RDS event message, for example,
RDS-EVENT-0006.

Resource The ARN identifier for the resource emitting the
event, for example, arn:aws:rds:ap-sou
theast-2:123456789012:db:database-1 .

The RDS tags provide data about the resource that was affected by the service event. RDS adds the
current state of the tags in the message body when the notification is sent to SNS or EventBridge.

For more information about filtering message attributes for SNS, see Amazon SNS message
filtering in the Amazon Simple Notification Service Developer Guide.

For more information about filtering event tags for EventBridge, see Content filtering in Amazon
EventBridge event patterns in the Amazon EventBridge User Guide.

Working with Amazon RDS event notification 1121

https://docs.aws.amazon.com/sns/latest/dg/sns-message-filtering.html
https://docs.aws.amazon.com/sns/latest/dg/sns-message-filtering.html
https://docs.aws.amazon.com/eventbridge/latest/userguide/eb-event-patterns-content-based-filtering.html
https://docs.aws.amazon.com/eventbridge/latest/userguide/eb-event-patterns-content-based-filtering.html

Amazon Aurora User Guide for Aurora

For more information about filtering payload-based tags for SNS, see https://aws.amazon.com/
blogs/compute/introducing-payload-based-message-filtering-for-amazon-sns/

Working with Amazon RDS event notification 1122

https://aws.amazon.com/blogs/compute/introducing-payload-based-message-filtering-for-amazon-sns/
https://aws.amazon.com/blogs/compute/introducing-payload-based-message-filtering-for-amazon-sns/

Amazon Aurora User Guide for Aurora

Listing Amazon RDS event notification subscriptions

You can list your current Amazon RDS event notification subscriptions.

Console

To list your current Amazon RDS event notification subscriptions

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Event subscriptions. The Event subscriptions pane shows all
your event notification subscriptions.

AWS CLI

To list your current Amazon RDS event notification subscriptions, use the AWS CLI describe-
event-subscriptions command.

Example

The following example describes all event subscriptions.

aws rds describe-event-subscriptions

The following example describes the myfirsteventsubscription.

Working with Amazon RDS event notification 1123

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-event-subscriptions.html
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-event-subscriptions.html

Amazon Aurora User Guide for Aurora

aws rds describe-event-subscriptions --subscription-name myfirsteventsubscription

API

To list your current Amazon RDS event notification subscriptions, call the Amazon RDS API
DescribeEventSubscriptions action.

Working with Amazon RDS event notification 1124

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DescribeEventSubscriptions.html

Amazon Aurora User Guide for Aurora

Modifying an Amazon RDS event notification subscription

After you have created a subscription, you can change the subscription name, source identifier,
categories, or topic ARN.

Console

To modify an Amazon RDS event notification subscription

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Event subscriptions.

3. In the Event subscriptions pane, choose the subscription that you want to modify and choose
Edit.

4. Make your changes to the subscription in either the Target or Source section.

5. Choose Edit. The Amazon RDS console indicates that the subscription is being modified.

AWS CLI

To modify an Amazon RDS event notification subscription, use the AWS CLI modify-event-
subscription command. Include the following required parameter:

• --subscription-name

Example

The following code enables myeventsubscription.

For Linux, macOS, or Unix:

aws rds modify-event-subscription \

Working with Amazon RDS event notification 1125

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-event-subscription.html
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-event-subscription.html

Amazon Aurora User Guide for Aurora

 --subscription-name myeventsubscription \
 --enabled

For Windows:

aws rds modify-event-subscription ^
 --subscription-name myeventsubscription ^
 --enabled

API

To modify an Amazon RDS event, call the Amazon RDS API operation
ModifyEventSubscription. Include the following required parameter:

• SubscriptionName

Working with Amazon RDS event notification 1126

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyEventSubscription.html

Amazon Aurora User Guide for Aurora

Adding a source identifier to an Amazon RDS event notification subscription

You can add a source identifier (the Amazon RDS source generating the event) to an existing
subscription.

Console

You can easily add or remove source identifiers using the Amazon RDS console by selecting or
deselecting them when modifying a subscription. For more information, see Modifying an Amazon
RDS event notification subscription.

AWS CLI

To add a source identifier to an Amazon RDS event notification subscription, use the AWS CLI add-
source-identifier-to-subscription command. Include the following required parameters:

• --subscription-name

• --source-identifier

Example

The following example adds the source identifier mysqldb to the myrdseventsubscription
subscription.

For Linux, macOS, or Unix:

aws rds add-source-identifier-to-subscription \
 --subscription-name myrdseventsubscription \
 --source-identifier mysqldb

For Windows:

aws rds add-source-identifier-to-subscription ^
 --subscription-name myrdseventsubscription ^
 --source-identifier mysqldb

API

To add a source identifier to an Amazon RDS event notification subscription, call the Amazon RDS
API AddSourceIdentifierToSubscription. Include the following required parameters:

Working with Amazon RDS event notification 1127

https://docs.aws.amazon.com/
https://docs.aws.amazon.com/
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_AddSourceIdentifierToSubscription.html

Amazon Aurora User Guide for Aurora

• SubscriptionName

• SourceIdentifier

Working with Amazon RDS event notification 1128

Amazon Aurora User Guide for Aurora

Removing a source identifier from an Amazon RDS event notification subscription

You can remove a source identifier (the Amazon RDS source generating the event) from a
subscription if you no longer want to be notified of events for that source.

Console

You can easily add or remove source identifiers using the Amazon RDS console by selecting or
deselecting them when modifying a subscription. For more information, see Modifying an Amazon
RDS event notification subscription.

AWS CLI

To remove a source identifier from an Amazon RDS event notification subscription, use the AWS CLI
remove-source-identifier-from-subscription command. Include the following required
parameters:

• --subscription-name

• --source-identifier

Example

The following example removes the source identifier mysqldb from the
myrdseventsubscription subscription.

For Linux, macOS, or Unix:

aws rds remove-source-identifier-from-subscription \
 --subscription-name myrdseventsubscription \
 --source-identifier mysqldb

For Windows:

aws rds remove-source-identifier-from-subscription ^
 --subscription-name myrdseventsubscription ^
 --source-identifier mysqldb

Working with Amazon RDS event notification 1129

https://docs.aws.amazon.com/cli/latest/reference/rds/remove-source-identifier-from-subscription.html

Amazon Aurora User Guide for Aurora

API

To remove a source identifier from an Amazon RDS event notification subscription, use the Amazon
RDS API RemoveSourceIdentifierFromSubscription command. Include the following
required parameters:

• SubscriptionName

• SourceIdentifier

Working with Amazon RDS event notification 1130

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_RemoveSourceIdentifierFromSubscription.html

Amazon Aurora User Guide for Aurora

Listing the Amazon RDS event notification categories

All events for a resource type are grouped into categories. To view the list of categories available,
use the following procedures.

Console

When you create or modify an event notification subscription, the event categories are displayed in
the Amazon RDS console. For more information, see Modifying an Amazon RDS event notification
subscription.

AWS CLI

To list the Amazon RDS event notification categories, use the AWS CLI describe-event-
categories command. This command has no required parameters.

Working with Amazon RDS event notification 1131

https://docs.aws.amazon.com/cli/latest/reference/rds/describe-event-categories.html
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-event-categories.html

Amazon Aurora User Guide for Aurora

Example

aws rds describe-event-categories

API

To list the Amazon RDS event notification categories, use the Amazon RDS API
DescribeEventCategories command. This command has no required parameters.

Working with Amazon RDS event notification 1132

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DescribeEventCategories.html

Amazon Aurora User Guide for Aurora

Deleting an Amazon RDS event notification subscription

You can delete a subscription when you no longer need it. All subscribers to the topic will no longer
receive event notifications specified by the subscription.

Console

To delete an Amazon RDS event notification subscription

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose DB Event Subscriptions.

3. In the My DB Event Subscriptions pane, choose the subscription that you want to delete.

4. Choose Delete.

5. The Amazon RDS console indicates that the subscription is being deleted.

AWS CLI

To delete an Amazon RDS event notification subscription, use the AWS CLI delete-event-
subscription command. Include the following required parameter:

• --subscription-name

Example

The following example deletes the subscription myrdssubscription.

Working with Amazon RDS event notification 1133

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/
https://docs.aws.amazon.com/cli/latest/reference/rds/delete-event-subscription.html
https://docs.aws.amazon.com/cli/latest/reference/rds/delete-event-subscription.html

Amazon Aurora User Guide for Aurora

aws rds delete-event-subscription --subscription-name myrdssubscription

API

To delete an Amazon RDS event notification subscription, use the RDS API
DeleteEventSubscription command. Include the following required parameter:

• SubscriptionName

Working with Amazon RDS event notification 1134

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DeleteEventSubscription.html

Amazon Aurora User Guide for Aurora

Creating a rule that triggers on an Amazon Aurora event

Using Amazon EventBridge, you can automate AWS services and respond to system events such as
application availability issues or resource changes.

Topics

• Tutorial: Log DB instance state changes using Amazon EventBridge

Tutorial: Log DB instance state changes using Amazon EventBridge

In this tutorial, you create an AWS Lambda function that logs the state changes for an instance.
You then create a rule that runs the function whenever there is a state change of an existing RDS
DB instance. The tutorial assumes that you have a small running test instance that you can shut
down temporarily.

Important

Don't perform this tutorial on a running production DB instance.

Topics

• Step 1: Create an AWS Lambda function

• Step 2: Create a rule

• Step 3: Test the rule

Step 1: Create an AWS Lambda function

Create a Lambda function to log the state change events. You specify this function when you
create your rule.

To create a Lambda function

1. Open the AWS Lambda console at https://console.aws.amazon.com/lambda/.

2. If you're new to Lambda, you see a welcome page. Choose Get Started Now. Otherwise,
choose Create function.

3. Choose Author from scratch.

4. On the Create function page, do the following:

Creating a rule that triggers on an Amazon Aurora event 1135

https://console.aws.amazon.com/lambda/

Amazon Aurora User Guide for Aurora

a. Enter a name and description for the Lambda function. For example, name the function
RDSInstanceStateChange.

b. In Runtime, select Node.js 16x.

c. For Architecture, choose x86_64.

d. For Execution role, do either of the following:

• Choose Create a new role with basic Lambda permissions.

• For Existing role, choose Use an existing role. Choose the role that you want to use.

e. Choose Create function.

5. On the RDSInstanceStateChange page, do the following:

a. In Code source, select index.js.

b. In the index.js pane, delete the existing code.

c. Enter the following code:

console.log('Loading function');

exports.handler = async (event, context) => {
 console.log('Received event:', JSON.stringify(event));
};

d. Choose Deploy.

Step 2: Create a rule

Create a rule to run your Lambda function whenever you launch an Amazon RDS instance.

To create the EventBridge rule

1. Open the Amazon EventBridge console at https://console.aws.amazon.com/events/.

2. In the navigation pane, choose Rules.

3. Choose Create rule.

4. Enter a name and description for the rule. For example, enter
RDSInstanceStateChangeRule.

5. Choose Rule with an event pattern, and then choose Next.

6. For Event source, choose AWS events or EventBridge partner events.

Creating a rule that triggers on an Amazon Aurora event 1136

https://console.aws.amazon.com/events/

Amazon Aurora User Guide for Aurora

7. Scroll down to the Event pattern section.

8. For Event source, choose AWS services.

9. For AWS service, choose Relational Database Service (RDS).

10. For Event type, choose RDS DB Instance Event.

11. Leave the default event pattern. Then choose Next.

12. For Target types, choose AWS service.

13. For Select a target, choose Lambda function.

14. For Function, choose the Lambda function that you created. Then choose Next.

15. In Configure tags, choose Next.

16. Review the steps in your rule. Then choose Create rule.

Step 3: Test the rule

To test your rule, shut down an RDS DB instance. After waiting a few minutes for the instance to
shut down, verify that your Lambda function was invoked.

To test your rule by stopping a DB instance

1. Open the Amazon RDS console at https://console.aws.amazon.com/rds/.

2. Stop an RDS DB instance.

3. Open the Amazon EventBridge console at https://console.aws.amazon.com/events/.

4. In the navigation pane, choose Rules, choose the name of the rule that you created.

5. In Rule details, choose Monitoring.

You are redirected to the Amazon CloudWatch console. If you are not redirected, click View the
metrics in CloudWatch.

6. In All metrics, choose the name of the rule that you created.

The graph should indicate that the rule was invoked.

7. In the navigation pane, choose Log groups.

8. Choose the name of the log group for your Lambda function (/aws/lambda/function-
name).

9. Choose the name of the log stream to view the data provided by the function for the instance
that you launched. You should see a received event similar to the following:

Creating a rule that triggers on an Amazon Aurora event 1137

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/events/

Amazon Aurora User Guide for Aurora

{
 "version": "0",
 "id": "12a345b6-78c9-01d2-34e5-123f4ghi5j6k",
 "detail-type": "RDS DB Instance Event",
 "source": "aws.rds",
 "account": "111111111111",
 "time": "2021-03-19T19:34:09Z",
 "region": "us-east-1",
 "resources": [
 "arn:aws:rds:us-east-1:111111111111:db:testdb"
],
 "detail": {
 "EventCategories": [
 "notification"
],
 "SourceType": "DB_INSTANCE",
 "SourceArn": "arn:aws:rds:us-east-1:111111111111:db:testdb",
 "Date": "2021-03-19T19:34:09.293Z",
 "Message": "DB instance stopped",
 "SourceIdentifier": "testdb",
 "EventID": "RDS-EVENT-0087"
 }
}

For more examples of RDS events in JSON format, see Overview of events for Aurora.

10. (Optional) When you're finished, you can open the Amazon RDS console and start the instance
that you stopped.

Creating a rule that triggers on an Amazon Aurora event 1138

Amazon Aurora User Guide for Aurora

Amazon RDS event categories and event messages for Aurora

Amazon RDS generates a significant number of events in categories that you can subscribe to using
the Amazon RDS Console, AWS CLI, or the API.

Topics

• DB cluster events

• DB instance events

• DB parameter group events

• DB security group events

• DB cluster snapshot events

• RDS Proxy events

• Blue/green deployment events

DB cluster events

The following table shows the event category and a list of events when a DB cluster is the source
type.

Note

No event category exists for Aurora Serverless in the DB cluster event type. The Aurora
Serverless events range from RDS-EVENT-0141 to RDS-EVENT-0149.

Category RDS event ID Message Notes

configuration
change

RDS-EVENT-0016 Reset master credentials.

configuration
change

RDS-EVENT-0179 Database Activity Streams
is started on your database
cluster.

For more information see
Monitoring Amazon Aurora
with Database Activity
Streams.

Amazon RDS event categories and event messages for Aurora 1139

Amazon Aurora User Guide for Aurora

Category RDS event ID Message Notes

configuration
change

RDS-EVENT-0180 Database Activity Streams
is stopped on your
database cluster.

For more information see
Monitoring Amazon Aurora
with Database Activity
Streams.

creation RDS-EVENT-0170 DB cluster created.

deletion RDS-EVENT-0171 DB cluster deleted.

failover RDS-EVENT-0069 Cluster failover failed,
check the health of your
cluster instances and try
again.

failover RDS-EVENT-0070 Promoting previous
primary again: name.

failover RDS-EVENT-0071 Completed failover to DB
instance: name.

failover RDS-EVENT-0072 Started same AZ failover
to DB instance: name.

failover RDS-EVENT-0073 Started cross AZ failover to
DB instance: name.

Amazon RDS event categories and event messages for Aurora 1140

Amazon Aurora User Guide for Aurora

Category RDS event ID Message Notes

failure RDS-EVENT-0083 Amazon RDS has been
unable to create credentia
ls to access your Amazon
S3 Bucket for your DB
cluster name. This is
due to the S3 snapshot
ingestion IAM role not
being configured correctly
in your account or the
specified Amazon S3
bucket cannot be found.
Please refer to the
troubleshooting section
in the Amazon RDS
documentation for further
details.

For more information, see
Physical migration from
MySQL by using Percona
XtraBackup and Amazon
S3 .

failure RDS-EVENT-0143 The DB cluster failed
to scale from units to
units for this reason:
reason.

Scaling failed for the
Aurora Serverless DB
cluster.

failure RDS-EVENT-0354 You can't create the
DB cluster because of
incompatible resources.
message.

The message includes
details about the failure.

failure RDS-EVENT-0355 The DB cluster can't
be created because of
insufficient resource limits.
message.

The message includes
details about the failure.

Amazon RDS event categories and event messages for Aurora 1141

Amazon Aurora User Guide for Aurora

Category RDS event ID Message Notes

global
failover

RDS-EVENT-0181 Global switchover to DB
cluster name in Region
name started.

This event is for a
switchover operation
(previously called
"managed planned
failover").

The process can be delayed
because other operation
s are running on the DB
cluster.

global
failover

RDS-EVENT-0182 Old primary DB cluster
name in Region name
successfully shut down.

This event is for a
switchover operation
(previously called
"managed planned
failover").

The old primary instance
in the global database
isn't accepting writes. All
volumes are synchronized.

global
failover

RDS-EVENT-0183 Waiting for data synchroni
zation across global cluster
members. Current lags
behind primary DB cluster:
reason.

This event is for a
switchover operation
(previously called
"managed planned
failover").

A replication lag is
occurring during the
synchronization phase
of the global database
failover.

Amazon RDS event categories and event messages for Aurora 1142

Amazon Aurora User Guide for Aurora

Category RDS event ID Message Notes

global
failover

RDS-EVENT-0184 New primary DB cluster
name in Region name was
successfully promoted.

This event is for a
switchover operation
(previously called
"managed planned
failover").

The volume topology of
the global database is
reestablished with the new
primary volume.

global
failover

RDS-EVENT-0185 Global switchover to DB
cluster name in Region
name finished.

This event is for a
switchover operation
(previously called
"managed planned
failover").

The global database
switchover is finished on
the primary DB cluster.
Replicas might take long
to come online after the
failover completes.

global
failover

RDS-EVENT-0186 Global switchover to DB
cluster name in Region
name is cancelled.

This event is for a
switchover operation
(previously called
"managed planned
failover").

global
failover

RDS-EVENT-0187 Global switchover to DB
cluster name in Region
name failed.

This event is for a
switchover operation
(previously called
"managed planned
failover").

Amazon RDS event categories and event messages for Aurora 1143

Amazon Aurora User Guide for Aurora

Category RDS event ID Message Notes

global
failover

RDS-EVENT-0238 Global failover to DB
cluster name in Region
name completed.

global
failover

RDS-EVENT-0239 Global failover to DB
cluster name in Region
name failed.

global
failover

RDS-EVENT-0240 Started resynchronizing
members of DB cluster
name in Region name after
global failover.

global
failover

RDS-EVENT-0241 Finished resynchronizing
members of DB cluster
name in Region name after
global failover.

maintenance RDS-EVENT-0156 The DB cluster has a DB
engine minor version
upgrade available.

maintenance RDS-EVENT-0173 Database cluster engine
version has been
upgraded.

Patching of the DB cluster
has completed.

maintenance RDS-EVENT-0176 Database cluster engine
major version has been
upgraded.

maintenance RDS-EVENT-0177 Database cluster upgrade
is in progress.

maintenance RDS-EVENT-0286 Database cluster engine
version upgrade started.

Amazon RDS event categories and event messages for Aurora 1144

Amazon Aurora User Guide for Aurora

Category RDS event ID Message Notes

maintenance RDS-EVENT-0287 Operating system upgrade
requirement detected.

maintenance RDS-EVENT-0288 Cluster operating system
upgrade starting.

maintenance RDS-EVENT-0289 Cluster operating system
upgrade completed.

maintenance RDS-EVENT-0363 Upgrade preparation in
progress: cluster_name

Upgrade prechecks have
started for the DB cluster.

notification RDS-EVENT-0076 Failed to migrate from
name to name. Reason:
reason.

Migration to an Aurora DB
cluster failed.

notification RDS-EVENT-0077 Failed to convert
name.name to InnoDB.
Reason: reason.

An attempt to convert
a table from the source
database to InnoDB failed
during the migration to an
Aurora DB cluster.

notification RDS-EVENT-0085 Unable to upgrade DB
cluster name because the
instance name has a status
of name. Resolve the issue
or delete the instance and
try again.

An error occurred while
attempting to patch the
Aurora DB cluster. Check
your instance status,
resolve the issue, and try
again. For more informati
on see Maintaining an
Amazon Aurora DB cluster.

notification RDS-EVENT-0141 Scaling DB cluster from
units to units for this
reason: reason.

Scaling initiated for the
Aurora Serverless DB
cluster.

Amazon RDS event categories and event messages for Aurora 1145

Amazon Aurora User Guide for Aurora

Category RDS event ID Message Notes

notification RDS-EVENT-0142 The DB cluster has scaled
from units to units.

Scaling completed for
the Aurora Serverless DB
cluster.

notification RDS-EVENT-0144 The DB cluster is being
paused.

An automatic pause was
initiated for the Aurora
Serverless DB cluster.

notification RDS-EVENT-0145 The DB cluster is paused. The Aurora Serverless DB
cluster has been paused.

notification RDS-EVENT-0146 Pause was canceled for the
DB cluster.

The pause was canceled
for the Aurora Serverless
DB cluster.

notification RDS-EVENT-0147 The DB cluster is being
resumed.

A resume operation was
initiated for the Aurora
Serverless DB cluster.

notification RDS-EVENT-0148 The DB cluster is resumed. The resume operation
completed for the Aurora
Serverless DB cluster.

notification RDS-EVENT-0149 The DB cluster has scaled
from units to units, but
scaling wasn't seamless for
this reason: reason.

Seamless scaling
completed with the force
option for the Aurora
Serverless DB cluster.
Connections might have
been interrupted as
required.

notification RDS-EVENT-0150 DB cluster stopped.

notification RDS-EVENT-0151 DB cluster started.

notification RDS-EVENT-0152 DB cluster stop failed.

Amazon RDS event categories and event messages for Aurora 1146

Amazon Aurora User Guide for Aurora

Category RDS event ID Message Notes

notification RDS-EVENT-0153 DB cluster is being started
due to it exceeding the
maximum allowed time
being stopped.

notification RDS-EVENT-0172 Renamed cluster from
name to name.

notification RDS-EVENT-0234 Export task failed. The DB cluster export task
failed.

notification RDS-EVENT-0235 Export task canceled. The DB cluster export task
was canceled.

notification RDS-EVENT-0236 Export task completed. The DB cluster export task
completed.

DB instance events

The following table shows the event category and a list of events when a DB instance is the source
type.

Category RDS event ID Message Notes

availability RDS-EVENT-0004 DB instance shutdown.

availability RDS-EVENT-0006 DB instance restarted.

availability RDS-EVENT-0022 Error restarting mysql:
message.

An error has occurred
while restarting Aurora
MySQL or RDS for
MariaDB.

backtrack RDS-EVENT-0131 The actual Backtrack
window is smaller than the
target Backtrack window

For more information
about backtracking, see

Amazon RDS event categories and event messages for Aurora 1147

Amazon Aurora User Guide for Aurora

Category RDS event ID Message Notes

you specified. Consider
reducing the number
of hours in your target
Backtrack window.

Backtracking an Aurora DB
cluster.

backtrack RDS-EVENT-0132 The actual Backtrack
window is the same as the
target Backtrack window.

configuration
change

RDS-EVENT-0011 Updated to use DBParamet
erGroup name.

configuration
change

RDS-EVENT-0012 Applying modification to
database instance class.

configuration
change

RDS-EVENT-0014 Finished applying
modification to DB
instance class.

configuration
change

RDS-EVENT-0017 Finished applying
modification to allocated
storage.

configuration
change

RDS-EVENT-0025 Finished applying
modification to convert to
a Multi-AZ DB instance.

configuration
change

RDS-EVENT-0029 Finished applying
modification to convert to
a standard (Single-AZ) DB
instance.

configuration
change

RDS-EVENT-0033 There are number users
matching the master
username; only resetting
the one not tied to a
specific host.

Amazon RDS event categories and event messages for Aurora 1148

Amazon Aurora User Guide for Aurora

Category RDS event ID Message Notes

configuration
change

RDS-EVENT-0067 Unable to reset your
password. Error informati
on: message.

configuration
change

RDS-EVENT-0078 Monitoring Interval
changed to number.

The Enhanced Monitorin
g configuration has been
changed.

configuration
change

RDS-EVENT-0092 Finished updating DB
parameter group.

creation RDS-EVENT-0005 DB instance created.

deletion RDS-EVENT-0003 DB instance deleted.

failure RDS-EVENT-0035 Database instance put into
state. message.

The DB instance has
invalid parameters.
For example, if the DB
instance could not start
because a memory-re
lated parameter is set
too high for this instance
class, your action would
be to modify the memory
parameter and reboot the
DB instance.

failure RDS-EVENT-0036 Database instance in
state. message.

The DB instance is in an
incompatible network.
Some of the specified
subnet IDs are invalid or
do not exist.

Amazon RDS event categories and event messages for Aurora 1149

Amazon Aurora User Guide for Aurora

Category RDS event ID Message Notes

failure RDS-EVENT-0079 Amazon RDS has been
unable to create credentia
ls for enhanced monitorin
g and this feature has been
disabled. This is likely due
to the rds-monitoring-rol
e not being present and
configured correctly in
your account. Please refer
to the troubleshooting
section in the Amazon RDS
documentation for further
details.

Enhanced Monitoring can't
be enabled without the
Enhanced Monitoring IAM
role. For information about
creating the IAM role, see
To create an IAM role for
Amazon RDS enhanced
monitoring.

failure RDS-EVENT-0080 Amazon RDS has been
unable to configure
enhanced monitoring
on your instance: name
and this feature has been
disabled. This is likely due
to the rds-monitoring-rol
e not being present and
configured correctly in
your account. Please refer
to the troubleshooting
section in the Amazon RDS
documentation for further
details.

Enhanced Monitoring
was disabled because an
error occurred during the
configuration change. It is
likely that the Enhanced
Monitoring IAM role is
configured incorrectly. For
information about creating
the enhanced monitoring
IAM role, see To create an
IAM role for Amazon RDS
enhanced monitoring.

Amazon RDS event categories and event messages for Aurora 1150

Amazon Aurora User Guide for Aurora

Category RDS event ID Message Notes

failure RDS-EVENT-0082 Amazon RDS has been
unable to create credentia
ls to access your Amazon
S3 Bucket for your DB
instance name. This is
due to the S3 snapshot
ingestion IAM role not
being configured correctly
in your account or the
specified Amazon S3
bucket cannot be found.
Please refer to the
troubleshooting section
in the Amazon RDS
documentation for further
details.

Aurora was unable to
copy backup data from an
Amazon S3 bucket. It is
likely that the permissio
ns for Aurora to access
the Amazon S3 bucket
are configured incorrectly.
For more information, see
Physical migration from
MySQL by using Percona
XtraBackup and Amazon
S3 .

failure RDS-EVENT-0254 Underlying storage
quota for this customer
account has exceeded the
limit. Please increase the
allowed storage quota to
let the scaling go through
on the instance.

failure RDS-EVENT-0353 The DB instance can't
be created because of
insufficient resource limits.
message.

The message includes
details about the failure.

Amazon RDS event categories and event messages for Aurora 1151

Amazon Aurora User Guide for Aurora

Category RDS event ID Message Notes

low storage RDS-EVENT-0007 Allocated storage has
been exhausted. Allocate
additional storage to
resolve.

The allocated storage
for the DB instance has
been consumed. To
resolve this issue, allocate
additional storage for the
DB instance. For more
information, see the RDS
FAQ. You can monitor the
storage space for a DB
instance using the Free
Storage Space metric.

low storage RDS-EVENT-0089 The free storage capacity
for DB instance: name is
low at percentage of
the provisioned storage
[Provisioned Storage:
size, Free Storage: size].
You may want to increase
the provisioned storage to
address this issue.

The DB instance has
consumed more than 90%
of its allocated storage.
You can monitor the
storage space for a DB
instance using the Free
Storage Space metric.

low storage RDS-EVENT-0227 Your Aurora cluster's
storage is dangerously
low with only amount
terabytes remaining.
Please take measures to
reduce the storage load on
your cluster.

The Aurora storage
subsystem is running low
on space.

maintenance RDS-EVENT-0026 Applying off-line patches
to DB instance.

Offline maintenance of
the DB instance is taking
place. The DB instance is
currently unavailable.

Amazon RDS event categories and event messages for Aurora 1152

https://aws.amazon.com/rds/faqs
https://aws.amazon.com/rds/faqs

Amazon Aurora User Guide for Aurora

Category RDS event ID Message Notes

maintenance RDS-EVENT-0027 Finished applying off-line
patches to DB instance.

Offline maintenance of the
DB instance is complete.
The DB instance is now
available.

maintenance RDS-EVENT-0047 Database instance
patched.

maintenance RDS-EVENT-0155 The DB instance has a
DB engine minor version
upgrade available.

maintenance RDS-EVENT-0178 Database instance upgrade
is in progress.

notification RDS-EVENT-0044 message This is an operator-issued
notification. For more
information, see the event
message.

notification RDS-EVENT-0048 Delaying database engine
upgrade since this instance
has read replicas that need
to be upgraded first.

Patching of the DB
instance has been delayed.

notification RDS-EVENT-0087 DB instance stopped.

notification RDS-EVENT-0088 DB instance started.

Amazon RDS event categories and event messages for Aurora 1153

Amazon Aurora User Guide for Aurora

Category RDS event ID Message Notes

read replica RDS-EVENT-0045 Replication has stopped. Replication on your DB
instance has been stopped
due to insufficient storage.
Scale storage or reduce
the maximum size of your
redo logs to let replication
continue. To accommodate
redo logs of size amount
MiB you need at least
amount MiB free storage.

read replica RDS-EVENT-0046 Replication for the Read
Replica resumed.

This message appears
when you first create
a read replica, or as a
monitoring message
confirming that replicati
on is functioning properly.
If this message follows
an RDS-EVENT-0045
notification, then replicati
on has resumed following
an error or after replicati
on was stopped.

read replica RDS-EVENT-0057 Replication streaming has
been terminated.

recovery RDS-EVENT-0020 Recovery of the DB
instance has started.
Recovery time will vary
with the amount of data to
be recovered.

recovery RDS-EVENT-0021 Recovery of the DB
instance is complete.

Amazon RDS event categories and event messages for Aurora 1154

Amazon Aurora User Guide for Aurora

Category RDS event ID Message Notes

recovery RDS-EVENT-0023 Emergent Snapshot
Request: message.

A manual backup has been
requested but Amazon
RDS is currently in the
process of creating a
DB snapshot. Submit
the request again
after Amazon RDS
has completed the DB
snapshot.

recovery RDS-EVENT-0052 Multi-AZ instance recovery
started.

Recovery time will vary
with the amount of data to
be recovered.

recovery RDS-EVENT-0053 Multi-AZ instance recovery
completed. Pending
failover or activation.

recovery RDS-EVENT-0361 Recovery of standby DB
instance has started.

The standby DB instance
is rebuilt during the
recovery process. Database
performance is impacted
during the recovery
process.

recovery RDS-EVENT-0362 Recovery of standby DB
instance has completed.

The standby DB instance
is rebuilt during the
recovery process. Database
performance is impacted
during the recovery
process.

restoration RDS-EVENT-0019 Restored from DB instance
name to name.

The DB instance has been
restored from a point-in-
time backup.

Amazon RDS event categories and event messages for Aurora 1155

Amazon Aurora User Guide for Aurora

Category RDS event ID Message Notes

security
patching

RDS-EVENT-0230 A system update is
available for your DB
instance. For information
about applying updates,
see 'Maintaining a DB
instance' in the RDS User
Guide.

A new Operating System
patch is available.

A new, minor version,
operating system update
is available for your DB
instance. For informati
on about applying
updates, see Working with
operating system updates.

DB parameter group events

The following table shows the event category and a list of events when a DB parameter group is
the source type.

Category RDS event ID Message Notes

configuration
change

RDS-EVENT-0037 Updated parameter name
to value with apply
method method.

DB security group events

The following table shows the event category and a list of events when a DB security group is the
source type.

Note

DB security groups are resources for EC2-Classic. EC2-Classic was retired on August 15,
2022. If you haven't migrated from EC2-Classic to a VPC, we recommend that you migrate
as soon as possible. For more information, see Migrate from EC2-Classic to a VPC in the
Amazon EC2 User Guide and the blog EC2-Classic Networking is Retiring – Here’s How to
Prepare.

Amazon RDS event categories and event messages for Aurora 1156

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/vpc-migrate.html
https://aws.amazon.com/blogs/aws/ec2-classic-is-retiring-heres-how-to-prepare/
https://aws.amazon.com/blogs/aws/ec2-classic-is-retiring-heres-how-to-prepare/

Amazon Aurora User Guide for Aurora

Category RDS event ID Message Notes

configuration
change

RDS-EVENT-0038 Applied change to security
group.

failure RDS-EVENT-0039 Revoking authorization as
user.

The security group owned
by user doesn't exist.
The authorization for
the security group has
been revoked because it is
invalid.

DB cluster snapshot events

The following table shows the event category and a list of events when a DB cluster snapshot is the
source type.

Category RDS event ID Message Notes

backup RDS-EVENT-0074 Creating manual cluster
snapshot.

backup RDS-EVENT-0075 Manual cluster snapshot
created.

notification RDS-EVENT-0162 The cluster snapshot
export task failed.

notification RDS-EVENT-0163 The cluster snapshot
export task was canceled.

notification RDS-EVENT-0164 The cluster snapshot
export task completed.

backup RDS-EVENT-0168 Creating automated
cluster snapshot.

Amazon RDS event categories and event messages for Aurora 1157

Amazon Aurora User Guide for Aurora

Category RDS event ID Message Notes

backup RDS-EVENT-0169 Automated cluster
snapshot created.

RDS Proxy events

The following table shows the event category and a list of events when an RDS Proxy is the source
type.

Category RDS event ID Message Notes

configuration
change

RDS-EVENT-0204 RDS modified DB proxy
name.

configuration
change

RDS-EVENT-0207 RDS modified the end
point of the DB proxy
name.

configuration
change

RDS-EVENT-0213 RDS detected the addition
of the DB instance and
automatically added it to
the target group of the DB
proxy name.

configuration
change

RDS-EVENT-0213 RDS detected creation
of DB instance name and
automatically added it to
target group name of DB
proxy name.

configuration
change

RDS-EVENT-0214 RDS detected deletion
of DB instance name and
automatically removed it
from target group name of
DB proxy name.

Amazon RDS event categories and event messages for Aurora 1158

Amazon Aurora User Guide for Aurora

Category RDS event ID Message Notes

configuration
change

RDS-EVENT-0215 RDS detected deletion
of DB cluster name and
automatically removed it
from target group name of
DB proxy name.

creation RDS-EVENT-0203 RDS created DB proxy
name.

creation RDS-EVENT-0206 RDS created endpoint
name for DB proxy name.

deletion RDS-EVENT-0205 RDS deleted DB proxy
name.

deletion RDS-EVENT-0208 RDS deleted endpoint
name for DB proxy name.

failure RDS-EVENT-0243 RDS failed to provision
capacity for proxy name
because there aren't
enough IP addresses
available in your subnets:
name. To fix the issue,
make sure that your
subnets have the minimum
number of unused IP
addresses as recommend
ed in the RDS Proxy
documentation.

To determine the
recommended number for
your instance class, see
Planning for IP address
capacity.

Amazon RDS event categories and event messages for Aurora 1159

Amazon Aurora User Guide for Aurora

Category RDS event ID Message Notes

failure RDS-EVENT-0275 RDS throttled some
connections to DB proxy
name. The number of
simultaneous connection
requests from the client to
the proxy has exceeded the
limit.

Blue/green deployment events

The following table shows the event category and a list of events when a blue/green deployment is
the source type.

For more information about blue/green deployments, see Using Amazon RDS Blue/Green
Deployments for database updates.

Category Amazon RDS event
ID

Message Notes

creation RDS-EVENT-0244 Blue/green deployment
tasks completed. You can
make more modifications
to the green environment
databases or switch over
the deployment.

failure RDS-EVENT-0245 Creation of blue/green
deployment failed because
the (source/target) DB
(instance/cluster) wasn't
found.

deletion RDS-EVENT-0246 Blue/green deployment
deleted.

Amazon RDS event categories and event messages for Aurora 1160

Amazon Aurora User Guide for Aurora

Category Amazon RDS event
ID

Message Notes

notification RDS-EVENT-0247 Switchover from blue to
green started.

notification RDS-EVENT-0248 Switchover completed on
blue/green deployment.

failure RDS-EVENT-0249 Switchover canceled on
blue/green deployment.

notification RDS-EVENT-0259 Switchover from DB cluster
blue to green started.

notification RDS-EVENT-0260 Switchover from DB cluster
blue to green completed
. Renamed blue to blue-
old and green to blue.

failure RDS-EVENT-0261 Switchover from DB
cluster blue to green was
canceled due to reason.

notification RDS-EVENT-0311 Sequence sync for
switchover of DB cluster
blue to green has
initiated. Switchover when
using sequences may lead
to extended downtime.

notification RDS-EVENT-0312 Sequence sync for
switchover of DB cluster
blue to green has
completed.

Amazon RDS event categories and event messages for Aurora 1161

Amazon Aurora User Guide for Aurora

Category Amazon RDS event
ID

Message Notes

failure RDS-EVENT-0314 Sequence sync for
switchover of DB cluster
blue to green was
cancelled because
sequences failed to sync.

Amazon RDS event categories and event messages for Aurora 1162

Amazon Aurora User Guide for Aurora

Monitoring Amazon Aurora log files

Every RDS database engine generates logs that you can access for auditing and troubleshooting.
The type of logs depends on your database engine.

You can access database logs for DB instances using the AWS Management Console, the AWS
Command Line Interface (AWS CLI), or the Amazon RDS API. You can't view, watch, or download
transaction logs.

Note

In some cases, logs contain hidden data. Therefore, the AWS Management Console might
show content in a log file, but the log file might be empty when you download it.

Topics

• Viewing and listing database log files

• Downloading a database log file

• Watching a database log file

• Publishing database logs to Amazon CloudWatch Logs

• Reading log file contents using REST

• Aurora MySQL database log files

• Aurora PostgreSQL database log files

Viewing and listing database log files

You can view database log files for your Amazon Aurora DB engine by using the AWS Management
Console. You can list what log files are available for download or monitoring by using the AWS CLI
or Amazon RDS API.

Note

You can't view the log files for Aurora Serverless v1 DB clusters in the RDS console.
However, you can view them in the Amazon CloudWatch console at https://
console.aws.amazon.com/cloudwatch/.

Monitoring Aurora logs 1163

https://console.aws.amazon.com/cloudwatch/
https://console.aws.amazon.com/cloudwatch/

Amazon Aurora User Guide for Aurora

Console

To view a database log file

1. Open the Amazon RDS console at https://console.aws.amazon.com/rds/.

2. In the navigation pane, choose Databases.

3. Choose the name of the DB instance that has the log file that you want to view.

4. Choose the Logs & events tab.

5. Scroll down to the Logs section.

6. (Optional) Enter a search term to filter your results.

The following example lists logs filtered by the text error.

7. Choose the log that you want to view, and then choose View.

AWS CLI

To list the available database log files for a DB instance, use the AWS CLI describe-db-log-
files command.

The following example returns a list of log files for a DB instance named my-db-instance.

Example

aws rds describe-db-log-files --db-instance-identifier my-db-instance

RDS API

To list the available database log files for a DB instance, use the Amazon RDS API
DescribeDBLogFiles action.

Viewing and listing database log files 1164

https://console.aws.amazon.com/rds/
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-log-files.html
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-log-files.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DescribeDBLogFiles.html

Amazon Aurora User Guide for Aurora

Downloading a database log file

You can use the AWS Management Console, AWS CLI, or API to download a database log file.

Console

To download a database log file

1. Open the Amazon RDS console at https://console.aws.amazon.com/rds/.

2. In the navigation pane, choose Databases.

3. Choose the name of the DB instance that has the log file that you want to view.

4. Choose the Logs & events tab.

5. Scroll down to the Logs section.

6. In the Logs section, choose the button next to the log that you want to download, and then
choose Download.

7. Open the context (right-click) menu for the link provided, and then choose Save Link As. Enter
the location where you want the log file to be saved, and then choose Save.

AWS CLI

To download a database log file, use the AWS CLI command download-db-log-file-portion.
By default, this command downloads only the latest portion of a log file. However, you can
download an entire file by specifying the parameter --starting-token 0.

The following example shows how to download the entire contents of a log file called log/ERROR.4
and store it in a local file called errorlog.txt.

Downloading a database log file 1165

https://console.aws.amazon.com/rds/
https://docs.aws.amazon.com/cli/latest/reference/rds/download-db-log-file-portion.html

Amazon Aurora User Guide for Aurora

Example

For Linux, macOS, or Unix:

aws rds download-db-log-file-portion \
 --db-instance-identifier myexampledb \
 --starting-token 0 --output text \
 --log-file-name log/ERROR.4 > errorlog.txt

For Windows:

aws rds download-db-log-file-portion ^
 --db-instance-identifier myexampledb ^
 --starting-token 0 --output text ^
 --log-file-name log/ERROR.4 > errorlog.txt

RDS API

To download a database log file, use the Amazon RDS API DownloadDBLogFilePortion action.

Watching a database log file

Watching a database log file is equivalent to tailing the file on a UNIX or Linux system. You can
watch a log file by using the AWS Management Console. RDS refreshes the tail of the log every 5
seconds.

To watch a database log file

1. Open the Amazon RDS console at https://console.aws.amazon.com/rds/.

2. In the navigation pane, choose Databases.

3. Choose the name of the DB instance that has the log file that you want to view.

4. Choose the Logs & events tab.

Watching a database log file 1166

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DownloadDBLogFilePortion.html
https://console.aws.amazon.com/rds/

Amazon Aurora User Guide for Aurora

5. In the Logs section, choose a log file, and then choose Watch.

RDS shows the tail of the log, as in the following MySQL example.

Watching a database log file 1167

Amazon Aurora User Guide for Aurora

Publishing database logs to Amazon CloudWatch Logs

In an on-premises database, the database logs reside on the file system. Amazon RDS doesn't
provide host access to the database logs on the file system of your DB cluster. For this reason,
Amazon RDS lets you export database logs to Amazon CloudWatch Logs. With CloudWatch Logs,
you can perform real-time analysis of the log data. You can also store the data in highly durable
storage and manage the data with the CloudWatch Logs Agent.

Topics

• Overview of RDS integration with CloudWatch Logs

• Deciding which logs to publish to CloudWatch Logs

• Specifying the logs to publish to CloudWatch Logs

• Searching and filtering your logs in CloudWatch Logs

Overview of RDS integration with CloudWatch Logs

In CloudWatch Logs, a log stream is a sequence of log events that share the same source. Each
separate source of logs in CloudWatch Logs makes up a separate log stream. A log group is a group
of log streams that share the same retention, monitoring, and access control settings.

Amazon Aurora continuously streams your DB cluster log records to a log group. For example, you
have a log group /aws/rds/cluster/cluster_name/log_type for each type of log that you
publish. This log group is in the same AWS Region as the database instance that generates the log.

AWS retains log data published to CloudWatch Logs for an indefinite time period unless you
specify a retention period. For more information, see Change log data retention in CloudWatch
Logs.

Deciding which logs to publish to CloudWatch Logs

Each RDS database engine supports its own set of logs. To learn about the options for your
database engine, review the following topics:

• the section called “Publishing Aurora MySQL logs to CloudWatch Logs”

• the section called “Publishing Aurora PostgreSQL logs to CloudWatch Logs”

Publishing to CloudWatch Logs 1168

https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/WhatIsCloudWatchLogs.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/Working-with-log-groups-and-streams.html#SettingLogRetention
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/Working-with-log-groups-and-streams.html#SettingLogRetention

Amazon Aurora User Guide for Aurora

Specifying the logs to publish to CloudWatch Logs

You specify which logs to publish in the console. Make sure that you have a service-linked role in
AWS Identity and Access Management (IAM). For more information about service-linked roles, see
Using service-linked roles for Amazon Aurora.

To specify the logs to publish

1. Open the Amazon RDS console at https://console.aws.amazon.com/rds/.

2. In the navigation pane, choose Databases.

3. Do either of the following:

• Choose Create database.

• Choose a database from the list, and then choose Modify.

4. In Logs exports, choose which logs to publish.

The following example specifies the audit log, error logs, general log, and slow query log.

Searching and filtering your logs in CloudWatch Logs

You can search for log entries that meet a specified criteria using the CloudWatch Logs console.
You can access the logs either through the RDS console, which leads you to the CloudWatch Logs
console, or from the CloudWatch Logs console directly.

Publishing to CloudWatch Logs 1169

https://console.aws.amazon.com/rds/

Amazon Aurora User Guide for Aurora

To search your RDS logs using the RDS console

1. Open the Amazon RDS console at https://console.aws.amazon.com/rds/.

2. In the navigation pane, choose Databases.

3. Choose a DB cluster or a DB instance.

4. Choose Configuration.

5. Under Published logs, choose the database log that you want to view.

To search your RDS logs using the CloudWatch Logs console

1. Open the CloudWatch console at https://console.aws.amazon.com/cloudwatch/.

2. In the navigation pane, choose Log groups.

3. In the filter box, enter /aws/rds.

4. For Log Groups, choose the name of the log group containing the log stream to search.

5. For Log Streams, choose the name of the log stream to search.

6. Under Log events, enter the filter syntax to use.

For more information, see Searching and filtering log data in the Amazon CloudWatch Logs User
Guide. For a blog tutorial explaining how to monitor RDS logs, see Build proactive database
monitoring for Amazon RDS with Amazon CloudWatch Logs, AWS Lambda, and Amazon SNS.

Reading log file contents using REST

Amazon RDS provides a REST endpoint that allows access to DB instance log files. This is useful if
you need to write an application to stream Amazon RDS log file contents.

The syntax is:

GET /v13/downloadCompleteLogFile/DBInstanceIdentifier/LogFileName HTTP/1.1
Content-type: application/json
host: rds.region.amazonaws.com

The following parameters are required:

• DBInstanceIdentifier—the name of the DB instance that contains the log file you want to
download.

Reading log file contents using REST 1170

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/cloudwatch/
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/MonitoringLogData.html
https://aws.amazon.com/blogs/database/build-proactive-database-monitoring-for-amazon-rds-with-amazon-cloudwatch-logs-aws-lambda-and-amazon-sns/
https://aws.amazon.com/blogs/database/build-proactive-database-monitoring-for-amazon-rds-with-amazon-cloudwatch-logs-aws-lambda-and-amazon-sns/

Amazon Aurora User Guide for Aurora

• LogFileName—the name of the log file to be downloaded.

The response contains the contents of the requested log file, as a stream.

The following example downloads the log file named log/ERROR.6 for the DB instance named
sample-sql in the us-west-2 region.

GET /v13/downloadCompleteLogFile/sample-sql/log/ERROR.6 HTTP/1.1
host: rds.us-west-2.amazonaws.com
X-Amz-Security-Token: AQoDYXdzEIH//////////
wEa0AIXLhngC5zp9CyB1R6abwKrXHVR5efnAVN3XvR7IwqKYalFSn6UyJuEFTft9nObglx4QJ+GXV9cpACkETq=
X-Amz-Date: 20140903T233749Z
X-Amz-Algorithm: AWS4-HMAC-SHA256
X-Amz-Credential: AKIADQKE4SARGYLE/20140903/us-west-2/rds/aws4_request
X-Amz-SignedHeaders: host
X-Amz-Content-SHA256: e3b0c44298fc1c229afbf4c8996fb92427ae41e4649b934de495991b7852b855
X-Amz-Expires: 86400
X-Amz-Signature: 353a4f14b3f250142d9afc34f9f9948154d46ce7d4ec091d0cdabbcf8b40c558

If you specify a nonexistent DB instance, the response consists of the following error:

• DBInstanceNotFound—DBInstanceIdentifier does not refer to an existing DB instance.
(HTTP status code: 404)

Reading log file contents using REST 1171

Amazon Aurora User Guide for Aurora

Aurora MySQL database log files

You can monitor the Aurora MySQL logs directly through the Amazon RDS console, Amazon RDS
API, AWS CLI, or AWS SDKs. You can also access MySQL logs by directing the logs to a database
table in the main database and querying that table. You can use the mysqlbinlog utility to
download a binary log.

For more information about viewing, downloading, and watching file-based database logs, see
Monitoring Amazon Aurora log files.

Topics

• Overview of Aurora MySQL database logs

• Publishing Aurora MySQL logs to Amazon CloudWatch Logs

• Managing table-based Aurora MySQL logs

• Configuring Aurora MySQL binary logging

• Accessing MySQL binary logs

Overview of Aurora MySQL database logs

You can monitor the following types of Aurora MySQL log files:

• Error log

• Slow query log

• General log

• Audit log

The Aurora MySQL error log is generated by default. You can generate the slow query and general
logs by setting parameters in your DB parameter group.

Topics

• Aurora MySQL error logs

• Aurora MySQL slow query and general logs

• Aurora MySQL audit log

• Log rotation and retention for Aurora MySQL

MySQL database log files 1172

Amazon Aurora User Guide for Aurora

Aurora MySQL error logs

Aurora MySQL writes errors in the mysql-error.log file. Each log file has the hour it was
generated (in UTC) appended to its name. The log files also have a timestamp that helps you
determine when the log entries were written.

Aurora MySQL writes to the error log only on startup, shutdown, and when it encounters errors. A
DB instance can go hours or days without new entries being written to the error log. If you see no
recent entries, it's because the server didn't encounter an error that would result in a log entry.

By design, the error logs are filtered so that only unexpected events such as errors are shown.
However, the error logs also contain some additional database information, for example query
progress, which isn't shown. Therefore, even without any actual errors the size of the error logs
might increase because of ongoing database activities. And while you might see a certain size in
bytes or kilobytes for the error logs in the AWS Management Console, they might have 0 bytes
when you download them.

Aurora MySQL writes mysql-error.log to disk every 5 minutes. It appends the contents of the
log to mysql-error-running.log.

Aurora MySQL rotates the mysql-error-running.log file every hour.

Note

The log retention period is different between Amazon RDS and Aurora.

Aurora MySQL slow query and general logs

You can write the Aurora MySQL slow query log and the general log to a file or a database table. To
do so, set parameters in your DB parameter group. For information about creating and modifying
a DB parameter group, see Working with parameter groups. You must set these parameters before
you can view the slow query log or general log in the Amazon RDS console or by using the Amazon
RDS API, Amazon RDS CLI, or AWS SDKs.

You can control Aurora MySQL logging by using the parameters in this list:

• slow_query_log: To create the slow query log, set to 1. The default is 0.

• general_log: To create the general log, set to 1. The default is 0.

MySQL database log files 1173

Amazon Aurora User Guide for Aurora

• long_query_time: To prevent fast-running queries from being logged in the slow query
log, specify a value for the shortest query runtime to be logged, in seconds. The default is 10
seconds; the minimum is 0. If log_output = FILE, you can specify a floating point value that goes
to microsecond resolution. If log_output = TABLE, you must specify an integer value with second
resolution. Only queries whose runtime exceeds the long_query_time value are logged. For
example, setting long_query_time to 0.1 prevents any query that runs for less than 100
milliseconds from being logged.

• log_queries_not_using_indexes: To log all queries that do not use an index to the slow
query log, set to 1. Queries that don't use an index are logged even if their runtime is less than
the value of the long_query_time parameter. The default is 0.

• log_output option: You can specify one of the following options for the log_output
parameter.

• TABLE – Write general queries to the mysql.general_log table, and slow queries to the
mysql.slow_log table.

• FILE – Write both general and slow query logs to the file system.

• NONE – Disable logging.

For Aurora MySQL version 2, the default for log_output is FILE.

For more information about the slow query and general logs, go to the following topics in the
MySQL documentation:

• The slow query log

• The general query log

Aurora MySQL audit log

Audit logging for Aurora MySQL is called Advanced Auditing. To turn on Advanced Auditing, you
set certain DB cluster parameters. For more information, see Using Advanced Auditing with an
Amazon Aurora MySQL DB cluster.

Log rotation and retention for Aurora MySQL

When logging is enabled, Amazon Aurora rotates or deletes log files at regular intervals. This
measure is a precaution to reduce the possibility of a large log file either blocking database use or
affecting performance. Aurora MySQL handles rotation and deletion as follows:

MySQL database log files 1174

https://dev.mysql.com/doc/refman/8.0/en/slow-query-log.html
https://dev.mysql.com/doc/refman/8.0/en/query-log.html

Amazon Aurora User Guide for Aurora

• The Aurora MySQL error log file sizes are constrained to no more than 15 percent of the local
storage for a DB instance. To maintain this threshold, logs are automatically rotated every hour.
Aurora MySQL removes logs after 30 days or when 15% of disk space is reached. If the combined
log file size exceeds the threshold after removing old log files, then the oldest log files are
deleted until the log file size no longer exceeds the threshold.

• Aurora MySQL removes the audit, general, and slow query logs after either 24 hours or when
15% of storage has been consumed.

• When FILE logging is enabled, general log and slow query log files are examined every hour
and log files more than 24 hours old are deleted. In some cases, the remaining combined log file
size after the deletion might exceed the threshold of 15 percent of a DB instance's local space. In
these cases, the oldest log files are deleted until the log file size no longer exceeds the threshold.

• When TABLE logging is enabled, log tables aren't rotated or deleted. Log tables are truncated
when the size of all logs combined is too large. You can subscribe to the low_free_storage
event to be notified when log tables should be manually rotated or deleted to free up space. For
more information, see Working with Amazon RDS event notification.

You can rotate the mysql.general_log table manually by calling the
mysql.rds_rotate_general_log procedure. You can rotate the mysql.slow_log table by
calling the mysql.rds_rotate_slow_log procedure.

When you rotate log tables manually, the current log table is copied to a backup log table
and the entries in the current log table are removed. If the backup log table already exists,
then it is deleted before the current log table is copied to the backup. You can query the
backup log table if needed. The backup log table for the mysql.general_log table is named
mysql.general_log_backup. The backup log table for the mysql.slow_log table is named
mysql.slow_log_backup.

• The Aurora MySQL audit logs are rotated when the file size reaches 100 MB, and removed after
24 hours.

To work with the logs from the Amazon RDS console, Amazon RDS API, Amazon RDS CLI, or AWS
SDKs, set the log_output parameter to FILE. Like the Aurora MySQL error log, these log files are
rotated hourly. The log files that were generated during the previous 24 hours are retained. Note
that the retention period is different between Amazon RDS and Aurora.

MySQL database log files 1175

Amazon Aurora User Guide for Aurora

Publishing Aurora MySQL logs to Amazon CloudWatch Logs

You can configure your Aurora MySQL DB cluster to publish log data to a log group in Amazon
CloudWatch Logs. With CloudWatch Logs, you can perform real-time analysis of the log data, and
use CloudWatch to create alarms and view metrics. You can use CloudWatch Logs to store your log
records in highly durable storage. For more information, see Publishing Amazon Aurora MySQL
logs to Amazon CloudWatch Logs.

Managing table-based Aurora MySQL logs

You can direct the general and slow query logs to tables on the DB instance by creating a DB
parameter group and setting the log_output server parameter to TABLE. General queries
are then logged to the mysql.general_log table, and slow queries are logged to the
mysql.slow_log table. You can query the tables to access the log information. Enabling this
logging increases the amount of data written to the database, which can degrade performance.

Both the general log and the slow query logs are disabled by default. In order to enable logging to
tables, you must also set the general_log and slow_query_log server parameters to 1.

Log tables keep growing until the respective logging activities are turned off by resetting the
appropriate parameter to 0. A large amount of data often accumulates over time, which can use
up a considerable percentage of your allocated storage space. Amazon Aurora doesn't allow you to
truncate the log tables, but you can move their contents. Rotating a table saves its contents to a
backup table and then creates a new empty log table. You can manually rotate the log tables with
the following command line procedures, where the command prompt is indicated by PROMPT>:

PROMPT> CALL mysql.rds_rotate_slow_log;
PROMPT> CALL mysql.rds_rotate_general_log;

To completely remove the old data and reclaim the disk space, call the appropriate procedure twice
in succession.

Configuring Aurora MySQL binary logging

The binary log is a set of log files that contain information about data modifications made to an
Aurora MySQL server instance. The binary log contains information such as the following:

• Events that describe database changes such as table creation or row modifications

• Information about the duration of each statement that updated data

MySQL database log files 1176

Amazon Aurora User Guide for Aurora

• Events for statements that could have updated data but didn't

The binary log records statements that are sent during replication. It is also required for some
recovery operations. For more information, see The Binary Log and Binary Log Overview in the
MySQL documentation.

Binary logs are accessible only from the primary DB instance, not from the replicas.

MySQL on Amazon Aurora supports the row-based, statement-based, and mixed binary
logging formats. We recommend mixed unless you need a specific binlog format. For details
on the different Aurora MySQL binary log formats, see Binary logging formats in the MySQL
documentation.

If you plan to use replication, the binary logging format is important because it determines the
record of data changes that is recorded in the source and sent to the replication targets. For
information about the advantages and disadvantages of different binary logging formats for
replication, see Advantages and disadvantages of statement-based and row-based replication in
the MySQL documentation.

Important

Setting the binary logging format to row-based can result in very large binary log files.
Large binary log files reduce the amount of storage available for a DB cluster and can
increase the amount of time to perform a restore operation of a DB cluster.
Statement-based replication can cause inconsistencies between the source DB cluster and
a read replica. For more information, see Determination of safe and unsafe statements in
binary logging in the MySQL documentation.
Enabling binary logging increases the number of write disk I/O operations to the DB
cluster. You can monitor IOPS usage with the VolumeWriteIOPs CloudWatch metric.

To set the MySQL binary logging format

1. Open the Amazon RDS console at https://console.aws.amazon.com/rds/.

2. In the navigation pane, choose Parameter groups.

3. Choose the DB cluster parameter group, associated with the DB cluster, that you want to
modify.

MySQL database log files 1177

https://dev.mysql.com/doc/refman/8.0/en/binary-log.html
https://dev.mysql.com/doc/internals/en/binary-log-overview.html
https://dev.mysql.com/doc/refman/8.0/en/binary-log-formats.html
https://dev.mysql.com/doc/refman/8.0/en/replication-sbr-rbr.html
https://dev.mysql.com/doc/refman/8.0/en/replication-rbr-safe-unsafe.html
https://dev.mysql.com/doc/refman/8.0/en/replication-rbr-safe-unsafe.html
https://console.aws.amazon.com/rds/

Amazon Aurora User Guide for Aurora

You can't modify a default parameter group. If the DB cluster is using a default parameter
group, create a new parameter group and associate it with the DB cluster.

For more information on parameter groups, see Working with parameter groups.

4. From Actions, choose Edit.

5. Set the binlog_format parameter to the binary logging format of your choice (ROW,
STATEMENT, or MIXED). You can also use the value OFF to turn off binary logging.

Note

Setting binlog_format to OFF in the DB cluster parameter group disables the
log_bin session variable. This disables binary logging on the Aurora MySQL DB
cluster, which in turn resets the binlog_format session variable to the default value
of ROW in the database.

6. Choose Save changes to save the updates to the DB cluster parameter group.

After you perform these steps, you must reboot the writer instance in the DB cluster for your
changes to apply. In Aurora MySQL version 2.09 and lower, when you reboot the writer instance,
all of the reader instances in the DB cluster are also rebooted. In Aurora MySQL version 2.10 and
higher, you must reboot all of the reader instances manually. For more information, see Rebooting
an Amazon Aurora DB cluster or Amazon Aurora DB instance.

Important

Changing a DB cluster parameter group affects all DB clusters that use that parameter
group. If you want to specify different binary logging formats for different Aurora MySQL
DB clusters in an AWS Region, the DB clusters must use different DB cluster parameter
groups. These parameter groups identify different logging formats. Assign the appropriate
DB cluster parameter group to each DB clusters. For more information about Aurora MySQL
parameters, see Aurora MySQL configuration parameters.

Accessing MySQL binary logs

You can use the mysqlbinlog utility to download or stream binary logs from RDS for MySQL DB
instances. The binary log is downloaded to your local computer, where you can perform actions

MySQL database log files 1178

Amazon Aurora User Guide for Aurora

such as replaying the log using the mysql utility. For more information about using the mysqlbinlog
utility, see Using mysqlbinlog to back up binary log files in the MySQL documentation.

To run the mysqlbinlog utility against an Amazon RDS instance, use the following options:

• --read-from-remote-server – Required.

• --host – The DNS name from the endpoint of the instance.

• --port – The port used by the instance.

• --user – A MySQL user that has been granted the REPLICATION SLAVE permission.

• --password – The password for the MySQL user, or omit a password value so that the utility
prompts you for a password.

• --raw – Download the file in binary format.

• --result-file – The local file to receive the raw output.

• --stop-never – Stream the binary log files.

• --verbose – When you use the ROW binlog format, include this option to see the row events as
pseudo-SQL statements. For more information on the --verbose option, see mysqlbinlog row
event display in the MySQL documentation.

• Specify the names of one or more binary log files. To get a list of the available logs, use the SQL
command SHOW BINARY LOGS.

For more information about mysqlbinlog options, see mysqlbinlog — Utility for processing binary
log files in the MySQL documentation.

The following examples show how to use the mysqlbinlog utility.

For Linux, macOS, or Unix:

mysqlbinlog \
 --read-from-remote-server \
 --host=MySQLInstance1.cg034hpkmmjt.region.rds.amazonaws.com \
 --port=3306 \
 --user ReplUser \
 --password \
 --raw \
 --verbose \
 --result-file=/tmp/ \
 binlog.00098

MySQL database log files 1179

https://dev.mysql.com/doc/refman/8.0/en/mysqlbinlog-backup.html
https://dev.mysql.com/doc/refman/8.0/en/mysqlbinlog-row-events.html
https://dev.mysql.com/doc/refman/8.0/en/mysqlbinlog-row-events.html
https://dev.mysql.com/doc/refman/8.0/en/mysqlbinlog.html
https://dev.mysql.com/doc/refman/8.0/en/mysqlbinlog.html

Amazon Aurora User Guide for Aurora

For Windows:

mysqlbinlog ^
 --read-from-remote-server ^
 --host=MySQLInstance1.cg034hpkmmjt.region.rds.amazonaws.com ^
 --port=3306 ^
 --user ReplUser ^
 --password ^
 --raw ^
 --verbose ^
 --result-file=/tmp/ ^
 binlog.00098

Amazon RDS normally purges a binary log as soon as possible, but the binary log must still be
available on the instance to be accessed by mysqlbinlog. To specify the number of hours for RDS
to retain binary logs, use the mysql.rds_set_configuration stored procedure and specify a period
with enough time for you to download the logs. After you set the retention period, monitor storage
usage for the DB instance to ensure that the retained binary logs don't take up too much storage.

The following example sets the retention period to 1 day.

call mysql.rds_set_configuration('binlog retention hours', 24);

To display the current setting, use the mysql.rds_show_configuration stored procedure.

call mysql.rds_show_configuration;

MySQL database log files 1180

Amazon Aurora User Guide for Aurora

Aurora PostgreSQL database log files

Aurora PostgreSQL logs database activities to the default PostgreSQL log file. For an on-premises
PostgreSQL DB instance, these messages are stored locally in log/postgresql.log. For an
Aurora PostgreSQL DB cluster, the log file is available on the Aurora cluster. Also, you must use the
Amazon RDS Console to view or download its contents. The default logging level captures login
failures, fatal server errors, deadlocks, and query failures.

For more information about how you can view, download, and watch file-based database logs,
see Monitoring Amazon Aurora log files. To learn more about PostgreSQL logs, see Working with
Amazon RDS and Aurora PostgreSQL logs: Part 1 and Working with Amazon RDS and Aurora
PostgreSQL logs: Part 2.

In addition to the standard PostgreSQL logs discussed in this topic, Aurora PostgreSQL also
supports the PostgreSQL Audit extension (pgAudit). Most regulated industries and government
agencies need to maintain an audit log or audit trail of changes made to data to comply with
legal requirements. For information about installing and using pgAudit, see Using pgAudit to log
database activity.

Topics

• Parameters that affect logging behavior

• Turning on query logging for your Aurora PostgreSQL DB cluster

Parameters that affect logging behavior

You can customize the logging behavior for your Aurora PostgreSQL DB cluster by modifying
various parameters. In the following table you can find the parameters that affect how long the
logs are stored, when to rotate the log, and whether to output the log as a CSV (comma-separated
value) format. You can also find the text output sent to STDERR, among other settings. To change
settings for the parameters that are modifiable, use a custom DB cluster parameter group for your
Aurora PostgreSQL DB cluster. For more information, see Working with parameter groups. As noted
in the table, the log_line_prefix can't be changed.

Parameter Default Description

log_destination stderr Sets the output format for the log. The default
is stderr but you can also specify comma-

PostgreSQL database log files 1181

https://aws.amazon.com/blogs/database/working-with-rds-and-aurora-postgresql-logs-part-1/
https://aws.amazon.com/blogs/database/working-with-rds-and-aurora-postgresql-logs-part-1/
https://aws.amazon.com/blogs/database/working-with-rds-and-aurora-postgresql-logs-part-2/
https://aws.amazon.com/blogs/database/working-with-rds-and-aurora-postgresql-logs-part-2/

Amazon Aurora User Guide for Aurora

Parameter Default Description

separated value (CSV) by adding csvlog to
the setting. For more information, see Setting
the log destination (stderr, csvlog)

log_filename postgresql.log.%Y-
%m-%d-%H%M

Specifies the pattern for the log file name.
In addition to the default, this parameter
supports postgresql.log.%Y-%m-%d
and postgresql.log.%Y-%m-%d-%H for
the filename pattern.

log_line_prefix %t:%r:%u@%d:[%p]: Defines the prefix for each log line that gets
written to stderr, to note the time (%t),
remote host (%r), user (%u), database (%d),
and process ID (%p). You can't modify this
parameter.

log_rotation_age 60 Minutes after which log file is automatically
rotated. You can change this value within
the range of 1 and 1440 minutes. For more
information, see Setting log file rotation.

log_rotation_size – The size (kB) at which the log is automatically
rotated. You can change this value within the
range of 50,000 to 1,000,000 kilobytes. To
learn more, see Setting log file rotation.

rds.log_retention_
period

4320 PostgreSQL logs that are older than the
specified number of minutes are deleted. The
default value of 4320 minutes deletes log files
after 3 days. For more information, see Setting
the log retention period.

To identify application issues, you can look for query failures, login failures, deadlocks, and fatal
server errors in the log. For example, suppose that you converted a legacy application from
Oracle to Aurora PostgreSQL, but not all queries converted correctly. These incorrectly formatted
queries generate error messages that you can find in the logs to help identify problems. For more

PostgreSQL database log files 1182

Amazon Aurora User Guide for Aurora

information about logging queries, see Turning on query logging for your Aurora PostgreSQL DB
cluster.

In the following topics, you can find information about how to set various parameters that control
the basic details for your PostgreSQL logs.

Topics

• Setting the log retention period

• Setting log file rotation

• Setting the log destination (stderr, csvlog)

• Understanding the log_line_prefix parameter

Setting the log retention period

The rds.log_retention_period parameter specifies how long your Aurora PostgreSQL DB
cluster keeps its log files. The default setting is 3 days (4,320 minutes), but you can set this value
to anywhere from 1 day (1,440 minutes) to 7 days (10,080 minutes). Be sure that your Aurora
PostgreSQL DB cluster has sufficient storage to hold the log files for the period of time.

We recommend that you have your logs routinely published to Amazon CloudWatch Logs so that
you can view and analyze system data long after the logs have been removed from your Aurora
PostgreSQL DB cluster. For more information, see Publishing Aurora PostgreSQL logs to Amazon
CloudWatch Logs. After you set up CloudWatch publishing, Aurora doesn't delete a log until after
it's published to CloudWatch Logs.

Amazon Aurora compresses older PostgreSQL logs when storage for the DB instance reaches a
threshold. Aurora compresses the files using the gzip compression utility. For more information, see
the gzip website.

When storage for the DB instance is low and all available logs are compressed, you get a warning
such as the following:

Warning: local storage for PostgreSQL log files is critically low for
this Aurora PostgreSQL instance, and could lead to a database outage.

If there's not enough storage, Aurora might delete compressed PostgreSQL logs before the end of
a specified retention period. If that happens, you see a message similar to the following:

PostgreSQL database log files 1183

https://www.gzip.org

Amazon Aurora User Guide for Aurora

The oldest PostgreSQL log files were deleted due to local storage constraints.

Setting log file rotation

Aurora creates new log files every hour by default. The timing is controlled by the
log_rotation_age parameter. This parameter has a default value of 60 (minutes), but you
can set it to anywhere from 1 minute to 24 hours (1,440 minutes). When it's time for rotation,
a new distinct log file is created. The file is named according to the pattern specified by the
log_filename parameter.

Log files can also be rotated according to their size, as specified in the log_rotation_size
parameter. This parameter specifies that the log should be rotated when it reaches the specified
size (in kilobytes). The default log_rotation_size is 100000 kB (kilobytes) for an Aurora
PostgreSQL DB cluster, but you can set this value to anywhere from 50,000 to 1,000,000 kilobytes.

The log file names are based on the file name pattern specified in the log_filename parameter.
The available settings for this parameter are as follows:

• postgresql.log.%Y-%m-%d – Default format for the log file name. Includes the year, month,
and date in the name of the log file.

• postgresql.log.%Y-%m-%d-%H – Includes the hour in the log file name format.

• postgresql.log.%Y-%m-%d-%H%M – Includes hour:minute in the log file name format.

If you set log_rotation_age parameter to less than 60 minutes, set the log_filename
parameter to the minute format.

For more information, see log_rotation_age and log_rotation_size in the PostgreSQL
documentation.

Setting the log destination (stderr, csvlog)

By default, Aurora PostgreSQL generates logs in standard error (stderr) format. This format is the
default setting for the log_destination parameter. Each message is prefixed using the pattern
specified in the log_line_prefix parameter. For more information, see Understanding the
log_line_prefix parameter.

Aurora PostgreSQL can also generate the logs in csvlog format. The csvlog is useful for
analyzing the log data as comma-separated values (CSV) data. For example, suppose that you

PostgreSQL database log files 1184

https://www.postgresql.org/docs/current/runtime-config-logging.html#GUC-LOG-ROTATION-AGE
https://www.postgresql.org/docs/current/runtime-config-logging.html#GUC-LOG-ROTATION-SIZE

Amazon Aurora User Guide for Aurora

use the log_fdw extension to work with your logs as foreign tables. The foreign table created
on stderr log files contains a single column with log event data. By adding csvlog to the
log_destination parameter, you get the log file in the CSV format with demarcations for the
multiple columns of the foreign table. You can now sort and analyze your logs more easily.

If you specify csvlog for this parameter, be aware that both stderr and csvlog files are
generated. Be sure to monitor the storage consumed by the logs, taking into account the
rds.log_retention_period and other settings that affect log storage and turnover. Using
stderr and csvlog more than doubles the storage consumed by the logs.

If you add csvlog to log_destination and you want to revert to the stderr alone, you need
to reset the parameter. To do so, open the Amazon RDS Console and then open the custom DB
cluster parameter group for your instance. Choose the log_destination parameter, choose Edit
parameter, and then choose Reset.

For more information about configuring logging, see Working with Amazon RDS and Aurora
PostgreSQL logs: Part 1.

Understanding the log_line_prefix parameter

The stderr log format prefixes each log message with the details specified by the
log_line_prefix parameter, as follows.

%t:%r:%u@%d:[%p]:t

You can't change this setting. Each log entry sent to stderr includes the following information.

• %t – Time of log entry

• %r – Remote host address

• %u@%d – User name @ database name

• [%p] – Process ID if available

Turning on query logging for your Aurora PostgreSQL DB cluster

You can collect more detailed information about your database activities, including queries, queries
waiting for locks, checkpoints, and many other details by setting some of the parameters listed in
the following table. This topic focuses on logging queries.

PostgreSQL database log files 1185

https://aws.amazon.com/blogs/database/working-with-rds-and-aurora-postgresql-logs-part-1/
https://aws.amazon.com/blogs/database/working-with-rds-and-aurora-postgresql-logs-part-1/

Amazon Aurora User Guide for Aurora

Parameter Default Description

log_connections – Logs each successful connection. To learn
how to use this parameter with log_disco
nnections to detect connection churn,
see Managing Aurora PostgreSQL connection
churn with pooling .

log_disconnections – Logs the end of each session and its duration.
To learn how to use this parameter with
log_connections to detect connectio
n churn, see Managing Aurora PostgreSQL
connection churn with pooling .

log_checkpoints 1 Logs each checkpoint.

log_lock_waits – Logs long lock waits. By default, this
parameter isn't set.

log_min_duration_s
ample

– (ms) Sets the minimum execution time above
which a sample of statements is logged.
Sample size is set using the log_state
ment_sample_rate parameter.

log_min_duration_s
tatement

– Any SQL statement that runs atleast for
the specified amount of time or longer gets
logged. By default, this parameter isn't set.
Turning on this parameter can help you find
unoptimized queries.

log_statement – Sets the type of statements logged. By
default, this parameter isn't set, but you can
 change it to all, ddl, or mod to specify
the types of SQL statements that you want
logged. If you specify anything other than
none for this parameter, you should also take
additional steps to prevent the exposure of
 passwords in the log files. For more informati

PostgreSQL database log files 1186

Amazon Aurora User Guide for Aurora

Parameter Default Description

on, see Mitigating risk of password exposure
when using query logging.

log_statement_samp
le_rate

– The percentage of statements exceeding the
time specified in log_min_duration_s
ample to be logged, expressed as a floating
point value between 0.0 and 1.0.

log_statement_stats – Writes cumulative performance statistics to
the server log.

Using logging to find slow performing queries

You can log SQL statements and queries to help find slow performing queries. You turn on this
capability by modifying the settings in the log_statement and log_min_duration parameters
as outlined in this section. Before turning on query logging for your Aurora PostgreSQL DB cluster,
you should be aware of possible password exposure in the logs and how to mitigate the risks. For
more information, see Mitigating risk of password exposure when using query logging.

Following, you can find reference information about the log_statement and
log_min_duration parameters.

log_statement

This parameter specifies the type of SQL statements that should get sent to the log. The default
value is none. If you change this parameter to all, ddl, or mod, be sure to apply recommended
actions to mitigate the risk of exposing passwords in the logs. For more information, see Mitigating
risk of password exposure when using query logging.

all

Logs all statements. This setting is recommended for debugging purposes.

ddl

Logs all data definition language (DDL) statements, such as CREATE, ALTER, DROP, and so on.

PostgreSQL database log files 1187

Amazon Aurora User Guide for Aurora

mod

Logs all DDL statements and data manipulation language (DML) statements, such as INSERT,
UPDATE, and DELETE, which modify the data.

none

No SQL statements get logged. We recommend this setting to avoid the risk of exposing
passwords in the logs.

log_min_duration_statement

Any SQL statement that runs atleast for the specified amount of time or longer gets logged. By
default, this parameter isn't set. Turning on this parameter can help you find unoptimized queries.

–1–2147483647

The number of milliseconds (ms) of runtime over which a statement gets logged.

To set up query logging

These steps assume that your Aurora PostgreSQL DB cluster uses a custom DB cluster parameter
group.

1. Set the log_statement parameter to all. The following example shows the information
that is written to the postgresql.log file with this parameter setting.

2022-10-05 22:05:52 UTC:52.95.4.1(11335):postgres@labdb:[3639]:LOG: statement:
 SELECT feedback, s.sentiment,s.confidence
FROM support,aws_comprehend.detect_sentiment(feedback, 'en') s
ORDER BY s.confidence DESC;
2022-10-05 22:05:52 UTC:52.95.4.1(11335):postgres@labdb:[3639]:LOG: QUERY
 STATISTICS
2022-10-05 22:05:52 UTC:52.95.4.1(11335):postgres@labdb:[3639]:DETAIL: ! system
 usage stats:
! 0.017355 s user, 0.000000 s system, 0.168593 s elapsed
! [0.025146 s user, 0.000000 s system total]
! 36644 kB max resident size
! 0/8 [0/8] filesystem blocks in/out
! 0/733 [0/1364] page faults/reclaims, 0 [0] swaps
! 0 [0] signals rcvd, 0/0 [0/0] messages rcvd/sent

PostgreSQL database log files 1188

Amazon Aurora User Guide for Aurora

! 19/0 [27/0] voluntary/involuntary context switches
2022-10-05 22:05:52 UTC:52.95.4.1(11335):postgres@labdb:[3639]:STATEMENT: SELECT
 feedback, s.sentiment,s.confidence
FROM support,aws_comprehend.detect_sentiment(feedback, 'en') s
ORDER BY s.confidence DESC;
2022-10-05 22:05:56 UTC:52.95.4.1(11335):postgres@labdb:[3639]:ERROR: syntax error
 at or near "ORDER" at character 1
2022-10-05 22:05:56 UTC:52.95.4.1(11335):postgres@labdb:[3639]:STATEMENT: ORDER BY
 s.confidence DESC;
----------------------- END OF LOG ----------------------

2. Set the log_min_duration_statement parameter. The following example shows the
information that is written to the postgresql.log file when the parameter is set to 1.

Queries that exceed the duration specified in the log_min_duration_statement parameter
are logged. The following shows an example. You can view the log file for your Aurora
PostgreSQL DB cluster in the Amazon RDS Console.

2022-10-05 19:05:19 UTC:52.95.4.1(6461):postgres@labdb:[6144]:LOG: statement: DROP
 table comments;
2022-10-05 19:05:19 UTC:52.95.4.1(6461):postgres@labdb:[6144]:LOG: duration:
 167.754 ms
2022-10-05 19:08:07 UTC::@:[355]:LOG: checkpoint starting: time
2022-10-05 19:08:08 UTC::@:[355]:LOG: checkpoint complete: wrote 11 buffers
 (0.0%); 0 WAL file(s) added, 0 removed, 0 recycled; write=1.013 s, sync=0.006 s,
 total=1.033 s; sync files=8, longest=0.004 s, average=0.001 s; distance=131028 kB,
 estimate=131028 kB
----------------------- END OF LOG ----------------------

Mitigating risk of password exposure when using query logging

We recommend that you keep log_statement set to none to avoid exposing passwords. If
you set log_statement to all, ddl, or mod, we recommend that you take one or more of the
following steps.

• For the client, encrypt sensitive information. For more information, see Encryption Options
in the PostgreSQL documentation. Use the ENCRYPTED (and UNENCRYPTED) options of the
CREATE and ALTER statements. For more information, see CREATE USER in the PostgreSQL
documentation.

PostgreSQL database log files 1189

https://www.postgresql.org/docs/current/encryption-options.html
https://www.postgresql.org/docs/current/sql-createuser.html

Amazon Aurora User Guide for Aurora

• For your Aurora PostgreSQL DB cluster, set up and use the PostgreSQL Auditing (pgAudit)
extension. This extension redacts sensitive information in CREATE and ALTER statements sent to
the log. For more information, see Using pgAudit to log database activity.

• Restrict access to the CloudWatch logs.

• Use stronger authentication mechanisms such as IAM.

PostgreSQL database log files 1190

Amazon Aurora User Guide for Aurora

Monitoring Amazon Aurora API calls in AWS CloudTrail

AWS CloudTrail is an AWS service that helps you audit your AWS account. AWS CloudTrail is turned
on for your AWS account when you create it. For more information about CloudTrail, see the AWS
CloudTrail User Guide.

Topics

• CloudTrail integration with Amazon Aurora

• Amazon Aurora log file entries

CloudTrail integration with Amazon Aurora

All Amazon Aurora actions are logged by CloudTrail. CloudTrail provides a record of actions taken
by a user, role, or an AWS service in Amazon Aurora.

CloudTrail events

CloudTrail captures API calls for Amazon Aurora as events. An event represents a single request
from any source and includes information about the requested action, the date and time of the
action, request parameters, and so on. Events include calls from the Amazon RDS console and from
code calls to the Amazon RDS API operations.

Amazon Aurora activity is recorded in a CloudTrail event in Event history. You can use the
CloudTrail console to view the last 90 days of recorded API activity and events in an AWS Region.
For more information, see Viewing events with CloudTrail event history.

CloudTrail trails

For an ongoing record of events in your AWS account, including events for Amazon Aurora, create
a trail. A trail is a configuration that enables delivery of events to a specified Amazon S3 bucket.
CloudTrail typically delivers log files within 15 minutes of account activity.

Note

If you don't configure a trail, you can still view the most recent events in the CloudTrail
console in Event history.

Monitoring Aurora API calls in CloudTrail 1191

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/view-cloudtrail-events.html

Amazon Aurora User Guide for Aurora

You can create two types of trails for an AWS account: a trail that applies to all Regions, or a trail
that applies to one Region. By default, when you create a trail in the console, the trail applies to all
Regions.

Additionally, you can configure other AWS services to further analyze and act upon the event data
collected in CloudTrail logs. For more information, see:

• Overview for creating a trail

• CloudTrail supported services and integrations

• Configuring Amazon SNS notifications for CloudTrail

• Receiving CloudTrail log files from multiple Regions and Receiving CloudTrail log files from
multiple accounts

Amazon Aurora log file entries

CloudTrail log files contain one or more log entries. CloudTrail log files are not an ordered stack
trace of the public API calls, so they do not appear in any specific order.

The following example shows a CloudTrail log entry that demonstrates the CreateDBInstance
action.

{
 "eventVersion": "1.04",
 "userIdentity": {
 "type": "IAMUser",
 "principalId": "AKIAIOSFODNN7EXAMPLE",
 "arn": "arn:aws:iam::123456789012:user/johndoe",
 "accountId": "123456789012",
 "accessKeyId": "AKIAI44QH8DHBEXAMPLE",
 "userName": "johndoe"
 },
 "eventTime": "2018-07-30T22:14:06Z",
 "eventSource": "rds.amazonaws.com",
 "eventName": "CreateDBInstance",
 "awsRegion": "us-east-1",
 "sourceIPAddress": "192.0.2.0",
 "userAgent": "aws-cli/1.15.42 Python/3.6.1 Darwin/17.7.0 botocore/1.10.42",
 "requestParameters": {
 "enableCloudwatchLogsExports": [

Amazon Aurora log file entries 1192

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-create-and-update-a-trail.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-aws-service-specific-topics.html#cloudtrail-aws-service-specific-topics-integrations
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/getting_notifications_top_level.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/receive-cloudtrail-log-files-from-multiple-regions.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-receive-logs-from-multiple-accounts.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-receive-logs-from-multiple-accounts.html

Amazon Aurora User Guide for Aurora

 "audit",
 "error",
 "general",
 "slowquery"
],
 "dBInstanceIdentifier": "test-instance",
 "engine": "mysql",
 "masterUsername": "myawsuser",
 "allocatedStorage": 20,
 "dBInstanceClass": "db.m1.small",
 "masterUserPassword": "****"
 },
 "responseElements": {
 "dBInstanceArn": "arn:aws:rds:us-east-1:123456789012:db:test-instance",
 "storageEncrypted": false,
 "preferredBackupWindow": "10:27-10:57",
 "preferredMaintenanceWindow": "sat:05:47-sat:06:17",
 "backupRetentionPeriod": 1,
 "allocatedStorage": 20,
 "storageType": "standard",
 "engineVersion": "8.0.28",
 "dbInstancePort": 0,
 "optionGroupMemberships": [
 {
 "status": "in-sync",
 "optionGroupName": "default:mysql-8-0"
 }
],
 "dBParameterGroups": [
 {
 "dBParameterGroupName": "default.mysql8.0",
 "parameterApplyStatus": "in-sync"
 }
],
 "monitoringInterval": 0,
 "dBInstanceClass": "db.m1.small",
 "readReplicaDBInstanceIdentifiers": [],
 "dBSubnetGroup": {
 "dBSubnetGroupName": "default",
 "dBSubnetGroupDescription": "default",
 "subnets": [
 {
 "subnetAvailabilityZone": {"name": "us-east-1b"},
 "subnetIdentifier": "subnet-cbfff283",

Amazon Aurora log file entries 1193

Amazon Aurora User Guide for Aurora

 "subnetStatus": "Active"
 },
 {
 "subnetAvailabilityZone": {"name": "us-east-1e"},
 "subnetIdentifier": "subnet-d7c825e8",
 "subnetStatus": "Active"
 },
 {
 "subnetAvailabilityZone": {"name": "us-east-1f"},
 "subnetIdentifier": "subnet-6746046b",
 "subnetStatus": "Active"
 },
 {
 "subnetAvailabilityZone": {"name": "us-east-1c"},
 "subnetIdentifier": "subnet-bac383e0",
 "subnetStatus": "Active"
 },
 {
 "subnetAvailabilityZone": {"name": "us-east-1d"},
 "subnetIdentifier": "subnet-42599426",
 "subnetStatus": "Active"
 },
 {
 "subnetAvailabilityZone": {"name": "us-east-1a"},
 "subnetIdentifier": "subnet-da327bf6",
 "subnetStatus": "Active"
 }
],
 "vpcId": "vpc-136a4c6a",
 "subnetGroupStatus": "Complete"
 },
 "masterUsername": "myawsuser",
 "multiAZ": false,
 "autoMinorVersionUpgrade": true,
 "engine": "mysql",
 "cACertificateIdentifier": "rds-ca-2015",
 "dbiResourceId": "db-ETDZIIXHEWY5N7GXVC4SH7H5IA",
 "dBSecurityGroups": [],
 "pendingModifiedValues": {
 "masterUserPassword": "****",
 "pendingCloudwatchLogsExports": {
 "logTypesToEnable": [
 "audit",
 "error",

Amazon Aurora log file entries 1194

Amazon Aurora User Guide for Aurora

 "general",
 "slowquery"
]
 }
 },
 "dBInstanceStatus": "creating",
 "publiclyAccessible": true,
 "domainMemberships": [],
 "copyTagsToSnapshot": false,
 "dBInstanceIdentifier": "test-instance",
 "licenseModel": "general-public-license",
 "iAMDatabaseAuthenticationEnabled": false,
 "performanceInsightsEnabled": false,
 "vpcSecurityGroups": [
 {
 "status": "active",
 "vpcSecurityGroupId": "sg-f839b688"
 }
]
 },
 "requestID": "daf2e3f5-96a3-4df7-a026-863f96db793e",
 "eventID": "797163d3-5726-441d-80a7-6eeb7464acd4",
 "eventType": "AwsApiCall",
 "recipientAccountId": "123456789012"
}

As shown in the userIdentity element in the preceding example, every event or log entry
contains information about who generated the request. The identity information helps you
determine the following:

• Whether the request was made with root or IAM user credentials.

• Whether the request was made with temporary security credentials for a role or federated user.

• Whether the request was made by another AWS service.

For more information about the userIdentity, see the CloudTrail userIdentity element. For more
information about CreateDBInstance and other Amazon Aurora actions, see the Amazon RDS
API Reference.

Amazon Aurora log file entries 1195

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-event-reference-user-identity.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/

Amazon Aurora User Guide for Aurora

Monitoring Amazon Aurora with Database Activity Streams

By using Database Activity Streams, you can monitor near real-time streams of database activity.

Topics

• Overview of Database Activity Streams

• Network prerequisites for Aurora MySQL database activity streams

• Starting a database activity stream

• Getting the status of a database activity stream

• Stopping a database activity stream

• Monitoring database activity streams

• Managing access to database activity streams

Overview of Database Activity Streams

As an Amazon Aurora database administrator, you need to safeguard your database and meet
compliance and regulatory requirements. One strategy is to integrate database activity streams
with your monitoring tools. In this way, you monitor and set alarms for auditing activity in your
Amazon Aurora cluster.

Security threats are both external and internal. To protect against internal threats, you can control
administrator access to data streams by configuring the Database Activity Streams feature. DBAs
don't have access to the collection, transmission, storage, and processing of the streams.

Topics

• How database activity streams work

• Asynchronous and synchronous mode for database activity streams

• Requirements and limitations for database activity streams

• Region and version availability

• Supported DB instance classes for database activity streams

How database activity streams work

In Amazon Aurora, you start a database activity stream at the cluster level. All DB instances within
your cluster have database activity streams enabled.

Monitoring Aurora with Database Activity Streams 1196

Amazon Aurora User Guide for Aurora

Your Aurora DB cluster pushes activities to an Amazon Kinesis data stream in near real time. The
Kinesis stream is created automatically. From Kinesis, you can configure AWS services such as
Amazon Data Firehose and AWS Lambda to consume the stream and store the data.

Important

Use of the database activity streams feature in Amazon Aurora is free, but Amazon Kinesis
charges for a data stream. For more information, see Amazon Kinesis Data Streams pricing.

If you use an Aurora global database, start a database activity stream on each DB cluster
separately. Each cluster delivers audit data to its own Kinesis stream within its own AWS Region.
The activity streams don't operate differently during a failover. They continue to audit your global
database as usual.

You can configure applications for compliance management to consume database activity streams.
For Aurora PostgreSQL, compliance applications include IBM's Security Guardium and Imperva's
SecureSphere Database Audit and Protection. These applications can use the stream to generate
alerts and audit activity on your Aurora DB cluster.

The following graphic shows an Aurora DB cluster configured with Amazon Data Firehose.

Asynchronous and synchronous mode for database activity streams

You can choose to have the database session handle database activity events in either of the
following modes:

Overview 1197

https://aws.amazon.com/kinesis/data-streams/pricing/

Amazon Aurora User Guide for Aurora

• Asynchronous mode – When a database session generates an activity stream event, the session
returns to normal activities immediately. In the background, the activity stream event is made
a durable record. If an error occurs in the background task, an RDS event is sent. This event
indicates the beginning and end of any time windows where activity stream event records might
have been lost.

Asynchronous mode favors database performance over the accuracy of the activity stream.

Note

Asynchronous mode is available for both Aurora PostgreSQL and Aurora MySQL.

• Synchronous mode – When a database session generates an activity stream event, the session
blocks other activities until the event is made durable. If the event can't be made durable for
some reason, the database session returns to normal activities. However, an RDS event is sent
indicating that activity stream records might be lost for some time. A second RDS event is sent
after the system is back to a healthy state.

The synchronous mode favors the accuracy of the activity stream over database performance.

Note

Synchronous mode is available for Aurora PostgreSQL. You can't use synchronous mode
with Aurora MySQL.

Requirements and limitations for database activity streams

In Aurora, database activity streams have the following requirements and limitations:

• Amazon Kinesis is required for database activity streams.

• AWS Key Management Service (AWS KMS) is required for database activity streams because they
are always encrypted.

• Applying additional encryption to your Amazon Kinesis data stream is incompatible with
database activity streams, which are already encrypted with your AWS KMS key.

• Start your database activity stream at the DB cluster level. If you add a DB instance to your
cluster, you don't need to start an activity stream on the instance: it is audited automatically.

Overview 1198

Amazon Aurora User Guide for Aurora

• In an Aurora global database, make sure to start an activity stream on each DB cluster separately.
Each cluster delivers audit data to its own Kinesis stream within its own AWS Region.

• In Aurora PostgreSQL, make sure to stop database activity stream before an upgrade. You can
start the database activity stream after the upgrade completes.

Region and version availability

Feature availability and support varies across specific versions of each Aurora database engine,
and across AWS Regions. For more information on version and Region availability with Aurora and
database activity streams, see Supported Regions and Aurora DB engines for database activity
streams.

Supported DB instance classes for database activity streams

For Aurora MySQL, you can use database activity streams with the following DB instance classes:

• db.r7g.*large

• db.r6g.*large

• db.r6i.*large

• db.r5.*large

• db.x2g.*

For Aurora PostgreSQL, you can use database activity streams with the following DB instance
classes:

• db.r7g.*large

• db.r6g.*large

• db.r6i.*large

• db.r6id.*large

• db.r5.*large

• db.r4.*large

• db.x2g.*

Overview 1199

Amazon Aurora User Guide for Aurora

Network prerequisites for Aurora MySQL database activity streams

In the following section, you can find how to configure your virtual private cloud (VPC) for use with
database activity streams.

Note

Aurora MySQL network prerequisites are applicable to the following engine versions:

• Aurora MySQL version 2, up to 2.11.3

• Aurora MySQL version 2.12.0

• Aurora MySQL version 3, up to 3.04.2

Topics

• Prerequisites for AWS KMS endpoints

• Prerequisites for public availability

• Prerequisites for private availability

Prerequisites for AWS KMS endpoints

Instances in an Aurora MySQL cluster that use activity streams must be able to access AWS KMS
endpoints. Make sure this requirement is satisfied before enabling database activity streams for
your Aurora MySQL cluster. If the Aurora cluster is publicly available, this requirement is satisfied
automatically.

Important

If the Aurora MySQL DB cluster can't access the AWS KMS endpoint, the activity stream
stops. In that case, Aurora notifies you about this issue using RDS Events.

Prerequisites for public availability

For an Aurora DB cluster to be public, it must meet the following requirements:

• Publicly Accessible is Yes in the AWS Management Console cluster details page.

Aurora MySQL network prerequisites 1200

Amazon Aurora User Guide for Aurora

• The DB cluster is in an Amazon VPC public subnet. For more information about publicly
accessible DB instances, see Working with a DB cluster in a VPC. For more information about
public Amazon VPC subnets, see Your VPC and Subnets.

Prerequisites for private availability

If your Aurora DB cluster is in a VPC public subnet and isn't publicly accessible, it's private. To keep
your cluster private and use it with database activity streams, you have the following options:

• Configure Network Address Translation (NAT) in your VPC. For more information, see NAT
Gateways.

• Create an AWS KMS endpoint in your VPC. This option is recommended because it's easier to
configure.

To create an AWS KMS endpoint in your VPC

1. Open the Amazon VPC console at https://console.aws.amazon.com/vpc/.

2. In the navigation pane, choose Endpoints.

3. Choose Create Endpoint.

The Create Endpoint page appears.

4. Do the following:

• In Service category, choose AWS services.

• In Service Name, choose com.amazonaws.region.kms, where region is the AWS Region
where your cluster is located.

• For VPC, choose the VPC where your cluster is located.

5. Choose Create Endpoint.

For more information about configuring VPC endpoints, see VPC Endpoints.

Starting a database activity stream

To monitor database activity for all instances in your Aurora DB cluster, start an activity stream at
the cluster level. Any DB instances that you add to the cluster are also automatically monitored. If

Starting a database activity stream 1201

https://docs.aws.amazon.com/vpc/latest/userguide/VPC_Subnets.html
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-nat-gateway.html
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-nat-gateway.html
https://console.aws.amazon.com/vpc/
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-endpoints.html

Amazon Aurora User Guide for Aurora

you use an Aurora global database, start a database activity stream on each DB cluster separately.
Each cluster delivers audit data to its own Kinesis stream within its own AWS Region.

When you start an activity stream, each database activity event that you configured in the audit
policy generates an activity stream event. SQL commands such as CONNECT and SELECT generate
access events. SQL commands such as CREATE and INSERT generate change events.

Console

To start a database activity stream

1. Open the Amazon RDS console at https://console.aws.amazon.com/rds/.

2. In the navigation pane, choose Databases.

3. Choose the DB cluster on which you want to start an activity stream.

4. For Actions, choose Start activity stream.

The Start database activity stream: name window appears, where name is your DB cluster.

5. Enter the following settings:

• For AWS KMS key, choose a key from the list of AWS KMS keys.

Note

If your Aurora MySQL cluster can't access KMS keys, follow the instructions in
Network prerequisites for Aurora MySQL database activity streams to enable such
access first.

Aurora uses the KMS key to encrypt the key that in turn encrypts database activity. Choose
a KMS key other than the default key. For more information about encryption keys and
AWS KMS, see What is AWS Key Management Service? in the AWS Key Management Service
Developer Guide.

• For Database activity stream mode, choose Asynchronous or Synchronous.

Note

This choice applies only to Aurora PostgreSQL. For Aurora MySQL, you can use only
asynchronous mode.

Starting a database activity stream 1202

https://console.aws.amazon.com/rds/
https://docs.aws.amazon.com/kms/latest/developerguide/overview.html

Amazon Aurora User Guide for Aurora

• Choose Immediately.

When you choose Immediately, the DB cluster restarts right away. If you choose During
the next maintenance window, the DB cluster doesn't restart right away. In this case, the
database activity stream doesn't start until the next maintenance window.

6. Choose Start database activity stream.

The status for the DB cluster shows that the activity stream is starting.

Note

If you get the error You can't start a database activity stream in this
configuration, check Supported DB instance classes for database activity streams to
see whether your DB cluster is using a supported instance class.

AWS CLI

To start database activity streams for a DB cluster , configure the DB cluster using the start-
activity-stream AWS CLI command.

• --resource-arn arn – Specifies the Amazon Resource Name (ARN) of the DB cluster.

• --mode sync-or-async – Specifies either synchronous (sync) or asynchronous (async) mode.
For Aurora PostgreSQL, you can choose either value. For Aurora MySQL, specify async.

• --kms-key-id key – Specifies the KMS key identifier for encrypting messages in the database
activity stream. The AWS KMS key identifier is the key ARN, key ID, alias ARN, or alias name for
the AWS KMS key.

The following example starts a database activity stream for a DB cluster in asynchronous mode.

For Linux, macOS, or Unix:

aws rds start-activity-stream \
 --mode async \
 --kms-key-id my-kms-key-arn \
 --resource-arn my-cluster-arn \
 --apply-immediately

Starting a database activity stream 1203

https://docs.aws.amazon.com/cli/latest/reference/rds/start-activity-stream.html
https://docs.aws.amazon.com/cli/latest/reference/rds/start-activity-stream.html

Amazon Aurora User Guide for Aurora

For Windows:

aws rds start-activity-stream ^
 --mode async ^
 --kms-key-id my-kms-key-arn ^
 --resource-arn my-cluster-arn ^
 --apply-immediately

RDS API

To start database activity streams for a DB cluster, configure the cluster using the
StartActivityStream operation.

Call the action with the parameters below:

• Region

• KmsKeyId

• ResourceArn

• Mode

Getting the status of a database activity stream

You can get the status of an activity stream using the console or AWS CLI.

Console

To get the status of a database activity stream

1. Open the Amazon RDS console at https://console.aws.amazon.com/rds/.

2. In the navigation pane, choose Databases, and then choose the DB cluster link.

3. Choose the Configuration tab, and check Database activity stream for status.

AWS CLI

You can get the activity stream configuration for a DB cluster as the response to a describe-db-
clusters CLI request.

The following example describes my-cluster.

Getting the activity stream status 1204

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_StartActivityStream.html
https://console.aws.amazon.com/rds/
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-clusters.html
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-clusters.html

Amazon Aurora User Guide for Aurora

aws rds --region my-region describe-db-clusters --db-cluster-identifier my-cluster

The following example shows a JSON response. The following fields are shown:

• ActivityStreamKinesisStreamName

• ActivityStreamKmsKeyId

• ActivityStreamStatus

• ActivityStreamMode

•

These fields are the same for Aurora PostgreSQL and Aurora MySQL, except that
ActivityStreamMode is always async for Aurora MySQL, while for Aurora PostgreSQL it might
be sync or async.

{
 "DBClusters": [
 {
 "DBClusterIdentifier": "my-cluster",
 ...
 "ActivityStreamKinesisStreamName": "aws-rds-das-cluster-
A6TSYXITZCZXJHIRVFUBZ5LTWY",
 "ActivityStreamStatus": "starting",
 "ActivityStreamKmsKeyId": "12345678-abcd-efgh-ijkl-bd041f170262",
 "ActivityStreamMode": "async",
 "DbClusterResourceId": "cluster-ABCD123456"
 ...
 }
]
}

RDS API

You can get the activity stream configuration for a DB cluster as the response to a
DescribeDBClusters operation.

Stopping a database activity stream

You can stop an activity stream using the console or AWS CLI.

Stopping a database activity stream 1205

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DescribeDBClusters.html

Amazon Aurora User Guide for Aurora

If you delete your DB cluster, the activity stream is stopped and the underlying Amazon Kinesis
stream is deleted automatically.

Console

To turn off an activity stream

1. Open the Amazon RDS console at https://console.aws.amazon.com/rds/.

2. In the navigation pane, choose Databases.

3. Choose a DB cluster that you want to stop the database activity stream for.

4. For Actions, choose Stop activity stream. The Database Activity Stream window appears.

a. Choose Immediately.

When you choose Immediately, the DB cluster restarts right away. If you choose During
the next maintenance window, the DB cluster doesn't restart right away. In this case, the
database activity stream doesn't stop until the next maintenance window.

b. Choose Continue.

AWS CLI

To stop database activity streams for your DB cluster, configure the DB cluster using the AWS CLI
command stop-activity-stream. Identify the AWS Region for the DB cluster using the --region
parameter. The --apply-immediately parameter is optional.

For Linux, macOS, or Unix:

aws rds --region MY_REGION \
 stop-activity-stream \
 --resource-arn MY_CLUSTER_ARN \
 --apply-immediately

For Windows:

aws rds --region MY_REGION ^
 stop-activity-stream ^
 --resource-arn MY_CLUSTER_ARN ^
 --apply-immediately

Stopping a database activity stream 1206

https://console.aws.amazon.com/rds/
https://docs.aws.amazon.com/cli/latest/reference/rds/stop-activity-stream.html

Amazon Aurora User Guide for Aurora

RDS API

To stop database activity streams for your DB cluster, configure the cluster using the
StopActivityStream operation. Identify the AWS Region for the DB cluster using the Region
parameter. The ApplyImmediately parameter is optional.

Monitoring database activity streams

Database activity streams monitor and report activities. The stream of activity is collected and
transmitted to Amazon Kinesis. From Kinesis, you can monitor the activity stream, or other services
and applications can consume the activity stream for further analysis. You can find the underlying
Kinesis stream name by using the AWS CLI command describe-db-clusters or the RDS API
DescribeDBClusters operation.

Aurora manages the Kinesis stream for you as follows:

• Aurora creates the Kinesis stream automatically with a 24-hour retention period.

• Aurora scales the Kinesis stream if necessary.

• If you stop the database activity stream or delete the DB cluster, Aurora deletes the Kinesis
stream.

The following categories of activity are monitored and put in the activity stream audit log:

• SQL commands – All SQL commands are audited, and also prepared statements, built-in
functions, and functions in PL/SQL. Calls to stored procedures are audited. Any SQL statements
issued inside stored procedures or functions are also audited.

• Other database information – Activity monitored includes the full SQL statement, the row
count of affected rows from DML commands, accessed objects, and the unique database name.
For Aurora PostgreSQL, database activity streams also monitor the bind variables and stored
procedure parameters.

Important

The full SQL text of each statement is visible in the activity stream audit log, including
any sensitive data. However, database user passwords are redacted if Aurora can
determine them from the context, such as in the following SQL statement.

Monitoring activity streams 1207

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_StopActivityStream.html

Amazon Aurora User Guide for Aurora

ALTER ROLE role-name WITH password

• Connection information – Activity monitored includes session and network information, the
server process ID, and exit codes.

If an activity stream has a failure while monitoring your DB instance, you are notified through RDS
events.

Topics

• Accessing an activity stream from Kinesis

• Audit log contents and examples

• databaseActivityEventList JSON array

• Processing a database activity stream using the AWS SDK

Accessing an activity stream from Kinesis

When you enable an activity stream for a DB cluster, a Kinesis stream is created for you. From
Kinesis, you can monitor your database activity in real time. To further analyze database activity,
you can connect your Kinesis stream to consumer applications. You can also connect the stream to
compliance management applications such as IBM's Security Guardium or Imperva's SecureSphere
Database Audit and Protection.

You can access your Kinesis stream either from the RDS console or the Kinesis console.

To access an activity stream from Kinesis using the RDS console

1. Open the Amazon RDS console at https://console.aws.amazon.com/rds/.

2. In the navigation pane, choose Databases.

3. Choose the DB cluster on which you started an activity stream.

4. Choose Configuration.

5. Under Database activity stream, choose the link under Kinesis stream.

6. In the Kinesis console, choose Monitoring to begin observing the database activity.

Monitoring activity streams 1208

https://console.aws.amazon.com/rds/

Amazon Aurora User Guide for Aurora

To access an activity stream from Kinesis using the Kinesis console

1. Open the Kinesis console at https://console.aws.amazon.com/kinesis.

2. Choose your activity stream from the list of Kinesis streams.

An activity stream's name includes the prefix aws-rds-das-cluster- followed by the
resource ID of the DB cluster. The following is an example.

aws-rds-das-cluster-NHVOV4PCLWHGF52NP

To use the Amazon RDS console to find the resource ID for the DB cluster, choose your DB
cluster from the list of databases, and then choose the Configuration tab.

To use the AWS CLI to find the full Kinesis stream name for an activity stream, use a describe-
db-clusters CLI request and note the value of ActivityStreamKinesisStreamName in the
response.

3. Choose Monitoring to begin observing the database activity.

For more information about using Amazon Kinesis, see What Is Amazon Kinesis Data Streams?.

Audit log contents and examples

Monitored events are represented in the database activity stream as JSON strings. The structure
consists of a JSON object containing a DatabaseActivityMonitoringRecord, which in turn
contains a databaseActivityEventList array of activity events.

Topics

• Examples of an audit log for an activity stream

• DatabaseActivityMonitoringRecords JSON object

• databaseActivityEvents JSON Object

Examples of an audit log for an activity stream

Following are sample decrypted JSON audit logs of activity event records.

Monitoring activity streams 1209

https://console.aws.amazon.com/kinesis
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-clusters.html
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-clusters.html
https://docs.aws.amazon.com/streams/latest/dev/introduction.html

Amazon Aurora User Guide for Aurora

Example Activity event record of an Aurora PostgreSQL CONNECT SQL statement

The following activity event record shows a login with the use of a CONNECT SQL statement
(command) by a psql client (clientApplication).

{
 "type":"DatabaseActivityMonitoringRecords",
 "version":"1.1",
 "databaseActivityEvents":
 {
 "type":"DatabaseActivityMonitoringRecord",
 "clusterId":"cluster-4HNY5V4RRNPKKYB7ICFKE5JBQQ",
 "instanceId":"db-FZJTMYKCXQBUUZ6VLU7NW3ITCM",
 "databaseActivityEventList":[
 {
 "startTime": "2019-10-30 00:39:49.940668+00",
 "logTime": "2019-10-30 00:39:49.990579+00",
 "statementId": 1,
 "substatementId": 1,
 "objectType": null,
 "command": "CONNECT",
 "objectName": null,
 "databaseName": "postgres",
 "dbUserName": "rdsadmin",
 "remoteHost": "172.31.3.195",
 "remotePort": "49804",
 "sessionId": "5ce5f7f0.474b",
 "rowCount": null,
 "commandText": null,
 "paramList": [],
 "pid": 18251,
 "clientApplication": "psql",
 "exitCode": null,
 "class": "MISC",
 "serverVersion": "2.3.1",
 "serverType": "PostgreSQL",
 "serviceName": "Amazon Aurora PostgreSQL-Compatible edition",
 "serverHost": "172.31.3.192",
 "netProtocol": "TCP",
 "dbProtocol": "Postgres 3.0",
 "type": "record",
 "errorMessage": null
 }
]

Monitoring activity streams 1210

Amazon Aurora User Guide for Aurora

 },
 "key":"decryption-key"
}

Example Activity event record of an Aurora MySQL CONNECT SQL statement

The following activity event record shows a logon with the use of a CONNECT SQL statement
(command) by a mysql client (clientApplication).

{
 "type":"DatabaseActivityMonitoringRecord",
 "clusterId":"cluster-some_id",
 "instanceId":"db-some_id",
 "databaseActivityEventList":[
 {
 "logTime":"2020-05-22 18:07:13.267214+00",
 "type":"record",
 "clientApplication":null,
 "pid":2830,
 "dbUserName":"rdsadmin",
 "databaseName":"",
 "remoteHost":"localhost",
 "remotePort":"11053",
 "command":"CONNECT",
 "commandText":"",
 "paramList":null,
 "objectType":"TABLE",
 "objectName":"",
 "statementId":0,
 "substatementId":1,
 "exitCode":"0",
 "sessionId":"725121",
 "rowCount":0,
 "serverHost":"master",
 "serverType":"MySQL",
 "serviceName":"Amazon Aurora MySQL",
 "serverVersion":"MySQL 5.7.12",
 "startTime":"2020-05-22 18:07:13.267207+00",
 "endTime":"2020-05-22 18:07:13.267213+00",
 "transactionId":"0",
 "dbProtocol":"MySQL",
 "netProtocol":"TCP",
 "errorMessage":"",

Monitoring activity streams 1211

Amazon Aurora User Guide for Aurora

 "class":"MAIN"
 }
]
}

Example Activity event record of an Aurora PostgreSQL CREATE TABLE statement

The following example shows a CREATE TABLE event for Aurora PostgreSQL.

{
 "type":"DatabaseActivityMonitoringRecords",
 "version":"1.1",
 "databaseActivityEvents":
 {
 "type":"DatabaseActivityMonitoringRecord",
 "clusterId":"cluster-4HNY5V4RRNPKKYB7ICFKE5JBQQ",
 "instanceId":"db-FZJTMYKCXQBUUZ6VLU7NW3ITCM",
 "databaseActivityEventList":[
 {
 "startTime": "2019-05-24 00:36:54.403455+00",
 "logTime": "2019-05-24 00:36:54.494235+00",
 "statementId": 2,
 "substatementId": 1,
 "objectType": null,
 "command": "CREATE TABLE",
 "objectName": null,
 "databaseName": "postgres",
 "dbUserName": "rdsadmin",
 "remoteHost": "172.31.3.195",
 "remotePort": "34534",
 "sessionId": "5ce73c6f.7e64",
 "rowCount": null,
 "commandText": "create table my_table (id serial primary key, name
 varchar(32));",
 "paramList": [],
 "pid": 32356,
 "clientApplication": "psql",
 "exitCode": null,
 "class": "DDL",
 "serverVersion": "2.3.1",
 "serverType": "PostgreSQL",
 "serviceName": "Amazon Aurora PostgreSQL-Compatible edition",
 "serverHost": "172.31.3.192",
 "netProtocol": "TCP",

Monitoring activity streams 1212

Amazon Aurora User Guide for Aurora

 "dbProtocol": "Postgres 3.0",
 "type": "record",
 "errorMessage": null
 }
]
 },
 "key":"decryption-key"
}

Example Activity event record of an Aurora MySQL CREATE TABLE statement

The following example shows a CREATE TABLE statement for Aurora MySQL. The operation is
represented as two separate event records. One event has "class":"MAIN". The other event has
"class":"AUX". The messages might arrive in any order. The logTime field of the MAIN event is
always earlier than the logTime fields of any corresponding AUX events.

The following example shows the event with a class value of MAIN.

{
 "type":"DatabaseActivityMonitoringRecord",
 "clusterId":"cluster-some_id",
 "instanceId":"db-some_id",
 "databaseActivityEventList":[
 {
 "logTime":"2020-05-22 18:07:12.250221+00",
 "type":"record",
 "clientApplication":null,
 "pid":2830,
 "dbUserName":"master",
 "databaseName":"test",
 "remoteHost":"localhost",
 "remotePort":"11054",
 "command":"QUERY",
 "commandText":"CREATE TABLE test1 (id INT)",
 "paramList":null,
 "objectType":"TABLE",
 "objectName":"test1",
 "statementId":65459278,
 "substatementId":1,
 "exitCode":"0",
 "sessionId":"725118",
 "rowCount":0,
 "serverHost":"master",

Monitoring activity streams 1213

Amazon Aurora User Guide for Aurora

 "serverType":"MySQL",
 "serviceName":"Amazon Aurora MySQL",
 "serverVersion":"MySQL 5.7.12",
 "startTime":"2020-05-22 18:07:12.226384+00",
 "endTime":"2020-05-22 18:07:12.250222+00",
 "transactionId":"0",
 "dbProtocol":"MySQL",
 "netProtocol":"TCP",
 "errorMessage":"",
 "class":"MAIN"
 }
]
}

The following example shows the corresponding event with a class value of AUX.

{
 "type":"DatabaseActivityMonitoringRecord",
 "clusterId":"cluster-some_id",
 "instanceId":"db-some_id",
 "databaseActivityEventList":[
 {
 "logTime":"2020-05-22 18:07:12.247182+00",
 "type":"record",
 "clientApplication":null,
 "pid":2830,
 "dbUserName":"master",
 "databaseName":"test",
 "remoteHost":"localhost",
 "remotePort":"11054",
 "command":"CREATE",
 "commandText":"test1",
 "paramList":null,
 "objectType":"TABLE",
 "objectName":"test1",
 "statementId":65459278,
 "substatementId":2,
 "exitCode":"",
 "sessionId":"725118",
 "rowCount":0,
 "serverHost":"master",
 "serverType":"MySQL",
 "serviceName":"Amazon Aurora MySQL",

Monitoring activity streams 1214

Amazon Aurora User Guide for Aurora

 "serverVersion":"MySQL 5.7.12",
 "startTime":"2020-05-22 18:07:12.226384+00",
 "endTime":"2020-05-22 18:07:12.247182+00",
 "transactionId":"0",
 "dbProtocol":"MySQL",
 "netProtocol":"TCP",
 "errorMessage":"",
 "class":"AUX"
 }
]
}

Example Activity event record of an Aurora PostgreSQL SELECT statement

The following example shows a SELECT event .

{
 "type":"DatabaseActivityMonitoringRecords",
 "version":"1.1",
 "databaseActivityEvents":
 {
 "type":"DatabaseActivityMonitoringRecord",
 "clusterId":"cluster-4HNY5V4RRNPKKYB7ICFKE5JBQQ",
 "instanceId":"db-FZJTMYKCXQBUUZ6VLU7NW3ITCM",
 "databaseActivityEventList":[
 {
 "startTime": "2019-05-24 00:39:49.920564+00",
 "logTime": "2019-05-24 00:39:49.940668+00",
 "statementId": 6,
 "substatementId": 1,
 "objectType": "TABLE",
 "command": "SELECT",
 "objectName": "public.my_table",
 "databaseName": "postgres",
 "dbUserName": "rdsadmin",
 "remoteHost": "172.31.3.195",
 "remotePort": "34534",
 "sessionId": "5ce73c6f.7e64",
 "rowCount": 10,
 "commandText": "select * from my_table;",
 "paramList": [],
 "pid": 32356,
 "clientApplication": "psql",
 "exitCode": null,

Monitoring activity streams 1215

Amazon Aurora User Guide for Aurora

 "class": "READ",
 "serverVersion": "2.3.1",
 "serverType": "PostgreSQL",
 "serviceName": "Amazon Aurora PostgreSQL-Compatible edition",
 "serverHost": "172.31.3.192",
 "netProtocol": "TCP",
 "dbProtocol": "Postgres 3.0",
 "type": "record",
 "errorMessage": null
 }
]
 },
 "key":"decryption-key"
}

{
 "type": "DatabaseActivityMonitoringRecord",
 "clusterId": "",
 "instanceId": "db-4JCWQLUZVFYP7DIWP6JVQ77O3Q",
 "databaseActivityEventList": [
 {
 "class": "TABLE",
 "clientApplication": "Microsoft SQL Server Management Studio - Query",
 "command": "SELECT",
 "commandText": "select * from [testDB].[dbo].[TestTable]",
 "databaseName": "testDB",
 "dbProtocol": "SQLSERVER",
 "dbUserName": "test",
 "endTime": null,
 "errorMessage": null,
 "exitCode": 1,
 "logTime": "2022-10-06 21:24:59.9422268+00",
 "netProtocol": null,
 "objectName": "TestTable",
 "objectType": "TABLE",
 "paramList": null,
 "pid": null,
 "remoteHost": "local machine",
 "remotePort": null,
 "rowCount": 0,
 "serverHost": "172.31.30.159",
 "serverType": "SQLSERVER",
 "serverVersion": "15.00.4073.23.v1.R1",

Monitoring activity streams 1216

Amazon Aurora User Guide for Aurora

 "serviceName": "sqlserver-ee",
 "sessionId": 62,
 "startTime": null,
 "statementId": "0x03baed90412f564fad640ebe51f89b99",
 "substatementId": 1,
 "transactionId": "4532935",
 "type": "record",
 "engineNativeAuditFields": {
 "target_database_principal_id": 0,
 "target_server_principal_id": 0,
 "target_database_principal_name": "",
 "server_principal_id": 2,
 "user_defined_information": "",
 "response_rows": 0,
 "database_principal_name": "dbo",
 "target_server_principal_name": "",
 "schema_name": "dbo",
 "is_column_permission": true,
 "object_id": 581577110,
 "server_instance_name": "EC2AMAZ-NFUJJNO",
 "target_server_principal_sid": null,
 "additional_information": "",
 "duration_milliseconds": 0,
 "permission_bitmask": "0x00000000000000000000000000000001",
 "data_sensitivity_information": "",
 "session_server_principal_name": "test",
 "connection_id": "AD3A5084-FB83-45C1-8334-E923459A8109",
 "audit_schema_version": 1,
 "database_principal_id": 1,
 "server_principal_sid":
 "0x010500000000000515000000bdc2795e2d0717901ba6998cf4010000",
 "user_defined_event_id": 0,
 "host_name": "EC2AMAZ-NFUJJNO"
 }
 }
]
}

Example Activity event record of an Aurora MySQL SELECT statement

The following example shows a SELECT event.

The following example shows the event with a class value of MAIN.

Monitoring activity streams 1217

Amazon Aurora User Guide for Aurora

{
 "type":"DatabaseActivityMonitoringRecord",
 "clusterId":"cluster-some_id",
 "instanceId":"db-some_id",
 "databaseActivityEventList":[
 {
 "logTime":"2020-05-22 18:29:57.986467+00",
 "type":"record",
 "clientApplication":null,
 "pid":2830,
 "dbUserName":"master",
 "databaseName":"test",
 "remoteHost":"localhost",
 "remotePort":"11054",
 "command":"QUERY",
 "commandText":"SELECT * FROM test1 WHERE id < 28",
 "paramList":null,
 "objectType":"TABLE",
 "objectName":"test1",
 "statementId":65469218,
 "substatementId":1,
 "exitCode":"0",
 "sessionId":"726571",
 "rowCount":2,
 "serverHost":"master",
 "serverType":"MySQL",
 "serviceName":"Amazon Aurora MySQL",
 "serverVersion":"MySQL 5.7.12",
 "startTime":"2020-05-22 18:29:57.986364+00",
 "endTime":"2020-05-22 18:29:57.986467+00",
 "transactionId":"0",
 "dbProtocol":"MySQL",
 "netProtocol":"TCP",
 "errorMessage":"",
 "class":"MAIN"
 }
]
}

The following example shows the corresponding event with a class value of AUX.

{
 "type":"DatabaseActivityMonitoringRecord",

Monitoring activity streams 1218

Amazon Aurora User Guide for Aurora

 "instanceId":"db-some_id",
 "databaseActivityEventList":[
 {
 "logTime":"2020-05-22 18:29:57.986399+00",
 "type":"record",
 "clientApplication":null,
 "pid":2830,
 "dbUserName":"master",
 "databaseName":"test",
 "remoteHost":"localhost",
 "remotePort":"11054",
 "command":"READ",
 "commandText":"test1",
 "paramList":null,
 "objectType":"TABLE",
 "objectName":"test1",
 "statementId":65469218,
 "substatementId":2,
 "exitCode":"",
 "sessionId":"726571",
 "rowCount":0,
 "serverHost":"master",
 "serverType":"MySQL",
 "serviceName":"Amazon Aurora MySQL",
 "serverVersion":"MySQL 5.7.12",
 "startTime":"2020-05-22 18:29:57.986364+00",
 "endTime":"2020-05-22 18:29:57.986399+00",
 "transactionId":"0",
 "dbProtocol":"MySQL",
 "netProtocol":"TCP",
 "errorMessage":"",
 "class":"AUX"
 }
]
}

DatabaseActivityMonitoringRecords JSON object

The database activity event records are in a JSON object that contains the following information.

Monitoring activity streams 1219

Amazon Aurora User Guide for Aurora

JSON Field Data
Type

Description

type string The type of JSON record. The value is
DatabaseActivityMonitoringR
ecords .

version string The version of the database activity
monitoring records.

The version of the generated database
activity records depends on the engine
version of the DB cluster:

• Version 1.1 database activity records
are generated for Aurora PostgreSQL
DB clusters running the engine versions
10.10 and later minor versions and
engine versions 11.5 and later.

• Version 1.0 database activity records are
generated for Aurora PostgreSQL DB
clusters running the engine versions 10.7
and 11.4.

All of the following fields are in both
version 1.0 and version 1.1 except where
specifically noted.

databaseActivityEvents string A JSON object that contains the activity
events.

key string An encryption key that you use to decrypt
the databaseActivityEventList

databaseActivityEvents JSON Object

The databaseActivityEvents JSON object contains the following information.

Monitoring activity streams 1220

Amazon Aurora User Guide for Aurora

Top-level fields in JSON record

Each event in the audit log is wrapped inside a record in JSON format. This record contains the
following fields.

type

This field always has the value DatabaseActivityMonitoringRecords.

version

This field represents the version of the database activity stream data protocol or contract. It
defines which fields are available.

Version 1.0 represents the original data activity streams support for Aurora PostgreSQL versions
10.7 and 11.4. Version 1.1 represents the data activity streams support for Aurora PostgreSQL
versions 10.10 and higher and Aurora PostgreSQL 11.5 and higher. Version 1.1 includes the
additional fields errorMessage and startTime. Version 1.2 represents the data activity
streams support for Aurora MySQL 2.08 and higher. Version 1.2 includes the additional fields
endTime and transactionId.

databaseActivityEvents

An encrypted string representing one or more activity events. It's represented as a base64 byte
array. When you decrypt the string, the result is a record in JSON format with fields as shown in
the examples in this section.

key

The encrypted data key used to encrypt the databaseActivityEvents string. This is the
same AWS KMS key that you provided when you started the database activity stream.

The following example shows the format of this record.

{
 "type":"DatabaseActivityMonitoringRecords",
 "version":"1.1",
 "databaseActivityEvents":"encrypted audit records",
 "key":"encrypted key"
}

Take the following steps to decrypt the contents of the databaseActivityEvents field:

Monitoring activity streams 1221

Amazon Aurora User Guide for Aurora

1. Decrypt the value in the key JSON field using the KMS key you provided when starting database
activity stream. Doing so returns the data encryption key in clear text.

2. Base64-decode the value in the databaseActivityEvents JSON field to obtain the
ciphertext, in binary format, of the audit payload.

3. Decrypt the binary ciphertext with the data encryption key that you decoded in the first step.

4. Decompress the decrypted payload.

• The encrypted payload is in the databaseActivityEvents field.

• The databaseActivityEventList field contains an array of audit records. The type fields
in the array can be record or heartbeat.

The audit log activity event record is a JSON object that contains the following information.

JSON Field Data
Type

Description

type string The type of JSON record. The value is DatabaseA
ctivityMonitoringRecord .

clusterId string The DB cluster resource identifier. It corresponds to the DB
cluster attribute DbClusterResourceId .

instanceId string The DB instance resource identifier. It corresponds to the DB
instance attribute DbiResourceId .

databaseActivityEv
entList

string An array of activity audit records or heartbeat messages.

databaseActivityEventList JSON array

The audit log payload is an encrypted databaseActivityEventList JSON array. The
following tables lists alphabetically the fields for each activity event in the decrypted
DatabaseActivityEventList array of an audit log. The fields differ depending on whether you
use Aurora PostgreSQL or Aurora MySQL. Consult the table that applies to your database engine.

Monitoring activity streams 1222

Amazon Aurora User Guide for Aurora

Important

The event structure is subject to change. Aurora might add new fields to activity events in
the future. In applications that parse the JSON data, make sure that your code can ignore
or take appropriate actions for unknown field names.

databaseActivityEventList fields for Aurora PostgreSQL

The following are databaseActivityEventList fields for Aurora PostgreSQL.

Field Data Type Description

class string The class of activity event. Valid values for Aurora
PostgreSQL are the following:

• ALL

• CONNECT – A connect or disconnect event.

• DDL – A DDL statement that is not included in the list of
statements for the ROLE class.

• FUNCTION – A function call or a DO block.

• MISC – A miscellaneous command such as DISCARD,
FETCH, CHECKPOINT , or VACUUM.

• NONE

• READ – A SELECT or COPY statement when the source is a
relation or a query.

• ROLE – A statement related to roles and privileges
including GRANT, REVOKE, and CREATE/ALTER/DROP
ROLE.

• WRITE – An INSERT, UPDATE, DELETE, TRUNCATE, or
COPY statement when the destination is a relation.

clientApp
lication

string The application the client used to connect as reported by
the client. The client doesn't have to provide this informati
on, so the value can be null.

Monitoring activity streams 1223

Amazon Aurora User Guide for Aurora

Field Data Type Description

command string The name of the SQL command without any command
details.

commandText string The actual SQL statement passed in by the user. For Aurora
PostgreSQL, the value is identical to the original SQL
statement. This field is used for all types of records except
for connect or disconnect records, in which case the value is
null.

Important

The full SQL text of each statement is visible in the
activity stream audit log, including any sensitive
data. However, database user passwords are
redacted if Aurora can determine them from the
context, such as in the following SQL statement.

ALTER ROLE role-name WITH password

databaseName string The database to which the user connected.

dbProtocol string The database protocol, for example Postgres 3.0.

dbUserName string The database user with which the client authenticated.

Monitoring activity streams 1224

Amazon Aurora User Guide for Aurora

Field Data Type Description

errorMessage

(version 1.1
database activity
records only)

string If there was any error, this field is populated with the error
message that would've been generated by the DB server.
The errorMessage value is null for normal statements
that didn't result in an error.

An error is defined as any activity that would produce a
client-visible PostgreSQL error log event at a severity level
of ERROR or greater. For more information, see PostgreSQ
L Message Severity Levels. For example, syntax errors and
query cancellations generate an error message.

Internal PostgreSQL server errors such as background
checkpointer process errors do not generate an error
message. However, records for such events are still emitted
regardless of the setting of the log severity level. This
prevents attackers from turning off logging to attempt
avoiding detection.

See also the exitCode field.

exitCode int A value used for a session exit record. On a clean exit, this
contains the exit code. An exit code can't always be obtained
in some failure scenarios. Examples are if PostgreSQL does
an exit() or if an operator performs a command such as
kill -9.

If there was any error, the exitCode field shows the SQL
error code, SQLSTATE, as listed in PostgreSQL Error Codes.

See also the errorMessage field.

logTime string A timestamp as recorded in the auditing code path. This
represents the SQL statement execution end time. See also
the startTime field.

netProtocol string The network communication protocol.

Monitoring activity streams 1225

https://www.postgresql.org/docs/current/runtime-config-logging.html#RUNTIME-CONFIG-SEVERITY-LEVELS
https://www.postgresql.org/docs/current/runtime-config-logging.html#RUNTIME-CONFIG-SEVERITY-LEVELS
https://www.postgresql.org/docs/current/errcodes-appendix.html

Amazon Aurora User Guide for Aurora

Field Data Type Description

objectName string The name of the database object if the SQL statement
is operating on one. This field is used only where the
SQL statement operates on a database object. If the SQL
statement is not operating on an object, this value is null.

objectType string The database object type such as table, index, view, and
so on. This field is used only where the SQL statement
operates on a database object. If the SQL statement is
not operating on an object, this value is null. Valid values
include the following:

• COMPOSITE TYPE

• FOREIGN TABLE

• FUNCTION

• INDEX

• MATERIALIZED VIEW

• SEQUENCE

• TABLE

• TOAST TABLE

• VIEW

• UNKNOWN

paramList string An array of comma-separated parameters passed to the SQL
statement. If the SQL statement has no parameters, this
value is an empty array.

pid int The process ID of the backend process that is allocated for
serving the client connection.

remoteHost string Either the client IP address or hostname. For Aurora
PostgreSQL, which one is used depends on the database'
s log_hostname parameter setting. The remoteHos
t value also includes [local] and localhost which
indicate activity from the rdsadmin user.

Monitoring activity streams 1226

Amazon Aurora User Guide for Aurora

Field Data Type Description

remotePort string The client port number.

rowCount int The number of rows returned by the SQL statement. For
example, if a SELECT statement returns 10 rows, rowCount
is 10. For INSERT or UPDATE statements, rowCount is 0.

serverHost string The database server host IP address. The serverHost
value also includes [local] and localhost which
indicate activity from the rdsadmin user.

serverType string The database server type, for example PostgreSQL .

serverVer
sion

string The database server version, for example 2.3.1 for Aurora
PostgreSQL.

serviceName string The name of the service, for example Amazon Aurora
PostgreSQL-Compatible edition .

sessionId int A pseudo-unique session identifier.

sessionId int A pseudo-unique session identifier.

startTime

(version 1.1
database activity
records only)

string The time when execution began for the SQL statement.

To calculate the approximate execution time of the SQL
statement, use logTime - startTime . See also the
logTime field.

statementId int An identifier for the client's SQL statement. The counter
is at the session level and increments with each SQL
statement entered by the client.

substatem
entId

int An identifier for a SQL substatement. This value counts the
contained substatements for each SQL statement identified
by the statementId field.

type string The event type. Valid values are record or heartbeat .

Monitoring activity streams 1227

Amazon Aurora User Guide for Aurora

databaseActivityEventList fields for Aurora MySQL

The following are databaseActivityEventList fields for Aurora MySQL.

Field Data Type Description

class string The class of activity event.

Valid values for Aurora MySQL are the following:

• MAIN – The primary event representing a SQL statement.

• AUX – A supplemental event containing additional details.
For example, a statement that renames an object might
have an event with class AUX that reflects the new name.

To find MAIN and AUX events corresponding to the same
statement, check for different events that have the same
values for the pid field and for the statementId field.

clientApp
lication

string The application the client used to connect as reported by
the client. The client doesn't have to provide this informati
on, so the value can be null.

command string The general category of the SQL statement. The values for
this field depend on the value of class.

The values when class is MAIN include the following:

• CONNECT – When a client session is connected.

• QUERY – A SQL statement. Accompanied by one or more
events with a class value of AUX.

• DISCONNECT – When a client session is disconnected.

• FAILED_CONNECT – When a client attempts to connect
but isn't able to.

• CHANGEUSER – A state change that's part of the MySQL
network protocol, not from a statement that you issue.

The values when class is AUX include the following:

Monitoring activity streams 1228

Amazon Aurora User Guide for Aurora

Field Data Type Description

• READ – A SELECT or COPY statement when the source is a
relation or a query.

• WRITE – An INSERT, UPDATE, DELETE, TRUNCATE, or
COPY statement when the destination is a relation.

• DROP – Deleting an object.

• CREATE – Creating an object.

• RENAME – Renaming an object.

• ALTER – Changing the properties of an object.

Monitoring activity streams 1229

Amazon Aurora User Guide for Aurora

Field Data Type Description

commandText string For events with a class value of MAIN, this field represents
the actual SQL statement passed in by the user. This field is
used for all types of records except for connect or disconnec
t records, in which case the value is null.

For events with a class value of AUX, this field contains
supplemental information about the objects involved in the
event.

For Aurora MySQL, characters such as quotation marks are
preceded by a backslash, representing an escape character.

Important

The full SQL text of each statement is visible in the
audit log, including any sensitive data. However,
database user passwords are redacted if Aurora can
determine them from the context, such as in the
following SQL statement.

mysql> SET PASSWORD = 'my-password ';

Note

Specify a password other than the prompt
shown here as a security best practice.

databaseName string The database to which the user connected.

dbProtocol string The database protocol. Currently, this value is always MySQL
for Aurora MySQL.

dbUserName string The database user with which the client authenticated.

Monitoring activity streams 1230

Amazon Aurora User Guide for Aurora

Field Data Type Description

endTime

(version 1.2
database activity
records only)

string The time when execution ended for the SQL statement. It is
represented in Coordinated Universal Time (UTC) format.

To calculate the execution time of the SQL statement, use
endTime - startTime . See also the startTime field.

errorMessage

(version 1.1
database activity
records only)

string If there was any error, this field is populated with the error
message that would've been generated by the DB server.
The errorMessage value is null for normal statements
that didn't result in an error.

An error is defined as any activity that would produce a
client-visible MySQL error log event at a severity level of
ERROR or greater. For more information, see The Error Log
in the MySQL Reference Manual. For example, syntax errors
and query cancellations generate an error message.

Internal MySQL server errors such as background checkpoin
ter process errors do not generate an error message.
However, records for such events are still emitted regardles
s of the setting of the log severity level. This prevents
attackers from turning off logging to attempt avoiding
detection.

See also the exitCode field.

exitCode int A value used for a session exit record. On a clean exit, this
contains the exit code. An exit code can't always be obtained
in some failure scenarios. In such cases, this value might be
zero or might be blank.

logTime string A timestamp as recorded in the auditing code path. It is
represented in Coordinated Universal Time (UTC) format.
For the most accurate way to calculate statement duration,
see the startTime and endTime fields.

Monitoring activity streams 1231

https://dev.mysql.com/doc/refman/5.7/en/error-log.html

Amazon Aurora User Guide for Aurora

Field Data Type Description

netProtocol string The network communication protocol. Currently, this value
is always TCP for Aurora MySQL.

objectName string The name of the database object if the SQL statement
is operating on one. This field is used only where the
SQL statement operates on a database object. If the SQL
statement isn't operating on an object, this value is blank.
To construct the fully qualified name of the object, combine
databaseName and objectName . If the query involves
multiple objects, this field can be a comma-separated list of
names.

objectType string The database object type such as table, index, and so on.
This field is used only where the SQL statement operates on
a database object. If the SQL statement is not operating on
an object, this value is null.

Valid values for Aurora MySQL include the following:

• INDEX

• TABLE

• UNKNOWN

paramList string This field isn't used for Aurora MySQL and is always null.

pid int The process ID of the backend process that is allocated for
serving the client connection. When the database server
is restarted, the pid changes and the counter for the
statementId field starts over.

remoteHost string Either the IP address or hostname of the client that issued
the SQL statement. For Aurora MySQL, which one is
used depends on the database's skip_name_resolve
parameter setting. The value localhost indicates activity
from the rdsadmin special user.

Monitoring activity streams 1232

Amazon Aurora User Guide for Aurora

Field Data Type Description

remotePort string The client port number.

rowCount int The number of table rows affected or retrieved by the SQL
statement. This field is used only for SQL statements that
are data manipulation language (DML) statements. If the
SQL statement is not a DML statement, this value is null.

serverHost string The database server instance identifier.

serverType string The database server type, for example MySQL.

serverVer
sion

string The database server version. Currently, this value is always
MySQL 5.7.12 for Aurora MySQL.

serviceName string The name of the service. Currently, this value is always
Amazon Aurora MySQL for Aurora MySQL.

sessionId int A pseudo-unique session identifier.

startTime

(version 1.1
database activity
records only)

string The time when execution began for the SQL statement. It is
represented in Coordinated Universal Time (UTC) format.

To calculate the execution time of the SQL statement, use
endTime - startTime . See also the endTime field.

statementId int An identifier for the client's SQL statement. The counter
increments with each SQL statement entered by the client.
The counter is reset when the DB instance is restarted.

substatem
entId

int An identifier for a SQL substatement. This value is 1 for
events with class MAIN and 2 for events with class AUX.
Use the statementId field to identify all the events
generated by the same statement.

Monitoring activity streams 1233

Amazon Aurora User Guide for Aurora

Field Data Type Description

transacti
onId

(version 1.2
database activity
records only)

int An identifier for a transaction.

type string The event type. Valid values are record or heartbeat .

Processing a database activity stream using the AWS SDK

You can programmatically process an activity stream by using the AWS SDK. The following are fully
functioning Java and Python examples of how you might process the Kinesis data stream.

Java

import java.io.ByteArrayInputStream;
import java.io.ByteArrayOutputStream;
import java.io.IOException;
import java.net.InetAddress;
import java.nio.ByteBuffer;
import java.nio.charset.StandardCharsets;
import java.security.NoSuchAlgorithmException;
import java.security.NoSuchProviderException;
import java.security.Security;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import java.util.UUID;
import java.util.zip.GZIPInputStream;

import javax.crypto.Cipher;
import javax.crypto.NoSuchPaddingException;
import javax.crypto.spec.SecretKeySpec;

import com.amazonaws.auth.AWSStaticCredentialsProvider;
import com.amazonaws.auth.BasicAWSCredentials;
import com.amazonaws.encryptionsdk.AwsCrypto;
import com.amazonaws.encryptionsdk.CryptoInputStream;

Monitoring activity streams 1234

Amazon Aurora User Guide for Aurora

import com.amazonaws.encryptionsdk.jce.JceMasterKey;
import
 com.amazonaws.services.kinesis.clientlibrary.exceptions.InvalidStateException;
import com.amazonaws.services.kinesis.clientlibrary.exceptions.ShutdownException;
import com.amazonaws.services.kinesis.clientlibrary.exceptions.ThrottlingException;
import com.amazonaws.services.kinesis.clientlibrary.interfaces.IRecordProcessor;
import
 com.amazonaws.services.kinesis.clientlibrary.interfaces.IRecordProcessorCheckpointer;
import
 com.amazonaws.services.kinesis.clientlibrary.interfaces.IRecordProcessorFactory;
import
 com.amazonaws.services.kinesis.clientlibrary.lib.worker.InitialPositionInStream;
import
 com.amazonaws.services.kinesis.clientlibrary.lib.worker.KinesisClientLibConfiguration;
import com.amazonaws.services.kinesis.clientlibrary.lib.worker.ShutdownReason;
import com.amazonaws.services.kinesis.clientlibrary.lib.worker.Worker;
import com.amazonaws.services.kinesis.clientlibrary.lib.worker.Worker.Builder;
import com.amazonaws.services.kinesis.model.Record;
import com.amazonaws.services.kms.AWSKMS;
import com.amazonaws.services.kms.AWSKMSClientBuilder;
import com.amazonaws.services.kms.model.DecryptRequest;
import com.amazonaws.services.kms.model.DecryptResult;
import com.amazonaws.util.Base64;
import com.amazonaws.util.IOUtils;
import com.google.gson.Gson;
import com.google.gson.GsonBuilder;
import com.google.gson.annotations.SerializedName;
import org.bouncycastle.jce.provider.BouncyCastleProvider;

public class DemoConsumer {

 private static final String STREAM_NAME = "aws-rds-das-[cluster-external-
resource-id]";
 private static final String APPLICATION_NAME = "AnyApplication"; //unique
 application name for dynamo table generation that holds kinesis shard tracking
 private static final String AWS_ACCESS_KEY =
 "[AWS_ACCESS_KEY_TO_ACCESS_KINESIS]";
 private static final String AWS_SECRET_KEY =
 "[AWS_SECRET_KEY_TO_ACCESS_KINESIS]";
 private static final String DBC_RESOURCE_ID = "[cluster-external-resource-id]";
 private static final String REGION_NAME = "[region-name]"; //us-east-1, us-
east-2...
 private static final BasicAWSCredentials CREDENTIALS = new
 BasicAWSCredentials(AWS_ACCESS_KEY, AWS_SECRET_KEY);

Monitoring activity streams 1235

Amazon Aurora User Guide for Aurora

 private static final AWSStaticCredentialsProvider CREDENTIALS_PROVIDER = new
 AWSStaticCredentialsProvider(CREDENTIALS);

 private static final AwsCrypto CRYPTO = new AwsCrypto();
 private static final AWSKMS KMS = AWSKMSClientBuilder.standard()
 .withRegion(REGION_NAME)
 .withCredentials(CREDENTIALS_PROVIDER).build();

 class Activity {
 String type;
 String version;
 String databaseActivityEvents;
 String key;
 }

 class ActivityEvent {
 @SerializedName("class") String _class;
 String clientApplication;
 String command;
 String commandText;
 String databaseName;
 String dbProtocol;
 String dbUserName;
 String endTime;
 String errorMessage;
 String exitCode;
 String logTime;
 String netProtocol;
 String objectName;
 String objectType;
 List<String> paramList;
 String pid;
 String remoteHost;
 String remotePort;
 String rowCount;
 String serverHost;
 String serverType;
 String serverVersion;
 String serviceName;
 String sessionId;
 String startTime;
 String statementId;
 String substatementId;
 String transactionId;

Monitoring activity streams 1236

Amazon Aurora User Guide for Aurora

 String type;
 }

 class ActivityRecords {
 String type;
 String clusterId;
 String instanceId;
 List<ActivityEvent> databaseActivityEventList;
 }

 static class RecordProcessorFactory implements IRecordProcessorFactory {
 @Override
 public IRecordProcessor createProcessor() {
 return new RecordProcessor();
 }
 }

 static class RecordProcessor implements IRecordProcessor {

 private static final long BACKOFF_TIME_IN_MILLIS = 3000L;
 private static final int PROCESSING_RETRIES_MAX = 10;
 private static final long CHECKPOINT_INTERVAL_MILLIS = 60000L;
 private static final Gson GSON = new
 GsonBuilder().serializeNulls().create();

 private static final Cipher CIPHER;
 static {
 Security.insertProviderAt(new BouncyCastleProvider(), 1);
 try {
 CIPHER = Cipher.getInstance("AES/GCM/NoPadding", "BC");
 } catch (NoSuchAlgorithmException | NoSuchPaddingException |
 NoSuchProviderException e) {
 throw new ExceptionInInitializerError(e);
 }
 }

 private long nextCheckpointTimeInMillis;

 @Override
 public void initialize(String shardId) {
 }

 @Override

Monitoring activity streams 1237

Amazon Aurora User Guide for Aurora

 public void processRecords(final List<Record> records, final
 IRecordProcessorCheckpointer checkpointer) {
 for (final Record record : records) {
 processSingleBlob(record.getData());
 }

 if (System.currentTimeMillis() > nextCheckpointTimeInMillis) {
 checkpoint(checkpointer);
 nextCheckpointTimeInMillis = System.currentTimeMillis() +
 CHECKPOINT_INTERVAL_MILLIS;
 }
 }

 @Override
 public void shutdown(IRecordProcessorCheckpointer checkpointer,
 ShutdownReason reason) {
 if (reason == ShutdownReason.TERMINATE) {
 checkpoint(checkpointer);
 }
 }

 private void processSingleBlob(final ByteBuffer bytes) {
 try {
 // JSON $Activity
 final Activity activity = GSON.fromJson(new String(bytes.array(),
 StandardCharsets.UTF_8), Activity.class);

 // Base64.Decode
 final byte[] decoded =
 Base64.decode(activity.databaseActivityEvents);
 final byte[] decodedDataKey = Base64.decode(activity.key);

 Map<String, String> context = new HashMap<>();
 context.put("aws:rds:dbc-id", DBC_RESOURCE_ID);

 // Decrypt
 final DecryptRequest decryptRequest = new DecryptRequest()

 .withCiphertextBlob(ByteBuffer.wrap(decodedDataKey)).withEncryptionContext(context);
 final DecryptResult decryptResult = KMS.decrypt(decryptRequest);
 final byte[] decrypted = decrypt(decoded,
 getByteArray(decryptResult.getPlaintext()));

 // GZip Decompress

Monitoring activity streams 1238

Amazon Aurora User Guide for Aurora

 final byte[] decompressed = decompress(decrypted);
 // JSON $ActivityRecords
 final ActivityRecords activityRecords = GSON.fromJson(new
 String(decompressed, StandardCharsets.UTF_8), ActivityRecords.class);

 // Iterate throught $ActivityEvents
 for (final ActivityEvent event :
 activityRecords.databaseActivityEventList) {
 System.out.println(GSON.toJson(event));
 }
 } catch (Exception e) {
 // Handle error.
 e.printStackTrace();
 }
 }

 private static byte[] decompress(final byte[] src) throws IOException {
 ByteArrayInputStream byteArrayInputStream = new
 ByteArrayInputStream(src);
 GZIPInputStream gzipInputStream = new
 GZIPInputStream(byteArrayInputStream);
 return IOUtils.toByteArray(gzipInputStream);
 }

 private void checkpoint(IRecordProcessorCheckpointer checkpointer) {
 for (int i = 0; i < PROCESSING_RETRIES_MAX; i++) {
 try {
 checkpointer.checkpoint();
 break;
 } catch (ShutdownException se) {
 // Ignore checkpoint if the processor instance has been shutdown
 (fail over).
 System.out.println("Caught shutdown exception, skipping
 checkpoint." + se);
 break;
 } catch (ThrottlingException e) {
 // Backoff and re-attempt checkpoint upon transient failures
 if (i >= (PROCESSING_RETRIES_MAX - 1)) {
 System.out.println("Checkpoint failed after " + (i + 1) +
 "attempts." + e);
 break;
 } else {
 System.out.println("Transient issue when checkpointing -
 attempt " + (i + 1) + " of " + PROCESSING_RETRIES_MAX + e);

Monitoring activity streams 1239

Amazon Aurora User Guide for Aurora

 }
 } catch (InvalidStateException e) {
 // This indicates an issue with the DynamoDB table (check for
 table, provisioned IOPS).
 System.out.println("Cannot save checkpoint to the DynamoDB table
 used by the Amazon Kinesis Client Library." + e);
 break;
 }
 try {
 Thread.sleep(BACKOFF_TIME_IN_MILLIS);
 } catch (InterruptedException e) {
 System.out.println("Interrupted sleep" + e);
 }
 }
 }
 }

 private static byte[] decrypt(final byte[] decoded, final byte[] decodedDataKey)
 throws IOException {
 // Create a JCE master key provider using the random key and an AES-GCM
 encryption algorithm
 final JceMasterKey masterKey = JceMasterKey.getInstance(new
 SecretKeySpec(decodedDataKey, "AES"),
 "BC", "DataKey", "AES/GCM/NoPadding");
 try (final CryptoInputStream<JceMasterKey> decryptingStream =
 CRYPTO.createDecryptingStream(masterKey, new ByteArrayInputStream(decoded));
 final ByteArrayOutputStream out = new ByteArrayOutputStream()) {
 IOUtils.copy(decryptingStream, out);
 return out.toByteArray();
 }
 }

 public static void main(String[] args) throws Exception {
 final String workerId = InetAddress.getLocalHost().getCanonicalHostName() +
 ":" + UUID.randomUUID();
 final KinesisClientLibConfiguration kinesisClientLibConfiguration =
 new KinesisClientLibConfiguration(APPLICATION_NAME, STREAM_NAME,
 CREDENTIALS_PROVIDER, workerId);

 kinesisClientLibConfiguration.withInitialPositionInStream(InitialPositionInStream.LATEST);
 kinesisClientLibConfiguration.withRegionName(REGION_NAME);
 final Worker worker = new Builder()
 .recordProcessorFactory(new RecordProcessorFactory())
 .config(kinesisClientLibConfiguration)

Monitoring activity streams 1240

Amazon Aurora User Guide for Aurora

 .build();

 System.out.printf("Running %s to process stream %s as worker %s...\n",
 APPLICATION_NAME, STREAM_NAME, workerId);

 try {
 worker.run();
 } catch (Throwable t) {
 System.err.println("Caught throwable while processing data.");
 t.printStackTrace();
 System.exit(1);
 }
 System.exit(0);
 }

 private static byte[] getByteArray(final ByteBuffer b) {
 byte[] byteArray = new byte[b.remaining()];
 b.get(byteArray);
 return byteArray;
 }
}

Python

import base64
import json
import zlib
import aws_encryption_sdk
from aws_encryption_sdk import CommitmentPolicy
from aws_encryption_sdk.internal.crypto import WrappingKey
from aws_encryption_sdk.key_providers.raw import RawMasterKeyProvider
from aws_encryption_sdk.identifiers import WrappingAlgorithm, EncryptionKeyType
import boto3

REGION_NAME = '<region>' # us-east-1
RESOURCE_ID = '<external-resource-id>' # cluster-ABCD123456
STREAM_NAME = 'aws-rds-das-' + RESOURCE_ID # aws-rds-das-cluster-ABCD123456

enc_client =
 aws_encryption_sdk.EncryptionSDKClient(commitment_policy=CommitmentPolicy.FORBID_ENCRYPT_ALLOW_DECRYPT)

class MyRawMasterKeyProvider(RawMasterKeyProvider):
 provider_id = "BC"

Monitoring activity streams 1241

Amazon Aurora User Guide for Aurora

 def __new__(cls, *args, **kwargs):
 obj = super(RawMasterKeyProvider, cls).__new__(cls)
 return obj

 def __init__(self, plain_key):
 RawMasterKeyProvider.__init__(self)
 self.wrapping_key =
 WrappingKey(wrapping_algorithm=WrappingAlgorithm.AES_256_GCM_IV12_TAG16_NO_PADDING,
 wrapping_key=plain_key,
 wrapping_key_type=EncryptionKeyType.SYMMETRIC)

 def _get_raw_key(self, key_id):
 return self.wrapping_key

def decrypt_payload(payload, data_key):
 my_key_provider = MyRawMasterKeyProvider(data_key)
 my_key_provider.add_master_key("DataKey")
 decrypted_plaintext, header = enc_client.decrypt(
 source=payload,

 materials_manager=aws_encryption_sdk.materials_managers.default.DefaultCryptoMaterialsManager(master_key_provider=my_key_provider))
 return decrypted_plaintext

def decrypt_decompress(payload, key):
 decrypted = decrypt_payload(payload, key)
 return zlib.decompress(decrypted, zlib.MAX_WBITS + 16)

def main():
 session = boto3.session.Session()
 kms = session.client('kms', region_name=REGION_NAME)
 kinesis = session.client('kinesis', region_name=REGION_NAME)

 response = kinesis.describe_stream(StreamName=STREAM_NAME)
 shard_iters = []
 for shard in response['StreamDescription']['Shards']:
 shard_iter_response = kinesis.get_shard_iterator(StreamName=STREAM_NAME,
 ShardId=shard['ShardId'],

 ShardIteratorType='LATEST')
 shard_iters.append(shard_iter_response['ShardIterator'])

Monitoring activity streams 1242

Amazon Aurora User Guide for Aurora

 while len(shard_iters) > 0:
 next_shard_iters = []
 for shard_iter in shard_iters:
 response = kinesis.get_records(ShardIterator=shard_iter, Limit=10000)
 for record in response['Records']:
 record_data = record['Data']
 record_data = json.loads(record_data)
 payload_decoded =
 base64.b64decode(record_data['databaseActivityEvents'])
 data_key_decoded = base64.b64decode(record_data['key'])
 data_key_decrypt_result =
 kms.decrypt(CiphertextBlob=data_key_decoded,

 EncryptionContext={'aws:rds:dbc-id': RESOURCE_ID})
 print (decrypt_decompress(payload_decoded,
 data_key_decrypt_result['Plaintext']))
 if 'NextShardIterator' in response:
 next_shard_iters.append(response['NextShardIterator'])
 shard_iters = next_shard_iters

if __name__ == '__main__':
 main()

Managing access to database activity streams

Any user with appropriate AWS Identity and Access Management (IAM) role privileges for database
activity streams can create, start, stop, and modify the activity stream settings for a DB cluster.
These actions are included in the audit log of the stream. For best compliance practices, we
recommend that you don't provide these privileges to DBAs.

You set access to database activity streams using IAM policies. For more information about Aurora
authentication, see Identity and access management for Amazon Aurora. For more information
about creating IAM policies, see Creating and using an IAM policy for IAM database access.

Example Policy to allow configuring database activity streams

To give users fine-grained access to modify activity streams, use the service-specific operation
context keys rds:StartActivityStream and rds:StopActivityStream in an IAM policy. The
following IAM policy example allows a user or role to configure activity streams.

Managing access to activity streams 1243

Amazon Aurora User Guide for Aurora

{
 "Version":"2012-10-17",
 "Statement":[
 {
 "Sid":"ConfigureActivityStreams",
 "Effect":"Allow",
 "Action": [
 "rds:StartActivityStream",
 "rds:StopActivityStream"
],
 "Resource":"*",
 }
]
}

Example Policy to allow starting database activity streams

The following IAM policy example allows a user or role to start activity streams.

{
 "Version":"2012-10-17",
 "Statement":[
 {
 "Sid":"AllowStartActivityStreams",
 "Effect":"Allow",
 "Action":"rds:StartActivityStream",
 "Resource":"*"
 }
]
}

Example Policy to allow stopping database activity streams

The following IAM policy example allows a user or role to stop activity streams.

{
 "Version":"2012-10-17",
 "Statement":[
 {
 "Sid":"AllowStopActivityStreams",
 "Effect":"Allow",
 "Action":"rds:StopActivityStream",

Managing access to activity streams 1244

Amazon Aurora User Guide for Aurora

 "Resource":"*"
 }
]
}

Example Policy to deny starting database activity streams

The following IAM policy example prevents a user or role from starting activity streams.

{
 "Version":"2012-10-17",
 "Statement":[
 {
 "Sid":"DenyStartActivityStreams",
 "Effect":"Deny",
 "Action":"rds:StartActivityStream",
 "Resource":"*"
 }
]
}

Example Policy to deny stopping database activity streams

The following IAM policy example prevents a user or role from stopping activity streams.

{
 "Version":"2012-10-17",
 "Statement":[
 {
 "Sid":"DenyStopActivityStreams",
 "Effect":"Deny",
 "Action":"rds:StopActivityStream",
 "Resource":"*"
 }
]
}

Managing access to activity streams 1245

Amazon Aurora User Guide for Aurora

Monitoring threats with Amazon GuardDuty RDS Protection

Amazon GuardDuty is a threat detection service that helps protect your accounts, containers,
workloads, and the data within your AWS environment. Using machine learning (ML) models, and
anomaly and threat detection capabilities, GuardDuty continuously monitors different log sources
and runtime activity to identify and prioritize potential security risks and malicious activities in
your environment.

GuardDuty RDS Protection analyzes and profiles login events for potential access threats to your
Amazon Aurora databases. When you turn on RDS Protection, GuardDuty consumes RDS login
events from your Aurora databases. RDS Protection monitors these events and profiles them for
potential insider threats or external actors.

For more information about enabling GuardDuty RDS Protection, see GuardDuty RDS Protection in
the Amazon GuardDuty User Guide.

When RDS Protection detects a potential threat, such as an unusual pattern in successful or
failed login attempts, GuardDuty generates a new finding with details about the potentially
compromised database. You can view the finding details in the finding summary section in the
Amazon GuardDuty console. The finding details vary based on the finding type. The primary
details, resource type and resource role, determine the kind of information available for any
finding. For more information about the commonly available details for findings and the finding
types, see Finding details and GuardDuty RDS Protection finding types respectively in the Amazon
GuardDuty User Guide.

You can turn the RDS Protection feature on or off for any AWS account in any AWS Region where
this feature is available. When RDS Protection isn't enabled, GuardDuty doesn't detect potentially
compromised Aurora databases or provide details of the compromise.

An existing GuardDuty account can enable RDS Protection with a 30-day trial period. For a new
GuardDuty account, RDS Protection is already enabled and included in the 30-day free trial period.
For more information, see Estimating GuardDuty cost in the Amazon GuardDuty User Guide.

For information about the AWS Regions where GuardDuty doesn't yet support RDS Protection, see
Region-specific feature availability in the Amazon GuardDuty User Guide.

The following table provides the Aurora database versions that GuardDuty RDS Protection
supports:

Monitoring threats with GuardDuty RDS Protection 1246

https://docs.aws.amazon.com/guardduty/latest/ug/rds-protection.html
https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_findings-summary.html
https://docs.aws.amazon.com/guardduty/latest/ug/findings-rds-protection.html
https://docs.aws.amazon.com/guardduty/latest/ug/monitoring_costs.html
https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_regions.html#gd-regional-feature-availability

Amazon Aurora User Guide for Aurora

Amazon Aurora DB engine Supported engine versions

Aurora MySQL • 2.10.2 or later

• 3.02.1 or later

Aurora PostgreSQL • 10.17 or later

• 11.12 or later

• 12.7 or later

• 13.3 or later

• 14.3 or later

• 15.2 or later

• 16.1 or later

Monitoring threats with GuardDuty RDS Protection 1247

Amazon Aurora User Guide for Aurora

Working with Amazon Aurora MySQL

Amazon Aurora MySQL is a fully managed, MySQL-compatible, relational database engine that
combines the speed and reliability of high-end commercial databases with the simplicity and cost-
effectiveness of open-source databases. Aurora MySQL is a drop-in replacement for MySQL and
makes it simple and cost-effective to set up, operate, and scale your new and existing MySQL
deployments, thus freeing you to focus on your business and applications. Amazon RDS provides
administration for Aurora by handling routine database tasks such as provisioning, patching,
backup, recovery, failure detection, and repair. Amazon RDS also provides push-button migration
tools to convert your existing Amazon RDS for MySQL applications to Aurora MySQL.

Topics

• Overview of Amazon Aurora MySQL

• Security with Amazon Aurora MySQL

• Updating applications to connect to Aurora MySQL DB clusters using new TLS certificates

• Using Kerberos authentication for Aurora MySQL

• Migrating data to an Amazon Aurora MySQL DB cluster

• Managing Amazon Aurora MySQL

• Tuning Aurora MySQL

• Working with parallel query for Amazon Aurora MySQL

• Using Advanced Auditing with an Amazon Aurora MySQL DB cluster

• Replication with Amazon Aurora MySQL

• Integrating Amazon Aurora MySQL with other AWS services

• Amazon Aurora MySQL lab mode

• Best practices with Amazon Aurora MySQL

• Troubleshooting Amazon Aurora MySQL database performance

• Amazon Aurora MySQL reference

• Database engine updates for Amazon Aurora MySQL

Overview of Amazon Aurora MySQL

The following sections provide an overview of Amazon Aurora MySQL.

Overview of Aurora MySQL 1248

Amazon Aurora User Guide for Aurora

Topics

• Amazon Aurora MySQL performance enhancements

• Amazon Aurora MySQL and spatial data

• Aurora MySQL version 3 compatible with MySQL 8.0

• Aurora MySQL version 2 compatible with MySQL 5.7

Amazon Aurora MySQL performance enhancements

Amazon Aurora includes performance enhancements to support the diverse needs of high-end
commercial databases.

Fast insert

Fast insert accelerates parallel inserts sorted by primary key and applies specifically to LOAD DATA
and INSERT INTO ... SELECT ... statements. Fast insert caches the position of a cursor in an
index traversal while executing the statement. This avoids unnecessarily traversing the index again.

Fast insert is enabled only for regular InnoDB tables in Aurora MySQL version 3.03.2 and higher.
This optimization doesn’t work for InnoDB temporary tables. It's disabled in Aurora MySQL
version 2 for all 2.11 and 2.12 versions. Fast insert optimization works only if Adaptive Hash Index
optimization is disabled.

You can monitor the following metrics to determine the effectiveness of fast insert for your DB
cluster:

• aurora_fast_insert_cache_hits: A counter that is incremented when the cached cursor is
successfully retrieved and verified.

• aurora_fast_insert_cache_misses: A counter that is incremented when the cached cursor
is no longer valid and Aurora performs a normal index traversal.

You can retrieve the current value of the fast insert metrics using the following command:

mysql> show global status like 'Aurora_fast_insert%';

You will get output similar to the following:

Amazon Aurora MySQL performance enhancements 1249

Amazon Aurora User Guide for Aurora

+---------------------------------+-----------+
| Variable_name | Value |
+---------------------------------+-----------+
| Aurora_fast_insert_cache_hits | 3598300 |
| Aurora_fast_insert_cache_misses | 436401336 |
+---------------------------------+-----------+

Amazon Aurora MySQL and spatial data

The following list summarizes the main Aurora MySQL spatial features and explains how they
correspond to spatial features in MySQL:

• Aurora MySQL version 2 supports the same spatial data types and spatial relation functions as
MySQL 5.7. For more information about these data types and functions, see Spatial Data Types
and Spatial Relation Functions in the MySQL 5.7 documentation.

• Aurora MySQL version 3 supports the same spatial data types and spatial relation functions as
MySQL 8.0. For more information about these data types and functions, see Spatial Data Types
and Spatial Relation Functions in the MySQL 8.0 documentation.

• Aurora MySQL supports spatial indexing on InnoDB tables. Spatial indexing improves query
performance on large datasets for queries on spatial data. In MySQL, spatial indexing for InnoDB
tables is available in MySQL 5.7 and 8.0.

Aurora MySQL uses a different spatial indexing strategy from MySQL for high performance with
spatial queries. The Aurora spatial index implementation uses a space-filling curve on a B-tree,
which is intended to provide higher performance for spatial range scans than an R-tree.

Note

In Aurora MySQL, a transaction on a table with a spatial index defined on a column
with a spatial reference identifier (SRID) can't insert into an area selected for update by
another transaction.

The following data definition language (DDL) statements are supported for creating indexes on
columns that use spatial data types.

Aurora MySQL and spatial data 1250

https://dev.mysql.com/doc/refman/5.7/en/spatial-types.html
https://dev.mysql.com/doc/refman/5.7/en/spatial-relation-functions-object-shapes.html
https://dev.mysql.com/doc/refman/8.0/en/spatial-types.html
https://dev.mysql.com/doc/refman/8.0/en/spatial-relation-functions-object-shapes.html

Amazon Aurora User Guide for Aurora

CREATE TABLE

You can use the SPATIAL INDEX keywords in a CREATE TABLE statement to add a spatial index
to a column in a new table. Following is an example.

CREATE TABLE test (shape POLYGON NOT NULL, SPATIAL INDEX(shape));

ALTER TABLE

You can use the SPATIAL INDEX keywords in an ALTER TABLE statement to add a spatial index
to a column in an existing table. Following is an example.

ALTER TABLE test ADD SPATIAL INDEX(shape);

CREATE INDEX

You can use the SPATIAL keyword in a CREATE INDEX statement to add a spatial index to a
column in an existing table. Following is an example.

CREATE SPATIAL INDEX shape_index ON test (shape);

Aurora MySQL version 3 compatible with MySQL 8.0

You can use Aurora MySQL version 3 to get the latest MySQL-compatible features, performance
enhancements, and bug fixes. Following, you can learn about Aurora MySQL version 3, with MySQL
8.0 compatibility. You can learn how to upgrade your clusters and applications to Aurora MySQL
version 3.

Some Aurora features, such as Aurora Serverless v2, require Aurora MySQL version 3.

Topics

• Features from MySQL 8.0 Community Edition

• Aurora MySQL version 3 prerequisite for Aurora MySQL Serverless v2

• Release notes for Aurora MySQL version 3

• New parallel query optimizations

• Optimizations to reduce database restart time

• New temporary table behavior in Aurora MySQL version 3

• Comparing Aurora MySQL version 2 and Aurora MySQL version 3

Aurora MySQL version 3 compatible with MySQL 8.0 1251

Amazon Aurora User Guide for Aurora

• Comparing Aurora MySQL version 3 and MySQL 8.0 Community Edition

• Upgrading to Aurora MySQL version 3

Features from MySQL 8.0 Community Edition

The initial release of Aurora MySQL version 3 is compatible with MySQL 8.0.23 Community Edition.
MySQL 8.0 introduces several new features, including the following:

• JSON functions. For usage information, see JSON Functions in the MySQL Reference Manual.

• Window functions. For usage information, see Window Functions in the MySQL Reference
Manual.

• Common table expressions (CTEs), using the WITH clause. For usage information, see WITH
(Common Table Expressions) in the MySQL Reference Manual.

• Optimized ADD COLUMN and RENAME COLUMN clauses for the ALTER TABLE statement.
These optimizations are called "instant DDL." Aurora MySQL version 3 is compatible with the
community MySQL instant DDL feature. The former Aurora fast DDL feature isn't used. For usage
information for instant DDL, see Instant DDL (Aurora MySQL version 3).

• Descending, functional, and invisible indexes. For usage information, see Invisible Indexes,
Descending Indexes, and CREATE INDEX Statement in the MySQL Reference Manual.

• Role-based privileges controlled through SQL statements. For more information on changes to
the privilege model, see Role-based privilege model.

• NOWAIT and SKIP LOCKED clauses with the SELECT ... FOR SHARE statement. These clauses
avoid waiting for other transactions to release row locks. For usage information, see Locking
Reads in the MySQL Reference Manual.

• Improvements to binary log (binlog) replication. For the Aurora MySQL details, see Binary log
replication. In particular, you can perform filtered replication. For usage information about
filtered replication, see How Servers Evaluate Replication Filtering Rules in the MySQL Reference
Manual.

• Hints. Some of the MySQL 8.0–compatible hints were already backported to Aurora MySQL
version 2. For information about using hints with Aurora MySQL, see Aurora MySQL hints. For the
full list of hints in community MySQL 8.0, see Optimizer Hints in the MySQL Reference Manual.

For the full list of features added to MySQL 8.0 community edition, see the blog post The complete
list of new features in MySQL 8.0.

Aurora MySQL version 3 compatible with MySQL 8.0 1252

https://dev.mysql.com/doc/refman/8.0/en/json-functions.html
https://dev.mysql.com/doc/refman/8.0/en/window-functions.html
https://dev.mysql.com/doc/refman/8.0/en/with.html
https://dev.mysql.com/doc/refman/8.0/en/with.html
https://dev.mysql.com/doc/refman/8.0/en/invisible-indexes.html
https://dev.mysql.com/doc/refman/8.0/en/descending-indexes.html
https://dev.mysql.com/doc/refman/8.0/en/create-index.html#create-index-functional-key-parts
https://dev.mysql.com/doc/refman/8.0/en/innodb-locking-reads.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-locking-reads.html
https://dev.mysql.com/doc/refman/8.0/en/replication-rules.html
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html
https://dev.mysql.com/blog-archive/the-complete-list-of-new-features-in-mysql-8-0/
https://dev.mysql.com/blog-archive/the-complete-list-of-new-features-in-mysql-8-0/

Amazon Aurora User Guide for Aurora

Aurora MySQL version 3 also includes changes to keywords for inclusive language, backported
from community MySQL 8.0.26. For details about those changes, see Inclusive language changes
for Aurora MySQL version 3.

Aurora MySQL version 3 prerequisite for Aurora MySQL Serverless v2

Aurora MySQL version 3 is a prerequisite for all DB instances in an Aurora MySQL Serverless v2
cluster. Aurora MySQL Serverless v2 includes support for reader instances in a DB cluster, and other
Aurora features that aren't available for Aurora MySQL Serverless v1. It also has faster and more
granular scaling than Aurora MySQL Serverless v1.

Release notes for Aurora MySQL version 3

For the release notes for all Aurora MySQL version 3 releases, see Database engine updates for
Amazon Aurora MySQL version 3 in the Release Notes for Aurora MySQL.

New parallel query optimizations

The Aurora parallel query optimization now applies to more SQL operations:

• Parallel query now applies to tables containing the data types TEXT, BLOB, JSON, GEOMETRY,
and VARCHAR and CHAR longer than 768 bytes.

• Parallel query can optimize queries involving partitioned tables.

• Parallel query can optimize queries involving aggregate function calls in the select list and the
HAVING clause.

For more information about these enhancements, see Upgrading parallel query clusters to Aurora
MySQL version 3. For general information about Aurora parallel query, see Working with parallel
query for Amazon Aurora MySQL.

Optimizations to reduce database restart time

Your Aurora MySQL DB cluster must be highly available during both planned and unplanned
outages.

Database administrators need to perform occasional database maintenance. This maintenance
includes database patching, upgrades, database parameter modifications requiring a manual
reboot, performing a failover to reduce the time it takes for instance class changes, and so on.
These planned actions require downtime.

Aurora MySQL version 3 compatible with MySQL 8.0 1253

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraMySQLReleaseNotes/AuroraMySQL.Updates.30Updates.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraMySQLReleaseNotes/AuroraMySQL.Updates.30Updates.html

Amazon Aurora User Guide for Aurora

However, downtime can also be caused by unplanned actions, such as an unexpected failover
due to an underlying hardware fault or database resource throttling. All of these planned and
unplanned actions result in a database restart.

In Aurora MySQL version 3.05 and higher, we've introduced optimizations that reduce the database
restart time. These optimizations provide up to 65% less downtime than without optimizations,
and fewer disruptions to your database workloads, after a restart.

During database startup, many internal memory components are initialized. The largest of these
is the InnoDB buffer pool, which in Aurora MySQL is 75% of the instance memory size by default.
Our testing has found that the initialization time is proportional to the size of InnoDB buffer pool,
and therefore scales with the DB instance class size. During this initialization phase, the database
can't accept connections, which causes longer downtime during restarts. The first phase of Aurora
MySQL fast restart optimizes the buffer pool initialization, which reduces the time for database
initialization and thereby reduces the overall restart time.

For more details, see the blog Reduce downtime with Amazon Aurora MySQL database restart time
optimizations.

New temporary table behavior in Aurora MySQL version 3

Aurora MySQL version 3 handles temporary tables differently from earlier Aurora MySQL versions.
This new behavior is inherited from MySQL 8.0 Community Edition. There are two types of
temporary tables that can be created with Aurora MySQL version 3:

• Internal (or implicit) temporary tables – Created by the Aurora MySQL engine to handle
operations such as sorting aggregation, derived tables, or common table expressions (CTEs).

• User-created (or explicit) temporary tables – Created by the Aurora MySQL engine when you use
the CREATE TEMPORARY TABLE statement.

There are additional considerations for both internal and user-created temporary tables on Aurora
reader DB instances. We discuss these changes in the following sections.

Topics

• Storage engine for internal (implicit) temporary tables

• Limiting the size of internal, in-memory temporary tables

• Mitigating fullness issues for internal temporary tables on Aurora Replicas

Aurora MySQL version 3 compatible with MySQL 8.0 1254

https://aws.amazon.com/blogs/database/best-practices-for-amazon-aurora-mysql-database-configuration/
https://aws.amazon.com/blogs/database/reduce-downtime-with-amazon-aurora-mysql-database-restart-time-optimizations/
https://aws.amazon.com/blogs/database/reduce-downtime-with-amazon-aurora-mysql-database-restart-time-optimizations/

Amazon Aurora User Guide for Aurora

• User-created (explicit) temporary tables on reader DB instances

• Temporary table creation errors and mitigation

Storage engine for internal (implicit) temporary tables

When generating intermediate result sets, Aurora MySQL initially attempts to write to in-memory
temporary tables. This might be unsuccessful, because of either incompatible data types or
configured limits. If so, the temporary table is converted to an on-disk temporary table rather than
being held in memory. More information on this can be found in the Internal Temporary Table Use
in MySQL in the MySQL documentation.

In Aurora MySQL version 3, the way internal temporary tables work is different from earlier Aurora
MySQL versions. Instead of choosing between the InnoDB and MyISAM storage engines for such
temporary tables, now you choose between the TempTable and MEMORY storage engines.

With the TempTable storage engine, you can make an additional choice for how to handle certain
data. The data affected overflows the memory pool that holds all the internal temporary tables for
the DB instance.

Those choices can influence the performance for queries that generate high volumes of temporary
data, for example while performing aggregations such as GROUP BY on large tables.

Tip

If your workload includes queries that generate internal temporary tables, confirm how
your application performs with this change by running benchmarks and monitoring
performance-related metrics.
In some cases, the amount of temporary data fits within the TempTable memory pool or
only overflows the memory pool by a small amount. In these cases, we recommend using
the TempTable setting for internal temporary tables and memory-mapped files to hold
any overflow data. This setting is the default.

The TempTable storage engine is the default. TempTable uses a common memory pool for all
temporary tables that use this engine, instead of a maximum memory limit per table. The size of
this memory pool is specified by the temptable_max_ram parameter. It defaults to 1 GiB on DB
instances with 16 or more GiB of memory, and 16 MB on DB instances with less than 16 GiB of
memory. The size of the memory pool influences session-level memory consumption.

Aurora MySQL version 3 compatible with MySQL 8.0 1255

https://dev.mysql.com/doc/refman/8.0/en/internal-temporary-tables.html
https://dev.mysql.com/doc/refman/8.0/en/internal-temporary-tables.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_temptable_max_ram

Amazon Aurora User Guide for Aurora

In some cases when you use the TempTable storage engine, the temporary data might exceed
the size of the memory pool. If so, Aurora MySQL stores the overflow data using a secondary
mechanism.

You can set the temptable_max_mmap parameter to choose whether the data overflows to
memory-mapped temporary files or to InnoDB internal temporary tables on disk. The different
data formats and overflow criteria of these overflow mechanisms can affect query performance.
They do so by influencing the amount of data written to disk and the demand on disk storage
throughput.

Aurora MySQL stores the overflow data differently depending on your choice of data overflow
destination and whether the query runs on a writer or reader DB instance:

• On the writer instance, data that overflows to InnoDB internal temporary tables is stored in the
Aurora cluster volume.

• On the writer instance, data that overflows to memory-mapped temporary files resides on local
storage on the Aurora MySQL version 3 instance.

• On reader instances, overflow data always resides on memory-mapped temporary files on local
storage. That's because read-only instances can't store any data on the Aurora cluster volume.

The configuration parameters related to internal temporary tables apply differently to the writer
and reader instances in your cluster:

• On reader instances, Aurora MySQL always uses the TempTable storage engine.

• The size for temptable_max_mmap defaults to 1 GiB for both writer and reader instances,
regardless of the DB instance memory size. You can adjust this value on both writer and reader
instances.

• Setting temptable_max_mmap to 0 turns off the use of memory-mapped temporary files on
writer instances.

• You can't set temptable_max_mmap to 0 on reader instances.

Note

We don't recommend using the temptable_use_mmap parameter. It has been deprecated,
and support for it is expected to be removed in a future MySQL release.

Aurora MySQL version 3 compatible with MySQL 8.0 1256

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_temptable_max_mmap
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_temptable_use_mmap

Amazon Aurora User Guide for Aurora

Limiting the size of internal, in-memory temporary tables

As discussed in Storage engine for internal (implicit) temporary tables, you can control temporary
table resources globally by using the temptable_max_ram and temptable_max_mmap settings.

You can also limit the size of any individual internal, in-memory temporary table by using the
tmp_table_size DB parameter. This limit is intended to prevent individual queries from consuming
an inordinate amount of global temporary table resources, which can affect the performance of
concurrent queries that require these resources.

The tmp_table_size parameter defines the maximum size of temporary tables created by the
MEMORY storage engine in Aurora MySQL version 3.

In Aurora MySQL version 3.04 and higher, tmp_table_size also defines the maximum
size of temporary tables created by the TempTable storage engine when the
aurora_tmptable_enable_per_table_limit DB parameter is set to ON. This behavior is
disabled by default (OFF), which is the same behavior as in Aurora MySQL version 3.03 and lower
versions.

• When aurora_tmptable_enable_per_table_limit is OFF, tmp_table_size isn't
considered for internal, in-memory temporary tables created by the TempTable storage engine.

However, the global TempTable resources limit still applies. Aurora MySQL has the following
behavior when the global TempTable resources limit is reached:

• Writer DB instances – Aurora MySQL automatically converts the in-memory temporary table to
an InnoDB on-disk temporary table.

• Reader DB instances – The query ends with an error.

ERROR 1114 (HY000): The table '/rdsdbdata/tmp/#sqlxx_xxx' is full

• When aurora_tmptable_enable_per_table_limit is ON, Aurora MySQL has the following
behavior when the tmp_table_size limit is reached:

• Writer DB instances – Aurora MySQL automatically converts the in-memory temporary table to
an InnoDB on-disk temporary table.

• Reader DB instances – The query ends with an error.

ERROR 1114 (HY000): The table '/rdsdbdata/tmp/#sqlxx_xxx' is full

Both the global TempTable resources limit and the per-table limit apply in this case.

Aurora MySQL version 3 compatible with MySQL 8.0 1257

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_temptable_max_ram
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_temptable_max_mmap
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_tmp_table_size

Amazon Aurora User Guide for Aurora

Note

The aurora_tmptable_enable_per_table_limit parameter has no effect when
internal_tmp_mem_storage_engine is set to MEMORY. In this case, the maximum size of
an in-memory temporary table is defined by the tmp_table_size or max_heap_table_size
value, whichever is smaller.

The following examples show the behavior of the
aurora_tmptable_enable_per_table_limit parameter for writer and reader DB instances.

Example of writer DB instance with aurora_tmptable_enable_per_table_limit set to OFF

The in-memory temporary table isn't converted to an InnoDB on-disk temporary table.

mysql> set aurora_tmptable_enable_per_table_limit=0;
Query OK, 0 rows affected (0.00 sec)

mysql> select
 @@innodb_read_only,@@aurora_version,@@aurora_tmptable_enable_per_table_limit,@@temptable_max_ram,@@temptable_max_mmap;
+--------------------+------------------+--
+---------------------+----------------------+
| @@innodb_read_only | @@aurora_version | @@aurora_tmptable_enable_per_table_limit |
 @@temptable_max_ram | @@temptable_max_mmap |
+--------------------+------------------+--
+---------------------+----------------------+
| 0 | 3.04.0 | 0 |
 1073741824 | 1073741824 |
+--------------------+------------------+--
+---------------------+----------------------+
1 row in set (0.00 sec)

mysql> show status like '%created_tmp_disk%';
+-------------------------+-------+
| Variable_name | Value |
+-------------------------+-------+
| Created_tmp_disk_tables | 0 |
+-------------------------+-------+
1 row in set (0.00 sec)

mysql> set cte_max_recursion_depth=4294967295;
Query OK, 0 rows affected (0.00 sec)

Aurora MySQL version 3 compatible with MySQL 8.0 1258

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_internal_tmp_mem_storage_engine
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_internal_tmp_mem_storage_engine
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_tmp_table_size
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_max_heap_table_size

Amazon Aurora User Guide for Aurora

mysql> WITH RECURSIVE cte (n) AS (SELECT 1 UNION ALL SELECT n + 1 FROM cte WHERE n <
 60000000) SELECT max(n) FROM cte;
+----------+
| max(n) |
+----------+
| 60000000 |
+----------+
1 row in set (13.99 sec)

mysql> show status like '%created_tmp_disk%';
+-------------------------+-------+
| Variable_name | Value |
+-------------------------+-------+
| Created_tmp_disk_tables | 0 |
+-------------------------+-------+
1 row in set (0.00 sec)

Example of writer DB instance with aurora_tmptable_enable_per_table_limit set to ON

The in-memory temporary table is converted to an InnoDB on-disk temporary table.

mysql> set aurora_tmptable_enable_per_table_limit=1;
Query OK, 0 rows affected (0.00 sec)

mysql> select
 @@innodb_read_only,@@aurora_version,@@aurora_tmptable_enable_per_table_limit,@@tmp_table_size;
+--------------------+------------------+--
+------------------+
| @@innodb_read_only | @@aurora_version | @@aurora_tmptable_enable_per_table_limit |
 @@tmp_table_size |
+--------------------+------------------+--
+------------------+
| 0 | 3.04.0 | 1 |
 16777216 |
+--------------------+------------------+--
+------------------+
1 row in set (0.00 sec)

mysql> set cte_max_recursion_depth=4294967295;
Query OK, 0 rows affected (0.00 sec)

mysql> show status like '%created_tmp_disk%';
+-------------------------+-------+

Aurora MySQL version 3 compatible with MySQL 8.0 1259

Amazon Aurora User Guide for Aurora

| Variable_name | Value |
+-------------------------+-------+
| Created_tmp_disk_tables | 0 |
+-------------------------+-------+
1 row in set (0.00 sec)

mysql> WITH RECURSIVE cte (n) AS (SELECT 1 UNION ALL SELECT n + 1 FROM cte WHERE n <
 6000000) SELECT max(n) FROM cte;
+---------+
| max(n) |
+---------+
| 6000000 |
+---------+
1 row in set (4.10 sec)

mysql> show status like '%created_tmp_disk%';
+-------------------------+-------+
| Variable_name | Value |
+-------------------------+-------+
| Created_tmp_disk_tables | 1 |
+-------------------------+-------+
1 row in set (0.00 sec)

Example of reader DB instance with aurora_tmptable_enable_per_table_limit set to OFF

The query finishes without an error because tmp_table_size doesn't apply, and the global
TempTable resources limit hasn't been reached.

mysql> set aurora_tmptable_enable_per_table_limit=0;
Query OK, 0 rows affected (0.00 sec)

mysql> select
 @@innodb_read_only,@@aurora_version,@@aurora_tmptable_enable_per_table_limit,@@temptable_max_ram,@@temptable_max_mmap;
+--------------------+------------------+--
+---------------------+----------------------+
| @@innodb_read_only | @@aurora_version | @@aurora_tmptable_enable_per_table_limit |
 @@temptable_max_ram | @@temptable_max_mmap |
+--------------------+------------------+--
+---------------------+----------------------+
| 1 | 3.04.0 | 0 |
 1073741824 | 1073741824 |
+--------------------+------------------+--
+---------------------+----------------------+

Aurora MySQL version 3 compatible with MySQL 8.0 1260

Amazon Aurora User Guide for Aurora

1 row in set (0.00 sec)

mysql> set cte_max_recursion_depth=4294967295;
Query OK, 0 rows affected (0.00 sec)

mysql> WITH RECURSIVE cte (n) AS (SELECT 1 UNION ALL SELECT n + 1 FROM cte WHERE n <
 60000000) SELECT max(n) FROM cte;
+----------+
| max(n) |
+----------+
| 60000000 |
+----------+
1 row in set (14.05 sec)

Example of reader DB instance with aurora_tmptable_enable_per_table_limit set to OFF

This query reaches the global TempTable resources limit with
aurora_tmptable_enable_per_table_limit set to OFF. The query ends with an error on
reader instances.

mysql> set aurora_tmptable_enable_per_table_limit=0;
Query OK, 0 rows affected (0.00 sec)

mysql> select
 @@innodb_read_only,@@aurora_version,@@aurora_tmptable_enable_per_table_limit,@@temptable_max_ram,@@temptable_max_mmap;
+--------------------+------------------+--
+---------------------+----------------------+
| @@innodb_read_only | @@aurora_version | @@aurora_tmptable_enable_per_table_limit |
 @@temptable_max_ram | @@temptable_max_mmap |
+--------------------+------------------+--
+---------------------+----------------------+
| 1 | 3.04.0 | 0 |
 1073741824 | 1073741824 |
+--------------------+------------------+--
+---------------------+----------------------+
1 row in set (0.00 sec)

mysql> set cte_max_recursion_depth=4294967295;
Query OK, 0 rows affected (0.01 sec)

mysql> WITH RECURSIVE cte (n) AS (SELECT 1 UNION ALL SELECT n + 1 FROM cte WHERE n <
 120000000) SELECT max(n) FROM cte;
ERROR 1114 (HY000): The table '/rdsdbdata/tmp/#sqlfd_1586_2' is full

Aurora MySQL version 3 compatible with MySQL 8.0 1261

Amazon Aurora User Guide for Aurora

Example of reader DB instance with aurora_tmptable_enable_per_table_limit set to ON

The query ends with an error when the tmp_table_size limit is reached.

mysql> set aurora_tmptable_enable_per_table_limit=1;
Query OK, 0 rows affected (0.00 sec)

mysql> select
 @@innodb_read_only,@@aurora_version,@@aurora_tmptable_enable_per_table_limit,@@tmp_table_size;
+--------------------+------------------+--
+------------------+
| @@innodb_read_only | @@aurora_version | @@aurora_tmptable_enable_per_table_limit |
 @@tmp_table_size |
+--------------------+------------------+--
+------------------+
| 1 | 3.04.0 | 1 |
 16777216 |
+--------------------+------------------+--
+------------------+
1 row in set (0.00 sec)

mysql> set cte_max_recursion_depth=4294967295;
Query OK, 0 rows affected (0.00 sec)

mysql> WITH RECURSIVE cte (n) AS (SELECT 1 UNION ALL SELECT n + 1 FROM cte WHERE n <
 6000000) SELECT max(n) FROM cte;
ERROR 1114 (HY000): The table '/rdsdbdata/tmp/#sqlfd_8_2' is full

Mitigating fullness issues for internal temporary tables on Aurora Replicas

To avoid size limitation issues for temporary tables, set the temptable_max_ram and
temptable_max_mmap parameters to a combined value that can fit the requirements of your
workload.

Be careful when setting the value of the temptable_max_ram parameter. Setting the value
too high reduces the available memory on the database instance, which can cause an out-of-
memory condition. Monitor the average freeable memory on the DB instance. Then determine an
appropriate value for temptable_max_ram so that you will still have a reasonable amount of free
memory left on the instance. For more information, see Freeable memory issues in Amazon Aurora.

It is also important to monitor the size of the local storage and the temporary table space
consumption. For more information on monitoring local storage on an instance, see the AWS

Aurora MySQL version 3 compatible with MySQL 8.0 1262

Amazon Aurora User Guide for Aurora

Knowledge Center article What is stored in Aurora MySQL-compatible local storage, and how can I
troubleshoot local storage issues?.

Note

This procedure doesn't work when the aurora_tmptable_enable_per_table_limit
parameter is set to ON. For more information, see Limiting the size of internal, in-memory
temporary tables.

Example 1

You know that your temporary tables grow to a cumulative size of 20 GiB. You want to set in-
memory temporary tables to 2 GiB and to grow to a maximum of 20 GiB on disk.

Set temptable_max_ram to 2,147,483,648 and temptable_max_mmap to 21,474,836,480.
These values are in bytes.

These parameter settings make sure that your temporary tables can grow to a cumulative total of
22 GiB.

Example 2

Your current instance size is 16xlarge or larger. You don't know the total size of the temporary
tables that you might need. You want to be able to use up to 4 GiB in memory and up to the
maximum available storage size on disk.

Set temptable_max_ram to 4,294,967,296 and temptable_max_mmap to
1,099,511,627,776. These values are in bytes.

Here you're setting temptable_max_mmap to 1 TiB, which is less than the maximum local storage
of 1.2 TiB on a 16xlarge Aurora DB instance.

On a smaller instance size, adjust the value of temptable_max_mmap so that it doesn't fill up
the available local storage. For example, a 2xlarge instance has only 160 GiB of local storage
available. Hence, we recommend setting the value to less than 160 GiB. For more information on
the available local storage for DB instance sizes, see Temporary storage limits for Aurora MySQL.

User-created (explicit) temporary tables on reader DB instances

You can create explicit temporary tables using the TEMPORARY keyword in your CREATE TABLE
statement. Explicit temporary tables are supported on the writer DB instance in an Aurora DB

Aurora MySQL version 3 compatible with MySQL 8.0 1263

https://aws.amazon.com/premiumsupport/knowledge-center/aurora-mysql-local-storage/
https://aws.amazon.com/premiumsupport/knowledge-center/aurora-mysql-local-storage/

Amazon Aurora User Guide for Aurora

cluster. You can also use explicit temporary tables on reader DB instances, but the tables can't
enforce the use of the InnoDB storage engine.

To avoid errors while creating explicit temporary tables on Aurora MySQL reader DB instances,
make sure that you run all CREATE TEMPORARY TABLE statements in either or both of the
following ways:

• Don't specify the ENGINE=InnoDB clause.

• Don't set the SQL mode to NO_ENGINE_SUBSTITUTION.

Temporary table creation errors and mitigation

The error that you receive is different depending on whether you use a plain CREATE TEMPORARY
TABLE statement or the variation CREATE TEMPORARY TABLE AS SELECT. The following
examples show the different kinds of errors.

This temporary table behavior only applies to read-only instances. This first example confirms
that's the kind of instance the session is connected to.

mysql> select @@innodb_read_only;
+--------------------+
| @@innodb_read_only |
+--------------------+
| 1 |
+--------------------+

For plain CREATE TEMPORARY TABLE statements, the statement fails when the
NO_ENGINE_SUBSTITUTION SQL mode is turned on. When NO_ENGINE_SUBSTITUTION is
turned off (default), the appropriate engine substitution is made, and the temporary table creation
succeeds.

mysql> set sql_mode = 'NO_ENGINE_SUBSTITUTION';

mysql> CREATE TEMPORARY TABLE tt2 (id int) ENGINE=InnoDB;
ERROR 3161 (HY000): Storage engine InnoDB is disabled (Table creation is disallowed).

mysql> SET sql_mode = '';

mysql> CREATE TEMPORARY TABLE tt4 (id int) ENGINE=InnoDB;

Aurora MySQL version 3 compatible with MySQL 8.0 1264

Amazon Aurora User Guide for Aurora

mysql> SHOW CREATE TABLE tt4\G
*************************** 1. row ***************************
 Table: tt4
Create Table: CREATE TEMPORARY TABLE `tt4` (
 `id` int DEFAULT NULL
) ENGINE=MyISAM DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_0900_ai_ci

For CREATE TEMPORARY TABLE AS SELECT statements, the statement fails when the
NO_ENGINE_SUBSTITUTION SQL mode is turned on. When NO_ENGINE_SUBSTITUTION is
turned off (default), the appropriate engine substitution is made, and the temporary table creation
succeeds.

mysql> set sql_mode = 'NO_ENGINE_SUBSTITUTION';

mysql> CREATE TEMPORARY TABLE tt1 ENGINE=InnoDB AS SELECT * FROM t1;
ERROR 3161 (HY000): Storage engine InnoDB is disabled (Table creation is disallowed).

mysql> SET sql_mode = '';

mysql> show create table tt3;
+-------+--+
| Table | Create Table |
+-------+--+
| tt3 | CREATE TEMPORARY TABLE `tt3` (
 `id` int DEFAULT NULL
) ENGINE=MyISAM DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_0900_ai_ci |
+-------+--+
1 row in set (0.00 sec)

For more information about the storage aspects and performance implications of temporary tables
in Aurora MySQL version 3, see the blog post Use the TempTable storage engine on Amazon RDS
for MySQL and Amazon Aurora MySQL.

Comparing Aurora MySQL version 2 and Aurora MySQL version 3

Use the following to learn about changes to be aware of when you upgrade your Aurora MySQL
version 2 cluster to version 3.

Topics

• Feature differences between Aurora MySQL version 2 and 3

• Instance class support

Aurora MySQL version 3 compatible with MySQL 8.0 1265

https://aws.amazon.com/blogs/database/use-the-temptable-storage-engine-on-amazon-rds-for-mysql-and-amazon-aurora-mysql/
https://aws.amazon.com/blogs/database/use-the-temptable-storage-engine-on-amazon-rds-for-mysql-and-amazon-aurora-mysql/

Amazon Aurora User Guide for Aurora

• Parameter changes for Aurora MySQL version 3

• Status variables

• Inclusive language changes for Aurora MySQL version 3

• AUTO_INCREMENT values

• Binary log replication

Feature differences between Aurora MySQL version 2 and 3

The following Amazon Aurora MySQL features are supported in Aurora MySQL for MySQL 5.7, but
these features aren't supported in Aurora MySQL for MySQL 8.0:

• You can't use Aurora MySQL version 3 for Aurora Serverless v1 clusters. Aurora MySQL version 3
works with Aurora Serverless v2.

• Lab mode doesn't apply to Aurora MySQL version 3. There aren't any lab mode features in Aurora
MySQL version 3. Instant DDL supersedes the fast online DDL feature that was formerly available
in lab mode. For an example, see Instant DDL (Aurora MySQL version 3).

• The query cache is removed from community MySQL 8.0 and also from Aurora MySQL version 3.

• Aurora MySQL version 3 is compatible with the community MySQL hash join feature. The Aurora-
specific implementation of hash joins in Aurora MySQL version 2 isn't used. For information
about using hash joins with Aurora parallel query, see Turning on hash join for parallel query
clusters and Aurora MySQL hints. For general usage information about hash joins, see Hash Join
Optimization in the MySQL Reference Manual.

• The mysql.lambda_async stored procedure that was deprecated in Aurora MySQL version 2 is
removed in version 3. For version 3, use the asynchronous function lambda_async instead.

• The default character set in Aurora MySQL version 3 is utf8mb4. In Aurora MySQL version 2, the
default character set was latin1. For information about this character set, see The utf8mb4
Character Set (4-Byte UTF-8 Unicode Encoding) in the MySQL Reference Manual.

Some Aurora MySQL features are available for certain combinations of AWS Region and DB engine
version. For details, see Supported features in Amazon Aurora by AWS Region and Aurora DB
engine.

Instance class support

Aurora MySQL version 3 supports a different set of instance classes from Aurora MySQL version 2:

Aurora MySQL version 3 compatible with MySQL 8.0 1266

https://dev.mysql.com/doc/refman/8.0/en/hash-joins.html
https://dev.mysql.com/doc/refman/8.0/en/hash-joins.html
https://dev.mysql.com/doc/refman/8.0/en/charset-unicode-utf8mb4.html
https://dev.mysql.com/doc/refman/8.0/en/charset-unicode-utf8mb4.html

Amazon Aurora User Guide for Aurora

• For larger instances, you can use the modern instance classes such as db.r5, db.r6g, and
db.x2g.

• For smaller instances, you can use the modern instance classes such as db.t3 and db.t4g.

Note

We recommend using the T DB instance classes only for development and test servers,
or other non-production servers. For more details on the T instance classes, see Using T
instance classes for development and testing.

The following instance classes from Aurora MySQL version 2 aren't available for Aurora MySQL
version 3:

• db.r4

• db.r3

• db.t3.small

• db.t2

Check your administration scripts for any CLI statements that create Aurora MySQL DB instances.
Hardcode instance class names that aren't available for Aurora MySQL version 3. If necessary,
modify the instance class names to ones that Aurora MySQL version 3 supports.

Tip

To check the instance classes that you can use for a specific combination of Aurora MySQL
version and AWS Region, use the describe-orderable-db-instance-options AWS
CLI command.

For full details about Aurora instance classes, see Aurora DB instance classes.

Parameter changes for Aurora MySQL version 3

Aurora MySQL version 3 includes new cluster-level and instance-level configuration parameters.
Aurora MySQL version 3 also removes some parameters that were present in Aurora MySQL version
2. Some parameter names are changed as a result of the initiative for inclusive language. For

Aurora MySQL version 3 compatible with MySQL 8.0 1267

Amazon Aurora User Guide for Aurora

backward compatibility, you can still retrieve the parameter values using either the old names or
the new names. However, you must use the new names to specify parameter values in a custom
parameter group.

In Aurora MySQL version 3, the value of the lower_case_table_names parameter is set
permanently at the time the cluster is created. If you use a nondefault value for this option, set
up your Aurora MySQL version 3 custom parameter group before upgrading. Then specify the
parameter group during the create cluster or snapshot restore operation.

Note

With an Aurora global database based on Aurora MySQL, you can't perform an in-place
upgrade from Aurora MySQL version 2 to version 3 if the lower_case_table_names
parameter is turned on. Use the snapshot restore method instead.

In Aurora MySQL version 3, the init_connect and read_only parameters don't apply for users
who have the CONNECTION_ADMIN privilege. This includes the Aurora master user. For more
information, see Role-based privilege model.

For the full list of Aurora MySQL cluster parameters, see Cluster-level parameters. The table covers
all the parameters from Aurora MySQL version 2 and 3. The table includes notes showing which
parameters are new in Aurora MySQL version 3 or were removed from Aurora MySQL version 3.

For the full list of Aurora MySQL instance parameters, see Instance-level parameters. The table
covers all the parameters from Aurora MySQL version 2 and 3. The table includes notes showing
which parameters are new in Aurora MySQL version 3 and which parameters were removed from
Aurora MySQL version 3. It also includes notes showing which parameters were modifiable in
earlier versions but not Aurora MySQL version 3.

For information about parameter names that changed, see Inclusive language changes for Aurora
MySQL version 3.

Status variables

For information about status variables that aren't applicable to Aurora MySQL, see MySQL status
variables that don't apply to Aurora MySQL.

Aurora MySQL version 3 compatible with MySQL 8.0 1268

Amazon Aurora User Guide for Aurora

Inclusive language changes for Aurora MySQL version 3

Aurora MySQL version 3 is compatible with version 8.0.23 from the MySQL community edition.
Aurora MySQL version 3 also includes changes from MySQL 8.0.26 related to keywords and system
schemas for inclusive language. For example, the SHOW REPLICA STATUS command is now
preferred instead of SHOW SLAVE STATUS.

The following Amazon CloudWatch metrics have new names in Aurora MySQL version 3.

In Aurora MySQL version 3, only the new metric names are available. Make sure to update any
alarms or other automation that relies on metric names when you upgrade to Aurora MySQL
version 3.

Old name New name

ForwardingMasterDM
LLatency

ForwardingWriterDM
LLatency

ForwardingMasterOp
enSessions

ForwardingWriterOp
enSessions

AuroraDMLRejectedM
asterFull

AuroraDMLRejectedW
riterFull

ForwardingMasterDM
LThroughput

ForwardingWriterDM
LThroughput

The following status variables have new names in Aurora MySQL version 3.

For compatibility, you can use either name in the initial Aurora MySQL version 3 release. The old
status variable names are to be removed in a future release.

Name to be removed New or preferred name

Aurora_fwd_master_
dml_stmt_duration

Aurora_fwd_writer_
dml_stmt_duration

Aurora_fwd_master_
dml_stmt_count

Aurora_fwd_writer_
dml_stmt_count

Aurora MySQL version 3 compatible with MySQL 8.0 1269

Amazon Aurora User Guide for Aurora

Name to be removed New or preferred name

Aurora_fwd_master_
select_stmt_durati
on

Aurora_fwd_writer_
select_stmt_durati
on

Aurora_fwd_master_
select_stmt_count

Aurora_fwd_writer_
select_stmt_count

Aurora_fwd_master_
errors_session_tim
eout

Aurora_fwd_writer_
errors_session_tim
eout

Aurora_fwd_master_
open_sessions

Aurora_fwd_writer_
open_sessions

Aurora_fwd_master_
errors_session_lim
it

Aurora_fwd_writer_
errors_session_lim
it

Aurora_fwd_master_
errors_rpc_timeout

Aurora_fwd_writer_
errors_rpc_timeout

The following configuration parameters have new names in Aurora MySQL version 3.

For compatibility, you can check the parameter values in the mysql client by using either name in
the initial Aurora MySQL version 3 release. You can use only the new names when modifying values
in a custom parameter group. The old parameter names are to be removed in a future release.

Name to be removed New or preferred name

aurora_fwd_master_
idle_timeout

aurora_fwd_writer_
idle_timeout

aurora_fwd_master_
max_connections_pct

aurora_fwd_writer_
max_connections_pct

Aurora MySQL version 3 compatible with MySQL 8.0 1270

Amazon Aurora User Guide for Aurora

Name to be removed New or preferred name

master_verify_chec
ksum

source_verify_chec
ksum

sync_master_info sync_source_info

init_slave init_replica

rpl_stop_slave_tim
eout

rpl_stop_replica_t
imeout

log_slow_slave_sta
tements

log_slow_replica_s
tatements

slave_max_allowed_
packet

replica_max_allowe
d_packet

slave_compressed_p
rotocol

replica_compressed
_protocol

slave_exec_mode replica_exec_mode

slave_type_convers
ions

replica_type_conve
rsions

slave_sql_verify_c
hecksum

replica_sql_verify
_checksum

slave_parallel_type replica_parallel_t
ype

slave_preserve_com
mit_order

replica_preserve_c
ommit_order

log_slave_updates log_replica_updates

slave_allow_batching replica_allow_batc
hing

Aurora MySQL version 3 compatible with MySQL 8.0 1271

Amazon Aurora User Guide for Aurora

Name to be removed New or preferred name

slave_load_tmpdir replica_load_tmpdir

slave_net_timeout replica_net_timeout

sql_slave_skip_cou
nter

sql_replica_skip_c
ounter

slave_skip_errors replica_skip_errors

slave_checkpoint_p
eriod

replica_checkpoint
_period

slave_checkpoint_g
roup

replica_checkpoint
_group

slave_transaction_
retries

replica_transactio
n_retries

slave_parallel_wor
kers

replica_parallel_w
orkers

slave_pending_jobs
_size_max

replica_pending_jo
bs_size_max

pseudo_slave_mode pseudo_replica_mode

The following stored procedures have new names in Aurora MySQL version 3.

For compatibility, you can use either name in the initial Aurora MySQL version 3 release. The old
procedure names are to be removed in a future release.

Name to be removed New or preferred name

mysql.rds_set_mast
er_auto_position

mysql.rds_set_sour
ce_auto_position

Aurora MySQL version 3 compatible with MySQL 8.0 1272

Amazon Aurora User Guide for Aurora

Name to be removed New or preferred name

mysql.rds_set_exte
rnal_master

mysql.rds_set_exte
rnal_source

mysql.rds_set_exte
rnal_master_with_a
uto_position

mysql.rds_set_exte
rnal_source_with_a
uto_position

mysql.rds_reset_ex
ternal_master

mysql.rds_reset_ex
ternal_source

mysql.rds_next_mas
ter_log

mysql.rds_next_sou
rce_log

AUTO_INCREMENT values

In Aurora MySQL version 3, Aurora preserves the AUTO_INCREMENT value for each table when
it restarts each DB instance. In Aurora MySQL version 2, the AUTO_INCREMENT value wasn't
preserved after a restart.

The AUTO_INCREMENT value isn't preserved when you set up a new cluster by restoring from
a snapshot, performing a point-in-time recovery, and cloning a cluster. In these cases, the
AUTO_INCREMENT value is initialized to the value based on the largest column value in the table at
the time the snapshot was created. This behavior is different than in RDS for MySQL 8.0, where the
AUTO_INCREMENT value is preserved during these operations.

Binary log replication

In MySQL 8.0 community edition, binary log replication is turned on by default. In Aurora MySQL
version 3, binary log replication is turned off by default.

Tip

If your high availability requirements are fulfilled by the Aurora built-in replication features,
you can leave binary log replication turned off. That way, you can avoid the performance
overhead of binary log replication. You can also avoid the associated monitoring and
troubleshooting that are needed to manage binary log replication.

Aurora MySQL version 3 compatible with MySQL 8.0 1273

Amazon Aurora User Guide for Aurora

Aurora supports binary log replication from a MySQL 5.7–compatible source to Aurora MySQL
version 3. The source system can be an Aurora MySQL DB cluster, an RDS for MySQL DB instance, or
an on-premises MySQL instance.

As does community MySQL, Aurora MySQL supports replication from a source running a specific
version to a target running the same major version or one major version higher. For example,
replication from a MySQL 5.6–compatible system to Aurora MySQL version 3 isn't supported.
Replicating from Aurora MySQL version 3 to a MySQL 5.7–compatible or MySQL 5.6–compatible
system isn't supported. For details about using binary log replication, see Replication between
Aurora and MySQL or between Aurora and another Aurora DB cluster (binary log replication).

Aurora MySQL version 3 includes improvements to binary log replication in community MySQL 8.0,
such as filtered replication. For details about the community MySQL 8.0 improvements, see How
Servers Evaluate Replication Filtering Rules in the MySQL Reference Manual.

Transaction compression for binary log replication

For usage information about binary log compression, see Binary Log Transaction Compression in
the MySQL Reference Manual.

The following limitations apply to binary log compression in Aurora MySQL version 3:

• Transactions whose binary log data is larger than the maximum allowed packet size aren't
compressed. This is true regardless of whether the Aurora MySQL binary log compression setting
is turned on. Such transactions are replicated without being compressed.

• If you use a connector for change data capture (CDC) that doesn't support MySQL 8.0 yet, you
can't use this feature. We recommend that you test any third-party connectors thoroughly
with binary log compression. Also, we recommend that you do so before turning on binlog
compression on systems that use binlog replication for CDC.

Comparing Aurora MySQL version 3 and MySQL 8.0 Community Edition

You can use the following information to learn about the changes to be aware of when you convert
from a different MySQL 8.0–compatible system to Aurora MySQL version 3.

In general, Aurora MySQL version 3 supports the feature set of community MySQL 8.0.23. Some
new features from MySQL 8.0 community edition don't apply to Aurora MySQL. Some of those
features aren't compatible with some aspect of Aurora, such as the Aurora storage architecture.

Aurora MySQL version 3 compatible with MySQL 8.0 1274

https://dev.mysql.com/doc/refman/8.0/en/replication-rules.html
https://dev.mysql.com/doc/refman/8.0/en/replication-rules.html
https://dev.mysql.com/doc/refman/8.0/en/binary-log-transaction-compression.html

Amazon Aurora User Guide for Aurora

Other features aren't needed because the Amazon RDS management service provides equivalent
functionality. The following features in community MySQL 8.0 aren't supported or work differently
in Aurora MySQL version 3.

For release notes for all Aurora MySQL version 3 releases, see Database engine updates for
Amazon Aurora MySQL version 3 in the Release Notes for Aurora MySQL.

Topics

• MySQL 8.0 features not available in Aurora MySQL version 3

• Role-based privilege model

• Authentication

MySQL 8.0 features not available in Aurora MySQL version 3

The following features from community MySQL 8.0 aren't available or work differently in Aurora
MySQL version 3.

• Resource groups and associated SQL statements aren't supported in Aurora MySQL.

• Aurora MySQL doesn't support user-defined undo tablespaces and associated SQL statements,
such as CREATE UNDO TABLESPACE, ALTER UNDO TABLESPACE ... SET INACTIVE, and
DROP UNDO TABLESPACE.

• Aurora MySQL doesn't support undo tablespace truncation for Aurora MySQL versions lower
than 3.06. In Aurora MySQL version 3.06 and higher, automated undo tablespace truncation is
supported.

• You can't modify the settings of any MySQL plugins.

• The X plugin isn't supported.

• Multisource replication isn't supported.

Role-based privilege model

With Aurora MySQL version 3, you can't modify the tables in the mysql database directly. In
particular, you can't set up users by inserting into the mysql.user table. Instead, you use SQL
statements to grant role-based privileges. You also can't create other kinds of objects such as
stored procedures in the mysql database. You can still query the mysql tables. If you use binary
log replication, changes made directly to the mysql tables on the source cluster aren't replicated to
the target cluster.

Aurora MySQL version 3 compatible with MySQL 8.0 1275

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraMySQLReleaseNotes/AuroraMySQL.Updates.30Updates.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraMySQLReleaseNotes/AuroraMySQL.Updates.30Updates.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-undo-tablespaces.html#truncate-undo-tablespace

Amazon Aurora User Guide for Aurora

In some cases, your application might use shortcuts to create users or other objects by inserting
into the mysql tables. If so, change your application code to use the corresponding statements
such as CREATE USER. If your application creates stored procedures or other objects in the mysql
database, use a different database instead.

To export metadata for database users during the migration from an external MySQL database,
you can use a MySQL Shell command instead of mysqldump. For more information, see Instance
Dump Utility, Schema Dump Utility, and Table Dump Utility.

To simplify managing permissions for many users or applications, you can use the CREATE ROLE
statement to create a role that has a set of permissions. Then you can use the GRANT and SET
ROLE statements and the current_role function to assign roles to users or applications, switch
the current role, and check which roles are in effect. For more information on the role-based
permission system in MySQL 8.0, see Using Roles in the MySQL Reference Manual.

Important

We strongly recommend that you do not use the master user directly in your applications.
Instead, adhere to the best practice of using a database user created with the minimal
privileges required for your application.

Topics

• rds_superuser_role

• Privilege checks user for binary log replication

• Roles for accessing other AWS services

rds_superuser_role

Aurora MySQL version 3 includes a special role that has all of the following privileges. This role is
named rds_superuser_role. The primary administrative user for each cluster already has this
role granted. The rds_superuser_role role includes the following privileges for all database
objects:

• ALTER

• APPLICATION_PASSWORD_ADMIN

• ALTER ROUTINE

Aurora MySQL version 3 compatible with MySQL 8.0 1276

https://dev.mysql.com/doc/mysql-shell/8.0/en/mysql-shell-utilities-dump-instance-schema.html#mysql-shell-utilities-dump-about
https://dev.mysql.com/doc/mysql-shell/8.0/en/mysql-shell-utilities-dump-instance-schema.html#mysql-shell-utilities-dump-about
https://dev.mysql.com/doc/refman/8.0/en/roles.html

Amazon Aurora User Guide for Aurora

• CONNECTION_ADMIN

• CREATE

• CREATE ROLE

• CREATE ROUTINE

• CREATE TEMPORARY TABLES

• CREATE USER

• CREATE VIEW

• DELETE

• DROP

• DROP ROLE

• EVENT

• EXECUTE

• INDEX

• INSERT

• LOCK TABLES

• PROCESS

• REFERENCES

• RELOAD

• REPLICATION CLIENT

• REPLICATION SLAVE

• ROLE_ADMIN

• SET_USER_ID

• SELECT

• SHOW DATABASES

• SHOW_ROUTINE (Aurora MySQL version 3.04 and higher)

• SHOW VIEW

• TRIGGER

• UPDATE

Aurora MySQL version 3 compatible with MySQL 8.0 1277

Amazon Aurora User Guide for Aurora

• XA_RECOVER_ADMIN

The role definition also includes WITH GRANT OPTION so that an administrative user can grant
that role to other users. In particular, the administrator must grant any privileges needed to
perform binary log replication with the Aurora MySQL cluster as the target.

Tip

To see the full details of the permissions, enter the following statements.

SHOW GRANTS FOR rds_superuser_role@'%';
SHOW GRANTS FOR name_of_administrative_user_for_your_cluster@'%';

Privilege checks user for binary log replication

Aurora MySQL version 3 includes a privilege checks user for binary log (binlog) replication,
rdsrepladmin_priv_checks_user. In addition to the privileges of rds_superuser_role, this
user has the replication_applier privilege.

When you turn on binlog replication by calling the mysql.rds_start_replication stored
procedure, rdsrepladmin_priv_checks_user is created.

The rdsrepladmin_priv_checks_user@localhost user is a reserved user. Don't modify it.

Roles for accessing other AWS services

Aurora MySQL version 3 includes roles that you can use to access other AWS services. You
can set these roles as an alternative to GRANT statements. For example, you specify GRANT
AWS_LAMBDA_ACCESS TO user instead of GRANT INVOKE LAMBDA ON *.* TO user. For
the procedures to access other AWS services, see Integrating Amazon Aurora MySQL with other
AWS services. Aurora MySQL version 3 includes the following roles related to accessing other AWS
services:

• AWS_LAMBDA_ACCESS role, as an alternative to the INVOKE LAMBDA privilege. For usage
information, Invoking a Lambda function from an Amazon Aurora MySQL DB cluster.

• AWS_LOAD_S3_ACCESS role, as an alternative to the LOAD FROM S3 privilege. For usage
information, see Loading data into an Amazon Aurora MySQL DB cluster from text files in an
Amazon S3 bucket.

Aurora MySQL version 3 compatible with MySQL 8.0 1278

Amazon Aurora User Guide for Aurora

• AWS_SELECT_S3_ACCESS role, as an alternative to the SELECT INTO S3 privilege. For usage
information, see Saving data from an Amazon Aurora MySQL DB cluster into text files in an
Amazon S3 bucket.

• AWS_SAGEMAKER_ACCESS role, as an alternative to the INVOKE SAGEMAKER privilege. For usage
information, see Using Amazon Aurora machine learning with Aurora MySQL.

• AWS_COMPREHEND_ACCESS role, as an alternative to the INVOKE COMPREHEND privilege. For
usage information, see Using Amazon Aurora machine learning with Aurora MySQL.

When you grant access by using roles in Aurora MySQL version 3, you also activate the role by
using the SET ROLE role_name or SET ROLE ALL statement. The following example shows
how. Substitute the appropriate role name for AWS_SELECT_S3_ACCESS.

Grant role to user.

mysql> GRANT AWS_SELECT_S3_ACCESS TO 'user'@'domain-or-ip-address'

Check the current roles for your user. In this case, the AWS_SELECT_S3_ACCESS role
 has not been activated.
Only the rds_superuser_role is currently in effect.
mysql> SELECT CURRENT_ROLE();
+--------------------------+
| CURRENT_ROLE() |
+--------------------------+
| `rds_superuser_role`@`%` |
+--------------------------+
1 row in set (0.00 sec)

Activate all roles associated with this user using SET ROLE.
You can activate specific roles or all roles.
In this case, the user only has 2 roles, so we specify ALL.
mysql> SET ROLE ALL;
Query OK, 0 rows affected (0.00 sec)

Verify role is now active
mysql> SELECT CURRENT_ROLE();
+---+
| CURRENT_ROLE() |
+---+
| `AWS_SELECT_S3_ACCESS`@`%`,`rds_superuser_role`@`%` |
+---+

Aurora MySQL version 3 compatible with MySQL 8.0 1279

Amazon Aurora User Guide for Aurora

Authentication

In community MySQL 8.0, the default authentication plugin is caching_sha2_password.
Aurora MySQL version 3 still uses the mysql_native_password plugin. You can't change the
default_authentication_plugin setting.

Upgrading to Aurora MySQL version 3

For information on upgrading your database from Aurora MySQL version 2 to version 3, see
Upgrading the major version of an Amazon Aurora MySQL DB cluster.

Aurora MySQL version 2 compatible with MySQL 5.7

This topic describes the differences between Aurora MySQL version 2 and MySQL 5.7 Community
Edition.

Features not supported in Aurora MySQL version 2

The following features are supported in MySQL 5.7, but are currently not supported in Aurora
MySQL version 2:

• CREATE TABLESPACE SQL statement

• Group replication plugin

• Increased page size

• InnoDB buffer pool loading at startup

• InnoDB full-text parser plugin

• Multisource replication

• Online buffer pool resizing

• Password validation plugin – You can install the plugin, but it isn't supported. You can't
customize the plugin.

• Query rewrite plugins

• Replication filtering

• X Protocol

For more information about these features, see the MySQL 5.7 documentation.

Aurora MySQL version 2 compatible with MySQL 5.7 1280

https://dev.mysql.com/doc/refman/5.7/en/

Amazon Aurora User Guide for Aurora

Temporary tablespace behavior in Aurora MySQL version 2

In MySQL 5.7, the temporary tablespace is autoextending and increases in size as necessary to
accommodate on-disk temporary tables. When temporary tables are dropped, freed space can be
reused for new temporary tables, but the temporary tablespace remains at the extended size and
doesn't shrink. The temporary tablespace is dropped and re-created when engine is restarted.

In Aurora MySQL version 2, the following behavior applies:

• For new Aurora MySQL DB clusters created with version 2.10 and higher, the temporary
tablespace is removed and re-created when you restart the database. This allows the dynamic
resizing feature to reclaim the storage space.

• For existing Aurora MySQL DB clusters upgraded to:

• Version 2.10 or higher – The temporary tablespace is removed and re-created when you restart
the database. This allows the dynamic resizing feature to reclaim the storage space.

• Version 2.09 – Temporary table space isn't removed when you restart the database.

You can check the size of the temporary tablespace on your Aurora MySQL version 2 DB cluster by
using the following query:

SELECT
 FILE_NAME,
 TABLESPACE_NAME,
 ROUND((TOTAL_EXTENTS * EXTENT_SIZE) / 1024 / 1024 / 1024, 4) AS SIZE
FROM
 INFORMATION_SCHEMA.FILES
WHERE
 TABLESPACE_NAME = 'innodb_temporary';

For more information, see The Temporary Tablespace in the MySQL documentation.

Storage engine for on-disk temporary tables

Aurora MySQL version 2 uses different storage engines for on-disk internal temporary tables
depending on the role of the instance.

• On the writer instance, on-disk temporary tables use the InnoDB storage engine by default.
They're stored in the temporary tablespace in the Aurora cluster volume.

Aurora MySQL version 2 compatible with MySQL 5.7 1281

https://dev.mysql.com/doc/refman/5.7/en/innodb-temporary-tablespace.html

Amazon Aurora User Guide for Aurora

You can change this behavior on the writer instance by modifying the value for the DB parameter
internal_tmp_disk_storage_engine. For more information, see Instance-level parameters.

• On reader instances, on-disk temporary tables use the MyISAM storage engine, which uses local
storage. That's because read-only instances can't store any data on the Aurora cluster volume.

Aurora MySQL version 2 compatible with MySQL 5.7 1282

Amazon Aurora User Guide for Aurora

Security with Amazon Aurora MySQL

Security for Amazon Aurora MySQL is managed at three levels:

• To control who can perform Amazon RDS management actions on Aurora MySQL DB clusters
and DB instances, you use AWS Identity and Access Management (IAM). When you connect to
AWS using IAM credentials, your AWS account must have IAM policies that grant the permissions
required to perform Amazon RDS management operations. For more information, see Identity
and access management for Amazon Aurora

If you are using IAM to access the Amazon RDS console, make sure to first sign in to the AWS
Management Console with your IAM user credentials. Then go to the Amazon RDS console at
https://console.aws.amazon.com/rds/.

• Make sure to create Aurora MySQL DB clusters in a virtual public cloud (VPC) based on the
Amazon VPC service. To control which devices and Amazon EC2 instances can open connections
to the endpoint and port of the DB instance for Aurora MySQL DB clusters in a VPC, use a VPC
security group. You can make these endpoint and port connections by using Transport Layer
Security (TLS). In addition, firewall rules at your company can control whether devices running
at your company can open connections to a DB instance. For more information on VPCs, see
Amazon VPC and Amazon Aurora.

The supported VPC tenancy depends on the DB instance class used by your Aurora MySQL DB
clusters. With default VPC tenancy, the VPC runs on shared hardware. With dedicated VPC
tenancy, the VPC runs on a dedicated hardware instance. The burstable performance DB instance
classes support default VPC tenancy only. The burstable performance DB instance classes include
the db.t2, db.t3, and db.t4g DB instance classes. All other Aurora MySQL DB instance classes
support both default and dedicated VPC tenancy.

Note

We recommend using the T DB instance classes only for development and test servers,
or other non-production servers. For more details on the T instance classes, see Using T
instance classes for development and testing.

For more information about instance classes, see Aurora DB instance classes. For more
information about default and dedicated VPC tenancy, see Dedicated instances in the
Amazon Elastic Compute Cloud User Guide.

Security with Aurora MySQL 1283

https://console.aws.amazon.com/rds/
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/dedicated-instance.html

Amazon Aurora User Guide for Aurora

• To authenticate login and permissions for an Amazon Aurora MySQL DB cluster, you can take
either of the following approaches, or a combination of them:

• You can take the same approach as with a standalone instance of MySQL.

Commands such as CREATE USER, RENAME USER, GRANT, REVOKE, and SET PASSWORD
work just as they do in on-premises databases, as does directly modifying database schema
tables. For more information, see Access control and account management in the MySQL
documentation.

• You can also use IAM database authentication.

With IAM database authentication, you authenticate to your DB cluster by using an IAM
user or IAM role and an authentication token. An authentication token is a unique value
that is generated using the Signature Version 4 signing process. By using IAM database
authentication, you can use the same credentials to control access to your AWS resources and
your databases. For more information, see IAM database authentication.

Note

For more information, see Security in Amazon Aurora.

Master user privileges with Amazon Aurora MySQL

When you create an Amazon Aurora MySQL DB instance, the master user has the default privileges
listed in Master user account privileges.

To provide management services for each DB cluster, the admin and rdsadmin users are created
when the DB cluster is created. Attempting to drop, rename, change the password, or change
privileges for the rdsadmin account results in an error.

In Aurora MySQL version 2 DB clusters, the admin and rdsadmin users are created when
the DB cluster is created. In Aurora MySQL version 3 DB clusters, the admin, rdsadmin, and
rds_superuser_role users are created.

Master user privileges with Aurora MySQL 1284

https://dev.mysql.com/doc/refman/8.0/en/access-control.html

Amazon Aurora User Guide for Aurora

Important

We strongly recommend that you do not use the master user directly in your applications.
Instead, adhere to the best practice of using a database user created with the minimal
privileges required for your application.

For management of the Aurora MySQL DB cluster, the standard kill and kill_query commands
have been restricted. Instead, use the Amazon RDS commands rds_kill and rds_kill_query
to terminate user sessions or queries on Aurora MySQL DB instances.

Note

Encryption of a database instance and snapshots is not supported for the China (Ningxia)
region.

Using TLS with Aurora MySQL DB clusters

Amazon Aurora MySQL DB clusters support Transport Layer Security (TLS) connections from
applications using the same process and public key as RDS for MySQL DB instances.

Amazon RDS creates an TLS certificate and installs the certificate on the DB instance when Amazon
RDS provisions the instance. These certificates are signed by a certificate authority. The TLS
certificate includes the DB instance endpoint as the Common Name (CN) for the TLS certificate to
guard against spoofing attacks. As a result, you can only use the DB cluster endpoint to connect
to a DB cluster using TLS if your client supports Subject Alternative Names (SAN). Otherwise, you
must use the instance endpoint of a writer instance.

For information about downloading certificates, see Using SSL/TLS to encrypt a connection to a DB
cluster.

We recommend the AWS JDBC Driver as a client that supports SAN with TLS. For more information
about the AWS JDBC Driver and complete instructions for using it, see the Amazon Web Services
(AWS) JDBC Driver GitHub repository.

Topics

• Requiring a TLS connection to an Aurora MySQL DB cluster

Using TLS with Aurora MySQL DB clusters 1285

https://github.com/aws/aws-advanced-jdbc-wrapper
https://github.com/aws/aws-advanced-jdbc-wrapper

Amazon Aurora User Guide for Aurora

• TLS versions for Aurora MySQL

• Configuring cipher suites for connections to Aurora MySQL DB clusters

• Encrypting connections to an Aurora MySQL DB cluster

Requiring a TLS connection to an Aurora MySQL DB cluster

You can require that all user connections to your Aurora MySQL DB cluster use TLS
by using the require_secure_transport DB cluster parameter. By default,
the require_secure_transport parameter is set to OFF. You can set the
require_secure_transport parameter to ON to require TLS for connections to your DB cluster.

You can set the require_secure_transport parameter value by updating the DB cluster
parameter group for your DB cluster. You don't need to reboot your DB cluster for the change to
take effect. For more information on parameter groups, see Working with parameter groups.

Note

The require_secure_transport parameter is available for Aurora MySQL version 2 and
3. You can set this parameter in a custom DB cluster parameter group. The parameter isn't
available in DB instance parameter groups.

When the require_secure_transport parameter is set to ON for a DB cluster, a database client
can connect to it if it can establish an encrypted connection. Otherwise, an error message similar to
the following is returned to the client:

MySQL Error 3159 (HY000): Connections using insecure transport are prohibited while --
require_secure_transport=ON.

TLS versions for Aurora MySQL

Aurora MySQL supports Transport Layer Security (TLS) versions 1.0, 1.1, 1.2, and 1.3. Starting
in Aurora MySQL version 3.04.0 and higher, you can use the TLS 1.3 protocol to secure your
connections. The following table shows the TLS support for Aurora MySQL versions.

Using TLS with Aurora MySQL DB clusters 1286

Amazon Aurora User Guide for Aurora

Aurora
MySQL
version

TLS 1.0 TLS 1.1 TLS 1.2 TLS 1.3 Default

Aurora
MySQL
version 2

Supported Supported Supported Not
supported

All supported
TLS versions

Aurora
MySQL
version
3 (below
3.04.0)

Supported Supported Supported Not
supported

All supported
TLS versions

Aurora
MySQL
version 3
(3.04.0 and
above)

Not
supported

Not
supported

Supported Supported All supported
TLS versions

Important

If you are using custom parameter groups for your Aurora MySQL clusters with version 2
and versions lower than 3.04.0, we recommend using TLS 1.2 because TLS 1.0 and 1.1 are
less secure. The community edition of MySQL 8.0.26 and Aurora MySQL 3.03 and its minor
versions deprecated support for TLS versions 1.1 and 1.0.
The community edition of MySQL 8.0.28 and compatible Aurora MySQL versions 3.04.0 and
higher do not support TLS 1.1 and TLS 1.0. If you are using Aurora MySQL versions 3.04.0
and higher, do not set the TLS protocol to 1.0 and 1.1 in your custom parameter group.
For Aurora MySQL versions 3.04.0 and higher, the default setting is TLS 1.3 and TLS 1.2.

You can use the tls_version DB cluster parameter to indicate the permitted protocol versions.
Similar client parameters exist for most client tools or database drivers. Some older clients might
not support newer TLS versions. By default, the DB cluster attempts to use the highest TLS
protocol version allowed by both the server and client configuration.

Using TLS with Aurora MySQL DB clusters 1287

Amazon Aurora User Guide for Aurora

Set the tls_version DB cluster parameter to one of the following values:

• TLSv1.3

• TLSv1.2

• TLSv1.1

• TLSv1

You can also set the tls_version parameter as a string of comma-separated list. If you want to
use both TLS 1.2 and TLS 1.0 protocols, the tls_version parameter must include all protocols
from the lowest to the highest protocol. In this case, tls_version is set as:

tls_version=TLSv1,TLSv1.1,TLSv1.2

For information about modifying parameters in a DB cluster parameter group, see Modifying
parameters in a DB cluster parameter group. If you use the AWS CLI to modify the tls_version
DB cluster parameter, the ApplyMethod must be set to pending-reboot. When the application
method is pending-reboot, changes to parameters are applied after you stop and restart the DB
clusters associated with the parameter group.

Configuring cipher suites for connections to Aurora MySQL DB clusters

By using configurable cipher suites, you can have more control over the security of your database
connections. You can specify a list of cipher suites that you want to allow to secure client TLS
connections to your database. With configurable cipher suites, you can control the connection
encryption that your database server accepts. Doing this prevents the use of insecure or deprecated
ciphers.

Configurable cipher suites are supported in Aurora MySQL version 3 and Aurora MySQL version
2. To specify the list of permissible TLS 1.2, TLS 1.1, TLS 1.0 ciphers for encrypting connections,
modify the ssl_cipher cluster parameter. Set the ssl_cipher parameter in a cluster parameter
group using the AWS Management Console, the AWS CLI, or the RDS API.

Set the ssl_cipher parameter to a string of comma-separated cipher values for your TLS version.
For the client application, you can specify the ciphers to use for encrypted connections by using
the --ssl-cipher option when connecting to the database. For more about connecting to your
database, see Connecting to an Amazon Aurora MySQL DB cluster.

Using TLS with Aurora MySQL DB clusters 1288

Amazon Aurora User Guide for Aurora

Starting in Aurora MySQL version 3.04.0 and higher, you can specify TLS 1.3 cipher suites. To
specify the permissible TLS 1.3 cipher suites, modify the tls_ciphersuites parameter in your
parameter group. TLS 1.3 has reduced the number of available cipher suites due to changes in
the naming convention that removes the key exchange mechanism and certificate used. Set the
tls_ciphersuites to a string of comma-separated cipher values for TLS 1.3.

The following table shows the supported ciphers along with the TLS encryption protocol and valid
Aurora MySQL engine versions for each cipher.

Cipher Encryption protocol Supported Aurora MySQL
versions

DHE-RSA-AES128-SHA TLS 1.0 3.01.0 and higher, all below
2.11.0

DHE-RSA-AES128-SHA
256

TLS 1.2 3.01.0 and higher, all below
2.11.0

DHE-RSA-AES128-GCM-
SHA256

TLS 1.2 3.01.0 and higher, all below
2.11.0

DHE-RSA-AES256-SHA TLS 1.0 3.03.0 and lower, all below
2.11.0

DHE-RSA-AES256-SHA
256

TLS 1.2 3.01.0 and higher, all below
2.11.0

DHE-RSA-AES256-GCM-
SHA384

TLS 1.2 3.01.0 and higher, all below
2.11.0

ECDHE-RSA-AES128-SHA TLS 1.0 3.01.0 and higher, 2.09.3 and
higher, 2.10.2 and higher

ECDHE-RSA-AES128-S
HA256

TLS 1.2 3.01.0 and higher, 2.09.3 and
higher, 2.10.2 and higher

ECDHE-RSA-AES128-G
CM-SHA256

TLS 1.2 3.01.0 and higher, 2.09.3 and
higher, 2.10.2 and higher

Using TLS with Aurora MySQL DB clusters 1289

Amazon Aurora User Guide for Aurora

Cipher Encryption protocol Supported Aurora MySQL
versions

ECDHE-RSA-AES256-SHA TLS 1.0 3.01.0 and higher, 2.09.3 and
higher, 2.10.2 and higher

ECDHE-RSA-AES256-S
HA384

TLS 1.2 3.01.0 and higher, 2.09.3 and
higher, 2.10.2 and higher

ECDHE-RSA-AES256-G
CM-SHA384

TLS 1.2 3.01.0 and higher, 2.09.3 and
higher, 2.10.2 and higher

TLS_AES_128_GCM_SH
A256

TLS 1.3 3.04.0 and higher

TLS_AES_256_GCM_SH
A384

TLS 1.3 3.04.0 and higher

TLS_CHACHA20_POLY1
305_SHA256

TLS 1.3 3.04.0 and higher

Note

DHE-RSA ciphers are only supported by Aurora MySQL versions before 2.11.0. Versions
2.11.0 and higher support only ECDHE ciphers.

For information about modifying parameters in a DB cluster parameter group, see Modifying
parameters in a DB cluster parameter group. If you use the CLI to modify the ssl_cipher DB
cluster parameter, make sure to set the ApplyMethod to pending-reboot. When the application
method is pending-reboot, changes to parameters are applied after you stop and restart the DB
clusters associated with the parameter group.

You can also use the describe-engine-default-cluster-parameters CLI command to determine which
cipher suites are currently supported for a specific parameter group family. The following example
shows how to get the allowed values for the ssl_cipher cluster parameter for Aurora MySQL
version 2.

Using TLS with Aurora MySQL DB clusters 1290

https://docs.aws.amazon.com/cli/latest/reference/rds/describe-engine-default-cluster-parameters.html

Amazon Aurora User Guide for Aurora

aws rds describe-engine-default-cluster-parameters --db-parameter-group-family aurora-
mysql5.7

 ...some output truncated...
 {
 "ParameterName": "ssl_cipher",
 "ParameterValue": "DHE-RSA-AES128-SHA,DHE-RSA-AES128-SHA256,DHE-RSA-AES128-GCM-
SHA256,DHE-RSA-AES256-SHA,DHE-RSA-AES256-SHA256,DHE-RSA-AES256-GCM-SHA384,ECDHE-RSA-
AES128-SHA,ECDHE-RSA-AES128-SHA256,ECDHE-RSA-AES128-GCM-SHA256,ECDHE-RSA-AES256-
SHA,ECDHE-RSA-AES256-SHA384,ECDHE-RSA-AES256-GCM-SHA384",
 "Description": "The list of permissible ciphers for connection encryption.",
 "Source": "system",
 "ApplyType": "static",
 "DataType": "list",
 "AllowedValues": "DHE-RSA-AES128-SHA,DHE-RSA-AES128-SHA256,DHE-RSA-AES128-GCM-
SHA256,DHE-RSA-AES256-SHA,DHE-RSA-AES256-SHA256,DHE-RSA-AES256-GCM-SHA384,ECDHE-
RSA-AES128-SHA,ECDHE-RSA-AES128-SHA256,ECDHE-RSA-AES128-GCM-SHA256,ECDHE-RSA-AES256-
SHA,ECDHE-RSA-AES256-SHA384,ECDHE-RSA-AES256-GCM-SHA384",
 "IsModifiable": true,
 "SupportedEngineModes": [
 "provisioned"
]
 },
 ...some output truncated...

For more information about ciphers, see the ssl_cipher variable in the MySQL documentation. For
more information about cipher suite formats, see the openssl-ciphers list format and openssl-
ciphers string format documentation on the OpenSSL website.

Encrypting connections to an Aurora MySQL DB cluster

To encrypt connections using the default mysql client, launch the mysql client using the --ssl-
ca parameter to reference the public key, for example:

For MySQL 5.7 and 8.0:

mysql -h myinstance.123456789012.rds-us-east-1.amazonaws.com
--ssl-ca=full_path_to_CA_certificate --ssl-mode=VERIFY_IDENTITY

For MySQL 5.6:

mysql -h myinstance.123456789012.rds-us-east-1.amazonaws.com

Using TLS with Aurora MySQL DB clusters 1291

https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_ssl_cipher
https://www.openssl.org/docs/manmaster/man1/openssl-ciphers.html#CIPHER-LIST-FORMAT
https://www.openssl.org/docs/manmaster/man1/openssl-ciphers.html#CIPHER-STRINGS
https://www.openssl.org/docs/manmaster/man1/openssl-ciphers.html#CIPHER-STRINGS

Amazon Aurora User Guide for Aurora

--ssl-ca=full_path_to_CA_certificate --ssl-verify-server-cert

Replace full_path_to_CA_certificate with the full path to your Certificate Authority (CA)
certificate. For information about downloading a certificate, see Using SSL/TLS to encrypt a
connection to a DB cluster.

You can require TLS connections for specific users accounts. For example, you can use one of the
following statements, depending on your MySQL version, to require TLS connections on the user
account encrypted_user.

For MySQL 5.7 and 8.0:

ALTER USER 'encrypted_user'@'%' REQUIRE SSL;

For MySQL 5.6:

GRANT USAGE ON *.* TO 'encrypted_user'@'%' REQUIRE SSL;

When you use an RDS Proxy, you connect to the proxy endpoint instead of the usual cluster
endpoint. You can make SSL/TLS required or optional for connections to the proxy, in the same
way as for connections directly to the Aurora DB cluster. For information about using RDS Proxy,
see Using Amazon RDS Proxy for Aurora.

Note

For more information on TLS connections with MySQL, see the MySQL documentation.

Using TLS with Aurora MySQL DB clusters 1292

https://dev.mysql.com/doc/refman/5.7/en/using-encrypted-connections.html

Amazon Aurora User Guide for Aurora

Updating applications to connect to Aurora MySQL DB clusters
using new TLS certificates

As of January 13, 2023, Amazon RDS has published new Certificate Authority (CA) certificates for
connecting to your Aurora DB clusters using Transport Layer Security (TLS). Following, you can find
information about updating your applications to use the new certificates.

This topic can help you to determine whether any client applications use TLS to connect to your DB
clusters. If they do, you can further check whether those applications require certificate verification
to connect.

Note

Some applications are configured to connect to Aurora MySQL DB clusters only if they can
successfully verify the certificate on the server.
For such applications, you must update your client application trust stores to include the
new CA certificates.

After you update your CA certificates in the client application trust stores, you can rotate
the certificates on your DB clusters. We strongly recommend testing these procedures in a
development or staging environment before implementing them in your production environments.

For more information about certificate rotation, see Rotating your SSL/TLS certificate. For more
information about downloading certificates, see Using SSL/TLS to encrypt a connection to a DB
cluster. For information about using TLS with Aurora MySQL DB clusters, see Using TLS with Aurora
MySQL DB clusters.

Topics

• Determining whether any applications are connecting to your Aurora MySQL DB cluster using
TLS

• Determining whether a client requires certificate verification to connect

• Updating your application trust store

• Example Java code for establishing TLS connections

Updating applications for new TLS certificates 1293

Amazon Aurora User Guide for Aurora

Determining whether any applications are connecting to your Aurora
MySQL DB cluster using TLS

If you are using Aurora MySQL version 2 (compatible with MySQL 5.7) and the Performance
Schema is enabled, run the following query to check if connections are using TLS. For information
about enabling the Performance Schema, see Performance Schema quick start in the MySQL
documentation.

mysql> SELECT id, user, host, connection_type
 FROM performance_schema.threads pst
 INNER JOIN information_schema.processlist isp
 ON pst.processlist_id = isp.id;

In this sample output, you can see both your own session (admin) and an application logged in as
webapp1 are using TLS.

+----+-----------------+------------------+-----------------+
| id | user | host | connection_type |
+----+-----------------+------------------+-----------------+
8	admin	10.0.4.249:42590	SSL/TLS
4	event_scheduler	localhost	NULL
10	webapp1	159.28.1.1:42189	SSL/TLS
+----+-----------------+------------------+-----------------+
3 rows in set (0.00 sec)

Determining whether a client requires certificate verification to connect

You can check whether JDBC clients and MySQL clients require certificate verification to connect.

JDBC

The following example with MySQL Connector/J 8.0 shows one way to check an application's JDBC
connection properties to determine whether successful connections require a valid certificate. For
more information on all of the JDBC connection options for MySQL, see Configuration properties in
the MySQL documentation.

When using the MySQL Connector/J 8.0, an TLS connection requires verification against
the server CA certificate if your connection properties have sslMode set to VERIFY_CA or
VERIFY_IDENTITY, as in the following example.

Determining whether any applications are connecting to your Aurora MySQL DB cluster using TLS 1294

https://dev.mysql.com/doc/refman/8.0/en/performance-schema-quick-start.html
https://dev.mysql.com/doc/connector-j/en/connector-j-reference-configuration-properties.html

Amazon Aurora User Guide for Aurora

Properties properties = new Properties();
properties.setProperty("sslMode", "VERIFY_IDENTITY");
properties.put("user", DB_USER);
properties.put("password", DB_PASSWORD);

Note

If you use either the MySQL Java Connector v5.1.38 or later, or the MySQL Java Connector
v8.0.9 or later to connect to your databases, even if you haven't explicitly configured your
applications to use TLS when connecting to your databases, these client drivers default to
using TLS. In addition, when using TLS, they perform partial certificate verification and fail
to connect if the database server certificate is expired.

MySQL

The following examples with the MySQL Client show two ways to check a script's MySQL
connection to determine whether successful connections require a valid certificate. For more
information on all of the connection options with the MySQL Client, see Client-side configuration
for encrypted connections in the MySQL documentation.

When using the MySQL 5.7 or MySQL 8.0 Client, an TLS connection requires verification against the
server CA certificate if for the --ssl-mode option you specify VERIFY_CA or VERIFY_IDENTITY,
as in the following example.

mysql -h mysql-database.rds.amazonaws.com -uadmin -ppassword --ssl-ca=/tmp/ssl-cert.pem
 --ssl-mode=VERIFY_CA

When using the MySQL 5.6 Client, an SSL connection requires verification against the server CA
certificate if you specify the --ssl-verify-server-cert option, as in the following example.

mysql -h mysql-database.rds.amazonaws.com -uadmin -ppassword --ssl-ca=/tmp/ssl-cert.pem
 --ssl-verify-server-cert

Updating your application trust store

For information about updating the trust store for MySQL applications, see Installing SSL
certificates in the MySQL documentation.

Updating your application trust store 1295

https://dev.mysql.com/doc/refman/8.0/en/using-encrypted-connections.html#using-encrypted-connections-client-side-configuration
https://dev.mysql.com/doc/refman/8.0/en/using-encrypted-connections.html#using-encrypted-connections-client-side-configuration
https://dev.mysql.com/doc/mysql-monitor/8.0/en/mem-ssl-installation.html
https://dev.mysql.com/doc/mysql-monitor/8.0/en/mem-ssl-installation.html

Amazon Aurora User Guide for Aurora

Note

When you update the trust store, you can retain older certificates in addition to adding the
new certificates.

Updating your application trust store for JDBC

You can update the trust store for applications that use JDBC for TLS connections.

For information about downloading the root certificate, see Using SSL/TLS to encrypt a connection
to a DB cluster.

For sample scripts that import certificates, see Sample script for importing certificates into your
trust store.

If you are using the mysql JDBC driver in an application, set the following properties in the
application.

System.setProperty("javax.net.ssl.trustStore", certs);
System.setProperty("javax.net.ssl.trustStorePassword", "password");

Note

Specify a password other than the prompt shown here as a security best practice.

When you start the application, set the following properties.

java -Djavax.net.ssl.trustStore=/path_to_truststore/MyTruststore.jks -
Djavax.net.ssl.trustStorePassword=my_truststore_password com.companyName.MyApplication

Example Java code for establishing TLS connections

The following code example shows how to set up the SSL connection that validates the server
certificate using JDBC.

public class MySQLSSLTest {

Example Java code for establishing TLS connections 1296

Amazon Aurora User Guide for Aurora

 private static final String DB_USER = "user name";
 private static final String DB_PASSWORD = "password";
 // This key store has only the prod root ca.
 private static final String KEY_STORE_FILE_PATH = "file-path-to-keystore";
 private static final String KEY_STORE_PASS = "keystore-password";

 public static void test(String[] args) throws Exception {
 Class.forName("com.mysql.jdbc.Driver");

 System.setProperty("javax.net.ssl.trustStore", KEY_STORE_FILE_PATH);
 System.setProperty("javax.net.ssl.trustStorePassword", KEY_STORE_PASS);

 Properties properties = new Properties();
 properties.setProperty("sslMode", "VERIFY_IDENTITY");
 properties.put("user", DB_USER);
 properties.put("password", DB_PASSWORD);

 Connection connection = DriverManager.getConnection("jdbc:mysql://jagdeeps-ssl-
test.cni62e2e7kwh.us-east-1.rds.amazonaws.com:3306",properties);
 Statement stmt=connection.createStatement();

 ResultSet rs=stmt.executeQuery("SELECT 1 from dual");

 return;
 }
}

Important

After you have determined that your database connections use TLS and have updated
your application trust store, you can update your database to use the rds-ca-rsa2048-g1
certificates. For instructions, see step 3 in Updating your CA certificate by modifying your
DB instance .

Example Java code for establishing TLS connections 1297

Amazon Aurora User Guide for Aurora

Using Kerberos authentication for Aurora MySQL

You can use Kerberos authentication to authenticate users when they connect to your Aurora
MySQL DB cluster. To do so, configure your DB cluster to use AWS Directory Service for Microsoft
Active Directory for Kerberos authentication. AWS Directory Service for Microsoft Active Directory
is also called AWS Managed Microsoft AD. It's a feature available with AWS Directory Service. To
learn more, see What is AWS Directory Service? in the AWS Directory Service Administration Guide.

To start, create an AWS Managed Microsoft AD directory to store user credentials. Then, provide
the Active Directory's domain and other information to your Aurora MySQL DB cluster. When users
authenticate with the Aurora MySQL DB cluster, authentication requests are forwarded to the AWS
Managed Microsoft AD directory.

Keeping all of your credentials in the same directory can save you time and effort. With this
approach, you have a centralized location for storing and managing credentials for multiple DB
clusters. Using a directory can also improve your overall security profile.

In addition, you can access credentials from your own on-premises Microsoft Active Directory. To do
so, create a trusting domain relationship so that the AWS Managed Microsoft AD directory trusts
your on-premises Microsoft Active Directory. In this way, your users can access your Aurora MySQL
DB clusters with the same Windows single sign-on (SSO) experience as when they access workloads
in your on-premises network.

A database can use Kerberos, AWS Identity and Access Management (IAM), or both Kerberos
and IAM authentication. However, because Kerberos and IAM authentication provide different
authentication methods, a specific user can log in to a database using only one or the other
authentication method, but not both. For more information about IAM authentication, see IAM
database authentication.

Contents

• Overview of Kerberos authentication for Aurora MySQL DB clusters

• Limitations of Kerberos authentication for Aurora MySQL

• Setting up Kerberos authentication for Aurora MySQL DB clusters

• Step 1: Create a directory using AWS Managed Microsoft AD

• Step 2: (Optional) Create a trust for an on-premises Active Directory

• Step 3: Create an IAM role for use by Amazon Aurora

• Step 4: Create and configure users

Using Kerberos authentication for Aurora MySQL 1298

https://docs.aws.amazon.com/directoryservice/latest/admin-guide/what_is.html

Amazon Aurora User Guide for Aurora

• Step 5: Create or modify an Aurora MySQL DB cluster

• Step 6: Create Aurora MySQL users that use Kerberos authentication

• Modifying an existing Aurora MySQL login

• Step 7: Configure a MySQL client

• Step 8: (Optional) Configure case-insensitive username comparison

• Connecting to Aurora MySQL with Kerberos authentication

• Using the Aurora MySQL Kerberos login to connect to the DB cluster

• Kerberos authentication with Aurora global databases

• Migrating from RDS for MySQL to Aurora MySQL

• Preventing ticket caching

• Logging for Kerberos authentication

• Managing a DB cluster in a domain

• Understanding domain membership

Overview of Kerberos authentication for Aurora MySQL DB clusters

To set up Kerberos authentication for an Aurora MySQL DB cluster, complete the following general
steps. These steps are described in more detail later.

1. Use AWS Managed Microsoft AD to create an AWS Managed Microsoft AD directory. You can
use the AWS Management Console, the AWS CLI, or the AWS Directory Service to create the
directory. For detailed instructions, see Create your AWS Managed Microsoft AD directory in the
AWS Directory Service Administration Guide.

2. Create an AWS Identity and Access Management (IAM) role that uses the managed IAM policy
AmazonRDSDirectoryServiceAccess. The role allows Amazon Aurora to make calls to your
directory.

For the role to allow access, the AWS Security Token Service (AWS STS) endpoint must be
activated in the AWS Region for your AWS account. AWS STS endpoints are active by default in
all AWS Regions, and you can use them without any further action. For more information, see
Activating and deactivating AWS STS in an AWS Region in the IAM User Guide.

3. Create and configure users in the AWS Managed Microsoft AD directory using the Microsoft
Active Directory tools. For more information about creating users in your Active Directory,

Overview of Kerberos authentication for Aurora MySQL 1299

https://docs.aws.amazon.com/directoryservice/latest/admin-guide/ms_ad_getting_started_create_directory.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_enable-regions.html#sts-regions-activate-deactivate
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_enable-regions.html#sts-regions-activate-deactivate

Amazon Aurora User Guide for Aurora

see Manage users and groups in AWS managed Microsoft AD in the AWS Directory Service
Administration Guide.

4. Create or modify an Aurora MySQL DB cluster. If you use either the CLI or RDS API in the create
request, specify a domain identifier with the Domain parameter. Use the d-* identifier that was
generated when you created your directory and the name of the IAM role that you created.

If you modify an existing Aurora MySQL DB cluster to use Kerberos authentication, set the
domain and IAM role parameters for the DB cluster. Locate the DB cluster in the same VPC as the
domain directory.

5. Use the Amazon RDS primary user credentials to connect to the Aurora MySQL DB cluster.
Create the database user in Aurora MySQL by using the instructions in Step 6: Create Aurora
MySQL users that use Kerberos authentication.

Users that you create this way can log in to the Aurora MySQL DB cluster using Kerberos
authentication. For more information, see Connecting to Aurora MySQL with Kerberos
authentication.

To use Kerberos authentication with an on-premises or self-hosted Microsoft Active Directory,
create a forest trust. A forest trust is a trust relationship between two groups of domains. The
trust can be one-way or two-way. For more information about setting up forest trusts using
AWS Directory Service, see When to create a trust relationship in the AWS Directory Service
Administration Guide.

Limitations of Kerberos authentication for Aurora MySQL

The following limitations apply to Kerberos authentication for Aurora MySQL:

• Kerberos authentication is supported for Aurora MySQL version 3.03 and higher.

For information about AWS Region support, see Kerberos authentication with Aurora MySQL.

• To use Kerberos authentication with Aurora MySQL, your MySQL client or connector must use
version 8.0.26 or higher on Unix platforms, 8.0.27 or higher on Windows. Otherwise, the client-
side authentication_kerberos_client plugin isn't available and you can't authenticate.

• Only AWS Managed Microsoft AD is supported on Aurora MySQL. However, you can join Aurora
MySQL DB clusters to shared Managed Microsoft AD domains owned by different accounts in the
same AWS Region.

Limitations 1300

https://docs.aws.amazon.com/directoryservice/latest/admin-guide/ms_ad_manage_users_groups.html
https://docs.aws.amazon.com/directoryservice/latest/admin-guide/ms_ad_setup_trust.html

Amazon Aurora User Guide for Aurora

You can also use your own on-premises Active Directory. For more information, see Step 2:
(Optional) Create a trust for an on-premises Active Directory

• When using Kerberos to authenticate a user connecting to the Aurora MySQL cluster from
MySQL clients or from drivers on the Windows operating system, by default the character case of
the database username must match the case of the user in the Active Directory. For example, if
the user in the Active Directory appears as Admin, the database username must be Admin.

However, you can now use case-insensitive username comparison with the
authentication_kerberos plugin. For more information, see Step 8: (Optional) Configure
case-insensitive username comparison.

• You must reboot the reader DB instances after turning on the feature to install the
authentication_kerberos plugin.

• Replicating to DB instances that don't support the authentication_kerberos plugin can lead
to replication failure.

• For Aurora global databases to use Kerberos authentication, you must configure it for every DB
cluster in the global database.

• The domain name must be less than 62 characters long.

• Don't modify the DB cluster port after turning on Kerberos authentication. If you modify the
port, then Kerberos authentication will no longer work.

Setting up Kerberos authentication for Aurora MySQL DB clusters

Use AWS Managed Microsoft AD to set up Kerberos authentication for an Aurora MySQL DB cluster.
To set up Kerberos authentication, take the following steps.

Topics

• Step 1: Create a directory using AWS Managed Microsoft AD

• Step 2: (Optional) Create a trust for an on-premises Active Directory

• Step 3: Create an IAM role for use by Amazon Aurora

• Step 4: Create and configure users

• Step 5: Create or modify an Aurora MySQL DB cluster

• Step 6: Create Aurora MySQL users that use Kerberos authentication

• Step 7: Configure a MySQL client

Setting up Kerberos authentication for Aurora MySQL 1301

Amazon Aurora User Guide for Aurora

• Step 8: (Optional) Configure case-insensitive username comparison

Step 1: Create a directory using AWS Managed Microsoft AD

AWS Directory Service creates a fully managed Active Directory in the AWS Cloud. When you create
an AWS Managed Microsoft AD directory, AWS Directory Service creates two domain controllers
and Domain Name System (DNS) servers on your behalf. The directory servers are created in
different subnets in a VPC. This redundancy helps make sure that your directory remains accessible
even if a failure occurs.

When you create an AWS Managed Microsoft AD directory, AWS Directory Service performs the
following tasks on your behalf:

• Sets up an Active Directory within the VPC.

• Creates a directory administrator account with the username Admin and the specified password.
You use this account to manage your directory.

Note

Be sure to save this password. AWS Directory Service doesn't store it. You can reset it, but
you can't retrieve it.

• Creates a security group for the directory controllers.

When you launch an AWS Managed Microsoft AD, AWS creates an Organizational Unit (OU) that
contains all of your directory's objects. This OU has the NetBIOS name that you entered when you
created your directory. It is located in the domain root, which is owned and managed by AWS.

The Admin account that was created with your AWS Managed Microsoft AD directory has
permissions for the most common administrative activities for your OU, including:

• Create, update, or delete users

• Add resources to your domain, such as file or print servers, and then assign permissions for those
resources to users in your OU

• Create additional OUs and containers

• Delegate authority

• Restore deleted objects from the Active Directory Recycle Bin

Setting up Kerberos authentication for Aurora MySQL 1302

Amazon Aurora User Guide for Aurora

• Run AD and DNS Windows PowerShell modules on the Active Directory Web Service

The Admin account also has rights to perform the following domain-wide activities:

• Manage DNS configurations (add, remove, or update records, zones, and forwarders)

• View DNS event logs

• View security event logs

To create a directory with AWS Managed Microsoft AD

1. Sign in to the AWS Management Console and open the AWS Directory Service console at
https://console.aws.amazon.com/directoryservicev2/.

2. In the navigation pane, choose Directories and choose Set up Directory.

3. Choose AWS Managed Microsoft AD. AWS Managed Microsoft AD is the only option that you
can currently use with Amazon RDS.

4. Enter the following information:

Directory DNS name

The fully qualified name for the directory, such as corp.example.com.

Directory NetBIOS name

The short name for the directory, such as CORP.

Directory description

(Optional) A description for the directory.

Admin password

The password for the directory administrator. The directory creation process creates an
administrator account with the username Admin and this password.

The directory administrator password and can't include the word "admin." The password
is case-sensitive and must be 8–64 characters in length. It must also contain at least one
character from three of the following four categories:

• Lowercase letters (a–z)

• Uppercase letters (A–Z)
Setting up Kerberos authentication for Aurora MySQL 1303

https://console.aws.amazon.com/directoryservicev2/

Amazon Aurora User Guide for Aurora

• Numbers (0–9)

• Non-alphanumeric characters (~!@#$%^&*_-+=`|\(){}[]:;"'<>,.?/)

Confirm password

The administrator password re-entered.

5. Choose Next.

6. Enter the following information in the Networking section and then choose Next:

VPC

The VPC for the directory. Create the Aurora MySQL DB cluster in this same VPC.

Subnets

Subnets for the directory servers. The two subnets must be in different Availability Zones.

7. Review the directory information and make any necessary changes. When the information is
correct, choose Create directory.

It takes several minutes to create the directory. When it has been successfully created, the Status
value changes to Active.

To see information about your directory, choose the directory name in the directory listing. Note
the Directory ID value because you need this value when you create or modify your Aurora MySQL
DB cluster.

Step 2: (Optional) Create a trust for an on-premises Active Directory

If you don't plan to use your own on-premises Microsoft Active Directory, skip to Step 3: Create an
IAM role for use by Amazon Aurora.

To use Kerberos authentication with your on-premises Active Directory, you need to create a
trusting domain relationship using a forest trust between your on-premises Microsoft Active
Directory and the AWS Managed Microsoft AD directory (created in Step 1: Create a directory
using AWS Managed Microsoft AD). The trust can be one-way, where the AWS Managed Microsoft
AD directory trusts the on-premises Microsoft Active Directory. The trust can also be two-way,
where both Active Directories trust each other. For more information about setting up trusts
using AWS Directory Service, see When to create a trust relationship in the AWS Directory Service
Administration Guide.

Setting up Kerberos authentication for Aurora MySQL 1304

https://docs.aws.amazon.com/directoryservice/latest/admin-guide/ms_ad_setup_trust.html

Amazon Aurora User Guide for Aurora

Note

If you use an on-premises Microsoft Active Directory:

• Windows clients must connect using the domain name of the AWS Directory Service in
the endpoint rather than rds.amazonaws.com. For more information, see Connecting to
Aurora MySQL with Kerberos authentication.

• Windows clients can't connect using Aurora custom endpoints. To learn more, see
Amazon Aurora connection management.

• For global databases:

• Windows clients can connect using instance endpoints or cluster endpoints in the
primary AWS Region of the global database only.

• Windows clients can't connect using cluster endpoints in secondary AWS Regions.

Make sure that your on-premises Microsoft Active Directory domain name includes a DNS suffix
routing that corresponds to the newly created trust relationship. The following screenshot shows
an example.

Step 3: Create an IAM role for use by Amazon Aurora

For Amazon Aurora to call AWS Directory Service for you, you need an AWS
Identity and Access Management (IAM) role that uses the managed IAM policy
AmazonRDSDirectoryServiceAccess. This role allows Aurora to make calls to the AWS
Directory Service.

Setting up Kerberos authentication for Aurora MySQL 1305

Amazon Aurora User Guide for Aurora

When you create a DB cluster using the AWS Management Console, and you have the
iam:CreateRole permission, the console creates this role automatically. In this case, the role
name is rds-directoryservice-kerberos-access-role. Otherwise, you must create the
IAM role manually. When you create this IAM role, choose Directory Service, and attach the
AWS managed policy AmazonRDSDirectoryServiceAccess to it.

For more information about creating IAM roles for a service, see Creating a role to delegate
permissions to an AWS service in the IAM User Guide.

Optionally, you can create policies with the required permissions instead of using the managed IAM
policy AmazonRDSDirectoryServiceAccess. In this case, the IAM role must have the following
IAM trust policy.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "",
 "Effect": "Allow",
 "Principal": {
 "Service": [
 "directoryservice.rds.amazonaws.com",
 "rds.amazonaws.com"
]
 },
 "Action": "sts:AssumeRole"
 }
]
}

The role must also have the following IAM role policy.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "ds:DescribeDirectories",
 "ds:AuthorizeApplication",
 "ds:UnauthorizeApplication",
 "ds:GetAuthorizedApplicationDetails"
],

Setting up Kerberos authentication for Aurora MySQL 1306

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html

Amazon Aurora User Guide for Aurora

 "Effect": "Allow",
 "Resource": "*"
 }
]
}

Step 4: Create and configure users

You can create users with the Active Directory Users and Computers tool. This tool is part of the
Active Directory Domain Services and Active Directory Lightweight Directory Services tools. Users
represent individual people or entities that have access to your directory.

To create users in an AWS Directory Service directory, you use an on-premises or Amazon EC2
instance based on Microsoft Windows that is joined to your AWS Directory Service directory.
You must be logged in to the instance as a user that has privileges to create users. For more
information, see Manage users and groups in AWS Managed Microsoft AD in the AWS Directory
Service Administration Guide.

Step 5: Create or modify an Aurora MySQL DB cluster

Create or modify an Aurora MySQL DB cluster for use with your directory. You can use the console,
AWS CLI, or RDS API to associate a DB cluster with a directory. You can do this task in one of the
following ways:

• Create a new Aurora MySQL DB cluster using the console, the create-db-cluster CLI command, or
the CreateDBCluster RDS API operation.

For instructions, see Creating an Amazon Aurora DB cluster.

• Modify an existing Aurora MySQL DB cluster using the console, the modify-db-cluster CLI
command, or the ModifyDBCluster RDS API operation.

For instructions, see Modifying an Amazon Aurora DB cluster.

• Restore an Aurora MySQL DB cluster from a DB snapshot using the console, the restore-db-
cluster-from-snapshot CLI command, or the RestoreDBClusterFromSnapshot RDS API operation.

For instructions, see Restoring from a DB cluster snapshot.

• Restore an Aurora MySQL DB cluster to a point-in-time using the console, the restore-db-
cluster-to-point-in-time CLI command, or the RestoreDBClusterToPointInTime RDS API
operation.

Setting up Kerberos authentication for Aurora MySQL 1307

https://docs.aws.amazon.com/directoryservice/latest/admin-guide/creating_ad_users_and_groups.html
https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-cluster.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateDBCluster.html
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-cluster.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBCluster.html
https://docs.aws.amazon.com/cli/latest/reference/rds/restore-db-cluster-from-snapshot.html
https://docs.aws.amazon.com/cli/latest/reference/rds/restore-db-cluster-from-snapshot.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_RestoreDBClusterFromSnapshot.html
https://docs.aws.amazon.com/cli/latest/reference/rds/restore-db-cluster-to-point-in-time.html
https://docs.aws.amazon.com/cli/latest/reference/rds/restore-db-cluster-to-point-in-time.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_RestoreDBClusterToPointInTime.html

Amazon Aurora User Guide for Aurora

For instructions, see Restoring a DB cluster to a specified time.

Kerberos authentication is only supported for Aurora MySQL DB clusters in a VPC. The DB cluster
can be in the same VPC as the directory, or in a different VPC. The DB cluster's VPC must have a
VPC security group that allows outbound communication to your directory.

Console

When you use the console to create, modify, or restore a DB cluster, choose Kerberos
authentication in the Database authentication section. Choose Browse Directory and then select
the directory, or choose Create a new directory.

AWS CLI

When you use the AWS CLI or RDS API, associate a DB cluster with a directory. The following
parameters are required for the DB cluster to use the domain directory you created:

• For the --domain parameter, use the domain identifier ("d-*" identifier) generated when you
created the directory.

• For the --domain-iam-role-name parameter, use the role you created that uses the managed
IAM policy AmazonRDSDirectoryServiceAccess.

For example, the following CLI command modifies a DB cluster to use a directory.

For Linux, macOS, or Unix:

aws rds modify-db-cluster \
 --db-cluster-identifier mydbcluster \
 --domain d-ID \
 --domain-iam-role-name role-name

For Windows:

aws rds modify-db-cluster ^
 --db-cluster-identifier mydbcluster ^
 --domain d-ID ^
 --domain-iam-role-name role-name

Setting up Kerberos authentication for Aurora MySQL 1308

Amazon Aurora User Guide for Aurora

Important

If you modify a DB cluster to turn on Kerberos authentication, reboot the reader DB
instances after making the change.

Step 6: Create Aurora MySQL users that use Kerberos authentication

The DB cluster is joined to the AWS Managed Microsoft AD domain. Thus, you can create Aurora
MySQL users from the Active Directory users in your domain. Database permissions are managed
through standard Aurora MySQL permissions that are granted to and revoked from these users.

You can allow an Active Directory user to authenticate with Aurora MySQL. To do this, first use
the Amazon RDS primary user credentials to connect to the Aurora MySQL DB cluster as with any
other DB cluster. After you're logged in, create an externally authenticated user with Kerberos
authentication in Aurora MySQL as shown here:

CREATE USER user_name@'host_name' IDENTIFIED WITH 'authentication_kerberos' BY
 'realm_name';

• Replace user_name with the username. Users (both humans and applications) from your
domain can now connect to the DB cluster from a domain-joined client machine using Kerberos
authentication.

• Replace host_name with the hostname. You can use % as a wild card. You can also use specific IP
addresses for the hostname.

• Replace realm_name with the directory realm name of the domain. The realm name is usually
the same as the DNS domain name in uppercase letters, such as CORP.EXAMPLE.COM. A realm is
a group of systems that use the same Kerberos Key Distribution Center.

The following example creates a database user with the name Admin that authenticates against
the Active Directory with the realm name MYSQL.LOCAL.

CREATE USER Admin@'%' IDENTIFIED WITH 'authentication_kerberos' BY 'MYSQL.LOCAL';

Modifying an existing Aurora MySQL login

You can also modify an existing Aurora MySQL login to use Kerberos authentication by using the
following syntax:

Setting up Kerberos authentication for Aurora MySQL 1309

Amazon Aurora User Guide for Aurora

ALTER USER user_name IDENTIFIED WITH 'authentication_kerberos' BY 'realm_name';

Step 7: Configure a MySQL client

To configure a MySQL client, take the following steps:

1. Create a krb5.conf file (or equivalent) to point to the domain.

2. Verify that traffic can flow between the client host and AWS Directory Service. Use a network
utility such as Netcat, for the following:

• Verify traffic over DNS for port 53.

• Verify traffic over TCP/UDP for port 53 and for Kerberos, which includes ports 88 and 464 for
AWS Directory Service.

3. Verify that traffic can flow between the client host and the DB instance over the database port.
For example, use mysql to connect and access the database.

The following is sample krb5.conf content for AWS Managed Microsoft AD.

[libdefaults]
 default_realm = EXAMPLE.COM
[realms]
 EXAMPLE.COM = {
 kdc = example.com
 admin_server = example.com
 }
[domain_realm]
 .example.com = EXAMPLE.COM
 example.com = EXAMPLE.COM

The following is sample krb5.conf content for an on-premises Microsoft Active Directory.

[libdefaults]
 default_realm = EXAMPLE.COM
[realms]
 EXAMPLE.COM = {
 kdc = example.com
 admin_server = example.com
 }
 ONPREM.COM = {
 kdc = onprem.com

Setting up Kerberos authentication for Aurora MySQL 1310

Amazon Aurora User Guide for Aurora

 admin_server = onprem.com
 }
[domain_realm]
 .example.com = EXAMPLE.COM
 example.com = EXAMPLE.COM
 .onprem.com = ONPREM.COM
 onprem.com = ONPREM.COM
 .rds.amazonaws.com = EXAMPLE.COM
 .amazonaws.com.cn = EXAMPLE.COM
 .amazon.com = EXAMPLE.COM

Step 8: (Optional) Configure case-insensitive username comparison

By default, the character case of the MySQL database username must match that
of the Active Directory login. However, you can now use case-insensitive username
comparison with the authentication_kerberos plugin. To do so, you set the
authentication_kerberos_caseins_cmp DB cluster parameter to true.

To use case-insensitive username comparison

1. Create a custom DB cluster parameter group. Follow the procedures in Creating a DB cluster
parameter group.

2. Edit the new parameter group to set the value of
authentication_kerberos_caseins_cmp to true. Follow the procedures in Modifying
parameters in a DB cluster parameter group.

3. Associate the DB cluster parameter group with your Aurora MySQL DB cluster. Follow the
procedures in Associating a DB cluster parameter group with a DB cluster.

4. Reboot the DB cluster.

Connecting to Aurora MySQL with Kerberos authentication

To avoid errors, use a MySQL client with version 8.0.26 or higher on Unix platforms, 8.0.27 or
higher on Windows.

Using the Aurora MySQL Kerberos login to connect to the DB cluster

To connect to Aurora MySQL with Kerberos authentication, you log in as a database user that
you created using the instructions in Step 6: Create Aurora MySQL users that use Kerberos
authentication.

Connecting to Aurora MySQL with Kerberos authentication 1311

Amazon Aurora User Guide for Aurora

At a command prompt, connect to one of the endpoints associated with your Aurora MySQL DB
cluster. When you're prompted for the password, enter the Kerberos password associated with that
username.

When you authenticate with Kerberos, a ticket-granting ticket (TGT) is generated if one doesn't
already exist. The authentication_kerberos plugin uses the TGT to get a service ticket, which is
then presented to the Aurora MySQL database server.

You can use the MySQL client to connect to Aurora MySQL with Kerberos authentication using
either Windows or Unix.

Unix

You can connect by using either one of the following methods:

• Obtain the TGT manually. In this case, you don't need to supply the password to the MySQL
client.

• Supply the password for the Active Directory login directly to the MySQL client.

The client-side plugin is supported on Unix platforms for MySQL client versions 8.0.26 and higher.

To connect by obtaining the TGT manually

1. At the command line interface, use the following command to obtain the TGT.

kinit user_name

2. Use the following mysql command to log in to the DB instance endpoint of your DB cluster.

mysql -h DB_instance_endpoint -P 3306 -u user_name -p

Note

Authentication can fail if the keytab is rotated on the DB instance. In this case, obtain a
new TGT by rerunning kinit.

Connecting to Aurora MySQL with Kerberos authentication 1312

Amazon Aurora User Guide for Aurora

To connect directly

1. At the command line interface, use the following mysql command to log in to the DB instance
endpoint of your DB cluster.

mysql -h DB_instance_endpoint -P 3306 -u user_name -p

2. Enter the password for the Active Directory user.

Windows

On Windows, authentication is usually done at login time, so you don't need to obtain the TGT
manually to connect to the Aurora MySQL DB cluster. The case of the database username must
match the character case of the user in the Active Directory. For example, if the user in the Active
Directory appears as Admin, the database username must be Admin.

The client-side plugin is supported on Windows for MySQL client versions 8.0.27 and higher.

To connect directly

• At the command line interface, use the following mysql command to log in to the DB instance
endpoint of your DB cluster.

mysql -h DB_instance_endpoint -P 3306 -u user_name

Kerberos authentication with Aurora global databases

Kerberos authentication for Aurora MySQL is supported for Aurora global databases. To
authenticate users on the secondary DB cluster using the Active Directory of the primary DB
cluster, replicate the Active Directory to the secondary AWS Region. You turn on Kerberos
authentication on the secondary cluster using the same domain ID as for the primary cluster. AWS
Managed Microsoft AD replication is supported only with the Enterprise version of Active Directory.
For more information, see Multi-Region replication in the AWS Directory Service Administration
Guide.

Connecting to Aurora MySQL with Kerberos authentication 1313

https://docs.aws.amazon.com/directoryservice/latest/admin-guide/ms_ad_configure_multi_region_replication.html

Amazon Aurora User Guide for Aurora

Migrating from RDS for MySQL to Aurora MySQL

After you migrate from RDS for MySQL with Kerberos authentication enabled to Aurora MySQL,
modify users created with the auth_pam plugin to use the authentication_kerberos plugin.
For example:

ALTER USER user_name IDENTIFIED WITH 'authentication_kerberos' BY 'realm_name';

Preventing ticket caching

If a valid TGT doesn't exist when the MySQL client application starts, the application can obtain
and cache the TGT. If you want to prevent the TGT from being cached, set a configuration
parameter in the /etc/krb5.conf file.

Note

This configuration only applies to client hosts running Unix, not Windows.

To prevent TGT caching

• Add an [appdefaults] section to /etc/krb5.conf as follows:

[appdefaults]
 mysql = {
 destroy_tickets = true
 }

Logging for Kerberos authentication

The AUTHENTICATION_KERBEROS_CLIENT_LOG environment variable sets the logging level for
Kerberos authentication. You can use the logs for client-side debugging.

The permitted values are 1–5. Log messages are written to the standard error output. The
following table describes each logging level.

Logging level Description

1 or not set No logging

Connecting to Aurora MySQL with Kerberos authentication 1314

Amazon Aurora User Guide for Aurora

Logging level Description

2 Error messages

3 Error and warning messages

4 Error, warning, and information messages

5 Error, warning, information, and debug
messages

Managing a DB cluster in a domain

You can use the AWS CLI or the RDS API to manage your DB cluster and its relationship with
your managed Active Directory. For example, you can associate an Active Directory for Kerberos
authentication and disassociate an Active Directory to turn off Kerberos authentication. You can
also move a DB cluster to be externally authenticated by one Active Directory to another.

For example, using the Amazon RDS API, you can do the following:

• To reattempt turning on Kerberos authentication for a failed membership, use the
ModifyDBInstance API operation and specify the current membership's directory ID.

• To update the IAM role name for membership, use the ModifyDBInstance API operation and
specify the current membership's directory ID and the new IAM role.

• To turn off Kerberos authentication on a DB cluster, use the ModifyDBInstance API operation
and specify none as the domain parameter.

• To move a DB cluster from one domain to another, use the ModifyDBInstance API operation
and specify the domain identifier of the new domain as the domain parameter.

• To list membership for each DB cluster, use the DescribeDBInstances API operation.

Understanding domain membership

After you create or modify your DB cluster, it becomes a member of the domain. You can view
the status of the domain membership for the DB cluster by running the describe-db-clusters CLI
command. The status of the DB cluster can be one of the following:

• kerberos-enabled – The DB cluster has Kerberos authentication turned on.

Managing a DB cluster in a domain 1315

https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-clusters.html

Amazon Aurora User Guide for Aurora

• enabling-kerberos – AWS is in the process of turning on Kerberos authentication on this DB
cluster.

• pending-enable-kerberos – Turning on Kerberos authentication is pending on this DB
cluster.

• pending-maintenance-enable-kerberos – AWS will attempt to turn on Kerberos
authentication on the DB cluster during the next scheduled maintenance window.

• pending-disable-kerberos – Turning off Kerberos authentication is pending on this DB
cluster.

• pending-maintenance-disable-kerberos – AWS will attempt to turn off Kerberos
authentication on the DB cluster during the next scheduled maintenance window.

• enable-kerberos-failed – A configuration problem has prevented AWS from turning on
Kerberos authentication on the DB cluster. Check and fix your configuration before reissuing the
DB cluster modify command.

• disabling-kerberos – AWS is in the process of turning off Kerberos authentication on this DB
cluster.

A request to turn on Kerberos authentication can fail because of a network connectivity issue or
an incorrect IAM role. For example, suppose that you create a DB cluster or modify an existing DB
cluster and the attempt to turn on Kerberos authentication fails. In this case, reissue the modify
command or modify the newly created DB cluster to join the domain.

Managing a DB cluster in a domain 1316

Amazon Aurora User Guide for Aurora

Migrating data to an Amazon Aurora MySQL DB cluster

You have several options for migrating data from your existing database to an Amazon Aurora
MySQL DB cluster. Your migration options also depend on the database that you are migrating
from and the size of the data that you are migrating.

There are two different types of migration: physical and logical. Physical migration means that
physical copies of database files are used to migrate the database. Logical migration means that
the migration is accomplished by applying logical database changes, such as inserts, updates, and
deletes.

Physical migration has the following advantages:

• Physical migration is faster than logical migration, especially for large databases.

• Database performance does not suffer when a backup is taken for physical migration.

• Physical migration can migrate everything in the source database, including complex database
components.

Physical migration has the following limitations:

• The innodb_page_size parameter must be set to its default value (16KB).

• The innodb_data_file_path parameter must be configured with only one data file that uses
the default data file name "ibdata1:12M:autoextend". Databases with two data files, or
with a data file with a different name, can't be migrated using this method.

The following are examples of file names that are not allowed:
"innodb_data_file_path=ibdata1:50M; ibdata2:50M:autoextend" and
"innodb_data_file_path=ibdata01:50M:autoextend".

• The innodb_log_files_in_group parameter must be set to its default value (2).

Logical migration has the following advantages:

• You can migrate subsets of the database, such as specific tables or parts of a table.

• The data can be migrated regardless of the physical storage structure.

Logical migration has the following limitations:

Migrating data to Aurora MySQL 1317

Amazon Aurora User Guide for Aurora

• Logical migration is usually slower than physical migration.

• Complex database components can slow down the logical migration process. In some cases,
complex database components can even block logical migration.

Migrating data to Aurora MySQL 1318

Amazon Aurora User Guide for Aurora

The following table describes your options and the type of migration for each option.

Migrating from Migration type Solution

An RDS for MySQL DB
instance

Physical You can migrate from an RDS for
MySQL DB instance by first creating
an Aurora MySQL read replica of a
MySQL DB instance. When the replica
lag between the MySQL DB instance
and the Aurora MySQL read replica is
0, you can direct your client applicati
ons to read from the Aurora read
replica and then stop replication to
make the Aurora MySQL read replica a
standalone Aurora MySQL DB cluster
for reading and writing. For details, see
Migrating data from an RDS for MySQL
DB instance to an Amazon Aurora
MySQL DB cluster by using an Aurora
read replica.

An RDS for MySQL DB
snapshot

Physical You can migrate data directly from
an RDS for MySQL DB snapshot to an
Amazon Aurora MySQL DB cluster.
For details, see Migrating an RDS for
MySQL snapshot to Aurora.

A MySQL database
external to Amazon RDS

Logical You can create a dump of your data
using the mysqldump utility, and
then import that data into an existing
Amazon Aurora MySQL DB cluster. For
details, see Logical migration from
MySQL to Amazon Aurora MySQL by
using mysqldump.

To export metadata for database users
during the migration from an external
MySQL database, you can also use

Migrating data to Aurora MySQL 1319

Amazon Aurora User Guide for Aurora

Migrating from Migration type Solution

a MySQL Shell command instead of
mysqldump . For more information,
see Instance Dump Utility, Schema
Dump Utility, and Table Dump Utility.

Note

The mysqlpump utility is
deprecated as of MySQL 8.0.34.

A MySQL database
external to Amazon RDS

Physical You can copy the backup files from
your database to an Amazon Simple
Storage Service (Amazon S3) bucket,
and then restore an Amazon Aurora
MySQL DB cluster from those files. This
option can be considerably faster than
migrating data using mysqldump . For
details, see Physical migration from
MySQL by using Percona XtraBackup
and Amazon S3.

A MySQL database
external to Amazon RDS

Logical You can save data from your database
as text files and copy those files to
an Amazon S3 bucket. You can then
load that data into an existing Aurora
MySQL DB cluster using the LOAD
DATA FROM S3 MySQL command. For
more information, see Loading data
into an Amazon Aurora MySQL DB
cluster from text files in an Amazon S3
bucket.

Migrating data to Aurora MySQL 1320

https://dev.mysql.com/doc/mysql-shell/8.0/en/mysql-shell-utilities-dump-instance-schema.html#mysql-shell-utilities-dump-about
https://dev.mysql.com/doc/mysql-shell/8.0/en/mysql-shell-utilities-dump-instance-schema.html#mysql-shell-utilities-dump-about
https://dev.mysql.com/doc/refman/8.0/en/mysqlpump.html

Amazon Aurora User Guide for Aurora

Migrating from Migration type Solution

A database that isn't
MySQL-compatible

Logical You can use AWS Database Migration
Service (AWS DMS) to migrate data
from a database that isn't MySQL-
compatible. For more information on
AWS DMS, see What is AWS database
migration service?

Note

If you're migrating a MySQL database external to Amazon RDS, the migration options
described in the table are supported only if your database supports the InnoDB or MyISAM
tablespaces.
If the MySQL database you're migrating to Aurora MySQL uses memcached, remove
memcached before migrating it.
You can't migrate to Aurora MySQL version 3.05 and higher from some older MySQL 8.0
versions, including 8.0.11, 8.0.13, and 8.0.15. We recommend that you upgrade to MySQL
version 8.0.28 before migrating.

Migrating data to Aurora MySQL 1321

https://docs.aws.amazon.com/dms/latest/userguide/Welcome.html
https://docs.aws.amazon.com/dms/latest/userguide/Welcome.html

Amazon Aurora User Guide for Aurora

Migrating data from an external MySQL database to an Amazon Aurora
MySQL DB cluster

If your database supports the InnoDB or MyISAM tablespaces, you have these options for migrating
your data to an Amazon Aurora MySQL DB cluster:

• You can create a dump of your data using the mysqldump utility, and then import that data into
an existing Amazon Aurora MySQL DB cluster. For more information, see Logical migration from
MySQL to Amazon Aurora MySQL by using mysqldump.

• You can copy the full and incremental backup files from your database to an Amazon S3 bucket,
and then restore to an Amazon Aurora MySQL DB cluster from those files. This option can be
considerably faster than migrating data using mysqldump. For more information, see Physical
migration from MySQL by using Percona XtraBackup and Amazon S3.

Topics

• Physical migration from MySQL by using Percona XtraBackup and Amazon S3

• Logical migration from MySQL to Amazon Aurora MySQL by using mysqldump

Physical migration from MySQL by using Percona XtraBackup and Amazon S3

You can copy the full and incremental backup files from your source MySQL version 5.7 or 8.0
database to an Amazon S3 bucket. Then you can restore to an Amazon Aurora MySQL DB cluster
with the same major DB engine version from those files.

This option can be considerably faster than migrating data using mysqldump, because using
mysqldump replays all of the commands to recreate the schema and data from your source
database in your new Aurora MySQL DB cluster. By copying your source MySQL data files, Aurora
MySQL can immediately use those files as the data for an Aurora MySQL DB cluster.

You can also minimize downtime by using binary log replication during the migration process. If
you use binary log replication, the external MySQL database remains open to transactions while
the data is being migrated to the Aurora MySQL DB cluster. After the Aurora MySQL DB cluster has
been created, you use binary log replication to synchronize the Aurora MySQL DB cluster with the
transactions that happened after the backup. When the Aurora MySQL DB cluster is caught up with
the MySQL database, you finish the migration by completely switching to the Aurora MySQL DB
cluster for new transactions. For more information, see Synchronizing the Amazon Aurora MySQL
DB cluster with the MySQL database using replication.

Migrating from an external MySQL database to Aurora MySQL 1322

Amazon Aurora User Guide for Aurora

Contents

• Limitations and considerations

• Before you begin

• Installing Percona XtraBackup

• Required permissions

• Creating the IAM service role

• Backing up files to be restored as an Amazon Aurora MySQL DB cluster

• Creating a full backup with Percona XtraBackup

• Using incremental backups with Percona XtraBackup

• Backup considerations

• Restoring an Amazon Aurora MySQL DB cluster from an Amazon S3 bucket

• Synchronizing the Amazon Aurora MySQL DB cluster with the MySQL database using replication

• Configuring your external MySQL database and your Aurora MySQL DB cluster for encrypted
replication

• Synchronizing the Amazon Aurora MySQL DB cluster with the external MySQL database

• Reducing the time for physical migration to Amazon Aurora MySQL

• Unsupported table types

• User accounts with unsupported privileges

• Dynamic privileges in Aurora MySQL version 3

• Stored objects with 'rdsadmin'@'localhost' as the definer

Limitations and considerations

The following limitations and considerations apply to restoring to an Amazon Aurora MySQL DB
cluster from an Amazon S3 bucket:

• You can migrate your data only to a new DB cluster, not an existing DB cluster.

• You must use Percona XtraBackup to back up your data to S3. For more information, see
Installing Percona XtraBackup.

• The Amazon S3 bucket and the Aurora MySQL DB cluster must be in the same AWS Region.

• You can't restore from the following:

• A DB cluster snapshot export to Amazon S3. You also can't migrate data from a DB cluster
snapshot export to your S3 bucket.

Migrating from an external MySQL database to Aurora MySQL 1323

Amazon Aurora User Guide for Aurora

• An encrypted source database, but you can encrypt the data being migrated. You can also
leave the data unencrypted during the migration process.

• A MySQL 5.5 or 5.6 database

• Percona Server for MySQL isn't supported as a source database, because it can contain
compression_dictionary* tables in the mysql schema.

• You can't restore to an Aurora Serverless DB cluster.

• Backward migration isn't supported for either major versions or minor versions. For example,
you can't migrate from MySQL version 8.0 to Aurora MySQL version 2 (compatible with MySQL
5.7), and you can't migrate from MySQL version 8.0.32 to Aurora MySQL version 3.03, which is
compatible with MySQL community version 8.0.26.

• You can't migrate to Aurora MySQL version 3.05 and higher from some older MySQL 8.0
versions, including 8.0.11, 8.0.13, and 8.0.15. We recommend that you upgrade to MySQL
version 8.0.28 before migrating.

• Importing from Amazon S3 isn't supported on the db.t2.micro DB instance class. However, you
can restore to a different DB instance class, and change the DB instance class later. For more
information about DB instance classes, see Aurora DB instance classes.

• Amazon S3 limits the size of a file uploaded to an S3 bucket to 5 TB. If a backup file exceeds 5
TB, then you must split the backup file into smaller files.

• Amazon RDS limits the number of files uploaded to an S3 bucket to 1 million. If the backup data
for your database, including all full and incremental backups, exceeds 1 million files, use a Gzip
(.gz), tar (.tar.gz), or Percona xbstream (.xbstream) file to store full and incremental backup files
in the S3 bucket. Percona XtraBackup 8.0 only supports Percona xbstream for compression.

• To provide management services for each DB cluster, the rdsadmin user is created when the DB
cluster is created. As this is a reserved user in RDS, the following limitations apply:

• Functions, procedures, views, events, and triggers with the 'rdsadmin'@'localhost'
definer aren't imported. For more information, see Stored objects with 'rdsadmin'@'localhost'
as the definer and Master user privileges with Amazon Aurora MySQL.

• When the Aurora MySQL DB cluster is created, a master user is created with the maximum
privileges supported. While restoring from backup, any unsupported privileges assigned to
users being imported are removed automatically during import.

To identify users that might be affected by this, see User accounts with unsupported privileges.
For more information on supported privileges in Aurora MySQL, see Role-based privilege
model.

Migrating from an external MySQL database to Aurora MySQL 1324

Amazon Aurora User Guide for Aurora

• For Aurora MySQL version 3, dynamic privileges aren't imported. Aurora-supported dynamic
privileges can be imported after migration. For more information, see Dynamic privileges in
Aurora MySQL version 3.

• User-created tables in the mysql schema aren't migrated.

• The innodb_data_file_path parameter must be configured with only one data file that uses
the default data file name ibdata1:12M:autoextend. Databases with two data files, or with a
data file with a different name, can't be migrated using this method.

The following are examples of file names that aren't allowed:
innodb_data_file_path=ibdata1:50M, ibdata2:50M:autoextend, and
innodb_data_file_path=ibdata01:50M:autoextend.

• You can't migrate from a source database that has tables defined outside of the default MySQL
data directory.

• The maximum supported size for uncompressed backups using this method is currently limited
to 64 TiB. For compressed backups, this limit goes lower to account for the uncompression
space requirements. In such cases, the maximum supported backup size would be (64 TiB –
compressed backup size).

• Aurora MySQL doesn't support the importing of MySQL and other external components and
plugins.

• Aurora MySQL doesn't restore everything from your database. We recommend that you save the
database schema and values for the following items from your source MySQL database, then add
them to your restored Aurora MySQL DB cluster after it has been created:

• User accounts

• Functions

• Stored procedures

• Time zone information. Time zone information is loaded from the local operating system of
your Aurora MySQL DB cluster. For more information, see Local time zone for Amazon Aurora
DB clusters.

Before you begin

Before you can copy your data to an Amazon S3 bucket and restore to a DB cluster from those files,
you must do the following:

• Install Percona XtraBackup on your local server.

Migrating from an external MySQL database to Aurora MySQL 1325

Amazon Aurora User Guide for Aurora

• Permit Aurora MySQL to access your Amazon S3 bucket on your behalf.

Installing Percona XtraBackup

Amazon Aurora can restore a DB cluster from files that were created using Percona XtraBackup. You
can install Percona XtraBackup from Software Downloads - Percona.

For MySQL 5.7 migration, use Percona XtraBackup 2.4.

For MySQL 8.0 migration, use Percona XtraBackup 8.0. Make sure that the Percona XtraBackup
version is compatible with the engine version of your source database.

Required permissions

To migrate your MySQL data to an Amazon Aurora MySQL DB cluster, several permissions are
required:

• The user that is requesting that Aurora create a new cluster from an Amazon S3 bucket must
have permission to list the buckets for your AWS account. You grant the user this permission
using an AWS Identity and Access Management (IAM) policy.

• Aurora requires permission to act on your behalf to access the Amazon S3 bucket where you
store the files used to create your Amazon Aurora MySQL DB cluster. You grant Aurora the
required permissions using an IAM service role.

• The user making the request must also have permission to list the IAM roles for your AWS
account.

• If the user making the request is to create the IAM service role or request that Aurora create the
IAM service role (by using the console), then the user must have permission to create an IAM role
for your AWS account.

• If you plan to encrypt the data during the migration process, update the IAM policy of the user
who will perform the migration to grant RDS access to the AWS KMS keys used for encrypting
the backups. For instructions, see Creating an IAM policy to access AWS KMS resources.

For example, the following IAM policy grants a user the minimum required permissions to use the
console to list IAM roles, create an IAM role, list the Amazon S3 buckets for your account, and list
the KMS keys.

{

Migrating from an external MySQL database to Aurora MySQL 1326

https://www.percona.com/downloads

Amazon Aurora User Guide for Aurora

 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "iam:ListRoles",
 "iam:CreateRole",
 "iam:CreatePolicy",
 "iam:AttachRolePolicy",
 "s3:ListBucket",
 "kms:ListKeys"
],
 "Resource": "*"
 }
]
}

Additionally, for a user to associate an IAM role with an Amazon S3 bucket, the IAM user must
have the iam:PassRole permission for that IAM role. This permission allows an administrator to
restrict which IAM roles a user can associate with Amazon S3 buckets.

For example, the following IAM policy allows a user to associate the role named S3Access with an
Amazon S3 bucket.

{
 "Version":"2012-10-17",
 "Statement":[
 {
 "Sid":"AllowS3AccessRole",
 "Effect":"Allow",
 "Action":"iam:PassRole",
 "Resource":"arn:aws:iam::123456789012:role/S3Access"
 }
]
}

For more information on IAM user permissions, see Managing access using policies.

Creating the IAM service role

You can have the AWS Management Console create a role for you by choosing the Create a New
Role option (shown later in this topic). If you select this option and specify a name for the new role,

Migrating from an external MySQL database to Aurora MySQL 1327

Amazon Aurora User Guide for Aurora

then Aurora creates the IAM service role required for Aurora to access your Amazon S3 bucket with
the name that you supply.

As an alternative, you can manually create the role using the following procedure.

To create an IAM role for Aurora to access Amazon S3

1. Complete the steps in Creating an IAM policy to access Amazon S3 resources.

2. Complete the steps in Creating an IAM role to allow Amazon Aurora to access AWS services.

3. Complete the steps in Associating an IAM role with an Amazon Aurora MySQL DB cluster.

Backing up files to be restored as an Amazon Aurora MySQL DB cluster

You can create a full backup of your MySQL database files using Percona XtraBackup and upload
the backup files to an Amazon S3 bucket. Alternatively, if you already use Percona XtraBackup
to back up your MySQL database files, you can upload your existing full and incremental backup
directories and files to an Amazon S3 bucket.

Topics

• Creating a full backup with Percona XtraBackup

• Using incremental backups with Percona XtraBackup

• Backup considerations

Creating a full backup with Percona XtraBackup

To create a full backup of your MySQL database files that can be restored from Amazon S3 to
create an Aurora MySQL DB cluster, use the Percona XtraBackup utility (xtrabackup) to back up
your database.

For example, the following command creates a backup of a MySQL database and stores the files in
the /on-premises/s3-restore/backup folder.

xtrabackup --backup --user=<myuser> --password=<password> --target-dir=</on-premises/
s3-restore/backup>

If you want to compress your backup into a single file (which can be split, if needed), you can use
the --stream option to save your backup in one of the following formats:

Migrating from an external MySQL database to Aurora MySQL 1328

Amazon Aurora User Guide for Aurora

• Gzip (.gz)

• tar (.tar)

• Percona xbstream (.xbstream)

The following command creates a backup of your MySQL database split into multiple Gzip files.

xtrabackup --backup --user=<myuser> --password=<password> --stream=tar \
 --target-dir=</on-premises/s3-restore/backup> | gzip - | split -d --bytes=500MB \
 - </on-premises/s3-restore/backup/backup>.tar.gz

The following command creates a backup of your MySQL database split into multiple tar files.

xtrabackup --backup --user=<myuser> --password=<password> --stream=tar \
 --target-dir=</on-premises/s3-restore/backup> | split -d --bytes=500MB \
 - </on-premises/s3-restore/backup/backup>.tar

The following command creates a backup of your MySQL database split into multiple xbstream
files.

xtrabackup --backup --user=<myuser> --password=<password> --stream=xbstream \
 --target-dir=</on-premises/s3-restore/backup> | split -d --bytes=500MB \
 - </on-premises/s3-restore/backup/backup>.xbstream

Note

If you see the following error, it might be caused by mixing file formats in your command:

ERROR:/bin/tar: This does not look like a tar archive

Once you have backed up your MySQL database using the Percona XtraBackup utility, you can copy
your backup directories and files to an Amazon S3 bucket.

For information on creating and uploading a file to an Amazon S3 bucket, see Getting started with
Amazon Simple Storage Service in the Amazon S3 Getting Started Guide.

Migrating from an external MySQL database to Aurora MySQL 1329

https://docs.aws.amazon.com/AmazonS3/latest/gsg/GetStartedWithS3.html
https://docs.aws.amazon.com/AmazonS3/latest/gsg/GetStartedWithS3.html

Amazon Aurora User Guide for Aurora

Using incremental backups with Percona XtraBackup

Amazon Aurora MySQL supports both full and incremental backups created using Percona
XtraBackup. If you already use Percona XtraBackup to perform full and incremental backups of
your MySQL database files, you don't need to create a full backup and upload the backup files to
Amazon S3. Instead, you can save a significant amount of time by copying your existing backup
directories and files for your full and incremental backups to an Amazon S3 bucket. For more
information, see Create an incremental backup on the Percona website.

When copying your existing full and incremental backup files to an Amazon S3 bucket, you must
recursively copy the contents of the base directory. Those contents include the full backup and also
all incremental backup directories and files. This copy must preserve the directory structure in the
Amazon S3 bucket. Aurora iterates through all files and directories. Aurora uses the xtrabackup-
checkpoints file included with each incremental backup to identify the base directory and to
order incremental backups by log sequence number (LSN) range.

For information on creating and uploading a file to an Amazon S3 bucket, see Getting started with
Amazon Simple Storage Service in the Amazon S3 Getting Started Guide.

Backup considerations

Aurora doesn't support partial backups created using Percona XtraBackup. You can't use the
following options to create a partial backup when you back up the source files for your database:
--tables, --tables-exclude, --tables-file, --databases, --databases-exclude, or
--databases-file.

For more information about backing up your database with Percona XtraBackup, see Percona
XtraBackup - Documentation and Work with binary logs on the Percona website.

Aurora supports incremental backups created using Percona XtraBackup. For more information, see
Create an incremental backup on the Percona website.

Aurora consumes your backup files based on the file name. Be sure to name your backup files with
the appropriate file extension based on the file format—for example, .xbstream for files stored
using the Percona xbstream format.

Aurora consumes your backup files in alphabetical order and also in natural number order. Always
use the split option when you issue the xtrabackup command to ensure that your backup files
are written and named in the proper order.

Migrating from an external MySQL database to Aurora MySQL 1330

https://docs.percona.com/percona-xtrabackup/8.0/create-incremental-backup.html
https://docs.aws.amazon.com/AmazonS3/latest/gsg/GetStartedWithS3.html
https://docs.aws.amazon.com/AmazonS3/latest/gsg/GetStartedWithS3.html
https://www.percona.com/doc/percona-xtrabackup/LATEST/index.html
https://www.percona.com/doc/percona-xtrabackup/LATEST/index.html
https://docs.percona.com/percona-xtrabackup/8.0/working-with-binary-logs.html
https://docs.percona.com/percona-xtrabackup/8.0/create-incremental-backup.html

Amazon Aurora User Guide for Aurora

Amazon S3 limits the size of a file uploaded to an Amazon S3 bucket to 5 TB. If the backup data for
your database exceeds 5 TB, use the split command to split the backup files into multiple files
that are each less than 5 TB.

Aurora limits the number of source files uploaded to an Amazon S3 bucket to 1 million files. In
some cases, backup data for your database, including all full and incremental backups, can come
to a large number of files. In these cases, use a tarball (.tar.gz) file to store full and incremental
backup files in the Amazon S3 bucket.

When you upload a file to an Amazon S3 bucket, you can use server-side encryption to encrypt
the data. You can then restore an Amazon Aurora MySQL DB cluster from those encrypted files.
Amazon Aurora MySQL can restore a DB cluster with files encrypted using the following types of
server-side encryption:

• Server-side encryption with Amazon S3–managed keys (SSE-S3) – Each object is encrypted with
a unique key employing strong multifactor encryption.

• Server-side encryption with AWS KMS–managed keys (SSE-KMS) – Similar to SSE-S3, but you
have the option to create and manage encryption keys yourself, and also other differences.

For information about using server-side encryption when uploading files to an Amazon S3 bucket,
see Protecting data using server-side encryption in the Amazon S3 Developer Guide.

Restoring an Amazon Aurora MySQL DB cluster from an Amazon S3 bucket

You can restore your backup files from your Amazon S3 bucket to create a new Amazon Aurora
MySQL DB cluster by using the Amazon RDS console.

To restore an Amazon Aurora MySQL DB cluster from files on an Amazon S3 bucket

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the top right corner of the Amazon RDS console, choose the AWS Region in which to create
your DB cluster. Choose the same AWS Region as the Amazon S3 bucket that contains your
database backup.

3. In the navigation pane, choose Databases, and then choose Restore from S3.

4. Choose Restore from S3.

The Create database by restoring from S3 page appears.

Migrating from an external MySQL database to Aurora MySQL 1331

https://docs.aws.amazon.com/AmazonS3/latest/dev/serv-side-encryption.html
https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Aurora User Guide for Aurora

5. Under S3 destination:

a. Choose the S3 bucket that contains the backup files.

b. (Optional) For S3 folder path prefix, enter a file path prefix for the files stored in your
Amazon S3 bucket.

Migrating from an external MySQL database to Aurora MySQL 1332

Amazon Aurora User Guide for Aurora

If you don't specify a prefix, then RDS creates your DB instance using all of the files and
folders in the root folder of the S3 bucket. If you do specify a prefix, then RDS creates your
DB instance using the files and folders in the S3 bucket where the path for the file begins
with the specified prefix.

For example, suppose that you store your backup files on S3 in a subfolder named
backups, and you have multiple sets of backup files, each in its own directory
(gzip_backup1, gzip_backup2, and so on). In this case, you specify a prefix of backups/
gzip_backup1 to restore from the files in the gzip_backup1 folder.

6. Under Engine options:

a. For Engine type, choose Amazon Aurora.

b. For Version, choose the Aurora MySQL engine version for your restored DB instance.

7. For IAM role, you can choose an existing IAM role.

8. (Optional) You can also have a new IAM role created for you by choosing Create a new role. If
so:

a. Enter the IAM role name.

b. Choose whether to Allow access to KMS key:

• If you didn't encrypt the backup files, choose No.

• If you encrypted the backup files with AES-256 (SSE-S3) when you uploaded them to
Amazon S3, choose No. In this case, the data is decrypted automatically.

• If you encrypted the backup files with AWS KMS (SSE-KMS) server-side encryption when
you uploaded them to Amazon S3, choose Yes. Next, choose the correct KMS key for
AWS KMS key.

The AWS Management Console creates an IAM policy that enables Aurora to decrypt the
data.

For more information, see Protecting data using server-side encryption in the Amazon S3
Developer Guide.

9. Choose settings for your DB cluster, such as the DB cluster storage configuration, DB instance
class, DB cluster identifier, and login credentials. For information about each setting, see
Settings for Aurora DB clusters.

Migrating from an external MySQL database to Aurora MySQL 1333

https://docs.aws.amazon.com/AmazonS3/latest/dev/serv-side-encryption.html

Amazon Aurora User Guide for Aurora

10. Customize additional settings for your Aurora MySQL DB cluster as needed.

11. Choose Create database to launch your Aurora DB instance.

On the Amazon RDS console, the new DB instance appears in the list of DB instances. The DB
instance has a status of creating until the DB instance is created and ready for use. When the state
changes to available, you can connect to the primary instance for your DB cluster. Depending on
the DB instance class and store allocated, it can take several minutes for the new instance to be
available.

To view the newly created cluster, choose the Databases view in the Amazon RDS console and
choose the DB cluster. For more information, see Viewing an Amazon Aurora DB cluster.

Migrating from an external MySQL database to Aurora MySQL 1334

Amazon Aurora User Guide for Aurora

Note the port and the writer endpoint of the DB cluster. Use the writer endpoint and port of the DB
cluster in your JDBC and ODBC connection strings for any application that performs write or read
operations.

Synchronizing the Amazon Aurora MySQL DB cluster with the MySQL database using
replication

To achieve little or no downtime during the migration, you can replicate transactions that were
committed on your MySQL database to your Aurora MySQL DB cluster. Replication enables the
DB cluster to catch up with the transactions on the MySQL database that happened during the
migration. When the DB cluster is completely caught up, you can stop the replication and finish the
migration to Aurora MySQL.

Topics

• Configuring your external MySQL database and your Aurora MySQL DB cluster for encrypted
replication

• Synchronizing the Amazon Aurora MySQL DB cluster with the external MySQL database

Configuring your external MySQL database and your Aurora MySQL DB cluster for encrypted
replication

To replicate data securely, you can use encrypted replication.

Note

If you don't need to use encrypted replication, you can skip these steps and move on to
the instructions in Synchronizing the Amazon Aurora MySQL DB cluster with the external
MySQL database.

The following are prerequisites for using encrypted replication:

• Secure Sockets Layer (SSL) must be enabled on the external MySQL primary database.

• A client key and client certificate must be prepared for the Aurora MySQL DB cluster.

During encrypted replication, the Aurora MySQL DB cluster acts a client to the MySQL database
server. The certificates and keys for the Aurora MySQL client are in files in .pem format.

Migrating from an external MySQL database to Aurora MySQL 1335

Amazon Aurora User Guide for Aurora

To configure your external MySQL database and your Aurora MySQL DB cluster for encrypted
replication

1. Ensure that you are prepared for encrypted replication:

• If you don't have SSL enabled on the external MySQL primary database and don't have a
client key and client certificate prepared, enable SSL on the MySQL database server and
generate the required client key and client certificate.

• If SSL is enabled on the external primary, supply a client key and certificate for the Aurora
MySQL DB cluster. If you don't have these, generate a new key and certificate for the Aurora
MySQL DB cluster. To sign the client certificate, you must have the certificate authority key
that you used to configure SSL on the external MySQL primary database.

For more information, see Creating SSL certificates and keys using openssl in the MySQL
documentation.

You need the certificate authority certificate, the client key, and the client certificate.

2. Connect to the Aurora MySQL DB cluster as the primary user using SSL.

For information about connecting to an Aurora MySQL DB cluster with SSL, see Using TLS with
Aurora MySQL DB clusters.

3. Run the mysql.rds_import_binlog_ssl_material stored procedure to import the SSL information
into the Aurora MySQL DB cluster.

For the ssl_material_value parameter, insert the information from the .pem format files
for the Aurora MySQL DB cluster in the correct JSON payload.

The following example imports SSL information into an Aurora MySQL DB cluster. In .pem
format files, the body code typically is longer than the body code shown in the example.

call mysql.rds_import_binlog_ssl_material(
'{"ssl_ca":"-----BEGIN CERTIFICATE-----
AAAAB3NzaC1yc2EAAAADAQABAAABAQClKsfkNkuSevGj3eYhCe53pcjqP3maAhDFcvBS7O6V
hz2ItxCih+PnDSUaw+WNQn/mZphTk/a/gU8jEzoOWbkM4yxyb/wB96xbiFveSFJuOp/d6RJhJOI0iBXr
lsLnBItntckiJ7FbtxJMXLvvwJryDUilBMTjYtwB+QhYXUMOzce5Pjz5/i8SeJtjnV3iAoG/cQk+0FzZ
qaeJAAHco+CY/5WrUBkrHmFJr6HcXkvJdWPkYQS3xqC0+FmUZofz221CBt5IMucxXPkX4rWi+z7wB3Rb
BQoQzd8v7yeb7OzlPnWOyN0qFU0XA246RA8QFYiCNYwI3f05p6KLxEXAMPLE
-----END CERTIFICATE-----\n","ssl_cert":"-----BEGIN CERTIFICATE-----
AAAAB3NzaC1yc2EAAAADAQABAAABAQClKsfkNkuSevGj3eYhCe53pcjqP3maAhDFcvBS7O6V

Migrating from an external MySQL database to Aurora MySQL 1336

https://dev.mysql.com/doc/refman/5.6/en/creating-ssl-files-using-openssl.html

Amazon Aurora User Guide for Aurora

hz2ItxCih+PnDSUaw+WNQn/mZphTk/a/gU8jEzoOWbkM4yxyb/wB96xbiFveSFJuOp/d6RJhJOI0iBXr
lsLnBItntckiJ7FbtxJMXLvvwJryDUilBMTjYtwB+QhYXUMOzce5Pjz5/i8SeJtjnV3iAoG/cQk+0FzZ
qaeJAAHco+CY/5WrUBkrHmFJr6HcXkvJdWPkYQS3xqC0+FmUZofz221CBt5IMucxXPkX4rWi+z7wB3Rb
BQoQzd8v7yeb7OzlPnWOyN0qFU0XA246RA8QFYiCNYwI3f05p6KLxEXAMPLE
-----END CERTIFICATE-----\n","ssl_key":"-----BEGIN RSA PRIVATE KEY-----
AAAAB3NzaC1yc2EAAAADAQABAAABAQClKsfkNkuSevGj3eYhCe53pcjqP3maAhDFcvBS7O6V
hz2ItxCih+PnDSUaw+WNQn/mZphTk/a/gU8jEzoOWbkM4yxyb/wB96xbiFveSFJuOp/d6RJhJOI0iBXr
lsLnBItntckiJ7FbtxJMXLvvwJryDUilBMTjYtwB+QhYXUMOzce5Pjz5/i8SeJtjnV3iAoG/cQk+0FzZ
qaeJAAHco+CY/5WrUBkrHmFJr6HcXkvJdWPkYQS3xqC0+FmUZofz221CBt5IMucxXPkX4rWi+z7wB3Rb
BQoQzd8v7yeb7OzlPnWOyN0qFU0XA246RA8QFYiCNYwI3f05p6KLxEXAMPLE
-----END RSA PRIVATE KEY-----\n"}');

For more information, see mysql.rds_import_binlog_ssl_material and Using TLS with Aurora
MySQL DB clusters.

Note

After running the procedure, the secrets are stored in files. To erase the files later, you
can run the mysql.rds_remove_binlog_ssl_material stored procedure.

Synchronizing the Amazon Aurora MySQL DB cluster with the external MySQL database

You can synchronize your Amazon Aurora MySQL DB cluster with the MySQL database using
replication.

To synchronize your Aurora MySQL DB cluster with the MySQL database using replication

1. Ensure that the /etc/my.cnf file for the external MySQL database has the relevant entries.

If encrypted replication is not required, ensure that the external MySQL database is started
with binary logs (binlogs) enabled and SSL disabled. The following are the relevant entries in
the /etc/my.cnf file for unencrypted data.

log-bin=mysql-bin
server-id=2133421
innodb_flush_log_at_trx_commit=1
sync_binlog=1

Migrating from an external MySQL database to Aurora MySQL 1337

Amazon Aurora User Guide for Aurora

If encrypted replication is required, ensure that the external MySQL database is started with
SSL and binlogs enabled. The entries in the /etc/my.cnf file include the .pem file locations for
the MySQL database server.

log-bin=mysql-bin
server-id=2133421
innodb_flush_log_at_trx_commit=1
sync_binlog=1

Setup SSL.
ssl-ca=/home/sslcerts/ca.pem
ssl-cert=/home/sslcerts/server-cert.pem
ssl-key=/home/sslcerts/server-key.pem

You can verify that SSL is enabled with the following command.

mysql> show variables like 'have_ssl';

Your output should be similar the following.

+~-~-~-~-~-~-~-~-~-~-~-~-~-~--+~-~-~-~-~-~--+
| Variable_name | Value |
+~-~-~-~-~-~-~-~-~-~-~-~-~-~--+~-~-~-~-~-~--+
| have_ssl | YES |
+~-~-~-~-~-~-~-~-~-~-~-~-~-~--+~-~-~-~-~-~--+
1 row in set (0.00 sec)

2. Determine the starting binary log position for replication. You specify the position to start
replication in a later step.

Using the AWS Management Console

a. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

b. In the navigation pane, choose Events.

c. In the Events list, note the position in the Recovered from Binary log filename event.

Migrating from an external MySQL database to Aurora MySQL 1338

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Aurora User Guide for Aurora

Using the AWS CLI

You can also get the binlog file name and position by using the describe-events AWS CLI
command. The following shows an example describe-events command.

PROMPT> aws rds describe-events

In the output, identify the event that shows the binlog position.

3. While connected to the external MySQL database, create a user to be used for replication.
This account is used solely for replication and must be restricted to your domain to improve
security. The following is an example.

mysql> CREATE USER '<user_name>'@'<domain_name>' IDENTIFIED BY '<password>';

The user requires the REPLICATION CLIENT and REPLICATION SLAVE privileges. Grant
these privileges to the user.

GRANT REPLICATION CLIENT, REPLICATION SLAVE ON *.* TO
 '<user_name>'@'<domain_name>';

If you need to use encrypted replication, require SSL connections for the replication user. For
example, you can use the following statement to require SSL connections on the user account
<user_name>.

GRANT USAGE ON *.* TO '<user_name>'@'<domain_name>' REQUIRE SSL;

Migrating from an external MySQL database to Aurora MySQL 1339

https://docs.aws.amazon.com/cli/latest/reference/rds/describe-events.html

Amazon Aurora User Guide for Aurora

Note

If REQUIRE SSL is not included, the replication connection might silently fall back to
an unencrypted connection.

4. In the Amazon RDS console, add the IP address of the server that hosts the external MySQL
database to the VPC security group for the Aurora MySQL DB cluster. For more information
on modifying a VPC security group, see Security groups for your VPC in the Amazon Virtual
Private Cloud User Guide.

You might also need to configure your local network to permit connections from the IP
address of your Aurora MySQL DB cluster, so that it can communicate with your external
MySQL database. To find the IP address of the Aurora MySQL DB cluster, use the host
command.

host <db_cluster_endpoint>

The host name is the DNS name from the Aurora MySQL DB cluster endpoint.

5. Enable binary log replication by running the mysql.rds_reset_external_master (Aurora MySQL
version 2) or mysql.rds_reset_external_source (Aurora MySQL version 3) stored procedure. This
stored procedure has the following syntax.

CALL mysql.rds_set_external_master (
 host_name
 , host_port
 , replication_user_name
 , replication_user_password
 , mysql_binary_log_file_name
 , mysql_binary_log_file_location
 , ssl_encryption
);

CALL mysql.rds_set_external_source (
 host_name
 , host_port
 , replication_user_name
 , replication_user_password
 , mysql_binary_log_file_name

Migrating from an external MySQL database to Aurora MySQL 1340

https://docs.aws.amazon.com/vpc/latest/userguide/VPC_SecurityGroups.html

Amazon Aurora User Guide for Aurora

 , mysql_binary_log_file_location
 , ssl_encryption
);

For information about the parameters, see mysql.rds_reset_external_master (Aurora MySQL
version 2) and mysql.rds_reset_external_source (Aurora MySQL version 3).

For mysql_binary_log_file_name and mysql_binary_log_file_location, use the
position in the Recovered from Binary log filename event you noted earlier.

If the data in the Aurora MySQL DB cluster is not encrypted, the ssl_encryption parameter
must be set to 0. If the data is encrypted, the ssl_encryption parameter must be set to 1.

The following example runs the procedure for an Aurora MySQL DB cluster that has encrypted
data.

CALL mysql.rds_set_external_master(
 'Externaldb.some.com',
 3306,
 'repl_user'@'mydomain.com',
 'password',
 'mysql-bin.000010',
 120,
 1);

CALL mysql.rds_set_external_source(
 'Externaldb.some.com',
 3306,
 'repl_user'@'mydomain.com',
 'password',
 'mysql-bin.000010',
 120,
 1);

This stored procedure sets the parameters that the Aurora MySQL DB cluster uses for
connecting to the external MySQL database and reading its binary log. If the data is encrypted,
it also downloads the SSL certificate authority certificate, client certificate, and client key to
the local disk.

6. Start binary log replication by running the mysql.rds_start_replication stored procedure.

Migrating from an external MySQL database to Aurora MySQL 1341

Amazon Aurora User Guide for Aurora

CALL mysql.rds_start_replication;

7. Monitor how far the Aurora MySQL DB cluster is behind the MySQL replication primary
database. To do so, connect to the Aurora MySQL DB cluster and run the following command.

Aurora MySQL version 2:
SHOW SLAVE STATUS;

Aurora MySQL version 3:
SHOW REPLICA STATUS;

In the command output, the Seconds Behind Master field shows how far the Aurora
MySQL DB cluster is behind the MySQL primary. When this value is 0 (zero), the Aurora
MySQL DB cluster has caught up to the primary, and you can move on to the next step to stop
replication.

8. Connect to the MySQL replication primary database and stop replication. To do so, run the
mysql.rds_stop_replication stored procedure.

CALL mysql.rds_stop_replication;

Reducing the time for physical migration to Amazon Aurora MySQL

You can make the following database modifications to speed up the process of migrating a
database to Amazon Aurora MySQL.

Important

Make sure to perform these updates on a copy of a production database, rather than on a
production database. You can then back up the copy and restore it to your Aurora MySQL
DB cluster to avoid any service interruptions on your production database.

Migrating from an external MySQL database to Aurora MySQL 1342

Amazon Aurora User Guide for Aurora

Unsupported table types

Aurora MySQL supports only the InnoDB engine for database tables. If you have MyISAM tables
in your database, then those tables must be converted before migrating to Aurora MySQL. The
conversion process requires additional space for the MyISAM to InnoDB conversion during the
migration procedure.

To reduce your chances of running out of space or to speed up the migration process, convert all
of your MyISAM tables to InnoDB tables before migrating them. The size of the resulting InnoDB
table is equivalent to the size required by Aurora MySQL for that table. To convert a MyISAM table
to InnoDB, run the following command:

ALTER TABLE schema.table_name engine=innodb, algorithm=copy;

Aurora MySQL doesn't support compressed tables or pages, that is, tables created with
ROW_FORMAT=COMPRESSED or COMPRESSION = {"zlib"|"lz4"}.

To reduce your chances of running out of space or to speed up the migration process, expand your
compressed tables by setting ROW_FORMAT to DEFAULT, COMPACT, DYNAMIC, or REDUNDANT. For
compressed pages, set COMPRESSION="none".

For more information, see InnoDB row formats and InnoDB table and page compressionin the
MySQL documentation.

You can use the following SQL script on your existing MySQL DB instance to list the tables in your
database that are MyISAM tables or compressed tables.

-- This script examines a MySQL database for conditions that block
-- migrating the database into Aurora MySQL.
-- It must be run from an account that has read permission for the
-- INFORMATION_SCHEMA database.

-- Verify that this is a supported version of MySQL.

select msg as `==> Checking current version of MySQL.`
from
 (
 select
 'This script should be run on MySQL version 5.6 or higher. ' +
 'Earlier versions are not supported.' as msg,
 cast(substring_index(version(), '.', 1) as unsigned) * 100 +
 cast(substring_index(substring_index(version(), '.', 2), '.', -1)

Migrating from an external MySQL database to Aurora MySQL 1343

https://dev.mysql.com/doc/refman/8.0/en/innodb-row-format.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-compression.html

Amazon Aurora User Guide for Aurora

 as unsigned)
 as major_minor
) as T
where major_minor <> 506;

-- List MyISAM and compressed tables. Include the table size.

select concat(TABLE_SCHEMA, '.', TABLE_NAME) as `==> MyISAM or Compressed Tables`,
round(((data_length + index_length) / 1024 / 1024), 2) "Approx size (MB)"
from INFORMATION_SCHEMA.TABLES
where
 ENGINE <> 'InnoDB'
 and
 (
 -- User tables
 TABLE_SCHEMA not in ('mysql', 'performance_schema',
 'information_schema')
 or
 -- Non-standard system tables
 (
 TABLE_SCHEMA = 'mysql' and TABLE_NAME not in
 (
 'columns_priv', 'db', 'event', 'func', 'general_log',
 'help_category', 'help_keyword', 'help_relation',
 'help_topic', 'host', 'ndb_binlog_index', 'plugin',
 'proc', 'procs_priv', 'proxies_priv', 'servers', 'slow_log',
 'tables_priv', 'time_zone', 'time_zone_leap_second',
 'time_zone_name', 'time_zone_transition',
 'time_zone_transition_type', 'user'
)
)
)
 or
 (
 -- Compressed tables
 ROW_FORMAT = 'Compressed'
);

User accounts with unsupported privileges

User accounts with privileges that aren't supported by Aurora MySQL are imported without the
unsupported privileges. For the list of supported privileges, see Role-based privilege model.

Migrating from an external MySQL database to Aurora MySQL 1344

Amazon Aurora User Guide for Aurora

You can run the following SQL query on your source database to list the user accounts that have
unsupported privileges.

SELECT
 user,
 host
FROM
 mysql.user
WHERE
 Shutdown_priv = 'y'
 OR File_priv = 'y'
 OR Super_priv = 'y'
 OR Create_tablespace_priv = 'y';

Dynamic privileges in Aurora MySQL version 3

Dynamic privileges aren't imported. Aurora MySQL version 3 supports the following dynamic
privileges.

'APPLICATION_PASSWORD_ADMIN',
'CONNECTION_ADMIN',
'REPLICATION_APPLIER',
'ROLE_ADMIN',
'SESSION_VARIABLES_ADMIN',
'SET_USER_ID',
'XA_RECOVER_ADMIN'

The following example script grants the supported dynamic privileges to the user accounts in the
Aurora MySQL DB cluster.

-- This script finds the user accounts that have Aurora MySQL supported dynamic
 privileges
-- and grants them to corresponding user accounts in the Aurora MySQL DB cluster.

/home/ec2-user/opt/mysql/8.0.26/bin/mysql -uusername -pxxxxx -P8026 -h127.0.0.1 -BNe
 "SELECT
 CONCAT('GRANT ', GRANTS, ' ON *.* TO ', GRANTEE ,';') AS grant_statement
 FROM (select GRANTEE, group_concat(privilege_type) AS GRANTS FROM
 information_schema.user_privileges
 WHERE privilege_type IN (
 'APPLICATION_PASSWORD_ADMIN',
 'CONNECTION_ADMIN',

Migrating from an external MySQL database to Aurora MySQL 1345

Amazon Aurora User Guide for Aurora

 'REPLICATION_APPLIER',
 'ROLE_ADMIN',
 'SESSION_VARIABLES_ADMIN',
 'SET_USER_ID',
 'XA_RECOVER_ADMIN')
 AND GRANTEE NOT IN (\"'mysql.session'@'localhost'\",
\"'mysql.infoschema'@'localhost'\",\"'mysql.sys'@'localhost'\") GROUP BY GRANTEE)
 AS PRIVGRANTS; " | /home/ec2-user/opt/mysql/8.0.26/bin/mysql -u master_username -
p master_password -h DB_cluster_endpoint

Stored objects with 'rdsadmin'@'localhost' as the definer

Functions, procedures, views, events, and triggers with 'rdsadmin'@'localhost' as the definer
aren't imported.

You can use the following SQL script on your source MySQL database to list the stored objects that
have the unsupported definer.

-- This SQL query lists routines with `rdsadmin`@`localhost` as the definer.

SELECT
 ROUTINE_SCHEMA,
 ROUTINE_NAME
FROM
 information_schema.routines
WHERE
 definer = 'rdsadmin@localhost';

-- This SQL query lists triggers with `rdsadmin`@`localhost` as the definer.

SELECT
 TRIGGER_SCHEMA,
 TRIGGER_NAME,
 DEFINER
FROM
 information_schema.triggers
WHERE
 DEFINER = 'rdsadmin@localhost';

-- This SQL query lists events with `rdsadmin`@`localhost` as the definer.

SELECT
 EVENT_SCHEMA,

Migrating from an external MySQL database to Aurora MySQL 1346

Amazon Aurora User Guide for Aurora

 EVENT_NAME
FROM
 information_schema.events
WHERE
 DEFINER = 'rdsadmin@localhost';

-- This SQL query lists views with `rdsadmin`@`localhost` as the definer.
SELECT
 TABLE_SCHEMA,
 TABLE_NAME
FROM
 information_schema.views
WHERE
 DEFINER = 'rdsadmin@localhost';

Logical migration from MySQL to Amazon Aurora MySQL by using mysqldump

Because Amazon Aurora MySQL is a MySQL-compatible database, you can use the mysqldump
utility to copy data from your MySQL or MariaDB database to an existing Aurora MySQL DB cluster.

For a discussion of how to do so with MySQL databases that are very large, see Importing data to
a MySQL or MariaDB DB instance with reduced downtime. For MySQL databases that have smaller
amounts of data, see Importing data from a MySQL or MariaDB DB to a MySQL or MariaDB DB
instance.

Migrating from an external MySQL database to Aurora MySQL 1347

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/MySQL.Procedural.Importing.NonRDSRepl.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/MySQL.Procedural.Importing.NonRDSRepl.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/MySQL.Procedural.Importing.SmallExisting.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/MySQL.Procedural.Importing.SmallExisting.html

Amazon Aurora User Guide for Aurora

Migrating data from an RDS for MySQL DB instance to an Amazon
Aurora MySQL DB cluster

You can migrate (copy) data to an Amazon Aurora MySQL DB cluster from an RDS for MySQL DB
instance.

Topics

• Migrating an RDS for MySQL snapshot to Aurora

• Migrating data from an RDS for MySQL DB instance to an Amazon Aurora MySQL DB cluster by
using an Aurora read replica

Note

Because Amazon Aurora MySQL is compatible with MySQL, you can migrate data from your
MySQL database by setting up replication between your MySQL database and an Amazon
Aurora MySQL DB cluster. For more information, see Replication with Amazon Aurora.

Migrating an RDS for MySQL snapshot to Aurora

You can migrate a DB snapshot of an RDS for MySQL DB instance to create an Aurora MySQL DB
cluster. The new Aurora MySQL DB cluster is populated with the data from the original RDS for
MySQL DB instance. The DB snapshot must have been made from an Amazon RDS DB instance
running a MySQL version that's compatible with Aurora MySQL.

You can migrate either a manual or automated DB snapshot. After the DB cluster is created, you
can then create optional Aurora Replicas.

Note

You can also migrate an RDS for MySQL DB instance to an Aurora MySQL DB cluster by
creating an Aurora read replica of your source RDS for MySQL DB instance. For more
information, see Migrating data from an RDS for MySQL DB instance to an Amazon Aurora
MySQL DB cluster by using an Aurora read replica.
You can't migrate to Aurora MySQL version 3.05 and higher from some older MySQL 8.0
versions, including 8.0.11, 8.0.13, and 8.0.15. We recommend that you upgrade to MySQL
version 8.0.28 before migrating.

Migrating from a MySQL DB instance to Aurora MySQL 1348

Amazon Aurora User Guide for Aurora

The general steps you must take are as follows:

1. Determine the amount of space to provision for your Aurora MySQL DB cluster. For more
information, see How much space do I need?

2. Use the console to create the snapshot in the AWS Region where the Amazon RDS MySQL
instance is located. For information about creating a DB snapshot, see Creating a DB snapshot.

3. If the DB snapshot is not in the same AWS Region as your DB cluster, use the Amazon RDS
console to copy the DB snapshot to that AWS Region. For information about copying a DB
snapshot, see Copying a DB snapshot.

4. Use the console to migrate the DB snapshot and create an Aurora MySQL DB cluster with the
same databases as the original MySQL DB instance.

Warning

Amazon RDS limits each AWS account to one snapshot copy into each AWS Region at a
time.

How much space do I need?

When you migrate a snapshot of a MySQL DB instance into an Aurora MySQL DB cluster, Aurora
uses an Amazon Elastic Block Store (Amazon EBS) volume to format the data from the snapshot
before migrating it. In some cases, additional space is needed to format the data for migration.

Tables that are not MyISAM tables and are not compressed can be up to 16 TB in size. If you have
MyISAM tables, then Aurora must use additional space in the volume to convert the tables to be
compatible with Aurora MySQL. If you have compressed tables, then Aurora must use additional
space in the volume to expand these tables before storing them on the Aurora cluster volume.
Because of this additional space requirement, you should ensure that none of the MyISAM and
compressed tables being migrated from your MySQL DB instance exceeds 8 TB in size.

Reducing the amount of space required to migrate data into Amazon Aurora MySQL

You might want to modify your database schema prior to migrating it into Amazon Aurora. Such
modification can be helpful in the following cases:

• You want to speed up the migration process.

• You are unsure of how much space you need to provision.

Migrating from a MySQL DB instance to Aurora MySQL 1349

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_CreateSnapshot.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_CopySnapshot.html

Amazon Aurora User Guide for Aurora

• You have attempted to migrate your data and the migration has failed due to a lack of
provisioned space.

You can make the following changes to improve the process of migrating a database into Amazon
Aurora.

Important

Be sure to perform these updates on a new DB instance restored from a snapshot of a
production database, rather than on a production instance. You can then migrate the data
from the snapshot of your new DB instance into your Aurora DB cluster to avoid any service
interruptions on your production database.

Table type Limitation or guideline

MyISAM tables Aurora MySQL supports InnoDB tables only. If you have MyISAM
tables in your database, then those tables must be converted
 before being migrated into Aurora MySQL. The conversion
process requires additional space for the MyISAM to InnoDB
conversion during the migration procedure.

To reduce your chances of running out of space or to speed up
the migration process, convert all of your MyISAM tables to
InnoDB tables before migrating them. The size of the resulting
InnoDB table is equivalent to the size required by Aurora MySQL
for that table. To convert a MyISAM table to InnoDB, run the
following command:

alter table <schema>.<table_name> engine=in
nodb, algorithm=copy;

Compressed tables Aurora MySQL doesn't support compressed tables (that is, tables
created with ROW_FORMAT=COMPRESSED).

To reduce your chances of running out of space or to speed up
the migration process, expand your compressed tables by setting
ROW_FORMAT to DEFAULT, COMPACT, DYNAMIC, or REDUNDANT

Migrating from a MySQL DB instance to Aurora MySQL 1350

Amazon Aurora User Guide for Aurora

Table type Limitation or guideline

. For more information, see InnoDB row formats in the MySQL
documentation.

You can use the following SQL script on your existing MySQL DB instance to list the tables in your
database that are MyISAM tables or compressed tables.

-- This script examines a MySQL database for conditions that block
-- migrating the database into Amazon Aurora.
-- It needs to be run from an account that has read permission for the
-- INFORMATION_SCHEMA database.

-- Verify that this is a supported version of MySQL.

select msg as `==> Checking current version of MySQL.`
from
 (
 select
 'This script should be run on MySQL version 5.6 or higher. ' +
 'Earlier versions are not supported.' as msg,
 cast(substring_index(version(), '.', 1) as unsigned) * 100 +
 cast(substring_index(substring_index(version(), '.', 2), '.', -1)
 as unsigned)
 as major_minor
) as T
where major_minor <> 506;

-- List MyISAM and compressed tables. Include the table size.

select concat(TABLE_SCHEMA, '.', TABLE_NAME) as `==> MyISAM or Compressed Tables`,
round(((data_length + index_length) / 1024 / 1024), 2) "Approx size (MB)"
from INFORMATION_SCHEMA.TABLES
where
 ENGINE <> 'InnoDB'
 and
 (
 -- User tables
 TABLE_SCHEMA not in ('mysql', 'performance_schema',
 'information_schema')
 or

Migrating from a MySQL DB instance to Aurora MySQL 1351

https://dev.mysql.com/doc/refman/8.0/en/innodb-row-format.html

Amazon Aurora User Guide for Aurora

 -- Non-standard system tables
 (
 TABLE_SCHEMA = 'mysql' and TABLE_NAME not in
 (
 'columns_priv', 'db', 'event', 'func', 'general_log',
 'help_category', 'help_keyword', 'help_relation',
 'help_topic', 'host', 'ndb_binlog_index', 'plugin',
 'proc', 'procs_priv', 'proxies_priv', 'servers', 'slow_log',
 'tables_priv', 'time_zone', 'time_zone_leap_second',
 'time_zone_name', 'time_zone_transition',
 'time_zone_transition_type', 'user'
)
)
)
 or
 (
 -- Compressed tables
 ROW_FORMAT = 'Compressed'
);

The script produces output similar to the output in the following example. The example shows two
tables that must be converted from MyISAM to InnoDB. The output also includes the approximate
size of each table in megabytes (MB).

+---------------------------------+------------------+
| ==> MyISAM or Compressed Tables | Approx size (MB) |
+---------------------------------+------------------+
| test.name_table | 2102.25 |
| test.my_table | 65.25 |
+---------------------------------+------------------+
2 rows in set (0.01 sec)

Migrating an RDS for MySQL DB snapshot to an Aurora MySQL DB cluster

You can migrate a DB snapshot of an RDS for MySQL DB instance to create an Aurora MySQL DB
cluster using the AWS Management Console or the AWS CLI. The new Aurora MySQL DB cluster
is populated with the data from the original RDS for MySQL DB instance. For information about
creating a DB snapshot, see Creating a DB snapshot.

If the DB snapshot is not in the AWS Region where you want to locate your data, copy the DB
snapshot to that AWS Region. For information about copying a DB snapshot, see Copying a DB
snapshot.

Migrating from a MySQL DB instance to Aurora MySQL 1352

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_CreateSnapshot.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_CopySnapshot.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_CopySnapshot.html

Amazon Aurora User Guide for Aurora

Console

When you migrate the DB snapshot by using the AWS Management Console, the console takes the
actions necessary to create both the DB cluster and the primary instance.

You can also choose for your new Aurora MySQL DB cluster to be encrypted at rest using an AWS
KMS key.

To migrate a MySQL DB snapshot by using the AWS Management Console

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. Either start the migration from the MySQL DB instance or from the snapshot:

To start the migration from the DB instance:

1. In the navigation pane, choose Databases, and then select the MySQL DB instance.

2. For Actions, choose Migrate latest snapshot.

To start the migration from the snapshot:

1. Choose Snapshots.

2. On the Snapshots page, choose the snapshot that you want to migrate into an Aurora
MySQL DB cluster.

3. Choose Snapshot Actions, and then choose Migrate Snapshot.

The Migrate Database page appears.

3. Set the following values on the Migrate Database page:

• Migrate to DB Engine: Select aurora.

• DB Engine Version: Select the DB engine version for the Aurora MySQL DB cluster.

• DB Instance Class: Select a DB instance class that has the required storage and capacity
for your database, for example db.r3.large. Aurora cluster volumes automatically grow
as the amount of data in your database increases. An Aurora cluster volume can grow to a
maximum size of 128 tebibytes (TiB). So you only need to select a DB instance class that
meets your current storage requirements. For more information, see Overview of Amazon
Aurora storage.

Migrating from a MySQL DB instance to Aurora MySQL 1353

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Aurora User Guide for Aurora

• DB Instance Identifier: Type a name for the DB cluster that is unique for your account in the
AWS Region you selected. This identifier is used in the endpoint addresses for the instances
in your DB cluster. You might choose to add some intelligence to the name, such as including
the AWS Region and DB engine you selected, for example aurora-cluster1.

The DB instance identifier has the following constraints:

• It must contain from 1 to 63 alphanumeric characters or hyphens.

• Its first character must be a letter.

• It cannot end with a hyphen or contain two consecutive hyphens.

• It must be unique for all DB instances per AWS account, per AWS Region.

• Virtual Private Cloud (VPC): If you have an existing VPC, then you can use that VPC with
your Aurora MySQL DB cluster by selecting your VPC identifier, for example vpc-a464d1c1.
For information on creating a VPC, see Tutorial: Create a VPC for use with a DB cluster (IPv4
only).

Otherwise, you can choose to have Aurora create a VPC for you by selecting Create a new
VPC.

• DB subnet group: If you have an existing subnet group, then you can use that subnet group
with your Aurora MySQL DB cluster by selecting your subnet group identifier, for example
gs-subnet-group1.

Otherwise, you can choose to have Aurora create a subnet group for you by selecting Create
a new subnet group.

• Public accessibility: Select No to specify that instances in your DB cluster can only be
accessed by resources inside of your VPC. Select Yes to specify that instances in your DB
cluster can be accessed by resources on the public network. The default is Yes.

Note

Your production DB cluster might not need to be in a public subnet, because only
your application servers require access to your DB cluster. If your DB cluster doesn't
need to be in a public subnet, set Publicly Accessible to No.

• Availability Zone: Select the Availability Zone to host the primary instance for your Aurora
MySQL DB cluster. To have Aurora select an Availability Zone for you, select No Preference.

Migrating from a MySQL DB instance to Aurora MySQL 1354

Amazon Aurora User Guide for Aurora

• Database Port: Type the default port to be used when connecting to instances in the Aurora
MySQL DB cluster. The default is 3306.

Note

You might be behind a corporate firewall that doesn't allow access to default ports
such as the MySQL default port, 3306. In this case, provide a port value that your
corporate firewall allows. Remember that port value later when you connect to the
Aurora MySQL DB cluster.

• Encryption: Choose Enable Encryption for your new Aurora MySQL DB cluster to be
encrypted at rest. If you choose Enable Encryption, you must choose a KMS key as the AWS
KMS key value.

If your DB snapshot isn't encrypted, specify an encryption key to have your DB cluster
encrypted at rest.

If your DB snapshot is encrypted, specify an encryption key to have your DB cluster
encrypted at rest using the specified encryption key. You can specify the encryption key used
by the DB snapshot or a different key. You can't create an unencrypted DB cluster from an
encrypted DB snapshot.

• Auto Minor Version Upgrade: This setting doesn't apply to Aurora MySQL DB clusters.

For more information about engine updates for Aurora MySQL, see Database engine updates
for Amazon Aurora MySQL.

4. Choose Migrate to migrate your DB snapshot.

5. Choose Instances, and then choose the arrow icon to show the DB cluster details and monitor
the progress of the migration. On the details page, you can find the cluster endpoint used to
connect to the primary instance of the DB cluster. For more information on connecting to an
Aurora MySQL DB cluster, see Connecting to an Amazon Aurora DB cluster.

AWS CLI

You can create an Aurora DB cluster from a DB snapshot of an RDS for MySQL DB instance by using
the restore-db-cluster-from-snapshot command with the following parameters:

• --db-cluster-identifier – The name of the DB cluster to create.

Migrating from a MySQL DB instance to Aurora MySQL 1355

https://docs.aws.amazon.com/cli/latest/reference/rds/restore-db-cluster-from-snapshot.html

Amazon Aurora User Guide for Aurora

• --engine aurora-mysql – For a MySQL 5.7–compatible or 8.0–compatible DB cluster.

• --kms-key-id – The AWS KMS key to optionally encrypt the DB cluster with, depending on
whether your DB snapshot is encrypted.

• If your DB snapshot isn't encrypted, specify an encryption key to have your DB cluster
encrypted at rest. Otherwise, your DB cluster isn't encrypted.

• If your DB snapshot is encrypted, specify an encryption key to have your DB cluster encrypted
at rest using the specified encryption key. Otherwise, your DB cluster is encrypted at rest using
the encryption key for the DB snapshot.

Note

You can't create an unencrypted DB cluster from an encrypted DB snapshot.

• --snapshot-identifier – The Amazon Resource Name (ARN) of the DB snapshot to migrate.
For more information about Amazon RDS ARNs, see Amazon Relational Database Service
(Amazon RDS).

When you migrate the DB snapshot by using the RestoreDBClusterFromSnapshot command,
the command creates both the DB cluster and the primary instance.

In this example, you create a MySQL 5.7–compatible DB cluster named mydbcluster from a DB
snapshot with an ARN set to mydbsnapshotARN.

For Linux, macOS, or Unix:

aws rds restore-db-cluster-from-snapshot \
 --db-cluster-identifier mydbcluster \
 --snapshot-identifier mydbsnapshotARN \
 --engine aurora-mysql

For Windows:

aws rds restore-db-cluster-from-snapshot ^
 --db-cluster-identifier mydbcluster ^
 --snapshot-identifier mydbsnapshotARN ^
 --engine aurora-mysql

Migrating from a MySQL DB instance to Aurora MySQL 1356

https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html#arn-syntax-rds
https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html#arn-syntax-rds

Amazon Aurora User Guide for Aurora

In this example, you create a MySQL 5.7–compatible DB cluster named mydbcluster from a DB
snapshot with an ARN set to mydbsnapshotARN.

For Linux, macOS, or Unix:

aws rds restore-db-cluster-from-snapshot \
 --db-cluster-identifier mydbcluster \
 --snapshot-identifier mydbsnapshotARN \
 --engine aurora-mysql

For Windows:

aws rds restore-db-cluster-from-snapshot ^
 --db-cluster-identifier mydbcluster ^
 --snapshot-identifier mydbsnapshotARN ^
 --engine aurora-mysql

Migrating from a MySQL DB instance to Aurora MySQL 1357

Amazon Aurora User Guide for Aurora

Migrating data from an RDS for MySQL DB instance to an Amazon Aurora MySQL
DB cluster by using an Aurora read replica

Aurora uses the MySQL DB engines' binary log replication functionality to create a special type of
DB cluster called an Aurora read replica for a source RDS for MySQL DB instance. Updates made to
the source RDS for MySQL DB instance are asynchronously replicated to the Aurora read replica.

We recommend using this functionality to migrate from a RDS for MySQL DB instance to an Aurora
MySQL DB cluster by creating an Aurora read replica of your source RDS for MySQL DB instance.
When the replica lag between the RDS for MySQL DB instance and the Aurora read replica is 0, you
can direct your client applications to the Aurora read replica and then stop replication to make the
Aurora read replica a standalone Aurora MySQL DB cluster. Be prepared for migration to take a
while, roughly several hours per tebibyte (TiB) of data.

For a list of regions where Aurora is available, see Amazon Aurora in the AWS General Reference.

When you create an Aurora read replica of an RDS for MySQL DB instance, Amazon RDS creates a
DB snapshot of your source RDS for MySQL DB instance (private to Amazon RDS, and incurring no
charges). Amazon RDS then migrates the data from the DB snapshot to the Aurora read replica.
After the data from the DB snapshot has been migrated to the new Aurora MySQL DB cluster,
Amazon RDS starts replication between your RDS for MySQL DB instance and the Aurora MySQL
DB cluster. If your RDS for MySQL DB instance contains tables that use storage engines other than
InnoDB, or that use compressed row format, you can speed up the process of creating an Aurora
read replica by altering those tables to use the InnoDB storage engine and dynamic row format
before you create your Aurora read replica. For more information about the process of copying a
MySQL DB snapshot to an Aurora MySQL DB cluster, see Migrating data from an RDS for MySQL DB
instance to an Amazon Aurora MySQL DB cluster.

You can have only one Aurora read replica for an RDS for MySQL DB instance.

Note

Replication issues can arise due to feature differences between Aurora MySQL and the
MySQL database engine version of your RDS for MySQL DB instance that is the replication
primary. If you encounter an error, you can find help in the Amazon RDS community forum
or by contacting AWS Support.
You can't create an Aurora read replica if your RDS for MySQL DB instance is already the
source for a cross-Region read replica.

Migrating from a MySQL DB instance to Aurora MySQL 1358

https://docs.aws.amazon.com/general/latest/gr/rande.html#aurora
https://forums.aws.amazon.com/forum.jspa?forumID=60

Amazon Aurora User Guide for Aurora

You can't migrate to Aurora MySQL version 3.05 and higher from some older RDS for
MySQL 8.0 versions, including 8.0.11, 8.0.13, and 8.0.15. We recommend that you upgrade
to RDS for MySQL version 8.0.28 before migrating.

For more information on MySQL read replicas, see Working with read replicas of MariaDB, MySQL,
and PostgreSQL DB instances.

Creating an Aurora read replica

You can create an Aurora read replica for an RDS for MySQL DB instance by using the console, the
AWS CLI, or the RDS API.

Console

To create an Aurora read replica from a source RDS for MySQL DB instance

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Databases.

3. Choose the MySQL DB instance that you want to use as the source for your Aurora read replica.

4. For Actions, choose Create Aurora read replica.

5. Choose the DB cluster specifications you want to use for the Aurora read replica, as described
in the following table.

Option Description

DB instance class Choose a DB instance class that defines the processin
g and memory requirements for the primary instance
in the DB cluster. For more information about DB
instance class options, see Aurora DB instance classes.

Multi-AZ deployment Choose Create Replica in Different Zone to create
a standby replica of the new DB cluster in another
Availability Zone in the target AWS Region for failover
support. For more information about multiple
Availability Zones, see Regions and Availability Zones.

Migrating from a MySQL DB instance to Aurora MySQL 1359

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_ReadRepl.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_ReadRepl.html
https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Aurora User Guide for Aurora

Option Description

DB instance identifier Type a name for the primary instance in your Aurora
read replica DB cluster. This identifier is used in the
endpoint address for the primary instance of the new
DB cluster.

The DB instance identifier has the following constrain
ts:

• It must contain from 1 to 63 alphanumeric
characters or hyphens.

• Its first character must be a letter.

• It cannot end with a hyphen or contain two
consecutive hyphens.

• It must be unique for all DB instances for each AWS
account, for each AWS Region.

Because the Aurora read replica DB cluster is created
from a snapshot of the source DB instance, the
master user name and master password for the
Aurora read replica are the same as the master
user name and master password for the source DB
instance.

Virtual Private Cloud (VPC) Select the VPC to host the DB cluster. Select Create
new VPC to have Aurora create a VPC for you. For
more information, see DB cluster prerequisites.

DB subnet group Select the DB subnet group to use for the DB cluster.
Select Create new DB subnet group to have Aurora
create a DB subnet group for you. For more informati
on, see DB cluster prerequisites.

Migrating from a MySQL DB instance to Aurora MySQL 1360

Amazon Aurora User Guide for Aurora

Option Description

Public accessibility Select Yes to give the DB cluster a public IP address;
otherwise, select No. The instances in your DB cluster
can be a mix of both public and private DB instances
. For more information about hiding instances from
public access, see Hiding a DB cluster in a VPC from
the internet.

Availability zone Determine if you want to specify a particular Availabil
ity Zone. For more information about Availability
Zones, see Regions and Availability Zones.

VPC security group (firewall) Select Create new VPC security group to have Aurora
create a VPC security group for you. Select Select
existing VPC security groups to specify one or more
VPC security groups to secure network access to
the DB cluster. For more information, see DB cluster
prerequisites.

Database port Specify the port for applications and utilities to use
to access the database. Aurora MySQL DB clusters
default to the default MySQL port, 3306. Firewalls
at some companies block connections to this port. If
your company firewall blocks the default port, choose
another port for the new DB cluster.

DB parameter group Select a DB parameter group for the Aurora MySQL
DB cluster. Aurora has a default DB parameter
group you can use, or you can create your own DB
parameter group. For more information about DB
parameter groups, see Working with parameter
groups.

Migrating from a MySQL DB instance to Aurora MySQL 1361

Amazon Aurora User Guide for Aurora

Option Description

DB cluster parameter group Select a DB cluster parameter group for the Aurora
MySQL DB cluster. Aurora has a default DB cluster
parameter group you can use, or you can create your
own DB cluster parameter group. For more informati
on about DB cluster parameter groups, see Working
with parameter groups.

Encryption Choose Disable encryption if you don't want your
new Aurora DB cluster to be encrypted. Choose
Enable encryption for your new Aurora DB cluster to
be encrypted at rest. If you choose Enable encryptio
n, you must choose a KMS key as the AWS KMS key
value.

If your MySQL DB instance isn't encrypted, specify an
encryption key to have your DB cluster encrypted at
rest.

If your MySQL DB instance is encrypted, specify an
encryption key to have your DB cluster encrypted
at rest using the specified encryption key. You can
specify the encryption key used by the MySQL
DB instance or a different key. You can't create an
unencrypted DB cluster from an encrypted MySQL DB
instance.

Priority Choose a failover priority for the DB cluster. If you
don't select a value, the default is tier-1. This priority
determines the order in which Aurora Replicas are
promoted when recovering from a primary instance
failure. For more information, see Fault tolerance for
an Aurora DB cluster.

Migrating from a MySQL DB instance to Aurora MySQL 1362

Amazon Aurora User Guide for Aurora

Option Description

Backup retention period Select the length of time, from 1 to 35 days, that
Aurora retains backup copies of the database. Backup
copies can be used for point-in-time restores (PITR) of
your database down to the second.

Enhanced Monitoring Choose Enable enhanced monitoring to enable
gathering metrics in real time for the operating
system that your DB cluster runs on. For more
information, see Monitoring OS metrics with
Enhanced Monitoring.

Monitoring Role Only available if Enhanced Monitoring is set to
Enable enhanced monitoring. Choose the IAM role
that you created to permit Aurora to communicate
with Amazon CloudWatch Logs for you, or choose
Default to have Aurora create a role for you named
rds-monitoring-role . For more information,
see Monitoring OS metrics with Enhanced Monitoring.

Granularity Only available if Enhanced Monitoring is set to
Enable enhanced monitoring. Set the interval, in
seconds, between when metrics are collected for your
DB cluster.

Auto minor version upgrade This setting doesn't apply to Aurora MySQL DB
clusters.

For more information about engine updates for
Aurora MySQL, see Database engine updates for
Amazon Aurora MySQL.

Maintenance window Select Select window and specify the weekly time
range during which system maintenance can occur.
Or, select No preference for Aurora to assign a period
randomly.

6. Choose Create read replica.

Migrating from a MySQL DB instance to Aurora MySQL 1363

Amazon Aurora User Guide for Aurora

AWS CLI

To create an Aurora read replica from a source RDS for MySQL DB instance, use the create-
db-cluster and create-db-instance AWS CLI commands to create a new Aurora MySQL
DB cluster. When you call the create-db-cluster command, include the --replication-
source-identifier parameter to identify the Amazon Resource Name (ARN) for the source
MySQL DB instance. For more information about Amazon RDS ARNs, see Amazon Relational
Database Service (Amazon RDS).

Don't specify the master username, master password, or database name as the Aurora read replica
uses the same master username, master password, and database name as the source MySQL DB
instance.

For Linux, macOS, or Unix:

aws rds create-db-cluster --db-cluster-identifier sample-replica-cluster --engine
 aurora \
 --db-subnet-group-name mysubnetgroup --vpc-security-group-ids sg-c7e5b0d2 \
 --replication-source-identifier arn:aws:rds:us-west-2:123456789012:db:primary-
mysql-instance

For Windows:

aws rds create-db-cluster --db-cluster-identifier sample-replica-cluster --engine
 aurora ^
 --db-subnet-group-name mysubnetgroup --vpc-security-group-ids sg-c7e5b0d2 ^
 --replication-source-identifier arn:aws:rds:us-west-2:123456789012:db:primary-
mysql-instance

If you use the console to create an Aurora read replica, then Aurora automatically creates the
primary instance for your DB cluster Aurora read replica. If you use the AWS CLI to create an Aurora
read replica, you must explicitly create the primary instance for your DB cluster. The primary
instance is the first instance that is created in a DB cluster.

You can create a primary instance for your DB cluster by using the create-db-instance AWS CLI
command with the following parameters.

• --db-cluster-identifier

The name of your DB cluster.

• --db-instance-class

Migrating from a MySQL DB instance to Aurora MySQL 1364

https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-cluster.html
https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-cluster.html
https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-instance.html
https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html#arn-syntax-rds
https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html#arn-syntax-rds
https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-instance.html

Amazon Aurora User Guide for Aurora

The name of the DB instance class to use for your primary instance.

• --db-instance-identifier

The name of your primary instance.

• --engine aurora

In this example, you create a primary instance named myreadreplicainstance for
the DB cluster named myreadreplicacluster, using the DB instance class specified in
myinstanceclass.

Example

For Linux, macOS, or Unix:

aws rds create-db-instance \
 --db-cluster-identifier myreadreplicacluster \
 --db-instance-class myinstanceclass \
 --db-instance-identifier myreadreplicainstance \
 --engine aurora

For Windows:

aws rds create-db-instance ^
 --db-cluster-identifier myreadreplicacluster ^
 --db-instance-class myinstanceclass ^
 --db-instance-identifier myreadreplicainstance ^
 --engine aurora

RDS API

To create an Aurora read replica from a source RDS for MySQL DB instance, use the
CreateDBCluster and CreateDBInstance Amazon RDS API commands to create a new
Aurora DB cluster and primary instance. Do not specify the master username, master password, or
database name as the Aurora read replica uses the same master username, master password, and
database name as the source RDS for MySQL DB instance.

You can create a new Aurora DB cluster for an Aurora read replica from a source RDS for MySQL
DB instance by using the CreateDBCluster Amazon RDS API command with the following
parameters:

Migrating from a MySQL DB instance to Aurora MySQL 1365

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateDBCluster.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateDBInstance.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateDBCluster.html

Amazon Aurora User Guide for Aurora

• DBClusterIdentifier

The name of the DB cluster to create.

• DBSubnetGroupName

The name of the DB subnet group to associate with this DB cluster.

• Engine=aurora

• KmsKeyId

The AWS KMS key to optionally encrypt the DB cluster with, depending on whether your MySQL
DB instance is encrypted.

• If your MySQL DB instance isn't encrypted, specify an encryption key to have your DB cluster
encrypted at rest. Otherwise, your DB cluster is encrypted at rest using the default encryption
key for your account.

• If your MySQL DB instance is encrypted, specify an encryption key to have your DB cluster
encrypted at rest using the specified encryption key. Otherwise, your DB cluster is encrypted at
rest using the encryption key for the MySQL DB instance.

Note

You can't create an unencrypted DB cluster from an encrypted MySQL DB instance.

• ReplicationSourceIdentifier

The Amazon Resource Name (ARN) for the source MySQL DB instance. For more information
about Amazon RDS ARNs, see Amazon Relational Database Service (Amazon RDS).

• VpcSecurityGroupIds

The list of EC2 VPC security groups to associate with this DB cluster.

In this example, you create a DB cluster named myreadreplicacluster from a source MySQL
DB instance with an ARN set to mysqlprimaryARN, associated with a DB subnet group named
mysubnetgroup and a VPC security group named mysecuritygroup.

Example

https://rds.us-east-1.amazonaws.com/
 ?Action=CreateDBCluster

Migrating from a MySQL DB instance to Aurora MySQL 1366

https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html#arn-syntax-rds

Amazon Aurora User Guide for Aurora

 &DBClusterIdentifier=myreadreplicacluster
 &DBSubnetGroupName=mysubnetgroup
 &Engine=aurora
 &ReplicationSourceIdentifier=mysqlprimaryARN
 &SignatureMethod=HmacSHA256
 &SignatureVersion=4
 &Version=2014-10-31
 &VpcSecurityGroupIds=mysecuritygroup
 &X-Amz-Algorithm=AWS4-HMAC-SHA256
 &X-Amz-Credential=AKIADQKE4SARGYLE/20150927/us-east-1/rds/aws4_request
 &X-Amz-Date=20150927T164851Z
 &X-Amz-SignedHeaders=content-type;host;user-agent;x-amz-content-sha256;x-amz-date
 &X-Amz-Signature=6a8f4bd6a98f649c75ea04a6b3929ecc75ac09739588391cd7250f5280e716db

If you use the console to create an Aurora read replica, then Aurora automatically creates the
primary instance for your DB cluster Aurora read replica. If you use the AWS CLI to create an Aurora
read replica, you must explicitly create the primary instance for your DB cluster. The primary
instance is the first instance that is created in a DB cluster.

You can create a primary instance for your DB cluster by using the CreateDBInstance Amazon
RDS API command with the following parameters:

• DBClusterIdentifier

The name of your DB cluster.

• DBInstanceClass

The name of the DB instance class to use for your primary instance.

• DBInstanceIdentifier

The name of your primary instance.

• Engine=aurora

In this example, you create a primary instance named myreadreplicainstance for
the DB cluster named myreadreplicacluster, using the DB instance class specified in
myinstanceclass.

Example

https://rds.us-east-1.amazonaws.com/

Migrating from a MySQL DB instance to Aurora MySQL 1367

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateDBInstance.html

Amazon Aurora User Guide for Aurora

 ?Action=CreateDBInstance
 &DBClusterIdentifier=myreadreplicacluster
 &DBInstanceClass=myinstanceclass
 &DBInstanceIdentifier=myreadreplicainstance
 &Engine=aurora
 &SignatureMethod=HmacSHA256
 &SignatureVersion=4
 &Version=2014-09-01
 &X-Amz-Algorithm=AWS4-HMAC-SHA256
 &X-Amz-Credential=AKIADQKE4SARGYLE/20140424/us-east-1/rds/aws4_request
 &X-Amz-Date=20140424T194844Z
 &X-Amz-SignedHeaders=content-type;host;user-agent;x-amz-content-sha256;x-amz-date
 &X-Amz-Signature=bee4aabc750bf7dad0cd9e22b952bd6089d91e2a16592c2293e532eeaab8bc77

Viewing an Aurora read replica

You can view the MySQL to Aurora MySQL replication relationships for your Aurora MySQL DB
clusters by using the AWS Management Console or the AWS CLI.

Console

To view the primary MySQL DB instance for an Aurora read replica

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Databases.

3. Choose the DB cluster for the Aurora read replica to display its details. The primary MySQL DB
instance information is in the Replication source field.

Migrating from a MySQL DB instance to Aurora MySQL 1368

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Aurora User Guide for Aurora

AWS CLI

To view the MySQL to Aurora MySQL replication relationships for your Aurora MySQL DB clusters
by using the AWS CLI, use the describe-db-clusters and describe-db-instances
commands.

To determine which MySQL DB instance is the primary, use the describe-db-clusters and
specify the cluster identifier of the Aurora read replica for the --db-cluster-identifier
option. Refer to the ReplicationSourceIdentifier element in the output for the ARN of the
DB instance that is the replication primary.

Migrating from a MySQL DB instance to Aurora MySQL 1369

https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-clusters.html
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-instances.html
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-clusters.html

Amazon Aurora User Guide for Aurora

To determine which DB cluster is the Aurora read replica, use the describe-db-instances and
specify the instance identifier of the MySQL DB instance for the --db-instance-identifier
option. Refer to the ReadReplicaDBClusterIdentifiers element in the output for the DB
cluster identifier of the Aurora read replica.

Example

For Linux, macOS, or Unix:

aws rds describe-db-clusters \
 --db-cluster-identifier myreadreplicacluster

aws rds describe-db-instances \
 --db-instance-identifier mysqlprimary

For Windows:

aws rds describe-db-clusters ^
 --db-cluster-identifier myreadreplicacluster

aws rds describe-db-instances ^
 --db-instance-identifier mysqlprimary

Promoting an Aurora read replica

After migration completes, you can promote the Aurora read replica to a stand-alone DB cluster
using the AWS Management Console or AWS CLI.

Then you can direct your client applications to the endpoint for the Aurora read replica. For more
information on the Aurora endpoints, see Amazon Aurora connection management. Promotion
should complete fairly quickly, and you can read from and write to the Aurora read replica during
promotion. However, you can't delete the primary MySQL DB instance or unlink the DB Instance
and the Aurora read replica during this time.

Before you promote your Aurora read replica, stop any transactions from being written to the
source MySQL DB instance, and then wait for the replica lag on the Aurora read replica to reach 0.
You can view the replica lag for an Aurora read replica by calling the SHOW SLAVE STATUS (Aurora
MySQL version 2) or SHOW REPLICA STATUS (Aurora MySQL version 3) command on your Aurora
read replica. Check the Seconds behind master value.

Migrating from a MySQL DB instance to Aurora MySQL 1370

https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-instances.html

Amazon Aurora User Guide for Aurora

You can start writing to the Aurora read replica after write transactions to the primary have
stopped and replica lag is 0. If you write to the Aurora read replica before this and you modify
tables that are also being modified on the MySQL primary, you risk breaking replication to Aurora.
If this happens, you must delete and recreate your Aurora read replica.

Console

To promote an Aurora read replica to an Aurora DB cluster

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Databases.

3. Choose the DB cluster for the Aurora read replica.

4. For Actions, choose Promote.

5. Choose Promote read replica.

After you promote, confirm that the promotion has completed by using the following procedure.

To confirm that the Aurora read replica was promoted

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Events.

3. On the Events page, verify that there is a Promoted Read Replica cluster to a
stand-alone database cluster event for the cluster that you promoted.

After promotion is complete, the primary MySQL DB instance and the Aurora read replica are
unlinked, and you can safely delete the DB instance if you want.

AWS CLI

To promote an Aurora read replica to a stand-alone DB cluster, use the promote-read-replica-
db-cluster AWS CLI command.

Example

For Linux, macOS, or Unix:

Migrating from a MySQL DB instance to Aurora MySQL 1371

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/
https://docs.aws.amazon.com/cli/latest/reference/rds/promote-read-replica-db-cluster.html
https://docs.aws.amazon.com/cli/latest/reference/rds/promote-read-replica-db-cluster.html

Amazon Aurora User Guide for Aurora

aws rds promote-read-replica-db-cluster \
 --db-cluster-identifier myreadreplicacluster

For Windows:

aws rds promote-read-replica-db-cluster ^
 --db-cluster-identifier myreadreplicacluster

Migrating from a MySQL DB instance to Aurora MySQL 1372

Amazon Aurora User Guide for Aurora

Managing Amazon Aurora MySQL

The following sections discuss managing an Amazon Aurora MySQL DB cluster.

Topics

• Managing performance and scaling for Amazon Aurora MySQL

• Backtracking an Aurora DB cluster

• Testing Amazon Aurora MySQL using fault injection queries

• Altering tables in Amazon Aurora using Fast DDL

• Displaying volume status for an Aurora MySQL DB cluster

Managing performance and scaling for Amazon Aurora MySQL

Scaling Aurora MySQL DB instances

You can scale Aurora MySQL DB instances in two ways, instance scaling and read scaling. For more
information about read scaling, see Read scaling.

You can scale your Aurora MySQL DB cluster by modifying the DB instance class for each DB
instance in the DB cluster. Aurora MySQL supports several DB instance classes optimized for
Aurora. Don't use db.t2 or db.t3 instance classes for larger Aurora clusters of size greater than 40
TB. For the specifications of the DB instance classes supported by Aurora MySQL, see Aurora DB
instance classes.

Note

We recommend using the T DB instance classes only for development and test servers,
or other non-production servers. For more details on the T instance classes, see Using T
instance classes for development and testing.

Maximum connections to an Aurora MySQL DB instance

The maximum number of connections allowed to an Aurora MySQL DB instance is determined by
the max_connections parameter in the instance-level parameter group for the DB instance.

The following table lists the resulting default value of max_connections for each DB instance
class available to Aurora MySQL. You can increase the maximum number of connections to your

Managing Aurora MySQL 1373

Amazon Aurora User Guide for Aurora

Aurora MySQL DB instance by scaling the instance up to a DB instance class with more memory, or
by setting a larger value for the max_connections parameter in the DB parameter group for your
instance, up to 16,000.

Tip

If your applications frequently open and close connections, or keep a large number of
long-lived connections open, we recommend that you use Amazon RDS Proxy. RDS Proxy
is a fully managed, highly available database proxy that uses connection pooling to share
database connections securely and efficiently. To learn more about RDS Proxy, see Using
Amazon RDS Proxy for Aurora.

For details about how Aurora Serverless v2 instances handle this parameter, see Maximum
connections for Aurora Serverless v2.

Instance class max_conne
ctions
default
value

db.t2.small 45

db.t2.medium 90

db.t3.small 45

db.t3.medium 90

db.t3.large 135

db.t4g.medium 90

db.t4g.large 135

db.r3.large 1000

db.r3.xlarge 2000

db.r3.2xlarge 3000

Managing performance and scaling for Amazon Aurora MySQL 1374

Amazon Aurora User Guide for Aurora

Instance class max_conne
ctions
default
value

db.r3.4xlarge 4000

db.r3.8xlarge 5000

db.r4.large 1000

db.r4.xlarge 2000

db.r4.2xlarge 3000

db.r4.4xlarge 4000

db.r4.8xlarge 5000

db.r4.16xlarge 6000

db.r5.large 1000

db.r5.xlarge 2000

db.r5.2xlarge 3000

db.r5.4xlarge 4000

db.r5.8xlarge 5000

db.r5.12xlarge 6000

db.r5.16xlarge 6000

db.r5.24xlarge 7000

db.r6g.large 1000

db.r6g.xlarge 2000

db.r6g.2xlarge 3000

Managing performance and scaling for Amazon Aurora MySQL 1375

Amazon Aurora User Guide for Aurora

Instance class max_conne
ctions
default
value

db.r6g.4xlarge 4000

db.r6g.8xlarge 5000

db.r6g.12xlarge 6000

db.r6g.16xlarge 6000

db.r6gd.xlarge 2000

db.r6gd.2xlarge 3000

db.r6gd.4xlarge 4000

db.r6gd.8xlarge 5000

db.r6gd.12xlarge 6000

db.r6gd.16xlarge 6000

db.r6i.large 1000

db.r6i.xlarge 2000

db.r6i.2xlarge 3000

db.r6i.4xlarge 4000

db.r6i.8xlarge 5000

db.r6i.12xlarge 6000

db.r6i.16xlarge 6000

db.r6i.24xlarge 7000

db.r6i.32xlarge 7000

Managing performance and scaling for Amazon Aurora MySQL 1376

Amazon Aurora User Guide for Aurora

Instance class max_conne
ctions
default
value

db.r6id.24xlarge 7000

db.r6id.32xlarge 7000

db.r7g.large 1000

db.r7g.xlarge 2000

db.r7g.2xlarge 3000

db.r7g.4xlarge 4000

db.r7g.8xlarge 5000

db.r7g.12xlarge 6000

db.r7g.16xlarge 6000

db.x2g.large 2000

db.x2g.xlarge 3000

db.x2g.2xlarge 4000

db.x2g.4xlarge 5000

db.x2g.8xlarge 6000

db.x2g.12xlarge 7000

db.x2g.16xlarge 7000

If you create a new parameter group to customize your own default for the connection
limit, you'll see that the default connection limit is derived using a formula based on the
DBInstanceClassMemory value. As shown in the preceding table, the formula produces

Managing performance and scaling for Amazon Aurora MySQL 1377

Amazon Aurora User Guide for Aurora

connection limits that increase by 1000 as the memory doubles between progressively larger R3,
R4, and R5 instances, and by 45 for different memory sizes of T2 and T3 instances.

See Specifying DB parameters for more details on how DBInstanceClassMemory is calculated.

Aurora MySQL and RDS for MySQL DB instances have different amounts of memory overhead.
Therefore, the max_connections value can be different for Aurora MySQL and RDS for MySQL DB
instances that use the same instance class. The values in the table only apply to Aurora MySQL DB
instances.

Note

The much lower connectivity limits for T2 and T3 instances are because with Aurora, those
instance classes are intended only for development and test scenarios, not for production
workloads.

The default connection limits are tuned for systems that use the default values for other major
memory consumers, such as the buffer pool and query cache. If you change those other settings
for your cluster, consider adjusting the connection limit to account for the increase or decrease in
available memory on the DB instances.

Temporary storage limits for Aurora MySQL

Aurora MySQL stores tables and indexes in the Aurora storage subsystem. Aurora MySQL uses
separate temporary or local storage for nonpersistent temporary files and non-InnoDB temporary
tables. Local storage also includes files that are used for such purposes as sorting large datasets
during query processing or for index build operations. It doesn't include InnoDB temporary tables.

For more information on temporary tables in Aurora MySQL version 3, see New temporary table
behavior in Aurora MySQL version 3. For more information on temporary tables in version 2, see
Temporary tablespace behavior in Aurora MySQL version 2.

The data and temporary files on these volumes are lost when starting and stopping the DB
instance, and during host replacement.

These local storage volumes are backed by Amazon Elastic Block Store (EBS) and can be extended
by using a larger DB instance class. For more information about storage, see Amazon Aurora
storage and reliability.

Managing performance and scaling for Amazon Aurora MySQL 1378

Amazon Aurora User Guide for Aurora

Local storage is also used for importing data from Amazon S3 using LOAD DATA FROM S3 or
LOAD XML FROM S3, and for exporting data to S3 using SELECT INTO OUTFILE S3. For more
information on importing from and exporting to S3, see the following:

• Loading data into an Amazon Aurora MySQL DB cluster from text files in an Amazon S3 bucket

• Saving data from an Amazon Aurora MySQL DB cluster into text files in an Amazon S3 bucket

Aurora MySQL uses separate permanent storage for error logs, general logs, slow query logs, and
audit logs for most of the Aurora MySQL DB instance classes (not including burstable-performance
instance class types such as db.t2, db.t3, and db.t4g). The data on this volume is retained when
starting and stopping the DB instance, and during host replacement.

This permanent storage volume is also backed by Amazon EBS and has a fixed size according to the
DB instance class. It can't be extended by using a larger DB instance class.

The following table shows the maximum amount of temporary and permanent storage available
for each Aurora MySQL DB instance class. For more information on DB instance class support for
Aurora, see Aurora DB instance classes.

DB instance class Maximum temporary/local
storage available (GiB)

Additional maximum storage
available for log files (GiB)

db.x2g.16xlarge 1280 500

db.x2g.12xlarge 960 500

db.x2g.8xlarge 640 500

db.x2g.4xlarge 320 500

db.x2g.2xlarge 160 60

db.x2g.xlarge 80 60

db.x2g.large 40 60

db.r7g.16xlarge 1280 500

db.r7g.12xlarge 960 500

Managing performance and scaling for Amazon Aurora MySQL 1379

Amazon Aurora User Guide for Aurora

DB instance class Maximum temporary/local
storage available (GiB)

Additional maximum storage
available for log files (GiB)

db.r7g.8xlarge 640 500

db.r7g.4xlarge 320 500

db.r7g.2xlarge 160 60

db.r7g.xlarge 80 60

db.r7g.large 32 60

db.r6id.32xlarge 2560 500

db.r6id.24xlarge 1920 500

db.r6i.32xlarge 2560 500

db.r6i.24xlarge 1920 500

db.r6i.16xlarge 1280 500

db.r6i.12xlarge 960 500

db.r6i.8xlarge 640 500

db.r6i.4xlarge 320 500

db.r6i.2xlarge 160 60

db.r6i.xlarge 80 60

db.r6i.large 32 60

db.r6gd.16xlarge 1280 500

db.r6gd.12xlarge 960 500

db.r6gd.8xlarge 640 500

db.r6gd.4xlarge 320 500

Managing performance and scaling for Amazon Aurora MySQL 1380

Amazon Aurora User Guide for Aurora

DB instance class Maximum temporary/local
storage available (GiB)

Additional maximum storage
available for log files (GiB)

db.r6gd.2xlarge 160 60

db.r6gd.xlarge 80 60

db.r6g.16xlarge 1280 500

db.r6g.12xlarge 960 500

db.r6g.8xlarge 640 500

db.r6g.4xlarge 320 500

db.r6g.2xlarge 160 60

db.r6g.xlarge 80 60

db.r6g.large 32 60

db.r5.24xlarge 1920 500

db.r5.16xlarge 1280 500

db.r5.12xlarge 960 500

db.r5.8xlarge 640 500

db.r5.4xlarge 320 500

db.r5.2xlarge 160 60

db.r5.xlarge 80 60

db.r5.large 32 60

db.r4.16xlarge 1280 500

db.r4.8xlarge 640 500

db.r4.4xlarge 320 500

Managing performance and scaling for Amazon Aurora MySQL 1381

Amazon Aurora User Guide for Aurora

DB instance class Maximum temporary/local
storage available (GiB)

Additional maximum storage
available for log files (GiB)

db.r4.2xlarge 160 60

db.r4.xlarge 80 60

db.r4.large 32 60

db.t4g.large 32 –

db.t4g.medium 32 –

db.t3.large 32 –

db.t3.medium 32 –

db.t3.small 32 –

db.t2.medium 32 –

db.t2.small 32 –

Important

These values represent the theoretical maximum amount of free storage on each DB
instance. The actual local storage available to you might be lower. Aurora uses some local
storage for its management processes, and the DB instance uses some local storage even
before you load any data. You can monitor the temporary storage available for a specific
DB instance with the FreeLocalStorage CloudWatch metric, described in Amazon
CloudWatch metrics for Amazon Aurora. You can check the amount of free storage at the
present time. You can also chart the amount of free storage over time. Monitoring the free
storage over time helps you to determine whether the value is increasing or decreasing, or
to find the minimum, maximum, or average values.
(This doesn't apply to Aurora Serverless v2.)

Managing performance and scaling for Amazon Aurora MySQL 1382

Amazon Aurora User Guide for Aurora

Backtracking an Aurora DB cluster

With Amazon Aurora MySQL-Compatible Edition, you can backtrack a DB cluster to a specific time,
without restoring data from a backup.

Contents

• Overview of backtracking

• Backtrack window

• Backtracking time

• Backtracking limitations

• Region and version availability

• Upgrade considerations for backtrack-enabled clusters

• Configuring backtracking

• Performing a backtrack

• Monitoring backtracking

• Subscribing to a backtrack event with the console

• Retrieving existing backtracks

• Disabling backtracking for a DB cluster

Overview of backtracking

Backtracking "rewinds" the DB cluster to the time you specify. Backtracking is not a replacement
for backing up your DB cluster so that you can restore it to a point in time. However, backtracking
provides the following advantages over traditional backup and restore:

• You can easily undo mistakes. If you mistakenly perform a destructive action, such as a DELETE
without a WHERE clause, you can backtrack the DB cluster to a time before the destructive action
with minimal interruption of service.

• You can backtrack a DB cluster quickly. Restoring a DB cluster to a point in time launches a new
DB cluster and restores it from backup data or a DB cluster snapshot, which can take hours.
Backtracking a DB cluster doesn't require a new DB cluster and rewinds the DB cluster in minutes.

• You can explore earlier data changes. You can repeatedly backtrack a DB cluster back and
forth in time to help determine when a particular data change occurred. For example, you can

Backtracking a DB cluster 1383

Amazon Aurora User Guide for Aurora

backtrack a DB cluster three hours and then backtrack forward in time one hour. In this case, the
backtrack time is two hours before the original time.

Note

For information about restoring a DB cluster to a point in time, see Overview of backing up
and restoring an Aurora DB cluster.

Backtrack window

With backtracking, there is a target backtrack window and an actual backtrack window:

• The target backtrack window is the amount of time you want to be able to backtrack your DB
cluster. When you enable backtracking, you specify a target backtrack window. For example, you
might specify a target backtrack window of 24 hours if you want to be able to backtrack the DB
cluster one day.

• The actual backtrack window is the actual amount of time you can backtrack your DB cluster,
which can be smaller than the target backtrack window. The actual backtrack window is based on
your workload and the storage available for storing information about database changes, called
change records.

As you make updates to your Aurora DB cluster with backtracking enabled, you generate change
records. Aurora retains change records for the target backtrack window, and you pay an hourly
rate for storing them. Both the target backtrack window and the workload on your DB cluster
determine the number of change records you store. The workload is the number of changes you
make to your DB cluster in a given amount of time. If your workload is heavy, you store more
change records in your backtrack window than you do if your workload is light.

You can think of your target backtrack window as the goal for the maximum amount of time
you want to be able to backtrack your DB cluster. In most cases, you can backtrack the maximum
amount of time that you specified. However, in some cases, the DB cluster can't store enough
change records to backtrack the maximum amount of time, and your actual backtrack window is
smaller than your target. Typically, the actual backtrack window is smaller than the target when
you have extremely heavy workload on your DB cluster. When your actual backtrack window is
smaller than your target, we send you a notification.

Backtracking a DB cluster 1384

Amazon Aurora User Guide for Aurora

When backtracking is enabled for a DB cluster, and you delete a table stored in the DB cluster,
Aurora keeps that table in the backtrack change records. It does this so that you can revert back to
a time before you deleted the table. If you don't have enough space in your backtrack window to
store the table, the table might be removed from the backtrack change records eventually.

Backtracking time

Aurora always backtracks to a time that is consistent for the DB cluster. Doing so eliminates the
possibility of uncommitted transactions when the backtrack is complete. When you specify a time
for a backtrack, Aurora automatically chooses the nearest possible consistent time. This approach
means that the completed backtrack might not exactly match the time you specify, but you can
determine the exact time for a backtrack by using the describe-db-cluster-backtracks AWS CLI
command. For more information, see Retrieving existing backtracks.

Backtracking limitations

The following limitations apply to backtracking:

• Backtracking is only available for DB clusters that were created with the Backtrack feature
enabled. You can't modify a DB cluster to enable the Backtrack feature. You can enable the
Backtrack feature when you create a new DB cluster or restore a snapshot of a DB cluster.

• The limit for a backtrack window is 72 hours.

• Backtracking affects the entire DB cluster. For example, you can't selectively backtrack a single
table or a single data update.

• You can't create cross-Region read replicas from a backtrack-enabled cluster, but you can still
enable binary log (binlog) replication on the cluster. If you try to backtrack a DB cluster for which
binary logging is enabled, an error typically occurs unless you choose to force the backtrack.
Any attempts to force a backtrack will break downstream read replicas and interfere with other
operations such as blue/green deployments.

• You can't backtrack a database clone to a time before that database clone was created. However,
you can use the original database to backtrack to a time before the clone was created. For more
information about database cloning, see Cloning a volume for an Amazon Aurora DB cluster.

• Backtracking causes a brief DB instance disruption. You must stop or pause your applications
before starting a backtrack operation to ensure that there are no new read or write requests.
During the backtrack operation, Aurora pauses the database, closes any open connections, and
drops any uncommitted reads and writes. It then waits for the backtrack operation to complete.

Backtracking a DB cluster 1385

https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-cluster-backtracks.html

Amazon Aurora User Guide for Aurora

• You can't restore a cross-Region snapshot of a backtrack-enabled cluster in an AWS Region that
doesn't support backtracking.

• If you perform an in-place upgrade for a backtrack-enabled cluster from Aurora MySQL version 2
to version 3, you can't backtrack to a point in time before the upgrade happened.

Region and version availability

Backtrack is not available for Aurora PostgreSQL.

Following are the supported engines and Region availability for Backtrack with Aurora MySQL.

Region Aurora MySQL version 3 Aurora MySQL version 2

US East (Ohio) All versions All versions

US East (N.
Virginia)

All versions All versions

US West (N.
California)

All versions All versions

US West
(Oregon)

All versions All versions

Africa (Cape
Town)

– –

Asia Pacific
(Hong Kong)

– –

Asia Pacific
(Jakarta)

– –

Asia Pacific
(Melbourne)

– –

Asia Pacific
(Mumbai)

All versions All versions

Backtracking a DB cluster 1386

Amazon Aurora User Guide for Aurora

Region Aurora MySQL version 3 Aurora MySQL version 2

Asia Pacific
(Osaka)

All versions Version 2.07.3 and higher

Asia Pacific
(Seoul)

All versions All versions

Asia Pacific
(Singapore)

All versions All versions

Asia Pacific
(Sydney)

All versions All versions

Asia Pacific
(Tokyo)

All versions All versions

Canada (Central) All versions All versions

Canada West
(Calgary)

– –

China (Beijing) – –

China (Ningxia) – –

Europe (Frankfur
t)

All versions All versions

Europe (Ireland) All versions All versions

Europe (London) All versions All versions

Europe (Milan) – –

Europe (Paris) All versions All versions

Europe (Spain) – –

Europe
(Stockholm)

– –

Backtracking a DB cluster 1387

Amazon Aurora User Guide for Aurora

Region Aurora MySQL version 3 Aurora MySQL version 2

Europe (Zurich) – –

Israel (Tel Aviv) – –

Middle East
(Bahrain)

– –

Middle East
(UAE)

– –

South America
(São Paulo)

– –

AWS GovCloud
(US-East)

– –

AWS GovCloud
(US-West)

– –

Upgrade considerations for backtrack-enabled clusters

You can upgrade a backtrack-enabled DB cluster from Aurora MySQL version 2 to version 3,
because all minor versions of Aurora MySQL version 3 are supported for Backtrack.

Configuring backtracking

To use the Backtrack feature, you must enable backtracking and specify a target backtrack window.
Otherwise, backtracking is disabled.

For the target backtrack window, specify the amount of time that you want to be able to rewind
your database using Backtrack. Aurora tries to retain enough change records to support that
window of time.

Console

You can use the console to configure backtracking when you create a new DB cluster. You can also
modify a DB cluster to change the backtrack window for a backtrack-enabled cluster. If you turn off

Backtracking a DB cluster 1388

Amazon Aurora User Guide for Aurora

backtracking entirely for a cluster by setting the backtrack window to 0, you can't enable backtrack
again for that cluster.

Topics

• Configuring backtracking with the console when creating a DB cluster

• Configuring backtrack with the console when modifying a DB cluster

Configuring backtracking with the console when creating a DB cluster

When you create a new Aurora MySQL DB cluster, backtracking is configured when you choose
Enable Backtrack and specify a Target Backtrack window value that is greater than zero in the
Backtrack section.

To create a DB cluster, follow the instructions in Creating an Amazon Aurora DB cluster. The
following image shows the Backtrack section.

When you create a new DB cluster, Aurora has no data for the DB cluster's workload. So it can't
estimate a cost specifically for the new DB cluster. Instead, the console presents a typical user cost
for the specified target backtrack window based on a typical workload. The typical cost is meant to
provide a general reference for the cost of the Backtrack feature.

Backtracking a DB cluster 1389

Amazon Aurora User Guide for Aurora

Important

Your actual cost might not match the typical cost, because your actual cost is based on your
DB cluster's workload.

Configuring backtrack with the console when modifying a DB cluster

You can modify backtracking for a DB cluster using the console.

Note

Currently, you can modify backtracking only for a DB cluster that has the Backtrack feature
enabled. The Backtrack section doesn't appear for a DB cluster that was created with the
Backtrack feature disabled or if the Backtrack feature has been disabled for the DB cluster.

To modify backtracking for a DB cluster using the console

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. Choose Databases.

3. Choose the cluster that you want to modify, and choose Modify.

4. For Target Backtrack window, modify the amount of time that you want to be able to
backtrack. The limit is 72 hours.

Backtracking a DB cluster 1390

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Aurora User Guide for Aurora

The console shows the estimated cost for the amount of time you specified based on the DB
cluster's past workload:

• If backtracking was disabled on the DB cluster, the cost estimate is based on the
VolumeWriteIOPS metric for the DB cluster in Amazon CloudWatch.

• If backtracking was enabled previously on the DB cluster, the cost estimate is based on
the BacktrackChangeRecordsCreationRate metric for the DB cluster in Amazon
CloudWatch.

5. Choose Continue.

6. For Scheduling of Modifications, choose one of the following:

• Apply during the next scheduled maintenance window – Wait to apply the Target
Backtrack window modification until the next maintenance window.

• Apply immediately – Apply the Target Backtrack window modification as soon as possible.

7. Choose Modify cluster.

AWS CLI

When you create a new Aurora MySQL DB cluster using the create-db-cluster AWS CLI command,
backtracking is configured when you specify a --backtrack-window value that is greater
than zero. The --backtrack-window value specifies the target backtrack window. For more
information, see Creating an Amazon Aurora DB cluster.

You can also specify the --backtrack-window value using the following AWS CLI commands:

• modify-db-cluster

• restore-db-cluster-from-s3

• restore-db-cluster-from-snapshot

• restore-db-cluster-to-point-in-time

The following procedure describes how to modify the target backtrack window for a DB cluster
using the AWS CLI.

To modify the target backtrack window for a DB cluster using the AWS CLI

• Call the modify-db-cluster AWS CLI command and supply the following values:

Backtracking a DB cluster 1391

https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-cluster.html
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-cluster.html
https://docs.aws.amazon.com/cli/latest/reference/rds/restore-db-cluster-from-s3.html
https://docs.aws.amazon.com/cli/latest/reference/rds/restore-db-cluster-from-snapshot.html
https://docs.aws.amazon.com/cli/latest/reference/rds/restore-db-cluster-to-point-in-time.html
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-cluster.html

Amazon Aurora User Guide for Aurora

• --db-cluster-identifier – The name of the DB cluster.

• --backtrack-window – The maximum number of seconds that you want to be able to
backtrack the DB cluster.

The following example sets the target backtrack window for sample-cluster to one day
(86,400 seconds).

For Linux, macOS, or Unix:

aws rds modify-db-cluster \
 --db-cluster-identifier sample-cluster \
 --backtrack-window 86400

For Windows:

aws rds modify-db-cluster ^
 --db-cluster-identifier sample-cluster ^
 --backtrack-window 86400

Note

Currently, you can enable backtracking only for a DB cluster that was created with the
Backtrack feature enabled.

RDS API

When you create a new Aurora MySQL DB cluster using the CreateDBCluster Amazon RDS API
operation, backtracking is configured when you specify a BacktrackWindow value that is greater
than zero. The BacktrackWindow value specifies the target backtrack window for the DB cluster
specified in the DBClusterIdentifier value. For more information, see Creating an Amazon
Aurora DB cluster.

You can also specify the BacktrackWindow value using the following API operations:

Backtracking a DB cluster 1392

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateDBCluster.html

Amazon Aurora User Guide for Aurora

• ModifyDBCluster

• RestoreDBClusterFromS3

• RestoreDBClusterFromSnapshot

• RestoreDBClusterToPointInTime

Note

Currently, you can enable backtracking only for a DB cluster that was created with the
Backtrack feature enabled.

Performing a backtrack

You can backtrack a DB cluster to a specified backtrack time stamp. If the backtrack time stamp
isn't earlier than the earliest possible backtrack time, and isn't in the future, the DB cluster is
backtracked to that time stamp.

Otherwise, an error typically occurs. Also, if you try to backtrack a DB cluster for which binary
logging is enabled, an error typically occurs unless you've chosen to force the backtrack to occur.
Forcing a backtrack to occur can interfere with other operations that use binary logging.

Important

Backtracking doesn't generate binlog entries for the changes that it makes. If you have
binary logging enabled for the DB cluster, backtracking might not be compatible with your
binlog implementation.

Note

For database clones, you can't backtrack the DB cluster earlier than the date and time when
the clone was created. For more information about database cloning, see Cloning a volume
for an Amazon Aurora DB cluster.

Backtracking a DB cluster 1393

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBCluster.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_RestoreDBClusterFromS3.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_RestoreDBClusterFromSnapshot.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_RestoreDBClusterToPointInTime.html

Amazon Aurora User Guide for Aurora

Console

The following procedure describes how to perform a backtrack operation for a DB cluster using the
console.

To perform a backtrack operation using the console

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Instances.

3. Choose the primary instance for the DB cluster that you want to backtrack.

4. For Actions, choose Backtrack DB cluster.

5. On the Backtrack DB cluster page, enter the backtrack time stamp to backtrack the DB cluster
to.

6. Choose Backtrack DB cluster.

AWS CLI

The following procedure describes how to backtrack a DB cluster using the AWS CLI.

To backtrack a DB cluster using the AWS CLI

• Call the backtrack-db-cluster AWS CLI command and supply the following values:

• --db-cluster-identifier – The name of the DB cluster.

Backtracking a DB cluster 1394

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/
https://docs.aws.amazon.com/cli/latest/reference/rds/backtrack-db-cluster.html

Amazon Aurora User Guide for Aurora

• --backtrack-to – The backtrack time stamp to backtrack the DB cluster to, specified in
ISO 8601 format.

The following example backtracks the DB cluster sample-cluster to March 19, 2018, at 10
a.m.

For Linux, macOS, or Unix:

aws rds backtrack-db-cluster \
 --db-cluster-identifier sample-cluster \
 --backtrack-to 2018-03-19T10:00:00+00:00

For Windows:

aws rds backtrack-db-cluster ^
 --db-cluster-identifier sample-cluster ^
 --backtrack-to 2018-03-19T10:00:00+00:00

RDS API

To backtrack a DB cluster using the Amazon RDS API, use the BacktrackDBCluster operation. This
operation backtracks the DB cluster specified in the DBClusterIdentifier value to the specified
time.

Monitoring backtracking

You can view backtracking information and monitor backtracking metrics for a DB cluster.

Console

To view backtracking information and monitor backtracking metrics using the console

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. Choose Databases.

3. Choose the DB cluster name to open information about it.

Backtracking a DB cluster 1395

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_BacktrackDBCluster.html
https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Aurora User Guide for Aurora

The backtrack information is in the Backtrack section.

When backtracking is enabled, the following information is available:

• Target window – The current amount of time specified for the target backtrack window. The
target is the maximum amount of time that you can backtrack if there is sufficient storage.

• Actual window – The actual amount of time you can backtrack, which can be smaller than
the target backtrack window. The actual backtrack window is based on your workload and
the storage available for retaining backtrack change records.

• Earliest backtrack time – The earliest possible backtrack time for the DB cluster. You can't
backtrack the DB cluster to a time before the displayed time.

4. Do the following to view backtracking metrics for the DB cluster:

a. In the navigation pane, choose Instances.

b. Choose the name of the primary instance for the DB cluster to display its details.

c. In the CloudWatch section, type Backtrack into the CloudWatch box to show only the
Backtrack metrics.

Backtracking a DB cluster 1396

Amazon Aurora User Guide for Aurora

The following metrics are displayed:

• Backtrack Change Records Creation Rate (Count) – This metric shows the number of
backtrack change records created over five minutes for your DB cluster. You can use this
metric to estimate the backtrack cost for your target backtrack window.

• [Billed] Backtrack Change Records Stored (Count) – This metric shows the actual
number of backtrack change records used by your DB cluster.

• Backtrack Window Actual (Minutes) – This metric shows whether there is a difference
between the target backtrack window and the actual backtrack window. For example, if
your target backtrack window is 2 hours (120 minutes), and this metric shows that the
actual backtrack window is 100 minutes, then the actual backtrack window is smaller
than the target.

Backtracking a DB cluster 1397

Amazon Aurora User Guide for Aurora

• Backtrack Window Alert (Count) – This metric shows how often the actual backtrack
window is smaller than the target backtrack window for a given period of time.

Note

The following metrics might lag behind the current time:

• Backtrack Change Records Creation Rate (Count)

• [Billed] Backtrack Change Records Stored (Count)

AWS CLI

The following procedure describes how to view backtrack information for a DB cluster using the
AWS CLI.

To view backtrack information for a DB cluster using the AWS CLI

• Call the describe-db-clusters AWS CLI command and supply the following values:

• --db-cluster-identifier – The name of the DB cluster.

The following example lists backtrack information for sample-cluster.

For Linux, macOS, or Unix:

aws rds describe-db-clusters \
 --db-cluster-identifier sample-cluster

For Windows:

aws rds describe-db-clusters ^
 --db-cluster-identifier sample-cluster

Backtracking a DB cluster 1398

https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-clusters.html

Amazon Aurora User Guide for Aurora

RDS API

To view backtrack information for a DB cluster using the Amazon RDS API, use the
DescribeDBClusters operation. This operation returns backtrack information for the DB cluster
specified in the DBClusterIdentifier value.

Subscribing to a backtrack event with the console

The following procedure describes how to subscribe to a backtrack event using the console. The
event sends you an email or text notification when your actual backtrack window is smaller than
your target backtrack window.

To view backtrack information using the console

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. Choose Event subscriptions.

3. Choose Create event subscription.

4. In the Name box, type a name for the event subscription, and ensure that Yes is selected for
Enabled.

5. In the Target section, choose New email topic.

6. For Topic name, type a name for the topic, and for With these recipients, enter the email
addresses or phone numbers to receive the notifications.

7. In the Source section, choose Instances for Source type.

8. For Instances to include, choose Select specific instances, and choose your DB instance.

9. For Event categories to include, choose Select specific event categories, and choose
backtrack.

Your page should look similar to the following page.

Backtracking a DB cluster 1399

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DescribeDBClusters.html
https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Aurora User Guide for Aurora

Backtracking a DB cluster 1400

Amazon Aurora User Guide for Aurora

10. Choose Create.

Retrieving existing backtracks

You can retrieve information about existing backtracks for a DB cluster. This information includes
the unique identifier of the backtrack, the date and time backtracked to and from, the date and
time the backtrack was requested, and the current status of the backtrack.

Note

Currently, you can't retrieve existing backtracks using the console.

AWS CLI

The following procedure describes how to retrieve existing backtracks for a DB cluster using the
AWS CLI.

To retrieve existing backtracks using the AWS CLI

• Call the describe-db-cluster-backtracks AWS CLI command and supply the following values:

• --db-cluster-identifier – The name of the DB cluster.

The following example retrieves existing backtracks for sample-cluster.

For Linux, macOS, or Unix:

aws rds describe-db-cluster-backtracks \
 --db-cluster-identifier sample-cluster

For Windows:

aws rds describe-db-cluster-backtracks ^
 --db-cluster-identifier sample-cluster

Backtracking a DB cluster 1401

https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-cluster-backtracks.html

Amazon Aurora User Guide for Aurora

RDS API

To retrieve information about the backtracks for a DB cluster using the Amazon RDS API, use the
DescribeDBClusterBacktracks operation. This operation returns information about backtracks for
the DB cluster specified in the DBClusterIdentifier value.

Disabling backtracking for a DB cluster

You can disable the Backtrack feature for a DB cluster.

Console

You can disable backtracking for a DB cluster using the console. After you turn off backtracking
entirely for a cluster, you can't enable it again for that cluster.

To disable the Backtrack feature for a DB cluster using the console

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. Choose Databases.

3. Choose the cluster you want to modify, and choose Modify.

4. In the Backtrack section, choose Disable Backtrack.

5. Choose Continue.

6. For Scheduling of Modifications, choose one of the following:

• Apply during the next scheduled maintenance window – Wait to apply the modification
until the next maintenance window.

• Apply immediately – Apply the modification as soon as possible.

7. Choose Modify Cluster.

AWS CLI

You can disable the Backtrack feature for a DB cluster using the AWS CLI by setting the target
backtrack window to 0 (zero). After you turn off backtracking entirely for a cluster, you can't enable
it again for that cluster.

To modify the target backtrack window for a DB cluster using the AWS CLI

• Call the modify-db-cluster AWS CLI command and supply the following values:

Backtracking a DB cluster 1402

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DescribeDBClusterBacktracks.html
https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-cluster.html

Amazon Aurora User Guide for Aurora

• --db-cluster-identifier – The name of the DB cluster.

• --backtrack-window – specify 0 to turn off backtracking.

The following example disables the Backtrack feature for the sample-cluster by setting --
backtrack-window to 0.

For Linux, macOS, or Unix:

aws rds modify-db-cluster \
 --db-cluster-identifier sample-cluster \
 --backtrack-window 0

For Windows:

aws rds modify-db-cluster ^
 --db-cluster-identifier sample-cluster ^
 --backtrack-window 0

RDS API

To disable the Backtrack feature for a DB cluster using the Amazon RDS API, use the
ModifyDBCluster operation. Set the BacktrackWindow value to 0 (zero), and specify the DB
cluster in the DBClusterIdentifier value. After you turn off backtracking entirely for a cluster,
you can't enable it again for that cluster.

Testing Amazon Aurora MySQL using fault injection queries

You can test the fault tolerance of your Aurora MySQL DB cluster by using fault injection queries.
Fault injection queries are issued as SQL commands to an Amazon Aurora instance. They let you
schedule a simulated occurrence of one of the following events:

• A crash of a writer or reader DB instance

• A failure of an Aurora Replica

• A disk failure

• Disk congestion

Testing Amazon Aurora MySQL using fault injection queries 1403

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBCluster.html

Amazon Aurora User Guide for Aurora

When a fault injection query specifies a crash, it forces a crash of the Aurora MySQL DB instance.
The other fault injection queries result in simulations of failure events, but don't cause the event to
occur. When you submit a fault injection query, you also specify an amount of time for the failure
event simulation to occur for.

You can submit a fault injection query to one of your Aurora Replica instances by connecting
to the endpoint for the Aurora Replica. For more information, see Amazon Aurora connection
management.

Running fault injection queries requires all of the master user privileges. For more information, see
Master user account privileges.

Testing an instance crash

You can force a crash of an Amazon Aurora instance using the ALTER SYSTEM CRASH fault
injection query.

For this fault injection query, a failover will not occur. If you want to test a failover, then you can
choose the Failover instance action for your DB cluster in the RDS console, or use the failover-db-
cluster AWS CLI command or the FailoverDBCluster RDS API operation.

Syntax

ALTER SYSTEM CRASH [INSTANCE | DISPATCHER | NODE];

Options

This fault injection query takes one of the following crash types:

• INSTANCE — A crash of the MySQL-compatible database for the Amazon Aurora instance is
simulated.

• DISPATCHER — A crash of the dispatcher on the writer instance for the Aurora DB cluster is
simulated. The dispatcher writes updates to the cluster volume for an Amazon Aurora DB cluster.

• NODE — A crash of both the MySQL-compatible database and the dispatcher for the Amazon
Aurora instance is simulated. For this fault injection simulation, the cache is also deleted.

The default crash type is INSTANCE.

Testing Amazon Aurora MySQL using fault injection queries 1404

https://docs.aws.amazon.com/cli/latest/reference/rds/failover-db-cluster.html
https://docs.aws.amazon.com/cli/latest/reference/rds/failover-db-cluster.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_FailoverDBCluster.html

Amazon Aurora User Guide for Aurora

Testing an Aurora replica failure

You can simulate the failure of an Aurora Replica using the ALTER SYSTEM SIMULATE READ
REPLICA FAILURE fault injection query.

An Aurora Replica failure blocks all requests from the writer instance to an Aurora Replica or all
Aurora Replicas in the DB cluster for a specified time interval. When the time interval completes,
the affected Aurora Replicas will be automatically synced up with the writer instance.

Syntax

ALTER SYSTEM SIMULATE percentage_of_failure PERCENT READ REPLICA FAILURE
 [TO ALL | TO "replica name"]
 FOR INTERVAL quantity { YEAR | QUARTER | MONTH | WEEK | DAY | HOUR | MINUTE |
 SECOND };

Options

This fault injection query takes the following parameters:

• percentage_of_failure — The percentage of requests to block during the failure event. This
value can be a double between 0 and 100. If you specify 0, then no requests are blocked. If you
specify 100, then all requests are blocked.

• Failure type — The type of failure to simulate. Specify TO ALL to simulate failures for all Aurora
Replicas in the DB cluster. Specify TO and the name of the Aurora Replica to simulate a failure of
a single Aurora Replica. The default failure type is TO ALL.

• quantity — The amount of time for which to simulate the Aurora Replica failure. The interval
is an amount followed by a time unit. The simulation will occur for that amount of the specified
unit. For example, 20 MINUTE will result in the simulation running for 20 minutes.

Note

Take care when specifying the time interval for your Aurora Replica failure event. If you
specify too long of a time interval, and your writer instance writes a large amount of
data during the failure event, then your Aurora DB cluster might assume that your Aurora
Replica has crashed and replace it.

Testing Amazon Aurora MySQL using fault injection queries 1405

Amazon Aurora User Guide for Aurora

Testing a disk failure

You can simulate a disk failure for an Aurora DB cluster using the ALTER SYSTEM SIMULATE
DISK FAILURE fault injection query.

During a disk failure simulation, the Aurora DB cluster randomly marks disk segments as faulting.
Requests to those segments will be blocked for the duration of the simulation.

Syntax

ALTER SYSTEM SIMULATE percentage_of_failure PERCENT DISK FAILURE
 [IN DISK index | NODE index]
 FOR INTERVAL quantity { YEAR | QUARTER | MONTH | WEEK | DAY | HOUR | MINUTE |
 SECOND };

Options

This fault injection query takes the following parameters:

• percentage_of_failure — The percentage of the disk to mark as faulting during the failure
event. This value can be a double between 0 and 100. If you specify 0, then none of the disk is
marked as faulting. If you specify 100, then the entire disk is marked as faulting.

• DISK index — A specific logical block of data to simulate the failure event for. If you exceed
the range of available logical blocks of data, you will receive an error that tells you the maximum
index value that you can specify. For more information, see Displaying volume status for an
Aurora MySQL DB cluster.

• NODE index — A specific storage node to simulate the failure event for. If you exceed the range
of available storage nodes, you will receive an error that tells you the maximum index value that
you can specify. For more information, see Displaying volume status for an Aurora MySQL DB
cluster.

• quantity — The amount of time for which to simulate the disk failure. The interval is an
amount followed by a time unit. The simulation will occur for that amount of the specified unit.
For example, 20 MINUTE will result in the simulation running for 20 minutes.

Testing disk congestion

You can simulate a disk failure for an Aurora DB cluster using the ALTER SYSTEM SIMULATE
DISK CONGESTION fault injection query.

Testing Amazon Aurora MySQL using fault injection queries 1406

Amazon Aurora User Guide for Aurora

During a disk congestion simulation, the Aurora DB cluster randomly marks disk segments as
congested. Requests to those segments will be delayed between the specified minimum and
maximum delay time for the duration of the simulation.

Syntax

ALTER SYSTEM SIMULATE percentage_of_failure PERCENT DISK CONGESTION
 BETWEEN minimum AND maximum MILLISECONDS
 [IN DISK index | NODE index]
 FOR INTERVAL quantity { YEAR | QUARTER | MONTH | WEEK | DAY | HOUR | MINUTE |
 SECOND };

Options

This fault injection query takes the following parameters:

• percentage_of_failure — The percentage of the disk to mark as congested during the
failure event. This value can be a double between 0 and 100. If you specify 0, then none of the
disk is marked as congested. If you specify 100, then the entire disk is marked as congested.

• DISK index Or NODE index — A specific disk or node to simulate the failure event for. If
you exceed the range of indexes for the disk or node, you will receive an error that tells you the
maximum index value that you can specify.

• minimum And maximum — The minimum and maximum amount of congestion delay, in
milliseconds. Disk segments marked as congested will be delayed for a random amount of time
within the range of the minimum and maximum amount of milliseconds for the duration of the
simulation.

• quantity — The amount of time for which to simulate the disk congestion. The interval is an
amount followed by a time unit. The simulation will occur for that amount of the specified time
unit. For example, 20 MINUTE will result in the simulation running for 20 minutes.

Altering tables in Amazon Aurora using Fast DDL

Amazon Aurora includes optimizations to run an ALTER TABLE operation in place, nearly
instantaneously. The operation completes without requiring the table to be copied and without
having a material impact on other DML statements. Because the operation doesn't consume
temporary storage for a table copy, it makes DDL statements practical even for large tables on
small instance classes.

Altering tables in Amazon Aurora using Fast DDL 1407

Amazon Aurora User Guide for Aurora

Aurora MySQL version 3 is compatible with the MySQL 8.0 feature called instant DDL. Aurora
MySQL version 2 uses a different implementation called Fast DDL.

Topics

• Instant DDL (Aurora MySQL version 3)

• Fast DDL (Aurora MySQL version 2)

Instant DDL (Aurora MySQL version 3)

The optimization performed by Aurora MySQL version 3 to improve the efficiency of some DDL
operations is called instant DDL.

Aurora MySQL version 3 is compatible with the instant DDL from community MySQL 8.0. You
perform an instant DDL operation by using the clause ALGORITHM=INSTANT with the ALTER
TABLE statement. For syntax and usage details about instant DDL, see ALTER TABLE and Online
DDL Operations in the MySQL documentation.

The following examples demonstrate the instant DDL feature. The ALTER TABLE statements
add columns and change default column values. The examples include both regular and virtual
columns, and both regular and partitioned tables. At each step, you can see the results by issuing
SHOW CREATE TABLE and DESCRIBE statements.

mysql> CREATE TABLE t1 (a INT, b INT, KEY(b)) PARTITION BY KEY(b) PARTITIONS 6;
Query OK, 0 rows affected (0.02 sec)

mysql> ALTER TABLE t1 RENAME TO t2, ALGORITHM = INSTANT;
Query OK, 0 rows affected (0.01 sec)

mysql> ALTER TABLE t2 ALTER COLUMN b SET DEFAULT 100, ALGORITHM = INSTANT;
Query OK, 0 rows affected (0.00 sec)

mysql> ALTER TABLE t2 ALTER COLUMN b DROP DEFAULT, ALGORITHM = INSTANT;
Query OK, 0 rows affected (0.01 sec)

mysql> ALTER TABLE t2 ADD COLUMN c ENUM('a', 'b', 'c'), ALGORITHM = INSTANT;
Query OK, 0 rows affected (0.01 sec)

mysql> ALTER TABLE t2 MODIFY COLUMN c ENUM('a', 'b', 'c', 'd', 'e'), ALGORITHM =
 INSTANT;
Query OK, 0 rows affected (0.01 sec)

Altering tables in Amazon Aurora using Fast DDL 1408

https://dev.mysql.com/doc/refman/8.0/en/alter-table.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-online-ddl-operations.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-online-ddl-operations.html

Amazon Aurora User Guide for Aurora

mysql> ALTER TABLE t2 ADD COLUMN (d INT GENERATED ALWAYS AS (a + 1) VIRTUAL), ALGORITHM
 = INSTANT;
Query OK, 0 rows affected (0.02 sec)

mysql> ALTER TABLE t2 ALTER COLUMN a SET DEFAULT 20,
 -> ALTER COLUMN b SET DEFAULT 200, ALGORITHM = INSTANT;
Query OK, 0 rows affected (0.01 sec)

mysql> CREATE TABLE t3 (a INT, b INT) PARTITION BY LIST(a)(
 -> PARTITION mypart1 VALUES IN (1,3,5),
 -> PARTITION MyPart2 VALUES IN (2,4,6)
 ->);
Query OK, 0 rows affected (0.03 sec)

mysql> ALTER TABLE t3 ALTER COLUMN a SET DEFAULT 20, ALTER COLUMN b SET DEFAULT 200,
 ALGORITHM = INSTANT;
Query OK, 0 rows affected (0.01 sec)

mysql> CREATE TABLE t4 (a INT, b INT) PARTITION BY RANGE(a)
 -> (PARTITION p0 VALUES LESS THAN(100), PARTITION p1 VALUES LESS THAN(1000),
 -> PARTITION p2 VALUES LESS THAN MAXVALUE);
Query OK, 0 rows affected (0.05 sec)

mysql> ALTER TABLE t4 ALTER COLUMN a SET DEFAULT 20,
 -> ALTER COLUMN b SET DEFAULT 200, ALGORITHM = INSTANT;
Query OK, 0 rows affected (0.01 sec)

/* Sub-partitioning example */
mysql> CREATE TABLE ts (id INT, purchased DATE, a INT, b INT)
 -> PARTITION BY RANGE(YEAR(purchased))
 -> SUBPARTITION BY HASH(TO_DAYS(purchased))
 -> SUBPARTITIONS 2 (
 -> PARTITION p0 VALUES LESS THAN (1990),
 -> PARTITION p1 VALUES LESS THAN (2000),
 -> PARTITION p2 VALUES LESS THAN MAXVALUE
 ->);
Query OK, 0 rows affected (0.10 sec)

mysql> ALTER TABLE ts ALTER COLUMN a SET DEFAULT 20,
 -> ALTER COLUMN b SET DEFAULT 200, ALGORITHM = INSTANT;
Query OK, 0 rows affected (0.01 sec)

Fast DDL (Aurora MySQL version 2)

Altering tables in Amazon Aurora using Fast DDL 1409

Amazon Aurora User Guide for Aurora

In MySQL, many data definition language (DDL) operations have a significant performance impact.

For example, suppose that you use an ALTER TABLE operation to add a column to a table.
Depending on the algorithm specified for the operation, this operation can involve the following:

• Creating a full copy of the table

• Creating a temporary table to process concurrent data manipulation language (DML) operations

• Rebuilding all indexes for the table

• Applying table locks while applying concurrent DML changes

• Slowing concurrent DML throughput

The optimization performed by Aurora MySQL version 2 to improve the efficiency of some DDL
operations is called Fast DDL.

In Aurora MySQL version 3, Aurora uses the MySQL 8.0 feature called instant DDL. Aurora MySQL
version 2 uses a different implementation called Fast DDL.

Important

Currently, Aurora lab mode must be enabled to use Fast DDL for Aurora MySQL. We don't
recommend using Fast DDL for production DB clusters. For information about enabling
Aurora lab mode, see Amazon Aurora MySQL lab mode.

Fast DDL limitations

Currently, Fast DDL has the following limitations:

• Fast DDL only supports adding nullable columns, without default values, to the end of an
existing table.

• Fast DDL doesn't work for partitioned tables.

• Fast DDL doesn't work for InnoDB tables that use the REDUNDANT row format.

• Fast DDL doesn't work for tables with full-text search indexes.

• If the maximum possible record size for the DDL operation is too large, Fast DDL is not used. A
record size is too large if it is greater than half the page size. The maximum size of a record is
computed by adding the maximum sizes of all columns. For variable sized columns, according to
InnoDB standards, extern bytes are not included for computation.

Altering tables in Amazon Aurora using Fast DDL 1410

Amazon Aurora User Guide for Aurora

Fast DDL syntax

ALTER TABLE tbl_name ADD COLUMN col_name column_definition

This statement takes the following options:

• tbl_name — The name of the table to be modified.

• col_name — The name of the column to be added.

• col_definition — The definition of the column to be added.

Note

You must specify a nullable column definition without a default value. Otherwise, Fast
DDL isn't used.

Fast DDL examples

The following examples demonstrate the speedup from Fast DDL operations. The first SQL
example runs ALTER TABLE statements on a large table without using Fast DDL. This operation
takes substantial time. A CLI example shows how to enable Fast DDL for the cluster. Then another
SQL example runs the same ALTER TABLE statements on an identical table. With Fast DDL
enabled, the operation is very fast.

This example uses the ORDERS table from the TPC-H benchmark, containing 150 million rows. This
cluster intentionally uses a relatively small instance class, to demonstrate how long ALTER TABLE
statements can take when you can't use Fast DDL. The example creates a clone of the original table
containing identical data. Checking the aurora_lab_mode setting confirms that the cluster can't
use Fast DDL, because lab mode isn't enabled. Then ALTER TABLE ADD COLUMN statements take
substantial time to add new columns at the end of the table.

mysql> create table orders_regular_ddl like orders;
Query OK, 0 rows affected (0.06 sec)

mysql> insert into orders_regular_ddl select * from orders;
Query OK, 150000000 rows affected (1 hour 1 min 25.46 sec)

mysql> select @@aurora_lab_mode;
+-------------------+

Altering tables in Amazon Aurora using Fast DDL 1411

Amazon Aurora User Guide for Aurora

| @@aurora_lab_mode |
+-------------------+
| 0 |
+-------------------+

mysql> ALTER TABLE orders_regular_ddl ADD COLUMN o_refunded boolean;
Query OK, 0 rows affected (40 min 31.41 sec)

mysql> ALTER TABLE orders_regular_ddl ADD COLUMN o_coverletter varchar(512);
Query OK, 0 rows affected (40 min 44.45 sec)

This example does the same preparation of a large table as the previous example. However, you
can't simply enable lab mode within an interactive SQL session. That setting must be enabled in a
custom parameter group. Doing so requires switching out of the mysql session and running some
AWS CLI commands or using the AWS Management Console.

mysql> create table orders_fast_ddl like orders;
Query OK, 0 rows affected (0.02 sec)

mysql> insert into orders_fast_ddl select * from orders;
Query OK, 150000000 rows affected (58 min 3.25 sec)

mysql> set aurora_lab_mode=1;
ERROR 1238 (HY000): Variable 'aurora_lab_mode' is a read only variable

Enabling lab mode for the cluster requires some work with a parameter group. This AWS CLI
example uses a cluster parameter group, to ensure that all DB instances in the cluster use the same
value for the lab mode setting.

$ aws rds create-db-cluster-parameter-group \
 --db-parameter-group-family aurora5.7 \
 --db-cluster-parameter-group-name lab-mode-enabled-57 --description 'TBD'
$ aws rds describe-db-cluster-parameters \
 --db-cluster-parameter-group-name lab-mode-enabled-57 \
 --query '*[*].[ParameterName,ParameterValue]' \
 --output text | grep aurora_lab_mode
aurora_lab_mode 0
$ aws rds modify-db-cluster-parameter-group \
 --db-cluster-parameter-group-name lab-mode-enabled-57 \
 --parameters ParameterName=aurora_lab_mode,ParameterValue=1,ApplyMethod=pending-
reboot
{

Altering tables in Amazon Aurora using Fast DDL 1412

Amazon Aurora User Guide for Aurora

 "DBClusterParameterGroupName": "lab-mode-enabled-57"
}

Assign the custom parameter group to the cluster that's going to use Fast DDL.
$ aws rds modify-db-cluster --db-cluster-identifier tpch100g \
 --db-cluster-parameter-group-name lab-mode-enabled-57
{
 "DBClusterIdentifier": "tpch100g",
 "DBClusterParameterGroup": "lab-mode-enabled-57",
 "Engine": "aurora-mysql",
 "EngineVersion": "5.7.mysql_aurora.2.10.2",
 "Status": "available"
}

Reboot the primary instance for the cluster tpch100g:
$ aws rds reboot-db-instance --db-instance-identifier instance-2020-12-22-5208
{
 "DBInstanceIdentifier": "instance-2020-12-22-5208",
 "DBInstanceStatus": "rebooting"
}

$ aws rds describe-db-clusters --db-cluster-identifier tpch100g \
 --query '*[].[DBClusterParameterGroup]' --output text
lab-mode-enabled-57

$ aws rds describe-db-cluster-parameters \
 --db-cluster-parameter-group-name lab-mode-enabled-57 \
 --query '*[*].{ParameterName:ParameterName,ParameterValue:ParameterValue}' \
 --output text | grep aurora_lab_mode
aurora_lab_mode 1

The following example shows the remaining steps after the parameter group change takes effect.
It tests the aurora_lab_mode setting to make sure that the cluster can use Fast DDL. Then it
runs ALTER TABLE statements to add columns to the end of another large table. This time, the
statements finish very quickly.

mysql> select @@aurora_lab_mode;
+-------------------+
| @@aurora_lab_mode |
+-------------------+
| 1 |
+-------------------+

Altering tables in Amazon Aurora using Fast DDL 1413

Amazon Aurora User Guide for Aurora

mysql> ALTER TABLE orders_fast_ddl ADD COLUMN o_refunded boolean;
Query OK, 0 rows affected (1.51 sec)

mysql> ALTER TABLE orders_fast_ddl ADD COLUMN o_coverletter varchar(512);
Query OK, 0 rows affected (0.40 sec)

Displaying volume status for an Aurora MySQL DB cluster

In Amazon Aurora, a DB cluster volume consists of a collection of logical blocks. Each of these
represents 10 gigabytes of allocated storage. These blocks are called protection groups.

The data in each protection group is replicated across six physical storage devices, called storage
nodes. These storage nodes are allocated across three Availability Zones (AZs) in the AWS Region
where the DB cluster resides. In turn, each storage node contains one or more logical blocks of data
for the DB cluster volume. For more information about protection groups and storage nodes, see
Introducing the Aurora storage engine on the AWS Database Blog.

You can simulate the failure of an entire storage node, or a single logical block of data within a
storage node. To do so, you use the ALTER SYSTEM SIMULATE DISK FAILURE fault injection
statement. For the statement, you specify the index value of a specific logical block of data or
storage node. However, if you specify an index value greater than the number of logical blocks
of data or storage nodes used by the DB cluster volume, the statement returns an error. For more
information about fault injection queries, see Testing Amazon Aurora MySQL using fault injection
queries.

You can avoid that error by using the SHOW VOLUME STATUS statement. The statement returns
two server status variables, Disks and Nodes. These variables represent the total number of
logical blocks of data and storage nodes, respectively, for the DB cluster volume.

Syntax

SHOW VOLUME STATUS

Example

The following example illustrates a typical SHOW VOLUME STATUS result.

mysql> SHOW VOLUME STATUS;

Displaying volume status for an Aurora DB cluster 1414

https://aws.amazon.com/blogs/database/introducing-the-aurora-storage-engine/

Amazon Aurora User Guide for Aurora

+---------------+-------+
| Variable_name | Value |
+---------------+-------+
| Disks | 96 |
| Nodes | 74 |
+---------------+-------+

Displaying volume status for an Aurora DB cluster 1415

Amazon Aurora User Guide for Aurora

Tuning Aurora MySQL

Wait events and thread states are important tuning tools for Aurora MySQL. If you can find out
why sessions are waiting for resources and what they are doing, you are better able to reduce
bottlenecks. You can use the information in this section to find possible causes and corrective
actions.

Amazon DevOps Guru for RDS can proactively determine whether your Aurora MySQL databases
are experiencing problematic conditions that might cause bigger problems later. Amazon
DevOps Guru for RDS publishes an explanation and recommendations for corrective actions in a
proactive insight. This section contains insights for common problems.

Important

The wait events and thread states in this section are specific to Aurora MySQL. Use the
information in this section to tune only Amazon Aurora, not Amazon RDS for MySQL.
Some wait events in this section have no analogs in the open source versions of these
database engines. Other wait events have the same names as events in open source
engines, but behave differently. For example, Amazon Aurora storage works different from
open source storage, so storage-related wait events indicate different resource conditions.

Topics

• Essential concepts for Aurora MySQL tuning

• Tuning Aurora MySQL with wait events

• Tuning Aurora MySQL with thread states

• Tuning Aurora MySQL with Amazon DevOps Guru proactive insights

Essential concepts for Aurora MySQL tuning

Before you tune your Aurora MySQL database, make sure to learn what wait events and thread
states are and why they occur. Also review the basic memory and disk architecture of Aurora
MySQL when using the InnoDB storage engine. For a helpful architecture diagram, see the MySQL
Reference Manual.

Topics

Tuning Aurora MySQL 1416

https://dev.mysql.com/doc/refman/8.0/en/innodb-architecture.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-architecture.html

Amazon Aurora User Guide for Aurora

• Aurora MySQL wait events

• Aurora MySQL thread states

• Aurora MySQL memory

• Aurora MySQL processes

Aurora MySQL wait events

A wait event indicates a resource for which a session is waiting. For example, the wait event io/
socket/sql/client_connection indicates that a thread is in the process of handling a new
connection. Typical resources that a session waits for include the following:

• Single-threaded access to a buffer, for example, when a session is attempting to modify a buffer

• A row that is currently locked by another session

• A data file read

• A log file write

For example, to satisfy a query, the session might perform a full table scan. If the data isn't
already in memory, the session waits for the disk I/O to complete. When the buffers are read into
memory, the session might need to wait because other sessions are accessing the same buffers.
The database records the waits by using a predefined wait event. These events are grouped into
categories.

A wait event doesn't by itself show a performance problem. For example, if requested data isn't
in memory, reading data from disk is necessary. If one session locks a row for an update, another
session waits for the row to be unlocked so that it can update it. A commit requires waiting for the
write to a log file to complete. Waits are integral to the normal functioning of a database.

Large numbers of wait events typically show a performance problem. In such cases, you can use
wait event data to determine where sessions are spending time. For example, if a report that
typically runs in minutes now runs for hours, you can identify the wait events that contribute the
most to total wait time. If you can determine the causes of the top wait events, you can sometimes
make changes that improve performance. For example, if your session is waiting on a row that has
been locked by another session, you can end the locking session.

Essential concepts for Aurora MySQL tuning 1417

Amazon Aurora User Guide for Aurora

Aurora MySQL thread states

A general thread state is a State value that is associated with general query processing. For
example, the thread state sending data indicates that a thread is reading and filtering rows for a
query to determine the correct result set.

You can use thread states to tune Aurora MySQL in a similar fashion to how you use wait events.
For example, frequent occurrences of sending data usually indicate that a query isn't using an
index. For more information about thread states, see General Thread States in the MySQL Reference
Manual.

When you use Performance Insights, one of the following conditions is true:

• Performance Schema is turned on – Aurora MySQL shows wait events rather than the thread
state.

• Performance Schema isn't turned on – Aurora MySQL shows the thread state.

We recommend that you configure the Performance Schema for automatic management. The
Performance Schema provides additional insights and better tools to investigate potential
performance problems. For more information, see Turning on the Performance Schema for
Performance Insights on Aurora MySQL.

Aurora MySQL memory

In Aurora MySQL, the most important memory areas are the buffer pool and log buffer.

Topics

• Buffer pool

Buffer pool

The buffer pool is the shared memory area where Aurora MySQL caches table and index data.
Queries can access frequently used data directly from memory without reading from disk.

The buffer pool is structured as a linked list of pages. A page can hold multiple rows. Aurora MySQL
uses a least recently used (LRU) algorithm to age pages out of the pool.

For more information, see Buffer Pool in the MySQL Reference Manual.

Essential concepts for Aurora MySQL tuning 1418

https://dev.mysql.com/doc/refman/5.7/en/general-thread-states.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-buffer-pool.html

Amazon Aurora User Guide for Aurora

Aurora MySQL processes

Aurora MySQL uses a process model that is very different from Aurora PostgreSQL.

Topics

• MySQL server (mysqld)

• Threads

• Thread pool

MySQL server (mysqld)

The MySQL server is a single operating-system process named mysqld. The MySQL server doesn't
spawn additional processes. Thus, an Aurora MySQL database uses mysqld to perform most of its
work.

When the MySQL server starts, it listens for network connections from MySQL clients. When a
client connects to the database, mysqld opens a thread.

Threads

Connection manager threads associate each client connection with a dedicated thread. This thread
manages authentication, runs statements, and returns results to the client. Connection manager
creates new threads when necessary.

The thread cache is the set of available threads. When a connection ends, MySQL returns the thread
to the thread cache if the cache isn't full. The thread_cache_size system variable determines
the thread cache size.

Thread pool

The thread pool consists of a number of thread groups. Each group manages a set of client
connections. When a client connects to the database, the thread pool assigns the connections to
thread groups in round-robin fashion. The thread pool separates connections and threads. There
is no fixed relationship between connections and the threads that run statements received from
those connections.

Essential concepts for Aurora MySQL tuning 1419

Amazon Aurora User Guide for Aurora

Tuning Aurora MySQL with wait events

The following table summarizes the Aurora MySQL wait events that most commonly indicate
performance problems. The following wait events are a subset of the list in Aurora MySQL wait
events.

Wait event Description

cpu This event occurs when a thread is active in
CPU or is waiting for CPU.

io/aurora_redo_log_flush This event occurs when a session is writing
persistent data to Aurora storage.

io/aurora_respond_to_client This event occurs when a thread is waiting to
return a result set to a client.

io/redo_log_flush This event occurs when a session is writing
persistent data to Aurora storage.

io/socket/sql/client_connection This event occurs when a thread is in the
process of handling a new connection.

io/table/sql/handler This event occurs when work has been
delegated to a storage engine.

synch/cond/innodb/row_lock_wait This event occurs when one session has
locked a row for an update, and another
session tries to update the same row.

synch/cond/innodb/row_lock_wait_cond This event occurs when one session has
locked a row for an update, and another
session tries to update the same row.

synch/cond/sql/MDL_context::COND_wai
t_status

This event occurs when there are threads
waiting on a table metadata lock.

Tuning Aurora MySQL with wait events 1420

Amazon Aurora User Guide for Aurora

Wait event Description

synch/mutex/innodb/aurora_lock_threa
d_slot_futex

This event occurs when one session has
locked a row for an update, and another
session tries to update the same row.

synch/mutex/innodb/buf_pool_mutex This event occurs when a thread has acquired
a lock on the InnoDB buffer pool to access a
page in memory.

synch/mutex/innodb/fil_system_mutex This event occurs when a session is waiting to
access the tablespace memory cache.

synch/mutex/innodb/trx_sys_mutex This event occurs when there is high database
activity with a large number of transactions.

synch/sxlock/innodb/hash_table_locks This event occurs when pages not found in
the buffer pool must be read from a file.

cpu

The cpu wait event occurs when a thread is active in CPU or is waiting for CPU.

Topics

• Supported engine versions

• Context

• Likely causes of increased waits

• Actions

Supported engine versions

This wait event information is supported for the following engine versions:

• Aurora MySQL versions 2 and 3

Tuning Aurora MySQL with wait events 1421

Amazon Aurora User Guide for Aurora

Context

For every vCPU, a connection can run work on this CPU. In some situations, the number of active
connections that are ready to run is higher than the number of vCPUs. This imbalance results in
connections waiting for CPU resources. If the number of active connections stays consistently
higher than the number of vCPUs, then your instance experiences CPU contention. The contention
causes the cpu wait event to occur.

Note

The Performance Insights metric for CPU is DBLoadCPU. The value for DBLoadCPU can
differ from the value for the CloudWatch metric CPUUtilization. The latter metric is
collected from the HyperVisor for a database instance.

Performance Insights OS metrics provide detailed information about CPU utilization. For example,
you can display the following metrics:

• os.cpuUtilization.nice.avg

• os.cpuUtilization.total.avg

• os.cpuUtilization.wait.avg

• os.cpuUtilization.idle.avg

Performance Insights reports the CPU usage by the database engine as
os.cpuUtilization.nice.avg.

Likely causes of increased waits

When this event occurs more than normal, possibly indicating a performance problem, typical
causes include the following:

• Analytic queries

• Highly concurrent transactions

• Long-running transactions

• A sudden increase in the number of connections, known as a login storm

• An increase in context switching

Tuning Aurora MySQL with wait events 1422

Amazon Aurora User Guide for Aurora

Actions

If the cpu wait event dominates database activity, it doesn't necessarily indicate a performance
problem. Respond to this event only when performance degrades.

Depending on the cause of the increase in CPU utilization, consider the following strategies:

• Increase the CPU capacity of the host. This approach typically gives only temporary relief.

• Identify top queries for potential optimization.

• Redirect some read-only workload to reader nodes, if applicable.

Topics

• Identify the sessions or queries that are causing the problem

• Analyze and optimize the high CPU workload

Identify the sessions or queries that are causing the problem

To find the sessions and queries, look at the Top SQL table in Performance Insights for the SQL
statements that have the highest CPU load. For more information, see Analyzing metrics with the
Performance Insights dashboard.

Typically, one or two SQL statements consume the majority of CPU cycles. Concentrate your efforts
on these statements. Suppose that your DB instance has 2 vCPUs with a DB load of 3.1 average
active sessions (AAS), all in the CPU state. In this case, your instance is CPU bound. Consider the
following strategies:

• Upgrade to a larger instance class with more vCPUs.

• Tune your queries to have lower CPU load.

In this example, the top SQL queries have a DB load of 1.5 AAS, all in the CPU state. Another SQL
statement has a load of 0.1 in the CPU state. In this example, if you stopped the lowest-load SQL
statement, you don't significantly reduce database load. However, if you optimize the two high-
load queries to be twice as efficient, you eliminate the CPU bottleneck. If you reduce the CPU load
of 1.5 AAS by 50 percent, the AAS for each statement decreases to 0.75. The total DB load spent
on CPU is now 1.6 AAS. This value is below the maximum vCPU line of 2.0.

Tuning Aurora MySQL with wait events 1423

Amazon Aurora User Guide for Aurora

For a useful overview of troubleshooting using Performance Insights, see the blog post Analyze
Amazon Aurora MySQL Workloads with Performance Insights. Also see the AWS Support article
How can I troubleshoot and resolve high CPU utilization on my Amazon RDS for MySQL instances?.

Analyze and optimize the high CPU workload

After you identify the query or queries increasing CPU usage, you can either optimize them or end
the connection. The following example shows how to end a connection.

CALL mysql.rds_kill(processID);

For more information, see mysql.rds_kill.

If you end a session, the action might trigger a long rollback.

Follow the guidelines for optimizing queries

To optimize queries, consider the following guidelines:

• Run the EXPLAIN statement.

This command shows the individual steps involved in running a query. For more information, see
Optimizing Queries with EXPLAIN in the MySQL documentation.

• Run the SHOW PROFILE statement.

Use this statement to review profile details that can indicate resource usage for statements that
are run during the current session. For more information, see SHOW PROFILE Statement in the
MySQL documentation.

• Run the ANALYZE TABLE statement.

Use this statement to refresh the index statistics for the tables accessed by the high-
CPU consuming query. By analyzing the statement, you can help the optimizer choose an
appropriate execution plan. For more information, see ANALYZE TABLE Statement in the MySQL
documentation.

Follow the guidelines for improving CPU usage

To improve CPU usage in a database instance, follow these guidelines:

• Ensure that all queries are using proper indexes.

Tuning Aurora MySQL with wait events 1424

https://aws.amazon.com/blogs/database/analyze-amazon-aurora-mysql-workloads-with-performance-insights/
https://aws.amazon.com/blogs/database/analyze-amazon-aurora-mysql-workloads-with-performance-insights/
https://aws.amazon.com/premiumsupport/knowledge-center/rds-instance-high-cpu/
https://dev.mysql.com/doc/refman/5.7/en/using-explain.html
https://dev.mysql.com/doc/refman/5.7/en/show-profile.html
https://dev.mysql.com/doc/refman/5.7/en/analyze-table.html

Amazon Aurora User Guide for Aurora

• Find out whether you can use Aurora parallel queries. You can use this technique to reduce
CPU usage on the head node by pushing down function processing, row filtering, and column
projection for the WHERE clause.

• Find out whether the number of SQL executions per second meets the expected thresholds.

• Find out whether index maintenance or new index creation takes up CPU cycles needed by your
production workload. Schedule maintenance activities outside of peak activity times.

• Find out whether you can use partitioning to help reduce the query data set. For more
information, see the blog post How to plan and optimize Amazon Aurora with MySQL
compatibility for consolidated workloads.

Check for connection storms

If the DBLoadCPU metric is not very high, but the CPUUtilization metric is high, the cause of
the high CPU utilization lies outside of the database engine. A classic example is a connection
storm.

Check whether the following conditions are true:

• There is an increase in both the Performance Insights CPUUtilization metric and the Amazon
CloudWatch DatabaseConnections metric.

• The number of threads in the CPU is greater than the number of vCPUs.

If the preceding conditions are true, consider decreasing the number of database connections. For
example, you can use a connection pool such as RDS Proxy. To learn the best practices for effective
connection management and scaling, see the whitepaper Amazon Aurora MySQL DBA Handbook
for Connection Management.

io/aurora_redo_log_flush

The io/aurora_redo_log_flush event occurs when a session is writing persistent data to
Amazon Aurora storage.

Topics

• Supported engine versions

• Context

• Likely causes of increased waits

• Actions

Tuning Aurora MySQL with wait events 1425

https://aws.amazon.com/blogs/database/planning-and-optimizing-amazon-aurora-with-mysql-compatibility-for-consolidated-workloads/
https://aws.amazon.com/blogs/database/planning-and-optimizing-amazon-aurora-with-mysql-compatibility-for-consolidated-workloads/
https://d1.awsstatic.com/whitepapers/RDS/amazon-aurora-mysql-database-administrator-handbook.pdf
https://d1.awsstatic.com/whitepapers/RDS/amazon-aurora-mysql-database-administrator-handbook.pdf

Amazon Aurora User Guide for Aurora

Supported engine versions

This wait event information is supported for the following engine versions:

• Aurora MySQL version 2

Context

The io/aurora_redo_log_flush event is for a write input/output (I/O) operation in Aurora
MySQL.

Note

In Aurora MySQL version 3, this wait event is named io/redo_log_flush.

Likely causes of increased waits

For data persistence, commits require a durable write to stable storage. If the database
is doing too many commits, there is a wait event on the write I/O operation, the io/
aurora_redo_log_flush wait event.

In the following examples, 50,000 records are inserted into an Aurora MySQL DB cluster using the
db.r5.xlarge DB instance class:

• In the first example, each session inserts 10,000 records row by row. By default, if a data
manipulation language (DML) command isn't within a transaction, Aurora MySQL uses implicit
commits. Autocommit is turned on. This means that for each row insertion there is a commit.
Performance Insights shows that the connections spend most of their time waiting on the io/
aurora_redo_log_flush wait event.

Tuning Aurora MySQL with wait events 1426

Amazon Aurora User Guide for Aurora

This is caused by the simple insert statements used.

The 50,000 records take 3.5 minutes to be inserted.

• In the second example, inserts are made in 1,000 batches, that is each connection performs 10
commits instead of 10,000. Performance Insights shows that the connections don't spend most
of their time on the io/aurora_redo_log_flush wait event.

The 50,000 records take 4 seconds to be inserted.

Actions

We recommend different actions depending on the causes of your wait event.

Identify the problematic sessions and queries

If your DB instance is experiencing a bottleneck, your first task is to find the sessions and queries
that cause it. For a useful AWS Database Blog post, see Analyze Amazon Aurora MySQL Workloads
with Performance Insights.

To identify sessions and queries causing a bottleneck

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Performance Insights.

Tuning Aurora MySQL with wait events 1427

https://aws.amazon.com/blogs/database/analyze-amazon-aurora-mysql-workloads-with-performance-insights/
https://aws.amazon.com/blogs/database/analyze-amazon-aurora-mysql-workloads-with-performance-insights/
https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Aurora User Guide for Aurora

3. Choose your DB instance.

4. In Database load, choose Slice by wait.

5. At the bottom of the page, choose Top SQL.

The queries at the top of the list are causing the highest load on the database.

Group your write operations

The following examples trigger the io/aurora_redo_log_flush wait event. (Autocommit is
turned on.)

INSERT INTO `sampleDB`.`sampleTable` (sampleCol2, sampleCol3) VALUES ('xxxx','xxxxx');
INSERT INTO `sampleDB`.`sampleTable` (sampleCol2, sampleCol3) VALUES ('xxxx','xxxxx');
INSERT INTO `sampleDB`.`sampleTable` (sampleCol2, sampleCol3) VALUES ('xxxx','xxxxx');
....
INSERT INTO `sampleDB`.`sampleTable` (sampleCol2, sampleCol3) VALUES ('xxxx','xxxxx');

UPDATE `sampleDB`.`sampleTable` SET sampleCol3='xxxxx' WHERE id=xx;
UPDATE `sampleDB`.`sampleTable` SET sampleCol3='xxxxx' WHERE id=xx;
UPDATE `sampleDB`.`sampleTable` SET sampleCol3='xxxxx' WHERE id=xx;
....
UPDATE `sampleDB`.`sampleTable` SET sampleCol3='xxxxx' WHERE id=xx;

DELETE FROM `sampleDB`.`sampleTable` WHERE sampleCol1=xx;
DELETE FROM `sampleDB`.`sampleTable` WHERE sampleCol1=xx;
DELETE FROM `sampleDB`.`sampleTable` WHERE sampleCol1=xx;
....
DELETE FROM `sampleDB`.`sampleTable` WHERE sampleCol1=xx;

To reduce the time spent waiting on the io/aurora_redo_log_flush wait event, group your
write operations logically into a single commit to reduce persistent calls to storage.

Turn off autocommit

Turn off autocommit before making large changes that aren't within a transaction, as shown in the
following example.

SET SESSION AUTOCOMMIT=OFF;
UPDATE `sampleDB`.`sampleTable` SET sampleCol3='xxxxx' WHERE sampleCol1=xx;
UPDATE `sampleDB`.`sampleTable` SET sampleCol3='xxxxx' WHERE sampleCol1=xx;

Tuning Aurora MySQL with wait events 1428

Amazon Aurora User Guide for Aurora

UPDATE `sampleDB`.`sampleTable` SET sampleCol3='xxxxx' WHERE sampleCol1=xx;
....
UPDATE `sampleDB`.`sampleTable` SET sampleCol3='xxxxx' WHERE sampleCol1=xx;
-- Other DML statements here
COMMIT;

SET SESSION AUTOCOMMIT=ON;

Use transactions

You can use transactions, as shown in the following example.

BEGIN
INSERT INTO `sampleDB`.`sampleTable` (sampleCol2, sampleCol3) VALUES ('xxxx','xxxxx');
INSERT INTO `sampleDB`.`sampleTable` (sampleCol2, sampleCol3) VALUES ('xxxx','xxxxx');
INSERT INTO `sampleDB`.`sampleTable` (sampleCol2, sampleCol3) VALUES ('xxxx','xxxxx');
....
INSERT INTO `sampleDB`.`sampleTable` (sampleCol2, sampleCol3) VALUES ('xxxx','xxxxx');

DELETE FROM `sampleDB`.`sampleTable` WHERE sampleCol1=xx;
DELETE FROM `sampleDB`.`sampleTable` WHERE sampleCol1=xx;
DELETE FROM `sampleDB`.`sampleTable` WHERE sampleCol1=xx;
....
DELETE FROM `sampleDB`.`sampleTable` WHERE sampleCol1=xx;

-- Other DML statements here
END

Use batches

You can make changes in batches, as shown in the following example. However, using batches that
are too large can cause performance issues, especially in read replicas or when doing point-in-time
recovery (PITR).

INSERT INTO `sampleDB`.`sampleTable` (sampleCol2, sampleCol3) VALUES
('xxxx','xxxxx'),('xxxx','xxxxx'),...,('xxxx','xxxxx'),('xxxx','xxxxx');

UPDATE `sampleDB`.`sampleTable` SET sampleCol3='xxxxx' WHERE sampleCol1 BETWEEN xx AND
 xxx;

DELETE FROM `sampleDB`.`sampleTable` WHERE sampleCol1<xx;

Tuning Aurora MySQL with wait events 1429

Amazon Aurora User Guide for Aurora

io/aurora_respond_to_client

The io/aurora_respond_to_client event occurs when a thread is waiting to return a result set
to a client.

Topics

• Supported engine versions

• Context

• Likely causes of increased waits

• Actions

Supported engine versions

This wait event information is supported for the following engine versions:

• Aurora MySQL version 2

In versions before version 2.07.7, 2.09.3, and 2.10.2, this wait event erroneously includes idle time.

Context

The event io/aurora_respond_to_client indicates that a thread is waiting to return a result
set to a client.

The query processing is complete, and the results are being returned back to the application client.
However, because there isn't enough network bandwidth on the DB cluster, a thread is waiting to
return the result set.

Likely causes of increased waits

When the io/aurora_respond_to_client event appears more than normal, possibly indicating
a performance problem, typical causes include the following:

DB instance class insufficient for the workload

The DB instance class used by the DB cluster doesn't have the necessary network bandwidth to
process the workload efficiently.

Tuning Aurora MySQL with wait events 1430

Amazon Aurora User Guide for Aurora

Large result sets

There was an increase in size of the result set being returned, because the query returns higher
numbers of rows. The larger result set consumes more network bandwidth.

Increased load on the client

There might be CPU pressure, memory pressure, or network saturation on the client. An
increase in load on the client delays the reception of data from the Aurora MySQL DB cluster.

Increased network latency

There might be increased network latency between the Aurora MySQL DB cluster and client.
Higher network latency increases the time required for the client to receive the data.

Actions

We recommend different actions depending on the causes of your wait event.

Topics

• Identify the sessions and queries causing the events

• Scale the DB instance class

• Check workload for unexpected results

• Distribute workload with reader instances

• Use the SQL_BUFFER_RESULT modifier

Identify the sessions and queries causing the events

You can use Performance Insights to show queries blocked by the io/
aurora_respond_to_client wait event. Typically, databases with moderate to significant load
have wait events. The wait events might be acceptable if performance is optimal. If performance
isn't optimal, then examine where the database is spending the most time. Look at the wait events
that contribute to the highest load, and find out whether you can optimize the database and
application to reduce those events.

To find SQL queries that are responsible for high load

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

Tuning Aurora MySQL with wait events 1431

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Aurora User Guide for Aurora

2. In the navigation pane, choose Performance Insights.

3. Choose a DB instance. The Performance Insights dashboard is shown for that DB instance.

4. In the Database load chart, choose Slice by wait.

5. At the bottom of the page, choose Top SQL.

The chart lists the SQL queries that are responsible for the load. Those at the top of the list are
most responsible. To resolve a bottleneck, focus on these statements.

For a useful overview of troubleshooting using Performance Insights, see the AWS Database Blog
post Analyze Amazon Aurora MySQL Workloads with Performance Insights.

Scale the DB instance class

Check for the increase in the value of the Amazon CloudWatch metrics related to network
throughput, such as NetworkReceiveThroughput and NetworkTransmitThroughput. If the
DB instance class network bandwidth is being reached, you can scale the DB instance class used
by the DB cluster by modifying the DB cluster. A DB instance class with larger network bandwidth
returns data to clients more efficiently.

For information about monitoring Amazon CloudWatch metrics, see Viewing metrics in the Amazon
RDS console. For information about DB instance classes, see Aurora DB instance classes. For
information about modifying a DB cluster, see Modifying an Amazon Aurora DB cluster.

Check workload for unexpected results

Check the workload on the DB cluster and make sure that it isn't producing unexpected results. For
example, there might be queries that are returning a higher number of rows than expected. In this
case, you can use Performance Insights counter metrics such as Innodb_rows_read. For more
information, see Performance Insights counter metrics.

Distribute workload with reader instances

You can distribute read-only workload with Aurora replicas. You can scale horizontally by adding
more Aurora replicas. Doing so can result in an increase in the throttling limits for network
bandwidth. For more information, see Amazon Aurora DB clusters.

Use the SQL_BUFFER_RESULT modifier

You can add the SQL_BUFFER_RESULT modifier to SELECT statements to force the result
into a temporary table before they are returned to the client. This modifier can help with

Tuning Aurora MySQL with wait events 1432

https://aws.amazon.com/blogs/database/analyze-amazon-aurora-mysql-workloads-with-performance-insights/

Amazon Aurora User Guide for Aurora

performance issues when InnoDB locks aren't being freed because queries are in the io/
aurora_respond_to_client wait state. For more information, see SELECT Statement in the
MySQL documentation.

io/redo_log_flush

The io/redo_log_flush event occurs when a session is writing persistent data to Amazon
Aurora storage.

Topics

• Supported engine versions

• Context

• Likely causes of increased waits

• Actions

Supported engine versions

This wait event information is supported for the following engine versions:

• Aurora MySQL version 3

Context

The io/redo_log_flush event is for a write input/output (I/O) operation in Aurora MySQL.

Note

In Aurora MySQL version 2, this wait event is named io/aurora_redo_log_flush.

Likely causes of increased waits

For data persistence, commits require a durable write to stable storage. If the database is doing too
many commits, there is a wait event on the write I/O operation, the io/redo_log_flush wait
event.

For examples of the behavior of this wait event, see io/aurora_redo_log_flush.

Tuning Aurora MySQL with wait events 1433

https://dev.mysql.com/doc/refman/5.7/en/select.html

Amazon Aurora User Guide for Aurora

Actions

We recommend different actions depending on the causes of your wait event.

Identify the problematic sessions and queries

If your DB instance is experiencing a bottleneck, your first task is to find the sessions and queries
that cause it. For a useful AWS Database Blog post, see Analyze Amazon Aurora MySQL Workloads
with Performance Insights.

To identify sessions and queries causing a bottleneck

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Performance Insights.

3. Choose your DB instance.

4. In Database load, choose Slice by wait.

5. At the bottom of the page, choose Top SQL.

The queries at the top of the list are causing the highest load on the database.

Group your write operations

The following examples trigger the io/redo_log_flush wait event. (Autocommit is turned on.)

INSERT INTO `sampleDB`.`sampleTable` (sampleCol2, sampleCol3) VALUES ('xxxx','xxxxx');
INSERT INTO `sampleDB`.`sampleTable` (sampleCol2, sampleCol3) VALUES ('xxxx','xxxxx');
INSERT INTO `sampleDB`.`sampleTable` (sampleCol2, sampleCol3) VALUES ('xxxx','xxxxx');
....
INSERT INTO `sampleDB`.`sampleTable` (sampleCol2, sampleCol3) VALUES ('xxxx','xxxxx');

UPDATE `sampleDB`.`sampleTable` SET sampleCol3='xxxxx' WHERE id=xx;
UPDATE `sampleDB`.`sampleTable` SET sampleCol3='xxxxx' WHERE id=xx;
UPDATE `sampleDB`.`sampleTable` SET sampleCol3='xxxxx' WHERE id=xx;
....
UPDATE `sampleDB`.`sampleTable` SET sampleCol3='xxxxx' WHERE id=xx;

DELETE FROM `sampleDB`.`sampleTable` WHERE sampleCol1=xx;
DELETE FROM `sampleDB`.`sampleTable` WHERE sampleCol1=xx;
DELETE FROM `sampleDB`.`sampleTable` WHERE sampleCol1=xx;

Tuning Aurora MySQL with wait events 1434

https://aws.amazon.com/blogs/database/analyze-amazon-aurora-mysql-workloads-with-performance-insights/
https://aws.amazon.com/blogs/database/analyze-amazon-aurora-mysql-workloads-with-performance-insights/
https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Aurora User Guide for Aurora

....
DELETE FROM `sampleDB`.`sampleTable` WHERE sampleCol1=xx;

To reduce the time spent waiting on the io/redo_log_flush wait event, group your write
operations logically into a single commit to reduce persistent calls to storage.

Turn off autocommit

Turn off autocommit before making large changes that aren't within a transaction, as shown in the
following example.

SET SESSION AUTOCOMMIT=OFF;
UPDATE `sampleDB`.`sampleTable` SET sampleCol3='xxxxx' WHERE sampleCol1=xx;
UPDATE `sampleDB`.`sampleTable` SET sampleCol3='xxxxx' WHERE sampleCol1=xx;
UPDATE `sampleDB`.`sampleTable` SET sampleCol3='xxxxx' WHERE sampleCol1=xx;
....
UPDATE `sampleDB`.`sampleTable` SET sampleCol3='xxxxx' WHERE sampleCol1=xx;
-- Other DML statements here
COMMIT;

SET SESSION AUTOCOMMIT=ON;

Use transactions

You can use transactions, as shown in the following example.

BEGIN
INSERT INTO `sampleDB`.`sampleTable` (sampleCol2, sampleCol3) VALUES ('xxxx','xxxxx');
INSERT INTO `sampleDB`.`sampleTable` (sampleCol2, sampleCol3) VALUES ('xxxx','xxxxx');
INSERT INTO `sampleDB`.`sampleTable` (sampleCol2, sampleCol3) VALUES ('xxxx','xxxxx');
....
INSERT INTO `sampleDB`.`sampleTable` (sampleCol2, sampleCol3) VALUES ('xxxx','xxxxx');

DELETE FROM `sampleDB`.`sampleTable` WHERE sampleCol1=xx;
DELETE FROM `sampleDB`.`sampleTable` WHERE sampleCol1=xx;
DELETE FROM `sampleDB`.`sampleTable` WHERE sampleCol1=xx;
....
DELETE FROM `sampleDB`.`sampleTable` WHERE sampleCol1=xx;

-- Other DML statements here
END

Tuning Aurora MySQL with wait events 1435

Amazon Aurora User Guide for Aurora

Use batches

You can make changes in batches, as shown in the following example. However, using batches that
are too large can cause performance issues, especially in read replicas or when doing point-in-time
recovery (PITR).

INSERT INTO `sampleDB`.`sampleTable` (sampleCol2, sampleCol3) VALUES
('xxxx','xxxxx'),('xxxx','xxxxx'),...,('xxxx','xxxxx'),('xxxx','xxxxx');

UPDATE `sampleDB`.`sampleTable` SET sampleCol3='xxxxx' WHERE sampleCol1 BETWEEN xx AND
 xxx;

DELETE FROM `sampleDB`.`sampleTable` WHERE sampleCol1<xx;

io/socket/sql/client_connection

The io/socket/sql/client_connection event occurs when a thread is in the process of
handling a new connection.

Topics

• Supported engine versions

• Context

• Likely causes of increased waits

• Actions

Supported engine versions

This wait event information is supported for the following engine versions:

• Aurora MySQL versions 2 and 3

Context

The event io/socket/sql/client_connection indicates that mysqld is busy creating threads
to handle incoming new client connections. In this scenario, the processing of servicing new client
connection requests slows down while connections wait for the thread to be assigned. For more
information, see MySQL server (mysqld).

Tuning Aurora MySQL with wait events 1436

Amazon Aurora User Guide for Aurora

Likely causes of increased waits

When this event appears more than normal, possibly indicating a performance problem, typical
causes include the following:

• There is a sudden increase in new user connections from the application to your Amazon RDS
instance.

• Your DB instance can't process new connections because the network, CPU, or memory is being
throttled.

Actions

If io/socket/sql/client_connection dominates database activity, it doesn't necessarily
indicate a performance problem. In a database that isn't idle, a wait event is always on top. Act
only when performance degrades. We recommend different actions depending on the causes of
your wait event.

Topics

• Identify the problematic sessions and queries

• Follow best practices for connection management

• Scale up your instance if resources are being throttled

• Check the top hosts and top users

• Query the performance_schema tables

• Check the thread states of your queries

• Audit your requests and queries

• Pool your database connections

Identify the problematic sessions and queries

If your DB instance is experiencing a bottleneck, your first task is to find the sessions and
queries that cause it. For a useful blog post, see Analyze Amazon Aurora MySQL Workloads with
Performance Insights.

To identify sessions and queries causing a bottleneck

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

Tuning Aurora MySQL with wait events 1437

https://aws.amazon.com/blogs/database/analyze-amazon-aurora-mysql-workloads-with-performance-insights/
https://aws.amazon.com/blogs/database/analyze-amazon-aurora-mysql-workloads-with-performance-insights/
https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Aurora User Guide for Aurora

2. In the navigation pane, choose Performance Insights.

3. Choose your DB instance.

4. In Database load, choose Slice by wait.

5. At the bottom of the page, choose Top SQL.

The queries at the top of the list are causing the highest load on the database.

Follow best practices for connection management

To manage your connections, consider the following strategies:

• Use connection pooling.

You can gradually increase the number of connections as required. For more information, see the
whitepaper Amazon Aurora MySQL Database Administrator’s Handbook.

• Use a reader node to redistribute read-only traffic.

For more information, see Aurora Replicas and Amazon Aurora connection management.

Scale up your instance if resources are being throttled

Look for examples of throttling in the following resources:

• CPU

Check your Amazon CloudWatch metrics for high CPU usage.

• Network

Check for an increase in the value of the CloudWatch metrics network receive throughput
and network transmit throughput. If your instance has reached the network bandwidth
limit for your instance class, consider scaling up your RDS instance to a higher instance class
type. For more information, see Aurora DB instance classes.

• Freeable memory

Check for a drop in the CloudWatch metric FreeableMemory. Also, consider turning on
Enhanced Monitoring. For more information, see Monitoring OS metrics with Enhanced
Monitoring.

Tuning Aurora MySQL with wait events 1438

https://d1.awsstatic.com/whitepapers/RDS/amazon-aurora-mysql-database-administrator-handbook.pdf

Amazon Aurora User Guide for Aurora

Check the top hosts and top users

Use Performance Insights to check the top hosts and top users. For more information, see
Analyzing metrics with the Performance Insights dashboard.

Query the performance_schema tables

To get an accurate count of the current and total connections, query the performance_schema
tables. With this technique, you identify the source user or host that is responsible for creating a
high number of connections. For example, query the performance_schema tables as follows.

SELECT * FROM performance_schema.accounts;
SELECT * FROM performance_schema.users;
SELECT * FROM performance_schema.hosts;

Check the thread states of your queries

If your performance issue is ongoing, check the thread states of your queries. In the mysql client,
issue the following command.

show processlist;

Audit your requests and queries

To check the nature of the requests and queries from user accounts, use AuroraAurora MySQL
Advanced Auditing. To learn how to turn on auditing, see Using Advanced Auditing with an Amazon
Aurora MySQL DB cluster.

Pool your database connections

Consider using Amazon RDS Proxy for connection management. By using RDS Proxy, you can allow
your applications to pool and share database connections to improve their ability to scale. RDS
Proxy makes applications more resilient to database failures by automatically connecting to a
standby DB instance while preserving application connections. For more information, see Using
Amazon RDS Proxy for Aurora.

io/table/sql/handler

The io/table/sql/handler event occurs when work has been delegated to a storage engine.

Topics

Tuning Aurora MySQL with wait events 1439

Amazon Aurora User Guide for Aurora

• Supported engine versions

• Context

• Likely causes of increased waits

• Actions

Supported engine versions

This wait event information is supported for the following engine versions:

• Aurora MySQL version 3: 3.01.0 and 3.01.1

• Aurora MySQL version 2

Context

The event io/table indicates a wait for access to a table. This event occurs regardless of whether
the data is cached in the buffer pool or accessed on disk. The io/table/sql/handler event
indicates an increase in workload activity.

A handler is a routine specialized in a certain type of data or focused on certain special tasks. For
example, an event handler receives and digests events and signals from the operating system or
from a user interface. A memory handler performs tasks related to memory. A file input handler is
a function that receives file input and performs special tasks on the data, according to context.

Views such as performance_schema.events_waits_current often show io/table/sql/
handler when the actual wait is a nested wait event such as a lock. When the actual wait isn't io/
table/sql/handler, Performance Insights reports the nested wait event. When Performance
Insights reports io/table/sql/handler, it represents InnoDB processing of the I/O request
and not a hidden nested wait event. For more information, see Performance Schema Atom and
Molecule Events in the MySQL Reference Manual.

Note

However, in Aurora MySQL versions 3.01.0 and 3.01.1, synch/mutex/innodb/
aurora_lock_thread_slot_futex is reported as io/table/sql/handler.

The io/table/sql/handler event often appears in top wait events with I/O waits such as io/
aurora_redo_log_flush and io/file/innodb/innodb_data_file.

Tuning Aurora MySQL with wait events 1440

https://dev.mysql.com/doc/refman/5.7/en/performance-schema-atom-molecule-events.html
https://dev.mysql.com/doc/refman/5.7/en/performance-schema-atom-molecule-events.html

Amazon Aurora User Guide for Aurora

Likely causes of increased waits

In Performance Insights, sudden spikes in the io/table/sql/handler event indicate an increase
in workload activity. Increased activity means increased I/O.

Performance Insights filters the nesting event IDs and doesn't report a io/table/sql/handler
wait when the underlying nested event is a lock wait. For example, if the root cause event is synch/
mutex/innodb/aurora_lock_thread_slot_futex, Performance Insights displays this wait in top wait
events and not io/table/sql/handler.

In views such as performance_schema.events_waits_current, waits for io/table/sql/
handler often appear when the actual wait is a nested wait event such as a lock. When the actual
wait differs from io/table/sql/handler, Performance Insights looks up the nested wait and
reports the actual wait instead of io/table/sql/handler. When Performance Insights reports
io/table/sql/handler, the real wait is io/table/sql/handler and not a hidden nested wait
event. For more information, see Performance Schema Atom and Molecule Events in the MySQL 5.7
Reference Manual.

Note

However, in Aurora MySQL versions 3.01.0 and 3.01.1, synch/mutex/innodb/
aurora_lock_thread_slot_futex is reported as io/table/sql/handler.

Actions

If this wait event dominates database activity, it doesn't necessarily indicate a performance
problem. A wait event is always on top when the database is active. You need to act only when
performance degrades.

We recommend different actions depending on the other wait events that you see.

Topics

• Identify the sessions and queries causing the events

• Check for a correlation with Performance Insights counter metrics

• Check for other correlated wait events

Tuning Aurora MySQL with wait events 1441

https://dev.mysql.com/doc/refman/5.7/en/performance-schema-atom-molecule-events.html

Amazon Aurora User Guide for Aurora

Identify the sessions and queries causing the events

Typically, databases with moderate to significant load have wait events. The wait events might
be acceptable if performance is optimal. If performance is isn't optimal, then examine where the
database is spending the most time. Look at the wait events that contribute to the highest load,
and find out whether you can optimize the database and application to reduce those events.

To find SQL queries that are responsible for high load

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Performance Insights.

3. Choose a DB instance. The Performance Insights dashboard is shown for that DB instance.

4. In the Database load chart, choose Slice by wait.

5. At the bottom of the page, choose Top SQL.

The chart lists the SQL queries that are responsible for the load. Those at the top of the list are
most responsible. To resolve a bottleneck, focus on these statements.

For a useful overview of troubleshooting using Performance Insights, see the blog post Analyze
Amazon Aurora MySQL Workloads with Performance Insights.

Check for a correlation with Performance Insights counter metrics

Check for Performance Insights counter metrics such as Innodb_rows_changed. If counter
metrics are correlated with io/table/sql/handler, follow these steps:

1. In Performance Insights, look for the SQL statements accounting for the io/table/sql/
handler top wait event. If possible, optimize this statement so that it returns fewer rows.

2. Retrieve the top tables from the schema_table_statistics and x
$schema_table_statistics views. These views show the amount of time spent per table.
For more information, see The schema_table_statistics and x$schema_table_statistics Views in
the MySQL Reference Manual.

By default, rows are sorted by descending total wait time. Tables with the most contention
appear first. The output indicates whether time is spent on reads, writes, fetches, inserts,
updates, or deletes. The following example was run on an Aurora MySQL 2.09.1 instance.

Tuning Aurora MySQL with wait events 1442

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/
https://aws.amazon.com/blogs/database/analyze-amazon-aurora-mysql-workloads-with-performance-insights/
https://aws.amazon.com/blogs/database/analyze-amazon-aurora-mysql-workloads-with-performance-insights/
https://dev.mysql.com/doc/refman/5.7/en/sys-schema-table-statistics.html

Amazon Aurora User Guide for Aurora

mysql> select * from sys.schema_table_statistics limit 1\G

*************************** 1. row ***************************
 table_schema: read_only_db
 table_name: sbtest41
 total_latency: 54.11 m
 rows_fetched: 6001557
 fetch_latency: 39.14 m
 rows_inserted: 14833
 insert_latency: 5.78 m
 rows_updated: 30470
 update_latency: 5.39 m
 rows_deleted: 14833
 delete_latency: 3.81 m
 io_read_requests: NULL
 io_read: NULL
 io_read_latency: NULL
io_write_requests: NULL
 io_write: NULL
 io_write_latency: NULL
 io_misc_requests: NULL
 io_misc_latency: NULL
1 row in set (0.11 sec)

Check for other correlated wait events

If synch/sxlock/innodb/btr_search_latch and io/table/sql/handler contribute most
to the DB load anomaly together, check whether the innodb_adaptive_hash_index variable
is turned on. If it is, consider increasing the innodb_adaptive_hash_index_parts parameter
value.

If the Adaptive Hash Index is turned off, consider turning it on. To learn more about the MySQL
Adaptive Hash Index, see the following resources:

• The article Is Adaptive Hash Index in InnoDB right for my workload? on the Percona website

• Adaptive Hash Index in the MySQL Reference Manual

• The article Contention in MySQL InnoDB: Useful Info From the Semaphores Section on the
Percona website

Tuning Aurora MySQL with wait events 1443

https://www.percona.com/blog/2016/04/12/is-adaptive-hash-index-in-innodb-right-for-my-workload
https://dev.mysql.com/doc/refman/5.7/en/innodb-adaptive-hash.html
https://www.percona.com/blog/2019/12/20/contention-in-mysql-innodb-useful-info-from-the-semaphores-section/

Amazon Aurora User Guide for Aurora

Note

The Adaptive Hash Index isn't supported on Aurora reader DB instances.
In some cases, performance might be poor on a reader instance when synch/sxlock/
innodb/btr_search_latch and io/table/sql/handler are dominant. If so, consider
redirecting the workload temporarily to the writer DB instance and turning on the Adaptive
Hash Index.

synch/cond/innodb/row_lock_wait

The synch/cond/innodb/row_lock_wait event occurs when one session has locked a row for
an update, and another session tries to update the same row. For more information, see InnoDB
locking in the MySQL Reference.

Supported engine versions

This wait event information is supported for the following engine versions:

• Aurora MySQL version 3: 3.02.0, 3.02.1, 3.02.2

Likely causes of increased waits

Multiple data manipulation language (DML) statements are accessing the same row or rows
simultaneously.

Actions

We recommend different actions depending on the other wait events that you see.

Topics

• Find and respond to the SQL statements responsible for this wait event

• Find and respond to the blocking session

Find and respond to the SQL statements responsible for this wait event

Use Performance Insights to identify the SQL statements responsible for this wait event. Consider
the following strategies:

Tuning Aurora MySQL with wait events 1444

https://dev.mysql.com/doc/refman/8.0/en/innodb-locking.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-locking.html

Amazon Aurora User Guide for Aurora

• If row locks are a persistent problem, consider rewriting the application to use optimistic locking.

• Use multirow statements.

• Spread the workload over different database objects. You can do this through partitioning.

• Check the value of the innodb_lock_wait_timeout parameter. It controls how long
transactions wait before generating a timeout error.

For a useful overview of troubleshooting using Performance Insights, see the blog post Analyze
Amazon Aurora MySQL Workloads with Performance Insights.

Find and respond to the blocking session

Determine whether the blocking session is idle or active. Also, find out whether the session comes
from an application or an active user.

To identify the session holding the lock, you can run SHOW ENGINE INNODB STATUS. The
following example shows sample output.

mysql> SHOW ENGINE INNODB STATUS;

---TRANSACTION 1688153, ACTIVE 82 sec starting index read
mysql tables in use 1, locked 1
LOCK WAIT 2 lock struct(s), heap size 1136, 2 row lock(s)
MySQL thread id 4244, OS thread handle 70369524330224, query id 4020834 172.31.14.179
 reinvent executing
select id1 from test.t1 where id1=1 for update
------- TRX HAS BEEN WAITING 24 SEC FOR THIS LOCK TO BE GRANTED:
RECORD LOCKS space id 11 page no 4 n bits 72 index GEN_CLUST_INDEX of table test.t1 trx
 id 1688153 lock_mode X waiting
Record lock, heap no 2 PHYSICAL RECORD: n_fields 5; compact format; info bits 0

Or you can use the following query to extract details on current locks.

mysql> SELECT p1.id waiting_thread,
 p1.user waiting_user,
 p1.host waiting_host,
 it1.trx_query waiting_query,
 ilw.requesting_engine_transaction_id waiting_transaction,
 ilw.blocking_engine_lock_id blocking_lock,
 il.lock_mode blocking_mode,

Tuning Aurora MySQL with wait events 1445

https://aws.amazon.com/blogs/database/analyze-amazon-aurora-mysql-workloads-with-performance-insights/
https://aws.amazon.com/blogs/database/analyze-amazon-aurora-mysql-workloads-with-performance-insights/

Amazon Aurora User Guide for Aurora

 il.lock_type blocking_type,
 ilw.blocking_engine_transaction_id blocking_transaction,
 CASE it.trx_state
 WHEN 'LOCK WAIT'
 THEN it.trx_state
 ELSE p.state end blocker_state,
 concat(il.object_schema,'.', il.object_name) as locked_table,
 it.trx_mysql_thread_id blocker_thread,
 p.user blocker_user,
 p.host blocker_host
FROM performance_schema.data_lock_waits ilw
JOIN performance_schema.data_locks il
ON ilw.blocking_engine_lock_id = il.engine_lock_id
AND ilw.blocking_engine_transaction_id = il.engine_transaction_id
JOIN information_schema.innodb_trx it
ON ilw.blocking_engine_transaction_id = it.trx_id join information_schema.processlist p
ON it.trx_mysql_thread_id = p.id join information_schema.innodb_trx it1
ON ilw.requesting_engine_transaction_id = it1.trx_id join
 information_schema.processlist p1
ON it1.trx_mysql_thread_id = p1.id\G

*************************** 1. row ***************************
waiting_thread: 4244
waiting_user: reinvent
waiting_host: 123.456.789.012:18158
waiting_query: select id1 from test.t1 where id1=1 for update
waiting_transaction: 1688153
blocking_lock: 70369562074216:11:4:2:70369549808672
blocking_mode: X
blocking_type: RECORD
blocking_transaction: 1688142
blocker_state: User sleep
locked_table: test.t1
blocker_thread: 4243
blocker_user: reinvent
blocker_host: 123.456.789.012:18156
1 row in set (0.00 sec)

When you identify the session, your options include the following:

• Contact the application owner or the user.

• If the blocking session is idle, consider ending the blocking session. This action might trigger a
long rollback. To learn how to end a session, see Ending a session or query.

Tuning Aurora MySQL with wait events 1446

Amazon Aurora User Guide for Aurora

For more information about identifying blocking transactions, see Using InnoDB Transaction and
Locking Information in the MySQL Reference Manual.

synch/cond/innodb/row_lock_wait_cond

The synch/cond/innodb/row_lock_wait_cond event occurs when one session has locked a
row for an update, and another session tries to update the same row. For more information, see
InnoDB locking in the MySQL Reference.

Supported engine versions

This wait event information is supported for the following engine versions:

• Aurora MySQL version 2

Likely causes of increased waits

Multiple data manipulation language (DML) statements are accessing the same row or rows
simultaneously.

Actions

We recommend different actions depending on the other wait events that you see.

Topics

• Find and respond to the SQL statements responsible for this wait event

• Find and respond to the blocking session

Find and respond to the SQL statements responsible for this wait event

Use Performance Insights to identify the SQL statements responsible for this wait event. Consider
the following strategies:

• If row locks are a persistent problem, consider rewriting the application to use optimistic locking.

• Use multirow statements.

• Spread the workload over different database objects. You can do this through partitioning.

• Check the value of the innodb_lock_wait_timeout parameter. It controls how long
transactions wait before generating a timeout error.

Tuning Aurora MySQL with wait events 1447

https://dev.mysql.com/doc/refman/5.7/en/innodb-information-schema-examples.html
https://dev.mysql.com/doc/refman/5.7/en/innodb-information-schema-examples.html
https://dev.mysql.com/doc/refman/5.7/en/innodb-locking.html

Amazon Aurora User Guide for Aurora

For a useful overview of troubleshooting using Performance Insights, see the blog post Analyze
Amazon Aurora MySQL Workloads with Performance Insights.

Find and respond to the blocking session

Determine whether the blocking session is idle or active. Also, find out whether the session comes
from an application or an active user.

To identify the session holding the lock, you can run SHOW ENGINE INNODB STATUS. The
following example shows sample output.

mysql> SHOW ENGINE INNODB STATUS;

---TRANSACTION 2771110, ACTIVE 112 sec starting index read
mysql tables in use 1, locked 1
LOCK WAIT 2 lock struct(s), heap size 1136, 1 row lock(s)
MySQL thread id 24, OS thread handle 70369573642160, query id 13271336 172.31.14.179
 reinvent Sending data
select id1 from test.t1 where id1=1 for update
------- TRX HAS BEEN WAITING 43 SEC FOR THIS LOCK TO BE GRANTED:
RECORD LOCKS space id 11 page no 3 n bits 0 index GEN_CLUST_INDEX of table test.t1 trx
 id 2771110 lock_mode X waiting
Record lock, heap no 2 PHYSICAL RECORD: n_fields 5; compact format; info bits 0

Or you can use the following query to extract details on current locks.

mysql> SELECT p1.id waiting_thread,
 p1.user waiting_user,
 p1.host waiting_host,
 it1.trx_query waiting_query,
 ilw.requesting_trx_id waiting_transaction,
 ilw.blocking_lock_id blocking_lock,
 il.lock_mode blocking_mode,
 il.lock_type blocking_type,
 ilw.blocking_trx_id blocking_transaction,
 CASE it.trx_state
 WHEN 'LOCK WAIT'
 THEN it.trx_state
 ELSE p.state
 END blocker_state,
 il.lock_table locked_table,
 it.trx_mysql_thread_id blocker_thread,

Tuning Aurora MySQL with wait events 1448

https://aws.amazon.com/blogs/database/analyze-amazon-aurora-mysql-workloads-with-performance-insights/
https://aws.amazon.com/blogs/database/analyze-amazon-aurora-mysql-workloads-with-performance-insights/

Amazon Aurora User Guide for Aurora

 p.user blocker_user,
 p.host blocker_host
 FROM information_schema.innodb_lock_waits ilw
 JOIN information_schema.innodb_locks il
 ON ilw.blocking_lock_id = il.lock_id
 AND ilw.blocking_trx_id = il.lock_trx_id
 JOIN information_schema.innodb_trx it
 ON ilw.blocking_trx_id = it.trx_id
 JOIN information_schema.processlist p
 ON it.trx_mysql_thread_id = p.id
 JOIN information_schema.innodb_trx it1
 ON ilw.requesting_trx_id = it1.trx_id
 JOIN information_schema.processlist p1
 ON it1.trx_mysql_thread_id = p1.id\G

*************************** 1. row ***************************
 waiting_thread: 3561959471
 waiting_user: reinvent
 waiting_host: 123.456.789.012:20485
 waiting_query: select id1 from test.t1 where id1=1 for update
 waiting_transaction: 312337314
 blocking_lock: 312337287:261:3:2
 blocking_mode: X
 blocking_type: RECORD
blocking_transaction: 312337287
 blocker_state: User sleep
 locked_table: `test`.`t1`
 blocker_thread: 3561223876
 blocker_user: reinvent
 blocker_host: 123.456.789.012:17746
1 row in set (0.04 sec)

When you identify the session, your options include the following:

• Contact the application owner or the user.

• If the blocking session is idle, consider ending the blocking session. This action might trigger a
long rollback. To learn how to end a session, see Ending a session or query.

For more information about identifying blocking transactions, see Using InnoDB Transaction and
Locking Information in the MySQL Reference Manual.

Tuning Aurora MySQL with wait events 1449

https://dev.mysql.com/doc/refman/5.7/en/innodb-information-schema-examples.html
https://dev.mysql.com/doc/refman/5.7/en/innodb-information-schema-examples.html

Amazon Aurora User Guide for Aurora

synch/cond/sql/MDL_context::COND_wait_status

The synch/cond/sql/MDL_context::COND_wait_status event occurs when there are
threads waiting on a table metadata lock.

Topics

• Supported engine versions

• Context

• Likely causes of increased waits

• Actions

Supported engine versions

This wait event information is supported for the following engine versions:

• Aurora MySQL versions 2 and 3

Context

The event synch/cond/sql/MDL_context::COND_wait_status indicates that there are
threads waiting on a table metadata lock. In some cases, one session holds a metadata lock on a
table and another session tries to get the same lock on the same table. In such a case, the second
session waits on the synch/cond/sql/MDL_context::COND_wait_status wait event.

MySQL uses metadata locking to manage concurrent access to database objects and to ensure
data consistency. Metadata locking applies to tables, schemas, scheduled events, tablespaces, and
user locks acquired with the get_lock function, and stored programs. Stored programs include
procedures, functions, and triggers. For more information, see Metadata locking in the MySQL
documentation.

The MySQL process list shows this session in the state waiting for metadata lock. In
Performance Insights, if Performance_schema is turned on, the event synch/cond/sql/
MDL_context::COND_wait_status appears.

The default timeout for a query waiting on a metadata lock is based on the value of the
lock_wait_timeout parameter, which defaults to 31,536,000 seconds (365 days).

For more details on different InnoDB locks and the types of locks that can cause conflicts, see
InnoDB Locking in the MySQL documentation.

Tuning Aurora MySQL with wait events 1450

https://dev.mysql.com/doc/refman/5.7/en/metadata-locking.html
https://dev.mysql.com/doc/refman/5.7/en/innodb-locking.html

Amazon Aurora User Guide for Aurora

Likely causes of increased waits

When the synch/cond/sql/MDL_context::COND_wait_status event appears more than
normal, possibly indicating a performance problem, typical causes include the following:

Long-running transactions

One or more transactions are modifying a large amount of data and holding locks on tables for
a very long time.

Idle transactions

One or more transactions remain open for a long time, without being committed or rolled back.

DDL statements on large tables

One or more data definition statements (DDL) statements, such as ALTER TABLE commands,
were run on very large tables.

Explicit table locks

There are explicit locks on tables that aren't being released in a timely manner. For example, an
application might run LOCK TABLE statements improperly.

Actions

We recommend different actions depending on the causes of your wait event and on the version of
the Aurora MySQL DB cluster.

Topics

• Identify the sessions and queries causing the events

• Check for past events

• Run queries on Aurora MySQL version 2

• Respond to the blocking session

Identify the sessions and queries causing the events

You can use Performance Insights to show queries blocked by the synch/cond/sql/
MDL_context::COND_wait_status wait event. However, to identify the blocking session, query
metadata tables from performance_schema and information_schema on the DB cluster.

Tuning Aurora MySQL with wait events 1451

Amazon Aurora User Guide for Aurora

Typically, databases with moderate to significant load have wait events. The wait events might
be acceptable if performance is optimal. If performance isn't optimal, then examine where the
database is spending the most time. Look at the wait events that contribute to the highest load,
and find out whether you can optimize the database and application to reduce those events.

To find SQL queries that are responsible for high load

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Performance Insights.

3. Choose a DB instance. The Performance Insights dashboard for that DB instance appears.

4. In the Database load chart, choose Slice by wait.

5. At the bottom of the page, choose Top SQL.

The chart lists the SQL queries that are responsible for the load. Those at the top of the list are
most responsible. To resolve a bottleneck, focus on these statements.

For a useful overview of troubleshooting using Performance Insights, see the AWS Database Blog
post Analyze Amazon Aurora MySQL Workloads with Performance Insights.

Check for past events

You can gain insight into this wait event to check for past occurrences of it. To do so, complete the
following actions:

• Check the data manipulation language (DML) and DDL throughput and latency to see if there
were any changes in workload.

You can use Performance Insights to find queries waiting on this event at the time of the issue.
Also, you can view the digest of the queries run near the time of issue.

• If audit logs or general logs are turned on for the DB cluster, you can check for all queries run on
the objects (schema.table) involved in the waiting transaction. You can also check for the queries
that completed running before the transaction.

The information available to troubleshoot past events is limited. Performing these checks doesn't
show which object is waiting for information. However, you can identify tables with heavy load at
the time of the event and the set of frequently operated rows causing conflict at the time of issue.

Tuning Aurora MySQL with wait events 1452

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/
https://aws.amazon.com/blogs/database/analyze-amazon-aurora-mysql-workloads-with-performance-insights/

Amazon Aurora User Guide for Aurora

You can then use this information to reproduce the issue in a test environment and provide insights
about its cause.

Run queries on Aurora MySQL version 2

In Aurora MySQL version 2, you can identify the blocked session directly by querying
performance_schema tables or sys schema views. An example can illustrate how to query tables
to identify blocking queries and sessions.

In the following process list output, the connection ID 89 is waiting on a metadata lock, and it's
running a TRUNCATE TABLE command. In a query on the performance_schema tables or sys
schema views, the output shows that the blocking session is 76.

MySQL [(none)]> select @@version, @@aurora_version;
+-----------+------------------+
| @@version | @@aurora_version |
+-----------+------------------+
| 5.7.12 | 2.09.0 |
+-----------+------------------+
1 row in set (0.01 sec)

MySQL [(none)]> show processlist;
+----+-----------------+--------------------+-----------+---------+------
+---------------------------------+-------------------------------+
| Id | User | Host | db | Command | Time | State
 | Info |
+----+-----------------+--------------------+-----------+---------+------
+---------------------------------+-------------------------------+
| 2 | rdsadmin | localhost | NULL | Sleep | 0 | NULL
 | NULL |
| 4 | rdsadmin | localhost | NULL | Sleep | 2 | NULL
 | NULL |
| 5 | rdsadmin | localhost | NULL | Sleep | 1 | NULL
 | NULL |
| 20 | rdsadmin | localhost | NULL | Sleep | 0 | NULL
 | NULL |
| 21 | rdsadmin | localhost | NULL | Sleep | 261 | NULL
 | NULL |
| 66 | auroramysql5712 | 172.31.21.51:52154 | sbtest123 | Sleep | 0 | NULL
 | NULL |
| 67 | auroramysql5712 | 172.31.21.51:52158 | sbtest123 | Sleep | 0 | NULL
 | NULL |

Tuning Aurora MySQL with wait events 1453

Amazon Aurora User Guide for Aurora

| 68 | auroramysql5712 | 172.31.21.51:52150 | sbtest123 | Sleep | 0 | NULL
 | NULL |
| 69 | auroramysql5712 | 172.31.21.51:52162 | sbtest123 | Sleep | 0 | NULL
 | NULL |
| 70 | auroramysql5712 | 172.31.21.51:52160 | sbtest123 | Sleep | 0 | NULL
 | NULL |
| 71 | auroramysql5712 | 172.31.21.51:52152 | sbtest123 | Sleep | 0 | NULL
 | NULL |
| 72 | auroramysql5712 | 172.31.21.51:52156 | sbtest123 | Sleep | 0 | NULL
 | NULL |
| 73 | auroramysql5712 | 172.31.21.51:52164 | sbtest123 | Sleep | 0 | NULL
 | NULL |
| 74 | auroramysql5712 | 172.31.21.51:52166 | sbtest123 | Sleep | 0 | NULL
 | NULL |
| 75 | auroramysql5712 | 172.31.21.51:52168 | sbtest123 | Sleep | 0 | NULL
 | NULL |
| 76 | auroramysql5712 | 172.31.21.51:52170 | NULL | Query | 0 | starting
 | show processlist |
| 88 | auroramysql5712 | 172.31.21.51:52194 | NULL | Query | 22 | User sleep
 | select sleep(10000) |
| 89 | auroramysql5712 | 172.31.21.51:52196 | NULL | Query | 5 | Waiting for
 table metadata lock | truncate table sbtest.sbtest1 |
+----+-----------------+--------------------+-----------+---------+------
+---------------------------------+-------------------------------+
18 rows in set (0.00 sec)

Next, a query on the performance_schema tables or sys schema views shows that the blocking
session is 76.

MySQL [(none)]> select * from sys.schema_table_lock_waits;

+---------------+-------------+-------------------+-------------
+------------------------------+-------------------+-----------------------
+-------------------------------+--------------------+-----------------------------
+-----------------------------+--------------------+--------------
+------------------------------+--------------------+------------------------
+-------------------------+------------------------------+
| object_schema | object_name | waiting_thread_id | waiting_pid | waiting_account
 | waiting_lock_type | waiting_lock_duration | waiting_query
 | waiting_query_secs | waiting_query_rows_affected | waiting_query_rows_examined |
 blocking_thread_id | blocking_pid | blocking_account | blocking_lock_type
 | blocking_lock_duration | sql_kill_blocking_query | sql_kill_blocking_connection |

Tuning Aurora MySQL with wait events 1454

Amazon Aurora User Guide for Aurora

+---------------+-------------+-------------------+-------------
+------------------------------+-------------------+-----------------------
+-------------------------------+--------------------+-----------------------------
+-----------------------------+--------------------+--------------
+------------------------------+--------------------+------------------------
+-------------------------+------------------------------+
| sbtest | sbtest1 | 121 | 89 |
 auroramysql5712@192.0.2.0 | EXCLUSIVE | TRANSACTION | truncate
 table sbtest.sbtest1 | 10 | 0 |
 0 | 108 | 76 | auroramysql5712@192.0.2.0 |
 SHARED_READ | TRANSACTION | KILL QUERY 76 | KILL 76
 |
+---------------+-------------+-------------------+-------------
+------------------------------+-------------------+-----------------------
+-------------------------------+--------------------+-----------------------------
+-----------------------------+--------------------+--------------
+------------------------------+--------------------+------------------------
+-------------------------+------------------------------+
1 row in set (0.00 sec)

Respond to the blocking session

When you identify the session, your options include the following:

• Contact the application owner or the user.

• If the blocking session is idle, consider ending the blocking session. This action might trigger a
long rollback. To learn how to end a session, see Ending a session or query.

For more information about identifying blocking transactions, see Using InnoDB Transaction and
Locking Information in the MySQL documentation.

synch/mutex/innodb/aurora_lock_thread_slot_futex

The synch/mutex/innodb/aurora_lock_thread_slot_futex event occurs when one
session has locked a row for an update, and another session tries to update the same row. For more
information, see InnoDB locking in the MySQL Reference.

Supported engine versions

This wait event information is supported for the following engine versions:

Tuning Aurora MySQL with wait events 1455

https://dev.mysql.com/doc/refman/5.7/en/innodb-information-schema-examples.html
https://dev.mysql.com/doc/refman/5.7/en/innodb-information-schema-examples.html
https://dev.mysql.com/doc/refman/5.7/en/innodb-locking.html

Amazon Aurora User Guide for Aurora

• Aurora MySQL version 2

Note

In Aurora MySQL versions 3.01.0 and 3.01.1, this wait event is reported as io/table/sql/
handler.

Likely causes of increased waits

Multiple data manipulation language (DML) statements are accessing the same row or rows
simultaneously.

Actions

We recommend different actions depending on the other wait events that you see.

Topics

• Find and respond to the SQL statements responsible for this wait event

• Find and respond to the blocking session

Find and respond to the SQL statements responsible for this wait event

Use Performance Insights to identify the SQL statements responsible for this wait event. Consider
the following strategies:

• If row locks are a persistent problem, consider rewriting the application to use optimistic locking.

• Use multirow statements.

• Spread the workload over different database objects. You can do this through partitioning.

• Check the value of the innodb_lock_wait_timeout parameter. It controls how long
transactions wait before generating a timeout error.

For a useful overview of troubleshooting using Performance Insights, see the blog post Analyze
Amazon Aurora MySQL Workloads with Performance Insights.

Tuning Aurora MySQL with wait events 1456

https://aws.amazon.com/blogs/database/analyze-amazon-aurora-mysql-workloads-with-performance-insights/
https://aws.amazon.com/blogs/database/analyze-amazon-aurora-mysql-workloads-with-performance-insights/

Amazon Aurora User Guide for Aurora

Find and respond to the blocking session

Determine whether the blocking session is idle or active. Also, find out whether the session comes
from an application or an active user.

To identify the session holding the lock, you can run SHOW ENGINE INNODB STATUS. The
following example shows sample output.

mysql> SHOW ENGINE INNODB STATUS;

---------------------TRANSACTION 302631452, ACTIVE 2 sec starting index read
mysql tables in use 1, locked 1
LOCK WAIT 2 lock struct(s), heap size 376, 1 row lock(s)
MySQL thread id 80109, OS thread handle 0x2ae915060700, query id 938819 10.0.4.12
 reinvent updating
UPDATE sbtest1 SET k=k+1 WHERE id=503
------- TRX HAS BEEN WAITING 2 SEC FOR THIS LOCK TO BE GRANTED:
RECORD LOCKS space id 148 page no 11 n bits 30 index `PRIMARY` of table
 `sysbench2`.`sbtest1` trx id 302631452 lock_mode X locks rec but not gap waiting
Record lock, heap no 30 PHYSICAL RECORD: n_fields 6; compact format; info bits 0

Or you can use the following query to extract details on current locks.

mysql> SELECT p1.id waiting_thread,
 p1.user waiting_user,
 p1.host waiting_host,
 it1.trx_query waiting_query,
 ilw.requesting_trx_id waiting_transaction,
 ilw.blocking_lock_id blocking_lock,
 il.lock_mode blocking_mode,
 il.lock_type blocking_type,
 ilw.blocking_trx_id blocking_transaction,
 CASE it.trx_state
 WHEN 'LOCK WAIT'
 THEN it.trx_state
 ELSE p.state
 END blocker_state,
 il.lock_table locked_table,
 it.trx_mysql_thread_id blocker_thread,
 p.user blocker_user,
 p.host blocker_host
 FROM information_schema.innodb_lock_waits ilw
 JOIN information_schema.innodb_locks il

Tuning Aurora MySQL with wait events 1457

Amazon Aurora User Guide for Aurora

 ON ilw.blocking_lock_id = il.lock_id
 AND ilw.blocking_trx_id = il.lock_trx_id
 JOIN information_schema.innodb_trx it
 ON ilw.blocking_trx_id = it.trx_id
 JOIN information_schema.processlist p
 ON it.trx_mysql_thread_id = p.id
 JOIN information_schema.innodb_trx it1
 ON ilw.requesting_trx_id = it1.trx_id
 JOIN information_schema.processlist p1
 ON it1.trx_mysql_thread_id = p1.id\G

*************************** 1. row ***************************
 waiting_thread: 3561959471
 waiting_user: reinvent
 waiting_host: 123.456.789.012:20485
 waiting_query: select id1 from test.t1 where id1=1 for update
 waiting_transaction: 312337314
 blocking_lock: 312337287:261:3:2
 blocking_mode: X
 blocking_type: RECORD
blocking_transaction: 312337287
 blocker_state: User sleep
 locked_table: `test`.`t1`
 blocker_thread: 3561223876
 blocker_user: reinvent
 blocker_host: 123.456.789.012:17746
1 row in set (0.04 sec)

When you identify the session, your options include the following:

• Contact the application owner or the user.

• If the blocking session is idle, consider ending the blocking session. This action might trigger a
long rollback. To learn how to end a session, see Ending a session or query.

For more information about identifying blocking transactions, see Using InnoDB Transaction and
Locking Information in the MySQL Reference Manual.

synch/mutex/innodb/buf_pool_mutex

The synch/mutex/innodb/buf_pool_mutex event occurs when a thread has acquired a lock on
the InnoDB buffer pool to access a page in memory.

Tuning Aurora MySQL with wait events 1458

https://dev.mysql.com/doc/refman/5.7/en/innodb-information-schema-examples.html
https://dev.mysql.com/doc/refman/5.7/en/innodb-information-schema-examples.html

Amazon Aurora User Guide for Aurora

Topics

• Relevant engine versions

• Context

• Likely causes of increased waits

• Actions

Relevant engine versions

This wait event information is supported for the following engine versions:

• Aurora MySQL version 2

Context

The buf_pool mutex is a single mutex that protects the control data structures of the buffer pool.

For more information, see Monitoring InnoDB Mutex Waits Using Performance Schema in the
MySQL documentation.

Likely causes of increased waits

This is a workload-specific wait event. Common causes for synch/mutex/innodb/
buf_pool_mutex to appear among the top wait events include the following:

• The buffer pool size isn't large enough to hold the working set of data.

• The workload is more specific to certain pages from a specific table in the database, leading to
contention in the buffer pool.

Actions

We recommend different actions depending on the causes of your wait event.

Identify the sessions and queries causing the events

Typically, databases with moderate to significant load have wait events. The wait events might
be acceptable if performance is optimal. If performance isn't optimal, then examine where the
database is spending the most time. Look at the wait events that contribute to the highest load,
and find out whether you can optimize the database and application to reduce those events.

Tuning Aurora MySQL with wait events 1459

https://dev.mysql.com/doc/refman/5.7/en/monitor-innodb-mutex-waits-performance-schema.html

Amazon Aurora User Guide for Aurora

To view the Top SQL chart in the AWS Management Console

1. Open the Amazon RDS console at https://console.aws.amazon.com/rds/.

2. In the navigation pane, choose Performance Insights.

3. Choose a DB instance. The Performance Insights dashboard is shown for that DB instance.

4. In the Database load chart, choose Slice by wait.

5. Underneath the Database load chart, choose Top SQL.

The chart lists the SQL queries that are responsible for the load. Those at the top of the list are
most responsible. To resolve a bottleneck, focus on these statements.

For a useful overview of troubleshooting using Performance Insights, see the blog post Analyze
Amazon Aurora MySQL Workloads with Performance Insights.

Use Performance Insights

This event is related to workload. You can use Performance Insights to do the following:

• Identify when wait events start, and whether there's any change in the workload around that
time from the application logs or related sources.

• Identify the SQL statements responsible for this wait event. Examine the execution plan of the
queries to make sure that these queries are optimized and using appropriate indexes.

If the top queries responsible for the wait event are related to the same database object or table,
then consider partitioning that object or table.

Create Aurora Replicas

You can create Aurora Replicas to serve read-only traffic. You can also use Aurora Auto Scaling to
handle surges in read traffic. Make sure to run scheduled read-only tasks and logical backups on
Aurora Replicas.

For more information, see Using Amazon Aurora Auto Scaling with Aurora Replicas.

Examine the buffer pool size

Check whether the buffer pool size is sufficient for the workload by looking at the
metric innodb_buffer_pool_wait_free. If the value of this metric is high and

Tuning Aurora MySQL with wait events 1460

https://console.aws.amazon.com/rds/
https://aws.amazon.com/blogs/database/analyze-amazon-aurora-mysql-workloads-with-performance-insights/
https://aws.amazon.com/blogs/database/analyze-amazon-aurora-mysql-workloads-with-performance-insights/

Amazon Aurora User Guide for Aurora

increasing continuously, that indicates that the size of the buffer pool isn't sufficient to
handle the workload. If innodb_buffer_pool_size has been set properly, the value
of innodb_buffer_pool_wait_free should be small. For more information, see
Innodb_buffer_pool_wait_free in the MySQL documentation.

Increase the buffer pool size if the DB instance has enough memory for session buffers and
operating-system tasks. If it doesn't, change the DB instance to a larger DB instance class to get
additional memory that can be allocated to the buffer pool.

Note

Aurora MySQL automatically adjusts the value of innodb_buffer_pool_instances
based on the configured innodb_buffer_pool_size.

Monitor the global status history

By monitoring the change rates of status variables, you can detect locking or memory issues on
your DB instance. Turn on Global Status History (GoSH) if it isn't already turned on. For more
information on GoSH, see Managing the global status history.

You can also create custom Amazon CloudWatch metrics to monitor status variables. For more
information, see Publishing custom metrics.

synch/mutex/innodb/fil_system_mutex

The synch/mutex/innodb/fil_system_mutex event occurs when a session is waiting to access
the tablespace memory cache.

Topics

• Supported engine versions

• Context

• Likely causes of increased waits

• Actions

Supported engine versions

This wait event information is supported for the following engine versions:

Tuning Aurora MySQL with wait events 1461

https://dev.mysql.com/doc/refman/5.7/en/server-status-variables.html#statvar_Innodb_buffer_pool_wait_free
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Appendix.MySQL.CommonDBATasks.html#Appendix.MySQL.CommonDBATasks.GoSH
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/publishingMetrics.html

Amazon Aurora User Guide for Aurora

• Aurora MySQL versions 2 and 3

Context

InnoDB uses tablespaces to manage the storage area for tables and log files. The tablespace
memory cache is a global memory structure that maintains information about tablespaces. MySQL
uses synch/mutex/innodb/fil_system_mutex waits to control concurrent access to the
tablespace memory cache.

The event synch/mutex/innodb/fil_system_mutex indicates that there is currently more
than one operation that needs to retrieve and manipulate information in the tablespace memory
cache for the same tablespace.

Likely causes of increased waits

When the synch/mutex/innodb/fil_system_mutex event appears more than normal, possibly
indicating a performance problem, this typically occurs when all of the following conditions are
present:

• An increase in concurrent data manipulation language (DML) operations that update or delete
data in the same table.

• The tablespace for this table is very large and has a lot of data pages.

• The fill factor for these data pages is low.

Actions

We recommend different actions depending on the causes of your wait event.

Topics

• Identify the sessions and queries causing the events

• Reorganize large tables during off-peak hours

Identify the sessions and queries causing the events

Typically, databases with moderate to significant load have wait events. The wait events might be
acceptable if performance is optimal. If performance isn't optimal, examine where the database is
spending the most time. Look at the wait events that contribute to the highest load, and find out
whether you can optimize the database and application to reduce those events.

Tuning Aurora MySQL with wait events 1462

Amazon Aurora User Guide for Aurora

To find SQL queries that are responsible for high load

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Performance Insights.

3. Choose a DB instance. The Performance Insights dashboard appears for that DB instance.

4. In the Database load chart, choose Slice by wait.

5. At the bottom of the page, choose Top SQL.

The chart lists the SQL queries that are responsible for the load. Those at the top of the list are
most responsible. To resolve a bottleneck, focus on these statements.

For a useful overview of troubleshooting using Performance Insights, see the blog post Analyze
Amazon Aurora MySQL Workloads with Performance Insights.

Another way to find out which queries are causing high numbers of synch/mutex/innodb/
fil_system_mutex waits is to check performance_schema, as in the following example.

mysql> select * from performance_schema.events_waits_current where EVENT_NAME='wait/
synch/mutex/innodb/fil_system_mutex'\G
*************************** 1. row ***************************
 THREAD_ID: 19
 EVENT_ID: 195057
 END_EVENT_ID: 195057
 EVENT_NAME: wait/synch/mutex/innodb/fil_system_mutex
 SOURCE: fil0fil.cc:6700
 TIMER_START: 1010146190118400
 TIMER_END: 1010146196524000
 TIMER_WAIT: 6405600
 SPINS: NULL
 OBJECT_SCHEMA: NULL
 OBJECT_NAME: NULL
 INDEX_NAME: NULL
 OBJECT_TYPE: NULL
OBJECT_INSTANCE_BEGIN: 47285552262176
 NESTING_EVENT_ID: NULL
 NESTING_EVENT_TYPE: NULL
 OPERATION: lock
 NUMBER_OF_BYTES: NULL
 FLAGS: NULL

Tuning Aurora MySQL with wait events 1463

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/
https://aws.amazon.com/blogs/database/analyze-amazon-aurora-mysql-workloads-with-performance-insights/
https://aws.amazon.com/blogs/database/analyze-amazon-aurora-mysql-workloads-with-performance-insights/

Amazon Aurora User Guide for Aurora

*************************** 2. row ***************************
 THREAD_ID: 23
 EVENT_ID: 5480
 END_EVENT_ID: 5480
 EVENT_NAME: wait/synch/mutex/innodb/fil_system_mutex
 SOURCE: fil0fil.cc:5906
 TIMER_START: 995269979908800
 TIMER_END: 995269980159200
 TIMER_WAIT: 250400
 SPINS: NULL
 OBJECT_SCHEMA: NULL
 OBJECT_NAME: NULL
 INDEX_NAME: NULL
 OBJECT_TYPE: NULL
OBJECT_INSTANCE_BEGIN: 47285552262176
 NESTING_EVENT_ID: NULL
 NESTING_EVENT_TYPE: NULL
 OPERATION: lock
 NUMBER_OF_BYTES: NULL
 FLAGS: NULL
*************************** 3. row ***************************
 THREAD_ID: 55
 EVENT_ID: 23233794
 END_EVENT_ID: NULL
 EVENT_NAME: wait/synch/mutex/innodb/fil_system_mutex
 SOURCE: fil0fil.cc:449
 TIMER_START: 1010492125341600
 TIMER_END: 1010494304900000
 TIMER_WAIT: 2179558400
 SPINS: NULL
 OBJECT_SCHEMA: NULL
 OBJECT_NAME: NULL
 INDEX_NAME: NULL
 OBJECT_TYPE: NULL
OBJECT_INSTANCE_BEGIN: 47285552262176
 NESTING_EVENT_ID: 23233786
 NESTING_EVENT_TYPE: WAIT
 OPERATION: lock
 NUMBER_OF_BYTES: NULL
 FLAGS: NULL

Tuning Aurora MySQL with wait events 1464

Amazon Aurora User Guide for Aurora

Reorganize large tables during off-peak hours

Reorganize large tables that you identify as the source of high numbers of synch/mutex/
innodb/fil_system_mutex wait events during a maintenance window outside of production
hours. Doing so ensures that the internal tablespaces map cleanup doesn't occur when quick access
to the table is critical. For information about reorganizing tables, see OPTIMIZE TABLE Statement
in the MySQL Reference.

synch/mutex/innodb/trx_sys_mutex

The synch/mutex/innodb/trx_sys_mutex event occurs when there is high database activity
with a large number of transactions.

Topics

• Relevant engine versions

• Context

• Likely causes of increased waits

• Actions

Relevant engine versions

This wait event information is supported for the following engine versions:

• Aurora MySQL versions 2 and 3

Context

Internally, the InnoDB database engine uses the repeatable read isolation level with snapshots
to provide read consistency. This gives you a point-in-time view of the database at the time the
snapshot was created.

In InnoDB, all changes are applied to the database as soon as they arrive, regardless of whether
they're committed. This approach means that without multiversion concurrency control (MVCC),
all users connected to the database see all of the changes and the latest rows. Therefore, InnoDB
requires a way to track the changes to understand what to roll back when necessary.

To do this, InnoDB uses a transaction system (trx_sys) to track snapshots. The transaction system
does the following:

Tuning Aurora MySQL with wait events 1465

https://dev.mysql.com/doc/refman/5.7/en/optimize-table.html

Amazon Aurora User Guide for Aurora

• Tracks the transaction ID for each row in the undo logs.

• Uses an internal InnoDB structure called ReadView that helps to identify which transaction IDs
are visible for a snapshot.

Likely causes of increased waits

Any database operation that requires the consistent and controlled handling (creating, reading,
updating, and deleting) of transactions IDs generates a call from trx_sys to the mutex.

These calls happen inside three functions:

• trx_sys_mutex_enter – Creates the mutex.

• trx_sys_mutex_exit – Releases the mutex.

• trx_sys_mutex_own – Tests whether the mutex is owned.

The InnoDB Performance Schema instrumentation tracks all trx_sys mutex calls. Tracking
includes, but isn't limited to, management of trx_sys on database startup or shutdown, rollback
operations, undo cleanups, row read access, and buffer pool loads. High database activity with
a large number of transactions results in synch/mutex/innodb/trx_sys_mutex appearing
among the top wait events.

For more information, see Monitoring InnoDB Mutex Waits Using Performance Schema in the
MySQL documentation.

Actions

We recommend different actions depending on the causes of your wait event.

Identify the sessions and queries causing the events

Typically, databases with moderate to significant load have wait events. The wait events might
be acceptable if performance is optimal. If performance isn't optimal, then examine where the
database is spending the most time. Look at the wait events that contribute to the highest load.
Find out whether you can optimize the database and application to reduce those events.

To view the Top SQL chart in the AWS Management Console

1. Open the Amazon RDS console at https://console.aws.amazon.com/rds/.

Tuning Aurora MySQL with wait events 1466

https://dev.mysql.com/doc/refman/5.7/en/monitor-innodb-mutex-waits-performance-schema.html
https://console.aws.amazon.com/rds/

Amazon Aurora User Guide for Aurora

2. In the navigation pane, choose Performance Insights.

3. Choose a DB instance. The Performance Insights dashboard is shown for that DB instance.

4. In the Database load chart, choose Slice by wait.

5. Under the Database load chart, choose Top SQL.

The chart lists the SQL queries that are responsible for the load. Those at the top of the list are
most responsible. To resolve a bottleneck, focus on these statements.

For a useful overview of troubleshooting using Performance Insights, see the blog post Analyze
Amazon Aurora MySQL Workloads with Performance Insights.

Examine other wait events

Examine the other wait events associated with the synch/mutex/innodb/trx_sys_mutex wait
event. Doing this can provide more information about the nature of the workload. A large number
of transactions might reduce throughput, but the workload might also make this necessary.

For more information on how to optimize transactions, see Optimizing InnoDB Transaction
Management in the MySQL documentation.

synch/sxlock/innodb/hash_table_locks

The synch/sxlock/innodb/hash_table_locks event occurs when pages not found in the
buffer pool must be read from storage.

Topics

• Supported engine versions

• Context

• Likely causes of increased waits

• Actions

Supported engine versions

This wait event information is supported for the following versions:

• Aurora MySQL versions 2 and 3

Tuning Aurora MySQL with wait events 1467

https://aws.amazon.com/blogs/database/analyze-amazon-aurora-mysql-workloads-with-performance-insights/
https://aws.amazon.com/blogs/database/analyze-amazon-aurora-mysql-workloads-with-performance-insights/
https://dev.mysql.com/doc/refman/5.7/en/optimizing-innodb-transaction-management.html
https://dev.mysql.com/doc/refman/5.7/en/optimizing-innodb-transaction-management.html

Amazon Aurora User Guide for Aurora

Context

The event synch/sxlock/innodb/hash_table_locks indicates that a workload is frequently
accessing data that isn't stored in the buffer pool. This wait event is associated with new page
additions and old data evictions from the buffer pool. The data stored in the buffer pool aged and
new data must be cached, so the aged pages are evicted to allow caching of the new pages. MySQL
uses a least recently used (LRU) algorithm to evict pages from the buffer pool. The workload is
trying to access data that hasn't been loaded into the buffer pool or data that has been evicted
from the buffer pool.

This wait event occurs when the workload must access the data in files on disk or when blocks
are freed from or added to the buffer pool's LRU list. These operations wait to obtain a shared
excluded lock (SX-lock). This SX-lock is used for the synchronization over the hash table, which is a
table in memory designed to improve buffer pool access performance.

For more information, see Buffer Pool in the MySQL documentation.

Likely causes of increased waits

When the synch/sxlock/innodb/hash_table_locks wait event appears more than normal,
possibly indicating a performance problem, typical causes include the following:

An undersized buffer pool

The size of the buffer pool is too small to keep all of the frequently accessed pages in memory.

Heavy workload

The workload is causing frequent evictions and data pages reloads in the buffer cache.

Errors reading the pages

There are errors reading pages in the buffer pool, which might indicate data corruption.

Actions

We recommend different actions depending on the causes of your wait event.

Topics

• Increase the size of the buffer pool

• Improve data access patterns

Tuning Aurora MySQL with wait events 1468

https://dev.mysql.com/doc/refman/5.7/en/innodb-buffer-pool.html

Amazon Aurora User Guide for Aurora

• Reduce or avoid full-table scans

• Check the error logs for page corruption

Increase the size of the buffer pool

Make sure that the buffer pool is appropriately sized for the workload. To do so, you can check
the buffer pool cache hit rate. Typically, if the value drops below 95 percent, consider increasing
the buffer pool size. A larger buffer pool can keep frequently accessed pages in memory longer.
To increase the size of the buffer pool, modify the value of the innodb_buffer_pool_size
parameter. The default value of this parameter is based on the DB instance class size. For more
information, see Best practices for Amazon Aurora MySQL database configuration.

Improve data access patterns

Check the queries affected by this wait and their execution plans. Consider improving data access
patterns. For example, if you are using mysqli_result::fetch_array, you can try increasing the array
fetch size.

You can use Performance Insights to show queries and sessions that might be causing the synch/
sxlock/innodb/hash_table_locks wait event.

To find SQL queries that are responsible for high load

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Performance Insights.

3. Choose a DB instance. The Performance Insights dashboard is shown for that DB instance.

4. In the Database load chart, choose Slice by wait.

5. At the bottom of the page, choose Top SQL.

The chart lists the SQL queries that are responsible for the load. Those at the top of the list are
most responsible. To resolve a bottleneck, focus on these statements.

For a useful overview of troubleshooting using Performance Insights, see the AWS Database Blog
post Analyze Amazon Aurora MySQL Workloads with Performance Insights.

Tuning Aurora MySQL with wait events 1469

https://aws.amazon.com/blogs/database/best-practices-for-amazon-aurora-mysql-database-configuration/
https://www.php.net/manual/en/mysqli-result.fetch-array.php
https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/
https://aws.amazon.com/blogs/database/analyze-amazon-aurora-mysql-workloads-with-performance-insights/

Amazon Aurora User Guide for Aurora

Reduce or avoid full-table scans

Monitor your workload to see if it's running full-table scans, and, if it is, reduce or avoid them.
For example, you can monitor status variables such as Handler_read_rnd_next. For more
information, see Server Status Variables in the MySQL documentation.

Check the error logs for page corruption

You can check the mysql-error.log for corruption-related messages that were detected near the
time of the issue. Messages that you can work with to resolve the issue are in the error log. You
might need to recreate objects that were reported as corrupted.

Tuning Aurora MySQL with wait events 1470

https://dev.mysql.com/doc/refman/5.7/en/server-status-variables.html#statvar_Handler_read_rnd_next

Amazon Aurora User Guide for Aurora

Tuning Aurora MySQL with thread states

The following table summarizes the most common general thread states for Aurora MySQL.

General thread state Description

??? This thread state indicates that a thread is
processing a SELECT statement that requires
the use of an internal temporary table to sort
the data.

??? This thread state indicates that a thread is
reading and filtering rows for a query to
determine the correct result set.

creating sort index

The creating sort index thread state indicates that a thread is processing a SELECT
statement that requires the use of an internal temporary table to sort the data.

Topics

• Supported engine versions

• Context

• Likely causes of increased waits

• Actions

Supported engine versions

This thread state information is supported for the following versions:

• Aurora MySQL version 2 up to 2.09.2

Context

The creating sort index state appears when a query with an ORDER BY or GROUP BY clause
can't use an existing index to perform the operation. In this case, MySQL needs to perform a more

Tuning Aurora MySQL with thread states 1471

Amazon Aurora User Guide for Aurora

expensive filesort operation. This operation is typically performed in memory if the result set
isn't too large. Otherwise, it involves creating a file on disk.

Likely causes of increased waits

The appearance of creating sort index doesn't by itself indicate a problem. If performance
is poor, and you see frequent instances of creating sort index, the most likely cause is slow
queries with ORDER BY or GROUP BY operators.

Actions

The general guideline is to find queries with ORDER BY or GROUP BY clauses that are associated
with the increases in the creating sort index state. Then see whether adding an index or
increasing the sort buffer size solves the problem.

Topics

• Turn on the Performance Schema if it isn't turned on

• Identify the problem queries

• Examine the explain plans for filesort usage

• Increase the sort buffer size

Turn on the Performance Schema if it isn't turned on

Performance Insights reports thread states only if Performance Schema instruments aren't turned
on. When Performance Schema instruments are turned on, Performance Insights reports wait
events instead. Performance Schema instruments provide additional insights and better tools
when you investigate potential performance problems. Therefore, we recommend that you turn
on the Performance Schema. For more information, see Turning on the Performance Schema for
Performance Insights on Aurora MySQL.

Identify the problem queries

To identify current queries that are causing increases in the creating sort index state, run
show processlist and see if any of the queries have ORDER BY or GROUP BY. Optionally, run
explain for connection N, where N is the process list ID of the query with filesort.

To identify past queries that are causing these increases, turn on the slow query log and find the
queries with ORDER BY. Run EXPLAIN on the slow queries and look for "using filesort." For more
information, see Examine the explain plans for filesort usage.

Tuning Aurora MySQL with thread states 1472

Amazon Aurora User Guide for Aurora

Examine the explain plans for filesort usage

Identify the statements with ORDER BY or GROUP BY clauses that result in the creating sort
index state.

The following example shows how to run explain on a query. The Extra column shows that this
query uses filesort.

mysql> explain select * from mytable order by c1 limit 10\G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: mytable
 partitions: NULL
 type: ALL
possible_keys: NULL
 key: NULL
 key_len: NULL
 ref: NULL
 rows: 2064548
 filtered: 100.00
 Extra: Using filesort
1 row in set, 1 warning (0.01 sec)

The following example shows the result of running EXPLAIN on the same query after an index is
created on column c1.

mysql> alter table mytable add index (c1);

mysql> explain select * from mytable order by c1 limit 10\G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: mytable
 partitions: NULL
 type: index
possible_keys: NULL
 key: c1
 key_len: 1023
 ref: NULL
 rows: 10

Tuning Aurora MySQL with thread states 1473

Amazon Aurora User Guide for Aurora

 filtered: 100.00
 Extra: Using index
1 row in set, 1 warning (0.01 sec)

For information on using indexes for sort order optimization, see ORDER BY Optimization in the
MySQL documentation.

Increase the sort buffer size

To see whether a specific query required a filesort process that created a file on disk, check the
sort_merge_passes variable value after running the query. The following shows an example.

mysql> show session status like 'sort_merge_passes';
+-------------------+-------+
| Variable_name | Value |
+-------------------+-------+
| Sort_merge_passes | 0 |
+-------------------+-------+
1 row in set (0.01 sec)

--- run query
mysql> select * from mytable order by u limit 10;
--- run status again:

mysql> show session status like 'sort_merge_passes';
+-------------------+-------+
| Variable_name | Value |
+-------------------+-------+
| Sort_merge_passes | 0 |
+-------------------+-------+
1 row in set (0.01 sec)

If the value of sort_merge_passes is high, consider increasing the sort buffer size. Apply the
increase at the session level, because increasing it globally can significantly increase the amount of
RAM MySQL uses. The following example shows how to change the sort buffer size before running
a query.

mysql> set session sort_buffer_size=10*1024*1024;
Query OK, 0 rows affected (0.00 sec)
-- run query

Tuning Aurora MySQL with thread states 1474

https://dev.mysql.com/doc/refman/5.7/en/order-by-optimization.html

Amazon Aurora User Guide for Aurora

sending data

The sending data thread state indicates that a thread is reading and filtering rows for a query to
determine the correct result set. The name is misleading because it implies the state is transferring
data, not collecting and preparing data to be sent later.

Topics

• Supported engine versions

• Context

• Likely causes of increased waits

• Actions

Supported engine versions

This thread state information is supported for the following versions:

• Aurora MySQL version 2 up to 2.09.2

Context

Many thread states are short-lasting. Operations occurring during sending data tend to perform
large numbers of disk or cache reads. Therefore, sending data is often the longest-running state
over the lifetime of a given query. This state appears when Aurora MySQL is doing the following:

• Reading and processing rows for a SELECT statement

• Performing a large number of reads from either disk or memory

• Completing a full read of all data from a specific query

• Reading data from a table, an index, or the work of a stored procedure

• Sorting, grouping, or ordering data

After the sending data state finishes preparing the data, the thread state writing to net
indicates the return of data to the client. Typically, writing to net is captured only when the
result set is very large or severe network latency is slowing the transfer.

Tuning Aurora MySQL with thread states 1475

Amazon Aurora User Guide for Aurora

Likely causes of increased waits

The appearance of sending data doesn't by itself indicate a problem. If performance is poor, and
you see frequent instances of sending data, the most likely causes are as follows.

Topics

• Inefficient query

• Suboptimal server configuration

Inefficient query

In most cases, what's responsible for this state is a query that isn't using an appropriate index to
find the result set of a specific query. For example, consider a query reading a 10 million record
table for all orders placed in California, where the state column isn't indexed or is poorly indexed.
In the latter case, the index might exist, but the optimizer ignores it because of low cardinality.

Suboptimal server configuration

If several queries appear in the sending data state, the database server might be configured
poorly. Specifically, the server might have the following issues:

• The database server doesn't have enough computing capacity: disk I/O, disk type and speed,
CPU, or number of CPUs.

• The server is starved for allocated resources, such as the InnoDB buffer pool for InnoDB tables or
the key buffer for MyIsam tables.

• Per-thread memory settings such as sort_buffer, read_buffer, and join_buffer consume
more RAM than required, starving the physical server for memory resources.

Actions

The general guideline is to find queries that return large numbers of rows by checking the
Performance Schema. If logging queries that don't use indexes is turned on, you can also examine
the results from the slow logs.

Topics

• Turn on the Performance Schema if it isn't turned on

• Examine memory settings

Tuning Aurora MySQL with thread states 1476

Amazon Aurora User Guide for Aurora

• Examine the explain plans for index usage

• Check the volume of data returned

• Check for concurrency issues

• Check the structure of your queries

Turn on the Performance Schema if it isn't turned on

Performance Insights reports thread states only if Performance Schema instruments aren't turned
on. When Performance Schema instruments are turned on, Performance Insights reports wait
events instead. Performance Schema instruments provide additional insights and better tools
when you investigate potential performance problems. Therefore, we recommend that you turn
on the Performance Schema. For more information, see Turning on the Performance Schema for
Performance Insights on Aurora MySQL.

Examine memory settings

Examine the memory settings for the primary buffer pools. Make sure that these pools are
appropriately sized for the workload. If your database uses multiple buffer pool instances, make
sure that they aren't divided into many small buffer pools. Threads can only use one buffer pool at
a time.

Make sure that the following memory settings used for each thread are properly sized:

• read_buffer

• read_rnd_buffer

• sort_buffer

• join_buffer

• binlog_cache

Unless you have a specific reason to modify the settings, use the default values.

Examine the explain plans for index usage

For queries in the sending data thread state, examine the plan to determine whether
appropriate indexes are used. If a query isn't using a useful index, consider adding hints like USE
INDEX or FORCE INDEX. Hints can greatly increase or decrease the time it takes to run a query, so
use care before adding them.

Tuning Aurora MySQL with thread states 1477

Amazon Aurora User Guide for Aurora

Check the volume of data returned

Check the tables that are being queried and the amount of data that they contain. Can any of this
data be archived? In many cases, the cause of poor query execution times isn't the result of the
query plan, but the volume of data to be processed. Many developers are very efficient in adding
data to a database but seldom consider dataset life cycle in the design and development phases.

Look for queries that perform well in low-volume databases but perform poorly in your current
system. Sometimes developers who design specific queries might not realize that these queries
are returning 350,000 rows. The developers might have developed the queries in a lower-volume
environment with smaller datasets than production environments have.

Check for concurrency issues

Check whether multiple queries of the same type are running at the same time. Some forms
of queries run efficiently when they run alone. However, if similar forms of query run together,
or in high volume, they can cause concurrency issues. Often, these issues are caused when the
database uses temp tables to render results. A restrictive transaction isolation level can also cause
concurrency issues.

If tables are read and written to concurrently, the database might be using locks. To help identify
periods of poor performance, examine the use of databases through large-scale batch processes.
To see recent locks and rollbacks, examine the output of the SHOW ENGINE INNODB STATUS
command.

Check the structure of your queries

Check whether captured queries from these states use subqueries. This type of query often leads to
poor performance because the database compiles the results internally and then substitutes them
back into the query to render data. This process is an extra step for the database. In many cases,
this step can cause poor performance in a highly concurrent loading condition.

Also check whether your queries use large numbers of ORDER BY and GROUP BY clauses. In such
operations, often the database must first form the entire dataset in memory. Then it must order or
group it in a specific manner before returning it to the client.

Tuning Aurora MySQL with Amazon DevOps Guru proactive insights

DevOps Guru proactive insights detect known problematic conditions on your Aurora MySQL DB
clusters before they occur. DevOps Guru can do the following:

Tuning Aurora MySQL with Amazon DevOps Guru proactive insights 1478

Amazon Aurora User Guide for Aurora

• Prevent many common database issues by cross-checking your database configuration against
common recommended settings.

• Alert you to critical issues in your fleet that, if left unchecked, can lead to larger problems later.

• Alert you to newly discovered problems.

Every proactive insight contains an analysis of the cause of the problem and recommendations for
corrective actions.

Topics

• The InnoDB history list length increased significantly

• Database is creating temporary tables on disk

The InnoDB history list length increased significantly

Starting on date, your history list for row changes increased significantly, up to length on db-
instance. This increase affects query and database shutdown performance.

Topics

• Supported engine versions

• Context

• Likely causes for this issue

• Actions

• Relevant metrics

Supported engine versions

This insight information is supported for all versions of Aurora MySQL.

Context

The InnoDB transaction system maintains multiversion concurrency control (MVCC). When a row is
modified, the pre-modification version of the data being modified is stored as an undo record in an
undo log. Every undo record has a reference to its previous redo record, forming a linked list.

The InnoDB history list is a global list of the undo logs for committed transactions. MySQL uses
the history list to purge records and log pages when transactions no longer require the history.

Tuning Aurora MySQL with Amazon DevOps Guru proactive insights 1479

Amazon Aurora User Guide for Aurora

The history list length is the total number of undo logs that contain modifications in the history
list. Each log contains one or more modifications. If the InnoDB history list length grows too large,
indicating a large number of old row versions, queries and database shutdowns become slower.

Likely causes for this issue

Typical causes of a long history list include the following:

• Long-running transactions, either read or write

• A heavy write load

Actions

We recommend different actions depending on the causes of your insight.

Topics

• Don't begin any operation involving a database shutdown until the InnoDB history list decreases

• Identify and end long-running transactions

• Identify the top hosts and top users by using Performance Insights.

Don't begin any operation involving a database shutdown until the InnoDB history list
decreases

Because a long InnoDB history list slows database shutdowns, reduce the list size before initiating
operations involving a database shutdown. These operations include major version database
upgrades.

Identify and end long-running transactions

You can find long-running transactions by querying information_schema.innodb_trx.

Note

Make sure also to look for long-running transactions on read replicas.

To identify and end long-running transactions

1. In your SQL client, run the following query:

Tuning Aurora MySQL with Amazon DevOps Guru proactive insights 1480

Amazon Aurora User Guide for Aurora

SELECT a.trx_id,
 a.trx_state,
 a.trx_started,
 TIMESTAMPDIFF(SECOND,a.trx_started, now()) as "Seconds Transaction Has Been
 Open",
 a.trx_rows_modified,
 b.USER,
 b.host,
 b.db,
 b.command,
 b.time,
 b.state
FROM information_schema.innodb_trx a,
 information_schema.processlist b
WHERE a.trx_mysql_thread_id=b.id
 AND TIMESTAMPDIFF(SECOND,a.trx_started, now()) > 10
ORDER BY trx_started

2. End each long-running transaction with a COMMIT or ROLLBACK command.

Identify the top hosts and top users by using Performance Insights.

Optimize transactions so that large numbers of modified rows are immediately committed.

Relevant metrics

The following metrics are related to this insight:

• trx_rseg_history_len

For more information, see InnoDB INFORMATION_SCHEMA Metrics Table in the MySQL 5.7
Reference Manual.

Database is creating temporary tables on disk

Your recent on-disk temporary table usage increased significantly, up to percentage. The
database is creating around number temporary tables per second. This might impact performance
and increase disk operations on db-instance.

Topics

Tuning Aurora MySQL with Amazon DevOps Guru proactive insights 1481

https://dev.mysql.com/doc/refman/5.7/en/innodb-information-schema-metrics-table.html

Amazon Aurora User Guide for Aurora

• Supported engine versions

• Context

• Likely causes for this issue

• Actions

• Relevant metrics

Supported engine versions

This insight information is supported for all versions of Aurora MySQL.

Context

Sometimes it's necessary for the MySQL server to create an internal temporary table while
processing a query. Aurora MySQL can hold an internal temporary table in memory, where it can
be processed by the TempTable or MEMORY storage engine, or stored on disk by InnoDB. For more
information, see Internal Temporary Table Use in MySQL in the MySQL Reference Manual.

Likely causes for this issue

An increase in on-disk temporary tables indicates the use of complex queries. If the configured
memory is insufficient to store temporary tables in memory, Aurora MySQL creates the tables on
disk. This can impact performance and increase disk operations.

Actions

We recommend different actions depending on the causes of your insight.

• For Aurora MySQL version 3, we recommend that you use the TempTable storage engine.

• Optimize your queries to return less data by selecting only necessary columns.

If you turn on the Performance Schema with all statement instruments enabled and timed,
you can query SYS.statements_with_temp_tables to retrieve the list of queries that use
temporary tables. For more information, see Prerequisites for Using the sys Schema in the
MySQL documentation.

• Consider indexing columns that are involved in sorting and grouping operations.

• Rewrite your queries to avoid BLOB and TEXT columns. These columns always use disk.

• Tune the following database parameters: tmp_table_size and max_heap_table_size.

Tuning Aurora MySQL with Amazon DevOps Guru proactive insights 1482

https://dev.mysql.com/doc/refman/5.6/en/internal-temporary-tables.html
https://dev.mysql.com/doc/refman/8.0/en/sys-schema-prerequisites.html

Amazon Aurora User Guide for Aurora

The default values for these parameters is 16 MiB. When using the MEMORY storage engine
for in-memory temporary tables, their maximum size is defined by the tmp_table_size or
max_heap_table_size value, whichever is smaller. When this maximum size is reached, MySQL
automatically converts the in-memory internal temporary table to an InnoDB on-disk internal
temporary table. For more information, see Use the TempTable storage engine on Amazon RDS
for MySQL and Amazon Aurora MySQL.

Note

When explicitly creating MEMORY tables with CREATE TABLE, only the
max_heap_table_size variable determines how large a table can grow. There is also
no conversion to an on-disk format.

Relevant metrics

The following Performance Insights metrics are related to this insight:

• Created_tmp_disk_tables

• Created_tmp_tables

For more information, see Created_tmp_disk_tables in the MySQL documentation.

Tuning Aurora MySQL with Amazon DevOps Guru proactive insights 1483

https://aws.amazon.com/blogs/database/use-the-temptable-storage-engine-on-amazon-rds-for-mysql-and-amazon-aurora-mysql/
https://aws.amazon.com/blogs/database/use-the-temptable-storage-engine-on-amazon-rds-for-mysql-and-amazon-aurora-mysql/
https://dev.mysql.com/doc/refman/8.0/en/server-status-variables.html#statvar_Created_tmp_disk_tables

Amazon Aurora User Guide for Aurora

Working with parallel query for Amazon Aurora MySQL

This topic describes the parallel query performance optimization for Amazon Aurora MySQL-
Compatible Edition. This feature uses a special processing path for certain data-intensive queries,
taking advantage of the Aurora shared storage architecture. Parallel query works best with Aurora
MySQL DB clusters that have tables with millions of rows and analytic queries that take minutes or
hours to complete.

Contents

• Overview of parallel query for Aurora MySQL

• Benefits

• Architecture

• Prerequisites

• Limitations

• I/O costs with parallel query

• Planning for a parallel query cluster

• Checking Aurora MySQL version compatibility for parallel query

• Creating a DB cluster that works with parallel query

• Creating a parallel query cluster using the console

• Creating a parallel query cluster using the CLI

• Turning parallel query on and off

• Turning on hash join for parallel query clusters

• Turning on and turning off parallel query using the console

• Turning on and turning off parallel query using the CLI

• Overriding the parallel query optimizer

• Upgrade considerations for parallel query

• Upgrading parallel query clusters to Aurora MySQL version 3

• Upgrading to Aurora MySQL 2.09 and higher

• Performance tuning for parallel query

• Creating schema objects to take advantage of parallel query

• Verifying which statements use parallel query

• Monitoring parallel query

Parallel query for Aurora MySQL 1484

Amazon Aurora User Guide for Aurora

• How parallel query works with SQL constructs

• EXPLAIN statement

• WHERE clause

• Data definition language (DDL)

• Column data types

• Partitioned tables

• Aggregate functions, GROUP BY clauses, and HAVING clauses

• Function calls in WHERE clause

• LIMIT clause

• Comparison operators

• Joins

• Subqueries

• UNION

• Views

• Data manipulation language (DML) statements

• Transactions and locking

• B-tree indexes

• Full-text search (FTS) indexes

• Virtual columns

• Built-in caching mechanisms

• Optimizer hints

• MyISAM temporary tables

Overview of parallel query for Aurora MySQL

Aurora MySQL parallel query is an optimization that parallelizes some of the I/O and computation
involved in processing data-intensive queries. The work that is parallelized includes retrieving rows
from storage, extracting column values, and determining which rows match the conditions in the
WHERE clause and join clauses. This data-intensive work is delegated (in database optimization
terms, pushed down) to multiple nodes in the Aurora distributed storage layer. Without parallel
query, each query brings all the scanned data to a single node within the Aurora MySQL cluster
(the head node) and performs all the query processing there.
Overview of parallel query 1485

Amazon Aurora User Guide for Aurora

Tip

The PostgreSQL database engine also has a feature called "parallel query." That feature is
unrelated to Aurora parallel query.

When the parallel query feature is turned on, the Aurora MySQL engine automatically determines
when queries can benefit, without requiring SQL changes such as hints or table attributes. In the
following sections, you can find an explanation of when parallel query is applied to a query. You
can also find how to make sure that parallel query is applied where it provides the most benefit.

Note

The parallel query optimization provides the most benefit for long-running queries that
take minutes or hours to complete. Aurora MySQL generally doesn't perform parallel
query optimization for inexpensive queries. It also generally doesn't perform parallel query
optimization if another optimization technique makes more sense, such as query caching,
buffer pool caching, or index lookups. If you find that parallel query isn't being used when
you expect it, see Verifying which statements use parallel query.

Topics

• Benefits

• Architecture

• Prerequisites

• Limitations

• I/O costs with parallel query

Benefits

With parallel query, you can run data-intensive analytic queries on Aurora MySQL tables. In many
cases, you can get an order-of-magnitude performance improvement over the traditional division
of labor for query processing.

Benefits of parallel query include the following:

Overview of parallel query 1486

Amazon Aurora User Guide for Aurora

• Improved I/O performance, due to parallelizing physical read requests across multiple storage
nodes.

• Reduced network traffic. Aurora doesn't transmit entire data pages from storage nodes to
the head node and then filter out unnecessary rows and columns afterward. Instead, Aurora
transmits compact tuples containing only the column values needed for the result set.

• Reduced CPU usage on the head node, due to pushing down function processing, row filtering,
and column projection for the WHERE clause.

• Reduced memory pressure on the buffer pool. The pages processed by the parallel query aren't
added to the buffer pool. This approach reduces the chance of a data-intensive scan evicting
frequently used data from the buffer pool.

• Potentially reduced data duplication in your extract, transform, load (ETL) pipeline, by making it
practical to perform long-running analytic queries on existing data.

Architecture

The parallel query feature uses the major architectural principles of Aurora MySQL: decoupling
the database engine from the storage subsystem, and reducing network traffic by streamlining
communication protocols. Aurora MySQL uses these techniques to speed up write-intensive
operations such as redo log processing. Parallel query applies the same principles to read
operations.

Note

The architecture of Aurora MySQL parallel query differs from that of similarly named
features in other database systems. Aurora MySQL parallel query doesn't involve symmetric
multiprocessing (SMP) and so doesn't depend on the CPU capacity of the database server.
The parallel processing happens in the storage layer, independent of the Aurora MySQL
server that serves as the query coordinator.

By default, without parallel query, the processing for an Aurora query involves transmitting raw
data to a single node within the Aurora cluster (the head node). Aurora then performs all further
processing for that query in a single thread on that single node. With parallel query, much of
this I/O-intensive and CPU-intensive work is delegated to nodes in the storage layer. Only the
compact rows of the result set are transmitted back to the head node, with rows already filtered,
and column values already extracted and transformed. The performance benefit comes from the

Overview of parallel query 1487

Amazon Aurora User Guide for Aurora

reduction in network traffic, reduction in CPU usage on the head node, and parallelizing the I/O
across the storage nodes. The amount of parallel I/O, filtering, and projection is independent of
the number of DB instances in the Aurora cluster that runs the query.

Prerequisites

To use all features of parallel query requires an Aurora MySQL DB cluster that's running version
2.09 or higher. If you already have a cluster that you want to use with parallel query, you can
upgrade it to a compatible version and turn on parallel query afterward. In that case, make
sure to follow the upgrade procedure in Upgrade considerations for parallel query because the
configuration setting names and default values are different in these newer versions.

The DB instances in your cluster must use the db.r* instance classes.

Make sure that hash join optimization is turned on for your cluster. To learn how, see Turning on
hash join for parallel query clusters.

To customize parameters such as aurora_parallel_query and aurora_disable_hash_join,
you must have a custom parameter group that you use with your cluster. You can specify these
parameters individually for each DB instance by using a DB parameter group. However, we
recommend that you specify them in a DB cluster parameter group. That way, all DB instances in
your cluster inherit the same settings for these parameters.

Limitations

The following limitations apply to the parallel query feature:

• Parallel query isn't supported with the Aurora I/O-Optimized DB cluster storage configuration.

• You can't use parallel query with the db.t2 or db.t3 instance classes. This limitation applies even
if you request parallel query using the aurora_pq_force session variable.

• Parallel query doesn't apply to tables using the COMPRESSED or REDUNDANT row formats. Use
the COMPACT or DYNAMIC row formats for tables you plan to use with parallel query.

• Aurora uses a cost-based algorithm to determine whether to use the parallel query mechanism
for each SQL statement. Using certain SQL constructs in a statement can prevent parallel query
or make parallel query unlikely for that statement. For information about compatibility of SQL
constructs with parallel query, see How parallel query works with SQL constructs.

• Each Aurora DB instance can run only a certain number of parallel query sessions at one time. If
a query has multiple parts that use parallel query, such as subqueries, joins, or UNION operators,

Overview of parallel query 1488

Amazon Aurora User Guide for Aurora

those phases run in sequence. The statement only counts as a single parallel query session at
any one time. You can monitor the number of active sessions using the parallel query status
variables. You can check the limit on concurrent sessions for a given DB instance by querying the
status variable Aurora_pq_max_concurrent_requests.

• Parallel query is available in all AWS Regions that Aurora supports. For most AWS Regions, the
minimum required Aurora MySQL version to use parallel query is 2.09.

• Parallel query is designed to improve the performance of data-intensive queries. It isn't designed
for lightweight queries.

• We recommend that you use reader nodes for SELECT statements, especially data-intensive ones.

I/O costs with parallel query

If your Aurora MySQL cluster uses parallel query, you might see an increase in VolumeReadIOPS
values. Parallel queries don't use the buffer pool. Thus, although the queries are fast, this
optimized processing can result in an increase in read operations and associated charges.

Parallel query I/O costs for your query are metered at the storage layer, and will be the same or
larger with parallel query turned on. Your benefit is the improvement in query performance. There
are two reasons for potentially higher I/O costs with parallel query:

• Even if some of the data in a table is in the buffer pool, parallel query requires all data to be
scanned at the storage layer, incurring I/O costs.

• Running a parallel query doesn't warm up the buffer pool. As a result, consecutive runs of the
same parallel query incur the full I/O cost.

Planning for a parallel query cluster

Planning for a DB cluster that has parallel query turned on requires making some choices. These
include performing setup steps (either creating or restoring a full Aurora MySQL cluster) and
deciding how broadly to turn on parallel query across your DB cluster.

Consider the following as part of planning:

• If you use Aurora MySQL that's compatible with MySQL 5.7, you must choose Aurora MySQL 2.09
or higher. In this case, you always create a provisioned cluster. Then you turn on parallel query
using the aurora_parallel_query parameter.

Planning for a parallel query cluster 1489

Amazon Aurora User Guide for Aurora

If you have an existing Aurora MySQL cluster that's running version 2.09 or higher, you don't
have to create a new cluster to use parallel query. You can associate your cluster, or specific
DB instances in the cluster, with a parameter group that has the aurora_parallel_query
parameter turned on. By doing so, you can reduce the time and effort to set up the relevant data
to use with parallel query.

• Plan for any large tables that you need to reorganize so that you can use parallel query when
accessing them. You might need to create new versions of some large tables where parallel
query is useful. For example, you might need to remove full-text search indexes. For details, see
Creating schema objects to take advantage of parallel query.

Checking Aurora MySQL version compatibility for parallel query

To check which Aurora MySQL versions are compatible with parallel query clusters, use
the describe-db-engine-versions AWS CLI command and check the value of the
SupportsParallelQuery field. The following code example shows how to check which
combinations are available for parallel query clusters in a specified AWS Region. Make sure to
specify the full --query parameter string on a single line.

aws rds describe-db-engine-versions --region us-east-1 --engine aurora-mysql \
--query '*[]|[?SupportsParallelQuery == `true`].[EngineVersion]' --output text

The preceding commands produce output similar to the following. The output might vary
depending on which Aurora MySQL versions are available in the specified AWS Region.

5.7.mysql_aurora.2.11.1
8.0.mysql_aurora.3.01.0
8.0.mysql_aurora.3.01.1
8.0.mysql_aurora.3.02.0
8.0.mysql_aurora.3.02.1
8.0.mysql_aurora.3.02.2
8.0.mysql_aurora.3.03.0

After you start using parallel query with a cluster, you can monitor performance and remove
obstacles to parallel query usage. For those instructions, see Performance tuning for parallel query.

Planning for a parallel query cluster 1490

Amazon Aurora User Guide for Aurora

Creating a DB cluster that works with parallel query

To create an Aurora MySQL cluster with parallel query, add new instances to it, or perform other
administrative operations, you use the same AWS Management Console and AWS CLI techniques
that you do with other Aurora MySQL clusters. You can create a new cluster to work with parallel
query. You can also create a DB cluster to work with parallel query by restoring from a snapshot
of a MySQL-compatible Aurora DB cluster. If you aren't familiar with the process for creating a
new Aurora MySQL cluster, you can find background information and prerequisites in Creating an
Amazon Aurora DB cluster.

When you choose an Aurora MySQL engine version, we recommend that you choose the latest one
available. Currently, Aurora MySQL versions 2.09 and higher support parallel query. You have more
flexibility to turn parallel query on and off, or use parallel query with existing clusters, if you use
Aurora MySQL 2.09 and higher.

Whether you create a new cluster or restore from a snapshot, you use the same techniques to add
new DB instances that you do with other Aurora MySQL clusters.

Creating a parallel query cluster using the console

You can create a new parallel query cluster with the console as described following.

To create a parallel query cluster with the AWS Management Console

1. Follow the general AWS Management Console procedure in Creating an Amazon Aurora DB
cluster.

2. On the Select engine screen, choose Aurora MySQL.

For Engine version, choose Aurora MySQL 2.09 or higher. With these versions, you have the
fewest limitations on parallel query usage. Those versions also have the most flexibility to turn
parallel query on or off at any time.

If it isn't practical to use a recent Aurora MySQL version for this cluster, choose Show versions
that support the parallel query feature. Doing so filters the Version menu to show only the
specific Aurora MySQL versions that are compatible with parallel query.

3. For Additional configuration, choose a parameter group that you created for DB cluster
parameter group. Using such a custom parameter group is required for Aurora MySQL
2.09 and higher. In your DB cluster parameter group, specify the parameter settings
aurora_parallel_query=ON and aurora_disable_hash_join=OFF. Doing so turns

Creating a parallel query cluster 1491

Amazon Aurora User Guide for Aurora

on parallel query for the cluster, and turns on the hash join optimization that works in
combination with parallel query.

To verify that a new cluster can use parallel query

1. Create a cluster using the preceding technique.

2. (For Aurora MySQL version 2 or 3) Check that the aurora_parallel_query configuration
setting is true.

mysql> select @@aurora_parallel_query;
+-------------------------+
| @@aurora_parallel_query |
+-------------------------+
| 1 |
+-------------------------+

3. (For Aurora MySQL version 2) Check that the aurora_disable_hash_join setting is false.

mysql> select @@aurora_disable_hash_join;
+----------------------------+
| @@aurora_disable_hash_join |
+----------------------------+
| 0 |
+----------------------------+

4. With some large tables and data-intensive queries, check the query plans to confirm that some
of your queries are using the parallel query optimization. To do so, follow the procedure in
Verifying which statements use parallel query.

Creating a parallel query cluster using the CLI

You can create a new parallel query cluster with the CLI as described following.

To create a parallel query cluster with the AWS CLI

1. (Optional) Check which Aurora MySQL versions are compatible with parallel query clusters.
To do so, use the describe-db-engine-versions command and check the value of
the SupportsParallelQuery field. For an example, see Checking Aurora MySQL version
compatibility for parallel query.

Creating a parallel query cluster 1492

Amazon Aurora User Guide for Aurora

2. (Optional) Create a custom DB cluster parameter group with the settings
aurora_parallel_query=ON and aurora_disable_hash_join=OFF. Use commands
such as the following.

aws rds create-db-cluster-parameter-group --db-parameter-group-family aurora-
mysql5.7 --db-cluster-parameter-group-name pq-enabled-57-compatible
aws rds modify-db-cluster-parameter-group --db-cluster-parameter-group-name pq-
enabled-57-compatible \
 --parameters
 ParameterName=aurora_parallel_query,ParameterValue=ON,ApplyMethod=pending-reboot
aws rds modify-db-cluster-parameter-group --db-cluster-parameter-group-name pq-
enabled-57-compatible \
 --parameters
 ParameterName=aurora_disable_hash_join,ParameterValue=OFF,ApplyMethod=pending-
reboot

If you perform this step, specify the option --db-cluster-parameter-group-name
my_cluster_parameter_group in the subsequent create-db-cluster statement.
Substitute the name of your own parameter group. If you omit this step, you create the
parameter group and associate it with the cluster later, as described in Turning parallel query
on and off.

3. Follow the general AWS CLI procedure in Creating an Amazon Aurora DB cluster.

4. Specify the following set of options:

• For the --engine option, use aurora-mysql. These values produce parallel query clusters
that are compatible with MySQL 5.7 or 8.0.

• For the --db-cluster-parameter-group-name option, specify the name of
a DB cluster parameter group that you created and specified the parameter value
aurora_parallel_query=ON. If you omit this option, you can create the cluster with a
default parameter group and later modify it to use such a custom parameter group.

• For the --engine-version option, use an Aurora MySQL version that's compatible with
parallel query. Use the procedure from Planning for a parallel query cluster to get a list of
versions if necessary. Use at least version 2.09.0. These versions and all higher ones contain
substantial enhancements to parallel query.

The following code example shows how. Substitute your own value for each of the
environment variables such as $CLUSTER_ID. This example also specifies the --manage-
master-user-password option to generate the master user password and manage it in

Creating a parallel query cluster 1493

Amazon Aurora User Guide for Aurora

Secrets Manager. For more information, see Password management with Amazon Aurora
and AWS Secrets Manager. Alternatively, you can use the --master-password option to
specify and manage the password yourself.

aws rds create-db-cluster --db-cluster-identifier $CLUSTER_ID \
 --engine aurora-mysql --engine-version 5.7.mysql_aurora.2.11.1 \
 --master-username $MASTER_USER_ID --manage-master-user-password \
 --db-cluster-parameter-group-name $CUSTOM_CLUSTER_PARAM_GROUP

aws rds create-db-instance --db-instance-identifier ${INSTANCE_ID}-1 \
 --engine same_value_as_in_create_cluster_command \
 --db-cluster-identifier $CLUSTER_ID --db-instance-class $INSTANCE_CLASS

5. Verify that a cluster you created or restored has the parallel query feature available.

Check that the aurora_parallel_query configuration setting exists. If this setting has the
value 1, parallel query is ready for you to use. If this setting has the value 0, set it to 1 before
you can use parallel query. Either way, the cluster is capable of performing parallel queries.

mysql> select @@aurora_parallel_query;
+------------------------+
| @@aurora_parallel_query|
+------------------------+
| 1 |
+------------------------+

To restore a snapshot to a parallel query cluster with the AWS CLI

1. Check which Aurora MySQL versions are compatible with parallel query clusters. To do
so, use the describe-db-engine-versions command and check the value of the
SupportsParallelQuery field. For an example, see Checking Aurora MySQL version
compatibility for parallel query. Decide which version to use for the restored cluster. Choose
Aurora MySQL 2.09.0 or higher for a MySQL 5.7-compatible cluster.

2. Locate an Aurora MySQL-compatible cluster snapshot.

3. Follow the general AWS CLI procedure in Restoring from a DB cluster snapshot.

aws rds restore-db-cluster-from-snapshot \
 --db-cluster-identifier mynewdbcluster \
 --snapshot-identifier mydbclustersnapshot \

Creating a parallel query cluster 1494

Amazon Aurora User Guide for Aurora

 --engine aurora-mysql

4. Verify that a cluster you created or restored has the parallel query feature available. Use the
same verification procedure as in Creating a parallel query cluster using the CLI.

Turning parallel query on and off

When parallel query is turned on, Aurora MySQL determines whether to use it at runtime for each
query. In the case of joins, unions, subqueries, and so on, Aurora MySQL determines whether to
use parallel query at runtime for each query block. For details, see Verifying which statements use
parallel query and How parallel query works with SQL constructs.

You can turn on and turn off parallel query dynamically at both the global and session
level for a DB instance by using the aurora_parallel_query option. You can change the
aurora_parallel_query setting in your DB cluster group to turn parallel query on or off by
default.

mysql> select @@aurora_parallel_query;
+------------------------+
| @@aurora_parallel_query|
+------------------------+
| 1 |
+------------------------+

To toggle the aurora_parallel_query parameter at the session level, use the standard
methods to change a client configuration setting. For example, you can do so through the mysql
command line or within a JDBC or ODBC application. The command on the standard MySQL client
is set session aurora_parallel_query = {'ON'/'OFF'}. You can also add the session-
level parameter to the JDBC configuration or within your application code to turn on or turn off
parallel query dynamically.

You can permanently change the setting for the aurora_parallel_query parameter, either
for a specific DB instance or for your whole cluster. If you specify the parameter value in a DB
parameter group, that value only applies to specific DB instance in your cluster. If you specify the
parameter value in a DB cluster parameter group, all DB instances in the cluster inherit the same
setting. To toggle the aurora_parallel_query parameter, use the techniques for working with
parameter groups, as described in Working with parameter groups. Follow these steps:

1. Create a custom cluster parameter group (recommended) or a custom DB parameter group.

Turning parallel query on and off 1495

Amazon Aurora User Guide for Aurora

2. In this parameter group, update parallel_query to the value that you want.

3. Depending on whether you created a DB cluster parameter group or a DB parameter group,
attach the parameter group to your Aurora cluster or to the specific DB instances where you plan
to use the parallel query feature.

Tip

Because aurora_parallel_query is a dynamic parameter, it doesn't require a cluster
restart after changing this setting. However, any connections that were using parallel
query before toggling the option will continue to do so until the connection is closed, or
the instance is rebooted.

You can modify the parallel query parameter by using the ModifyDBClusterParameterGroup or
ModifyDBParameterGroup API operation or the AWS Management Console.

Turning on hash join for parallel query clusters

Parallel query is typically used for the kinds of resource-intensive queries that benefit from the
hash join optimization. Thus, it's helpful to make sure that hash joins are turned on for clusters
where you plan to use parallel query. For information about how to use hash joins effectively, see
Optimizing large Aurora MySQL join queries with hash joins.

Turning on and turning off parallel query using the console

You can turn on or turn off parallel query at the DB instance level or the DB cluster level by
working with parameter groups.

To turn on or turn off parallel query for a DB cluster with the AWS Management Console

1. Create a custom parameter group, as described in Working with parameter groups.

2. Update aurora_parallel_query to 1 (turned on) or 0 (turned off). For clusters where the
parallel query feature is available, aurora_parallel_query is turned off by default.

3. If you use a custom cluster parameter group, attach it to the Aurora DB cluster where you plan
to use the parallel query feature. If you use a custom DB parameter group, attach it to one or
more DB instances in the cluster. We recommend using a cluster parameter group. Doing so
makes sure that all DB instances in the cluster have the same settings for parallel query and
associated features such as hash join.

Turning parallel query on and off 1496

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBClusterParameterGroup.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBParameterGroup.html

Amazon Aurora User Guide for Aurora

Turning on and turning off parallel query using the CLI

You can modify the parallel query parameter by using the modify-db-cluster-parameter-
group or modify-db-parameter-group command. Choose the appropriate command
depending on whether you specify the value of aurora_parallel_query through a DB cluster
parameter group or a DB parameter group.

To turn on or turn off parallel query for a DB cluster with the CLI

• Modify the parallel query parameter by using the modify-db-cluster-parameter-group
command. Use a command such as the following. Substitute the appropriate name for your
own custom parameter group. Substitute either ON or OFF for the ParameterValue portion
of the --parameters option.

$ aws rds modify-db-cluster-parameter-group --db-cluster-parameter-group-
name cluster_param_group_name \
 --parameters
 ParameterName=aurora_parallel_query,ParameterValue=ON,ApplyMethod=pending-reboot
{
 "DBClusterParameterGroupName": "cluster_param_group_name"
}

aws rds modify-db-cluster-parameter-group --db-cluster-parameter-group-
name cluster_param_group_name \
 --parameters ParameterName=aurora_pq,ParameterValue=ON,ApplyMethod=pending-reboot

You can also turn on or turn off parallel query at the session level, for example through the mysql
command line or within a JDBC or ODBC application. To do so, use the standard methods to
change a client configuration setting. For example, the command on the standard MySQL client is
set session aurora_parallel_query = {'ON'/'OFF'} for Aurora MySQL.

You can also add the session-level parameter to the JDBC configuration or within your application
code to turn on or turn off parallel query dynamically.

Overriding the parallel query optimizer

You can use the aurora_pq_force session variable to override the parallel query optimizer and
request parallel query for every query. We recommend that you do this only for testing purposes
The following example shows how to use aurora_pq_force in a session.

Turning parallel query on and off 1497

Amazon Aurora User Guide for Aurora

set SESSION aurora_parallel_query = ON;
set SESSION aurora_pq_force = ON;

To turn off the override, do the following:

set SESSION aurora_pq_force = OFF;

Upgrade considerations for parallel query

Depending on the original and destination versions when you upgrade a parallel query cluster,
you might find enhancements in the types of queries that parallel query can optimize. You might
also find that you don't need to specify a special engine mode parameter for parallel query. The
following sections explain the considerations when you upgrade a cluster that has parallel query
turned on.

Upgrading parallel query clusters to Aurora MySQL version 3

Several SQL statements, clauses, and data types have new or improved parallel query support
starting in Aurora MySQL version 3. When you upgrade from a release that's earlier than version 3,
check whether additional queries can benefit from parallel query optimizations. For information
about these parallel query enhancements, see Column data types, Partitioned tables, and
Aggregate functions, GROUP BY clauses, and HAVING clauses.

If you're upgrading a parallel query cluster from Aurora MySQL 2.08 or lower, also learn about
changes in how to turn on parallel query. To do so, read Upgrading to Aurora MySQL 2.09 and
higher.

In Aurora MySQL version 3, hash join optimization is turned on by default. The
aurora_disable_hash_join configuration option from earlier versions isn't used.

Upgrading to Aurora MySQL 2.09 and higher

In Aurora MySQL version 2.09 and higher, parallel query works for provisioned clusters and doesn't
require the parallelquery engine mode parameter. Thus, you don't need to create a new cluster
or restore from an existing snapshot to use parallel query with these versions. You can use the
upgrade procedures described in Upgrading the minor version or patch level of an Aurora MySQL
DB cluster to upgrade your cluster to such a version. You can upgrade an older cluster regardless of
whether it was a parallel query cluster or a provisioned cluster. To reduce the number of choices in

Upgrading a parallel query cluster 1498

Amazon Aurora User Guide for Aurora

the Engine version menu, you can choose Show versions that support the parallel query feature
to filter the entries in that menu. Then choose Aurora MySQL 2.09 or higher.

After you upgrade an earlier parallel query cluster to Aurora MySQL 2.09 or higher, you turn on
parallel query in the upgraded cluster. Parallel query is turned off by default in these versions, and
the procedure for enabling it is different. The hash join optimization is also turned off by default
and must be turned on separately. Thus, make sure that you turn on these settings again after the
upgrade. For instructions on doing so, see Turning parallel query on and off and Turning on hash
join for parallel query clusters.

In particular, you turn on parallel query by using the configuration parameters
aurora_parallel_query=ON and aurora_disable_hash_join=OFF instead of
aurora_pq_supported and aurora_pq. The aurora_pq_supported and aurora_pq
parameters are deprecated in the newer Aurora MySQL versions.

In the upgraded cluster, the EngineMode attribute has the value provisioned instead of
parallelquery. To check whether parallel query is available for a specified engine version, now
you check the value of the SupportsParallelQuery field in the output of the describe-db-
engine-versions AWS CLI command. In earlier Aurora MySQL versions, you checked for the
presence of parallelquery in the SupportedEngineModes list.

After you upgrade to Aurora MySQL version 2.09 or higher, you can take advantage of the
following features. These features aren't available to parallel query clusters running older Aurora
MySQL versions.

• Performance Insights. For more information, see Monitoring DB load with Performance Insights
on Amazon Aurora.

• Backtracking. For more information, see Backtracking an Aurora DB cluster.

• Stopping and starting the cluster. For more information, see Stopping and starting an Amazon
Aurora DB cluster.

Performance tuning for parallel query

To manage the performance of a workload with parallel query, make sure that parallel query is
used for the queries where this optimization helps the most.

To do so, you can do the following:

Performance tuning 1499

Amazon Aurora User Guide for Aurora

• Make sure that your biggest tables are compatible with parallel query. You might change table
properties or recreate some tables so that queries for those tables can take advantage of the
parallel query optimization. To learn how, see Creating schema objects to take advantage of
parallel query.

• Monitor which queries use parallel query. To learn how, see Monitoring parallel query.

• Verify that parallel query is being used for the most data-intensive and long-running queries,
and with the right level of concurrency for your workload. To learn how, see Verifying which
statements use parallel query.

• Fine-tune your SQL code to turn on parallel query to apply to the queries that you expect. To
learn how, see How parallel query works with SQL constructs.

Creating schema objects to take advantage of parallel query

Before you create or modify tables that you plan to use for parallel query, make sure to familiarize
yourself with the requirements described in Prerequisites and Limitations.

Because parallel query requires tables to use the ROW_FORMAT=Compact or
ROW_FORMAT=Dynamic setting, check your Aurora configuration settings for any changes to
the INNODB_FILE_FORMAT configuration option. Issue the SHOW TABLE STATUS statement to
confirm the row format for all the tables in a database.

Before changing your schema to turn on parallel query to work with more tables, make sure to test.
Your tests should confirm if parallel query results in a net increase in performance for those tables.
Also, make sure that the schema requirements for parallel query are otherwise compatible with
your goals.

For example, before switching from ROW_FORMAT=Compressed to ROW_FORMAT=Compact or
ROW_FORMAT=Dynamic, test the performance of workloads for the original and new tables. Also,
consider other potential effects such as increased data volume.

Verifying which statements use parallel query

In typical operation, you don't need to perform any special actions to take advantage of parallel
query. After a query meets the essential requirements for parallel query, the query optimizer
automatically decides whether to use parallel query for each specific query.

If you run experiments in a development or test environment, you might find that parallel query
isn't used because your tables are too small in number of rows or overall data volume. The data for

Creating schema objects 1500

Amazon Aurora User Guide for Aurora

the table might also be entirely in the buffer pool, especially for tables that you created recently to
perform experiments.

As you monitor or tune cluster performance, make sure to decide whether parallel query is being
used in the appropriate contexts. You might adjust the database schema, settings, SQL queries, or
even the cluster topology and application connection settings to take advantage of this feature.

To check if a query is using parallel query, check the query plan (also known as the "explain plan")
by running the EXPLAIN statement. For examples of how SQL statements, clauses, and expressions
affect EXPLAIN output for parallel query, see How parallel query works with SQL constructs.

The following example demonstrates the difference between a traditional query plan and a parallel
query plan. This explain plan is from Query 3 from the TPC-H benchmark. Many of the sample
queries throughout this section use the tables from the TPC-H dataset. You can get the table
definitions, queries, and the dbgen program that generates sample data from the TPC-h website.

EXPLAIN SELECT l_orderkey,
 sum(l_extendedprice * (1 - l_discount)) AS revenue,
 o_orderdate,
 o_shippriority
FROM customer,
 orders,
 lineitem
WHERE c_mktsegment = 'AUTOMOBILE'
AND c_custkey = o_custkey
AND l_orderkey = o_orderkey
AND o_orderdate < date '1995-03-13'
AND l_shipdate > date '1995-03-13'
GROUP BY l_orderkey,
 o_orderdate,
 o_shippriority
ORDER BY revenue DESC,
 o_orderdate LIMIT 10;

By default, the query might have a plan like the following. If you don't see hash join used in the
query plan, make sure that optimization is turned on first.

+----+-------------+----------+------------+------+---------------+------+---------
+------+----------+----------+--+
| id | select_type | table | partitions | type | possible_keys | key | key_len |
 ref | rows | filtered | Extra |

Verifying parallel query usage 1501

https://dev.mysql.com/doc/refman/5.7/en/execution-plan-information.html
http://www.tpc.org/tpch/

Amazon Aurora User Guide for Aurora

+----+-------------+----------+------------+------+---------------+------+---------
+------+----------+----------+--+
| 1 | SIMPLE | customer | NULL | ALL | NULL | NULL | NULL |
 NULL | 1480234 | 10.00 | Using where; Using temporary; Using filesort |
| 1 | SIMPLE | orders | NULL | ALL | NULL | NULL | NULL |
 NULL | 14875240 | 3.33 | Using where; Using join buffer (Block Nested Loop) |
| 1 | SIMPLE | lineitem | NULL | ALL | NULL | NULL | NULL |
 NULL | 59270573 | 3.33 | Using where; Using join buffer (Block Nested Loop) |
+----+-------------+----------+------------+------+---------------+------+---------
+------+----------+----------+--+

For Aurora MySQL version 3, you turn on hash join at the session level by issuing the following
statement.

SET optimizer_switch='block_nested_loop=on';

For Aurora MySQL version 2.09 and higher, you set the aurora_disable_hash_join DB
parameter or DB cluster parameter to 0 (off). Turning off aurora_disable_hash_join sets the
value of optimizer_switch to hash_join=on.

After you turn on hash join, try running the EXPLAIN statement again. For information about how
to use hash joins effectively, see Optimizing large Aurora MySQL join queries with hash joins.

With hash join turned on but parallel query turned off, the query might have a plan like the
following, which uses hash join but not parallel query.

+----+-------------+----------+...+-----------
+---+
| id | select_type | table |...| rows | Extra
 |
+----+-------------+----------+...+-----------
+---+
| 1 | SIMPLE | customer |...| 5798330 | Using where; Using index; Using
 temporary; Using filesort |
| 1 | SIMPLE | orders |...| 154545408 | Using where; Using join buffer (Hash
 Join Outer table orders) |
| 1 | SIMPLE | lineitem |...| 606119300 | Using where; Using join buffer (Hash
 Join Outer table lineitem) |
+----+-------------+----------+...+-----------
+---+

Verifying parallel query usage 1502

Amazon Aurora User Guide for Aurora

After parallel query is turned on, two steps in this query plan can use the parallel query
optimization, as shown under the Extra column in the EXPLAIN output. The I/O-intensive and
CPU-intensive processing for those steps is pushed down to the storage layer.

+----+...
+--
+
| id |...| Extra
 |
+----+...
+--
+
| 1 |...| Using where; Using index; Using temporary; Using filesort
 |
| 1 |...| Using where; Using join buffer (Hash Join Outer table orders); Using
 parallel query (4 columns, 1 filters, 1 exprs; 0 extra) |
| 1 |...| Using where; Using join buffer (Hash Join Outer table lineitem); Using
 parallel query (4 columns, 1 filters, 1 exprs; 0 extra) |
+----+...
+--
+

For information about how to interpret EXPLAIN output for a parallel query and the parts of SQL
statements that parallel query can apply to, see How parallel query works with SQL constructs.

The following example output shows the results of running the preceding query on a db.r4.2xlarge
instance with a cold buffer pool. The query runs substantially faster when using parallel query.

Note

Because timings depend on many environmental factors, your results might be different.
Always conduct your own performance tests to confirm the findings with your own
environment, workload, and so on.

-- Without parallel query
+------------+-------------+-------------+----------------+
| l_orderkey | revenue | o_orderdate | o_shippriority |
+------------+-------------+-------------+----------------+
| 92511430 | 514726.4896 | 1995-03-06 | 0 |
.

Verifying parallel query usage 1503

Amazon Aurora User Guide for Aurora

.
| 28840519 | 454748.2485 | 1995-03-08 | 0 |
+------------+-------------+-------------+----------------+
10 rows in set (24 min 49.99 sec)

-- With parallel query
+------------+-------------+-------------+----------------+
| l_orderkey | revenue | o_orderdate | o_shippriority |
+------------+-------------+-------------+----------------+
| 92511430 | 514726.4896 | 1995-03-06 | 0 |
.
.
| 28840519 | 454748.2485 | 1995-03-08 | 0 |
+------------+-------------+-------------+----------------+
10 rows in set (1 min 49.91 sec)

Many of the sample queries throughout this section use the tables from this TPC-H dataset,
particularly the PART table, which has 20 million rows and the following definition.

+---------------+---------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+---------------+---------------+------+-----+---------+-------+
p_partkey	int(11)	NO	PRI	NULL	
p_name	varchar(55)	NO		NULL	
p_mfgr	char(25)	NO		NULL	
p_brand	char(10)	NO		NULL	
p_type	varchar(25)	NO		NULL	
p_size	int(11)	NO		NULL	
p_container	char(10)	NO		NULL	
p_retailprice	decimal(15,2)	NO		NULL	
p_comment	varchar(23)	NO		NULL	
+---------------+---------------+------+-----+---------+-------+

Experiment with your workload to get a sense of whether individual SQL statements can take
advantage of parallel query. Then use the following monitoring techniques to help verify how
often parallel query is used in real workloads over time. For real workloads, extra factors such as
concurrency limits apply.

Verifying parallel query usage 1504

Amazon Aurora User Guide for Aurora

Monitoring parallel query

If your Aurora MySQL cluster uses parallel query, you might see an increase in VolumeReadIOPS
values. Parallel queries don't use the buffer pool. Thus, although the queries are fast, this
optimized processing can result in an increase in read operations and associated charges.

In addition to the Amazon CloudWatch metrics described in Viewing metrics in the Amazon RDS
console, Aurora provides other global status variables. You can use these global status variables
to help monitor parallel query execution. They can give you insights into why the optimizer might
use or not use parallel query in a given situation. To access these variables, you can use the SHOW
GLOBAL STATUS command. You can also find these variables listed following.

A parallel query session isn't necessarily a one-to-one mapping with the queries performed by
the database. For example, suppose that your query plan has two steps that use parallel query. In
that case, the query involves two parallel sessions and the counters for requests attempted and
requests successful are incremented by two.

When you experiment with parallel query by issuing EXPLAIN statements, expect to see increases
in the counters designated as "not chosen" even though the queries aren't actually running.
When you work with parallel query in production, you can check if the "not chosen" counters are
increasing faster than you expect. At this point, you can adjust so that parallel query runs for the
queries that you expect. To do so, you can change your cluster settings, query mix, DB instances
where parallel query is turned on, and so on.

These counters are tracked at the DB instance level. When you connect to a different endpoint,
you might see different metrics because each DB instance runs its own set of parallel queries. You
might also see different metrics when the reader endpoint connects to a different DB instance for
each session.

Name Description

Aurora_pq_bytes_returned The number of bytes for the tuple data
structures transmitted to the head node
during parallel queries. Divide by 16,384 to
compare against Aurora_pq_pages_pu
shed_down .

Aurora_pq_max_concurrent_re
quests

The maximum number of parallel query
sessions that can run concurrently on this

Monitoring 1505

https://dev.mysql.com/doc/refman/5.7/en/server-status-variables.html
https://dev.mysql.com/doc/refman/5.7/en/server-status-variables.html

Amazon Aurora User Guide for Aurora

Name Description

Aurora DB instance. This is a fixed number that
depends on the AWS DB instance class.

Aurora_pq_pages_pushed_down The number of data pages (each with a fixed
size of 16 KiB) where parallel query avoided a
network transmission to the head node.

Aurora_pq_request_attempted The number of parallel query sessions
requested. This value might represent more
than one session per query, depending on SQL
constructs such as subqueries and joins.

Aurora_pq_request_executed The number of parallel query sessions run
successfully.

Aurora_pq_request_failed The number of parallel query sessions that
returned an error to the client. In some cases,
a request for a parallel query might fail, for
example due to a problem in the storage layer.
In these cases, the query part that failed is
retried using the nonparallel query mechanism
. If the retried query also fails, an error is
returned to the client and this counter is
incremented.

Aurora_pq_request_in_progress The number of parallel query sessions
currently in progress. This number applies to
the particular Aurora DB instance that you are
connected to, not the entire Aurora DB cluster.
To see if a DB instance is close to its concurren
cy limit, compare this value to Aurora_pq
_max_concurrent_requests .

Monitoring 1506

Amazon Aurora User Guide for Aurora

Name Description

Aurora_pq_request_not_chosen The number of times parallel query wasn't
chosen to satisfy a query. This value is the
sum of several other more granular counters.
An EXPLAIN statement can increment this
counter even though the query isn't actually
performed.

Aurora_pq_request_not_chose
n_below_min_rows

The number of times parallel query wasn't
chosen due to the number of rows in the
table. An EXPLAIN statement can increment
this counter even though the query isn't
actually performed.

Aurora_pq_request_not_chose
n_column_bit

The number of parallel query requests that
use the nonparallel query processing path
because of an unsupported data type in the
list of projected columns.

Aurora_pq_request_not_chose
n_column_geometry

The number of parallel query requests that
use the nonparallel query processing path
because the table has columns with the
GEOMETRY data type. For information about
Aurora MySQL versions that remove this
limitation, see Upgrading parallel query
clusters to Aurora MySQL version 3.

Aurora_pq_request_not_chose
n_column_lob

The number of parallel query requests that
use the nonparallel query processing path
because the table has columns with a LOB
data type, or VARCHAR columns that are
stored externally due to the declared length.
For information about Aurora MySQL versions
that remove this limitation, see Upgrading
parallel query clusters to Aurora MySQL
version 3.

Monitoring 1507

Amazon Aurora User Guide for Aurora

Name Description

Aurora_pq_request_not_chose
n_column_virtual

The number of parallel query requests that
use the nonparallel query processing path
because the table contains a virtual column.

Aurora_pq_request_not_chose
n_custom_charset

The number of parallel query requests that
use the nonparallel query processing path
because the table has columns with a custom
character set.

Aurora_pq_request_not_chose
n_fast_ddl

The number of parallel query requests that
use the nonparallel query processing path
because the table is currently being altered by
a fast DDL ALTER statement.

Aurora_pq_request_not_chosen_
few_pages_outside_buffer_pool

The number of times parallel query wasn't
chosen, even though less than 95 percent of
the table data was in the buffer pool, because
there wasn't enough unbuffered table data to
make parallel query worthwhile.

Aurora_pq_request_not_chose
n_full_text_index

The number of parallel query requests that
use the nonparallel query processing path
because the table has full-text indexes.

Aurora_pq_request_not_chosen_
high_buffer_pool_pct

The number of times parallel query wasn't
chosen because a high percentage of the table
data (currently, greater than 95 percent) was
already in the buffer pool. In these cases,
the optimizer determines that reading the
data from the buffer pool is more efficient
. An EXPLAIN statement can increment this
counter even though the query isn't actually
performed.

Monitoring 1508

Amazon Aurora User Guide for Aurora

Name Description

Aurora_pq_request_not_chose
n_index_hint

The number of parallel query requests that
use the nonparallel query processing path
because the query includes an index hint.

Aurora_pq_request_not_chose
n_innodb_table_format

The number of parallel query requests that
use the nonparallel query processing path
because the table uses an unsupported
InnoDB row format. Aurora parallel query only
applies to the COMPACT, REDUNDANT , and
DYNAMIC row formats.

Aurora_pq_request_not_chose
n_long_trx

The number of parallel query requests that
used the nonparallel query processing path,
due to the query being started inside a long-
running transaction. An EXPLAIN statement
can increment this counter even though the
query isn't actually performed.

Aurora_pq_request_not_chose
n_no_where_clause

The number of parallel query requests that
use the nonparallel query processing path
because the query doesn't include any WHERE
clause.

Aurora_pq_request_not_chose
n_range_scan

The number of parallel query requests that
use the nonparallel query processing path
because the query uses a range scan on an
index.

Aurora_pq_request_not_chose
n_row_length_too_long

The number of parallel query requests that
use the nonparallel query processing path
because the total combined length of all the
columns is too long.

Monitoring 1509

Amazon Aurora User Guide for Aurora

Name Description

Aurora_pq_request_not_chose
n_small_table

The number of times parallel query wasn't
chosen due to the overall size of the table, as
determined by number of rows and average
row length. An EXPLAIN statement can
increment this counter even though the query
isn't actually performed.

Aurora_pq_request_not_chose
n_temporary_table

The number of parallel query requests that
use the nonparallel query processing path
because the query refers to temporary tables
that use the unsupported MyISAM or memory
table types.

Aurora_pq_request_not_chose
n_tx_isolation

The number of parallel query requests that
use the nonparallel query processing path
because query uses an unsupported transacti
on isolation level. On reader DB instances,
parallel query only applies to the REPEATABL
E READ and READ COMMITTED isolation
levels.

Aurora_pq_request_not_chose
n_update_delete_stmts

The number of parallel query requests that
use the nonparallel query processing path
because the query is part of an UPDATE or
DELETE statement.

Aurora_pq_request_not_chose
n_unsupported_access

The number of parallel query requests that
use the nonparallel query processing path
because the WHERE clause doesn't meet the
criteria for parallel query. This result can occur
if the query doesn't require a data-intensive
scan, or if the query is a DELETE or UPDATE
statement.

Monitoring 1510

Amazon Aurora User Guide for Aurora

Name Description

Aurora_pq_request_not_chose
n_unsupported_storage_type

The number of parallel query requests that
use the nonparallel query processing path
because the Aurora MySQL DB cluster isn't
using a supported Aurora cluster storage
configuration. This parameter is available in
Aurora MySQL version 3.04 and higher. For
more information, see Limitations.

Aurora_pq_request_throttled The number of times parallel query wasn't
chosen due to the maximum number of
concurrent parallel queries already running on
a particular Aurora DB instance.

How parallel query works with SQL constructs

In the following section, you can find more detail about why particular SQL statements use or don't
use parallel query. This section also details how Aurora MySQL features interact with parallel query.
This information can help you diagnose performance issues for a cluster that uses parallel query or
understand how parallel query applies for your particular workload.

The decision to use parallel query relies on many factors that occur at the moment that the
statement runs. Thus, parallel query might be used for certain queries always, never, or only under
certain conditions.

Tip

When you view these examples in HTML, you can use the Copy widget in the upper-right
corner of each code listing to copy the SQL code to try yourself. Using the Copy widget
avoids copying the extra characters around the mysql> prompt and -> continuation lines.

Topics

• EXPLAIN statement

• WHERE clause

• Data definition language (DDL)

Parallel query and SQL constructs 1511

Amazon Aurora User Guide for Aurora

• Column data types

• Partitioned tables

• Aggregate functions, GROUP BY clauses, and HAVING clauses

• Function calls in WHERE clause

• LIMIT clause

• Comparison operators

• Joins

• Subqueries

• UNION

• Views

• Data manipulation language (DML) statements

• Transactions and locking

• B-tree indexes

• Full-text search (FTS) indexes

• Virtual columns

• Built-in caching mechanisms

• Optimizer hints

• MyISAM temporary tables

EXPLAIN statement

As shown in examples throughout this section, the EXPLAIN statement indicates whether each
stage of a query is currently eligible for parallel query. It also indicates which aspects of a query
can be pushed down to the storage layer. The most important items in the query plan are the
following:

• A value other than NULL for the key column suggests that the query can be performed
efficiently using index lookups, and parallel query is unlikely.

• A small value for the rows column (a value not in the millions) suggests that the query isn't
accessing enough data to make parallel query worthwhile. This means that parallel query is
unlikely.

• The Extra column shows you if parallel query is expected to be used. This output looks like the
following example.

Parallel query and SQL constructs 1512

Amazon Aurora User Guide for Aurora

Using parallel query (A columns, B filters, C exprs; D extra)

The columns number represents how many columns are referred to in the query block.

The filters number represents the number of WHERE predicates representing a simple
comparison of a column value to a constant. The comparison can be for equality, inequality, or a
range. Aurora can parallelize these kinds of predicates most effectively.

The exprs number represents the number of expressions such as function calls, operators, or
other expressions that can also be parallelized, though not as effectively as a filter condition.

The extra number represents how many expressions can't be pushed down and are performed
by the head node.

For example, consider the following EXPLAIN output.

mysql> explain select p_name, p_mfgr from part
 -> where p_brand is not null
 -> and upper(p_type) is not null
 -> and round(p_retailprice) is not null;
+----+-------------+-------+...+----------
+--+
| id | select_type | table |...| rows | Extra
 |
+----+-------------+-------+...+----------
+--+
| 1 | SIMPLE | part |...| 20427936 | Using where; Using parallel query (5
 columns, 1 filters, 2 exprs; 0 extra) |
+----+-------------+-------+...+----------
+--+

The information from the Extra column shows that five columns are extracted from each row to
evaluate the query conditions and construct the result set. One WHERE predicate involves a filter,
that is, a column that is directly tested in the WHERE clause. Two WHERE clauses require evaluating
more complicated expressions, in this case involving function calls. The 0 extra field confirms
that all the operations in the WHERE clause are pushed down to the storage layer as part of parallel
query processing.

Parallel query and SQL constructs 1513

Amazon Aurora User Guide for Aurora

In cases where parallel query isn't chosen, you can typically deduce the reason from the other
columns of the EXPLAIN output. For example, the rows value might be too small, or the
possible_keys column might indicate that the query can use an index lookup instead of a data-
intensive scan. The following example shows a query where the optimizer can estimate that the
query will scan only a small number of rows. It does so based on the characteristics of the primary
key. In this case, parallel query isn't required.

mysql> explain select count(*) from part where p_partkey between 1 and 100;
+----+-------------+-------+-------+---------------+---------+---------+------+------
+--------------------------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows |
 Extra |
+----+-------------+-------+-------+---------------+---------+---------+------+------
+--------------------------+
| 1 | SIMPLE | part | range | PRIMARY | PRIMARY | 4 | NULL | 99 |
 Using where; Using index |
+----+-------------+-------+-------+---------------+---------+---------+------+------
+--------------------------+

The output showing whether parallel query will be used takes into account all available factors at
the moment that the EXPLAIN statement is run. The optimizer might make a different choice when
the query is actually run, if the situation changed in the meantime. For example, EXPLAIN might
report that a statement will use parallel query. But when the query is actually run later, it might
not use parallel query based on the conditions then. Such conditions can include several other
parallel queries running concurrently. They can also include rows being deleted from the table, a
new index being created, too much time passing within an open transaction, and so on.

WHERE clause

For a query to use the parallel query optimization, it must include a WHERE clause.

The parallel query optimization speeds up many kinds of expressions used in the WHERE clause:

• Simple comparisons of a column value to a constant, known as filters. These comparisons benefit
the most from being pushed down to the storage layer. The number of filter expressions in a
query is reported in the EXPLAIN output.

• Other kinds of expressions in the WHERE clause are also pushed down to the storage layer where
possible. The number of such expressions in a query is reported in the EXPLAIN output. These
expressions can be function calls, LIKE operators, CASE expressions, and so on.

Parallel query and SQL constructs 1514

Amazon Aurora User Guide for Aurora

• Certain functions and operators aren't currently pushed down by parallel query. The number of
such expressions in a query is reported as the extra counter in the EXPLAIN output. The rest of
the query can still use parallel query.

• While expressions in the select list aren't pushed down, queries containing such functions can
still benefit from reduced network traffic for the intermediate results of parallel queries. For
example, queries that call aggregation functions in the select list can benefit from parallel query,
even though the aggregation functions aren't pushed down.

For example, the following query does a full-table scan and processes all the values for the
P_BRAND column. However, it doesn't use parallel query because the query doesn't include any
WHERE clause.

mysql> explain select count(*), p_brand from part group by p_brand;
+----+-------------+-------+------+---------------+------+---------+------+----------
+---------------------------------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows |
 Extra |
+----+-------------+-------+------+---------------+------+---------+------+----------
+---------------------------------+
| 1 | SIMPLE | part | ALL | NULL | NULL | NULL | NULL | 20427936 |
 Using temporary; Using filesort |
+----+-------------+-------+------+---------------+------+---------+------+----------
+---------------------------------+

In contrast, the following query includes WHERE predicates that filter the results, so parallel query
can be applied:

mysql> explain select count(*), p_brand from part where p_name is not null
 -> and p_mfgr in ('Manufacturer#1', 'Manufacturer#3') and p_retailprice > 1000
 -> group by p_brand;
+----+...+----------
+---
+
| id |...| rows | Extra
 |
+----+...+----------
+---
+
| 1 |...| 20427936 | Using where; Using temporary; Using filesort; Using parallel
 query (5 columns, 1 filters, 2 exprs; 0 extra) |

Parallel query and SQL constructs 1515

Amazon Aurora User Guide for Aurora

+----+...+----------
+---
+

If the optimizer estimates that the number of returned rows for a query block is small, parallel
query isn't used for that query block. The following example shows a case where a greater-than
operator on the primary key column applies to millions of rows, which causes parallel query to be
used. The converse less-than test is estimated to apply to only a few rows and doesn't use parallel
query.

mysql> explain select count(*) from part where p_partkey > 10;
+----+...+----------
+--+
| id |...| rows | Extra
 |
+----+...+----------
+--+
| 1 |...| 20427936 | Using where; Using parallel query (1 columns, 1 filters, 0 exprs;
 0 extra) |
+----+...+----------
+--+

mysql> explain select count(*) from part where p_partkey < 10;
+----+...+------+--------------------------+
| id |...| rows | Extra |
+----+...+------+--------------------------+
| 1 |...| 9 | Using where; Using index |
+----+...+------+--------------------------+

Data definition language (DDL)

In Aurora MySQL version 2, parallel query is only available for tables for which no fast data
definition language (DDL) operations are pending. In Aurora MySQL version 3, you can use parallel
query on a table at the same time as an instant DDL operation.

Instant DDL in Aurora MySQL version 3 replaces the fast DDL feature in Aurora MySQL version 2.
For information about instant DDL, see Instant DDL (Aurora MySQL version 3).

Column data types

In Aurora MySQL version 3, parallel query can work with tables containing columns with data
types TEXT, BLOB, JSON, and GEOMETRY. It can also work with VARCHAR and CHAR columns with a

Parallel query and SQL constructs 1516

Amazon Aurora User Guide for Aurora

maximum declared length longer than 768 bytes. If your query refers to any columns containing
such large object types, the additional work to retrieve them does add some overhead to query
processing. In that case, check if the query can omit the references to those columns. If not, run
benchmarks to confirm if such queries are faster with parallel query turned on or turned off.

In Aurora MySQL version 2, parallel query has these limitations for large object types:

• TEXT, BLOB, JSON, and GEOMETRY data types aren't supported with parallel query. A query that
refers to any columns of these types can't use parallel query.

• Variable-length columns (VARCHAR and CHAR data types) are compatible with parallel query up
to a maximum declared length of 768 bytes. A query that refers to any columns of the types
declared with a longer maximum length can't use parallel query. For columns that use multibyte
character sets, the byte limit takes into account the maximum number of bytes in the character
set. For example, for the character set utf8mb4 (which has a maximum character length of 4
bytes), a VARCHAR(192) column is compatible with parallel query but a VARCHAR(193) column
isn't.

Partitioned tables

You can use partitioned tables with parallel query in Aurora MySQL version 3. Because partitioned
tables are represented internally as multiple smaller tables, a query that uses parallel query
on a nonpartitioned table might not use parallel query on an identical partitioned table.
Aurora MySQL considers whether each partition is large enough to qualify for the parallel
query optimization, instead of evaluating the size of the entire table. Check whether the
Aurora_pq_request_not_chosen_small_table status variable is incremented if a query on a
partitioned table doesn't use parallel query when you expect it to.

For example, consider one table partitioned with PARTITION BY HASH (column) PARTITIONS
2 and another table partitioned with PARTITION BY HASH (column) PARTITIONS 10.
In the table with two partititions, the partitions are five times as large as the table with ten
partitions. Thus, parallel query is more likely to be used for queries against the table with fewer
partitions. In the following example, the table PART_BIG_PARTITIONS has two partitions and
PART_SMALL_PARTITIONS has ten partitions. With identical data, parallel query is more likely to
be used for the table with fewer big partitions.

mysql> explain select count(*), p_brand from part_big_partitions where p_name is not
 null

Parallel query and SQL constructs 1517

Amazon Aurora User Guide for Aurora

 -> and p_mfgr in ('Manufacturer#1', 'Manufacturer#3') and p_retailprice > 1000
 group by p_brand;
+----+-------------+---------------------+------------
+---
+
| id | select_type | table | partitions | Extra
 |
+----+-------------+---------------------+------------
+---
+
| 1 | SIMPLE | part_big_partitions | p0,p1 | Using where; Using temporary;
 Using parallel query (4 columns, 1 filters, 1 exprs; 0 extra; 1 group-bys, 1 aggrs) |
+----+-------------+---------------------+------------
+---
+

mysql> explain select count(*), p_brand from part_small_partitions where p_name is not
 null
 -> and p_mfgr in ('Manufacturer#1', 'Manufacturer#3') and p_retailprice > 1000
 group by p_brand;
+----+-------------+-----------------------+-------------------------------
+------------------------------+
| id | select_type | table | partitions | Extra
 |
+----+-------------+-----------------------+-------------------------------
+------------------------------+
| 1 | SIMPLE | part_small_partitions | p0,p1,p2,p3,p4,p5,p6,p7,p8,p9 | Using
 where; Using temporary |
+----+-------------+-----------------------+-------------------------------
+------------------------------+

Aggregate functions, GROUP BY clauses, and HAVING clauses

Queries involving aggregate functions are often good candidates for parallel query, because they
involve scanning large numbers of rows within large tables.

In Aurora MySQL 3, parallel query can optimize aggregate function calls in the select list and the
HAVING clause.

Before Aurora MySQL 3, aggregate function calls in the select list or the HAVING clause aren't
pushed down to the storage layer. However, parallel query can still improve the performance of
such queries with aggregate functions. It does so by first extracting column values from the raw
data pages in parallel at the storage layer. It then transmits those values back to the head node in

Parallel query and SQL constructs 1518

Amazon Aurora User Guide for Aurora

a compact tuple format instead of as entire data pages. As always, the query requires at least one
WHERE predicate for parallel query to be activated.

The following simple examples illustrate the kinds of aggregate queries that can benefit from
parallel query. They do so by returning intermediate results in compact form to the head node,
filtering nonmatching rows from the intermediate results, or both.

mysql> explain select sql_no_cache count(distinct p_brand) from part where p_mfgr =
 'Manufacturer#5';
+----+...+--+
| id |...| Extra |
+----+...+--+
| 1 |...| Using where; Using parallel query (2 columns, 1 filters, 0 exprs; 0 extra) |
+----+...+--+

mysql> explain select sql_no_cache p_mfgr from part where p_retailprice > 1000 group by
 p_mfgr having count(*) > 100;
+----+...
+---
+
| id |...| Extra
 |
+----+...
+---
+
| 1 |...| Using where; Using temporary; Using filesort; Using parallel query (3
 columns, 0 filters, 1 exprs; 0 extra) |
+----+...
+---
+

Function calls in WHERE clause

Aurora can apply the parallel query optimization to calls to most built-in functions in the WHERE
clause. Parallelizing these function calls offloads some CPU work from the head node. Evaluating
the predicate functions in parallel during the earliest query stage helps Aurora minimize the
amount of data transmitted and processed during later stages.

Currently, the parallelization doesn't apply to function calls in the select list. Those functions
are evaluated by the head node, even if identical function calls appear in the WHERE clause. The
original values from relevant columns are included in the tuples transmitted from the storage

Parallel query and SQL constructs 1519

Amazon Aurora User Guide for Aurora

nodes back to the head node. The head node performs any transformations such as UPPER,
CONCATENATE, and so on to produce the final values for the result set.

In the following example, parallel query parallelizes the call to LOWER because it appears in the
WHERE clause. Parallel query doesn't affect the calls to SUBSTR and UPPER because they appear in
the select list.

mysql> explain select sql_no_cache distinct substr(upper(p_name),1,5) from part
 -> where lower(p_name) like '%cornflower%' or lower(p_name) like '%goldenrod%';
+----+...
+---
+
| id |...| Extra
 |
+----+...
+---
+
| 1 |...| Using where; Using temporary; Using parallel query (2 columns, 0 filters, 1
 exprs; 0 extra) |
+----+...
+---
+

The same considerations apply to other expressions, such as CASE expressions or LIKE operators.
For example, the following example shows that parallel query evaluates the CASE expression and
LIKE operators in the WHERE clause.

mysql> explain select p_mfgr, p_retailprice from part
 -> where p_retailprice > case p_mfgr
 -> when 'Manufacturer#1' then 1000
 -> when 'Manufacturer#2' then 1200
 -> else 950
 -> end
 -> and p_name like '%vanilla%'
 -> group by p_retailprice;
+----+...
+---
+
| id |...| Extra
 |

Parallel query and SQL constructs 1520

Amazon Aurora User Guide for Aurora

+----+...
+---
+
| 1 |...| Using where; Using temporary; Using filesort; Using parallel query (4
 columns, 0 filters, 2 exprs; 0 extra) |
+----+...
+---
+

LIMIT clause

Currently, parallel query isn't used for any query block that includes a LIMIT clause. Parallel query
might still be used for earlier query phases with GROUP by, ORDER BY, or joins.

Comparison operators

The optimizer estimates how many rows to scan to evaluate comparison operators, and determines
whether to use parallel query based on that estimate.

The first example following shows that an equality comparison against the primary key column
can be performed efficiently without parallel query. The second example following shows that a
similar comparison against an unindexed column requires scanning millions of rows and therefore
can benefit from parallel query.

mysql> explain select * from part where p_partkey = 10;
+----+...+------+-------+
| id |...| rows | Extra |
+----+...+------+-------+
| 1 |...| 1 | NULL |
+----+...+------+-------+

mysql> explain select * from part where p_type = 'LARGE BRUSHED BRASS';
+----+...+----------
+--+
| id |...| rows | Extra
 |
+----+...+----------
+--+
| 1 |...| 20427936 | Using where; Using parallel query (9 columns, 1 filters, 0 exprs;
 0 extra) |
+----+...+----------
+--+

Parallel query and SQL constructs 1521

Amazon Aurora User Guide for Aurora

The same considerations apply for not-equals tests and for range comparisons such as less than,
greater than or equal to, or BETWEEN. The optimizer estimates the number of rows to scan, and
determines whether parallel query is worthwhile based on the overall volume of I/O.

Joins

Join queries with large tables typically involve data-intensive operations that benefit from the
parallel query optimization. The comparisons of column values between multiple tables (that is,
the join predicates themselves) currently aren't parallelized. However, parallel query can push
down some of the internal processing for other join phases, such as constructing the Bloom filter
during a hash join. Parallel query can apply to join queries even without a WHERE clause. Therefore,
a join query is an exception to the rule that a WHERE clause is required to use parallel query.

Each phase of join processing is evaluated to check if it is eligible for parallel query. If more than
one phase can use parallel query, these phases are performed in sequence. Thus, each join query
counts as a single parallel query session in terms of concurrency limits.

For example, when a join query includes WHERE predicates to filter the rows from one of the joined
tables, that filtering option can use parallel query. As another example, suppose that a join query
uses the hash join mechanism, for example to join a big table with a small table. In this case, the
table scan to produce the Bloom filter data structure might be able to use parallel query.

Note

Parallel query is typically used for the kinds of resource-intensive queries that benefit
from the hash join optimization. The method for turning on the hash join optimization
depends on the Aurora MySQL version. For details for each version, see Turning on hash
join for parallel query clusters. For information about how to use hash joins effectively, see
Optimizing large Aurora MySQL join queries with hash joins.

mysql> explain select count(*) from orders join customer where o_custkey = c_custkey;
+----+...+----------+-------+---------------+-------------+...+-----------
+---
+
| id |...| table | type | possible_keys | key |...| rows | Extra

 |

Parallel query and SQL constructs 1522

Amazon Aurora User Guide for Aurora

+----+...+----------+-------+---------------+-------------+...+-----------
+---
+
| 1 |...| customer | index | PRIMARY | c_nationkey |...| 15051972 | Using index

 |
| 1 |...| orders | ALL | o_custkey | NULL |...| 154545408 | Using join
 buffer (Hash Join Outer table orders); Using parallel query (1 columns, 0 filters, 1
 exprs; 0 extra) |
+----+...+----------+-------+---------------+-------------+...+-----------
+---
+

For a join query that uses the nested loop mechanism, the outermost nested loop block might
use parallel query. The use of parallel query depends on the same factors as usual, such as the
presence of additional filter conditions in the WHERE clause.

mysql> -- Nested loop join with extra filter conditions can use parallel query.
mysql> explain select count(*) from part, partsupp where p_partkey != ps_partkey and
 p_name is not null and ps_availqty > 0;
+----+-------------+----------+...+----------
+--+
| id | select_type | table |...| rows | Extra
 |
+----+-------------+----------+...+----------
+--+
| 1 | SIMPLE | part |...| 20427936 | Using where; Using parallel query (2
 columns, 1 filters, 0 exprs; 0 extra) |
| 1 | SIMPLE | partsupp |...| 78164450 | Using where; Using join buffer (Block
 Nested Loop) |
+----+-------------+----------+...+----------
+--+

Subqueries

The outer query block and inner subquery block might each use parallel query, or not. Whether
they do is based on the usual characteristics of the table, WHERE clause, and so on, for each block.
For example, the following query uses parallel query for the subquery block but not the outer
block.

mysql> explain select count(*) from part where

Parallel query and SQL constructs 1523

Amazon Aurora User Guide for Aurora

 --> p_partkey < (select max(p_partkey) from part where p_name like '%vanilla%');
+----+-------------+...+----------
+--+
| id | select_type |...| rows | Extra
 |
+----+-------------+...+----------
+--+
| 1 | PRIMARY |...| NULL | Impossible WHERE noticed after reading const tables
 |
| 2 | SUBQUERY |...| 20427936 | Using where; Using parallel query (2 columns, 0
 filters, 1 exprs; 0 extra) |
+----+-------------+...+----------
+--+

Currently, correlated subqueries can't use the parallel query optimization.

UNION

Each query block in a UNION query can use parallel query, or not, based on the usual characteristics
of the table, WHERE clause, and so on, for each part of the UNION.

mysql> explain select p_partkey from part where p_name like '%choco_ate%'
 -> union select p_partkey from part where p_name like '%vanil_a%';
+----+----------------+...+----------
+--+
| id | select_type |...| rows | Extra
 |
+----+----------------+...+----------
+--+
| 1 | PRIMARY |...| 20427936 | Using where; Using parallel query (2 columns, 0
 filters, 1 exprs; 0 extra) |
| 2 | UNION |...| 20427936 | Using where; Using parallel query (2 columns, 0
 filters, 1 exprs; 0 extra) |
| NULL | UNION RESULT | <union1,2> |...| NULL | Using temporary
 |
+----+--------------+...+----------
+--+

Note

Each UNION clause within the query is run sequentially. Even if the query includes multiple
stages that all use parallel query, it only runs a single parallel query at any one time.

Parallel query and SQL constructs 1524

Amazon Aurora User Guide for Aurora

Therefore, even a complex multistage query only counts as 1 toward the limit of concurrent
parallel queries.

Views

The optimizer rewrites any query using a view as a longer query using the underlying tables. Thus,
parallel query works the same whether table references are views or real tables. All the same
considerations about whether to use parallel query for a query, and which parts are pushed down,
apply to the final rewritten query.

For example, the following query plan shows a view definition that usually doesn't use parallel
query. When the view is queried with additional WHERE clauses, Aurora MySQL uses parallel query.

mysql> create view part_view as select * from part;
mysql> explain select count(*) from part_view where p_partkey is not null;
+----+...+----------
+--+
| id |...| rows | Extra
 |
+----+...+----------
+--+
| 1 |...| 20427936 | Using where; Using parallel query (1 columns, 0 filters, 0 exprs;
 1 extra) |
+----+...+----------
+--+

Data manipulation language (DML) statements

The INSERT statement can use parallel query for the SELECT phase of processing, if the SELECT
part meets the other conditions for parallel query.

mysql> create table part_subset like part;
mysql> explain insert into part_subset select * from part where p_mfgr =
 'Manufacturer#1';
+----+...+----------
+--+
| id |...| rows | Extra
 |
+----+...+----------
+--+

Parallel query and SQL constructs 1525

Amazon Aurora User Guide for Aurora

| 1 |...| 20427936 | Using where; Using parallel query (9 columns, 1 filters, 0 exprs;
 0 extra) |
+----+...+----------
+--+

Note

Typically, after an INSERT statement, the data for the newly inserted rows is in the buffer
pool. Therefore, a table might not be eligible for parallel query immediately after inserting
a large number of rows. Later, after the data is evicted from the buffer pool during normal
operation, queries against the table might begin using parallel query again.

The CREATE TABLE AS SELECT statement doesn't use parallel query, even if the SELECT portion
of the statement would otherwise be eligible for parallel query. The DDL aspect of this statement
makes it incompatible with parallel query processing. In contrast, in the INSERT ... SELECT
statement, the SELECT portion can use parallel query.

Parallel query is never used for DELETE or UPDATE statements, regardless of the size of the table
and predicates in the WHERE clause.

mysql> explain delete from part where p_name is not null;
+----+-------------+...+----------+-------------+
| id | select_type |...| rows | Extra |
+----+-------------+...+----------+-------------+
| 1 | SIMPLE |...| 20427936 | Using where |
+----+-------------+...+----------+-------------+

Transactions and locking

You can use all the isolation levels on the Aurora primary instance.

On Aurora reader DB instances, parallel query applies to statements performed under the
REPEATABLE READ isolation level. Aurora MySQL version 2.09 or higher can also use the READ
COMMITTED isolation level on reader DB instances. REPEATABLE READ is the default isolation
level for Aurora reader DB instances. To use READ COMMITTED isolation level on reader DB
instances requires setting the aurora_read_replica_read_committed configuration option
at the session level. The READ COMMITTED isolation level for reader instances complies with SQL

Parallel query and SQL constructs 1526

Amazon Aurora User Guide for Aurora

standard behavior. However, the isolation is less strict on reader instances than when queries use
READ COMMITTED isolation level on the writer instance.

For more information about Aurora isolation levels, especially the differences in READ COMMITTED
between writer and reader instances, see Aurora MySQL isolation levels.

After a big transaction is finished, the table statistics might be stale. Such stale statistics might
require an ANALYZE TABLE statement before Aurora can accurately estimate the number of
rows. A large-scale DML statement might also bring a substantial portion of the table data into
the buffer pool. Having this data in the buffer pool can lead to parallel query being chosen less
frequently for that table until the data is evicted from the pool.

When your session is inside a long-running transaction (by default, 10 minutes), further queries
inside that session don't use parallel query. A timeout can also occur during a single long-running
query. This type of timeout might happen if the query runs for longer than the maximum interval
(currently 10 minutes) before the parallel query processing starts.

You can reduce the chance of starting long-running transactions accidentally by setting
autocommit=1 in mysql sessions where you perform ad hoc (one-time) queries. Even a SELECT
statement against a table begins a transaction by creating a read view. A read view is a consistent
set of data for subsequent queries that remains until the transaction is committed. Be aware of
this restriction also when using JDBC or ODBC applications with Aurora, because such applications
might run with the autocommit setting turned off.

The following example shows how, with the autocommit setting turned off, running a query
against a table creates a read view that implicitly begins a transaction. Queries that are run shortly
afterward can still use parallel query. However, after a pause of several minutes, queries are no
longer eligible for parallel query. Ending the transaction with COMMIT or ROLLBACK restores
parallel query eligibility.

mysql> set autocommit=0;

mysql> explain select sql_no_cache count(*) from part where p_retailprice > 10.0;
+----+...+---------
+--+
| id |...| rows | Extra
 |
+----+...+---------
+--+
| 1 |...| 2976129 | Using where; Using parallel query (1 columns, 1 filters, 0 exprs;
 0 extra) |

Parallel query and SQL constructs 1527

Amazon Aurora User Guide for Aurora

+----+...+---------
+--+

mysql> select sleep(720); explain select sql_no_cache count(*) from part where
 p_retailprice > 10.0;
+------------+
| sleep(720) |
+------------+
| 0 |
+------------+
1 row in set (12 min 0.00 sec)

+----+...+---------+-------------+
| id |...| rows | Extra |
+----+...+---------+-------------+
| 1 |...| 2976129 | Using where |
+----+...+---------+-------------+

mysql> commit;

mysql> explain select sql_no_cache count(*) from part where p_retailprice > 10.0;
+----+...+---------
+--+
| id |...| rows | Extra
 |
+----+...+---------
+--+
| 1 |...| 2976129 | Using where; Using parallel query (1 columns, 1 filters, 0 exprs;
 0 extra) |
+----+...+---------
+--+

To see how many times queries weren't eligible for parallel query because they were inside long-
running transactions, check the status variable Aurora_pq_request_not_chosen_long_trx.

mysql> show global status like '%pq%trx%';
+---------------------------------------+-------+
| Variable_name | Value |
+---------------------------------------+-------+
| Aurora_pq_request_not_chosen_long_trx | 4 |
+-------------------------------+-------+

Parallel query and SQL constructs 1528

Amazon Aurora User Guide for Aurora

Any SELECT statement that acquires locks, such as the SELECT FOR UPDATE or SELECT LOCK
IN SHARE MODE syntax, can't use parallel query.

Parallel query can work for a table that is locked by a LOCK TABLES statement.

mysql> explain select o_orderpriority, o_shippriority from orders where o_clerk =
 'Clerk#000095055';
+----+...+-----------
+--+
| id |...| rows | Extra
 |
+----+...+-----------
+--+
| 1 |...| 154545408 | Using where; Using parallel query (3 columns, 1 filters, 0
 exprs; 0 extra) |
+----+...+-----------
+--+

mysql> explain select o_orderpriority, o_shippriority from orders where o_clerk =
 'Clerk#000095055' for update;
+----+...+-----------+-------------+
| id |...| rows | Extra |
+----+...+-----------+-------------+
| 1 |...| 154545408 | Using where |
+----+...+-----------+-------------+

B-tree indexes

The statistics gathered by the ANALYZE TABLE statement help the optimizer to decide when to
use parallel query or index lookups, based on the characteristics of the data for each column. Keep
statistics current by running ANALYZE TABLE after DML operations that make substantial changes
to the data within a table.

If index lookups can perform a query efficiently without a data-intensive scan, Aurora might
use index lookups. Doing so avoids the overhead of parallel query processing. There are also
concurrency limits on the number of parallel queries that can run simultaneously on any Aurora DB
cluster. Make sure to use best practices for indexing your tables, so that your most frequent and
most highly concurrent queries use index lookups.

Parallel query and SQL constructs 1529

Amazon Aurora User Guide for Aurora

Full-text search (FTS) indexes

Currently, parallel query isn't used for tables that contain a full-text search index, regardless of
whether the query refers to such indexed columns or uses the MATCH operator.

Virtual columns

Currently, parallel query isn't used for tables that contain a virtual column, regardless of whether
the query refers to any virtual columns.

Built-in caching mechanisms

Aurora includes built-in caching mechanisms, namely the buffer pool and the query cache. The
Aurora optimizer chooses between these caching mechanisms and parallel query depending on
which one is most effective for a particular query.

When a parallel query filters rows and transforms and extracts column values, data is transmitted
back to the head node as tuples rather than as data pages. Therefore, running a parallel query
doesn't add any pages to the buffer pool, or evict pages that are already in the buffer pool.

Aurora checks the number of pages of table data that are present in the buffer pool, and what
proportion of the table data that number represents. Aurora uses that information to determine
whether it is more efficient to use parallel query (and bypass the data in the buffer pool).
Alternatively, Aurora might use the nonparallel query processing path, which uses data cached
in the buffer pool. Which pages are cached and how data-intensive queries affect caching and
eviction depends on configuration settings related to the buffer pool. Therefore, it can be hard to
predict whether any particular query uses parallel query, because the choice depends on the ever-
changing data within the buffer pool.

Also, Aurora imposes concurrency limits on parallel queries. Because not every query uses parallel
query, tables that are accessed by multiple queries simultaneously typically have a substantial
portion of their data in the buffer pool. Therefore, Aurora often doesn't choose these tables for
parallel queries.

When you run a sequence of nonparallel queries on the same table, the first query might be slow
due to the data not being in the buffer pool. Then the second and subsequent queries are much
faster because the buffer pool is now "warmed up". Parallel queries typically show consistent
performance from the very first query against the table. When conducting performance tests,
benchmark the nonparallel queries with both a cold and a warm buffer pool. In some cases, the
results with a warm buffer pool can compare well to parallel query times. In these cases, consider

Parallel query and SQL constructs 1530

Amazon Aurora User Guide for Aurora

factors such as the frequency of queries against that table. Also consider whether it is worthwhile
to keep the data for that table in the buffer pool.

The query cache avoids rerunning a query when an identical query is submitted and the underlying
table data hasn't changed. Queries optimized by parallel query feature can go into the query cache,
effectively making them instantaneous when run again.

Note

When conducting performance comparisons, the query cache can produce artificially low
timing numbers. Therefore, in benchmark-like situations, you can use the sql_no_cache
hint. This hint prevents the result from being served from the query cache, even if the same
query had been run previously. The hint comes immediately after the SELECT statement in
a query. Many parallel query examples in this topic include this hint, to make query times
comparable between versions of the query for which parallel query is turned on and turned
off.
Make sure that you remove this hint from your source when you move to production use of
parallel query.

Optimizer hints

Another way to control the optimizer is by using optimizer hints, which can be specified within
individual statements. For example, you can turn on an optimization for one table in a statement,
and then turn off the optimization for a different table. For more information about these hints,
see Optimizer Hints in the MySQL Reference Manual.

You can use SQL hints with Aurora MySQL queries to fine-tune performance. You can also use
hints to prevent execution plans for important queries from changing because of unpredictable
conditions.

We have extended the SQL hints feature to help you control optimizer choices for your query plans.
These hints apply to queries that use parallel query optimization. For more information, see Aurora
MySQL hints.

MyISAM temporary tables

The parallel query optimization only applies to InnoDB tables. Because Aurora MySQL uses MyISAM
behind the scenes for temporary tables, internal query phases involving temporary tables never

Parallel query and SQL constructs 1531

https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html

Amazon Aurora User Guide for Aurora

use parallel query. These query phases are indicated by Using temporary in the EXPLAIN
output.

Parallel query and SQL constructs 1532

Amazon Aurora User Guide for Aurora

Using Advanced Auditing with an Amazon Aurora MySQL DB
cluster

You can use the high-performance Advanced Auditing feature in Amazon Aurora MySQL to
audit database activity. To do so, you enable the collection of audit logs by setting several DB
cluster parameters. When Advanced Auditing is enabled, you can use it to log any combination of
supported events.

You can view or download the audit logs to review the audit information for one DB instance at a
time. To do so, you can use the procedures in Monitoring Amazon Aurora log files.

Tip

For an Aurora DB cluster containing multiple DB instances, you might find it more
convenient to examine the audit logs for all instances in the cluster. To do so, you can
use CloudWatch Logs. You can turn on a setting at the cluster level to publish the Aurora
MySQL audit log data to a log group in CloudWatch. Then you can view, filter, and search
the audit logs through the CloudWatch interface. For more information, see Publishing
Amazon Aurora MySQL logs to Amazon CloudWatch Logs.

Enabling Advanced Auditing

Use the parameters described in this section to enable and configure Advanced Auditing for your
DB cluster.

Use the server_audit_logging parameter to enable or disable Advanced Auditing.

Use the server_audit_events parameter to specify what events to log.

Use the server_audit_incl_users and server_audit_excl_users parameters to specify
who gets audited. By default, all users are audited. For details about how these parameters
work when one or both are left empty, or the same user names are specified in both, see
server_audit_incl_users and server_audit_excl_users.

Configure Advanced Auditing by setting these parameters in the parameter group used by your
DB cluster. You can use the procedure shown in Modifying parameters in a DB parameter group to
modify DB cluster parameters using the AWS Management Console. You can use the modify-db-

Advanced Auditing with Aurora MySQL 1533

https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-cluster-parameter-group.html

Amazon Aurora User Guide for Aurora

cluster-parameter-group AWS CLI command or the ModifyDBClusterParameterGroup Amazon RDS
API operation to modify DB cluster parameters programmatically.

Modifying these parameters doesn't require a DB cluster restart when the parameter group is
already associated with your cluster. When you associate the parameter group with the cluster for
the first time, a cluster restart is required.

Topics

• server_audit_logging

• server_audit_events

• server_audit_incl_users

• server_audit_excl_users

server_audit_logging

Enables or disables Advanced Auditing. This parameter defaults to OFF; set it to ON to enable
Advanced Auditing.

No audit data appears in the logs unless you also define one or more types of events to audit using
the server_audit_events parameter.

To confirm that audit data is logged for a DB instance, check that some log files for that instance
have names of the form audit/audit.log.other_identifying_information. To see the
names of the log files, follow the procedure in Viewing and listing database log files.

server_audit_events

Contains the comma-delimited list of events to log. Events must be specified in all caps, and there
should be no white space between the list elements, for example: CONNECT,QUERY_DDL. This
parameter defaults to an empty string.

You can log any combination of the following events:

• CONNECT – Logs both successful and failed connections and also disconnections. This event
includes user information.

• QUERY – Logs all queries in plain text, including queries that fail due to syntax or permission
errors.

Enabling Advanced Auditing 1534

https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-cluster-parameter-group.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBClusterParameterGroup.html

Amazon Aurora User Guide for Aurora

Tip

With this event type turned on, the audit data includes information about the continuous
monitoring and health-checking information that Aurora does automatically. If you are
only interested in particular kinds of operations, you can use the more specific kinds of
events. You can also use the CloudWatch interface to search in the logs for events related
to specific databases, tables, or users.

• QUERY_DCL – Similar to the QUERY event, but returns only data control language (DCL) queries
(GRANT, REVOKE, and so on).

• QUERY_DDL – Similar to the QUERY event, but returns only data definition language (DDL)
queries (CREATE, ALTER, and so on).

• QUERY_DML – Similar to the QUERY event, but returns only data manipulation language (DML)
queries (INSERT, UPDATE, and so on, and also SELECT).

• TABLE – Logs the tables that were affected by query execution.

Note

There's no filter in Aurora that excludes certain queries from audit logs. To exclude SELECT
queries, you must exclude all DML statements.
If a certain user is reporting these internal SELECT queries in the audit logs, then you can
exclude that user by setting the server_audit_excl_users DB cluster parameter. However, if
that user is also used in other activities and can't be omitted, then there is no other option
for excluding SELECT queries.

server_audit_incl_users

Contains the comma-delimited list of user names for users whose activity is logged. There should
be no white space between the list elements, for example: user_3,user_4. This parameter
defaults to an empty string. The maximum length is 1024 characters. Specified user names must
match corresponding values in the User column of the mysql.user table. For more information
about user names, see Account User Names and Passwords in the MySQL documentation.

If server_audit_incl_users and server_audit_excl_users are both empty (the default),
all users are audited.

Enabling Advanced Auditing 1535

https://dev.mysql.com/doc/refman/8.0/en/user-names.html

Amazon Aurora User Guide for Aurora

If you add users to server_audit_incl_users and leave server_audit_excl_users empty,
then only those users are audited.

If you add users to server_audit_excl_users and leave server_audit_incl_users empty,
then all users are audited, except for those listed in server_audit_excl_users.

If you add the same users to both server_audit_excl_users and
server_audit_incl_users, then those users are audited. When the same user is listed in both
settings, server_audit_incl_users is given higher priority.

Connect and disconnect events aren't affected by this variable; they are always logged if specified.
A user is logged even if that user is also specified in the server_audit_excl_users parameter,
because server_audit_incl_users has higher priority.

server_audit_excl_users

Contains the comma-delimited list of user names for users whose activity isn't logged. There
should be no white space between the list elements, for example: rdsadmin,user_1,user_2.
This parameter defaults to an empty string. The maximum length is 1024 characters. Specified
user names must match corresponding values in the User column of the mysql.user table.
For more information about user names, see Account User Names and Passwords in the MySQL
documentation.

If server_audit_incl_users and server_audit_excl_users are both empty (the default),
all users are audited.

If you add users to server_audit_excl_users and leave server_audit_incl_users empty,
then only those users that you list in server_audit_excl_users are not audited, and all other
users are.

If you add the same users to both server_audit_excl_users and
server_audit_incl_users, then those users are audited. When the same user is listed in both
settings, server_audit_incl_users is given higher priority.

Connect and disconnect events aren't affected by this variable; they are always logged if specified.
A user is logged if that user is also specified in the server_audit_incl_users parameter,
because that setting has higher priority than server_audit_excl_users.

Enabling Advanced Auditing 1536

https://dev.mysql.com/doc/refman/8.0/en/user-names.html

Amazon Aurora User Guide for Aurora

Viewing audit logs

You can view and download the audit logs by using the console. On the Databases
page, choose the DB instance to show its details, then scroll to the Logs section. The
audit logs produced by the Advanced Auditing feature have names of the form audit/
audit.log.other_identifying_information.

To download a log file, choose that file in the Logs section and then choose Download.

You can also get a list of the log files by using the describe-db-log-files AWS CLI command. You can
download the contents of a log file by using the download-db-log-file-portion AWS CLI command.
For more information, see Viewing and listing database log files and Downloading a database log
file.

Audit log details

Log files are represented as comma-separated variable (CSV) files in UTF-8 format. Queries are also
wrapped in single quotes (').

The audit log is stored separately on the local storage of each instance. Each Aurora instance
distributes writes across four log files at a time. The maximum size of the logs is 100 MB in
aggregate. When this non-configurable limit is reached, Aurora rotates the files and generates four
new files.

Tip

Log file entries are not in sequential order. To order the entries, use the timestamp value.
To see the latest events, you might have to review all log files. For more flexibility in sorting
and searching the log data, turn on the setting to upload the audit logs to CloudWatch and
view them using the CloudWatch interface.
To view audit data with more types of fields and with output in JSON format, you can also
use the Database Activity Streams feature. For more information, see Monitoring Amazon
Aurora with Database Activity Streams.

The audit log files include the following comma-delimited information in rows, in the specified
order:

Viewing audit logs 1537

https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-log-files.html
https://docs.aws.amazon.com/cli/latest/reference/rds/download-db-log-file-portion.html

Amazon Aurora User Guide for Aurora

Field Description

timestamp The Unix time stamp for the logged event with microsecond precision.

serverhost The name of the instance that the event is logged for.

username The connected user name of the user.

host The host that the user connected from.

connectionid The connection ID number for the logged operation.

queryid The query ID number, which can be used for finding the relational table events
and related queries. For TABLE events, multiple lines are added.

operation The recorded action type. Possible values are: CONNECT, QUERY, READ, WRITE,
CREATE, ALTER, RENAME, and DROP.

database The active database, as set by the USE command.

object For QUERY events, this value indicates the query that the database performed.
For TABLE events, it indicates the table name.

retcode The return code of the logged operation.

Audit log details 1538

Amazon Aurora User Guide for Aurora

Replication with Amazon Aurora MySQL

The Aurora MySQL replication features are key to the high availability and performance of your
cluster. Aurora makes it easy to create or resize clusters with up to 15 Aurora Replicas.

All the replicas work from the same underlying data. If some database instances go offline, others
remain available to continue processing queries or to take over as the writer if needed. Aurora
automatically spreads your read-only connections across multiple database instances, helping an
Aurora cluster to support query-intensive workloads.

In the following topics, you can find information about how Aurora MySQL replication works and
how to fine-tune replication settings for best availability and performance.

Topics

• Using Aurora Replicas

• Replication options for Amazon Aurora MySQL

• Performance considerations for Amazon Aurora MySQL replication

• Zero-downtime restart (ZDR) for Amazon Aurora MySQL

• Configuring replication filters with Aurora MySQL

• Monitoring Amazon Aurora MySQL replication

• Using local write forwarding in an Amazon Aurora MySQL DB cluster

• Replicating Amazon Aurora MySQL DB clusters across AWS Regions

• Replication between Aurora and MySQL or between Aurora and another Aurora DB cluster
(binary log replication)

• Using GTID-based replication

Using Aurora Replicas

Aurora Replicas are independent endpoints in an Aurora DB cluster, best used for scaling read
operations and increasing availability. Up to 15 Aurora Replicas can be distributed across the
Availability Zones that a DB cluster spans within an AWS Region. Although the DB cluster volume
is made up of multiple copies of the data for the DB cluster, the data in the cluster volume is
represented as a single, logical volume to the primary instance and to Aurora Replicas in the DB
cluster. For more information about Aurora Replicas, see Aurora Replicas.

Replication with Aurora MySQL 1539

Amazon Aurora User Guide for Aurora

Aurora Replicas work well for read scaling because they are fully dedicated to read operations on
your cluster volume. Write operations are managed by the primary instance. Because the cluster
volume is shared among all instances in your Aurora MySQL DB cluster, no additional work is
required to replicate a copy of the data for each Aurora Replica. In contrast, MySQL read replicas
must replay, on a single thread, all write operations from the source DB instance to their local data
store. This limitation can affect the ability of MySQL read replicas to support large volumes of read
traffic.

With Aurora MySQL, when an Aurora Replica is deleted, its instance endpoint is removed
immediately, and the Aurora Replica is removed from the reader endpoint. If there are statements
running on the Aurora Replica that is being deleted, there is a three minute grace period. Existing
statements can finish gracefully during the grace period. When the grace period ends, the Aurora
Replica is shut down and deleted.

Important

Aurora Replicas for Aurora MySQL always use the REPEATABLE READ default transaction
isolation level for operations on InnoDB tables. You can use the SET TRANSACTION
ISOLATION LEVEL command to change the transaction level only for the primary instance
of an Aurora MySQL DB cluster. This restriction avoids user-level locks on Aurora Replicas,
and allows Aurora Replicas to scale to support thousands of active user connections while
still keeping replica lag to a minimum.

Note

DDL statements that run on the primary instance might interrupt database connections on
the associated Aurora Replicas. If an Aurora Replica connection is actively using a database
object, such as a table, and that object is modified on the primary instance using a DDL
statement, the Aurora Replica connection is interrupted.

Note

The China (Ningxia) Region does not support cross-Region read replicas.

Aurora Replicas 1540

Amazon Aurora User Guide for Aurora

Replication options for Amazon Aurora MySQL

You can set up replication between any of the following options:

• Two Aurora MySQL DB clusters in different AWS Regions, by creating a cross-Region read replica
of an Aurora MySQL DB cluster.

For more information, see Replicating Amazon Aurora MySQL DB clusters across AWS Regions.

• Two Aurora MySQL DB clusters in the same AWS Region, by using MySQL binary log (binlog)
replication.

For more information, see Replication between Aurora and MySQL or between Aurora and
another Aurora DB cluster (binary log replication).

• An RDS for MySQL DB instance as the source and an Aurora MySQL DB cluster, by creating an
Aurora read replica of an RDS for MySQL DB instance.

You can use this approach to bring existing and ongoing data changes into Aurora MySQL during
migration to Aurora. For more information, see Migrating data from an RDS for MySQL DB
instance to an Amazon Aurora MySQL DB cluster by using an Aurora read replica.

You can also use this approach to increase the scalability of read queries for your data. You do so
by querying the data using one or more DB instances within a read-only Aurora MySQL cluster.
For more information, see Using Amazon Aurora to scale reads for your MySQL database.

• An Aurora MySQL DB cluster in one AWS Region and up to five Aurora read-only Aurora MySQL
DB clusters in different Regions, by creating an Aurora global database.

You can use an Aurora global database to support applications with a world-wide footprint.
The primary Aurora MySQL DB cluster has a Writer instance and up to 15 Aurora Replicas. The
read-only secondary Aurora MySQL DB clusters can each be made up of as many as 16 Aurora
Replicas. For more information, see Using Amazon Aurora global databases.

Note

Rebooting the primary instance of an Amazon Aurora DB cluster also automatically reboots
the Aurora Replicas for that DB cluster, to re-establish an entry point that guarantees read/
write consistency across the DB cluster.

Replication options 1541

Amazon Aurora User Guide for Aurora

Performance considerations for Amazon Aurora MySQL replication

The following features help you to fine-tune the performance of Aurora MySQL replication.

The replica log compression feature automatically reduces network bandwidth for replication
messages. Because each message is transmitted to all Aurora Replicas, the benefits are greater
for larger clusters. This feature involves some CPU overhead on the writer node to perform the
compression. It's always enabled in Aurora MySQL version 2 and version 3.

The binlog filtering feature automatically reduces network bandwidth for replication messages.
Because the Aurora Replicas don't use the binlog information that is included in the replication
messages, that data is omitted from the messages sent to those nodes.

In Aurora MySQL version 2, you can control this feature by changing the
aurora_enable_repl_bin_log_filtering parameter. This parameter is on by default.
Because this optimization is intended to be transparent, you might turn off this setting only during
diagnosis or troubleshooting for issues related to replication. For example, you can do so to match
the behavior of an older Aurora MySQL cluster where this feature was not available.

Binlog filtering is always enabled in Aurora MySQL version 3.

Zero-downtime restart (ZDR) for Amazon Aurora MySQL

The zero-downtime restart (ZDR) feature can preserve some or all of the active connections
to DB instances during certain kinds of restarts. ZDR applies to restarts that Aurora performs
automatically to resolve error conditions, for example when a replica begins to lag too far behind
the source.

Important

The ZDR mechanism operates on a best-effort basis. The Aurora MySQL versions, instance
classes, error conditions, compatible SQL operations, and other factors that determine
where ZDR applies are subject to change at any time.

ZDR for Aurora MySQL 2.x requires version 2.10 and higher. ZDR is available in all minor versions
of Aurora MySQL 3.x. In Aurora MySQL version 2 and 3, the ZDR mechanism is turned on by default
and Aurora doesn't use the aurora_enable_zdr parameter.

Replication performance 1542

Amazon Aurora User Guide for Aurora

Aurora reports on the Events page activities related to zero-downtime restart. Aurora records an
event when it attempts a restart using the ZDR mechanism. This event states why Aurora performs
the restart. Then Aurora records another event when the restart finishes. This final event reports
how long the process took, and how many connections were preserved or dropped during the
restart. You can consult the database error log to see more details about what happened during
the restart.

Although connections remain intact following a successful ZDR operation, some variables and
features are reinitialized. The following kinds of information aren't preserved through a restart
caused by zero-downtime restart:

• Global variables. Aurora restores session variables, but it doesn't restore global variables after
the restart.

• Status variables. In particular, the uptime value reported by the engine status is reset.

• LAST_INSERT_ID.

• In-memory auto_increment state for tables. The in-memory auto-increment state is
reinitialized. For more information about auto-increment values, see MySQL Reference Manual.

• Diagnostic information from INFORMATION_SCHEMA and PERFORMANCE_SCHEMA tables. This
diagnostic information also appears in the output of commands such as SHOW PROFILE and
SHOW PROFILES.

The following table shows the versions, instance roles, and other circumstances that determine
whether Aurora can use the ZDR mechanism when restarting DB instances in your cluster.

Aurora
MySQL
version

ZDR
applies
to the
writer?

ZDR
applies
to
readers?

ZDR
always
enabled?

Notes

2.x,
lower
than
2.10.0

No No N/A ZDR isn't available for these versions.

2.10.0–2.
11.0

Yes Yes Yes Aurora rolls back any transactions that are in
progress on active connections. Your applicati
on must retry the transactions.

Zero-downtime restart (ZDR) 1543

https://dev.mysql.com/doc/refman/8.0/en/innodb-auto-increment-handling.html#innodb-auto-increment-initialization

Amazon Aurora User Guide for Aurora

Aurora
MySQL
version

ZDR
applies
to the
writer?

ZDR
applies
to
readers?

ZDR
always
enabled?

Notes

Aurora cancels any connections that use TLS/
SSL, temporary tables, table locks, or user
locks.

2.11.1
and
higher

Yes Yes Yes Aurora rolls back any transactions that are in
progress on active connections. Your applicati
on must retry the transactions.

Aurora cancels any connections that use
temporary tables, table locks, or user locks.

3.01–
3.03

Yes Yes Yes Aurora rolls back any transactions that are in
progress on active connections. Your applicati
on must retry the transactions.

Aurora cancels any connections that use TLS/
SSL, temporary tables, table locks, or user
locks.

3.04 and
higher

Yes Yes Yes Aurora rolls back any transactions that are in
progress on active connections. Your applicati
on must retry the transactions.

Aurora cancels any connections that use
temporary tables, table locks, or user locks.

Configuring replication filters with Aurora MySQL

You can use replication filters to specify which databases and tables are replicated with a read
replica. Replication filters can include databases and tables in replication or exclude them from
replication.

The following are some use cases for replication filters:

Configuring replication filters 1544

Amazon Aurora User Guide for Aurora

• To reduce the size of a read replica. With replication filtering, you can exclude the databases and
tables that aren't needed on the read replica.

• To exclude databases and tables from read replicas for security reasons.

• To replicate different databases and tables for specific use cases at different read replicas. For
example, you might use specific read replicas for analytics or sharding.

• For a DB cluster that has read replicas in different AWS Regions, to replicate different databases
or tables in different AWS Regions.

• To specify which databases and tables are replicated with an Aurora MySQL DB cluster that is
configured as a replica in an inbound replication topology. For more information about this
configuration, see Replication between Aurora and MySQL or between Aurora and another
Aurora DB cluster (binary log replication).

Topics

• Setting replication filtering parameters for Aurora MySQL

• Replication filtering limitations for Aurora MySQL

• Replication filtering examples for Aurora MySQL

• Viewing the replication filters for a read replica

Setting replication filtering parameters for Aurora MySQL

To configure replication filters, set the following parameters:

• binlog-do-db – Replicate changes to the specified binary logs. When you set this parameter
for a binlog source cluster, only the binary logs specified in the parameter are replicated.

• binlog-ignore-db – Don't replicate changes to the specified binary logs. When the binlog-
do-db parameter is set for a binlog source cluster, this parameter isn't evaluated.

• replicate-do-db – Replicate changes to the specified databases. When you set this parameter
for a binlog replica cluster, only the databases specified in the parameter are replicated.

• replicate-ignore-db – Don't replicate changes to the specified databases. When the
replicate-do-db parameter is set for a binlog replica cluster, this parameter isn't evaluated.

• replicate-do-table – Replicate changes to the specified tables. When you set this parameter
for a read replica, only the tables specified in the parameter are replicated. Also, when the
replicate-do-db or replicate-ignore-db parameter is set, make sure to include the
database that includes the specified tables in replication with the binlog replica cluster.

Configuring replication filters 1545

Amazon Aurora User Guide for Aurora

• replicate-ignore-table – Don't replicate changes to the specified tables. When the
replicate-do-table parameter is set for a binlog replica cluster, this parameter isn't
evaluated.

• replicate-wild-do-table – Replicate tables based on the specified database and table
name patterns. The % and _ wildcard characters are supported. When the replicate-do-db or
replicate-ignore-db parameter is set, make sure to include the database that includes the
specified tables in replication with the binlog replica cluster.

• replicate-wild-ignore-table – Don't replicate tables based on the specified database and
table name patterns. The % and _ wildcard characters are supported. When the replicate-
do-table or replicate-wild-do-table parameter is set for a binlog replica cluster, this
parameter isn't evaluated.

The parameters are evaluated in the order that they are listed. For more information about how
these parameters work, see the MySQL documentation:

• For general information, see Replica Server Options and Variables.

• For information about how database replication filtering parameters are evaluated, see
Evaluation of Database-Level Replication and Binary Logging Options.

• For information about how table replication filtering parameters are evaluated, see Evaluation
of Table-Level Replication Options.

By default, each of these parameters has an empty value. On each binlog cluster, you can use these
parameters to set, change, and delete replication filters. When you set one of these parameters,
separate each filter from others with a comma.

You can use the % and _ wildcard characters in the replicate-wild-do-table and replicate-
wild-ignore-table parameters. The % wildcard matches any number of characters, and the _
wildcard matches only one character.

The binary logging format of the source DB instance is important for replication because it
determines the record of data changes. The setting of the binlog_format parameter determines
whether the replication is row-based or statement-based. For more information, see Configuring
Aurora MySQL binary logging.

Configuring replication filters 1546

https://dev.mysql.com/doc/refman/8.0/en/replication-options-replica.html
https://dev.mysql.com/doc/refman/8.0/en/replication-rules-db-options.html
https://dev.mysql.com/doc/refman/8.0/en/replication-rules-db-options.html
https://dev.mysql.com/doc/refman/8.0/en/replication-rules-table-options.html
https://dev.mysql.com/doc/refman/8.0/en/replication-rules-table-options.html

Amazon Aurora User Guide for Aurora

Note

All data definition language (DDL) statements are replicated as statements, regardless of
the binlog_format setting on the source DB instance.

Replication filtering limitations for Aurora MySQL

The following limitations apply to replication filtering for Aurora MySQL:

• Replication filters are supported only for Aurora MySQL version 3.

• Each replication filtering parameter has a 2,000-character limit.

• Commas aren't supported in replication filters.

• Replication filtering doesn't support XA transactions.

For more information, see Restrictions on XA Transactions in the MySQL documentation.

Replication filtering examples for Aurora MySQL

To configure replication filtering for a read replica, modify the replication filtering parameters in
the DB cluster parameter group associated with the read replica.

Note

You can't modify a default DB cluster parameter group. If the read replica is using a default
parameter group, create a new parameter group and associate it with the read replica. For
more information on DB cluster parameter groups, see Working with parameter groups.

You can set parameters in a DB cluster parameter group using the AWS Management Console,
AWS CLI, or RDS API. For information about setting parameters, see Modifying parameters in a DB
parameter group. When you set parameters in a DB cluster parameter group, all of the DB clusters
associated with the parameter group use the parameter settings. If you set the replication filtering
parameters in a DB cluster parameter group, make sure that the parameter group is associated only
with read replica clusters. Leave the replication filtering parameters empty for source DB instances.

The following examples set the parameters using the AWS CLI. These examples set ApplyMethod
to immediate so that the parameter changes occur immediately after the CLI command

Configuring replication filters 1547

https://dev.mysql.com/doc/refman/8.0/en/xa-restrictions.html

Amazon Aurora User Guide for Aurora

completes. If you want a pending change to be applied after the read replica is rebooted, set
ApplyMethod to pending-reboot.

The following examples set replication filters:

• Including databases in replication

• Including tables in replication

• Including tables in replication with wildcard characters

• Excluding databases from replication

• Excluding tables from replication

• Excluding tables from replication using wildcard characters

Example Including databases in replication

The following example includes the mydb1 and mydb2 databases in replication.

For Linux, macOS, or Unix:

aws rds modify-db-cluster-parameter-group \
 --db-cluster-parameter-group-name myparametergroup \
 --parameters "ParameterName=replicate-do-
db,ParameterValue='mydb1,mydb2',ApplyMethod=immediate"

For Windows:

aws rds modify-db-cluster-parameter-group ^
 --db-cluster-parameter-group-name myparametergroup ^
 --parameters "ParameterName=replicate-do-
db,ParameterValue='mydb1,mydb2',ApplyMethod=immediate"

Example Including tables in replication

The following example includes the table1 and table2 tables in database mydb1 in replication.

For Linux, macOS, or Unix:

aws rds modify-db-cluster-parameter-group \

Configuring replication filters 1548

Amazon Aurora User Guide for Aurora

 --db-cluster-parameter-group-name myparametergroup \
 --parameters "ParameterName=replicate-do-
table,ParameterValue='mydb1.table1,mydb1.table2',ApplyMethod=immediate"

For Windows:

aws rds modify-db-cluster-parameter-group ^
 --db-cluster-parameter-group-name myparametergroup ^
 --parameters "ParameterName=replicate-do-
table,ParameterValue='mydb1.table1,mydb1.table2',ApplyMethod=immediate"

Example Including tables in replication using wildcard characters

The following example includes tables with names that begin with order and return in database
mydb in replication.

For Linux, macOS, or Unix:

aws rds modify-db-cluster-parameter-group \
 --db-cluster-parameter-group-name myparametergroup \
 --parameters "ParameterName=replicate-wild-do-table,ParameterValue='mydb.order
%,mydb.return%',ApplyMethod=immediate"

For Windows:

aws rds modify-db-cluster-parameter-group ^
 --db-cluster-parameter-group-name myparametergroup ^
 --parameters "ParameterName=replicate-wild-do-table,ParameterValue='mydb.order
%,mydb.return%',ApplyMethod=immediate"

Example Excluding databases from replication

The following example excludes the mydb5 and mydb6 databases from replication.

For Linux, macOS, or Unix:

aws rds modify-db-cluster-parameter-group \
 --db-cluster-parameter-group-name myparametergroup \

Configuring replication filters 1549

Amazon Aurora User Guide for Aurora

 --parameters "ParameterName=replicate-ignore-
db,ParameterValue='mydb5,mydb6',ApplyMethod=immediate"

For Windows:

aws rds modify-db-cluster-parameter-group ^
 --db-cluster-parameter-group-name myparametergroup ^
 --parameters "ParameterName=replicate-ignore-
db,ParameterValue='mydb5,mydb6,ApplyMethod=immediate"

Example Excluding tables from replication

The following example excludes tables table1 in database mydb5 and table2 in database mydb6
from replication.

For Linux, macOS, or Unix:

aws rds modify-db-cluster-parameter-group \
 --db-cluster-parameter-group-name myparametergroup \
 --parameters "ParameterName=replicate-ignore-
table,ParameterValue='mydb5.table1,mydb6.table2',ApplyMethod=immediate"

For Windows:

aws rds modify-db-cluster-parameter-group ^
 --db-cluster-parameter-group-name myparametergroup ^
 --parameters "ParameterName=replicate-ignore-
table,ParameterValue='mydb5.table1,mydb6.table2',ApplyMethod=immediate"

Example Excluding tables from replication using wildcard characters

The following example excludes tables with names that begin with order and return in database
mydb7 from replication.

For Linux, macOS, or Unix:

aws rds modify-db-cluster-parameter-group \
 --db-cluster-parameter-group-name myparametergroup \

Configuring replication filters 1550

Amazon Aurora User Guide for Aurora

 --parameters "ParameterName=replicate-wild-ignore-table,ParameterValue='mydb7.order
%,mydb7.return%',ApplyMethod=immediate"

For Windows:

aws rds modify-db-cluster-parameter-group ^
 --db-cluster-parameter-group-name myparametergroup ^
 --parameters "ParameterName=replicate-wild-ignore-table,ParameterValue='mydb7.order
%,mydb7.return%',ApplyMethod=immediate"

Viewing the replication filters for a read replica

You can view the replication filters for a read replica in the following ways:

• Check the settings of the replication filtering parameters in the parameter group associated with
the read replica.

For instructions, see Viewing parameter values for a DB parameter group.

• In a MySQL client, connect to the read replica and run the SHOW REPLICA STATUS statement.

In the output, the following fields show the replication filters for the read replica:

• Binlog_Do_DB

• Binlog_Ignore_DB

• Replicate_Do_DB

• Replicate_Ignore_DB

• Replicate_Do_Table

• Replicate_Ignore_Table

• Replicate_Wild_Do_Table

• Replicate_Wild_Ignore_Table

For more information about these fields, see Checking Replication Status in the MySQL
documentation.

Monitoring Amazon Aurora MySQL replication

Read scaling and high availability depend on minimal lag time. You can monitor how far an Aurora
Replica is lagging behind the primary instance of your Aurora MySQL DB cluster by monitoring the

Monitoring replication 1551

https://dev.mysql.com/doc/refman/8.0/en/replication-administration-status.html

Amazon Aurora User Guide for Aurora

Amazon CloudWatch AuroraReplicaLag metric. The AuroraReplicaLag metric is recorded in
each Aurora Replica.

The primary DB instance also records the AuroraReplicaLagMaximum and
AuroraReplicaLagMinimum Amazon CloudWatch metrics. The AuroraReplicaLagMaximum
metric records the maximum amount of lag between the primary DB instance and each Aurora
Replica in the DB cluster. The AuroraReplicaLagMinimum metric records the minimum amount
of lag between the primary DB instance and each Aurora Replica in the DB cluster.

If you need the most current value for Aurora Replica lag, you can check the AuroraReplicaLag
metric in Amazon CloudWatch. The Aurora Replica lag is also recorded on each Aurora Replica of
your Aurora MySQL DB cluster in the information_schema.replica_host_status table. For
more information on this table, see information_schema.replica_host_status.

For more information on monitoring RDS instances and CloudWatch metrics, see Monitoring
metrics in an Amazon Aurora cluster.

Monitoring replication 1552

Amazon Aurora User Guide for Aurora

Using local write forwarding in an Amazon Aurora MySQL DB cluster

Local (in-cluster) write forwarding allows your applications to issue read/write transactions directly
on an Aurora Replica. These transactions are then forwarded to the writer DB instance to be
committed. You can use local write forwarding when your applications require read-after-write
consistency, which is the ability to read the latest write in a transaction.

Read replicas receive updates asynchronously from the writer. Without write forwarding, you
have to transact any reads that require read-after-write consistency on the writer DB instance.
Or you have to develop complex custom application logic to take advantage of multiple read
replicas for scalability. Your applications must fully split all read and write traffic, maintaining
two sets of database connections to send the traffic to the correct endpoint. This development
overhead complicates application design when the queries are part of a single logical session,
or transaction, within the application. Moreover, because replication lag can differ among read
replicas, it's difficult to achieve global read consistency across all instances in the database.

Write forwarding avoids the need to split those transactions or send them exclusively to the writer,
which simplifies application development. This new capability makes it easy to achieve read scale
for workloads that need to read the latest write in a transaction and aren't sensitive to write
latency.

Local write forwarding is different from global write forwarding, which forwards writes from a
secondary DB cluster to the primary DB cluster in an Aurora global database. You can use local
write forwarding in a DB cluster that is part of an Aurora global database. For more information,
see Using write forwarding in an Amazon Aurora global database.

Local write forwarding requires Aurora MySQL version 3.04 or higher.

Topics

• Enabling local write forwarding

• Checking if a DB cluster has write forwarding enabled

• Application and SQL compatibility with write forwarding

• Isolation levels for write forwarding

• Read consistency for write forwarding

• Running multipart statements with write forwarding

• Transactions with write forwarding

• Configuration parameters for write forwarding

Using local write forwarding 1553

Amazon Aurora User Guide for Aurora

• Amazon CloudWatch metrics and Aurora MySQL status variables for write forwarding

• Identifying forwarded transactions and queries

Enabling local write forwarding

By default, local write forwarding isn't enabled for Aurora MySQL DB clusters. You enable local
write forwarding at the cluster level, not at the instance level.

Important

You can also enable local write forwarding for cross-Region read replicas that use binary
logging, but write operations aren't forwarded to the source AWS Region. They're
forwarded to the writer DB instance of the binlog read replica cluster.
Use this method only if you have a use case for writing to the binlog read replica in the
secondary AWS Region. Otherwise, you might end up with a "split-brain" scenario where
replicated datasets are inconsistent with each other.
We recommend that you use global write forwarding with global databases, rather than
local write forwarding on cross-Region read replicas, unless absolutely necessary. For more
information, see Using write forwarding in an Amazon Aurora global database.

Console

Using the AWS Management Console, select the Turn on local write forwarding check box under
Read replica write forwarding when you create or modify a DB cluster.

AWS CLI

To enable write forwarding with the AWS CLI, use the --enable-local-write-forwarding
option. This option works when you create a new DB cluster using the create-db-cluster
command. It also works when you modify an existing DB cluster using the modify-db-cluster
command. You can disable write forwarding by using the --no-enable-local-write-
forwarding option with these same CLI commands.

The following example creates an Aurora MySQL DB cluster with write forwarding enabled.

aws rds create-db-cluster \
 --db-cluster-identifier write-forwarding-test-cluster \

Using local write forwarding 1554

Amazon Aurora User Guide for Aurora

 --enable-local-write-forwarding \
 --engine aurora-mysql \
 --engine-version 8.0.mysql_aurora.3.04.0 \
 --master-username myuser \
 --master-user-password mypassword \
 --backup-retention 1

You then create writer and reader DB instances so that you can use write forwarding. For more
information, see Creating an Amazon Aurora DB cluster.

RDS API

To enable write forwarding using the Amazon RDS API, set the EnableLocalWriteForwarding
parameter to true. This parameter works when you create a new DB cluster using the
CreateDBCluster operation. It also works when you modify an existing DB cluster
using the ModifyDBCluster operation. You can disable write forwarding by setting the
EnableLocalWriteForwarding parameter to false.

Enabling write forwarding for database sessions

The aurora_replica_read_consistency parameter is a DB parameter and DB cluster
parameter that enables write forwarding. You can specify EVENTUAL, SESSION, or GLOBAL for
the read consistency level. To learn more about consistency levels, see Read consistency for write
forwarding.

The following rules apply to this parameter:

• The default value is '' (null).

• Write forwarding is available only if you set aurora_replica_read_consistency to
EVENTUAL, SESSION, or GLOBAL. This parameter is relevant only in reader instances of DB
clusters that have write forwarding enabled.

• You can't set this parameter (when empty) or unset it (when already set) inside a multistatement
transaction. You can change it from one valid value to another valid value during such a
transaction, but we don't recommend this action.

Checking if a DB cluster has write forwarding enabled

To determine that you can use write forwarding in a DB cluster, confirm that the cluster has the
attribute LocalWriteForwardingStatus set to enabled.

Using local write forwarding 1555

Amazon Aurora User Guide for Aurora

In the AWS Management Console, on the Configuration tab of the details page for the cluster, you
see the status Enabled for Local read replica write forwarding.

To see the status of the write forwarding setting for all of your clusters, run the following AWS CLI
command.

Example

aws rds describe-db-clusters \
--query '*[].
{DBClusterIdentifier:DBClusterIdentifier,LocalWriteForwardingStatus:LocalWriteForwardingStatus}'

[
 {
 "LocalWriteForwardingStatus": "enabled",
 "DBClusterIdentifier": "write-forwarding-test-cluster-1"
 },
 {
 "LocalWriteForwardingStatus": "disabled",
 "DBClusterIdentifier": "write-forwarding-test-cluster-2"
 },
 {
 "LocalWriteForwardingStatus": "requested",
 "DBClusterIdentifier": "test-global-cluster-2"
 },
 {
 "LocalWriteForwardingStatus": "null",
 "DBClusterIdentifier": "aurora-mysql-v2-cluster"
 }
]

A DB cluster can have the following values for LocalWriteForwardingStatus:

• disabled – Write forwarding is disabled.

• disabling – Write forwarding is in the process of being disabled.

• enabled – Write forwarding is enabled.

• enabling – Write forwarding is in the process of being enabled.

• null – Write forwarding isn't available for this DB cluster.

• requested – Write forwarding has been requested, but is not yet active.

Using local write forwarding 1556

Amazon Aurora User Guide for Aurora

Application and SQL compatibility with write forwarding

You can use the following kinds of SQL statements with write forwarding:

• Data manipulation language (DML) statements, such as INSERT, DELETE, and UPDATE. There are
some restrictions on the properties of these statements that you can use with write forwarding,
as described following.

• SELECT ... LOCK IN SHARE MODE and SELECT FOR UPDATE statements.

• PREPARE and EXECUTE statements.

Certain statements aren't allowed or can produce stale results when you use them in a DB cluster
with write forwarding. Thus, the EnableLocalWriteForwarding setting is disabled by default
for DB clusters. Before enabling it, check to make sure that your application code isn't affected by
any of these restrictions.

The following restrictions apply to the SQL statements you use with write forwarding.
In some cases, you can use the statements on DB clusters with write forwarding
enabled. This approach works if write forwarding isn't enabled within the session by the
aurora_replica_read_consistency configuration parameter. If you try to use a statement
when it's not allowed because of write forwarding, then you will see an error message similar to
the following:

ERROR 1235 (42000): This version of MySQL doesn't yet support 'operation with write
 forwarding'.

Data definition language (DDL)

Connect to the writer DB instance to run DDL statements. You can't run them from reader DB
instances.

Updating a permanent table using data from a temporary table

You can use temporary tables on DB clusters with write forwarding enabled. However, you can't
use a DML statement to modify a permanent table if the statement refers to a temporary table.
For example, you can't use an INSERT ... SELECT statement that takes the data from a
temporary table.

Using local write forwarding 1557

Amazon Aurora User Guide for Aurora

XA transactions

You can't use the following statements on a DB cluster when write forwarding is enabled within
the session. You can use these statements on DB clusters that don't have write forwarding
enabled, or within sessions where the aurora_replica_read_consistency setting is
empty. Before enabling write forwarding within a session, check if your code uses these
statements.

XA {START|BEGIN} xid [JOIN|RESUME]
XA END xid [SUSPEND [FOR MIGRATE]]
XA PREPARE xid
XA COMMIT xid [ONE PHASE]
XA ROLLBACK xid
XA RECOVER [CONVERT XID]

LOAD statements for permanent tables

You can't use the following statements on a DB cluster with write forwarding enabled.

LOAD DATA INFILE 'data.txt' INTO TABLE t1;
LOAD XML LOCAL INFILE 'test.xml' INTO TABLE t1;

Plugin statements

You can't use the following statements on a DB cluster with write forwarding enabled.

INSTALL PLUGIN example SONAME 'ha_example.so';
UNINSTALL PLUGIN example;

SAVEPOINT statements

You can't use the following statements on a DB cluster when write forwarding is enabled within
the session. You can use these statements on DB clusters that don't have write forwarding
enabled, or within sessions where the aurora_replica_read_consistency setting is blank.
Check if your code uses these statements before enabling write forwarding within a session.

SAVEPOINT t1_save;
ROLLBACK TO SAVEPOINT t1_save;
RELEASE SAVEPOINT t1_save;

Using local write forwarding 1558

Amazon Aurora User Guide for Aurora

Isolation levels for write forwarding

In sessions that use write forwarding, you can only use the REPEATABLE READ isolation level.
Although you can also use the READ COMMITTED isolation level with Aurora Replicas, that isolation
level doesn't work with write forwarding. For information about the REPEATABLE READ and READ
COMMITTED isolation levels, see Aurora MySQL isolation levels.

Read consistency for write forwarding

You can control the degree of read consistency on a DB cluster. The read consistency level
determines how long the DB cluster waits before each read operation to ensure that some or all
changes are replicated from the writer. You can adjust the read consistency level to make sure
that all forwarded write operations from your session are visible in the DB cluster before any
subsequent queries. You can also use this setting to make sure that queries on the DB cluster
always see the most current updates from the writer. This setting also applies to queries submitted
by other sessions or other clusters. To specify this type of behavior for your application, choose a
value for the aurora_replica_read_consistency DB parameter or DB cluster parameter.

Important

Always set the aurora_replica_read_consistency DB parameter or DB cluster
parameter when you want to forward writes. If you don't, then Aurora doesn't forward
writes. This parameter has an empty value by default, so choose a specific value when you
use this parameter. The aurora_replica_read_consistency parameter only affects
DB clusters or instances that have write forwarding enabled.

As you increase the consistency level, your application spends more time waiting for changes to be
propagated between DB instances. You can choose the balance between fast response time and
making sure that changes made in other DB instances are fully available before your queries run.

You can specify the following values for the aurora_replica_read_consistency parameter:

• EVENTUAL – Results of write operations in the same session aren't visible until the write
operation is performed on the writer DB instance. The query doesn't wait for the updated results
to be available. Thus it might retrieve the older data or the updated data, depending on the
timing of the statements and the amount of replication lag. This is the same consistency as for
Aurora MySQL DB clusters that don't use write forwarding.

Using local write forwarding 1559

Amazon Aurora User Guide for Aurora

• SESSION – All queries that use write forwarding see the results of all changes made in that
session. The changes are visible regardless of whether the transaction is committed. If necessary,
the query waits for the results of forwarded write operations to be replicated.

• GLOBAL – A session sees all committed changes across all sessions and instances in the DB
cluster. Each query might wait for a period that varies depending on the amount of session lag.
The query proceeds when the DB cluster is up-to-date with all committed data from the writer,
as of the time that the query began.

For information about the configuration parameters involved in write forwarding, see
Configuration parameters for write forwarding.

Note

You can also use aurora_replica_read_consistency as a session variable, for
example:

mysql> set aurora_replica_read_consistency = 'session';

Examples of using write forwarding

The following examples show the effects of the aurora_replica_read_consistency
parameter on running INSERT statements followed by SELECT statements. The results can
differ, depending on the value of aurora_replica_read_consistency and the timing of the
statements.

To achieve higher consistency, you might wait briefly before issuing the SELECT statement. Or
Aurora can automatically wait until the results finish replicating before proceeding with SELECT.

For information on setting DB parameters, see Working with parameter groups.

Example with aurora_replica_read_consistency set to EVENTUAL

Running an INSERT statement, immediately followed by a SELECT statement, returns a value for
COUNT(*) with the number of rows before the new row is inserted. Running the SELECT again a
short time later returns the updated row count. The SELECT statements don't wait.

mysql> select count(*) from t1;
+----------+

Using local write forwarding 1560

Amazon Aurora User Guide for Aurora

| count(*) |
+----------+
| 5 |
+----------+
1 row in set (0.00 sec)

mysql> insert into t1 values (6); select count(*) from t1;
+----------+
| count(*) |
+----------+
| 5 |
+----------+
1 row in set (0.00 sec)

mysql> select count(*) from t1;
+----------+
| count(*) |
+----------+
| 6 |
+----------+
1 row in set (0.00 sec)

Example with aurora_replica_read_consistency set to SESSION

A SELECT statement immediately after an INSERT waits until the changes from the INSERT
statement are visible. Subsequent SELECT statements don't wait.

mysql> select count(*) from t1;
+----------+
| count(*) |
+----------+
| 6 |
+----------+
1 row in set (0.01 sec)

mysql> insert into t1 values (6); select count(*) from t1; select count(*) from t1;
Query OK, 1 row affected (0.08 sec)
+----------+
| count(*) |
+----------+
| 7 |
+----------+
1 row in set (0.37 sec)

Using local write forwarding 1561

Amazon Aurora User Guide for Aurora

+----------+
| count(*) |
+----------+
| 7 |
+----------+
1 row in set (0.00 sec)

With the read consistency setting still set to SESSION, introducing a brief wait after performing an
INSERT statement makes the updated row count available by the time the next SELECT statement
runs.

mysql> insert into t1 values (6); select sleep(2); select count(*) from t1;
Query OK, 1 row affected (0.07 sec)
+----------+
| sleep(2) |
+----------+
| 0 |
+----------+
1 row in set (2.01 sec)
+----------+
| count(*) |
+----------+
| 8 |
+----------+
1 row in set (0.00 sec)

Example with aurora_replica_read_consistency set to GLOBAL

Each SELECT statement waits for all data changes, as of the start time of the statement, to be
visible before performing the query. The wait time for each SELECT statement varies, depending
on the amount of replication lag.

mysql> select count(*) from t1;
+----------+
| count(*) |
+----------+
| 8 |
+----------+
1 row in set (0.75 sec)

mysql> select count(*) from t1;
+----------+

Using local write forwarding 1562

Amazon Aurora User Guide for Aurora

| count(*) |
+----------+
| 8 |
+----------+
1 row in set (0.37 sec)

mysql> select count(*) from t1;
+----------+
| count(*) |
+----------+
| 8 |
+----------+
1 row in set (0.66 sec)

Running multipart statements with write forwarding

A DML statement might consist of multiple parts, such as an INSERT ... SELECT statement or
a DELETE ... WHERE statement. In this case, the entire statement is forwarded to the writer DB
instance and run there.

Transactions with write forwarding

If the transaction access mode is set to read only, write forwarding isn't used. You can specify
the access mode for the transaction by using the SET TRANSACTION statement or the START
TRANSACTION statement. You can also specify the transaction access mode by changing the value
of the transaction_read_only session variable. You can change this session value only while you're
connected to a DB cluster that has write forwarding enabled.

If a long-running transaction doesn't issue any statement for a substantial period of time, it
might exceed the idle timeout period. This period has a default of one minute. You can set the
aurora_fwd_writer_idle_timeout parameter to increase it up to one day. A transaction that
exceeds the idle timeout is canceled by the writer instance. The next subsequent statement you
submit receives a timeout error. Then Aurora rolls back the transaction.

This type of error can occur in other cases when write forwarding becomes unavailable. For
example, Aurora cancels any transactions that use write forwarding if you restart the DB cluster or
if you disable write forwarding.

When a writer instance in a cluster using local write forwarding is restarted, any active, forwarded
transactions and queries on reader instances using local write forwarding are automatically closed.
After the writer instance is available again, you can retry these transactions.

Using local write forwarding 1563

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_transaction_read_only

Amazon Aurora User Guide for Aurora

Configuration parameters for write forwarding

The Aurora DB parameter groups include settings for the write forwarding feature. Details about
these parameters are summarized in the following table, with usage notes after the table.

Parameter Scope Type Default
value

Valid
values

aurora_fwd_writer_idle_time
out

Cluster Unsigned
integer

60 1–86,400

aurora_fwd_writer_max_conne
ctions_pct

Cluster Unsigned
long
integer

10 0–90

aurora_replica_read_consist
ency

Cluster or
instance

Enum '' (null) EVENTUAL,
SESSION,
GLOBAL

To control incoming write requests, use these settings:

• aurora_fwd_writer_idle_timeout – The number of seconds the writer DB instance waits
for activity on a connection that's forwarded from a reader instance before closing it. If the
session remains idle beyond this period, Aurora cancels the session.

• aurora_fwd_writer_max_connections_pct – The upper limit on database connections
that can be used on a writer DB instance to handle queries forwarded from reader instances.
It's expressed as a percentage of the max_connections setting for the writer. For example,
if max_connections is 800 and aurora_fwd_master_max_connections_pct or
aurora_fwd_writer_max_connections_pct is 10, then the writer allows a maximum of
80 simultaneous forwarded sessions. These connections come from the same connection pool
managed by the max_connections setting.

This setting applies only on the writer when it has write forwarding enabled. If you decrease
the value, existing connections aren't affected. Aurora takes the new value of the setting into
account when attempting to create a new connection from a DB cluster. The default value is 10,
representing 10% of the max_connections value.

Using local write forwarding 1564

Amazon Aurora User Guide for Aurora

Note

Because aurora_fwd_writer_idle_timeout and
aurora_fwd_writer_max_connections_pct are DB cluster parameters, all DB
instances in each cluster have the same values for these parameters.

For more information about aurora_replica_read_consistency, see Read consistency for
write forwarding.

For more information on DB parameter groups, see Working with parameter groups.

Amazon CloudWatch metrics and Aurora MySQL status variables for write
forwarding

The following Amazon CloudWatch metrics and Aurora MySQL status variables apply when you use
write forwarding on one or more DB clusters. These metrics and status variables are all measured
on the writer DB instance.

CloudWatch metric Aurora MySQL status
variable

Unit Description

Forwardin
gWriterDM
LLatency

– Milliseconds Average time
to process each
forwarded DML
statement on the
writer DB instance.

It doesn't include
the time for the DB
cluster to forward
the write request, or
the time to replicate
 changes back to the
writer.

Using local write forwarding 1565

Amazon Aurora User Guide for Aurora

CloudWatch metric Aurora MySQL status
variable

Unit Description

Forwardin
gWriterDM
LThroughput

– Count per second Number of forwarded
DML statement
s processed each
second by this writer
DB instance.

Forwardin
gWriterOp
enSessions

Aurora_fw
d_writer_
open_sessions

Count Number of forwarded
sessions on the writer
DB instance.

– Aurora_fw
d_writer_
dml_stmt_count

Count Total number of
DML statements
forwarded to this
writer DB instance.

– Aurora_fw
d_writer_
dml_stmt_
duration

Microseconds Total duration of
DML statements
forwarded to this
writer DB instance.

– Aurora_fw
d_writer_
select_st
mt_count

Count Total number of
SELECT statement
s forwarded to this
writer DB instance.

– Aurora_fw
d_writer_
select_st
mt_duration

Microseconds Total duration of
SELECT statement
s forwarded to this
writer DB instance.

The following CloudWatch metrics and Aurora MySQL status variables are measured on each reader
DB instance in a DB cluster with write forwarding enabled.

Using local write forwarding 1566

Amazon Aurora User Guide for Aurora

CloudWatch metric Aurora MySQL status
variable

Unit Description

Forwardin
gReplicaD
MLLatency

– Milliseconds Average response
time of forwarded
DMLs on replica.

Forwardin
gReplicaD
MLThroughput

– Count per second Number of forwarded
DML statement
s processed each
second.

Forwardin
gReplicaO
penSessions

Aurora_fw
d_replica
_open_sessions

Count Number of sessions
that are using write
forwarding on a
reader DB instance.

Forwardin
gReplicaR
eadWaitLatency

– Milliseconds Average wait time
that a SELECT
statement on a
reader DB instance
waits to catch up to
the writer.

The degree to
which the reader
DB instance waits
before processing
a query depends
on the aurora_re
plica_rea
d_consistency
setting.

Forwardin
gReplicaR
eadWaitTh
roughput

– Count per second Total number of
SELECT statement
s processed each
second in all sessions

Using local write forwarding 1567

Amazon Aurora User Guide for Aurora

CloudWatch metric Aurora MySQL status
variable

Unit Description

that are forwarding
writes.

Forwardin
gReplicaS
electLatency

– Milliseconds Forwarded SELECT
latency, averaged
over all forwarded
SELECT statements
within the monitoring
period.

Forwardin
gReplicaS
electThro
ughput

– Count per second Forwarded SELECT
throughput per
second average
within the monitoring
period.

– Aurora_fw
d_replica
_dml_stmt
_count

Count Total number of
DML statements
forwarded from this
reader DB instance.

– Aurora_fw
d_replica
_dml_stmt
_duration

Microseconds Total duration of
all DML statements
forwarded from this
reader DB instance.

Using local write forwarding 1568

Amazon Aurora User Guide for Aurora

CloudWatch metric Aurora MySQL status
variable

Unit Description

– Aurora_fw
d_replica
_errors_s
ession_limit

Count Number of sessions
rejected by the
primary cluster
due to one of the
following error
conditions:

• writer full

• Too many
forwarded
statements in
progress.

– Aurora_fw
d_replica
_read_wai
t_count

Count Total number of
read-after-write waits
on this reader DB
instance.

– Aurora_fw
d_replica
_read_wai
t_duration

Microseconds Total duration of
waits due to the read
consistency setting
on this reader DB
instance.

– Aurora_fw
d_replica
_select_s
tmt_count

Count Total number of
SELECT statements
forwarded from this
reader DB instance.

– Aurora_fw
d_replica
_select_s
tmt_duration

Microseconds Total duration of
SELECT statements
forwarded from this
reader DB instance.

Using local write forwarding 1569

Amazon Aurora User Guide for Aurora

Identifying forwarded transactions and queries

You can use the information_schema.aurora_forwarding_processlist table
to identify forwarded transactions and queries. For more information on this table, see
information_schema.aurora_forwarding_processlist.

The following example shows all forwarded connections on a writer DB instance.

mysql> select * from information_schema.AURORA_FORWARDING_PROCESSLIST where
 IS_FORWARDED=1 order by REPLICA_SESSION_ID;

+-----+----------+--------------------+----------+---------+------+--------------
+--+--------------+--------------------
+---------------------------------+----------------------+----------------+
| ID | USER | HOST | DB | COMMAND | TIME | STATE |
 INFO | IS_FORWARDED | REPLICA_SESSION_ID |
 REPLICA_INSTANCE_IDENTIFIER | REPLICA_CLUSTER_NAME | REPLICA_REGION |
+-----+----------+--------------------+----------+---------+------+--------------
+--+--------------+--------------------
+---------------------------------+---------------------------------------+
| 648 | myuser | IP_address:port1 | sysbench | Query | 0 | async commit |
 UPDATE sbtest58 SET k=k+1 WHERE id=4802579 | 1 | 637 | my-
db-cluster-instance-2 | my-db-cluster | us-west-2 |
| 650 | myuser | IP_address:port2 | sysbench | Query | 0 | async commit |
 UPDATE sbtest54 SET k=k+1 WHERE id=2503953 | 1 | 639 | my-
db-cluster-instance-2 | my-db-cluster | us-west-2 |
+-----+----------+--------------------+----------+---------+------+--------------
+--+--------------+--------------------
+---------------------------------+----------------------+----------------+

On the forwarding reader DB instance, you can see the threads associated with these writer DB
connections by running SHOW PROCESSLIST. The REPLICA_SESSION_ID values on the writer,
637 and 639, are the same as the Id values on the reader.

mysql> select @@aurora_server_id;

+---------------------------------+
| @@aurora_server_id |
+---------------------------------+
| my-db-cluster-instance-2 |
+---------------------------------+
1 row in set (0.00 sec)

Using local write forwarding 1570

Amazon Aurora User Guide for Aurora

mysql> show processlist;

+-----+----------+--------------------+----------+---------+------+--------------
+---+
| Id | User | Host | db | Command | Time | State | Info
 |
+-----+----------+--------------------+----------+---------+------+--------------
+---+
| 637 | myuser | IP_address:port1 | sysbench | Query | 0 | async commit |
 UPDATE sbtest12 SET k=k+1 WHERE id=4802579 |
| 639 | myuser | IP_address:port2 | sysbench | Query | 0 | async commit |
 UPDATE sbtest61 SET k=k+1 WHERE id=2503953 |
+-----+----------+--------------------+----------+---------+------+--------------
+---+
12 rows in set (0.00 sec)

Using local write forwarding 1571

Amazon Aurora User Guide for Aurora

Replicating Amazon Aurora MySQL DB clusters across AWS Regions

You can create an Amazon Aurora MySQL DB cluster as a read replica in a different AWS Region
than the source DB cluster. Taking this approach can improve your disaster recovery capabilities,
let you scale read operations into an AWS Region that is closer to your users, and make it easier to
migrate from one AWS Region to another.

You can create read replicas of both encrypted and unencrypted DB clusters. The read replica must
be encrypted if the source DB cluster is encrypted.

For each source DB cluster, you can have up to five cross-Region DB clusters that are read replicas.

Note

As an alternative to cross-Region read replicas, you can scale read operations with minimal
lag time by using an Aurora global database. An Aurora global database has a primary
Aurora DB cluster in one AWS Region and up to five secondary read-only DB clusters
in different Regions. Each secondary DB cluster can include up to 16 (rather than 15)
Aurora Replicas. Replication from the primary DB cluster to all secondaries is handled by
the Aurora storage layer rather than by the database engine, so lag time for replicating
changes is minimal—typically, less than 1 second. Keeping the database engine out of the
replication process means that the database engine is dedicated to processing workloads.
It also means that you don't need to configure or manage the Aurora MySQL binlog (binary
logging) replication. To learn more, see Using Amazon Aurora global databases.

When you create an Aurora MySQL DB cluster read replica in another AWS Region, you should be
aware of the following:

• Both your source DB cluster and your cross-Region read replica DB cluster can have up to 15
Aurora Replicas, along with the primary instance for the DB cluster. By using this functionality,
you can scale read operations for both your source AWS Region and your replication target AWS
Region.

• In a cross-Region scenario, there is more lag time between the source DB cluster and the read
replica due to the longer network channels between AWS Regions.

• Data transferred for cross-Region replication incurs Amazon RDS data transfer charges. The
following cross-Region replication actions generate charges for the data transferred out of the
source AWS Region:

Cross-Region replication 1572

Amazon Aurora User Guide for Aurora

• When you create the read replica, Amazon RDS takes a snapshot of the source cluster and
transfers the snapshot to the AWS Region that holds the read replica.

• For each data modification made in the source databases, Amazon RDS transfers data from the
source region to the AWS Region that holds the read replica.

For more information about Amazon RDS data transfer pricing, see Amazon Aurora pricing.

• You can run multiple concurrent create or delete actions for read replicas that reference the
same source DB cluster. However, you must stay within the limit of five read replicas for each
source DB cluster.

• For replication to operate effectively, each read replica should have the same amount of
compute and storage resources as the source DB cluster. If you scale the source DB cluster, you
should also scale the read replicas.

Topics

• Before you begin

• Creating an Amazon Aurora MySQL DB cluster that is a cross-Region read replica

• Viewing Amazon Aurora MySQL cross-Region replicas

• Promoting a read replica to be a DB cluster

• Troubleshooting Amazon Aurora MySQL cross Region replicas

Before you begin

Before you can create an Aurora MySQL DB cluster that is a cross-Region read replica, you must
turn on binary logging on your source Aurora MySQL DB cluster. Cross-region replication for Aurora
MySQL uses MySQL binary replication to replay changes on the cross-Region read replica DB
cluster.

To turn on binary logging on an Aurora MySQL DB cluster, update the binlog_format
parameter for your source DB cluster. The binlog_format parameter is a cluster-level
parameter that is in the default cluster parameter group. If your DB cluster uses the default DB
cluster parameter group, create a new DB cluster parameter group to modify binlog_format
settings. We recommend that you set the binlog_format to MIXED. However, you can also set
binlog_format to ROW or STATEMENT if you need a specific binlog format. Reboot your Aurora
DB cluster for the change to take effect.

Cross-Region replication 1573

http://aws.amazon.com/rds/aurora/pricing/

Amazon Aurora User Guide for Aurora

For more information about using binary logging with Aurora MySQL, see Replication between
Aurora and MySQL or between Aurora and another Aurora DB cluster (binary log replication). For
more information about modifying Aurora MySQL configuration parameters, see Amazon Aurora
DB cluster and DB instance parameters and Working with parameter groups.

Creating an Amazon Aurora MySQL DB cluster that is a cross-Region read replica

You can create an Aurora DB cluster that is a cross-Region read replica by using the AWS
Management Console, the AWS Command Line Interface (AWS CLI), or the Amazon RDS API. You
can create cross-Region read replicas from both encrypted and unencrypted DB clusters.

When you create a cross-Region read replica for Aurora MySQL by using the AWS Management
Console, Amazon RDS creates a DB cluster in the target AWS Region, and then automatically
creates a DB instance that is the primary instance for that DB cluster.

When you create a cross-Region read replica using the AWS CLI or RDS API, you first create the DB
cluster in the target AWS Region and wait for it to become active. Once it is active, you then create
a DB instance that is the primary instance for that DB cluster.

Replication begins when the primary instance of the read replica DB cluster becomes available.

Use the following procedures to create a cross-Region read replica from an Aurora MySQL DB
cluster. These procedures work for creating read replicas from either encrypted or unencrypted DB
clusters.

Console

To create an Aurora MySQL DB cluster that is a cross-Region read replica with the AWS
Management Console

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the top-right corner of the AWS Management Console, select the AWS Region that hosts
your source DB cluster.

3. In the navigation pane, choose Databases.

4. Choose the DB cluster for which you want to create a cross-Region read replica.

5. For Actions, choose Create cross-Region read replica.

6. On the Create cross region read replica page, choose the option settings for your cross-
Region read replica DB cluster, as described in the following table.

Cross-Region replication 1574

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Aurora User Guide for Aurora

Option Description

Destination region Choose the AWS Region to host the new cross-Region
read replica DB cluster.

Destination DB subnet group Choose the DB subnet group to use for the cross-Reg
ion read replica DB cluster.

Publicly accessible Choose Yes to give the cross-Region read replica DB
cluster a public IP address; otherwise, select No.

Encryption Select Enable Encryption to turn on encryption at
rest for this DB cluster. For more information, see
Encrypting Amazon Aurora resources.

AWS KMS key Only available if Encryption is set to Enable
Encryption. Select the AWS KMS key to use for
encrypting this DB cluster. For more information, see
Encrypting Amazon Aurora resources.

DB instance class Choose a DB instance class that defines the processin
g and memory requirements for the primary instance
in the DB cluster. For more information about DB
instance class options, see Aurora DB instance classes.

Multi-AZ deployment Choose Yes to create a read replica of the new DB
cluster in another Availability Zone in the target AWS
Region for failover support. For more information
about multiple Availability Zones, see Regions and
Availability Zones.

Read replica source Choose the source DB cluster to create a cross-Region
read replica for.

Cross-Region replication 1575

Amazon Aurora User Guide for Aurora

Option Description

DB instance identifier Type a name for the primary instance in your cross-
Region read replica DB cluster. This identifier is used
in the endpoint address for the primary instance of
the new DB cluster.

The DB instance identifier has the following constrain
ts:

• It must contain from 1 to 63 alphanumeric
characters or hyphens.

• Its first character must be a letter.

• It cannot end with a hyphen or contain two
consecutive hyphens.

• It must be unique for all DB instances for each AWS
account, for each AWS Region.

Because the cross-Region read replica DB cluster is
created from a snapshot of the source DB cluster, the
master user name and master password for the read
replica are the same as the master user name and
master password for the source DB cluster.

Cross-Region replication 1576

Amazon Aurora User Guide for Aurora

Option Description

DB cluster identifier Type a name for your cross-Region read replica DB
cluster that is unique for your account in the target
AWS Region for your replica. This identifier is used
in the cluster endpoint address for your DB cluster.
For information on the cluster endpoint, see Amazon
Aurora connection management.

The DB cluster identifier has the following constrain
ts:

• It must contain from 1 to 63 alphanumeric
characters or hyphens.

• Its first character must be a letter.

• It cannot end with a hyphen or contain two
consecutive hyphens.

• It must be unique for all DB clusters for each AWS
account, for each AWS Region.

Priority Choose a failover priority for the primary instance
of the new DB cluster. This priority determines the
order in which Aurora Replicas are promoted when
recovering from a primary instance failure. If you
don't select a value, the default is tier-1. For more
information, see Fault tolerance for an Aurora DB
cluster.

Database port Specify the port for applications and utilities to use
to access the database. Aurora DB clusters default
to the default MySQL port, 3306. Firewalls at some
companies block connections to this port. If your
company firewall blocks the default port, choose
another port for the new DB cluster.

Cross-Region replication 1577

Amazon Aurora User Guide for Aurora

Option Description

Enhanced monitoring Choose Enable enhanced monitoring to turn on
gathering metrics in real time for the operating
system that your DB cluster runs on. For more
information, see Monitoring OS metrics with
Enhanced Monitoring.

Monitoring Role Only available if Enhanced Monitoring is set to
Enable enhanced monitoring. Choose the IAM
role that you created to permit Amazon RDS to
communicate with Amazon CloudWatch Logs for
you, or choose Default to have RDS create a role
for you named rds-monitoring-role . For
more information, see Monitoring OS metrics with
Enhanced Monitoring.

Granularity Only available if Enhanced Monitoring is set to
Enable enhanced monitoring. Set the interval, in
seconds, between when metrics are collected for your
DB cluster.

Auto minor version upgrade This setting doesn't apply to Aurora MySQL DB
clusters.

For more information about engine updates for
Aurora MySQL, see Database engine updates for
Amazon Aurora MySQL.

7. Choose Create to create your cross-Region read replica for Aurora.

AWS CLI

To create an Aurora MySQL DB cluster that is a cross-Region read replica with the CLI

1. Call the AWS CLI create-db-cluster command in the AWS Region where you want to create
the read replica DB cluster. Include the --replication-source-identifier option and
specify the Amazon Resource Name (ARN) of the source DB cluster to create a read replica for.

Cross-Region replication 1578

https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-cluster.html

Amazon Aurora User Guide for Aurora

For cross-Region replication where the DB cluster identified by --replication-source-
identifier is encrypted, specify the --kms-key-id option and the --storage-
encrypted option.

Note

You can set up cross-Region replication from an unencrypted DB cluster to an
encrypted read replica by specifying --storage-encrypted and providing a value
for --kms-key-id.

You can't specify the --master-username and --master-user-password parameters.
Those values are taken from the source DB cluster.

The following code example creates a read replica in the us-east-1 Region from an
unencrypted DB cluster snapshot in the us-west-2 Region. The command is called in the us-
east-1 Region. This example specifies the --manage-master-user-password option to
generate the master user password and manage it in Secrets Manager. For more information,
see Password management with Amazon Aurora and AWS Secrets Manager. Alternatively, you
can use the --master-password option to specify and manage the password yourself.

For Linux, macOS, or Unix:

aws rds create-db-cluster \
 --db-cluster-identifier sample-replica-cluster \
 --engine aurora \
 --replication-source-identifier arn:aws:rds:us-
west-2:123456789012:cluster:sample-master-cluster

For Windows:

aws rds create-db-cluster ^
 --db-cluster-identifier sample-replica-cluster ^
 --engine aurora ^
 --replication-source-identifier arn:aws:rds:us-
west-2:123456789012:cluster:sample-master-cluster

Cross-Region replication 1579

Amazon Aurora User Guide for Aurora

The following code example creates a read replica in the us-east-1 Region from an encrypted
DB cluster snapshot in the us-west-2 Region. The command is called in the us-east-1 Region.

For Linux, macOS, or Unix:

aws rds create-db-cluster \
 --db-cluster-identifier sample-replica-cluster \
 --engine aurora \
 --replication-source-identifier arn:aws:rds:us-
west-2:123456789012:cluster:sample-master-cluster \
 --kms-key-id my-us-east-1-key \
 --storage-encrypted

For Windows:

aws rds create-db-cluster ^
 --db-cluster-identifier sample-replica-cluster ^
 --engine aurora ^
 --replication-source-identifier arn:aws:rds:us-
west-2:123456789012:cluster:sample-master-cluster ^
 --kms-key-id my-us-east-1-key ^
 --storage-encrypted

The --source-region option is required for cross-Region replication between the AWS
GovCloud (US-East) and AWS GovCloud (US-West) Regions, where the DB cluster identified by
--replication-source-identifier is encrypted. For --source-region, specify the
AWS Region of the source DB cluster.

If --source-region isn't specified, specify a --pre-signed-url value. A presigned URL
is a URL that contains a Signature Version 4 signed request for the create-db-cluster
command that is called in the source AWS Region. To learn more about the pre-signed-url
option, see create-db-cluster in the AWS CLI Command Reference.

2. Check that the DB cluster has become available to use by using the AWS CLI describe-db-
clusters command, as shown in the following example.

aws rds describe-db-clusters --db-cluster-identifier sample-replica-cluster

Cross-Region replication 1580

https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-cluster.html
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-clusters.html
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-clusters.html

Amazon Aurora User Guide for Aurora

When the describe-db-clusters results show a status of available, create the primary
instance for the DB cluster so that replication can begin. To do so, use the AWS CLI create-db-
instance command as shown in the following example.

For Linux, macOS, or Unix:

aws rds create-db-instance \
 --db-cluster-identifier sample-replica-cluster \
 --db-instance-class db.r3.large \
 --db-instance-identifier sample-replica-instance \
 --engine aurora

For Windows:

aws rds create-db-instance ^
 --db-cluster-identifier sample-replica-cluster ^
 --db-instance-class db.r3.large ^
 --db-instance-identifier sample-replica-instance ^
 --engine aurora

When the DB instance is created and available, replication begins. You can determine if the DB
instance is available by calling the AWS CLI describe-db-instances command.

RDS API

To create an Aurora MySQL DB cluster that is a cross-Region read replica with the API

1. Call the RDS API CreateDBCluster operation in the AWS Region where you want to create the
read replica DB cluster. Include the ReplicationSourceIdentifier parameter and specify
the Amazon Resource Name (ARN) of the source DB cluster to create a read replica for.

For cross-Region replication where the DB cluster identified by
ReplicationSourceIdentifier is encrypted, specify the KmsKeyId parameter and set the
StorageEncrypted parameter to true.

Cross-Region replication 1581

https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-instance.html
https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-instance.html
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-instances.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateDBCluster.html

Amazon Aurora User Guide for Aurora

Note

You can set up cross-Region replication from an unencrypted DB cluster to an
encrypted read replica by specifying StorageEncrypted as true and providing a
value for KmsKeyId. In this case, you don't need to specify PreSignedUrl.

You don't need to include the MasterUsername and MasterUserPassword parameters,
because those values are taken from the source DB cluster.

The following code example creates a read replica in the us-east-1 Region from an
unencrypted DB cluster snapshot in the us-west-2 Region. The action is called in the us-east-1
Region.

https://rds.us-east-1.amazonaws.com/
 ?Action=CreateDBCluster
 &ReplicationSourceIdentifier=arn:aws:rds:us-west-2:123456789012:cluster:sample-
master-cluster
 &DBClusterIdentifier=sample-replica-cluster
 &Engine=aurora
 &SignatureMethod=HmacSHA256
 &SignatureVersion=4
 &Version=2014-10-31
 &X-Amz-Algorithm=AWS4-HMAC-SHA256
 &X-Amz-Credential=AKIADQKE4SARGYLE/20161117/us-east-1/rds/aws4_request
 &X-Amz-Date=20160201T001547Z
 &X-Amz-SignedHeaders=content-type;host;user-agent;x-amz-content-sha256;x-amz-date
 &X-Amz-Signature=a04c831a0b54b5e4cd236a90dcb9f5fab7185eb3b72b5ebe9a70a4e95790c8b7

The following code example creates a read replica in the us-east-1 Region from an encrypted
DB cluster snapshot in the us-west-2 Region. The action is called in the us-east-1 Region.

https://rds.us-east-1.amazonaws.com/
 ?Action=CreateDBCluster
 &KmsKeyId=my-us-east-1-key
 &StorageEncrypted=true
 &PreSignedUrl=https%253A%252F%252Frds.us-west-2.amazonaws.com%252F
 %253FAction%253DCreateDBCluster
 %2526DestinationRegion%253Dus-east-1
 %2526KmsKeyId%253Dmy-us-east-1-key

Cross-Region replication 1582

Amazon Aurora User Guide for Aurora

 %2526ReplicationSourceIdentifier%253Darn%25253Aaws%25253Ards%25253Aus-
west-2%25253A123456789012%25253Acluster%25253Asample-master-cluster
 %2526SignatureMethod%253DHmacSHA256
 %2526SignatureVersion%253D4
 %2526Version%253D2014-10-31
 %2526X-Amz-Algorithm%253DAWS4-HMAC-SHA256
 %2526X-Amz-Credential%253DAKIADQKE4SARGYLE%252F20161117%252Fus-
west-2%252Frds%252Faws4_request
 %2526X-Amz-Date%253D20161117T215409Z
 %2526X-Amz-Expires%253D3600
 %2526X-Amz-SignedHeaders%253Dcontent-type%253Bhost%253Buser-agent%253Bx-
amz-content-sha256%253Bx-amz-date
 %2526X-Amz-Signature
%253D255a0f17b4e717d3b67fad163c3ec26573b882c03a65523522cf890a67fca613
 &ReplicationSourceIdentifier=arn:aws:rds:us-west-2:123456789012:cluster:sample-
master-cluster
 &DBClusterIdentifier=sample-replica-cluster
 &Engine=aurora
 &SignatureMethod=HmacSHA256
 &SignatureVersion=4
 &Version=2014-10-31
 &X-Amz-Algorithm=AWS4-HMAC-SHA256
 &X-Amz-Credential=AKIADQKE4SARGYLE/20161117/us-east-1/rds/aws4_request
 &X-Amz-Date=20160201T001547Z
 &X-Amz-SignedHeaders=content-type;host;user-agent;x-amz-content-sha256;x-amz-date
 &X-Amz-Signature=a04c831a0b54b5e4cd236a90dcb9f5fab7185eb3b72b5ebe9a70a4e95790c8b7

For cross-Region replication between the AWS GovCloud (US-East) and AWS GovCloud (US-
West) Regions, where the DB cluster identified by ReplicationSourceIdentifier is
encrypted, also specify the PreSignedUrl parameter. The presigned URL must be a valid
request for the CreateDBCluster API operation that can be performed in the source AWS
Region that contains the encrypted DB cluster to be replicated. The KMS key identifier is used
to encrypt the read replica, and must be a KMS key valid for the destination AWS Region. To
automatically rather than manually generate a presigned URL, use the AWS CLI create-db-
cluster command with the --source-region option instead.

2. Check that the DB cluster has become available to use by using the RDS API
DescribeDBClusters operation, as shown in the following example.

https://rds.us-east-1.amazonaws.com/
 ?Action=DescribeDBClusters
 &DBClusterIdentifier=sample-replica-cluster

Cross-Region replication 1583

https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-cluster.html
https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-cluster.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DescribeDBClusters.html

Amazon Aurora User Guide for Aurora

 &SignatureMethod=HmacSHA256
 &SignatureVersion=4
 &Version=2014-10-31
 &X-Amz-Algorithm=AWS4-HMAC-SHA256
 &X-Amz-Credential=AKIADQKE4SARGYLE/20161117/us-east-1/rds/aws4_request
 &X-Amz-Date=20160201T002223Z
 &X-Amz-SignedHeaders=content-type;host;user-agent;x-amz-content-sha256;x-amz-date
 &X-Amz-Signature=84c2e4f8fba7c577ac5d820711e34c6e45ffcd35be8a6b7c50f329a74f35f426

When DescribeDBClusters results show a status of available, create the primary
instance for the DB cluster so that replication can begin. To do so, use the RDS API
CreateDBInstance action as shown in the following example.

https://rds.us-east-1.amazonaws.com/
 ?Action=CreateDBInstance
 &DBClusterIdentifier=sample-replica-cluster
 &DBInstanceClass=db.r3.large
 &DBInstanceIdentifier=sample-replica-instance
 &Engine=aurora
 &SignatureMethod=HmacSHA256
 &SignatureVersion=4
 &Version=2014-10-31
 &X-Amz-Algorithm=AWS4-HMAC-SHA256
 &X-Amz-Credential=AKIADQKE4SARGYLE/20161117/us-east-1/rds/aws4_request
 &X-Amz-Date=20160201T003808Z
 &X-Amz-SignedHeaders=content-type;host;user-agent;x-amz-content-sha256;x-amz-date
 &X-Amz-Signature=125fe575959f5bbcebd53f2365f907179757a08b5d7a16a378dfa59387f58cdb

When the DB instance is created and available, replication begins. You can determine if the DB
instance is available by calling the AWS CLI DescribeDBInstances command.

Viewing Amazon Aurora MySQL cross-Region replicas

You can view the cross-Region replication relationships for your Amazon Aurora MySQL DB
clusters by calling the describe-db-clusters AWS CLI command or the DescribeDBClusters
RDS API operation. In the response, refer to the ReadReplicaIdentifiers field
for the DB cluster identifiers of any cross-Region read replica DB clusters. Refer to the
ReplicationSourceIdentifier element for the ARN of the source DB cluster that is the
replication source.

Cross-Region replication 1584

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateDBInstance.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DescribeDBInstances.html
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-clusters.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DescribeDBClusters.html

Amazon Aurora User Guide for Aurora

Promoting a read replica to be a DB cluster

You can promote an Aurora MySQL read replica to a standalone DB cluster. When you promote an
Aurora MySQL read replica, its DB instances are rebooted before they become available.

Typically, you promote an Aurora MySQL read replica to a standalone DB cluster as a data recovery
scheme if the source DB cluster fails.

To do this, first create a read replica and then monitor the source DB cluster for failures. In the
event of a failure, do the following:

1. Promote the read replica.

2. Direct database traffic to the promoted DB cluster.

3. Create a replacement read replica with the promoted DB cluster as its source.

When you promote a read replica, the read replica becomes a standalone Aurora DB cluster. The
promotion process can take several minutes or longer to complete, depending on the size of
the read replica. After you promote the read replica to a new DB cluster, it's just like any other
DB cluster. For example, you can create read replicas from it and perform point-in-time restore
operations. You can also create Aurora Replicas for the DB cluster.

Because the promoted DB cluster is no longer a read replica, you can't use it as a replication target.

The following steps show the general process for promoting a read replica to a DB cluster:

1. Stop any transactions from being written to the read replica source DB cluster, and then wait
for all updates to be made to the read replica. Database updates occur on the read replica after
they have occurred on the source DB cluster, and this replication lag can vary significantly. Use
the ReplicaLag metric to determine when all updates have been made to the read replica.
The ReplicaLag metric records the amount of time a read replica DB instance lags behind the
source DB instance. When the ReplicaLag metric reaches 0, the read replica has caught up to
the source DB instance.

2. Promote the read replica by using the Promote option on the Amazon RDS console, the AWS CLI
command promote-read-replica-db-cluster, or the PromoteReadReplicaDBCluster Amazon RDS
API operation.

You choose an Aurora MySQL DB instance to promote the read replica. After the read replica is
promoted, the Aurora MySQL DB cluster is promoted to a standalone DB cluster. The DB instance

Cross-Region replication 1585

https://docs.aws.amazon.com/cli/latest/reference/rds/promote-read-replica-db-cluster.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_PromoteReadReplicaDBCluster.html

Amazon Aurora User Guide for Aurora

with the highest failover priority is promoted to the primary DB instance for the DB cluster. The
other DB instances become Aurora Replicas.

Note

The promotion process takes a few minutes to complete. When you promote a read
replica, replication is stopped and the DB instances are rebooted. When the reboot is
complete, the read replica is available as a new DB cluster.

Console

To promote an Aurora MySQL read replica to a DB cluster

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. On the console, choose Instances.

The Instance pane appears.

3. In the Instances pane, choose the read replica that you want to promote.

The read replicas appear as Aurora MySQL DB instances.

4. For Actions, choose Promote read replica.

5. On the acknowledgment page, choose Promote read replica.

AWS CLI

To promote a read replica to a DB cluster, use the AWS CLI promote-read-replica-db-cluster
command.

Example

For Linux, macOS, or Unix:

aws rds promote-read-replica-db-cluster \
 --db-cluster-identifier mydbcluster

For Windows:

Cross-Region replication 1586

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/
https://docs.aws.amazon.com/cli/latest/reference/rds/promote-read-replica-db-cluster.html

Amazon Aurora User Guide for Aurora

aws rds promote-read-replica-db-cluster ^
 --db-cluster-identifier mydbcluster

RDS API

To promote a read replica to a DB cluster, call PromoteReadReplicaDBCluster.

Troubleshooting Amazon Aurora MySQL cross Region replicas

Following you can find a list of common error messages that you might encounter when creating
an Amazon Aurora cross-Region read replica, and how to resolve the specified errors.

Source cluster [DB cluster ARN] doesn't have binlogs enabled

To resolve this issue, turn on binary logging on the source DB cluster. For more information, see
Before you begin.

Source cluster [DB cluster ARN] doesn't have cluster parameter group in sync on writer

You receive this error if you have updated the binlog_format DB cluster parameter, but have not
rebooted the primary instance for the DB cluster. Reboot the primary instance (that is, the writer)
for the DB cluster and try again.

Source cluster [DB cluster ARN] already has a read replica in this region

You can have up to five cross-Region DB clusters that are read replicas for each source DB cluster
in any AWS Region. If you already have the maximum number of read replicas for a DB cluster in a
particular AWS Region, you must delete an existing one before you can create a new cross-Region
DB cluster in that Region.

DB cluster [DB cluster ARN] requires a database engine upgrade for cross-Region replication
support

To resolve this issue, upgrade the database engine version for all of the instances in the source
DB cluster to the most recent database engine version, and then try creating a cross-Region read
replica DB again.

Replication between Aurora and MySQL or between Aurora and
another Aurora DB cluster (binary log replication)

Because Amazon Aurora MySQL is compatible with MySQL, you can set up replication between a
MySQL database and an Amazon Aurora MySQL DB cluster. This type of replication uses the MySQL

Using binary log (binlog) replication 1587

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_PromoteReadReplicaDBCluster.html

Amazon Aurora User Guide for Aurora

binary log replication, also referred to as binlog replication. If you use binary log replication with
Aurora, we recommend that your MySQL database run MySQL version 5.5 or later. You can set up
replication where your Aurora MySQL DB cluster is the replication source or the replica. You can
replicate with an Amazon RDS MySQL DB instance, a MySQL database external to Amazon RDS, or
another Aurora MySQL DB cluster.

Note

You can't use binlog replication to or from certain types of Aurora DB clusters. In particular,
binlog replication isn't available for Aurora Serverless v1 clusters. If the SHOW MASTER
STATUS and SHOW SLAVE STATUS (Aurora MySQL version 2) or SHOW REPLICA STATUS
(Aurora MySQL version 3) statement returns no output, check that the cluster you're using
supports binlog replication.
In Aurora MySQL version 3, binary log replication doesn't replicate to the mysql system
database. Passwords and accounts aren't replicated by binlog replication in Aurora MySQL
version 3. Therefore, Data Control Language (DCL) statements such as CREATE USER,
GRANT, and REVOKE aren't replicated.

You can also replicate with an RDS for MySQL DB instance or Aurora MySQL DB cluster in another
AWS Region. When you're performing replication across AWS Regions, make sure that your DB
clusters and DB instances are publicly accessible. If the Aurora MySQL DB clusters are in private
subnets in your VPC, use VPC peering between the AWS Regions. For more information, see A DB
cluster in a VPC accessed by an EC2 instance in a different VPC.

If you want to configure replication between an Aurora MySQL DB cluster and an Aurora MySQL
DB cluster in another AWS Region, you can create an Aurora MySQL DB cluster as a read replica in
a different AWS Region from the source DB cluster. For more information, see Replicating Amazon
Aurora MySQL DB clusters across AWS Regions.

With Aurora MySQL version 2 and 3, you can replicate between Aurora MySQL and an external
source or target that uses global transaction identifiers (GTIDs) for replication. Ensure that the
GTID-related parameters in the Aurora MySQL DB cluster have settings that are compatible with
the GTID status of the external database. To learn how to do this, see Using GTID-based replication.
In Aurora MySQL version 3.01 and higher, you can choose how to assign GTIDs to transactions that
are replicated from a source that doesn't use GTIDs. For information about the stored procedure
that controls that setting, see mysql.rds_assign_gtids_to_anonymous_transactions (Aurora MySQL
version 3).

Using binary log (binlog) replication 1588

Amazon Aurora User Guide for Aurora

Warning

When you replicate between Aurora MySQL and MySQL, make sure that you use only
InnoDB tables. If you have MyISAM tables that you want to replicate, you can convert them
to InnoDB before setting up replication with the following command.

alter table <schema>.<table_name> engine=innodb, algorithm=copy;

Setting up replication with MySQL or another Aurora DB cluster

Setting up MySQL replication with Aurora MySQL involves the following steps, which are discussed
in detail:

1. Turn on binary logging on the replication source

2. Retain binary logs on the replication source until no longer needed

3. Create a copy or dump of your replication source

4. Load the dump into your replica target (if needed)

5. Create a replication user on your replication source

6. Turn on replication on your replica target

7. Monitor your replica

1. Turn on binary logging on the replication source

Find instructions on how to turn on binary logging on the replication source for your database
engine following.

Database
engine

Instructions

Aurora
MySQL

To turn on binary logging on an Aurora MySQL DB cluster

Set the binlog_format DB cluster parameter to ROW, STATEMENT , or MIXED.
MIXED is recommended unless you have a need for a specific binlog format. (The
default value is OFF.)

Using binary log (binlog) replication 1589

Amazon Aurora User Guide for Aurora

Database
engine

Instructions

To change the binlog_format parameter, create a custom DB cluster parameter
group and associate that custom parameter group with your DB cluster. You can't
change parameters in the default DB cluster parameter group.

If you're changing the binlog_format parameter from OFF to another value,
reboot your Aurora DB cluster for the change to take effect.

For more information, see Amazon Aurora DB cluster and DB instance parameters
and Working with parameter groups.

RDS for
MySQL

To turn on binary logging on an Amazon RDS DB instance

You can't turn on binary logging directly for an Amazon RDS DB instance, but you
can turn it on by doing one of the following:

• Turn on automated backups for the DB instance. You can turn on automated
backups when you create a DB instance, or you can turn on backups by modifying
an existing DB instance. For more information, see Creating a DB instance in the
Amazon RDS User Guide.

• Create a read replica for the DB instance. For more information, see Working with
read replicas in the Amazon RDS User Guide.

Using binary log (binlog) replication 1590

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_CreateDBInstance.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_ReadRepl.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_ReadRepl.html

Amazon Aurora User Guide for Aurora

Database
engine

Instructions

MySQL
(external)

To set up encrypted replication

To replicate data securely with Aurora MySQL version 2, you can use encrypted
replication.

Note

If you don't need to use encrypted replication, you can skip these steps.

The following are prerequisites for using encrypted replication:

• Secure Sockets Layer (SSL) must be enabled on the external MySQL source
database.

• A client key and client certificate must be prepared for the Aurora MySQL DB
cluster.

During encrypted replication, the Aurora MySQL DB cluster acts a client to the
MySQL database server. The certificates and keys for the Aurora MySQL client are in
files in .pem format.

1. Ensure that you are prepared for encrypted replication:

• If you don't have SSL enabled on the external MySQL source database and
don't have a client key and client certificate prepared, turn on SSL on the
MySQL database server and generate the required client key and client
certificate.

• If SSL is enabled on the external source, supply a client key and certificate
for the Aurora MySQL DB cluster. If you don't have these, generate a new key
and certificate for the Aurora MySQL DB cluster. To sign the client certificate,
you must have the certificate authority key that you used to configure SSL on
the external MySQL source database.

Using binary log (binlog) replication 1591

Amazon Aurora User Guide for Aurora

Database
engine

Instructions

For more information, see Creating SSL certificates and keys using openssl in
the MySQL documentation.

You need the certificate authority certificate, the client key, and the client
certificate.

2. Connect to the Aurora MySQL DB cluster as the master user using SSL.

For information about connecting to an Aurora MySQL DB cluster with SSL, see
Using TLS with Aurora MySQL DB clusters.

3. Run the mysql.rds_import_binlog_ssl_material stored procedure
to import the SSL information into the Aurora MySQL DB cluster.

For the ssl_material_value parameter, insert the information from
the .pem format files for the Aurora MySQL DB cluster in the correct JSON
payload.

The following example imports SSL information into an Aurora MySQL DB
cluster. In .pem format files, the body code typically is longer than the body
code shown in the example.

call mysql.rds_import_binlog_ssl_material(
'{"ssl_ca":"-----BEGIN CERTIFICATE-----
AAAAB3NzaC1yc2EAAAADAQABAAABAQClKsfkNkuSevGj3eYhCe53pcj
qP3maAhDFcvBS7O6V
hz2ItxCih+PnDSUaw+WNQn/mZphTk/a/gU8jEzoOWbkM4yxyb/wB96
xbiFveSFJuOp/d6RJhJOI0iBXr
lsLnBItntckiJ7FbtxJMXLvvwJryDUilBMTjYtwB+QhYXUMOzce5Pjz5/
i8SeJtjnV3iAoG/cQk+0FzZ
qaeJAAHco+CY/5WrUBkrHmFJr6HcXkvJdWPkYQS3xqC0+FmUZofz22
1CBt5IMucxXPkX4rWi+z7wB3Rb
BQoQzd8v7yeb7OzlPnWOyN0qFU0XA246RA8QFYiCNYwI3f05p6KLxEXAMPLE
-----END CERTIFICATE-----\n","ssl_cert":"-----BEGIN CERTIFICA
TE-----
AAAAB3NzaC1yc2EAAAADAQABAAABAQClKsfkNkuSevGj3eYhCe53pcj
qP3maAhDFcvBS7O6V

Using binary log (binlog) replication 1592

https://dev.mysql.com/doc/refman/8.0/en/creating-ssl-files-using-openssl.html

Amazon Aurora User Guide for Aurora

Database
engine

Instructions

hz2ItxCih+PnDSUaw+WNQn/mZphTk/a/gU8jEzoOWbkM4yxyb/wB96
xbiFveSFJuOp/d6RJhJOI0iBXr
lsLnBItntckiJ7FbtxJMXLvvwJryDUilBMTjYtwB+QhYXUMOzce5Pjz5/
i8SeJtjnV3iAoG/cQk+0FzZ
qaeJAAHco+CY/5WrUBkrHmFJr6HcXkvJdWPkYQS3xqC0+FmUZofz22
1CBt5IMucxXPkX4rWi+z7wB3Rb
BQoQzd8v7yeb7OzlPnWOyN0qFU0XA246RA8QFYiCNYwI3f05p6KLxEXAMPLE
-----END CERTIFICATE-----\n","ssl_key":"-----BEGIN RSA PRIVATE
 KEY-----
AAAAB3NzaC1yc2EAAAADAQABAAABAQClKsfkNkuSevGj3eYhCe53pc
jqP3maAhDFcvBS7O6V
hz2ItxCih+PnDSUaw+WNQn/mZphTk/a/gU8jEzoOWbkM4yxyb/wB96xbiFveSF
JuOp/d6RJhJOI0iBXr
lsLnBItntckiJ7FbtxJMXLvvwJryDUilBMTjYtwB+QhYXUMOzce5Pjz5/i8SeJ
tjnV3iAoG/cQk+0FzZ
qaeJAAHco+CY/5WrUBkrHmFJr6HcXkvJdWPkYQS3xqC0+FmUZofz221CBt5IMu
cxXPkX4rWi+z7wB3Rb
BQoQzd8v7yeb7OzlPnWOyN0qFU0XA246RA8QFYiCNYwI3f05p6KLxEXAMPLE
-----END RSA PRIVATE KEY-----\n"}');

For more information, see mysql.rds_import_binlog_ssl_material and Using TLS
with Aurora MySQL DB clusters.

Note

After running the procedure, the secrets are stored in files. To erase
the files later, you can run the mysql.rds_remove_binlog_ssl_material
 stored procedure.

To turn on binary logging on an external MySQL database

1. From a command shell, stop the mysql service.

sudo service mysqld stop

2. Edit the my.cnf file (this file is usually under /etc).

Using binary log (binlog) replication 1593

Amazon Aurora User Guide for Aurora

Database
engine

Instructions

sudo vi /etc/my.cnf

Add the log_bin and server_id options to the [mysqld] section. The
log_bin option provides a file name identifier for binary log files. The
server_id option provides a unique identifier for the server in source-replica
relationships.

If encrypted replication isn't required, ensure that the external MySQL database
is started with binlogs enabled and SSL is turned off.

The following are the relevant entries in the /etc/my.cnf file for unencrypted
data.

log-bin=mysql-bin
server-id=2133421
innodb_flush_log_at_trx_commit=1
sync_binlog=1

If encrypted replication is required, ensure that the external MySQL database is
started with SSL and binlogs enabled.

The entries in the /etc/my.cnf file include the .pem file locations for the
MySQL database server.

log-bin=mysql-bin
server-id=2133421
innodb_flush_log_at_trx_commit=1
sync_binlog=1

Setup SSL.
ssl-ca=/home/sslcerts/ca.pem
ssl-cert=/home/sslcerts/server-cert.pem
ssl-key=/home/sslcerts/server-key.pem

Additionally, the sql_mode option for your MySQL DB instance must be set to 0,
or must not be included in your my.cnf file.

Using binary log (binlog) replication 1594

Amazon Aurora User Guide for Aurora

Database
engine

Instructions

While connected to the external MySQL database, record the external MySQL
database's binary log position.

mysql> SHOW MASTER STATUS;

Your output should be similar to the following:

+------------------+----------+--------------+------------------
+-------------------+
| File | Position | Binlog_Do_DB | Binlog_Ignore_DB |
 Executed_Gtid_Set |
+------------------+----------+--------------+------------------
+-------------------+
| mysql-bin.000031 | 107 | | |
 |
+------------------+----------+--------------+------------------
+-------------------+
1 row in set (0.00 sec)

For more information, see Setting the replication source configuration in the
MySQL documentation.

3. Start the mysql service.

sudo service mysqld start

2. Retain binary logs on the replication source until no longer needed

When you use MySQL binary log replication, Amazon RDS doesn't manage the replication process.
As a result, you need to ensure that the binlog files on your replication source are retained until
after the changes have been applied to the replica. This maintenance helps you to restore your
source database in the event of a failure.

Use the following instructions to retain binary logs for your database engine.

Using binary log (binlog) replication 1595

http://dev.mysql.com/doc/refman/8.0/en/replication-howto-masterbaseconfig.html

Amazon Aurora User Guide for Aurora

Database
engine

Instructions

Aurora
MySQL

To retain binary logs on an Aurora MySQL DB cluster

You don't have access to the binlog files for an Aurora MySQL DB cluster. As a result,
you must choose a time frame to retain the binlog files on your replication source
long enough to ensure that the changes have been applied to your replica before
the binlog file is deleted by Amazon RDS. You can retain binlog files on an Aurora
MySQL DB cluster for up to 90 days.

If you're setting up replication with a MySQL database or RDS for MySQL DB
instance as the replica, and the database that you are creating a replica for is very
large, choose a large time frame to retain binlog files until the initial copy of the
database to the replica is complete and the replica lag has reached 0.

To set the binary log retention time frame, use the mysql.rds_set_configuration
 procedure and specify a configuration parameter of 'binlog retention
hours' along with the number of hours to retain binlog files on the DB cluster. The
maximum value for Aurora MySQL version 2.11.0 and higher and version 3 is 2160
(90 days).

The following example sets the retention period for binlog files to 6 days:

CALL mysql.rds_set_configuration('binlog retention hours', 144);

After replication has been started, you can verify that changes have been applied
to your replica by running the SHOW SLAVE STATUS (Aurora MySQL version 2) or
SHOW REPLICA STATUS (Aurora MySQL version 3) command on your replica and
checking the Seconds behind master field. If the Seconds behind master
field is 0, then there is no replica lag. When there is no replica lag, reduce the length
of time that binlog files are retained by setting the binlog retention hours
configuration parameter to a smaller time frame.

If this setting isn't specified, the default for Aurora MySQL is 24 (1 day).

If you specify a value for 'binlog retention hours' that is higher than the
maximum value, then Aurora MySQL uses the maximum.

Using binary log (binlog) replication 1596

Amazon Aurora User Guide for Aurora

Database
engine

Instructions

RDS for
MySQL

To retain binary logs on an Amazon RDS DB instance

You can retain binary log files on an Amazon RDS DB instance by setting the binlog
retention hours just as with an Aurora MySQL DB cluster, described in the previous
row.

You can also retain binlog files on an Amazon RDS DB instance by creating a read
replica for the DB instance. This read replica is temporary and solely for the purpose
of retaining binlog files. After the read replica has been created, call the mysql.rds
_stop_replication procedure on the read replica. While replication is stopped,
Amazon RDS doesn't delete any of the binlog files on the replication source. After
you have set up replication with your permanent replica, you can delete the read
replica when the replica lag (Seconds behind master field) between your
replication source and your permanent replica reaches 0.

MySQL
(external)

To retain binary logs on an external MySQL database

Because binlog files on an external MySQL database are not managed by Amazon
RDS, they are retained until you delete them.

After replication has been started, you can verify that changes have been applied
to your replica by running the SHOW SLAVE STATUS (Aurora MySQL version 2) or
SHOW REPLICA STATUS (Aurora MySQL version 3) command on your replica and
checking the Seconds behind master field. If the Seconds behind master
field is 0, then there is no replica lag. When there is no replica lag, you can delete
old binlog files.

3. Create a copy or dump of your replication source

You use a snapshot, clone, or dump of your replication source to load a baseline copy of your data
onto your replica. Then you start replicating from that point.

Use the following instructions to create a copy or dump of the replication source for your database
engine.

Using binary log (binlog) replication 1597

Amazon Aurora User Guide for Aurora

Database
engine

Instructions

Aurora
MySQL

To create a copy of an Aurora MySQL DB cluster

Use one of the following methods:

• Restore from a DB cluster snapshot:

1. Create a DB cluster snapshot of your Amazon Aurora DB cluster. For more
information, see Creating a DB cluster snapshot.

2. Create a new Aurora DB cluster by restoring from the DB cluster snapshot that
you just created.

Be sure to retain the same DB parameter group for your restored DB cluster as
your original DB cluster. Doing this ensures that the copy of your DB cluster has
binary logging enabled. For more information, see Restoring from a DB cluster
snapshot.

• Clone your DB cluster. For more information, see Cloning a volume for an Amazon
Aurora DB cluster.

To determine the binlog file name and position

Use one of the following methods:

• In the AWS Management Console:

1. Choose Databases, then choose the primary instance (writer) for your new
Aurora DB cluster to show its details.

2. Scroll to Recent Events. An event message shows that includes the binlog file
name and position. The event message is in the following format.

Binlog position from crash recovery is binlog-file-name binlog-po
sition

3. Save the binlog file name and position values for when you start replication.

• Call the describe-events AWS CLI command, as in the following example.

aws rds describe-events

Using binary log (binlog) replication 1598

https://docs.aws.amazon.com/cli/latest/reference/rds/describe-events.html

Amazon Aurora User Guide for Aurora

Database
engine

Instructions

{
 "Events": [
 {
 "EventCategories": [],
 "SourceType": "db-instance",
 "SourceArn": "arn:aws:rds:us-west-2:123456789012:
db:sample-restored-instance",
 "Date": "2016-10-28T19:43:46.862Z",
 "Message": "Binlog position from crash recovery is mysql-
bin-changelog.000003 4278",
 "SourceIdentifier": "sample-restored-instance"
 }
]
}

• Check the MySQL error log for the last MySQL binlog file position.

To create a dump of an Aurora MySQL DB cluster

If your replica target is an external MySQL database or an RDS for MySQL DB
instance, then you must create a dump file from your Aurora DB cluster.

Be sure to run the mysqldump command against the copy of your source DB
cluster that you created. This is to avoid locking considerations when taking
the dump. If the dump were taken on the source DB cluster directly, it would be
necessary to lock the source tables to prevent concurrent writes to them while the
dump is in progress.

1. Connect to your DB cluster using a MySQL client.

2. Issue the mysqldump command. For example:

PROMPT> mysqldump --databases database_name --single-transaction
--order-by-primary -r backup.sql -u local_user s -p

3. After you create the dump file, you can delete the DB cluster copy.

Using binary log (binlog) replication 1599

Amazon Aurora User Guide for Aurora

Database
engine

Instructions

RDS for
MySQL

To create a snapshot of an Amazon RDS DB instance

Create a read replica of your Amazon RDS DB instance. For more information, see
Creating a read replica in the Amazon Relational Database Service User Guide.

1. Connect to your read replica and stop replication by running the mysql.rds
_stop_replication procedure.

2. While the read replica is Stopped, Connect to the read replica and run the
SHOW SLAVE STATUS (Aurora MySQL version 2) or SHOW REPLICA STATUS
(Aurora MySQL version 3) command. Retrieve the current binary log file name
from the Relay_Master_Log_File field and the log file position from the
Exec_Master_Log_Pos field. Save these values for when you start replicati
on.

3. While the read replica remains Stopped, create a DB snapshot of the read replica.
For more information, see Creating a DB snapshot in the Amazon Relational
Database Service User Guide.

4. Delete the read replica.

Using binary log (binlog) replication 1600

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_ReadRepl.html#USER_ReadRepl.Create
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_CreateSnapshot.html

Amazon Aurora User Guide for Aurora

Database
engine

Instructions

MySQL
(external)

To create a dump of an external MySQL database

1. Before you create a dump, you need to ensure that the binlog location for the
dump is current with the data in your source instance. To do this, you must first
stop any write operations to the instance with the following command:

mysql> FLUSH TABLES WITH READ LOCK;

2. Create a dump of your MySQL database using the mysqldump command as
shown following:

PROMPT> sudo mysqldump --databases database_name --master-data=2 --
single-transaction \
--order-by-primary -r backup.sql -u local_user -p

3. After you have created the dump, unlock the tables in your MySQL database with
the following command:

mysql> UNLOCK TABLES;

4. Load the dump into your replica target (if needed)

If you plan to load data from a dump of a MySQL database that is external to Amazon RDS, you
might want to create an EC2 instance to copy the dump files to. Then you can load the data into
your DB cluster or DB instance from that EC2 instance. Using this approach, you can compress
the dump file(s) before copying them to the EC2 instance in order to reduce the network costs
associated with copying data to Amazon RDS. You can also encrypt the dump file or files to secure
the data as it is being transferred across the network.

Note

If you create a new Aurora MySQL DB cluster as your replica target, then you don't need to
load a dump file:

Using binary log (binlog) replication 1601

Amazon Aurora User Guide for Aurora

• You can restore from a DB cluster snapshot to create a new DB cluster. For more
information, see Restoring from a DB cluster snapshot.

• You can clone your source DB cluster to create a new DB cluster. For more information,
see Cloning a volume for an Amazon Aurora DB cluster.

• You can migrate the data from a DB instance snapshot into a new DB cluster. For more
information, see Migrating data to an Amazon Aurora MySQL DB cluster.

Use the following instructions to load the dump of your replication source into your replica target
for your database engine.

Database
engine

Instructions

Aurora
MySQL

To load a dump into an Aurora MySQL DB cluster

1. Copy the output of the mysqldump command from your replication source to a
location that can also connect to your Aurora MySQL DB cluster.

2. Connect to your Aurora MySQL DB cluster using the mysql command. The
following is an example.

PROMPT> mysql -h host_name -port=3306 -u db_master_user -p

3. At the mysql prompt, run the source command and pass it the name of your
database dump file to load the data into the Aurora MySQL DB cluster, for
example:

mysql> source backup.sql;

RDS for
MySQL

To load a dump into an Amazon RDS DB instance

1. Copy the output of the mysqldump command from your replication source to a
location that can also connect to your MySQL DB instance.

2. Connect to your MySQL DB instance using the mysql command. The following is
an example.

Using binary log (binlog) replication 1602

Amazon Aurora User Guide for Aurora

Database
engine

Instructions

PROMPT> mysql -h host_name -port=3306 -u db_master_user -p

3. At the mysql prompt, run the source command and pass it the name of your
database dump file to load the data into the MySQL DB instance, for example:

mysql> source backup.sql;

MySQL
(external)

To load a dump into an external MySQL database

You can't load a DB snapshot or a DB cluster snapshot into an external MySQL
database. Instead, you must use the output from the mysqldump command.

1. Copy the output of the mysqldump command from your replication source to a
location that can also connect to your MySQL database.

2. Connect to your MySQL database using the mysql command. The following is an
example.

PROMPT> mysql -h host_name -port=3306 -u db_master_user -p

3. At the mysql prompt, run the source command and pass it the name of your
database dump file to load the data into your MySQL database. The following is
an example.

mysql> source backup.sql;

5. Create a replication user on your replication source

Create a user ID on the source that is used solely for replication. The following example is for RDS
for MySQL or external MySQL source databases.

mysql> CREATE USER 'repl_user'@'domain_name' IDENTIFIED BY 'password';

Using binary log (binlog) replication 1603

Amazon Aurora User Guide for Aurora

For Aurora MySQL source databases, the skip_name_resolve DB cluster parameter is set to 1
(ON) and can't be modified, so you must use an IP address for the host instead of a domain name.
For more information, see skip_name_resolve in the MySQL documentation.

mysql> CREATE USER 'repl_user'@'IP_address' IDENTIFIED BY 'password';

The user requires the REPLICATION CLIENT and REPLICATION SLAVE privileges. Grant these
privileges to the user.

If you need to use encrypted replication, require SSL connections for the replication user. For
example, you can use one of the following statements to require SSL connections on the user
account repl_user.

GRANT REPLICATION CLIENT, REPLICATION SLAVE ON *.* TO 'repl_user'@'IP_address';

GRANT USAGE ON *.* TO 'repl_user'@'IP_address' REQUIRE SSL;

Note

If REQUIRE SSL isn't included, the replication connection might silently fall back to an
unencrypted connection.

6. Turn on replication on your replica target

Before you turn on replication, we recommend that you take a manual snapshot of the Aurora
MySQL DB cluster or RDS for MySQL DB instance replica target. If a problem arises and you need
to re-establish replication with the DB cluster or DB instance replica target, you can restore the DB
cluster or DB instance from this snapshot instead of having to import the data into your replica
target again.

Use the following instructions to turn on replication for your database engine.

Database
engine

Instructions

Aurora
MySQL

To turn on replication from an Aurora MySQL DB cluster

Using binary log (binlog) replication 1604

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_skip_name_resolve

Amazon Aurora User Guide for Aurora

Database
engine

Instructions

1. Find the starting place for replication. You need the binlog file name and binlog
position.

If your DB cluster replica target was created from the following:

• DB cluster snapshot or clone – Retrieve the binlog file name and position from
the recent events for your new DB cluster, as shown in 3. Create a copy or
dump of your replication source.

• DB snapshot – You retrieved the binlog file name and position from the SHOW
SLAVE STATUS (Aurora MySQL version 2) or SHOW REPLICA STATUS (Aurora
MySQL version 3) command when you created the snapshot of your replication
source.

2. Connect to the DB cluster and call the following procedures to start replication
with your replication source using the binary log file name and location from the
previous step:

• mysql.rds_set_external_source (Aurora MySQL version 3)

• mysql.rds_set_external_master (Aurora MySQL version 2)

• mysql.rds_start_replication (all versions)

The following example is for Aurora MySQL version 3.

CALL mysql.rds_set_external_source ('mydbinstance.123456789012
.us-east-1.rds.amazonaws.com', 3306,
 'repl_user', 'password', 'mysql-bin-changelog.000031', 107,
 0);
CALL mysql.rds_start_replication;

To use SSL encryption, set the final value to 1 instead of 0.

Using binary log (binlog) replication 1605

Amazon Aurora User Guide for Aurora

Database
engine

Instructions

RDS for
MySQL

To turn on replication from an Amazon RDS DB instance

1. If your DB instance replica target was created from a DB snapshot, then you need
the binlog file and binlog position that are the starting place for replication. You
retrieved these values from the SHOW SLAVE STATUS (Aurora MySQL version
2) or SHOW REPLICA STATUS (Aurora MySQL version 3) command when you
created the snapshot of your replication source.

2. Connect to the DB instance and call the mysql.rds_set_external_master (Aurora
MySQL version 2) or mysql.rds_set_external_source (Aurora MySQL version 3)
and mysql.rds_start_replication procedures to start replication with your replicati
on source. Use the binary log file name and location from the previous step. The
following is an example.

CALL mysql.rds_set_external_master ('mydbcluster.cluster-12345
6789012.us-east-1.rds.amazonaws.com', 3306,
 'repl_user', 'password', 'mysql-bin-changelog.000031', 107,
 0);
CALL mysql.rds_start_replication;

To use SSL encryption, set the final value to 1 instead of 0.

Using binary log (binlog) replication 1606

Amazon Aurora User Guide for Aurora

Database
engine

Instructions

MySQL
(external)

To turn on replication from an external MySQL database

1. Retrieve the binlog file and binlog position that are the starting place for replicati
on. You retrieved these values from the SHOW SLAVE STATUS (Aurora MySQL
version 2) or SHOW REPLICA STATUS (Aurora MySQL version 3) command when
you created the snapshot of your replication source. If your external MySQL
replica target was populated from the output of the mysqldump command
with the --master-data=2 option, then the binlog file and binlog position are
included in the output. The following is an example.

--
-- Position to start replication or point-in-time recovery from
--

-- CHANGE MASTER TO MASTER_LOG_FILE='mysql-bin-changelog.000031',
 MASTER_LOG_POS=107;

2. Connect to the external MySQL replica target, and issue CHANGE MASTER TO
and START SLAVE (Aurora MySQL version 2) or START REPLICA (Aurora MySQL
version 3) to start replication with your replication source using the binary log
file name and location from the previous step, for example:

CHANGE MASTER TO
 MASTER_HOST = 'mydbcluster.cluster-123456789012.us-east-1.r
ds.amazonaws.com',
 MASTER_PORT = 3306,
 MASTER_USER = 'repl_user',
 MASTER_PASSWORD = 'password',
 MASTER_LOG_FILE = 'mysql-bin-changelog.000031',
 MASTER_LOG_POS = 107;
-- And one of these statements depending on your engine version:
START SLAVE; -- Aurora MySQL version 2
START REPLICA; -- Aurora MySQL version 3

If replication fails, it can result in a large increase in unintentional I/O on the replica,
which can degrade performance. If replication fails or is no longer needed, you can run the

Using binary log (binlog) replication 1607

Amazon Aurora User Guide for Aurora

mysql.rds_reset_external_master (Aurora MySQL version 2) or mysql.rds_reset_external_source
(Aurora MySQL version 3) stored procedure to remove the replication configuration.

Setting a location to stop replication to a read replica

In Aurora MySQL version 3.04 and higher, you can start replication and then stop it at a specified
binary log file location using the mysql.rds_start_replication_until (Aurora MySQL version 3) stored
procedure.

To start replication to a read replica and stop replication at a specific location

1. Using a MySQL client, connect to the replica Aurora MySQL DB cluster as the master user.

2. Run the mysql.rds_start_replication_until (Aurora MySQL version 3) stored procedure.

The following example initiates replication and replicates changes until it reaches location 120
in the mysql-bin-changelog.000777 binary log file. In a disaster recovery scenario, assume
that location 120 is just before the disaster.

call mysql.rds_start_replication_until(
 'mysql-bin-changelog.000777',
 120);

Replication stops automatically when the stop point is reached. The following RDS event is
generated: Replication has been stopped since the replica reached the stop
point specified by the rds_start_replication_until stored procedure.

If you use GTID-based replication, use the mysql.rds_start_replication_until_gtid (Aurora MySQL
version 3) stored procedure instead of the mysql.rds_start_replication_until (Aurora MySQL version
3) stored procedure. For more information about GTID-based replication, see Using GTID-based
replication.

7. Monitor your replica

When you set up MySQL replication with an Aurora MySQL DB cluster, you must monitor failover
events for the Aurora MySQL DB cluster when it is the replica target. If a failover occurs, then the
DB cluster that is your replica target might be recreated on a new host with a different network
address. For information on how to monitor failover events, see Working with Amazon RDS event
notification.

Using binary log (binlog) replication 1608

Amazon Aurora User Guide for Aurora

You can also monitor how far the replica target is behind the replication source by connecting
to the replica target and running the SHOW SLAVE STATUS (Aurora MySQL version 2) or SHOW
REPLICA STATUS (Aurora MySQL version 3) command. In the command output, the Seconds
Behind Master field tells you how far the replica target is behind the source.

Synchronizing passwords between replication source and target

When you change user accounts and passwords on the replication source using SQL statements,
those changes are replicated to the replication target automatically.

If you use the AWS Management Console, the AWS CLI, or the RDS API to change the master
password on the replication source, those changes are not automatically replicated to the
replication target. If you want to synchronize the master user and master password between the
source and target systems, you must make the same change on the replication target yourself.

Stopping replication between Aurora and MySQL or between Aurora and another
Aurora DB cluster

To stop binary log replication with a MySQL DB instance, external MySQL database, or another
Aurora DB cluster, follow these steps, discussed in detail following in this topic.

1. Stop binary log replication on the replica target

2. Turn off binary logging on the replication source

1. Stop binary log replication on the replica target

Use the following instructions to stop binary log replication for your database engine.

Database
engine

Instructions

Aurora
MySQL

To stop binary log replication on an Aurora MySQL DB cluster replica target

Connect to the Aurora DB cluster that is the replica target, and call the mysql.rds
_stop_replication procedure.

RDS for
MySQL

To stop binary log replication on an Amazon RDS DB instance

Connect to the RDS DB instance that is the replica target and call the mysql.rds
_stop_replication procedure.

Using binary log (binlog) replication 1609

Amazon Aurora User Guide for Aurora

Database
engine

Instructions

MySQL
(external)

To stop binary log replication on an external MySQL database

Connect to the MySQL database and run the STOP SLAVE (version 5.7) or STOP
REPLICA (version 8.0) command.

2. Turn off binary logging on the replication source

Use the instructions in the following table to turn off binary logging on the replication source for
your database engine.

Database
engine

Instructions

Aurora
MySQL

To turn off binary logging on an Amazon Aurora DB cluster

1. Connect to the Aurora DB cluster that is the replication source.

2. Use the mysql.rds_set_configuration procedure and specify the configuration
parameter binlog retention hours, with the value NULL, as shown in the
following example.

CALL mysql.rds_set_configuration('binlog retention hours', NULL);

Note

You can't use the value 0 for binlog retention hours.

3. Set the binlog_format parameter to OFF on the replication source. The
binlog_format parameter is in the custom DB cluster parameter group
associated with your DB cluster.

After you've changed the binlog_format parameter value, reboot your DB
cluster for the change to take effect.

Using binary log (binlog) replication 1610

Amazon Aurora User Guide for Aurora

Database
engine

Instructions

For more information, see Amazon Aurora DB cluster and DB instance parameters
and Modifying parameters in a DB parameter group.

RDS for
MySQL

To turn off binary logging on an Amazon RDS DB instance

You can't turn off binary logging directly for an Amazon RDS DB instance, but you
can turn it off by doing the following:

1. Turn off automated backups for the DB instance. You can turn off automated
backups by modifying an existing DB instance and setting the Backup Retention
 Period to 0. For more information, see Modifying an Amazon RDS DB instance
and Working with backups in the Amazon Relational Database Service User Guide.

2. Delete all read replicas for the DB instance. For more information, see Working
with read replicas of MariaDB, MySQL, and PostgreSQL DB instances in the
Amazon Relational Database Service User Guide.

MySQL
(external)

To turn off binary logging on an external MySQL database

Connect to the MySQL database and call the STOP REPLICATION command.

1. From a command shell, stop the mysqld service,

sudo service mysqld stop

2. Edit the my.cnf file (this file is usually under /etc).

sudo vi /etc/my.cnf

Delete the log_bin and server_id options from the [mysqld] section.

For more information, see Setting the replication source configuration in the
MySQL documentation.

3. Start the mysql service.

sudo service mysqld start

Using binary log (binlog) replication 1611

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Overview.DBInstance.Modifying.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_WorkingWithAutomatedBackups.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_ReadRepl.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_ReadRepl.html
http://dev.mysql.com/doc/refman/8.0/en/replication-howto-masterbaseconfig.html

Amazon Aurora User Guide for Aurora

Using Amazon Aurora to scale reads for your MySQL database

You can use Amazon Aurora with your MySQL DB instance to take advantage of the read scaling
capabilities of Amazon Aurora and expand the read workload for your MySQL DB instance. To use
Aurora to scale reads for your MySQL DB instance, create an Amazon Aurora MySQL DB cluster and
make it a read replica of your MySQL DB instance. This applies to an RDS for MySQL DB instance, or
a MySQL database running external to Amazon RDS.

For information on creating an Amazon Aurora DB cluster, see Creating an Amazon Aurora DB
cluster.

When you set up replication between your MySQL DB instance and your Amazon Aurora DB cluster,
be sure to follow these guidelines:

• Use the Amazon Aurora DB cluster endpoint address when you reference your Amazon Aurora
MySQL DB cluster. If a failover occurs, then the Aurora Replica that is promoted to the primary
instance for the Aurora MySQL DB cluster continues to use the DB cluster endpoint address.

• Maintain the binlogs on your writer instance until you have verified that they have been applied
to the Aurora Replica. This maintenance ensures that you can restore your writer instance in the
event of a failure.

Important

When using self-managed replication, you're responsible for monitoring and resolving any
replication issues that may occur. For more information, see Diagnosing and resolving lag
between read replicas.

Note

The permissions required to start replication on an Aurora MySQL DB cluster are
restricted and not available to your Amazon RDS master user. Therefore, you must use the
mysql.rds_set_external_master (Aurora MySQL version 2) or mysql.rds_set_external_source
(Aurora MySQL version 3) and mysql.rds_start_replication procedures to set up replication
between your Aurora MySQL DB cluster and your MySQL DB instance.

Using binary log (binlog) replication 1612

Amazon Aurora User Guide for Aurora

Start replication between an external source instance and an Aurora MySQL DB cluster

1. Make the source MySQL DB instance read-only:

mysql> FLUSH TABLES WITH READ LOCK;
mysql> SET GLOBAL read_only = ON;

2. Run the SHOW MASTER STATUS command on the source MySQL DB instance to determine the
binlog location. You receive output similar to the following example:

File Position

 mysql-bin-changelog.000031 107

3. Copy the database from the external MySQL DB instance to the Amazon Aurora MySQL DB
cluster using mysqldump. For very large databases, you might want to use the procedure in
Importing data to a MySQL or MariaDB DB instance with reduced downtime in the Amazon
Relational Database Service User Guide.

For Linux, macOS, or Unix:

mysqldump \
 --databases <database_name> \
 --single-transaction \
 --compress \
 --order-by-primary \
 -u local_user \
 -p local_password | mysql \
 --host aurora_cluster_endpoint_address \
 --port 3306 \
 -u RDS_user_name \
 -p RDS_password

For Windows:

mysqldump ^
 --databases <database_name> ^
 --single-transaction ^
 --compress ^
 --order-by-primary ^

Using binary log (binlog) replication 1613

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/MySQL.Procedural.Importing.NonRDSRepl.html

Amazon Aurora User Guide for Aurora

 -u local_user ^
 -p local_password | mysql ^
 --host aurora_cluster_endpoint_address ^
 --port 3306 ^
 -u RDS_user_name ^
 -p RDS_password

Note

Make sure that there is not a space between the -p option and the entered password.

Use the --host, --user (-u), --port and -p options in the mysql command to specify
the hostname, user name, port, and password to connect to your Aurora DB cluster. The
host name is the DNS name from the Amazon Aurora DB cluster endpoint, for example,
mydbcluster.cluster-123456789012.us-east-1.rds.amazonaws.com. You can find
the endpoint value in the cluster details in the Amazon RDS Management Console.

4. Make the source MySQL DB instance writeable again:

mysql> SET GLOBAL read_only = OFF;
mysql> UNLOCK TABLES;

For more information on making backups for use with replication, see Backing up a source or
replica by making it read only in the MySQL documentation.

5. In the Amazon RDS Management Console, add the IP address of the server that hosts the
source MySQL database to the VPC security group for the Amazon Aurora DB cluster. For
more information on modifying a VPC security group, see Security groups for your VPC in the
Amazon Virtual Private Cloud User Guide.

You might also need to configure your local network to permit connections from the IP
address of your Amazon Aurora DB cluster, so that it can communicate with your source
MySQL instance. To find the IP address of the Amazon Aurora DB cluster, use the host
command.

host aurora_endpoint_address

The host name is the DNS name from the Amazon Aurora DB cluster endpoint.

Using binary log (binlog) replication 1614

http://dev.mysql.com/doc/refman/8.0/en/replication-solutions-backups-read-only.html
http://dev.mysql.com/doc/refman/8.0/en/replication-solutions-backups-read-only.html
https://docs.aws.amazon.com/vpc/latest/userguide/VPC_SecurityGroups.html

Amazon Aurora User Guide for Aurora

6. Using the client of your choice, connect to the external MySQL instance and create a MySQL
user to be used for replication. This account is used solely for replication and must be
restricted to your domain to improve security. The following is an example.

CREATE USER 'repl_user'@'example.com' IDENTIFIED BY 'password';

7. For the external MySQL instance, grant REPLICATION CLIENT and REPLICATION SLAVE
privileges to your replication user. For example, to grant the REPLICATION CLIENT and
REPLICATION SLAVE privileges on all databases for the 'repl_user' user for your domain,
issue the following command.

GRANT REPLICATION CLIENT, REPLICATION SLAVE ON *.* TO 'repl_user'@'example.com'
 IDENTIFIED BY 'password';

8. Take a manual snapshot of the Aurora MySQL DB cluster to be the read replica before setting
up replication. If you need to reestablish replication with the DB cluster as a read replica, you
can restore the Aurora MySQL DB cluster from this snapshot instead of having to import the
data from your MySQL DB instance into a new Aurora MySQL DB cluster.

9. Make the Amazon Aurora DB cluster the replica. Connect to the Amazon Aurora DB cluster as
the master user and identify the source MySQL database as the replication source by using the
mysql.rds_set_external_master (Aurora MySQL version 2) or mysql.rds_set_external_source
(Aurora MySQL version 3) and mysql.rds_start_replication procedures.

Use the binlog file name and position that you determined in Step 2. The following is an
example.

For Aurora MySQL version 2:
CALL mysql.rds_set_external_master ('mymasterserver.example.com', 3306,
 'repl_user', 'password', 'mysql-bin-changelog.000031', 107, 0);

For Aurora MySQL version 3:
CALL mysql.rds_set_external_source ('mymasterserver.example.com', 3306,
 'repl_user', 'password', 'mysql-bin-changelog.000031', 107, 0);

10. On the Amazon Aurora DB cluster, call the mysql.rds_start_replication procedure to start
replication.

CALL mysql.rds_start_replication;

Using binary log (binlog) replication 1615

Amazon Aurora User Guide for Aurora

After you have established replication between your source MySQL DB instance and your Amazon
Aurora DB cluster, you can add Aurora Replicas to your Amazon Aurora DB cluster. You can then
connect to the Aurora Replicas to read scale your data. For information on creating an Aurora
Replica, see Adding Aurora Replicas to a DB cluster.

Optimizing binary log replication

Following, you can learn how to optimize binary log replication performance and troubleshoot
related issues in Aurora MySQL.

Tip

This discussion presumes that you are familiar with the MySQL binary log replication
mechanism and how it works. For background information, see Replication Implementation
in the MySQL documentation.

Multithreaded binary log replication

With multithreaded binary log replication, a SQL thread reads events from the relay log and
queues them up for SQL worker threads to apply. The SQL worker threads are managed by a
coordinator thread. The binary log events are applied in parallel when possible.

Multithreaded binary log replication is supported in Aurora MySQL version 3, and in Aurora MySQL
version 2.12.1 and higher.

When an Aurora MySQL DB instance is configured to use binary log replication, by default the
replica instance uses single-threaded replication for Aurora MySQL versions lower than 3.04. To
enable multithreaded replication, you update the replica_parallel_workers parameter to a
value greater than zero in your custom parameter group.

For Aurora MySQL version 3.04 and higher, replication is multithreaded by default, with
replica_parallel_workers set to 4. You can modify this parameter in your custom parameter
group.

The following configuration options help you to fine-tune multithreaded replication. For usage
information, see Replication and Binary Logging Options and Variables in the MySQL Reference
Manual.

Optimal configuration depends on several factors. For example, performance for binary log
replication is influenced by your database workload characteristics and the DB instance class

Using binary log (binlog) replication 1616

https://dev.mysql.com/doc/refman/8.0/en/replication-implementation.html
https://dev.mysql.com/doc/refman/8.0/en/replication-options.html

Amazon Aurora User Guide for Aurora

the replica is running on. Thus, we recommend that you thoroughly test all changes to these
configuration parameters before applying new parameter settings to a production instance:

• binlog_group_commit_sync_delay

• binlog_group_commit_sync_no_delay_count

• binlog_transaction_dependency_history_size

• binlog_transaction_dependency_tracking

• replica_preserve_commit_order

• replica_parallel_type

• replica_parallel_workers

In Aurora MySQL version 3.06 and higher, you can improve performance for binary log replicas
when replicating transactions for large tables with more than one secondary index. This feature
introduces a thread pool to apply secondary index changes in parallel on a binlog replica. The
feature is controlled by the aurora_binlog_replication_sec_index_parallel_workers
DB cluster parameter, which controls the total number of parallel threads available to apply the
secondary index changes. The parameter is set to 0 (disabled) by default. Enabling this feature
doesn't require an instance restart. To enable this feature, stop ongoing replication, set the desired
number of parallel worker threads, and then start replication again.

You can also use this parameter as a global variable, where n is the number of parallel worker
threads:

SET global aurora_binlog_replication_sec_index_parallel_workers=n;

Optimizing binlog replication (Aurora MySQL 2.10 and higher)

In Aurora MySQL 2.10 and higher, Aurora automatically applies an optimization known as the
binlog I/O cache to binary log replication. By caching the most recently committed binlog events,
this optimization is designed to improve binlog dump thread performance while limiting the
impact to foreground transactions on the binlog source instance.

Note

This memory used for this feature is independent of the MySQL binlog_cache setting.

Using binary log (binlog) replication 1617

Amazon Aurora User Guide for Aurora

This feature doesn't apply to Aurora DB instances that use the db.t2 and db.t3 instance
classes.

You don't need to adjust any configuration parameters to turn on this optimization. In particular, if
you adjust the configuration parameter aurora_binlog_replication_max_yield_seconds
to a nonzero value in earlier Aurora MySQL versions, set it back to zero for Aurora MySQL 2.10 and
higher.

The status variables aurora_binlog_io_cache_reads and
aurora_binlog_io_cache_read_requests are available in Aurora MySQL 2.10 and higher.
These status variables help you to monitor how often the data is read from the binlog I/O cache.

• aurora_binlog_io_cache_read_requests shows the number of binlog I/O read requests
from the cache.

• aurora_binlog_io_cache_reads shows the number of binlog I/O reads that retrieve
information from the cache.

The following SQL query computes the percentage of binlog read requests that take advantage of
the cached information. In this case, the closer the ratio is to 100, the better it is.

mysql> SELECT
 (SELECT VARIABLE_VALUE FROM INFORMATION_SCHEMA.GLOBAL_STATUS
 WHERE VARIABLE_NAME='aurora_binlog_io_cache_reads')
 / (SELECT VARIABLE_VALUE FROM INFORMATION_SCHEMA.GLOBAL_STATUS
 WHERE VARIABLE_NAME='aurora_binlog_io_cache_read_requests')
 * 100
 as binlog_io_cache_hit_ratio;
+---------------------------+
| binlog_io_cache_hit_ratio |
+---------------------------+
| 99.99847949080622 |
+---------------------------+

The binlog I/O cache feature also includes new metrics related to the binlog dump threads. Dump
threads are the threads that are created when new binlog replicas are connected to the binlog
source instance.

Using binary log (binlog) replication 1618

Amazon Aurora User Guide for Aurora

The dump thread metrics are printed to the database log every 60 seconds with the prefix
[Dump thread metrics]. The metrics include information for each binlog replica such as
Secondary_id, Secondary_uuid, binlog file name, and the position that each replica is
reading. The metrics also include Bytes_behind_primary representing the distance in bytes
between replication source and replica. This metric measures the lag of the replica I/O thread.
That figure is different from the lag of the replica SQL applier thread, which is represented by
the seconds_behind_master metric on the binlog replica. You can determine whether binlog
replicas are catching up to the source or falling behind by checking whether the distance decreases
or increases.

Optimizing binlog replication (Aurora MySQL version 2 through 2.09)

To optimize binary log replication for Aurora MySQL, you adjust the following cluster-level
optimization parameters. These parameters help you to specify the right balance between latency
on the binlog source instance and replication lag.

• aurora_binlog_use_large_read_buffer

• aurora_binlog_read_buffer_size

• aurora_binlog_replication_max_yield_seconds

Note

For MySQL 5.7-compatible clusters, you can use these parameters in Aurora MySQL version
2 through 2.09.*. In Aurora MySQL 2.10.0 and higher, these parameters are superseded by
the binlog I/O cache optimization and you don't need to use them.

Topics

• Overview of the large read buffer and max-yield optimizations

• Related parameters

• Enabling the max-yield mechanism for binary log replication

• Turning off the binary log replication max-yield optimization

• Turning off the large read buffer

Using binary log (binlog) replication 1619

Amazon Aurora User Guide for Aurora

Overview of the large read buffer and max-yield optimizations

You might experience reduced binary log replication performance when the binary log dump
thread accesses the Aurora cluster volume while the cluster processes a high number of
transactions. You can use the parameters aurora_binlog_use_large_read_buffer,
aurora_binlog_replication_max_yield_seconds, and
aurora_binlog_read_buffer_size to help minimize this type of contention.

Suppose that you have a situation where aurora_binlog_replication_max_yield_seconds
is set to greater than 0 and the current binlog file of the dump thread is active. In this case, the
binary log dump thread waits up to a specified number of seconds for the current binlog file
to be filled by transactions. This wait period avoids contention that can arise from replicating
each binlog event individually. However, doing so increases the replica lag for binary log
replicas. Those replicas can fall behind the source by the same number of seconds as the
aurora_binlog_replication_max_yield_seconds setting.

The current binlog file means the binlog file that the dump thread is currently reading to perform
replication. We consider that a binlog file is active when the binlog file is updating or open to
be updated by incoming transactions. After Aurora MySQL fills up the active binlog file, MySQL
creates and switches to a new binlog file. The old binlog file becomes inactive. It isn't updated by
incoming transactions any longer.

Note

Before adjusting these parameters, measure your transaction latency and throughput over
time. You might find that binary log replication performance is stable and has low latency
even if there is occasional contention.

aurora_binlog_use_large_read_buffer

If this parameter is set to 1, Aurora MySQL optimizes binary log replication
based on the settings of the parameters aurora_binlog_read_buffer_size
and aurora_binlog_replication_max_yield_seconds. If
aurora_binlog_use_large_read_buffer is 0, Aurora MySQL
ignores the values of the aurora_binlog_read_buffer_size and
aurora_binlog_replication_max_yield_seconds parameters.

Using binary log (binlog) replication 1620

Amazon Aurora User Guide for Aurora

aurora_binlog_read_buffer_size

Binary log dump threads with larger read buffer minimize the number of read I/O operations by
reading more events for each I/O. The parameter aurora_binlog_read_buffer_size sets
the read buffer size. The large read buffer can reduce binary log contention for workloads that
generate a large amount of binlog data.

Note

This parameter only has an effect when the cluster also has the setting
aurora_binlog_use_large_read_buffer=1.
Increasing the size of the read buffer doesn't affect the performance of binary log
replication. Binary log dump threads don't wait for updating transactions to fill up the
read buffer.

aurora_binlog_replication_max_yield_seconds

If your workload requires low transaction latency, and you can tolerate some replication lag,
you can increase the aurora_binlog_replication_max_yield_seconds parameter. This
parameter controls the maximum yield property of binary log replication in your cluster.

Note

This parameter only has an effect when the cluster also has the setting
aurora_binlog_use_large_read_buffer=1.

Aurora MySQL recognizes any change to the
aurora_binlog_replication_max_yield_seconds parameter value immediately. You don't
need to restart the DB instance. However, when you turn on this setting, the dump thread only
starts to yield when the current binlog file reaches its maximum size of 128 MB and is rotated to a
new file.

Related parameters

Use the following DB cluster parameters to turn on binlog optimization.

Using binary log (binlog) replication 1621

Amazon Aurora User Guide for Aurora

Parameter Default Valid Values Description

aurora_bi
nlog_use_
large_rea
d_buffer

1 0, 1 Switch for turning
on the feature
of replication
improvement.
When its value
is 1, the binary
log dump thread
uses aurora_bi
nlog_read
_buffer_size
for binary log
replication; otherwise
 default buffer size
(8K) is used. Not used
in Aurora MySQL
version 3.

aurora_bi
nlog_read
_buffer_size

5242880 8192-536870912 Read buffer size
used by binary
log dump thread
when the parameter
 aurora_bi
nlog_use_
large_rea
d_buffer is set to
1. Not used in Aurora
MySQL version 3.

aurora_bi
nlog_repl
ication_m
ax_yield_
seconds

0 0-36000 For Aurora MySQL
version 2.07.*, the
maximum accepted
value is 45. You can
tune it to a higher
value on 2.09 and
later versions.

Using binary log (binlog) replication 1622

Amazon Aurora User Guide for Aurora

Parameter Default Valid Values Description

For version 2, this
parameter works only
when the parameter
 aurora_bi
nlog_use_
large_rea
d_buffer is set to
1.

Enabling the max-yield mechanism for binary log replication

You can turn on the binary log replication max-yield optimization as follows. Doing so minimizes
latency for transactions on the binlog source instance. However, you might experience higher
replication lag.

To turn on the max-yield binlog optimization for an Aurora MySQL cluster

1. Create or edit a DB cluster parameter group using the following parameter settings:

• aurora_binlog_use_large_read_buffer: turn on with a value of ON or 1.

• aurora_binlog_replication_max_yield_seconds: specify a value greater than 0.

2. Associate the DB cluster parameter group with the Aurora MySQL cluster that works as the
binlog source. To do so, follow the procedures in Working with parameter groups.

3. Confirm that the parameter change takes effect. To do so, run the following query on the
binlog source instance.

SELECT @@aurora_binlog_use_large_read_buffer,
 @@aurora_binlog_replication_max_yield_seconds;

Your output should be similar to the following.

+---------------------------------------
+---+
| @@aurora_binlog_use_large_read_buffer |
 @@aurora_binlog_replication_max_yield_seconds |

Using binary log (binlog) replication 1623

Amazon Aurora User Guide for Aurora

+---------------------------------------
+---+
| 1 |
 45 |
+---------------------------------------
+---+

Turning off the binary log replication max-yield optimization

You can turn off the binary log replication max-yield optimization as follows. Doing so minimizes
replication lag. However, you might experience higher latency for transactions on the binlog source
instance.

To turn off the max-yield optimization for an Aurora MySQL cluster

1. Make sure that the DB cluster parameter group associated with the Aurora MySQL cluster has
aurora_binlog_replication_max_yield_seconds set to 0. For more information about
setting configuration parameters using parameter groups, see Working with parameter groups.

2. Confirm that the parameter change takes effect. To do so, run the following query on the
binlog source instance.

SELECT @@aurora_binlog_replication_max_yield_seconds;

Your output should be similar to the following.

+---+
| @@aurora_binlog_replication_max_yield_seconds |
+---+
| 0 |
+---+

Turning off the large read buffer

You can turn off the entire large read buffer feature as follows.

To turn off the large binary log read buffer for an Aurora MySQL cluster

1. Reset the aurora_binlog_use_large_read_buffer to OFF or 0.

Using binary log (binlog) replication 1624

Amazon Aurora User Guide for Aurora

Make sure that the DB cluster parameter group associated with the Aurora MySQL cluster has
aurora_binlog_use_large_read_buffer set to 0. For more information about setting
configuration parameters using parameter groups, see Working with parameter groups.

2. On the binlog source instance, run the following query.

SELECT @@ aurora_binlog_use_large_read_buffer;

Your output should be similar to the following.

+---------------------------------------+
| @@aurora_binlog_use_large_read_buffer |
+---------------------------------------+
| 0 |
+---------------------------------------+

Setting up enhanced binlog

Enhanced binlog reduces the compute performance overhead caused by turning on binlog, which
can reach up to 50% in certain cases. With enhanced binlog, this overhead can be reduced to about
13%. To reduce overhead, enhanced binlog writes the binary and transactions logs to storage in
parallel, which minimizes the data written at the transaction commit time.

Using enhanced binlog also improves database recovery time after restarts and failovers by up
to 99% compared to community MySQL binlog. The enhanced binlog is compatible with existing
binlog-based workloads, and you interact with it the same way you interact with the community
MySQL binlog.

Enhanced binlog is available on Aurora MySQL version 3.03.1 and higher.

Topics

• Configuring enhanced binlog parameters

• Other related parameters

• Differences between enhanced binlog and community MySQL binlog

• Amazon CloudWatch metrics for enhanced binlog

• Enhanced binlog limitations

Using binary log (binlog) replication 1625

Amazon Aurora User Guide for Aurora

Configuring enhanced binlog parameters

You can switch between community MySQL binlog and enhanced binlog by turning on/off the
enhanced binlog parameters. The existing binlog consumers can continue to read and consume the
binlog files without any gaps in the binlog file sequence.

To turn on enhanced binlog, set the following parameters:

Parameter Default Description

binlog_format – Set the binlog_format
parameter to the binary
logging format of your choice
to turn on enhanced binlog.
Make sure the binlog_fo
rmat parameter isn't set
to OFF. For more informati
on, see Configuring Aurora
MySQL binary logging.

aurora_enhanced_bi
nlog

0 Set the value of this
parameter to 1 in the DB
cluster parameter group
associated with the Aurora
MySQL cluster. When you
change the value of this
parameter, you must reboot
the writer instance when the
DBClusterParameter
GroupStatus value is
shown as pending-reboot .

binlog_backup 1 Turn off this parameter to
turn on enhanced binlog. To
do so, set the value of this
parameter to 0.

Using binary log (binlog) replication 1626

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/USER_LogAccess.MySQL.BinaryFormat.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/USER_LogAccess.MySQL.BinaryFormat.html

Amazon Aurora User Guide for Aurora

Parameter Default Description

binlog_replication
_globaldb

1 Turn off this parameter to
turn on enhanced binlog. To
do so, set the value of this
parameter to 0.

Important

You can turn off the binlog_backup and binlog_replication_globaldb parameters
only when you use enhanced binlog.

To turn off enhanced binlog, set the following parameters:

Parameter Description

aurora_enhanced_binlog Set the value of this parameter to 0 in the DB
cluster parameter group associated with the
Aurora MySQL cluster. Whenever you change
the value of this parameter, you must reboot
the writer instance when the DBCluster
ParameterGroupStatus value is shown
as pending-reboot .

binlog_backup Turn on this parameter when you turn off
enhanced binlog. To do so, set the value of
this parameter to 1.

binlog_replication_globaldb Turn on this parameter when you turn off
enhanced binlog. To do so, set the value of
this parameter to 1.

To check whether enhanced binlog is turned on, use the following command in the MySQL client:

mysql>show status like 'aurora_enhanced_binlog';

Using binary log (binlog) replication 1627

Amazon Aurora User Guide for Aurora

+------------------------+--------+
| Variable_name | Value |
+------------------------+--------+
| aurora_enhanced_binlog | ACTIVE |
+------------------------+--------+
1 row in set (0.00 sec)

When enhanced binlog is turned on, the output shows ACTIVE for aurora_enhanced_binlog.

Other related parameters

When you turn on the enhanced binlog, the following parameters are affected:

• The max_binlog_size parameter is visible but not modifiable. It's default value 134217728 is
automatically adjusted to 268435456 when enhanced binlog is turned on.

• Unlike in community MySQL binlog, the binlog_checksum doesn't act as a dynamic parameter
when the enhanced binlog is turned on. For the change to this parameter to take effect, you
must manually reboot the DB cluster even when the ApplyMethod is immediate.

• The value you set on the binlog_order_commits parameter has no effect on the order of
the commits when enhanced binlog is turned on. The commits are always ordered without any
further performance implications.

Differences between enhanced binlog and community MySQL binlog

Enhanced binlog interacts differently with clones, backups, and Aurora global database when
compared to community MySQL binlog. We recommend that you understand the following
differences before using enhanced binlog.

• Enhanced binlog files from the source DB cluster aren't available on a cloned DB cluster.

• Enhanced binlog files aren't included in Aurora backups. Therefore, enhanced binlog files from
the source DB cluster aren't available after restoring a DB cluster despite any retention period set
on it.

• When used with an Aurora global database, the enhanced binlog files of the primary DB cluster
aren't replicated to the DB cluster in the secondary regions.

Examples

Using binary log (binlog) replication 1628

Amazon Aurora User Guide for Aurora

The following examples illustrate the differences between enhanced binlog and community MySQL
binlog.

On a restored or cloned DB cluster

When enhanced binlog is turned on, the historical binlog files aren't available in the restored or
cloned DB cluster. After a restore or clone operation, if binlog is turned on, the new DB cluster
starts writing its own sequence of binlog files, starting from 1 (mysql-bin-changelog.000001).

To turn on enhanced binlog after a restore or clone operation, set the required DB cluster
parameters on the restored or cloned DB cluster. For more information, see Configuring enhanced
binlog parameters.

Example Clone or restore operation performed when enhanced binlog is turned on

Source DB Cluster:

mysql> show binary logs;

+----------------------------+-----------+-----------+
| Log_name | File_size | Encrypted |
+----------------------------+-----------+-----------+
mysql-bin-changelog.000001	156	No
mysql-bin-changelog.000002	156	No
mysql-bin-changelog.000003	156	No
mysql-bin-changelog.000004	156	No
mysql-bin-changelog.000005	156	No
mysql-bin-changelog.000006	156	No
+----------------------------+-----------+-----------+
6 rows in set (0.00 sec)

On a restored or cloned DB cluster, binlog files aren't backed up when enhanced binlog is turned
on. To avoid discontinuity in the binlog data, the binlog files written before turning on the
enhanced binlog are also not available.

mysql>show binary logs;

+----------------------------+-----------+-----------+
| Log_name | File_size | Encrypted |
+----------------------------+-----------+-----------+
| mysql-bin-changelog.000001 | 156 | No | --> New sequence of Binlog files

Using binary log (binlog) replication 1629

Amazon Aurora User Guide for Aurora

+----------------------------+-----------+-----------+
1 row in set (0.00 sec)

Example Clone or restore operation performed when enhanced binlog is turned off

Source DB cluster:

mysql>show binary logs;

+----------------------------+-----------+-----------+
| Log_name | File_size | Encrypted |
+----------------------------+-----------+-----------+
| mysql-bin-changelog.000001 | 156 | No |
| mysql-bin-changelog.000002 | 156 | No | --> Enhanced Binlog enabled
| mysql-bin-changelog.000003 | 156 | No | --> Enhanced Binlog enabled
mysql-bin-changelog.000004	156	No
mysql-bin-changelog.000005	156	No
mysql-bin-changelog.000006	156	No
+----------------------------+-----------+-----------+
6 rows in set (0.00 sec)

On a restored or cloned DB cluster, binlog files written after turning off the enhanced binlog are
available.

mysql>show binary logs;

+----------------------------+-----------+-----------+
| Log_name | File_size | Encrypted |
+----------------------------+-----------+-----------+
mysql-bin-changelog.000004	156	No
mysql-bin-changelog.000005	156	No
mysql-bin-changelog.000006	156	No
+----------------------------+-----------+-----------+
1 row in set (0.00 sec)

On an Amazon Aurora global database

Using binary log (binlog) replication 1630

Amazon Aurora User Guide for Aurora

On an Amazon Aurora global database, the binlog data of the primary DB cluster isn't replicated
to the secondary DB clusters. After a cross-Region failover process, the binlog data isn't available
in the newly promoted primary DB cluster. If binlog is turned on, the newly promoted DB cluster
starts its own sequence of binlog files, starting from 1 (mysql-bin-changelog.000001).

To turn on enhanced binlog after failover, you must set the required DB cluster parameters on the
secondary DB cluster. For more information, see Configuring enhanced binlog parameters.

Example Global database failover operation is performed when enhanced binlog is turned on

Old primary DB Cluster (before failover):

mysql>show binary logs;

+----------------------------+-----------+-----------+
| Log_name | File_size | Encrypted |
+----------------------------+-----------+-----------+
mysql-bin-changelog.000001	156	No
mysql-bin-changelog.000002	156	No
mysql-bin-changelog.000003	156	No
mysql-bin-changelog.000004	156	No
mysql-bin-changelog.000005	156	No
mysql-bin-changelog.000006	156	No
+----------------------------+-----------+-----------+
6 rows in set (0.00 sec)

New primary DB cluster (after failover):

Binlog files aren't replicated to secondary regions when enhanced binlog is turned on. To avoid
discontinuity in the binlog data, the binlog files written before turning on the enhanced binlog
aren't available.

mysql>show binary logs;

+----------------------------+-----------+-----------+
| Log_name | File_size | Encrypted |
+----------------------------+-----------+-----------+
| mysql-bin-changelog.000001 | 156 | No | --> Fresh sequence of Binlog
 files
+----------------------------+-----------+-----------+
1 row in set (0.00 sec)

Using binary log (binlog) replication 1631

Amazon Aurora User Guide for Aurora

Example Global database failover operation is performed when enhanced binlog is turned off

Source DB Cluster:

mysql>show binary logs;

+----------------------------+-----------+-----------+
| Log_name | File_size | Encrypted |
+----------------------------+-----------+-----------+
| mysql-bin-changelog.000001 | 156 | No |
| mysql-bin-changelog.000002 | 156 | No | --> Enhanced Binlog enabled
| mysql-bin-changelog.000003 | 156 | No | --> Enhanced Binlog enabled
mysql-bin-changelog.000004	156	No
mysql-bin-changelog.000005	156	No
mysql-bin-changelog.000006	156	No
+----------------------------+-----------+-----------+
6 rows in set (0.00 sec)

Restored or cloned DB cluster:

Binlog files that are written after turning off the enhanced binlog are replicated and are available
in the newly promoted DB cluster.

mysql>show binary logs;

+----------------------------+-----------+-----------+
| Log_name | File_size | Encrypted |
+----------------------------+-----------+-----------+
mysql-bin-changelog.000004	156	No
mysql-bin-changelog.000005	156	No
mysql-bin-changelog.000006	156	No
+----------------------------+-----------+-----------+
3 rows in set (0.00 sec)

Amazon CloudWatch metrics for enhanced binlog

The following Amazon CloudWatch metrics are published only when enhanced binlog is turned on.

Using binary log (binlog) replication 1632

Amazon Aurora User Guide for Aurora

CloudWatch metric Description Units

ChangeLogBytesUsed The amount of storage used
by the enhanced binlog.

Bytes

ChangeLogReadIOPs The number of read I/O
operations performed in the
enhanced binlog within a 5-
minute interval.

Count per 5 minutes

ChangeLogWriteIOPs The number of write disk I/O
operations performed in the
enhanced binlog within a 5-
minute interval.

Count per 5 minutes

Enhanced binlog limitations

The following limitations apply to Amazon Aurora DB clusters when enhanced binlog is turned on.

• Enhanced binlog is only supported on Aurora MySQL version3.03.1 and higher.

• The enhanced binlog files written on the primary DB cluster aren't copied to the cloned or
restored DB clusters.

• When used with Amazon Aurora global database, the enhanced binlog files of the primary DB
cluster aren't replicated to the secondary DB clusters. Therefore, after the failover process, the
historical binlog data isn't available in the new primary DB cluster.

• The following binlog configuration parameters are ignored:

• binlog_group_commit_sync_delay

• binlog_group_commit_sync_no_delay_count

• binlog_max_flush_queue_time

• You can't drop or rename a corrupted table in a database. To drop these tables, you can contact
AWS Support.

• The binlog I/O cache is disabled when enhanced binlog is turned on. For more information, see
Optimizing binary log replication.

Using binary log (binlog) replication 1633

Amazon Aurora User Guide for Aurora

Note

Enhanced binlog provides similar read performance improvements as binlog I/O cache
and better write performance improvements.

• The backtrack feature is not supported. Enhanced binlog can't be turned on in a DB cluster under
the following conditions:

• DB cluster with the backtrack feature currently enabled.

• DB cluster where the backtrack feature was previously enabled, but is now disabled.

• DB cluster restored from a source DB cluster or a snapshot with the backtrack feature enabled.

Using GTID-based replication

The following content explains how to use global transaction identifiers (GTIDs) with binary log
(binlog) replication between an Aurora MySQL cluster and an external source.

Note

For Aurora, you can use this feature only with Aurora MySQL clusters that use binlog
replication to or from an external MySQL database. The other database might be an
Amazon RDS MySQL instance, an on-premises MySQL database, or an Aurora DB cluster in
a different AWS Region. To learn how to configure that kind of replication, see Replication
between Aurora and MySQL or between Aurora and another Aurora DB cluster (binary log
replication).

If you use binlog replication and aren't familiar with GTID-based replication with MySQL, see
Replication with global transaction identifiers in the MySQL documentation.

GTID-based replication is supported for Aurora MySQL version 2 and 3.

Topics

• Overview of global transaction identifiers (GTIDs)

• Parameters for GTID-based replication

• Configuring GTID-based replication for an Aurora MySQL cluster

Using GTID-based replication 1634

https://dev.mysql.com/doc/refman/5.7/en/replication-gtids.html

Amazon Aurora User Guide for Aurora

• Disabling GTID-based replication for an Aurora MySQL DB cluster

Overview of global transaction identifiers (GTIDs)

Global transaction identifiers (GTIDs) are unique identifiers generated for committed MySQL
transactions. You can use GTIDs to make binlog replication simpler and easier to troubleshoot.

Note

When Aurora synchronizes data among the DB instances in a cluster, that replication
mechanism doesn't involve the binary log (binlog). For Aurora MySQL, GTID-based
replication only applies when you also use binlog replication to replicate into or out of an
Aurora MySQL DB cluster from an external MySQL-compatible database.

MySQL uses two different types of transactions for binlog replication:

• GTID transactions – Transactions that are identified by a GTID.

• Anonymous transactions – Transactions that don't have a GTID assigned.

In a replication configuration, GTIDs are unique across all DB instances. GTIDs simplify replication
configuration because when you use them, you don't have to refer to log file positions. GTIDs also
make it easier to track replicated transactions and determine whether the source instance and
replicas are consistent.

You typically use GTID-based replication with Aurora when replicating from an external MySQL-
compatible database into an Aurora cluster. You can set up this replication configuration as part
of a migration from an on-premises or Amazon RDS database into Aurora MySQL. If the external
database already uses GTIDs, enabling GTID-based replication for the Aurora cluster simplifies the
replication process.

You configure GTID-based replication for an Aurora MySQL cluster by first setting the relevant
configuration parameters in a DB cluster parameter group. You then associate that parameter
group with the cluster.

Parameters for GTID-based replication

Use the following parameters to configure GTID-based replication.

Using GTID-based replication 1635

Amazon Aurora User Guide for Aurora

Parameter Valid values Description

gtid_mode OFF, OFF_PERMISSIVE ,
ON_PERMISSIVE , ON

OFF specifies that new transactions are
anonymous transactions (that is, don't have
GTIDs), and a transaction must be anonymous
to be replicated.

OFF_PERMISSIVE specifies that new
transactions are anonymous transactions, but
all transactions can be replicated.

ON_PERMISSIVE specifies that new transacti
ons are GTID transactions, but all transactions
can be replicated.

ON specifies that new transactions are GTID
transactions, and a transaction must be a GTID
transaction to be replicated.

enforce_g
tid_consi
stency

OFF, ON, WARN OFF allows transactions to violate GTID
consistency.

ON prevents transactions from violating GTID
consistency.

WARN allows transactions to violate GTID
consistency but generates a warning when a
violation occurs.

Note

In the AWS Management Console, the gtid_mode parameter appears as gtid-mode.

For GTID-based replication, use these settings for the DB cluster parameter group for your Aurora
MySQL DB cluster:

Using GTID-based replication 1636

Amazon Aurora User Guide for Aurora

• ON and ON_PERMISSIVE apply only to outgoing replication from an Aurora MySQL cluster. Both
of these values cause your Aurora DB cluster to use GTIDs for transactions that are replicated to
an external database. ON requires that the external database also use GTID-based replication.
ON_PERMISSIVE makes GTID-based replication optional on the external database.

• OFF_PERMISSIVE, if set, means that your Aurora DB cluster can accept incoming replication
from an external database. It can do this whether the external database uses GTID-based
replication or not.

• OFF, if set, means that your Aurora DB cluster only accepts incoming replication from external
databases that don't use GTID-based replication.

Tip

Incoming replication is the most common binlog replication scenario for Aurora MySQL
clusters. For incoming replication, we recommend that you set the GTID mode to
OFF_PERMISSIVE. That setting allows incoming replication from external databases
regardless of the GTID settings at the replication source.

For more information about parameter groups, see Working with parameter groups.

Configuring GTID-based replication for an Aurora MySQL cluster

When GTID-based replication is enabled for an Aurora MySQL DB cluster, the GTID settings apply
to both inbound and outbound binlog replication.

To enable GTID-based replication for an Aurora MySQL cluster

1. Create or edit a DB cluster parameter group using the following parameter settings:

• gtid_mode – ON or ON_PERMISSIVE

• enforce_gtid_consistency – ON

2. Associate the DB cluster parameter group with the Aurora MySQL cluster. To do so, follow the
procedures in Working with parameter groups.

3. (Optional) Specify how to assign GTIDs to transactions that don't include them. To do so, call
the stored procedure in mysql.rds_assign_gtids_to_anonymous_transactions (Aurora MySQL
version 3).

Using GTID-based replication 1637

Amazon Aurora User Guide for Aurora

Disabling GTID-based replication for an Aurora MySQL DB cluster

You can disable GTID-based replication for an Aurora MySQL DB cluster. Doing so means that the
Aurora cluster can't perform inbound or outbound binlog replication with external databases that
use GTID-based replication.

Note

In the following procedure, read replica means the replication target in an Aurora
configuration with binlog replication to or from an external database. It doesn't mean
the read-only Aurora Replica DB instances. For example, when an Aurora cluster accepts
incoming replication from an external source, the Aurora primary instance acts as the read
replica for binlog replication.

For more details about the stored procedures mentioned in this section, see Aurora MySQL stored
procedures.

To disable GTID-based replication for an Aurora MySQL DB cluster

1. On the Aurora replicas, run the following procedure:

For version 3

CALL mysql.rds_set_source_auto_position(0);

For version 2

CALL mysql.rds_set_master_auto_position(0);

2. Reset the gtid_mode to ON_PERMISSIVE.

a. Make sure that the DB cluster parameter group associated with the Aurora MySQL cluster
has gtid_mode set to ON_PERMISSIVE.

For more information about setting configuration parameters using parameter groups, see
Working with parameter groups.

b. Restart the Aurora MySQL DB cluster.

3. Reset the gtid_mode to OFF_PERMISSIVE.

Using GTID-based replication 1638

Amazon Aurora User Guide for Aurora

a. Make sure that the DB cluster parameter group associated with the Aurora MySQL cluster
has gtid_mode set to OFF_PERMISSIVE.

b. Restart the Aurora MySQL DB cluster.

4. Wait for all of the GTID transactions to be applied on the Aurora primary instance. To check
that these are applied, do the following steps:

a. On the Aurora primary instance, run the SHOW MASTER STATUS command.

Your output should be similar to the following output.

File Position

mysql-bin-changelog.000031 107

Note the file and position in your output.

b. On each read replica, use the file and position information from its source instance in the
previous step to run the following query:

For version 3

SELECT SOURCE_POS_WAIT('file', position);

For version 2

SELECT MASTER_POS_WAIT('file', position);

For example, if the file name is mysql-bin-changelog.000031 and the position is 107,
run the following statement:

For version 3

SELECT SOURCE_POS_WAIT('mysql-bin-changelog.000031', 107);

For version 2

Using GTID-based replication 1639

Amazon Aurora User Guide for Aurora

SELECT MASTER_POS_WAIT('mysql-bin-changelog.000031', 107);

5. Reset the GTID parameters to disable GTID-based replication.

a. Make sure that the DB cluster parameter group associated with the Aurora MySQL cluster
has the following parameter settings:

• gtid_mode – OFF

• enforce_gtid_consistency – OFF

b. Restart the Aurora MySQL DB cluster.

Using GTID-based replication 1640

Amazon Aurora User Guide for Aurora

Integrating Amazon Aurora MySQL with other AWS services

Amazon Aurora MySQL integrates with other AWS services so that you can extend your Aurora
MySQL DB cluster to use additional capabilities in the AWS Cloud. Your Aurora MySQL DB cluster
can use AWS services to do the following:

• Synchronously or asynchronously invoke an AWS Lambda function using the native functions
lambda_sync or lambda_async. For more information, see Invoking a Lambda function from
an Amazon Aurora MySQL DB cluster.

• Load data from text or XML files stored in an Amazon Simple Storage Service (Amazon S3)
bucket into your DB cluster using the LOAD DATA FROM S3 or LOAD XML FROM S3 command.
For more information, see Loading data into an Amazon Aurora MySQL DB cluster from text files
in an Amazon S3 bucket.

• Save data to text files stored in an Amazon S3 bucket from your DB cluster using the SELECT
INTO OUTFILE S3 command. For more information, see Saving data from an Amazon Aurora
MySQL DB cluster into text files in an Amazon S3 bucket.

• Automatically add or remove Aurora Replicas with Application Auto Scaling. For more
information, see Using Amazon Aurora Auto Scaling with Aurora Replicas.

• Perform sentiment analysis with Amazon Comprehend, or a wide variety of machine learning
algorithms with SageMaker. For more information, see Using Amazon Aurora machine learning.

Aurora secures the ability to access other AWS services by using AWS Identity and Access
Management (IAM). You grant permission to access other AWS services by creating an IAM role
with the necessary permissions, and then associating the role with your DB cluster. For details and
instructions on how to permit your Aurora MySQL DB cluster to access other AWS services on your
behalf, see Authorizing Amazon Aurora MySQL to access other AWS services on your behalf.

Authorizing Amazon Aurora MySQL to access other AWS services on
your behalf

For your Aurora MySQL DB cluster to access other services on your behalf, create and configure an
AWS Identity and Access Management (IAM) role. This role authorizes database users in your DB
cluster to access other AWS services. For more information, see Setting up IAM roles to access AWS
services.

Integrating Aurora MySQL with AWS services 1641

Amazon Aurora User Guide for Aurora

You must also configure your Aurora DB cluster to allow outbound connections to the target AWS
service. For more information, see Enabling network communication from Amazon Aurora MySQL
to other AWS services.

If you do so, your database users can perform these actions using other AWS services:

• Synchronously or asynchronously invoke an AWS Lambda function using the native functions
lambda_sync or lambda_async. Or, asynchronously invoke an AWS Lambda function using the
mysql.lambda_async procedure. For more information, see Invoking a Lambda function with
an Aurora MySQL native function.

• Load data from text or XML files stored in an Amazon S3 bucket into your DB cluster by using the
LOAD DATA FROM S3 or LOAD XML FROM S3 statement. For more information, see Loading
data into an Amazon Aurora MySQL DB cluster from text files in an Amazon S3 bucket.

• Save data from your DB cluster into text files stored in an Amazon S3 bucket by using the
SELECT INTO OUTFILE S3 statement. For more information, see Saving data from an Amazon
Aurora MySQL DB cluster into text files in an Amazon S3 bucket.

• Export log data to Amazon CloudWatch Logs MySQL. For more information, see Publishing
Amazon Aurora MySQL logs to Amazon CloudWatch Logs.

• Automatically add or remove Aurora Replicas with Application Auto Scaling. For more
information, see Using Amazon Aurora Auto Scaling with Aurora Replicas.

Setting up IAM roles to access AWS services

To permit your Aurora DB cluster to access another AWS service, do the following:

1. Create an IAM policy that grants permission to the AWS service. For more information, see:

• Creating an IAM policy to access Amazon S3 resources

• Creating an IAM policy to access AWS Lambda resources

• Creating an IAM policy to access CloudWatch Logs resources

• Creating an IAM policy to access AWS KMS resources

2. Create an IAM role and attach the policy that you created. For more information, see Creating an
IAM role to allow Amazon Aurora to access AWS services.

3. Associate that IAM role with your Aurora DB cluster. For more information, see Associating an
IAM role with an Amazon Aurora MySQL DB cluster.

Authorizing Aurora MySQL to access AWS services 1642

Amazon Aurora User Guide for Aurora

Creating an IAM policy to access Amazon S3 resources

Aurora can access Amazon S3 resources to either load data to or save data from an Aurora
DB cluster. However, you must first create an IAM policy that provides the bucket and object
permissions that allow Aurora to access Amazon S3.

The following table lists the Aurora features that can access an Amazon S3 bucket on your behalf,
and the minimum required bucket and object permissions required by each feature.

Feature Bucket permissions Object permissions

LOAD DATA FROM S3 ListBucket GetObject

GetObjectVersion

LOAD XML FROM S3 ListBucket GetObject

GetObjectVersion

SELECT INTO OUTFILE S3 ListBucket AbortMultipartUpload

DeleteObject

GetObject

ListMultipartUploa
dParts

PutObject

The following policy adds the permissions that might be required by Aurora to access an Amazon
S3 bucket on your behalf.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "AllowAuroraToExampleBucket",
 "Effect": "Allow",
 "Action": [

Authorizing Aurora MySQL to access AWS services 1643

Amazon Aurora User Guide for Aurora

 "s3:PutObject",
 "s3:GetObject",
 "s3:AbortMultipartUpload",
 "s3:ListBucket",
 "s3:DeleteObject",
 "s3:GetObjectVersion",
 "s3:ListMultipartUploadParts"
],
 "Resource": [
 "arn:aws:s3:::DOC-EXAMPLE-BUCKET/*",
 "arn:aws:s3:::DOC-EXAMPLE-BUCKET"
]
 }
]
}

Note

Make sure to include both entries for the Resource value. Aurora needs the permissions
on both the bucket itself and all the objects inside the bucket.
Based on your use case, you might not need to add all of the permissions in the sample
policy. Also, other permissions might be required. For example, if your Amazon S3 bucket is
encrypted, you need to add kms:Decrypt permissions.

You can use the following steps to create an IAM policy that provides the minimum required
permissions for Aurora to access an Amazon S3 bucket on your behalf. To allow Aurora
to access all of your Amazon S3 buckets, you can skip these steps and use either the
AmazonS3ReadOnlyAccess or AmazonS3FullAccess predefined IAM policy instead of creating
your own.

To create an IAM policy to grant access to your Amazon S3 resources

1. Open the IAM Management Console.

2. In the navigation pane, choose Policies.

3. Choose Create policy.

4. On the Visual editor tab, choose Choose a service, and then choose S3.

5. For Actions, choose Expand all, and then choose the bucket permissions and object
permissions needed for the IAM policy.

Authorizing Aurora MySQL to access AWS services 1644

https://console.aws.amazon.com/iam/home?#home

Amazon Aurora User Guide for Aurora

Object permissions are permissions for object operations in Amazon S3, and need to be
granted for objects in a bucket, not the bucket itself. For more information about permissions
for object operations in Amazon S3, see Permissions for object operations.

6. Choose Resources, and choose Add ARN for bucket.

7. In the Add ARN(s) dialog box, provide the details about your resource, and choose Add.

Specify the Amazon S3 bucket to allow access to. For instance, if you want to allow Aurora to
access the Amazon S3 bucket named DOC-EXAMPLE-BUCKET, then set the Amazon Resource
Name (ARN) value to arn:aws:s3:::DOC-EXAMPLE-BUCKET.

8. If the object resource is listed, choose Add ARN for object.

9. In the Add ARN(s) dialog box, provide the details about your resource.

For the Amazon S3 bucket, specify the Amazon S3 bucket to allow access to. For the object,
you can choose Any to grant permissions to any object in the bucket.

Note

You can set Amazon Resource Name (ARN) to a more specific ARN value in order to
allow Aurora to access only specific files or folders in an Amazon S3 bucket. For more
information about how to define an access policy for Amazon S3, see Managing access
permissions to your Amazon S3 resources.

10. (Optional) Choose Add ARN for bucket to add another Amazon S3 bucket to the policy, and
repeat the previous steps for the bucket.

Note

You can repeat this to add corresponding bucket permission statements to your policy
for each Amazon S3 bucket that you want Aurora to access. Optionally, you can also
grant access to all buckets and objects in Amazon S3.

11. Choose Review policy.

12. For Name, enter a name for your IAM policy, for example AllowAuroraToExampleBucket.
You use this name when you create an IAM role to associate with your Aurora DB cluster. You
can also add an optional Description value.

13. Choose Create policy.

Authorizing Aurora MySQL to access AWS services 1645

https://docs.aws.amazon.com/AmazonS3/latest/dev/using-with-s3-actions.html#using-with-s3-actions-related-to-objects
https://docs.aws.amazon.com/AmazonS3/latest/dev/s3-access-control.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/s3-access-control.html

Amazon Aurora User Guide for Aurora

14. Complete the steps in Creating an IAM role to allow Amazon Aurora to access AWS services.

Creating an IAM policy to access AWS Lambda resources

You can create an IAM policy that provides the minimum required permissions for Aurora to invoke
an AWS Lambda function on your behalf.

The following policy adds the permissions required by Aurora to invoke an AWS Lambda function
on your behalf.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "AllowAuroraToExampleFunction",
 "Effect": "Allow",
 "Action": "lambda:InvokeFunction",
 "Resource":
 "arn:aws:lambda:<region>:<123456789012>:function:<example_function>"
 }
]
}

You can use the following steps to create an IAM policy that provides the minimum required
permissions for Aurora to invoke an AWS Lambda function on your behalf. To allow Aurora
to invoke all of your AWS Lambda functions, you can skip these steps and use the predefined
AWSLambdaRole policy instead of creating your own.

To create an IAM policy to grant invoke to your AWS Lambda functions

1. Open the IAM console.

2. In the navigation pane, choose Policies.

3. Choose Create policy.

4. On the Visual editor tab, choose Choose a service, and then choose Lambda.

5. For Actions, choose Expand all, and then choose the AWS Lambda permissions needed for the
IAM policy.

Ensure that InvokeFunction is selected. It is the minimum required permission to enable
Amazon Aurora to invoke an AWS Lambda function.

Authorizing Aurora MySQL to access AWS services 1646

https://console.aws.amazon.com/iam/home?#home

Amazon Aurora User Guide for Aurora

6. Choose Resources and choose Add ARN for function.

7. In the Add ARN(s) dialog box, provide the details about your resource.

Specify the Lambda function to allow access to. For instance, if you want to allow Aurora
to access a Lambda function named example_function, then set the ARN value to
arn:aws:lambda:::function:example_function.

For more information on how to define an access policy for AWS Lambda, see Authentication
and access control for AWS Lambda.

8. Optionally, choose Add additional permissions to add another AWS Lambda function to the
policy, and repeat the previous steps for the function.

Note

You can repeat this to add corresponding function permission statements to your
policy for each AWS Lambda function that you want Aurora to access.

9. Choose Review policy.

10. Set Name to a name for your IAM policy, for example AllowAuroraToExampleFunction.
You use this name when you create an IAM role to associate with your Aurora DB cluster. You
can also add an optional Description value.

11. Choose Create policy.

12. Complete the steps in Creating an IAM role to allow Amazon Aurora to access AWS services.

Creating an IAM policy to access CloudWatch Logs resources

Aurora can access CloudWatch Logs to export audit log data from an Aurora DB cluster. However,
you must first create an IAM policy that provides the log group and log stream permissions that
allow Aurora to access CloudWatch Logs.

The following policy adds the permissions required by Aurora to access Amazon CloudWatch Logs
on your behalf, and the minimum required permissions to create log groups and export data.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "EnableCreationAndManagementOfRDSCloudwatchLogEvents",

Authorizing Aurora MySQL to access AWS services 1647

https://docs.aws.amazon.com/lambda/latest/dg/lambda-auth-and-access-control.html
https://docs.aws.amazon.com/lambda/latest/dg/lambda-auth-and-access-control.html

Amazon Aurora User Guide for Aurora

 "Effect": "Allow",
 "Action": [
 "logs:GetLogEvents",
 "logs:PutLogEvents"
],
 "Resource": "arn:aws:logs:*:*:log-group:/aws/rds/*:log-stream:*"
 },
 {
 "Sid": "EnableCreationAndManagementOfRDSCloudwatchLogGroupsAndStreams",
 "Effect": "Allow",
 "Action": [
 "logs:CreateLogStream",
 "logs:DescribeLogStreams",
 "logs:PutRetentionPolicy",
 "logs:CreateLogGroup"
],
 "Resource": "arn:aws:logs:*:*:log-group:/aws/rds/*"
 }
]
}

You can modify the ARNs in the policy to restrict access to a specific AWS Region and account.

You can use the following steps to create an IAM policy that provides the minimum required
permissions for Aurora to access CloudWatch Logs on your behalf. To allow Aurora full access to
CloudWatch Logs, you can skip these steps and use the CloudWatchLogsFullAccess predefined
IAM policy instead of creating your own. For more information, see Using identity-based policies
(IAM policies) for CloudWatch Logs in the Amazon CloudWatch User Guide.

To create an IAM policy to grant access to your CloudWatch Logs resources

1. Open the IAM console.

2. In the navigation pane, choose Policies.

3. Choose Create policy.

4. On the Visual editor tab, choose Choose a service, and then choose CloudWatch Logs.

5. For Actions, choose Expand all (on the right), and then choose the Amazon CloudWatch Logs
permissions needed for the IAM policy.

Ensure that the following permissions are selected:

• CreateLogGroup

Authorizing Aurora MySQL to access AWS services 1648

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/iam-identity-based-access-control-cwl.html#managed-policies-cwl
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/iam-identity-based-access-control-cwl.html#managed-policies-cwl
https://console.aws.amazon.com/iam/home?#home

Amazon Aurora User Guide for Aurora

• CreateLogStream

• DescribeLogStreams

• GetLogEvents

• PutLogEvents

• PutRetentionPolicy

6. Choose Resources and choose Add ARN for log-group.

7. In the Add ARN(s) dialog box, enter the following values:

• Region – An AWS Region or *

• Account – An account number or *

• Log Group Name – /aws/rds/*

8. In the Add ARN(s) dialog box, choose Add.

9. Choose Add ARN for log-stream.

10. In the Add ARN(s) dialog box, enter the following values:

• Region – An AWS Region or *

• Account – An account number or *

• Log Group Name – /aws/rds/*

• Log Stream Name – *

11. In the Add ARN(s) dialog box, choose Add.

12. Choose Review policy.

13. Set Name to a name for your IAM policy, for example AmazonRDSCloudWatchLogs. You use
this name when you create an IAM role to associate with your Aurora DB cluster. You can also
add an optional Description value.

14. Choose Create policy.

15. Complete the steps in Creating an IAM role to allow Amazon Aurora to access AWS services.

Creating an IAM policy to access AWS KMS resources

Aurora can access the AWS KMS keys used for encrypting their database backups. However, you
must first create an IAM policy that provides the permissions that allow Aurora to access KMS keys.

The following policy adds the permissions required by Aurora to access KMS keys on your behalf.

Authorizing Aurora MySQL to access AWS services 1649

Amazon Aurora User Guide for Aurora

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "kms:Decrypt"
],
 "Resource": "arn:aws:kms:<region>:<123456789012>:key/<key-ID>"
 }
]
}

You can use the following steps to create an IAM policy that provides the minimum required
permissions for Aurora to access KMS keys on your behalf.

To create an IAM policy to grant access to your KMS keys

1. Open the IAM console.

2. In the navigation pane, choose Policies.

3. Choose Create policy.

4. On the Visual editor tab, choose Choose a service, and then choose KMS.

5. For Actions, choose Write, and then choose Decrypt.

6. Choose Resources, and choose Add ARN.

7. In the Add ARN(s) dialog box, enter the following values:

• Region – Type the AWS Region, such as us-west-2.

• Account – Type the user account number.

• Log Stream Name – Type the KMS key identifier.

8. In the Add ARN(s) dialog box, choose Add.

9. Choose Review policy.

10. Set Name to a name for your IAM policy, for example AmazonRDSKMSKey. You use this name
when you create an IAM role to associate with your Aurora DB cluster. You can also add an
optional Description value.

11. Choose Create policy.

12. Complete the steps in Creating an IAM role to allow Amazon Aurora to access AWS services.

Authorizing Aurora MySQL to access AWS services 1650

https://console.aws.amazon.com/iam/home?#home

Amazon Aurora User Guide for Aurora

Creating an IAM role to allow Amazon Aurora to access AWS services

After creating an IAM policy to allow Aurora to access AWS resources, you must create an IAM role
and attach the IAM policy to the new IAM role.

To create an IAM role to permit your Amazon RDS cluster to communicate with other AWS services
on your behalf, take the following steps.

To create an IAM role to allow Amazon RDS to access AWS services

1. Open the IAM console.

2. In the navigation pane, choose Roles.

3. Choose Create role.

4. Under AWS service, choose RDS.

5. Under Select your use case, choose RDS – Add Role to Database.

6. Choose Next.

7. On the Permissions policies page, enter the name of your policy in the Search field.

8. When it appears in the list, select the policy that you defined earlier using the instructions in
one of the following sections:

• Creating an IAM policy to access Amazon S3 resources

• Creating an IAM policy to access AWS Lambda resources

• Creating an IAM policy to access CloudWatch Logs resources

• Creating an IAM policy to access AWS KMS resources

9. Choose Next.

10. In Role name, enter a name for your IAM role, for example RDSLoadFromS3. You can also add
an optional Description value.

11. Choose Create Role.

12. Complete the steps in Associating an IAM role with an Amazon Aurora MySQL DB cluster.

Associating an IAM role with an Amazon Aurora MySQL DB cluster

To permit database users in an Amazon Aurora DB cluster to access other AWS services, you
associate the IAM role that you created in Creating an IAM role to allow Amazon Aurora to access

Authorizing Aurora MySQL to access AWS services 1651

https://console.aws.amazon.com/iam/home?#home

Amazon Aurora User Guide for Aurora

AWS services with that DB cluster. You can also have AWS create a new IAM role by associating the
service directly.

Note

You can't associate an IAM role with an Aurora Serverless v1 DB cluster. For more
information, see Using Amazon Aurora Serverless v1.
You can associate an IAM role with an Aurora Serverless v2 DB cluster.

To associate an IAM role with a DB cluster you do two things:

1. Add the role to the list of associated roles for a DB cluster by using the RDS console, the add-
role-to-db-cluster AWS CLI command, or the AddRoleToDBCluster RDS API operation.

You can add a maximum of five IAM roles for each Aurora DB cluster.

2. Set the cluster-level parameter for the related AWS service to the ARN for the associated IAM
role.

The following table describes the cluster-level parameter names for the IAM roles used to access
other AWS services.

Cluster-level
parameter

Description

aws_defau
lt_lambda_role

Used when invoking a Lambda function from
your DB cluster.

aws_defau
lt_logs_role

This parameter is no longer required for
exporting log data from your DB cluster to
Amazon CloudWatch Logs. Aurora MySQL
now uses a service-linked role for the
required permissions. For more information
about service-linked roles, see Using service-l
inked roles for Amazon Aurora.

aws_defau
lt_s3_role

Used when invoking the LOAD DATA FROM
S3, LOAD XML FROM S3, or SELECT INTO

Authorizing Aurora MySQL to access AWS services 1652

https://docs.aws.amazon.com/cli/latest/reference/rds/add-role-to-db-cluster.html
https://docs.aws.amazon.com/cli/latest/reference/rds/add-role-to-db-cluster.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_AddRoleToDBCluster.html

Amazon Aurora User Guide for Aurora

Cluster-level
parameter

Description

OUTFILE S3 statement from your DB
cluster.

In Aurora MySQL version 2, the IAM role
specified in this parameter is used if an
IAM role isn't specified for aurora_lo
ad_from_s3_role or aurora_se
lect_into_s3_role for the appropriate
statement.

In Aurora MySQL version 3, the IAM role
specified for this parameter is always used.

aurora_lo
ad_from_s
3_role

Used when invoking the LOAD DATA FROM
S3 or LOAD XML FROM S3 statement from
your DB cluster. If an IAM role is not specified
for this parameter, the IAM role specified in
aws_default_s3_role is used.

In Aurora MySQL version 3, this parameter
isn't available.

aurora_se
lect_into
_s3_role

Used when invoking the SELECT INTO
OUTFILE S3 statement from your DB
cluster. If an IAM role is not specified for
this parameter, the IAM role specified in
aws_default_s3_role is used.

In Aurora MySQL version 3, this parameter
isn't available.

To associate an IAM role to permit your Amazon RDS cluster to communicate with other AWS
services on your behalf, take the following steps.

Authorizing Aurora MySQL to access AWS services 1653

Amazon Aurora User Guide for Aurora

Console

To associate an IAM role with an Aurora DB cluster using the console

1. Open the RDS console at https://console.aws.amazon.com/rds/.

2. Choose Databases.

3. Choose the name of the Aurora DB cluster that you want to associate an IAM role with to show
its details.

4. On the Connectivity & security tab, in the Manage IAM roles section, do one of the following:

• Select IAM roles to add to this cluster (default)

• Select a service to connect to this cluster

5. To use an existing IAM role, choose it from the menu, then choose Add role.

If adding the role is successful, its status shows as Pending, then Available.

6. To connect a service directly:

a. Choose Select a service to connect to this cluster.

b. Choose the service from the menu, then choose Connect service.

c. For Connect cluster to Service Name, enter the Amazon Resource Name (ARN) to use to
connect to the service, then choose Connect service.

AWS creates a new IAM role for connecting to the service. Its status shows as Pending, then
Available.

7. (Optional) To stop associating an IAM role with a DB cluster and remove the related
permission, choose the role and then choose Delete.

Authorizing Aurora MySQL to access AWS services 1654

https://console.aws.amazon.com/rds/

Amazon Aurora User Guide for Aurora

To set the cluster-level parameter for the associated IAM role

1. In the RDS console, choose Parameter groups in the navigation pane.

2. If you are already using a custom DB parameter group, you can select that group to use
instead of creating a new DB cluster parameter group. If you are using the default DB cluster
parameter group, create a new DB cluster parameter group, as described in the following
steps:

a. Choose Create parameter group.

b. For Parameter group family, choose aurora-mysql8.0 for an Aurora MySQL 8.0-
compatible DB cluster, or aurora-mysql5.7 for an Aurora MySQL 5.7-compatible DB
cluster.

c. For Type, choose DB Cluster Parameter Group.

d. For Group name, type the name of your new DB cluster parameter group.

e. For Description, type a description for your new DB cluster parameter group.

f. Choose Create.

3. On the Parameter groups page, select your DB cluster parameter group and choose Edit for
Parameter group actions.

4. Set the appropriate cluster-level parameters to the related IAM role ARN values.

For example, you can set just the aws_default_s3_role parameter to
arn:aws:iam::123456789012:role/AllowS3Access.

5. Choose Save changes.

Authorizing Aurora MySQL to access AWS services 1655

Amazon Aurora User Guide for Aurora

6. To change the DB cluster parameter group for your DB cluster, complete the following steps:

a. Choose Databases, and then choose your Aurora DB cluster.

b. Choose Modify.

c. Scroll to Database options and set DB cluster parameter group to the DB cluster
parameter group.

d. Choose Continue.

e. Verify your changes and then choose Apply immediately.

f. Choose Modify cluster.

g. Choose Databases, and then choose the primary instance for your DB cluster.

h. For Actions, choose Reboot.

When the instance has rebooted, your IAM role is associated with your DB cluster.

For more information about cluster parameter groups, see Aurora MySQL configuration
parameters.

CLI

To associate an IAM role with a DB cluster by using the AWS CLI

1. Call the add-role-to-db-cluster command from the AWS CLI to add the ARNs for your
IAM roles to the DB cluster, as shown following.

PROMPT> aws rds add-role-to-db-cluster --db-cluster-identifier my-cluster --role-
arn arn:aws:iam::123456789012:role/AllowAuroraS3Role
PROMPT> aws rds add-role-to-db-cluster --db-cluster-identifier my-cluster --role-
arn arn:aws:iam::123456789012:role/AllowAuroraLambdaRole

2. If you are using the default DB cluster parameter group, create a new DB cluster parameter
group. If you are already using a custom DB parameter group, you can use that group instead
of creating a new DB cluster parameter group.

To create a new DB cluster parameter group, call the create-db-cluster-parameter-
group command from the AWS CLI, as shown following.

PROMPT> aws rds create-db-cluster-parameter-group --db-cluster-parameter-group-
name AllowAWSAccess \

Authorizing Aurora MySQL to access AWS services 1656

Amazon Aurora User Guide for Aurora

 --db-parameter-group-family aurora5.7 --description "Allow access to Amazon S3
 and AWS Lambda"

For an Aurora MySQL 5.7-compatible DB cluster, specify aurora-mysql5.7 for --db-
parameter-group-family. For an Aurora MySQL 8.0-compatible DB cluster, specify
aurora-mysql8.0 for --db-parameter-group-family.

3. Set the appropriate cluster-level parameter or parameters and the related IAM role ARN values
in your DB cluster parameter group, as shown following.

PROMPT> aws rds modify-db-cluster-parameter-group --db-cluster-parameter-group-name
 AllowAWSAccess \
 --parameters
 "ParameterName=aws_default_s3_role,ParameterValue=arn:aws:iam::123456789012:role/
AllowAuroraS3Role,method=pending-reboot" \
 --parameters
 "ParameterName=aws_default_lambda_role,ParameterValue=arn:aws:iam::123456789012:role/
AllowAuroraLambdaRole,method=pending-reboot"

4. Modify the DB cluster to use the new DB cluster parameter group and then reboot the cluster,
as shown following.

PROMPT> aws rds modify-db-cluster --db-cluster-identifier my-cluster --db-cluster-
parameter-group-name AllowAWSAccess
PROMPT> aws rds reboot-db-instance --db-instance-identifier my-cluster-primary

When the instance has rebooted, your IAM roles are associated with your DB cluster.

For more information about cluster parameter groups, see Aurora MySQL configuration
parameters.

Enabling network communication from Amazon Aurora MySQL to other AWS
services

To use certain other AWS services with Amazon Aurora, the network configuration of your Aurora
DB cluster must allow outbound connections to endpoints for those services. The following
operations require this network configuration.

• Invoking AWS Lambda functions. To learn about this feature, see Invoking a Lambda function
with an Aurora MySQL native function.

Authorizing Aurora MySQL to access AWS services 1657

Amazon Aurora User Guide for Aurora

• Accessing files from Amazon S3. To learn about this feature, see Loading data into an Amazon
Aurora MySQL DB cluster from text files in an Amazon S3 bucket and Saving data from an
Amazon Aurora MySQL DB cluster into text files in an Amazon S3 bucket.

• Accessing AWS KMS endpoints. AWS KMS access is required to use database activity streams
with Aurora MySQL. To learn about this feature, see Monitoring Amazon Aurora with Database
Activity Streams.

• Accessing SageMaker endpoints. SageMaker access is required to use SageMaker machine
learning with Aurora MySQL. To learn about this feature, see Using Amazon Aurora machine
learning with Aurora MySQL.

Aurora returns the following error messages if it can't connect to a service endpoint.

ERROR 1871 (HY000): S3 API returned error: Network Connection

ERROR 1873 (HY000): Lambda API returned error: Network Connection. Unable to connect to
 endpoint

ERROR 1815 (HY000): Internal error: Unable to initialize S3Stream

For database activity streams using Aurora MySQL, the activity stream stops functioning if the DB
cluster can't access the AWS KMS endpoint. Aurora notifies you about this issue using RDS Events.

If you encounter these messages while using the corresponding AWS services, check if your Aurora
DB cluster is public or private. If your Aurora DB cluster is private, you must configure it to enable
connections.

For an Aurora DB cluster to be public, it must be marked as publicly accessible. If you look at the
details for the DB cluster in the AWS Management Console, Publicly Accessible is Yes if this is the
case. The DB cluster must also be in an Amazon VPC public subnet. For more information about
publicly accessible DB instances, see Working with a DB cluster in a VPC. For more information
about public Amazon VPC subnets, see Your VPC and subnets.

If your Aurora DB cluster isn't publicly accessible and in a VPC public subnet, it is private. You might
have a DB cluster that is private and want to use one of the features that requires this network
configuration. If so, configure the cluster so that it can connect to Internet addresses through
Network Address Translation (NAT). As an alternative for Amazon S3, Amazon SageMaker, and AWS

Authorizing Aurora MySQL to access AWS services 1658

https://docs.aws.amazon.com/vpc/latest/userguide/VPC_Subnets.html

Amazon Aurora User Guide for Aurora

Lambda, you can instead configure the VPC to have a VPC endpoint for the other service associated
with the DB cluster's route table, see Working with a DB cluster in a VPC. For more information
about configuring NAT in your VPC, see NAT gateways. For more information about configuring
VPC endpoints, see VPC endpoints. You can also create an S3 gateway endpoint to access your S3
bucket. For more information, see Gateway endpoints for Amazon S3.

You might also have to open the ephemeral ports for your network access control lists (ACLs) in the
outbound rules for your VPC security group. For more information on ephemeral ports for network
ACLs, see Ephemeral ports in the Amazon Virtual Private Cloud User Guide.

Related topics

• Integrating Aurora with other AWS services

• Managing an Amazon Aurora DB cluster

Loading data into an Amazon Aurora MySQL DB cluster from text files
in an Amazon S3 bucket

You can use the LOAD DATA FROM S3 or LOAD XML FROM S3 statement to load data from files
stored in an Amazon S3 bucket. In Aurora MySQL, the files are first stored on the local disk, and
then imported to the database. After the imports to the database are done, the local files are
deleted.

Note

Loading data into a table from text files isn't supported for Aurora Serverless v1. It is
supported for Aurora Serverless v2.

Contents

• Giving Aurora access to Amazon S3

• Granting privileges to load data in Amazon Aurora MySQL

• Specifying the path (URI) to an Amazon S3 bucket

• LOAD DATA FROM S3

• Syntax

• Parameters

Loading data from text files in Amazon S3 1659

https://docs.aws.amazon.com/vpc/latest/userguide/vpc-nat-gateway.html
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-endpoints.html
https://docs.aws.amazon.com/vpc/latest/privatelink/vpc-endpoints-s3.html
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-network-acls.html#nacl-ephemeral-ports

Amazon Aurora User Guide for Aurora

• Using a manifest to specify data files to load

• Verifying loaded files using the aurora_s3_load_history table

• Examples

• LOAD XML FROM S3

• Syntax

• Parameters

Giving Aurora access to Amazon S3

Before you can load data from an Amazon S3 bucket, you must first give your Aurora MySQL DB
cluster permission to access Amazon S3.

To give Aurora MySQL access to Amazon S3

1. Create an AWS Identity and Access Management (IAM) policy that provides the bucket and
object permissions that allow your Aurora MySQL DB cluster to access Amazon S3. For
instructions, see Creating an IAM policy to access Amazon S3 resources.

Note

In Aurora MySQL version 3.05 and higher, you can load objects that are encrypted
using customer-managed AWS KMS keys. To do so, include the kms:Decrypt
permission in your IAM policy. For more information, see Creating an IAM policy to
access AWS KMS resources.
You don't need this permission to load objects that are encrypted using AWS managed
keys or Amazon S3 managed keys (SSE-S3).

2. Create an IAM role, and attach the IAM policy you created in Creating an IAM policy to access
Amazon S3 resources to the new IAM role. For instructions, see Creating an IAM role to allow
Amazon Aurora to access AWS services.

3. Make sure the DB cluster is using a custom DB cluster parameter group.

For more information about creating a custom DB cluster parameter group, see Creating a DB
cluster parameter group.

4. For Aurora MySQL version 2, set either the aurora_load_from_s3_role or
aws_default_s3_role DB cluster parameter to the Amazon Resource Name (ARN) of the

Loading data from text files in Amazon S3 1660

Amazon Aurora User Guide for Aurora

new IAM role. If an IAM role isn't specified for aurora_load_from_s3_role, Aurora uses the
IAM role specified in aws_default_s3_role.

For Aurora MySQL version 3, use aws_default_s3_role.

If the cluster is part of an Aurora global database, set this parameter for each Aurora cluster in
the global database. Although only the primary cluster in an Aurora global database can load
data, another cluster might be promoted by the failover mechanism and become the primary
cluster.

For more information about DB cluster parameters, see Amazon Aurora DB cluster and DB
instance parameters.

5. To permit database users in an Aurora MySQL DB cluster to access Amazon S3, associate the
role that you created in Creating an IAM role to allow Amazon Aurora to access AWS services
with the DB cluster. For an Aurora global database, associate the role with each Aurora cluster
in the global database. For information about associating an IAM role with a DB cluster, see
Associating an IAM role with an Amazon Aurora MySQL DB cluster.

6. Configure your Aurora MySQL DB cluster to allow outbound connections to Amazon S3. For
instructions, see Enabling network communication from Amazon Aurora MySQL to other AWS
services.

If your DB cluster isn't publicly accessible and in a VPC public subnet, it is private. You can
create an S3 gateway endpoint to access your S3 bucket. For more information, see Gateway
endpoints for Amazon S3.

For an Aurora global database, enable outbound connections for each Aurora cluster in the
global database.

Granting privileges to load data in Amazon Aurora MySQL

The database user that issues the LOAD DATA FROM S3 or LOAD XML FROM S3 statement must
have a specific role or privilege to issue either statement. In Aurora MySQL version 3, you grant the
AWS_LOAD_S3_ACCESS role. In Aurora MySQL version 2, you grant the LOAD FROM S3 privilege.
The administrative user for a DB cluster is granted the appropriate role or privilege by default. You
can grant the privilege to another user by using one of the following statements.

Use the following statement for Aurora MySQL version 3:

Loading data from text files in Amazon S3 1661

https://docs.aws.amazon.com/vpc/latest/privatelink/vpc-endpoints-s3.html
https://docs.aws.amazon.com/vpc/latest/privatelink/vpc-endpoints-s3.html

Amazon Aurora User Guide for Aurora

GRANT AWS_LOAD_S3_ACCESS TO 'user'@'domain-or-ip-address'

Tip

When you use the role technique in Aurora MySQL version 3, you can also activate the role
by using the SET ROLE role_name or SET ROLE ALL statement. If you aren't familiar
with the MySQL 8.0 role system, you can learn more in Role-based privilege model. For
more details, see Using roles in the MySQL Reference Manual.
This only applies to the current active session. When you reconnect, you must run the SET
ROLE statement again to grant privileges. For more information, see SET ROLE statement
in the MySQL Reference Manual.
You can use the activate_all_roles_on_login DB cluster parameter to automatically
activate all roles when a user connects to a DB instance. When this parameter is set, you
generally don't have to call the SET ROLE statement explicitly to activate a role. For more
information, see activate_all_roles_on_login in the MySQL Reference Manual.
However, you must call SET ROLE ALL explicitly at the beginning of a stored procedure to
activate the role, when the stored procedure is called by a different user.

Use the following statement for Aurora MySQL version 2:

GRANT LOAD FROM S3 ON *.* TO 'user'@'domain-or-ip-address'

The AWS_LOAD_S3_ACCESS role and LOAD FROM S3 privilege are specific to Amazon Aurora and
are not available for external MySQL databases or RDS for MySQL DB instances. If you have set up
replication between an Aurora DB cluster as the replication source and a MySQL database as the
replication client, then the GRANT statement for the role or privilege causes replication to stop with
an error. You can safely skip the error to resume replication. To skip the error on an RDS for MySQL
instance, use the mysql_rds_skip_repl_error procedure. To skip the error on an external MySQL
database, use the slave_skip_errors system variable (Aurora MySQL version 2) or replica_skip_errors
system variable (Aurora MySQL version 3).

Note

The database user must have INSERT privileges for the database into which it's loading
data.

Loading data from text files in Amazon S3 1662

https://dev.mysql.com/doc/refman/8.0/en/roles.html
https://dev.mysql.com/doc/refman/8.0/en/set-role.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_activate_all_roles_on_login
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/mysql_rds_skip_repl_error.html
https://dev.mysql.com/doc/refman/5.7/en/replication-options-replica.html#sysvar_slave_skip_errors
https://dev.mysql.com/doc/refman/8.0/en/replication-options-replica.html#sysvar_replica_skip_errors

Amazon Aurora User Guide for Aurora

Specifying the path (URI) to an Amazon S3 bucket

The syntax for specifying the path (URI) to files stored on an Amazon S3 bucket is as follows.

s3-region://DOC-EXAMPLE-BUCKET/file-name-or-prefix

The path includes the following values:

• region (optional) – The AWS Region that contains the Amazon S3 bucket to load from. This
value is optional. If you don't specify a region value, then Aurora loads your file from Amazon
S3 in the same region as your DB cluster.

• bucket-name – The name of the Amazon S3 bucket that contains the data to load. Object
prefixes that identify a virtual folder path are supported.

• file-name-or-prefix – The name of the Amazon S3 text file or XML file, or a prefix that
identifies one or more text or XML files to load. You can also specify a manifest file that identifies
one or more text files to load. For more information about using a manifest file to load text files
from Amazon S3, see Using a manifest to specify data files to load.

To copy the URI for files in an S3 bucket

1. Sign in to the AWS Management Console and open the Amazon S3 console at https://
console.aws.amazon.com/s3/.

2. In the navigation pane, choose Buckets, and then choose the bucket whose URI you want to
copy.

3. Select the prefix or file that you want to load from S3.

4. Choose Copy S3 URI.

LOAD DATA FROM S3

You can use the LOAD DATA FROM S3 statement to load data from any text file format that is
supported by the MySQL LOAD DATA INFILE statement, such as text data that is comma-delimited.
Compressed files are not supported.

Loading data from text files in Amazon S3 1663

https://console.aws.amazon.com/s3/
https://console.aws.amazon.com/s3/
https://dev.mysql.com/doc/refman/8.0/en/load-data.html

Amazon Aurora User Guide for Aurora

Note

Make sure that your Aurora MySQL DB cluster allows outbound connections to S3. For more
information, see Enabling network communication from Amazon Aurora MySQL to other
AWS services.

Syntax

LOAD DATA [FROM] S3 [FILE | PREFIX | MANIFEST] 'S3-URI'
 [REPLACE | IGNORE]
 INTO TABLE tbl_name
 [PARTITION (partition_name,...)]
 [CHARACTER SET charset_name]
 [{FIELDS | COLUMNS}
 [TERMINATED BY 'string']
 [[OPTIONALLY] ENCLOSED BY 'char']
 [ESCAPED BY 'char']
]
 [LINES
 [STARTING BY 'string']
 [TERMINATED BY 'string']
]
 [IGNORE number {LINES | ROWS}]
 [(col_name_or_user_var,...)]
 [SET col_name = expr,...]

Note

In Aurora MySQL version 3.05 and higher, the keyword FROM is optional.

Parameters

The LOAD DATA FROM S3 statement uses the following required and optional parameters. You
can find more details about some of these parameters in LOAD DATA Statement in the MySQL
documentation.

Loading data from text files in Amazon S3 1664

https://dev.mysql.com/doc/refman/8.0/en/load-data.html

Amazon Aurora User Guide for Aurora

FILE | PREFIX | MANIFEST

Identifies whether to load the data from a single file, from all files that match a given prefix, or
from all files in a specified manifest. FILE is the default.

S3-URI

Specifies the URI for a text or manifest file to load, or an Amazon S3 prefix to use. Specify the
URI using the syntax described in Specifying the path (URI) to an Amazon S3 bucket.

REPLACE | IGNORE

Determines what action to take if an input row has the same unique key values as an existing
row in the database table.

• Specify REPLACE if you want the input row to replace the existing row in the table.

• Specify IGNORE if you want to discard the input row.

INTO TABLE

Identifies the name of the database table to load the input rows into.

PARTITION

Requires that all input rows be inserted into the partitions identified by the specified list of
comma-separated partition names. If an input row cannot be inserted into one of the specified
partitions, then the statement fails and an error is returned.

CHARACTER SET

Identifies the character set of the data in the input file.

FIELDS | COLUMNS

Identifies how the fields or columns in the input file are delimited. Fields are tab-delimited by
default.

LINES

Identifies how the lines in the input file are delimited. Lines are delimited by a newline
character ('\n') by default.

IGNORE number LINES | ROWS

Specifies to ignore a certain number of lines or rows at the start of the input file. For example,
you can use IGNORE 1 LINES to skip over an initial header line containing column names, or

Loading data from text files in Amazon S3 1665

Amazon Aurora User Guide for Aurora

IGNORE 2 ROWS to skip over the first two rows of data in the input file. If you also use PREFIX,
IGNORE skips a certain number of lines or rows at the start of the first input file.

col_name_or_user_var, ...

Specifies a comma-separated list of one or more column names or user variables that identify
which columns to load by name. The name of a user variable used for this purpose must match
the name of an element from the text file, prefixed with @. You can employ user variables to
store the corresponding field values for subsequent reuse.

For example, the following statement loads the first column from the input file into the first
column of table1, and sets the value of the table_column2 column in table1 to the input
value of the second column divided by 100.

LOAD DATA FROM S3 's3://DOC-EXAMPLE-BUCKET/data.txt'
 INTO TABLE table1
 (column1, @var1)
 SET table_column2 = @var1/100;

SET

Specifies a comma-separated list of assignment operations that set the values of columns in the
table to values not included in the input file.

For example, the following statement sets the first two columns of table1 to the values in the
first two columns from the input file, and then sets the value of the column3 in table1 to the
current time stamp.

LOAD DATA FROM S3 's3://DOC-EXAMPLE-BUCKET/data.txt'
 INTO TABLE table1
 (column1, column2)
 SET column3 = CURRENT_TIMESTAMP;

You can use subqueries in the right side of SET assignments. For a subquery that returns a value
to be assigned to a column, you can use only a scalar subquery. Also, you cannot use a subquery
to select from the table that is being loaded.

You can't use the LOCAL keyword of the LOAD DATA FROM S3 statement if you're loading data
from an Amazon S3 bucket.

Loading data from text files in Amazon S3 1666

Amazon Aurora User Guide for Aurora

Using a manifest to specify data files to load

You can use the LOAD DATA FROM S3 statement with the MANIFEST keyword to specify a
manifest file in JSON format that lists the text files to be loaded into a table in your DB cluster.

The following JSON schema describes the format and content of a manifest file.

{
 "$schema": "http://json-schema.org/draft-04/schema#",
 "additionalProperties": false,
 "definitions": {},
 "id": "Aurora_LoadFromS3_Manifest",
 "properties": {
 "entries": {
 "additionalItems": false,
 "id": "/properties/entries",
 "items": {
 "additionalProperties": false,
 "id": "/properties/entries/items",
 "properties": {
 "mandatory": {
 "default": "false",
 "id": "/properties/entries/items/properties/mandatory",
 "type": "boolean"
 },
 "url": {
 "id": "/properties/entries/items/properties/url",
 "maxLength": 1024,
 "minLength": 1,
 "type": "string"
 }
 },
 "required": [
 "url"
],
 "type": "object"
 },
 "type": "array",
 "uniqueItems": true
 }
 },
 "required": [
 "entries"
],

Loading data from text files in Amazon S3 1667

Amazon Aurora User Guide for Aurora

 "type": "object"
}

Each url in the manifest must specify a URL with the bucket name and full object path for the
file, not just a prefix. You can use a manifest to load files from different buckets, different regions,
or files that do not share the same prefix. If a region is not specified in the URL, the region of the
target Aurora DB cluster is used. The following example shows a manifest file that loads four files
from different buckets.

{
 "entries": [
 {
 "url":"s3://aurora-bucket/2013-10-04-customerdata",
 "mandatory":true
 },
 {
 "url":"s3-us-west-2://aurora-bucket-usw2/2013-10-05-customerdata",
 "mandatory":true
 },
 {
 "url":"s3://aurora-bucket/2013-10-04-customerdata",
 "mandatory":false
 },
 {
 "url":"s3://aurora-bucket/2013-10-05-customerdata"
 }
]
}

The optional mandatory flag specifies whether LOAD DATA FROM S3 should return an error if
the file is not found. The mandatory flag defaults to false. Regardless of how mandatory is set,
LOAD DATA FROM S3 terminates if no files are found.

Manifest files can have any extension. The following example runs the LOAD DATA FROM S3
statement with the manifest in the previous example, which is named customer.manifest.

LOAD DATA FROM S3 MANIFEST 's3-us-west-2://aurora-bucket/customer.manifest'
 INTO TABLE CUSTOMER
 FIELDS TERMINATED BY ','
 LINES TERMINATED BY '\n'
 (ID, FIRSTNAME, LASTNAME, EMAIL);

Loading data from text files in Amazon S3 1668

Amazon Aurora User Guide for Aurora

After the statement completes, an entry for each successfully loaded file is written to the
aurora_s3_load_history table.

Verifying loaded files using the aurora_s3_load_history table

Every successful LOAD DATA FROM S3 statement updates the aurora_s3_load_history table
in the mysql schema with an entry for each file that was loaded.

After you run the LOAD DATA FROM S3 statement, you can verify which files were loaded by
querying the aurora_s3_load_history table. To see the files that were loaded from one
iteration of the statement, use the WHERE clause to filter the records on the Amazon S3 URI for the
manifest file used in the statement. If you have used the same manifest file before, filter the results
using the timestamp field.

select * from mysql.aurora_s3_load_history where load_prefix = 'S3_URI';

The following table describes the fields in the aurora_s3_load_history table.

Field Description

load_prefix The URI that was specified in the load statement. This URI can
map to any of the following:

• A single data file for a LOAD DATA FROM S3 FILE
statement

• An Amazon S3 prefix that maps to multiple data files for a
LOAD DATA FROM S3 PREFIX statement

• A single manifest file that contains the names of files to be
loaded for a LOAD DATA FROM S3 MANIFEST statement

file_name The name of a file that was loaded into Aurora from Amazon
S3 using the URI identified in the load_prefix field.

version_number The version number of the file identified by the file_name
field that was loaded, if the Amazon S3 bucket has a version
number.

bytes_loaded The size of the file loaded, in bytes.

Loading data from text files in Amazon S3 1669

Amazon Aurora User Guide for Aurora

Field Description

load_timestamp The timestamp when the LOAD DATA FROM S3 statement
completed.

Examples

The following statement loads data from an Amazon S3 bucket that is in the same region as the
Aurora DB cluster. The statement reads the comma-delimited data in the file customerdata.txt
that is in the DOC-EXAMPLE-BUCKET Amazon S3 bucket, and then loads the data into the table
store-schema.customer-table.

LOAD DATA FROM S3 's3://DOC-EXAMPLE-BUCKET/customerdata.csv'
 INTO TABLE store-schema.customer-table
 FIELDS TERMINATED BY ','
 LINES TERMINATED BY '\n'
 (ID, FIRSTNAME, LASTNAME, ADDRESS, EMAIL, PHONE);

The following statement loads data from an Amazon S3 bucket that is in a different region from
the Aurora DB cluster. The statement reads the comma-delimited data from all files that match the
employee-data object prefix in the DOC-EXAMPLE-BUCKET Amazon S3 bucket in the us-west-2
region, and then loads the data into the employees table.

LOAD DATA FROM S3 PREFIX 's3-us-west-2://DOC-EXAMPLE-BUCKET/employee_data'
 INTO TABLE employees
 FIELDS TERMINATED BY ','
 LINES TERMINATED BY '\n'
 (ID, FIRSTNAME, LASTNAME, EMAIL, SALARY);

The following statement loads data from the files specified in a JSON manifest file named
q1_sales.json into the sales table.

LOAD DATA FROM S3 MANIFEST 's3-us-west-2://DOC-EXAMPLE-BUCKET1/q1_sales.json'
 INTO TABLE sales
 FIELDS TERMINATED BY ','
 LINES TERMINATED BY '\n'
 (MONTH, STORE, GROSS, NET);

Loading data from text files in Amazon S3 1670

Amazon Aurora User Guide for Aurora

LOAD XML FROM S3

You can use the LOAD XML FROM S3 statement to load data from XML files stored on an Amazon
S3 bucket in one of three different XML formats:

• Column names as attributes of a <row> element. The attribute value identifies the contents of
the table field.

<row column1="value1" column2="value2" .../>

• Column names as child elements of a <row> element. The value of the child element identifies
the contents of the table field.

<row>
 <column1>value1</column1>
 <column2>value2</column2>
</row>

• Column names in the name attribute of <field> elements in a <row> element. The value of the
<field> element identifies the contents of the table field.

<row>
 <field name='column1'>value1</field>
 <field name='column2'>value2</field>
</row>

Syntax

LOAD XML FROM S3 'S3-URI'
 [REPLACE | IGNORE]
 INTO TABLE tbl_name
 [PARTITION (partition_name,...)]
 [CHARACTER SET charset_name]
 [ROWS IDENTIFIED BY '<element-name>']
 [IGNORE number {LINES | ROWS}]
 [(field_name_or_user_var,...)]
 [SET col_name = expr,...]

Loading data from text files in Amazon S3 1671

Amazon Aurora User Guide for Aurora

Parameters

The LOAD XML FROM S3 statement uses the following required and optional parameters. You
can find more details about some of these parameters in LOAD XML Statement in the MySQL
documentation.

FILE | PREFIX

Identifies whether to load the data from a single file, or from all files that match a given prefix.
FILE is the default.

REPLACE | IGNORE

Determines what action to take if an input row has the same unique key values as an existing
row in the database table.

• Specify REPLACE if you want the input row to replace the existing row in the table.

• Specify IGNORE if you want to discard the input row. IGNORE is the default.

INTO TABLE

Identifies the name of the database table to load the input rows into.

PARTITION

Requires that all input rows be inserted into the partitions identified by the specified list of
comma-separated partition names. If an input row cannot be inserted into one of the specified
partitions, then the statement fails and an error is returned.

CHARACTER SET

Identifies the character set of the data in the input file.

ROWS IDENTIFIED BY

Identifies the element name that identifies a row in the input file. The default is <row>.

IGNORE number LINES | ROWS

Specifies to ignore a certain number of lines or rows at the start of the input file. For example,
you can use IGNORE 1 LINES to skip over the first line in the text file, or IGNORE 2 ROWS to
skip over the first two rows of data in the input XML.

field_name_or_user_var, ...

Specifies a comma-separated list of one or more XML element names or user variables that
identify which elements to load by name. The name of a user variable used for this purpose

Loading data from text files in Amazon S3 1672

https://dev.mysql.com/doc/refman/8.0/en/load-xml.html

Amazon Aurora User Guide for Aurora

must match the name of an element from the XML file, prefixed with @. You can employ user
variables to store the corresponding field values for subsequent reuse.

For example, the following statement loads the first column from the input file into the first
column of table1, and sets the value of the table_column2 column in table1 to the input
value of the second column divided by 100.

LOAD XML FROM S3 's3://DOC-EXAMPLE-BUCKET/data.xml'
 INTO TABLE table1
 (column1, @var1)
 SET table_column2 = @var1/100;

SET

Specifies a comma-separated list of assignment operations that set the values of columns in the
table to values not included in the input file.

For example, the following statement sets the first two columns of table1 to the values in the
first two columns from the input file, and then sets the value of the column3 in table1 to the
current time stamp.

LOAD XML FROM S3 's3://DOC-EXAMPLE-BUCKET/data.xml'
 INTO TABLE table1
 (column1, column2)
 SET column3 = CURRENT_TIMESTAMP;

You can use subqueries in the right side of SET assignments. For a subquery that returns a value
to be assigned to a column, you can use only a scalar subquery. Also, you can't use a subquery
to select from the table that's being loaded.

Saving data from an Amazon Aurora MySQL DB cluster into text files in
an Amazon S3 bucket

You can use the SELECT INTO OUTFILE S3 statement to query data from an Amazon Aurora
MySQL DB cluster and save it into text files stored in an Amazon S3 bucket. In Aurora MySQL, the
files are first stored on the local disk, and then exported to S3. After the exports are done, the local
files are deleted.

Saving data into text files in Amazon S3 1673

Amazon Aurora User Guide for Aurora

You can encrypt the Amazon S3 bucket using an Amazon S3 managed key (SSE-S3) or AWS KMS
key (SSE-KMS: AWS managed key or customer managed key).

The LOAD DATA FROM S3 statement can use files created by the SELECT INTO OUTFILE S3
statement to load data into an Aurora DB cluster. For more information, see Loading data into an
Amazon Aurora MySQL DB cluster from text files in an Amazon S3 bucket.

Note

This feature isn't supported for Aurora Serverless v1 DB clusters. It is supported for Aurora
Serverless v2 DB clusters.
You can also save DB cluster data and DB cluster snapshot data to Amazon S3 using
the AWS Management Console, AWS CLI, or Amazon RDS API. For more information,
see Exporting DB cluster data to Amazon S3 and Exporting DB cluster snapshot data to
Amazon S3.

Contents

• Giving Aurora MySQL access to Amazon S3

• Granting privileges to save data in Aurora MySQL

• Specifying a path to an Amazon S3 bucket

• Creating a manifest to list data files

• SELECT INTO OUTFILE S3

• Syntax

• Parameters

• Considerations

• Examples

Giving Aurora MySQL access to Amazon S3

Before you can save data into an Amazon S3 bucket, you must first give your Aurora MySQL DB
cluster permission to access Amazon S3.

Saving data into text files in Amazon S3 1674

Amazon Aurora User Guide for Aurora

To give Aurora MySQL access to Amazon S3

1. Create an AWS Identity and Access Management (IAM) policy that provides the bucket and
object permissions that allow your Aurora MySQL DB cluster to access Amazon S3. For
instructions, see Creating an IAM policy to access Amazon S3 resources.

Note

In Aurora MySQL version 3.05 and higher, you can encrypt objects using AWS KMS
customer managed keys. To do so, include the kms:GenerateDataKey permission in
your IAM policy. For more information, see Creating an IAM policy to access AWS KMS
resources.
You don't need this permission to encrypt objects using AWS managed keys or Amazon
S3 managed keys (SSE-S3).

2. Create an IAM role, and attach the IAM policy you created in Creating an IAM policy to access
Amazon S3 resources to the new IAM role. For instructions, see Creating an IAM role to allow
Amazon Aurora to access AWS services.

3. For Aurora MySQL version 2, set either the aurora_select_into_s3_role or
aws_default_s3_role DB cluster parameter to the Amazon Resource Name (ARN) of the
new IAM role. If an IAM role isn't specified for aurora_select_into_s3_role, Aurora uses
the IAM role specified in aws_default_s3_role.

For Aurora MySQL version 3, use aws_default_s3_role.

If the cluster is part of an Aurora global database, set this parameter for each Aurora cluster in
the global database.

For more information about DB cluster parameters, see Amazon Aurora DB cluster and DB
instance parameters.

4. To permit database users in an Aurora MySQL DB cluster to access Amazon S3, associate the
role that you created in Creating an IAM role to allow Amazon Aurora to access AWS services
with the DB cluster.

For an Aurora global database, associate the role with each Aurora cluster in the global
database.

Saving data into text files in Amazon S3 1675

Amazon Aurora User Guide for Aurora

For information about associating an IAM role with a DB cluster, see Associating an IAM role
with an Amazon Aurora MySQL DB cluster.

5. Configure your Aurora MySQL DB cluster to allow outbound connections to Amazon S3. For
instructions, see Enabling network communication from Amazon Aurora MySQL to other AWS
services.

For an Aurora global database, enable outbound connections for each Aurora cluster in the
global database.

Granting privileges to save data in Aurora MySQL

The database user that issues the SELECT INTO OUTFILE S3 statement must have a specific
role or privilege. In Aurora MySQL version 3, you grant the AWS_SELECT_S3_ACCESS role. In
Aurora MySQL version 2, you grant the SELECT INTO S3 privilege. The administrative user for
a DB cluster is granted the appropriate role or privilege by default. You can grant the privilege to
another user by using one of the following statements.

Use the following statement for Aurora MySQL version 3:

GRANT AWS_SELECT_S3_ACCESS TO 'user'@'domain-or-ip-address'

Tip

When you use the role technique in Aurora MySQL version 3, you can also activate the role
by using the SET ROLE role_name or SET ROLE ALL statement. If you aren't familiar
with the MySQL 8.0 role system, you can learn more in Role-based privilege model. For
more details, see Using roles in the MySQL Reference Manual.
This only applies to the current active session. When you reconnect, you must run the SET
ROLE statement again to grant privileges. For more information, see SET ROLE statement
in the MySQL Reference Manual.
You can use the activate_all_roles_on_login DB cluster parameter to automatically
activate all roles when a user connects to a DB instance. When this parameter is set, you
generally don't have to call the SET ROLE statement explicitly to activate a role. For more
information, see activate_all_roles_on_login in the MySQL Reference Manual.
However, you must call SET ROLE ALL explicitly at the beginning of a stored procedure to
activate the role, when the stored procedure is called by a different user.

Saving data into text files in Amazon S3 1676

https://dev.mysql.com/doc/refman/8.0/en/roles.html
https://dev.mysql.com/doc/refman/8.0/en/set-role.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_activate_all_roles_on_login

Amazon Aurora User Guide for Aurora

Use the following statement for Aurora MySQL version 2:

GRANT SELECT INTO S3 ON *.* TO 'user'@'domain-or-ip-address'

The AWS_SELECT_S3_ACCESS role and SELECT INTO S3 privilege are specific to Amazon Aurora
MySQL and are not available for MySQL databases or RDS for MySQL DB instances. If you have
set up replication between an Aurora MySQL DB cluster as the replication source and a MySQL
database as the replication client, then the GRANT statement for the role or privilege causes
replication to stop with an error. You can safely skip the error to resume replication. To skip the
error on an RDS for MySQL DB instance, use the mysql_rds_skip_repl_error procedure. To skip the
error on an external MySQL database, use the slave_skip_errors system variable (Aurora MySQL
version 2) or replica_skip_errors system variable (Aurora MySQL version 3).

Specifying a path to an Amazon S3 bucket

The syntax for specifying a path to store the data and manifest files on an Amazon S3 bucket is
similar to that used in the LOAD DATA FROM S3 PREFIX statement, as shown following.

s3-region://bucket-name/file-prefix

The path includes the following values:

• region (optional) – The AWS Region that contains the Amazon S3 bucket to save the data into.
This value is optional. If you don't specify a region value, then Aurora saves your files into
Amazon S3 in the same region as your DB cluster.

• bucket-name – The name of the Amazon S3 bucket to save the data into. Object prefixes that
identify a virtual folder path are supported.

• file-prefix – The Amazon S3 object prefix that identifies the files to be saved in Amazon S3.

The data files created by the SELECT INTO OUTFILE S3 statement use the following path, in
which 00000 represents a 5-digit, zero-based integer number.

s3-region://bucket-name/file-prefix.part_00000

For example, suppose that a SELECT INTO OUTFILE S3 statement specifies s3-us-west-2://
bucket/prefix as the path in which to store data files and creates three data files. The specified
Amazon S3 bucket contains the following data files.

Saving data into text files in Amazon S3 1677

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/mysql_rds_skip_repl_error.html
https://dev.mysql.com/doc/refman/5.7/en/replication-options-replica.html#sysvar_slave_skip_errors
https://dev.mysql.com/doc/refman/8.0/en/replication-options-replica.html#sysvar_replica_skip_errors

Amazon Aurora User Guide for Aurora

• s3-us-west-2://bucket/prefix.part_00000

• s3-us-west-2://bucket/prefix.part_00001

• s3-us-west-2://bucket/prefix.part_00002

Creating a manifest to list data files

You can use the SELECT INTO OUTFILE S3 statement with the MANIFEST ON option to create
a manifest file in JSON format that lists the text files created by the statement. The LOAD DATA
FROM S3 statement can use the manifest file to load the data files back into an Aurora MySQL DB
cluster. For more information about using a manifest to load data files from Amazon S3 into an
Aurora MySQL DB cluster, see Using a manifest to specify data files to load.

The data files included in the manifest created by the SELECT INTO OUTFILE S3 statement
are listed in the order that they're created by the statement. For example, suppose that a SELECT
INTO OUTFILE S3 statement specified s3-us-west-2://bucket/prefix as the path in which
to store data files and creates three data files and a manifest file. The specified Amazon S3 bucket
contains a manifest file named s3-us-west-2://bucket/prefix.manifest, that contains the
following information.

{
 "entries": [
 {
 "url":"s3-us-west-2://bucket/prefix.part_00000"
 },
 {
 "url":"s3-us-west-2://bucket/prefix.part_00001"
 },
 {
 "url":"s3-us-west-2://bucket/prefix.part_00002"
 }
]
}

SELECT INTO OUTFILE S3

You can use the SELECT INTO OUTFILE S3 statement to query data from a DB cluster and save
it directly into delimited text files stored in an Amazon S3 bucket.

Saving data into text files in Amazon S3 1678

Amazon Aurora User Guide for Aurora

Compressed files aren't supported. Encrypted files are supported starting in Aurora MySQL version
2.09.0.

Syntax

SELECT
 [ALL | DISTINCT | DISTINCTROW]
 [HIGH_PRIORITY]
 [STRAIGHT_JOIN]
 [SQL_SMALL_RESULT] [SQL_BIG_RESULT] [SQL_BUFFER_RESULT]
 [SQL_CACHE | SQL_NO_CACHE] [SQL_CALC_FOUND_ROWS]
 select_expr [, select_expr ...]
 [FROM table_references
 [PARTITION partition_list]
 [WHERE where_condition]
 [GROUP BY {col_name | expr | position}
 [ASC | DESC], ... [WITH ROLLUP]]
 [HAVING where_condition]
 [ORDER BY {col_name | expr | position}
 [ASC | DESC], ...]
 [LIMIT {[offset,] row_count | row_count OFFSET offset}]
INTO OUTFILE S3 's3_uri'
[CHARACTER SET charset_name]
 [export_options]
 [MANIFEST {ON | OFF}]
 [OVERWRITE {ON | OFF}]
 [ENCRYPTION {ON | OFF | SSE_S3 | SSE_KMS ['cmk_id']}]

export_options:
 [FORMAT {CSV|TEXT} [HEADER]]
 [{FIELDS | COLUMNS}
 [TERMINATED BY 'string']
 [[OPTIONALLY] ENCLOSED BY 'char']
 [ESCAPED BY 'char']
]
 [LINES
 [STARTING BY 'string']
 [TERMINATED BY 'string']
]

Saving data into text files in Amazon S3 1679

Amazon Aurora User Guide for Aurora

Parameters

The SELECT INTO OUTFILE S3 statement uses the following required and optional parameters
that are specific to Aurora.

s3-uri

Specifies the URI for an Amazon S3 prefix to use. Use the syntax described in Specifying a path
to an Amazon S3 bucket.

FORMAT {CSV|TEXT} [HEADER]

Optionally saves the data in CSV format.

The TEXT option is the default and produces the existing MySQL export format.

The CSV option produces comma-separated data values. The CSV format follows the
specification in RFC-4180. If you specify the optional keyword HEADER, the output file contains
one header line. The labels in the header line correspond to the column names from the
SELECT statement. You can use the CSV files for training data models for use with AWS ML
services. For more information about using exported Aurora data with AWS ML services, see
Exporting data to Amazon S3 for SageMaker model training (Advanced).

MANIFEST {ON | OFF}

Indicates whether a manifest file is created in Amazon S3. The manifest file is a JavaScript
Object Notation (JSON) file that can be used to load data into an Aurora DB cluster with the
LOAD DATA FROM S3 MANIFEST statement. For more information about LOAD DATA FROM
S3 MANIFEST, see Loading data into an Amazon Aurora MySQL DB cluster from text files in an
Amazon S3 bucket.

If MANIFEST ON is specified in the query, the manifest file is created in Amazon S3 after all
data files have been created and uploaded. The manifest file is created using the following
path:

s3-region://bucket-name/file-prefix.manifest

For more information about the format of the manifest file's contents, see Creating a manifest
to list data files.

Saving data into text files in Amazon S3 1680

https://tools.ietf.org/html/rfc4180

Amazon Aurora User Guide for Aurora

OVERWRITE {ON | OFF}

Indicates whether existing files in the specified Amazon S3 bucket are overwritten. If
OVERWRITE ON is specified, existing files that match the file prefix in the URI specified in s3-
uriare overwritten. Otherwise, an error occurs.

ENCRYPTION {ON | OFF | SSE_S3 | SSE_KMS ['cmk_id']}

Indicates whether to use server-side encryption with Amazon S3 managed keys (SSE-S3) or
AWS KMS keys (SSE-KMS, including AWS managed keys and customer managed keys). The
SSE_S3 and SSE_KMS settings are available in Aurora MySQL version 3.05 and higher.

You can also use the aurora_select_into_s3_encryption_default session variable
instead of the ENCRYPTION clause, as shown in the following example. Use either the SQL
clause or the session variable, but not both.

set session set session aurora_select_into_s3_encryption_default={ON | OFF | SSE_S3
 | SSE_KMS};

The SSE_S3 and SSE_KMS settings are available in Aurora MySQL version 3.05 and higher.

When you set aurora_select_into_s3_encryption_default to the following value:

• OFF – The default encryption policy of the S3 bucket is followed. The default value of
aurora_select_into_s3_encryption_default is OFF.

• ON or SSE_S3 – The S3 object is encrypted using Amazon S3 managed keys (SSE-S3).

• SSE_KMS – The S3 object is encrypted using an AWS KMS key.

In this case, you also include the session variable aurora_s3_default_cmk_id, for
example:

set session aurora_select_into_s3_encryption_default={SSE_KMS};
set session aurora_s3_default_cmk_id={NULL | 'cmk_id'};

• When aurora_s3_default_cmk_id is NULL, the S3 object is encrypted using an AWS
managed key.

• When aurora_s3_default_cmk_id is a nonempty string cmk_id, the S3 object is
encrypted using a customer managed key.

The value of cmk_id can't be an empty string.

Saving data into text files in Amazon S3 1681

Amazon Aurora User Guide for Aurora

When you use the SELECT INTO OUTFILE S3 command, Aurora determines the encryption as
follows:

• If the ENCRYPTION clause is present in the SQL command, Aurora relies only on the value of
ENCRYPTION, and doesn't use a session variable.

• If the ENCRYPTION clause isn't present, Aurora relies on the value of the session variable.

For more information, see Using server-side encryption with Amazon S3 managed keys (SSE-S3)
and Using server-side encryption withAWS KMS keys (SSE-KMS) in the Amazon Simple Storage
Service User Guide.

You can find more details about other parameters in SELECT statement and LOAD DATA statement,
in the MySQL documentation.

Considerations

The number of files written to the Amazon S3 bucket depends on the amount of data selected
by the SELECT INTO OUTFILE S3 statement and the file size threshold for Aurora MySQL. The
default file size threshold is 6 gigabytes (GB). If the data selected by the statement is less than the
file size threshold, a single file is created; otherwise, multiple files are created. Other considerations
for files created by this statement include the following:

• Aurora MySQL guarantees that rows in data files are not split across file boundaries. For multiple
files, the size of every data file except the last is typically close to the file size threshold.
However, occasionally staying under the file size threshold results in a row being split across two
data files. In this case, Aurora MySQL creates a data file that keeps the row intact, but might be
larger than the file size threshold.

• Because each SELECT statement in Aurora MySQL runs as an atomic transaction, a SELECT
INTO OUTFILE S3 statement that selects a large data set might run for some time. If the
statement fails for any reason, you might need to start over and issue the statement again. If the
statement fails, however, files already uploaded to Amazon S3 remain in the specified Amazon
S3 bucket. You can use another statement to upload the remaining data instead of starting over
again.

• If the amount of data to be selected is large (more than 25 GB), we recommend that you
use multiple SELECT INTO OUTFILE S3 statements to save the data to Amazon S3. Each
statement should select a different portion of the data to be saved, and also specify a different
file_prefix in the s3-uri parameter to use when saving the data files. Partitioning the
data to be selected with multiple statements makes it easier to recover from an error in one

Saving data into text files in Amazon S3 1682

https://docs.aws.amazon.com/AmazonS3/latest/userguide/UsingServerSideEncryption.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/UsingKMSEncryption.html
https://dev.mysql.com/doc/refman/8.0/en/select.html
https://dev.mysql.com/doc/refman/8.0/en/load-data.html

Amazon Aurora User Guide for Aurora

statement. If an error occurs for one statement, only a portion of data needs to be re-selected
and uploaded to Amazon S3. Using multiple statements also helps to avoid a single long-running
transaction, which can improve performance.

• If multiple SELECT INTO OUTFILE S3 statements that use the same file_prefix in the s3-
uri parameter run in parallel to select data into Amazon S3, the behavior is undefined.

• Metadata, such as table schema or file metadata, is not uploaded by Aurora MySQL to Amazon
S3.

• In some cases, you might re-run a SELECT INTO OUTFILE S3 query, such as to recover from
a failure. In these cases, you must either remove any existing data files in the Amazon S3 bucket
with the same file prefix specified in s3-uri, or include OVERWRITE ON in the SELECT INTO
OUTFILE S3 query.

The SELECT INTO OUTFILE S3 statement returns a typical MySQL error number and response
on success or failure. If you don't have access to the MySQL error number and response, the easiest
way to determine when it's done is by specifying MANIFEST ON in the statement. The manifest file
is the last file written by the statement. In other words, if you have a manifest file, the statement
has completed.

Currently, there's no way to directly monitor the progress of the SELECT INTO OUTFILE S3
statement while it runs. However, suppose that you're writing a large amount of data from Aurora
MySQL to Amazon S3 using this statement, and you know the size of the data selected by the
statement. In this case, you can estimate progress by monitoring the creation of data files in
Amazon S3.

To do so, you can use the fact that a data file is created in the specified Amazon S3 bucket for
about every 6 GB of data selected by the statement. Divide the size of the data selected by 6 GB
to get the estimated number of data files to create. You can then estimate the progress of the
statement by monitoring the number of files uploaded to Amazon S3 while the statement runs.

Examples

The following statement selects all of the data in the employees table and saves the data into an
Amazon S3 bucket that is in a different region from the Aurora MySQL DB cluster. The statement
creates data files in which each field is terminated by a comma (,) character and each row is
terminated by a newline (\n) character. The statement returns an error if files that match the
sample_employee_data file prefix exist in the specified Amazon S3 bucket.

Saving data into text files in Amazon S3 1683

Amazon Aurora User Guide for Aurora

SELECT * FROM employees INTO OUTFILE S3 's3-us-west-2://aurora-select-into-s3-pdx/
sample_employee_data'
 FIELDS TERMINATED BY ','
 LINES TERMINATED BY '\n';

The following statement selects all of the data in the employees table and saves the data into
an Amazon S3 bucket that is in the same region as the Aurora MySQL DB cluster. The statement
creates data files in which each field is terminated by a comma (,) character and each row is
terminated by a newline (\n) character, and also a manifest file. The statement returns an error if
files that match the sample_employee_data file prefix exist in the specified Amazon S3 bucket.

SELECT * FROM employees INTO OUTFILE S3 's3://aurora-select-into-s3-pdx/
sample_employee_data'
 FIELDS TERMINATED BY ','
 LINES TERMINATED BY '\n'
 MANIFEST ON;

The following statement selects all of the data in the employees table and saves the data into
an Amazon S3 bucket that is in a different region from the Aurora DB cluster. The statement
creates data files in which each field is terminated by a comma (,) character and each row is
terminated by a newline (\n) character. The statement overwrites any existing files that match the
sample_employee_data file prefix in the specified Amazon S3 bucket.

SELECT * FROM employees INTO OUTFILE S3 's3-us-west-2://aurora-select-into-s3-pdx/
sample_employee_data'
 FIELDS TERMINATED BY ','
 LINES TERMINATED BY '\n'
 OVERWRITE ON;

The following statement selects all of the data in the employees table and saves the data into
an Amazon S3 bucket that is in the same region as the Aurora MySQL DB cluster. The statement
creates data files in which each field is terminated by a comma (,) character and each row is
terminated by a newline (\n) character, and also a manifest file. The statement overwrites any
existing files that match the sample_employee_data file prefix in the specified Amazon S3
bucket.

SELECT * FROM employees INTO OUTFILE S3 's3://aurora-select-into-s3-pdx/
sample_employee_data'

Saving data into text files in Amazon S3 1684

Amazon Aurora User Guide for Aurora

 FIELDS TERMINATED BY ','
 LINES TERMINATED BY '\n'
 MANIFEST ON
 OVERWRITE ON;

Invoking a Lambda function from an Amazon Aurora MySQL DB cluster

You can invoke an AWS Lambda function from an Amazon Aurora MySQL-Compatible Edition
DB cluster with the native function lambda_sync or lambda_async. Before invoking a Lambda
function from an Aurora MySQL, the Aurora DB cluster must have access to Lambda. For details
about granting access to Aurora MySQL, see Giving Aurora access to Lambda. For information
about the lambda_sync and lambda_async stored functions, see Invoking a Lambda function
with an Aurora MySQL native function.

You can also call an AWS Lambda function by using a stored procedure. However, using a stored
procedure is deprecated. We strongly recommend using an Aurora MySQL native function if you are
using one of the following Aurora MySQL versions:

• Aurora MySQL version 2, for MySQL 5.7-compatible clusters.

• Aurora MySQL version 3.01 and higher, for MySQL 8.0-compatible clusters. The stored procedure
isn't available in Aurora MySQL version 3.

Topics

• Giving Aurora access to Lambda

• Invoking a Lambda function with an Aurora MySQL native function

• Invoking a Lambda function with an Aurora MySQL stored procedure (deprecated)

Giving Aurora access to Lambda

Before you can invoke Lambda functions from an Aurora MySQL DB cluster, make sure to first give
your cluster permission to access Lambda.

To give Aurora MySQL access to Lambda

1. Create an AWS Identity and Access Management (IAM) policy that provides the permissions
that allow your Aurora MySQL DB cluster to invoke Lambda functions. For instructions, see
Creating an IAM policy to access AWS Lambda resources.

Invoking a Lambda function from Aurora MySQL 1685

Amazon Aurora User Guide for Aurora

2. Create an IAM role, and attach the IAM policy you created in Creating an IAM policy to access
AWS Lambda resources to the new IAM role. For instructions, see Creating an IAM role to allow
Amazon Aurora to access AWS services.

3. Set the aws_default_lambda_role DB cluster parameter to the Amazon Resource Name
(ARN) of the new IAM role.

If the cluster is part of an Aurora global database, apply the same setting for each Aurora
cluster in the global database.

For more information about DB cluster parameters, see Amazon Aurora DB cluster and DB
instance parameters.

4. To permit database users in an Aurora MySQL DB cluster to invoke Lambda functions, associate
the role that you created in Creating an IAM role to allow Amazon Aurora to access AWS
services with the DB cluster. For information about associating an IAM role with a DB cluster,
see Associating an IAM role with an Amazon Aurora MySQL DB cluster.

If the cluster is part of an Aurora global database, associate the role with each Aurora cluster in
the global database.

5. Configure your Aurora MySQL DB cluster to allow outbound connections to Lambda. For
instructions, see Enabling network communication from Amazon Aurora MySQL to other AWS
services.

If the cluster is part of an Aurora global database, enable outbound connections for each
Aurora cluster in the global database.

Invoking a Lambda function with an Aurora MySQL native function

Note

You can call the native functions lambda_sync and lambda_async when you use Aurora
MySQL version 2, or Aurora MySQL version 3.01 and higher. For more information about
Aurora MySQL versions, see Database engine updates for Amazon Aurora MySQL.

You can invoke an AWS Lambda function from an Aurora MySQL DB cluster by calling the native
functions lambda_sync and lambda_async. This approach can be useful when you want to
integrate your database running on Aurora MySQL with other AWS services. For example, you

Invoking a Lambda function from Aurora MySQL 1686

Amazon Aurora User Guide for Aurora

might want to send a notification using Amazon Simple Notification Service (Amazon SNS)
whenever a row is inserted into a specific table in your database.

Contents

• Working with native functions to invoke a Lambda function

• Granting the role in Aurora MySQL version 3

• Granting the privilege in Aurora MySQL version 2

• Syntax for the lambda_sync function

• Parameters for the lambda_sync function

• Example for the lambda_sync function

• Syntax for the lambda_async function

• Parameters for the lambda_async function

• Example for the lambda_async function

• Invoking a Lambda function within a trigger

Working with native functions to invoke a Lambda function

The lambda_sync and lambda_async functions are built-in, native functions that invoke a
Lambda function synchronously or asynchronously. When you must know the result of the Lambda
function before moving on to another action, use the synchronous function lambda_sync. When
you don't need to know the result of the Lambda function before moving on to another action, use
the asynchronous function lambda_async.

Granting the role in Aurora MySQL version 3

In Aurora MySQL version 3, the user invoking a native function must be granted the
AWS_LAMBDA_ACCESS role. To grant this role to a user, connect to the DB instance as the
administrative user, and run the following statement.

GRANT AWS_LAMBDA_ACCESS TO user@domain-or-ip-address

You can revoke this role by running the following statement.

REVOKE AWS_LAMBDA_ACCESS FROM user@domain-or-ip-address

Invoking a Lambda function from Aurora MySQL 1687

Amazon Aurora User Guide for Aurora

Tip

When you use the role technique in Aurora MySQL version 3, you can also activate the role
by using the SET ROLE role_name or SET ROLE ALL statement. If you aren't familiar
with the MySQL 8.0 role system, you can learn more in Role-based privilege model. For
more details, see Using roles in the MySQL Reference Manual.
This only applies to the current active session. When you reconnect, you must run the SET
ROLE statement again to grant privileges. For more information, see SET ROLE statement
in the MySQL Reference Manual.
You can use the activate_all_roles_on_login DB cluster parameter to automatically
activate all roles when a user connects to a DB instance. When this parameter is set, you
generally don't have to call the SET ROLE statement explicitly to activate a role. For more
information, see activate_all_roles_on_login in the MySQL Reference Manual.
However, you must call SET ROLE ALL explicitly at the beginning of a stored procedure to
activate the role, when the stored procedure is called by a different user.

If you get an error such as the following when you try to invoke a Lambda function, then run a SET
ROLE statement.

SQL Error [1227] [42000]: Access denied; you need (at least one of) the Invoke Lambda
 privilege(s) for this operation

Granting the privilege in Aurora MySQL version 2

In Aurora MySQL version 2, the user invoking a native function must be granted the INVOKE
LAMBDA privilege. To grant this privilege to a user, connect to the DB instance as the administrative
user, and run the following statement.

GRANT INVOKE LAMBDA ON *.* TO user@domain-or-ip-address

You can revoke this privilege by running the following statement.

REVOKE INVOKE LAMBDA ON *.* FROM user@domain-or-ip-address

Invoking a Lambda function from Aurora MySQL 1688

https://dev.mysql.com/doc/refman/8.0/en/roles.html
https://dev.mysql.com/doc/refman/8.0/en/set-role.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_activate_all_roles_on_login

Amazon Aurora User Guide for Aurora

Syntax for the lambda_sync function

You invoke the lambda_sync function synchronously with the RequestResponse invocation
type. The function returns the result of the Lambda invocation in a JSON payload. The function has
the following syntax.

lambda_sync (
 lambda_function_ARN,
 JSON_payload
)

Parameters for the lambda_sync function

The lambda_sync function has the following parameters.

lambda_function_ARN

The Amazon Resource Name (ARN) of the Lambda function to invoke.

JSON_payload

The payload for the invoked Lambda function, in JSON format.

Note

Aurora MySQL version 3 supports the JSON parsing functions from MySQL 8.0. However,
Aurora MySQL version 2 doesn't include those functions. JSON parsing isn't required when
a Lambda function returns an atomic value, such as a number or a string.

Example for the lambda_sync function

The following query based on lambda_sync invokes the Lambda function BasicTestLambda
synchronously using the function ARN. The payload for the function is {"operation": "ping"}.

SELECT lambda_sync(
 'arn:aws:lambda:us-east-1:123456789012:function:BasicTestLambda',
 '{"operation": "ping"}');

Invoking a Lambda function from Aurora MySQL 1689

Amazon Aurora User Guide for Aurora

Syntax for the lambda_async function

You invoke the lambda_async function asynchronously with the Event invocation type. The
function returns the result of the Lambda invocation in a JSON payload. The function has the
following syntax.

lambda_async (
 lambda_function_ARN,
 JSON_payload
)

Parameters for the lambda_async function

The lambda_async function has the following parameters.

lambda_function_ARN

The Amazon Resource Name (ARN) of the Lambda function to invoke.

JSON_payload

The payload for the invoked Lambda function, in JSON format.

Note

Aurora MySQL version 3 supports the JSON parsing functions from MySQL 8.0. However,
Aurora MySQL version 2 doesn't include those functions. JSON parsing isn't required when
a Lambda function returns an atomic value, such as a number or a string.

Example for the lambda_async function

The following query based on lambda_async invokes the Lambda function BasicTestLambda
asynchronously using the function ARN. The payload for the function is {"operation":
"ping"}.

SELECT lambda_async(
 'arn:aws:lambda:us-east-1:123456789012:function:BasicTestLambda',
 '{"operation": "ping"}');

Invoking a Lambda function from Aurora MySQL 1690

Amazon Aurora User Guide for Aurora

Invoking a Lambda function within a trigger

You can use triggers to call Lambda on data-modifying statements. The following example uses
the lambda_async native function and stores the result in a variable.

mysql>SET @result=0;
mysql>DELIMITER //
mysql>CREATE TRIGGER myFirstTrigger
 AFTER INSERT
 ON Test_trigger FOR EACH ROW
 BEGIN
 SELECT lambda_async(
 'arn:aws:lambda:us-east-1:123456789012:function:BasicTestLambda',
 '{"operation": "ping"}')
 INTO @result;
 END; //
mysql>DELIMITER ;

Note

Triggers aren't run once per SQL statement, but once per row modified, one row at a time.
When a trigger runs, the process is synchronous. The data-modifying statement only
returns when the trigger completes.
Be careful when invoking an AWS Lambda function from triggers on tables that experience
high write traffic. INSERT, UPDATE, and DELETE triggers are activated per row. A write-
heavy workload on a table with INSERT, UPDATE, or DELETE triggers results in a large
number of calls to your AWS Lambda function.

Invoking a Lambda function with an Aurora MySQL stored procedure
(deprecated)

You can invoke an AWS Lambda function from an Aurora MySQL DB cluster by calling the
mysql.lambda_async procedure. This approach can be useful when you want to integrate your
database running on Aurora MySQL with other AWS services. For example, you might want to send
a notification using Amazon Simple Notification Service (Amazon SNS) whenever a row is inserted
into a specific table in your database.

Contents

Invoking a Lambda function from Aurora MySQL 1691

Amazon Aurora User Guide for Aurora

• Aurora MySQL version considerations

• Working with the mysql.lambda_async procedure to invoke a Lambda function (deprecated)

• Syntax

• Parameters

• Examples

Aurora MySQL version considerations

Starting in Aurora MySQL version 2, you can use the native function method instead of these
stored procedures to invoke a Lambda function. For more information about the native functions,
see Working with native functions to invoke a Lambda function.

In Aurora MySQL version 2, the stored procedure mysql.lambda_async is no longer supported.
We strongly recommend that you work with native Lambda functions instead.

In Aurora MySQL version 3, the stored procedure isn't available.

Working with the mysql.lambda_async procedure to invoke a Lambda function (deprecated)

The mysql.lambda_async procedure is a built-in stored procedure that invokes a Lambda
function asynchronously. To use this procedure, your database user must have EXECUTE privilege
on the mysql.lambda_async stored procedure.

Syntax

The mysql.lambda_async procedure has the following syntax.

CALL mysql.lambda_async (
 lambda_function_ARN,
 lambda_function_input
)

Parameters

The mysql.lambda_async procedure has the following parameters.

lambda_function_ARN

The Amazon Resource Name (ARN) of the Lambda function to invoke.

Invoking a Lambda function from Aurora MySQL 1692

Amazon Aurora User Guide for Aurora

lambda_function_input

The input string, in JSON format, for the invoked Lambda function.

Examples

As a best practice, we recommend that you wrap calls to the mysql.lambda_async procedure
in a stored procedure that can be called from different sources such as triggers or client code.
This approach can help to avoid impedance mismatch issues and make it easier to invoke Lambda
functions.

Note

Be careful when invoking an AWS Lambda function from triggers on tables that experience
high write traffic. INSERT, UPDATE, and DELETE triggers are activated per row. A write-
heavy workload on a table with INSERT, UPDATE, or DELETE triggers results in a large
number of calls to your AWS Lambda function.
Although calls to the mysql.lambda_async procedure are asynchronous, triggers are
synchronous. A statement that results in a large number of trigger activations doesn't wait
for the call to the AWS Lambda function to complete, but it does wait for the triggers to
complete before returning control to the client.

Example Example: Invoke an AWS Lambda function to send email

The following example creates a stored procedure that you can call in your database code to send
an email using a Lambda function.

AWS Lambda Function

import boto3

ses = boto3.client('ses')

def SES_send_email(event, context):

 return ses.send_email(
 Source=event['email_from'],
 Destination={

Invoking a Lambda function from Aurora MySQL 1693

Amazon Aurora User Guide for Aurora

 'ToAddresses': [
 event['email_to'],
]
 },

 Message={
 'Subject': {
 'Data': event['email_subject']
 },
 'Body': {
 'Text': {
 'Data': event['email_body']
 }
 }
 }
)

Stored Procedure

DROP PROCEDURE IF EXISTS SES_send_email;
DELIMITER ;;
 CREATE PROCEDURE SES_send_email(IN email_from VARCHAR(255),
 IN email_to VARCHAR(255),
 IN subject VARCHAR(255),
 IN body TEXT) LANGUAGE SQL
 BEGIN
 CALL mysql.lambda_async(
 'arn:aws:lambda:us-west-2:123456789012:function:SES_send_email',
 CONCAT('{"email_to" : "', email_to,
 '", "email_from" : "', email_from,
 '", "email_subject" : "', subject,
 '", "email_body" : "', body, '"}')
);
 END
 ;;
DELIMITER ;

Call the Stored Procedure to Invoke the AWS Lambda Function

mysql> call SES_send_email('example_from@amazon.com', 'example_to@amazon.com', 'Email
 subject', 'Email content');

Invoking a Lambda function from Aurora MySQL 1694

Amazon Aurora User Guide for Aurora

Example Example: Invoke an AWS Lambda function to publish an event from a trigger

The following example creates a stored procedure that publishes an event by using Amazon SNS.
The code calls the procedure from a trigger when a row is added to a table.

AWS Lambda Function

import boto3

sns = boto3.client('sns')

def SNS_publish_message(event, context):

 return sns.publish(
 TopicArn='arn:aws:sns:us-west-2:123456789012:Sample_Topic',
 Message=event['message'],
 Subject=event['subject'],
 MessageStructure='string'
)

Stored Procedure

DROP PROCEDURE IF EXISTS SNS_Publish_Message;
DELIMITER ;;
CREATE PROCEDURE SNS_Publish_Message (IN subject VARCHAR(255),
 IN message TEXT) LANGUAGE SQL
BEGIN
 CALL mysql.lambda_async('arn:aws:lambda:us-
west-2:123456789012:function:SNS_publish_message',
 CONCAT('{ "subject" : "', subject,
 '", "message" : "', message, '" }')
);
END
;;
DELIMITER ;

Table

CREATE TABLE 'Customer_Feedback' (
 'id' int(11) NOT NULL AUTO_INCREMENT,
 'customer_name' varchar(255) NOT NULL,
 'customer_feedback' varchar(1024) NOT NULL,

Invoking a Lambda function from Aurora MySQL 1695

Amazon Aurora User Guide for Aurora

 PRIMARY KEY ('id')
) ENGINE=InnoDB DEFAULT CHARSET=utf8;

Trigger

DELIMITER ;;
CREATE TRIGGER TR_Customer_Feedback_AI
 AFTER INSERT ON Customer_Feedback
 FOR EACH ROW
BEGIN
 SELECT CONCAT('New customer feedback from ', NEW.customer_name),
 NEW.customer_feedback INTO @subject, @feedback;
 CALL SNS_Publish_Message(@subject, @feedback);
END
;;
DELIMITER ;

Insert a Row into the Table to Trigger the Notification

mysql> insert into Customer_Feedback (customer_name, customer_feedback) VALUES ('Sample
 Customer', 'Good job guys!');

Publishing Amazon Aurora MySQL logs to Amazon CloudWatch Logs

You can configure your Aurora MySQL DB cluster to publish general, slow, audit, and error log
data to a log group in Amazon CloudWatch Logs. With CloudWatch Logs, you can perform real-
time analysis of the log data, and use CloudWatch to create alarms and view metrics. You can use
CloudWatch Logs to store your log records in highly durable storage.

To publish logs to CloudWatch Logs, the respective logs must be enabled. Error logs are enabled
by default, but you must enable the other types of logs explicitly. For information about enabling
logs in MySQL, see Selecting general query and slow query log output destinations in the MySQL
documentation. For more information about enabling Aurora MySQL audit logs, see Enabling
Advanced Auditing.

Note

• If exporting log data is disabled, Aurora doesn't delete existing log groups or log streams.
If exporting log data is disabled, existing log data remains available in CloudWatch Logs,

Publishing Aurora MySQL logs to CloudWatch Logs 1696

https://dev.mysql.com/doc/refman/8.0/en/log-destinations.html

Amazon Aurora User Guide for Aurora

depending on log retention, and you still incur charges for stored audit log data. You can
delete log streams and log groups using the CloudWatch Logs console, the AWS CLI, or
the CloudWatch Logs API.

• An alternative way to publish audit logs to CloudWatch Logs is by enabling
Advanced Auditing, then creating a custom DB cluster parameter group and
setting the server_audit_logs_upload parameter to 1. The default for the
server_audit_logs_upload DB cluster parameter is 0. For information on enabling
Advanced Auditing, see Using Advanced Auditing with an Amazon Aurora MySQL DB
cluster.

If you use this alternative method, you must have an IAM role to access CloudWatch Logs
and set the aws_default_logs_role cluster-level parameter to the ARN for this role.
For information about creating the role, see Setting up IAM roles to access AWS services.
However, if you have the AWSServiceRoleForRDS service-linked role, it provides access
to CloudWatch Logs and overrides any custom-defined roles. For information about
service-linked roles for Amazon RDS, see Using service-linked roles for Amazon Aurora.

• If you don't want to export audit logs to CloudWatch Logs, make sure that all methods of
exporting audit logs are disabled. These methods are the AWS Management Console, the
AWS CLI, the RDS API, and the server_audit_logs_upload parameter.

• The procedure is slightly different for Aurora Serverless v1 DB clusters than for DB
clusters with provisioned or Aurora Serverless v2 DB instances. Aurora Serverless v1
clusters automatically upload all of the logs that you enable through configuration
parameters.

Therefore, you turn on or turn off log upload for Aurora Serverless v1 DB clusters by
turning different log types on and off in the DB cluster parameter group. You don't
modify the settings of the cluster itself through the AWS Management Console, AWS CLI,
or RDS API. For information about turning on and off MySQL logs for Aurora Serverless
v1 clusters, see Parameter groups for Aurora Serverless v1.

Console

You can publish Aurora MySQL logs for provisioned clusters to CloudWatch Logs with the console.

To publish Aurora MySQL logs from the console

1. Open the Amazon RDS console at https://console.aws.amazon.com/rds/.

Publishing Aurora MySQL logs to CloudWatch Logs 1697

https://console.aws.amazon.com/rds/

Amazon Aurora User Guide for Aurora

2. In the navigation pane, choose Databases.

3. Choose the Aurora MySQL DB cluster that you want to publish the log data for.

4. Choose Modify.

5. In the Log exports section, choose the logs that you want to start publishing to CloudWatch
Logs.

6. Choose Continue, and then choose Modify DB Cluster on the summary page.

AWS CLI

You can publish Aurora MySQL logs for provisioned clusters with the AWS CLI. To do so, you run the
modify-db-cluster AWS CLI command with the following options:

• --db-cluster-identifier—The DB cluster identifier.

• --cloudwatch-logs-export-configuration—The configuration setting for the log types
to be enabled for export to CloudWatch Logs for the DB cluster.

You can also publish Aurora MySQL logs by running one of the following AWS CLI commands:

• create-db-cluster

• restore-db-cluster-from-s3

• restore-db-cluster-from-snapshot

• restore-db-cluster-to-point-in-time

Run one of these AWS CLI commands with the following options:

• --db-cluster-identifier—The DB cluster identifier.

• --engine—The database engine.

• --enable-cloudwatch-logs-exports—The configuration setting for the log types to be
enabled for export to CloudWatch Logs for the DB cluster.

Other options might be required depending on the AWS CLI command that you run.

Publishing Aurora MySQL logs to CloudWatch Logs 1698

https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-cluster.html
https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-cluster.html
https://docs.aws.amazon.com/cli/latest/reference/rds/restore-db-cluster-from-s3.html
https://docs.aws.amazon.com/cli/latest/reference/rds/restore-db-cluster-from-snapshot.html
https://docs.aws.amazon.com/cli/latest/reference/rds/restore-db-cluster-to-point-in-time.html

Amazon Aurora User Guide for Aurora

Example

The following command modifies an existing Aurora MySQL DB cluster to publish log files to
CloudWatch Logs.

For Linux, macOS, or Unix:

aws rds modify-db-cluster \
 --db-cluster-identifier mydbcluster \
 --cloudwatch-logs-export-configuration '{"EnableLogTypes":
["error","general","slowquery","audit"]}'

For Windows:

aws rds modify-db-cluster ^
 --db-cluster-identifier mydbcluster ^
 --cloudwatch-logs-export-configuration '{"EnableLogTypes":
["error","general","slowquery","audit"]}'

Example

The following command creates an Aurora MySQL DB cluster to publish log files to CloudWatch
Logs.

For Linux, macOS, or Unix:

aws rds create-db-cluster \
 --db-cluster-identifier mydbcluster \
 --engine aurora \
 --enable-cloudwatch-logs-exports '["error","general","slowquery","audit"]'

For Windows:

aws rds create-db-cluster ^
 --db-cluster-identifier mydbcluster ^
 --engine aurora ^
 --enable-cloudwatch-logs-exports '["error","general","slowquery","audit"]'

Publishing Aurora MySQL logs to CloudWatch Logs 1699

Amazon Aurora User Guide for Aurora

RDS API

You can publish Aurora MySQL logs for provisioned clusters with the RDS API. To do so, you run the
ModifyDBCluster operation with the following options:

• DBClusterIdentifier—The DB cluster identifier.

• CloudwatchLogsExportConfiguration—The configuration setting for the log types to be
enabled for export to CloudWatch Logs for the DB cluster.

You can also publish Aurora MySQL logs with the RDS API by running one of the following RDS API
operations:

• CreateDBCluster

• RestoreDBClusterFromS3

• RestoreDBClusterFromSnapshot

• RestoreDBClusterToPointInTime

Run the RDS API operation with the following parameters:

• DBClusterIdentifier—The DB cluster identifier.

• Engine—The database engine.

• EnableCloudwatchLogsExports—The configuration setting for the log types to be enabled
for export to CloudWatch Logs for the DB cluster.

Other parameters might be required depending on the AWS CLI command that you run.

Monitoring log events in Amazon CloudWatch

After enabling Aurora MySQL log events, you can monitor the events in Amazon CloudWatch Logs.
A new log group is automatically created for the Aurora DB cluster under the following prefix, in
which cluster-name represents the DB cluster name, and log_type represents the log type.

/aws/rds/cluster/cluster-name/log_type

For example, if you configure the export function to include the slow query log for a DB cluster
named mydbcluster, slow query data is stored in the /aws/rds/cluster/mydbcluster/
slowquery log group.

Publishing Aurora MySQL logs to CloudWatch Logs 1700

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBCluster.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateDBCluster.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_RestoreDBClusterFromS3.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_RestoreDBClusterFromSnapshot.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_RestoreDBClusterToPointInTime.html

Amazon Aurora User Guide for Aurora

The events from all instances in your cluster are pushed to a log group using different log streams.
The behavior depends on which of the following conditions is true:

• A log group with the specified name exists.

Aurora uses the existing log group to export log data for the cluster. To create log groups with
predefined log retention periods, metric filters, and customer access, you can use automated
configuration, such as AWS CloudFormation.

• A log group with the specified name doesn't exist.

When a matching log entry is detected in the log file for the instance, Aurora MySQL creates a
new log group in CloudWatch Logs automatically. The log group uses the default log retention
period of Never Expire.

To change the log retention period, use the CloudWatch Logs console, the AWS CLI, or the
CloudWatch Logs API. For more information about changing log retention periods in CloudWatch
Logs, see Change log data retention in CloudWatch Logs.

To search for information within the log events for a DB cluster, use the CloudWatch Logs console,
the AWS CLI, or the CloudWatch Logs API. For more information about searching and filtering log
data, see Searching and filtering log data.

Publishing Aurora MySQL logs to CloudWatch Logs 1701

https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/SettingLogRetention.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/MonitoringLogData.html

Amazon Aurora User Guide for Aurora

Amazon Aurora MySQL lab mode

Aurora lab mode is used to enable Aurora features that are available in the current Aurora database
version, but are not enabled by default. While Aurora lab mode features are not recommended for
use in production DB clusters, you can use Aurora lab mode to enable these features for DB clusters
in your development and test environments. For more information about Aurora features available
when Aurora lab mode is enabled, see Aurora lab mode features.

The aurora_lab_mode parameter is an instance-level parameter that is in the default parameter
group. The parameter is set to 0 (disabled) in the default parameter group. To enable Aurora lab
mode, create a custom parameter group, set the aurora_lab_mode parameter to 1 (enabled) in
the custom parameter group, and modify one or more DB instances in your Aurora cluster to use
the custom parameter group. Then connect to the appropriate instance endpoint to try the lab
mode features. For information on modifying a DB parameter group, see Modifying parameters
in a DB parameter group. For information on parameter groups and Amazon Aurora, see Aurora
MySQL configuration parameters.

Aurora lab mode features

The following table lists the Aurora features currently available when Aurora lab mode is enabled.
You must enable Aurora lab mode before any of these features can be used.

Feature Description

Scan Batching Aurora MySQL scan batching speeds up in-
memory, scan-oriented queries significantly.
The feature boosts the performance of table
full scans, index full scans, and index range
scans by batch processing.

Hash Joins This feature can improve query performance
when you need to join a large amount of data
by using an equijoin. You can use this feature
without lab mode in Aurora MySQL version
2. For more information about using this
feature, see Optimizing large Aurora MySQL
join queries with hash joins.

Aurora MySQL lab mode 1702

Amazon Aurora User Guide for Aurora

Feature Description

Fast DDL This feature allows you to run an ALTER
TABLE tbl_name ADD COLUMN col_name
column_definition operation nearly
instantaneously. The operation completes
without requiring the table to be copied
and without materially impacting other
DML statements. Since it does not consume
temporary storage for a table copy, it makes
DDL statements practical even for large tables
on small instance classes. Fast DDL is currently
only supported for adding a nullable column,
without a default value, at the end of a table.
For more information about using this feature,
see Altering tables in Amazon Aurora using
Fast DDL.

Aurora lab mode features 1703

Amazon Aurora User Guide for Aurora

Best practices with Amazon Aurora MySQL

This topic includes information on best practices and options for using or migrating data to an
Amazon Aurora MySQL DB cluster. The information in this topic summarizes and reiterates some of
the guidelines and procedures that you can find in Managing an Amazon Aurora DB cluster.

Contents

• Determining which DB instance you are connected to

• Best practices for Aurora MySQL performance and scaling

• Using T instance classes for development and testing

• Optimizing Aurora MySQL indexed join queries with asynchronous key prefetch

• Enabling asynchronous key prefetch

• Optimizing queries for asynchronous key prefetch

• Optimizing large Aurora MySQL join queries with hash joins

• Enabling hash joins

• Optimizing queries for hash joins

• Using Amazon Aurora to scale reads for your MySQL database

• Optimizing timestamp operations

• Best practices for Aurora MySQL high availability

• Using Amazon Aurora for Disaster Recovery with your MySQL databases

• Migrating from MySQL to Amazon Aurora MySQL with reduced downtime

• Avoiding slow performance, automatic restart, and failover for Aurora MySQL DB instances

• Recommendations for Aurora MySQL

• Using multithreaded replication in Aurora MySQL

• Invoking AWS Lambda functions using native MySQL functions

• Avoiding XA transactions with Amazon Aurora MySQL

• Keeping foreign keys turned on during DML statements

• Configuring how frequently the log buffer is flushed

• Minimizing and troubleshooting Aurora MySQL deadlocks

• Minimizing InnoDB deadlocks

• Monitoring InnoDB deadlocksBest practices with Aurora MySQL 1704

Amazon Aurora User Guide for Aurora

Determining which DB instance you are connected to

To determine which DB instance in an Aurora MySQL DB cluster a connection is connected to, check
the innodb_read_only global variable, as shown in the following example.

SHOW GLOBAL VARIABLES LIKE 'innodb_read_only';

The innodb_read_only variable is set to ON if you are connected to a reader DB instance.
This setting is OFF if you are connected to a writer DB instance, such as primary instance in a
provisioned cluster.

This approach can be helpful if you want to add logic to your application code to balance the
workload or to ensure that a write operation is using the correct connection.

Best practices for Aurora MySQL performance and scaling

You can apply the following best practices to improve the performance and scalability of your
Aurora MySQL clusters.

Topics

• Using T instance classes for development and testing

• Optimizing Aurora MySQL indexed join queries with asynchronous key prefetch

• Optimizing large Aurora MySQL join queries with hash joins

• Using Amazon Aurora to scale reads for your MySQL database

• Optimizing timestamp operations

Using T instance classes for development and testing

Amazon Aurora MySQL instances that use the db.t2, db.t3, or db.t4g DB instance classes are
best suited for applications that do not support a high workload for an extended amount of time.
The T instances are designed to provide moderate baseline performance and the capability to burst
to significantly higher performance as required by your workload. They are intended for workloads
that don't use the full CPU often or consistently, but occasionally need to burst. We recommend
using the T DB instance classes only for development and test servers, or other non-production
servers. For more details on the T instance classes, see Burstable performance instances.

Determining which DB instance you are connected to 1705

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/burstable-performance-instances.html

Amazon Aurora User Guide for Aurora

If your Aurora cluster is larger than 40 TB, don't use the T instance classes. When your database
has a large volume of data, the memory overhead for managing schema objects can exceed the
capacity of a T instance.

Don't enable the MySQL Performance Schema on Amazon Aurora MySQL T instances. If the
Performance Schema is enabled, the instance might run out of memory.

Tip

If your database is sometimes idle but at other times has a substantial workload, you
can use Aurora Serverless v2 as an alternative to T instances. With Aurora Serverless v2,
you define a capacity range and Aurora automatically scales your database up or down
depending on the current workload. For usage details, see Using Aurora Serverless v2. For
the database engine versions that you can use with Aurora Serverless v2, see Requirements
and limitations for Aurora Serverless v2.

When you use a T instance as a DB instance in an Aurora MySQL DB cluster, we recommend the
following:

• Use the same DB instance class for all instances in your DB cluster. For example, if you use
db.t2.medium for your writer instance, then we recommend that you use db.t2.medium for
your reader instances also.

• Don't adjust any memory-related configuration settings, such as innodb_buffer_pool_size.
Aurora uses a highly tuned set of default values for memory buffers on T instances. These special
defaults are needed for Aurora to run on memory-constrained instances. If you change any
memory-related settings on a T instance, you are much more likely to encounter out-of-memory
conditions, even if your change is intended to increase buffer sizes.

• Monitor your CPU Credit Balance (CPUCreditBalance) to ensure that it is at a sustainable level.
That is, CPU credits are being accumulated at the same rate as they are being used.

When you have exhausted the CPU credits for an instance, you see an immediate drop in the
available CPU and an increase in the read and write latency for the instance. This situation results
in a severe decrease in the overall performance of the instance.

If your CPU credit balance is not at a sustainable level, then we recommend that you modify your
DB instance to use a one of the supported R DB instance classes (scale compute).

Best practices for Aurora MySQL performance and scaling 1706

Amazon Aurora User Guide for Aurora

For more information on monitoring metrics, see Viewing metrics in the Amazon RDS console.

• Monitor the replica lag (AuroraReplicaLag) between the writer instance and the reader
instances.

If a reader instance runs out of CPU credits before the writer instance does, the resulting lag can
cause the reader instance to restart frequently. This result is common when an application has
a heavy load of read operations distributed among reader instances, at the same time that the
writer instance has a minimal load of write operations.

If you see a sustained increase in replica lag, make sure that your CPU credit balance for the
reader instances in your DB cluster is not being exhausted.

If your CPU credit balance is not at a sustainable level, then we recommend that you modify your
DB instance to use one of the supported R DB instance classes (scale compute).

• Keep the number of inserts per transaction below 1 million for DB clusters that have binary
logging enabled.

If the DB cluster parameter group for your DB cluster has the binlog_format parameter set
to a value other than OFF, then your DB cluster might experience out-of-memory conditions if
the DB cluster receives transactions that contain over 1 million rows to insert. You can monitor
the freeable memory (FreeableMemory) metric to determine if your DB cluster is running
out of available memory. You then check the write operations (VolumeWriteIOPS) metric to
see if a writer instance is receiving a heavy load of write operations. If this is the case, then we
recommend that you update your application to limit the number of inserts in a transaction to
less than 1 million. Alternatively, you can modify your instance to use one of the supported R DB
instance classes (scale compute).

Optimizing Aurora MySQL indexed join queries with asynchronous key prefetch

Aurora MySQL can use the asynchronous key prefetch (AKP) feature to improve the performance of
queries that join tables across indexes. This feature improves performance by anticipating the rows
needed to run queries in which a JOIN query requires use of the Batched Key Access (BKA) Join
algorithm and Multi-Range Read (MRR) optimization features. For more information about BKA
and MRR, see Block nested-loop and batched key access joins and Multi-range read optimization in
the MySQL documentation.

Best practices for Aurora MySQL performance and scaling 1707

https://dev.mysql.com/doc/refman/5.6/en/bnl-bka-optimization.html
https://dev.mysql.com/doc/refman/5.6/en/mrr-optimization.html

Amazon Aurora User Guide for Aurora

To take advantage of the AKP feature, a query must use both BKA and MRR. Typically, such a query
occurs when the JOIN clause of a query uses a secondary index, but also needs some columns from
the primary index. For example, you can use AKP when a JOIN clause represents an equijoin on
index values between a small outer and large inner table, and the index is highly selective on the
larger table. AKP works in concert with BKA and MRR to perform a secondary to primary index
lookup during the evaluation of the JOIN clause. AKP identifies the rows required to run the query
during the evaluation of the JOIN clause. It then uses a background thread to asynchronously load
the pages containing those rows into memory before running the query.

AKP is available for Aurora MySQL version 2.10 and higher, and version 3. For more information
about Aurora MySQL versions, see Database engine updates for Amazon Aurora MySQL.

Enabling asynchronous key prefetch

You can enable the AKP feature by setting aurora_use_key_prefetch, a MySQL server variable,
to on. By default, this value is set to on. However, AKP can't be enabled until you also enable the
BKA Join algorithm and disable cost-based MRR functionality. To do so, you must set the following
values for optimizer_switch, a MySQL server variable:

• Set batched_key_access to on. This value controls the use of the BKA Join algorithm. By
default, this value is set to off.

• Set mrr_cost_based to off. This value controls the use of cost-based MRR functionality. By
default, this value is set to on.

Currently, you can set these values only at the session level. The following example illustrates how
to set these values to enable AKP for the current session by executing SET statements.

mysql> set @@session.aurora_use_key_prefetch=on;
mysql> set @@session.optimizer_switch='batched_key_access=on,mrr_cost_based=off';

Similarly, you can use SET statements to disable AKP and the BKA Join algorithm and re-enable
cost-based MRR functionality for the current session, as shown in the following example.

mysql> set @@session.aurora_use_key_prefetch=off;
mysql> set @@session.optimizer_switch='batched_key_access=off,mrr_cost_based=on';

Best practices for Aurora MySQL performance and scaling 1708

Amazon Aurora User Guide for Aurora

For more information about the batched_key_access and mrr_cost_based optimizer switches, see
Switchable optimizations in the MySQL documentation.

Optimizing queries for asynchronous key prefetch

You can confirm whether a query can take advantage of the AKP feature. To do so, use the
EXPLAIN statement to profile the query before running it. The EXPLAIN statement provides
information about the execution plan to use for a specified query.

In the output for the EXPLAIN statement, the Extra column describes additional information
included with the execution plan. If the AKP feature applies to a table used in the query, this
column includes one of the following values:

• Using Key Prefetching

• Using join buffer (Batched Key Access with Key Prefetching)

The following example shows the use of EXPLAIN to view the execution plan for a query that can
take advantage of AKP.

mysql> explain select sql_no_cache
 -> ps_partkey,
 -> sum(ps_supplycost * ps_availqty) as value
 -> from
 -> partsupp,
 -> supplier,
 -> nation
 -> where
 -> ps_suppkey = s_suppkey
 -> and s_nationkey = n_nationkey
 -> and n_name = 'ETHIOPIA'
 -> group by
 -> ps_partkey having
 -> sum(ps_supplycost * ps_availqty) > (
 -> select
 -> sum(ps_supplycost * ps_availqty) * 0.0000003333
 -> from
 -> partsupp,
 -> supplier,
 -> nation
 -> where

Best practices for Aurora MySQL performance and scaling 1709

https://dev.mysql.com/doc/refman/5.6/en/switchable-optimizations.html

Amazon Aurora User Guide for Aurora

 -> ps_suppkey = s_suppkey
 -> and s_nationkey = n_nationkey
 -> and n_name = 'ETHIOPIA'
 ->)
 -> order by
 -> value desc;
+----+-------------+----------+------+-----------------------+---------------
+---------+----------------------------------+------+----------
+---+
| id | select_type | table | type | possible_keys | key | key_len
 | ref | rows | filtered | Extra
 |
+----+-------------+----------+------+-----------------------+---------------
+---------+----------------------------------+------+----------
+---+
| 1 | PRIMARY | nation | ALL | PRIMARY | NULL | NULL
 | NULL | 25 | 100.00 | Using where; Using temporary;
 Using filesort |
| 1 | PRIMARY | supplier | ref | PRIMARY,i_s_nationkey | i_s_nationkey | 5
 | dbt3_scale_10.nation.n_nationkey | 2057 | 100.00 | Using index
 |
| 1 | PRIMARY | partsupp | ref | i_ps_suppkey | i_ps_suppkey | 4
 | dbt3_scale_10.supplier.s_suppkey | 42 | 100.00 | Using join buffer (Batched Key
 Access with Key Prefetching) |
| 2 | SUBQUERY | nation | ALL | PRIMARY | NULL | NULL
 | NULL | 25 | 100.00 | Using where
 |
| 2 | SUBQUERY | supplier | ref | PRIMARY,i_s_nationkey | i_s_nationkey | 5
 | dbt3_scale_10.nation.n_nationkey | 2057 | 100.00 | Using index
 |
| 2 | SUBQUERY | partsupp | ref | i_ps_suppkey | i_ps_suppkey | 4
 | dbt3_scale_10.supplier.s_suppkey | 42 | 100.00 | Using join buffer (Batched Key
 Access with Key Prefetching) |
+----+-------------+----------+------+-----------------------+---------------
+---------+----------------------------------+------+----------
+---+
6 rows in set, 1 warning (0.00 sec)

For more information about the EXPLAIN output format, see Extended EXPLAIN output format in
the MySQL documentation.

Best practices for Aurora MySQL performance and scaling 1710

https://dev.mysql.com/doc/refman/8.0/en/explain-extended.html

Amazon Aurora User Guide for Aurora

Optimizing large Aurora MySQL join queries with hash joins

When you need to join a large amount of data by using an equijoin, a hash join can improve query
performance. You can enable hash joins for Aurora MySQL.

A hash join column can be any complex expression. In a hash join column, you can compare across
data types in the following ways:

• You can compare anything across the category of precise numeric data types, such as int,
bigint, numeric, and bit.

• You can compare anything across the category of approximate numeric data types, such as
float and double.

• You can compare items across string types if the string types have the same character set and
collation.

• You can compare items with date and timestamp data types if the types are the same.

Note

You can't compare data types in different categories.

The following restrictions apply to hash joins for Aurora MySQL:

• Left-right outer joins aren't supported for Aurora MySQL version 2, but are supported for version
3.

• Semijoins such as subqueries aren't supported, unless the subqueries are materialized first.

• Multiple-table updates or deletes aren't supported.

Note

Single-table updates or deletes are supported.

• BLOB and spatial data type columns can't be join columns in a hash join.

Enabling hash joins

To enable hash joins:

Best practices for Aurora MySQL performance and scaling 1711

Amazon Aurora User Guide for Aurora

• Aurora MySQL version 2 – Set the DB parameter or DB cluster parameter
aurora_disable_hash_join to 0. Turning off aurora_disable_hash_join sets the value
of optimizer_switch to hash_join=on.

• Aurora MySQL version 3 – Set the MySQL server parameter optimizer_switch to
block_nested_loop=on.

Hash joins are turned on by default in Aurora MySQL version 3 and turned off by default in Aurora
MySQL version 2. The following example illustrates how to enable hash joins for Aurora MySQL
version 3. You can issue the statement select @@optimizer_switch first to see what other
settings are present in the SET parameter string. Updating one setting in the optimizer_switch
parameter doesn't erase or modify the other settings.

mysql> SET optimizer_switch='block_nested_loop=on';

Note

For Aurora MySQL version 3, hash join support is available in all minor versions and is
turned on by default.
For Aurora MySQL version 2, hash join support is available in all minor versions.
In Aurora MySQL version 2, the hash join feature is always controlled by the
aurora_disable_hash_join value.

With this setting, the optimizer chooses to use a hash join based on cost, query characteristics,
and resource availability. If the cost estimation is incorrect, you can force the optimizer to choose
a hash join. You do so by setting hash_join_cost_based, a MySQL server variable, to off. The
following example illustrates how to force the optimizer to choose a hash join.

mysql> SET optimizer_switch='hash_join_cost_based=off';

Note

This setting overrides the decisions of the cost-based optimizer. While the setting can be
useful for testing and development, we recommend that you not use it in production.

Best practices for Aurora MySQL performance and scaling 1712

Amazon Aurora User Guide for Aurora

Optimizing queries for hash joins

To find out whether a query can take advantage of a hash join, use the EXPLAIN statement to
profile the query first. The EXPLAIN statement provides information about the execution plan to
use for a specified query.

In the output for the EXPLAIN statement, the Extra column describes additional information
included with the execution plan. If a hash join applies to the tables used in the query, this column
includes values similar to the following:

• Using where; Using join buffer (Hash Join Outer table table1_name)

• Using where; Using join buffer (Hash Join Inner table table2_name)

The following example shows the use of EXPLAIN to view the execution plan for a hash join query.

mysql> explain SELECT sql_no_cache * FROM hj_small, hj_big, hj_big2
 -> WHERE hj_small.col1 = hj_big.col1 and hj_big.col1=hj_big2.col1 ORDER BY 1;
+----+-------------+----------+------+---------------+------+---------+------+------
+--+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows |
 Extra |
+----+-------------+----------+------+---------------+------+---------+------+------
+--+
| 1 | SIMPLE | hj_small | ALL | NULL | NULL | NULL | NULL | 6 |
 Using temporary; Using filesort |
| 1 | SIMPLE | hj_big | ALL | NULL | NULL | NULL | NULL | 10 |
 Using where; Using join buffer (Hash Join Outer table hj_big) |
| 1 | SIMPLE | hj_big2 | ALL | NULL | NULL | NULL | NULL | 15 |
 Using where; Using join buffer (Hash Join Inner table hj_big2) |
+----+-------------+----------+------+---------------+------+---------+------+------
+--+
3 rows in set (0.04 sec)

In the output, the Hash Join Inner table is the table used to build hash table, and the Hash
Join Outer table is the table that is used to probe the hash table.

For more information about the extended EXPLAIN output format, see Extended EXPLAIN Output
Format in the MySQL product documentation.

Best practices for Aurora MySQL performance and scaling 1713

https://dev.mysql.com/doc/refman/8.0/en/explain-extended.html
https://dev.mysql.com/doc/refman/8.0/en/explain-extended.html

Amazon Aurora User Guide for Aurora

In Aurora MySQL 2.08 and higher, you can use SQL hints to influence whether a query uses hash
join or not, and which tables to use for the build and probe sides of the join. For details, see Aurora
MySQL hints.

Using Amazon Aurora to scale reads for your MySQL database

You can use Amazon Aurora with your MySQL DB instance to take advantage of the read scaling
capabilities of Amazon Aurora and expand the read workload for your MySQL DB instance. To use
Aurora to read scale your MySQL DB instance, create an Aurora MySQL DB cluster and make it a
read replica of your MySQL DB instance. Then connect to the Aurora MySQL cluster to process the
read queries. The source database can be an RDS for MySQL DB instance, or a MySQL database
running external to Amazon RDS. For more information, see Using Amazon Aurora to scale reads
for your MySQL database.

Optimizing timestamp operations

When the value of the system variable time_zone is set to SYSTEM, each MySQL function call
that requires a time zone calculation makes a system library call. When you run SQL statements
that return or change such TIMESTAMP values at high concurrency, you might experience increased
latency, lock contention, and CPU usage. For more information, see time_zone in the MySQL
documentation.

To avoid this behavior, we recommend that you change the value of the time_zone DB cluster
parameter to UTC. For more information, see Modifying parameters in a DB cluster parameter
group.

While the time_zone parameter is dynamic (doesn't require a database server restart), the new
value is used only for new connections. To make sure that all connections are updated to use
the new time_zone value, we recommend that you recycle your application connections after
updating the DB cluster parameter.

Best practices for Aurora MySQL high availability

You can apply the following best practices to improve the availability of your Aurora MySQL
clusters.

Topics

• Using Amazon Aurora for Disaster Recovery with your MySQL databases

Best practices for Aurora MySQL high availability 1714

https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_time_zone

Amazon Aurora User Guide for Aurora

• Migrating from MySQL to Amazon Aurora MySQL with reduced downtime

• Avoiding slow performance, automatic restart, and failover for Aurora MySQL DB instances

Using Amazon Aurora for Disaster Recovery with your MySQL databases

You can use Amazon Aurora with your MySQL DB instance to create an offsite backup for disaster
recovery. To use Aurora for disaster recovery of your MySQL DB instance, create an Amazon Aurora
DB cluster and make it a read replica of your MySQL DB instance. This applies to an RDS for MySQL
DB instance, or a MySQL database running external to Amazon RDS.

Important

When you set up replication between a MySQL DB instance and an Amazon Aurora MySQL
DB cluster, you should monitor the replication to ensure that it remains healthy and repair
it if necessary.

For instructions on how to create an Amazon Aurora MySQL DB cluster and make it a read replica
of your MySQL DB instance, follow the procedure in Using Amazon Aurora to scale reads for your
MySQL database.

For more information on disaster recovery models, see How to choose the best disaster recovery
option for your Amazon Aurora MySQL cluster.

Migrating from MySQL to Amazon Aurora MySQL with reduced downtime

When importing data from a MySQL database that supports a live application to an Amazon
Aurora MySQL DB cluster, you might want to reduce the time that service is interrupted while
you migrate. To do so, you can use the procedure documented in Importing data to a MySQL or
MariaDB DB instance with reduced downtime in the Amazon Relational Database Service User Guide.
This procedure can especially help if you are working with a very large database. You can use the
procedure to reduce the cost of the import by minimizing the amount of data that is passed across
the network to AWS.

The procedure lists steps to transfer a copy of your database data to an Amazon EC2 instance and
import the data into a new RDS for MySQL DB instance. Because Amazon Aurora is compatible with
MySQL, you can instead use an Amazon Aurora DB cluster for the target Amazon RDS MySQL DB
instance.

Best practices for Aurora MySQL high availability 1715

https://aws.amazon.com/blogs/database/how-to-choose-the-best-disaster-recovery-option-for-your-amazon-aurora-mysql-cluster/
https://aws.amazon.com/blogs/database/how-to-choose-the-best-disaster-recovery-option-for-your-amazon-aurora-mysql-cluster/
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/MySQL.Procedural.Importing.NonRDSRepl.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/MySQL.Procedural.Importing.NonRDSRepl.html

Amazon Aurora User Guide for Aurora

Avoiding slow performance, automatic restart, and failover for Aurora MySQL DB
instances

If you're running a heavy workload or workloads that spike beyond the allocated resources of
your DB instance, you can exhaust the resources on which you're running your application and
Aurora database. To get metrics on your database instance such as CPU utilization, memory usage,
and number of database connections used, you can refer to the metrics provided by Amazon
CloudWatch, Performance Insights, and Enhanced Monitoring. For more information on monitoring
your DB instance, see Monitoring metrics in an Amazon Aurora cluster.

If your workload exhausts the resources you're using, your DB instance might slow down, restart, or
even fail over to another DB instance. To avoid this, monitor your resource utilization, examine the
workload running on your DB instance, and make optimizations where necessary. If optimizations
don't improve the instance metrics and mitigate the resource exhaustion, consider scaling up your
DB instance before you reach its limits. For more information on available DB instance classes and
their specifications, see Aurora DB instance classes.

Recommendations for Aurora MySQL

The following features are available in Aurora MySQL for MySQL compatibility. However, they
have performance, scalability, stability, or compatibility issues in the Aurora environment. Thus,
we recommend that you follow certain guidelines in your use of these features. For example, we
recommend that you don't use certain features for production Aurora deployments.

Topics

• Using multithreaded replication in Aurora MySQL

• Invoking AWS Lambda functions using native MySQL functions

• Avoiding XA transactions with Amazon Aurora MySQL

• Keeping foreign keys turned on during DML statements

• Configuring how frequently the log buffer is flushed

• Minimizing and troubleshooting Aurora MySQL deadlocks

Using multithreaded replication in Aurora MySQL

With multithreaded binary log replication, a SQL thread reads events from the relay log and
queues them up for SQL worker threads to apply. The SQL worker threads are managed by a
coordinator thread. The binary log events are applied in parallel when possible.

Recommendations for Aurora MySQL 1716

Amazon Aurora User Guide for Aurora

Multithreaded replication is supported in Aurora MySQL version 3, and in Aurora MySQL version
2.12.1 and higher.

For Aurora MySQL versions lower than 3.04, Aurora uses single-threaded replication by default
when an Aurora MySQL DB cluster is used as a read replica for binary log replication.

Earlier versions of Aurora MySQL version 2 inherited several issues regarding multithreaded
replication from MySQL Community Edition. For those versions, we recommend that you not use
multithreaded replication in production.

If you do use multithreaded replication, we recommend that you test it thoroughly.

For more information about using replication in Amazon Aurora, see Replication with Amazon
Aurora. For more information about multithreaded replication in Aurora MySQL, see Multithreaded
binary log replication.

Invoking AWS Lambda functions using native MySQL functions

We recommend using the native MySQL functions lambda_sync and lambda_async to invoke
Lambda functions.

If you are using the deprecated mysql.lambda_async procedure, we recommend that you wrap
calls to the mysql.lambda_async procedure in a stored procedure. You can call this stored
procedure from different sources, such as triggers or client code. This approach can help to avoid
impedance mismatch issues and make it easier for your database programmers to invoke Lambda
functions.

For more information on invoking Lambda functions from Amazon Aurora, see Invoking a Lambda
function from an Amazon Aurora MySQL DB cluster.

Avoiding XA transactions with Amazon Aurora MySQL

We recommend that you don't use eXtended Architecture (XA) transactions with Aurora MySQL,
because they can cause long recovery times if the XA was in the PREPARED state. If you must use
XA transactions with Aurora MySQL, follow these best practices:

• Don't leave an XA transaction open in the PREPARED state.

• Keep XA transactions as small as possible.

For more information about using XA transactions with MySQL, see XA transactions in the MySQL
documentation.

Recommendations for Aurora MySQL 1717

https://dev.mysql.com/doc/refman/8.0/en/xa.html

Amazon Aurora User Guide for Aurora

Keeping foreign keys turned on during DML statements

We strongly recommend that you don't run any data definition language (DDL) statements when
the foreign_key_checks variable is set to 0 (off).

If you need to insert or update rows that require a transient violation of foreign keys, follow these
steps:

1. Set foreign_key_checks to 0.

2. Make your data manipulation language (DML) changes.

3. Make sure that your completed changes don't violate any foreign key constraints.

4. Set foreign_key_checks to 1 (on).

In addition, follow these other best practices for foreign key constraints:

• Make sure that your client applications don't set the foreign_key_checks variable to 0 as a
part of the init_connect variable.

• If a restore from a logical backup such as mysqldump fails or is incomplete, make sure that
foreign_key_checks is set to 1 before starting any other operations in the same session. A
logical backup sets foreign_key_checks to 0 when it starts.

Configuring how frequently the log buffer is flushed

In MySQL Community Edition, to make transactions durable, the InnoDB log buffer must be flushed
to durable storage. You use theinnodb_flush_log_at_trx_commit parameter to configure
how frequently the log buffer is flushed to disk.

When you set the innodb_flush_log_at_trx_commit parameter to the default value of 1,
the log buffer is flushed at each transaction commit. This setting helps to keep the database ACID
compliant. We recommend that you keep the default setting of 1.

Changing innodb_flush_log_at_trx_commit to a nondefault value can help reduce data
manipulation language (DML) latency, but sacrifices the durability of the log records. This lack of
durability makes the database ACID noncompliant. We recommend that your databases be ACID
compliant to avoid the risk of data loss in the event of a server restart. For more information on
this parameter, see innodb_flush_log_at_trx_commit in the MySQL documentation.

Recommendations for Aurora MySQL 1718

https://dev.mysql.com/doc/refman/5.7/en/glossary.html#glos_acid
https://dev.mysql.com/doc/refman/5.7/en/innodb-parameters.html#sysvar_innodb_flush_log_at_trx_commit

Amazon Aurora User Guide for Aurora

In Aurora MySQL, redo log processing is offloaded to the storage layer, so no flushing to log files
occurs on the DB instance. When a write is issued, redo logs are sent from the writer DB instance
directly to the Aurora cluster volume. The only writes that cross the network are redo log records.
No pages are ever written from the database tier.

By default, each thread committing a transaction waits for confirmation from the Aurora cluster
volume. This confirmation indicates that this record and all previous redo log records are written
and have achieved quorum. Persisting the log records and achieving quorum make the transaction
durable, whether through autocommit or explicit commit. For more information on the Aurora
storage architecture, see Amazon Aurora storage demystified.

Aurora MySQL doesn't flush logs to data files as MySQL Community Edition does. However, you
can use the innodb_flush_log_at_trx_commit parameter to relax durability constraints when
writing redo log records to the Aurora cluster volume.

For Aurora MySQL version 2:

• innodb_flush_log_at_trx_commit = 0 or 2 – The database doesn't wait for confirmation
that the redo log records are written to the Aurora cluster volume.

• innodb_flush_log_at_trx_commit = 1 – The database waits for confirmation that the redo
log records are written to the Aurora cluster volume.

For Aurora MySQL version 3:

• innodb_flush_log_at_trx_commit = 0 – The database doesn't wait for confirmation that
the redo log records are written to the Aurora cluster volume.

• innodb_flush_log_at_trx_commit = 1 or 2 – The database waits for confirmation that the
redo log records are written to the Aurora cluster volume.

Therefore, to obtain the same nondefault behavior in Aurora MySQL version 3 that you would with
the value set to 0 or 2 in Aurora MySQL version 2, set the parameter to 0.

While these settings can lower DML latency to the client, they can also result in data
loss in the event of a failover or restart. Therefore, we recommend that you keep the
innodb_flush_log_at_trx_commit parameter set to the default value of 1.

While data loss can occur in both MySQL Community Edition and Aurora MySQL, behavior differs
in each database because of their different architectures. These architectural differences can lead

Recommendations for Aurora MySQL 1719

https://aws.amazon.com/blogs/database/amazon-aurora-under-the-hood-quorum-and-correlated-failure/
https://d1.awsstatic.com/events/reinvent/2020/Amazon_Aurora_storage_demystified_DAT401.pdf

Amazon Aurora User Guide for Aurora

to varying degrees of data loss. To make sure that your database is ACID compliant, always set
innodb_flush_log_at_trx_commit to 1.

Note

In Aurora MySQL version 3, before you can change innodb_flush_log_at_trx_commit
to a value other than 1, you must first change the value of
innodb_trx_commit_allow_data_loss to 1. By doing so, you acknowledge the risk of
data loss.

Minimizing and troubleshooting Aurora MySQL deadlocks

Users running workloads that regularly experience constraint violations on unique secondary
indexes or foreign keys, when modifying records on the same data page concurrently, might
experience increased deadlocks and lock wait timeouts. These deadlocks and timeouts are because
of a MySQL Community Edition bug fix.

This fix is included in MySQL Community Edition versions 5.7.26 and higher, and was backported
into Aurora MySQL versions 2.10.3 and higher. The fix is necessary for enforcing serializability,
by implementing additional locking for these types of data manipulation language (DML)
operations, on changes made to records in an InnoDB table. This issue was uncovered as part of an
investigation into deadlock issues introduced by a previous MySQL Community Edition bug fix.

The fix changed the internal handling for the partial rollback of a tuple (row) update in the InnoDB
storage engine. Operations that generate constraint violations on foreign keys or unique secondary
indexes cause partial rollback. This includes, but isn't limited to, concurrent INSERT...ON
DUPLICATE KEY UPDATE, REPLACE INTO, and INSERT IGNORE statements (upserts).

In this context, partial rollback doesn't refer to the rollback of application-level transactions, but
rather an internal InnoDB rollback of changes to a clustered index, when a constraint violation is
encountered. For example, a duplicate key value is found during an upsert operation.

In a normal insert operation, InnoDB atomically creates clustered and secondary index entries
for each index. If InnoDB detects a duplicate value on a unique secondary index during an upsert
operation, the inserted entry in the clustered index has to be reverted (partial rollback), and the
update then has to be applied to the existing duplicate row. During this internal partial rollback
step, InnoDB must lock each record seen as part of the operation. The fix ensures transaction
serializability by introducing additional locking after the partial rollback.

Recommendations for Aurora MySQL 1720

https://bugs.mysql.com/bug.php?id=98324
https://dev.mysql.com/doc/relnotes/mysql/5.7/en/news-5-7-26.html
https://dev.mysql.com/doc/refman/5.7/en/innodb-index-types.html

Amazon Aurora User Guide for Aurora

Minimizing InnoDB deadlocks

You can take the following approaches to reduce the frequency of deadlocks in your database
instance. More examples can be found in the MySQL documentation.

1. To reduce the chances of deadlocks, commit transactions immediately after making a related set
of changes. You can do this by breaking up large transactions (multiple row updates between
commits) into smaller ones. If you're batch inserting rows, then try to reduce batch insert sizes,
especially when using the upsert operations mentioned previously.

To reduce the number of possible partial rollbacks, you can try some of the following
approaches:

a. Replace batch insert operations with inserting one row at a time. This can reduce the amount
of time where locks are held by transactions that might have conflicts.

b. Instead of using REPLACE INTO, rewrite the SQL statement as a multistatement transaction
such as the following:

BEGIN;
DELETE conflicting rows;
INSERT new rows;
COMMIT;

c. Instead of using INSERT...ON DUPLICATE KEY UPDATE, rewrite the SQL statement as a
multistatement transaction such as the following:

BEGIN;
SELECT rows that conflict on secondary indexes;
UPDATE conflicting rows;
INSERT new rows;
COMMIT;

2. Avoid long-running transactions, active or idle, that might hold onto locks. This includes
interactive MySQL client sessions that might be open for an extended period with an
uncommitted transaction. When optimizing transaction sizes or batch sizes, the impact can
vary depending on a number of factors such as concurrency, number of duplicates, and table
structure. Any changes should be implemented and tested based on your workload.

3. In some situations, deadlocks can occur when two transactions attempt to access the same
datasets, either in one or multiple tables, in different orders. To prevent this, you can modify the
transactions to access the data in the same order, thereby serializing the access. For example,

Recommendations for Aurora MySQL 1721

https://bugs.mysql.com/bug.php?id=98324

Amazon Aurora User Guide for Aurora

create a queue of transactions to be completed. This approach can help to avoid deadlocks when
multiple transactions occur concurrently.

4. Adding carefully chosen indexes to your tables can improve selectivity and reduce the need to
access rows, which leads to less locking.

5. If you encounter gap locking, you can modify the transaction isolation level to READ
COMMITTED for the session or transaction to prevent it. For more information on InnoDB
isolation levels and their behaviors, see Transaction isolation levels in the MySQL
documentation.

Note

While you can take precautions to reduce the possibility of deadlocks occurring, deadlocks
are an expected database behavior and can still occur. Applications should have the
necessary logic to handle deadlocks when they are encountered. For example, implement
retry and backing-off logic in the application. It’s best to address the root cause of the issue
but if a deadlock does occur, the application has the option to wait and retry.

Monitoring InnoDB deadlocks

Deadlocks can occur in MySQL when application transactions try to take table-level and row-
level locks in a way that results in circular waiting. An occasional InnoDB deadlock isn't necessarily
an issue, because the InnoDB storage engine detects the condition immediately and rolls back
one of the transactions automatically. If you encounter deadlocks frequently, we recommend
reviewing and modifying your application to alleviate performance issues and avoid deadlocks.
When deadlock detection is turned on (the default), InnoDB automatically detects transaction
deadlocks and rolls back a transaction or transactions to break the deadlock. InnoDB tries to pick
small transactions to roll back, where the size of a transaction is determined by the number of rows
inserted, updated, or deleted.

• SHOW ENGINE statement – The SHOW ENGINE INNODB STATUS \G statement contains details
of the most recent deadlock encountered on the database since the last restart.

• MySQL error log – If you encounter frequent deadlocks where the output of the SHOW ENGINE
statement is inadequate, you can turn on the innodb_print_all_deadlocks DB cluster parameter.

When this parameter is turned on, information about all deadlocks in InnoDB user transactions is
recorded in the Aurora MySQL error log.

Recommendations for Aurora MySQL 1722

https://dev.mysql.com/doc/refman/5.7/en/innodb-locking.html#innodb-gap-locks
https://dev.mysql.com/doc/refman/5.7/en/innodb-transaction-isolation-levels.html
https://dev.mysql.com/doc/refman/8.0/en/glossary.html#glos_deadlock
https://dev.mysql.com/doc/refman/8.0/en/glossary.html#glos_deadlock_detection
https://dev.mysql.com/doc/refman/5.7/en/show-engine.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-parameters.html#sysvar_innodb_print_all_deadlocks
https://dev.mysql.com/doc/refman/8.0/en/error-log.html

Amazon Aurora User Guide for Aurora

• Amazon CloudWatch metrics – We also recommend that you proactively monitor deadlocks
using the CloudWatch metric Deadlocks. For more information, see Instance-level metrics for
Amazon Aurora.

• Amazon CloudWatch Logs – With CloudWatch Logs, you can view metrics, analyze log data, and
create real-time alarms. For more information, see Monitor errors in Amazon Aurora MySQL and
Amazon RDS for MySQL using Amazon CloudWatch and send notifications using Amazon SNS.

Using CloudWatch Logs with innodb_print_all_deadlocks turned on, you can configure
alarms to notify you when the number of deadlocks exceeds a given threshold. To define a
threshold, we recommend that you observe your trends and use a value based on your normal
workload.

• Performance Insights – When you use Performance Insights, you can monitor the
innodb_deadlocks and innodb_lock_wait_timeout metrics. For more information on
these metrics, see Non-native counters for Aurora MySQL.

Recommendations for Aurora MySQL 1723

https://aws.amazon.com/blogs/database/monitor-errors-in-amazon-aurora-mysql-and-amazon-rds-for-mysql-using-amazon-cloudwatch-and-send-notifications-using-amazon-sns/
https://aws.amazon.com/blogs/database/monitor-errors-in-amazon-aurora-mysql-and-amazon-rds-for-mysql-using-amazon-cloudwatch-and-send-notifications-using-amazon-sns/

Amazon Aurora User Guide for Aurora

Troubleshooting Amazon Aurora MySQL database performance

This topic focuses on some common Aurora MySQL DB performance issues, and how to
troubleshoot or collect information to remediate these issues quickly. We divide database
performance into two categories:

• Server performance – The entire database server runs slower.

• Query performance – One or more queries take longer to run.

AWS monitoring options

We recommend that you use the following AWS monitoring options to help with troubleshooting:

• Amazon CloudWatch – Amazon CloudWatch monitors your AWS resources and the applications
you run on AWS in real time. You can use CloudWatch to collect and track metrics, which are
variables you can measure for your resources and applications. For more information, see What is
Amazon CloudWatch?.

You can view all of the system metrics and process information for your DB instances on the
AWS Management Console. You can configure your Aurora MySQL DB cluster to publish general,
slow, audit, and error log data to a log group in Amazon CloudWatch Logs. This allows you to
view trends, maintain logs if a host is impacted, and create a baseline for "normal" performance
to easily identify anomalies or changes. For more information, see Publishing Amazon Aurora
MySQL logs to Amazon CloudWatch Logs.

• Enhanced Monitoring – To enable additional Amazon CloudWatch metrics for an Aurora MySQL
database, turn on Enhanced Monitoring. When you create or modify an Aurora DB cluster,
select Enable Enhanced Monitoring. This allows Aurora to publish performance metrics to
CloudWatch. Some of the key metrics available include CPU usage, database connections,
storage usage, and query latency. These can help identify performance bottlenecks.

The amount of information transferred for a DB instance is directly proportional to the defined
granularity for Enhanced Monitoring. A smaller monitoring interval results in more frequent
reporting of OS metrics and increases your monitoring cost. To manage costs, set different
granularities for different instances in your AWS accounts. The default granularity at creation of
an instance is 60 seconds. For more information, see Cost of Enhanced Monitoring.

• Performance Insights – You can view all of the database call metrics. This includes DB locks,
waits, and the number of rows processed, all of which you can use for troubleshooting. When

Troubleshooting Aurora MySQL performance 1724

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/WhatIsCloudWatch.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/WhatIsCloudWatch.html

Amazon Aurora User Guide for Aurora

you create or modify an Aurora DB cluster, select Turn on Performance Insights. By default,
Performance Insights has a 7-day data retention period, but can be customized to analyze
longer-term performance trends. For longer than 7-day retention, you need to upgrade to the
paid tier. For more information, see Performance Insights pricing. You can set the data retention
period for each Aurora DB instance separately. For more information, see Monitoring DB load
with Performance Insights on Amazon Aurora.

Most common reasons for Aurora MySQL database performance issues

You can use the following steps to troubleshoot performance issues in your Aurora MySQL
database. We list these steps in the logical order of investigation, but they're not intended to be
linear. One discovery could jump across steps, which allow for a series of investigative paths.

1. Workload – Understand your database workload.

2. Logging – Review all of the database logs.

3. Query performance – Examine your query execution plans to see if they've changed. Code
changes can cause plans to change.

Troubleshooting workload issues for Aurora MySQL databases

Database workload can be viewed as reads and writes. With an understanding of "normal" database
workload, you can tune queries and the database server to meet demand as it changes. There are a
number of different reasons why performance can change, so the first step is to understand what
has changed.

• Has there been a major or minor version upgrade?

A major version upgrade includes changes to the engine code, particularly in the optimizer,
that can change the query execution plan. When upgrading database versions, especially major
versions, it's very important that you analyze the database workload and tune accordingly.
Tuning can involve optimizing and rewriting queries, or adding and updating parameter settings,
depending on the results of testing. Understanding what is causing the impact will allow you to
start focusing on that specific area.

For more information, see What is new in MySQL 8.0 and Server and status variables and options
added, deprecated, or removed in MySQL 8.0 in the MySQL documentation, and Comparing
Aurora MySQL version 2 and Aurora MySQL version 3.

Most common reasons for DB performance issues 1725

https://aws.amazon.com/rds/performance-insights/pricing/
https://dev.mysql.com/doc/refman/8.0/en/mysql-nutshell.html
https://dev.mysql.com/doc/refman/8.0/en/added-deprecated-removed.html
https://dev.mysql.com/doc/refman/8.0/en/added-deprecated-removed.html

Amazon Aurora User Guide for Aurora

• Has there been an increase in data being processed (row counts)?

• Are there more queries running concurrently?

• Are there schema or database changes?

• Have there been code defects or fixes?

Contents

• Instance host metrics

• CPU usage

• Memory usage

• Network throughput

• Database metrics

• Troubleshooting memory usage issues for Aurora MySQL databases

• Example 1: Continuous high memory usage

• Example 2: Transient memory spikes

• Troubleshooting out-of-memory issues for Aurora MySQL databases

Instance host metrics

Monitor instance host metrics such as CPU, memory, and network activity to help understand
whether there has been a workload change. There are two main concepts for understanding
workload changes:

• Utilization – The usage of a device, such as CPU or disk. It can be time-based or capacity-based.

• Time-based – The amount of time that a resource is busy over a particular observation period.

• Capacity-based – The amount of throughput that a system or component can deliver, as a
percentage of its capacity.

• Saturation – The degree to which more work is required of a resource than it can process. When
capacity-based usage reaches 100%, the extra work can't be processed and must be queued.

CPU usage

You can use the following tools to identify CPU usage and saturation:

Troubleshooting workload issues 1726

Amazon Aurora User Guide for Aurora

• CloudWatch provides the CPUUtilization metric. If this reaches 100%, then the instance is
saturated. However, CloudWatch metrics are averaged over 1 minute, and lack granularity.

For more information on CloudWatch metrics, see Instance-level metrics for Amazon Aurora.

• Enhanced Monitoring provides metrics returned by the operating system top command. It shows
load averages and the following CPU states, with 1-second granularity:

• Idle (%) = Idle time

• IRQ (%) = Software interrupts

• Nice (%) = Nice time for processes with a niced priority.

• Steal (%) = Time spent serving other tenants (virtualization related)

• System (%) = System time

• User (%) = User time

• Wait (%) = I/O wait

For more information on Enhanced Monitoring metrics, see OS metrics for Aurora.

Memory usage

If the system is under memory pressure, and resource consumption is reaching saturation, you
should be observing a high degree of page scanning, paging, swapping, and out-of-memory errors.

You can use the following tools to identify memory usage and saturation:

CloudWatch provides the FreeableMemory metric, that shows how much memory can be
reclaimed by flushing some of the OS caches and the current free memory.

For more information on CloudWatch metrics, see Instance-level metrics for Amazon Aurora.

Enhanced Monitoring provides the following metrics that can help you identify memory usage
issues:

• Buffers (KB) – The amount of memory used for buffering I/O requests before writing to the
storage device, in kilobytes.

• Cached (KB) – The amount of memory used for caching file system–based I/O.

• Free (KB) – The amount of unassigned memory, in kilobytes.

• Swap – Cached, Free, and Total.
Troubleshooting workload issues 1727

https://en.wikipedia.org/wiki/Nice_(Unix)

Amazon Aurora User Guide for Aurora

For example, if you see that your DB instance uses Swap memory, then the total amount of
memory for your workload is larger than your instance currently has available. We recommend
increasing the size of your DB instance or tuning your workload to use less memory.

For more information on Enhanced Monitoring metrics, see OS metrics for Aurora.

For more detailed information on using the Performance Schema and sys schema to determine
which connections and components are using memory, see Troubleshooting memory usage issues
for Aurora MySQL databases.

Network throughput

CloudWatch provides the following metrics for total network throughput, all averaged over 1
minute:

• NetworkReceiveThroughput – The amount of network throughput received from clients by
each instance in the Aurora DB cluster.

• NetworkTransmitThroughput – The amount of network throughput sent to clients by each
instance in the Aurora DB cluster.

• NetworkThroughput – The amount of network throughput both received from and transmitted
to clients by each instance in the Aurora DB cluster.

• StorageNetworkReceiveThroughput – The amount of network throughput received from
the Aurora storage subsystem by each instance in the DB cluster.

• StorageNetworkTransmitThroughput – The amount of network throughput sent to the
Aurora storage subsystem by each instance in the Aurora DB cluster.

• StorageNetworkThroughput – The amount of network throughput received from and sent to
the Aurora storage subsystem by each instance in the Aurora DB cluster.

For more information on CloudWatch metrics, see Instance-level metrics for Amazon Aurora.

Enhanced Monitoring provides the network received (RX) and transmitted (TX) graphs, with up to
1-second granularity.

For more information on Enhanced Monitoring metrics, see OS metrics for Aurora.

Database metrics

Examine the following CloudWatch metrics for workload changes:

Troubleshooting workload issues 1728

Amazon Aurora User Guide for Aurora

• BlockedTransactions – The average number of transactions in the database that are blocked
per second.

• BufferCacheHitRatio – The percentage of requests that are served by the buffer cache.

• CommitThroughput – The average number of commit operations per second.

• DatabaseConnections – The number of client network connections to the database instance.

• Deadlocks – The average number of deadlocks in the database per second.

• DMLThroughput – The average number of inserts, updates, and deletes per second.

• ResultSetCacheHitRatio – The percentage of requests that are served by the query cache.

• RollbackSegmentHistoryListLength – The undo logs that record committed transactions
with delete-marked records.

• RowLockTime – The total time spent acquiring row locks for InnoDB tables.

• SelectThroughput – The average number of select queries per second.

For more information on CloudWatch metrics, see Instance-level metrics for Amazon Aurora.

Consider the following questions when examining the workload:

1. Were there recent changes in DB instance class, for example reducing the instance size from
8xlarge to 4xlarge, or changing from db.r5 to db.r6?

2. Can you create a clone and reproduce the issue, or is it happening only on that one instance?

3. Is there server resource exhaustion, high CPU or memory exhaustion? If yes, this could mean that
additional hardware is required.

4. Are one or more queries taking longer?

5. Are the changes caused by an upgrade, especially a major version upgrade? If yes, then compare
the pre- and post-upgrade metrics.

6. Are there changes in the number of reader DB instances?

7. Have you enabled general, audit, or binary logging? For more information, see Logging for
Aurora MySQL databases.

8. Did you enable, disable, or change your use of binary log (binlog) replication?

9. Are there any long-running transactions holding large numbers of row locks? Examine the
InnoDB history list length (HLL) for indications of long-running transactions.

For more information, see The InnoDB history list length increased significantly and the blog
post Why is my SELECT query running slowly on my Amazon Aurora MySQL DB cluster?.

Troubleshooting workload issues 1729

https://repost.aws/knowledge-center/aurora-mysql-slow-select-query

Amazon Aurora User Guide for Aurora

a. If a large HLL is caused by a write transaction, it means that UNDO logs are accumulating (not
being cleaned regularly). In a large write transaction, this accumulation can grow quickly. In
MySQL, UNDO is stored in the SYSTEM tablespace. The SYSTEM tablespace is not shrinkable.
The UNDO log might cause the SYSTEM tablespace to grow to several GB, or even TB. After the
purge, release the allocated space by taking a logical backup (dump) of the data, then import
the dump to a new DB instance.

b. If a large HLL is caused by a read transaction (long-running query), it can mean that the
query is using a large amount of temporary space. Release the temporary space by rebooting.
Examine Performance Insights DB metrics for any changes in the Temp section, such as
created_tmp_tables. For more information, see Monitoring DB load with Performance
Insights on Amazon Aurora.

10.Can you split long-running transactions into smaller ones that modify fewer rows?

11.Are there any changes in blocked transactions or increases in deadlocks? Examine Performance
Insights DB metrics for any changes in status variables in the Locks section, such as
innodb_row_lock_time, innodb_row_lock_waits, and innodb_dead_locks. Use 1-
minute or 5-minute intervals.

12.Are there increased wait events? Examine Performance Insights wait events and wait types using
1-minute or 5-minute intervals. Analyze the top wait events and see whether they are correlated
to workload changes or database contention. For example, buf_pool mutex indicates buffer
pool contention. For more information, see Tuning Aurora MySQL with wait events.

Troubleshooting memory usage issues for Aurora MySQL databases

While CloudWatch, Enhanced Monitoring, and Performance Insights provide a good overview of
memory usage at the operating system level, such as how much memory the database process
is using, they don't allow you to break down what connections or components within the engine
might be causing this memory usage.

To troubleshoot this, you can use the Performance Schema and sys schema. In Aurora MySQL
version 3, memory instrumentation is enabled by default when the Performance Schema is
enabled. In Aurora MySQL version 2, only memory instrumentation for Performance Schema
memory usage is enabled by default. For information on tables available in the Performance
Schema to track memory usage and enabling Performance Schema memory instrumentation,
see Memory summary tables in the MySQL documentation. For more information on using the
Performance Schema with Performance Insights, see Turning on the Performance Schema for
Performance Insights on Aurora MySQL.

Troubleshooting workload issues 1730

https://dev.mysql.com/doc/refman/5.7/en/innodb-system-tablespace.html
https://dev.mysql.com/doc/refman/8.3/en/performance-schema-memory-summary-tables.html

Amazon Aurora User Guide for Aurora

While detailed information is available in the Performance Schema to track current memory usage,
the MySQL sys schema has views on top of Performance Schema tables that you can use to quickly
pinpoint where memory is being used.

In the sys schema, the following views are available to track memory usage by connection,
component, and query.

View Description

memory_by_host_by_current_bytes Provides information on engine memory
usage by host. This can be useful for identifyi
ng which application servers or client hosts are
consuming memory.

memory_by_thread_by_current_bytes Provides information on engine memory
usage by thread ID. The thread ID in MySQL
can be a client connection or a background
thread. You can map thread IDs to MySQL
connection IDs by using the sys.processlist
view or performance_schema.threads table.

memory_by_user_by_current_bytes Provides information on engine memory
usage by user. This can be useful for identifyi
ng which user accounts or clients are
consuming memory.

memory_global_by_current_bytes Provides information on engine memory
usage by engine component. This can
be useful for identifying memory usage
globally by engine buffers or components.
For example, you might see the memory/in
nodb/buf_buf_pool event for the InnoDB
buffer pool, or the memory/sql/Prepare
d_statement::main_mem_root event
for prepared statements.

memory_global_total Provides an overview of total tracked memory
usage in the database engine.

Troubleshooting workload issues 1731

https://dev.mysql.com/doc/refman/8.0/en/sys-schema.html
https://dev.mysql.com/doc/refman/8.0/en/sys-memory-by-host-by-current-bytes.html
https://dev.mysql.com/doc/refman/8.0/en/sys-memory-by-thread-by-current-bytes.html
https://dev.mysql.com/doc/refman/8.0/en/sys-processlist.html
https://dev.mysql.com/doc/refman/8.0/en/performance-schema-threads-table.html
https://dev.mysql.com/doc/refman/8.0/en/sys-memory-by-user-by-current-bytes.html
https://dev.mysql.com/doc/refman/8.0/en/sys-memory-global-by-current-bytes.html
https://dev.mysql.com/doc/refman/8.0/en/sys-memory-global-total.html

Amazon Aurora User Guide for Aurora

In Aurora MySQL version 3.05 and higher, you can also track maximum memory usage by
statement digest in the Performance Schema statement summary tables. The statement summary
tables contain normalized statement digests and aggregated statistics on their execution. The
MAX_TOTAL_MEMORY column can help you identify maximum memory used by query digest since
the statistics were last reset, or since the database instance was restarted. This can be useful in
identifying specific queries that might be consuming a lot of memory.

Note

The Performance Schema and sys schema show you the current memory usage on the
server, and the high-water marks for memory consumed per connection and engine
component. Because the Performance Schema is maintained in memory, information is
reset when the DB instance restarts. To maintain a history over time, we recommend that
you configure retrieval and storage of this data outside of the Performance Schema.

Topics

• Example 1: Continuous high memory usage

• Example 2: Transient memory spikes

Example 1: Continuous high memory usage

Looking globally at FreeableMemory in CloudWatch, we can see that memory usage greatly
increased at 2024-03-26 02:59 UTC.

Troubleshooting workload issues 1732

https://dev.mysql.com/doc/refman/8.0/en/performance-schema-statement-summary-tables.html

Amazon Aurora User Guide for Aurora

This doesn't tell us the whole picture. To determine which component is using the most memory,
you can log into the database and look at sys.memory_global_by_current_bytes. This table
contains a list of memory events that MySQL tracks, along with information on memory allocation
per event. Each memory tracking event starts with memory/%, followed by other information on
which engine component/feature the event is associated with.

For example, memory/performance_schema/% is for memory events related to the Performance
Schema, memory/innodb/% is for InnoDB, and so on. For more information on event
naming conventions, see Performance Schema instrument naming conventions in the MySQL
documentation.

From the following query, we can find the likely culprit based on current_alloc, but we can also
see many memory/performance_schema/% events.

mysql> SELECT * FROM sys.memory_global_by_current_bytes LIMIT 10;

+---
+---------------+---------------+-------------------+------------+------------
+----------------+
| event_name |
 current_count | current_alloc | current_avg_alloc | high_count | high_alloc |
 high_avg_alloc |
+---
+---------------+---------------+-------------------+------------+------------
+----------------+
| memory/sql/Prepared_statement::main_mem_root |
 512817 | 4.91 GiB | 10.04 KiB | 512823 | 4.91 GiB | 10.04 KiB
 |
| memory/performance_schema/prepared_statements_instances |
 252 | 488.25 MiB | 1.94 MiB | 252 | 488.25 MiB | 1.94 MiB |
| memory/innodb/hash0hash |
 4 | 79.07 MiB | 19.77 MiB | 4 | 79.07 MiB | 19.77 MiB |
| memory/performance_schema/events_errors_summary_by_thread_by_error |
 1028 | 52.27 MiB | 52.06 KiB | 1028 | 52.27 MiB | 52.06 KiB |
| memory/performance_schema/events_statements_summary_by_thread_by_event_name |
 4 | 47.25 MiB | 11.81 MiB | 4 | 47.25 MiB | 11.81 MiB |
| memory/performance_schema/events_statements_summary_by_digest |
 1 | 40.28 MiB | 40.28 MiB | 1 | 40.28 MiB | 40.28 MiB |
| memory/performance_schema/memory_summary_by_thread_by_event_name |
 4 | 31.64 MiB | 7.91 MiB | 4 | 31.64 MiB | 7.91 MiB |
| memory/innodb/memory |
 15227 | 27.44 MiB | 1.85 KiB | 20619 | 33.33 MiB | 1.66 KiB |

Troubleshooting workload issues 1733

https://dev.mysql.com/doc/refman/8.0/en/performance-schema-instrument-naming.html

Amazon Aurora User Guide for Aurora

| memory/sql/String::value |
 74411 | 21.85 MiB | 307 bytes | 76867 | 25.54 MiB | 348 bytes |
| memory/sql/TABLE |
 8381 | 21.03 MiB | 2.57 KiB | 8381 | 21.03 MiB | 2.57 KiB |
+---
+---------------+---------------+-------------------+------------+------------
+----------------+
10 rows in set (0.02 sec)

We mentioned previously that the Performance Schema is stored in memory, which means that it's
also tracked in the performance_schema memory instrumentation.

Note

If you find that the Performance Schema is using a lot of memory, and want to limit
its memory usage, you can tune database parameters based on your requirements. For
more information, see The Performance Schema memory-allocation model in the MySQL
documentation.

For readability, you can rerun the same query but exclude Performance Schema events. The output
shows the following:

• The main memory consumer is memory/sql/Prepared_statement::main_mem_root.

• The current_alloc column tells us that MySQL has 4.91 GiB currently allocated to this event.

• The high_alloc column tells us that 4.91 GiB is the high-water mark of current_alloc
since the stats were last reset or since the server restarted. This means that memory/sql/
Prepared_statement::main_mem_root is at its highest value.

mysql> SELECT * FROM sys.memory_global_by_current_bytes WHERE event_name NOT LIKE
 'memory/performance_schema/%' LIMIT 10;

+---+---------------+---------------
+-------------------+------------+------------+----------------+
| event_name | current_count | current_alloc |
 current_avg_alloc | high_count | high_alloc | high_avg_alloc |
+---+---------------+---------------
+-------------------+------------+------------+----------------+

Troubleshooting workload issues 1734

https://dev.mysql.com/doc/refman/8.0/en/performance-schema-memory-model.html

Amazon Aurora User Guide for Aurora

| memory/sql/Prepared_statement::main_mem_root | 512817 | 4.91 GiB | 10.04
 KiB | 512823 | 4.91 GiB | 10.04 KiB |
| memory/innodb/hash0hash | 4 | 79.07 MiB | 19.77
 MiB | 4 | 79.07 MiB | 19.77 MiB |
| memory/innodb/memory | 17096 | 31.68 MiB | 1.90
 KiB | 22498 | 37.60 MiB | 1.71 KiB |
| memory/sql/String::value | 122277 | 27.94 MiB | 239
 bytes | 124699 | 29.47 MiB | 247 bytes |
| memory/sql/TABLE | 9927 | 24.67 MiB | 2.55
 KiB | 9929 | 24.68 MiB | 2.55 KiB |
| memory/innodb/lock0lock | 8888 | 19.71 MiB | 2.27
 KiB | 8888 | 19.71 MiB | 2.27 KiB |
| memory/sql/Prepared_statement::infrastructure | 257623 | 16.24 MiB | 66
 bytes | 257631 | 16.24 MiB | 66 bytes |
| memory/mysys/KEY_CACHE | 3 | 16.00 MiB | 5.33
 MiB | 3 | 16.00 MiB | 5.33 MiB |
| memory/innodb/sync0arr | 3 | 7.03 MiB | 2.34
 MiB | 3 | 7.03 MiB | 2.34 MiB |
| memory/sql/THD::main_mem_root | 815 | 6.56 MiB | 8.24
 KiB | 849 | 7.19 MiB | 8.67 KiB |
+---+---------------+---------------
+-------------------+------------+------------+----------------+
10 rows in set (0.06 sec)

From the name of the event, we can tell that this memory is being used for prepared
statements. If you want to see which connections are using this memory, you can check
memory_by_thread_by_current_bytes.

In the following example, each connection has approximately 7 MiB allocated, with a high-water
mark of approximately 6.29 MiB (current_max_alloc). This makes sense, because the example
is using sysbench with 80 tables and 800 connections with prepared statements. If you want
to reduce memory usage in this scenario, you can optimize your application's usage of prepared
statements to reduce memory consumption.

mysql> SELECT * FROM sys.memory_by_thread_by_current_bytes;

+-----------+---+--------------------
+-------------------+-------------------+-------------------+-----------------+
| thread_id | user | current_count_used |
 current_allocated | current_avg_alloc | current_max_alloc | total_allocated |
+-----------+---+--------------------
+-------------------+-------------------+-------------------+-----------------+

Troubleshooting workload issues 1735

https://dev.mysql.com/doc/refman/8.0/en/sys-memory-by-thread-by-current-bytes.html

Amazon Aurora User Guide for Aurora

| 46 | rdsadmin@localhost | 405 | 8.47 MiB
 | 21.42 KiB | 8.00 MiB | 155.86 MiB |
| 61 | reinvent@10.0.4.4 | 1749 | 6.72 MiB
 | 3.93 KiB | 6.29 MiB | 14.24 MiB |
| 101 | reinvent@10.0.4.4 | 1845 | 6.71 MiB
 | 3.72 KiB | 6.29 MiB | 14.50 MiB |
| 55 | reinvent@10.0.4.4 | 1674 | 6.68 MiB
 | 4.09 KiB | 6.29 MiB | 14.13 MiB |
| 57 | reinvent@10.0.4.4 | 1416 | 6.66 MiB
 | 4.82 KiB | 6.29 MiB | 13.52 MiB |
| 112 | reinvent@10.0.4.4 | 1759 | 6.66 MiB
 | 3.88 KiB | 6.29 MiB | 14.17 MiB |
| 66 | reinvent@10.0.4.4 | 1428 | 6.64 MiB
 | 4.76 KiB | 6.29 MiB | 13.47 MiB |
| 75 | reinvent@10.0.4.4 | 1389 | 6.62 MiB
 | 4.88 KiB | 6.29 MiB | 13.40 MiB |
| 116 | reinvent@10.0.4.4 | 1333 | 6.61 MiB
 | 5.08 KiB | 6.29 MiB | 13.21 MiB |
| 90 | reinvent@10.0.4.4 | 1448 | 6.59 MiB
 | 4.66 KiB | 6.29 MiB | 13.58 MiB |
| 98 | reinvent@10.0.4.4 | 1440 | 6.57 MiB
 | 4.67 KiB | 6.29 MiB | 13.52 MiB |
| 94 | reinvent@10.0.4.4 | 1433 | 6.57 MiB
 | 4.69 KiB | 6.29 MiB | 13.49 MiB |
| 62 | reinvent@10.0.4.4 | 1323 | 6.55 MiB
 | 5.07 KiB | 6.29 MiB | 13.48 MiB |
| 87 | reinvent@10.0.4.4 | 1323 | 6.55 MiB
 | 5.07 KiB | 6.29 MiB | 13.25 MiB |
| 99 | reinvent@10.0.4.4 | 1346 | 6.54 MiB
 | 4.98 KiB | 6.29 MiB | 13.24 MiB |
| 105 | reinvent@10.0.4.4 | 1347 | 6.54 MiB
 | 4.97 KiB | 6.29 MiB | 13.34 MiB |
| 73 | reinvent@10.0.4.4 | 1335 | 6.54 MiB
 | 5.02 KiB | 6.29 MiB | 13.23 MiB |
| 54 | reinvent@10.0.4.4 | 1510 | 6.53 MiB
 | 4.43 KiB | 6.29 MiB | 13.49 MiB |
.
 .
.
 .
.
 .
| 812 | reinvent@10.0.4.4 | 1259 | 6.38 MiB
 | 5.19 KiB | 6.29 MiB | 13.05 MiB |

Troubleshooting workload issues 1736

Amazon Aurora User Guide for Aurora

| 214 | reinvent@10.0.4.4 | 1279 | 6.38 MiB
 | 5.10 KiB | 6.29 MiB | 12.90 MiB |
| 325 | reinvent@10.0.4.4 | 1254 | 6.38 MiB
 | 5.21 KiB | 6.29 MiB | 12.99 MiB |
| 705 | reinvent@10.0.4.4 | 1273 | 6.37 MiB
 | 5.13 KiB | 6.29 MiB | 13.03 MiB |
| 530 | reinvent@10.0.4.4 | 1268 | 6.37 MiB
 | 5.15 KiB | 6.29 MiB | 12.92 MiB |
| 307 | reinvent@10.0.4.4 | 1263 | 6.37 MiB
 | 5.17 KiB | 6.29 MiB | 12.87 MiB |
| 738 | reinvent@10.0.4.4 | 1260 | 6.37 MiB
 | 5.18 KiB | 6.29 MiB | 13.00 MiB |
| 819 | reinvent@10.0.4.4 | 1252 | 6.37 MiB
 | 5.21 KiB | 6.29 MiB | 13.01 MiB |
| 31 | innodb/srv_purge_thread | 17810 | 3.14 MiB
 | 184 bytes | 2.40 MiB | 205.69 MiB |
| 38 | rdsadmin@localhost | 599 | 1.76 MiB
 | 3.01 KiB | 1.00 MiB | 25.58 MiB |
| 1 | sql/main | 3756 | 1.32 MiB
 | 367 bytes | 355.78 KiB | 6.19 MiB |
| 854 | rdsadmin@localhost | 46 | 1.08 MiB
 | 23.98 KiB | 1.00 MiB | 5.10 MiB |
| 30 | innodb/clone_gtid_thread | 1596 | 573.14
 KiB | 367 bytes | 254.91 KiB | 970.69 KiB |
| 40 | rdsadmin@localhost | 235 | 245.19
 KiB | 1.04 KiB | 128.88 KiB | 808.64 KiB |
| 853 | rdsadmin@localhost | 96 | 94.63
 KiB | 1009 bytes | 29.73 KiB | 422.45 KiB |
| 36 | rdsadmin@localhost | 33 | 36.29
 KiB | 1.10 KiB | 16.08 KiB | 74.15 MiB |
| 33 | sql/event_scheduler | 3 | 16.27
 KiB | 5.42 KiB | 16.04 KiB | 16.27 KiB |
| 35 | sql/compress_gtid_table | 8 | 14.20
 KiB | 1.77 KiB | 8.05 KiB | 18.62 KiB |
| 25 | innodb/fts_optimize_thread | 12 | 1.86 KiB
 | 158 bytes | 648 bytes | 1.98 KiB |
| 23 | innodb/srv_master_thread | 11 | 1.23 KiB
 | 114 bytes | 361 bytes | 24.40 KiB |
| 24 | innodb/dict_stats_thread | 11 | 1.23 KiB
 | 114 bytes | 361 bytes | 1.35 KiB |
| 5 | innodb/io_read_thread | 1 | 144
 bytes | 144 bytes | 144 bytes | 144 bytes |
| 6 | innodb/io_read_thread | 1 | 144
 bytes | 144 bytes | 144 bytes | 144 bytes |

Troubleshooting workload issues 1737

Amazon Aurora User Guide for Aurora

| 2 | sql/aws_oscar_log_level_monitor | 0 | 0
 bytes | 0 bytes | 0 bytes | 0 bytes |
| 4 | innodb/io_ibuf_thread | 0 | 0
 bytes | 0 bytes | 0 bytes | 0 bytes |
| 7 | innodb/io_write_thread | 0 | 0
 bytes | 0 bytes | 0 bytes | 0 bytes |
| 8 | innodb/io_write_thread | 0 | 0
 bytes | 0 bytes | 0 bytes | 0 bytes |
| 9 | innodb/io_write_thread | 0 | 0
 bytes | 0 bytes | 0 bytes | 0 bytes |
| 10 | innodb/io_write_thread | 0 | 0
 bytes | 0 bytes | 0 bytes | 0 bytes |
| 11 | innodb/srv_lra_thread | 0 | 0
 bytes | 0 bytes | 0 bytes | 0 bytes |
| 12 | innodb/srv_akp_thread | 0 | 0
 bytes | 0 bytes | 0 bytes | 0 bytes |
| 18 | innodb/srv_lock_timeout_thread | 0 | 0
 bytes | 0 bytes | 0 bytes | 248 bytes |
| 19 | innodb/srv_error_monitor_thread | 0 | 0
 bytes | 0 bytes | 0 bytes | 0 bytes |
| 20 | innodb/srv_monitor_thread | 0 | 0
 bytes | 0 bytes | 0 bytes | 0 bytes |
| 21 | innodb/buf_resize_thread | 0 | 0
 bytes | 0 bytes | 0 bytes | 0 bytes |
| 22 | innodb/btr_search_sys_toggle_thread | 0 | 0
 bytes | 0 bytes | 0 bytes | 0 bytes |
| 32 | innodb/dict_persist_metadata_table_thread | 0 | 0
 bytes | 0 bytes | 0 bytes | 0 bytes |
| 34 | sql/signal_handler | 0 | 0
 bytes | 0 bytes | 0 bytes | 0 bytes |
+-----------+---+--------------------
+-------------------+-------------------+-------------------+-----------------+
831 rows in set (2.48 sec)

As mentioned earlier, the thread ID (thd_id) value here can refer to server background threads or
database connections. If you want to map thread ID values to database connection IDs, you can use
the performance_schema.threads table or the sys.processlist view, where conn_id is the
connection ID.

mysql> SELECT thd_id,conn_id,user,db,command,state,time,last_wait FROM sys.processlist
 WHERE user='reinvent@10.0.4.4';

Troubleshooting workload issues 1738

Amazon Aurora User Guide for Aurora

+--------+---------+-------------------+----------+---------+----------------+------
+---+
| thd_id | conn_id | user | db | command | state | time |
 last_wait |
+--------+---------+-------------------+----------+---------+----------------+------
+---+
| 590 | 562 | reinvent@10.0.4.4 | sysbench | Execute | closing tables | 0 |
 wait/io/redo_log_flush |
| 578 | 550 | reinvent@10.0.4.4 | sysbench | Sleep | NULL | 0 |
 idle |
| 579 | 551 | reinvent@10.0.4.4 | sysbench | Execute | closing tables | 0 |
 wait/io/redo_log_flush |
| 580 | 552 | reinvent@10.0.4.4 | sysbench | Execute | updating | 0 |
 wait/io/table/sql/handler |
| 581 | 553 | reinvent@10.0.4.4 | sysbench | Execute | updating | 0 |
 wait/io/table/sql/handler |
| 582 | 554 | reinvent@10.0.4.4 | sysbench | Sleep | NULL | 0 |
 idle |
| 583 | 555 | reinvent@10.0.4.4 | sysbench | Sleep | NULL | 0 |
 idle |
| 584 | 556 | reinvent@10.0.4.4 | sysbench | Execute | updating | 0 |
 wait/io/table/sql/handler |
| 585 | 557 | reinvent@10.0.4.4 | sysbench | Execute | closing tables | 0 |
 wait/io/redo_log_flush |
| 586 | 558 | reinvent@10.0.4.4 | sysbench | Execute | updating | 0 |
 wait/io/table/sql/handler |
| 587 | 559 | reinvent@10.0.4.4 | sysbench | Execute | closing tables | 0 |
 wait/io/redo_log_flush |
.
 .
.
 .
.
 .
| 323 | 295 | reinvent@10.0.4.4 | sysbench | Sleep | NULL | 0 |
 idle |
| 324 | 296 | reinvent@10.0.4.4 | sysbench | Execute | updating | 0 |
 wait/io/table/sql/handler |
| 325 | 297 | reinvent@10.0.4.4 | sysbench | Execute | closing tables | 0 |
 wait/io/redo_log_flush |
| 326 | 298 | reinvent@10.0.4.4 | sysbench | Execute | updating | 0 |
 wait/io/table/sql/handler |
| 438 | 410 | reinvent@10.0.4.4 | sysbench | Execute | System lock | 0 |
 wait/lock/table/sql/handler |

Troubleshooting workload issues 1739

Amazon Aurora User Guide for Aurora

| 280 | 252 | reinvent@10.0.4.4 | sysbench | Sleep | starting | 0 |
 wait/io/socket/sql/client_connection |
| 98 | 70 | reinvent@10.0.4.4 | sysbench | Query | freeing items | 0 |
 NULL |
+--------+---------+-------------------+----------+---------+----------------+------
+---+
804 rows in set (5.51 sec)

Now we stop the sysbench workload, which closes the connections and released the memory.
Checking the events again, we can confirm that memory is released, but high_alloc still tells
us what the high-water mark is. The high_alloc column can be very useful in identifying
short spikes in memory usage, where you might not be able to immediately identify usage from
current_alloc, which shows only currently allocated memory.

mysql> SELECT * FROM sys.memory_global_by_current_bytes WHERE event_name='memory/sql/
Prepared_statement::main_mem_root' LIMIT 10;

+--+---------------+---------------
+-------------------+------------+------------+----------------+
| event_name | current_count | current_alloc |
 current_avg_alloc | high_count | high_alloc | high_avg_alloc |
+--+---------------+---------------
+-------------------+------------+------------+----------------+
| memory/sql/Prepared_statement::main_mem_root | 17 | 253.80 KiB | 14.93
 KiB | 512823 | 4.91 GiB | 10.04 KiB |
+--+---------------+---------------
+-------------------+------------+------------+----------------+
1 row in set (0.00 sec)

If you want to reset high_alloc, you can truncate the performance_schema memory summary
tables, but this resets all memory instrumentation. For more information, see Performance Schema
general table characteristics in the MySQL documentation.

In the following example, we can see that high_alloc is reset after truncation.

mysql> TRUNCATE `performance_schema`.`memory_summary_global_by_event_name`;
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT * FROM sys.memory_global_by_current_bytes WHERE event_name='memory/sql/
Prepared_statement::main_mem_root' LIMIT 10;

Troubleshooting workload issues 1740

https://dev.mysql.com/doc/refman/8.0/en/performance-schema-table-characteristics.html
https://dev.mysql.com/doc/refman/8.0/en/performance-schema-table-characteristics.html

Amazon Aurora User Guide for Aurora

+--+---------------+---------------
+-------------------+------------+------------+----------------+
| event_name | current_count | current_alloc |
 current_avg_alloc | high_count | high_alloc | high_avg_alloc |
+--+---------------+---------------
+-------------------+------------+------------+----------------+
| memory/sql/Prepared_statement::main_mem_root | 17 | 253.80 KiB | 14.93
 KiB | 17 | 253.80 KiB | 14.93 KiB |
+--+---------------+---------------
+-------------------+------------+------------+----------------+
1 row in set (0.00 sec)

Example 2: Transient memory spikes

Another common occurrence is short spikes in memory usage on a database server. These can be
periodic drops in freeable memory that are difficult to troubleshoot using current_alloc in
sys.memory_global_by_current_bytes, because the memory has already been freed.

Note

If Performance Schema statistics have been reset, or the database instance has been
restarted, this information won't be available in sys or performance_schema. To retain
this information, we recommend that you configure external metrics collection.

The following graph of the os.memory.free metric in Enhanced Monitoring shows brief 7-second
spikes in memory usage. Enhanced Monitoring allows you to monitor at intervals as short as 1
second, which is perfect for catching transient spikes like these.

Troubleshooting workload issues 1741

Amazon Aurora User Guide for Aurora

To help diagnose the cause of the memory usage here, we can use a combination of high_alloc
in the sys memory summary views and Performance Schema statement summary tables to try to
identify offending sessions and connections.

As expected, because memory usage isn't currently high, we can't see any major offenders in the
sys schema view under current_alloc.

mysql> SELECT * FROM sys.memory_global_by_current_bytes LIMIT 10;

+---
+---------------+---------------+-------------------+------------+------------
+----------------+
| event_name |
 current_count | current_alloc | current_avg_alloc | high_count | high_alloc |
 high_avg_alloc |
+---
+---------------+---------------+-------------------+------------+------------
+----------------+
| memory/innodb/hash0hash |
 4 | 79.07 MiB | 19.77 MiB | 4 | 79.07 MiB | 19.77 MiB |
| memory/innodb/os0event |
 439372 | 60.34 MiB | 144 bytes | 439372 | 60.34 MiB | 144 bytes
 |
| memory/performance_schema/events_statements_summary_by_digest |
 1 | 40.28 MiB | 40.28 MiB | 1 | 40.28 MiB | 40.28 MiB |
| memory/mysys/KEY_CACHE |
 3 | 16.00 MiB | 5.33 MiB | 3 | 16.00 MiB | 5.33 MiB |
| memory/performance_schema/events_statements_history_long |
 1 | 14.34 MiB | 14.34 MiB | 1 | 14.34 MiB | 14.34 MiB |
| memory/performance_schema/events_errors_summary_by_thread_by_error |
 257 | 13.07 MiB | 52.06 KiB | 257 | 13.07 MiB | 52.06 KiB |
| memory/performance_schema/events_statements_summary_by_thread_by_event_name |
 1 | 11.81 MiB | 11.81 MiB | 1 | 11.81 MiB | 11.81 MiB |
| memory/performance_schema/events_statements_summary_by_digest.digest_text |
 1 | 9.77 MiB | 9.77 MiB | 1 | 9.77 MiB | 9.77 MiB |
| memory/performance_schema/events_statements_history_long.digest_text |
 1 | 9.77 MiB | 9.77 MiB | 1 | 9.77 MiB | 9.77 MiB |
| memory/performance_schema/events_statements_history_long.sql_text |
 1 | 9.77 MiB | 9.77 MiB | 1 | 9.77 MiB | 9.77 MiB |
+---
+---------------+---------------+-------------------+------------+------------
+----------------+
10 rows in set (0.01 sec)

Troubleshooting workload issues 1742

https://dev.mysql.com/doc/refman/8.0/en/performance-schema-statement-summary-tables.html

Amazon Aurora User Guide for Aurora

Expanding the view to order by high_alloc, we can now see that the memory/temptable/
physical_ram component is a very good candidate here. At its highest, it consumed 515.00 MiB.

As its name suggests, memory/temptable/physical_ram instruments memory usage for the
TEMP storage engine in MySQL, which was introduced in MySQL 8.0. For more information on
how MySQL uses temporary tables, see Internal temporary table use in MySQL in the MySQL
documentation.

Note

We're using the sys.x$memory_global_by_current_bytes view in this example.

mysql> SELECT event_name, format_bytes(current_alloc) AS "currently allocated",
 sys.format_bytes(high_alloc) AS "high-water mark"
FROM sys.x$memory_global_by_current_bytes ORDER BY high_alloc DESC LIMIT 10;

+---
+---------------------+-----------------+
| event_name |
 currently allocated | high-water mark |
+---
+---------------------+-----------------+
| memory/temptable/physical_ram | 4.00
 MiB | 515.00 MiB |
| memory/innodb/hash0hash | 79.07
 MiB | 79.07 MiB |
| memory/innodb/os0event | 63.95
 MiB | 63.95 MiB |
| memory/performance_schema/events_statements_summary_by_digest | 40.28
 MiB | 40.28 MiB |
| memory/mysys/KEY_CACHE | 16.00
 MiB | 16.00 MiB |
| memory/performance_schema/events_statements_history_long | 14.34
 MiB | 14.34 MiB |
| memory/performance_schema/events_errors_summary_by_thread_by_error | 13.07
 MiB | 13.07 MiB |
| memory/performance_schema/events_statements_summary_by_thread_by_event_name | 11.81
 MiB | 11.81 MiB |
| memory/performance_schema/events_statements_summary_by_digest.digest_text | 9.77
 MiB | 9.77 MiB |

Troubleshooting workload issues 1743

https://dev.mysql.com/doc/refman/8.0/en/internal-temporary-tables.html

Amazon Aurora User Guide for Aurora

| memory/performance_schema/events_statements_history_long.sql_text | 9.77
 MiB | 9.77 MiB |
+---
+---------------------+-----------------+
10 rows in set (0.00 sec)

In Example 1: Continuous high memory usage, we checked the current memory usage for each
connection to determine which connection is responsible for using the memory in question. In this
example, the memory is already freed, so checking the memory usage for current connections isn't
useful.

To dig deeper and find the offending statements, users, and hosts, we use the Performance
Schema. The Performance Schema contains multiple statement summary tables that are sliced
by different dimensions such as event name, statement digest, host, thread, and user. Each view
will allow you dig deeper into where certain statements are being run and what they are doing.
This section is focused on MAX_TOTAL_MEMORY, but you can find more information on all of the
columns available in the Performance Schema statement summary tables documentation.

mysql> SHOW TABLES IN performance_schema LIKE 'events_statements_summary_%';

+--+
| Tables_in_performance_schema (events_statements_summary_%) |
+--+
| events_statements_summary_by_account_by_event_name |
| events_statements_summary_by_digest |
| events_statements_summary_by_host_by_event_name |
| events_statements_summary_by_program |
| events_statements_summary_by_thread_by_event_name |
| events_statements_summary_by_user_by_event_name |
| events_statements_summary_global_by_event_name |
+--+
7 rows in set (0.00 sec)

First we check events_statements_summary_by_digest to see MAX_TOTAL_MEMORY.

From this we can see the following:

• The query with digest
20676ce4a690592ff05debcffcbc26faeb76f22005e7628364d7a498769d0c4a seems
to be a good candidate for this memory usage. The MAX_TOTAL_MEMORY is 537450710, which

Troubleshooting workload issues 1744

https://dev.mysql.com/doc/refman/8.0/en/performance-schema-statement-summary-tables.html

Amazon Aurora User Guide for Aurora

matches the high-water mark we saw for the memory/temptable/physical_ram event in
sys.x$memory_global_by_current_bytes.

• It has been run four times (COUNT_STAR), first at 2024-03-26 04:08:34.943256, and last at
2024-03-26 04:43:06.998310.

mysql> SELECT SCHEMA_NAME,DIGEST,COUNT_STAR,MAX_TOTAL_MEMORY,FIRST_SEEN,LAST_SEEN
FROM performance_schema.events_statements_summary_by_digest ORDER BY MAX_TOTAL_MEMORY
 DESC LIMIT 5;

+-------------+--
+------------+------------------+----------------------------
+----------------------------+
| SCHEMA_NAME | DIGEST |
 COUNT_STAR | MAX_TOTAL_MEMORY | FIRST_SEEN | LAST_SEEN
 |
+-------------+--
+------------+------------------+----------------------------
+----------------------------+
| sysbench | 20676ce4a690592ff05debcffcbc26faeb76f22005e7628364d7a498769d0c4a |
 4 | 537450710 | 2024-03-26 04:08:34.943256 | 2024-03-26 04:43:06.998310 |
| NULL | f158282ea0313fefd0a4778f6e9b92fc7d1e839af59ebd8c5eea35e12732c45d |
 4 | 3636413 | 2024-03-26 04:29:32.712348 | 2024-03-26 04:36:26.269329 |
| NULL | 0046bc5f642c586b8a9afd6ce1ab70612dc5b1fd2408fa8677f370c1b0ca3213 |
 2 | 3459965 | 2024-03-26 04:31:37.674008 | 2024-03-26 04:32:09.410718 |
| NULL | 8924f01bba3c55324701716c7b50071a60b9ceaf17108c71fd064c20c4ab14db |
 1 | 3290981 | 2024-03-26 04:31:49.751506 | 2024-03-26 04:31:49.751506 |
| NULL | 90142bbcb50a744fcec03a1aa336b2169761597ea06d85c7f6ab03b5a4e1d841 |
 1 | 3131729 | 2024-03-26 04:15:09.719557 | 2024-03-26 04:15:09.719557 |
+-------------+--
+------------+------------------+----------------------------
+----------------------------+
5 rows in set (0.00 sec)

Now that we know the offending digest, we can get more details such as the query text, the
user who ran it, and where it was run. Based on the digest text returned, we can see that this is a
common table expression (CTE) that creates four temporary tables and performs four table scans,
which is very inefficient.

mysql> SELECT
 SCHEMA_NAME,DIGEST_TEXT,QUERY_SAMPLE_TEXT,MAX_TOTAL_MEMORY,SUM_ROWS_SENT,SUM_ROWS_EXAMINED,SUM_CREATED_TMP_TABLES,SUM_NO_INDEX_USED
FROM performance_schema.events_statements_summary_by_digest

Troubleshooting workload issues 1745

Amazon Aurora User Guide for Aurora

WHERE DIGEST='20676ce4a690592ff05debcffcbc26faeb76f22005e7628364d7a498769d0c4a'\G;

*************************** 1. row ***************************
 SCHEMA_NAME: sysbench
 DIGEST_TEXT: WITH RECURSIVE `cte` (`n`) AS (SELECT ? FROM `sbtest1` UNION
 ALL SELECT `id` + ? FROM `sbtest1`) SELECT * FROM `cte`
 QUERY_SAMPLE_TEXT: WITH RECURSIVE cte (n) AS (SELECT 1 from sbtest1 UNION ALL
 SELECT id + 1 FROM sbtest1) SELECT * FROM cte
 MAX_TOTAL_MEMORY: 537450710
 SUM_ROWS_SENT: 80000000
 SUM_ROWS_EXAMINED: 80000000
SUM_CREATED_TMP_TABLES: 4
 SUM_NO_INDEX_USED: 4
1 row in set (0.01 sec)

For more information on the events_statements_summary_by_digest table and other
Performance Schema statement summary tables, see Statement summary tables in the MySQL
documentation.

You can also run an EXPLAIN or EXPLAIN ANALYZE statement to see more details.

Note

EXPLAIN ANALYZE can provide more information than EXPLAIN, but it also runs the
query, so be careful.

-- EXPLAIN
mysql> EXPLAIN WITH RECURSIVE cte (n) AS (SELECT 1 FROM sbtest1 UNION ALL SELECT id +
 1 FROM sbtest1) SELECT * FROM cte;

+----+-------------+------------+------------+-------+---------------+------+---------
+------+----------+----------+-------------+
| id | select_type | table | partitions | type | possible_keys | key | key_len |
 ref | rows | filtered | Extra |
+----+-------------+------------+------------+-------+---------------+------+---------
+------+----------+----------+-------------+
| 1 | PRIMARY | <derived2> | NULL | ALL | NULL | NULL | NULL |
 NULL | 19221520 | 100.00 | NULL |
| 2 | DERIVED | sbtest1 | NULL | index | NULL | k_1 | 4 |
 NULL | 9610760 | 100.00 | Using index |

Troubleshooting workload issues 1746

https://dev.mysql.com/doc/refman/8.0/en/performance-schema-statement-summary-tables.html
https://dev.mysql.com/doc/refman/8.0/en/explain.html
https://dev.mysql.com/doc/refman/8.0/en/explain.html#explain-analyze

Amazon Aurora User Guide for Aurora

| 3 | UNION | sbtest1 | NULL | index | NULL | k_1 | 4 |
 NULL | 9610760 | 100.00 | Using index |
+----+-------------+------------+------------+-------+---------------+------+---------
+------+----------+----------+-------------+
3 rows in set, 1 warning (0.00 sec)

-- EXPLAIN format=tree
mysql> EXPLAIN format=tree WITH RECURSIVE cte (n) AS (SELECT 1 FROM sbtest1 UNION ALL
 SELECT id + 1 FROM sbtest1) SELECT * FROM cte\G;

*************************** 1. row ***************************
EXPLAIN: -> Table scan on cte (cost=4.11e+6..4.35e+6 rows=19.2e+6)
 -> Materialize union CTE cte (cost=4.11e+6..4.11e+6 rows=19.2e+6)
 -> Index scan on sbtest1 using k_1 (cost=1.09e+6 rows=9.61e+6)
 -> Index scan on sbtest1 using k_1 (cost=1.09e+6 rows=9.61e+6)
1 row in set (0.00 sec)

-- EXPLAIN ANALYZE
mysql> EXPLAIN ANALYZE WITH RECURSIVE cte (n) AS (SELECT 1 from sbtest1 UNION ALL
 SELECT id + 1 FROM sbtest1) SELECT * FROM cte\G;

*************************** 1. row ***************************
EXPLAIN: -> Table scan on cte (cost=4.11e+6..4.35e+6 rows=19.2e+6) (actual
 time=6666..9201 rows=20e+6 loops=1)
 -> Materialize union CTE cte (cost=4.11e+6..4.11e+6 rows=19.2e+6) (actual
 time=6666..6666 rows=20e+6 loops=1)
 -> Covering index scan on sbtest1 using k_1 (cost=1.09e+6 rows=9.61e+6)
 (actual time=0.0365..2006 rows=10e+6 loops=1)
 -> Covering index scan on sbtest1 using k_1 (cost=1.09e+6 rows=9.61e+6)
 (actual time=0.0311..2494 rows=10e+6 loops=1)
1 row in set (10.53 sec)

But who ran it? We can see in the Performance Schema that the destructive_operator user
had MAX_TOTAL_MEMORY of 537450710, which again matches the previous results.

Note

The Performance Schema is stored in memory, so should not be relied upon as the sole
source for auditing. If you need to maintain a history of statements run, and from which
users, we recommend that enable audit logging. If you also need to maintain information

Troubleshooting workload issues 1747

Amazon Aurora User Guide for Aurora

on memory usage, we recommend that you configure monitoring to export and store these
values.

mysql> SELECT USER,EVENT_NAME,COUNT_STAR,MAX_TOTAL_MEMORY FROM
 performance_schema.events_statements_summary_by_user_by_event_name
ORDER BY MAX_CONTROLLED_MEMORY DESC LIMIT 5;

+----------------------+---------------------------+------------+------------------+
| USER | EVENT_NAME | COUNT_STAR | MAX_TOTAL_MEMORY |
+----------------------+---------------------------+------------+------------------+
destructive_operator	statement/sql/select	4	537450710
rdsadmin	statement/sql/select	4172	3290981
rdsadmin	statement/sql/show_tables	2	3615821
rdsadmin	statement/sql/show_fields	2	3459965
rdsadmin	statement/sql/show_status	75	1914976
+----------------------+---------------------------+------------+------------------+
5 rows in set (0.00 sec)

mysql> SELECT HOST,EVENT_NAME,COUNT_STAR,MAX_TOTAL_MEMORY FROM
 performance_schema.events_statements_summary_by_host_by_event_name
WHERE HOST != 'localhost' AND COUNT_STAR>0 ORDER BY MAX_CONTROLLED_MEMORY DESC LIMIT 5;

+------------+----------------------+------------+------------------+
| HOST | EVENT_NAME | COUNT_STAR | MAX_TOTAL_MEMORY |
+------------+----------------------+------------+------------------+
| 10.0.8.231 | statement/sql/select | 4 | 537450710 |
+------------+----------------------+------------+------------------+
1 row in set (0.00 sec)

Troubleshooting out-of-memory issues for Aurora MySQL databases

The Aurora MySQL aurora_oom_response instance-level parameter can enable the DB instance
to monitor the system memory and estimate the memory consumed by various statements and
connections. If the system runs low on memory, it can perform a list of actions to attempt to
release that memory. It does so in an attempt to avoid a database restart due to out-of-memory
(OOM) issues. The instance-level parameter takes a string of comma-separated actions that a DB
instance performs when its memory is low. The aurora_oom_response parameter is supported
for Aurora MySQL versions 2 and 3.

Troubleshooting workload issues 1748

Amazon Aurora User Guide for Aurora

The following values, and combinations of them, can be used for the aurora_oom_response
parameter. An empty string means that no action is taken, and effectively turns off the feature,
leaving the database prone to OOM restarts.

• decline – Declines new queries when the DB instance is low on memory.

• kill_connect – Closes database connections that are consuming a large amount of memory,
and ends current transactions and Data Definition Language (DDL) statements. This response
isn't supported for Aurora MySQL version 2.

For more information, see KILL statement in the MySQL documentation.

• kill_query – Ends queries in descending order of memory consumption until the instance
memory surfaces above the low threshold. DDL statements aren't ended.

For more information, see KILL statement in the MySQL documentation.

• print – Only prints the queries that are consuming a large amount of memory.

• tune – Tunes the internal table caches to release some memory back to the system.
Aurora MySQL decreases the memory used for caches such as table_open_cache and
table_definition_cache in low-memory conditions. Eventually, Aurora MySQL sets their
memory usage back to normal when the system is no longer low on memory.

For more information, see table_open_cache and table_definition_cache in the MySQL
documentation.

• tune_buffer_pool – Decreases the size of the buffer pool to release some memory and make
it available for the database server to process connections. This response is supported for Aurora
MySQL version 3.06 and higher.

You must pair tune_buffer_pool with either kill_query or kill_connect in the
aurora_oom_response parameter value. If not, buffer pool resizing won't happen, even when
you include tune_buffer_pool in the parameter value.

In Aurora MySQL versions lower than 3.06, for DB instance classes with memory less than or
equal to 4 GiB, when the instance is under memory pressure, the default actions include print,
tune, decline, and kill_query. For DB instance classes with memory greater than 4 GiB, the
parameter value is empty by default (disabled).

Troubleshooting workload issues 1749

https://dev.mysql.com/doc/refman/8.0/en/kill.html
https://dev.mysql.com/doc/refman/8.0/en/kill.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_table_open_cache
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_table_definition_cache

Amazon Aurora User Guide for Aurora

In Aurora MySQL version 3.06 and higher, for DB instance classes with memory less than or equal
to 4 GiB, Aurora MySQL also closes the top memory-consuming connections (kill_connect). For
DB instance classes with memory greater than 4 GiB, the default parameter value is print.

If you frequently run into out-of-memory issues, memory usage can be monitored using memory
summary tables when performance_schema is enabled.

For Amazon CloudWatch metrics related to OOM, see Instance-level metrics for Amazon Aurora.
For global status variables related to OOM, see Aurora MySQL global status variables.

Logging for Aurora MySQL databases

Aurora MySQL logs provide essential information about database activity and errors. By enabling
these logs, you can identify and troubleshoot issues, understand database performance, and audit
database activity. We recommend that you enable these logs for all of your Aurora MySQL DB
instances to ensure optimal performance and availability of the databases. The following types of
logging can be enabled. Each log contains specific information that can lead to uncovering impacts
to database processing.

• Error – Aurora MySQL writes to the error log only on startup, shutdown, and when it encounters
errors. A DB instance can go hours or days without new entries being written to the error log. If
you see no recent entries, it's because the server didn't encounter an error that would result in
a log entry. Error logging is enabled by default. For more information, see Aurora MySQL error
logs.

• General – The general log provides detailed information about database activity, including all
SQL statements executed by the database engine. For more information on enabling general
logging and setting logging parameters, see Aurora MySQL slow query and general logs, and The
general query log in the MySQL documentation.

Note

General logs can grow to be very large and consume your storage. For more information,
see Log rotation and retention for Aurora MySQL.

• Slow query – The slow query log consists of SQL statements that take more than
long_query_time seconds to run and require at least min_examined_row_limit rows to be
examined. You can use the slow query log to find queries that take a long time to run and are
therefore candidates for optimization.

Logging for Aurora MySQL 1750

https://dev.mysql.com/doc/refman/8.3/en/performance-schema-memory-summary-tables.html
https://dev.mysql.com/doc/refman/8.3/en/performance-schema-memory-summary-tables.html
https://dev.mysql.com/doc/refman/8.0/en/query-log.html
https://dev.mysql.com/doc/refman/8.0/en/query-log.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_long_query_time
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_min_examined_row_limit

Amazon Aurora User Guide for Aurora

The default value for long_query_time is 10 seconds. We recommend that you start with a
high value to identify the slowest queries, then work your way down for fine tuning.

You can also use related parameters, such as log_slow_admin_statements and
log_queries_not_using_indexes. Compare rows_examined with rows_returned. If
rows_examined is much greater than rows_returned, then those queries can potentially be
blocking.

In Aurora MySQL version 3, you can enable log_slow_extra to obtain more details. For more
information, see Slow query log contents in the MySQL documentation. You can also modify
long_query_time at the session level for debugging query execution interactively, which is
especially useful if log_slow_extra is enabled globally.

For more information on enabling slow query logging and setting logging parameters,
see Aurora MySQL slow query and general logs, and The slow query log in the MySQL
documentation.

• Audit – The audit log monitors and logs database activity. Audit logging for Aurora MySQL is
called Advanced Auditing. To enable Advanced Auditing, you set certain DB cluster parameters.
For more information, see Using Advanced Auditing with an Amazon Aurora MySQL DB cluster.

• Binary – The binary log (binlog) contains events that describe database changes, such as table
creation operations and changes to table data. It also contains events for statements that
potentially could have made changes (for example, a DELETE that matched no rows), unless row-
based logging is used. The binary log also contains information about how long each statement
took that updated data.

Running a server with binary logging enabled makes performance slightly slower. However,
the benefits of the binary log in enabling you to set up replication and for restore operations
generally outweigh this minor performance decrease.

Note

Aurora MySQL doesn't require binary logging for restore operations.

For more information on enabling binary logging and setting the binlog format, see Configuring
Aurora MySQL binary logging, and The binary log in the MySQL documentation.

Logging for Aurora MySQL 1751

https://dev.mysql.com/doc/refman/8.0/en/slow-query-log.html#slow-query-log-contents
https://dev.mysql.com/doc/refman/8.0/en/slow-query-log.html
https://dev.mysql.com/doc/refman/8.0/en/delete.html
https://dev.mysql.com/doc/refman/8.0/en/binary-log.html

Amazon Aurora User Guide for Aurora

You can publish the error, general, slow, query, and audit logs to Amazon CloudWatch Logs. For
more information, see Publishing database logs to Amazon CloudWatch Logs.

Another useful tool for summarizing slow, general, and binary log files is pt-query-digest.

Troubleshooting query performance for Aurora MySQL databases

MySQL provides query optimizer control through system variables that affect how query plans
are evaluated, switchable optimizations, optimizer and index hints, and the optimizer cost model.
These data points can be helpful not only while comparing different MySQL environments, but also
to compare previous query execution plans with current execution plans, and to understand the
overall execution of a MySQL query at any point.

Query performance depends on many factors, including the execution plan, table schema and
size, statistics, resources, indexes, and parameter configuration. Query tuning requires identifying
bottlenecks and optimizing the execution path.

• Find the execution plan for the query and check whether the query is using appropriate indexes.
You can optimize your query by using EXPLAIN and reviewing the details of each plan.

• Aurora MySQL version 3 (compatible with MySQL 8.0 Community Edition) uses an EXPLAIN
ANALYZE statement. The EXPLAIN ANALYZE statement is a profiling tool that shows where
MySQL spends time on your query and why. With EXPLAIN ANALYZE, Aurora MySQL plans,
prepares, and runs the query while counting rows and measuring the time spent at various points
of the execution plan. When the query completes, EXPLAIN ANALYZE prints the plan and its
measurements instead of the query result.

• Keep your schema statistics updated by using the ANALYZE statement. The query optimizer can
sometimes choose poor execution plans because of outdated statistics. This can lead to poor
performance of a query because of inaccurate cardinality estimates of both tables and indexes.
The last_update column of the innodb_table_stats table shows the last time your schema
statistics were updated, which is a good indicator of "staleness."

• Other issues can occur, such as distribution skew of data, that aren't taken into account for table
cardinality. For more information, see Estimating ANALYZE TABLE complexity for InnoDB tables
and Histogram statistics in MySQL in the MySQL documentation.

Understanding the time spent by queries

The following are ways to determine the time spent by queries:

Troubleshooting query performance 1752

https://docs.percona.com/percona-toolkit/pt-query-digest.html
https://dev.mysql.com/doc/refman/8.0/en/controlling-optimizer.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-persistent-stats.html#innodb-persistent-stats-tables
https://dev.mysql.com/doc/refman/8.0/en/innodb-analyze-table-complexity.html
https://dev.mysql.com/blog-archive/histogram-statistics-in-mysql/

Amazon Aurora User Guide for Aurora

• Profiling

• Performance Schema

• Query optimizer

Profiling

By default, profiling is disabled. Enable profiling, then run the slow query and review its profile.

SET profiling = 1;
Run your query.
SHOW PROFILE;

1. Identify the stage where the most time is spent. According to General thread states in the
MySQL documentation, reading and processing rows for a SELECT statement is often the
longest-running state over the lifetime of a given query. You can use the EXPLAIN statement
to understand how MySQL runs this query.

2. Review the slow query log to evaluate rows_examined and rows_sent to make sure that
the workload is similar in each environment. For more information, see Logging for Aurora
MySQL databases.

3. Run the following command for tables that are part of the identified query:

SHOW TABLE STATUS\G;

4. Capture the following outputs before and after running the query on each environment:

SHOW GLOBAL STATUS;

5. Run the following commands on each environment to see if there are any other query/
session influencing the performance of this sample query.

SHOW FULL PROCESSLIST;

SHOW ENGINE INNODB STATUS\G;

Sometimes, when resources on the server are busy, it impacts every other operation on the
server, including queries. You can also capture information periodically when queries are run
or set up a cron job to capture information at useful intervals.

Troubleshooting query performance 1753

https://dev.mysql.com/doc/refman/8.0/en/show-profile.html
https://dev.mysql.com/doc/refman/8.0/en/performance-schema.html
https://dev.mysql.com/doc/refman/8.0/en/controlling-optimizer.html
https://dev.mysql.com/doc/refman/8.0/en/general-thread-states.html

Amazon Aurora User Guide for Aurora

Performance Schema

The Performance Schema provides useful information about server runtime performance, while
having minimal impact on that performance. This is different from the information_schema,
which provides schema information about the DB instance. For more information, see Turning
on the Performance Schema for Performance Insights on Aurora MySQL.

Query optimizer trace

To understand why a particular query plan was chosen for execution, you can set up
optimizer_trace to access the MySQL query optimizer.

Run an optimizer trace to show extensive information on all the paths available to the optimizer
and its choice.

SET SESSION OPTIMIZER_TRACE="enabled=on";
SET optimizer_trace_offset=-5, optimizer_trace_limit=5;

-- Run your query.
SELECT * FROM table WHERE x = 1 AND y = 'A';

-- After the query completes:
SELECT * FROM information_schema.OPTIMIZER_TRACE;
SET SESSION OPTIMIZER_TRACE="enabled=off";

Reviewing query optimizer settings

Aurora MySQL version 3 (compatible with MySQL 8.0 Community Edition) has many optimizer-
related changes compared with Aurora MySQL version 2 (compatible with MySQL 5.7 Community
Edition). If you have some custom values for the optimizer_switch, we recommend that you
review the differences in the defaults and set optimizer_switch values that work best for your
workload. We also recommend that you test the options available for Aurora MySQL version 3 to
examine how your queries perform.

Note

Aurora MySQL version 3 uses the community default value of 20 for the
innodb_stats_persistent_sample_pages parameter.

Troubleshooting query performance 1754

https://dev.mysql.com/doc/refman/8.0/en/execution-plan-information.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-parameters.html#sysvar_innodb_stats_persistent_sample_pages

Amazon Aurora User Guide for Aurora

You can use the following command to show the optimizer_switch values:

SELECT @@optimizer_switch\G;

The following table shows the default optimizer_switch values for Aurora MySQL versions 2
and 3.

Setting Aurora MySQL version 2 Aurora MySQL version 3

batched_key_access off off

block_nested_loop on on

condition_fanout_filter on on

derived_condition_pushdown – on

derived_merge on on

duplicateweedout on on

engine_condition_pushdown on on

firstmatch on on

hash_join off on

hash_join_cost_based on –

hypergraph_optimizer – off

index_condition_pushdown on on

index_merge on on

index_merge_intersection on on

index_merge_sort_union on on

index_merge_union on on

Troubleshooting query performance 1755

Amazon Aurora User Guide for Aurora

Setting Aurora MySQL version 2 Aurora MySQL version 3

loosescan on on

materialization on on

mrr on on

mrr_cost_based on on

prefer_ordering_index on on

semijoin on on

skip_scan – on

subquery_materialization_co
st_based

on on

subquery_to_derived – off

use_index_extensions on on

use_invisible_indexes – off

For more information, see Switchable optimizations (MySQL 5.7) and Switchable optimizations
(MySQL 8.0) in the MySQL documentation.

Troubleshooting query performance 1756

https://dev.mysql.com/doc/refman/5.7/en/switchable-optimizations.html
https://dev.mysql.com/doc/refman/8.0/en/switchable-optimizations.html
https://dev.mysql.com/doc/refman/8.0/en/switchable-optimizations.html

Amazon Aurora User Guide for Aurora

Amazon Aurora MySQL reference

This reference includes information about Aurora MySQL parameters, status variables, and general
SQL extensions or differences from the community MySQL database engine.

Topics

• Aurora MySQL configuration parameters

• Aurora MySQL global status variables

• Aurora MySQL wait events

• Aurora MySQL thread states

• Aurora MySQL isolation levels

• Aurora MySQL hints

• Aurora MySQL stored procedures

• Aurora MySQL–specific information_schema tables

Aurora MySQL configuration parameters

You manage your Amazon Aurora MySQL DB cluster in the same way that you manage other
Amazon RDS DB instances, by using parameters in a DB parameter group. Amazon Aurora differs
from other DB engines in that you have a DB cluster that contains multiple DB instances. As a
result, some of the parameters that you use to manage your Aurora MySQL DB cluster apply to the
entire cluster. Other parameters apply only to a particular DB instance in the DB cluster.

To manage cluster-level parameters, use DB cluster parameter groups. To manage instance-
level parameters, use DB parameter groups. Each DB instance in an Aurora MySQL DB cluster is
compatible with the MySQL database engine. However, you apply some of the MySQL database
engine parameters at the cluster level, and you manage these parameters using DB cluster
parameter groups. You can't find cluster-level parameters in the DB parameter group for an
instance in an Aurora DB cluster. A list of cluster-level parameters appears later in this topic.

You can manage both cluster-level and instance-level parameters using the AWS Management
Console, the AWS CLI, or the Amazon RDS API. You use separate commands for managing cluster-
level parameters and instance-level parameters. For example, you can use the modify-db-cluster-
parameter-group CLI command to manage cluster-level parameters in a DB cluster parameter
group. You can use the modify-db-parameter-group CLI command to manage instance-level
parameters in a DB parameter group for a DB instance in a DB cluster.

Aurora MySQL reference 1757

https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-cluster-parameter-group.html
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-cluster-parameter-group.html
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-parameter-group.html

Amazon Aurora User Guide for Aurora

You can view both cluster-level and instance-level parameters in the console, or by using the CLI or
RDS API. For example, you can use the describe-db-cluster-parameters AWS CLI command to view
cluster-level parameters in a DB cluster parameter group. You can use the describe-db-parameters
CLI command to view instance-level parameters in a DB parameter group for a DB instance in a DB
cluster.

Note

Each default parameter group contains the default values for all parameters in the
parameter group. If the parameter has "engine default" for this value, see the version-
specific MySQL or PostgreSQL documentation for the actual default value.
Unless otherwise noted, parameters listed in the following tables are valid for Aurora
MySQL versions 2 and 3.

For more information about DB parameter groups, see Working with parameter groups. For rules
and restrictions for Aurora Serverless v1 clusters, see Parameter groups for Aurora Serverless v1.

Topics

• Cluster-level parameters

• Instance-level parameters

• MySQL parameters that don't apply to Aurora MySQL

Cluster-level parameters

The following table shows all of the parameters that apply to the entire Aurora MySQL DB cluster.

Parameter name Modifiable Notes

aurora_binlog_read_buffer_s
ize

Yes Only affects clusters that use binary
log (binlog) replication. For information
about binlog replication, see Replicati
on between Aurora and MySQL or
between Aurora and another Aurora
DB cluster (binary log replication).
Removed from Aurora MySQL version
3.

Configuration parameters 1758

https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-cluster-parameters.html
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-parameters.html

Amazon Aurora User Guide for Aurora

Parameter name Modifiable Notes

aurora_binlog_replication_m
ax_yield_seconds

Yes Only affects clusters that use binary
log (binlog) replication. For information
about binlog replication, see Replicati
on between Aurora and MySQL or
between Aurora and another Aurora DB
cluster (binary log replication).

aurora_binlog_replication_s
ec_index_parallel_workers

Yes Sets the total number of parallel
threads available to apply secondary
index changes when replicating
transactions for large tables with
more than one secondary index. The
parameter is set to 0 (disabled) by
default.

This parameter is available in Aurora
MySQL version 306 and higher. For
more information, see Optimizing
binary log replication.

aurora_binlog_use_large_rea
d_buffer

Yes Only affects clusters that use binary
log (binlog) replication. For information
about binlog replication, see Replicati
on between Aurora and MySQL or
between Aurora and another Aurora
DB cluster (binary log replication).
Removed from Aurora MySQL version
3.

aurora_disable_hash_join Yes Set this parameter to ON to turn off
hash join optimization in Aurora
MySQL version 2.09 or higher. It isn't
supported for version 3. For more
information, see Working with parallel
query for Amazon Aurora MySQL.

Configuration parameters 1759

Amazon Aurora User Guide for Aurora

Parameter name Modifiable Notes

aurora_enable_replica_log_c
ompression

Yes For more information, see Performan
ce considerations for Amazon Aurora
MySQL replication. Doesn't apply to
clusters that are part of an Aurora
global database. Removed from Aurora
MySQL version 3.

aurora_enable_repl_bin_log_
filtering

Yes For more information, see Performan
ce considerations for Amazon Aurora
MySQL replication. Doesn't apply to
clusters that are part of an Aurora
global database. Removed from Aurora
MySQL version 3.

aurora_enable_staggered_rep
lica_restart

Yes This setting is available in Aurora
MySQL version 3, but it isn't used.

aurora_enable_zdr Yes This setting is turned on by default in
Aurora MySQL 2.10 and higher. For
more information, see Zero-down
time restart (ZDR) for Amazon Aurora
MySQL.

aurora_enhanced_binlog Yes Set the value of this parameter to 1 to
turn on the enhanced binlog in Aurora
MySQL version 3.03.1 and higher.
For more information, see Setting up
enhanced binlog.

Configuration parameters 1760

Amazon Aurora User Guide for Aurora

Parameter name Modifiable Notes

aurora_jemalloc_background_
thread

Yes Use this parameter to enable a
background thread to perform memory
maintenance operations. The allowed
values are 0 (disabled) and 1 (enabled).
The default value is 0.

This parameter applies to Aurora
MySQL version 3.05 and higher.

aurora_jemalloc_dirty_decay
_ms

Yes Use this parameter to retain freed
memory for a certain amount of time
(in milliseconds). Retaining memory
allows for faster reuse. The allowed
values are 0–184467440737095516
15 . The default value (0) returns all
memory to the operating system as
freeable memory.

This parameter applies to Aurora
MySQL version 3.05 and higher.

aurora_jemalloc_tcache_enab
led

Yes Use this parameter to serve small
memory requests (up to 32 KiB) in
a thread local cache, bypassing the
memory arenas. The allowed values
are 0 (disabled) and 1 (enabled). The
default value is 1.

This parameter applies to Aurora
MySQL version 3.05 and higher.

Configuration parameters 1761

Amazon Aurora User Guide for Aurora

Parameter name Modifiable Notes

aurora_load_from_s3_role Yes For more information, see Loading
data into an Amazon Aurora MySQL
DB cluster from text files in an Amazon
S3 bucket. Currently not available
in Aurora MySQL version 3. Use
aws_default_s3_role .

aurora_mask_password_hashes
_type

Yes This setting is turned on by default in
Aurora MySQL 2.11 and higher.

Use this setting to mask Aurora MySQL
password hashes in the slow query
and audit logs. The allowed values
are 0 and 1 (default). When set to 1,
passwords are logged as <secret>.
When set to 0, passwords are logged as
hash (#) values.

aurora_select_into_s3_role Yes For more information, see Saving data
from an Amazon Aurora MySQL DB
cluster into text files in an Amazon
S3 bucket. Currently not available
in Aurora MySQL version 3. Use
aws_default_s3_role .

authentication_kerberos_cas
eins_cmp

Yes Controls case-insensitive username
comparison for the authentic
ation_kerberos plugin. Set it to
true for case-insensitive comparison.
By default, case-sensitive comparison
is used (false). For more information,
see Using Kerberos authentication for
Aurora MySQL.

This parameter is available in Aurora
MySQL version 3.03 and higher.

Configuration parameters 1762

Amazon Aurora User Guide for Aurora

Parameter name Modifiable Notes

auto_increment_increment Yes

auto_increment_offset Yes

aws_default_lambda_role Yes For more information, see Invoking
a Lambda function from an Amazon
Aurora MySQL DB cluster.

aws_default_s3_role Yes Used when invoking the LOAD DATA
FROM S3, LOAD XML FROM S3,
or SELECT INTO OUTFILE S3
statement from your DB cluster.

In Aurora MySQL version 2, the IAM
role specified in this parameter is
used if an IAM role isn't specified for
aurora_load_from_s3_role or
aurora_select_into_s3_role
for the appropriate statement.

In Aurora MySQL version 3, the IAM
role specified for this parameter is
always used.

For more information, see Associating
an IAM role with an Amazon Aurora
MySQL DB cluster.

binlog_backup Yes Set the value of this parameter to 0 to
turn on the enhanced binlog in Aurora
MySQL version 3.03.1 and higher. You
can turn off this parameter only when
you use enhanced binlog. For more
information, see Setting up enhanced
binlog.

Configuration parameters 1763

Amazon Aurora User Guide for Aurora

Parameter name Modifiable Notes

binlog_checksum Yes The AWS CLI and RDS API report a
value of None if this parameter isn't
set. In that case, Aurora MySQL uses
the engine default value, which is
CRC32. This is different from the
explicit setting of NONE, which turns off
the checksum.

binlog-do-db Yes This parameter applies to Aurora
MySQL version 3.

binlog_format Yes For more information, see Replicati
on between Aurora and MySQL or
between Aurora and another Aurora DB
cluster (binary log replication).

binlog_group_commit_sync_de
lay

Yes This parameter applies to Aurora
MySQL version 3.

binlog_group_commit_sync_no
_delay_count

Yes This parameter applies to Aurora
MySQL version 3.

binlog-ignore-db Yes This parameter applies to Aurora
MySQL version 3.

binlog_replication_globaldb Yes Set the value of this parameter to 0 to
turn on the enhanced binlog in Aurora
MySQL version 3.03.1 and higher. You
can turn off this parameter only when
you use enhanced binlog. For more
information, see Setting up enhanced
binlog.

binlog_row_image No

Configuration parameters 1764

Amazon Aurora User Guide for Aurora

Parameter name Modifiable Notes

binlog_row_metadata Yes This parameter applies to Aurora
MySQL version 3.

binlog_row_value_options Yes This parameter applies to Aurora
MySQL version 3.

binlog_rows_query_log_event
s

Yes

binlog_transaction_compress
ion

Yes This parameter applies to Aurora
MySQL version 3.

binlog_transaction_compress
ion_level_zstd

Yes This parameter applies to Aurora
MySQL version 3.

binlog_transaction_dependen
cy_history_size

Yes This parameter sets an upper limit on
the number of row hashes that are kept
in memory and used for looking up the
transaction that last modified a given
row. After this number of hashes has
been reached, the history is purged.

This parameter applies to Aurora
MySQL version 2.12 and higher, and
version 3.

binlog_transaction_dependen
cy_tracking

Yes This parameter applies to Aurora
MySQL version 3.

character-set-client-handsh
ake

Yes

character_set_client Yes

character_set_connection Yes

character_set_database Yes

Configuration parameters 1765

Amazon Aurora User Guide for Aurora

Parameter name Modifiable Notes

character_set_filesystem Yes

character_set_results Yes

character_set_server Yes

collation_connection Yes

collation_server Yes

completion_type Yes

default_storage_engine No Aurora MySQL clusters use the InnoDB
storage engine for all of your data.

enforce_gtid_consistency Sometimes Modifiable in Aurora MySQL version 2
and higher.

event_scheduler Yes Indicates the status of the Event
Scheduler.

Modifiable only at the cluster level in
Aurora MySQL version 3.

gtid-mode Sometimes Modifiable in Aurora MySQL version 2
and higher.

information_schema_stats_ex
piry

Yes The number of seconds after which the
MySQL database server fetches data
from the storage engine and replaces
the data in the cache. The allowed
values are 0–31536000.

This parameter applies to Aurora
MySQL version 3.

Configuration parameters 1766

Amazon Aurora User Guide for Aurora

Parameter name Modifiable Notes

init_connect Yes The command to be run by the server
for each client that connects. Use
double quotes (") for settings to avoid
connection failures, for example:

SET optimizer_switch="hash_join
=off"

In Aurora MySQL version 3, this
parameter doesn't apply for users
who have the CONNECTION_ADMIN
privilege. This includes the Aurora
master user. For more information, see
Role-based privilege model.

innodb_adaptive_hash_index Yes You can modify this parameter at
the DB cluster level in Aurora MySQL
versions 2 and 3.

The Adaptive Hash Index isn't
supported on reader DB instances.

Configuration parameters 1767

Amazon Aurora User Guide for Aurora

Parameter name Modifiable Notes

innodb_aurora_instant_alter
_column_allowed

Yes Controls whether the INSTANT
algorithm can be used for ALTER
COLUMN operations at the global level.
The allowed values are the following:

• 0 – The INSTANT algorithm isn't
allowed for ALTER COLUMN
operations (OFF). Reverts to other
algorithms.

• 1 – The INSTANT algorithm is
allowed for ALTER COLUMN
operations (ON). This is the default
value.

For more information, see Column
Operations in the MySQL documenta
tion.

This parameter applies to Aurora
MySQL version 3.05 and higher.

innodb_autoinc_lock_mode Yes

innodb_checksums No Removed from Aurora MySQL version
3.

innodb_cmp_per_index_enable
d

Yes

innodb_commit_concurrency Yes

innodb_data_home_dir No Aurora MySQL uses managed instances
where you don't access the file system
directly.

Configuration parameters 1768

https://dev.mysql.com/doc/refman/8.0/en/innodb-online-ddl-operations.html#online-ddl-column-operations
https://dev.mysql.com/doc/refman/8.0/en/innodb-online-ddl-operations.html#online-ddl-column-operations

Amazon Aurora User Guide for Aurora

Parameter name Modifiable Notes

innodb_deadlock_detect Yes This option is used to disable deadlock
detection in Aurora MySQL version
2.11 and higher and version 3.

On high-concurrency systems, deadlock
detection can cause a slowdown when
numerous threads wait for the same
lock. Consult the MySQL documenta
tion for more information on this
parameter.

innodb_default_row_format Yes This parameter defines the default row
format for InnoDB tables (including
user-created InnoDB temporary tables).
It applies to Aurora MySQL versions 2
and 3.

Its value can be DYNAMIC, COMPACT, or
REDUNDANT.

innodb_file_per_table Yes This parameter affects how table
storage is organized. For more
information, see Storage scaling.

innodb_flush_log_at_trx_com
mit

Yes We highly recommend that you use the
default value of 1.

In Aurora MySQL version 3, before
you can set this parameter to a value
other than 1, you must set the value of
innodb_trx_commit_allow_dat
a_loss to 1.

For more information, see Configuri
ng how frequently the log buffer is
flushed.

Configuration parameters 1769

Amazon Aurora User Guide for Aurora

Parameter name Modifiable Notes

innodb_ft_max_token_size Yes

innodb_ft_min_token_size Yes

innodb_ft_num_word_optimize Yes

innodb_ft_sort_pll_degree Yes

innodb_online_alter_log_max
_size

Yes

innodb_optimize_fulltext_on
ly

Yes

innodb_page_size No

innodb_print_all_deadlocks Yes When turned on, records informati
on about all InnoDB deadlocks in
the Aurora MySQL error log. For
more information, see Minimizing
and troubleshooting Aurora MySQL
deadlocks.

innodb_purge_batch_size Yes

innodb_purge_threads Yes

innodb_rollback_on_timeout Yes

innodb_rollback_segments Yes

innodb_spin_wait_delay Yes

innodb_strict_mode Yes

innodb_support_xa Yes Removed from Aurora MySQL version
3.

Configuration parameters 1770

Amazon Aurora User Guide for Aurora

Parameter name Modifiable Notes

innodb_sync_array_size Yes

innodb_sync_spin_loops Yes

innodb_stats_include_delete
_marked

Yes When this parameter is enabled,
InnoDB includes delete-marked records
when calculating persistent optimizer
statistics.

This parameter applies to Aurora
MySQL version 2.12 and higher, and
version 3.

innodb_table_locks Yes

innodb_trx_commit_allow_dat
a_loss

Yes In Aurora MySQL version 3, set the
value of this parameter to 1 so that you
can change the value of innodb_fl
ush_log_at_trx_commit .

The default value of innodb_tr
x_commit_allow_data_loss is
0.

For more information, see Configuri
ng how frequently the log buffer is
flushed.

innodb_undo_directory No Aurora MySQL uses managed instances
where you don't access the file system
directly.

Configuration parameters 1771

Amazon Aurora User Guide for Aurora

Parameter name Modifiable Notes

internal_tmp_disk_storage_e
ngine

Yes Controls which in-memory storage
engine is used for internal temporary
tables. Allowed values are INNODB and
MYISAM.

This parameter applies to Aurora
MySQL version 2.

internal_tmp_mem_storage_en
gine

Yes Controls which in-memory storage
engine is used for internal temporary
tables. Allowed values are MEMORY and
TempTable .

This parameter applies to Aurora
MySQL version 3.

key_buffer_size Yes Key cache for MyISAM tables. For more
information, see keycache->cache_lock
mutex.

lc_time_names Yes

log_error_suppression_list Yes Specifies a list of error codes that aren't
logged in the MySQL error log. This
allows you to ignore certain noncritic
al error conditions to help keep your
error logs clean. For more information,
see log_error_suppression_list in the
MySQL documentation.

This parameter applies to Aurora
MySQL version 3.03 and higher.

Configuration parameters 1772

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_log_error_suppression_list

Amazon Aurora User Guide for Aurora

Parameter name Modifiable Notes

low_priority_updates Yes INSERT, UPDATE, DELETE, and LOCK
TABLE WRITE operations wait until
there's no pending SELECT operation
. This parameter affects only storage
engines that use only table-level
locking (MyISAM, MEMORY, MERGE).

This parameter applies to Aurora
MySQL version 3.

Configuration parameters 1773

Amazon Aurora User Guide for Aurora

Parameter name Modifiable Notes

lower_case_table_names Yes
(Aurora
MySQL
version 2)

Only at
cluster
creation
time
(Aurora
MySQL
version 3)

In Aurora MySQL version 2.10 and
higher 2.x versions, make sure to
reboot all reader instances after
changing this setting and rebooting
the writer instance. For details, see
Rebooting an Aurora cluster with read
availability.

In Aurora MySQL version 3, the value
of this parameter is set permanently at
the time the cluster is created. If you
use a nondefault value for this option,
set up your Aurora MySQL version
3 custom parameter group before
upgrading, and specify the parameter
group during the snapshot restore
operation that creates the version 3
cluster.

With an Aurora global database
based on Aurora MySQL, you can't
perform an in-place upgrade from
Aurora MySQL version 2 to version 3
if the lower_case_table_names
parameter is turned on. For more
information on the methods that you
can use, see Major version upgrades.

master-info-repository Yes Removed from Aurora MySQL version
3.

master_verify_checksum Yes Aurora MySQL version 2. Use
source_verify_checksum in
Aurora MySQL version 3.

Configuration parameters 1774

Amazon Aurora User Guide for Aurora

Parameter name Modifiable Notes

max_delayed_threads Yes Sets the maximum number of threads
to handle INSERT DELAYED statement
s.

This parameter applies to Aurora
MySQL version 3.

max_error_count Yes The maximum number of error,
warning, and note messages to be
stored for display.

This parameter applies to Aurora
MySQL version 3.

max_execution_time Yes The timeout for running SELECT
statements, in milliseconds. The
value can be from 0–184467440
73709551615 . When set to 0, there
is no timeout.

For more information, see max_execu
tion_time in the MySQL documenta
tion.

min_examined_row_limit Yes Use this parameter to prevent queries
that examine fewer than the specified
number of rows from being logged.

This parameter applies to Aurora
MySQL version 3.

partial_revokes No This parameter applies to Aurora
MySQL version 3.

Configuration parameters 1775

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_max_execution_time
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_max_execution_time

Amazon Aurora User Guide for Aurora

Parameter name Modifiable Notes

preload_buffer_size Yes The size of the buffer that's allocated
when preloading indexes.

This parameter applies to Aurora
MySQL version 3.

query_cache_type Yes Removed from Aurora MySQL version
3.

Configuration parameters 1776

Amazon Aurora User Guide for Aurora

Parameter name Modifiable Notes

read_only Yes When this parameter is turned on, the
server permits no updates except from
those performed by replica threads.

For Aurora MySQL version 2, valid
values are the following:

• 0 – OFF

• 1 – ON

• {TrueIfReplica} – ON for read
replicas. This is the default value.

• {TrueIfClusterReplica} – ON
for replica clusters such as cross-Reg
ion read replicas, secondary clusters
in an Aurora global database, and
blue/green deployments.

For Aurora MySQL version 3, valid
values are the following:

• 0 – OFF. This is the default value.

• 1 – ON

• {TrueIfClusterReplica} – ON
for replica clusters such as cross-Reg
ion read replicas, secondary clusters
in an Aurora global database, and
blue/green deployments.

In Aurora MySQL version 3, this
parameter doesn't apply for users
who have the CONNECTION_ADMIN
privilege. This includes the Aurora

Configuration parameters 1777

Amazon Aurora User Guide for Aurora

Parameter name Modifiable Notes

master user. For more information, see
Role-based privilege model.

relay-log-space-limit Yes This parameter applies to Aurora
MySQL version 3.

replica_parallel_type Yes This parameter enables parallel
execution on the replica of all
uncommitted threads already in the
prepare phase, without violating
consistency. It applies to Aurora MySQL
version 3.

In Aurora MySQL version 3.03.* and
lower, the default value is DATABASE.
In Aurora MySQL version 3.04 and
higher, the default value is LOGICAL_C
LOCK.

replica_preserve_commit_ord
er

Yes This parameter applies to Aurora
MySQL version 3.

replica_transaction_retries Yes This parameter applies to Aurora
MySQL version 3.

replica_type_conversions Yes This parameter determines the type
conversions used on replicas. The
allowed values are: ALL_LOSSY ,
ALL_NON_LOSSY , ALL_SIGNED , and
ALL_UNSIGNED . For more informati
on, see Replication with differing table
definitions on source and replica in the
MySQL documentation.

This parameter applies to Aurora
MySQL version 3.

Configuration parameters 1778

https://dev.mysql.com/doc/refman/8.0/en/replication-features-differing-tables.html
https://dev.mysql.com/doc/refman/8.0/en/replication-features-differing-tables.html

Amazon Aurora User Guide for Aurora

Parameter name Modifiable Notes

replicate-do-db Yes This parameter applies to Aurora
MySQL version 3.

replicate-do-table Yes This parameter applies to Aurora
MySQL version 3.

replicate-ignore-db Yes This parameter applies to Aurora
MySQL version 3.

replicate-ignore-table Yes This parameter applies to Aurora
MySQL version 3.

replicate-wild-do-table Yes This parameter applies to Aurora
MySQL version 3.

replicate-wild-ignore-table Yes This parameter applies to Aurora
MySQL version 3.

require_secure_transport Yes This parameter applies to Aurora
MySQL version 2 and 3. For more
information, see Using TLS with Aurora
MySQL DB clusters.

rpl_read_size Yes This parameter applies to Aurora
MySQL version 3.

server_audit_cw_upload No This parameter has been deprecate
d in Aurora MySQL. Use server_au
dit_logs_upload .

For more information, see Publishing
Amazon Aurora MySQL logs to Amazon
CloudWatch Logs.

server_audit_events Yes For more information, see Using
Advanced Auditing with an Amazon
Aurora MySQL DB cluster.

Configuration parameters 1779

Amazon Aurora User Guide for Aurora

Parameter name Modifiable Notes

server_audit_excl_users Yes For more information, see Using
Advanced Auditing with an Amazon
Aurora MySQL DB cluster.

server_audit_incl_users Yes For more information, see Using
Advanced Auditing with an Amazon
Aurora MySQL DB cluster.

server_audit_logging Yes For instructions on uploading the
logs to Amazon CloudWatch Logs, see
Publishing Amazon Aurora MySQL logs
to Amazon CloudWatch Logs.

server_audit_logs_upload Yes You can publish audit logs to
CloudWatch Logs by enabling
Advanced Auditing and setting this
parameter to 1. The default for the
server_audit_logs_upload
parameter is 0.

For more information, see Publishing
Amazon Aurora MySQL logs to Amazon
CloudWatch Logs.

server_id No

skip-character-set-client-h
andshake

Yes

skip_name_resolve No

slave-skip-errors Yes Only applies to Aurora MySQL version
2 clusters, with MySQL 5.7 compatibi
lity.

source_verify_checksum Yes This parameter applies to Aurora
MySQL version 3.

Configuration parameters 1780

Amazon Aurora User Guide for Aurora

Parameter name Modifiable Notes

sync_frm Yes Removed from Aurora MySQL version
3.

thread_cache_size Yes The number of threads to be cached.
This parameter applies to Aurora
MySQL versions 2 and 3.

time_zone Yes By default, the time zone for an Aurora
DB cluster is Universal Time Coordinat
ed (UTC). You can set the time zone for
instances in your DB cluster to the local
time zone for your application instead.
For more information, see Local time
zone for Amazon Aurora DB clusters.

tls_version Yes For more information, see TLS versions
for Aurora MySQL.

Instance-level parameters

The following table shows all of the parameters that apply to a specific DB instance in an Aurora
MySQL DB cluster.

Parameter name Modifiable Notes

activate_all_roles_on_login Yes This parameter applies to Aurora
MySQL version 3.

allow-suspicious-udfs No

aurora_disable_hash_join Yes Set this parameter to ON to turn off
hash join optimization in Aurora
MySQL version 2.09 or higher. It isn't
supported for version 3. For more

Configuration parameters 1781

Amazon Aurora User Guide for Aurora

Parameter name Modifiable Notes

information, see Working with parallel
query for Amazon Aurora MySQL.

aurora_lab_mode Yes For more information, see Amazon
Aurora MySQL lab mode. Removed
from Aurora MySQL version 3.

aurora_oom_response Yes This parameter is supported for Aurora
MySQL versions 2 and 3. For more
information, see Troubleshooting out-
of-memory issues for Aurora MySQL
databases.

aurora_parallel_query Yes Set to ON to turn on parallel query in
Aurora MySQL version 2.09 or higher.
The old aurora_pq parameter
isn't used in these versions. For more
information, see Working with parallel
query for Amazon Aurora MySQL.

aurora_pq Yes Set to OFF to turn off parallel query
for specific DB instances in Aurora
MySQL versions before 2.09. In version
2.09 or higher, turn parallel query on
and off with aurora_parallel_qu
ery instead. For more information,
see Working with parallel query for
Amazon Aurora MySQL.

Configuration parameters 1782

Amazon Aurora User Guide for Aurora

Parameter name Modifiable Notes

aurora_read_replica_read_co
mmitted

Yes Enables READ COMMITTED isolation
level for Aurora Replicas and changes
the isolation behavior to reduce purge
lag during long-running queries. Enable
this setting only if you understand
the behavior changes and how they
affect your query results. For example,
this setting uses less-strict isolation
 than the MySQL default. When it's
enabled, long-running queries might
see more than one copy of the same
row because Aurora reorganizes the
table data while the query is running.
For more information, see Aurora
MySQL isolation levels.

aurora_tmptable_enable_per_
table_limit

Yes Determines whether the tmp_table
_size parameter controls the
maximum size of in-memory
 temporary tables created by the
TempTable storage engine in Aurora
MySQL version 3.04 and higher.

For more information, see Limiting the
size of internal, in-memory temporary
tables.

aurora_use_vector_instructi
ons

Yes When this parameter is enabled, Aurora
MySQL uses optimized vector processin
g instructions provided by modern
CPUs to improve performance on I/O-
intensive workloads.

This setting is enabled by default in
Aurora MySQL version 3.05 and higher.

Configuration parameters 1783

Amazon Aurora User Guide for Aurora

Parameter name Modifiable Notes

autocommit Yes

automatic_sp_privileges Yes

back_log Yes

basedir No Aurora MySQL uses managed instances
where you don't access the file system
directly.

binlog_cache_size Yes

binlog_max_flush_queue_time Yes

binlog_order_commits Yes

binlog_stmt_cache_size Yes

binlog_transaction_compress
ion

Yes This parameter applies to Aurora
MySQL version 3.

binlog_transaction_compress
ion_level_zstd

Yes This parameter applies to Aurora
MySQL version 3.

bulk_insert_buffer_size Yes

concurrent_insert Yes

connect_timeout Yes

core-file No Aurora MySQL uses managed instances
where you don't access the file system
directly.

datadir No Aurora MySQL uses managed instances
where you don't access the file system
directly.

Configuration parameters 1784

Amazon Aurora User Guide for Aurora

Parameter name Modifiable Notes

default_authentication_plug
in

No This parameter applies to Aurora
MySQL version 3.

default_time_zone No

default_tmp_storage_engine Yes The default storage engine for
temporary tables.

default_week_format Yes

delay_key_write Yes

delayed_insert_limit Yes

delayed_insert_timeout Yes

delayed_queue_size Yes

div_precision_increment Yes

end_markers_in_json Yes

eq_range_index_dive_limit Yes

event_scheduler Sometimes Indicates the status of the Event
Scheduler.

Modifiable only at the cluster level in
Aurora MySQL version 3.

explicit_defaults_for_times
tamp

Yes

flush No

flush_time Yes

ft_boolean_syntax No

Configuration parameters 1785

Amazon Aurora User Guide for Aurora

Parameter name Modifiable Notes

ft_max_word_len Yes

ft_min_word_len Yes

ft_query_expansion_limit Yes

ft_stopword_file Yes

general_log Yes For instructions on uploading the logs
to CloudWatch Logs, see Publishing
Amazon Aurora MySQL logs to Amazon
CloudWatch Logs.

general_log_file No Aurora MySQL uses managed instances
where you don't access the file system
directly.

group_concat_max_len Yes

host_cache_size Yes

init_connect Yes The command to be run by the server
for each client that connects. Use
double quotes (") for settings to avoid
connection failures, for example:

SET optimizer_switch="hash_join
=off"

In Aurora MySQL version 3, this
parameter doesn't apply for users
who have the CONNECTION_ADMIN
privilege, including the Aurora master
user. For more information, see Role-
based privilege model.

Configuration parameters 1786

Amazon Aurora User Guide for Aurora

Parameter name Modifiable Notes

innodb_adaptive_hash_index Yes You can modify this parameter at the
DB instance level in Aurora MySQL
version 2. It's modifiable only at the DB
cluster level in Aurora MySQL version 3.

The Adaptive Hash Index isn't
supported on reader DB instances.

innodb_adaptive_max_sleep_d
elay

Yes Modifying this parameter has no effect
because innodb_thread_conc
urrency is always 0 for Aurora.

innodb_aurora_max_partition
s_for_range

Yes In some cases where persisted statistic
s aren't available, you can use this
parameter to improve the performance
of row count estimations on partition
ed tables.

You can set it to a value from 0–
8192, where the value determines the
number of partitions to check during
row count estimation. The default
value is 0, which estimates using all of
the partitions, consistent with default
MySQL behavior.

This parameter is available for Aurora
MySQL version 3.03.1 and higher.

innodb_autoextend_increment Yes

innodb_buffer_pool_dump_at_
shutdown

No

innodb_buffer_pool_dump_now No

Configuration parameters 1787

Amazon Aurora User Guide for Aurora

Parameter name Modifiable Notes

innodb_buffer_pool_filename No

innodb_buffer_pool_load_abo
rt

No

innodb_buffer_pool_load_at_
startup

No

innodb_buffer_pool_load_now No

innodb_buffer_pool_size Yes The default value is represented by
a formula. For details about how the
DBInstanceClassMemory value
in the formula is calculated, see DB
parameter formula variables.

innodb_change_buffer_max_si
ze

No Aurora MySQL doesn't use the InnoDB
change buffer at all.

innodb_compression_failure_
threshold_pct

Yes

innodb_compression_level Yes

innodb_compression_pad_pct_
max

Yes

innodb_concurrency_tickets Yes Modifying this parameter has no effect,
because innodb_thread_conc
urrency is always 0 for Aurora.

Configuration parameters 1788

Amazon Aurora User Guide for Aurora

Parameter name Modifiable Notes

innodb_deadlock_detect Yes This option is used to disable deadlock
detection in Aurora MySQL version
2.11 and higher and version 3.

On high-concurrency systems, deadlock
detection can cause a slowdown when
numerous threads wait for the same
lock. Consult the MySQL documenta
tion for more information on this
parameter.

innodb_file_format Yes Removed from Aurora MySQL version
3.

innodb_flushing_avg_loops No

innodb_force_load_corrupted No

innodb_ft_aux_table Yes

innodb_ft_cache_size Yes

innodb_ft_enable_stopword Yes

innodb_ft_server_stopword_t
able

Yes

innodb_ft_user_stopword_tab
le

Yes

innodb_large_prefix Yes Removed from Aurora MySQL version
3.

innodb_lock_wait_timeout Yes

innodb_log_compressed_pages No

Configuration parameters 1789

Amazon Aurora User Guide for Aurora

Parameter name Modifiable Notes

innodb_lru_scan_depth Yes

innodb_max_purge_lag Yes

innodb_max_purge_lag_delay Yes

innodb_monitor_disable Yes

innodb_monitor_enable Yes

innodb_monitor_reset Yes

innodb_monitor_reset_all Yes

innodb_old_blocks_pct Yes

innodb_old_blocks_time Yes

innodb_open_files Yes

innodb_print_all_deadlocks Yes When turned on, records informati
on about all InnoDB deadlocks in
the Aurora MySQL error log. For
more information, see Minimizing
and troubleshooting Aurora MySQL
deadlocks.

innodb_random_read_ahead Yes

innodb_read_ahead_threshold Yes

innodb_read_io_threads No

Configuration parameters 1790

Amazon Aurora User Guide for Aurora

Parameter name Modifiable Notes

innodb_read_only No Aurora MySQL manages the read-only
and read/write state of DB instances
based on the type of cluster. For
example, a provisioned cluster has one
read/write DB instance (the primary
instance) and any other instances in
the cluster are read-only (the Aurora
Replicas).

innodb_replication_delay Yes

innodb_sort_buffer_size Yes

innodb_stats_auto_recalc Yes

innodb_stats_method Yes

innodb_stats_on_metadata Yes

innodb_stats_persistent Yes

innodb_stats_persistent_sam
ple_pages

Yes

innodb_stats_transient_samp
le_pages

Yes

innodb_thread_concurrency No

innodb_thread_sleep_delay Yes Modifying this parameter has no effect
because innodb_thread_conc
urrency is always 0 for Aurora.

Configuration parameters 1791

Amazon Aurora User Guide for Aurora

Parameter name Modifiable Notes

interactive_timeout Yes Aurora evaluates the minimum value
of interactive_timeout and
wait_timeout . It then uses that
minimum as the timeout to end all
idle sessions, both interactive and
noninteractive.

internal_tmp_disk_storage_e
ngine

Yes Controls which in-memory storage
engine is used for internal temporary
tables. Allowed values are INNODB and
MYISAM.

This parameter applies to Aurora
MySQL version 2.

internal_tmp_mem_storage_en
gine

Yes Controls which in-memory storage
engine is used for internal temporary
tables. Allowed values are MEMORY and
TempTable .

This parameter applies to Aurora
MySQL version 3.

join_buffer_size Yes

keep_files_on_create Yes

key_buffer_size Yes Key cache for MyISAM tables. For more
information, see keycache->cache_lock
mutex.

key_cache_age_threshold Yes

key_cache_block_size Yes

key_cache_division_limit Yes

Configuration parameters 1792

Amazon Aurora User Guide for Aurora

Parameter name Modifiable Notes

local_infile Yes

lock_wait_timeout Yes

log-bin No Setting binlog_format to
STATEMENT , MIXED, or ROW automatic
ally sets log-bin to ON. Setting
binlog_format to OFF automatic
ally sets log-bin to OFF. For more
information, see Replication between
Aurora and MySQL or between Aurora
and another Aurora DB cluster (binary
log replication).

log_bin_trust_function_crea
tors

Yes

log_bin_use_v1_row_events Yes Removed from Aurora MySQL version
3.

log_error No

log_error_suppression_list Yes Specifies a list of error codes that aren't
logged in the MySQL error log. This
allows you to ignore certain noncritic
al error conditions to help keep your
error logs clean. For more information,
see log_error_suppression_list in the
MySQL documentation.

This parameter applies to Aurora
MySQL version 3.03 and higher.

log_output Yes

log_queries_not_using_index
es

Yes

Configuration parameters 1793

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_log_error_suppression_list

Amazon Aurora User Guide for Aurora

Parameter name Modifiable Notes

log_slave_updates No Aurora MySQL version 2. Use
log_replica_updates in Aurora
MySQL version 3.

log_replica_updates No Aurora MySQL version 3

log_throttle_queries_not_us
ing_indexes

Yes

log_warnings Yes Removed from Aurora MySQL version
3.

long_query_time Yes

low_priority_updates Yes INSERT, UPDATE, DELETE, and LOCK
TABLE WRITE operations wait until
there's no pending SELECT operation
. This parameter affects only storage
engines that use only table-level
locking (MyISAM, MEMORY, MERGE).

This parameter applies to Aurora
MySQL version 3.

max_allowed_packet Yes

max_binlog_cache_size Yes

max_binlog_size No

max_binlog_stmt_cache_size Yes

max_connect_errors Yes

Configuration parameters 1794

Amazon Aurora User Guide for Aurora

Parameter name Modifiable Notes

max_connections Yes The default value is represented by
a formula. For details about how the
DBInstanceClassMemory value
in the formula is calculated, see DB
parameter formula variables. For
the default values depending on the
instance class, see Maximum connectio
ns to an Aurora MySQL DB instance.

max_delayed_threads Yes Sets the maximum number of threads
to handle INSERT DELAYED statement
s.

This parameter applies to Aurora
MySQL version 3.

max_error_count Yes The maximum number of error,
warning, and note messages to be
stored for display.

This parameter applies to Aurora
MySQL version 3.

max_execution_time Yes The timeout for running SELECT
statements, in milliseconds. The
value can be from 0–184467440
73709551615 . When set to 0, there
is no timeout.

For more information, see max_execu
tion_time in the MySQL documenta
tion.

max_heap_table_size Yes

max_insert_delayed_threads Yes

Configuration parameters 1795

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_max_execution_time
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_max_execution_time

Amazon Aurora User Guide for Aurora

Parameter name Modifiable Notes

max_join_size Yes

max_length_for_sort_data Yes Removed from Aurora MySQL version
3.

max_prepared_stmt_count Yes

max_seeks_for_key Yes

max_sort_length Yes

max_sp_recursion_depth Yes

max_tmp_tables Yes Removed from Aurora MySQL version
3.

max_user_connections Yes

max_write_lock_count Yes

metadata_locks_cache_size Yes Removed from Aurora MySQL version
3.

min_examined_row_limit Yes Use this parameter to prevent queries
that examine fewer than the specified
number of rows from being logged.

This parameter applies to Aurora
MySQL version 3.

myisam_data_pointer_size Yes

myisam_max_sort_file_size Yes

myisam_mmap_size Yes

myisam_sort_buffer_size Yes

myisam_stats_method Yes

Configuration parameters 1796

Amazon Aurora User Guide for Aurora

Parameter name Modifiable Notes

myisam_use_mmap Yes

net_buffer_length Yes

net_read_timeout Yes

net_retry_count Yes

net_write_timeout Yes

old-style-user-limits Yes

old_passwords Yes Removed from Aurora MySQL version
3.

optimizer_prune_level Yes

optimizer_search_depth Yes

optimizer_switch Yes For information about Aurora MySQL
features that use this switch, see Best
practices with Amazon Aurora MySQL.

optimizer_trace Yes

optimizer_trace_features Yes

optimizer_trace_limit Yes

optimizer_trace_max_mem_siz
e

Yes

optimizer_trace_offset Yes

performance-schema-consumer
-events-waits-current

Yes

performance-schema-instrume
nt

Yes

Configuration parameters 1797

Amazon Aurora User Guide for Aurora

Parameter name Modifiable Notes

performance_schema Yes

performance_schema_accounts
_size

Yes

performance_schema_consumer
_global_instrumentation

Yes

performance_schema_consumer
_thread_instrumentation

Yes

performance_schema_consumer
_events_stages_current

Yes

performance_schema_consumer
_events_stages_history

Yes

performance_schema_consumer
_events_stages_his
tory_long

Yes

performance_schema_consumer
_events_statements_current

Yes

performance_schema_consumer
_events_statements_history

Yes

performance_schema_consumer
_events_statements
_history_long

Yes

performance_schema_consumer
_events_waits_history

Yes

performance_schema_consumer
_events_waits_history_long

Yes

Configuration parameters 1798

Amazon Aurora User Guide for Aurora

Parameter name Modifiable Notes

performance_schema_consumer
_statements_digest

Yes

performance_schema_digests_
size

Yes

performance_schema_events_s
tages_history_long_size

Yes

performance_schema_events_s
tages_history_size

Yes

performance_schema_events_s
tatements_history_
long_size

Yes

performance_schema_events_s
tatements_history_size

Yes

performance_schema_events_t
ransactions_histor
y_long_size

Yes

performance_schema_events_t
ransactions_history_size

Yes

performance_schema_events_w
aits_history_long_size

Yes

performance_schema_events_w
aits_history_size

Yes

performance_schema_hosts_si
ze

Yes

performance_schema_max_cond
_classes

Yes

Configuration parameters 1799

Amazon Aurora User Guide for Aurora

Parameter name Modifiable Notes

performance_schema_max_cond
_instances

Yes

performance_schema_max_dige
st_length

Yes

performance_schema_max_file
_classes

Yes

performance_schema_max_file
_handles

Yes

performance_schema_max_file
_instances

Yes

performance_schema_max_inde
x_stat

Yes

performance_schema_max_memo
ry_classes

Yes

performance_schema_max_meta
data_locks

Yes

performance_schema_max_mute
x_classes

Yes

performance_schema_max_mute
x_instances

Yes

performance_schema_max_prep
ared_statements_instances

Yes

performance_schema_max_prog
ram_instances

Yes

Configuration parameters 1800

Amazon Aurora User Guide for Aurora

Parameter name Modifiable Notes

performance_schema_max_rwlo
ck_classes

Yes

performance_schema_max_rwlo
ck_instances

Yes

performance_schema_max_sock
et_classes

Yes

performance_schema_max_sock
et_instances

Yes

performance_schema_max_sql_
text_length

Yes

performance_schema_max_stag
e_classes

Yes

performance_schema_max_stat
ement_classes

Yes

performance_schema_max_stat
ement_stack

Yes

performance_schema_max_tabl
e_handles

Yes

performance_schema_max_tabl
e_instances

Yes

performance_schema_max_tabl
e_lock_stat

Yes

performance_schema_max_thre
ad_classes

Yes

Configuration parameters 1801

Amazon Aurora User Guide for Aurora

Parameter name Modifiable Notes

performance_schema_max_thre
ad_instances

Yes

performance_schema_session_
connect_attrs_size

Yes

performance_schema_setup_ac
tors_size

Yes

performance_schema_setup_ob
jects_size

Yes

performance_schema_show_pro
cesslist

Yes This parameter determines which SHOW
PROCESSLIST implementation to
use:

• The default implementation iterates
across active threads from within
the thread manager while holding
a global mutex. This can cause slow
performance, especially on busy
systems.

• The alternative SHOW PROCESSLI
ST implementation is based on the
Performance Schema processli
st table. This implementation
queries active thread data from the
Performance Schema rather than the
thread manager and doesn't require
a mutex.

This parameter applies to Aurora
MySQL version 2.12 and higher, and
version 3.

Configuration parameters 1802

Amazon Aurora User Guide for Aurora

Parameter name Modifiable Notes

performance_schema_users_si
ze

Yes

pid_file No

plugin_dir No Aurora MySQL uses managed instances
where you don't access the file system
directly.

port No Aurora MySQL manages the connectio
n properties and enforces consistent
settings for all DB instances in a cluster.

preload_buffer_size Yes The size of the buffer that's allocated
when preloading indexes.

This parameter applies to Aurora
MySQL version 3.

profiling_history_size Yes

query_alloc_block_size Yes

query_cache_limit Yes Removed from Aurora MySQL version
3.

query_cache_min_res_unit Yes Removed from Aurora MySQL version
3.

query_cache_size Yes The default value is represented by
a formula. For details about how the
DBInstanceClassMemory value
in the formula is calculated, see DB
parameter formula variables.

Removed from Aurora MySQL version
3.

Configuration parameters 1803

Amazon Aurora User Guide for Aurora

Parameter name Modifiable Notes

query_cache_type Yes Removed from Aurora MySQL version
3.

query_cache_wlock_invalidat
e

Yes Removed from Aurora MySQL version
3.

query_prealloc_size Yes

range_alloc_block_size Yes

read_buffer_size Yes

Configuration parameters 1804

Amazon Aurora User Guide for Aurora

Parameter name Modifiable Notes

read_only Yes When this parameter is turned on, the
server permits no updates except from
those performed by replica threads.

For Aurora MySQL version 2, valid
values are the following:

• 0 – OFF

• 1 – ON

• {TrueIfReplica} – ON for read
replicas. This is the default value.

• {TrueIfClusterReplica} –
ON for instances in replica clusters
such as cross-Region read replicas,
secondary clusters in an Aurora
global database, and blue/green
deployments.

We recommend that you use the DB
cluster parameter group in Aurora
MySQL version 2 to make sure that the
read_only parameter is applied to
new writer instances on failover.

Note

Reader instances are always
read only, because Aurora
MySQL sets innodb_re
ad_only to 1 on all readers.
Therefore, read_only is
redundant on reader instances.

Configuration parameters 1805

Amazon Aurora User Guide for Aurora

Parameter name Modifiable Notes

Removed at the instance level from
Aurora MySQL version 3.

read_rnd_buffer_size Yes

relay-log No

relay_log_info_repository Yes Removed from Aurora MySQL version
3.

relay_log_recovery No

replica_checkpoint_group Yes Aurora MySQL version 3

replica_checkpoint_period Yes Aurora MySQL version 3

replica_parallel_workers Yes Aurora MySQL version 3

replica_pending_jobs_size_m
ax

Yes Aurora MySQL version 3

replica_skip_errors Yes Aurora MySQL version 3

replica_sql_verify_checksum Yes Aurora MySQL version 3

safe-user-create Yes

secure_auth Yes This parameter is always turned on in
Aurora MySQL version 2. Trying to turn
it off generates an error.

Removed from Aurora MySQL version
3.

secure_file_priv No Aurora MySQL uses managed instances
where you don't access the file system
directly.

Configuration parameters 1806

Amazon Aurora User Guide for Aurora

Parameter name Modifiable Notes

show_create_table_verbosity Yes Enabling this variable causes
SHOW_CREATE_TABLE to display the
ROW_FORMAT regardless of whether
it's the default format.

This parameter applies to Aurora
MySQL version 2.12 and higher, and
version 3.

skip-slave-start No

skip_external_locking No

skip_show_database Yes

slave_checkpoint_group Yes Aurora MySQL version 2. Use
replica_checkpoint_group in
Aurora MySQL version 3.

slave_checkpoint_period Yes Aurora MySQL version 2. Use
replica_checkpoint_period in
Aurora MySQL version 3.

slave_parallel_workers Yes Aurora MySQL version 2. Use
replica_parallel_workers in
Aurora MySQL version 3.

slave_pending_jobs_size_max Yes Aurora MySQL version 2. Use
replica_pending_jobs_size_m
ax in Aurora MySQL version 3.

slave_sql_verify_checksum Yes Aurora MySQL version 2. Use
replica_sql_verify_checksum

 in Aurora MySQL version 3.

slow_launch_time Yes

Configuration parameters 1807

https://dev.mysql.com/doc/refman/5.7/en/show-create-table.html

Amazon Aurora User Guide for Aurora

Parameter name Modifiable Notes

slow_query_log Yes For instructions on uploading the logs
to CloudWatch Logs, see Publishing
Amazon Aurora MySQL logs to Amazon
CloudWatch Logs.

slow_query_log_file No Aurora MySQL uses managed instances
where you don't access the file system
directly.

socket No

sort_buffer_size Yes

sql_mode Yes

sql_select_limit Yes

stored_program_cache Yes

sync_binlog No

sync_master_info Yes

sync_source_info Yes This parameter applies to Aurora
MySQL version 3.

sync_relay_log Yes Removed from Aurora MySQL version
3.

sync_relay_log_info Yes

sysdate-is-now Yes

table_cache_element_entry_t
tl

No

Configuration parameters 1808

Amazon Aurora User Guide for Aurora

Parameter name Modifiable Notes

table_definition_cache Yes The default value is represented by
a formula. For details about how the
DBInstanceClassMemory value
in the formula is calculated, see DB
parameter formula variables.

table_open_cache Yes The default value is represented by
a formula. For details about how the
DBInstanceClassMemory value
in the formula is calculated, see DB
parameter formula variables.

table_open_cache_instances Yes

temp-pool Yes Removed from Aurora MySQL version
3.

temptable_max_mmap Yes This parameter applies to Aurora
MySQL version 3. For details, see New
temporary table behavior in Aurora
MySQL version 3.

temptable_max_ram Yes This parameter applies to Aurora
MySQL version 3. For details, see New
temporary table behavior in Aurora
MySQL version 3.

temptable_use_mmap Yes This parameter applies to Aurora
MySQL version 3. For details, see New
temporary table behavior in Aurora
MySQL version 3.

thread_cache_size Yes The number of threads to be cached.
This parameter applies to Aurora
MySQL versions 2 and 3.

Configuration parameters 1809

Amazon Aurora User Guide for Aurora

Parameter name Modifiable Notes

thread_handling No

thread_stack Yes

timed_mutexes Yes

tmp_table_size Yes Defines the maximum size of internal
in-memory temporary tables created
by the MEMORY storage engine in
Aurora MySQL version 3.

In Aurora MySQL version 3.04 and
higher, defines the maximum size of
internal in-memory temporary tables
created by the TempTable storage
engine when aurora_tmptable_en
able_per_table_limit is ON.

For more information, see Limiting the
size of internal, in-memory temporary
tables.

tmpdir No Aurora MySQL uses managed instances
where you don't access the file system
directly.

transaction_alloc_block_siz
e

Yes

transaction_isolation Yes This parameter applies to Aurora
MySQL version 3. It replaces
tx_isolation .

transaction_prealloc_size Yes

Configuration parameters 1810

Amazon Aurora User Guide for Aurora

Parameter name Modifiable Notes

tx_isolation Yes Removed from Aurora MySQL version
3. It is replaced by transacti
on_isolation .

updatable_views_with_limit Yes

validate-password No

validate_password_dictionar
y_file

No

validate_password_length No

validate_password_mixed_cas
e_count

No

validate_password_number_co
unt

No

validate_password_policy No

validate_password_special_c
har_count

No

wait_timeout Yes Aurora evaluates the minimum value
of interactive_timeout and
wait_timeout . It then uses that
minimum as the timeout to end all
idle sessions, both interactive and
noninteractive.

MySQL parameters that don't apply to Aurora MySQL

Because of architectural differences between Aurora MySQL and MySQL, some MySQL parameters
don't apply to Aurora MySQL.

The following MySQL parameters don't apply to Aurora MySQL. This list isn't exhaustive.

Configuration parameters 1811

Amazon Aurora User Guide for Aurora

• activate_all_roles_on_login – This parameter doesn't apply to Aurora MySQL version 2. It
is available in Aurora MySQL version 3.

• big_tables

• bind_address

• character_sets_dir

• innodb_adaptive_flushing

• innodb_adaptive_flushing_lwm

• innodb_buffer_pool_chunk_size

• innodb_buffer_pool_instances

• innodb_change_buffering

• innodb_checksum_algorithm

• innodb_data_file_path

• innodb_dedicated_server

• innodb_doublewrite

• innodb_flush_log_at_timeout – This parameter doesn't apply to Aurora MySQL. For more
information, see Configuring how frequently the log buffer is flushed.

• innodb_flush_method

• innodb_flush_neighbors

• innodb_io_capacity

• innodb_io_capacity_max

• innodb_log_buffer_size

• innodb_log_file_size

• innodb_log_files_in_group

• innodb_log_spin_cpu_abs_lwm

• innodb_log_spin_cpu_pct_hwm

• innodb_log_writer_threads

• innodb_max_dirty_pages_pct

• innodb_numa_interleave

• innodb_page_size

• innodb_redo_log_capacity

• innodb_redo_log_encrypt

Configuration parameters 1812

Amazon Aurora User Guide for Aurora

• innodb_undo_log_encrypt

• innodb_undo_log_truncate

• innodb_undo_logs

• innodb_undo_tablespaces

• innodb_use_native_aio

• innodb_write_io_threads

Aurora MySQL global status variables

Aurora MySQL includes status variables from community MySQL and variables that are unique
to Aurora. You can examine these variables to learn about what's happening inside the database
engine. For more information about the status variables in community MySQL, see Server Status
Variables in the community MySQL 8.0 documentation.

You can find the current values for Aurora MySQL global status variables by using a statement such
as the following:

show global status like '%aurora%';

The following table describes the global status variables that Aurora MySQL uses.

Name Description

AuroraDb_commits The total number of commits since the last
restart.

AuroraDb_commit_latency The aggregate commit latency since the last
restart.

AuroraDb_ddl_stmt_duration The aggregate DDL latency since the last
restart.

AuroraDb_select_stmt_duration The aggregate SELECT statement latency
since the last restart.

AuroraDb_insert_stmt_duration The aggregate INSERT statement latency
since the last restart.

Global status variables 1813

https://dev.mysql.com/doc/refman/8.0/en/server-status-variables.html
https://dev.mysql.com/doc/refman/8.0/en/server-status-variables.html

Amazon Aurora User Guide for Aurora

Name Description

AuroraDb_update_stmt_duration The aggregate UPDATE statement latency
since the last restart.

AuroraDb_delete_stmt_duration The aggregate DELETE statement latency
since the last restart.

Aurora_binlog_io_cache_allocated The number of bytes allocated to the binlog I/
O cache.

Aurora_binlog_io_cache_read
_requests

The number of read requests made to the
binlog I/O cache.

Aurora_binlog_io_cache_reads The number of read requests that were served
from the binlog I/O cache.

Aurora_enhanced_binlog Indicates whether enhanced binlog is enabled
or disabled for this DB instance. For more
information, see Setting up enhanced binlog.

Aurora_external_connection_count The number of database connections to the
DB instance, excluding RDS service connectio
ns used for database health checks.

Aurora_fast_insert_cache_hits A counter that's incremented when the cached
cursor is successfully retrieved and verified.
For more information on the fast insert cache,
see Amazon Aurora MySQL performance
enhancements.

Aurora_fast_insert_cache_misses A counter that's incremented when the cached
cursor is no longer valid and Aurora performs
a normal index traversal. For more information
on the fast insert cache, see Amazon Aurora
MySQL performance enhancements.

Global status variables 1814

Amazon Aurora User Guide for Aurora

Name Description

Aurora_fts_cache_memory_used The amount of memory in bytes that the
InnoDB full-text search system is using. This
variable applies to Aurora MySQL version 3.07
and higher.

Aurora_fwd_master_dml_stmt_count The total number of DML statements
forwarded to this writer DB instance. This
variable applies to Aurora MySQL version 2.

Aurora_fwd_master_dml_stmt_
duration

The total duration of DML statements
forwarded to this writer DB instance. This
variable applies to Aurora MySQL version 2.

Aurora_fwd_master_errors_rp
c_timeout

The number of times a forwarded connection
failed to be established on the writer.

Aurora_fwd_master_errors_se
ssion_limit

The number of forwarded queries that get
rejected due to session full on the writer.

Aurora_fwd_master_errors_se
ssion_timeout

The number of times a forwarding session is
ended due to a timeout on the writer.

Aurora_fwd_master_open_sessions The number of forwarded sessions on the
writer DB instance. This variable applies to
Aurora MySQL version 2.

Aurora_fwd_master_select_st
mt_count

The total number of SELECT statements
forwarded to this writer DB instance. This
variable applies to Aurora MySQL version 2.

Aurora_fwd_master_select_st
mt_duration

The total duration of SELECT statements
forwarded to this writer DB instance. This
variable applies to Aurora MySQL version 2.

Aurora_fwd_writer_dml_stmt_count The total number of DML statements
forwarded to this writer DB instance. This
variable applies to Aurora MySQL version 3.

Global status variables 1815

Amazon Aurora User Guide for Aurora

Name Description

Aurora_fwd_writer_dml_stmt_
duration

The total duration of DML statements
forwarded to this writer DB instance. This
variable applies to Aurora MySQL version 3.

Aurora_fwd_writer_errors_rp
c_timeout

The number of times a forwarded connection
failed to be established on the writer.

Aurora_fwd_writer_errors_se
ssion_limit

The number of forwarded queries that get
rejected due to session full on the writer.

Aurora_fwd_writer_errors_se
ssion_timeout

The number of times a forwarding session is
ended due to a timeout on the writer.

Aurora_fwd_writer_open_sessions The number of forwarded sessions on the
writer DB instance. This variable applies to
Aurora MySQL version 3.

Aurora_fwd_writer_select_st
mt_count

The total number of SELECT statements
forwarded to this writer DB instance. This
variable applies to Aurora MySQL version 3.

Aurora_fwd_writer_select_st
mt_duration

The total duration of SELECT statements
forwarded to this writer DB instance. This
variable applies to Aurora MySQL version 3.

Aurora_lockmgr_buffer_pool_
memory_used

The amount of buffer pool memory in bytes
that the Aurora MySQL lock manager is using.

Aurora_lockmgr_memory_used The amount of memory in bytes that the
Aurora MySQL lock manager is using.

Aurora_ml_actual_request_cnt The aggregate request count that Aurora
MySQLmakes to the Aurora machine learning
services across all queries run by users of the
DB instance. For more information, see Using
Amazon Aurora machine learning with Aurora
MySQL.

Global status variables 1816

Amazon Aurora User Guide for Aurora

Name Description

Aurora_ml_actual_response_cnt The aggregate response count that Aurora
MySQL receives from the Aurora machine
learning services across all queries run by
users of the DB instance. For more informati
on, see Using Amazon Aurora machine
learning with Aurora MySQL.

Aurora_ml_cache_hit_cnt The aggregate internal cache hit count that
Aurora MySQL receives from the Aurora
machine learning services across all queries
run by users of the DB instance. For more
information, see Using Amazon Aurora
machine learning with Aurora MySQL.

Aurora_ml_logical_request_cnt The number of logical requests that the DB
instance has evaluated to be sent to the
Aurora machine learning services since the last
status reset. Depending on whether batching
has been used, this value can be higher than
Aurora_ml_actual_request_cnt . For
more information, see Using Amazon Aurora
machine learning with Aurora MySQL.

Aurora_ml_logical_response_cnt The aggregate response count that Aurora
MySQL receives from the Aurora machine
learning services across all queries run by
users of the DB instance. For more informati
on, see Using Amazon Aurora machine
learning with Aurora MySQL.

Aurora_ml_retry_request_cnt The number of retried requests that the DB
instance has sent to the Aurora machine
learning services since the last status reset. For
more information, see Using Amazon Aurora
machine learning with Aurora MySQL.

Global status variables 1817

Amazon Aurora User Guide for Aurora

Name Description

Aurora_ml_single_request_cnt The aggregate count of Aurora machine
learning functions that are evaluated by non-
batch mode across all queries run by users of
the DB instance. For more information, see
Using Amazon Aurora machine learning with
Aurora MySQL.

aurora_oom_avoidance_recove
ry_state

Indicates whether Aurora out-of-memory
(OOM) avoidance recovery is in the ACTIVE or
INACTIVE state for this DB instance.

aurora_oom_reserved_mem_enter_kb Represents the threshold for entering the
RESERVED state in Aurora's OOM handling
mechanism.

When the available memory on the server
falls below this threshold, aurora_oo
m_status changes to RESERVED, indicating
that the server is approaching a critical level of
memory usage.

aurora_oom_reserved_mem_exit_kb Represents the threshold for exiting the
RESERVED state in Aurora's OOM handling
mechanism.

When the available memory on the server
rises above this threshold, aurora_oo
m_status reverts to NORMAL, indicating that
the server has returned to a more stable state
with sufficient memory resources.

Global status variables 1818

Amazon Aurora User Guide for Aurora

Name Description

aurora_oom_status Represents the current OOM status of this
DB instance. When the value is NORMAL, it
indicates that there are sufficient memory
resources.

If the value changes to RESERVED, it indicates
 that the server has low available memory.
Actions are taken based on the aurora_oo
m_response parameter configuration.

For more information, see Troubleshooting
out-of-memory issues for Aurora MySQL
databases.

Aurora_pq_bytes_returned The number of bytes for the tuple data
structures transmitted to the head node
during parallel queries. Divide by 16,384 to
compare against Aurora_pq_pages_pu
shed_down .

Aurora_pq_max_concurrent_re
quests

The maximum number of parallel query
sessions that can run concurrently on this
Aurora DB instance. This is a fixed number that
depends on the AWS DB instance class.

Aurora_pq_pages_pushed_down The number of data pages (each with a fixed
size of 16 KiB) where parallel query avoided a
network transmission to the head node.

Aurora_pq_request_attempted The number of parallel query sessions
requested. This value might represent more
than one session per query, depending on SQL
constructs such as subqueries and joins.

Aurora_pq_request_executed The number of parallel query sessions run
successfully.

Global status variables 1819

Amazon Aurora User Guide for Aurora

Name Description

Aurora_pq_request_failed The number of parallel query sessions that
returned an error to the client. In some cases,
a request for a parallel query might fail, for
example due to a problem in the storage layer.
In these cases, the query part that failed is
retried using the nonparallel query mechanism
. If the retried query also fails, an error is
returned to the client and this counter is
incremented.

Aurora_pq_request_in_progress The number of parallel query sessions
currently in progress. This number applies to
the particular Aurora DB instance that you are
connected to, not the entire Aurora DB cluster.
To see if a DB instance is close to its concurren
cy limit, compare this value to Aurora_pq
_max_concurrent_requests .

Aurora_pq_request_not_chosen The number of times parallel query wasn't
chosen to satisfy a query. This value is the
sum of several other more granular counters.
An EXPLAIN statement can increment this
counter even though the query isn't actually
performed.

Aurora_pq_request_not_chose
n_below_min_rows

The number of times parallel query wasn't
chosen due to the number of rows in the
table. An EXPLAIN statement can increment
this counter even though the query isn't
actually performed.

Aurora_pq_request_not_chose
n_column_bit

The number of parallel query requests that
use the nonparallel query processing path
because of an unsupported data type in the
list of projected columns.

Global status variables 1820

Amazon Aurora User Guide for Aurora

Name Description

Aurora_pq_request_not_chose
n_column_geometry

The number of parallel query requests that
use the nonparallel query processing path
because the table has columns with the
GEOMETRY data type. For information about
Aurora MySQL versions that remove this
limitation, see Upgrading parallel query
clusters to Aurora MySQL version 3.

Aurora_pq_request_not_chose
n_column_lob

The number of parallel query requests that
use the nonparallel query processing path
because the table has columns with a LOB
data type, or VARCHAR columns that are
stored externally due to the declared length.
For information about Aurora MySQL versions
that remove this limitation, see Upgrading
parallel query clusters to Aurora MySQL
version 3.

Aurora_pq_request_not_chose
n_column_virtual

The number of parallel query requests that
use the nonparallel query processing path
because the table contains a virtual column.

Aurora_pq_request_not_chose
n_custom_charset

The number of parallel query requests that
use the nonparallel query processing path
because the table has columns with a custom
character set.

Aurora_pq_request_not_chose
n_fast_ddl

The number of parallel query requests that
use the nonparallel query processing path
because the table is currently being altered by
a fast DDL ALTER statement.

Global status variables 1821

Amazon Aurora User Guide for Aurora

Name Description

Aurora_pq_request_not_chosen_
few_pages_outside_buffer_pool

The number of times parallel query wasn't
chosen, even though less than 95 percent of
the table data was in the buffer pool, because
there wasn't enough unbuffered table data to
make parallel query worthwhile.

Aurora_pq_request_not_chose
n_full_text_index

The number of parallel query requests that
use the nonparallel query processing path
because the table has full-text indexes.

Aurora_pq_request_not_chosen_
high_buffer_pool_pct

The number of times parallel query wasn't
chosen because a high percentage of the table
data (currently, greater than 95 percent) was
already in the buffer pool. In these cases,
the optimizer determines that reading the
data from the buffer pool is more efficient
. An EXPLAIN statement can increment this
counter even though the query isn't actually
performed.

Aurora_pq_request_not_chose
n_index_hint

The number of parallel query requests that
use the nonparallel query processing path
because the query includes an index hint.

Aurora_pq_request_not_chose
n_innodb_table_format

The number of parallel query requests that
use the nonparallel query processing path
because the table uses an unsupported
InnoDB row format. Aurora parallel query only
applies to the COMPACT, REDUNDANT , and
DYNAMIC row formats.

Global status variables 1822

Amazon Aurora User Guide for Aurora

Name Description

Aurora_pq_request_not_chose
n_long_trx

The number of parallel query requests that
used the nonparallel query processing path,
due to the query being started inside a long-
running transaction. An EXPLAIN statement
can increment this counter even though the
query isn't actually performed.

Aurora_pq_request_not_chose
n_no_where_clause

The number of parallel query requests that
use the nonparallel query processing path
because the query doesn't include any WHERE
clause.

Aurora_pq_request_not_chose
n_range_scan

The number of parallel query requests that
use the nonparallel query processing path
because the query uses a range scan on an
index.

Aurora_pq_request_not_chose
n_row_length_too_long

The number of parallel query requests that
use the nonparallel query processing path
because the total combined length of all the
columns is too long.

Aurora_pq_request_not_chose
n_small_table

The number of times parallel query wasn't
chosen due to the overall size of the table, as
determined by number of rows and average
row length. An EXPLAIN statement can
increment this counter even though the query
isn't actually performed.

Aurora_pq_request_not_chose
n_temporary_table

The number of parallel query requests that
use the nonparallel query processing path
because the query refers to temporary tables
that use the unsupported MyISAM or memory
table types.

Global status variables 1823

Amazon Aurora User Guide for Aurora

Name Description

Aurora_pq_request_not_chose
n_tx_isolation

The number of parallel query requests that
use the nonparallel query processing path
because query uses an unsupported transacti
on isolation level. On reader DB instances,
parallel query only applies to the REPEATABL
E READ and READ COMMITTED isolation
levels.

Aurora_pq_request_not_chose
n_update_delete_stmts

The number of parallel query requests that
use the nonparallel query processing path
because the query is part of an UPDATE or
DELETE statement.

Aurora_pq_request_not_chose
n_unsupported_access

The number of parallel query requests that
use the nonparallel query processing path
because the WHERE clause doesn't meet the
criteria for parallel query. This result can occur
if the query doesn't require a data-intensive
scan, or if the query is a DELETE or UPDATE
statement.

Aurora_pq_request_not_chose
n_unsupported_storage_type

The number of parallel query requests that
use the nonparallel query processing path
because the Aurora MySQL DB cluster isn't
using a supported Aurora cluster storage
configuration. For more information, see
Limitations.

This parameter applies to Aurora MySQL
version 3.04 and higher.

Aurora_pq_request_throttled The number of times parallel query wasn't
chosen due to the maximum number of
concurrent parallel queries already running on
a particular Aurora DB instance.

Global status variables 1824

Amazon Aurora User Guide for Aurora

Name Description

Aurora_repl_bytes_received Number of bytes replicated to an Aurora
MySQL reader database instance since the last
restart. For more information, see Replication
with Amazon Aurora MySQL.

Aurora_reserved_mem_exceede
d_incidents

The number of times since the last restart that
the engine has exceeded reserved memory
limits. If aurora_oom_response is
configured, this threshold defines when out-
of-memory (OOM) avoidance activities are
triggered. For more information on the Aurora
MySQL OOM response, see Troubleshooting
out-of-memory issues for Aurora MySQL
databases.

Aurora_thread_pool_thread_count The current number of threads in the Aurora
thread pool. For more information on the
thread pool in Aurora MySQL, see Thread pool.

Aurora_tmz_version Denotes the current version of the time zone
information used by the DB cluster. The
values follow the Internet Assigned Numbers
Authority (IANA) format: YYYYsuffix , for
example 2022a and 2023c.

This parameter applies to Aurora MySQL
version 2.12 and higher, and version 3.04 and
higher.

Aurora_zdr_oom_threshold Represents the memory threshold, in kilobytes
(KB), for an Aurora DB instance to initiate a
zero downtime restart (ZDR) to recover from
potential memory-related issues.

Global status variables 1825

Amazon Aurora User Guide for Aurora

Name Description

server_aurora_das_running Indicates whether Database Activity Streams
(DAS) are enabled or disabled on this DB
instance. For more information, see Monitorin
g Amazon Aurora with Database Activity
Streams.

MySQL status variables that don't apply to Aurora MySQL

Because of architectural differences between Aurora MySQL and MySQL, some MySQL status
variables don't apply to Aurora MySQL.

The following MySQL status variables don't apply to Aurora MySQL. This list isn't exhaustive.

• innodb_buffer_pool_bytes_dirty

• innodb_buffer_pool_pages_dirty

• innodb_buffer_pool_pages_flushed

Aurora MySQL version 3 removes the following status variables that were in Aurora MySQL version
2:

• AuroraDb_lockmgr_bitmaps0_in_use

• AuroraDb_lockmgr_bitmaps1_in_use

• AuroraDb_lockmgr_bitmaps_mem_used

• AuroraDb_thread_deadlocks

• available_alter_table_log_entries

• Aurora_lockmgr_memory_used

• Aurora_missing_history_on_replica_incidents

• Aurora_new_lock_manager_lock_release_cnt

• Aurora_new_lock_manager_lock_release_total_duration_micro

• Aurora_new_lock_manager_lock_timeout_cnt

• Aurora_total_op_memory

Global status variables 1826

Amazon Aurora User Guide for Aurora

• Aurora_total_op_temp_space

• Aurora_used_alter_table_log_entries

• Aurora_using_new_lock_manager

• Aurora_volume_bytes_allocated

• Aurora_volume_bytes_left_extent

• Aurora_volume_bytes_left_total

• Com_alter_db_upgrade

• Compression

• External_threads_connected

• Innodb_available_undo_logs

• Last_query_cost

• Last_query_partial_plans

• Slave_heartbeat_period

• Slave_last_heartbeat

• Slave_received_heartbeats

• Slave_retried_transactions

• Slave_running

• Time_since_zero_connections

These MySQL status variables are available in Aurora MySQL version 2, but they aren't available in
Aurora MySQL version 3:

• Innodb_redo_log_enabled

• Innodb_undo_tablespaces_total

• Innodb_undo_tablespaces_implicit

• Innodb_undo_tablespaces_explicit

• Innodb_undo_tablespaces_active

Aurora MySQL wait events

The following are some common wait events for Aurora MySQL.

Wait events 1827

Amazon Aurora User Guide for Aurora

Note

For information on tuning Aurora MySQL performance using wait events, see Tuning Aurora
MySQL with wait events.
For information about the naming conventions used in MySQL wait events, see
Performance Schema instrument naming conventions in the MySQL documentation.

cpu

The number of active connections that are ready to run is consistently higher than the number
of vCPUs. For more information, see cpu.

io/aurora_redo_log_flush

A session is persisting data to Aurora storage. Typically, this wait event is for a write I/O
operation in Aurora MySQL. For more information, see io/aurora_redo_log_flush.

io/aurora_respond_to_client

Query processing has completed and results are being returned to the application client for
the following Aurora MySQL versions: 2.10.2 and higher 2.10 versions, 2.09.3 and higher 2.09
versions, and 2.07.7 and higher 2.07 versions. Compare the network bandwidth of the DB
instance class with the size of the result set being returned. Also, check client-side response
times. If the client is unresponsive and can't process the TCP packets, packet drops and TCP
retransmissions can occur. This situation negatively affects network bandwidth. In versions
lower than 2.10.2, 2.09.3, and 2.07.7, the wait event erroneously includes idle time. To learn
how to tune your database when this wait is prominent, see io/aurora_respond_to_client.

io/file/csv/data

Threads are writing to tables in comma-separated value (CSV) format. Check your CSV table
usage. A typical cause of this event is setting log_output on a table.

io/file/sql/binlog

A thread is waiting on a binary log (binlog) file that is being written to disk.

io/redo_log_flush

A session is persisting data to Aurora storage. Typically, this wait event is for a write I/O
operation in Aurora MySQL. For more information, see io/redo_log_flush.

Wait events 1828

https://dev.mysql.com/doc/refman/8.0/en/performance-schema-instrument-naming.html
https://dev.mysql.com/doc/refman/8.0/en/performance-schema-instrument-naming.html

Amazon Aurora User Guide for Aurora

io/socket/sql/client_connection

The mysqld program is busy creating threads to handle incoming new client connections. For
more information, see io/socket/sql/client_connection.

io/table/sql/handler

The engine is waiting for access to a table. This event occurs regardless of whether the data is
cached in the buffer pool or accessed on disk. For more information, see io/table/sql/handler.

lock/table/sql/handler

This wait event is a table lock wait event handler. For more information about atom and
molecule events in the Performance Schema, see Performance Schema atom and molecule
events in the MySQL documentation.

synch/cond/innodb/row_lock_wait

Multiple data manipulation language (DML) statements are accessing the same database rows
at the same time. For more information, see synch/cond/innodb/row_lock_wait.

synch/cond/innodb/row_lock_wait_cond

Multiple DML statements are accessing the same database rows at the same time. For more
information, see synch/cond/innodb/row_lock_wait_cond.

synch/cond/sql/MDL_context::COND_wait_status

Threads are waiting on a table metadata lock. The engine uses this type of lock to manage
concurrent access to a database schema and to ensure data consistency. For more information,
see Optimizing locking operations in the MySQL documentation. To learn how to tune your
database when this event is prominent, see synch/cond/sql/MDL_context::COND_wait_status.

synch/cond/sql/MYSQL_BIN_LOG::COND_done

You have turned on binary logging. There might be a high commit throughput, large number
transactions committing, or replicas reading binlogs. Consider using multirow statements or
bundling statements into one transaction. In Aurora, use global databases instead of binary log
replication, or use the aurora_binlog_* parameters.

synch/mutex/innodb/aurora_lock_thread_slot_futex

Multiple DML statements are accessing the same database rows at the same time. For more
information, see synch/mutex/innodb/aurora_lock_thread_slot_futex.

Wait events 1829

https://dev.mysql.com/doc/refman/8.0/en/performance-schema-atom-molecule-events.html
https://dev.mysql.com/doc/refman/8.0/en/performance-schema-atom-molecule-events.html
https://dev.mysql.com/doc/refman/8.0/en/locking-issues.html

Amazon Aurora User Guide for Aurora

synch/mutex/innodb/buf_pool_mutex

The buffer pool isn't large enough to hold the working data set. Or the workload accesses pages
from a specific table, which leads to contention in the buffer pool. For more information, see
synch/mutex/innodb/buf_pool_mutex.

synch/mutex/innodb/fil_system_mutex

The process is waiting for access to the tablespace memory cache. For more information, see
synch/mutex/innodb/fil_system_mutex.

synch/mutex/innodb/trx_sys_mutex

Operations are checking, updating, deleting, or adding transaction IDs in InnoDB in a consistent
or controlled manner. These operations require a trx_sys mutex call, which is tracked by
Performance Schema instrumentation. Operations include management of the transaction
system when the database starts or shuts down, rollbacks, undo cleanups, row read access,
and buffer pool loads. High database load with a large number of transactions results in the
frequent appearance of this wait event. For more information, see synch/mutex/innodb/
trx_sys_mutex.

synch/mutex/mysys/KEY_CACHE::cache_lock

The keycache->cache_lock mutex controls access to the key cache for MyISAM tables.
While Aurora MySQL doesn't allow usage of MyISAM tables to store persistent data, they are
used to store internal temporary tables. Consider checking the created_tmp_tables or
created_tmp_disk_tables status counters, because in certain situations, temporary tables
are written to disk when they no longer fit in memory.

synch/mutex/sql/FILE_AS_TABLE::LOCK_offsets

The engine acquires this mutex when opening or creating a table metadata file. When this
wait event occurs with excessive frequency, the number of tables being created or opened has
spiked.

synch/mutex/sql/FILE_AS_TABLE::LOCK_shim_lists

The engine acquires this mutex while performing operations such as reset_size,
detach_contents, or add_contents on the internal structure that keeps track of opened
tables. The mutex synchronizes access to the list contents. When this wait event occurs with
high frequency, it indicates a sudden change in the set of tables that were previously accessed.
The engine needs to access new tables or let go of the context related to previously accessed
tables.

Wait events 1830

Amazon Aurora User Guide for Aurora

synch/mutex/sql/LOCK_open

The number of tables that your sessions are opening exceeds the size of the table definition
cache or the table open cache. Increase the size of these caches. For more information, see How
MySQL opens and closes tables.

synch/mutex/sql/LOCK_table_cache

The number of tables that your sessions are opening exceeds the size of the table definition
cache or the table open cache. Increase the size of these caches. For more information, see How
MySQL opens and closes tables.

synch/mutex/sql/LOG

In this wait event, there are threads waiting on a log lock. For example, a thread might wait for
a lock to write to the slow query log file.

synch/mutex/sql/MYSQL_BIN_LOG::LOCK_commit

In this wait event, there is a thread that is waiting to acquire a lock with the intention of
committing to the binary log. Binary logging contention can occur on databases with a very
high change rate. Depending on your version of MySQL, there are certain locks being used to
protect the consistency and durability of the binary log. In RDS for MySQL, binary logs are used
for replication and the automated backup process. In Aurora MySQL, binary logs are not needed
for native replication or backups. They are disabled by default but can be enabled and used for
external replication or change data capture. For more information, see The binary log in the
MySQL documentation.

sync/mutex/sql/MYSQL_BIN_LOG::LOCK_dump_thread_metrics_collection

If binary logging is turned on, the engine acquires this mutex when it prints active dump
threads metrics to the engine error log and to the internal operations map.

sync/mutex/sql/MYSQL_BIN_LOG::LOCK_inactive_binlogs_map

If binary logging is turned on, the engine acquires this mutex when it adds to, deletes from, or
searches through the list of binlog files behind the latest one.

sync/mutex/sql/MYSQL_BIN_LOG::LOCK_io_cache

If binary logging is turned on, the engine acquires this mutex during Aurora binlog IO cache
operations: allocate, resize, free, write, read, purge, and access cache info. If this event occurs
frequently, the engine is accessing the cache where binlog events are stored. To reduce wait
times, reduce commits. Try grouping multiple statements into a single transaction.

Wait events 1831

https://dev.mysql.com/doc/refman/8.0/en/table-cache.html
https://dev.mysql.com/doc/refman/8.0/en/table-cache.html
https://dev.mysql.com/doc/refman/8.0/en/table-cache.html
https://dev.mysql.com/doc/refman/8.0/en/table-cache.html
https://dev.mysql.com/doc/refman/8.0/en/binary-log.html

Amazon Aurora User Guide for Aurora

synch/mutex/sql/MYSQL_BIN_LOG::LOCK_log

You have turned on binary logging. There might be high commit throughput, many transactions
committing, or replicas reading binlogs. Consider using multirow statements or bundling
statements into one transaction. In Aurora, use global databases instead of binary log
replication or use the aurora_binlog_* parameters.

synch/mutex/sql/SERVER_THREAD::LOCK_sync

The mutex SERVER_THREAD::LOCK_sync is acquired during the scheduling, processing,
or launching of threads for file writes. The excessive occurrence of this wait event indicates
increased write activity in the database.

synch/mutex/sql/TABLESPACES:lock

The engine acquires the TABLESPACES:lock mutex during the following tablespace
operations: create, delete, truncate, and extend. The excessive occurrence of this wait event
indicates a high frequency of tablespace operations. An example is loading a large amount of
data into the database.

synch/rwlock/innodb/dict

In this wait event, there are threads waiting on an rwlock held on the InnoDB data dictionary.

synch/rwlock/innodb/dict_operation_lock

In this wait event, there are threads holding locks on InnoDB data dictionary operations.

synch/rwlock/innodb/dict sys RW lock

A high number of concurrent data control language statements (DCLs) in data definition
language code (DDLs) are triggered at the same time. Reduce the application's dependency on
DDLs during regular application activity.

synch/rwlock/innodb/index_tree_rw_lock

A large number of similar data manipulation language (DML) statements are accessing the same
database object at the same time. Try using multirow statements. Also, spread the workload
over different database objects. For example, implement partitioning.

synch/sxlock/innodb/dict_operation_lock

A high number of concurrent data control language statements (DCLs) in data definition
language code (DDLs) are triggered at the same time. Reduce the application's dependency on
DDLs during regular application activity.

Wait events 1832

Amazon Aurora User Guide for Aurora

synch/sxlock/innodb/dict_sys_lock

A high number of concurrent data control language statements (DCLs) in data definition
language code (DDLs) are triggered at the same time. Reduce the application's dependency on
DDLs during regular application activity.

synch/sxlock/innodb/hash_table_locks

The session couldn't find pages in the buffer pool. The engine either needs to read a file or
modify the least-recently used (LRU) list for the buffer pool. Consider increasing the buffer
cache size and improving access paths for the relevant queries.

synch/sxlock/innodb/index_tree_rw_lock

Many similar data manipulation language (DML) statements are accessing the same database
object at the same time. Try using multirow statements. Also, spread the workload over
different database objects. For example, implement partitioning.

For more information on troubleshooting synch wait events, see Why is my MySQL DB instance
showing a high number of active sessions waiting on SYNCH wait events in Performance Insights?.

Aurora MySQL thread states

The following are some common thread states for Aurora MySQL.

checking permissions

The thread is checking whether the server has the required privileges to run the statement.

checking query cache for query

The server is checking whether the current query is present in the query cache.

cleaned up

This is the final state of a connection whose work is complete but which hasn't been closed by
the client. The best solution is to explicitly close the connection in code. Or you can set a lower
value for wait_timeout in your parameter group.

closing tables

The thread is flushing the changed table data to disk and closing the used tables. If this isn't
a fast operation, verify the network bandwidth consumption metrics against the instance
class network bandwidth. Also, check that the parameter values for table_open_cache and

Thread states 1833

https://aws.amazon.com/premiumsupport/knowledge-center/aurora-mysql-synch-wait-events/
https://aws.amazon.com/premiumsupport/knowledge-center/aurora-mysql-synch-wait-events/

Amazon Aurora User Guide for Aurora

table_definition_cache parameter allow for enough tables to be simultaneously open so
that the engine doesn't need to open and close tables frequently. These parameters influence
the memory consumption on the instance.

converting HEAP to MyISAM

The query is converting a temporary table from in-memory to on-disk. This conversion is
necessary because the temporary tables created by MySQL in the intermediate steps of
query processing grew too big for memory. Check the values of tmp_table_size and
max_heap_table_size. In later versions, this thread state name is converting HEAP to
ondisk.

converting HEAP to ondisk

The thread is converting an internal temporary table from an in-memory table to an on-disk
table.

copy to tmp table

The thread is processing an ALTER TABLE statement. This state occurs after the table with the
new structure has been created but before rows are copied into it. For a thread in this state,
you can use the Performance Schema to obtain information about the progress of the copy
operation.

creating sort index

Aurora MySQL is performing a sort because it can't use an existing index to satisfy the ORDER
BY or GROUP BY clause of a query. For more information, see creating sort index.

creating table

The thread is creating a permanent or temporary table.

delayed commit ok done

An asynchronous commit in Aurora MySQL has received an acknowledgement and is complete.

delayed commit ok initiated

The Aurora MySQL thread has started the async commit process but is waiting for
acknowledgement. This is usually the genuine commit time of a transaction.

delayed send ok done

An Aurora MySQL worker thread that is tied to a connection can be freed while a response is
sent to the client. The thread can begin other work. The state delayed send ok means that
the asynchronous acknowledgement to the client completed.

Thread states 1834

Amazon Aurora User Guide for Aurora

delayed send ok initiated

An Aurora MySQL worker thread has sent a response asynchronously to a client and is now free
to do work for other connections. The transaction has started an async commit process that
hasn't yet been acknowledged.

executing

The thread has begun running a statement.

freeing items

The thread has run a command. Some freeing of items done during this state involves the query
cache. This state is usually followed by cleaning up.

init

This state occurs before the initialization of ALTER TABLE, DELETE, INSERT, SELECT, or
UPDATE statements. Actions in this state include flushing the binary log or InnoDB log, and
some cleanup of the query cache.

Source has sent all binlog to replica; waiting for more updates

The primary node has finished its part of the replication. The thread is waiting for more queries
to run so that it can write to the binary log (binlog).

opening tables

The thread is trying to open a table. This operation is fast unless an ALTER TABLE or a LOCK
TABLE statement needs to finish, or it exceeds the value of table_open_cache.

optimizing

The server is performing initial optimizations for a query.

preparing

This state occurs during query optimization.

query end

This state occurs after processing a query but before the freeing items state.

removing duplicates

Aurora MySQL couldn't optimize a DISTINCT operation in the early stage of a query. Aurora
MySQL must remove all duplicated rows before sending the result to the client.

Thread states 1835

Amazon Aurora User Guide for Aurora

searching rows for update

The thread is finding all matching rows before updating them. This stage is necessary if the
UPDATE is changing the index that the engine uses to find the rows.

sending binlog event to slave

The thread read an event from the binary log and is sending it to the replica.

sending cached result to client

The server is taking the result of a query from the query cache and sending it to the client.

sending data

The thread is reading and processing rows for a SELECT statement but hasn't yet started
sending data to the client. The process is identifying which pages contain the results necessary
to satisfy the query. For more information, see sending data.

sending to client

The server is writing a packet to the client. In earlier MySQL versions, this wait event was
labeled writing to net.

starting

This is the first stage at the beginning of statement execution.

statistics

The server is calculating statistics to develop a query execution plan. If a thread is in this state
for a long time, the server is probably disk-bound while performing other work.

storing result in query cache

The server is storing the result of a query in the query cache.

system lock

The thread has called mysql_lock_tables, but the thread state hasn't been updated since
the call. This general state occurs for many reasons.

update

The thread is preparing to start updating the table.

Thread states 1836

Amazon Aurora User Guide for Aurora

updating

The thread is searching for rows and is updating them.

user lock

The thread issued a GET_LOCK call. The thread either requested an advisory lock and is waiting
for it, or is planning to request it.

waiting for more updates

The primary node has finished its part of the replication. The thread is waiting for more queries
to run so that it can write to the binary log (binlog).

waiting for schema metadata lock

This is a wait for a metadata lock.

waiting for stored function metadata lock

This is a wait for a metadata lock.

waiting for stored procedure metadata lock

This is a wait for a metadata lock.

waiting for table flush

The thread is executing FLUSH TABLES and is waiting for all threads to close their tables. Or
the thread received notification that the underlying structure for a table changed, so it must
reopen the table to get the new structure. To reopen the table, the thread must wait until all
other threads have closed the table. This notification takes place if another thread has used
one of the following statements on the table: FLUSH TABLES, ALTER TABLE, RENAME TABLE,
REPAIR TABLE, ANALYZE TABLE, or OPTIMIZE TABLE.

waiting for table level lock

One session is holding a lock on a table while another session tries to acquire the same lock on
the same table.

waiting for table metadata lock

Aurora MySQL uses metadata locking to manage concurrent access to database objects and
to ensure data consistency. In this wait event, one session is holding a metadata lock on
a table while another session tries to acquire the same lock on the same table. When the

Thread states 1837

Amazon Aurora User Guide for Aurora

Performance Schema is enabled, this thread state is reported as the wait event synch/cond/
sql/MDL_context::COND_wait_status.

writing to net

The server is writing a packet to the network. In later MySQL versions, this wait event is labeled
Sending to client.

Aurora MySQL isolation levels

Learn how DB instances in an Aurora MySQL cluster implement the database property of isolation.
This topic explains how the Aurora MySQL default behavior balances between strict consistency
and high performance. You can use this information to help you decide when to change the default
settings based on the traits of your workload.

Available isolation levels for writer instances

You can use the isolation levels REPEATABLE READ, READ COMMITTED, READ UNCOMMITTED,
and SERIALIZABLE on the primary instance of an Aurora MySQL DB cluster. These isolation levels
work the same in Aurora MySQL as in RDS for MySQL.

REPEATABLE READ isolation level for reader instances

By default, Aurora MySQL DB instances that are configured as read-only Aurora Replicas always
use the REPEATABLE READ isolation level. These DB instances ignore any SET TRANSACTION
ISOLATION LEVEL statements and continue using the REPEATABLE READ isolation level.

You can't set the isolation level for reader DB instances using DB parameters or DB cluster
parameters.

READ COMMITTED isolation level for reader instances

If your application includes a write-intensive workload on the primary instance and long-running
queries on the Aurora Replicas, you might experience substantial purge lag. Purge lag happens
when internal garbage collection is blocked by long-running queries. The symptom that you see is
a high value for history list length in the output from the SHOW ENGINE INNODB STATUS
command. You can monitor this value using the RollbackSegmentHistoryListLength metric
in CloudWatch. Substantial purge lag can reduce the effectiveness of secondary indexes, decrease
overall query performance, and lead to wasted storage space.

Isolation levels 1838

Amazon Aurora User Guide for Aurora

If you experience such issues, you can set an Aurora MySQL session-level configuration setting,
aurora_read_replica_read_committed, to use the READ COMMITTED isolation level on
Aurora Replicas. When you apply this setting, you can help reduce slowdowns and wasted space
that can result from performing long-running queries at the same time as transactions that modify
your tables.

We recommend making sure that you understand the specific Aurora MySQL behavior of the READ
COMMITTED isolation before using this setting. The Aurora Replica READ COMMITTED behavior
complies with the ANSI SQL standard. However, the isolation is less strict than typical MySQL READ
COMMITTED behavior that you might be familiar with. Therefore, you might see different query
results under READ COMMITTED on an Aurora MySQL read replica than you might see for the same
query under READ COMMITTED on the Aurora MySQL primary instance or on RDS for MySQL. You
might consider using the aurora_read_replica_read_committed setting for such cases as
a comprehensive report that scans a very large database. In contrast, you might avoid it for short
queries with small result sets, where precision and repeatability are important.

The READ COMMITTED isolation level isn't available for sessions within a secondary cluster in
an Aurora global database that use the write forwarding feature. For information about write
forwarding, see Using write forwarding in an Amazon Aurora global database.

Using READ COMMITTED for readers

To use the READ COMMITTED isolation level for Aurora Replicas, set the
aurora_read_replica_read_committed configuration setting to ON. Use this setting at
the session level while connected to a specific Aurora Replica. To do so, run the following SQL
commands.

set session aurora_read_replica_read_committed = ON;
set session transaction isolation level read committed;

You might use this configuration setting temporarily to perform interactive, one-time queries.
You might also want to run a reporting or data analysis application that benefits from the READ
COMMITTED isolation level, while leaving the default setting unchanged for other applications.

When the aurora_read_replica_read_committed setting is turned on, use the SET
TRANSACTION ISOLATION LEVEL command to specify the isolation level for the appropriate
transactions.

set transaction isolation level read committed;

Isolation levels 1839

Amazon Aurora User Guide for Aurora

Differences in READ COMMITTED behavior on Aurora replicas

The aurora_read_replica_read_committed setting makes the READ COMMITTED isolation
level available for an Aurora Replica, with consistency behavior that is optimized for long-running
transactions. The READ COMMITTED isolation level on Aurora Replicas has less strict isolation than
on Aurora primary instances. For that reason, enable this setting only on Aurora Replicas where you
know that your queries can accept the possibility of certain types of inconsistent results.

Your queries can experience certain kinds of read anomalies when the
aurora_read_replica_read_committed setting is turned on. Two kinds of anomalies are
especially important to understand and handle in your application code. A non-repeatable read
occurs when another transaction commits while your query is running. A long-running query can
see different data at the start of the query than it sees at the end. A phantom read occurs when
other transactions cause existing rows to be reorganized while your query is running, and one or
more rows are read twice by your query.

Your queries might experience inconsistent row counts as a result of phantom reads. Your queries
might also return incomplete or inconsistent results due to non-repeatable reads. For example,
suppose that a join operation refers to tables that are concurrently modified by SQL statements
such as INSERT or DELETE. In this case, the join query might read a row from one table but not the
corresponding row from another table.

The ANSI SQL standard allows both of these behaviors for the READ COMMITTED isolation
level. However, those behaviors are different than the typical MySQL implementation of READ
COMMITTED. Thus, before enabling the aurora_read_replica_read_committed setting, check
any existing SQL code to verify if it operates as expected under the looser consistency model.

Row counts and other results might not be strongly consistent under the READ COMMITTED
isolation level while this setting is enabled. Thus, you typically enable the setting only while
running analytic queries that aggregate large amounts of data and don't require absolute precision.
If you don't have these kinds of long-running queries alongside a write-intensive workload,
you probably don't need the aurora_read_replica_read_committed setting. Without the
combination of long-running queries and a write-intensive workload, you're unlikely to encounter
issues with the length of the history list.

Example Queries showing isolation behavior for READ COMMITTED on Aurora Replicas

The following example shows how READ COMMITTED queries on an Aurora Replica might return
non-repeatable results if transactions modify the associated tables at the same time. The table

Isolation levels 1840

Amazon Aurora User Guide for Aurora

BIG_TABLE contains 1 million rows before any queries start. Other data manipulation language
(DML) statements add, remove, or change rows while they are running.

The queries on the Aurora primary instance under the READ COMMITTED isolation level produce
predictable results. However, the overhead of keeping the consistent read view for the lifetime of
every long-running query can lead to expensive garbage collection later.

The queries on the Aurora Replica under the READ COMMITTED isolation level are optimized to
minimize this garbage collection overhead. The tradeoff is that the results might vary depending
on whether the queries retrieve rows that are added, removed, or reorganized by transactions that
are committed while the query is running. The queries are allowed to consider these rows, but
aren't required to. For demonstration purposes, the queries check only the number of rows in the
table by using the COUNT(*) function.

Time DML statement on
Aurora primary
instance

Query on Aurora
primary instance
with READ
COMMITTED

Query on Aurora
Replica with READ
COMMITTED

T1 INSERT INTO
big_table SELECT
* FROM other_tab
le LIMIT
1000000; COMMIT;

T2 Q1: SELECT
COUNT(*) FROM
big_table;

Q2: SELECT
COUNT(*) FROM
big_table;

T3 INSERT INTO
big_table (c1,
c2) VALUES (1,
'one more row');
COMMIT;

T4 If Q1 finishes now,
result is 1,000,000.

If Q2 finishes now,
result is 1,000,000 or
1,000,001.

Isolation levels 1841

Amazon Aurora User Guide for Aurora

Time DML statement on
Aurora primary
instance

Query on Aurora
primary instance
with READ
COMMITTED

Query on Aurora
Replica with READ
COMMITTED

T5 DELETE FROM
big_table LIMIT
2; COMMIT;

T6 If Q1 finishes now,
result is 1,000,000.

If Q2 finishes now,
result is 1,000,000 or
1,000,001 or 999,999
or 999,998.

T7 UPDATE big_table
SET c2 =
CONCAT(c2
,c2,c2);
COMMIT;

T8 If Q1 finishes now,
result is 1,000,000.

If Q2 finishes now,
result is 1,000,000
or 1,000,001 or
999,999, or possibly
some higher number.

T9 Q3: SELECT
COUNT(*) FROM
big_table;

Q4: SELECT
COUNT(*) FROM
big_table;

T10 If Q3 finishes now,
result is 999,999.

If Q4 finishes now,
result is 999,999.

Isolation levels 1842

Amazon Aurora User Guide for Aurora

Time DML statement on
Aurora primary
instance

Query on Aurora
primary instance
with READ
COMMITTED

Query on Aurora
Replica with READ
COMMITTED

T11 Q5: SELECT
COUNT(*) FROM
parent_table p
JOIN child_tab
le c ON (p.id =
c.id) WHERE p.id
= 1000;

Q6: SELECT
COUNT(*) FROM
parent_table p
JOIN child_tab
le c ON (p.id =
c.id) WHERE p.id
= 1000;

T12 INSERT INTO
parent_table
(id, s) VALUES
(1000, 'hello');
INSERT INTO
child_table
(id, s) VALUES
(1000, 'world');
COMMIT;

T13 If Q5 finishes now,
result is 0.

If Q6 finishes now,
result is 0 or 1.

If the queries finish quickly, before any other transactions perform DML statements and commit,
the results are predictable and the same between the primary instance and the Aurora Replica.
Let's examine the differences in behavior in detail, starting with the first query.

The results for Q1 are highly predictable because READ COMMITTED on the primary instance uses a
strong consistency model similar to the REPEATABLE READ isolation level.

The results for Q2 might vary depending on what transactions are committed while that query is
running. For example, suppose that other transactions perform DML statements and commit while
the queries are running. In this case, the query on the Aurora Replica with the READ COMMITTED
isolation level might or might not take the changes into account. The row counts aren't predictable

Isolation levels 1843

Amazon Aurora User Guide for Aurora

in the same way as under the REPEATABLE READ isolation level. They also aren't as predictable as
queries running under the READ COMMITTED isolation level on the primary instance, or on an RDS
for MySQL instance.

The UPDATE statement at T7 doesn't actually change the number of rows in the table. However, by
changing the length of a variable-length column, this statement can cause rows to be reorganized
internally. A long-running READ COMMITTED transaction might see the old version of a row, and
later within the same query see the new version of the same row. The query can also skip both the
old and new versions of the row, so the row count might be different than expected.

The results of Q5 and Q6 might be identical or slightly different. Query Q6 on the Aurora Replica
under READ COMMITTED is able to see, but is not required to see, the new rows that are committed
while the query is running. It might also see the row from one table, but not from the other table.
If the join query doesn't find a matching row in both tables, it returns a count of zero. If the query
does find both the new rows in PARENT_TABLE and CHILD_TABLE, the query returns a count of
one. In a long-running query, the lookups from the joined tables might happen at widely separated
times.

Note

These differences in behavior depend on the timing of when transactions are committed
and when the queries process the underlying table rows. Thus, you're most likely to see
such differences in report queries that take minutes or hours and that run on Aurora
clusters processing OLTP transactions at the same time. These are the kinds of mixed
workloads that benefit the most from the READ COMMITTED isolation level on Aurora
Replicas.

Aurora MySQL hints

You can use SQL hints with Aurora MySQL queries to fine-tune performance. You can also use
hints to prevent execution plans for important queries from changing because of unpredictable
conditions.

Tip

To verify the effect that a hint has on a query, examine the query plan produced by the
EXPLAIN statement. Compare the query plans with and without the hint.

Hints 1844

Amazon Aurora User Guide for Aurora

In Aurora MySQL version 3, you can use all the hints that are available in MySQL Community
Edition 8.0. For more information about these hints, see Optimizer Hints in the MySQL Reference
Manual.

The following hints are available in Aurora MySQL version 2. These hints apply to queries that
use the hash join feature in Aurora MySQL version 2, especially queries that use parallel query
optimization.

PQ, NO_PQ

Specifies whether to force the optimizer to use parallel query on a per-table or per-query basis.

PQ forces the optimizer to use parallel query for specified tables or the whole query (block).
NO_PQ prevents the optimizer from using parallel query for specified tables or the whole query
(block).

This hint is available in Aurora MySQL version 2.11 and higher. The following examples show
you how to use this hint.

Note

Specifying a table name forces the optimizer to apply the PQ/NO_PQ hint only on
those select tables. Not specifying a table name forces the PQ/NO_PQ hint on all tables
affected by the query block.

EXPLAIN SELECT /*+ PQ() */ f1, f2
 FROM num1 t1 WHERE f1 > 10 and f2 < 100;

EXPLAIN SELECT /*+ PQ(t1) */ f1, f2
 FROM num1 t1 WHERE f1 > 10 and f2 < 100;

EXPLAIN SELECT /*+ PQ(t1,t2) */ f1, f2
 FROM num1 t1, num1 t2 WHERE t1.f1 = t2.f21;

EXPLAIN SELECT /*+ NO_PQ() */ f1, f2
 FROM num1 t1 WHERE f1 > 10 and f2 < 100;

EXPLAIN SELECT /*+ NO_PQ(t1) */ f1, f2
 FROM num1 t1 WHERE f1 > 10 and f2 < 100;

Hints 1845

https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html

Amazon Aurora User Guide for Aurora

EXPLAIN SELECT /*+ NO_PQ(t1,t2) */ f1, f2
 FROM num1 t1, num1 t2 WHERE t1.f1 = t2.f21;

HASH_JOIN, NO_HASH_JOIN

Turns on or off the ability of the parallel query optimizer to choose whether to use the hash
join optimization method for a query. HASH_JOIN lets the optimizer use hash join if that
mechanism is more efficient. NO_HASH_JOIN prevents the optimizer from using hash join for
the query. This hint is available in Aurora MySQL version 2.08 and higher. It has no effect in
Aurora MySQL version 3.

The following examples show you how to use this hint.

EXPLAIN SELECT/*+ HASH_JOIN(t2) */ f1, f2
 FROM t1, t2 WHERE t1.f1 = t2.f1;

EXPLAIN SELECT /*+ NO_HASH_JOIN(t2) */ f1, f2
 FROM t1, t2 WHERE t1.f1 = t2.f1;

HASH_JOIN_PROBING, NO_HASH_JOIN_PROBING

In a hash join query, specifies whether to use the specified table for the probe side of the
join. The query tests if column values from the build table exist in the probe table, instead
of reading the entire contents of the probe table. You can use HASH_JOIN_PROBING and
HASH_JOIN_BUILDING to specify how hash join queries are processed without reordering the
tables within the query text. This hint is available in Aurora MySQL version 2.08 and higher. It
has no effect in Aurora MySQL version 3.

The following examples show how to use this hint. Specifying the HASH_JOIN_PROBING hint
for the table T2 has the same effect as specifying NO_HASH_JOIN_PROBING for the table T1.

EXPLAIN SELECT /*+ HASH_JOIN(t2) HASH_JOIN_PROBING(t2) */ f1, f2
 FROM t1, t2 WHERE t1.f1 = t2.f1;

EXPLAIN SELECT /*+ HASH_JOIN(t2) NO_HASH_JOIN_PROBING(t1) */ f1, f2
 FROM t1, t2 WHERE t1.f1 = t2.f1;

HASH_JOIN_BUILDING, NO_HASH_JOIN_BUILDING

In a hash join query, specifies whether to use the specified table for the build side of the join.
The query processes all the rows from this table to build the list of column values to cross-

Hints 1846

Amazon Aurora User Guide for Aurora

reference with the other table. You can use HASH_JOIN_PROBING and HASH_JOIN_BUILDING
to specify how hash join queries are processed without reordering the tables within the query
text. This hint is available in Aurora MySQL version 2.08 and higher. It has no effect in Aurora
MySQL version 3.

The following example shows you how to use this hint. Specifying the HASH_JOIN_BUILDING
hint for the table T2 has the same effect as specifying NO_HASH_JOIN_BUILDING for the table
T1.

EXPLAIN SELECT /*+ HASH_JOIN(t2) HASH_JOIN_BUILDING(t2) */ f1, f2
 FROM t1, t2 WHERE t1.f1 = t2.f1;

EXPLAIN SELECT /*+ HASH_JOIN(t2) NO_HASH_JOIN_BUILDING(t1) */ f1, f2
 FROM t1, t2 WHERE t1.f1 = t2.f1;

JOIN_FIXED_ORDER

Specifies that tables in the query are joined based on the order they are listed in the query. It
is useful with queries involving three or more tables. It is intended as a replacement for the
MySQL STRAIGHT_JOIN hint and is equivalent to the MySQL JOIN_FIXED_ORDER hint. This
hint is available in Aurora MySQL version 2.08 and higher.

The following example shows you how to use this hint.

EXPLAIN SELECT /*+ JOIN_FIXED_ORDER() */ f1, f2
 FROM t1 JOIN t2 USING (id) JOIN t3 USING (id) JOIN t4 USING (id);

JOIN_ORDER

Specifies the join order for the tables in the query. It is useful with queries involving three or
more tables. It is equivalent to the MySQL JOIN_ORDER hint. This hint is available in Aurora
MySQL version 2.08 and higher.

The following example shows you how to use this hint.

EXPLAIN SELECT /*+ JOIN_ORDER (t4, t2, t1, t3) */ f1, f2
 FROM t1 JOIN t2 USING (id) JOIN t3 USING (id) JOIN t4 USING (id);

Hints 1847

https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html

Amazon Aurora User Guide for Aurora

JOIN_PREFIX

Specifies the tables to put first in the join order. It is useful with queries involving three or more
tables. It is equivalent to the MySQL JOIN_PREFIX hint. This hint is available in Aurora MySQL
version 2.08 and higher.

The following example shows you how to use this hint.

EXPLAIN SELECT /*+ JOIN_PREFIX (t4, t2) */ f1, f2
 FROM t1 JOIN t2 USING (id) JOIN t3 USING (id) JOIN t4 USING (id);

JOIN_SUFFIX

Specifies the tables to put last in the join order. It is useful with queries involving three or more
tables. It is equivalent to the MySQL JOIN_SUFFIX hint. This hint is available in Aurora MySQL
version 2.08 and higher.

The following example shows you how to use this hint.

EXPLAIN SELECT /*+ JOIN_SUFFIX (t1) */ f1, f2
 FROM t1 JOIN t2 USING (id) JOIN t3 USING (id) JOIN t4 USING (id);

For information about using hash join queries, see Optimizing large Aurora MySQL join queries
with hash joins.

Aurora MySQL stored procedures

You can manage your Aurora MySQL DB cluster by calling built-in stored procedures.

Topics

• Configuring

• Ending a session or query

• Logging

• Managing the Global Status History

• Replicating

Stored procedures 1848

https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html

Amazon Aurora User Guide for Aurora

Configuring

The following stored procedures set and show configuration parameters, such as for binary log file
retention.

Topics

• mysql.rds_set_configuration

• mysql.rds_show_configuration

mysql.rds_set_configuration

Specifies the number of hours to retain binary logs or the number of seconds to delay replication.

Syntax

CALL mysql.rds_set_configuration(name,value);

Parameters

name

The name of the configuration parameter to set.

value

The value of the configuration parameter.

Usage notes

The mysql.rds_set_configuration procedure supports the following configuration
parameters:

• binlog retention hours

The configuration parameters are stored permanently and survive any DB instance reboot or
failover.

Stored procedures 1849

Amazon Aurora User Guide for Aurora

binlog retention hours

The binlog retention hours parameter is used to specify the number of hours to retain
binary log files. Amazon Aurora normally purges a binary log as soon as possible, but the binary
log might still be required for replication with a MySQL database external to Aurora.

The default value of binlog retention hours is NULL. For Aurora MySQL, NULL means binary
logs are cleaned up lazily. Aurora MySQL binary logs might remain in the system for a certain
period, which is usually not longer than a day.

To specify the number of hours to retain binary logs on a DB cluster, use the
mysql.rds_set_configuration stored procedure and specify a period with enough time for
replication to occur, as shown in the following example.

call mysql.rds_set_configuration('binlog retention hours', 24);

Note

You can't use the value 0 for binlog retention hours.

For Aurora MySQL version 2.11.0 and higher and version 3 DB clusters, the maximum binlog
retention hours value is 2160 (90 days).

After you set the retention period, monitor storage usage for the DB instance to make sure that the
retained binary logs don't take up too much storage.

mysql.rds_show_configuration

The number of hours that binary logs are retained.

Syntax

CALL mysql.rds_show_configuration;

Usage notes

To verify the number of hours that Amazon RDS retains binary logs, use the
mysql.rds_show_configuration stored procedure.

Stored procedures 1850

Amazon Aurora User Guide for Aurora

Examples

The following example displays the retention period:

call mysql.rds_show_configuration;
 name value description
 binlog retention hours 24 binlog retention hours specifies
 the duration in hours before binary logs are automatically deleted.

Stored procedures 1851

Amazon Aurora User Guide for Aurora

Ending a session or query

The following stored procedures end a session or query.

Topics

• mysql.rds_kill

• mysql.rds_kill_query

mysql.rds_kill

Ends a connection to the MySQL server.

Syntax

CALL mysql.rds_kill(processID);

Parameters

processID

The identity of the connection thread to be ended.

Usage notes

Each connection to the MySQL server runs in a separate thread. To end a connection, use the
mysql.rds_kill procedure and pass in the thread ID of that connection. To obtain the thread ID,
use the MySQL SHOW PROCESSLIST command.

Examples

The following example ends a connection with a thread ID of 4243:

CALL mysql.rds_kill(4243);

mysql.rds_kill_query

Ends a query running against the MySQL server.

Stored procedures 1852

https://dev.mysql.com/doc/refman/8.0/en/show-processlist.html

Amazon Aurora User Guide for Aurora

Syntax

CALL mysql.rds_kill_query(processID);

Parameters

processID

The identity of the process or thread that is running the query to be ended.

Usage notes

To stop a query running against the MySQL server, use the mysql_rds_kill_query procedure
and pass in the connection ID of the thread that is running the query. The procedure then
terminates the connection.

To obtain the ID, query the MySQL INFORMATION_SCHEMA PROCESSLIST table or use the MySQL
SHOW PROCESSLIST command. The value in the ID column from SHOW PROCESSLIST or SELECT
* FROM INFORMATION_SCHEMA.PROCESSLIST is the processID.

Examples

The following example stops a query with a query thread ID of 230040:

CALL mysql.rds_kill_query(230040);

Stored procedures 1853

https://dev.mysql.com/doc/refman/8.0/en/information-schema-processlist-table.html
https://dev.mysql.com/doc/refman/8.0/en/show-processlist.html

Amazon Aurora User Guide for Aurora

Logging

The following stored procedures rotate MySQL logs to backup tables. For more information, see
Aurora MySQL database log files.

Topics

• mysql.rds_rotate_general_log

• mysql.rds_rotate_slow_log

mysql.rds_rotate_general_log

Rotates the mysql.general_log table to a backup table.

Syntax

CALL mysql.rds_rotate_general_log;

Usage notes

You can rotate the mysql.general_log table to a backup table by calling the
mysql.rds_rotate_general_log procedure. When log tables are rotated, the current log table
is copied to a backup log table and the entries in the current log table are removed. If a backup log
table already exists, then it is deleted before the current log table is copied to the backup. You can
query the backup log table if needed. The backup log table for the mysql.general_log table is
named mysql.general_log_backup.

You can run this procedure only when the log_output parameter is set to TABLE.

mysql.rds_rotate_slow_log

Rotates the mysql.slow_log table to a backup table.

Syntax

CALL mysql.rds_rotate_slow_log;

Stored procedures 1854

Amazon Aurora User Guide for Aurora

Usage notes

You can rotate the mysql.slow_log table to a backup table by calling the
mysql.rds_rotate_slow_log procedure. When log tables are rotated, the current log table is
copied to a backup log table and the entries in the current log table are removed. If a backup log
table already exists, then it is deleted before the current log table is copied to the backup.

You can query the backup log table if needed. The backup log table for the mysql.slow_log
table is named mysql.slow_log_backup.

Stored procedures 1855

Amazon Aurora User Guide for Aurora

Managing the Global Status History

Amazon RDS provides a set of procedures that take snapshots of the values of status variables over
time and write them to a table, along with any changes since the last snapshot. This infrastructure
is called Global Status History. For more information, see Managing the Global Status History.

The following stored procedures manage how the Global Status History is collected and
maintained.

Topics

• mysql.rds_collect_global_status_history

• mysql.rds_disable_gsh_collector

• mysql.rds_disable_gsh_rotation

• mysql.rds_enable_gsh_collector

• mysql.rds_enable_gsh_rotation

• mysql.rds_rotate_global_status_history

• mysql.rds_set_gsh_collector

• mysql.rds_set_gsh_rotation

mysql.rds_collect_global_status_history

Takes a snapshot on demand for the Global Status History.

Syntax

CALL mysql.rds_collect_global_status_history;

mysql.rds_disable_gsh_collector

Turns off snapshots taken by the Global Status History.

Syntax

CALL mysql.rds_disable_gsh_collector;

Stored procedures 1856

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Appendix.MySQL.CommonDBATasks.html#Appendix.MySQL.CommonDBATasks.GoSH

Amazon Aurora User Guide for Aurora

mysql.rds_disable_gsh_rotation

Turns off rotation of the mysql.global_status_history table.

Syntax

CALL mysql.rds_disable_gsh_rotation;

mysql.rds_enable_gsh_collector

Turns on the Global Status History to take default snapshots at intervals specified by
rds_set_gsh_collector.

Syntax

CALL mysql.rds_enable_gsh_collector;

mysql.rds_enable_gsh_rotation

Turns on rotation of the contents of the mysql.global_status_history table to
mysql.global_status_history_old at intervals specified by rds_set_gsh_rotation.

Syntax

CALL mysql.rds_enable_gsh_rotation;

mysql.rds_rotate_global_status_history

Rotates the contents of the mysql.global_status_history table to
mysql.global_status_history_old on demand.

Syntax

CALL mysql.rds_rotate_global_status_history;

mysql.rds_set_gsh_collector

Specifies the interval, in minutes, between snapshots taken by the Global Status History.

Stored procedures 1857

Amazon Aurora User Guide for Aurora

Syntax

CALL mysql.rds_set_gsh_collector(intervalPeriod);

Parameters

intervalPeriod

The interval, in minutes, between snapshots. Default value is 5.

mysql.rds_set_gsh_rotation

Specifies the interval, in days, between rotations of the mysql.global_status_history table.

Syntax

CALL mysql.rds_set_gsh_rotation(intervalPeriod);

Parameters

intervalPeriod

The interval, in days, between table rotations. Default value is 7.

Stored procedures 1858

Amazon Aurora User Guide for Aurora

Replicating

You can call the following stored procedures while connected to the primary instance in an
Aurora MySQL cluster. These procedures control how transactions are replicated from an external
database into Aurora MySQL, or from Aurora MySQL to an external database. To learn how to use
replication based on global transaction identifiers (GTIDs) with Aurora MySQL, see Using GTID-
based replication.

Topics

• mysql.rds_assign_gtids_to_anonymous_transactions (Aurora MySQL version 3)

• mysql.rds_disable_session_binlog (Aurora MySQL version 2)

• mysql.rds_enable_session_binlog (Aurora MySQL version 2)

• mysql.rds_gtid_purged (Aurora MySQL version 3)

• mysql.rds_import_binlog_ssl_material

• mysql.rds_next_master_log (Aurora MySQL version 2)

• mysql.rds_next_source_log (Aurora MySQL version 3)

• mysql.rds_remove_binlog_ssl_material

• mysql.rds_reset_external_master (Aurora MySQL version 2)

• mysql.rds_reset_external_source (Aurora MySQL version 3)

• mysql.rds_set_binlog_source_ssl (Aurora MySQL version 3)

• mysql.rds_set_external_master (Aurora MySQL version 2)

• mysql.rds_set_external_master_with_auto_position (Aurora MySQL version 2)

• mysql.rds_set_external_source (Aurora MySQL version 3)

• mysql.rds_set_external_source_with_auto_position (Aurora MySQL version 3)

• mysql.rds_set_master_auto_position (Aurora MySQL version 2)

• mysql.rds_set_read_only (Aurora MySQL version 3)

• mysql.rds_set_session_binlog_format (Aurora MySQL version 2)

• mysql.rds_set_source_auto_position (Aurora MySQL version 3)

• mysql.rds_skip_transaction_with_gtid (Aurora MySQL version 2 and 3)

• mysql.rds_skip_repl_error

• mysql.rds_start_replication

• mysql.rds_start_replication_until (Aurora MySQL version 3)

Stored procedures 1859

Amazon Aurora User Guide for Aurora

• mysql.rds_start_replication_until_gtid (Aurora MySQL version 3)

• mysql.rds_stop_replication

mysql.rds_assign_gtids_to_anonymous_transactions (Aurora MySQL version 3)

Configures the ASSIGN_GTIDS_TO_ANONYMOUS_TRANSACTIONS option of the CHANGE
REPLICATION SOURCE TO statement. It makes the replication channel assign a GTID to replicated
transactions that don't have one. That way, you can perform binary log replication from a source
that doesn't use GTID-based replication to a replica that does. For more information, see CHANGE
REPLICATION SOURCE TO Statement and Replication From a Source Without GTIDs to a Replica
With GTIDs in the MySQL Reference Manual.

Syntax

CALL mysql.rds_assign_gtids_to_anonymous_transactions(gtid_option);

Parameters

gtid_option

String value. The allowed values are OFF, LOCAL, or a specified UUID.

Usage notes

This procedure has the same effect as issuing the statement CHANGE REPLICATION SOURCE TO
ASSIGN_GTIDS_TO_ANONYMOUS_TRANSACTIONS = gtid_option in community MySQL.

GTID must be turned to ON for gtid_option to be set to LOCAL or a specific UUID.

The default is OFF, meaning that the feature isn't used.

LOCAL assigns a GTID including the replica's own UUID (the server_uuid setting).

Passing a parameter that is a UUID assigns a GTID that includes the specified UUID, such as the
server_uuid setting for the replication source server.

Examples

To turn off this feature:

mysql> call mysql.rds_assign_gtids_to_anonymous_transactions('OFF');

Stored procedures 1860

https://dev.mysql.com/doc/refman/8.0/en/change-replication-source-to.html
https://dev.mysql.com/doc/refman/8.0/en/change-replication-source-to.html
https://dev.mysql.com/doc/refman/8.0/en/replication-gtids-assign-anon.html
https://dev.mysql.com/doc/refman/8.0/en/replication-gtids-assign-anon.html

Amazon Aurora User Guide for Aurora

+---+
| Message |
+---+
| ASSIGN_GTIDS_TO_ANONYMOUS_TRANSACTIONS has been set to: OFF |
+---+
1 row in set (0.07 sec)

To use the replica's own UUID:

mysql> call mysql.rds_assign_gtids_to_anonymous_transactions('LOCAL');
+---+
| Message |
+---+
| ASSIGN_GTIDS_TO_ANONYMOUS_TRANSACTIONS has been set to: LOCAL |
+---+
1 row in set (0.07 sec)

To use a specified UUID:

mysql> call mysql.rds_assign_gtids_to_anonymous_transactions('317a4760-
f3dd-3b74-8e45-0615ed29de0e');
+--
+
| Message |
+--
+
| ASSIGN_GTIDS_TO_ANONYMOUS_TRANSACTIONS has been set to: 317a4760-
f3dd-3b74-8e45-0615ed29de0e |
+--
+
1 row in set (0.07 sec)

mysql.rds_disable_session_binlog (Aurora MySQL version 2)

Turns off binary logging for the current session by setting the sql_log_bin variable to OFF.

Syntax

CALL mysql.rds_disable_session_binlog;

Parameters

None

Stored procedures 1861

Amazon Aurora User Guide for Aurora

Usage notes

For an Aurora MySQL DB cluster, you call this stored procedure while connected to the primary
instance.

For Aurora, this procedure is supported for Aurora MySQL version 2.12 and higher MySQL 5.7–
compatible versions.

Note

In Aurora MySQL version 3, you can use the following command to disable binary logging
for the current session if you have the SESSION_VARIABLES_ADMIN privilege:

SET SESSION sql_log_bin = OFF;

mysql.rds_enable_session_binlog (Aurora MySQL version 2)

Turns on binary logging for the current session by setting the sql_log_bin variable to ON.

Syntax

CALL mysql.rds_enable_session_binlog;

Parameters

None

Usage notes

For an Aurora MySQL DB cluster, you call this stored procedure while connected to the primary
instance.

For Aurora, this procedure is supported for Aurora MySQL version 2.12 and higher MySQL 5.7–
compatible versions.

Note

In Aurora MySQL version 3, you can use the following command to enable binary logging
for the current session if you have the SESSION_VARIABLES_ADMIN privilege:

Stored procedures 1862

Amazon Aurora User Guide for Aurora

SET SESSION sql_log_bin = ON;

mysql.rds_gtid_purged (Aurora MySQL version 3)

Sets the global value of the system variable gtid_purged to a given global transaction identifier
(GTID) set. The gtid_purged system variable is a GTID set that consists of the GTIDs of all
transactions that have been committed on the server, but don't exist in any binary log file on the
server.

To allow compatibility with MySQL 8.0, there are two ways to set the value of gtid_purged:

• Replace the value of gtid_purged with your specified GTID set.

• Append your specified GTID set to the GTID set that gtid_purged already contains.

Syntax

To replace the value of gtid_purged with your specified GTID set:

CALL mysql.rds_gtid_purged (gtid_set);

To append the value of gtid_purged to your specified GTID set:

CALL mysql.rds_gtid_purged (+gtid_set);

Parameters

gtid_set

The value of gtid_set must be a superset of the current value of gtid_purged, and can't
intersect with gtid_subtract(gtid_executed,gtid_purged). That is, the new GTID set
must include any GTIDs that were already in gtid_purged, and can't include any GTIDs in
gtid_executed that haven't yet been purged. The gtid_set parameter also can't include
any GTIDs that are in the global gtid_owned set, the GTIDs for transactions that are currently
being processed on the server.

Stored procedures 1863

Amazon Aurora User Guide for Aurora

Usage notes

The master user must run the mysql.rds_gtid_purged procedure.

This procedure is supported for Aurora MySQL version 3.04 and higher.

Examples

The following example assigns the GTID 3E11FA47-71CA-11E1-9E33-C80AA9429562:23 to the
gtid_purged global variable.

CALL mysql.rds_gtid_purged('3E11FA47-71CA-11E1-9E33-C80AA9429562:23');

mysql.rds_import_binlog_ssl_material

Imports the certificate authority certificate, client certificate, and client key into an Aurora MySQL
DB cluster. The information is required for SSL communication and encrypted replication.

Note

Currently, this procedure is supported for Aurora MySQL version 2: 2.09.2, 2.10.0, 2.10.1,
and 2.11.0; and version 3: 3.01.1 and higher.

Syntax

CALL mysql.rds_import_binlog_ssl_material (
 ssl_material
);

Parameters

ssl_material

JSON payload that contains the contents of the following .pem format files for a MySQL client:

• "ssl_ca":"Certificate authority certificate"

• "ssl_cert":"Client certificate"

• "ssl_key":"Client key"

Stored procedures 1864

Amazon Aurora User Guide for Aurora

Usage notes

Prepare for encrypted replication before you run this procedure:

• If you don't have SSL enabled on the external MySQL source database instance and don't have a
client key and client certificate prepared, enable SSL on the MySQL database server and generate
the required client key and client certificate.

• If SSL is enabled on the external source database instance, supply a client key and certificate for
the Aurora MySQL DB cluster. If you don't have these, generate a new key and certificate for the
Aurora MySQL DB cluster. To sign the client certificate, you must have the certificate authority
key you used to configure SSL on the external MySQL source database instance.

For more information, see Creating SSL certificates and keys using openssl in the MySQL
documentation.

Important

After you prepare for encrypted replication, use an SSL connection to run this procedure.
The client key must not be transferred across an insecure connection.

This procedure imports SSL information from an external MySQL database into an Aurora MySQL
DB cluster. The SSL information is in .pem format files that contain the SSL information for the
Aurora MySQL DB cluster. During encrypted replication, the Aurora MySQL DB cluster acts a client
to the MySQL database server. The certificates and keys for the Aurora MySQL client are in files
in .pem format.

You can copy the information from these files into the ssl_material parameter in the correct
JSON payload. To support encrypted replication, import this SSL information into the Aurora
MySQL DB cluster.

The JSON payload must be in the following format.

'{"ssl_ca":"-----BEGIN CERTIFICATE-----
ssl_ca_pem_body_code
-----END CERTIFICATE-----\n","ssl_cert":"-----BEGIN CERTIFICATE-----
ssl_cert_pem_body_code
-----END CERTIFICATE-----\n","ssl_key":"-----BEGIN RSA PRIVATE KEY-----

Stored procedures 1865

https://dev.mysql.com/doc/refman/8.0/en/creating-ssl-files-using-openssl.html

Amazon Aurora User Guide for Aurora

ssl_key_pem_body_code
-----END RSA PRIVATE KEY-----\n"}'

Examples

The following example imports SSL information into an Aurora MySQL. In .pem format files, the
body code typically is longer than the body code shown in the example.

call mysql.rds_import_binlog_ssl_material(
'{"ssl_ca":"-----BEGIN CERTIFICATE-----
AAAAB3NzaC1yc2EAAAADAQABAAABAQClKsfkNkuSevGj3eYhCe53pcjqP3maAhDFcvBS7O6V
hz2ItxCih+PnDSUaw+WNQn/mZphTk/a/gU8jEzoOWbkM4yxyb/wB96xbiFveSFJuOp/d6RJhJOI0iBXr
lsLnBItntckiJ7FbtxJMXLvvwJryDUilBMTjYtwB+QhYXUMOzce5Pjz5/i8SeJtjnV3iAoG/cQk+0FzZ
qaeJAAHco+CY/5WrUBkrHmFJr6HcXkvJdWPkYQS3xqC0+FmUZofz221CBt5IMucxXPkX4rWi+z7wB3Rb
BQoQzd8v7yeb7OzlPnWOyN0qFU0XA246RA8QFYiCNYwI3f05p6KLxEXAMPLE
-----END CERTIFICATE-----\n","ssl_cert":"-----BEGIN CERTIFICATE-----
AAAAB3NzaC1yc2EAAAADAQABAAABAQClKsfkNkuSevGj3eYhCe53pcjqP3maAhDFcvBS7O6V
hz2ItxCih+PnDSUaw+WNQn/mZphTk/a/gU8jEzoOWbkM4yxyb/wB96xbiFveSFJuOp/d6RJhJOI0iBXr
lsLnBItntckiJ7FbtxJMXLvvwJryDUilBMTjYtwB+QhYXUMOzce5Pjz5/i8SeJtjnV3iAoG/cQk+0FzZ
qaeJAAHco+CY/5WrUBkrHmFJr6HcXkvJdWPkYQS3xqC0+FmUZofz221CBt5IMucxXPkX4rWi+z7wB3Rb
BQoQzd8v7yeb7OzlPnWOyN0qFU0XA246RA8QFYiCNYwI3f05p6KLxEXAMPLE
-----END CERTIFICATE-----\n","ssl_key":"-----BEGIN RSA PRIVATE KEY-----
AAAAB3NzaC1yc2EAAAADAQABAAABAQClKsfkNkuSevGj3eYhCe53pcjqP3maAhDFcvBS7O6V
hz2ItxCih+PnDSUaw+WNQn/mZphTk/a/gU8jEzoOWbkM4yxyb/wB96xbiFveSFJuOp/d6RJhJOI0iBXr
lsLnBItntckiJ7FbtxJMXLvvwJryDUilBMTjYtwB+QhYXUMOzce5Pjz5/i8SeJtjnV3iAoG/cQk+0FzZ
qaeJAAHco+CY/5WrUBkrHmFJr6HcXkvJdWPkYQS3xqC0+FmUZofz221CBt5IMucxXPkX4rWi+z7wB3Rb
BQoQzd8v7yeb7OzlPnWOyN0qFU0XA246RA8QFYiCNYwI3f05p6KLxEXAMPLE
-----END RSA PRIVATE KEY-----\n"}');

mysql.rds_next_master_log (Aurora MySQL version 2)

Changes the source database instance log position to the start of the next binary log on the source
database instance. Use this procedure only if you are receiving replication I/O error 1236 on a read
replica.

Syntax

CALL mysql.rds_next_master_log(
curr_master_log
);

Stored procedures 1866

Amazon Aurora User Guide for Aurora

Parameters

curr_master_log

The index of the current master log file. For example, if the current file is named mysql-bin-
changelog.012345, then the index is 12345. To determine the current master log file name,
run the SHOW REPLICA STATUS command and view the Master_Log_File field.

Note

Previous versions of MySQL used SHOW SLAVE STATUS instead of SHOW REPLICA
STATUS. If you are using a MySQL version before 8.0.23, then use SHOW SLAVE
STATUS.

Usage notes

The master user must run the mysql.rds_next_master_log procedure.

Warning

Call mysql.rds_next_master_log only if replication fails after a failover of a Multi-AZ
DB instance that is the replication source, and the Last_IO_Errno field of SHOW REPLICA
STATUS reports I/O error 1236.
Calling mysql.rds_next_master_log can result in data loss in the read replica if
transactions in the source instance were not written to the binary log on disk before the
failover event occurred.

Examples

Assume replication fails on an Aurora MySQL read replica. Running SHOW REPLICA STATUS\G on
the read replica returns the following result:

*************************** 1. row ***************************
 Replica_IO_State:
 Source_Host: myhost.XXXXXXXXXXXXXXX.rr-rrrr-1.rds.amazonaws.com
 Source_User: MasterUser
 Source_Port: 3306

Stored procedures 1867

Amazon Aurora User Guide for Aurora

 Connect_Retry: 10
 Source_Log_File: mysql-bin-changelog.012345
 Read_Source_Log_Pos: 1219393
 Relay_Log_File: relaylog.012340
 Relay_Log_Pos: 30223388
 Relay_Source_Log_File: mysql-bin-changelog.012345
 Replica_IO_Running: No
 Replica_SQL_Running: Yes
 Replicate_Do_DB:
 Replicate_Ignore_DB:
 Replicate_Do_Table:
 Replicate_Ignore_Table:
 Replicate_Wild_Do_Table:
 Replicate_Wild_Ignore_Table:
 Last_Errno: 0
 Last_Error:
 Skip_Counter: 0
 Exec_Source_Log_Pos: 30223232
 Relay_Log_Space: 5248928866
 Until_Condition: None
 Until_Log_File:
 Until_Log_Pos: 0
 Source_SSL_Allowed: No
 Source_SSL_CA_File:
 Source_SSL_CA_Path:
 Source_SSL_Cert:
 Source_SSL_Cipher:
 Source_SSL_Key:
 Seconds_Behind_Master: NULL
Source_SSL_Verify_Server_Cert: No
 Last_IO_Errno: 1236
 Last_IO_Error: Got fatal error 1236 from master when reading data from
 binary log: 'Client requested master to start replication from impossible position;
 the first event 'mysql-bin-changelog.013406' at 1219393, the last event read from
 '/rdsdbdata/log/binlog/mysql-bin-changelog.012345' at 4, the last byte read from '/
rdsdbdata/log/binlog/mysql-bin-changelog.012345' at 4.'
 Last_SQL_Errno: 0
 Last_SQL_Error:
 Replicate_Ignore_Server_Ids:
 Source_Server_Id: 67285976

The Last_IO_Errno field shows that the instance is receiving I/O error 1236. The
Master_Log_File field shows that the file name is mysql-bin-changelog.012345,

Stored procedures 1868

Amazon Aurora User Guide for Aurora

which means that the log file index is 12345. To resolve the error, you can call
mysql.rds_next_master_log with the following parameter:

CALL mysql.rds_next_master_log(12345);

Note

Previous versions of MySQL used SHOW SLAVE STATUS instead of SHOW REPLICA
STATUS. If you are using a MySQL version before 8.0.23, then use SHOW SLAVE STATUS.

mysql.rds_next_source_log (Aurora MySQL version 3)

Changes the source database instance log position to the start of the next binary log on the source
database instance. Use this procedure only if you are receiving replication I/O error 1236 on a read
replica.

Syntax

CALL mysql.rds_next_source_log(
curr_source_log
);

Parameters

curr_source_log

The index of the current source log file. For example, if the current file is named mysql-bin-
changelog.012345, then the index is 12345. To determine the current source log file name,
run the SHOW REPLICA STATUS command and view the Source_Log_File field.

Usage notes

The master user must run the mysql.rds_next_source_log procedure.

Stored procedures 1869

Amazon Aurora User Guide for Aurora

Warning

Call mysql.rds_next_source_log only if replication fails after a failover of a Multi-AZ
DB instance that is the replication source, and the Last_IO_Errno field of SHOW REPLICA
STATUS reports I/O error 1236.
Calling mysql.rds_next_source_log can result in data loss in the read replica if
transactions in the source instance were not written to the binary log on disk before the
failover event occurred.

Examples

Assume replication fails on an Aurora MySQL read replica. Running SHOW REPLICA STATUS\G on
the read replica returns the following result:

*************************** 1. row ***************************
 Replica_IO_State:
 Source_Host: myhost.XXXXXXXXXXXXXXX.rr-rrrr-1.rds.amazonaws.com
 Source_User: MasterUser
 Source_Port: 3306
 Connect_Retry: 10
 Source_Log_File: mysql-bin-changelog.012345
 Read_Source_Log_Pos: 1219393
 Relay_Log_File: relaylog.012340
 Relay_Log_Pos: 30223388
 Relay_Source_Log_File: mysql-bin-changelog.012345
 Replica_IO_Running: No
 Replica_SQL_Running: Yes
 Replicate_Do_DB:
 Replicate_Ignore_DB:
 Replicate_Do_Table:
 Replicate_Ignore_Table:
 Replicate_Wild_Do_Table:
 Replicate_Wild_Ignore_Table:
 Last_Errno: 0
 Last_Error:
 Skip_Counter: 0
 Exec_Source_Log_Pos: 30223232
 Relay_Log_Space: 5248928866
 Until_Condition: None
 Until_Log_File:
 Until_Log_Pos: 0

Stored procedures 1870

Amazon Aurora User Guide for Aurora

 Source_SSL_Allowed: No
 Source_SSL_CA_File:
 Source_SSL_CA_Path:
 Source_SSL_Cert:
 Source_SSL_Cipher:
 Source_SSL_Key:
 Seconds_Behind_Source: NULL
Source_SSL_Verify_Server_Cert: No
 Last_IO_Errno: 1236
 Last_IO_Error: Got fatal error 1236 from source when reading data from
 binary log: 'Client requested source to start replication from impossible position;
 the first event 'mysql-bin-changelog.013406' at 1219393, the last event read from
 '/rdsdbdata/log/binlog/mysql-bin-changelog.012345' at 4, the last byte read from '/
rdsdbdata/log/binlog/mysql-bin-changelog.012345' at 4.'
 Last_SQL_Errno: 0
 Last_SQL_Error:
 Replicate_Ignore_Server_Ids:
 Source_Server_Id: 67285976

The Last_IO_Errno field shows that the instance is receiving I/O error 1236. The
Source_Log_File field shows that the file name is mysql-bin-changelog.012345,
which means that the log file index is 12345. To resolve the error, you can call
mysql.rds_next_source_log with the following parameter:

CALL mysql.rds_next_source_log(12345);

mysql.rds_remove_binlog_ssl_material

Removes the certificate authority certificate, client certificate, and client key for SSL
communication and encrypted replication. This information is imported by using
mysql.rds_import_binlog_ssl_material.

Syntax

CALL mysql.rds_remove_binlog_ssl_material;

mysql.rds_reset_external_master (Aurora MySQL version 2)

Reconfigures an Aurora MySQL DB instance to no longer be a read replica of an instance of MySQL
running external to Amazon RDS.

Stored procedures 1871

Amazon Aurora User Guide for Aurora

Important

To run this procedure, autocommit must be enabled. To enable it, set the autocommit
parameter to 1. For information about modifying parameters, see Modifying parameters in
a DB parameter group.

Syntax

CALL mysql.rds_reset_external_master;

Usage notes

The master user must run the mysql.rds_reset_external_master procedure. This procedure
must be run on the MySQL DB instance to be removed as a read replica of a MySQL instance
running external to Amazon RDS.

Note

We offer these stored procedures primarily to enable replication with MySQL instances
running external to Amazon RDS. We recommend that you use Aurora Replicas to manage
replication within an Aurora MySQL DB cluster when possible. For information about
managing replication in Aurora MySQL DB clusters, see Using Aurora Replicas.

For more information about using replication to import data from an instance of MySQL running
external to Aurora MySQL, see Replication between Aurora and MySQL or between Aurora and
another Aurora DB cluster (binary log replication).

mysql.rds_reset_external_source (Aurora MySQL version 3)

Reconfigures an Aurora MySQL DB instance to no longer be a read replica of an instance of MySQL
running external to Amazon RDS.

Stored procedures 1872

Amazon Aurora User Guide for Aurora

Important

To run this procedure, autocommit must be enabled. To enable it, set the autocommit
parameter to 1. For information about modifying parameters, see Modifying parameters in
a DB parameter group.

Syntax

CALL mysql.rds_reset_external_source;

Usage notes

The master user must run the mysql.rds_reset_external_source procedure. This procedure
must be run on the MySQL DB instance to be removed as a read replica of a MySQL instance
running external to Amazon RDS.

Note

We offer these stored procedures primarily to enable replication with MySQL instances
running external to Amazon RDS. We recommend that you use Aurora Replicas to manage
replication within an Aurora MySQL DB cluster when possible. For information about
managing replication in Aurora MySQL DB clusters, see Using Aurora Replicas.

mysql.rds_set_binlog_source_ssl (Aurora MySQL version 3)

Enables SOURCE_SSL encryption for binlog replication. For more information, see CHANGE
REPLICATION SOURCE TO statement in the MySQL documentation.

Syntax

CALL mysql.rds_set_binlog_source_ssl(mode);

Parameters

mode

A value that indicates whether SOURCE_SSL encryption is enabled:

Stored procedures 1873

https://dev.mysql.com/doc/refman/8.0/en/change-replication-source-to.html
https://dev.mysql.com/doc/refman/8.0/en/change-replication-source-to.html

Amazon Aurora User Guide for Aurora

• 0 – SOURCE_SSL encryption is disabled. The default is 0.

• 1 – SOURCE_SSL encryption is enabled. You can configure encryption using SSL or TLS.

Usage notes

This procedure is supported for Aurora MySQL version 3.06 and higher.

mysql.rds_set_external_master (Aurora MySQL version 2)

Configures an Aurora MySQL DB instance to be a read replica of an instance of MySQL running
external to Amazon RDS.

The mysql.rds_set_external_master procedure is deprecated and will be removed in a future
release. Use mysql.rds_set_external_source instead.

Important

To run this procedure, autocommit must be enabled. To enable it, set the autocommit
parameter to 1. For information about modifying parameters, see Modifying parameters in
a DB parameter group.

Syntax

CALL mysql.rds_set_external_master (
 host_name
 , host_port
 , replication_user_name
 , replication_user_password
 , mysql_binary_log_file_name
 , mysql_binary_log_file_location
 , ssl_encryption
);

Parameters

host_name

The host name or IP address of the MySQL instance running external to Amazon RDS to become
the source database instance.

Stored procedures 1874

Amazon Aurora User Guide for Aurora

host_port

The port used by the MySQL instance running external to Amazon RDS to be configured as
the source database instance. If your network configuration includes Secure Shell (SSH) port
replication that converts the port number, specify the port number that is exposed by SSH.

replication_user_name

The ID of a user with REPLICATION CLIENT and REPLICATION SLAVE permissions on the
MySQL instance running external to Amazon RDS. We recommend that you provide an account
that is used solely for replication with the external instance.

replication_user_password

The password of the user ID specified in replication_user_name.

mysql_binary_log_file_name

The name of the binary log on the source database instance that contains the replication
information.

mysql_binary_log_file_location

The location in the mysql_binary_log_file_name binary log at which replication starts
reading the replication information.

You can determine the binlog file name and location by running SHOW MASTER STATUS on the
source database instance.

ssl_encryption

A value that specifies whether Secure Socket Layer (SSL) encryption is used on the replication
connection. 1 specifies to use SSL encryption, 0 specifies to not use encryption. The default is 0.

Note

The MASTER_SSL_VERIFY_SERVER_CERT option isn't supported. This option is set to
0, which means that the connection is encrypted, but the certificates aren't verified.

Usage notes

The master user must run the mysql.rds_set_external_master procedure. This procedure
must be run on the MySQL DB instance to be configured as the read replica of a MySQL instance
running external to Amazon RDS.

Stored procedures 1875

Amazon Aurora User Guide for Aurora

Before you run mysql.rds_set_external_master, you must configure the instance of MySQL
running external to Amazon RDS to be a source database instance. To connect to the MySQL
instance running external to Amazon RDS, you must specify replication_user_name and
replication_user_password values that indicate a replication user that has REPLICATION
CLIENT and REPLICATION SLAVE permissions on the external instance of MySQL.

To configure an external instance of MySQL as a source database instance

1. Using the MySQL client of your choice, connect to the external instance of MySQL and create a
user account to be used for replication. The following is an example.

MySQL 5.7

CREATE USER 'repl_user'@'mydomain.com' IDENTIFIED BY 'password';

MySQL 8.0

CREATE USER 'repl_user'@'mydomain.com' IDENTIFIED WITH mysql_native_password BY
 'password';

Note

Specify a password other than the prompt shown here as a security best practice.

2. On the external instance of MySQL, grant REPLICATION CLIENT and REPLICATION SLAVE
privileges to your replication user. The following example grants REPLICATION CLIENT and
REPLICATION SLAVE privileges on all databases for the 'repl_user' user for your domain.

MySQL 5.7

GRANT REPLICATION CLIENT, REPLICATION SLAVE ON *.* TO 'repl_user'@'mydomain.com'
 IDENTIFIED BY 'password';

MySQL 8.0

GRANT REPLICATION CLIENT, REPLICATION SLAVE ON *.* TO 'repl_user'@'mydomain.com';

Stored procedures 1876

Amazon Aurora User Guide for Aurora

To use encrypted replication, configure source database instance to use SSL connections. Also,
import the certificate authority certificate, client certificate, and client key into the DB instance or
DB cluster using the mysql.rds_import_binlog_ssl_material procedure.

Note

We offer these stored procedures primarily to enable replication with MySQL instances
running external to Amazon RDS. We recommend that you use Aurora Replicas to manage
replication within an Aurora MySQL DB cluster when possible. For information about
managing replication in Aurora MySQL DB clusters, see Using Aurora Replicas.

After calling mysql.rds_set_external_master to configure an Amazon RDS DB instance as
a read replica, you can call mysql.rds_start_replication on the read replica to start the replication
process. You can call mysql.rds_reset_external_master (Aurora MySQL version 2) to remove the
read replica configuration.

When mysql.rds_set_external_master is called, Amazon RDS records the time, user, and
an action of set master in the mysql.rds_history and mysql.rds_replication_status
tables.

Examples

When run on a MySQL DB instance, the following example configures the DB instance to be a read
replica of an instance of MySQL running external to Amazon RDS.

call mysql.rds_set_external_master(
 'Externaldb.some.com',
 3306,
 'repl_user',
 'password',
 'mysql-bin-changelog.0777',
 120,
 0);

mysql.rds_set_external_master_with_auto_position (Aurora MySQL version 2)

Configures an Aurora MySQL primary instance to accept incoming replication from an external
MySQL instance. This procedure also configures replication based on global transaction identifiers
(GTIDs).

Stored procedures 1877

Amazon Aurora User Guide for Aurora

This procedure doesn't configure delayed replication, because Aurora MySQL doesn't support
delayed replication.

Syntax

CALL mysql.rds_set_external_master_with_auto_position (
 host_name
 , host_port
 , replication_user_name
 , replication_user_password
 , ssl_encryption
);

Parameters

host_name

The host name or IP address of the MySQL instance running external to Aurora to become the
replication source.

host_port

The port used by the MySQL instance running external to Aurora to be configured as the
replication source. If your network configuration includes Secure Shell (SSH) port replication
that converts the port number, specify the port number that is exposed by SSH.

replication_user_name

The ID of a user with REPLICATION CLIENT and REPLICATION SLAVE permissions on the
MySQL instance running external to Aurora. We recommend that you provide an account that is
used solely for replication with the external instance.

replication_user_password

The password of the user ID specified in replication_user_name.

ssl_encryption

This option isn't currently implemented. The default is 0.

Usage notes

For an Aurora MySQL DB cluster, you call this stored procedure while connected to the primary
instance.

Stored procedures 1878

Amazon Aurora User Guide for Aurora

The master user must run the mysql.rds_set_external_master_with_auto_position
procedure. The master user runs this procedure on the primary instance of an Aurora MySQL DB
cluster that acts as a replication target. This can be the replication target of an external MySQL DB
instance or an Aurora MySQL DB cluster.

This procedure is supported for Aurora MySQL version 2. For Aurora MySQL version 3, use the
procedure mysql.rds_set_external_source_with_auto_position (Aurora MySQL version 3) instead.

Before you run mysql.rds_set_external_master_with_auto_position, configure the
external MySQL DB instance to be a replication source. To connect to the external MySQL instance,
specify values for replication_user_name and replication_user_password. These values
must indicate a replication user that has REPLICATION CLIENT and REPLICATION SLAVE
permissions on the external MySQL instance.

To configure an external MySQL instance as a replication source

1. Using the MySQL client of your choice, connect to the external MySQL instance and create a
user account to be used for replication. The following is an example.

CREATE USER 'repl_user'@'mydomain.com' IDENTIFIED BY 'SomePassW0rd'

2. On the external MySQL instance, grant REPLICATION CLIENT and REPLICATION SLAVE
privileges to your replication user. The following example grants REPLICATION CLIENT and
REPLICATION SLAVE privileges on all databases for the 'repl_user' user for your domain.

GRANT REPLICATION CLIENT, REPLICATION SLAVE ON *.* TO 'repl_user'@'mydomain.com'
IDENTIFIED BY 'SomePassW0rd'

When you call mysql.rds_set_external_master_with_auto_position, Amazon RDS
records certain information. This information is the time, the user, and an action of "set master"
in the mysql.rds_history and mysql.rds_replication_status tables.

To skip a specific GTID-based transaction that is known to cause a problem, you can use the
mysql.rds_skip_transaction_with_gtid stored procedure. For more information about working with
GTID-based replication, see Using GTID-based replication.

Stored procedures 1879

Amazon Aurora User Guide for Aurora

Examples

When run on an Aurora primary instance, the following example configures the Aurora cluster to
act as a read replica of an instance of MySQL running external to Aurora.

call mysql.rds_set_external_master_with_auto_position(
 'Externaldb.some.com',
 3306,
 'repl_user'@'mydomain.com',
 'SomePassW0rd');

mysql.rds_set_external_source (Aurora MySQL version 3)

Configures an Aurora MySQL DB instance to be a read replica of an instance of MySQL running
external to Amazon RDS.

Important

To run this procedure, autocommit must be enabled. To enable it, set the autocommit
parameter to 1. For information about modifying parameters, see Modifying parameters in
a DB parameter group.

Syntax

CALL mysql.rds_set_external_source (
 host_name
 , host_port
 , replication_user_name
 , replication_user_password
 , mysql_binary_log_file_name
 , mysql_binary_log_file_location
 , ssl_encryption
);

Parameters

host_name

The host name or IP address of the MySQL instance running external to Amazon RDS to become
the source database instance.

Stored procedures 1880

Amazon Aurora User Guide for Aurora

host_port

The port used by the MySQL instance running external to Amazon RDS to be configured as
the source database instance. If your network configuration includes Secure Shell (SSH) port
replication that converts the port number, specify the port number that is exposed by SSH.

replication_user_name

The ID of a user with REPLICATION CLIENT and REPLICATION SLAVE permissions on the
MySQL instance running external to Amazon RDS. We recommend that you provide an account
that is used solely for replication with the external instance.

replication_user_password

The password of the user ID specified in replication_user_name.

mysql_binary_log_file_name

The name of the binary log on the source database instance that contains the replication
information.

mysql_binary_log_file_location

The location in the mysql_binary_log_file_name binary log at which replication starts
reading the replication information.

You can determine the binlog file name and location by running SHOW MASTER STATUS on the
source database instance.

ssl_encryption

A value that specifies whether Secure Socket Layer (SSL) encryption is used on the replication
connection. 1 specifies to use SSL encryption, 0 specifies to not use encryption. The default is 0.

Note

You must have imported a custom SSL certificate using
mysql.rds_import_binlog_ssl_material to enable this option. If you haven't
imported an custom SSL certificate, then set this parameter to 0 and use
mysql.rds_set_binlog_source_ssl (Aurora MySQL version 3) to enable SSL for binary log
replication.
The MASTER_SSL_VERIFY_SERVER_CERT option isn't supported. This option is set to
0, which means that the connection is encrypted, but the certificates aren't verified.

Stored procedures 1881

Amazon Aurora User Guide for Aurora

Usage notes

The master user must run the mysql.rds_set_external_source procedure. This procedure
must be run on the Aurora MySQL DB instance to be configured as the read replica of a MySQL
instance running external to Amazon RDS.

Before you run mysql.rds_set_external_source, you must configure the instance of MySQL
running external to Amazon RDS to be a source database instance. To connect to the MySQL
instance running external to Amazon RDS, you must specify replication_user_name and
replication_user_password values that indicate a replication user that has REPLICATION
CLIENT and REPLICATION SLAVE permissions on the external instance of MySQL.

To configure an external instance of MySQL as a source database instance

1. Using the MySQL client of your choice, connect to the external instance of MySQL and create a
user account to be used for replication. The following is an example.

MySQL 5.7

CREATE USER 'repl_user'@'mydomain.com' IDENTIFIED BY 'password';

MySQL 8.0

CREATE USER 'repl_user'@'mydomain.com' IDENTIFIED WITH mysql_native_password BY
 'password';

Note

Specify a password other than the prompt shown here as a security best practice.

2. On the external instance of MySQL, grant REPLICATION CLIENT and REPLICATION SLAVE
privileges to your replication user. The following example grants REPLICATION CLIENT and
REPLICATION SLAVE privileges on all databases for the 'repl_user' user for your domain.

MySQL 5.7

GRANT REPLICATION CLIENT, REPLICATION SLAVE ON *.* TO 'repl_user'@'mydomain.com'
 IDENTIFIED BY 'password';

Stored procedures 1882

Amazon Aurora User Guide for Aurora

MySQL 8.0

GRANT REPLICATION CLIENT, REPLICATION SLAVE ON *.* TO 'repl_user'@'mydomain.com';

To use encrypted replication, configure source database instance to use SSL connections. Also,
import the certificate authority certificate, client certificate, and client key into the DB instance or
DB cluster using the mysql.rds_import_binlog_ssl_material procedure.

Note

We offer these stored procedures primarily to enable replication with MySQL instances
running external to Amazon RDS. We recommend that you use Aurora Replicas to manage
replication within an Aurora MySQL DB cluster when possible. For information about
managing replication in Aurora MySQL DB clusters, see Using Aurora Replicas.

After calling mysql.rds_set_external_source to configure an Aurora MySQL DB instance as
a read replica, you can call mysql.rds_start_replication on the read replica to start the replication
process. You can call mysql.rds_reset_external_source to remove the read replica configuration.

When mysql.rds_set_external_source is called, Amazon RDS records the time, user, and
an action of set master in the mysql.rds_history and mysql.rds_replication_status
tables.

Examples

When run on an Aurora MySQL DB instance, the following example configures the DB instance to
be a read replica of an instance of MySQL running external to Amazon RDS.

call mysql.rds_set_external_source(
 'Externaldb.some.com',
 3306,
 'repl_user',
 'password',
 'mysql-bin-changelog.0777',
 120,
 0);

Stored procedures 1883

url-rds-user;mysql_rds_import_binlog_ssl_material.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/mysql_rds_start_replication.html

Amazon Aurora User Guide for Aurora

mysql.rds_set_external_source_with_auto_position (Aurora MySQL version 3)

Configures an Aurora MySQL primary instance to accept incoming replication from an external
MySQL instance. This procedure also configures replication based on global transaction identifiers
(GTIDs).

Syntax

CALL mysql.rds_set_external_source_with_auto_position (
 host_name
 , host_port
 , replication_user_name
 , replication_user_password
 , ssl_encryption
);

Parameters

host_name

The host name or IP address of the MySQL instance running external to Aurora to become the
replication source.

host_port

The port used by the MySQL instance running external to Aurora to be configured as the
replication source. If your network configuration includes Secure Shell (SSH) port replication
that converts the port number, specify the port number that is exposed by SSH.

replication_user_name

The ID of a user with REPLICATION CLIENT and REPLICATION SLAVE permissions on the
MySQL instance running external to Aurora. We recommend that you provide an account that is
used solely for replication with the external instance.

replication_user_password

The password of the user ID specified in replication_user_name.

ssl_encryption

This option isn't currently implemented. The default is 0.

Stored procedures 1884

Amazon Aurora User Guide for Aurora

Note

Use mysql.rds_set_binlog_source_ssl (Aurora MySQL version 3) to enable SSL for binary
log replication.

Usage notes

For an Aurora MySQL DB cluster, you call this stored procedure while connected to the primary
instance.

The administrative user must run the
mysql.rds_set_external_source_with_auto_position procedure. The administrative
user runs this procedure on the primary instance of an Aurora MySQL DB cluster that acts as a
replication target. This can be the replication target of an external MySQL DB instance or an Aurora
MySQL DB cluster.

This procedure is supported for Aurora MySQL version 3. This procedure doesn't configure delayed
replication, because Aurora MySQL doesn't support delayed replication.

Before you run mysql.rds_set_external_source_with_auto_position, configure the
external MySQL DB instance to be a replication source. To connect to the external MySQL instance,
specify values for replication_user_name and replication_user_password. These values
must indicate a replication user that has REPLICATION CLIENT and REPLICATION SLAVE
permissions on the external MySQL instance.

To configure an external MySQL instance as a replication source

1. Using the MySQL client of your choice, connect to the external MySQL instance and create a
user account to be used for replication. The following is an example.

CREATE USER 'repl_user'@'mydomain.com' IDENTIFIED BY 'SomePassW0rd'

2. On the external MySQL instance, grant REPLICATION CLIENT and REPLICATION SLAVE
privileges to your replication user. The following example grants REPLICATION CLIENT and
REPLICATION SLAVE privileges on all databases for the 'repl_user' user for your domain.

GRANT REPLICATION CLIENT, REPLICATION SLAVE ON *.* TO 'repl_user'@'mydomain.com'
IDENTIFIED BY 'SomePassW0rd'

Stored procedures 1885

Amazon Aurora User Guide for Aurora

When you call mysql.rds_set_external_source_with_auto_position, Amazon RDS
records certain information. This information is the time, the user, and an action of "set master"
in the mysql.rds_history and mysql.rds_replication_status tables.

To skip a specific GTID-based transaction that is known to cause a problem, you can use the
mysql.rds_skip_transaction_with_gtid/> stored procedure. For more information about working
with GTID-based replication, see Using GTID-based replication.

Examples

When run on an Aurora primary instance, the following example configures the Aurora cluster to
act as a read replica of an instance of MySQL running external to Aurora.

call mysql.rds_set_external_source_with_auto_position(
 'Externaldb.some.com',
 3306,
 'repl_user'@'mydomain.com',
 'SomePassW0rd');

mysql.rds_set_master_auto_position (Aurora MySQL version 2)

Sets the replication mode to be based on either binary log file positions or on global transaction
identifiers (GTIDs).

Syntax

CALL mysql.rds_set_master_auto_position (
auto_position_mode
);

Parameters

auto_position_mode

A value that indicates whether to use log file position replication or GTID-based replication:

• 0 – Use the replication method based on binary log file position. The default is 0.

• 1 – Use the GTID-based replication method.

Stored procedures 1886

Amazon Aurora User Guide for Aurora

Usage notes

The master user must run the mysql.rds_set_master_auto_position procedure.

This procedure is supported for Aurora MySQL version 2.

mysql.rds_set_read_only (Aurora MySQL version 3)

Turns read_only mode on or off globally for the DB instance.

Syntax

CALL mysql.rds_set_read_only(mode);

Parameters

mode

A value that indicates whether read_only mode is on or off globally for the DB instance:

• 0 – OFF. The default is 0.

• 1 – ON

Usage notes

The mysql.rds_set_read_only stored procedure modifies only the read_only parameter. The
innodb_read_only parameter can't be changed on reader DB instances.

The read_only parameter change doesn't persist on rebooting. To make permanent changes to
read_only, you must use the read_only DB cluster parameter.

This procedure is supported for Aurora MySQL version 3.06 and higher.

mysql.rds_set_session_binlog_format (Aurora MySQL version 2)

Sets the binary log format for the current session.

Syntax

CALL mysql.rds_set_session_binlog_format(format);

Stored procedures 1887

Amazon Aurora User Guide for Aurora

Parameters

format

A value that indicates the binary log format for the current session:

• STATEMENT – The replication source writes events to the binary log based on SQL
statements.

• ROW – The replication source writes events to the binary log that indicate changes to
individual table rows.

• MIXED – Logging is generally based on SQL statements, but switches to rows under
certain conditions. For more information, see Mixed Binary Logging Format in the MySQL
documentation.

Usage notes

For an Aurora MySQL DB cluster, you call this stored procedure while connected to the primary
instance.

To use this stored procedure, you must have binary logging configured for the current session.

For Aurora, this procedure is supported for Aurora MySQL version 2.12 and higher MySQL 5.7–
compatible versions.

mysql.rds_set_source_auto_position (Aurora MySQL version 3)

Sets the replication mode to be based on either binary log file positions or on global transaction
identifiers (GTIDs).

Syntax

CALL mysql.rds_set_source_auto_position (auto_position_mode);

Parameters

auto_position_mode

A value that indicates whether to use log file position replication or GTID-based replication:

• 0 – Use the replication method based on binary log file position. The default is 0.

• 1 – Use the GTID-based replication method.

Stored procedures 1888

https://dev.mysql.com/doc/refman/8.0/en/binary-log-mixed.html

Amazon Aurora User Guide for Aurora

Usage notes

For an Aurora MySQL DB cluster, you call this stored procedure while connected to the primary
instance.

The administrative user must run the mysql.rds_set_source_auto_position procedure.

mysql.rds_skip_transaction_with_gtid (Aurora MySQL version 2 and 3)

Skips replication of a transaction with the specified global transaction identifier (GTID) on an
Aurora primary instance.

You can use this procedure for disaster recovery when a specific GTID transaction is known to cause
a problem. Use this stored procedure to skip the problematic transaction. Examples of problematic
transactions include transactions that disable replication, delete important data, or cause the DB
instance to become unavailable.

Syntax

CALL mysql.rds_skip_transaction_with_gtid (
gtid_to_skip
);

Parameters

gtid_to_skip

The GTID of the replication transaction to skip.

Usage notes

The master user must run the mysql.rds_skip_transaction_with_gtid procedure.

This procedure is supported for Aurora MySQL version 2 and 3.

Examples

The following example skips replication of the transaction with the GTID
3E11FA47-71CA-11E1-9E33-C80AA9429562:23.

CALL mysql.rds_skip_transaction_with_gtid('3E11FA47-71CA-11E1-9E33-C80AA9429562:23');

Stored procedures 1889

Amazon Aurora User Guide for Aurora

mysql.rds_skip_repl_error

Skips and deletes a replication error on a MySQL DB read replica.

Syntax

CALL mysql.rds_skip_repl_error;

Usage notes

The master user must run the mysql.rds_skip_repl_error procedure on a read replica. For
more information about this procedure, see Skipping the current replication error.

To determine if there are errors, run the MySQL SHOW REPLICA STATUS\G command. If a
replication error isn't critical, you can run mysql.rds_skip_repl_error to skip the error. If
there are multiple errors, mysql.rds_skip_repl_error deletes the first error, then warns that
others are present. You can then use SHOW REPLICA STATUS\G to determine the correct course
of action for the next error. For information about the values returned, see SHOW REPLICA STATUS
statement in the MySQL documentation.

Note

Previous versions of MySQL used SHOW SLAVE STATUS instead of SHOW REPLICA
STATUS. If you are using a MySQL version before 8.0.23, then use SHOW SLAVE STATUS.

For more information about addressing replication errors with Aurora MySQL, see Diagnosing and
resolving a MySQL read replication failure.

Replication stopped error

When you call the mysql.rds_skip_repl_error procedure, you might receive an error message
stating that the replica is down or disabled.

This error message appears if you run the procedure on the primary instance instead of the read
replica. You must run this procedure on the read replica for the procedure to work.

This error message might also appear if you run the procedure on the read replica, but replication
can't be restarted successfully.

Stored procedures 1890

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Appendix.MySQL.CommonDBATasks.html#Appendix.MySQL.CommonDBATasks.SkipError
https://dev.mysql.com/doc/refman/8.0/en/show-replica-status.html
https://dev.mysql.com/doc/refman/8.0/en/show-replica-status.html

Amazon Aurora User Guide for Aurora

If you need to skip a large number of errors, the replication lag can increase beyond the default
retention period for binary log (binlog) files. In this case, you might encounter a fatal error due to
binlog files being purged before they have been replayed on the read replica. This purge causes
replication to stop, and you can no longer call the mysql.rds_skip_repl_error command to
skip replication errors.

You can mitigate this issue by increasing the number of hours that binlog files are retained on
your source database instance. After you have increased the binlog retention time, you can restart
replication and call the mysql.rds_skip_repl_error command as needed.

To set the binlog retention time, use the mysql.rds_set_configuration procedure and specify a
configuration parameter of 'binlog retention hours' along with the number of hours to
retain binlog files on the DB cluster. The following example sets the retention period for binlog
files to 48 hours.

CALL mysql.rds_set_configuration('binlog retention hours', 48);

mysql.rds_start_replication

Initiates replication from an Aurora MySQL DB cluster.

Note

You can use the mysql.rds_start_replication_until (Aurora MySQL version 3) or
mysql.rds_start_replication_until_gtid (Aurora MySQL version 3) stored procedure to
initiate replication from an Aurora MySQL DB instance and stop replication at the specified
binary log file location.

Syntax

CALL mysql.rds_start_replication;

Usage notes

The master user must run the mysql.rds_start_replication procedure.

To import data from an instance of MySQL external to Amazon RDS, call
mysql.rds_start_replication on the read replica to start the replication process after you

Stored procedures 1891

Amazon Aurora User Guide for Aurora

call mysql.rds_set_external_masteror mysql.rds_set_external_source to build the
replication configuration. For more information, see Replication between Aurora and MySQL or
between Aurora and another Aurora DB cluster (binary log replication).

To export data to an instance of MySQL external to Amazon RDS, call
mysql.rds_start_replication and mysql.rds_stop_replication on the read replica
to control some replication actions, such as purging binary logs. For more information, see
Replication between Aurora and MySQL or between Aurora and another Aurora DB cluster (binary
log replication).

You can also call mysql.rds_start_replication on the read replica to restart any replication
process that you previously stopped by calling mysql.rds_stop_replication. For more
information, see Replication stopped error.

mysql.rds_start_replication_until (Aurora MySQL version 3)

Initiates replication from an Aurora MySQL DB cluster and stops replication at the specified binary
log file location.

Syntax

CALL mysql.rds_start_replication_until (
replication_log_file
 , replication_stop_point
);

Parameters

replication_log_file

The name of the binary log on the source database instance that contains the replication
information.

replication_stop_point

The location in the replication_log_file binary log at which replication will stop.

Usage notes

The master user must run the mysql.rds_start_replication_until procedure.

This procedure is supported for Aurora MySQL version 3.04 and higher.

Stored procedures 1892

Amazon Aurora User Guide for Aurora

The mysql.rds_start_replication_until stored procedure isn't supported for managed
replication, which includes the following:

• Replicating Amazon Aurora MySQL DB clusters across AWS Regions

• Migrating data from an RDS for MySQL DB instance to an Amazon Aurora MySQL DB cluster by
using an Aurora read replica

The file name specified for the replication_log_file parameter must match the source
database instance binlog file name.

When the replication_stop_point parameter specifies a stop location that is in the past,
replication is stopped immediately.

Examples

The following example initiates replication and replicates changes until it reaches location 120 in
the mysql-bin-changelog.000777 binary log file.

call mysql.rds_start_replication_until(
 'mysql-bin-changelog.000777',
 120);

mysql.rds_start_replication_until_gtid (Aurora MySQL version 3)

Initiates replication from an Aurora MySQL DB cluster and stops replication immediately after the
specified global transaction identifier (GTID).

Syntax

CALL mysql.rds_start_replication_until_gtid(gtid);

Parameters

gtid

The GTID after which replication is to stop.

Usage notes

The master user must run the mysql.rds_start_replication_until_gtid procedure.

Stored procedures 1893

Amazon Aurora User Guide for Aurora

This procedure is supported for Aurora MySQL version 3.04 and higher.

The mysql.rds_start_replication_until_gtid stored procedure isn't supported for
managed replication, which includes the following:

• Replicating Amazon Aurora MySQL DB clusters across AWS Regions

• Migrating data from an RDS for MySQL DB instance to an Amazon Aurora MySQL DB cluster by
using an Aurora read replica

When the gtid parameter specifies a transaction that has already been run by the replica,
replication is stopped immediately.

Examples

The following example initiates replication and replicates changes until it reaches GTID
3E11FA47-71CA-11E1-9E33-C80AA9429562:23.

call mysql.rds_start_replication_until_gtid('3E11FA47-71CA-11E1-9E33-C80AA9429562:23');

mysql.rds_stop_replication

Stops replication from a MySQL DB instance.

Syntax

CALL mysql.rds_stop_replication;

Usage notes

The master user must run the mysql.rds_stop_replication procedure.

If you are configuring replication to import data from an instance of MySQL running external to
Amazon RDS, you call mysql.rds_stop_replication on the read replica to stop the replication
process after the import has completed. For more information, see Replication between Aurora and
MySQL or between Aurora and another Aurora DB cluster (binary log replication).

If you are configuring replication to export data to an instance of MySQL external to Amazon RDS,
you call mysql.rds_start_replication and mysql.rds_stop_replication on the read
replica to control some replication actions, such as purging binary logs. For more information, see

Stored procedures 1894

Amazon Aurora User Guide for Aurora

Replication between Aurora and MySQL or between Aurora and another Aurora DB cluster (binary
log replication).

The mysql.rds_stop_replication stored procedure isn't supported for managed replication,
which includes the following:

• Replicating Amazon Aurora MySQL DB clusters across AWS Regions

• Migrating data from an RDS for MySQL DB instance to an Amazon Aurora MySQL DB cluster by
using an Aurora read replica

Aurora MySQL–specific information_schema tables

Aurora MySQL has certain information_schema tables that are specific to Aurora.

information_schema.aurora_global_db_instance_status

The information_schema.aurora_global_db_instance_status table contains information
about the status of all DB instances in a global database's primary and secondary DB clusters. The
following table shows the columns that you can use. The remaining columns are for Aurora internal
use only.

Note

This information schema table is only available with Aurora MySQL version 3.04.0 and
higher global databases.

Column Data type Description

SERVER_ID varchar(100) The identifier of the DB
instance.

SESSION_ID varchar(100) A unique identifier for the
current session. A value of
MASTER_SESSION_ID
identifies the Writer (primary)
DB instance.

information_schema tables 1895

Amazon Aurora User Guide for Aurora

Column Data type Description

AWS_REGION varchar(100) The AWS Region in which
this global database instance
runs. For a list of Regions, see
Region availability.

DURABLE_LSN bigint unsigned The log sequence number
(LSN) made durable in
storage. A log sequence
number (LSN) is a unique
sequential number that
identifies a record in the
database transaction log.
LSNs are ordered such that a
larger LSN represents a later
transaction.

HIGHEST_LSN_RCVD bigint unsigned The highest LSN received
by the DB instance from the
writer DB instance.

OLDEST_READ_VIEW_TRX_ID bigint unsigned The ID of the oldest transacti
on that the writer DB instance
can purge to.

OLDEST_READ_VIEW_LSN bigint unsigned The oldest LSN used by the
DB instance to read from
storage.

information_schema tables 1896

Amazon Aurora User Guide for Aurora

Column Data type Description

VISIBILITY_LAG_IN_MSEC float(10,0) unsigned For readers in the primary
DB cluster, how far this DB
instance is lagging behind
the writer DB instance in
milliseconds. For readers in
a secondary DB cluster, how
far this DB instance is lagging
behind the secondary volume
in milliseconds.

information_schema.aurora_global_db_status

The information_schema.aurora_global_db_status table contains information about
various aspects of Aurora global database lag, specifically, lag of the underlying Aurora storage
(so called durability lag) and lag between the recovery point objective (RPO). The following table
shows the columns that you can use. The remaining columns are for Aurora internal use only.

Note

This information schema table is only available with Aurora MySQL version 3.04.0 and
higher global databases.

Column Data type Description

AWS_REGION varchar(100) The AWS Region in which
this global database instance
runs. For a list of Regions, see
Region availability.

HIGHEST_LSN_WRITTEN bigint unsigned The highest log sequence
number (LSN) that currently
exists on this DB cluster. A log
sequence number (LSN) is a
unique sequential number

information_schema tables 1897

Amazon Aurora User Guide for Aurora

Column Data type Description

that identifies a record in the
database transaction log.
LSNs are ordered such that a
larger LSN represents a later
transaction.

DURABILITY_LAG_IN_
MILLISECONDS

float(10,0) unsigned The difference in the
timestamp values between
the HIGHEST_LSN_WRITTE
N on a secondary DB
cluster and the HIGHEST_L
SN_WRITTEN on the
primary DB cluster. This value
is always 0 on the primary DB
cluster of the Aurora global
database.

information_schema tables 1898

Amazon Aurora User Guide for Aurora

Column Data type Description

RPO_LAG_IN_MILLISECONDS float(10,0) unsigned The recovery point objective
(RPO) lag. The RPO lag is
the time it takes for the
most recent user transaction
COMMIT to be stored on a
secondary DB cluster after it's
been stored on the primary
DB cluster of the Aurora
global database. This value is
always 0 on the primary DB
cluster of the Aurora global
database.

In simple terms, this metric
calculates the recovery point
objective for each Aurora
MySQL DB cluster in the
Aurora global database, that
is, how much data might be
lost if there were an outage.
As with lag, RPO is measured
in time.

LAST_LAG_CALCULATI
ON_TIMESTAMP

datetime The timestamp that specifies
when values were last
calculated for DURABILIT
Y_LAG_IN_MILLISECO
NDS and RPO_LAG_I
N_MILLISECONDS . A time
value such as 1970-01-01
00:00:00+00 means this is
the primary DB cluster.

information_schema tables 1899

Amazon Aurora User Guide for Aurora

Column Data type Description

OLDEST_READ_VIEW_TRX_ID bigint unsigned The ID of the oldest transacti
on that the writer DB instance
can purge to.

information_schema.replica_host_status

The information_schema.replica_host_status table contains replication information. The
columns that you can use are shown in the following table. The remaining columns are for Aurora
internal use only.

Column Data type Description

CPU double The CPU percentage usage of
the replica host.

IS_CURRENT tinyint Whether the replica is current.

LAST_UPDATE_TIMESTAMP datetime(6) The time the last update
occurred. Used to determine
whether a record is stale.

REPLICA_LAG_IN_MIL
LISECONDS

double The replica lag in milliseco
nds.

SERVER_ID varchar(100) The ID of the database server.

SESSION_ID varchar(100) The ID of the database
session. Used to determine
whether a DB instance is a
writer or reader instance.

information_schema tables 1900

Amazon Aurora User Guide for Aurora

Note

When a replica instance falls behind, the information queried from its
information_schema.replica_host_status table might be outdated. In this
situation, we recommend that you query from the writer instance instead.
While the mysql.ro_replica_status table has similar information, we don't
recommend that you use it.

information_schema.aurora_forwarding_processlist

The information_schema.aurora_forwarding_processlist table contains information
about processes involved in write forwarding.

The contents of this table are visible only on the writer DB instance for a DB cluster with global or
in-cluster write forwarding turned on. An empty result set is returned on reader DB instances.

Field Data
type

Description

ID bigint The identifier of the connection on the writer DB instance.
This identifier is the same value displayed in the Id column
of the SHOW PROCESSLIST statement and returned by
the CONNECTION_ID() function within the thread.

USER varchar(3
2)

The MySQL user that issued the statement.

HOST varchar(2
55)

The MySQL client that issued the statement. For forwarded
 statements, this field shows the application client host
address that established the connection on the forwarding
reader DB instance.

DB varchar(6
4)

The default database for the thread.

COMMAND varchar(1
6)

The type of command the thread is executing on behalf of
the client, or Sleep if the session is idle. For descriptions

information_schema tables 1901

Amazon Aurora User Guide for Aurora

Field Data
type

Description

of thread commands, see the MySQL documentation on
Thread Command Values in the MySQL documentation.

TIME int The time in seconds that the thread has been in its current
state.

STATE varchar(6
4)

An action, event, or state that indicates what the thread is
doing. For descriptions of state values, see General Thread
States in the MySQL documentation.

INFO longtext The statement that the thread is executing, or NULL if it
isn't executing a statement. The statement might be the
one sent to the server, or an innermost statement if the
statement executes other statements.

IS_FORWARDED bigint Indicates whether the thread is forwarded from a reader
DB instance.

REPLICA_SESSION_ID bigint The connection identifier on the Aurora Replica. This
identifier is the same value displayed in the Id column of
the SHOW PROCESSLIST statement on the forwarding
Aurora reader DB instance.

REPLICA_INSTANCE_I
DENTIFIER

varchar(6
4)

The DB instance identifier of the forwarding thread.

REPLICA_C
LUSTER_NAME

varchar(6
4)

The DB cluster identifier of the forwarding thread. For
in-cluster write forwarding, this identifier is the same DB
cluster as the writer DB instance.

REPLICA_REGION varchar(6
4)

The AWS Region from which the forwarding thread
originates. For in-cluster write forwarding, this Region is
the same AWS Region as the writer DB instance.

information_schema tables 1902

https://dev.mysql.com/doc/refman/8.0/en/thread-commands.html
https://dev.mysql.com/doc/refman/8.0/en/general-thread-states.html
https://dev.mysql.com/doc/refman/8.0/en/general-thread-states.html

Amazon Aurora User Guide for Aurora

Database engine updates for Amazon Aurora MySQL

Amazon Aurora releases updates regularly. Updates are applied to Aurora DB clusters during
system maintenance windows. The timing when updates are applied depends on the region and
maintenance window setting for the DB cluster, as well as the type of update.

Amazon Aurora releases are made available to all AWS Regions over the course of multiple days.
Some Regions might temporarily show an engine version that isn't available in a different Region
yet.

Updates are applied to all instances in a DB cluster at the same time. An update requires a
database restart on all instances in a DB cluster, so you experience 20 to 30 seconds of downtime,
after which you can resume using your DB cluster or clusters. You can view or change your
maintenance window settings from the AWS Management Console.

For details about the Aurora MySQL versions that are supported by Amazon Aurora, see the Release
Notes for Aurora MySQL.

Following, you can learn how to choose the right Aurora MySQL version for your cluster, how to
specify the version when you create or upgrade a cluster, and the procedures to upgrade a cluster
from one version to another with minimal interruption.

Topics

• Aurora MySQL version numbers and special versions

• Preparing for Amazon Aurora MySQL-Compatible Edition version 2 end of standard support

• Preparing for Amazon Aurora MySQL-Compatible Edition version 1 end of life

• Upgrading Amazon Aurora MySQL DB clusters

• Database engine updates and fixes for Amazon Aurora MySQL

Aurora MySQL version numbers and special versions

Although Aurora MySQL-Compatible Edition is compatible with the MySQL database engines,
Aurora MySQL includes features and bug fixes that are specific to particular Aurora MySQL
versions. Application developers can check the Aurora MySQL version in their applications by using
SQL. Database administrators can check and specify Aurora MySQL versions when creating or
upgrading Aurora MySQL DB clusters and DB instances.

Topics

Aurora MySQL updates 1903

https://console.aws.amazon.com/
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraMySQLReleaseNotes/Welcome.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraMySQLReleaseNotes/Welcome.html

Amazon Aurora User Guide for Aurora

• Checking or specifying Aurora MySQL engine versions through AWS

• Checking Aurora MySQL versions using SQL

• Aurora MySQL long-term support (LTS) releases

• Aurora MySQL beta releases

Checking or specifying Aurora MySQL engine versions through AWS

When you perform administrative tasks using the AWS Management Console, AWS CLI, or RDS API,
you specify the Aurora MySQL version in a descriptive alphanumeric format.

Starting with Aurora MySQL version 2, Aurora engine versions have the following syntax.

mysql-major-version.mysql_aurora.aurora-mysql-version

The mysql-major-version- portion is 5.7 or 8.0. This value represents the version of the client
protocol and general level of MySQL feature support for the corresponding Aurora MySQL version.

The aurora-mysql-version is a dotted value with three parts: the Aurora MySQL major version,
the Aurora MySQL minor version, and the patch level. The major version is 2 or 3. Those values
represent Aurora MySQL compatible with MySQL 5.7 or 8.0, respectively. The minor version
represents the feature release within the 2.x or 3.x series. The patch level begins at 0 for each
minor version, and represents the set of subsequent bug fixes that apply to the minor version.
Occasionally, a new feature is incorporated into a minor version but not made visible immediately.
In these cases, the feature undergoes fine-tuning and is made public in a later patch level.

All 2.x Aurora MySQL engine versions are wire-compatible with Community MySQL 5.7.12. All 3.x
Aurora MySQL engine versions are wire-compatible with MySQL 8.0.23 onwards. You can refer to
release notes of the specific 3.x version to find the corresponding MySQL compatible version.

For example, the engine versions for Aurora MySQL 3.02.0 and 2.11.2 are the following.

8.0.mysql_aurora.3.02.0
5.7.mysql_aurora.2.11.2

Note

There isn't a one-to-one correspondence between community MySQL versions and the
Aurora MySQL 2.x versions. For Aurora MySQL version 3, there is a more direct mapping.

Version Numbers and Special Versions 1904

Amazon Aurora User Guide for Aurora

To check which bug fixes and new features are in a particular Aurora MySQL release, see
Database engine updates for Amazon Aurora MySQL version 3 and Database engine
updates for Amazon Aurora MySQL version 2 in the Release Notes for Aurora MySQL. For
a chronological list of new features and releases, see Document history. To check the
minimum version required for a security-related fix, see Security vulnerabilities fixed in
Aurora MySQLin the Release Notes for Aurora MySQL.

You specify the Aurora MySQL engine version in some AWS CLI commands and RDS API operations.
For example, you specify the --engine-version option when you run the AWS CLI commands
create-db-cluster and modify-db-cluster. You specify the EngineVersion parameter when you
run the RDS API operations CreateDBCluster and ModifyDBCluster.

In Aurora MySQL version 2 and higher, the engine version in the AWS Management Console also
includes the Aurora version. Upgrading the cluster changes the displayed value. This change helps
you to specify and check the precise Aurora MySQL versions, without the need to connect to the
cluster or run any SQL commands.

Tip

For Aurora clusters managed through AWS CloudFormation, this change in the
EngineVersion setting can trigger actions by AWS CloudFormation. For information
about how AWS CloudFormation treats changes to the EngineVersion setting, see the
AWS CloudFormation documentation.

Checking Aurora MySQL versions using SQL

The Aurora version numbers that you can retrieve in your application using SQL queries use the
format <major version>.<minor version>.<patch version>. You can get this version
number for any DB instance in your Aurora MySQL cluster by querying the AURORA_VERSION
system variable. To get this version number, use one of the following queries.

select aurora_version();
select @@aurora_version;

Those queries produce output similar to the following.

Version Numbers and Special Versions 1905

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraMySQLReleaseNotes/AuroraMySQL.Updates.30Updates.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraMySQLReleaseNotes/AuroraMySQL.Updates.30Updates.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraMySQLReleaseNotes/AuroraMySQL.Updates.20Updates.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraMySQLReleaseNotes/AuroraMySQL.Updates.20Updates.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraMySQLReleaseNotes/AuroraMySQL.CVE_list.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraMySQLReleaseNotes/AuroraMySQL.CVE_list.html
https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-cluster.html
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-cluster.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateDBCluster.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBCluster.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-rds-dbcluster.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-rds-dbcluster.html

Amazon Aurora User Guide for Aurora

mysql> select aurora_version(), @@aurora_version;
+------------------+------------------+
| aurora_version() | @@aurora_version |
+------------------+------------------+
| 2.11.1 | 2.11.1 |
+------------------+------------------+

The version numbers that the console, CLI, and RDS API return by using the techniques described in
Checking or specifying Aurora MySQL engine versions through AWS are typically more descriptive.

Aurora MySQL long-term support (LTS) releases

Each new Aurora MySQL version remains available for a certain amount of time for you to use
when you create or upgrade a DB cluster. After this period, you must upgrade any clusters that use
that version. You can manually upgrade your cluster before the support period ends, or Aurora can
automatically upgrade it for you when its Aurora MySQL version is no longer supported.

Aurora designates certain Aurora MySQL versions as long-term support (LTS) releases. DB clusters
that use LTS releases can stay on the same version longer and undergo fewer upgrade cycles than
clusters that use non-LTS releases. Aurora supports each LTS release for at least three years after
that release becomes available. When a DB cluster that's on an LTS release is required to upgrade,
Aurora upgrades it to the next LTS release. That way, the cluster doesn't need to be upgraded again
for a long time.

During the lifetime of an Aurora MySQL LTS release, new patch levels introduce fixes to important
issues. The patch levels don't include any new features. You can choose whether to apply such
patches to DB clusters running the LTS release. For certain critical fixes, Amazon might perform
a managed upgrade to a patch level within the same LTS release. Such managed upgrades are
performed automatically within the cluster maintenance window.

We recommend that you upgrade to the latest release, instead of using the LTS release, for most
of your Aurora MySQL clusters. Doing so takes advantage of Aurora as a managed service and gives
you access to the latest features and bug fixes. The LTS releases are intended for clusters with the
following characteristics:

• You can't afford downtime on your Aurora MySQL application for upgrades outside of rare
occurrences for critical patches.

• The testing cycle for the cluster and associated applications takes a long time for each update to
the Aurora MySQL database engine.

Version Numbers and Special Versions 1906

Amazon Aurora User Guide for Aurora

• The database version for your Aurora MySQL cluster has all the DB engine features and bug fixes
that your application needs.

The current LTS release for Aurora MySQL is the following:

• Aurora MySQL version 3.04.*. For more details about the LTS version, see Database engine
updates for Amazon Aurora MySQL version 3 in the Release Notes for Aurora MySQL.

Note

We recommend that you don't set the AutoMinorVersionUpgrade parameter to true
(or enable Auto minor version upgrade in the AWS Management Console) for LTS versions.
Doing so could lead to your DB cluster being upgraded to a non-LTS version such as 3.05.2.

Aurora MySQL beta releases

An Aurora MySQL beta release is an early, security fix–only release in a limited number of AWS
Regions. These fixes are later deployed more broadly across all Regions with the next patch release.

The numbering for a beta release is similar to an Aurora MySQL minor version, but with an extra
fourth digit, for example 2.12.0.1 or 3.05.0.1.

For more information, see Database engine updates for Amazon Aurora MySQL version 2 and
Database engine updates for Amazon Aurora MySQL version 3 in the Release Notes for Aurora
MySQL.

Preparing for Amazon Aurora MySQL-Compatible Edition version 2 end
of standard support

Amazon Aurora MySQL-Compatible Edition version 2 (with MySQL 5.7 compatibility) is planned
to reach the end of standard support on October 31, 2024. We recommend that you upgrade all
clusters running Aurora MySQL version 2 to the default Aurora MySQL version 3 (with MySQL 8.0
compatibility) or higher before Aurora MySQL version 2 reaches the end of its standard support
period. On October 31, 2024, Amazon RDS will automatically enroll your databases into Amazon
RDS Extended Support. If you're running Amazon Aurora MySQL version 2 (with MySQL 5.7
compatibility) in an Aurora Serverless version 1 cluster, this doesn't apply to you. If you want to

Preparing for Aurora MySQL version 2 end of life 1907

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraMySQLReleaseNotes/AuroraMySQL.Updates.30Updates.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraMySQLReleaseNotes/AuroraMySQL.Updates.30Updates.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraMySQLReleaseNotes/AuroraMySQL.Updates.20Updates.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraMySQLReleaseNotes/AuroraMySQL.Updates.30Updates.html

Amazon Aurora User Guide for Aurora

upgrade your Aurora Serverless version 1 clusters to Aurora MySQL version 3, see Upgrade path for
Aurora Serverless v1 DB clusters.

You can find upcoming end-of-support dates for Aurora major versions in Amazon Aurora versions.

If you have clusters running Aurora MySQL version 2, you will receive periodic notices with the
latest information about how to conduct an upgrade as we get closer to the end of standard
support date. We will update this page periodically with the latest information.

End of standard support timeline

1. Now through October 31, 2024 – You can upgrade clusters from Aurora MySQL version 2 (with
MySQL 5.7 compatibility) to Aurora MySQL version 3 (with MySQL 8.0 compatibility).

2. October 31, 2024 – On this date, Aurora MySQL version 2 will reach the end of standard support
and Amazon RDS automatically enrolls your clusters into Amazon RDS Extended Support.

We will automatically enroll you in RDS Extended Support. For more information, see Using
Amazon RDS Extended Support.

Finding clusters affected by this end-of-life process

To find clusters affected by this end-of-life process, use the following procedures.

Important

Be sure to perform these instructions in every AWS Region and for each AWS account
where your resources are located.

Console

To find an Aurora MySQL version 2 cluster

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Databases.

3. In the Filter by databases box, enter 5.7.

4. Check for Aurora MySQL in the engine column.

Preparing for Aurora MySQL version 2 end of life 1908

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Aurora User Guide for Aurora

AWS CLI

To find clusters affected by this end-of-life process using the AWS CLI, call the describe-db-clusters
command. You can use the sample script following.

Example

aws rds describe-db-clusters --include-share --query 'DBClusters[?(Engine==`aurora-
mysql` && contains(EngineVersion,`5.7.mysql_aurora`))].{EngineVersion:EngineVersion,
 DBClusterIdentifier:DBClusterIdentifier, EngineMode:EngineMode}' --output table
 --region us-east-1

 +---+
 | DescribeDBClusters |
 +---------------------+---------------+-------------------------+
 | DBCI | EM | EV |
 +---------------------+---------------+-------------------------+
 | aurora-mysql2 | provisioned | 5.7.mysql_aurora.2.11.3 |
 | aurora-serverlessv1 | serverless | 5.7.mysql_aurora.2.11.3 |
 +---------------------+---------------+-------------------------+

RDS API

To find Aurora MySQL DB clusters running Aurora MySQL version 2, use the RDS
DescribeDBClusters API operation with the following required parameters:

• DescribeDBClusters

• Filters.Filter.N

• Name

• engine

• Values.Value.N

• ['aurora']

Amazon RDS Extended Support

You can use Amazon RDS Extended Support over community MySQL 5.7 at no charge until the
end of support date, October 31, 2024. On October 31, 2024, Amazon RDS automatically enrolls
your databases into RDS Extended Support for Aurora MySQL version 2. RDS Extended Support

Preparing for Aurora MySQL version 2 end of life 1909

https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-clusters.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DescribeDBClusters.html

Amazon Aurora User Guide for Aurora

for Aurora is a paid service that provides up to 28 additional months of support for Aurora MySQL
version 2 until the end of RDS Extended Support in February 2027. RDS Extended Support will only
be offered for Aurora MySQL minor versions 2.11 and 2.12. To use Amazon Aurora MySQL version
2 past the end of standard support, plan to run your databases on one of these minor versions
before October 31, 2024.

For more information about RDS Extended Support, such as charges and other considerations, see
Using Amazon RDS Extended Support.

Performing an upgrade

Upgrading between major versions requires more extensive planning and testing than for a minor
version. The process can take substantial time. We want to look at the upgrade as a three-step
process, with activities before the upgrade, for the upgrade, and after the upgrade.

Before the upgrade:

Before the upgrade, we recommend that you check for application compatibility, performance,
maintenance procedures, and similar considerations for the upgraded cluster, thereby confirming
that post-upgrade your applications will work as expected. Here are five recommendations that will
help provide you a better upgrade experience.

• First, it's critical to understand How the Aurora MySQL in-place major version upgrade works.

• Next, explore the upgrade techniques that are available when Upgrading from Aurora MySQL
version 2 to version 3.

• To help you decide the right time and approach to upgrade, you can learn the differences
between Aurora MySQL version 3 and your current environment with Comparing Aurora MySQL
version 2 and Aurora MySQL version 3.

• After you've decided on the option that's convenient and works best, try a mock in-place
upgrade on a cloned cluster, using Planning a major version upgrade for an Aurora MySQL
cluster. The pre-checker can run and determine if the your database can be upgraded
successfully, and if there is any application incompatibility issue post-upgrade as well as
performance, maintenance procedures, and similar considerations.

Review the upgrade checklist blog part 1 and part 2.

• Not all kinds or versions of Aurora MySQL clusters can use the in-place upgrade mechanism. For
more information, see Aurora MySQL major version upgrade paths.

Preparing for Aurora MySQL version 2 end of life 1910

https://aws.amazon.com/blogs/database/amazon-aurora-mysql-version-2-with-mysql-5-7-compatibility-to-version-3-with-mysql-8-0-compatibility-upgrade-checklist-part-1
https://aws.amazon.com/blogs/database/amazon-aurora-mysql-version-2-with-mysql-5-7-compatibility-to-version-3-with-mysql-8-0-compatibility-upgrade-checklist-part-2

Amazon Aurora User Guide for Aurora

If you have any questions or concerns, the AWS Support Team is available on the community
forums and Premium Support.

Doing the upgrade:

You can use one of the following upgrade techniques. The amount of downtime your system will
experience depends on the technique chosen.

• Blue/Green Deployments – For situations where the top priority is to reduce application
downtime, you can use Amazon RDS Blue/Green Deployments for performing the major version
upgrade in provisioned Amazon Aurora DB clusters. A blue/green deployment creates a staging
environment that copies the production environment. You can make certain changes to the
Aurora DB cluster in the green (staging) environment without affecting production workloads.
The switchover typically takes under a minute with no data loss. For more information, see
Overview of Amazon RDS Blue/Green Deployments for Aurora. This minimizes downtime, but
requires you to run additional resources while performing the upgrade.

• In-place upgrades – You can perform an in-place upgrade where Aurora automatically performs
a precheck process for you, takes the cluster offline, backs up your cluster, performs the upgrade,
and puts your cluster back online. An in-place major version upgrade can be performed in a few
clicks, and doesn't involve other coordination or failovers with other clusters, but does involve
downtime. For more information, see How to perform an in-place upgrade

• Snapshot restore – You can upgrade your Aurora MySQL version 2 cluster by restoring from an
Aurora MySQL version 2 snapshot into an Aurora MySQL version 3 cluster. To do this, you should
follow the process for taking a snapshot and restoring from it. This process involves database
interruption because you're restoring from a snapshot.

After the upgrade:

After the upgrade, you need to closely monitor your system (application and database) and
make fine-tuning changes if necessary. Following the pre-upgrade steps closely will minimize
the required changes needed. For more information, see Troubleshooting Amazon Aurora MySQL
database performance.

To learn more about the methods, planning, testing, and troubleshooting of Aurora MySQL major
version upgrades, be sure to thoroughly read Upgrading the major version of an Amazon Aurora
MySQL DB cluster, including Troubleshooting for Aurora MySQL in-place upgrade. Also, note that
some instance types aren't supported for Aurora MySQL version 3. For more information, see
Aurora DB instance classes.

Preparing for Aurora MySQL version 2 end of life 1911

https://repost.aws/
https://repost.aws/
https://aws.amazon.com/premiumsupport/
https://aws.amazon.com/blogs/aws/new-fully-managed-blue-green-deployments-in-amazon-aurora-and-amazon-rds/

Amazon Aurora User Guide for Aurora

Upgrade path for Aurora Serverless v1 DB clusters

Upgrading between major versions requires more extensive planning and testing than for a minor
version. The process can take substantial time. We want to look at the upgrade as a three-step
process, with activities before the upgrade, for the upgrade, and after the upgrade.

Aurora MySQL version 2 (with MySQL 5.7 compatibility) will continue to receive standard support
for Aurora Serverless v1 clusters.

If you want to upgrade to Amazon Aurora MySQL 3 (with MySQL 8.0 compatibility) and continue
running Aurora Serverless, you can use Amazon Aurora Serverless v2. To understand the
differences between Aurora Serverless v1 and Aurora Serverless v2, see Comparison of Aurora
Serverless v2 and Aurora Serverless v1.

Upgrade to Aurora Serverless v2: You can upgrade an Aurora Serverless v1 cluster to Aurora
Serverless v2. For more information, see Upgrading from an Aurora Serverless v1 cluster to Aurora
Serverless v2.

Preparing for Amazon Aurora MySQL-Compatible Edition version 1 end
of life

Amazon Aurora MySQL-Compatible Edition version 1 (with MySQL 5.6 compatibility) is planned to
reach end of life on February 28, 2023. Amazon advises that you upgrade all clusters (provisioned
and Aurora Serverless) running Aurora MySQL version 1 to Aurora MySQL version 2 (with MySQL
5.7 compatibility) or Aurora MySQL version 3 (with MySQL 8.0 compatibility). Do this before Aurora
MySQL version 1 reaches the end of its support period.

For Aurora provisioned DB clusters, you can complete upgrades from Aurora MySQL version 1 to
Aurora MySQL version 2 by several methods. You can find instructions for the in-place upgrade
mechanism in How to perform an in-place upgrade. Another way to complete the upgrade is
to take a snapshot of an Aurora MySQL version 1 cluster and restore the snapshot to an Aurora
MySQL version 2 cluster. Or you can follow a multistep process that runs the old and new clusters
side by side. For more details about each method, see Upgrading the major version of an Amazon
Aurora MySQL DB cluster.

For Aurora Serverless v1 DB clusters, you can perform an in-place upgrade from Aurora MySQL
version 1 to Aurora MySQL version 2. For more details about this method, see Modifying an Aurora
Serverless v1 DB cluster.

Preparing for Aurora MySQL version 1 end of life 1912

Amazon Aurora User Guide for Aurora

For Aurora provisioned DB clusters, you can complete upgrades from Aurora MySQL version 1 to
Aurora MySQL version 3 by using a two-stage upgrade process:

1. Upgrade from Aurora MySQL version 1 to Aurora MySQL version 2 using the methods described
preceding.

2. Upgrade from Aurora MySQL version 2 to Aurora MySQL version 3 using the same methods as
for upgrading from version 1 to version 2. For more details, see Upgrading from Aurora MySQL
version 2 to version 3. Note the Feature differences between Aurora MySQL version 2 and 3.

You can find upcoming end-of-life dates for Aurora major versions in Amazon Aurora versions.
Amazon automatically upgrades any clusters that you don't upgrade yourself before the end-of-life
date. After the end-of-life date, these automatic upgrades to the subsequent major version occur
during a scheduled maintenance window for clusters.

The following are additional milestones for upgrading Aurora MySQL version 1 clusters
(provisioned and Aurora Serverless) that are reaching end of life. For each, the start time is 00:00
Universal Coordinated Time (UTC).

1. Now through February 28, 2023 – You can at any time start upgrades of Aurora MySQL
version 1 (with MySQL 5.6 compatibility) clusters to Aurora MySQL version 2 (with MySQL 5.7
compatibility). From Aurora MySQL version 2, you can do a further upgrade to Aurora MySQL
version 3 (with MySQL 8.0 compatibility) for Aurora provisioned DB clusters.

2. January 16, 2023 – After this time, you can't create new Aurora MySQL version 1 clusters or
instances from either the AWS Management Console or the AWS Command Line Interface (AWS
CLI). You also can't add new secondary Regions to an Aurora global database. This might affect
your ability to recover from an unplanned outage as outlined in Recovering an Amazon Aurora
global database from an unplanned outage, because you can't complete steps 5 and 6 after
this time. You will also be unable to create a new cross-Region read replica running Aurora
MySQL version 1. You can still do the following for existing Aurora MySQL version 1 clusters
until February 28, 2023:

• Restore a snapshot taken of an Aurora MySQL version 1 cluster to the same version as the
original snapshot cluster.

• Add read replicas (not applicable for Aurora Serverless DB clusters).

• Change instance configuration.

• Perform point-in-time restore.

• Create clones of existing version 1 clusters.

Preparing for Aurora MySQL version 1 end of life 1913

Amazon Aurora User Guide for Aurora

• Create a new cross-Region read replica running Aurora MySQL version 2 or higher.

3. February 28, 2023 – After this time, we plan to automatically upgrade Aurora MySQL version
1 clusters to the default version of Aurora MySQL version 2 within a scheduled maintenance
window that follows. Restoring Aurora MySQL version 1 DB snapshots results in an automatic
upgrade of the restored cluster to the default version of Aurora MySQL version 2 at that time.

Upgrading between major versions requires more extensive planning and testing than for a minor
version. The process can take substantial time.

For situations where the top priority is to reduce downtime, you can also use blue/green
deployments for performing the major version upgrade in provisioned Amazon Aurora DB clusters.
A blue/green deployment creates a staging environment that copies the production environment.
You can make changes to the Aurora DB cluster in the green (staging) environment without
affecting production workloads. The switchover typically takes under a minute with no data loss
and no need for application changes. For more information, see Overview of Amazon RDS Blue/
Green Deployments for Aurora.

After the upgrade is finished, you also might have follow-up work to do. For example, you might
need to follow up due to differences in SQL compatibility, the way certain MySQL-related features
work, or parameter settings between the old and new versions.

To learn more about the methods, planning, testing, and troubleshooting of Aurora MySQL major
version upgrades, be sure to thoroughly read Upgrading the major version of an Amazon Aurora
MySQL DB cluster.

Finding clusters affected by this end-of-life process

To find clusters affected by this end-of-life process, use the following procedures.

Important

Be sure to perform these instructions in every AWS Region and for each AWS account
where your resources are located.

Preparing for Aurora MySQL version 1 end of life 1914

https://aws.amazon.com/blogs/aws/new-fully-managed-blue-green-deployments-in-amazon-aurora-and-amazon-rds/
https://aws.amazon.com/blogs/aws/new-fully-managed-blue-green-deployments-in-amazon-aurora-and-amazon-rds/

Amazon Aurora User Guide for Aurora

Console

To find an Aurora MySQL version 1 cluster

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Databases.

3. In the Filter by databases box, enter 5.6.

4. Check for Aurora MySQL in the engine column.

AWS CLI

To find clusters affected by this end-of-life process using the AWS CLI, call the describe-db-clusters
command. You can use the sample script following.

Example

aws rds describe-db-clusters --include-share --query 'DBClusters[?Engine==`aurora`].
{EV:EngineVersion, DBCI:DBClusterIdentifier, EM:EngineMode}' --output table --region
 us-east-1

 +--+
 | DescribeDBClusters |
 +---------------+--------------+-----------+
 | DBCI | EM | EV |
 +---------------+--------------+-----------+
 | my-database-1| serverless | 5.6.10a |
 +---------------+--------------+-----------+

RDS API

To find Aurora MySQL DB clusters running Aurora MySQL version 1, use the RDS
DescribeDBClusters API operation with the following required parameters:

• DescribeDBClusters

• Filters.Filter.N

• Name

• engine

Preparing for Aurora MySQL version 1 end of life 1915

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-clusters.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DescribeDBClusters.html

Amazon Aurora User Guide for Aurora

• Values.Value.N

• ['aurora']

Upgrading Amazon Aurora MySQL DB clusters

You can upgrade an Aurora MySQL DB cluster to get bug fixes, new Aurora MySQL features, or to
change to an entirely new version of the underlying database engine. The following sections show
how.

Note

The type of upgrade that you do depends on how much downtime you can afford for your
cluster, how much verification testing you plan to do, how important the specific bug fixes
or new features are for your use case, and whether you plan to do frequent small upgrades
or occasional upgrades that skip several intermediate versions. For each upgrade, you can
change the major version, the minor version, and the patch level for your cluster. If you
aren't familiar with the distinction between Aurora MySQL major versions, minor versions,
and patch levels, you can read the background information at Aurora MySQL version
numbers and special versions.

Tip

You can minimize the downtime required for a DB cluster upgrade by using a blue/green
deployment. For more information, see Using Amazon RDS Blue/Green Deployments for
database updates.

Topics

• Upgrading the minor version or patch level of an Aurora MySQL DB cluster

• Upgrading the major version of an Amazon Aurora MySQL DB cluster

Upgrading the minor version or patch level of an Aurora MySQL DB cluster

You can use the following methods to upgrade the minor version of a DB cluster or to patch a DB
cluster:

Upgrading Amazon Aurora MySQL DB clusters 1916

Amazon Aurora User Guide for Aurora

• Upgrading Aurora MySQL by modifying the engine version (for Aurora MySQL version 2 and 3)

• Enabling automatic upgrades between minor Aurora MySQL versions

For information about how zero-downtime patching can reduce interruptions during the upgrade
process, see Using zero-downtime patching.

Before performing a minor version upgrade

We recommend that you perform the following actions to reduce the downtime during a minor
version upgrade:

• The Aurora DB cluster maintenance should be performed during a period of low traffic. Use
Performance Insights to identify these time periods in order to configure the maintenance
windows correctly. For more information on Performance Insights, see Monitoring DB load with
Performance Insights on Amazon RDS. For more information on DB cluster maintenance window,
Adjusting the preferred DB cluster maintenance window.

• Use AWS SDKs that support exponential backoff and jitter as a best practice. For more
information, see Exponential Backoff And Jitter.

Minor version upgrade prechecks for Aurora MySQL

When you start a minor version upgrade, Amazon Aurora runs prechecks automatically.

These prechecks are mandatory. You can't choose to skip them. The prechecks provide the
following benefits:

• They enable you to avoid unplanned downtime during the upgrade.

• If there are incompatibilities, Amazon Aurora prevents the upgrade and provides a log for you
to learn about them. You can then use the log to prepare your database for the upgrade by
reducing the incompatibilities. For detailed information about removing incompatibilities, see
Preparing your installation for upgrade in the MySQL documentation.

The prechecks run before the DB instance is stopped for the upgrade, meaning that they don't
cause any downtime when they run. If the prechecks find an incompatibility, Aurora automatically
cancels the upgrade before the DB instance is stopped. Aurora also generates an event for the
incompatibility. For more information about Amazon Aurora events, see Working with Amazon RDS
event notification.

Upgrading Amazon Aurora MySQL DB clusters 1917

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_PerfInsights.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_PerfInsights.html
https://aws.amazon.com/blogs/architecture/exponential-backoff-and-jitter/
https://dev.mysql.com/doc/refman/8.0/en/upgrade-prerequisites.html

Amazon Aurora User Guide for Aurora

Aurora records detailed information about each incompatibility in the log file
PrePatchCompatibility.log. In most cases, the log entry includes a link to the MySQL
documentation for correcting the incompatibility. For more information about viewing log files, see
Viewing and listing database log files.

Due to the nature of the prechecks, they analyze the objects in your database. This analysis results
in resource consumption and increases the time for the upgrade to complete.

Upgrading Aurora MySQL by modifying the engine version

Upgrading the minor version of an Aurora MySQL DB cluster applies additional fixes and new
features to an existing cluster.

This kind of upgrade applies to Aurora MySQL clusters where the original version and the upgraded
version both have the same Aurora MySQL major version, either 2 or 3. The process is fast and
straightforward because it doesn't involve any conversion for the Aurora MySQL metadata or
reorganization of your table data.

You perform this kind of upgrade by modifying the engine version of the DB cluster using the
AWS Management Console, AWS CLI, or the RDS API. For example, if your cluster is running Aurora
MySQL 2.x, choose a higher 2.x version.

If you're performing a minor upgrade on an Aurora global database, upgrade all of the secondary
clusters before you upgrade the primary cluster.

Note

To perform a minor version upgrade to Aurora MySQL version 3.03.* or higher, or version
2.12.*, use the following process:

1. Remove all secondary Regions from the global cluster. Follow the steps in Removing a
cluster from an Amazon Aurora global database.

2. Upgrade the engine version of the primary Region to version 3.03.* or higher, or version
2.12.*, as applicable. Follow the steps in To modify the engine version of a DB cluster.

3. Add secondary Regions to the global cluster. Follow the steps in Adding an AWS Region
to an Amazon Aurora global database.

 To modify the engine version of a DB cluster

Upgrading Amazon Aurora MySQL DB clusters 1918

Amazon Aurora User Guide for Aurora

• By using the console – Modify the properties of your cluster. In the Modify DB cluster window,
change the Aurora MySQL engine version in the DB engine version box. If you aren't familiar
with the general procedure for modifying a cluster, follow the instructions at Modifying the DB
cluster by using the console, CLI, and API.

• By using the AWS CLI – Call the modify-db-cluster AWS CLI command, and specify the name of
your DB cluster for the --db-cluster-identifier option and the engine version for the --
engine-version option.

For example, to upgrade to Aurora MySQL version 2.12.1, set the --engine-version option
to 5.7.mysql_aurora.2.12.1. Specify the --apply-immediately option to immediately
update the engine version for your DB cluster.

• By using the RDS API – Call the ModifyDBCluster API operation, and specify the name of
your DB cluster for the DBClusterIdentifier parameter and the engine version for the
EngineVersion parameter. Set the ApplyImmediately parameter to true to immediately
update the engine version for your DB cluster.

Enabling automatic upgrades between minor Aurora MySQL versions

For an Amazon Aurora MySQL DB cluster, you can specify that Aurora upgrades the DB cluster
automatically to new minor versions. You do so by setting the AutoMinorVersionUpgrade
property (Auto minor version upgrade in the AWS Management Console) of the DB cluster.

Automatic upgrades occur during the maintenance window. If the individual DB instances in the
DB cluster have different maintenance windows from the cluster maintenance window, then the
cluster maintenance window takes precedence.

Automatic minor version upgrade doesn't apply to the following kinds of Aurora MySQL clusters:

• Clusters that are part of an Aurora global database

• Clusters that have cross-Region replicas

The outage duration varies depending on workload, cluster size, the amount of binary log data,
and if Aurora can use the zero-downtime patching (ZDP) feature. Aurora restarts the database
cluster, so you might experience a short period of unavailability before resuming use of your
cluster. In particular, the amount of binary log data affects recovery time. The DB instance
processes the binary log data during recovery. Thus, a high volume of binary log data increases
recovery time.

Upgrading Amazon Aurora MySQL DB clusters 1919

https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-cluster.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBCluster.html

Amazon Aurora User Guide for Aurora

Note

Aurora only performs automatic upgrades if all DB instances in your DB cluster have the
AutoMinorVersionUpgrade setting enabled. For information on how to set it, and how
it works when applied at the cluster and instance levels, see Automatic minor version
upgrades for Aurora DB clusters.
Then if an upgrade path exists for the DB cluster's instances to a minor DB engine version
that has AutoUpgrade set to true, the upgrade will take place. The AutoUpgrade setting
is dynamic, and is set by RDS.
Auto minor version upgrades are performed to the default minor version.

You can use a CLI command such as the following to check the status of the
AutoMinorVersionUpgrade setting for all of the DB instances in your Aurora MySQL clusters.

aws rds describe-db-instances \
 --query '*[].
{DBClusterIdentifier:DBClusterIdentifier,DBInstanceIdentifier:DBInstanceIdentifier,AutoMinorVersionUpgrade:AutoMinorVersionUpgrade}'

That command produces output similar to the following:

[
 {
 "DBInstanceIdentifier": "db-t2-medium-instance",
 "DBClusterIdentifier": "cluster-57-2020-06-03-6411",
 "AutoMinorVersionUpgrade": true
 },
 {
 "DBInstanceIdentifier": "db-t2-small-original-size",
 "DBClusterIdentifier": "cluster-57-2020-06-03-6411",
 "AutoMinorVersionUpgrade": false
 },
 {
 "DBInstanceIdentifier": "instance-2020-05-01-2332",
 "DBClusterIdentifier": "cluster-57-2020-05-01-4615",
 "AutoMinorVersionUpgrade": true
 },
... output omitted ...

Upgrading Amazon Aurora MySQL DB clusters 1920

Amazon Aurora User Guide for Aurora

In this example, Enable auto minor version upgrade is turned off for the DB cluster
cluster-57-2020-06-03-6411, because it's turned off for one of the DB instances in the
cluster.

Using zero-downtime patching

Performing upgrades for Aurora MySQL DB clusters involves the possibility of an outage when the
database is shut down and while it's being upgraded. By default, if you start the upgrade while the
database is busy, you lose all the connections and transactions that the DB cluster is processing. If
you wait until the database is idle to perform the upgrade, you might have to wait a long time.

The zero-downtime patching (ZDP) feature attempts, on a best-effort basis, to preserve client
connections through an Aurora MySQL upgrade. If ZDP completes successfully, application sessions
are preserved and the database engine restarts while the upgrade is in progress. The database
engine restart can cause a drop in throughput lasting for a few seconds to approximately one
minute.

ZDP doesn't apply to the following:

• Operating system (OS) patches and upgrades

• Major version upgrades

ZDP is available for all supported Aurora MySQL versions and DB instance classes.

ZDP isn't supported for Aurora Serverless v1 or Aurora global databases.

Note

We recommend using the T DB instance classes only for development and test servers,
or other non-production servers. For more details on the T instance classes, see Using T
instance classes for development and testing.

You can see metrics of important attributes during ZDP in the MySQL error log. You can also see
information about when Aurora MySQL uses ZDP or chooses not to use ZDP on the Events page in
the AWS Management Console.

In Aurora MySQL version 2.10 and higher and version 3, Aurora can perform a zero-downtime
patch whether or not binary log replication is enabled. If binary log replication is enabled, Aurora
MySQL automatically drops the connection to the binlog target during a ZDP operation. Aurora

Upgrading Amazon Aurora MySQL DB clusters 1921

Amazon Aurora User Guide for Aurora

MySQL automatically reconnects to the binlog target and resumes replication after the restart
finishes.

ZDP also works in combination with the reboot enhancements in Aurora MySQL 2.10 and higher.
Patching the writer DB instance automatically patches readers at the same time. After performing
the patch, Aurora restores the connections on both the writer and reader DB instances. Before
Aurora MySQL 2.10, ZDP applies only to the writer DB instance of a cluster.

ZDP might not complete successfully under the following conditions:

• Long-running queries or transactions are in progress. If Aurora can perform ZDP in this case, any
open transactions are canceled.

• Temporary tables or table locks are in use, for example while data definition language (DDL)
statements run. If Aurora can perform ZDP in this case, any open transactions are canceled.

• Pending parameter changes exist.

If no suitable time window for performing ZDP becomes available because of one or more of these
conditions, patching reverts to the standard behavior.

Note

For Aurora MySQL version 2 lower than 2.11.0 and version 3 lower than 3.04.0, ZDP might
not complete successfully when there are open Secure Socket Layer (SSL) or Transport
Layer Security (TLS) connections.

Although connections remain intact following a successful ZDP operation, some variables and
features are reinitialized. The following kinds of information aren't preserved through a restart
caused by zero-downtime patching:

• Global variables. Aurora restores session variables, but it doesn't restore global variables after
the restart.

• Status variables. In particular, the uptime value reported by the engine status is reset after a
restart that uses the ZDR or ZDP mechanisms.

• LAST_INSERT_ID.

• In-memory auto_increment state for tables. The in-memory auto-increment state is
reinitialized. For more information about auto-increment values, see MySQL Reference Manual.

Upgrading Amazon Aurora MySQL DB clusters 1922

https://dev.mysql.com/doc/refman/5.7/en/innodb-auto-increment-handling.html#innodb-auto-increment-initialization

Amazon Aurora User Guide for Aurora

• Diagnostic information from INFORMATION_SCHEMA and PERFORMANCE_SCHEMA tables. This
diagnostic information also appears in the output of commands such as SHOW PROFILE and
SHOW PROFILES.

The following activities related to zero-downtime restart are reported on the Events page:

• Attempting to upgrade the database with zero downtime.

• Attempting to upgrade the database with zero downtime finished. The event reports how long
the process took. The event also reports how many connections were preserved during the
restart and how many connections were dropped. You can consult the database error log to see
more details about what happened during the restart.

Alternative blue/green upgrade technique

In some situations, your top priority is to perform an immediate switchover from the old cluster
to an upgraded one. In such situations, you can use a multistep process that runs the old and new
clusters side-by-side. Here, you replicate data from the old cluster to the new one until you are
ready for the new cluster to take over. For details, see Using Amazon RDS Blue/Green Deployments
for database updates.

Upgrading the major version of an Amazon Aurora MySQL DB cluster

In an Aurora MySQL version number such as 2.12.1, the 2 represents the major version. Aurora
MySQL version 2 is compatible with MySQL 5.7. Aurora MySQL version 3 is compatible with MySQL
8.0.

Upgrading between major versions requires more extensive planning and testing than for a minor
version. The process can take substantial time. After the upgrade is finished, you also might have
followup work to do. For example, this might occur because of differences in SQL compatibility or
the way certain MySQL-related features work. Or it might occur because of differing parameter
settings between the old and new versions.

Contents

• Upgrading from Aurora MySQL version 2 to version 3

• Planning a major version upgrade for an Aurora MySQL cluster

• Simulating the upgrade by cloning your DB cluster

• Using the blue-green upgrade technique

Upgrading Amazon Aurora MySQL DB clusters 1923

Amazon Aurora User Guide for Aurora

• Major version upgrade prechecks for Aurora MySQL

• Community MySQL upgrade prechecks

• Aurora MySQL upgrade prechecks

• Aurora MySQL major version upgrade paths

• How the Aurora MySQL in-place major version upgrade works

• Blue/Green Deployments

• How to perform an in-place upgrade

• How in-place upgrades affect the parameter groups for a cluster

• Changes to cluster properties between Aurora MySQL versions

• In-place major upgrades for global databases

• Backtrack considerations

• Aurora MySQL in-place upgrade tutorial

• Finding the reasons for upgrade failures

• Troubleshooting for Aurora MySQL in-place upgrade

• Post-upgrade cleanup for Aurora MySQL version 3

• Spatial indexes

Upgrading from Aurora MySQL version 2 to version 3

If you have a MySQL 5.7–compatible cluster and want to upgrade it to a MySQL–8.0 compatible
cluster, you can do so by running an upgrade process on the cluster itself. This kind of upgrade is
an in-place upgrade, in contrast to upgrades that you do by creating a new cluster. This technique
keeps the same endpoint and other characteristics of the cluster. The upgrade is relatively fast
because it doesn't require copying all your data to a new cluster volume. This stability helps to
minimize any configuration changes in your applications. It also helps to reduce the amount of
testing for the upgraded cluster. This is because the number of DB instances and their instance
classes all stay the same.

The in-place upgrade mechanism involves shutting down your DB cluster while the operation
takes place. Aurora performs a clean shutdown and completes outstanding operations such as
transaction rollback and undo purge. For more information, see How the Aurora MySQL in-place
major version upgrade works.

The in-place upgrade method is convenient, because it is simple to perform and minimizes
configuration changes to associated applications. For example, an in-place upgrade preserves

Upgrading Amazon Aurora MySQL DB clusters 1924

Amazon Aurora User Guide for Aurora

the endpoints and set of DB instances for your cluster. However, the time needed for an in-place
upgrade can vary depending on the properties of your schema and how busy the cluster is. Thus,
depending on the needs for your cluster, you can choose among the upgrade techniques:

• In-place upgrade

• Blue/Green Deployment

• Snapshot restore

Note

If you use the AWS CLI or RDS API for the snapshot restore upgrade method, you must
run a subsequent operation to create a writer DB instance in the restored DB cluster.

For general information about Aurora MySQL version 3 and its new features, see Aurora MySQL
version 3 compatible with MySQL 8.0.

For details about planning an upgrade, see Planning a major version upgrade for an Aurora MySQL
cluster and How to perform an in-place upgrade.

Planning a major version upgrade for an Aurora MySQL cluster

To help you decide the right time and approach to upgrade, you can learn the differences between
Aurora MySQL version 3 and your current environment:

• If you're converting from RDS for MySQL 8.0 or MySQL 8.0 Community Edition, see Comparing
Aurora MySQL version 3 and MySQL 8.0 Community Edition.

• If you're upgrading from Aurora MySQL version 2, RDS for MySQL 5.7, or community MySQL 5.7,
see Comparing Aurora MySQL version 2 and Aurora MySQL version 3.

• Create new MySQL 8.0-compatible versions of any custom parameter groups. Apply any
necessary custom parameter values to the new parameter groups. Consult Parameter changes
for Aurora MySQL version 3 to learn about parameter changes.

• Review your Aurora MySQL version 2 database schema and object definitions for the usage
of new reserved keywords introduced in MySQL 8.0 Community Edition. Do so before you
upgrade. For more information, see MySQL 8.0 New Keywords and Reserved Words in the MySQL
documentation.

Upgrading Amazon Aurora MySQL DB clusters 1925

https://dev.mysql.com/doc/mysqld-version-reference/en/keywords-8-0.html#keywords-new-in-8-0

Amazon Aurora User Guide for Aurora

You can also find more MySQL-specific upgrade considerations and tips in Changes in MySQL 8.0
in the MySQL Reference Manual. For example, you can use the command mysqlcheck --check-
upgrade to analyze your existing Aurora MySQL databases and identify potential upgrade issues.

Note

We recommend using larger DB instance classes when upgrading to Aurora MySQL version
3 using the in-place upgrade or snapshot restore technique. Examples are db.r5.24xlarge
and db.r6g.16xlarge. This helps the upgrade process to complete faster by using the
majority of available CPU capacity on the DB instance. You can change to the DB instance
class that you want after the major version upgrade is complete.

After you finish the upgrade itself, you can follow the post-upgrade procedures in Post-upgrade
cleanup for Aurora MySQL version 3. Finally, test your application's functionality and performance.

If you're converting from RDS from MySQL or community MySQL, follow the migration procedure
explained in Migrating data to an Amazon Aurora MySQL DB cluster. In some cases, you might use
binary log replication to synchronize your data with an Aurora MySQL version 3 cluster as part of
the migration. If so, the source system must run a version that's compatible with your target DB
cluster.

To make sure that your applications and administration procedures work smoothly after upgrading
a cluster between major versions, do some advance planning and preparation. To see what sorts
of management code to update for your AWS CLI scripts or RDS API–based applications, see How
in-place upgrades affect the parameter groups for a cluster. Also see Changes to cluster properties
between Aurora MySQL versions.

To learn what issues that you might encounter during the upgrade, see Troubleshooting for Aurora
MySQL in-place upgrade. For issues that might cause the upgrade to take a long time, you can test
those conditions in advance and correct them.

Note

An in-place upgrade involves shutting down your DB cluster while the operation takes
place. Aurora MySQL performs a clean shutdown and completes outstanding operations
such as undo purge. An upgrade might take a long time if there many undo records to
purge. We recommend performing the upgrade only after the history list length (HLL) is

Upgrading Amazon Aurora MySQL DB clusters 1926

https://dev.mysql.com/doc/refman/8.0/en/upgrading-from-previous-series.html

Amazon Aurora User Guide for Aurora

low. A generally acceptable value for the HLL is 100,000 or less. For more information, see
this blog post.

Simulating the upgrade by cloning your DB cluster

You can check application compatibility, performance, maintenance procedures, and similar
considerations for the upgraded cluster. To do so, you can perform a simulation of the upgrade
before doing the real upgrade. This technique can be especially useful for production clusters.
Here, it's important to minimize downtime and have the upgraded cluster ready to go as soon as
the upgrade has finished.

Use the following steps:

1. Create a clone of the original cluster. Follow the procedure in Cloning a volume for an Amazon
Aurora DB cluster.

2. Set up a similar set of writer and reader DB instances as in the original cluster.

3. Perform an in-place upgrade of the cloned cluster. Follow the procedure in How to perform an
in-place upgrade.

Start the upgrade immediately after creating the clone. That way, the cluster volume is still
identical to the state of the original cluster. If the clone sits idle before you do the upgrade,
Aurora performs database cleanup processes in the background. In that case, the upgrade of the
clone isn't an accurate simulation of upgrading the original cluster.

4. Test application compatibility, performance, administration procedures, and so on, using the
cloned cluster.

5. If you encounter any issues, adjust your upgrade plans to account for them. For example, adapt
any application code to be compatible with the feature set of the higher version. Estimate how
long the upgrade is likely to take based on the amount of data in your cluster. You might also
choose to schedule the upgrade for a time when the cluster isn't busy.

6. After you're satisfied that your applications and workload work properly with the test cluster,
you can perform the in-place upgrade for your production cluster.

7. Work to minimize the total downtime of your cluster during a major version upgrade. To do
so, make sure that the workload on the cluster is low or zero at the time of the upgrade. In
particular, make sure that there are no long running transactions in progress when you start the
upgrade.

Upgrading Amazon Aurora MySQL DB clusters 1927

https://aws.amazon.com/blogs/database/amazon-aurora-mysql-version-2-with-mysql-5-7-compatibility-to-version-3-with-mysql-8-0-compatibility-upgrade-checklist-part-2

Amazon Aurora User Guide for Aurora

Using the blue-green upgrade technique

You can also create a blue/green deployment that runs the old and new clusters side-by-side. Here,
you replicate data from the old cluster to the new one until you are ready for the new cluster to
take over. For details, see Using Amazon RDS Blue/Green Deployments for database updates.

Major version upgrade prechecks for Aurora MySQL

MySQL 8.0 includes a number of incompatibilities with MySQL 5.7. These incompatibilities can
cause problems during an upgrade from Aurora MySQL version 2 to version 3. Some preparation
might be required on your database for the upgrade to be successful.

When you start an upgrade from Aurora MySQL version 2 to version 3, Amazon Aurora runs
prechecks automatically to detect these incompatibilities.

These prechecks are mandatory. You can't choose to skip them. The prechecks provide the
following benefits:

• They enable you to avoid unplanned downtime during the upgrade.

• If there are incompatibilities, Amazon Aurora prevents the upgrade and provides a log for you to
learn about them. You can then use the log to prepare your database for the upgrade to version
3 by reducing the incompatibilities. For detailed information about removing incompatibilities,
see Preparing your installation for upgrade in the MySQL documentation and Upgrading to
MySQL 8.0? Here is what you need to know... on the MySQL Server Blog.

For more information about upgrading to MySQL 8.0, see Upgrading MySQL in the MySQL
documentation.

The prechecks include some that are included with MySQL and some that were created specifically
by the Aurora team. For information about the prechecks provided by MySQL, see Upgrade checker
utility.

The prechecks run before the DB instance is stopped for the upgrade, meaning that they don't
cause any downtime when they run. If the prechecks find an incompatibility, Aurora automatically
cancels the upgrade before the DB instance is stopped. Aurora also generates an event for the
incompatibility. For more information about Amazon Aurora events, see Working with Amazon RDS
event notification.

Aurora records detailed information about each incompatibility in the log file
PrePatchCompatibility.log. In most cases, the log entry includes a link to the MySQL

Upgrading Amazon Aurora MySQL DB clusters 1928

https://dev.mysql.com/doc/refman/8.0/en/upgrade-prerequisites.html
https://dev.mysql.com/blog-archive/upgrading-to-mysql-8-0-here-is-what-you-need-to-know/
https://dev.mysql.com/blog-archive/upgrading-to-mysql-8-0-here-is-what-you-need-to-know/
https://dev.mysql.com/doc/refman/8.0/en/upgrading.html
https://dev.mysql.com/doc/mysql-shell/8.0/en/mysql-shell-utilities-upgrade.html
https://dev.mysql.com/doc/mysql-shell/8.0/en/mysql-shell-utilities-upgrade.html

Amazon Aurora User Guide for Aurora

documentation for correcting the incompatibility. For more information about viewing log files, see
Viewing and listing database log files.

Due to the nature of the prechecks, they analyze the objects in your database. This analysis results
in resource consumption and increases the time for the upgrade to complete.

Community MySQL upgrade prechecks

The following is a general list of incompatibilities between MySQL 5.7 and 8.0:

• Your MySQL 5.7–compatible DB cluster must not use features that aren't supported in MySQL
8.0.

For more information, see Features removed in MySQL 8.0 in the MySQL documentation.

• There must be no keyword or reserved word violations. Some keywords might be reserved in
MySQL 8.0 that were not reserved previously.

For more information, see Keywords and reserved words in the MySQL documentation.

• For improved Unicode support, consider converting objects that use the utf8mb3 charset to use
the utf8mb4 charset. The utf8mb3 character set is deprecated. Also, consider using utf8mb4
for character set references instead of utf8, because currently utf8 is an alias for the utf8mb3
charset.

For more information, see The utf8mb3 character set (3-byte UTF-8 unicode encoding) in the
MySQL documentation.

• There must be no InnoDB tables with a nondefault row format.

• There must be no ZEROFILL or display length type attributes.

• There must be no partitioned table that uses a storage engine that does not have native
partitioning support.

• There must be no tables in the MySQL 5.7 mysql system database that have the same name as a
table used by the MySQL 8.0 data dictionary.

• There must be no tables that use obsolete data types or functions.

• There must be no foreign key constraint names longer than 64 characters.

• There must be no obsolete SQL modes defined in your sql_mode system variable setting.

• There must be no tables or stored procedures with individual ENUM or SET column elements that
exceed 255 characters in length.

Upgrading Amazon Aurora MySQL DB clusters 1929

https://dev.mysql.com/doc/refman/8.0/en/mysql-nutshell.html#mysql-nutshell-removals
https://dev.mysql.com/doc/refman/8.0/en/keywords.html
https://dev.mysql.com/doc/refman/8.0/en/charset-unicode-utf8mb3.html

Amazon Aurora User Guide for Aurora

• There must be no table partitions that reside in shared InnoDB tablespaces.

• There must be no circular references in tablespace data file paths.

• There must be no queries and stored program definitions that use ASC or DESC qualifiers for
GROUP BY clauses.

• There must be no removed system variables, and system variables must use the new default
values for MySQL 8.0.

• There must be no zero (0) date, datetime, or timestamp values.

• There must be no schema inconsistencies resulting from file removal or corruption.

• There must be no table names that contain the FTS character string.

• There must be no InnoDB tables that belong to a different engine.

• There must be no table or schema names that are invalid for MySQL 5.7.

For more information about upgrading to MySQL 8.0, see Upgrading MySQL in the MySQL
documentation.

Aurora MySQL upgrade prechecks

Aurora MySQL has its own specific requirements when upgrading from version 2 to version 3:

• There must be no deprecated SQL syntax, such as SQL_CACHE, SQL_NO_CACHE, and
QUERY_CACHE, in views, routines, triggers, and events.

• There must be no FTS_DOC_ID column present on any table without the FTS index.

• There must be no column definition mismatch between the InnoDB data dictionary and the
actual table definition.

• All database and table names must be lowercase when the lower_case_table_names
parameter is set to 1.

• Events and triggers must not have a missing or empty definer or an invalid creation context.

• All trigger names in a database must be unique.

• DDL recovery and Fast DDL aren't supported in Aurora MySQL version 3. There must be no
artifacts in databases related to these features.

• Tables with the REDUNDANT or COMPACT row format can't have indexes larger than 767 bytes.

• The prefix length of indexes defined on tiny text columns can't exceed 255 bytes. With the
utf8mb4 character set, this limits the prefix length supported to 63 characters.

Upgrading Amazon Aurora MySQL DB clusters 1930

https://dev.mysql.com/doc/refman/8.0/en/upgrading.html

Amazon Aurora User Guide for Aurora

A larger prefix length was allowed in MySQL 5.7 using the innodb_large_prefix parameter.
This parameter is deprecated in MySQL 8.0.

• There must be no InnoDB metadata inconsistency in the mysql.host table.

• There must be no column data type mismatch in system tables.

• There must be no XA transactions in the prepared state.

• Column names in views can't be longer than 64 characters.

• Special characters in stored procedures can't be inconsistent.

• Tables can't have data file path inconsistency.

Aurora MySQL major version upgrade paths

Not all kinds or versions of Aurora MySQL clusters can use the in-place upgrade mechanism. You
can learn the appropriate upgrade path for each Aurora MySQL cluster by consulting the following
table.

Type of Aurora MySQL
DB cluster

Can it
use in-
place
upgrade?

Action

Aurora MySQL provision
ed cluster, 2.0 or higher

Yes In-place upgrade is supported for 5.7-compatible
Aurora MySQL clusters.

For information about upgrading to Aurora MySQL
version 3, see Planning a major version upgrade for an
Aurora MySQL cluster and How to perform an in-place
upgrade.

Aurora MySQL provision
ed cluster, 3.01.0 or
higher

N/A Use a minor version upgrade procedure to upgrade
between Aurora MySQL version 3 versions.

Aurora Serverless v1
cluster

N/A Currently, Aurora Serverless v1 is supported for Aurora
MySQL only on version 2.

Upgrading Amazon Aurora MySQL DB clusters 1931

Amazon Aurora User Guide for Aurora

Type of Aurora MySQL
DB cluster

Can it
use in-
place
upgrade?

Action

Aurora Serverless v2
cluster

N/A Currently, Aurora Serverless v2 is supported for Aurora
MySQL only on version 3.

Cluster in an Aurora
global database

Yes To upgrade Aurora MySQL from version 2 to version
3, follow the procedure for doing an in-place upgrade
for clusters in an Aurora global database. Perform the
upgrade on the global cluster. Aurora upgrades the
primary cluster and all the secondary clusters in the
global database at the same time.

If you use the AWS CLI or RDS API, call the modify-
global-cluster command or ModifyGlo
balCluster operation instead of modify-db-
cluster or ModifyDBCluster .

You can't perform an in-place upgrade from Aurora
MySQL version 2 to version 3 if the lower_cas
e_table_names parameter is turned on. For more
information, see Major version upgrades.

Parallel query cluster Yes You can perform an in-place upgrade. In this case,
choose 2.09.1 or higher for the Aurora MySQL version.

Cluster that is the target
of binary log replication

Maybe If the binary log replication is from an Aurora MySQL
cluster, you can perform an in-place upgrade. You can't
perform the upgrade if the binary log replication is
from an RDS for MySQL or an on-premises MySQL
DB instance. In that case, you can upgrade using the
snapshot restore mechanism.

Upgrading Amazon Aurora MySQL DB clusters 1932

Amazon Aurora User Guide for Aurora

Type of Aurora MySQL
DB cluster

Can it
use in-
place
upgrade?

Action

Cluster with zero DB
instances

No Using the AWS CLI or the RDS API, you can create
an Aurora MySQL cluster without any attached DB
instances. In the same way, you can also remove all DB
instances from an Aurora MySQL cluster while leaving
the data in the cluster volume intact. While a cluster
has zero DB instances, you can't perform an in-place
upgrade.

The upgrade mechanism requires a writer instance
in the cluster to perform conversions on the system
tables, data files, and so on. In this case, use the AWS
CLI or the RDS API to create a writer instance for the
cluster. Then you can perform an in-place upgrade.

Cluster with backtrack
enabled

Yes You can perform an in-place upgrade for an Aurora
MySQL cluster that uses the backtrack feature.
However, after the upgrade, you can't backtrack the
cluster to a time before the upgrade.

How the Aurora MySQL in-place major version upgrade works

Aurora MySQL performs a major version upgrade as a multistage process. You can check the
current status of an upgrade. Some of the upgrade steps also provide progress information. As
each stage begins, Aurora MySQL records an event. You can examine events as they occur on the
Events page in the RDS console. For more information about working with events, see Working
with Amazon RDS event notification.

Important

Once the process begins, it runs until the upgrade either succeeds or fails. You can't cancel
the upgrade while it's underway. If the upgrade fails, Aurora rolls back all the changes and
your cluster has the same engine version, metadata, and so on as before.

Upgrading Amazon Aurora MySQL DB clusters 1933

Amazon Aurora User Guide for Aurora

The upgrade process consists of these stages:

1. Aurora performs a series of prechecks before beginning the upgrade process. Your cluster keeps
running while Aurora does these checks. For example, the cluster can't have any XA transactions
in the prepared state or be processing any data definition language (DDL) statements. For
example, you might need to shut down applications that are submitting certain kinds of SQL
statements. Or you might simply wait until certain long-running statements are finished. Then
try the upgrade again. Some checks test for conditions that don't prevent the upgrade but might
make the upgrade take a long time.

If Aurora detects that any required conditions aren't met, modify the conditions identified in
the event details. Follow the guidance in Troubleshooting for Aurora MySQL in-place upgrade. If
Aurora detects conditions that might cause a slow upgrade, plan to monitor the upgrade over an
extended period.

2. Aurora takes your cluster offline. Then Aurora performs a similar set of tests as in the previous
stage, to confirm that no new issues arose during the shutdown process. If Aurora detects any
conditions at this point that would prevent the upgrade, Aurora cancels the upgrade and brings
the cluster back online. In this case, confirm when the conditions no longer apply and start the
upgrade again.

3. Aurora creates a snapshot of your cluster volume. Suppose that you discover compatibility or
other kinds of issues after the upgrade is finished. Or suppose that you want to perform testing
using both the original and upgraded clusters. In such cases, you can restore from this snapshot
to create a new cluster with the original engine version and the original data.

Tip

This snapshot is a manual snapshot. However, Aurora can create it and continue with
the upgrade process even if you have reached your quota for manual snapshots. This
snapshot remains permanently (if needed) until you delete it. After you finish all post-
upgrade testing, you can delete this snapshot to minimize storage charges.

4. Aurora clones your cluster volume. Cloning is a fast operation that doesn't involve copying the
actual table data. If Aurora encounters an issue during the upgrade, it reverts to the original
data from the cloned cluster volume and brings the cluster back online. The temporary cloned
volume during the upgrade isn't subject to the usual limit on the number of clones for a single
cluster volume.

Upgrading Amazon Aurora MySQL DB clusters 1934

Amazon Aurora User Guide for Aurora

5. Aurora performs a clean shutdown for the writer DB instance. During the clean shutdown,
progress events are recorded every 15 minutes for the following operations. You can examine
events as they occur on the Events page in the RDS console.

• Aurora purges the undo records for old versions of rows.

• Aurora rolls back any uncommitted transactions.

6. Aurora upgrades the engine version on the writer DB instance:

• Aurora installs the binary for the new engine version on the writer DB instance.

• Aurora uses the writer DB instance to upgrade your data to MySQL 5.7-compatible format.
During this stage, Aurora modifies the system tables and performs other conversions that
affect the data in your cluster volume. In particular, Aurora upgrades the partition metadata in
the system tables to be compatible with the MySQL 5.7 partition format. This stage can take a
long time if the tables in your cluster have a large number of partitions.

If any errors occur during this stage, you can find the details in the MySQL error logs. After this
stage starts, if the upgrade process fails for any reason, Aurora restores the original data from
the cloned cluster volume.

7. Aurora upgrades the engine version on the reader DB instances.

8. The upgrade process is completed. Aurora records a final event to indicate that the upgrade
process completed successfully. Now your DB cluster is running the new major version.

Blue/Green Deployments

In some situations, your top priority is to perform an immediate switchover from the old cluster
to an upgraded one. In such situations, you can use a multistep process that runs the old and new
clusters side-by-side. Here, you replicate data from the old cluster to the new one until you are
ready for the new cluster to take over. For details, see Using Amazon RDS Blue/Green Deployments
for database updates.

How to perform an in-place upgrade

We recommend that you review the background material in How the Aurora MySQL in-place major
version upgrade works.

Perform any preupgrade planning and testing, as described in Planning a major version upgrade
for an Aurora MySQL cluster.

Upgrading Amazon Aurora MySQL DB clusters 1935

Amazon Aurora User Guide for Aurora

Console

The following example upgrades the mydbcluster-cluster DB cluster to Aurora MySQL version
3.04.1.

To upgrade the major version of an Aurora MySQL DB cluster

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. If you used a custom parameter group for the original DB cluster, create a corresponding
parameter group compatible with the new major version. Make any necessary adjustments to
the configuration parameters in that new parameter group. For more information, see How in-
place upgrades affect the parameter groups for a cluster.

3. In the navigation pane, choose Databases.

4. In the list, choose the DB cluster that you want to modify.

5. Choose Modify.

6. For Version, choose a new Aurora MySQL major version.

We generally recommend using the latest minor version of the major version. Here, we choose
the current default version.

Upgrading Amazon Aurora MySQL DB clusters 1936

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Aurora User Guide for Aurora

7. Choose Continue.

8. On the next page, specify when to perform the upgrade. Choose During the next scheduled
maintenance window or Immediately.

9. (Optional) Periodically examine the Events page in the RDS console during the upgrade. Doing
so helps you to monitor the progress of the upgrade and identify any issues. If the upgrade
encounters any issues, consult Troubleshooting for Aurora MySQL in-place upgrade for the
steps to take.

10. If you created a new parameter group at the start of this procedure, associate the custom
parameter group with your upgraded cluster. For more information, see How in-place upgrades
affect the parameter groups for a cluster.

Upgrading Amazon Aurora MySQL DB clusters 1937

Amazon Aurora User Guide for Aurora

Note

Performing this step requires you to restart the cluster again to apply the new
parameter group.

11. (Optional) After you complete any post-upgrade testing, delete the manual snapshot that
Aurora created at the beginning of the upgrade.

AWS CLI

To upgrade the major version of an Aurora MySQL DB cluster, use the AWS CLI modify-db-cluster
command with the following required parameters:

• --db-cluster-identifier

• --engine-version

• --allow-major-version-upgrade

• --apply-immediately or --no-apply-immediately

If your cluster uses any custom parameter groups, also include one or both of the following
options:

• --db-cluster-parameter-group-name, if the cluster uses a custom cluster parameter group

• --db-instance-parameter-group-name, if any instances in the cluster use a custom DB
parameter group

The following example upgrades the sample-cluster DB cluster to Aurora MySQL version 3.04.1.
The upgrade happens immediately, instead of waiting for the next maintenance window.

Example

For Linux, macOS, or Unix:

aws rds modify-db-cluster \
 --db-cluster-identifier sample-cluster \
 --engine-version 8.0.mysql_aurora.3.04.1 \
 --allow-major-version-upgrade \
 --apply-immediately

Upgrading Amazon Aurora MySQL DB clusters 1938

https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-cluster.html

Amazon Aurora User Guide for Aurora

For Windows:

aws rds modify-db-cluster ^
 --db-cluster-identifier sample-cluster ^
 --engine-version 8.0.mysql_aurora.3.04.1 ^
 --allow-major-version-upgrade ^
 --apply-immediately

You can combine other CLI commands with modify-db-cluster to create an automated end-
to-end process for performing and verifying upgrades. For more information and examples, see
Aurora MySQL in-place upgrade tutorial.

Note

If your cluster is part of an Aurora global database, the in-place upgrade procedure is
slightly different. You call the modify-global-cluster command operation instead of
modify-db-cluster. For more information, see In-place major upgrades for global
databases.

RDS API

To upgrade the major version of an Aurora MySQL DB cluster, use the RDS API operation
ModifyDBCluster with the following required parameters:

• DBClusterIdentifier

• Engine

• EngineVersion

• AllowMajorVersionUpgrade

• ApplyImmediately (set to true or false)

Note

If your cluster is part of an Aurora global database, the in-place upgrade procedure
is slightly different. You call the ModifyGlobalCluster operation instead of
ModifyDBCluster. For more information, see In-place major upgrades for global
databases.

Upgrading Amazon Aurora MySQL DB clusters 1939

https://docs.aws.amazon.com/cli/latest/reference/rds/modify-global-cluster.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBCluster.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyGlobalClusterParameterGroup.html

Amazon Aurora User Guide for Aurora

How in-place upgrades affect the parameter groups for a cluster

Aurora parameter groups have different sets of configuration settings for clusters that are
compatible with MySQL 5.7 or 8.0. When you perform an in-place upgrade, the upgraded cluster
and all its instances must use the corresponding cluster and instance parameter groups:

Your cluster and instances might use the default 5.7-compatible parameter groups. If so, the
upgraded cluster and instance start with the default 8.0-compatible parameter groups. If your
cluster and instances use any custom parameter groups, make sure to create corresponding or 8.0-
compatible parameter groups. Also make sure to specify those during the upgrade process.

Note

For most parameter settings, you can choose the custom parameter group at two points.
These are when you create the cluster or associate the parameter group with the cluster
later.
However, if you use a nondefault setting for the lower_case_table_names parameter,
you must set up the custom parameter group with this setting in advance. Then specify the
parameter group when you perform the snapshot restore to create the cluster. Any change
to the lower_case_table_names parameter has no effect after the cluster is created.
We recommend that you use the same setting for lower_case_table_names when you
upgrade from Aurora MySQL version 2 to version 3.
With an Aurora global database based on Aurora MySQL, you can't perform an in-place
upgrade from Aurora MySQL version 2 to version 3 if the lower_case_table_names
parameter is turned on. For more information on the methods that you can use, see Major
version upgrades.

Important

If you specify any custom parameter group during the upgrade process, make sure to
manually reboot the cluster after the upgrade finishes. Doing so makes the cluster begin
using your custom parameter settings.

Changes to cluster properties between Aurora MySQL versions

When you upgrade from Aurora MySQL version 2 to version 3, make sure to check any applications
or scripts that you use to set up or manage Aurora MySQL clusters and DB instances.

Upgrading Amazon Aurora MySQL DB clusters 1940

Amazon Aurora User Guide for Aurora

Also, change your code that manipulates parameter groups to account for the fact that the default
parameter group names are different for 5.7- and 8.0-compatible clusters. The default parameter
group names for Aurora MySQL version 2 and 3 clusters are default.aurora-mysql5.7 and
default.aurora-mysql8.0, respectively.

For example, you might have code like the following that applies to your cluster before an upgrade.

Check the default parameter values for MySQL 5.7–compatible clusters.
aws rds describe-db-parameters --db-parameter-group-name default.aurora-mysql5.7 --
region us-east-1

After upgrading the major version of the cluster, modify that code as follows.

Check the default parameter values for MySQL 8.0–compatible clusters.
aws rds describe-db-parameters --db-parameter-group-name default.aurora-mysql8.0 --
region us-east-1

In-place major upgrades for global databases

For an Aurora global database, you upgrade the global database cluster. Aurora automatically
upgrades all of the clusters at the same time and makes sure that they all run the same engine
version. This requirement is because any changes to system tables, data file formats, and so on, are
automatically replicated to all the secondary clusters.

Follow the instructions in How the Aurora MySQL in-place major version upgrade works. When you
specify what to upgrade, make sure to choose the global database cluster instead of one of the
clusters it contains.

If you use the AWS Management Console, choose the item with the role Global database.

Upgrading Amazon Aurora MySQL DB clusters 1941

Amazon Aurora User Guide for Aurora

If you use the AWS CLI or RDS API, start the upgrade process by calling the modify-global-cluster
command or ModifyGlobalCluster operation. You use one of these instead of modify-db-
cluster or ModifyDBCluster.

Note

You can't specify a custom parameter group for the global database cluster while you're
performing a major version upgrade of that Aurora global database. Create your custom
parameter groups in each Region of the global cluster. Then apply them manually to the
Regional clusters after the upgrade.

To upgrade the major version of an Aurora MySQL global database cluster by using the AWS CLI,
use the modify-global-cluster command with the following required parameters:

• --global-cluster-identifier

• --engine aurora-mysql

• --engine-version

• --allow-major-version-upgrade

The following example upgrades the global database cluster to Aurora MySQL version 2.10.2.

Example

For Linux, macOS, or Unix:

aws rds modify-global-cluster \
 --global-cluster-identifier global_cluster_identifier \
 --engine aurora-mysql \
 --engine-version 5.7.mysql_aurora.2.10.2 \
 --allow-major-version-upgrade

For Windows:

aws rds modify-global-cluster ^
 --global-cluster-identifier global_cluster_identifier ^
 --engine aurora-mysql ^
 --engine-version 5.7.mysql_aurora.2.10.2 ^

Upgrading Amazon Aurora MySQL DB clusters 1942

https://docs.aws.amazon.com/cli/latest/reference/rds/modify-global-cluster.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyGlobalCluster.html
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-global-cluster.html

Amazon Aurora User Guide for Aurora

 --allow-major-version-upgrade

Backtrack considerations

If the cluster that you upgraded had the Backtrack feature enabled, you can't backtrack the
upgraded cluster to a time that's before the upgrade.

Aurora MySQL in-place upgrade tutorial

The following Linux examples show how you might perform the general steps of the in-place
upgrade procedure using the AWS CLI.

This first example creates an Aurora DB cluster that's running a 2.x version of Aurora MySQL.
The cluster includes a writer DB instance and a reader DB instance. The wait db-instance-
available command pauses until the writer DB instance is available. That's the point when the
cluster is ready to be upgraded.

aws rds create-db-cluster --db-cluster-identifier mynewdbcluster --engine aurora-mysql
 \
 --db-cluster-version 5.7.mysql_aurora.2.10.2
...
aws rds create-db-instance --db-instance-identifier mynewdbcluster-instance1 \
 --db-cluster-identifier mynewdbcluster --db-instance-class db.t4g.medium --engine
 aurora-mysql
...
aws rds wait db-instance-available --db-instance-identifier mynewdbcluster-instance1

The Aurora MySQL 3.x versions that you can upgrade the cluster to depend on the 2.x version
that the cluster is currently running and on the AWS Region where the cluster is located. The first
command, with --output text, just shows the available target version. The second command
shows the full JSON output of the response. In that response, you can see details such as the
aurora-mysql value that you use for the engine parameter. You can also see the fact that
upgrading to 3.02.0 represents a major version upgrade.

aws rds describe-db-clusters --db-cluster-identifier mynewdbcluster \
 --query '*[].{EngineVersion:EngineVersion}' --output text
5.7.mysql_aurora.2.10.2

aws rds describe-db-engine-versions --engine aurora-mysql --engine-version
 5.7.mysql_aurora.2.10.2 \

Upgrading Amazon Aurora MySQL DB clusters 1943

Amazon Aurora User Guide for Aurora

 --query '*[].[ValidUpgradeTarget]'
...
{
 "Engine": "aurora-mysql",
 "EngineVersion": "8.0.mysql_aurora.3.02.0",
 "Description": "Aurora MySQL 3.02.0 (compatible with MySQL 8.0.23)",
 "AutoUpgrade": false,
 "IsMajorVersionUpgrade": true,
 "SupportedEngineModes": [
 "provisioned"
],
 "SupportsParallelQuery": true,
 "SupportsGlobalDatabases": true,
 "SupportsBabelfish": false
},
...

This example shows how if you enter a target version number that isn't a valid upgrade target
for the cluster, Aurora doesn't perform the upgrade. Aurora also doesn't perform a major version
upgrade unless you include the --allow-major-version-upgrade parameter. That way, you
can't accidentally perform an upgrade that has the potential to require extensive testing and
changes to your application code.

aws rds modify-db-cluster --db-cluster-identifier mynewdbcluster \
 --engine-version 5.7.mysql_aurora.2.09.2 --apply-immediately
An error occurred (InvalidParameterCombination) when calling the ModifyDBCluster
 operation: Cannot find upgrade target from 5.7.mysql_aurora.2.10.2 with requested
 version 5.7.mysql_aurora.2.09.2.

aws rds modify-db-cluster --db-cluster-identifier mynewdbcluster \
 --engine-version 8.0.mysql_aurora.3.02.0 --region us-east-1 --apply-immediately
An error occurred (InvalidParameterCombination) when calling the ModifyDBCluster
 operation: The AllowMajorVersionUpgrade flag must be present when upgrading to a new
 major version.

aws rds modify-db-cluster --db-cluster-identifier mynewdbcluster \
 --engine-version 8.0.mysql_aurora.3.02.0 --apply-immediately --allow-major-version-
upgrade
{
 "DBClusterIdentifier": "mynewdbcluster",
 "Status": "available",
 "Engine": "aurora-mysql",
 "EngineVersion": "5.7.mysql_aurora.2.10.2"

Upgrading Amazon Aurora MySQL DB clusters 1944

Amazon Aurora User Guide for Aurora

}

It takes a few moments for the status of the cluster and associated DB instances to change to
upgrading. The version numbers for the cluster and DB instances only change when the upgrade
is finished. Again, you can use the wait db-instance-available command for the writer DB
instance to wait until the upgrade is finished before proceeding.

aws rds describe-db-clusters --db-cluster-identifier mynewdbcluster \
 --query '*[].[Status,EngineVersion]' --output text
upgrading 5.7.mysql_aurora.2.10.2

aws rds describe-db-instances --db-instance-identifier mynewdbcluster-instance1 \
 --query '*[].
{DBInstanceIdentifier:DBInstanceIdentifier,DBInstanceStatus:DBInstanceStatus} | [0]'
{
 "DBInstanceIdentifier": "mynewdbcluster-instance1",
 "DBInstanceStatus": "upgrading"
}

aws rds wait db-instance-available --db-instance-identifier mynewdbcluster-instance1

At this point, the version number for the cluster matches the one that was specified for the
upgrade.

aws rds describe-db-clusters --db-cluster-identifier mynewdbcluster \
 --query '*[].[EngineVersion]' --output text

8.0.mysql_aurora.3.02.0

The preceding example did an immediate upgrade by specifying the --apply-immediately
parameter. To let the upgrade happen at a convenient time when the cluster isn't expected to be
busy, you can specify the --no-apply-immediately parameter. Doing so makes the upgrade
start during the next maintenance window for the cluster. The maintenance window defines the
period during which maintenance operations can start. A long-running operation might not finish
during the maintenance window. Thus, you don't need to define a larger maintenance window even
if you expect that the upgrade might take a long time.

The following example upgrades a cluster that's initially running Aurora MySQL version 2.10.2.
In the describe-db-engine-versions output, the False and True values represent the
IsMajorVersionUpgrade property. From version 2.10.2, you can upgrade to some other 2.*

Upgrading Amazon Aurora MySQL DB clusters 1945

Amazon Aurora User Guide for Aurora

versions. Those upgrades aren't considered major version upgrades and so don't require an in-place
upgrade. In-place upgrade is only available for upgrades to the 3.* versions that are shown in the
list.

aws rds describe-db-clusters --db-cluster-identifier mynewdbcluster \
 --query '*[].{EngineVersion:EngineVersion}' --output text
5.7.mysql_aurora.2.10.2

aws rds describe-db-engine-versions --engine aurora-mysql --engine-version
 5.7.mysql_aurora.2.10.2 \
 --query '*[].[ValidUpgradeTarget]|[0][0]|[*].[EngineVersion,IsMajorVersionUpgrade]'
 --output text

5.7.mysql_aurora.2.10.3 False
5.7.mysql_aurora.2.11.0 False
5.7.mysql_aurora.2.11.1 False
8.0.mysql_aurora.3.01.1 True
8.0.mysql_aurora.3.02.0 True
8.0.mysql_aurora.3.02.2 True

aws rds modify-db-cluster --db-cluster-identifier mynewdbcluster \
 --engine-version 8.0.mysql_aurora.3.02.0 --no-apply-immediately --allow-major-
version-upgrade
...

When a cluster is created without a specified maintenance window, Aurora picks a random day of
the week. In this case, the modify-db-cluster command is submitted on a Monday. Thus, we
change the maintenance window to be Tuesday morning. All times are represented in the UTC time
zone. The tue:10:00-tue:10:30 window corresponds to 2:00-2:30 AM Pacific time. The change
in the maintenance window takes effect immediately.

aws rds describe-db-clusters --db-cluster-identifier mynewdbcluster --query '*[].
[PreferredMaintenanceWindow]'
[
 [
 "sat:08:20-sat:08:50"
]
]

aws rds modify-db-cluster --db-cluster-identifier mynewdbcluster --preferred-
maintenance-window tue:10:00-tue:10:30"

Upgrading Amazon Aurora MySQL DB clusters 1946

Amazon Aurora User Guide for Aurora

aws rds describe-db-clusters --db-cluster-identifier mynewdbcluster --query '*[].
[PreferredMaintenanceWindow]'
[
 [
 "tue:10:00-tue:10:30"
]
]

The following example shows how to get a report of the events generated by the upgrade. The
--duration argument represents the number of minutes to retrieve the event information. This
argument is needed, because by default describe-events only returns events from the last hour.

aws rds describe-events --source-type db-cluster --source-identifier mynewdbcluster --
duration 20160
{
 "Events": [
 {
 "SourceIdentifier": "mynewdbcluster",
 "SourceType": "db-cluster",
 "Message": "DB cluster created",
 "EventCategories": [
 "creation"
],
 "Date": "2022-11-17T01:24:11.093000+00:00",
 "SourceArn": "arn:aws:rds:us-east-1:123456789012:cluster:mynewdbcluster"
 },
 {
 "SourceIdentifier": "mynewdbcluster",
 "SourceType": "db-cluster",
 "Message": "Upgrade in progress: Performing online pre-upgrade checks.",
 "EventCategories": [
 "maintenance"
],
 "Date": "2022-11-18T22:57:08.450000+00:00",
 "SourceArn": "arn:aws:rds:us-east-1:123456789012:cluster:mynewdbcluster"
 },
 {
 "SourceIdentifier": "mynewdbcluster",
 "SourceType": "db-cluster",
 "Message": "Upgrade in progress: Performing offline pre-upgrade checks.",
 "EventCategories": [
 "maintenance"
],

Upgrading Amazon Aurora MySQL DB clusters 1947

Amazon Aurora User Guide for Aurora

 "Date": "2022-11-18T22:57:59.519000+00:00",
 "SourceArn": "arn:aws:rds:us-east-1:123456789012:cluster:mynewdbcluster"
 },
 {
 "SourceIdentifier": "mynewdbcluster",
 "SourceType": "db-cluster",
 "Message": "Upgrade in progress: Creating pre-upgrade snapshot [preupgrade-
mynewdbcluster-5-7-mysql-aurora-2-10-2-to-8-0-mysql-aurora-3-02-0-2022-11-18-22-55].",
 "EventCategories": [
 "maintenance"
],
 "Date": "2022-11-18T23:00:22.318000+00:00",
 "SourceArn": "arn:aws:rds:us-east-1:123456789012:cluster:mynewdbcluster"
 },
 {
 "SourceIdentifier": "mynewdbcluster",
 "SourceType": "db-cluster",
 "Message": "Upgrade in progress: Cloning volume.",
 "EventCategories": [
 "maintenance"
],
 "Date": "2022-11-18T23:01:45.428000+00:00",
 "SourceArn": "arn:aws:rds:us-east-1:123456789012:cluster:mynewdbcluster"
 },
 {
 "SourceIdentifier": "mynewdbcluster",
 "SourceType": "db-cluster",
 "Message": "Upgrade in progress: Purging undo records for old row versions.
 Records remaining: 164",
 "EventCategories": [
 "maintenance"
],
 "Date": "2022-11-18T23:02:25.141000+00:00",
 "SourceArn": "arn:aws:rds:us-east-1:123456789012:cluster:mynewdbcluster"
 },
 {
 "SourceIdentifier": "mynewdbcluster",
 "SourceType": "db-cluster",
 "Message": "Upgrade in progress: Purging undo records for old row versions.
 Records remaining: 164",
 "EventCategories": [
 "maintenance"
],
 "Date": "2022-11-18T23:06:23.036000+00:00",

Upgrading Amazon Aurora MySQL DB clusters 1948

Amazon Aurora User Guide for Aurora

 "SourceArn": "arn:aws:rds:us-east-1:123456789012:cluster:mynewdbcluster"
 },
 {
 "SourceIdentifier": "mynewdbcluster",
 "SourceType": "db-cluster",
 "Message": "Upgrade in progress: Upgrading database objects.",
 "EventCategories": [
 "maintenance"
],
 "Date": "2022-11-18T23:06:48.208000+00:00",
 "SourceArn": "arn:aws:rds:us-east-1:123456789012:cluster:mynewdbcluster"
 },
 {
 "SourceIdentifier": "mynewdbcluster",
 "SourceType": "db-cluster",
 "Message": "Database cluster major version has been upgraded",
 "EventCategories": [
 "maintenance"
],
 "Date": "2022-11-18T23:10:28.999000+00:00",
 "SourceArn": "arn:aws:rds:us-east-1:123456789012:cluster:mynewdbcluster"
 }
]
}

Finding the reasons for upgrade failures

In the previous tutorial, the upgrade from Aurora MySQL version 2 to version 3 succeeded. But if
the upgrade had failed, you would want to know why.

You can start by using the describe-events AWS CLI command to look at the DB cluster events.
This example shows the events for mydbcluster for the last 10 hours.

aws rds describe-events \
 --source-type db-cluster \
 --source-identifier mydbcluster \
 --duration 600

In this case, we had an upgrade precheck failure.

{
 "Events": [
 {

Upgrading Amazon Aurora MySQL DB clusters 1949

Amazon Aurora User Guide for Aurora

 "SourceIdentifier": "mydbcluster",
 "SourceType": "db-cluster",
 "Message": "Database cluster engine version upgrade started.",
 "EventCategories": [
 "maintenance"
],
 "Date": "2024-04-11T13:23:22.846000+00:00",
 "SourceArn": "arn:aws:rds:us-east-1:123456789012:cluster:mydbcluster"
 },
 {
 "SourceIdentifier": "mydbcluster",
 "SourceType": "db-cluster",
 "Message": "Database cluster is in a state that cannot be upgraded: Upgrade
 prechecks failed. For more details, see the
 upgrade-prechecks.log file. For more information on troubleshooting the
 cause of the upgrade failure, see
 https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/
AuroraMySQL.Updates.MajorVersionUpgrade.html#AuroraMySQL.Upgrading.Troubleshooting.",
 "EventCategories": [
 "maintenance"
],
 "Date": "2024-04-11T13:23:24.373000+00:00",
 "SourceArn": "arn:aws:rds:us-east-1:123456789012:cluster:mydbcluster"
 }
]
}

To diagnose the exact cause of the problem, examine the database logs for the writer DB instance.
When an upgrade to Aurora MySQL version 3 fails, the writer instance contains a log file with the
name upgrade-prechecks.log. This example shows how to detect the presence of that log and
then download it to a local file for examination.

aws rds describe-db-log-files --db-instance-identifier mydbcluster-instance \
 --query '*[].[LogFileName]' --output text

error/mysql-error-running.log
error/mysql-error-running.log.2024-04-11.20
error/mysql-error-running.log.2024-04-11.21
error/mysql-error.log
external/mysql-external.log
upgrade-prechecks.log

aws rds download-db-log-file-portion --db-instance-identifier mydbcluster-instance \

Upgrading Amazon Aurora MySQL DB clusters 1950

Amazon Aurora User Guide for Aurora

 --log-file-name upgrade-prechecks.log \
 --starting-token 0 \
 --output text >upgrade_prechecks.log

The upgrade-prechecks.log file is in JSON format. We download it using the --output text
option to avoid encoding JSON output within another JSON wrapper. For Aurora MySQL version
3 upgrades, this log always includes certain informational and warning messages. It only includes
error messages if the upgrade fails. If the upgrade succeeds, the log file isn't produced at all.

To summarize all of the errors and display the associated object and description fields, you
can run the command grep -A 2 '"level": "Error"' on the contents of the upgrade-
prechecks.log file. Doing so displays each error line and the two lines after it. These contain the
name of the corresponding database object and guidance about how to correct the problem.

$ cat upgrade-prechecks.log | grep -A 2 '"level": "Error"'

"level": "Error",
"dbObject": "problematic_upgrade.dangling_fulltext_index",
"description": "Table `problematic_upgrade.dangling_fulltext_index` contains dangling
 FULLTEXT index. Kindly recreate the table before upgrade."

In this example, you can run the following SQL command on the offending table to try to fix the
issue, or you can re-create the table without the dangling index.

OPTIMIZE TABLE problematic_upgrade.dangling_fulltext_index;

Then retry the upgrade.

Troubleshooting for Aurora MySQL in-place upgrade

Use the following tips to help troubleshoot problems with Aurora MySQL in-place upgrades. These
tips don't apply to Aurora Serverless DB clusters.

Reason for in-place upgrade
being canceled or slow

Effect Solution to allow in-place upgrade to
complete within maintenance window

Associated Aurora cross-Reg
ion replica isn't patched yet

Aurora
cancels the
upgrade.

Upgrade the Aurora cross-Region replica and
try again.

Upgrading Amazon Aurora MySQL DB clusters 1951

Amazon Aurora User Guide for Aurora

Reason for in-place upgrade
being canceled or slow

Effect Solution to allow in-place upgrade to
complete within maintenance window

Cluster has XA transactions in
the prepared state

Aurora
cancels the
upgrade.

Commit or roll back all prepared XA transacti
ons.

Cluster is processing any data
definition language (DDL)
statements

Aurora
cancels the
upgrade.

Consider waiting and performing the upgrade
after all DDL statements are finished.

Cluster has uncommitted
changes for many rows

Upgrade
might take a
long time.

The upgrade process rolls back the uncommitt
ed changes. The indicator for this condition
is the value of TRX_ROWS_MODIFIED in the
INFORMATION_SCHEMA.INNODB_TRX
table.

Consider performing the upgrade only after
all large transactions are committed or rolled
back.

Upgrading Amazon Aurora MySQL DB clusters 1952

Amazon Aurora User Guide for Aurora

Reason for in-place upgrade
being canceled or slow

Effect Solution to allow in-place upgrade to
complete within maintenance window

Cluster has high number of
undo records

Upgrade
might take a
long time.

Even if the uncommitted transactions don't
affect a large number of rows, they might
involve a large volume of data. For example,
you might be inserting large BLOBs. Aurora
doesn't automatically detect or generate an
event for this kind of transaction activity. The
indicator for this condition is the history list
length (HLL). The upgrade process rolls back
the uncommitted changes.

You can check the HLL in the output from
the SHOW ENGINE INNODB STATUS SQL
command, or directly by using the following
SQL query:

SELECT count FROM information_schema
.innodb_metrics WHERE name =
 'trx_rseg_history_len';

You can also monitor the RollbackS
egmentHistoryListLength metric in
Amazon CloudWatch.

Consider performing the upgrade only after
the HLL is smaller.

Upgrading Amazon Aurora MySQL DB clusters 1953

Amazon Aurora User Guide for Aurora

Reason for in-place upgrade
being canceled or slow

Effect Solution to allow in-place upgrade to
complete within maintenance window

Cluster is in the process of
committing a large binary log
transaction

Upgrade
might take a
long time.

The upgrade process waits until the binary
log changes are applied. More transactions or
DDL statements could start during this period,
further slowing down the upgrade process.

Schedule the upgrade process when the
cluster isn't busy with generating binary log
replication changes. Aurora doesn't automatic
ally detect or generate an event for this
condition.

Schema inconsistencies
resulting from file removal or
corruption

Aurora
cancels the
upgrade.

Change the default storage engine for
temporary tables from MyISAM to InnoDB.
Perform the following steps:

1. Modify the default_tmp_storag
e_engine DB parameter to InnoDB.

2. Reboot the DB cluster.

3. After rebooting, confirm that the
default_tmp_storage_engine
DB parameter is set to InnoDB. Use the
following command:

show global variables like 'default_
tmp_storage_engine';

4. Make sure not to create any temporary
tables that use the MyISAM storage
engine. We recommend that you pause
any database workload and not create any
new database connections, because you're
upgrading soon.

5. Try the in-place upgrade again.

Upgrading Amazon Aurora MySQL DB clusters 1954

Amazon Aurora User Guide for Aurora

Reason for in-place upgrade
being canceled or slow

Effect Solution to allow in-place upgrade to
complete within maintenance window

Master user was deleted Aurora
cancels the
upgrade.

Important

Don't delete the master user.

However, if for some reason you should
happen to delete the master user, restore it
using the following SQL commands:

CREATE USER 'master_username '@'%'
 IDENTIFIED BY ' master_user_passwo
rd ' REQUIRE NONE PASSWORD EXPIRE
 DEFAULT ACCOUNT UNLOCK;

GRANT SELECT, INSERT, UPDATE, DELETE,
 CREATE, DROP, RELOAD, PROCESS,
 REFERENCES, INDEX, ALTER, SHOW
 DATABASES, CREATE TEMPORARY TABLES,
LOCK TABLES, EXECUTE, REPLICATION
 SLAVE, REPLICATION CLIENT, CREATE
 VIEW, SHOW VIEW, CREATE ROUTINE, ALTER
 ROUTINE, CREATE USER, EVENT,
TRIGGER, LOAD FROM S3, SELECT INTO
 S3, INVOKE LAMBDA, INVOKE SAGEMAKER
, INVOKE COMPREHEND ON *.* TO
 'master_username '@'%' WITH GRANT
 OPTION;

For more details on troubleshooting issues that cause upgrade prechecks to fail, see the following
blogs:

• Amazon Aurora MySQL version 2 (with MySQL 5.7 compatibility) to version 3 (with MySQL 8.0
compatibility) upgrade checklist, Part 1

• Amazon Aurora MySQL version 2 (with MySQL 5.7 compatibility) to version 3 (with MySQL 8.0
compatibility) upgrade checklist, Part 2

Upgrading Amazon Aurora MySQL DB clusters 1955

https://aws.amazon.com/blogs/database/amazon-aurora-mysql-version-2-with-mysql-5-7-compatibility-to-version-3-with-mysql-8-0-compatibility-upgrade-checklist-part-1/
https://aws.amazon.com/blogs/database/amazon-aurora-mysql-version-2-with-mysql-5-7-compatibility-to-version-3-with-mysql-8-0-compatibility-upgrade-checklist-part-1/
https://aws.amazon.com/blogs/database/amazon-aurora-mysql-version-2-with-mysql-5-7-compatibility-to-version-3-with-mysql-8-0-compatibility-upgrade-checklist-part-2/
https://aws.amazon.com/blogs/database/amazon-aurora-mysql-version-2-with-mysql-5-7-compatibility-to-version-3-with-mysql-8-0-compatibility-upgrade-checklist-part-2/

Amazon Aurora User Guide for Aurora

You can use the following steps to perform your own checks for some of the conditions in the
preceding table. That way, you can schedule the upgrade at a time when you know the database is
in a state where the upgrade can complete successfully and quickly.

• You can check for open XA transactions by executing the XA RECOVER statement. You can then
commit or roll back the XA transactions before starting the upgrade.

• You can check for DDL statements by executing a SHOW PROCESSLIST statement and looking
for CREATE, DROP, ALTER, RENAME, and TRUNCATE statements in the output. Allow all DDL
statements to finish before starting the upgrade.

• You can check the total number of uncommitted rows by querying the
INFORMATION_SCHEMA.INNODB_TRX table. The table contains one row for each transaction.
The TRX_ROWS_MODIFIED column contains the number of rows modified or inserted by the
transaction.

• You can check the length of the InnoDB history list by executing the SHOW ENGINE INNODB
STATUS SQL statement and looking for the History list length in the output. You can also
check the value directly by running the following query:

SELECT count FROM information_schema.innodb_metrics WHERE name =
 'trx_rseg_history_len';

The length of the history list corresponds to the amount of undo information stored by the
database to implement multi-version concurrency control (MVCC).

Post-upgrade cleanup for Aurora MySQL version 3

After you finish upgrading any Aurora MySQL version 2 clusters to Aurora MySQL version 3, you
can perform these other cleanup actions:

• Create new MySQL 8.0–compatible versions of any custom parameter groups. Apply any
necessary custom parameter values to the new parameter groups.

• Update any CloudWatch alarms, setup scripts, and so on to use the new names for any metrics
whose names were affected by inclusive language changes. For a list of such metrics, see
Inclusive language changes for Aurora MySQL version 3.

• Update any AWS CloudFormation templates to use the new names for any configuration
parameters whose names were affected by inclusive language changes. For a list of such
parameters, see Inclusive language changes for Aurora MySQL version 3.

Upgrading Amazon Aurora MySQL DB clusters 1956

Amazon Aurora User Guide for Aurora

Spatial indexes

After upgrading to Aurora MySQL version 3, check if you need to drop or recreate objects and
indexes related to spatial indexes. Before MySQL 8.0, Aurora could optimize spatial queries using
indexes that didn't contain a spatial resource identifier (SRID). Aurora MySQL version 3 only uses
spatial indexes containing SRIDs. During an upgrade, Aurora automatically drops any spatial
indexes without SRIDs and prints warning messages in the database log. If you observe such
warning messages, create new spatial indexes with SRIDs after the upgrade. For more information
about changes to spatial functions and data types in MySQL 8.0, see Changes in MySQL 8.0 in the
MySQL Reference Manual.

Database engine updates and fixes for Amazon Aurora MySQL

You can find the following information in the Release notes for Amazon Aurora MySQL-Compatible
Edition:

• Database engine updates for Amazon Aurora MySQL version 3

• Database engine updates for Amazon Aurora MySQL version 2

• Database engine updates for Amazon Aurora MySQL version 1 (Deprecated)

• MySQL bugs fixed by Aurora MySQL database engine updates

• Security vulnerabilities fixed in Amazon Aurora MySQL

Database engine updates and fixes for Amazon Aurora MySQL 1957

https://dev.mysql.com/doc/refman/8.0/en/upgrading-from-previous-series.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraMySQLReleaseNotes/AuroraMySQL.Updates.30Updates.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraMySQLReleaseNotes/AuroraMySQL.Updates.20Updates.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraMySQLReleaseNotes/AuroraMySQL.Updates.11Updates.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraMySQLReleaseNotes/AuroraMySQL.Updates.MySQLBugs.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraMySQLReleaseNotes/AuroraMySQL.CVE_list.html

Amazon Aurora User Guide for Aurora

Working with Amazon Aurora PostgreSQL

Amazon Aurora PostgreSQL is a fully managed, PostgreSQL–compatible, and ACID–compliant
relational database engine that combines the speed, reliability, and manageability of Amazon
Aurora with the simplicity and cost-effectiveness of open-source databases. Aurora PostgreSQL is a
drop-in replacement for PostgreSQL and makes it simple and cost-effective to set up, operate, and
scale your new and existing PostgreSQL deployments, thus freeing you to focus on your business
and applications. To learn more about Aurora in general, see What is Amazon Aurora?.

In addition to the benefits of Aurora, Aurora PostgreSQL offers a convenient migration pathway
from Amazon RDS into Aurora, with push-button migration tools that convert your existing RDS
for PostgreSQL applications to Aurora PostgreSQL. Routine database tasks such as provisioning,
patching, backup, recovery, failure detection, and repair are also easy to manage with Aurora
PostgreSQL.

Aurora PostgreSQL can work with many industry standards. For example, you can use Aurora
PostgreSQL databases to build HIPAA-compliant applications and to store healthcare related
information, including protected health information (PHI), under a completed Business Associate
Agreement (BAA) with AWS.

Aurora PostgreSQL is FedRAMP HIGH eligible. For details about AWS and compliance efforts, see
AWS services in scope by compliance program.

Topics

• Working with the database preview environment

• Security with Amazon Aurora PostgreSQL

• Updating applications to connect to Aurora PostgreSQL DB clusters using new SSL/TLS
certificates

• Using Kerberos authentication with Aurora PostgreSQL

• Migrating data to Amazon Aurora with PostgreSQL compatibility

• Improving query performance for Aurora PostgreSQL with Aurora Optimized Reads

• Using Babelfish for Aurora PostgreSQL

• Managing Amazon Aurora PostgreSQL

• Tuning with wait events for Aurora PostgreSQL

• Tuning Aurora PostgreSQL with Amazon DevOps Guru proactive insights

1958

https://aws.amazon.com/compliance/services-in-scope/

Amazon Aurora User Guide for Aurora

• Best practices with Amazon Aurora PostgreSQL

• Replication with Amazon Aurora PostgreSQL

• Using Aurora PostgreSQL as a knowledge base for Amazon Bedrock

• Integrating Amazon Aurora PostgreSQL with other AWS services

• Monitoring query execution plans for Aurora PostgreSQL

• Managing query execution plans for Aurora PostgreSQL

• Working with extensions and foreign data wrappers

• Working with Trusted Language Extensions for PostgreSQL

• Amazon Aurora PostgreSQL reference

• Amazon Aurora PostgreSQL updates

Working with the database preview environment

The PostgreSQL community releases new major version of PostgreSQL annually. Similarly, Amazon
Aurora makes PostgreSQL major versions available as Preview releases. This allows you to create
DB cluster using the Preview version and test out its features in the Database Preview Environment.

Aurora PostgreSQL DB clusters in the Database Preview Environment are functionally similar to
other Aurora PostgreSQL DB clusters. However, you can't use a Preview version for production.

Keep in mind the following important limitations:

• All DB instances and DB clusters are deleted 60 days after you create them, along with any
backups and snapshots.

• You can only create a DB instance in a virtual private cloud (VPC) based on the Amazon VPC
service.

• You can't copy a snapshot of a DB instance to a production environment.

The following options are supported by the Preview.

• You can create DB instances using r5, r6g, r6i, r7g, x2g, t3 and t4g instance types only. For more
information about instance classes, see Aurora DB instance classes.

• You can use both single-AZ and multi-AZ deployments.

• You can use standard PostgreSQL dump and load functions to export databases from or import
databases to the Database Preview Environment.

The database preview environment 1959

Amazon Aurora User Guide for Aurora

Supported DB instance class types

Amazon Aurora PostgreSQL supports the following DB instance classes in the preview region:

Memory Optimized Classes

• db.r5 – memory-optimized instance classes

• db.r6g – memory-optimized instance classes powered by AWS Graviton2 processors

• db.r6i – memory-optimized instance classes

• db.x2g – memory-optimized instance classes powered by AWS Graviton2 processors

Note

For more information on the list of instance classes, see DB instance class types.

Burstable classes

• db.t3.medium

• db.t3.large

• db.t4g.medium

• db.t4g.large

Unsupported features in the preview environment

The following features aren't available in the preview environment:

• Aurora Serverless v1 and v2

• Major version upgrades (MVU)

• No new minor versions will be released in preview region

• RDS for PostgreSQL to Aurora PostgreSQL inbound replication

• Amazon RDS Blue/Green deployment

• Cross-Region snapshot copy

• Aurora global database

• Database activity streams (DAS), RDS Proxy, and AWS DMS

Supported DB instance class types 1960

Amazon Aurora User Guide for Aurora

• Auto scaling read replicas

• AWS Bedrock

• RDS export

• Performance Insights

• Global write forwarding

• Optimized Reads

• Babelfish

• Custom endpoints

• Snapshot copy

Creating a new DB cluster in the preview environment

Use the following procedure to create a DB cluster in the preview environment.

To create a DB cluster in the preview environment

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. Choose Dashboard from the navigation pane.

3. In the Dashboard page, locate the Database Preview Environment section on the Dashboard
page, as shown in the following image.

Creating a new DB cluster in the preview environment 1961

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Aurora User Guide for Aurora

You can navigate directly to the Database preview environment. Before you can proceed, you
must acknowledge and accept the limitations.

Creating a new DB cluster in the preview environment 1962

https://us-east-2.console.aws.amazon.com/rds-preview/home?region=us-east-2#

Amazon Aurora User Guide for Aurora

4. To create the Aurora PostgreSQL DB cluster, follow the same process as that for creating any
Aurora DB cluster. For more information, see Creating an Amazon Aurora DB cluster.

To create an instance in the Database Preview Environment using the Aurora API or the AWS CLI,
use the following endpoint.

rds-preview.us-east-2.amazonaws.com

PostgreSQL version 16 in the Database Preview environment

This is preview documentation for Aurora PostgreSQL version 16. It is subject to change.

PostgreSQL version 16.0 is now available in the Amazon RDS Database Preview environment.
PostgreSQL version 16 contains several improvements that are described in the following
PostgreSQL documentation:

• PostgreSQL 16 Released

PostgreSQL version 16 in the Database Preview environment 1963

https://www.postgresql.org/about/news/postgresql-16-released-2715/

Amazon Aurora User Guide for Aurora

For information on the Database Preview Environment, see Working with the database
preview environment. To access the Preview Environment from the console, select https://
console.aws.amazon.com/rds-preview/.

Note

It is not recommend to use PostgreSQL version 16.0 in the Database Preview environment
as Aurora PostgreSQL version 16.1 is now generally available. For more information, see
Amazon Aurora PostgreSQL updates.

Security with Amazon Aurora PostgreSQL

For a general overview of Aurora security, see Security in Amazon Aurora. You can manage security
for Amazon Aurora PostgreSQL at a few different levels:

• To control who can perform Amazon RDS management actions on Aurora PostgreSQL DB
clusters and DB instances, use AWS Identity and Access Management (IAM). IAM handles
the authentication of user identity before the user can access the service. It also handles
authorization, that is, whether the user is allowed to do what they're trying to do. IAM database
authentication is an additional authentication method that you can choose when you create your
Aurora PostgreSQL DB cluster. For more information, see Identity and access management for
Amazon Aurora.

If you do use IAM with your Aurora PostgreSQL DB cluster, sign in to the AWS Management
Console with your IAM credentials first, before opening the Amazon RDS console at https://
console.aws.amazon.com/rds/.

• Make sure to create Aurora DB clusters in a virtual private cloud (VPC) based on the Amazon
VPC service. To control which devices and Amazon EC2 instances can open connections to the
endpoint and port of the DB instance for Aurora DB clusters in a VPC, use a VPC security group.
You can make these endpoint and port connections by using Secure Sockets Layer (SSL). In
addition, firewall rules at your company can control whether devices running at your company
can open connections to a DB instance. For more information on VPCs, see Amazon VPC and
Amazon Aurora.

The supported VPC tenancy depends on the DB instance class used by your Aurora PostgreSQL
DB clusters. With default VPC tenancy, the DB cluster runs on shared hardware. With
dedicated VPC tenancy, the DB cluster runs on a dedicated hardware instance. The burstable

Security with Aurora PostgreSQL 1964

https://console.aws.amazon.com/rds-preview/
https://console.aws.amazon.com/rds-preview/
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates
https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Aurora User Guide for Aurora

performance DB instance classes support default VPC tenancy only. The burstable performance
DB instance classes include the db.t3 and db.t4g DB instance classes. All other Aurora
PostgreSQL DB instance classes support both default and dedicated VPC tenancy.

For more information about instance classes, see Aurora DB instance classes. For more
information about default and dedicated VPC tenancy, see Dedicated instances in the
Amazon Elastic Compute Cloud User Guide.

• To grant permissions to the PostgreSQL databases running on your Amazon Aurora DB
cluster, you can take the same general approach as with stand-alone instances of PostgreSQL.
Commands such as CREATE ROLE, ALTER ROLE, GRANT, and REVOKE work just as they do in on-
premises databases, as does directly modifying databases, schemas, and tables.

PostgreSQL manages privileges by using roles. The rds_superuser role is the most privileged
role on an Aurora PostgreSQL DB cluster. This role is created automatically, and it's granted to
the user that creates the DB cluster (the master user account, postgres by default). To learn
more, see Understanding PostgreSQL roles and permissions.

All available Aurora PostgreSQL versions, including versions 10, 11, 12, 13, 14, and higher releases
support the Salted Challenge Response Authentication Mechanism (SCRAM) for passwords as an
alternative to message digest (MD5). We recommend that you use SCRAM because it's more secure
than MD5. For more information, including how to migrate database user passwords from MD5 to
SCRAM, see Using SCRAM for PostgreSQL password encryption.

Understanding PostgreSQL roles and permissions

When you create an Aurora PostgreSQL DB cluster using the AWS Management Console, an
administrator account is created at the same time. By default, its name is postgres, as shown in
the following screenshot:

Understanding PostgreSQL roles and permissions 1965

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/dedicated-instance.html

Amazon Aurora User Guide for Aurora

You can choose another name rather than accept the default (postgres). If you do, the name you
choose must start with a letter and be between 1 and 16 alphanumeric characters. For simplicity's
sake, we refer to this main user account by its default value (postgres) throughout this guide.

If you use the create-db-cluster AWS CLI rather than the AWS Management Console, you
create the user name by passing it with the master-username parameter. For more information,
see Step 2: Create an Aurora PostgreSQL DB cluster.

Whether you use the AWS Management Console, the AWS CLI, or the Amazon RDS API, and
whether you use the default postgres name or choose a different name, this first database user
account is a member of the rds_superuser group and has rds_superuser privileges.

Topics

• Understanding the rds_superuser role

• Controlling user access to the PostgreSQL database

• Delegating and controlling user password management

• Using SCRAM for PostgreSQL password encryption

Understanding the rds_superuser role

In PostgreSQL, a role can define a user, a group, or a set of specific permissions granted to a
group or user for various objects in the database. PostgreSQL commands to CREATE USER and
CREATE GROUP have been replaced by the more general, CREATE ROLE with specific properties to
distinguish database users. A database user can be thought of as a role with the LOGIN privilege.

Understanding PostgreSQL roles and permissions 1966

Amazon Aurora User Guide for Aurora

Note

The CREATE USER and CREATE GROUP commands can still be used. For more information,
see Database Roles in the PostgreSQL documentation.

The postgres user is the most highly privileged database user on your Aurora PostgreSQL DB
cluster. It has the characteristics defined by the following CREATE ROLE statement.

CREATE ROLE postgres WITH LOGIN NOSUPERUSER INHERIT CREATEDB CREATEROLE NOREPLICATION
 VALID UNTIL 'infinity'

The properties NOSUPERUSER, NOREPLICATION, INHERIT, and VALID UNTIL 'infinity' are
the default options for CREATE ROLE, unless otherwise specified.

By default, postgres has privileges granted to the rds_superuser role, and permissions
to create roles and databases. The rds_superuser role allows the postgres user to do the
following:

• Add extensions that are available for use with Aurora PostgreSQL. For more information, see
Working with extensions and foreign data wrappers.

• Create roles for users and grant privileges to users. For more information, see CREATE ROLE and
GRANT in the PostgreSQL documentation.

• Create databases. For more information, see CREATE DATABASE in the PostgreSQL
documentation.

• Grant rds_superuser privileges to user roles that don't have these privileges, and revoke
privileges as needed. We recommend that you grant this role only to those users who perform
superuser tasks. In other words, you can grant this role to database administrators (DBAs) or
system administrators.

• Grant (and revoke) the rds_replication role to database users that don't have the
rds_superuser role.

• Grant (and revoke) the rds_password role to database users that don't have the
rds_superuser role.

• Obtain status information about all database connections by using the pg_stat_activity
view. When needed, rds_superuser can stop any connections by using
pg_terminate_backend or pg_cancel_backend.

Understanding PostgreSQL roles and permissions 1967

https://www.postgresql.org/docs/current/user-manag.html
https://www.postgresql.org/docs/current/sql-createrole.html
https://www.postgresql.org/docs/14/sql-grant.html
https://www.postgresql.org/docs/14/sql-createdatabase.html

Amazon Aurora User Guide for Aurora

In the CREATE ROLE postgres... statement, you can see that the postgres user role
specifically disallows PostgreSQL superuser permissions. Aurora PostgreSQL is a managed
service, so you can't access the host OS, and you can't connect using the PostgreSQL superuser
account. Many of the tasks that require superuser access on a stand-alone PostgreSQL are
managed automatically by Aurora.

For more information about granting privileges, see GRANT in the PostgreSQL documentation.

The rds_superuser role is one of several predefined roles in an Aurora PostgreSQL DB cluster.

Note

In PostgreSQL 13 and earlier releases, predefined roles are known as default roles.

In the following list, you find some of the other predefined roles that are created automatically for
a new Aurora PostgreSQL DB cluster. Predefined roles and their privileges can't be changed. You
can't drop, rename, or modify privileges for these predefined roles. Attempting to do so results in
an error.

• rds_password – A role that can change passwords and set up password constraints for database
users. The rds_superuser role is granted with this role by default, and can grant the role to
database users. For more information, see Controlling user access to the PostgreSQL database.

• For RDS for PostgreSQL versions older than 14, rds_password role can change passwords
and set up password constraints for database users and users with rds_superuser role. From
RDS for PostgreSQL version 14 and later, rds_password role can change passwords and set
up password constraints only for database users. Only users with rds_superuser role can
perform these actions on other users with rds_superuser role.

• rdsadmin – A role that's created to handle many of the management tasks that the
administrator with superuser privileges would perform on a standalone PostgreSQL database.
This role is used internally by Aurora PostgreSQL for many management tasks.

To see all predefined roles, you can connect to the primary instance of your Aurora PostgreSQL DB
cluster and use the psql \du metacommand. The output looks as follows:

List of roles
 Role name | Attributes | Member of

Understanding PostgreSQL roles and permissions 1968

http://www.postgresql.org/docs/current/sql-grant.html

Amazon Aurora User Guide for Aurora

--------------+-----------------------------------+------------------------------------
postgres | Create role, Create DB +| {rds_superuser}
 | Password valid until infinity |
rds_superuser | Cannot login | {pg_monitor,pg_signal_backend,
 | +| rds_replication,rds_password}
...

In the output, you can see that rds_superuser isn't a database user role (it can't login), but it has
the privileges of many other roles. You can also see that database user postgres is a member of
the rds_superuser role. As mentioned previously, postgres is the default value in the Amazon
RDS console's Create database page. If you chose another name, that name is shown in the list of
roles instead.

Note

Aurora PostgreSQL versions 15.2 and 14.7 introduced restrictive behavior of the
rds_superuser role. An Aurora PostgreSQL user needs to be granted the CONNECT
privilege on the corresponding database to connect even if the user is granted the
rds_superuser role. Prior to Aurora PostgreSQL versions 14.7 and 15.2, a user was able
to connect to any database and system table if the user was granted the rds_superuser
role. This restrictive behavior aligns with the AWS and Amazon Aurora commitments to the
continuous improvement of security.
Please update the respective logic in your applications if the above enhancement has an
impact.

Controlling user access to the PostgreSQL database

New databases in PostgreSQL are always created with a default set of privileges in the database's
public schema that allow all database users and roles to create objects. These privileges allow
database users to connect to the database, for example, and create temporary tables while
connected.

To better control user access to the databases instances that you create on your Aurora PostgreSQL
DB cluster primary node , we recommend that you revoke these default public privileges. After
doing so, you then grant specific privileges for database users on a more granular basis, as shown
in the following procedure.

Understanding PostgreSQL roles and permissions 1969

Amazon Aurora User Guide for Aurora

To set up roles and privileges for a new database instance

Suppose you're setting up a database on a newly created Aurora PostgreSQL DB cluster for use by
several researchers, all of whom need read-write access to the database.

1. Use psql (or pgAdmin) to connect to the primary DB instance on your Aurora PostgreSQL DB
cluster:

psql --host=your-cluster-instance-1.666666666666.aws-region.rds.amazonaws.com --
port=5432 --username=postgres --password

When prompted, enter your password. The psql client connects and displays the default
administrative connection database, postgres=>, as the prompt.

2. To prevent database users from creating objects in the public schema, do the following:

postgres=> REVOKE CREATE ON SCHEMA public FROM PUBLIC;
REVOKE

3. Next, you create a new database instance:

postgres=> CREATE DATABASE lab_db;
CREATE DATABASE

4. Revoke all privileges from the PUBLIC schema on this new database.

postgres=> REVOKE ALL ON DATABASE lab_db FROM public;
REVOKE

5. Create a role for database users.

postgres=> CREATE ROLE lab_tech;
CREATE ROLE

6. Give database users that have this role the ability to connect to the database.

postgres=> GRANT CONNECT ON DATABASE lab_db TO lab_tech;
GRANT

7. Grant all users with the lab_tech role all privileges on this database.

postgres=> GRANT ALL PRIVILEGES ON DATABASE lab_db TO lab_tech;

Understanding PostgreSQL roles and permissions 1970

Amazon Aurora User Guide for Aurora

GRANT

8. Create database users, as follows:

postgres=> CREATE ROLE lab_user1 LOGIN PASSWORD 'change_me';
CREATE ROLE
postgres=> CREATE ROLE lab_user2 LOGIN PASSWORD 'change_me';
CREATE ROLE

9. Grant these two users the privileges associated with the lab_tech role:

postgres=> GRANT lab_tech TO lab_user1;
GRANT ROLE
postgres=> GRANT lab_tech TO lab_user2;
GRANT ROLE

At this point, lab_user1 and lab_user2 can connect to the lab_db database. This example
doesn't follow best practices for enterprise usage, which might include creating multiple database
instances, different schemas, and granting limited permissions. For more complete information and
additional scenarios, see Managing PostgreSQL Users and Roles.

For more information about privileges in PostgreSQL databases, see the GRANT command in the
PostgreSQL documentation.

Delegating and controlling user password management

As a DBA, you might want to delegate the management of user passwords. Or, you might want to
prevent database users from changing their passwords or reconfiguring password constraints, such
as password lifetime. To ensure that only the database users that you choose can change password
settings, you can turn on the restricted password management feature. When you activate this
feature, only those database users that have been granted the rds_password role can manage
passwords.

Note

To use restricted password management, your Aurora PostgreSQL DB cluster must be
running Amazon Aurora PostgreSQL 10.6 or higher.

By default, this feature is off, as shown in the following:

Understanding PostgreSQL roles and permissions 1971

https://aws.amazon.com/blogs/database/managing-postgresql-users-and-roles/
https://www.postgresql.org/docs/current/static/sql-grant.html

Amazon Aurora User Guide for Aurora

postgres=> SHOW rds.restrict_password_commands;
 rds.restrict_password_commands

 off
(1 row)

To turn on this feature, you use a custom parameter group and change the setting for
rds.restrict_password_commands to 1. Be sure to reboot your Aurora PostgreSQL's primary
DB instance so that the setting takes effect.

With this feature active, rds_password privileges are needed for the following SQL commands:

CREATE ROLE myrole WITH PASSWORD 'mypassword';
CREATE ROLE myrole WITH PASSWORD 'mypassword' VALID UNTIL '2023-01-01';
ALTER ROLE myrole WITH PASSWORD 'mypassword' VALID UNTIL '2023-01-01';
ALTER ROLE myrole WITH PASSWORD 'mypassword';
ALTER ROLE myrole VALID UNTIL '2023-01-01';
ALTER ROLE myrole RENAME TO myrole2;

Renaming a role (ALTER ROLE myrole RENAME TO newname) is also restricted if the password
uses the MD5 hashing algorithm.

With this feature active, attempting any of these SQL commands without the rds_password role
permissions generates the following error:

ERROR: must be a member of rds_password to alter passwords

We recommend that you grant the rds_password to only a few roles that you use solely for
password management. If you grant rds_password privileges to database users that don't have
rds_superuser privileges, you need to also grant them the CREATEROLE attribute.

Make sure that you verify password requirements such as expiration and needed complexity on the
client side. If you use your own client-side utility for password related changes, the utility needs to
be a member of rds_password and have CREATE ROLE privileges.

Using SCRAM for PostgreSQL password encryption

The Salted Challenge Response Authentication Mechanism (SCRAM) is an alternative to PostgreSQL's
default message digest (MD5) algorithm for encrypting passwords. The SCRAM authentication

Understanding PostgreSQL roles and permissions 1972

Amazon Aurora User Guide for Aurora

mechanism is considered more secure than MD5. To learn more about these two different
approaches to securing passwords, see Password Authentication in the PostgreSQL documentation.

We recommend that you use SCRAM rather than MD5 as the password encryption scheme for
your Aurora PostgreSQL DB cluster. As of the Aurora PostgreSQL 14 release, SCRAM is supported
in all available Aurora PostgreSQL versions, including versions 10, 11, 12, 13, and 14. It's a
cryptographic challenge-response mechanism that uses the scram-sha-256 algorithm for password
authentication and encryption.

You might need to update libraries for your client applications to support SCRAM. For example,
JDBC versions before 42.2.0 don't support SCRAM. For more information, see PostgreSQL JDBC
Driver in the PostgreSQL JDBC Driver documentation. For a list of other PostgreSQL drivers and
SCRAM support, see List of drivers in the PostgreSQL documentation.

Note

Aurora PostgreSQL version 14 and higher support scram-sha-256 for password
encryption by default for new DB clusters. That is, the default DB cluster parameter group
(default.aurora-postgresql14) has its password_encryption value set to scram-
sha-256.

Setting up Aurora PostgreSQL DB cluster to require SCRAM

For Aurora PostgreSQL 14.3 and higher versions, you can require the Aurora PostgreSQL DB cluster
to accept only passwords that use the scram-sha-256 algorithm.

Important

For existing RDS Proxies with PostgreSQL databases, if you modify the database
authentication to use SCRAM only, the proxy becomes unavailable for up to 60 seconds. To
avoid the issue, do one of the following:

• Ensure that the database allows both SCRAM and MD5 authentication.

• To use only SCRAM authentication, create a new proxy, migrate your application traffic to
the new proxy, then delete the proxy previously associated with the database.

Before making changes to your system, be sure you understand the complete process, as follows:

Understanding PostgreSQL roles and permissions 1973

https://www.postgresql.org/docs/14/auth-password.html
https://jdbc.postgresql.org/changelogs/2018-01-17-42.2.0-release/
https://jdbc.postgresql.org/changelogs/2018-01-17-42.2.0-release/
https://wiki.postgresql.org/wiki/List_of_drivers

Amazon Aurora User Guide for Aurora

• Get information about all roles and password encryption for all database users.

• Double-check the parameter settings for your Aurora PostgreSQL DB cluster for the parameters
that control password encryption.

• If your Aurora PostgreSQL DB cluster uses a default parameter group, you need to create a
custom DB cluster parameter group and apply it to your Aurora PostgreSQL DB cluster so that
you can modify parameters when needed. If your Aurora PostgreSQL DB cluster uses a custom
parameter group, you can modify the necessary parameters later in the process, as needed.

• Change the password_encryption parameter to scram-sha-256.

• Notify all database users that they need to update their passwords. Do the same for your
postgres account. The new passwords are encrypted and stored using the scram-sha-256
algorithm.

• Verify that all passwords are encrypted using as the type of encryption.

• If all passwords use scram-sha-256, you can change the
rds.accepted_password_auth_method parameter from md5+scram to scram-sha-256.

Warning

After you change rds.accepted_password_auth_method to scram-sha-256 alone, any
users (roles) with md5–encrypted passwords can't connect.

Getting ready to require SCRAM for your Aurora PostgreSQL DB cluster

Before making any changes to your Aurora PostgreSQL DB cluster, check all existing database user
accounts. Also, check the type of encryption used for passwords. You can do these tasks by using
the rds_tools extension. This extension is supported on Aurora PostgreSQL 13.1 and higher
releases.

To get a list of database users (roles) and password encryption methods

1. Use psql to connect to the primary instance of your Aurora PostgreSQL DB cluster , as shown
in the following.

psql --host=cluster-name-instance-1.111122223333.aws-region.rds.amazonaws.com --
port=5432 --username=postgres --password

2. Install the rds_tools extension.

Understanding PostgreSQL roles and permissions 1974

Amazon Aurora User Guide for Aurora

postgres=> CREATE EXTENSION rds_tools;
CREATE EXTENSION

3. Get a listing of roles and encryption.

postgres=> SELECT * FROM
 rds_tools.role_password_encryption_type();

You see output similar to the following.

 rolname | encryption_type
----------------------+-----------------
 pg_monitor |
 pg_read_all_settings |
 pg_read_all_stats |
 pg_stat_scan_tables |
 pg_signal_backend |
 lab_tester | md5
 user_465 | md5
 postgres | md5
(8 rows)

Creating a custom DB cluster parameter group

Note

If your Aurora PostgreSQL DB cluster already uses a custom parameter group, you don't
need to create a new one.

For an overview of parameter groups for Aurora, see Creating a DB cluster parameter group.

The password encryption type used for passwords is set in one parameter,
password_encryption. The encryption that the Aurora PostgreSQL DB cluster allows is set in
another parameter, rds.accepted_password_auth_method. Changing either of these from the
default values requires that you create a custom DB cluster parameter group and apply it to your
cluster.

Understanding PostgreSQL roles and permissions 1975

Amazon Aurora User Guide for Aurora

You can also use the AWS Management Console or the RDS API to create a custom DB cluster
parameter group . For more information, see Creating a DB cluster parameter group.

You can now associate the custom parameter group with your DB instance.

To create a custom DB cluster parameter group

1. Use the create-db-cluster-parameter-group CLI command to create the custom
parameter group for the cluster. The following example uses aurora-postgresql13 as the
source for this custom parameter group.

For Linux, macOS, or Unix:

aws rds create-db-cluster-parameter-group --db-cluster-parameter-group-name 'docs-
lab-scram-passwords' \
 --db-parameter-group-family aurora-postgresql13 --description 'Custom DB cluster
 parameter group for SCRAM'

For Windows:

aws rds create-db-cluster-parameter-group --db-cluster-parameter-group-name "docs-
lab-scram-passwords" ^
 --db-parameter-group-family aurora-postgresql13 --description "Custom DB cluster
 parameter group for SCRAM"

You can now associate the custom parameter group with your cluster.

2. Use the modify-db-cluster CLI command to apply this custom parameter group to your
Aurora PostgreSQL DB cluster.

For Linux, macOS, or Unix:

aws rds modify-db-cluster --db-cluster-identifier 'your-instance-name' \
 --db-cluster-parameter-group-name "docs-lab-scram-passwords

For Windows:

aws rds modify-db-cluster --db-cluster-identifier "your-instance-name" ^
 --db-cluster-parameter-group-name "docs-lab-scram-passwords

Understanding PostgreSQL roles and permissions 1976

https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-cluster-parameter-group.html
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-cluster.html

Amazon Aurora User Guide for Aurora

To resynchronize your Aurora PostgreSQL DB cluster with your custom DB cluster parameter
group, reboot the primary and all other instances of the cluster.

Configuring password encryption to use SCRAM

The password encryption mechanism used by an Aurora PostgreSQL DB cluster is set in the DB
cluster parameter group in the password_encryption parameter. Allowed values are unset, md5,
or scram-sha-256. The default value depends on the Aurora PostgreSQL version, as follows:

• Aurora PostgreSQL 14 – Default is scram-sha-256

• Aurora PostgreSQL 13 – Default is md5

With a custom DB cluster parameter group attached to your Aurora PostgreSQL DB cluster, you can
modify values for the password encryption parameter.

To change password encryption setting to scram-sha-256

• Change the value of the password encryption to scram-sha-256, as shown following. The
change can be applied immediately because the parameter is dynamic, so a restart isn't
required for the change to take effect.

For Linux, macOS, or Unix:

aws rds modify-db-cluster-parameter-group --db-cluster-parameter-group-name \
 'docs-lab-scram-passwords' --parameters
 'ParameterName=password_encryption,ParameterValue=scram-
sha-256,ApplyMethod=immediate'

For Windows:

Understanding PostgreSQL roles and permissions 1977

Amazon Aurora User Guide for Aurora

aws rds modify-db-parameter-group --db-parameter-group-name ^
 "docs-lab-scram-passwords" --parameters
 "ParameterName=password_encryption,ParameterValue=scram-
sha-256,ApplyMethod=immediate"

Migrating passwords for user roles to SCRAM

You can migrate passwords for user roles to SCRAM as described following.

To migrate database user (role) passwords from MD5 to SCRAM

1. Log in as the administrator user (default user name, postgres) as shown following.

psql --host=cluster-name-instance-1.111122223333.aws-region.rds.amazonaws.com --
port=5432 --username=postgres --password

2. Check the setting of the password_encryption parameter on your RDS for PostgreSQL DB
instance by using the following command.

postgres=> SHOW password_encryption;
 password_encryption

 md5
 (1 row)

3. Change the value of this parameter to scram-sha-256. This is a dynamic parameter, so you
don't need to reboot the instance after making this change. Check the value again to make
sure that it's now set to scram-sha-256, as follows.

postgres=> SHOW password_encryption;
 password_encryption

 scram-sha-256
 (1 row)

4. Notify all database users to change their passwords. Be sure to also change your own password
for account postgres (the database user with rds_superuser privileges).

labdb=> ALTER ROLE postgres WITH LOGIN PASSWORD 'change_me';

Understanding PostgreSQL roles and permissions 1978

Amazon Aurora User Guide for Aurora

ALTER ROLE

5. Repeat the process for all databases on your Aurora PostgreSQL DB cluster.

Changing parameter to require SCRAM

This is the final step in the process. After you make the change in the following procedure, any user
accounts (roles) that still use md5 encryption for passwords can't log in to the Aurora PostgreSQL
DB cluster.

The rds.accepted_password_auth_method specifies the encryption method that the Aurora
PostgreSQL DB cluster accepts for a user password during the login process. The default value is
md5+scram, meaning that either method is accepted. In the following image, you can find the
default setting for this parameter.

The allowed values for this parameter are md5+scram or scram alone. Changing this parameter
value to scram makes this a requirement.

To change the parameter value to require SCRAM authentication for passwords

1. Verify that all database user passwords for all databases on your Aurora PostgreSQL DB cluster
use scram-sha-256 for password encryption. To do so, query rds_tools for the role (user)
and encryption type, as follows.

postgres=> SELECT * FROM rds_tools.role_password_encryption_type();
 rolname | encryption_type
 ----------------------+-----------------
 pg_monitor |
 pg_read_all_settings |
 pg_read_all_stats |
 pg_stat_scan_tables |
 pg_signal_backend |
 lab_tester | scram-sha-256

Understanding PostgreSQL roles and permissions 1979

Amazon Aurora User Guide for Aurora

 user_465 | scram-sha-256
 postgres | scram-sha-256
 (rows)

2. Repeat the query across all DB instances in your Aurora PostgreSQL DB cluster.

If all passwords use scram-sha-256, you can proceed.

3. Change the value of the accepted password authentication to scram-sha-256, as follows.

For Linux, macOS, or Unix:

aws rds modify-db-cluster-parameter-group --db-cluster-parameter-group-name 'docs-
lab-scram-passwords' \
 --parameters
 'ParameterName=rds.accepted_password_auth_method,ParameterValue=scram,ApplyMethod=immediate'

For Windows:

aws rds modify-db-cluster-parameter-group --db-cluster-parameter-group-name "docs-
lab-scram-passwords" ^
 --parameters
 "ParameterName=rds.accepted_password_auth_method,ParameterValue=scram,ApplyMethod=immediate"

Securing Aurora PostgreSQL data with SSL/TLS

Amazon RDS supports Secure Socket Layer (SSL) and Transport Layer Security (TLS) encryption
for Aurora PostgreSQL DB clusters. Using SSL/TLS, you can encrypt a connection between your
applications and your Aurora PostgreSQL DB clusters. You can also force all connections to your
Aurora PostgreSQL DB cluster to use SSL/TLS. Amazon Aurora PostgreSQL supports Transport
Layer Security (TLS) versions 1.1 and 1.2. We recommend using TLS 1.2 for encrypted connections.
We have added support for TLSv1.3 from the following versions of Aurora PostgreSQL:

• 15.3 and all higher versions

• 14.8 and higher 14 versions

• 13.11 and higher 13 versions

• 12.15 and higher 12 versions

• 11.20 and higher 11 versions

Securing Aurora PostgreSQL data with SSL/TLS 1980

Amazon Aurora User Guide for Aurora

For general information about SSL/TLS support and PostgreSQL databases, see SSL support in the
PostgreSQL documentation. For information about using an SSL/TLS connection over JDBC, see
Configuring the client in the PostgreSQL documentation.

Topics

• Requiring an SSL/TLS connection to an Aurora PostgreSQL DB cluster

• Determining the SSL/TLS connection status

• Configuring cipher suites for connections to Aurora PostgreSQL DB clusters

SSL/TLS support is available in all AWS Regions for Aurora PostgreSQL. Amazon RDS creates
an SSL/TLS certificate for your Aurora PostgreSQL DB cluster when the DB cluster is created. If
you enable SSL/TLS certificate verification, then the SSL/TLS certificate includes the DB cluster
endpoint as the Common Name (CN) for the SSL/TLS certificate to guard against spoofing attacks.

To connect to an Aurora PostgreSQL DB cluster over SSL/TLS

1. Download the certificate.

For information about downloading certificates, see Using SSL/TLS to encrypt a connection to
a DB cluster.

2. Import the certificate into your operating system.

3. Connect to your Aurora PostgreSQL DB cluster over SSL/TLS.

When you connect using SSL/TLS, your client can choose to verify the certificate chain or not.
If your connection parameters specify sslmode=verify-ca or sslmode=verify-full,
then your client requires the RDS CA certificates to be in their trust store or referenced in the
connection URL. This requirement is to verify the certificate chain that signs your database
certificate.

When a client, such as psql or JDBC, is configured with SSL/TLS support, the client first tries
to connect to the database with SSL/TLS by default. If the client can't connect with SSL/TLS,
it reverts to connecting without SSL/TLS. By default, the sslmode option for JDBC and libpq-
based clients is set to prefer.

Use the sslrootcert parameter to reference the certificate, for example
sslrootcert=rds-ssl-ca-cert.pem.

Securing Aurora PostgreSQL data with SSL/TLS 1981

https://www.postgresql.org/docs/current/libpq-ssl.html
https://jdbc.postgresql.org/documentation/head/ssl-client.html

Amazon Aurora User Guide for Aurora

The following is an example of using psql to connect to an Aurora PostgreSQL DB cluster.

$ psql -h testpg.cdhmuqifdpib.us-east-1.rds.amazonaws.com -p 5432 \
 "dbname=testpg user=testuser sslrootcert=rds-ca-2015-root.pem sslmode=verify-full"

Requiring an SSL/TLS connection to an Aurora PostgreSQL DB cluster

You can require that connections to your Aurora PostgreSQL DB cluster use SSL/TLS by using the
rds.force_ssl parameter. By default, the rds.force_ssl parameter is set to 0 (off). You can
set the rds.force_ssl parameter to 1 (on) to require SSL/TLS for connections to your DB cluster.
Updating the rds.force_ssl parameter also sets the PostgreSQL ssl parameter to 1 (on) and
modifies your DB cluster's pg_hba.conf file to support the new SSL/TLS configuration.

You can set the rds.force_ssl parameter value by updating the DB cluster parameter group for
your DB cluster. If the DB cluster parameter group isn't the default one, and the ssl parameter
is already set to 1 when you set rds.force_ssl to 1, you don't need to reboot your DB cluster.
Otherwise, you must reboot your DB cluster for the change to take effect. For more information on
parameter groups, see Working with parameter groups.

When the rds.force_ssl parameter is set to 1 for a DB cluster, you see output similar to the
following when you connect, indicating that SSL/TLS is now required:

$ psql postgres -h SOMEHOST.amazonaws.com -p 8192 -U someuser
psql (9.3.12, server 9.4.4)
WARNING: psql major version 9.3, server major version 9.4.
Some psql features might not work.
SSL connection (cipher: DHE-RSA-AES256-SHA, bits: 256)
Type "help" for help.

postgres=>

Determining the SSL/TLS connection status

The encrypted status of your connection is shown in the logon banner when you connect to the DB
cluster.

Password for user master:
psql (9.3.12)

Securing Aurora PostgreSQL data with SSL/TLS 1982

Amazon Aurora User Guide for Aurora

SSL connection (cipher: DHE-RSA-AES256-SHA, bits: 256)
Type "help" for help.

postgres=>

You can also load the sslinfo extension and then call the ssl_is_used() function to determine
if SSL/TLS is being used. The function returns t if the connection is using SSL/TLS, otherwise it
returns f.

postgres=> create extension sslinfo;
CREATE EXTENSION

postgres=> select ssl_is_used();
 ssl_is_used

t
(1 row)

You can use the select ssl_cipher() command to determine the SSL/TLS cipher:

postgres=> select ssl_cipher();
ssl_cipher

DHE-RSA-AES256-SHA
(1 row)

If you enable set rds.force_ssl and restart your DB cluster, non-SSL connections are refused
with the following message:

$ export PGSSLMODE=disable
$ psql postgres -h SOMEHOST.amazonaws.com -p 8192 -U someuser
psql: FATAL: no pg_hba.conf entry for host "host.ip", user "someuser", database
 "postgres", SSL off
$

For information about the sslmode option, see Database connection control functions in the
PostgreSQL documentation.

Securing Aurora PostgreSQL data with SSL/TLS 1983

https://www.postgresql.org/docs/current/libpq-connect.html#LIBPQ-CONNECT-SSLMODE

Amazon Aurora User Guide for Aurora

Configuring cipher suites for connections to Aurora PostgreSQL DB clusters

By using configurable cipher suites, you can have more control over the security of your database
connections. You can specify a list of cipher suites that you want to allow to secure client SSL/
TLS connections to your database. With configurable cipher suites, you can control the connection
encryption that your database server accepts. Doing this helps prevent the use of insecure or
deprecated ciphers.

Configurable cipher suites is supported in Aurora PostgreSQL versions 11.8 and higher.

To specify the list of permissible ciphers for encrypting connections, modify the ssl_ciphers
cluster parameter. Set the ssl_ciphers parameter to a string of comma-separated cipher values
in a cluster parameter group using the AWS Management Console, the AWS CLI, or the RDS API. To
set cluster parameters, see Modifying parameters in a DB cluster parameter group.

The following table shows the supported ciphers for the valid Aurora PostgreSQL engine versions.

Aurora PostgreSQL engine versions Supported ciphers

9.6, 10.20 and lower, 11.15 and lower, 12.10 and lower,
13.6 and lower

• DHE-RSA-AES128-SHA

• DHE-RSA-AES128-SHA256

• DHE-RSA-AES128-GCM-SHA256

• DHE-RSA-AES256-SHA

• DHE-RSA-AES256-SHA256

• DHE-RSA-AES256-GCM-SHA384

• ECDHE-ECDSA-AES256-SHA

• ECDHE-ECDSA-AES256-GCM-
SHA384

• ECDHE-RSA-AES256-SHA384

• ECDHE-RSA-AES128-SHA

• ECDHE-RSA-AES128-SHA256

• ECDHE-RSA-AES128-GCM-
SHA256

• ECDHE-RSA-AES256-SHA

Securing Aurora PostgreSQL data with SSL/TLS 1984

Amazon Aurora User Guide for Aurora

Aurora PostgreSQL engine versions Supported ciphers

• ECDHE-RSA-AES256-GCM-
SHA384

Securing Aurora PostgreSQL data with SSL/TLS 1985

Amazon Aurora User Guide for Aurora

Aurora PostgreSQL engine versions Supported ciphers

10.21, 11.16, 12.11, 13.7, 14.3 and 14.4 • DHE-RSA-AES128-SHA

• DHE-RSA-AES128-SHA256

• DHE-RSA-AES128-GCM-SHA256

• DHE-RSA-AES256-SHA

• DHE-RSA-AES256-SHA256

• DHE-RSA-AES256-GCM-SHA384

• ECDHE-ECDSA-AES256-SHA

• ECDHE-ECDSA-AES256-GCM-
SHA384

• ECDHE-RSA-AES256-SHA384

• ECDHE-RSA-AES128-SHA

• ECDHE-RSA-AES128-GCM-
SHA256

• ECDHE-RSA-AES256-SHA

• ECDHE-RSA-AES256-GCM-
SHA384

• TLS_ECDHE_ECDSA_WI
TH_AES_256_CBC_SHA

• TLS_ECDHE_ECDSA_WI
TH_AES_256_GCM_SHA384

• TLS_ECDHE_RSA_WITH_AES_128_
CBC_SHA

• TLS_ECDHE_RSA_WITH_AES_128_
GCM_SHA256

• TLS_ECDHE_RSA_WITH_AES_256_
CBC_SHA

• TLS_ECDHE_RSA_WITH_AES_256_
GCM_SHA384

• TLS_RSA_WITH_AES_2
56_GCM_SHA384

Securing Aurora PostgreSQL data with SSL/TLS 1986

Amazon Aurora User Guide for Aurora

Aurora PostgreSQL engine versions Supported ciphers

• TLS_RSA_WITH_AES_256_CBC_SH
A

• TLS_RSA_WITH_AES_1
28_GCM_SHA256

• TLS_RSA_WITH_AES_128_CBC_SH
A

• TLS_ECDHE_RSA_WITH
_CHACHA20_POLY1305_SHA256

Securing Aurora PostgreSQL data with SSL/TLS 1987

Amazon Aurora User Guide for Aurora

Aurora PostgreSQL engine versions Supported ciphers

10.22 and higher, 11.17 and higher, 12.12 and higher,
13.8 and higher, 14.5 and higher, and 15.2 and higher

• DHE-RSA-AES128-SHA

• DHE-RSA-AES128-SHA256

• DHE-RSA-AES128-GCM-SHA256

• DHE-RSA-AES256-SHA

• DHE-RSA-AES256-SHA256

• DHE-RSA-AES256-GCM-SHA384

• ECDHE-ECDSA-AES256-SHA

• ECDHE-ECDSA-AES256-GCM-
SHA384

• ECDHE-RSA-AES256-SHA384

• ECDHE-RSA-AES128-SHA

• ECDHE-RSA-AES128-SHA256

• ECDHE-RSA-AES128-GCM-
SHA256

• ECDHE-RSA-AES256-SHA

• ECDHE-RSA-AES256-GCM-
SHA384

• TLS_ECDHE_ECDSA_WI
TH_AES_256_CBC_SHA

• TLS_ECDHE_ECDSA_WI
TH_AES_256_GCM_SHA384

• TLS_ECDHE_RSA_WITH_AES_128_
CBC_SHA

• TLS_ECDHE_RSA_WITH_AES_128_
CBC_SHA256

• TLS_ECDHE_RSA_WITH_AES_128_
GCM_SHA256

• TLS_ECDHE_RSA_WITH_AES_256_
CBC_SHA

Securing Aurora PostgreSQL data with SSL/TLS 1988

Amazon Aurora User Guide for Aurora

Aurora PostgreSQL engine versions Supported ciphers

• TLS_ECDHE_RSA_WITH_AES_256_
GCM_SHA384

• TLS_RSA_WITH_AES_2
56_GCM_SHA384

• TLS_RSA_WITH_AES_256_CBC_SH
A

• TLS_RSA_WITH_AES_1
28_GCM_SHA256

• TLS_RSA_WITH_AES_128_CBC_SH
A256

• TLS_RSA_WITH_AES_128_CBC_SH
A

• TLS_ECDHE_RSA_WITH
_CHACHA20_POLY1305_SHA256

Securing Aurora PostgreSQL data with SSL/TLS 1989

Amazon Aurora User Guide for Aurora

Aurora PostgreSQL engine versions Supported ciphers

15.3, 14.8, 13.11, 12.15, and 11.20 • DHE-RSA-AES128-SHA

• DHE-RSA-AES128-SHA256

• DHE-RSA-AES128-GCM-SHA256

• DHE-RSA-AES256-SHA

• DHE-RSA-AES256-SHA256

• DHE-RSA-AES256-GCM-SHA384

• ECDHE-ECDSA-AES256-SHA

• ECDHE-ECDSA-AES256-GCM-
SHA384

• ECDHE-RSA-AES256-SHA384

• ECDHE-RSA-AES128-SHA

• ECDHE-RSA-AES128-SHA256

• ECDHE-RSA-AES128-GCM-
SHA256

• ECDHE-RSA-AES256-SHA

• ECDHE-RSA-AES256-GCM-
SHA384

• TLS_ECDHE_ECDSA_WI
TH_AES_256_CBC_SHA

• TLS_ECDHE_ECDSA_WI
TH_AES_256_GCM_SHA384

• TLS_ECDHE_RSA_WITH_AES_128_
CBC_SHA

• TLS_ECDHE_RSA_WITH_AES_128_
CBC_SHA256

• TLS_ECDHE_RSA_WITH_AES_128_
GCM_SHA256

• TLS_ECDHE_RSA_WITH_AES_256_
CBC_SHA

Securing Aurora PostgreSQL data with SSL/TLS 1990

Amazon Aurora User Guide for Aurora

Aurora PostgreSQL engine versions Supported ciphers

• TLS_ECDHE_RSA_WITH_AES_256_
GCM_SHA384

• TLS_RSA_WITH_AES_2
56_GCM_SHA384

• TLS_RSA_WITH_AES_256_CBC_SH
A

• TLS_RSA_WITH_AES_1
28_GCM_SHA256

• TLS_RSA_WITH_AES_128_CBC_SH
A256

• TLS_RSA_WITH_AES_128_CBC_SH
A

• TLS_ECDHE_RSA_WITH
_CHACHA20_POLY1305_SHA256

• TLS_AES_128_GCM_SHA256

• TLS_AES_256_GCM_SHA384

You can also use the describe-engine-default-cluster-parameters CLI command to determine
which cipher suites are currently supported for a specific parameter group family. The following
example shows how to get the allowed values for the ssl_cipher cluster parameter for Aurora
PostgreSQL 11.

aws rds describe-engine-default-cluster-parameters --db-parameter-group-family aurora-
postgresql11

 ...some output truncated...
 {
 "ParameterName": "ssl_ciphers",
 "Description": "Sets the list of allowed TLS ciphers to be used on secure
 connections.",
 "Source": "engine-default",
 "ApplyType": "dynamic",
 "DataType": "list",
 "AllowedValues": "DHE-RSA-AES128-SHA,DHE-RSA-AES128-SHA256,DHE-RSA-AES128-GCM-
SHA256,DHE-RSA-AES256-SHA,DHE-RSA-AES256-SHA256,DHE-RSA-AES256-GCM-SHA384,

Securing Aurora PostgreSQL data with SSL/TLS 1991

https://docs.aws.amazon.com/cli/latest/reference/rds/describe-engine-default-cluster-parameters.html

Amazon Aurora User Guide for Aurora

 ECDHE-RSA-AES128-SHA,ECDHE-RSA-AES128-SHA256,ECDHE-RSA-AES128-GCM-
SHA256,ECDHE-RSA-AES256-SHA,ECDHE-RSA-AES256-SHA384,ECDHE-RSA-AES256-GCM-
SHA384,TLS_RSA_WITH_AES_256_GCM_SHA384,

 TLS_RSA_WITH_AES_256_CBC_SHA,TLS_RSA_WITH_AES_128_GCM_SHA256,TLS_RSA_WITH_AES_128_CBC_SHA256,TLS_RSA_WITH_AES_128_CBC_SHA,TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256,

 TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384,TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA,TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256,TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256,TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA",
 "IsModifiable": true,
 "MinimumEngineVersion": "11.8",
 "SupportedEngineModes": [
 "provisioned"
]
 },
 ...some output truncated...

The ssl_ciphers parameter defaults to all allowed cipher suites. For more information about
ciphers, see the ssl_ciphers variable in the PostgreSQL documentation.

Updating applications to connect to Aurora PostgreSQL DB
clusters using new SSL/TLS certificates

As of January 13, 2023, Amazon RDS has published new Certificate Authority (CA) certificates
for connecting to your Aurora DB clusters using Secure Socket Layer or Transport Layer Security
(SSL/TLS). Following, you can find information about updating your applications to use the new
certificates.

This topic can help you to determine whether any client applications use SSL/TLS to connect to
your DB clusters. If they do, you can further check whether those applications require certificate
verification to connect.

Note

Some applications are configured to connect to Aurora PostgreSQL DB clusters only if they
can successfully verify the certificate on the server.
For such applications, you must update your client application trust stores to include the
new CA certificates.

Updating applications for new SSL/TLS certificates 1992

https://www.postgresql.org/docs/current/runtime-config-connection.html#GUC-SSL-CIPHERS

Amazon Aurora User Guide for Aurora

After you update your CA certificates in the client application trust stores, you can rotate
the certificates on your DB clusters. We strongly recommend testing these procedures in a
development or staging environment before implementing them in your production environments.

For more information about certificate rotation, see Rotating your SSL/TLS certificate. For more
information about downloading certificates, see Using SSL/TLS to encrypt a connection to a DB
cluster. For information about using SSL/TLS with PostgreSQL DB clusters, see Securing Aurora
PostgreSQL data with SSL/TLS.

Topics

• Determining whether applications are connecting to Aurora PostgreSQL DB clusters using SSL

• Determining whether a client requires certificate verification in order to connect

• Updating your application trust store

• Using SSL/TLS connections for different types of applications

Determining whether applications are connecting to Aurora
PostgreSQL DB clusters using SSL

Check the DB cluster configuration for the value of the rds.force_ssl parameter. By default,
the rds.force_ssl parameter is set to 0 (off). If the rds.force_ssl parameter is set to 1 (on),
clients are required to use SSL/TLS for connections. For more information about parameter groups,
see Working with parameter groups.

If rds.force_ssl isn't set to 1 (on), query the pg_stat_ssl view to check connections using
SSL. For example, the following query returns only SSL connections and information about the
clients using SSL.

select datname, usename, ssl, client_addr from pg_stat_ssl inner join pg_stat_activity
 on pg_stat_ssl.pid = pg_stat_activity.pid where ssl is true and usename<>'rdsadmin';

Only rows using SSL/TLS connections are displayed with information about the connection. The
following is sample output.

 datname | usename | ssl | client_addr
----------+---------+-----+-------------
 benchdb | pgadmin | t | 53.95.6.13
 postgres | pgadmin | t | 53.95.6.13

Determining whether applications are connecting to Aurora PostgreSQL DB clusters using SSL 1993

Amazon Aurora User Guide for Aurora

(2 rows)

The preceding query displays only the current connections at the time of the query. The absence
of results doesn't indicate that no applications are using SSL connections. Other SSL connections
might be established at a different time.

Determining whether a client requires certificate verification in order to
connect

When a client, such as psql or JDBC, is configured with SSL support, the client first tries to connect
to the database with SSL by default. If the client can't connect with SSL, it reverts to connecting
without SSL. The default sslmode mode used is different between libpq-based clients (such as
psql) and JDBC. The libpq-based clients default to prefer, where JDBC clients default to verify-
full. The certificate on the server is verified only when sslrootcert is provided with sslmode
set to verify-ca or verify-full. An error is thrown if the certificate is invalid.

Use PGSSLROOTCERT to verify the certificate with the PGSSLMODE environment variable, with
PGSSLMODE set to verify-ca or verify-full.

PGSSLMODE=verify-full PGSSLROOTCERT=/fullpath/ssl-cert.pem psql -h
 pgdbidentifier.cxxxxxxxx.us-east-2.rds.amazonaws.com -U primaryuser -d postgres

Use the sslrootcert argument to verify the certificate with sslmode in connection string
format, with sslmode set to verify-ca or verify-full.

psql "host=pgdbidentifier.cxxxxxxxx.us-east-2.rds.amazonaws.com sslmode=verify-full
 sslrootcert=/full/path/ssl-cert.pem user=primaryuser dbname=postgres"

For example, in the preceding case, if you use an invalid root certificate, you see an error similar to
the following on your client.

psql: SSL error: certificate verify failed

Updating your application trust store

For information about updating the trust store for PostgreSQL applications, see Secure TCP/IP
connections with SSL in the PostgreSQL documentation.

Determining whether a client requires certificate verification in order to connect 1994

https://www.postgresql.org/docs/current/ssl-tcp.html
https://www.postgresql.org/docs/current/ssl-tcp.html

Amazon Aurora User Guide for Aurora

Note

When you update the trust store, you can retain older certificates in addition to adding the
new certificates.

Updating your application trust store for JDBC

You can update the trust store for applications that use JDBC for SSL/TLS connections.

For information about downloading the root certificate, see Using SSL/TLS to encrypt a connection
to a DB cluster.

For sample scripts that import certificates, see Sample script for importing certificates into your
trust store.

Using SSL/TLS connections for different types of applications

The following provides information about using SSL/TLS connections for different types of
applications:

• psql

The client is invoked from the command line by specifying options either as a connection
string or as environment variables. For SSL/TLS connections, the relevant options are sslmode
(environment variable PGSSLMODE), sslrootcert (environment variable PGSSLROOTCERT).

For the complete list of options, see Parameter key words in the PostgreSQL documentation.
For the complete list of environment variables, see Environment variables in the PostgreSQL
documentation.

• pgAdmin

This browser-based client is a more user-friendly interface for connecting to a PostgreSQL
database.

For information about configuring connections, see the pgAdmin documentation.

• JDBC

JDBC enables database connections with Java applications.

Using SSL/TLS connections for different types of applications 1995

https://www.postgresql.org/docs/11/libpq-connect.html#LIBPQ-PARAMKEYWORDS
https://www.postgresql.org/docs/current/libpq-envars.html
https://www.pgadmin.org/docs/pgadmin4/latest/server_dialog.html

Amazon Aurora User Guide for Aurora

For general information about connecting to a PostgreSQL database with JDBC, see Connecting
to the database in the PostgreSQL documentation. For information about connecting with SSL/
TLS, see Configuring the client in the PostgreSQL documentation.

• Python

A popular Python library for connecting to PostgreSQL databases is psycopg2.

For information about using psycopg2, see the psycopg2 documentation. For a short tutorial on
how to connect to a PostgreSQL database, see Psycopg2 tutorial. You can find information about
the options the connect command accepts in The psycopg2 module content.

Important

After you have determined that your database connections use SSL/TLS and have updated
your application trust store, you can update your database to use the rds-ca-rsa2048-g1
certificates. For instructions, see step 3 in Updating your CA certificate by modifying your
DB instance .

Using Kerberos authentication with Aurora PostgreSQL

You can use Kerberos to authenticate users when they connect to your DB cluster running
PostgreSQL. To do so, configure your DB cluster to use AWS Directory Service for Microsoft Active
Directory for Kerberos authentication. AWS Directory Service for Microsoft Active Directory is also
called AWS Managed Microsoft AD. It's a feature available with AWS Directory Service. To learn
more, see What is AWS Directory Service? in the AWS Directory Service Administration Guide.

To start, create an AWS Managed Microsoft AD directory to store user credentials. Then, provide
to your PostgreSQL DB cluster the Active Directory's domain and other information. When users
authenticate with the PostgreSQL DB cluster, authentication requests are forwarded to the AWS
Managed Microsoft AD directory.

Keeping all of your credentials in the same directory can save you time and effort. You have
a centralized location for storing and managing credentials for multiple DB clusters. Using a
directory can also improve your overall security profile.

Using Kerberos authentication 1996

https://jdbc.postgresql.org/documentation/use/
https://jdbc.postgresql.org/documentation/use/
https://jdbc.postgresql.org/documentation/ssl/
https://pypi.org/project/psycopg2/
https://wiki.postgresql.org/wiki/Psycopg2_Tutorial
https://www.psycopg.org/docs/module.html
https://docs.aws.amazon.com/directoryservice/latest/admin-guide/what_is.html

Amazon Aurora User Guide for Aurora

In addition, you can access credentials from your own on-premises Microsoft Active Directory. To do
so, create a trusting domain relationship so that the AWS Managed Microsoft AD directory trusts
your on-premises Microsoft Active Directory. In this way, your users can access your PostgreSQL
clusters with the same Windows single sign-on (SSO) experience as when they access workloads in
your on-premises network.

A database can use Kerberos, AWS Identity and Access Management (IAM), or both Kerberos
and IAM authentication. However, because Kerberos and IAM authentication provide different
authentication methods, a specific database user can log in to a database using only one or the
other authentication method but not both. For more information about IAM authentication, see
IAM database authentication.

Topics

• Region and version availability

• Overview of Kerberos authentication for PostgreSQL DB clusters

• Setting up Kerberos authentication for PostgreSQL DB clusters

• Managing a DB cluster in a Domain

• Connecting to PostgreSQL with Kerberos authentication

• Using AD security groups for Aurora PostgreSQL access control

Region and version availability

Feature availability and support varies across specific versions of each database engine, and across
AWS Regions. For more information on version and Region availability of Aurora PostgreSQL with
Kerberos authentication, see Kerberos authentication with Aurora PostgreSQL.

Overview of Kerberos authentication for PostgreSQL DB clusters

To set up Kerberos authentication for a PostgreSQL DB cluster, take the following steps, described
in more detail later:

1. Use AWS Managed Microsoft AD to create an AWS Managed Microsoft AD directory. You can
use the AWS Management Console, the AWS CLI, or the AWS Directory Service API to create the
directory. Make sure to open the relevant outbound ports on the directory security group so that
the directory can communicate with the cluster.

Region and version availability 1997

Amazon Aurora User Guide for Aurora

2. Create a role that provides Amazon Aurora access to make calls to your AWS Managed Microsoft
AD directory. To do so, create an AWS Identity and Access Management (IAM) role that uses the
managed IAM policy AmazonRDSDirectoryServiceAccess.

For the IAM role to allow access, the AWS Security Token Service (AWS STS) endpoint must
be activated in the correct AWS Region for your AWS account. AWS STS endpoints are active
by default in all AWS Regions, and you can use them without any further actions. For more
information, see Activating and deactivating AWS STS in an AWS Region in the IAM User Guide.

3. Create and configure users in the AWS Managed Microsoft AD directory using the Microsoft
Active Directory tools. For more information about creating users in your Active Directory,
see Manage users and groups in AWS Managed Microsoft AD in the AWS Directory Service
Administration Guide.

4. If you plan to locate the directory and the DB instance in different AWS accounts or virtual
private clouds (VPCs), configure VPC peering. For more information, see What is VPC peering? in
the Amazon VPC Peering Guide.

5. Create or modify a PostgreSQL DB cluster either from the console, CLI, or RDS API using one of
the following methods:

• Creating and connecting to an Aurora PostgreSQL DB cluster

• Modifying an Amazon Aurora DB cluster

• Restoring from a DB cluster snapshot

• Restoring a DB cluster to a specified time

You can locate the cluster in the same Amazon Virtual Private Cloud (VPC) as the directory or in
a different AWS account or VPC. When you create or modify the PostgreSQL DB cluster, do the
following:

• Provide the domain identifier (d-* identifier) that was generated when you created your
directory.

• Provide the name of the IAM role that you created.

• Ensure that the DB instance security group can receive inbound traffic from the directory
security group.

6. Use the RDS master user credentials to connect to the PostgreSQL DB cluster. Create the user in
PostgreSQL to be identified externally. Externally identified users can log in to the PostgreSQL
DB cluster using Kerberos authentication.

Overview of Kerberos authentication 1998

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_enable-regions.html#sts-regions-activate-deactivate
https://docs.aws.amazon.com/directoryservice/latest/admin-guide/ms_ad_manage_users_groups.html
https://docs.aws.amazon.com/vpc/latest/peering/Welcome.html

Amazon Aurora User Guide for Aurora

Setting up Kerberos authentication for PostgreSQL DB clusters

You use AWS Directory Service for Microsoft Active Directory (AWS Managed Microsoft AD) to set
up Kerberos authentication for a PostgreSQL DB cluster. To set up Kerberos authentication, take
the following steps.

Topics

• Step 1: Create a directory using AWS Managed Microsoft AD

• Step 2: (Optional) Create a trust relationship between your on-premises Active Directory and
AWS Directory Service

• Step 3: Create an IAM role for Amazon Aurora to access the AWS Directory Service

• Step 4: Create and configure users

• Step 5: Enable cross-VPC traffic between the directory and the DB instance

• Step 6: Create or modify a PostgreSQL DB cluster

• Step 7: Create PostgreSQL users for your Kerberos principals

• Step 8: Configure a PostgreSQL client

Step 1: Create a directory using AWS Managed Microsoft AD

AWS Directory Service creates a fully managed Active Directory in the AWS Cloud. When you create
an AWS Managed Microsoft AD directory, AWS Directory Service creates two domain controllers
and DNS servers for you. The directory servers are created in different subnets in a VPC. This
redundancy helps make sure that your directory remains accessible even if a failure occurs.

When you create an AWS Managed Microsoft AD directory, AWS Directory Service performs the
following tasks on your behalf:

• Sets up an Active Directory within your VPC.

• Creates a directory administrator account with the user name Admin and the specified password.
You use this account to manage your directory.

Important

Make sure to save this password. AWS Directory Service doesn't store this password, and
it can't be retrieved or reset.

Setting up 1999

Amazon Aurora User Guide for Aurora

• Creates a security group for the directory controllers. The security group must permit
communication with the PostgreSQL DB cluster.

When you launch AWS Directory Service for Microsoft Active Directory, AWS creates an
Organizational Unit (OU) that contains all of your directory's objects. This OU, which has the
NetBIOS name that you entered when you created your directory, is located in the domain root.
The domain root is owned and managed by AWS.

The Admin account that was created with your AWS Managed Microsoft AD directory has
permissions for the most common administrative activities for your OU:

• Create, update, or delete users

• Add resources to your domain such as file or print servers, and then assign permissions for those
resources to users in your OU

• Create additional OUs and containers

• Delegate authority

• Restore deleted objects from the Active Directory Recycle Bin

• Run Active Directory and Domain Name Service (DNS) modules for Windows PowerShell on the
Active Directory Web Service

The Admin account also has rights to perform the following domain-wide activities:

• Manage DNS configurations (add, remove, or update records, zones, and forwarders)

• View DNS event logs

• View security event logs

To create a directory with AWS Managed Microsoft AD

1. In the AWS Directory Service console navigation pane, choose Directories, and then choose
Set up directory.

2. Choose AWS Managed Microsoft AD. AWS Managed Microsoft AD is the only option currently
supported for use with Amazon Aurora.

3. Choose Next.

4. On the Enter directory information page, provide the following information:

Setting up 2000

https://console.aws.amazon.com/directoryservicev2/

Amazon Aurora User Guide for Aurora

Edition

Choose the edition that meets your requirements.

Directory DNS name

The fully qualified name for the directory, such as corp.example.com.

Directory NetBIOS name

An optional short name for the directory, such as CORP.

Directory description

An optional description for the directory.

Admin password

The password for the directory administrator. The directory creation process creates an
administrator account with the user name Admin and this password.

The directory administrator password can't include the word "admin." The password is case-
sensitive and must be 8–64 characters in length. It must also contain at least one character
from three of the following four categories:

• Lowercase letters (a–z)

• Uppercase letters (A–Z)

• Numbers (0–9)

• Nonalphanumeric characters (~!@#$%^&*_-+=`|\(){}[]:;"'<>,.?/)

Confirm password

Retype the administrator password.

Important

Make sure that you save this password. AWS Directory Service doesn't store this
password, and it can't be retrieved or reset.

5. Choose Next.

6. On the Choose VPC and subnets page, provide the following information:

Setting up 2001

Amazon Aurora User Guide for Aurora

VPC

Choose the VPC for the directory. You can create the PostgreSQL DB cluster in this same
VPC or in a different VPC.

Subnets

Choose the subnets for the directory servers. The two subnets must be in different
Availability Zones.

7. Choose Next.

8. Review the directory information. If changes are needed, choose Previous and make the
changes. When the information is correct, choose Create directory.

Setting up 2002

Amazon Aurora User Guide for Aurora

It takes several minutes for the directory to be created. When it has been successfully created, the
Status value changes to Active.

To see information about your directory, choose the directory ID in the directory listing. Make a
note of the Directory ID value. You need this value when you create or modify your PostgreSQL DB
instance.

Setting up 2003

Amazon Aurora User Guide for Aurora

Step 2: (Optional) Create a trust relationship between your on-premises Active
Directory and AWS Directory Service

If you don't plan to use your own on-premises Microsoft Active Directory, skip to Step 3: Create an
IAM role for Amazon Aurora to access the AWS Directory Service.

To get Kerberos authentication using your on-premises Active Directory, you need to create a
trusting domain relationship using a forest trust between your on-premises Microsoft Active
Directory and the AWS Managed Microsoft AD directory (created in Step 1: Create a directory
using AWS Managed Microsoft AD). The trust can be one-way, where the AWS Managed Microsoft
AD directory trusts the on-premises Microsoft Active Directory. The trust can also be two-way,
where both Active Directories trust each other. For more information about setting up trusts
using AWS Directory Service, see When to create a trust relationship in the AWS Directory Service
Administration Guide.

Note

If you use an on-premises Microsoft Active Directory:

• Windows clients must connect using the domain name of the AWS Directory Service in
the endpoint rather than rds.amazonaws.com. For more information, see Connecting to
PostgreSQL with Kerberos authentication.

• Windows clients can't connect using Aurora custom endpoints. To learn more, see
Amazon Aurora connection management.

• For global databases:

• Windows clients can connect using instance endpoints or cluster endpoints in the
primary AWS Region of the global database only.

• Windows clients can't connect using cluster endpoints in secondary AWS Regions.

Make sure that your on-premises Microsoft Active Directory domain name includes a DNS suffix
routing that corresponds to the newly created trust relationship. The following screenshot shows
an example.

Setting up 2004

https://docs.aws.amazon.com/directoryservice/latest/admin-guide/ms_ad_setup_trust.html

Amazon Aurora User Guide for Aurora

Step 3: Create an IAM role for Amazon Aurora to access the AWS Directory Service

For Amazon Aurora to call AWS Directory Service for you, your AWS account needs an IAM role that
uses the managed IAM policy AmazonRDSDirectoryServiceAccess. This role allows Amazon
Aurora to make calls to AWS Directory Service. (Note that this IAM role to access the AWS Directory
Service is different than the IAM role used for IAM database authentication.)

When you create a DB instance using the AWS Management Console and your console user account
has the iam:CreateRole permission, the console creates the needed IAM role automatically. In
this case, the role name is rds-directoryservice-kerberos-access-role. Otherwise, you
must create the IAM role manually. When you create this IAM role, choose Directory Service,
and attach the AWS managed policy AmazonRDSDirectoryServiceAccess to it.

For more information about creating IAM roles for a service, see Creating a role to delegate
permissions to an AWS service in the IAM User Guide.

Note

The IAM role used for Windows Authentication for RDS for Microsoft SQL Server can't be
used for Amazon Aurora.

As an alternative to using the AmazonRDSDirectoryServiceAccess managed policy, you can
create policies with the required permissions. In this case, the IAM role must have the following IAM
trust policy.

{

Setting up 2005

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html

Amazon Aurora User Guide for Aurora

 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "",
 "Effect": "Allow",
 "Principal": {
 "Service": [
 "directoryservice.rds.amazonaws.com",
 "rds.amazonaws.com"
]
 },
 "Action": "sts:AssumeRole"
 }
]
}

The role must also have the following IAM role policy.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "ds:DescribeDirectories",
 "ds:AuthorizeApplication",
 "ds:UnauthorizeApplication",
 "ds:GetAuthorizedApplicationDetails"
],
 "Effect": "Allow",
 "Resource": "*"
 }
]
}

Step 4: Create and configure users

You can create users by using the Active Directory Users and Computers tool. This is one of the
Active Directory Domain Services and Active Directory Lightweight Directory Services tools. For
more information, see Add Users and Computers to the Active Directory domain in the Microsoft
documentation. In this case, users are individuals or other entities, such as their computers that are
part of the domain and whose identities are being maintained in the directory.

Setting up 2006

https://learn.microsoft.com/en-us/troubleshoot/windows-server/identity/create-an-active-directory-server#add-users-and-computers-to-the-active-directory-domain

Amazon Aurora User Guide for Aurora

To create users in an AWS Directory Service directory, you must be connected to a Windows-based
Amazon EC2 instance that's a member of the AWS Directory Service directory. At the same time,
you must be logged in as a user that has privileges to create users. For more information, see
Create a user in the AWS Directory Service Administration Guide.

Step 5: Enable cross-VPC traffic between the directory and the DB instance

If you plan to locate the directory and the DB cluster in the same VPC, skip this step and move on
to Step 6: Create or modify a PostgreSQL DB cluster.

If you plan to locate the directory and the DB instance in different VPCs, configure cross-VPC traffic
using VPC peering or AWS Transit Gateway.

The following procedure enables traffic between VPCs using VPC peering. Follow the instructions in
What is VPC peering? in the Amazon Virtual Private Cloud Peering Guide.

To enable cross-VPC traffic using VPC peering

1. Set up appropriate VPC routing rules to ensure that network traffic can flow both ways.

2. Ensure that the DB instance security group can receive inbound traffic from the directory
security group.

3. Ensure that there is no network access control list (ACL) rule to block traffic.

If a different AWS account owns the directory, you must share the directory.

To share the directory between AWS accounts

1. Start sharing the directory with the AWS account that the DB instance will be created in by
following the instructions in Tutorial: Sharing your AWS Managed Microsoft AD directory for
seamless EC2 Domain-join in the AWS Directory Service Administration Guide.

2. Sign in to the AWS Directory Service console using the account for the DB instance, and ensure
that the domain has the SHARED status before proceeding.

3. While signed into the AWS Directory Service console using the account for the DB instance,
note the Directory ID value. You use this directory ID to join the DB instance to the domain.

Setting up 2007

https://docs.aws.amazon.com/directoryservice/latest/admin-guide/ms_ad_manage_users_groups_create_user.html
https://docs.aws.amazon.com/vpc/latest/tgw/what-is-transit-gateway.html
https://docs.aws.amazon.com/vpc/latest/peering/Welcome.html
https://docs.aws.amazon.com/directoryservice/latest/admin-guide/ms_ad_tutorial_directory_sharing.html
https://docs.aws.amazon.com/directoryservice/latest/admin-guide/ms_ad_tutorial_directory_sharing.html

Amazon Aurora User Guide for Aurora

Step 6: Create or modify a PostgreSQL DB cluster

Create or modify a PostgreSQL DB cluster for use with your directory. You can use the console, CLI,
or RDS API to associate a DB cluster with a directory. You can do this in one of the following ways:

• Create a new PostgreSQL DB cluster using the console, the create-db-cluster CLI command,
or the CreateDBCluster RDS API operation. For instructions, see Creating and connecting to an
Aurora PostgreSQL DB cluster.

• Modify an existing PostgreSQL DB cluster using the console, the modify-db-cluster CLI
command, or the ModifyDBCluster RDS API operation. For instructions, see Modifying an Amazon
Aurora DB cluster.

• Restore a PostgreSQL DB cluster from a DB snapshot using the console, the restore-db-cluster-
from-db-snapshot CLI command, or the RestoreDBClusterFromDBSnapshot RDS API operation.
For instructions, see Restoring from a DB cluster snapshot.

• Restore a PostgreSQL DB cluster to a point-in-time using the console, the restore-db-instance-
to-point-in-time CLI command, or the RestoreDBClusterToPointInTime RDS API operation. For
instructions, see Restoring a DB cluster to a specified time.

Kerberos authentication is only supported for PostgreSQL DB clusters in a VPC. The DB cluster can
be in the same VPC as the directory, or in a different VPC. The DB cluster must use a security group
that allows ingress and egress within the directory's VPC so the DB cluster can communicate with
the directory.

Note

Enabling Kerberos authentication isn't currently supported on Aurora PostgreSQL DB
cluster during migration from RDS for PostgreSQL. You can enable Kerberos authentication
only on a standalone Aurora PostgreSQL DB cluster.

Console

When you use the console to create, modify, or restore a DB cluster, choose Kerberos
authentication in the Database authentication section. Then choose Browse Directory. Select the
directory or choose Create a new directory to use the Directory Service.

Setting up 2008

https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-cluster.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateDBCluster.html
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-cluster.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBCluster.html
https://docs.aws.amazon.com/cli/latest/reference/rds/restore-db-cluster-from-snapshot.html
https://docs.aws.amazon.com/cli/latest/reference/rds/restore-db-cluster-from-snapshot.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_RestoreDBClusterFromSnapshot.html
https://docs.aws.amazon.com/cli/latest/reference/rds/restore-db-cluster-to-point-in-time.html
https://docs.aws.amazon.com/cli/latest/reference/rds/restore-db-cluster-to-point-in-time.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_RestoreDBClusterToPointInTime.html

Amazon Aurora User Guide for Aurora

AWS CLI

When you use the AWS CLI, the following parameters are required for the DB cluster to be able to
use the directory that you created:

• For the --domain parameter, use the domain identifier ("d-*" identifier) generated when you
created the directory.

• For the --domain-iam-role-name parameter, use the role you created that uses the managed
IAM policy AmazonRDSDirectoryServiceAccess.

For example, the following CLI command modifies a DB cluster to use a directory.

aws rds modify-db-cluster --db-cluster-identifier mydbinstance --domain d-Directory-ID
 --domain-iam-role-name role-name

Important

If you modify a DB cluster to enable Kerberos authentication, reboot the DB cluster after
making the change.

Step 7: Create PostgreSQL users for your Kerberos principals

At this point, your Aurora PostgreSQL DB cluster is joined to the AWS Managed Microsoft AD
domain. The users that you created in the directory in Step 4: Create and configure users need

Setting up 2009

Amazon Aurora User Guide for Aurora

to be set up as PostgreSQL database users and granted privileges to login to the database. You
do that by signing in as the database user with rds_superuser privileges. For example, if you
accepted the defaults when you created your Aurora PostgreSQL DB cluster, you use postgres, as
shown in the following steps.

To create PostgreSQL database users for Kerberos principals

1. Use psql to connect to your Aurora PostgreSQL DB cluster's DB instance endpoint using psql.
The following example uses the default postgres account for the rds_superuser role.

psql --host=cluster-instance-1.111122223333.aws-region.rds.amazonaws.com --
port=5432 --username=postgres --password

2. Create a database user name for each Kerberos principal (Active Directory username) that you
want to have access to the database. Use the canonical username (identity) as defined in the
Active Directory instance, that is, a lower-case alias (username in Active Directory) and the
upper-case name of the Active Directory domain for that user name. The Active Directory user
name is an externally authenticated user, so use quotes around the name as shown following.

postgres=> CREATE USER "username@CORP.EXAMPLE.COM" WITH LOGIN;
CREATE ROLE

3. Grant the rds_ad role to the database user.

postgres=> GRANT rds_ad TO "username@CORP.EXAMPLE.COM";
GRANT ROLE

After you finish creating all the PostgreSQL users for your Active Directory user identities, users can
access the Aurora PostgreSQL DB cluster by using their Kerberos credentials.

It's required that the database users who authenticate using Kerberos are doing so from client
machines that are members of the Active Directory domain.

Database users that have been granted the rds_ad role can't also have the rds_iam role. This also
applies to nested memberships. For more information, see IAM database authentication.

Configuring your Aurora PostgreSQL DB cluster for case-insensitive user names

Aurora PostgreSQL versions 14.5, 13.8, 12.12, and 11.17 support the krb_caseins_users
PostgreSQL parameter. This parameter supports case-insensitive Active Directory user names. By

Setting up 2010

Amazon Aurora User Guide for Aurora

default, this parameter is set to false, so user names are interpreted case-sensitively by Aurora
PostgreSQL. That's the default behavior in all older versions of Aurora PostgreSQL. However,
you can set this parameter to true in your custom DB cluster parameter group and allow your
Aurora PostgreSQL DB cluster to interpret user names, case-insensitively. Consider doing this as a
convenience for your database users, who might sometimes mis-type the casing of their user name
when authenticating using Active Directory.

To change the krb_caseins_users parameter, your Aurora PostgreSQL DB cluster must be using
a custom DB cluster parameter group. For information about working with a custom DB cluster
parameter group, see Working with parameter groups.

You can use the AWS CLI or the AWS Management Console to change the setting. For more
information, see Modifying parameters in a DB cluster parameter group.

Step 8: Configure a PostgreSQL client

To configure a PostgreSQL client, take the following steps:

• Create a krb5.conf file (or equivalent) to point to the domain.

• Verify that traffic can flow between the client host and AWS Directory Service. Use a network
utility such as Netcat for the following:

• Verify traffic over DNS for port 53.

• Verify traffic over TCP/UDP for port 53 and for Kerberos, which includes ports 88 and 464 for
AWS Directory Service.

• Verify that traffic can flow between the client host and the DB instance over the database port.
For example, use psql to connect and access the database.

The following is sample krb5.conf content for AWS Managed Microsoft AD.

[libdefaults]
 default_realm = EXAMPLE.COM
[realms]
 EXAMPLE.COM = {
 kdc = example.com
 admin_server = example.com
 }
[domain_realm]
 .example.com = EXAMPLE.COM

Setting up 2011

Amazon Aurora User Guide for Aurora

 example.com = EXAMPLE.COM

The following is sample krb5.conf content for an on-premises Microsoft Active Directory.

[libdefaults]
 default_realm = EXAMPLE.COM
[realms]
 EXAMPLE.COM = {
 kdc = example.com
 admin_server = example.com
 }
 ONPREM.COM = {
 kdc = onprem.com
 admin_server = onprem.com
 }
[domain_realm]
 .example.com = EXAMPLE.COM
 example.com = EXAMPLE.COM
 .onprem.com = ONPREM.COM
 onprem.com = ONPREM.COM
 .rds.amazonaws.com = EXAMPLE.COM
 .amazonaws.com.cn = EXAMPLE.COM
 .amazon.com = EXAMPLE.COM

Managing a DB cluster in a Domain

You can use the console, the CLI, or the RDS API to manage your DB cluster and its relationship
with your Microsoft Active Directory. For example, you can associate an Active Directory to enable
Kerberos authentication. You can also remove the association for an Active Directory to disable
Kerberos authentication. You can also move a DB cluster to be externally authenticated by one
Microsoft Active Directory to another.

For example, using the CLI, you can do the following:

• To reattempt enabling Kerberos authentication for a failed membership, use the modify-db-
cluster CLI command. Specify the current membership's directory ID for the --domain option.

• To disable Kerberos authentication on a DB instance, use the modify-db-cluster CLI command.
Specify none for the --domain option.

• To move a DB instance from one domain to another, use the modify-db-cluster CLI command.
Specify the domain identifier of the new domain for the --domain option.

Managing a DB cluster in a Domain 2012

https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-cluster.html
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-cluster.html
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-cluster.html
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-cluster.html

Amazon Aurora User Guide for Aurora

Understanding Domain membership

After you create or modify your DB cluster, the DB instances become members of the domain.
You can view the status of the domain membership in the console or by running the describe-db-
instances CLI command. The status of the DB instance can be one of the following:

• kerberos-enabled – The DB instance has Kerberos authentication enabled.

• enabling-kerberos – AWS is in the process of enabling Kerberos authentication on this DB
instance.

• pending-enable-kerberos – Enabling Kerberos authentication is pending on this DB
instance.

• pending-maintenance-enable-kerberos – AWS will attempt to enable Kerberos
authentication on the DB instance during the next scheduled maintenance window.

• pending-disable-kerberos – Disabling Kerberos authentication is pending on this DB
instance.

• pending-maintenance-disable-kerberos – AWS will attempt to disable Kerberos
authentication on the DB instance during the next scheduled maintenance window.

• enable-kerberos-failed – A configuration problem prevented AWS from enabling Kerberos
authentication on the DB instance. Correct the configuration problem before reissuing the
command to modify the DB instance.

• disabling-kerberos – AWS is in the process of disabling Kerberos authentication on this DB
instance.

A request to enable Kerberos authentication can fail because of a network connectivity issue or an
incorrect IAM role. In some cases, the attempt to enable Kerberos authentication might fail when
you create or modify a DB cluster. If so, make sure that you are using the correct IAM role, then
modify the DB cluster to join the domain.

Connecting to PostgreSQL with Kerberos authentication

You can connect to PostgreSQL with Kerberos authentication with the pgAdmin interface or with
a command-line interface such as psql. For more information about connecting, see Connecting
to an Amazon Aurora PostgreSQL DB cluster. For information about obtaining the endpoint, port
number, and other details needed for connection, see Viewing the endpoints for an Aurora cluster.

Connecting with Kerberos authentication 2013

https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-instances.html
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-instances.html

Amazon Aurora User Guide for Aurora

pgAdmin

To use pgAdmin to connect to PostgreSQL with Kerberos authentication, take the following steps:

1. Launch the pgAdmin application on your client computer.

2. On the Dashboard tab, choose Add New Server.

3. In the Create - Server dialog box, enter a name on the General tab to identify the server in
pgAdmin.

4. On the Connection tab, enter the following information from your Aurora PostgreSQL database.

• For Host, enter the endpoint for the Writer instance of your Aurora PostgreSQL DB cluster. An
endpoint looks similar to the following:

AUR-cluster-instance.111122223333.aws-region.rds.amazonaws.com

To connect to an on-premises Microsoft Active Directory from a Windows client, you use the
domain name of the AWS Managed Active Directory instead of rds.amazonaws.com in the
host endpoint. For example, suppose that the domain name for the AWS Managed Active
Directory is corp.example.com. Then for Host, the endpoint would be specified as follows:

AUR-cluster-instance.111122223333.aws-region.corp.example.com

• For Port, enter the assigned port.

• For Maintenance database, enter the name of the initial database to which the client will
connect.

• For Username, enter the user name that you entered for Kerberos authentication in Step 7:
Create PostgreSQL users for your Kerberos principals .

5. Choose Save.

Psql

To use psql to connect to PostgreSQL with Kerberos authentication, take the following steps:

1. At a command prompt, run the following command.

kinit username

Connecting with Kerberos authentication 2014

Amazon Aurora User Guide for Aurora

Replace username with the user name. At the prompt, enter the password stored in the
Microsoft Active Directory for the user.

2. If the PostgreSQL DB cluster is using a publicly accessible VPC, put IP address for your DB cluster
endpoint in your /etc/hosts file on the EC2 client. For example, the following commands
obtain the IP address and then put it in the /etc/hosts file.

% dig +short PostgreSQL-endpoint.AWS-Region.rds.amazonaws.com
;; Truncated, retrying in TCP mode.
ec2-34-210-197-118.AWS-Region.compute.amazonaws.com.
34.210.197.118

% echo " 34.210.197.118 PostgreSQL-endpoint.AWS-Region.rds.amazonaws.com" >> /etc/
hosts

If you're using an on-premises Microsoft Active Directory from a Windows client, then
you need to connect using a specialized endpoint. Instead of using the Amazon domain
rds.amazonaws.com in the host endpoint, use the domain name of the AWS Managed Active
Directory.

For example, suppose that the domain name for your AWS Managed Active Directory
is corp.example.com. Then use the format PostgreSQL-endpoint.AWS-
Region.corp.example.com for the endpoint and put it in the /etc/hosts file.

% echo " 34.210.197.118 PostgreSQL-endpoint.AWS-Region.corp.example.com" >> /etc/
hosts

3. Use the following psql command to log in to a PostgreSQL DB cluster that is integrated with
Active Directory. Use a cluster or instance endpoint.

psql -U username@CORP.EXAMPLE.COM -p 5432 -h PostgreSQL-endpoint.AWS-
Region.rds.amazonaws.com postgres

To log in to the PostgreSQL DB cluster from a Windows client using an on-premises Active
Directory, use the following psql command with the domain name from the previous step
(corp.example.com):

psql -U username@CORP.EXAMPLE.COM -p 5432 -h PostgreSQL-endpoint.AWS-
Region.corp.example.com postgres

Connecting with Kerberos authentication 2015

Amazon Aurora User Guide for Aurora

Connecting with Kerberos authentication 2016

Amazon Aurora User Guide for Aurora

Using AD security groups for Aurora PostgreSQL access control

From Aurora PostgreSQL 14.10 and 15.5 versions, Aurora PostgreSQL access control can be
managed using AWS Directory Service for Microsoft Active Directory (AD) security groups. Earlier
versions of Aurora PostgreSQL support Kerberos based authentication with AD only for individual
users. Each AD user had to be explicitly provisioned to DB cluster to get access.

Instead of explicitly provisioning each AD user to DB cluster based on business needs, you can
leverage AD security groups as explained below:

• AD users are members of various AD security groups in an Active Directory. These are not
dictated by DB cluster administrator, but are based on business requirements, and are handled
by an AD administrator.

• DB cluster administrators create DB roles in DB instances based on business requirements. These
DB roles may have different permissions or privileges.

• DB cluster administrators configure a mapping from AD security groups to DB roles on a per DB
cluster basis.

• DB users can access DB clusters using their AD credentials. Access is based on AD security group
membership. AD users gain or lose access automatically based on their AD group memberships.

Prerequisites

Ensure that you have the following before setting up the extension for AD Security groups:

• Setup Kerberos authentication for PostgreSQL DB clusters. For more information, see Setting up
Kerberos authentication for PostgreSQL DB clusters .

Note

For AD security groups, skip Step 7: Create PostgreSQL users for your Kerberos principals
in this setup procedure.

• Managing a DB cluster in a Domain. For more information, see Managing a DB cluster in a
Domain .

Using AD security groups for Aurora PostgreSQL access control 2017

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/postgresql-kerberos-setting-up.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/postgresql-kerberos-setting-up.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/postgresql-kerberos-managing.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/postgresql-kerberos-managing.html

Amazon Aurora User Guide for Aurora

Setting up the pg_ad_mapping extension

Aurora PostgreSQL is now providing pg_ad_mapping extension to manage the mapping between
AD security groups and DB roles in Aurora PostgreSQL cluster. For more information about the
functions provided by pg_ad_mapping, see Using functions from the pg_ad_mapping extension.

To set up the pg_ad_mapping extension on your Aurora PostgreSQL DB cluster, you first add
pg_ad_mapping to the shared libraries on the custom DB cluster parameter group for your Aurora
PostgreSQL DB cluster. For information about creating a custom DB cluster parameter group, see
Working with parameter groups. Next, you install the pg_ad_mapping extension. The procedures
in this section show you how. You can use the AWS Management Console or the AWS CLI.

You must have permissions as the rds_superuser role to perform all these tasks.

The steps following assume that your Aurora PostgreSQL DB cluster is associated with a custom DB
cluster parameter group.

Console

To set up the pg_ad_mapping extension

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose your Aurora PostgreSQL DB cluster's Writer instance.

3. Open the Configuration tab for your Aurora PostgreSQL DB cluster writer instance. Among the
Instance details, find the Parameter group link.

4. Choose the link to open the custom parameters associated with your Aurora PostgreSQL DB
cluster.

5. In the Parameters search field, type shared_pre to find the shared_preload_libraries
parameter.

6. Choose Edit parameters to access the property values.

7. Add pg_ad_mapping to the list in the Values field. Use a comma to separate items in the list
of values.

Using AD security groups for Aurora PostgreSQL access control 2018

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Aurora User Guide for Aurora

8. Reboot the writer instance of your Aurora PostgreSQL DB cluster so that your change to the
shared_preload_libraries parameter takes effect.

9. When the instance is available, verify that pg_ad_mapping has been initialized. Use psql
to connect to the writer instance of your Aurora PostgreSQL DB cluster, and then run the
following command.

SHOW shared_preload_libraries;
shared_preload_libraries

rdsutils,pg_ad_mapping
(1 row)

10. With pg_ad_mapping initialized, you can now create the extension. You need to create the
extension after initializing the library to start using the functions provided by this extension.

CREATE EXTENSION pg_ad_mapping;

11. Close the psql session.

labdb=> \q

AWS CLI

To setup pg_ad_mapping

To setup pg_ad_mapping using the AWS CLI, you call the modify-db-parameter-group operation to
add this parameter in your custom parameter group, as shown in the following procedure.

Using AD security groups for Aurora PostgreSQL access control 2019

https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-parameter-group.html

Amazon Aurora User Guide for Aurora

1. Use the following AWS CLI command to add pg_ad_mapping to the
shared_preload_libraries parameter.

aws rds modify-db-parameter-group \
 --db-parameter-group-name custom-param-group-name \
 --parameters
 "ParameterName=shared_preload_libraries,ParameterValue=pg_ad_mapping,ApplyMethod=pending-
reboot" \
 --region aws-region

2. Use the following AWS CLI command to reboot the writer instance of your Aurora PostgreSQL
DB cluster so that the pg_ad_mapping is initialized.

aws rds reboot-db-instance \
 --db-instance-identifier writer-instance \
 --region aws-region

3. When the instance is available, you can verify that pg_ad_mapping has been initialized. Use
psql to connect to the writer instance of your Aurora PostgreSQL DB cluster, and then run the
following command.

SHOW shared_preload_libraries;
shared_preload_libraries

rdsutils,pg_ad_mapping
(1 row)

With pg_ad_mapping initialized, you can now create the extension.

CREATE EXTENSION pg_ad_mapping;

4. Close the psql session so that you can use the AWS CLI.

labdb=> \q

Retrieving Active Directory Group SID in PowerShell

A security identifier (SID) is used to uniquely identify a security principal or security group.
Whenever a security group or account is created in Active Directory a SID is assigned to it. To fetch

Using AD security groups for Aurora PostgreSQL access control 2020

Amazon Aurora User Guide for Aurora

the AD security group SID from the active directory, you can use the Get-ADGroup cmdlet from
windows client machine which is joined with that Active Directory domain. The Identity parameter
specifies the Active Directory group name to get the corresponding SID.

The following example returns the SID of AD group adgroup1.

C:\Users\Admin> Get-ADGroup -Identity adgroup1 | select SID

 SID

S-1-5-21-3168537779-1985441202-1799118680-1612

Mapping DB role with AD security group

You need to explicitly provision the AD security groups in the database as a PostgreSQL DB role. An
AD user, who is part of at least one provisioned AD security group will get access to the database.
You shouldn’t grant rds_ad role to AD group security based DB role. Kerberos authentication for
security group will get triggered by using the domain name suffix like user1@example.com. This
DB role can't use Password or IAM authentication to gain access to database.

Note

AD users who have a corresponding DB role in the database with rds_ad role granted to
them, can't login as part of the AD security group. They will get access through DB role as
an individual user.

For example, accounts-group is a security group in AD where you would like to provision this
security group in the Aurora PostgreSQL as accounts-role.

AD Security Group PosgreSQL DB role

accounts-group accounts-role

When mapping the DB role with the AD security group, you must ensure that DB role has the
LOGIN attribute set and it has CONNECT privilege to the required login database.

Using AD security groups for Aurora PostgreSQL access control 2021

Amazon Aurora User Guide for Aurora

postgres => alter role accounts-role login;

ALTER ROLE
postgres => grant connect on database accounts-db to accounts-role;

Admin can now proceed to create the mapping between AD security group and PostgreSQL DB
role.

admin=>select pgadmap_set_mapping('accounts-group', 'accounts-role', <SID>, <Weight>);

For information on retrieving SID of AD security group, see Retrieving Active Directory Group SID in
PowerShell.

There might be cases where an AD user belongs to multiple groups, in that case, AD user will
inherit the privileges of the DB role, which was provisioned with the highest weight. If the two
roles have the same weight, AD user will inherit the privileges of the DB role corresponding to
the mapping that was added recently. The recommendation is to specify weights that reflect the
relative permissions/privileges of individual DB roles. Higher the permissions or privileges of a
DB role, higher the weight that should be associated with the mapping entry. This will avoid the
ambiguity of two mappings having the same weight.

The following table shows a sample mapping from AD security groups to Aurora PostgreSQL DB
roles.

AD Security
Group

PosgreSQL DB role Weight

accounts-group accounts-role 7

sales-group sales-role 10

dev-group dev-role 7

In the following example, user1 will inherit the privileges of sales-role since it has the higher
weight while user2 will inherit the privileges of dev-role as the mapping for this role was
created after accounts-role, which share the same weight as accounts-role.

Using AD security groups for Aurora PostgreSQL access control 2022

Amazon Aurora User Guide for Aurora

Username Security Group membership

user1 accounts-group sales-group

user2 accounts-group dev-group

The psql commands to establish, list, and clear the mappings are shown below. Currently, it isn't
possible to modify a single mapping entry. The existing entry needs to be deleted and the mapping
recreated.

admin=>select pgadmap_set_mapping('accounts-group', 'accounts-role', 'S-1-5-67-890',
 7);
admin=>select pgadmap_set_mapping('sales-group', 'sales-role', 'S-1-2-34-560', 10);
admin=>select pgadmap_set_mapping('dev-group', 'dev-role', 'S-1-8-43-612', 7);

admin=>select * from pgadmap_read_mapping();

ad_sid | pg_role | weight | ad_grp
-------------+----------------+--------+---------------
S-1-5-67-890 | accounts-role | 7 | accounts-group
S-1-2-34-560 | sales-role | 10 | sales-group
S-1-8-43-612 | dev-role | 7 | dev-group
(3 rows)

AD user identity logging/auditing

Use the following command to determine the database role inherited by current or session user:

postgres=>select session_user, current_user;

session_user | current_user
-------------+--------------
dev-role | dev-role

(1 row)

Using AD security groups for Aurora PostgreSQL access control 2023

Amazon Aurora User Guide for Aurora

To determine the AD security principal identity, use the following command:

postgres=>select principal from pg_stat_gssapi where pid = pg_backend_pid();

 principal

 user1@example.com

(1 row)

Currently, AD user identity isn't visible in the audit logs. The log_connections parameter can be
enabled to log DB session establishment. For more information, see log_connections. The output
for this includes the AD user identity, as shown below. The backend PID associated with this output
can then help attribute actions back to the actual AD user.

pgrole1@postgres:[615]:LOG: connection authorized: user=pgrole1
 database=postgres application_name=psql GSS (authenticated=yes, encrypted=yes,
 principal=Admin@EXAMPLE.COM)

Limitations

• Microsoft Entra ID known as Azure Active Directory isn't supported.

Using functions from the pg_ad_mapping extension

pg_ad_mapping extension provided support to the following functions:

pgadmap_set_mapping

This function establishes the mapping between AD security group and Database role with an
associated weight.

Syntax

pgadmap_set_mapping(
ad_group,
db_role,

Using AD security groups for Aurora PostgreSQL access control 2024

https://docs.aws.amazon.com/prescriptive-guidance/latest/tuning-postgresql-parameters/log-connections.html

Amazon Aurora User Guide for Aurora

ad_group_sid,
weight)

Arguments

Parameter Description

ad_group Name of AD Group. Value cannot be null or empty string.

db_role Database role to be mapped to the specified AD Group. Value
cannot be null or empty string.

ad_group_sid Security identifier that is used to uniquely identify the AD
group. Value starts with 'S-1-' and cannot be null or empty
string. For more information, see Retrieving Active Directory
Group SID in PowerShell.

weight Weight associated with the database role. The role with
highest weight gets precedence when user is a member of
multiple groups. Default value of weight is 1.

Return type

None

Usage notes

This function adds a new mapping from AD security group to database role. It can only be executed
on the primary DB instance of the DB cluster by a user having rds_superuser privilege.

Examples

postgres=> select pgadmap_set_mapping('accounts-group','accounts-
role','S-1-2-33-12345-67890-12345-678',10);

pgadmap_set_mapping

(1 row)

Using AD security groups for Aurora PostgreSQL access control 2025

Amazon Aurora User Guide for Aurora

pgadmap_read_mapping

This function lists the mappings between AD security group and DB role that were set using
pgadmap_set_mapping function.

Syntax

pgadmap_read_mapping()

Arguments

None

Return type

Parameter Description

ad_group_sid Security identifier that is used to uniquely identify the AD
group. Value starts with 'S-1-' and cannot be null or empty
string. For more information, see Retrieving Active Directory
Group SID in PowerShell.accounts-role@example.com

db_role Database role to be mapped to the specified AD Group. Value
cannot be null or empty string.

weight Weight associated with the database role. The role with
highest weight gets precedence when user is a member of
multiple groups. Default value of weight is 1.

ad_group Name of AD Group. Value cannot be null or empty string.

Usage notes

Call this function to list all the available mappings between AD security group and DB role.

Examples

postgres=> select * from pgadmap_read_mapping();

ad_sid | pg_role | weight | ad_grp

Using AD security groups for Aurora PostgreSQL access control 2026

Amazon Aurora User Guide for Aurora

------------------------------------+---------------+--------+------------------
S-1-2-33-12345-67890-12345-678 | accounts-role | 10 | accounts-group
(1 row)

(1 row)

pgadmap_reset_mapping

This function resets one or all the mappings that were set using pgadmap_set_mapping function.

Syntax

pgadmap_reset_mapping(
ad_group_sid,
db_role,
weight)

Arguments

Parameter Description

ad_group_sid Security identifier that is used to uniquely identify the AD
group.

db_role Database role to be mapped to the specified AD Group.

weight Weight associated with the database role.

If no arguments are provided, all AD group to DB role mappings are reset. Either all arguments
need to be provided or none.

Return type

None

Usage notes

Call this function to delete a specific AD group to DB role mapping or to reset all mappings. This
function can only be executed on the primary DB instance of the DB cluster by a user having
rds_superuser privilege.

Using AD security groups for Aurora PostgreSQL access control 2027

Amazon Aurora User Guide for Aurora

Examples

postgres=> select * from pgadmap_read_mapping();

 ad_sid | pg_role | weight | ad_grp
--------------------------------+--------------+-------------+-------------------
 S-1-2-33-12345-67890-12345-678 | accounts-role| 10 | accounts-group
 S-1-2-33-12345-67890-12345-666 | sales-role | 10 | sales-group

(2 rows)
postgres=> select pgadmap_reset_mapping('S-1-2-33-12345-67890-12345-678', 'accounts-
role', 10);

pgadmap_reset_mapping
(1 row)

postgres=> select * from pgadmap_read_mapping();

 ad_sid | pg_role | weight | ad_grp
--------------------------------+--------------+-------------+---------------
 S-1-2-33-12345-67890-12345-666 | sales-role | 10 | sales-group

(1 row)
postgres=> select pgadmap_reset_mapping();

pgadmap_reset_mapping
(1 row)

postgres=> select * from pgadmap_read_mapping();

 ad_sid | pg_role | weight | ad_grp
--------------------------------+--------------+-------------+--------------
 (0 rows)

Migrating data to Amazon Aurora with PostgreSQL
compatibility

You have several options for migrating data from your existing database to an Amazon Aurora
PostgreSQL-Compatible Edition DB cluster. Your migration options also depend on the database

Migrating data to Aurora PostgreSQL 2028

Amazon Aurora User Guide for Aurora

that you are migrating from and the size of the data that you are migrating. Following are your
options:

Migrating an RDS for PostgreSQL DB instance using a snapshot

You can migrate data directly from an RDS for PostgreSQL DB snapshot to an Aurora
PostgreSQL DB cluster.

Migrating an RDS for PostgreSQL DB instance using an Aurora read replica

You can also migrate from an RDS for PostgreSQL DB instance by creating an Aurora
PostgreSQL read replica of an RDS for PostgreSQL DB instance. When the replica lag between
the RDS for PostgreSQL DB instance and the Aurora PostgreSQL read replica is zero, you can
stop replication. At this point, you can make the Aurora read replica a standalone Aurora
PostgreSQL DB cluster for reading and writing.

Importing data from Amazon S3 into Aurora PostgreSQL

You can migrate data by importing it from Amazon S3 into a table belonging to an Aurora
PostgreSQL DB cluster.

Migrating from a database that is not PostgreSQL-compatible

You can use AWS Database Migration Service (AWS DMS) to migrate data from a database that
is not PostgreSQL-compatible. For more information on AWS DMS, see What is AWS Database
Migration Service? in the AWS Database Migration Service User Guide.

Note

Enabling Kerberos authentication isn't currently supported on Aurora PostgreSQL DB
cluster during migration from RDS for PostgreSQL. You can enable Kerberos authentication
only on a standalone Aurora PostgreSQL DB cluster.

For a list of AWS Regions where Aurora is available, see Amazon Aurora in the AWS General
Reference.

Important

If you plan to migrate an RDS for PostgreSQL DB instance to an Aurora PostgreSQL DB
cluster in the near future, we strongly recommend that you turn off auto minor version

Migrating data to Aurora PostgreSQL 2029

https://docs.aws.amazon.com/dms/latest/userguide/Welcome.html
https://docs.aws.amazon.com/dms/latest/userguide/Welcome.html
https://docs.aws.amazon.com/general/latest/gr/rande.html#aurora

Amazon Aurora User Guide for Aurora

upgrades for the DB instance early in the migration planning phase. Migration to Aurora
PostgreSQL might be delayed if the RDS for PostgreSQL version isn't yet supported by
Aurora PostgreSQL.
For information about Aurora PostgreSQL versions, see Engine versions for Amazon Aurora
PostgreSQL.

Migrating a snapshot of an RDS for PostgreSQL DB instance to an
Aurora PostgreSQL DB cluster

To create an Aurora PostgreSQL DB cluster, you can migrate a DB snapshot of an RDS for
PostgreSQL DB instance. The new Aurora PostgreSQL DB cluster is populated with the data from
the original RDS for PostgreSQL DB instance. For information about creating a DB snapshot, see
Creating a DB snapshot.

In some cases, the DB snapshot might not be in the AWS Region where you want to locate
your data. If so, use the Amazon RDS console to copy the DB snapshot to that AWS Region. For
information about copying a DB snapshot, see Copying a DB snapshot.

You can migrate RDS for PostgreSQL snapshots that are compatible with the Aurora PostgreSQL
versions available in the given AWS Region. For example, you can migrate a snapshot from an RDS
for PostgreSQL 11.1 DB instance to Aurora PostgreSQL version 11.4, 11.7, 11.8, or 11.9 in the
US West (N. California) Region. You can migrate RDS for PostgreSQL 10.11 snapshot to Aurora
PostgreSQL 10.11, 10.12, 10.13, and 10.14. In other words, the RDS for PostgreSQL snapshot must
use the same or a lower minor version as the Aurora PostgreSQL.

You can also choose for your new Aurora PostgreSQL DB cluster to be encrypted at rest by using an
AWS KMS key. This option is available only for unencrypted DB snapshots.

To migrate an RDS for PostgreSQL DB snapshot to an Aurora PostgreSQL DB cluster, you can use
the AWS Management Console, the AWS CLI, or the RDS API. When you use the AWS Management
Console, the console takes the actions necessary to create both the DB cluster and the primary
instance.

Migrating an RDS for PostgreSQL DB instance using a snapshot 2030

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraPostgreSQL.Updates.20180305.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraPostgreSQL.Updates.20180305.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_CreateSnapshot.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_CopySnapshot.html

Amazon Aurora User Guide for Aurora

Console

To migrate a PostgreSQL DB snapshot by using the RDS console

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. Choose Snapshots.

3. On the Snapshots page, choose the RDS for PostgreSQL snapshot that you want to migrate
into an Aurora PostgreSQL DB cluster.

4. Choose Actions then choose Migrate snapshot.

5. Set the following values on the Migrate database page:

• DB engine version: Choose a DB engine version you want to use for the new migrated
instance.

• DB instance identifier: Enter a name for the DB cluster that is unique for your account in
the AWS Region that you chose. This identifier is used in the endpoint addresses for the
instances in your DB cluster. You might choose to add some intelligence to the name, such as
including the AWS Region and DB engine that you chose, for example aurora-cluster1.

The DB instance identifier has the following constraints:

• It must contain 1–63 alphanumeric characters or hyphens.

• Its first character must be a letter.

• It can't end with a hyphen or contain two consecutive hyphens.

• It must be unique for all DB instances per AWS account, per AWS Region.

• DB instance class: Choose a DB instance class that has the required storage and capacity for
your database, for example db.r6g.large. Aurora cluster volumes automatically grow as
the amount of data in your database increases. So you only need to choose a DB instance
class that meets your current storage requirements. For more information, see Overview of
Amazon Aurora storage.

• Virtual private cloud (VPC): If you have an existing VPC, then you can use that VPC with
your Aurora PostgreSQL DB cluster by choosing your VPC identifier, for example vpc-
a464d1c1. For information about creating a VPC, see Tutorial: Create a VPC for use with a
DB cluster (IPv4 only).

Otherwise, you can choose to have Amazon RDS create a VPC for you by choosing Create
new VPC.

Migrating an RDS for PostgreSQL DB instance using a snapshot 2031

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Aurora User Guide for Aurora

• DB subnet group: If you have an existing subnet group, then you can use that subnet group
with your Aurora PostgreSQL DB cluster by choosing your subnet group identifier, for
example gs-subnet-group1.

• Public access: Choose No to specify that instances in your DB cluster can only be accessed
by resources inside of your VPC. Choose Yes to specify that instances in your DB cluster can
be accessed by resources on the public network.

Note

Your production DB cluster might not need to be in a public subnet, because only
your application servers require access to your DB cluster. If your DB cluster doesn't
need to be in a public subnet, set Public access to No.

• VPC security group: Choose a VPC security group to allow access to your database.

• Availability Zone: Choose the Availability Zone to host the primary instance for your Aurora
PostgreSQL DB cluster. To have Amazon RDS choose an Availability Zone for you, choose No
preference.

• Database port: Enter the default port to be used when connecting to instances in the Aurora
PostgreSQL DB cluster. The default is 5432.

Note

You might be behind a corporate firewall that doesn't allow access to default ports
such as the PostgreSQL default port, 5432. In this case, provide a port value that
your corporate firewall allows. Remember that port value later when you connect to
the Aurora PostgreSQL DB cluster.

• Enable Encryption: Choose Enable Encryption for your new Aurora PostgreSQL DB cluster
to be encrypted at rest. Also choose a KMS key as the AWS KMS key value.

• Auto minor version upgrade: Choose Enable auto minor version upgrade to enable your
Aurora PostgreSQL DB cluster to receive minor PostgreSQL DB engine version upgrades
automatically when they become available.

The Auto minor version upgrade option only applies to upgrades to PostgreSQL minor
engine versions for your Aurora PostgreSQL DB cluster. It doesn't apply to regular patches
applied to maintain system stability.

6. Choose Migrate to migrate your DB snapshot.

Migrating an RDS for PostgreSQL DB instance using a snapshot 2032

Amazon Aurora User Guide for Aurora

7. Choose Databases to see the new DB cluster. Choose the new DB cluster to monitor the
progress of the migration. When the migration completes, the Status for the cluster is
Available. On the Connectivity & security tab, you can find the cluster endpoint to use
for connecting to the primary writer instance of the DB cluster. For more information on
connecting to an Aurora PostgreSQL DB cluster, see Connecting to an Amazon Aurora DB
cluster.

AWS CLI

Using the AWS CLI to migrate an RDS for PostgreSQL DB snapshot to an Aurora PostgreSQL
involves two separate AWS CLI commands. First, you use the restore-db-cluster-from-
snapshot AWS CLI command create a new Aurora PostgreSQL DB cluster. You then use the
create-db-instance command to create the primary DB instance in the new cluster to
complete the migration. The following procedure creates an Aurora PostgreSQL DB cluster
with primary DB instance that has the same configuration as the DB instance used to create the
snapshot.

To migrate an RDS for PostgreSQL DB snapshot to an Aurora PostgreSQL DB cluster

1. Use the describe-db-snapshots command to obtain information about the DB snapshot you
want to migrate. You can specify either the --db-instance-identifier parameter or the
--db-snapshot-identifier in the command. If you don't specify one of these parameters,
you get all snapshots.

aws rds describe-db-snapshots --db-instance-identifier <your-db-instance-name>

2. The command returns all configuration details for any snapshots created from the DB instance
specified. In the output, find the snapshot that you want to migrate and locate its Amazon
Resource Name (ARN). To learn more about Amazon RDS ARNs, see Amazon Relational
Database Service (Amazon RDS). An ARN looks similar to the output following.

“DBSnapshotArn": "arn:aws:rds:aws-region:111122223333:snapshot:<snapshot_name>"

Also in the output you can find configuration details for the RDS for PostgreSQL DB instance,
such as the engine version, allocated storage, whether or not the DB instance is encrypted, and
so on.

3. Use the restore-db-cluster-from-snapshot command to start the migration. Specify the
following parameters:

Migrating an RDS for PostgreSQL DB instance using a snapshot 2033

https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-snapshots.html
https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html#arn-syntax-rds
https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html#arn-syntax-rds
https://docs.aws.amazon.com/cli/latest/reference/rds/restore-db-cluster-from-snapshot.html

Amazon Aurora User Guide for Aurora

• --db-cluster-identifier – The name that you want to give to the Aurora PostgreSQL
DB cluster. This Aurora DB cluster is the target for your DB snapshot migration.

• --snapshot-identifier – The Amazon Resource Name (ARN) of the DB snapshot to
migrate.

• --engine – Specify aurora-postgresql for the Aurora DB cluster engine.

• --kms-key-id – This optional parameter lets you create an encrypted Aurora PostgreSQL
DB cluster from an unencrypted DB snapshot. It also lets you choose a different encryption
key for the DB cluster than the key used for the DB snapshot.

Note

You can't create an unencrypted Aurora PostgreSQL DB cluster from an encrypted
DB snapshot.

Without the --kms-key-id parameter specified as shown following, the restore-db-cluster-
from-snapshot AWS CLI command creates an empty Aurora PostgreSQL DB cluster that's
either encrypted using the same key as the DB snapshot or is unencrypted if the source DB
snapshot isn't encrypted.

For Linux, macOS, or Unix:

aws rds restore-db-cluster-from-snapshot \
 --db-cluster-identifier cluster-name \
 --snapshot-identifier arn:aws:rds:aws-region:111122223333:snapshot:your-
snapshot-name \
 --engine aurora-postgresql

For Windows:

aws rds restore-db-cluster-from-snapshot ^
 --db-cluster-identifier new_cluster ^
 --snapshot-identifier arn:aws:rds:aws-region:111122223333:snapshot:your-
snapshot-name ^
 --engine aurora-postgresql

Migrating an RDS for PostgreSQL DB instance using a snapshot 2034

https://docs.aws.amazon.com/cli/latest/reference/rds/restore-db-cluster-from-snapshot.html
https://docs.aws.amazon.com/cli/latest/reference/rds/restore-db-cluster-from-snapshot.html

Amazon Aurora User Guide for Aurora

4. The command returns details about the Aurora PostgreSQL DB cluster that's being created
for the migration. You can check the status of the Aurora PostgreSQL DB cluster by using the
describe-db-clusters AWS CLI command.

aws rds describe-db-clusters --db-cluster-identifier cluster-name

5. When the DB cluster becomes "available", you use create-db-instance command to populate
the Aurora PostgreSQL DB cluster with the DB instance based on your Amazon RDS DB
snapshot. Specify the following parameters:

• --db-cluster-identifier – The name of the new Aurora PostgreSQL DB cluster that
you created in the previous step.

• --db-instance-identifier – The name you want to give to the DB instance. This
instance becomes the primary node in your Aurora PostgreSQL DB cluster.

• ----db-instance-class – Specify the DB instance class to use. Choose from among the
DB instance classes supported by the Aurora PostgreSQL version to which you're migrating.
For more information, see DB instance class types and Supported DB engines for DB instance
classes.

• --engine – Specify aurora-postgresql for the DB instance.

You can also create the DB instance with a different configuration than the source DB
snapshot, by passing in the appropriate options in the create-db-instance AWS CLI
command. For more information, see the create-db-instance command.

For Linux, macOS, or Unix:

aws rds create-db-instance \
 --db-cluster-identifier cluster-name \
 --db-instance-identifier --db-instance-class db.instance.class \
 --engine aurora-postgresql

For Windows:

aws rds create-db-instance ^
 --db-cluster-identifier cluster-name ^
 --db-instance-identifier --db-instance-class db.instance.class ^
 --engine aurora-postgresql

Migrating an RDS for PostgreSQL DB instance using a snapshot 2035

https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-clussters.html
https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-instance.html
https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-instance.html

Amazon Aurora User Guide for Aurora

When the migration process completes, the Aurora PostgreSQL cluster has a populated primary DB
instance.

Migrating an RDS for PostgreSQL DB instance using a snapshot 2036

Amazon Aurora User Guide for Aurora

Migrating data from an RDS for PostgreSQL DB instance to an Aurora
PostgreSQL DB cluster using an Aurora read replica

You can use an RDS for PostgreSQL DB instance as the basis for a new Aurora PostgreSQL DB
cluster by using an Aurora read replica for the migration process. The Aurora read replica option is
available only for migrating within the same AWS Region and account, and it's available only if the
Region offers a compatible version of Aurora PostgreSQL for your RDS for PostgreSQL DB instance.
By compatible, we mean that the Aurora PostgreSQL version is the same as the RDS for PostgreSQL
version, or that it is a higher minor version in the same major version family.

For example, to use this technique to migrate an RDS for PostgreSQL 11.14 DB instance, the
Region must offer Aurora PostgreSQL version 11.14 or a higher minor version in the PostgreSQL
version 11 family.

Topics

• Overview of migrating data by using an Aurora read replica

• Preparing to migrate data by using an Aurora read replica

• Creating an Aurora read replica

• Promoting an Aurora read replica

Overview of migrating data by using an Aurora read replica

Migrating from an RDS for PostgreSQL DB instance to an Aurora PostgreSQL DB cluster is a
multistep procedure. First, you create an Aurora read replica of your source RDS for PostgreSQL DB
instance. That starts a replication process from your RDS for PostgreSQL DB instance to a special-
purpose DB cluster known as a Replica cluster. The Replica cluster consists solely of an Aurora read
replica (a reader instance).

Once the Replica cluster exists, you monitor the lag between it and the source RDS for PostgreSQL
DB instance. When the replica lag is zero (0), you can promote the Replica cluster. Replication stops,
the Replica cluster is promoted to a standalone Aurora DB cluster, and the reader is promoted to
writer instance for the cluster. You can then add instances to the Aurora PostgreSQL DB cluster
to size your Aurora PostgreSQL DB cluster for your use case. You can also delete the RDS for
PostgreSQL DB instance if you have no further need of it.

Migrating an RDS for PostgreSQL DB instance using an Aurora read replica 2037

Amazon Aurora User Guide for Aurora

Note

It can take several hours per terabyte of data for the migration to complete.

You can't create an Aurora read replica if your RDS for PostgreSQL DB instance already has an
Aurora read replica or if it has a cross-Region read replica.

Preparing to migrate data by using an Aurora read replica

During the migration process using Aurora read replica, updates made to the source RDS for
PostgreSQL DB instance are asynchronously replicated to the Aurora read replica of the Replica
cluster. The process uses PostgreSQL's native streaming replication functionality which stores
write-ahead logs (WAL) segments on the source instance. Before starting this migration process,
make sure that your instance has sufficient storage capacity by checking values for the metrics
listed in the table.

Metric Description

FreeStorageSpace The available storage space.

Units: Bytes

OldestReplicationSlotLag The size of the lag for WAL data in the replica
that is lagging the most.

Units: Megabytes

RDSToAuroraPostgreSQLReplicaLag The amount of time in seconds that an Aurora
PostgreSQL DB cluster lags behind the source
RDS DB instance.

TransactionLogsDiskUsage The disk space used by the transaction logs.

Units: Megabytes

For more information about monitoring your RDS instance, see Monitoring in the Amazon RDS User
Guide.

Migrating an RDS for PostgreSQL DB instance using an Aurora read replica 2038

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_Monitoring.html

Amazon Aurora User Guide for Aurora

Creating an Aurora read replica

You can create an Aurora read replica for an RDS for PostgreSQL DB instance by using the AWS
Management Console or the AWS CLI. The option to create an Aurora read replica using the AWS
Management Console is available only if the AWS Region offers a compatible Aurora PostgreSQL
version. That is, it's available only if there's an Aurora PostgreSQL version that is the same as the
RDS for PostgreSQL version or a higher minor version in the same major version family.

Console

To create an Aurora read replica from a source PostgreSQL DB instance

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Databases.

3. Choose the RDS for PostgreSQL DB instance that you want to use as the source for your Aurora
read replica. For Actions, choose Create Aurora read replica. If this choice doesn't display, it
means that a compatible Aurora PostgreSQL version isn't available in the Region.

4. On the Create Aurora read replica settings page, you configure the properties for the Aurora
PostgreSQL DB cluster as shown in the following table. The Replica DB cluster is created from
a snapshot of the source DB instance using the same 'master' user name and password as the
source, so you can't change these at this time.

Migrating an RDS for PostgreSQL DB instance using an Aurora read replica 2039

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Aurora User Guide for Aurora

Option Description

DB instance class Choose a DB instance class that meets the processing
and memory requirements primary instance in the DB
cluster. For more information, see Aurora DB instance
classes.

Multi-AZ deployment Not available during the migration

DB instance identifier Enter the name that you want to give to the DB
instance. This identifier is used in the endpoint
address for the primary instance of the new DB
cluster.

The DB instance identifier has the following constrain
ts:

• It must contain 1–63 alphanumeric characters or
hyphens.

• Its first character must be a letter.

• It can't end with a hyphen or contain two consecuti
ve hyphens.

• It must be unique for all DB instances for each AWS
account, for each AWS Region.

Virtual Private Cloud (VPC) Choose the VPC to host the DB cluster. Choose Create
new VPC to have Amazon RDS create a VPC for you.
For more information, see DB cluster prerequisites.

DB subnet group Choose the DB subnet group to use for the DB
cluster. Choose Create new DB Subnet Group to have
Amazon RDS create a DB subnet group for you. For
more information, see DB cluster prerequisites.

Migrating an RDS for PostgreSQL DB instance using an Aurora read replica 2040

Amazon Aurora User Guide for Aurora

Option Description

Public accessibility Choose Yes to give the DB cluster a public IP address;
otherwise, choose No. The instances in your DB
cluster can be a mix of both public and private
DB instances. For more information about hiding
instances from public access, see Hiding a DB cluster
in a VPC from the internet.

Availability zone Determine if you want to specify a particular Availabil
ity Zone. For more information about Availability
Zones, see Regions and Availability Zones.

VPC security groups Choose one or more VPC security groups to secure
network access to the DB cluster. Choose Create new
VPC security group to have Amazon RDS create a
VPC security group for you. For more information, see
DB cluster prerequisites.

Database port Specify the port for applications and utilities to
use to access the database. Aurora PostgreSQL DB
clusters default to the default PostgreSQL port, 5432.
Firewalls at some companies block connections to this
port. If your company firewall blocks the default port,
choose another port for the new DB cluster.

DB parameter group Choose a DB parameter group for the Aurora
PostgreSQL DB cluster. Aurora has a default DB
parameter group you can use, or you can create
your own DB parameter group. For more informati
on about DB parameter groups, see Working with
parameter groups.

Migrating an RDS for PostgreSQL DB instance using an Aurora read replica 2041

Amazon Aurora User Guide for Aurora

Option Description

DB cluster parameter group Choose a DB cluster parameter group for the Aurora
PostgreSQL DB cluster. Aurora has a default DB
cluster parameter group you can use, or you can
create your own DB cluster parameter group. For
more information about DB cluster parameter groups,
see Working with parameter groups.

Encryption Choose Enable encryption for your new Aurora DB
cluster to be encrypted at rest. If you choose Enable
encryption, also choose a KMS key as the AWS KMS
key value.

Priority Choose a failover priority for the DB cluster. If you
don't choose a value, the default is tier-1. This
priority determines the order in which Aurora Replicas
are promoted when recovering from a primary
instance failure. For more information, see Fault
tolerance for an Aurora DB cluster.

Backup retention period Choose the length of time, 1–35 days, for Aurora to
retain backup copies of the database. Backup copies
can be used for point-in-time restores (PITR) of your
database down to the second.

Enhanced monitoring Choose Enable enhanced monitoring to enable
gathering metrics in real time for the operating
system that your DB cluster runs on. For more
information, see Monitoring OS metrics with
Enhanced Monitoring.

Monitoring Role Only available if you chose Enable enhanced
monitoring. The AWS Identity and Access
Management (IAM) role to use for Enhanced
Monitoring. For more information, see Setting up and
enabling Enhanced Monitoring.

Migrating an RDS for PostgreSQL DB instance using an Aurora read replica 2042

Amazon Aurora User Guide for Aurora

Option Description

Granularity Only available if you chose Enable enhanced
monitoring. Set the interval, in seconds, between
when metrics are collected for your DB cluster.

Auto minor version upgrade Choose Yes to enable your Aurora PostgreSQL DB
cluster to receive minor PostgreSQL DB engine
version upgrades automatically when they become
available.

The Auto minor version upgrade option only applies
to upgrades to PostgreSQL minor engine versions for
your Aurora PostgreSQL DB cluster. It doesn't apply to
regular patches applied to maintain system stability.

Maintenance window Choose the weekly time range during which system
maintenance can occur.

5. Choose Create read replica.

AWS CLI

To create an Aurora read replica from a source RDS for PostgreSQL DB instance by using the AWS
CLI, you first use the create-db-cluster CLI command to create an empty Aurora DB cluster. Once
the DB cluster exists, you then use the create-db-instance command to create the primary instance
for your DB cluster. The primary instance is the first instance that's created in an Aurora DB cluster.
In this case, it's created initially as an Aurora read replica of your RDS for PostgreSQL DB instance.
When the process concludes, your RDS for PostgreSQL DB instance has effectively been migrated
to an Aurora PostgreSQL DB cluster.

You don't need to specify the main user account (typically, postgres), its password, or the
database name. The Aurora read replica obtains these automatically from the source RDS for
PostgreSQL DB instance that you identify when you invoke the AWS CLI commands.

You do need to specify the engine version to use for the Aurora PostgreSQL DB cluster and the
DB instance. The version you specify should match the source RDS for PostgreSQL DB instance.
If the source RDS for PostgreSQL DB instance is encrypted, you need to also specify encryption

Migrating an RDS for PostgreSQL DB instance using an Aurora read replica 2043

https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-cluster.html
https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-instance.html

Amazon Aurora User Guide for Aurora

for the Aurora PostgreSQL DB cluster primary instance. Migrating an encrypted instance to an
unencrypted Aurora DB cluster isn't supported.

The following examples create an Aurora PostgreSQL DB cluster named my-new-aurora-
cluster that's going to use an unencrypted RDS DB source instance. You first create the Aurora
PostgreSQL DB cluster by calling the create-db-cluster CLI command. The example shows how
to use the optional --storage-encrypted parameter to specify that the DB cluster should be
encrypted. Because the source DB isn't encrypted, the --kms-key-id is used to specify the key
to use. For more information about required and optional parameters, see the list following the
example.

For Linux, macOS, or Unix:

aws rds create-db-cluster \
 --db-cluster-identifier my-new-aurora-cluster \
 --db-subnet-group-name my-db-subnet
 --vpc-security-group-ids sg-11111111
 --engine aurora-postgresql \
 --engine-version same-as-your-rds-instance-version \
 --replication-source-identifier arn:aws:rds:aws-region:111122223333:db/rpg-source-
db \
 --storage-encrypted \
 --kms-key-id arn:aws:kms:aws-
region:111122223333:key/11111111-2222-3333-444444444444

For Windows:

aws rds create-db-cluster ^
 --db-cluster-identifier my-new-aurora-cluster ^
 --db-subnet-group-name my-db-subnet ^
 --vpc-security-group-ids sg-11111111 ^
 --engine aurora-postgresql ^
 --engine-version same-as-your-rds-instance-version ^
 --replication-source-identifier arn:aws:rds:aws-region:111122223333:db/rpg-source-
db ^
 --storage-encrypted ^
 --kms-key-id arn:aws:kms:aws-
region:111122223333:key/11111111-2222-3333-444444444444

In the following list you can find more information about some of the options shown in the
example. Unless otherwise specified, these parameters are required.

Migrating an RDS for PostgreSQL DB instance using an Aurora read replica 2044

https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-cluster.html

Amazon Aurora User Guide for Aurora

• --db-cluster-identifier – You need to give your new Aurora PostgreSQL DB cluster a
name.

• --db-subnet-group-name – Create your Aurora PostgreSQL DB cluster in the same DB subnet
as the source DB instance.

• --vpc-security-group-ids – Specify the security group for your Aurora PostgreSQL DB
cluster.

• --engine-version – Specify the version to use for the Aurora PostgreSQL DB cluster. This
should be the same as the version used by your source RDS for PostgreSQL DB instance.

• --replication-source-identifier – Identify your RDS for PostgreSQL DB instance using
its Amazon Resource Name (ARN). For more information about Amazon RDS ARNs, see Amazon
Relational Database Service (Amazon RDS) in the AWS General Reference. of your DB cluster.

• --storage-encrypted – Optional. Use only when needed to specify encryption as follows:

• Use this parameter when the source DB instance has encrypted storage. The call to create-
db-cluster fails if you don't use this parameter with a source DB instance that has encrypted
storage. If you want to use a different key for the Aurora PostgreSQL DB cluster than the key
used by the source DB instance, you need to also specify the --kms-key-id.

• Use if the source DB instance's storage is unencrypted but you want the Aurora PostgreSQL DB
cluster to use encryption. If so, you also need to identify the encryption key to use with the --
kms-key-id parameter.

• --kms-key-id – Optional. When used, you can specify the key to use for storage encryption (--
storage-encrypted) by using the key's ARN, ID, alias ARN, or its alias name. This parameter is
needed only for the following situations:

• To choose a different key for the Aurora PostgreSQL DB cluster than that used by the source
DB instance.

• To create an encrypted cluster from an unencrypted source. In this case, you need to specify
the key that Aurora PostgreSQL should use for encryption.

After creating the Aurora PostgreSQL DB cluster, you then create the primary instance by using the
create-db-instance CLI command, as shown in the following:

For Linux, macOS, or Unix:

aws rds create-db-instance \
 --db-cluster-identifier my-new-aurora-cluster \
 --db-instance-class db.x2g.16xlarge \

Migrating an RDS for PostgreSQL DB instance using an Aurora read replica 2045

https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html#arn-syntax-rds
https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html#arn-syntax-rds
https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-cluster.html
https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-cluster.html
https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-instance.html

Amazon Aurora User Guide for Aurora

 --db-instance-identifier rpg-for-migration \
 --engine aurora-postgresql

For Windows:

aws rds create-db-instance ^
 --db-cluster-identifier my-new-aurora-cluster ^
 --db-instance-class db.x2g.16xlarge ^
 --db-instance-identifier rpg-for-migration ^
 --engine aurora-postgresql

In the following list, you can find more information about some of the options shown in the
example.

• --db-cluster-identifier – Specify the name of the Aurora PostgreSQL DB cluster that you
created with the create-db-instance command in the previous steps.

• --db-instance-class – The name of the DB instance class to use for your primary instance,
such as db.r4.xlarge, db.t4g.medium, db.x2g.16xlarge, and so on. For a list of available
DB instance classes, see DB instance class types.

• --db-instance-identifier – Specify the name to give your primary instance.

• --engine aurora-postgresql – Specify aurora-postgresql for the engine.

RDS API

To create an Aurora read replica from a source RDS for PostgreSQL DB instance, first use the RDS
API operation CreateDBCluster to create a new Aurora DB cluster for the Aurora read replica
that gets created from your source RDS for PostgreSQL DB instance. When the Aurora PostgreSQL
DB cluster is available, you then use the CreateDBInstance to create the primary instance for the
Aurora DB cluster.

You don't need to specify the main user account (typically, postgres), its password, or the
database name. The Aurora read replica obtains these automatically from the source RDS for
PostgreSQL DB instance specified with ReplicationSourceIdentifier.

You do need to specify the engine version to use for the Aurora PostgreSQL DB cluster and the
DB instance. The version you specify should match the source RDS for PostgreSQL DB instance.
If the source RDS for PostgreSQL DB instance is encrypted, you need to also specify encryption

Migrating an RDS for PostgreSQL DB instance using an Aurora read replica 2046

https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-instance.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateDBCluster.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateDBInstance.html

Amazon Aurora User Guide for Aurora

for the Aurora PostgreSQL DB cluster primary instance. Migrating an encrypted instance to an
unencrypted Aurora DB cluster isn't supported.

To create the Aurora DB cluster for the Aurora read replica, use the RDS API operation
CreateDBCluster with the following parameters:

• DBClusterIdentifier – The name of the DB cluster to create.

• DBSubnetGroupName – The name of the DB subnet group to associate with this DB cluster.

• Engine=aurora-postgresql – The name of the engine to use.

• ReplicationSourceIdentifier – The Amazon Resource Name (ARN) for the source
PostgreSQL DB instance. For more information about Amazon RDS ARNs, see Amazon
Relational Database Service (Amazon RDS) in the Amazon Web Services General Reference. If
ReplicationSourceIdentifier identifies an encrypted source, Amazon RDS uses your
default KMS key unless you specify a different key using the KmsKeyId option.

• VpcSecurityGroupIds – The list of Amazon EC2 VPC security groups to associate with this DB
cluster.

• StorageEncrypted – Indicates that the DB cluster is encrypted. When you use this parameter
without also specifying the ReplicationSourceIdentifier, Amazon RDS uses your default
KMS key.

• KmsKeyId – The key for an encrypted cluster. When used, you can specify the key to use for
storage encryption by using the key's ARN, ID, alias ARN, or its alias name.

For more information, see CreateDBCluster in the Amazon RDS API Reference.

Once the Aurora DB cluster is available, you can then create a primary instance for it by using the
RDS API operation CreateDBInstance with the following parameters:

• DBClusterIdentifier – The name of your DB cluster.

• DBInstanceClass – The name of the DB instance class to use for your primary instance.

• DBInstanceIdentifier – The name of your primary instance.

• Engine=aurora-postgresql – The name of the engine to use.

For more information, see CreateDBInstance in the Amazon RDS API Reference.

Migrating an RDS for PostgreSQL DB instance using an Aurora read replica 2047

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateDBCluster.html
https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html#arn-syntax-rds
https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html#arn-syntax-rds
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateDBCluster.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateDBInstance.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateDBInstance.html

Amazon Aurora User Guide for Aurora

Promoting an Aurora read replica

The migration to Aurora PostgreSQL isn't complete until you promote the Replica cluster, so don't
delete the RDS for PostgreSQL source DB instance just yet.

Before promoting the Replica cluster, make sure that the RDS for PostgreSQL DB instance doesn't
have any in-process transactions or other activity writing to the database. When the replica lag on
the Aurora read replica reaches zero (0), you can promote the Replica cluster. For more information
about monitoring replica lag, see Monitoring Aurora PostgreSQL replication and Instance-level
metrics for Amazon Aurora.

Console

To promote an Aurora read replica to an Aurora DB cluster

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Databases.

3. Choose the Replica cluster.

4. For Actions, choose Promote. This may take a few minutes and can cause downtime.

When the process completes, the Aurora Replica cluster is a Regional Aurora PostgreSQL DB
cluster, with a Writer instance containing the data from the RDS for PostgreSQL DB instance.

Migrating an RDS for PostgreSQL DB instance using an Aurora read replica 2048

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Aurora User Guide for Aurora

AWS CLI

To promote an Aurora read replica to a stand-alone DB cluster, use the promote-read-replica-db-
cluster AWS CLI command.

Example

For Linux, macOS, or Unix:

aws rds promote-read-replica-db-cluster \
 --db-cluster-identifier myreadreplicacluster

For Windows:

aws rds promote-read-replica-db-cluster ^
 --db-cluster-identifier myreadreplicacluster

RDS API

To promote an Aurora read replica to a stand-alone DB cluster, use the RDS API operation
PromoteReadReplicaDBCluster.

After you promote the Replica cluster, you can confirm that the promotion has completed by
checking the event log, as follows.

To confirm that the Aurora Replica cluster was promoted

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Events.

3. On the Events page, find the name of your cluster in the Source list. Each event has a source,
type, time, and message. You can see all events that have occurred in your AWS Region for
your account. A successful promotion generates the following message.

Promoted Read Replica cluster to a stand-alone database cluster.

After promotion is complete, the source RDS for PostgreSQL DB instance and the Aurora
PostgreSQL DB cluster are unlinked. You can direct your client applications to the endpoint for the

Migrating an RDS for PostgreSQL DB instance using an Aurora read replica 2049

https://docs.aws.amazon.com/cli/latest/reference/rds/promote-read-replica-db-cluster.html
https://docs.aws.amazon.com/cli/latest/reference/rds/promote-read-replica-db-cluster.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_PromoteReadReplicaDBCluster.html
https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Aurora User Guide for Aurora

Aurora read replica. For more information on the Aurora endpoints, see Amazon Aurora connection
management. At this point, you can safely delete the DB instance.

Improving query performance for Aurora PostgreSQL with
Aurora Optimized Reads

You can achieve faster query processing for Aurora PostgreSQL with Aurora Optimized Reads.
An Aurora PostgreSQL DB instance that uses Aurora Optimized Reads delivers up to 8x improved
query latency and up to 30% cost savings for applications with large datasets, that exceed the
memory capacity of a DB instance.

Topics

• Overview of Aurora Optimized Reads in PostgreSQL

• Using Aurora Optimized Reads

• Use cases for Aurora Optimized Reads

• Monitoring DB instances that use Aurora Optimized Reads

• Best practices for Aurora Optimized Reads

Overview of Aurora Optimized Reads in PostgreSQL

Aurora Optimized Reads is available by default when you create a DB cluster that uses Graviton-
based R6gd and Intel-based R6id instances with non-volatile memory express (NVMe) storage. It is
available from the following PostgreSQL versions:

• 16.1 and all higher versions

• 15.4 and higher versions

• 14.9 and higher versions

Aurora Optimized Reads supports two capabilities: tiered cache and temporary objects.

Optimized Reads-enabled tiered cache - Using tiered cache, you can extend your DB instance
caching capacity by up to 5x the instance memory. This automatically maintains the cache to
contain the most recent, transactionally consistent data, freeing applications from the overhead of
managing the data currency of external result-set based caching solutions. It offers up to 8x better
latency for queries that were previously fetching data from Aurora storage.

Improving query performance with Aurora Optimized Reads 2050

Amazon Aurora User Guide for Aurora

In Aurora, the value for shared_buffers in the default parameter group is usually set to around
75% of the available memory. However, for the r6gd and r6id instance types, Aurora will reduce
the shared_buffers space by 4.5% to host the metadata for the Optimized Reads cache.

Optimized Reads-enabled temporary objects - Using temporary objects, you can achieve faster
query processing by placing the temporary files that are generated by PostgreSQL on the local
NVMe storage. This reduces the traffic to Elastic Block Storage (EBS) over the network. It offers up
to 2x better latency and throughput for advanced queries that sort, join, or merge large volumes of
data that do not fit within the memory capacity available on a DB instance.

On an Aurora I/O-Optimized cluster, Optimized Reads makes use of both tiered cache and
temporary objects on NVMe storage. With Optimized Reads-enabled tiered cache capability, Aurora
allocates 2x the instance memory for temporary objects, approximately 10% of the storage for
internal operations and the remaining storage as tiered cache. On an Aurora Standard cluster,
Optimized Reads makes use of only temporary objects.

Engine Cluster storage
configuration

Optimized
Reads-enabled
temporary
objects

Optimized
Reads-enabled
tiered cache

Versions
supported

Standard Yes NoAurora
PostgreSQL-
Compatible
Edition

I/O-Optimized Yes Yes

Aurora
PostgreSQL
version 16.1
and all higher
versions, 15.4
and higher,
version 14.9 and
higher

Note

A switch between IO-Optimized and Standard clusters on a NVMe-based DB instance class
causes an immediate database engine restart.

Overview of Aurora Optimized Reads in PostgreSQL 2051

Amazon Aurora User Guide for Aurora

In Aurora PostgreSQL, use the temp_tablespaces parameter to configure the table space where
the temporary objects are stored.

To check whether the temporary objects are configured, use the following command:

postgres=> show temp_tablespaces;
temp_tablespaces

aurora_temp_tablespace
(1 row)

The aurora_temp_tablespace is a tablespace configured by Aurora that points to the NVMe
local storage. You can't modify this parameter or switch back to Amazon EBS storage.

To check whether optimized reads cache is turned on, use the following command:

postgres=> show shared_preload_libraries;
 shared_preload_libraries
--
rdsutils,pg_stat_statements,aurora_optimized_reads_cache

Using Aurora Optimized Reads

When you provision an Aurora PostgreSQL DB instance with one of the NVMe-based DB instances,
the DB instance automatically uses Aurora Optimized Reads.

To turn on Aurora Optimized Reads, do one of the following:

• Create an Aurora PostgreSQL DB cluster using one of the NVMe-based DB instance classes. For
more information, see Creating an Amazon Aurora DB cluster.

• Modify an existing Aurora PostgreSQL DB cluster to use one of the NVMe-based DB instance
classes. For more information, see Modifying an Amazon Aurora DB cluster.

Aurora Optimized Reads is available in all AWS Regions where one or more of the DB instance
classes with local NVMe SSD storage are supported. For more information, see Aurora DB instance
classes.

To switch back to a non-optimized reads Aurora instance, modify the DB instance class of your
Aurora instance to the similar instance class without NVMe ephemeral storage for your database

Using 2052

Amazon Aurora User Guide for Aurora

workloads. For example, if the current DB instance class is db.r6gd.4xlarge, choose db.r6g.4xlarge
to switch back. For more information, see Modifying an Aurora DB instance.

Use cases for Aurora Optimized Reads

Optimized Reads-enabled tiered cache

The following are some use cases that can benefit from Optimized Reads with tiered cache:

• Internet scale applications such as payments processing, billing, e-commerce with strict
performance SLAs.

• Real-time reporting dashboards that run hundreds of point queries for metrics/data collection.

• Generative AI applications with the pgvector extension to search exact or nearest neighbors
across millions of vector embeddings.

Optimized Reads-enabled temporary objects

The following are some use cases that can benefit from Optimized Reads with temporary objects:

• Analytical queries that include Common Table Expressions (CTEs), derived tables, and grouping
operations.

• Read replicas that handle the unoptimized queries for an application.

• On-demand or dynamic reporting queries with complex operations such as GROUP BY and
ORDER BY that can't always use appropriate indexes.

• CREATE INDEX or REINDEX operations for sorting.

• Other workloads that use internal temporary tables.

Monitoring DB instances that use Aurora Optimized Reads

You can monitor your queries that use Optimized Reads-enabled tiered cache with the EXPLAIN
command as shown in the following example:

Postgres=> EXPLAIN (ANALYZE, BUFFERS) SELECT c FROM sbtest15 WHERE id=100000000

QUERY PLAN
--

Use cases 2053

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Overview.DBInstance.Modifying.html

Amazon Aurora User Guide for Aurora

 Index Scan using sbtest15_pkey on sbtest15 (cost=0.57..8.59 rows=1 width=121) (actual
 time=0.287..0.288 rows=1 loops=1)
 Index Cond: (id = 100000000)
 Buffers: shared hit=3 read=2 aurora_orcache_hit=2
 I/O Timings: shared/local read=0.264
 Planning:
 Buffers: shared hit=33 read=6 aurora_orcache_hit=6
 I/O Timings: shared/local read=0.607
 Planning Time: 0.929 ms
 Execution Time: 0.303 ms
(9 rows)
Time: 2.028 ms

Note

aurora_orcache_hit and aurora_storage_read fields in the Buffers section of
the explain plan are shown only when Optimized Reads is turned on and their values
are greater than zero. The read field is the total of the aurora_orcache_hit and
aurora_storage_read fields.

You can monitor DB instances that use Aurora Optimized Reads using the following CloudWatch
metrics:

• AuroraOptimizedReadsCacheHitRatio

• FreeEphemeralStorage

• ReadIOPSEphemeralStorage

• ReadLatencyEphemeralStorage

• ReadThroughputEphemeralStorage

• WriteIOPSEphemeralStorage

• WriteLatencyEphemeralStorage

• WriteThroughputEphemeralStorage

These metrics provide data about available instance store storage, IOPS, and throughput. For more
information about these metrics, see Instance-level metrics for Amazon Aurora.

Monitoring 2054

Amazon Aurora User Guide for Aurora

You can also use the pg_proctab extension to monitor NVMe storage.

postgres=>select * from pg_diskusage();

major | minor | devname | reads_completed | reads_merged | sectors_read |
 readtime | writes_completed | writes_merged | sectors_written | writetime | current_io
 | iotime | totaliotime
------+-------+---------------------+-----------------+--------------+--------------
+----------+------------------+---------------+-----------------+-----------
+------------+---------+-------------
 | | rdstemp | 23264 | 0 | 191450 |
 11670 | 1750892 | 0 | 24540576 | 819350 | 0 |
 3847580 | 831020
 | | rdsephemeralstorage | 23271 | 0 | 193098 |
 2620 | 114961 | 0 | 13845120 | 130770 | 0 |
 215010 | 133410
(2 rows)

Best practices for Aurora Optimized Reads

Use the following best practices for Aurora Optimized Reads:

• Monitor the storage space available on the instance store with the CloudWatch metric
FreeEphemeralStorage. If the instance store is reaching its limit because of the workload
on the DB instance, tune the concurrency and queries which heavily use temporary objects or
modify it to use a larger DB instance class.

• Monitor the CloudWatch metric for the Optimized Reads cache hit rate. Operations like VACUUM
modify large numbers of blocks very quickly. This can cause a temporary drop in the hit ratio.
The pg_prewarm extension can be used to load data into the buffer cache that allows Aurora to
proactively write some of those blocks to the Optimized Reads cache.

• You can enable cluster cache management (CCM) to warm up the buffer cache and tiered cache
on a tier-0 reader, which will be used as a failover target. When CCM is enabled, the buffer cache
is periodically scanned to write pages eligible for eviction in tiered cache. For more information
on CCM, see Fast recovery after failover with cluster cache management for Aurora PostgreSQL.

Best practices 2055

Amazon Aurora User Guide for Aurora

Using Babelfish for Aurora PostgreSQL

Babelfish for Aurora PostgreSQL extends your Aurora PostgreSQL DB cluster with the ability to
accept database connections from SQL Server clients. With Babelfish, applications that were
originally built for SQL Server can work directly with Aurora PostgreSQL with few code changes
compared to a traditional migration and without changing database drivers. For more information
about migrating, see Migrating a SQL Server database to Babelfish for Aurora PostgreSQL.

Babelfish provides an additional endpoint for an Aurora PostgreSQL database cluster that allows
it to understand the SQL Server wire-level protocol and commonly used SQL Server statements.
Client applications that use the Tabular Data Stream (TDS) wire protocol can connect natively to
the TDS listener port on Aurora PostgreSQL. To learn more about TDS, see [MS-TDS]: Tabular Data
Stream Protocol on the Microsoft website.

Note

Babelfish for Aurora PostgreSQL supports TDS versions 7.1 through 7.4.

Babelfish also provides access to data using the PostgreSQL connection. By default, both SQL
dialects supported by Babelfish are available through their native wire protocols at the following
ports:

• SQL Server dialect (T-SQL), clients connect to port 1433.

• PostgreSQL dialect (PL/pgSQL), clients connect to port 5432.

Babelfish runs the Transact-SQL (T-SQL) language with some differences. For more information,
see Differences between Babelfish for Aurora PostgreSQL and SQL Server.

In the following sections, you can find information about setting up and using a Babelfish for
Aurora PostgreSQL DB cluster.

Topics

• Babelfish limitations

• Understanding Babelfish architecture and configuration

• Creating a Babelfish for Aurora PostgreSQL DB cluster

• Migrating a SQL Server database to Babelfish for Aurora PostgreSQL

Using Babelfish for Aurora PostgreSQL 2056

https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-tds/b46a581a-39de-4745-b076-ec4dbb7d13ec
https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-tds/b46a581a-39de-4745-b076-ec4dbb7d13ec

Amazon Aurora User Guide for Aurora

• Database authentication with Babelfish for Aurora PostgreSQL

• Connecting to a Babelfish DB cluster

• Working with Babelfish

• Troubleshooting Babelfish

• Turning off Babelfish

• Babelfish version updates

• Babelfish for Aurora PostgreSQL reference

Using Babelfish for Aurora PostgreSQL 2057

Amazon Aurora User Guide for Aurora

Babelfish limitations

The following limitations currently apply to Babelfish for Aurora PostgreSQL:

• Babelfish currently doesn't support the following Aurora features:

• Amazon RDS Blue/Green Deployments

• AWS Identity and Access Management

• Database Activity Streams (DAS)

• PostgreSQL logical replication

• RDS Data API with Aurora PostgreSQL Serverless v2 and provisioned

• RDS Proxy with RDS for SQL Server

• Salted challenge response authentication mechanism (SCRAM)

• Query editor

• Babelfish currently doesn't support Kerberos based authentication for Active Directory groups.

• Babelfish doesn't provide the following client driver API support:

• API requests with the connection attributes related to Microsoft Distributed Transaction
Coordinator (MSDTC) aren't supported. These include XA calls by the SQLServerXAResource
class in the SQL server JDBC driver.

• Babelfish supports connection pooling with drivers that use the latest versions of the TDS
protocol. With older drivers, API requests with the connection attributes and methods related
to connection pooling aren't supported.

• Babelfish currently doesn't support the following Aurora PostgreSQL extensions:

• bloom

• btree_gin

• btree_gist

• citext

• cube

• hstore

• hypopg

• Logical replication using pglogical

• ltree

• pgcrypto
Babelfish limitations 2058

Amazon Aurora User Guide for Aurora

• Query plan management using apg_plan_mgmt

To learn more about PostgreSQL extensions, see Working with extensions and foreign data
wrappers.

• The open source jTDS driver that is designed as an alternative to the Microsoft JDBC driver is not
supported.

Understanding Babelfish architecture and configuration

You manage the Aurora PostgreSQL-Compatible Edition DB cluster running Babelfish much as
you would any Aurora DB cluster. That is, you benefit from the scalability, high-availability with
failover support, and built-in replication provided by an Aurora DB cluster. To learn more about
these capabilities, see Managing performance and scaling for Aurora DB clusters, High availability
for Amazon Aurora, and Replication with Amazon Aurora. You also have access to many other AWS
tools and utilities, including the following:

• Amazon CloudWatch is a monitoring and observability service that provides you with data and
actionable insights. For more information, see Monitoring Amazon Aurora metrics with Amazon
CloudWatch.

• Performance Insights is a database performance tuning and monitoring feature that helps
you quickly assess the load on your database. To learn more, see Monitoring DB load with
Performance Insights on Amazon Aurora.

• Aurora global databases span multiple AWS Regions, enabling low latency global reads and
providing fast recovery from the rare outage that might affect an entire AWS Region. For more
information, see Using Amazon Aurora global databases.

• Automatic software patching keeps your database up-to-date with the latest security and
feature patches when they become available.

• Amazon RDS events notify you by email or SMS message of important database events, such as
an automated failover. For more information, see Monitoring Amazon Aurora events.

Following, you can learn about Babelfish architecture and how the SQL Server databases that you
migrate are handled by Babelfish. When you create your Babelfish DB cluster, you need to make
some decisions up front about single database or multiple databases, collations, and other details.

Topics

• Babelfish architecture

Understanding Babelfish architecture and configuration 2059

https://github.com/milesibastos/jTDS/

Amazon Aurora User Guide for Aurora

• DB cluster parameter group settings for Babelfish

• Collations supported by Babelfish

• Managing Babelfish error handling with escape hatches

Babelfish architecture

When you create an Aurora PostgreSQL cluster with Babelfish turned on, Aurora provisions the
cluster with a PostgreSQL database named babelfish_db. This database is where all migrated
SQL Server objects and structures reside.

Note

In an Aurora PostgreSQL cluster, the babelfish_db database name is reserved for
Babelfish. Creating your own "babelfish_db" database on a Babelfish DB cluster prevents
Aurora from successfully provisioning Babelfish.

When you connect to the TDS port, the session is placed in the babelfish_db database. From
T-SQL, the structure looks similar to being connected to a SQL Server instance. You can see the
master, msdb, and tempdb databases, and the sys.databases catalog. You can create additional
user databases and switch between databases with the USE statement. When you create a SQL
Server user database, it's flattened into the babelfish_db PostgreSQL database. Your database
retains cross-database syntax and semantics equal to or similar to those provided by SQL Server.

Using Babelfish with a single database or multiple databases

When you create an Aurora PostgreSQL cluster to use with Babelfish, you choose between using
a single SQL Server database on its own or multiple SQL Server databases together. Your choice
affects how the names of SQL Server schemas inside the babelfish_db database appear from
Aurora PostgreSQL. The migration mode is stored in the migration_mode parameter. You must
not change this parameter after creating your cluster as you could lose access to all your previously
created SQL objects.

In single-db mode, the schema names of the SQL Server database remain the same in the
babelfish_db database of the PostgreSQL. If you choose to migrate only a single database,
the schema names of the migrated user database can be referenced in PostgreSQL with the
same names used in SQL Server. For example, the dbo and smith schemas reside inside the dbA
database.

Understanding Babelfish architecture and configuration 2060

Amazon Aurora User Guide for Aurora

When connecting through TDS, you can run USE dba to see schemas dbo and dev from T-SQL, as
you would in SQL Server. The unchanged schema names are also visible from PostgreSQL.

In multiple-database mode, the schema names of user databases become dbname_schemaname
when accessed from PostgreSQL. The schema names remain the same when accessed from T-SQL.

Understanding Babelfish architecture and configuration 2061

Amazon Aurora User Guide for Aurora

As shown in the image, multiple-database mode and single-database mode are the same as SQL
Server when connecting through the TDS port and using T-SQL. For example, USE dbA lists
schemas dbo and dev just as it does in SQL Server. The mapped schema names, such as dba_dbo
and dba_dev, are visible from PostgreSQL.

Each database still contains your schemas. The name of each database is prepended to the name of
the SQL Server schema, using an underscore as a delimiter, for example:

• dba contains dba_dbo and dba_dev.

• dbb contains dbb_dbo and dbb_test.

• dbc contains dbc_dbo and dbc_prod.

Inside the babelfish_db database, the T-SQL user still needs to run USE dbname to change
database context, so the look and feel remains similar to SQL Server.

Choosing a migration mode

Each migration mode has advantages and disadvantages. Choose your migration mode based on
the number of user databases you have, and your migration plans. After you create a cluster for
use with Babelfish, you must not change the migration mode as you might lose access to all your

Understanding Babelfish architecture and configuration 2062

Amazon Aurora User Guide for Aurora

previously created SQL objects. When choosing a migration mode, consider the requirements of
your user databases and clients.

When you create a cluster for use with Babelfish, Aurora PostgreSQL creates the system databases,
master and tempdb. If you created or modified objects in the system databases (master or
tempdb), make sure to recreate those objects in your new cluster. Unlike SQL Server, Babelfish
doesn't reinitialize tempdb after a cluster reboot.

Use single database migration mode in the following cases:

• If you are migrating a single SQL Server database. In single database mode, migrated schema
names when accessed from PostgreSQL are identical to those in original SQL Server schema
names. This reduces code changes to existing SQL queries if you want to optimize them to run
with a PostgreSQL connection.

• If your end goal is a complete migration to native Aurora PostgreSQL. Before migrating,
consolidate your schemas into a single schema (dbo) and then migrate into a single cluster to
lessen required changes.

Use multiple database migration mode in the following cases:

• If you want the default SQL Server experience with multiple user databases in the same instance.

• If multiple user databases need to be migrated together.

Understanding Babelfish architecture and configuration 2063

Amazon Aurora User Guide for Aurora

DB cluster parameter group settings for Babelfish

When you create an Aurora PostgreSQL DB cluster and choose Turn on Babelfish, a DB cluster
parameter group is created for you automatically if you choose Create new. This DB cluster
parameter group is based on the Aurora PostgreSQL DB cluster parameter group for the Aurora
PostgreSQL version chosen for the install, for example, Aurora PostgreSQL version 14. It's named
using the following general pattern:

custom-aurora-postgresql14-babelfish-compat-3

You can change the following settings during the cluster creation process but some of these can't
be changed once they're stored in the custom parameter group, so choose carefully:

• Single database or Multiple databases

• Default collation locale

• Collation name

• DB parameter group

To use an existing Aurora PostgreSQL DB cluster version 13 or higher parameter group, edit the
group and set the babelfish_status parameter to on. Specify any Babelfish options before
creating your Aurora PostgreSQL cluster. To learn more, see Working with parameter groups.

The following parameters control Babelfish preferences. Unless otherwise stated in the Description,
parameters are modifiable. The default value is included in the description. To see the allowable
values for any parameter, do as follows:

Note

When you associate a new DB parameter group with a DB instance, the modified static and
dynamic parameters are applied only after the DB instance is rebooted. However, if you
modify dynamic parameters in the DB parameter group after you associate it with the DB
instance, these changes are applied immediately without a reboot.

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. Choose Parameter groups from the navigation menu.

Understanding Babelfish architecture and configuration 2064

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Aurora User Guide for Aurora

3. Choose the default.aurora-postgresql14 DB cluster parameter group from the list.

4. Enter the name of a parameter in the search field. For example, enter
babelfishpg_tsql.default_locale in the search field to display this parameter and its
default value and allowable settings.

Note

Babelfish for Aurora PostgreSQL global databases works in secondary regions only if the
following parameters are turned on in those regions.

Parameter Description Apply Type Is Modifiable

babelfishpg_tds.td
s_default_numeric_
scale

Sets the default scale
of numeric type to
be sent in the TDS
column metadata i
f the engine doesn't
specify one. (Default:
8) (Allowable: 0–38)

dynamic true

babelfishpg_tds.td
s_default_numeric_
precision

An integer that sets
the default precision
of numeric type to
be sent in the TDS
column metadata i
f the engine doesn't
specify one. (Default:
38) (Allowable: 1–38)

dynamic true

babelfishpg_tds.td
s_default_packet_size

An integer that sets
the default packet
size for connecting
SQL Server clients.
(Default: 4096)
(Allowable: 512–
32767)

dynamic true

Understanding Babelfish architecture and configuration 2065

Amazon Aurora User Guide for Aurora

Parameter Description Apply Type Is Modifiable

babelfishpg_tds.td
s_default_protocol
_version

An integer that sets a
default TDS protocol
version for connectin
g clients. (Default:
DEFAULT) (Allowabl
e: TDSv7.0, TDSv7.1,
TDSv7.1.1, TDSv7.2,
TDSv7.3A, TDSv7.3B,
TDSv7.4, DEFAULT)

dynamic true

babelfishpg_tds.de
fault_server_name

A string that identifie
s the default name of
the Babelfish server.
(Default: Microsoft
SQL Server) (Allowabl
e: null)

dynamic true

babelfishpg_tds.td
s_debug_log_level

An integer that sets
the logging level
in TDS; 0 turns off
logging. (Default: 1)
(Allowable: 0, 1, 2, 3)

dynamic true

babelfishpg_tds.li
sten_addresses

A string that sets
the host name or IP
address or addresses
to listen for TDS on.
This parameter can't
be modified after the
Babelfish DB cluster
is created. (Default:
*) (Allowable: null)

– false

Understanding Babelfish architecture and configuration 2066

Amazon Aurora User Guide for Aurora

Parameter Description Apply Type Is Modifiable

babelfishpg_tds.port An integer that
specifies the TCP port
used for requests in
SQL Server syntax.
(Default: 1433)
(Allowable: 1–65535)

static true

babelfishpg_tds.td
s_ssl_encrypt

A boolean that turns
encryption on (0)
or off (1) for data
traversing the TDS
listener port. For
detailed informati
on about using SSL
for client connectio
ns, see Babelfish SSL
settings and client
connections. (Default:
0) (Allowable: 0, 1)

dynamic true

babelfishpg_tds.td
s_ssl_max_protocol
_version

A string that specifies
the highest SSL/
TLS protocol version
to use for the TDS
session. (Default:
'TLSv1.2') (Allowabl
e: 'TLSv1', 'TLSv1.1',
'TLSv1.2')

dynamic true

Understanding Babelfish architecture and configuration 2067

Amazon Aurora User Guide for Aurora

Parameter Description Apply Type Is Modifiable

babelfishpg_tds.td
s_ssl_min_protocol
_version

A string that specifies
the minimum SSL/
TLS protocol version
to use for the TDS
session. (Default:
'TLSv1.2' from Aurora
PostgreSQL version
16, 'TLSv1' for
versions older than
Aurora PostgreSQL
version 16) (Allowabl
e: 'TLSv1', 'TLSv1.1',
'TLSv1.2')

dynamic true

babelfishpg_tds.un
ix_socket_directories

A string that identifie
s the TDS server Unix
socket directory. This
parameter can't be
modified after the
Babelfish DB cluster
is created. (Default: /
tmp) (Allowable: null)

– false

babelfishpg_tds.un
ix_socket_group

A string that identifie
s the TDS server Unix
socket group. This
parameter can't be
modified after the
Babelfish DB cluster
is created. (Default:
rdsdb) (Allowable:
null)

– false

Understanding Babelfish architecture and configuration 2068

Amazon Aurora User Guide for Aurora

Parameter Description Apply Type Is Modifiable

babelfishpg_tsql.d
efault_locale

A string that specifies
the default locale
used for Babelfish
collations. The
default locale is
 the locale only and
doesn't include any
qualifiers.

Set this parameter
when you provision a
Babelfish DB cluster.
After the DB cluster is
provisioned, changes
to this parameter are
ignored. (Default:
en_US) (Allowable:
See tables)

static true

Understanding Babelfish architecture and configuration 2069

Amazon Aurora User Guide for Aurora

Parameter Description Apply Type Is Modifiable

babelfishpg_tsql.m
igration_mode

A non-modifiable list
that specifies support
for single- or multiple
user databases.
Set this parameter
when you provision a
Babelfish DB cluster.
After the DB cluster
is provisioned, you
can't modify this
parameter's value.
(Default: multi-
db from Aurora
PostgreSQL version
16, single-db for
versions older than
Aurora PostgreSQL
version 16) (Allowabl
e: single-db, multi-
db,null)

static true

Understanding Babelfish architecture and configuration 2070

Amazon Aurora User Guide for Aurora

Parameter Description Apply Type Is Modifiable

babelfishpg_tsql.s
erver_collation_name

A string that specifies
the name of the
collation used for
server-level actions.
Set this parameter
when you provision a
Babelfish DB cluster.
After the DB cluster
is provisioned, don't
modify the value
of this parameter.
(Default: bbf_unico
de_general_ci_as)
(Allowable: See
tables)

static true

babelfishpg_tsql.v
ersion

A string that sets
the output of
@@VERSION
variable. Don't
modify this value for
Aurora PostgreSQL
DB clusters. (Default:
null) (Allowable:
default)

dynamic true

Understanding Babelfish architecture and configuration 2071

Amazon Aurora User Guide for Aurora

Parameter Description Apply Type Is Modifiable

rds.babelfish_status A string that sets the
state of Babelfish
functionality. When
this parameter is
set to datatypes
only , Babelfish is
turned off but SQL
 Server data types
are still available
. (Default: off)
(Allowable: on, off,
datatypesonly)

static true

unix_socket_permis
sions

An integer that sets
the TDS server Unix
socket permissions.
This parameter can't
be modified after the
Babelfish DB cluster
is created. (Default:
0700) (Allowable: 0–
511)

– false

Understanding Babelfish architecture and configuration 2072

Amazon Aurora User Guide for Aurora

Babelfish SSL settings and client connections

When a client connects to the TDS port (default 1433), Babelfish compares the Secure Sockets
Layer (SSL) setting sent during the client handshake to the Babelfish SSL parameter setting
(tds_ssl_encrypt). Babelfish then determines if a connection is allowed. If a connection is
allowed, encryption behavior is either enforced or not, depending on your parameter settings and
the support for encryption offered by the client.

The table following shows how Babelfish behaves for each combination.

Client SSL setting Babelfish SSL setting Connectio
n allowed?

Value returned to client

ENCRYPT_OFF tds_ssl_encrypt=0 Allowed,
the login
packet is
encrypted

ENCRYPT_OFF

ENCRYPT_OFF tds_ssl_encrypt=1 Allowed,
the entire
connectio
n is
encrypted

ENCRYPT_REQ

ENCRYPT_ON tds_ssl_encrypt=0 Allowed,
the entire
connectio
n is
encrypted

ENCRYPT_ON

ENCRYPT_ON tds_ssl_encrypt=1 Allowed,
the entire
connectio
n is
encrypted

ENCRYPT_ON

ENCRYPT_NOT_SUP tds_ssl_encrypt=0 Yes ENCRYPT_NOT_SUP

Understanding Babelfish architecture and configuration 2073

Amazon Aurora User Guide for Aurora

Client SSL setting Babelfish SSL setting Connectio
n allowed?

Value returned to client

ENCRYPT_NOT_SUP tds_ssl_encrypt=1 No,
connection
closed

ENCRYPT_REQ

ENCRYPT_REQ tds_ssl_encrypt=0 Allowed,
the entire
connectio
n is
encrypted

ENCRYPT_ON

ENCRYPT_REQ tds_ssl_encrypt=1 Allowed,
the entire
connectio
n is
encrypted

ENCRYPT_ON

ENCRYPT_CLIENT_CERT tds_ssl_encrypt=0 No,
connection
closed

Unsupported

ENCRYPT_CLIENT_CERT tds_ssl_encrypt=1 No,
connection
closed

Unsupported

Understanding Babelfish architecture and configuration 2074

Amazon Aurora User Guide for Aurora

Collations supported by Babelfish

When you create an Aurora PostgreSQL DB cluster with Babelfish, you choose a collation for your
data. A collation specifies the sort order and bit patterns that produce the text or characters in
a given written human language. A collation includes rules comparing data for a given set of bit
patterns. Collation is related to localization. Different locales affect character mapping, sort order,
and the like. Collation attributes are reflected in the names of various collations. For information
about attributes, see the Babelfish collation attributes table.

Babelfish maps SQL Server collations to comparable collations provided by Babelfish. Babelfish
predefines Unicode collations with culturally sensitive string comparisons and sort orders. Babelfish
also provides a way to translate the collations in your SQL Server DB to the closest-matching
Babelfish collation. Locale-specific collations are provided for different languages and regions.

Some collations specify a code page that corresponds to a client-side encoding. Babelfish
automatically translates from the server encoding to the client encoding depending on the
collation of each output column.

Babelfish supports the collations listed in the Babelfish supported collations table. Babelfish maps
SQL Server collations to comparable collations provided by Babelfish.

Babelfish uses version 153.80 of the International Components for Unicode (ICU) collation library.
For more information about ICU collations, see Collation in the ICU documentation. To learn more
about PostgreSQL and collation, see Collation Support in the the PostgreSQL documentation.

Topics

• DB cluster parameters that control collation and locale

• Deterministic and nondeterministic collations and Babelfish

• Collations supported by Babelfish

• Default Collation in Babelfish

• Managing collations

• Collation limitations and behavior differences

DB cluster parameters that control collation and locale

The following parameters affect collation behavior.

Understanding Babelfish architecture and configuration 2075

https://unicode-org.github.io/icu/userguide/collation/
https://www.postgresql.org/docs/current/collation.html

Amazon Aurora User Guide for Aurora

babelfishpg_tsql.default_locale

This parameter specifies the default locale used by the collation. This parameter is used in
combination with attributes listed in the Babelfish collation attributes table to customize
collations for a specific language and region. The default value for this parameter is en-US.

The default locale applies to all Babelfish collation names that start with "BBF" and to all
SQL Server collations that are mapped to Babelfish collations. Changing the setting for this
parameter on an existing Babelfish DB cluster doesn't affect the locale of existing collations. For
the list of collations, see the Babelfish supported collations table.

babelfishpg_tsql.server_collation_name

This parameter specifies the default collation for the server (Aurora PostgreSQL DB cluster
instance) and the database. The default value is sql_latin1_general_cp1_ci_as. The
server_collation_name has to be a CI_AS collation because in T-SQL, the server collation
determines how identifiers are compared.

When you create your Babelfish DB cluster, you choose the Collation name from the selectable
list. These include the collations listed in the Babelfish supported collations table. Don't modify
the server_collation_name after the Babelfish database is created.

The settings you choose when you create your Babelfish for Aurora PostgreSQL DB cluster are
stored in the DB cluster parameter group associated with the cluster for these parameters and set
its collation behavior.

Deterministic and nondeterministic collations and Babelfish

Babelfish supports deterministic and nondeterministic collations:

• A deterministic collation evaluates characters that have identical byte sequences as equal. That
means that x and X aren't equal in a deterministic collation. Deterministic collations can be case-
sensitive (CS) and accent-sensitive (AS).

• A nondeterministic collation doesn't need an identical match. A nondeterministic collation
evaluates x and X as equal. Nondeterministic collations are case-insensitive (CI) and accent-
insensitive (AI).

In the table following, you can find some behavior differences between Babelfish and PostgreSQL
when using nondeterministic collations.

Understanding Babelfish architecture and configuration 2076

Amazon Aurora User Guide for Aurora

Babelfish PostgreSQL

Supports the LIKE clause for CI_AS collations.

Doesn't support the LIKE clause on AI
collations.

Doesn't support the LIKE clause on nondeterm
inistic collations.

Don't support pattern-matching operations on nondeterministic collations.

For a list of other limitations and behavior differences for Babelfish compared to SQL Server and
PostgreSQL, see Collation limitations and behavior differences.

Babelfish and SQL Server follow a naming convention for collations that describe the collation
attributes, as shown in the table following.

Attribute Description

AI Accent-insensitive.

AS Accent-sensitive.

BIN2 BIN2 requests data to be sorted in code point order. Unicode code point
order is the same character order for UTF-8, UTF-16, and UCS-2 encodings.
Code point order is a fast deterministic collation.

CI Case-insensitive.

CS Case-sensitive.

PREF To sort uppercase letters before lowercase letters, use a PREF collation
. If comparison is case-insensitive, the uppercase version of a letter sorts
before the lowercase version, if there is no other distinction. The ICU library
supports uppercase preference with colCaseFirst=upper , but not for
CI_AS collations.

PREF can be applied only to CS_AS deterministic collations.

Understanding Babelfish architecture and configuration 2077

Amazon Aurora User Guide for Aurora

Collations supported by Babelfish

Use the following collations as a server collation or an object collation.

Collation ID Notes

bbf_unicode_general_ci_as Supports case-insensitive comparison and the LIKE operator.

bbf_unicode_cp1_ci_as Nondeterministic collation also known as CP1252.

bbf_unicode_CP1250_ci_as Nondeterministic collation used to represent texts in Central
European and Eastern European languages that use Latin scri
pt.

bbf_unicode_CP1251_ci_as Nondeterministic collation for languages that use the Cyrillic
script.

bbf_unicode_cp1253_ci_as Nondeterministic collation used to represent modern Greek.

bbf_unicode_cp1254_ci_as Nondeterministic collation that supports Turkish.

bbf_unicode_cp1255_ci_as Nondeterministic collation that supports Hebrew.

bbf_unicode_cp1256_ci_as Nondeterministic collation used to write languages that use
Arabic script.

bbf_unicode_cp1257_ci_as Nondeterministic collation used to support Estonian, Latvian,
and Lithuanian languages.

bbf_unicode_cp1258_ci_as Nondeterministic collation used to write Vietnamese characte
rs.

Understanding Babelfish architecture and configuration 2078

https://www.unicode.org/Public/MAPPINGS/VENDORS/MICSFT/WindowsBestFit/bestfit1252.txt
https://www.unicode.org/Public/MAPPINGS/VENDORS/MICSFT/WindowsBestFit/bestfit1250.txt
https://www.unicode.org/Public/MAPPINGS/VENDORS/MICSFT/WindowsBestFit/bestfit1251.txt
https://www.unicode.org/Public/MAPPINGS/VENDORS/MICSFT/WindowsBestFit/bestfit1253.txt
https://www.unicode.org/Public/MAPPINGS/VENDORS/MICSFT/WindowsBestFit/bestfit1254.txt
https://www.unicode.org/Public/MAPPINGS/VENDORS/MICSFT/WindowsBestFit/bestfit1255.txt
https://www.unicode.org/Public/MAPPINGS/VENDORS/MICSFT/WindowsBestFit/bestfit1256.txt
https://www.unicode.org/Public/MAPPINGS/VENDORS/MICSFT/WindowsBestFit/bestfit1257.txt
https://www.unicode.org/Public/MAPPINGS/VENDORS/MICSFT/WindowsBestFit/bestfit1258.txt

Amazon Aurora User Guide for Aurora

Collation ID Notes

bbf_unicode_cp874_ci_as Nondeterministic collation used to write Thai characters.

sql_latin1_general_cp1250_c
i_as

Nondeterministic single-byte character encoding used to
 represent Latin characters.

sql_latin1_general_cp1251_c
i_as

Nondeterministic collation that supports Latin characters.

sql_latin1_general_cp1_ci_as Nondeterministic collation that supports Latin characters.

sql_latin1_general_cp1253_c
i_as

Nondeterministic collation that supports Latin characters.

sql_latin1_general_cp1254_c
i_as

Nondeterministic collation that supports Latin characters.

sql_latin1_general_cp1255_c
i_as

Nondeterministic collation that supports Latin characters.

sql_latin1_general_cp1256_c
i_as

Nondeterministic collation that supports Latin characters.

sql_latin1_general_cp1257_c
i_as

Nondeterministic collation that supports Latin characters.

sql_latin1_general_cp1258_c
i_as

Nondeterministic collation that supports Latin characters.

chinese_prc_ci_as Nondeterministic collation that supports Chinese (PRC).

Understanding Babelfish architecture and configuration 2079

https://www.unicode.org/Public/MAPPINGS/VENDORS/MICSFT/WindowsBestFit/bestfit874.txt
https://www.unicode.org/Public/MAPPINGS/VENDORS/MICSFT/WindowsBestFit/bestfit1250.txt
https://www.unicode.org/Public/MAPPINGS/VENDORS/MICSFT/WindowsBestFit/bestfit1251.txt
https://www.unicode.org/Public/MAPPINGS/VENDORS/MICSFT/WindowsBestFit/bestfit1252.txt
https://www.unicode.org/Public/MAPPINGS/VENDORS/MICSFT/WindowsBestFit/bestfit1253.txt
https://www.unicode.org/Public/MAPPINGS/VENDORS/MICSFT/WindowsBestFit/bestfit1254.txt
https://www.unicode.org/Public/MAPPINGS/VENDORS/MICSFT/WindowsBestFit/bestfit1255.txt
https://www.unicode.org/Public/MAPPINGS/VENDORS/MICSFT/WindowsBestFit/bestfit1256.txt
https://www.unicode.org/Public/MAPPINGS/VENDORS/MICSFT/WindowsBestFit/bestfit1257.txt
https://www.unicode.org/Public/MAPPINGS/VENDORS/MICSFT/WindowsBestFit/bestfit1258.txt

Amazon Aurora User Guide for Aurora

Collation ID Notes

cyrillic_general_ci_as Nondeterministic collation that supports Cyrillic.

finnish_swedish_ci_as Nondeterministic collation that supports Finnish.

french_ci_as Nondeterministic collation that supports French.

japanese_ci_as
Nondeterministic collation that supports Japanese. Supported
in Babelfish 2.1.0 and higher releases.

korean_wansung_ci_as Nondeterministic collation that supports Korean (with dictionar
y sort).

latin1_general_ci_as Nondeterministic collation that supports Latin characters.

modern_spanish_ci_as Nondeterministic collation that supports Modern Spanish.

polish_ci_as Nondeterministic collation that supports Polish.

thai_ci_as Nondeterministic collation that supports Thai.

traditional_spanish_ci_as Nondeterministic collation that supports Spanish (traditional
sort).

turkish_ci_as Nondeterministic collation that supports Turkish.

ukrainian_ci_as Nondeterministic collation that supports Ukrainian.

vietnamese_ci_as Nondeterministic collation that supports Vietnamese.

Understanding Babelfish architecture and configuration 2080

Amazon Aurora User Guide for Aurora

You can use the following collations as object collations.

Dialect Deterministic options Nondeterministic options

Arabic Arabic_CS_AS Arabic_CI_AS

Arabic_CI_AI

Arabic script BBF_Unicode_CP1256_CS_AS

BBF_Unicode_Pref_CP1256_CS_AS

BBF_Unicode_CP1256_CI_AI

BBF_Unicode_CP1256_CS_AI

Binary latin1_general_bin2

BBF_Unicode_BIN2

–

Central
European
and Eastern
European
languages that
use Latin script

BBF_Unicode_CP1250_CS_AS

BBF_Unicode_Pref_CP1250_CS_AS

BBF_Unicode_CP1250_CI_AI

BBF_Unicode_CP1250_CS_AI

Chinese Chinese_PRC_CS_AS Chinese_PRC_CI_AS

Chinese_PRC_CI_AI

Cyrillic_General Cyrillic_General_CS_AS Cyrillic_General_CI_AS

Cyrillic_General_CI_AI

Cyrillic script BBF_Unicode_CP1251_CS_AS

BBF_Unicode_Pref_CP1251_CS_AS

BBF_Unicode_CP1251_CI_AI

BBF_Unicode_CP1251_CS_AI

Understanding Babelfish architecture and configuration 2081

Amazon Aurora User Guide for Aurora

Dialect Deterministic options Nondeterministic options

Estonian Estonian_CS_AS Estonian_CI_AS

Estonian_CI_AI

Estonian,
Latvian, and
Lithuanian

BBF_Unicode_CP1257_CS_AS

BBF_Unicode_Pref_CP1257_CS_AS

BBF_Unicode_CP1257_CI_AI

BBF_Unicode_CP1257_CS_AI

Finnish_Swedish Finnish_Swedish_CS_AS Finnish_Swedish_CI_AS

Finnish_Swedish_CI_AI

French French_CS_AS French_CI_AS

French_CI_AI

Greek Greek_CS_AS Greek_CI_AS

Greek_CI_AI

Hebrew BBF_Unicode_CP1255_CS_AS

BBF_Unicode_Pref_CP1255_CS_AS

Hebrew_CS_AS

BBF_Unicode_CP1255_CI_AI

BBF_Unicode_CP1255_CS_AI

Hebrew_CI_AS

Hebrew_CI_AI

Japanese
(Babelfish 2.1.0
and higher)

Japanese_CS_AS Japanese_CI_AI

Japanese_CI_AS

Korean_Wa
msung

Korean_Wamsung_CS_AS Korean_Wamsung_CI_AS

Korean_Wamsung_CI_AI

Understanding Babelfish architecture and configuration 2082

Amazon Aurora User Guide for Aurora

Dialect Deterministic options Nondeterministic options

Latin character
s for code page
CP1252

latin1_general_cs_as

BBF_Unicode_General_CS_AS

BBF_Unicode_General_Pref_CS_AS

BBF_Unicode_Pref_CP1_CS_AS

BBF_Unicode_CP1_CS_AS

latin1_general_ci_as

latin1_general_ci_ai

latin1_general_cs_ai

BBF_Unicode_General_CI_AI

BBF_Unicode_General_CS_AI

BBF_Unicode_CP1_CI_AI

BBF_Unicode_CP1_CS_AI

Modern Greek BBF_Unicode_CP1253_CS_AS

BBF_Unicode_Pref_CP1253_CS_AS

BBF_Unicode_CP1253_CI_AI

BBF_Unicode_CP1253_CS_AI

Modern_Spanish Modern_Spanish_CS_AS Modern_Spanish_CI_AS

Modern_Spanish_CI_AI

Mongolian Mongolian_CS_AS Mongolian_CI_AS

Mongolian_CI_AI

Polish Polish_CS_AS Polish_CI_AS

Polish_CI_AI

Thai BBF_Unicode_CP874_CS_AS

BBF_Unicode_Pref_CP874_CS_AS

Thai_CS_AS

BBF_Unicode_CP874_CI_AI

BBF_Unicode_CP874_CS_AI

Thai_CI_AS, Thai_CI_AI

Understanding Babelfish architecture and configuration 2083

Amazon Aurora User Guide for Aurora

Dialect Deterministic options Nondeterministic options

Tradition
al_Spanish

Traditional_Spanish_CS_AS Traditional_Spanish_CI_AS

Traditional_Spanish_CI_AI

Turkish BBF_Unicode_CP1254_CS_AS

BBF_Unicode_Pref_CP1254_CS_AS

Turkish_CS_AS

BBF_Unicode_CP1254_CI_AI

BBF_Unicode_CP1254_CS_AI

Turkish_CI_AS, Turkish_CI_AI

Ukranian Ukranian_CS_AS Ukranian_CI_AS

Ukranian_CI_AI

Vietnamese BBF_Unicode_CP1258_CS_AS

BBF_Unicode_Pref_CP1258_CS_AS

Vietnamese_CS_AS

BBF_Unicode_CP1258_CI_AI

BBF_Unicode_CP1258_CS_AI

Vietnamese_CI_AS

Vietnamese_CI_AI

Default Collation in Babelfish

Earlier, the default collation of the collatable datatypes was pg_catalog.default. The
datatypes and the objects that depends on these datatypes follows cases-sensitive collation. This
condition potentially impacts the T-SQL objects of the data set with case-insensitive collation.
Starting with Babelfish 2.3.0, the default collation for the collatable data types (except TEXT and
NTEXT) is the same as the collation in the babelfishpg_tsql.server_collation_name
parameter. When you upgrade to Babelfish 2.3.0, the default collation is picked automatically at
the time of DB cluster creation, which doesn't create any visible impact.

Managing collations

The ICU library provides collation version tracking to ensure that indexes that depend on collations
can be reindexed when a new version of ICU becomes available. To see if your current database has

Understanding Babelfish architecture and configuration 2084

Amazon Aurora User Guide for Aurora

collations that need refreshing, you can use the following query after connecting using psql or or
pgAdmin:

SELECT pg_describe_object(refclassid, refobjid,
 refobjsubid) AS "Collation",
 pg_describe_object(classid, objid, objsubid) AS "Object"
 FROM pg_depend d JOIN pg_collation c ON refclassid = 'pg_collation'::regclass
 AND refobjid = c.oid WHERE c.collversion <> pg_collation_actual_version(c.oid)
 ORDER BY 1, 2;

This query returns output such as the following:

 Collation | Object
-----------+--------
(0 rows)

In this example, no collations need to be updated.

To get a listing of the predefined collations in your Babelfish database, you can use psql or
pgAdmin with the following query:

SELECT * FROM pg_collation;

Predefined collations are stored in the sys.fn_helpcollations table. You can use the following
command to display information about a collation (such as its lcid, style, and collate flags). To get a
listing of all collations by using sqlcmd, connect to the T-SQL port (1433, by default) and run the
following query:

1> :setvar SQLCMDMAXVARTYPEWIDTH 40
2> :setvar SQLCMDMAXFIXEDTYPEWIDTH 40
3> SELECT * FROM fn_helpcollations()
4> GO
name description
-- --
arabic_cs_as Arabic, case-sensitive, accent-sensitive
arabic_ci_ai Arabic, case-insensitive, accent-insensi
arabic_ci_as Arabic, case-insensitive, accent-sensiti
bbf_unicode_bin2 Unicode-General, case-sensitive, accent-
bbf_unicode_cp1250_ci_ai Default locale, code page 1250, case-ins
bbf_unicode_cp1250_ci_as Default locale, code page 1250, case-ins
bbf_unicode_cp1250_cs_ai Default locale, code page 1250, case-sen

Understanding Babelfish architecture and configuration 2085

Amazon Aurora User Guide for Aurora

bbf_unicode_cp1250_cs_as Default locale, code page 1250, case-sen
bbf_unicode_pref_cp1250_cs_as Default locale, code page 1250, case-sen
bbf_unicode_cp1251_ci_ai Default locale, code page 1251, case-ins
bbf_unicode_cp1251_ci_as Default locale, code page 1251, case-ins
bbf_unicode_cp1254_ci_ai Default locale, code page 1254, case-ins
...
(124 rows affected)

Lines 1 and 2 shown in the example narrow the output for documentation readability purposes
only.

1> SELECT SERVERPROPERTY('COLLATION')
2> GO
serverproperty

sql_latin1_general_cp1_ci_as

(1 rows affected)
1>

Collation limitations and behavior differences

Babelfish uses the ICU library for collation support. PostgreSQL is built with a specific version of
ICU and can match at most one version of a collation. Variations across versions are unavoidable,
as are minor variations across time as languages evolve. In the following list you can find known
limitations and behavior variations of Babelfish collations:

• Indexes and collation type dependency – An index on a user-defined type that depends on the
International Components for Unicode (ICU) collation library (the library used by Babelfish) isn't
invalidated when the library version changes.

• COLLATIONPROPERTY function – Collation properties are implemented only for the supported
Babelfish BBF collations. For more information, see the Babelfish supported collations table.

• Unicode sorting rule differences – SQL collations for SQL Server sort Unicode-encoded
data (nchar and nvarchar) differently than data that's not Unicode-encoded (char and
varchar). Babelfish databases are always UTF-8 encoded and always apply Unicode sorting
rules consistently, regardless of data type, so the sort order for char or varchar is the same as
it is for nchar or nvarchar.

• Secondary-equal collations and sorting behavior – The default ICU Unicode secondary-
equal (CI_AS) collation sorts punctuation marks and other nonalphanumeric characters before

Understanding Babelfish architecture and configuration 2086

Amazon Aurora User Guide for Aurora

numeric characters, and numeric characters before alphabetic characters. However, the order of
punctuation and other special characters is different.

• Tertiary collations, workaround for ORDER BY – SQL collations, such as
SQL_Latin1_General_Pref_CP1_CI_AS, support the TERTIARY_WEIGHTS function and the
ability to sort strings that compare equally in a CI_AS collation to be sorted uppercase first:
ABC, ABc, AbC, Abc, aBC, aBc, abC, and finally abc. Thus, the DENSE_RANK OVER (ORDER
BY column) analytic function assesses these strings as having the same rank but orders them
uppercase first within a partition.

You can get a similar result with Babelfish by adding a COLLATE clause to the ORDER BY clause
that specifies a tertiary CS_AS collation that specifies @colCaseFirst=upper. However, the
colCaseFirst modifier applies only to strings that are tertiary-equal (rather than secondary-
equal such as with CI_AS collation). Thus, you can't emulate tertiary SQL collations using a
single ICU collation.

As a workaround, we recommend that you modify applications that use
the SQL_Latin1_General_Pref_CP1_CI_AS collation to use the
BBF_SQL_Latin1_General_CP1_CI_AS collation first. Then add COLLATE
BBF_SQL_Latin1_General_Pref_CP1_CS_AS to any ORDER BY clause for this column.

• Character expansion – A character expansion treats a single character as equal to a sequence
of characters at the primary level. SQL Server's default CI_AS collation supports character
expansion. ICU collations support character expansion for accent-insensitive collations only.

When character expansion is required, then use a AI collation for comparisons. However, such
collations aren't currently supported by the LIKE operator.

• char and varchar encoding – When SQL collations are used for char or varchar data types, the
sort order for characters preceding ASCII 127 is determined by the specific code page for that
SQL collation. For SQL collations, strings declared as char or varchar might sort differently
than strings declared as nchar or nvarchar.

PostgreSQL encodes all strings with the database encoding, so all characters are converted to
UTF-8 and sorted using Unicode rules.

Because SQL collations sort nchar and nvarchar data types using Unicode rules, Babelfish
encodes all strings on the server using UTF-8. Babelfish sorts nchar and nvarchar strings the
same way it sorts char and varchar strings, using Unicode rules.

Understanding Babelfish architecture and configuration 2087

Amazon Aurora User Guide for Aurora

• Supplementary character – The SQL Server functions NCHAR, UNICODE, and LEN support
characters for code-points outside the Unicode Basic Multilingual Plane (BMP). In contrast, non-
SC collations use surrogate pair characters to handle supplementary characters. For Unicode data
types, SQL Server can represent up to 65,535 characters using UCS-2, or the full Unicode range
(1,114,114 characters) if supplementary characters are used.

• Kana-sensitive (KS) collations – A Kana-sensitive (KS) collation is one that treats Hiragana and
Katakana Japanese Kana characters differently. ICU supports the Japanese collation standard
JIS X 4061. The now deprecated colhiraganaQ [on | off] locale modifier might provide
the same functionality as KS collations. However, KS collations of the same name as SQL Server
aren't currently supported by Babelfish.

• Width-sensitive (WS) collations – When a single-byte character (half-width) and the same
character represented as a double-byte character (full-width) are treated differently, the
collation is called width-sensitive (WS). WS collations with the same name as SQL Server aren't
currently supported by Babelfish.

• Variation-selector sensitive (VSS) collations – Variation-selector sensitive (VSS)
collations distinguish between ideographic variation selectors in Japanese collations
Japanese_Bushu_Kakusu_140 and Japanese_XJIS_140. A variation sequence is made up
of a base character plus an additional variation selector. If you don't select the _VSS option, the
variation selector isn't considered in the comparison.

VSS collations aren't currently supported by Babelfish.

• BIN and BIN2 collations – A BIN2 collation sorts characters according to code point order. The
byte-by-byte binary order of UTF-8 preserves Unicode code point order, so this is also likely to
be the best-performing collation. If Unicode code point order works for an application, consider
using a BIN2 collation. However, using a BIN2 collation can result in data being displayed on the
client in an order that is culturally unexpected. New mappings to lowercase characters are added
to Unicode as time progresses, so the LOWER function might perform differently on different
versions of ICU. This is a special case of the more general collation versioning problem rather
than as something specific to the BIN2 collation.

Babelfish provides the BBF_Latin1_General_BIN2 collation with the Babelfish distribution to
collate in Unicode code point order. In a BIN collation only the first character is sorted as a wchar.
Remaining characters are sorted byte-by-byte, effectively in code point order according to its
encoding. This approach doesn't follow Unicode collation rules and isn't supported by Babelfish.

• Non-deterministic collations and CHARINDEX limitation – For Babelfish releases older than
version 2.1.0, you can't use CHARINDEX with non-deterministic collations. By default, Babelfish

Understanding Babelfish architecture and configuration 2088

Amazon Aurora User Guide for Aurora

uses a case-insensitive (non-deterministic) collation. Using CHARINDEX for older versions of
Babelfish raises the following runtime error:

nondeterministic collations are not supported for substring searches

Note

This limitation and workaround apply to Babelfish version 1.x only (Aurora PostgreSQL
13.x versions). Babelfish 2.1.0 and higher releases don't have this issue.

You can work around this issue in one of the following ways:

• Explicitly convert the expression to a case-sensitive collation and case-fold both arguments
by applying LOWER or UPPER. For example, SELECT charindex('x', a) FROM t1 would
become the following:

SELECT charindex(LOWER('x'), LOWER(a COLLATE sql_latin1_general_cp1_cs_as)) FROM t1

• Create a SQL function f_charindex, and replace CHARINDEX calls with calls to the following
function:

CREATE function f_charindex(@s1 varchar(max), @s2 varchar(max)) RETURNS int
AS
BEGIN
declare @i int = 1
WHILE len(@s2) >= len(@s1)
BEGIN
 if LOWER(@s1) = LOWER(substring(@s2,1,len(@s1))) return @i
 set @i += 1
 set @s2 = substring(@s2,2,999999999)
END
return 0
END
go

Understanding Babelfish architecture and configuration 2089

Amazon Aurora User Guide for Aurora

Managing Babelfish error handling with escape hatches

Babelfish mimics SQL behavior for control flow and transaction state whenever possible. When
Babelfish encounters an error, it returns an error code similar to the SQL Server error code. If
Babelfish can't map the error to a SQL Server code, it returns a fixed error code (33557097) and
takes specific actions based on the type of error, as follows:

• For compile time errors, Babelfish rolls back the transaction.

• For runtime errors, Babelfish ends the batch and rolls back the transaction.

• For protocol error between client and server, the transaction isn't rolled back.

If an error code can't be mapped to an equivalent code and the code for a similar error is available,
the error code is mapped to the alternative code. For example, the behaviors that cause SQL Server
codes 8143 and 8144 are both mapped to 8143.

Errors that can't be mapped don't respect a TRY... CATCH construct.

You can use @@ERROR to return a SQL Server error code, or the @@PGERROR function to return a
PostgreSQL error code. You can also use the fn_mapped_system_error_list function to return
a list of mapped error codes. For information about PostgreSQL error codes, see the PostgreSQL
website.

Modifying Babelfish escape hatch settings

To handle statements that might fail, Babelfish defines certain options called escape hatches. An
escape hatch is an option that specifies Babelfish behavior when it encounters an unsupported
feature or syntax.

You can use the sp_babelfish_configure stored procedure to control the settings of an escape
hatch. Use the script to set the escape hatch to ignore or strict. If it's set to strict, Babelfish
returns an error that you need to correct before continuing.

To apply changes to the current session and on the cluster level, include the server keyword.

The usage is as follows:

• To list all escape hatches and their status, plus usage information, run
sp_babelfish_configure.

Understanding Babelfish architecture and configuration 2090

https://www.postgresql.org/docs/current/errcodes-appendix.html
https://www.postgresql.org/docs/current/errcodes-appendix.html

Amazon Aurora User Guide for Aurora

• To list the named escape hatches and their values, for the current session or cluster-wide, run the
command sp_babelfish_configure 'hatch_name' where hatch_name is the identifier of
one or more escape hatches. hatch_name can use SQL wildcards, such as '%'.

• To set one or more escape hatches to the value specified, run sp_babelfish_configure
['hatch_name' [, 'strict'|'ignore' [, 'server']]. To make the settings
permanent on a cluster-wide level, include the server keyword, such as shown in the following:

EXECUTE sp_babelfish_configure 'escape_hatch_unique_constraint', 'ignore', 'server'

To set them for the current session only, don't use server.

• To reset all escape hatches to their default values, run sp_babelfish_configure 'default'
(Babelfish 1.2.0 and higher).

The string identifying the hatch (or hatches) can include SQL wildcards. For example, the following
sets all syntax escape hatches to ignore for the Aurora PostgreSQL cluster.

EXECUTE sp_babelfish_configure '%', 'ignore', 'server'

In the following table you can find descriptions and default values for the Babelfish predefined
escape hatches.

Escape hatch Description Default

escape_hatch_checkpoint
Allows the use of CHECKPOINT
statement in the procedural code,
but the CHECKPOINT statement is
currently not implemented.

ignore

escape_hatch_constraint_nam
e_for_default Controls Babelfish behavior

related to default constraint
names.

ignore

escape_hatch_database_misc_
options Controls Babelfish behavior

related to the following options
on CREATE or ALTER DATABASE:

ignore

Understanding Babelfish architecture and configuration 2091

Amazon Aurora User Guide for Aurora

Escape hatch Description Default

 CONTAINMENT, DB_CHAINI
NG, TRUSTWORTHY, PERSISTEN
T_LOG_BUFFER.

escape_hatch_for_replication
Controls Babelfish behavior
related to the [NOT] FOR
REPLICATION clause when
 creating or altering a table.

strict

escape_hatch_fulltext
Controls Babelfish behavior
related to FULLTEXT features,
such a DEFAULT_FULLTEXT_L
ANGUAGE in CREATE/ALTER
DATABASE, CREATE FULLTEXT
INDEX, or sp_fulltext_database.

ignore

escape_hatch_ignore_dup_key
Controls Babelfish behavior
related to CREATE/ALTER TABLE
and CREATE INDEX. When
IGNORE_DUP_KEY=ON, raises
 an error when set to strict (the
default) or ignores the error when
set to ignore (Babelfish version
1.2.0 and higher).

strict

escape_hatch_index_clustering
Controls Babelfish behavior
related to the CLUSTERED or
NONCLUSTERED keywords for
indexes and PRIMARY KEY or
UNIQUE constraints. When CLUS
TERED is ignored, the index or
constraint is still created as if
NONCLUSTERED was specified.

ignore

Understanding Babelfish architecture and configuration 2092

Amazon Aurora User Guide for Aurora

Escape hatch Description Default

escape_hatch_index_columnstore
Controls Babelfish behavior
related to the COLUMNSTORE
clause. If you specify ignore,
Babelfish creates a regular B-tree
index.

strict

escape_hatch_join_hints
Controls the behavior of keywords
in a JOIN operator: LOOP, HASH,
MERGE, REMOTE, REDUCE,
REDISTRIBUTE, REPLICATE.

ignore

escape_hatch_language_non_e
nglish Controls Babelfish behavior

related to languages other than
English for onscreen messages.
Babelfish currently supports only
 us_english for onscreen
messages. SET LANGUAGE might
use a variable containing the
language name, so the actual
 language being set can only be
detected at run time.

strict

escape_hatch_login_hashed_p
assword When ignored, suppresses the

error for the HASHED keyword
for CREATE LOGIN and ALTER
LOGIN.

strict

Understanding Babelfish architecture and configuration 2093

Amazon Aurora User Guide for Aurora

Escape hatch Description Default

escape_hatch_login_misc_options
When ignored, suppresses the
error for other keywords besides
 HASHED, MUST_CHANGE ,
OLD_PASSWORD , and UNLOCK
for CREATE LOGIN and ALTER
LOGIN.

strict

escape_hatch_login_old_password
When ignored, suppresses the
error for the OLD_PASSWORD
keyword for CREATE LOGIN and
ALTER LOGIN.

strict

escape_hatch_login_password
_must_change When ignored, suppresses the

error for the MUST_CHANGE
keyword for CREATE LOGIN and
ALTER LOGIN.

strict

escape_hatch_login_password
_unlock When ignored, suppresses the

error for the UNLOCK keyword
for CREATE LOGIN and ALTER
LOGIN.

strict

escape_hatch_nocheck_add_co
nstraint Controls Babelfish behavior

related to the WITH CHECK or
NOCHECK clause for constraints.

strict

escape_hatch_nocheck_existi
ng_constraint Controls Babelfish behavior

related to FOREIGN KEY or CHECK
constraints.

strict

Understanding Babelfish architecture and configuration 2094

Amazon Aurora User Guide for Aurora

Escape hatch Description Default

escape_hatch_query_hints
Controls Babelfish behavior
related to query hints. When
this option is set to ignore,
the server ignores hints that
use the OPTION (...) clause
to specify query processing
aspects. Examples include S
ELECT FROM ... OPTION(MERGE
JOIN HASH, MAXRECURSION
 10)).

ignore

escape_hatch_rowversion Controls the behavior of the
ROWVERSION and TIMESTAMP
datatypes. For usage information,
see Using Babelfish features with
limited implementation.

strict

escape_hatch_schemabinding_
function Controls Babelfish behavior

related to the WITH SCHEMABIN
DING clause. By default, the
WITH SCHEMABINDING clause
is ignored when specified with
the CREATE or ALTER FUNCTION
command.

ignore

escape_hatch_schemabinding_
procedure Controls Babelfish behavior

related to the WITH SCHEMABIN
DING clause. By default, the
WITH SCHEMABINDING clause is
ignored when specified with the
CREATE or ALTER PROCEDURE
command.

ignore

Understanding Babelfish architecture and configuration 2095

Amazon Aurora User Guide for Aurora

Escape hatch Description Default

escape_hatch_rowguidcol_column
Controls Babelfish behavior
related to the ROWGUIDCOL
clause when creating or altering a
table.

strict

escape_hatch_schemabinding_
trigger Controls Babelfish behavior

related to the WITH SCHEMABIN
DING clause. By default, the
WITH SCHEMABINDING clause
is ignored when specified with
the CREATE or ALTER TRIGGER
command.

ignore

escape_hatch_schemabinding_view
Controls Babelfish behavior
related to the WITH SCHEMABIN
DING clause. By default, the
WITH SCHEMABINDING clause is
ignored when specified with the
CREATE or ALTER VIEW command.

ignore

escape_hatch_session_settings
Controls Babelfish behavior
toward unsupported session-level
SET statements.

ignore

escape_hatch_showplan_all
Controls Babelfish behavior
related to SET SHOWPLAN_ALL
and SET STATISTICS PROFILE.
When set to ignore, they behave
 like SET BABELFISH_SHOWPLAN
_ALL and SET BABELFISH
_STATISTICS PROFILE; when set to
strict, they are silently ignored.

strict

Understanding Babelfish architecture and configuration 2096

Amazon Aurora User Guide for Aurora

Escape hatch Description Default

escape_hatch_storage_on_par
tition Controls Babelfish behavior

related to the ON partition
_scheme column clause
when defining partitioning.
Babelfish currently doesn't
implement partitioning.

strict

escape_hatch_storage_options
Escape hatch on any storage
option used in CREATE, ALTER
DATABASE, TABLE, INDEX. This
 includes clauses (LOG) ON,
TEXTIMAGE_ON, FILESTREAM_ON
that define storage locations
(partitions, file groups) for tables,
 indexes, and constraints, and also
for a database. This escape ha
tch setting applies to all of these
clauses (including ON [PRIMA
RY] and ON "DEFAULT"). The
exception is when a partition is
specified for a table or index with
ON partition_scheme (column).

ignore

escape_hatch_table_hints
Controls the behavior of table
hints specified using the WITH (...)
clause.

ignore

Understanding Babelfish architecture and configuration 2097

Amazon Aurora User Guide for Aurora

Escape hatch Description Default

escape_hatch_unique_constraint
When set to strict, an obscure
semantic difference between
SQL Server and PostgreSQL in
 handling NULL values on indexed
columns can raise errors. The
semantic difference only emerges
in unrealistic use cases, so you can
set this escape hatch to 'ignore'
to avoid seeing the error.

strict

Understanding Babelfish architecture and configuration 2098

Amazon Aurora User Guide for Aurora

Creating a Babelfish for Aurora PostgreSQL DB cluster

Babelfish for Aurora PostgreSQL is supported on Aurora PostgreSQL version 13.4 and higher.

You can use the AWS Management Console or the AWS CLI to create an Aurora PostgreSQL cluster
with Babelfish.

Note

In an Aurora PostgreSQL cluster, the babelfish_db database name is reserved for
Babelfish. Creating your own "babelfish_db" database on a Babelfish for Aurora PostgreSQL
prevents Aurora from successfully provisioning Babelfish.

Console

To create a cluster with Babelfish running with the AWS Management Console

1. Open the Amazon RDS console at https://console.aws.amazon.com/rds/, and choose Create
database.

2. For Choose a database creation method, do one of the following:

• To specify detailed engine options, choose Standard create.

Creating a Babelfish for Aurora PostgreSQL DB cluster 2099

https://console.aws.amazon.com/rds/

Amazon Aurora User Guide for Aurora

• To use preconfigured options that support best practices for an Aurora cluster, choose Easy
create.

3. For Engine type, choose Aurora (PostgreSQL Compatible).

4. Choose Show filters, and then choose Show versions that support the Babelfish for
PostgreSQL feature to list the engine types that support Babelfish. Babelfish is currently
supported on Aurora PostgreSQL 13.4 and higher versions.

5. For Available versions, choose an Aurora PostgreSQL version. To get the latest Babelfish
features, choose the highest Aurora PostgreSQL major version.

6. For Templates, choose the template that matches your use case.

7. For DB cluster identifier, enter a name that you can easily find later in the DB cluster list.

8. For Master username, enter an administrator user name. The default value for Aurora
PostgreSQL is postgres. You can accept the default or choose a different name. For example,
to follow the naming convention used on your SQL Server databases, you can enter sa (system
administrator) for the Master username.

If you don't create a user named sa at this time, you can create one later with your choice
of client. After creating the user, use the ALTER SERVER ROLE command to add it to the
sysadmin group (role) for the cluster.

Warning

Master username must always use lowercase characters failing which the DB cluster
can't connect to Babelfish via the TDS port.

Creating a Babelfish for Aurora PostgreSQL DB cluster 2100

Amazon Aurora User Guide for Aurora

9. For Master password, create a strong password and confirm the password.

10. For the options that follow, until the Babelfish settings section, specify your DB cluster
settings. For information about each setting, see Settings for Aurora DB clusters.

11. To make Babelfish functionality available, select the Turn on Babelfish box.

12. For DB cluster parameter group, do one of the following:

• Choose Create new to create a new parameter group with Babelfish turned on.

• Choose Choose existing to use an existing parameter group. If you use an existing group,
make sure to modify the group before creating the cluster and add values for Babelfish
parameters. For information about Babelfish parameters, see DB cluster parameter group
settings for Babelfish.

If you use an existing group, provide the group name in the box that follows.

13. For Database migration mode, choose one of the following:

• Single database to migrate a single SQL Server database.

In some cases, you might migrate multiple user databases together, with your end goal a
complete migration to native Aurora PostgreSQL without Babelfish. If the final applications
require consolidated schemas (a single dbo schema), make sure to first consolidate your SQL
Server databases into a single SQL server database. Then migrate to Babelfish using Single
database mode.

• Multiple databases to migrate multiple SQL Server databases (originating from a single
SQL Server installation). Multiple database mode doesn't consolidate multiple databases
that don't originate from a single SQL Server installation. For information about migrating
multiple databases, see Using Babelfish with a single database or multiple databases.

Creating a Babelfish for Aurora PostgreSQL DB cluster 2101

Amazon Aurora User Guide for Aurora

Note

From Aurora PostgreSQL 16 version, Multiple databases is chosen by default as the
Database migration mode.

14. For Default collation locale, enter your server locale. The default is en-US. For detailed
information about collations, see Collations supported by Babelfish.

15. For Collation name field, enter your default collation. The default is
sql_latin1_general_cp1_ci_as. For detailed information, see Collations supported by
Babelfish.

16. For Babelfish TDS port, enter the default port 1433. Currently, Babelfish only supports port
1433 for your DB cluster.

Creating a Babelfish for Aurora PostgreSQL DB cluster 2102

Amazon Aurora User Guide for Aurora

17. For DB parameter group, choose a parameter group or have Aurora create a new group for
you with default settings.

18. For Failover priority, choose a failover priority for the instance. If you don't choose a value,
the default is tier-1. This priority determines the order in which replicas are promoted when
recovering from a primary instance failure. For more information, see Fault tolerance for an
Aurora DB cluster.

19. For Backup retention period, choose the length of time (1–35 days) that Aurora retains
backup copies of the database. You can use backup copies for point-in-time restores (PITR) of
your database down to the second. The default retention period is seven days.

Creating a Babelfish for Aurora PostgreSQL DB cluster 2103

Amazon Aurora User Guide for Aurora

20. Choose Copy tags to snapshots to copy any DB instance tags to a DB snapshot when you
create a snapshot.

Note

When restoring a DB cluster from a snapshot, it does not restore as a Babelfish for
Aurora PostgreSQL DB cluster. You need to turn on the parameters that control
preferences in the DB cluster parameter group to enable Babelfish again. For more
information on the Babelfish parameters, see DB cluster parameter group settings for
Babelfish.

21. Choose Enable encryption to turn on encryption at rest (Aurora storage encryption) for this
DB cluster.

22. Choose Enable Performance Insights to turn on Amazon RDS Performance Insights.

23. Choose Enable Enhanced monitoring to start gathering metrics in real time for the operating
system that your DB cluster runs on.

24. Choose PostgreSQL log to publish the log files to Amazon CloudWatch Logs.

25. Choose Enable auto minor version upgrade to automatically update your Aurora DB cluster
when a minor version upgrade is available.

26. For Maintenance window, do the following:

• To choose a time for Amazon RDS to make modifications or perform maintenance, choose
Select window.

• To perform Amazon RDS maintenance at an unscheduled time, choose No preference.

27. Select the Enable deletion protection box to protect your database from being deleted by
accident.

If you turn on this feature, you can't directly delete the database. Instead, you need to modify
the database cluster and turn off this feature before deleting the database.

Creating a Babelfish for Aurora PostgreSQL DB cluster 2104

Amazon Aurora User Guide for Aurora

28. Choose Create database.

You can find your new database set up for Babelfish in the Databases listing. The Status column
displays Available when the deployment is complete.

AWS CLI

When you create an Babelfish for Aurora PostgreSQL; using the AWS CLI, you need to pass the
command the name of the DB cluster parameter group to use for the cluster. For more information,
see DB cluster prerequisites.

Before you can use the AWS CLI to create an Aurora PostgreSQL cluster with Babelfish, do the
following:

• Choose your endpoint URL from the list of services at Amazon Aurora endpoints and quotas.

Creating a Babelfish for Aurora PostgreSQL DB cluster 2105

https://docs.aws.amazon.com/general/latest/gr/aurora.html

Amazon Aurora User Guide for Aurora

• Create a parameter group for the cluster. For more information about parameter groups, see
Working with parameter groups.

• Modify the parameter group, adding the parameter that turns on Babelfish.

To create an Aurora PostgreSQL DB cluster with Babelfish using the AWS CLI

The examples that follow use the default Master username, postgres. Replace as needed with the
username that you created for your DB cluster, such as sa or whatever username you chose if you
didn't accept the default.

1. Create a parameter group.

For Linux, macOS, or Unix:

aws rds create-db-cluster-parameter-group \
--endpoint-url endpoint-url \
--db-cluster-parameter-group-name parameter-group \
--db-parameter-group-family aurora-postgresql14 \
--description "description"

For Windows:

aws rds create-db-cluster-parameter-group ^
--endpoint-url endpoint-URL ^
--db-cluster-parameter-group-name parameter-group ^
--db-parameter-group-family aurora-postgresql14 ^
--description "description"

2. Modify your parameter group to turn on Babelfish.

For Linux, macOS, or Unix:

aws rds modify-db-cluster-parameter-group \
--endpoint-url endpoint-url \
--db-cluster-parameter-group-name parameter-group \
--parameters
 "ParameterName=rds.babelfish_status,ParameterValue=on,ApplyMethod=pending-reboot"

For Windows:

Creating a Babelfish for Aurora PostgreSQL DB cluster 2106

Amazon Aurora User Guide for Aurora

aws rds modify-db-cluster-parameter-group ^
--endpoint-url endpoint-url ^
--db-cluster-parameter-group-name paramater-group ^
--parameters
 "ParameterName=rds.babelfish_status,ParameterValue=on,ApplyMethod=pending-reboot"

3. Identify your DB subnet group and the virtual private cloud (VPC) security group ID for your
new DB cluster, and then call the create-db-cluster command.

For Linux, macOS, or Unix:

aws rds create-db-cluster \
--db-cluster-identifier cluster-name\
--master-username postgres \
--manage-master-user-password \
--engine aurora-postgresql \
--engine-version 14.3 \
--vpc-security-group-ids security-group \
--db-subnet-group-name subnet-group-name \
--db-cluster-parameter-group-name parameter-group

For Windows:

aws rds create-db-cluster ^
--db-cluster-identifier cluster-name ^
--master-username postgres ^
--manage-master-user-password ^
--engine aurora-postgresql ^
--engine-version 14.3 ^
--vpc-security-group-ids security-group ^
--db-subnet-group-name subnet-group ^
--db-cluster-parameter-group-name parameter-group

This example specifies the --manage-master-user-password option to generate the
master user password and manage it in Secrets Manager. For more information, see Password
management with Amazon Aurora and AWS Secrets Manager. Alternatively, you can use the --
master-password option to specify and manage the password yourself.

Creating a Babelfish for Aurora PostgreSQL DB cluster 2107

https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-cluster.html

Amazon Aurora User Guide for Aurora

4. Explicitly create the primary instance for your DB cluster. Use the name of the cluster that you
created in step 3 for the --db-cluster-identifier argument when you call the create-db-
instance command, as shown following.

For Linux, macOS, or Unix:

aws rds create-db-instance \
--db-instance-identifier instance-name \
--db-instance-class db.r6g \
--db-subnet-group-name subnet-group \
--db-cluster-identifier cluster-name \
--engine aurora-postgresql

For Windows:

aws rds create-db-instance ^
--db-instance-identifier instance-name ^
--db-instance-class db.r6g ^
--db-subnet-group-name subnet-group ^
--db-cluster-identifier cluster-name ^
--engine aurora-postgresql

Creating a Babelfish for Aurora PostgreSQL DB cluster 2108

https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-instance.html
https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-instance.html

Amazon Aurora User Guide for Aurora

Migrating a SQL Server database to Babelfish for Aurora PostgreSQL

You can use Babelfish for Aurora PostgreSQL to migrate an SQL Server database to an Amazon
Aurora PostgreSQL DB cluster. Before migrating, review Using Babelfish with a single database or
multiple databases.

Topics

• Overview of the migration process

• Evaluating and handling differences between SQL Server and Babelfish

• Import/export tools for migrating from SQL Server to Babelfish

Overview of the migration process

The following summary lists the steps required to successfully migrate your SQL Server application
and make it work with Babelfish. For information about the tools you can use for the export and
import processes and for more detail, see Import/export tools for migrating from SQL Server to
Babelfish. To load the data, we recommend using AWS DMS with an Aurora PostgreSQL DB cluster
as the target endpoint.

1. Create a new Aurora PostgreSQL DB cluster with Babelfish turned on. To learn how, see Creating
a Babelfish for Aurora PostgreSQL DB cluster.

To import the various SQL artifacts exported from your SQL Server database, connect to the
Babelfish cluster using a SQL Server tool such as sqlcmd. For more information, see Using a SQL
Server client to connect to your DB cluster.

2. On the SQL Server database that you want to migrate, export the data definition language
(DDL). The DDL is SQL code that describes database objects that contain user data (such as
tables, indexes, and views) and user-written database code (such as stored procedures, user-
defined functions, and triggers).

For more information, see Using SQL Server Management Studio (SSMS) to migrate to Babelfish.

3. Run an assessment tool to evaluate the scope of any changes that you might need to make
so that Babelfish can effectively support the application running on SQL Server. For more
information, see Evaluating and handling differences between SQL Server and Babelfish.

4. Review the AWS DMS target endpoint limitations and update the DDL script as necessary. For
more information, see Limitations to using a PostgreSQL target endpoint with Babelfish tables
in Using for Aurora PostgreSQL as a target.

Migrating a SQL Server database to Babelfish 2109

https://docs.microsoft.com/en-us/sql/tools/sqlcmd-utility?view=sql-server-ver15
https://docs.aws.amazon.com/dms/latest/userguide/CHAP_Target.PostgreSQL.html#CHAP_Target.PostgreSQL.Babelfish

Amazon Aurora User Guide for Aurora

5. On your new Babelfish DB cluster, run the DDL within your specified T-SQL database to create
only the schemas, user-defined data types, and tables with their primary key constraints.

6. Use AWS DMS to migrate your data from SQL Server to Babelfish tables. For continuous
replication using SQL Server Change Data Capture or SQL Replication, use Aurora PostgreSQL
instead of Babelfish as the endpoint. To do so, see the Using Babelfish for Aurora PostgreSQL as
a target for AWS Database Migration Service.

7. When the data load completes, create all the remaining T-SQL objects that support the
application on your Babelfish cluster.

8. Reconfigure your client application to connect to the Babelfish endpoint instead of your SQL
Server database. For more information, see Connecting to a Babelfish DB cluster.

9. Modify your application as needed and retest. For more information, see Differences between
Babelfish for Aurora PostgreSQL and SQL Server.

You still need to assess your client-side SQL queries. The schemas generated from your SQL Server
instance convert only the server-side SQL code. We recommend that you take the following steps:

• Capture client-side queries by using the SQL Server Profiler with the TSQL_Replay predefined
template. This template captures T-SQL statement information that you can then replay
for iterative tuning and testing. You can start the profiler within SQL Server Management
Studio from the Tools menu. Choose SQL Server Profiler to open the profiler and choose the
TSQL_Replay template.

To use for your Babelfish migration, start a trace and then run your application using your
functional tests. The profiler captures the T-SQL statements. When you finish testing, stop the
trace. Save the result to an XML file with your client-side queries (File > Save as > Trace XML File
for Replay).

For more information, see SQL Server Profiler in the Microsoft documentation. For more
information about the TSQL_Replay template, see SQL Server Profiler Templates.

• For applications with complex client-side SQL queries, we recommend that you use Babelfish
Compass to analyze these queries for Babelfish compatibility. If the analysis indicates that the
client-side SQL statements contain unsupported SQL features, review the SQL aspects in the
client application and modify as needed.

• You can also capture the SQL queries as extended events (.xel format). To do so, use the SSMS
XEvent Profiler. After generating the .xel file, extract the SQL statements into .xml files that

Migrating a SQL Server database to Babelfish 2110

https://docs.aws.amazon.com/dms/latest/userguide/CHAP_Target.PostgreSQL.html#CHAP_Target.PostgreSQL.Babelfish
https://docs.aws.amazon.com/dms/latest/userguide/CHAP_Target.PostgreSQL.html#CHAP_Target.PostgreSQL.Babelfish
https://docs.microsoft.com/en-us/sql/tools/sql-server-profiler/sql-server-profiler?view=sql-server-ver16
https://docs.microsoft.com/en-us/sql/tools/sql-server-profiler/sql-server-profiler-templates?view=sql-server-ver16

Amazon Aurora User Guide for Aurora

Compass can then process. For more information, see Use the SSMS XEvent Profler in the
Microsoft documentation.

When you're satisfied with all testing, analysis, and any modifications needed for your migrated
application, you can start using your Babelfish database for production. To do so, stop the original
database and redirect live client applications to use the Babelfish TDS port.

Note

AWS DMS now supports replicating data from Babelfish. For more information, see AWS
DMS now supports Babelfish for Aurora PostgreSQL as a source.

Evaluating and handling differences between SQL Server and Babelfish

For best results, we recommend that you evaluate the generated DDL/DML and the client query
code before actually migrating your SQL Server database application to Babelfish. Depending on
the version of Babelfish and the specific features of SQL Server that your application implements,
you might need to refactor your application or use alternatives for functionality that aren't fully
supported yet in Babelfish.

• To assess your SQL Server application code, use Babelfish Compass on the generated DDL to
determine how much T-SQL code is supported by Babelfish. Identify T-SQL code that might need
modifications before running on Babelfish. For more information about this tool, see Babelfish
Compass tool on GitHub.

Note

Babelfish Compass is an open-source tool. Report any issues with Babelfish Compass
through GitHub instead of through AWS Support.

You can use Generate Script Wizard with SQL Server Management Studio (SSMS) to generate
the SQL file that is assessed by Babelfish Compass or AWS Schema Conversion Tool CLI. We
recommend the following steps to streamline the assessment.

1. On the Choose Objects page, choose Script entire database and all database objects.

Migrating a SQL Server database to Babelfish 2111

https://learn.microsoft.com/en-us/sql/relational-databases/extended-events/use-the-ssms-xe-profiler?view=sql-server-ver16
https://aws.amazon.com/about-aws/whats-new/2024/06/aws-dms-babelfish-aurora-postgresql-source/
https://aws.amazon.com/about-aws/whats-new/2024/06/aws-dms-babelfish-aurora-postgresql-source/
https://github.com/babelfish-for-postgresql/babelfish_compass/releases/latest
https://github.com/babelfish-for-postgresql/babelfish_compass/releases/latest

Amazon Aurora User Guide for Aurora

2. For the Set Scripting Options, choose Save as script file as a Single script file.

Migrating a SQL Server database to Babelfish 2112

Amazon Aurora User Guide for Aurora

3. Choose Advanced to change the default scripting options to identify features that normally are
set to false for a full assessment:

• Script Change Tracking to True

• Script Full-Text Indexes to True

• Script Triggers to True

• Script Logins to True

• Script Owner to True

• Script Object-Level Permissions to True

• Script Collations to True

Migrating a SQL Server database to Babelfish 2113

Amazon Aurora User Guide for Aurora

4. Perform the remaining steps in the wizard to generate the file.

Import/export tools for migrating from SQL Server to Babelfish

We recommend that you use AWS DMS as the primary tool for migrating from SQL Server to
Babelfish. However, Babelfish supports several other ways to migrate data using SQL Server tools
that includes the following.

• SQL Server Integration Services (SSIS) for all versions of Babelfish. For more information, see
Migrate from SQL Server to Aurora PostgreSQL using SSIS and Babelfish.

• Use the SSMS Import/Export Wizard for Babelfish versions 2.1.0 and later. This tool is available
through the SSMS, but it's also available as a standalone tool. For more information, see
Welcome to SQL Server Import and Export Wizard in the Microsoft documentation.

• The Microsoft bulk data copy program (bcp) utility lets you copy data from a Microsoft SQL
Server instance to a data file in the format you specify. For more information, see bcp Utility in
the Microsoft documentation. Babelfish now supports the data migration using the BCP client
and the bcp utility now supports -E flag (for identity columns) and -b flag (for batching inserts).
Certain bcp options aren't supported, including -C, -T, -G, -K, -R, -V, and -h.

Migrating a SQL Server database to Babelfish 2114

https://aws.amazon.com/blogs/database/migrate-from-sql-server-to-aurora-postgresql-using-ssis-and-babelfish/
https://aws.amazon.com/blogs/database/migrate-from-sql-server-to-aurora-postgresql-using-ssis-and-babelfish/
https://docs.microsoft.com/en-us/sql/integration-services/import-export-data/welcome-to-sql-server-import-and-export-wizard?view=sql-server-ver16
https://docs.microsoft.com/en-us/sql/integration-services/import-export-data/welcome-to-sql-server-import-and-export-wizard?view=sql-server-ver16
https://docs.microsoft.com/en-us/sql/tools/bcp-utility?view=sql-server-ver16

Amazon Aurora User Guide for Aurora

Using SQL Server Management Studio (SSMS) to migrate to Babelfish

We recommend generating separate files for each of the specific object types. You can use the
Generate Scripts wizard in SSMS for each set of DDL statements first, and then modify the objects
as a group to fix any issues found during the assessment.

Perform these steps to migrate the data using AWS DMS or other data migration methods. Run
these create script types first for a better and faster approach to load the data on the Babelfish
tables in Aurora PostgreSQL.

1. Run CREATE SCHEMA statements.

2. Run CREATE TYPE statements to create user-defined data types.

3. Run basic CREATE TABLE statements with the primary keys or unique constraints.

Perform the data load using the recommended import/export tool. Run the modified scripts for
the following steps to add the remaining database objects. You need the create table statements
to run these scripts for the constraints, triggers, and indexes. After the scripts generate, delete the
create table statements.

1. Run ALTER TABLE statements for the check constraints, foreign key constraints, default
constraints.

2. Run CREATE TRIGGER statements.

3. Run CREATE INDEX statements.

4. Run CREATE VIEW statements.

5. Run CREATE STORED PROCEDURE statements.

To generate scripts for each object type

Use the following steps to create the basic create table statements using the Generate Scripts
wizard in SSMS. Follow the same steps to generate scripts for the different object types.

1. Connect to your existing SQL Server instance.

2. Open the context (right-click) menu for a database name.

3. Choose Tasks, and then choose Generate Scripts....

4. On the Choose Objects pane, choose Select specific database objects. Choose Tables, select
all tables. Choose Next to continue.

Migrating a SQL Server database to Babelfish 2115

Amazon Aurora User Guide for Aurora

5. On the Set Scripting Options page, choose Advanced to open the Options settings. To
generate the basic create table statements, change the following default values:

• Script Defaults to False.

• Script Extended Properties to False. Babelfish does not support extended properties.

• Script Check Constraints to False. Script Foreign Keys to False.

Migrating a SQL Server database to Babelfish 2116

Amazon Aurora User Guide for Aurora

6. Choose OK.

7. On the Set Scripting Options page, choose Save as script file and then choose the Single
script file option. Enter your File name.

Migrating a SQL Server database to Babelfish 2117

Amazon Aurora User Guide for Aurora

8. Choose Next to view the Summary wizard page.

9. Choose Next to start the script generation.

You can continue to generate scripts for the other object types in the wizard. Instead of
choosing Finish after the file is saved, choose the Previous button three times to go back to
the Choose Objects page. Then repeat the steps in the wizard to generate scripts for the other
object types.

Migrating a SQL Server database to Babelfish 2118

Amazon Aurora User Guide for Aurora

Database authentication with Babelfish for Aurora PostgreSQL

Babelfish for Aurora PostgreSQL supports two ways to authenticate database users. Password
authentication is available by default for all Babelfish DB clusters. You can also add Kerberos
authentication for the same DB cluster.

Topics

• Password authentication with Babelfish

• Kerberos authentication with Babelfish

Password authentication with Babelfish

Babelfish for Aurora PostgreSQL supports password authentication. Passwords are stored in
encrypted form on disk. For more information about authentication on an Aurora PostgreSQL
cluster, see Security with Amazon Aurora PostgreSQL.

You might be prompted for credentials each time you connect to Babelfish. Any user migrated to or
created on Aurora PostgreSQL can use the same credentials on both the SQL Server port and the
PostgreSQL port. Babelfish doesn't enforce password policies, but we recommend that you do the
following:

• Require a complex password that's at least eight (8) characters long.

• Enforce a password expiration policy.

To review a complete list of database users, use the command SELECT * FROM pg_user;.

Database authentication with Babelfish for Aurora PostgreSQL 2119

Amazon Aurora User Guide for Aurora

Kerberos authentication with Babelfish

Babelfish for Aurora PostgreSQL 15.2 version supports authentication to your DB cluster using
Kerberos. This method allows you to use Microsoft Windows Authentication to authenticate users
when they connect to your Babelfish database. To do so, you must first configure your DB cluster
to use AWS Directory Service for Microsoft Active Directory for Kerberos authentication. For more
information, see What is AWS Directory Service? in the AWS Directory Service Administration Guide.

Setting up Kerberos Authentication

Babelfish for Aurora PostgreSQL DB cluster can connect using two different ports, but
Kerberos authentication setup is a one-time process. Therefore, you must first set up Kerberos
authentication for your DB cluster. For more information, see Setting up Kerberos authentication.
After completing the setup, ensure that you can connect with a PostgreSQL client using Kerberos.
For more information, see Connecting with Kerberos Authentication.

Login and user provisioning in Babelfish

Windows logins created from the Tabular Data Stream (TDS) port can be used either with the
TDS port or the PostgreSQL port. First, the login that can use Kerberos for authentication
must be provisioned from the TDS port before it is used by the T-SQL users and applications
to connect to a Babelfish database. When creating Windows logins, administrators can provide
the login using either the DNS domain name or the NetBIOS domain name. Typically, NetBIOS
domain is the subdomain of the DNS domain name. For example, if the DNS domain name is
CORP.EXAMPLE.COM, then the NetBIOS domain can be CORP. If the NetBIOS domain name format
is provided for a login, a mapping must exist to the DNS domain name.

Managing NetBIOS domain name to DNS domain name mapping

To manage mappings between the NetBIOS domain name and DNS domain name, Babelfish
provides system stored procedures to add, remove, and truncate mappings. Only a user with a
sysadmin role can run these procedures.

To create mapping between NetBIOS and DNS domain name, use the Babelfish provided system
stored procedure babelfish_add_domain_mapping_entry. Both arguments must have a valid
value and are not NULL.

Database authentication with Babelfish for Aurora PostgreSQL 2120

https://docs.aws.amazon.com/directoryservice/latest/admin-guide/what_is.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/postgresql-kerberos-setting-up.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/postgresql-kerberos-connecting.html

Amazon Aurora User Guide for Aurora

Example

EXEC babelfish_add_domain_mapping_entry 'netbios_domain_name',
 'fully_qualified_domain_name'

The following example shows how to create the mapping between the NetBIOS name CORP and
DNS domain name CORP.EXAMPLE.COM.

Example

EXEC babelfish_add_domain_mapping_entry 'corp', 'corp.example.com'

To delete an existing mapping entry, use the system stored procedure
babelfish_remove_domain_mapping_entry.

Example

EXEC babelfish_remove_domain_mapping_entry 'netbios_domain_name'

The following example shows how to remove the mapping for the NetBIOS name CORP.

Example

EXEC babelfish_remove_domain_mapping_entry 'corp'

To remove all existing mapping entries, use the system stored procedure
babelfish_truncate_domain_mapping_table:

Example

EXEC babelfish_truncate_domain_mapping_table

To view all mappings between NetBIOS and DNS domain name, use the following query.

Example

SELECT netbios_domain_name, fq_domain_name FROM babelfish_domain_mapping;

Managing Logins

 Create logins

Database authentication with Babelfish for Aurora PostgreSQL 2121

Amazon Aurora User Guide for Aurora

Connect to the DB through the TDS endpoint using a login that has the correct permissions. If
there is no database user created for the login, then the login is mapped to guest user. If the guest
user is not enabled, then the login attempt fails.

Create a Windows login using the following query. The FROM WINDOWS option allows
authentication using Active Directory.

CREATE LOGIN login_name FROM WINDOWS [WITH DEFAULT_DATABASE=database]

Example

The following example shows creating a login for the Active Directory user [corp\test1] with a
default database of db1.

CREATE LOGIN [corp\test1] FROM WINDOWS WITH DEFAULT_DATABASE=db1

This example assumes that there is a mapping between the NetBIOS domain CORP and the DNS
domain name CORP.EXAMPLE.COM. If there is no mapping, then you must provide the DNS domain
name [CORP.EXAMPLE.COM\test1].

Note

Logins based on Active Directory users, are limited to names of fewer than 21 characters.

 Drop login

To drop a login, use the same syntax as for any login, as shown in the following example:

DROP LOGIN [DNS domain name\login]

 Alter login

To alter a login, use the same syntax as for any login, as in the following example:

ALTER LOGIN [DNS domain name\login] { ENABLE|DISABLE|WITH DEFAULT_DATABASE=[master] }

The ALTER LOGIN command supports limited options for Windows logins, including the following:

• DISABLE – To disable a login. You can't use a disabled login for authentication.

Database authentication with Babelfish for Aurora PostgreSQL 2122

Amazon Aurora User Guide for Aurora

• ENABLE – To enable a disabled login.

• DEFAULT_DATABASE – To change the default database of a login.

Note

All password management is performed through AWS Directory Service, so the ALTER
LOGIN command doesn't allow database administrators to change or set passwords for
Windows logins.

Connecting to Babelfish for Aurora PostgreSQL with Kerberos authentication

Typically, the database users who authenticate using Kerberos are doing so from their client
machines. These machines are members of the Active Directory domain. They use Windows
Authentication from their client applications to access the Babelfish for Aurora PostgreSQL server
on the TDS port.

Connecting to Babelfish for Aurora PostgreSQL on the PostgreSQL port with Kerberos
authentication

You can use logins created from the TDS port with either the TDS port or the PostgreSQL
port. However, PostgreSQL uses case-sensitive comparisons by default for usernames. For
Aurora PostgreSQL to interpret Kerberos usernames as case-insensitive, you must set the
krb_caseins_users parameter as true in the custom Babelfish cluster parameter group. This
parameter is set to false by default. For more information, see Configuring for case-insensitive
user names. In addition, you must specify the login username in the format <login@DNS domain
name> from the PostgreSQL client applications. You can't use <DNS domain name\login> format.

Frequently occurring errors

You can configure forest trust relationships between your on-premises Microsoft Active Directory
and the AWS Managed Microsoft AD. For more information, see Create a trust relationship. Then,
you must connect using a specialized domain specific endpoint instead of using the Amazon
domain rds.amazonaws.com in the host endpoint. If you don't use the correct domain specific
endpoint, you might encounter the following error:

Error: “Authentication method "NTLMSSP" not supported (Microsoft SQL Server, Error:
 514)"

Database authentication with Babelfish for Aurora PostgreSQL 2123

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/postgresql-kerberos-setting-up.html#postgresql-kerberos-setting-up.create-logins.set-case-insentive
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/postgresql-kerberos-setting-up.html#postgresql-kerberos-setting-up.create-logins.set-case-insentive
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/postgresql-kerberos-setting-up.html#postgresql-kerberos-setting-up.create-trust

Amazon Aurora User Guide for Aurora

This error occurs when the TDS client can't cache the service ticket for the supplied endpoint URL.
For more information, see Connecting with Kerberos.

Database authentication with Babelfish for Aurora PostgreSQL 2124

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/postgresql-kerberos-connecting.html

Amazon Aurora User Guide for Aurora

Connecting to a Babelfish DB cluster

To connect to Babelfish, you connect to the endpoint of the Aurora PostgreSQL cluster running
Babelfish. Your client can use one of the following client drivers compliant with TDS version 7.1
through 7.4:

• Open Database Connectivity (ODBC)

• OLE DB Driver/MSOLEDBSQL

• Java Database Connectivity (JDBC) version 8.2.2 (mssql-jdbc-8.2.2) and higher

• Microsoft SqlClient Data Provider for SQL Server

• .NET Data Provider for SQL Server

• SQL Server Native Client 11.0 (deprecated)

• OLE DB Provider/SQLOLEDB (deprecated)

With Babelfish, you run the following:

• SQL Server tools, applications, and syntax on the TDS port, by default port 1433.

• PostgreSQL tools, applications, and syntax on the PostgreSQL port, by default port 5432.

To learn more about connecting to Aurora PostgreSQL in general, see Connecting to an Amazon
Aurora PostgreSQL DB cluster.

Note

Third-party developer tools using the SQL Server OLEDB provider to access metadata
aren't supported. We recommend you to use SQL Server JDBC, ODBC, or SQL Native client
connections for these tools.

Topics

• Finding the writer endpoint and port number

• Creating C# or JDBC client connections to Babelfish

• Using a SQL Server client to connect to your DB cluster

• Using a PostgreSQL client to connect to your DB cluster

Connecting to a Babelfish DB cluster 2125

Amazon Aurora User Guide for Aurora

Finding the writer endpoint and port number

To connect to your Babelfish DB cluster, you use the endpoint associated with the DB cluster's
writer (primary) instance. The instance must have a status of Available. It can take up to 20
minutes for the instances to be available after creating the Babelfish for Aurora PostgreSQL DB
cluster.

To find your database endpoint

1. Open the console for Babelfish.

2. Choose Databases from the navigation pane.

3. Choose your Babelfish for Aurora PostgreSQL DB cluster from those listed to see its details.

4. On the Connectivity & security tab, note the available cluster Endpoints values. Use the
cluster endpoint for the writer instance in your connection strings for any applications that
perform database write or read operations.

For more information about Aurora DB cluster details, see Creating an Amazon Aurora DB cluster.

Connecting to a Babelfish DB cluster 2126

Amazon Aurora User Guide for Aurora

Creating C# or JDBC client connections to Babelfish

In the following you can find some examples of using C# and JDBC classes to connect to an
Babelfish for Aurora PostgreSQL.

Example : Using C# code to connect to a DB cluster

string dataSource = 'babelfishServer_11_24';

//Create connection
connectionString = @"Data Source=" + dataSource
 +";Initial Catalog=your-DB-name"
 +";User ID=user-id;Password=password";

SqlConnection cnn = new SqlConnection(connectionString);
cnn.Open();

Example : Using generic JDBC API classes and interfaces to connect to a DB cluster

String dbServer =
 "database-babelfish.cluster-123abc456def.us-east-1-rds.amazonaws.com";
String connectionUrl = "jdbc:sqlserver://" + dbServer + ":1433;" +
 "databaseName=your-DB-name;user=user-id;password=password";

// Load the SQL Server JDBC driver and establish the connection.
System.out.print("Connecting Babelfish Server ... ");
Connection cnn = DriverManager.getConnection(connectionUrl);

Example : Using SQL Server-specific JDBC classes and interfaces to connect to a DB cluster

// Create datasource.
SQLServerDataSource ds = new SQLServerDataSource();
ds.setUser("user-id");
ds.setPassword("password");
String babelfishServer =
 "database-babelfish.cluster-123abc456def.us-east-1-rds.amazonaws.com";

ds.setServerName(babelfishServer);
ds.setPortNumber(1433);
ds.setDatabaseName("your-DB-name");

Connection con = ds.getConnection();

Connecting to a Babelfish DB cluster 2127

Amazon Aurora User Guide for Aurora

Connecting to a Babelfish DB cluster 2128

Amazon Aurora User Guide for Aurora

Using a SQL Server client to connect to your DB cluster

You can use a SQL Server client to connect with Babelfish on the TDS port. As of Babelfish 2.1.0
and higher releases, you can use the SSMS Object Explorer or the SSMS Query Editor to connect to
your Babelfish cluster.

Limitations

• In Babelfish 2.1.0 and older versions, using PARSE to check SQL syntax doesn't work as it should.
Rather than checking the syntax without running the query, the PARSE command runs the query
but doesn't display any results. Using the SMSS <Ctrl><F5> key combination to check syntax has
the same anomalous behavior, that is, Babelfish unexpectedly runs the query without providing
any output.

• Babelfish doesn't support MARS (Multiple Active Result Sets). Be sure that any client applications
that you use to connect to Babelfish aren't set to use MARS.

• For Babelfish 1.3.0 and older versions, only the Query Editor is supported for SSMS. To use SSMS
with Babelfish, be sure to open the Query Editor connection dialog in SSMS, and not the Object
Explorer. If the Object Explorer dialog does open, cancel the dialog and re-open the Query Editor.
In the following image, you can find the menu options to choose when connecting to Babelfish
1.3.0 or older versions.

For more information about interoperability and behavioral differences between SQL Server and
Babelfish, see Differences between Babelfish for Aurora PostgreSQL and SQL Server.

Using sqlcmd to connect to the DB cluster

You can connect to and interact with an Aurora PostgreSQL DB cluster that supports Babelfish by
only using version 19.1 and earlier SQL Server sqlcmd command line client. SSMS version 19.2
isn't supported to connect to a Babelfish cluster. Use the following command to connect.

sqlcmd -S endpoint,port -U login-id -P password -d your-DB-name

The options are as follows:

Connecting to a Babelfish DB cluster 2129

Amazon Aurora User Guide for Aurora

• -S is the endpoint and (optional) TDS port of the DB cluster.

• -U is the login name of the user.

• -P is the password associated with the user.

• -d is the name of your Babelfish database.

After connecting, you can use many of the same commands that you use with SQL Server. For
some examples, see Getting information from the Babelfish system catalog.

Using SSMS to connect to the DB cluster

You can connect to an Aurora PostgreSQL DB cluster running Babelfish by using Microsoft SQL
Server Management Studio (SSMS). SSMS includes a variety of tools, including the SQL Server
Import amd Export Wizard discussed in Migrating a SQL Server database to Babelfish for Aurora
PostgreSQL. For more information about SSMS, see Download SQL Server Management Studio
(SSMS) in the Microsoft documentation.

To connect to your Babelfish database with SSMS

1. Start SSMS.

2. Open the Connect to Server dialog box. To continue with the connection, do one of the
following:

• Choose New Query.

• If the Query Editor is open, choose Query, Connection, Connect.

3. Provide the following information for your database:

a. For Server type, choose Database Engine.

b. For Server name, enter the DNS name. For example, your server name should look similar
to the following.

cluster-name.cluster-555555555555.aws-region.rds.amazonaws.com,1433

c. For Authentication, choose SQL Server Authentication.

d. For Login, enter the user name that you chose when you created your database.

e. For Password, enter the password that you chose when you created your database.

Connecting to a Babelfish DB cluster 2130

https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms?view=sql-server-ver16
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms?view=sql-server-ver16

Amazon Aurora User Guide for Aurora

4. (Optional) Choose Options, and then choose the Connection Properties tab.

Connecting to a Babelfish DB cluster 2131

Amazon Aurora User Guide for Aurora

5. (Optional) For Connect to database, specify the name of the migrated SQL Server database to
connect to, and choose Connect.

If a message appears indicating that SSMS can't apply connection strings, choose OK.

If you are having trouble connecting to Babelfish, see Connection failure.

For more information about SQL Server connection issues, see Troubleshooting connections to
your SQL Server DB instance in the Amazon RDS User Guide.

Connecting to a Babelfish DB cluster 2132

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_ConnectToMicrosoftSQLServerInstance.html#USER_ConnectToMicrosoftSQLServerInstance.Troubleshooting
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_ConnectToMicrosoftSQLServerInstance.html#USER_ConnectToMicrosoftSQLServerInstance.Troubleshooting

Amazon Aurora User Guide for Aurora

Using a PostgreSQL client to connect to your DB cluster

You can use a PostgreSQL client to connect to Babelfish on the PostgreSQL port.

Using psql to connect to the DB cluster

You can download the PostgreSQL client from the PostgreSQL website. Follow the instructions
specific to your operating system version to install psql.

You can query an Aurora PostgreSQL DB cluster that supports Babelfish with the psql command
line client. When connecting, use the PostgreSQL port (by default, port 5432). Typically, you
don't need to specify the port number unless you changed it from the default. Use the following
command to connect to Babelfish from the psql client:

psql -h bfish-db.cluster-123456789012.aws-region.rds.amazonaws.com
-p 5432 -U postgres -d babelfish_db

The parameters are as follows:

• -h – The host name of the DB cluster (cluster endpoint) that you want to access.

• -p – The PostgreSQL port number used to connect to your DB instance.

• -d – The database that you want to connect to. The default is babelfish_db.

• -U – The database user account that you want to access. (The example shows the default master
username.)

When you run a SQL command on the psql client, you end the command with a semicolon. For
example, the following SQL command queries the pg_tables system view to return information
about each table in the database.

SELECT * FROM pg_tables;

The psql client also has a set of built-in metacommands. A metacommand is a shortcut that adjusts
formatting or provides a shortcut that returns meta-data in an easy-to-use format. For example,
the following metacommand returns similar information to the previous SQL command:

\d

Metacommands don't need to be terminated with a semicolon (;).

Connecting to a Babelfish DB cluster 2133

https://www.postgresql.org/download/
https://www.postgresql.org/docs/current/view-pg-tables.html

Amazon Aurora User Guide for Aurora

To exit the psql client, enter \q.

For more information about using the psql client to query an Aurora PostgreSQL cluster, see the
PostgreSQL documentation.

Using pgAdmin to connect to the DB cluster

You can use the pgAdmin client to access your data in native PostgreSQL dialect.

To connect to the cluster with the pgAdmin client

1. Download and install the pgAdmin client from the pgAdmin website.

2. Open the client and authenticate with pgAdmin.

3. Open the context (right-click) menu for Servers, and then choose Create, Server.

4. Enter information in the Create - Server dialog box.

On the Connection tab, add the Aurora PostgreSQL cluster address for Host and the
PostgreSQL port number (by default, 5432) for Port. Provide authentication details, and
choose Save.

Connecting to a Babelfish DB cluster 2134

https://www.postgresql.org/docs/14/app-psql.html
https://www.postgresql.org/docs/14/app-psql.html
https://www.pgadmin.org/

Amazon Aurora User Guide for Aurora

After connecting, you can use pgAdmin functionality to monitor and manage your Aurora
PostgreSQL cluster on the PostgreSQL port.

Connecting to a Babelfish DB cluster 2135

Amazon Aurora User Guide for Aurora

To learn more, see the pgAdmin web page.

Connecting to a Babelfish DB cluster 2136

https://www.pgadmin.org/

Amazon Aurora User Guide for Aurora

Working with Babelfish

Following, you can find usage information for Babelfish, including some of the differences between
working with Babelfish and SQL Server, and between Babelfish and PostgreSQL databases.

Topics

• Getting information from the Babelfish system catalog

• Differences between Babelfish for Aurora PostgreSQL and SQL Server

• Using Babelfish features with limited implementation

• Improving Babelfish query performance

• Using Aurora PostgreSQL extensions with Babelfish

• Babelfish supports linked servers

• Using Full Text Search in Babelfish

• Babelfish supports Geospatial data types

Getting information from the Babelfish system catalog

You can obtain information about the database objects that are stored in your Babelfish cluster by
querying many of the same system views as used in SQL Server. Each new release of Babelfish adds
support for more system views. For a list of available views currently available, see the SQL Server
system catalog views table.

These system views provide information from the system catalog (sys.schemas). In the case
of Babelfish, these views contain both SQL Server and PostgreSQL system schemas. To query
Babelfish for system catalog information, you can use the TDS port or the PostgreSQL port, as
shown in the following examples.

• Query the T-SQL port using sqlcmd or another SQL Server client.

1> SELECT * FROM sys.schemas
2> GO

This query returns SQL Server and Aurora PostgreSQL system schemas, as shown in the
following.

name

Working with Babelfish 2137

Amazon Aurora User Guide for Aurora

demographic_dbo
public
sys
master_dbo
tempdb_dbo
...

• Query the PostgreSQL port using psql or pgAdmin. This example uses the psql list schemas
metacommand (\dn):

babelfish_db=> \dn

The query returns the same result set as that returned by sqlcmd on the T-SQL port.

 List of schemas
 Name

 demographic_dbo

 public
 sys
 master_dbo
 tempdb_dbo
...

SQL Server system catalogs available in Babelfish

In the following table you can find the SQL Server views currently implemented in Babelfish. For
more information about the system catalogs in SQL Server, see System Catalog Views (Transact-
SQL) in Microsoft documentation.

View name Description or Babelfish limitation (if any)

sys.all_columns All columns in all tables and views

sys.all_objects All objects in all schemas

sys.all_sql_modules The union of sys.sql_modules and
sys.system_sql_modules

Working with Babelfish 2138

https://docs.microsoft.com/en-us/sql/relational-databases/system-catalog-views/catalog-views-transact-sql?view=sql-server-ver16
https://docs.microsoft.com/en-us/sql/relational-databases/system-catalog-views/catalog-views-transact-sql?view=sql-server-ver16

Amazon Aurora User Guide for Aurora

View name Description or Babelfish limitation (if any)

sys.all_views All views in all schemas

sys.columns All columns in user-defined tables and views

sys.configurations Babelfish support limited to a single read-only
configuration.

sys.data_spaces Contains a row for each data space. This can
be a filegroup, partition scheme, or FILESTREA
M data filegroup.

sys.database_files A per-database view that contains one row
for each file of a database as stored in the
database itself.

sys.database_mirroring For information, see sys.database_mirroring in
Microsoft Transact-SQL documentation.

sys.database_principals For information, see sys.database_principals in
Microsoft Transact-SQL documentation.

sys.database_role_members For information, see sys.database_role_
members in Microsoft Transact-SQL
documentation.

sys.databases All databases in all schemas

sys.dm_exec_connections For information, see sys.dm_exec_connections
in Microsoft Transact-SQL documentation.

sys.dm_exec_sessions For information, see sys.dm_exec_sessions in
Microsoft Transact-SQL documentation.

sys.dm_hadr_database_replic
a_states

For information, see sys.dm_hadr_databa
se_replica_states in Microsoft Transact-SQL
documentation.

Working with Babelfish 2139

https://docs.microsoft.com/en-us/sql/relational-databases/system-catalog-views/sys-database-mirroring-transact-sql?view=sql-server-ver16
https://docs.microsoft.com/en-us/sql/relational-databases/system-catalog-views/sys-database-principals-transact-sql?view=sql-server-ver16
https://docs.microsoft.com/en-us/sql/relational-databases/system-catalog-views/sys-database-role-members-transact-sql?view=sql-server-ver16
https://docs.microsoft.com/en-us/sql/relational-databases/system-catalog-views/sys-database-role-members-transact-sql?view=sql-server-ver16
https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-exec-connections-transact-sql?view=sql-server-ver16
https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-exec-sessions-transact-sql?view=sql-server-ver16
https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-hadr-database-replica-states-transact-sql?view=sql-server-ver16
https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-hadr-database-replica-states-transact-sql?view=sql-server-ver16

Amazon Aurora User Guide for Aurora

View name Description or Babelfish limitation (if any)

sys.dm_os_host_info For information, see sys.dm_os_host_info in
Microsoft Transact-SQL documentation.

sys.endpoints For information, see sys.endpoints in
Microsoft Transact-SQL documentation.

sys.indexes For information, see sys.indexes in Microsoft
Transact-SQL documentation.

sys.languages For information, see sys.languages in
Microsoft Transact-SQL documentation.

sys.schemas All schemas

sys.server_principals All logins and roles

sys.sql_modules For information, see sys.sql_modules in
Microsoft Transact-SQL documentation.

sys.sysconfigures Babelfish support limited to a single read-only
configuration.

sys.syscurconfigs Babelfish support limited to a single read-only
configuration.

sys.sysprocesses For information, see sys.sysprocesses in
Microsoft Transact-SQL documentation.

sys.system_sql_modules For information, see sys.system_sql_modules
in Microsoft Transact-SQL documentation.

sys.table_types For information, see sys.table_types in
Microsoft Transact-SQL documentation.

sys.tables All tables in a schema

Working with Babelfish 2140

https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-os-host-info-transact-sql?view=sql-server-ver16
https://docs.microsoft.com/en-us/sql/relational-databases/system-catalog-views/sys-endpoints-transact-sql?view=sql-server-ver16
https://docs.microsoft.com/en-us/sql/relational-databases/system-catalog-views/sys-indexes-transact-sql?view=sql-server-ver16
https://docs.microsoft.com/en-us/sql/relational-databases/system-catalog-views/sys-fulltext-languages-transact-sql?view=sql-server-ver16
https://docs.microsoft.com/en-us/sql/relational-databases/system-catalog-views/sys-sql-modules-transact-sql?view=sql-server-ver16
https://docs.microsoft.com/en-us/sql/relational-databases/system-compatibility-views/sys-sysprocesses-transact-sql?view=sql-server-ver16
https://docs.microsoft.com/en-us/sql/relational-databases/system-catalog-views/sys-system-sql-modules-transact-sql?view=sql-server-ver16
https://docs.microsoft.com/en-us/sql/relational-databases/system-catalog-views/sys-table-types-transact-sql?view=sql-server-ver16

Amazon Aurora User Guide for Aurora

View name Description or Babelfish limitation (if any)

sys.xml_schema_collections For information, see sys.xml_schema_col
lections in Microsoft Transact-SQL documenta
tion.

PostgreSQL implements system catalogs that are similar to the SQL Server object catalog views.
For a complete list of system catalogs, see System Catalogs in the PostgreSQL documentation.

DDL exports supported by Babelfish

From Babelfish 2.4.0 and 3.1.0 versions, Babelfish supports DDL exports using various tools. For
example, you can use this functionality from SQL Server Management Studio (SSMS) to generate
the data definition scripts for various objects in a Babelfish for Aurora PostgreSQL database. You
can then use the generated DDL commands in this script to create the same objects in another
Babelfish for Aurora PostgreSQL or SQL Server database.

Babelfish supports DDL exports for the following objects in the specified versions.

List of objects 2.4.0 3.1.0

User tables Yes Yes

Primary keys Yes Yes

Foreign keys Yes Yes

Unique constraints Yes Yes

Indexes Yes Yes

Check constraints Yes Yes

Views Yes Yes

Stored procedures Yes Yes

User-defined functions Yes Yes

Table-valued functions Yes Yes

Working with Babelfish 2141

https://docs.microsoft.com/en-us/sql/relational-databases/system-catalog-views/sys-xml-schema-collections-transact-sql?view=sql-server-ver16
https://docs.microsoft.com/en-us/sql/relational-databases/system-catalog-views/sys-xml-schema-collections-transact-sql?view=sql-server-ver16
https://www.postgresql.org/docs/current/catalogs.html

Amazon Aurora User Guide for Aurora

List of objects 2.4.0 3.1.0

Triggers Yes Yes

User Defined Datatypes No No

User Defined Table Types No No

Users No No

Logins No No

Sequences No No

Roles No No

Limitations with the exported DDLs

• Use escape hatches before recreating the objects with the exported DDLs – Babelfish doesn't
support all the commands in the exported DDL script. Use escape hatches to avoid errors caused
when recreating the objects from the DDL commands in Babelfish. For more information on
escape hatches, see Managing Babelfish error handling with escape hatches

• Objects containing CHECK constraints with explicit COLLATE clauses – The scripts with these
objects generated from a SQL Server database have different but equivalent collations as in
the Babelfish database. For example, a few collations, such as sql_latin1_general_cp1_cs_as,
sql_latin1_general_cp1251_cs_as, and latin1_general_cs_as are generated as
latin1_general_cs_as, which is the closest Windows collation.

Differences between Babelfish for Aurora PostgreSQL and SQL Server

Babelfish is an evolving Aurora PostgreSQL feature, with new functionality added in each release
since the initial offering in Aurora PostgreSQL 13.4. It's designed to provide T-SQL semantics on
top of PostgreSQL through the T-SQL dialect using the TDS port. Each new version of Babelfish
adds features and functions that better align with T-SQL functionality and behavior, as shown
in the Supported functionality in Babelfish by version table. For best results when working with
Babelfish, we recommend that you understand the differences that currently exist between the
T-SQL supported by SQL Server and Babelfish for the latest version. To learn more, see T-SQL
differences in Babelfish.

Working with Babelfish 2142

Amazon Aurora User Guide for Aurora

In addition to the differences between T-SQL supported by Babelfish and SQL Server, you might
also need to consider interoperability issues between Babelfish and PostgreSQL in the context of
the Aurora PostgreSQL DB cluster. As mentioned previously, Babelfish supports T-SQL semantics
on top of PostgreSQL through the T-SQL dialect using the TDS port. At the same time, the
Babelfish database can also be accessed through the standard PostgreSQL port with PostgreSQL
SQL statements. If you're considering using both PostgreSQL and Babelfish functionality in a
production deployment, you need to be aware of the potential interoperability issues between
schema names, identifiers, permissions, transactional semantics, multiple result sets, default
collations, and so on. In simple terms, when PostgreSQL statements or PostgreSQL access occur
in the context of Babelfish, interference between PostgreSQL and Babelfish can occur and can
potentially affecting syntax, semantics, and compatibility when new versions of Babelfish are
released. For complete information and guidance about all the considerations, see the Guidance on
Babelfish Interoperability in the Babelfish for PostgreSQL documentation.

Note

Before using both PostgreSQL native functionality and Babelfish functionality in the same
application context, we strongly recommend that you consider the issues discussed in the
Guidance on Babelfish Interoperability in the Babelfish for PostgreSQL documentation.
These interoperability issues (Aurora PostgreSQL and Babelfish) are relevant only if you
plan to use the PostgreSQL database instance in the same application context as Babelfish.

Topics

• Babelfish dump and restore

• T-SQL differences in Babelfish

• Transaction Isolation Levels in Babelfish

Babelfish dump and restore

Starting with version 4.0.0 and 3.4.0, Babelfish users can now utilize the dump and restore utilities
to backup and restore their databases. For more information, see Babelfish dump and restore.
This feature is built on top of PostgreSQL dump and restore utilities. For more information, see
pg_dump and see pg_restore. In order to effectively use this feature in Babelfish, you need to
use PostgreSQL-based tools that are specifically adapted for Babelfish. The backup and restore
feature for Babelfish differs significantly from that of SQL Server. For more information on these

Working with Babelfish 2143

https://babelfishpg.org/docs/usage/interoperability/
https://babelfishpg.org/docs/usage/interoperability/
https://babelfishpg.org/docs/usage/interoperability/
https://github.com/babelfish-for-postgresql/babelfish-for-postgresql/wiki/Babelfish-Dump-and-Restore
https://www.postgresql.org/docs/current/app-pgdump.html
https://www.postgresql.org/docs/current/app-pgrestore.html

Amazon Aurora User Guide for Aurora

differences, see Dump and restore functionality differences : Babelfish and SQL Server. Babelfish
for Aurora PostgreSQL provides additional capabilities for backing up and restoring Amazon Aurora
PostgreSQL DB clusters. For more information, see Backing up and restoring an Amazon Aurora DB
cluster.

T-SQL differences in Babelfish

Following, you can find a table of T-SQL functionality as supported in the current release of
Babelfish with some notes about differences in the behavior from that of SQL Server.

For more information about support in various versions, see Supported functionality in Babelfish
by version. For information about features that currently aren't supported, see Unsupported
functionality in Babelfish.

Babelfish is available with Aurora PostgreSQL-Compatible Edition. For more information about
Babelfish releases, see the Release Notes for Aurora PostgreSQL.

Functionality or syntax Description of behavior or difference

\ (line continuation character) The line continuation character (a backslash prior to a newline)
for character and hexadecimal strings isn't currently supported
. For character strings, the backslash-newline is interpreted as
characters in the string. For hexadecimal strings, backslash-
newline results in a syntax error.

@@version The format of the value returned by @@version is slightly
different from the value returned by SQL Server. Your code
might not work correctly if it depends on the formatting of
 @@version .

Aggregate functions Aggregate functions are partially supported (AVG, COUNT,
COUNT_BIG, GROUPING, MAX, MIN, STRING_AGG, and SUM
are supported). For a list of unsupported aggregate functions,
see Functions that aren't supported.

ALTER TABLE Supports adding or dropping a single column or constraint
only.

Working with Babelfish 2144

https://github.com/babelfish-for-postgresql/babelfish-for-postgresql/wiki/Babelfish-Dump-and-Restore#differences
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/Welcome.html

Amazon Aurora User Guide for Aurora

Functionality or syntax Description of behavior or difference

ALTER TABLE..ALTER
COLUMN

NULL and NOT NULL can't currently be specified. To change
the nullability of a column, use the postgreSQL statement
ALTER TABLE..{SET|DROP} NOT NULL.

Blank column names with no
column alias

The sqlcmd and psql utilities handle columns with blank
names differently:

•
SQL Server sqlcmd returns a blank column name.

•
PostgreSQL psql returns a generated column name.

CHECKSUM function Babelfish and SQL Server use different hashing algorithm
s for the CHECKSUM function. As a result, the hash values
generated by CHECKSUM function in Babelfish might be
different from those generated by CHECKSUM function in SQL
Server.

Column default When creating a column default, the constraint name is
ignored. To drop a column default, use the following syntax:
 ALTER TABLE...ALTER COLUMN..DROP DEFAULT...

Constraints PostgreSQL doesn't support turning on and turning off
individual constraints. The statement is ignored and a warning
is raised.

Constraints created with
DESC (descending) columns

Constraints are created with ASC (ascending) columns.

Constraints with IGNORE_DU
P_KEY

Constraints are created without this property.

Working with Babelfish 2145

Amazon Aurora User Guide for Aurora

Functionality or syntax Description of behavior or difference

CREATE, ALTER, DROP
SERVER ROLE

ALTER SERVER ROLE is supported only for sysadmin. All other
syntax is unsupported.

The T-SQL user in Babelfish has an experience that is similar
to SQL Server for the concepts of a login (server principal), a
database, and a database user (database principal).

CREATE, ALTER LOGIN clauses
are supported with limited
syntax

The CREATE LOGIN... PASSWORD clause, ...DEFAULT_DATABAS
E clause, and ...DEFAULT_LANGUAGE clause are supported. The
ALTER LOGIN... PASSWORD clause is supported, but ALTER
LOGIN... OLD_PASSWORD clause isn't supported. Only a login
that is a sysadmin member can modify a password.

CREATE DATABASE case-sens
itive collation

Case-sensitive collations aren't supported with the CREATE
DATABASE statement.

CREATE DATABASE keywords
and clauses

Options except COLLATE and CONTAINMENT=NONE aren't
supported. The COLLATE clause is accepted and is always
set to the value of babelfishpg_tsql.server_col
lation_name .

CREATE SCHEMA... supportin
g clauses

You can use the CREATE SCHEMA command to create an empty
schema. Use additional commands to create schema objects.

Database ID values are
different on Babelfish

The master and tempdb databases won't be database IDs 1
and 2.

FORMAT date type function is
supported with the following
limitations

Single character meridian isn't supported.

"yyy" format in SQL server returns 4 digits for year above
1000, but only 3 digits for others.

"g" and "R" formats aren't supported

"vi-VN" locale translation is slightly different.

Working with Babelfish 2146

Amazon Aurora User Guide for Aurora

Functionality or syntax Description of behavior or difference

Identifiers exceeding 63
characters

PostgreSQL supports a maximum of 63 characters for identifie
rs. Babelfish converts identifiers longer than 63 characters to a
name that includes a hash of the original name. For example, a
table created as "AB(ABC12345678901234567890123456789
01234567890123456789012345678901234567890" might
be converted to "ABC12345678901234567890123456789012
3456789012345678901234567890".

IDENTITY columns support IDENTITY columns are supported for data types tinyint,
smallint, int, bigint. numeric, and decimal.

SQL Server supports precision to 38 places for data types
 numeric and decimal in IDENTITY columns.

PostgreSQL supports precision to 19 places for data types
numeric and decimal in IDENTITY columns.

Indexes with IGNORE_DU
P_KEY

Syntax that creates an index that includes IGNORE_DUP_KEY
creates an index as if this property is omitted.

Indexes with more than 32
columns

An index can't include more than 32 columns. Included index
columns count toward the maximum in PostgreSQL but not in
SQL Server.

Indexes (clustered) Clustered indexes are created as if NONCLUSTERED was
specified.

Index clauses The following clauses are ignored: FILLFACTOR, ALLOW_PAG
E_LOCKS, ALLOW_ROW_LOCKS, PAD_INDEX, STATISTIC
S_NORECOMPUTE, OPTIMIZE_FOR_SEQUENTIAL_KEY,
SORT_IN_TEMPDB, DROP_EXISTING, ONLINE, COMPRESSI
ON_DELAY, MAXDOP, and DATA_COMPRESSION

JSON support Order of the name-value pairs isn't guaranteed. But the array
type remains unaffected.

Working with Babelfish 2147

Amazon Aurora User Guide for Aurora

Functionality or syntax Description of behavior or difference

LOGIN objects All options for LOGIN objects are not supported except for
PASSWORD, DEFAULT_DATABASE, DEFAULT_LANGUAGE,
ENABLE, DISABLE.

NEWSEQUENTIALID function Implemented as NEWID; sequential behavior isn't guarantee
d. When calling NEWSEQUENTIALID , PostgreSQL generates a
new GUID value.

OUTPUT clause is supported
with the following limitations

OUTPUT and OUTPUT INTO aren't supported in the same DML
query. References to non-target table of UPDATE or DELETE
operations in an OUTPUT clause aren't supported. OUTPUT...
DELETED *, INSERTED * aren't supported in the same query.

Procedure or function
parameter limit

Babelfish supports a maximum of 100 parameters for a
procedure or function.

ROWGUIDCOL This clause is currently ignored. Queries referencing $GUIDGOL
cause a syntax error.

SEQUENCE object support SEQUENCE objects are supported for the data types tinyint,
smallint, int, bigint, numeric, and decimal.

Aurora PostgreSQL supports precision to 19 places for data
types numeric and decimal in a SEQUENCE.

Server-level roles The sysadmin server-level role is supported. Other server-le
vel roles (other than sysadmin) aren't supported.

Database-level roles other
than db_owner

The db_owner database-level roles and user-defined
database-level roles are supported. Other database-level roles
(other than db_owner) aren't supported.

SQL keyword SPARSE The keyword SPARSE is accepted and ignored.

SQL keyword clause ON
filegroup

This clause is currently ignored.

Working with Babelfish 2148

Amazon Aurora User Guide for Aurora

Functionality or syntax Description of behavior or difference

SQL keywords CLUSTERED
 and NONCLUSTERED for

indexes and constraints

Babelfish accepts and ignores the CLUSTERED and
NONCLUSTERED keywords.

sysdatabases.cmptl
evel

sysdatabases.cmptlevel is always set to 120.

tempdb isn't reinitialized at
restart

Permanent objects (like tables and procedures) created in
tempdb aren't removed when the database is restarted.

TEXTIMAGE_ON filegroup Babelfish ignores the TEXTIMAGE_ON filegroup clause.

Time precision Babelfish supports 6-digit precision for fractional seconds. No
adverse effects are anticipated with this behavior.

Transaction isolation levels READUNCOMMITTED is treated the same as READCOMMITTED.

Virtual computed columns
(non-persistent)

Virtual computed columns are created as persistent.

Without SCHEMABINDING
clause

This clause isn't supported in functions, procedures, triggers, or
views. The object is created, but as if WITH SCHEMABINDING
was specified.

Working with Babelfish 2149

Amazon Aurora User Guide for Aurora

Transaction Isolation Levels in Babelfish

Babelfish supports Transaction Isolation Levels READ UNCOMMITTED, READ COMMITTED and
SNAPSHOT. Starting from Babelfish 3.4 version additional Isolation Levels REPEATABLE READ and
SERIALIZABLE are supported. All the Isolation Levels in Babelfish are supported with the behavior
of corresponding Isolation Levels in PostgreSQL. SQL Server and Babelfish use different underlying
mechanisms for implementing Transaction Isolation Levels (blocking for concurrent access, locks
held by transactions, error handling etc). And, there are some subtle differences in how concurrent
access may work out for different workloads. For more information on this PostgreSQL behavior,
see Transaction Isolation.

Topics

• Overview of the Transaction Isolation Levels

• Setting up the Transaction Isolation Levels

• Enabling or disabling Transaction Isolation Levels

• Differences between Babelfish and SQL Server Isolation Levels

Overview of the Transaction Isolation Levels

The original SQL Server Transaction Isolation Levels are based on pessimistic locking where only
one copy of data exists and queries must lock resources such as rows before accessing them. Later,
a variation of the Read Committed Isolation Level was introduced. This enables the use of row
versions to provide better concurrency between readers and writers using non-blocking access.
In addition, a new Isolation Level called Snapshot is available. It also uses row versions to provide
better concurrency than REPEATABLE READ Isolation Level by avoiding shared locks on read data
that are held till the end of the transaction.

Unlike SQL Server, all Transaction Isolation Levels in Babelfish are based on optimistic Locking
(MVCC). Each transaction sees a snapshot of the data either at the beginning of the statement
(READ COMMITTED) or at the beginning of the transaction (REPEATABLE READ, SERIALIZABLE),
regardless of the current state of the underlying data. Therefore, the execution behavior of
concurrent transactions in Babelfish might differ from SQL Server.

For example, consider a transaction with Isolation Level SERIALIZABLE that is initially blocked in
SQL Server but succeeds later. It may end up failing in Babelfish due to a serialization conflict with
a concurrent transaction that reads or updates the same rows. There could also be cases where
executing multiple concurrent transactions yields a different final result in Babelfish as compared

Working with Babelfish 2150

https://www.postgresql.org/docs/current/transaction-iso.html

Amazon Aurora User Guide for Aurora

to SQL Server. Applications that use Isolation Levels, should be thoroughly tested for concurrency
scenarios.

Isolation Levels in
SQL Server

Babelfish Isolation
Level

PostgreSQL Isolation
Level

Comments

READ UNCOMMITTED READ UNCOMMITTED READ UNCOMMITTED Read Uncommitt
ed is same as Read
Committed in
Babelfish/PostgreS
QL

READ COMMITTED READ COMMITTED READ COMMITTED SQL Server Read
Committed is
pessimistic locking
based, Babelfish
Read Committed is
snapshot (MVCC)
based.

READ COMMITTED
SNAPSHOT

READ COMMITTED READ COMMITTED Both are snapshot
(MVCC) based but not
exactly same.

SNAPSHOT SNAPSHOT REPEATABLE READ Exactly same.

REPEATABLE READ REPEATABLE READ REPEATABLE READ SQL Server Repeatabl
e Read is pessimist
ic locking based,
Babelfish Repeatabl
e Read is snapshot
(MVCC) based.

SERIALIZABLE SERIALIZABLE SERIALIZABLE SQL Server Serializa
ble is pessimistic
isolation, Babelfish
Serializable is

Working with Babelfish 2151

Amazon Aurora User Guide for Aurora

Isolation Levels in
SQL Server

Babelfish Isolation
Level

PostgreSQL Isolation
Level

Comments

snapshot (MVCC)
based.

Note

The table hints are not currently supported and their behavior is controlled by using the
Babelfish predefined escape hatch escape_hatch_table_hints.

Setting up the Transaction Isolation Levels

Use the following command to set Transaction Isolation Level:

Example

SET TRANSACTION ISOLATION LEVEL { READ UNCOMMITTED | READ COMMITTED | REPEATABLE READ |
 SNAPSHOT | SERIALIZABLE }

Enabling or disabling Transaction Isolation Levels

Transaction Isolation Levels REPEATABLE READ and SERIALIZABLE are
disabled by default in Babelfish and you have to explicitly enable them by
setting the babelfishpg_tsql.isolation_level_serializable or
babelfishpg_tsql.isolation_level_repeatable_read escape hatch to pg_isolation
using sp_babelfish_configure. For more information, see Managing Babelfish error handling
with escape hatches.

Below are examples for enabling or disabling the use of REPEATABLE READ and SERIALIZABLE
in the current session by setting their respective escape hatches. Optionally include server
parameter to set the escape hatch for the current session as well as for all subsequent new
sessions.

To enable the use of SET TRANSACTION ISOLATION LEVEL REPEATABLE READ in current session
only.

Working with Babelfish 2152

Amazon Aurora User Guide for Aurora

Example

EXECUTE sp_babelfish_configure 'isolation_level_repeatable_read', 'pg_isolation'

To enable the use of SET TRANSACTION ISOLATION LEVEL REPEATABLE READ in current session
and all consequent new sessions.

Example

EXECUTE sp_babelfish_configure 'isolation_level_repeatable_read', 'pg_isolation',
 'server'

To disable the use of SET TRANSACTION ISOLATION LEVEL REPEATABLE READ in current session
and consequent new sessions.

Example

EXECUTE sp_babelfish_configure 'isolation_level_repeatable_read', 'off', 'server'

To enable the use of SET TRANSACTION ISOLATION LEVEL SERIALIZABLE in current session only.

Example

EXECUTE sp_babelfish_configure 'isolation_level_serializable', 'pg_isolation'

To enable the use of SET TRANSACTION ISOLATION LEVEL SERIALIZABLE in current session and all
consequent new sessions.

Example

EXECUTE sp_babelfish_configure 'isolation_level_serializable', 'pg_isolation', 'server'

To disable the use of SET TRANSACTION ISOLATION LEVEL SERIALIZABLE in current session and
consequent new sessions.

Working with Babelfish 2153

Amazon Aurora User Guide for Aurora

Example

EXECUTE sp_babelfish_configure 'isolation_level_serializable', 'off', 'server'

Differences between Babelfish and SQL Server Isolation Levels

Below are a few examples on the nuances in how SQL Server and Babelfish implement the ANSI
Isolation Levels.

Note

• Isolation Level Repeatable Read and Snapshot are the same in Babelfish.

• Isolation Level Read Uncommitted and Read Committed are the same in Babelfish.

The following example shows how to create the base table for all the examples mentioned below:

CREATE TABLE employee (
 id sys.INT NOT NULL PRIMARY KEY,
 name sys.VARCHAR(255)NOT NULL,
 age sys.INT NOT NULL
);
INSERT INTO employee (id, name, age) VALUES (1, 'A', 10);
INSERT INTO employee (id, name, age) VALUES (2, 'B', 20);
INSERT INTO employee (id, name, age) VALUES (3, 'C', 30);

Topics

• BABELFISH READ UNCOMMITTED VS SQL SERVER READ UNCOMMITTED ISOLATION LEVEL

• BABELFISH READ COMMITTED VS SQL SERVER READ COMMITTED ISOLATION LEVEL

• BABELFISH READ COMMITTED VS SQL SERVER READ COMMITTED SNAPSHOT ISOLATION LEVEL

• BABELFISH REPEATABLE READ VS SQL SERVER REPEATABLE READ ISOLATION LEVEL

• BABELFISH SERIALIZABLE VS SQL SERVER SERIALIZABLE ISOLATION LEVEL

Working with Babelfish 2154

Amazon Aurora User Guide for Aurora

BABELFISH READ UNCOMMITTED VS SQL SERVER READ UNCOMMITTED ISOLATION LEVEL

DIRTY READS IN SQL SERVER

Transaction 1 Transaction 2 SQL Server Read
Uncommitted

Babelfish Read
Uncommitted

BEGIN TRANSACTION BEGIN TRANSACTION

SET TRANSACTION
ISOLATION LEVEL
READ UNCOMMITT
ED;

SET TRANSACTION
ISOLATION LEVEL
READ UNCOMMITT
ED;

UPDATE employee
SET age=0;

Update successful. Update successful.

INSERT INTO
employee VALUES (4,
'D', 40);

Insert successful. Insert successful.

SELECT * FROM
employee;

Transaction 1 can
see uncommitt
ed changes from
Transaction 2.

Same as Read
Committed in
Babelfish. Uncommitt
ed changes from
Transaction 2 are not
visible to Transaction
1.

COMMIT

SELECT * FROM
employee;

Sees the changes
committed by
Transaction 2.

Sees the changes
committed by
Transaction 2.

Working with Babelfish 2155

Amazon Aurora User Guide for Aurora

BABELFISH READ COMMITTED VS SQL SERVER READ COMMITTED ISOLATION LEVEL

READ - WRITE BLOCKING

Transaction 1 Transaction 2 SQL Server Read
Committed

Babelfish Read
Committed

BEGIN TRANSACTION BEGIN TRANSACTION

SET TRANSACTION
ISOLATION LEVEL
READ COMMITTED;

SET TRANSACTION
ISOLATION LEVEL
READ COMMITTED;

SELECT * FROM
employee;

UPDATE employee
SET age=100 WHERE
id = 1;

Update successful. Update successful.

UPDATE employee
SET age = 0 WHERE
age IN (SELECT
MAX(age) FROM
employee);

Step blocked until
Transaction 2
commits.

Transaction 2
changes is not visible
yet. Updates row with
id=3.

COMMIT Transaction 2
commits successfu
lly. Transaction 1 is
now unblocked and
sees the update from
Transaction 2.

Transaction 2
commits successfully.

SELECT * FROM
employee;

Transaction 1
updates row with id =
1.

Transaction 1
updates row with id =
3.

Working with Babelfish 2156

Amazon Aurora User Guide for Aurora

BABELFISH READ COMMITTED VS SQL SERVER READ COMMITTED SNAPSHOT ISOLATION
LEVEL

BLOCKING BEHAVIOUR ON NEW INSERTED ROWS

Transaction 1 Transaction 2 SQL Server Read
Committed
Snapshot

Babelfish Read
Committed

BEGIN TRANSACTION BEGIN TRANSACTION

SET TRANSACTION
ISOLATION LEVEL
READ COMMITTED;

SET TRANSACTION
ISOLATION LEVEL
READ COMMITTED;

INSERT INTO
employee VALUES (4,
'D', 40);

UPDATE employee
SET age = 99;

Step is blocked
until transaction 1
commits. Inserted
row is locked by
transaction 1.

Updated three rows.
The newly inserted
row is not visible yet.

COMMIT Commit successful.
Transaction 2 is now
unblocked.

Commit successful.

SELECT * FROM
employee;

All 4 rows have
age=99.

Row with id = 4 has
age value 40 since
it was not visible to
transaction 2 during
update query. Other
rows are updated to
age=99.

Working with Babelfish 2157

Amazon Aurora User Guide for Aurora

BABELFISH REPEATABLE READ VS SQL SERVER REPEATABLE READ ISOLATION LEVEL

READ / WRITE BLOCKING BEHAVIOR

Transaction 1 Transaction 2 SQL Server
Repeatable Read

Babelfish Repeatable
Read

BEGIN TRANSACTION BEGIN TRANSACTION

SET TRANSACTION
ISOLATION LEVEL
REPEATABLE READ;

SET TRANSACTION
ISOLATION LEVEL
REPEATABLE READ;

SELECT * FROM
employee;

UPDATE employee
SET name='A_TXN1'
WHERE id=1;

SELECT * FROM
employee WHERE id !
= 1;

SELECT * FROM
employee;

Transaction 2
is blocked until
Transaction 1
commits.

Transaction 2
proceeds normally.

COMMIT

SELECT * FROM
employee;

Update from
Transaction 1 is
visible.

Update from
Transaction 1 is not
visible.

COMMIT

SELECT * FROM
employee;

sees the update from
Transaction 1.

sees the update from
Transaction 1.

Working with Babelfish 2158

Amazon Aurora User Guide for Aurora

WRITE / WRITE BLOCKING BEHAVIOR

Transaction 1 Transaction 2 SQL Server
Repeatable Read

Babelfish Repeatable
Read

BEGIN TRANSACTION BEGIN TRANSACTION

SET TRANSACTION
ISOLATION LEVEL
REPEATABLE READ;

SET TRANSACTION
ISOLATION LEVEL
REPEATABLE READ;

UPDATE employee
SET name='A_TXN1'
WHERE id=1;

UPDATE employee
SET name='A_TXN2'
WHERE id=1;

Transaction 2
blocked.

Transaction 2
blocked.

COMMIT Commit successful
and transaction 2 has
been unblocked.

Commit successfu
l and transaction 2
fails with error could
not serialize access
due to concurrent
update.

COMMIT Commit successful. Transaction 2 has
already been aborted.

SELECT * FROM
employee;

Row with id=1 has
name='A_TX2'.

Row with id=1 has
name='A_TX1'.

PHANTOM READ

Transaction 1 Transaction 2 SQL Server
Repeatable Read

Babelfish Repeatable
Read

BEGIN TRANSACTION BEGIN TRANSACTION

Working with Babelfish 2159

Amazon Aurora User Guide for Aurora

Transaction 1 Transaction 2 SQL Server
Repeatable Read

Babelfish Repeatable
Read

SET TRANSACTION
ISOLATION LEVEL
REPEATABLE READ;

SET TRANSACTION
ISOLATION LEVEL
REPEATABLE READ;

SELECT * FROM
employee;

INSERT INTO
employee VALUES (4,
'NewRowName', 20);

Transaction 2
proceeds without any
blocking.

Transaction 2
proceeds without any
blocking.

SELECT * FROM
employee;

Newly inserted row is
visible.

Newly inserted row is
visible.

COMMIT

SELECT * FROM
employee;

New row inserted
by transaction 2 is
visible.

New row inserted by
transaction 2 is not
visible.

COMMIT

SELECT * FROM
employee;

Newly inserted row is
visible.

Newly inserted row is
visible.

DIFFERENT FINAL RESULTS

Transaction 1 Transaction 2 SQL Server
Repeatable Read

Babelfish Repeatable
Read

BEGIN TRANSACTION BEGIN TRANSACTION

SET TRANSACTION
ISOLATION LEVEL
REPEATABLE READ;

SET TRANSACTION
ISOLATION LEVEL
REPEATABLE READ;

Working with Babelfish 2160

Amazon Aurora User Guide for Aurora

Transaction 1 Transaction 2 SQL Server
Repeatable Read

Babelfish Repeatable
Read

UPDATE employee
SET age = 100
WHERE age IN
(SELECT MIN(age)
FROM employee);

Transaction 1
updates row with id
1.

Transaction 1
updates row with id
1.

UPDATE employee
SET age = 0 WHERE
age IN (SELECT
MAX(age) FROM
employee);

Transaction 2 is
blocked since the
SELECT statement
tries to read rows
locked by UPDATE
query in transaction
1.

Transaction 2
proceeds without
any blocking since
read is never blocked,
SELECT statement
executes and finally
row with id = 3
is updated since
transaction 1 changes
are not visible yet.

SELECT * FROM
employee;

This step is executed
after transaction 1
has committed. Row
with id = 1 is updated
by transaction 2 in
previous step and is
visible here.

Row with id = 3 is
updated by Transacti
on 2.

COMMIT Transaction 2 is now
unblocked.

Commit successful.

COMMIT

SELECT * FROM
employee;

Both transaction
execute update on
row with id = 1.

Different rows are
updated by transacti
on 1 and 2.

Working with Babelfish 2161

Amazon Aurora User Guide for Aurora

BABELFISH SERIALIZABLE VS SQL SERVER SERIALIZABLE ISOLATION LEVEL

RANGE LOCKS IN SQL SERVER

Transaction 1 Transaction 2 SQL Server Serializa
ble

Babelfish Serializa
ble

BEGIN TRANSACTION BEGIN TRANSACTION

SET TRANSACTION
ISOLATION LEVEL
SERILAIZABLE;

SET TRANSACTION
ISOLATION LEVEL
SERILAIZABLE;

SELECT * FROM
employee;

INSERT INTO
employee VALUES (4,
'D', 35);

Transaction 2
is blocked until
Transaction 1
commits.

Transaction 2
proceeds without any
blocking.

SELECT * FROM
employee;

COMMIT Transaction 1
commits successfully.
Transaction 2 is now
unblocked.

Transaction 1
commits successfully.

COMMIT

SELECT * FROM
employee;

Newly inserted row is
visible.

Newly inserted row is
visible.

Working with Babelfish 2162

Amazon Aurora User Guide for Aurora

DIFFERENT FINAL RESULTS

Transaction 1 Transaction 2 SQL Server Serializa
ble

Babelfish Serializa
ble

BEGIN TRANSACTION BEGIN TRANSACTION

SET TRANSACTION
ISOLATION LEVEL
SERILAIZABLE;

SET TRANSACTION
ISOLATION LEVEL
SERILAIZABLE;

INSERT INTO
employee VALUES (4,
'D', 40);

UPDATE employee
SET age =99 WHERE
id = 4;

Transaction 1
is blocked until
Transaction 2
commits.

Transaction 1
proceeds without any
blocking.

COMMIT Transaction 2
commits successfully.
Transaction 1 is now
unblocked.

Transaction 2
commits successfully.

COMMIT

SELECT * FROM
employee;

Newly inserted row is
visible with age value
= 99.

Newly inserted row is
visible with age value
= 40.

INSERT INTO TABLE WITH UNIQUE CONSTRAINT

Transaction 1 Transaction 2 SQL Server Serializa
ble

Babelfish Serializa
ble

BEGIN TRANSACTION BEGIN TRANSACTION

Working with Babelfish 2163

Amazon Aurora User Guide for Aurora

Transaction 1 Transaction 2 SQL Server Serializa
ble

Babelfish Serializa
ble

SET TRANSACTION
ISOLATION LEVEL
SERILAIZABLE;

SET TRANSACTION
ISOLATION LEVEL
SERILAIZABLE;

INSERT INTO
employee VALUES (4,
'D', 40);

INSERT INTO
employee VALUES
((SELECT MAX(id)+1
FROM employee), 'E',
50);

Transaction 1
is blocked until
Transaction 2
commits.

Transaction 1
is blocked until
Transaction 2
commits.

COMMIT Transaction 2
commits successfully.
Transaction 1 is now
unblocked.

Transaction 2
commits successfully.
Transaction 1 aborted
with error duplicate
key value violates
unique constraint.

COMMIT Transaction 1
commits successfully.

Transaction 1
commits fails with
could not serialize
access due to read/
write dependencies
among transactions.

SELECT * FROM
employee;

row (5, 'E', 50) is
inserted.

Only 4 rows exists.

In Babelfish, concurrent transactions running with Isolation Level serializable will fail with
serialization anomaly error if the execution of these transaction is inconsistent with all possible
serial (one at a time) executions of those transactions.

Working with Babelfish 2164

Amazon Aurora User Guide for Aurora

SERIALIZATION ANOMALY

Transaction 1 Transaction 2 SQL Server Serializa
ble

Babelfish Serializa
ble

BEGIN TRANSACTION BEGIN TRANSACTION

SET TRANSACTION
ISOLATION LEVEL
SERILAIZABLE;

SET TRANSACTION
ISOLATION LEVEL
SERILAIZABLE;

SELECT * FROM
employee;

UPDATE employee
SET age=5 WHERE
age=10;

SELECT * FROM
employee;

Transaction 2
is blocked until
Transaction 1
commits.

Transaction 2
proceeds without any
blocking.

UPDATE employee
SET age=35 WHERE
age=30;

COMMIT Transaction 1
commits successfully.

Transaction 1 is
committed first and
is able to commit
successfully.

COMMIT Transaction 2
commits successfully.

Transaction 2 commit
fails with serializa
tion error, the whole
transaction has been
rolled back. Retry
transaction 2.

Working with Babelfish 2165

Amazon Aurora User Guide for Aurora

Transaction 1 Transaction 2 SQL Server Serializa
ble

Babelfish Serializa
ble

SELECT * FROM
employee;

Changes from both
transactions are
visible.

Transaction 2 was
rolled back. Only
transaction 1 changes
are seen.

In Babelfish, serialization anomaly is only possible if all the concurrent transactions are executing
at Isolation Level SERIALIZABLE. For example lets take the above example but set transaction 2 to
Isolation Level REPEATABLE READ instead.

Transaction 1 Transaction 2 SQL Server Isolation
Levels

Babelfish Isolation
Levels

BEGIN TRANSACTION BEGIN TRANSACTION

SET TRANSACTION
ISOLATION LEVEL
SERILAIZABLE;

SET TRANSACTION
ISOLATION LEVEL
REPEATABLE READ;

SELECT * FROM
employee;

UPDATE employee
SET age=5 WHERE
age=10;

SELECT * FROM
employee;

Transaction 2
is blocked until
transaction 1
commits.

Transaction 2
proceeds without any
blocking.

UPDATE employee
SET age=35 WHERE
age=30;

Working with Babelfish 2166

Amazon Aurora User Guide for Aurora

Transaction 1 Transaction 2 SQL Server Isolation
Levels

Babelfish Isolation
Levels

COMMIT Transaction 1
commits successfully.

Transaction 1
commits successfully.

COMMIT Transaction 2
commits successfully.

Transaction 2
commits successfully.

SELECT * FROM
employee;

Changes from both
transactions are
visible.

Changes from both
transactions are
visible.

Using Babelfish features with limited implementation

Each new version of Babelfish adds support for features that better align with T-SQL functionality
and behavior. Still, there are some unsupported features and differences in the current
implementation. In the following, you can find information about functional differences between
Babelfish and T-SQL, with some workarounds or usage notes.

As of version 1.2.0 of Babelfish, the following features currently have limited implementations:

• SQL Server catalogs (system views) – The catalogs sys.sysconfigures,
sys.syscurconfigs, and sys.configurations support a single read-only configuration
only. The sp_configure isn't currently supported. For more information about the other SQL
Server views implemented by Babelfish, see Getting information from the Babelfish system
catalog.

• GRANT permissions – GRANT…TO PUBLIC is supported, but GRANT..TO PUBLIC WITH GRANT
OPTION is not currently supported.

• SQL Server ownership chain and permission mechanism limitation – In Babelfish, the
SQL Server ownership chain works for views but not for stored procedures. This means that
procedures must be granted explicit access to other objects owned by the same owner as the
calling procedures. In SQL Server, granting the caller EXECUTE permissions on the procedure is
sufficient to call other objects owned by same owner. In Babelfish, caller must also be granted
permissions on the objects accessed by the procedure.

• Resolution of unqualified (without schema name) object references – When a SQL object
(procedure, view, function or trigger) references an object without qualifying it with a schema

Working with Babelfish 2167

Amazon Aurora User Guide for Aurora

name, SQL Server resolves the object's schema name by using the schema name of the SQL
object in which the reference occurs. Currently, Babelfish resolves this differently, by using the
default schema of the database user executing the procedure.

• Default schema changes, sessions, and connections – If users change their default schema with
ALTER USER...WITH DEFAULT SCHEMA, the change takes effect immediately in that session.
However, for other currently connected sessions belonging to the same user, the timing differs,
as follows:

• For SQL Server: – The change takes effect across all other connections for this user
immediately.

• For Babelfish: – The change takes effect for this user for new connections only.

• ROWVERSION and TIMESTAMP datatypes implementation and escape hatch setting
– The ROWVERSION and TIMESTAMP datatypes are now supported in Babelfish. To use
ROWVERSION or TIMESTAMP in Babelfish, you must change the setting for the escape hatch
babelfishpg_tsql.escape_hatch_rowversion from its default (strict) to ignore.
The Babelfish implementation of the ROWVERSION and TIMESTAMP datatypes is mostly
semantically identical to SQL Server, with the following exceptions:

• The built-in @@DBTS function behaves similarly to SQL Server, but with small differences.
Rather than returning the last-used value for SELECT @@DBTS, Babelfish generates a
new timestamp, due to the underlying PostgreSQL database engine and its multi-version
concurrency control (MVCC) implementation.

• In SQL Server, every inserted or updated row gets a unique ROWVERSION/TIMESTAMP
value. In Babelfish, every inserted row updated by the same statement is assigned the same
ROWVERSION/TIMESTAMP value.

For example, when an UPDATE statement or INSERT-SELECT statement affects multiple rows,
in SQL Server, the affected rows all have different values in their ROWVERSION/TIMESTAMP
column. In Babelfish (PostgreSQL), the rows have the same value.

• In SQL Server, when you create a new table with SELECT-INTO, you can cast an explicit value
(such as NULL) to a to-be-created ROWVERSION/TIMESTAMP column. When you do the same
thing in Babelfish, an actual ROWVERSION/TIMESTAMP value is assigned to each row in the
new table for you, by Babelfish.

These minor differences in ROWVERSION/TIMESTAMP datatypes shouldn't have an adverse
impact on applications running on Babelfish.

Working with Babelfish 2168

Amazon Aurora User Guide for Aurora

Schema creation, ownership, and permissions – Permissions to create and access objects in a
schema owned by a non-DBO user (using CREATE SCHEMA schema name AUTHORIZATION
user name) differ for SQL Server and Babelfish non-DBO users, as shown in the following table:

Database user (non-DBO) who owns the
schema can do the following:

SQL Server Babelfish

Create objects in the schema without
additional grants by the DBO?

No Yes

Access objects created by DBO in the schema
without additional grants?

Yes No

Improving Babelfish query performance

You can achieve faster query processing in Babelfish using query hints and the PostgreSQL
optimizer.

Topics

• Using explain plan to improve Babelfish query performance

• Using T-SQL query hints to improve Babelfish query performance

You can also improve the query performance using sp_babelfish_volatility procedure. For
more information, see sp_babelfish_volatility.

Using explain plan to improve Babelfish query performance

Starting with version 2.1.0, Babelfish includes two functions that transparently use the PostgreSQL
optimizer to generate estimated and actual query plans for T-SQL queries on the TDS port. These
functions are similar to using SET STATISTICS PROFILE or SET SHOWPLAN_ALL with SQL Server
databases to identify and improve slow running queries.

Note

Getting query plans from functions, control flows, and cursors isn't currently supported.

Working with Babelfish 2169

Amazon Aurora User Guide for Aurora

In the table you can find a comparison of query plan explain functions across SQL Server, Babelfish,
and PostgreSQL.

SQL Server
Babelfish PostgreSQL

SHOWPLAN_ALL BABELFISH_SHOWPLAN_ALL EXPLAIN

STATISTICS PROFILE BABELFISH_STATISTICS
PROFILE

EXPLAIN ANALYZE

Uses the SQL Server
optimizer

Uses the PostgreSQL
optimizer

Uses the PostgreSQL
optimizer

SQL Server input and output
format

SQL Server input and
PostgreSQL output format

PostgreSQL input and output
format

Set for the session Set for the session Apply to a specific statement

Supports the following:

• SELECT

• INSERT

• UPDATE

• DELETE

• CURSOR

• CREATE

• EXECUTE

• EXEC and functions,
including control flow
(CASE, WHILE-BREAK-
CONTINUE, WAITFOR,
 BEGIN-END, IF-ELSE, and
so on)

Supports the following:

• SELECT

• INSERT

• UPDATE

• DELETE

• CREATE

• EXECUTE

• EXEC

• RAISEERROR

• THROW

• PRINT

• USE

Supports the following:

• SELECT

• INSERT

• UPDATE

• DELETE

• CURSOR

• CREATE

• EXECUTE

Use the Babelfish functions as follows:

Working with Babelfish 2170

Amazon Aurora User Guide for Aurora

• SET BABELFISH_SHOWPLAN_ALL [ON|OFF] – Set to ON to generate an estimated query
execution plan. This function implements the behavior of the PostgreSQL EXPLAIN command.
Use this command to obtain the explain plan for given query.

• SET BABELFISH_STATISTICS PROFILE [ON|OFF] – Set to ON for actual query execution plans.
This function implements the behavior of PostgreSQL's EXPLAIN ANALYZE command.

For more information about PostgreSQL EXPLAIN and EXPLAIN ANALYZE see EXPLAIN in the
PostgreSQL documentation.

Note

Starting with version 2.2.0, you can set the escape_hatch_showplan_all parameter
to ignore in order to avoid the use of BABELFISH_ prefix in the SQL Server syntax for
SHOWPLAN_ALL and STATISTICS PROFILE SET commands.

For example, the following command sequence turns on query planning and then returns an
estimated query execution plan for the SELECT statement without running the query. This example
uses the SQL Server sample northwind database using the sqlcmd command-line tool to query
the TDS port:

1> SET BABELFISH_SHOWPLAN_ALL ON
2> GO
1> SELECT t.territoryid, e.employeeid FROM
2> dbo.employeeterritories e, dbo.territories t
3> WHERE e.territoryid=e.territoryid ORDER BY t.territoryid;
4> GO

QUERY PLAN

--

Query Text: SELECT t.territoryid, e.employeeid FROM
dbo.employeeterritories e, dbo.territories t
WHERE e.territoryid=e.territoryid ORDER BY t.territoryid
Sort (cost=6231.74..6399.22 rows=66992 width=10)
 Sort Key: t.territoryid NULLS FIRST
 -> Nested Loop (cost=0.00..861.76 rows=66992 width=10)

Working with Babelfish 2171

https://www.postgresql.org/docs/current/sql-explain.html

Amazon Aurora User Guide for Aurora

 -> Seq Scan on employeeterritories e (cost=0.00..22.70 rows=1264 width=4)
 Filter: ((territoryid)::"varchar" IS NOT NULL)
 -> Materialize (cost=0.00..1.79 rows=53 width=6)
 -> Seq Scan on territories t (cost=0.00..1.53 rows=53 width=6)

When you finish reviewing and adjusting your query, you turn off the function as shown following:

1> SET BABELFISH_SHOWPLAN_ALL OFF

With BABELFISH_STATISTICS PROFILE set to ON, each executed query returns its regular result set
followed by an additional result set that shows actual query execution plans. Babelfish generates
the query plan that provides the fastest result set when it invokes the SELECT statement.

1> SET BABELFISH_STATISTICS PROFILE ON
1>
2> GO
1> SELECT e.employeeid, t.territoryid FROM
2> dbo.employeeterritories e, dbo.territories t
3> WHERE t.territoryid=e.territoryid ORDER BY t.territoryid;
4> GO

The result set and the query plan are returned (this example shows only the query plan).

QUERY PLAN

Query Text: SELECT e.employeeid, t.territoryid FROM
dbo.employeeterritories e, dbo.territories t
WHERE t.territoryid=e.territoryid ORDER BY t.territoryid
Sort (cost=42.44..43.28 rows=337 width=10)
 Sort Key: t.territoryid NULLS FIRST

 -> Hash Join (cost=2.19..28.29 rows=337 width=10)
 Hash Cond: ((e.territoryid)::"varchar" = (t.territoryid)::"varchar")
 -> Seq Scan on employeeterritories e (cost=0.00..22.70 rows=1270 width=36)
 -> Hash (cost=1.53..1.53 rows=53 width=6)
 -> Seq Scan on territories t (cost=0.00..1.53 rows=53 width=6)

Working with Babelfish 2172

Amazon Aurora User Guide for Aurora

To learn more about how to analyze your queries and the results returned by the PostgreSQL
optimizer, see explain.depesz.com. For more information about PostgreSQL EXPLAIN and EXPLAIN
ANALYZE, see EXPLAIN in the PostgreSQL documentation.

Parameters that control Babelfish explain options

You can use the parameters shown in the following table to control the type of information that's
displayed by your query plan.

Parameter Description

babelfishpg_tsql.explain_buffers A boolean that turns on (and off) buffer usage
information for the optimizer. (Default: off)
(Allowable: off, on)

babelfishpg_tsql.explain_costs A boolean that turns on (and off) estimated
startup and total cost information for the
optimizer. (Default: on) (Allowable: off, on)

babelfishpg_tsql.explain_format Specifies the output format for the EXPLAIN
plan. (Default: text) (Allowable: text, xml, json,
yaml)

babelfishpg_tsql.explain_settings A boolean that turns on (or off) the inclusion
of information about configuration parameter
s in the EXPLAIN plan output. (Default: off)
(Allowable: off, on)

babelfishpg_tsql.explain_summary A boolean that turns on (or off) summary
information such as total time after the query
plan. (Default: on) (Allowable: off, on)

babelfishpg_tsql.explain_timing A boolean that turns on (or off) actual startup
time and time spent in each node in the
output. (Default: on) (Allowable: off, on)

babelfishpg_tsql.explain_verbose A boolean that turns on (or off) the most
detailed version of an explain plan. (Default:
off) (Allowable: off, on)

Working with Babelfish 2173

https://www.depesz.com/2013/04/16/explaining-the-unexplainable/
https://www.postgresql.org/docs/current/sql-explain.html

Amazon Aurora User Guide for Aurora

Parameter Description

babelfishpg_tsql.explain_wal A boolean that turns on (or off) generation of
WAL record information as part of an explain
plan. (Default: off) (Allowable: off, on)

You can check the values of any Babelfish-related parameters on your system by using either
PostgreSQL client or SQL Server client. Run the following command to get your current parameter
values:

1> execute sp_babelfish_configure '%explain%';
2> GO

In the following output, you can see that all settings on this particular Babelfish DB cluster are at
their default values. Not all output is shown in this example.

 name setting short_desc
---------------------------------- --------
 --
babelfishpg_tsql.explain_buffers off Include information on buffer usage
babelfishpg_tsql.explain_costs on Include information on estimated startup
 and total cost
babelfishpg_tsql.explain_format text Specify the output format, which can be
 TEXT, XML, JSON, or YAML
babelfishpg_tsql.explain_settings off Include information on configuration
 parameters
babelfishpg_tsql.explain_summary on Include summary information (e.g.,totaled
 timing information) after the query plan
babelfishpg_tsql.explain_timing on Include actual startup time and time spent
 in each node in the output
babelfishpg_tsql.explain_verbose off Display additional information regarding
 the plan
babelfishpg_tsql.explain_wal off Include information on WAL record
 generation

(8 rows affected)

You can change the setting for these parameters using sp_babelfish_configure, as shown in
the following example.

Working with Babelfish 2174

Amazon Aurora User Guide for Aurora

1> execute sp_babelfish_configure 'explain_verbose', 'on';
2> GO

If you want make the setting permanent on a cluster-wide level, include the keyword server, as
shown in the following example.

1> execute sp_babelfish_configure 'explain_verbose', 'on', 'server';
2> GO

Using T-SQL query hints to improve Babelfish query performance

Starting with version 2.3.0, Babelfish supports the use of query hints using pg_hint_plan.
In Aurora PostgreSQL, pg_hint_plan is installed by default. For more information about the
PostgreSQL extension pg_hint_plan, see https://github.com/ossc-db/pg_hint_plan. For details
about the version of this extension supported by Aurora PostgreSQL, see Extension versions for
Amazon Aurora PostgreSQL in Release Notes for Aurora PostgreSQL.

The query optimizer is well-designed to find the optimal execution plan for a SQL statement. When
selecting a plan, the query optimizer considers both the engine’s cost model, and column and
table statistics. However, the suggested plan might not meet the needs of your datasets. Thus,
query hints addresses the performance issues to improve execution plans. A query hint is syntax
added to the SQL standard that instructs the database engine about how to execute the query. For
example, a hint may instruct the engine to follow a sequential scan and override any plan that the
query optimizer had selected.

Turning on T-SQL query hints in Babelfish

Currently, Babelfish ignores all T-SQL hints by default. To apply T-SQL hints, run the command
sp_babelfish_configure with the enable_pg_hint value as ON.

EXECUTE sp_babelfish_configure 'enable_pg_hint', 'on' [, 'server']

You can make the settings permanent on a cluster-wide level by including the server keyword. To
configure the setting for the current session only, don't use server.

After enable_pg_hint is ON, Babelfish applies the following T-SQL hints.

• INDEX hints

• JOIN hints

Working with Babelfish 2175

https://github.com/ossc-db/pg_hint_plan
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Extensions.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Extensions.html

Amazon Aurora User Guide for Aurora

• FORCE ORDER hint

• MAXDOP hint

For example, the following command sequence turns on pg_hint_plan.

1> CREATE TABLE t1 (a1 INT PRIMARY KEY, b1 INT);
2> CREATE TABLE t2 (a2 INT PRIMARY KEY, b2 INT);
3> GO
1> EXECUTE sp_babelfish_configure 'enable_pg_hint', 'on';
2> GO
1> SET BABELFISH_SHOWPLAN_ALL ON;
2> GO
1> SELECT * FROM t1 JOIN t2 ON t1.a1 = t2.a2; --NO HINTS (HASH JOIN)
2> GO

No hint is applied to the SELECT statement. The query plan with no hint is returned.

QUERY PLAN

Query Text: SELECT * FROM t1 JOIN t2 ON t1.a1 = t2.a2
Hash Join (cost=60.85..99.39 rows=2260 width=16)
 Hash Cond: (t1.a1 = t2.a2)
 -> Seq Scan on t1 (cost=0.00..32.60 rows=2260 width=8)
 -> Hash (cost=32.60..32.60 rows=2260 width=8)
 -> Seq Scan on t2 (cost=0.00..32.60 rows=2260 width=8)

1> SELECT * FROM t1 INNER MERGE JOIN t2 ON t1.a1 = t2.a2;
2> GO

The query hint is applied to the SELECT statement. The following output shows that the query plan
with merge join is returned.

QUERY PLAN

Working with Babelfish 2176

Amazon Aurora User Guide for Aurora

Query Text: SELECT/*+ MergeJoin(t1 t2) Leading(t1 t2)*/ * FROM t1 INNER JOIN t2 ON
 t1.a1 = t2.a2
Merge Join (cost=0.31..190.01 rows=2260 width=16)
 Merge Cond: (t1.a1 = t2.a2)
 -> Index Scan using t1_pkey on t1 (cost=0.15..78.06 rows=2260 width=8)
 -> Index Scan using t2_pkey on t2 (cost=0.15..78.06 rows=2260 width=8)

1> SET BABELFISH_SHOWPLAN_ALL OFF;
2> GO

Limitations

While using the query hints, consider the following limitations:

• If a query plan is cached before enable_pg_hint is turned on, hints won't be applied in the
same session. It will be applied in the new session .

• If schema names are explicitly given, then hints can't be applied. You can use table aliases as a
workaround.

• A query hint can't be applied to views and sub-queries.

• Hints don't work for UPDATE/DELETE statements with JOINs.

• An index hint for a non-existing index or table is ignored.

• The FORCE ORDER hint doesn't work for HASH JOINs and non-ANSI JOINs.

Using Aurora PostgreSQL extensions with Babelfish

Aurora PostgreSQL provides extensions for working with other AWS services. These are optional
extensions that support various use cases, such as using Amazon S3 with your DB cluster for
importing or exporting data.

• To import data from an Amazon S3 bucket to your Babelfish DB cluster, you set up the aws_s3
Aurora PostgreSQL extension. This extension also lets you export data from your Aurora
PostgreSQL DB cluster to an Amazon S3 bucket.

• AWS Lambda is a compute service that lets you run code without provisioning or managing
servers. You can use Lambda functions to do things like process event notifications from your DB
instance. To learn more about Lambda, see What is AWS Lambda? in the AWS Lambda Developer

Working with Babelfish 2177

https://docs.aws.amazon.com/lambda/latest/dg/welcome.html

Amazon Aurora User Guide for Aurora

Guide. To invoke Lambda functions from your Babelfish DB cluster, you set up the aws_lambda
Aurora PostgreSQL extension.

To set up these extensions for your Babelfish cluster, you first need to grant permission to the
internal Babelfish user to load the extensions. After granting permission, you can then load Aurora
PostgreSQL extensions.

Enabling Aurora PostgreSQL extensions in your Babelfish DB cluster

Before you can load the aws_s3 or the aws_lambda extensions, you grant the needed privileges to
your Babelfish DB cluster.

The procedure following uses the psql PostgreSQL command line tool to connect to the DB
cluster. For more information, see Using psql to connect to the DB cluster. You can also use
pgAdmin. For details, see Using pgAdmin to connect to the DB cluster.

This procedure loads both aws_s3 and aws_lambda, one after the other. You don't need to load
both if you want to use only one of these extensions. The aws_commons extension is required by
each, and it's loaded by default as shown in the output.

To set up your Babelfish DB cluster with privileges for the Aurora PostgreSQL extensions

1. Connect to your Babelfish DB cluster. Use the name for the "master" user (-U) that you
specified when you created the Babelfish DB cluster. The default (postgres) is shown in the
examples.

For Linux, macOS, or Unix:

psql -h your-Babelfish.cluster.444455556666-us-east-1.rds.amazonaws.com \
-U postgres \
-d babelfish_db \
-p 5432

For Windows:

psql -h your-Babelfish.cluster.444455556666-us-east-1.rds.amazonaws.com ^
-U postgres ^
-d babelfish_db ^
-p 5432

Working with Babelfish 2178

Amazon Aurora User Guide for Aurora

The command responds with a prompt to enter the password for the user name (-U).

Password:

Enter the password for the user name (-U) for the DB cluster. When you successfully connect,
you see output similar to the following.

psql (13.4)
SSL connection (protocol: TLSv1.3, cipher: TLS_AES_256_GCM_SHA384, bits: 256,
 compression: off)
Type "help" for help.

postgres=>

2. Grant privileges to the internal Babelfish user to create and load extensions.

babelfish_db=> GRANT rds_superuser TO master_dbo;
GRANT ROLE

3. Create and load the aws_s3 extension. The aws_commons extension is required, and it's
installed automatically when the aws_s3 is installed.

babelfish_db=> create extension aws_s3 cascade;
NOTICE: installing required extension "aws_commons"
CREATE EXTENSION

4. Create and load the aws_lambda extension.

babelfish_db=> create extension aws_lambda cascade;
CREATE EXTENSION
babelfish_db=>

Using Babelfish with Amazon S3

If you don't already have an Amazon S3 bucket to use with your Babelfish DB cluster, you can
create one. For any Amazon S3 bucket that you want to use, you provide access.

Before trying to import or export data using an Amazon S3 bucket, complete the following one-
time steps.

Working with Babelfish 2179

Amazon Aurora User Guide for Aurora

To set up access for your Babelfish DB instance to your Amazon S3 bucket

1. Create an Amazon S3 bucket for your Babelfish instance, if needed. To do so, follow the
instructions in Create a bucket in the Amazon Simple Storage Service User Guide.

2. Upload files to your Amazon S3 bucket. To do so, follow the steps in Add an object to a bucket
in the Amazon Simple Storage Service User Guide.

3. Set up permissions as needed:

• To import data from Amazon S3, the Babelfish DB cluster needs permission to access the
bucket. We recommend using an AWS Identity and Access Management (IAM) role and
attaching an IAM policy to that role for your cluster. To do so, follow the steps in Using an
IAM role to access an Amazon S3 bucket.

• To export data from your Babelfish DB cluster, your cluster must be granted access to the
Amazon S3 bucket. As with importing, we recommend using an IAM role and policy. To do
so, follow the steps in Setting up access to an Amazon S3 bucket.

You can now use Amazon S3 with the aws_s3 extension with your Babelfish DB cluster.

To import data from Amazon S3 to Babelfish and to export Babelfish data to Amazon S3

1. Use the aws_s3 extension with your Babelfish DB cluster.

When you do, make sure to reference the tables as they exist in the context of PostgreSQL.
That is, if you want to import into a Babelfish table named [database].[schema].
[tableA], refer to that table as database_schema_tableA in the aws_s3 function:

• For an example of using an aws_s3 function to import data, see Importing data from
Amazon S3 to your Aurora PostgreSQL DB cluster.

• For examples of using aws_s3 functions to export data, see Exporting query data using the
aws_s3.query_export_to_s3 function.

2. Make sure to reference Babelfish tables using PostgreSQL naming when using the aws_s3
extension and Amazon S3, as shown in the following table.

Babelfish table Aurora PostgreSQL table

database.schema.table database_schema_table

Working with Babelfish 2180

https://docs.aws.amazon.com/AmazonS3/latest/gsg/CreatingABucket.html
https://docs.aws.amazon.com/AmazonS3/latest/gsg/PuttingAnObjectInABucket.html

Amazon Aurora User Guide for Aurora

To learn more about using Amazon S3 with Aurora PostgreSQL, see Importing data from Amazon
S3 into an Aurora PostgreSQL DB cluster and Exporting data from an Aurora PostgreSQL DB cluster
to Amazon S3.

Using Babelfish with AWS Lambda

After the aws_lambda extension is loaded in your Babelfish DB cluster but before you can invoke
Lambda functions, you give Lambda access to your DB cluster by following this procedure.

To set up access for your Babelfish DB cluster to work with Lambda

This procedure uses the AWS CLI to create the IAM policy and role, and associate these with the
Babelfish DB cluster.

1. Create an IAM policy that allows access to Lambda from your Babelfish DB cluster.

aws iam create-policy --policy-name rds-lambda-policy --policy-document '{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "AllowAccessToExampleFunction",
 "Effect": "Allow",
 "Action": "lambda:InvokeFunction",
 "Resource": "arn:aws:lambda:aws-region:444455556666:function:my-function"
 }
]
}'

2. Create an IAM role that the policy can assume at runtime.

aws iam create-role --role-name rds-lambda-role --assume-role-policy-document '{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "rds.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }
]
}'

Working with Babelfish 2181

Amazon Aurora User Guide for Aurora

3. Attach the policy to the role.

aws iam attach-role-policy \
 --policy-arn arn:aws:iam::444455556666:policy/rds-lambda-policy \
 --role-name rds-lambda-role --region aws-region

4. Attach the role to your Babelfish DB cluster

aws rds add-role-to-db-cluster \
 --db-cluster-identifier my-cluster-name \
 --feature-name Lambda \
 --role-arn arn:aws:iam::444455556666:role/rds-lambda-role \
 --region aws-region

After you complete these tasks, you can invoke your Lambda functions. For more information and
examples of setting up AWS Lambda for Aurora PostgreSQL DB cluster with AWS Lambda, see Step
2: Configure IAM for your Aurora PostgreSQL DB cluster and AWS Lambda.

To invoke a Lambda function from your Babelfish DB cluster

AWS Lambda supports functions written in Java, Node.js, Python, Ruby, and other languages. If the
function returns text when invoked, you can invoke it from your Babelfish DB cluster. The following
example is a placeholder python function that returns a greeting.

lambda_function.py
import json
def lambda_handler(event, context):
 #TODO implement
 return {
 'statusCode': 200,
 'body': json.dumps('Hello from Lambda!')

Currently, Babelfish doesn't support JSON. If your function returns JSON, you use a wrapper to
handle the JSON. For example, say that the lambda_function.py shown preceding is stored in
Lambda as my-function.

1. Connect to your Babelfish DB cluster using the psql client (or the pgAdmin client). For more
information, see Using psql to connect to the DB cluster.

Working with Babelfish 2182

Amazon Aurora User Guide for Aurora

2. Create the wrapper. This example uses PostgreSQL's procedural language for SQL, PL/pgSQL.
To learn more, see PL/pgSQL–SQL Procedural Language.

create or replace function master_dbo.lambda_wrapper()
returns text
language plpgsql
as
$$
declare
 r_status_code integer;
 r_payload text;
begin
 SELECT payload INTO r_payload
 FROM aws_lambda.invoke(aws_commons.create_lambda_function_arn('my-function',
 'us-east-1')
 ,'{"body": "Hello from Postgres!"}'::json);
 return r_payload ;
end;
$$;

The function can now be run from the Babelfish TDS port (1433) or from the PostgreSQL port
(5433).

a. To invoke (call) this function from your PostgreSQL port:

SELECT * from aws_lambda.invoke(aws_commons.create_lambda_function_arn('my-
function', 'us-east-1'), '{"body": "Hello from Postgres!"}'::json);

The output is similar to the following:

status_code | payload |
 executed_version | log_result
-------------+---
+------------------+------------
 200 | {"statusCode": 200, "body": "\"Hello from Lambda!\""} | $LATEST
 |
(1 row)

Working with Babelfish 2183

https://www.postgresql.org/docs/13/plpgsql.html

Amazon Aurora User Guide for Aurora

b. To invoke (call) this function from the TDS port, connect to the port using the SQL Server
sqlcmd command line client. For details, see Using a SQL Server client to connect to your
DB cluster. When connected, run the following:

1> select lambda_wrapper();
2> go

The command returns output similar to the following:

{"statusCode": 200, "body": "\"Hello from Lambda!\""}

To learn more about using Lambda with Aurora PostgreSQL, see Invoking an AWS Lambda
function from an Aurora PostgreSQL DB cluster. For more information about working with Lambda
functions, see Getting started with Lambda in the AWS Lambda Developer Guide.

Using pg_stat_statements in Babelfish

Babelfish for Aurora PostgreSQL supports pg_stat_statements extension from 3.3.0. To learn
more, see pg_stat_statements.

For details about the version of this extension supported by Aurora PostgreSQL, see Extension
versions.

Creating pg_stat_statements extension

To turn on pg_stat_statements, you must turn on the Query identifier calculation. This is done
automatically if compute_query_id is set to on or auto in the parameter group. The default
value of compute_query_id parameter is auto. You also need to create this extension to turn on
this feature. Use the following command to install the extension from T-SQL endpoint:

1>EXEC sp_execute_postgresql 'CREATE EXTENSION pg_stat_statements WITH SCHEMA sys';

You can access the query statistics using the following query:

postgres=>select * from pg_stat_statements;

Working with Babelfish 2184

https://docs.aws.amazon.com/lambda/latest/dg/getting-started.html
https://www.postgresql.org/docs/current/pgstatstatements.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Extensions.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Extensions.html

Amazon Aurora User Guide for Aurora

Note

During installation, if you don't provide the schema name for the extension then by default
it will create it in public schema. To access it, you must use square brackets with schema
qualifier as shown below:

postgres=>select * from [public].pg_stat_statements;

You can also create the extension from PSQL endpoint.

Authorizing the extension

By default, you can see the statistics for queries performed within your T-SQL database without the
need of any authorization.

To access query statistics created by others, you need to have pg_read_all_stats PostgreSQL
role. Follow the steps mentioned below to construct GRANT pg_read_all_stats command.

1. In T-SQL, use the following query that returns the internal PG role name.

SELECT rolname FROM pg_roles WHERE oid = USER_ID();

2. Connect to Babelfish for Aurora PostgreSQL database with rds_superuser privilege and use the
following command:

GRANT pg_read_all_stats TO <rolname_from_above_query>

Example

From T-SQL endpoint:

1>SELECT rolname FROM pg_roles WHERE oid = USER_ID();
2>go

rolname

Working with Babelfish 2185

Amazon Aurora User Guide for Aurora

master_dbo
(1 rows affected)

From PSQL endpoint:

babelfish_db=# grant pg_read_all_stats to master_dbo;

GRANT ROLE

You can access the query statistics using the pg_stat_statements view:

1>create table t1(cola int);
2>go
1>insert into t1 values (1),(2),(3);
2>go

(3 rows affected)

1>select userid, dbid, queryid, query from pg_stat_statements;
2>go

userid dbid queryid query
------ ---- ------- -----
37503 34582 6487973085327558478 select * from t1
37503 34582 6284378402749466286 SET QUOTED_IDENTIFIER OFF
37503 34582 2864302298511657420 insert into t1 values ($1),($2),($3)
10 34582 NULL <insufficient privilege>
37503 34582 5615368793313871642 SET TEXTSIZE 4096
37503 34582 639400815330803392 create table t1(cola int)
(6 rows affected)

Resetting query statistics

You can use pg_stat_statements_reset() to reset the statistics gathered so far by
pg_stat_statements. To learn more, see pg_stat_statements. It is currently supported through

Working with Babelfish 2186

https://www.postgresql.org/docs/current/pgstatstatements.html

Amazon Aurora User Guide for Aurora

PSQL endpoint only. Connect to Babelfish for Aurora PostgreSQL with rds_superuser privilege,
use the following command:

SELECT pg_stat_statements_reset();

Limitations

• Currently, pg_stat_statements() is not supported through T-SQL endpoint.
pg_stat_statements view is the recommended way to gather the statistics.

• Some of the queries might be re-written by the T-SQL parser implemented by Aurora
PostgreSQL engine, pg_stat_statements view will show the re-written query and not the
original query.

Example

select next value for [dbo].[newCounter];

The above query is re-written as the following in the pg_stat_statements view.

select nextval($1);

• Based on the execution flow of the statements, some of the queries might not be tracked by
pg_stat_statements and will not be visible in the view. This includes the following statements:
use dbname, goto, print, raise error, set, throw, declare cursor.

• For CREATE LOGIN and ALTER LOGIN statements, query and queryid will not be shown. It will
show insufficient privileges.

• pg_stat_statements view always contains the below two entries, as these are executed
internally by sqlcmd client.

• SET QUOTED_IDENTIFIER OFF

• SET TEXTSIZE 4096

Using pgvector in Babelfish

pgvector, an open-source extension, lets you search for similar data directly within your Postgres
database. Babelfish now supports this extension starting with versions 15.6 and 16.2. For more
information, pgvector Open source Documentation.

Working with Babelfish 2187

https://github.com/pgvector/pgvector

Amazon Aurora User Guide for Aurora

Prerequisites

To enable pgvector functionality, install the extension in sys schema using one of the following
methods:

• Run the following command in sqlcmd client:

exec sys.sp_execute_postgresql 'CREATE EXTENSION vector WITH SCHEMA sys';

• Connect to babelfish_db and run the following command in psql client:

CREATE EXTENSION vector WITH SCHEMA sys;

Note

After installing the pgvector extension, the vector data type will only be available in new
database connections you establish. Existing connections won't recognize the new data
type.

Supported Functionality

Babelfish extends the T-SQL functionality to support the following:

• Storing

Babelfish now supports vector datatype compatible syntax, enhancing its T-SQL compatibility. To
learn more about storing data with pgvector, see Storing.

• Querying

Babelfish expands T-SQL expression support to include vector similarity operators. However, for
all other queries, standard T-SQL syntax is still required.

Note

T-SQL doesn't support Array type, and the database drivers do not have any interface
to handle them. As a workaround, Babelfish uses text strings (varchar/nvarchar) to store
vector data. For example, when you request a vector value [1,2,3], Babelfish will return a

Working with Babelfish 2188

https://github.com/pgvector/pgvector?tab=readme-ov-file#storing

Amazon Aurora User Guide for Aurora

string '[1,2,3]' as the response. You can parse and split this string at application level as
per your needs.

To learn more about querying data with pgvector, see Querying.

• Indexing

T-SQL Create Index now supports USING INDEX_METHOD syntax. You can now define
similarity search operator to be used on a specific column when creating an index.

The grammar is also extended to support Vector similarity operations on the required column
(Check column_name_list_with_order_for_vector grammar).

CREATE [UNIQUE] [clustered] [COLUMNSTORE] INDEX <index_name> ON <table_name> [USING
 vector_index_method] (<column_name_list_with_order_for_vector>)
Where column_name_list_with_order_for_vector is:
 <column_name> [ASC | DESC] [VECTOR_COSINE_OPS | VECTOR_IP_OPS | VECTOR_L2_OPS]
 (COMMA simple_column_name [ASC | DESC] [VECTOR_COSINE_OPS | VECTOR_IP_OPS |
 VECTOR_L2_OPS])

To learn more about indexing data with pgvector, see Indexing.

• Performance

• Use SET BABELFISH_STATISTICS PROFILE ON to debug Query Plans from T-SQL
endpoint.

• Increase max_parallel_workers_get_gather using the set_config function supported
in T-SQL.

• Use IVFFlat for approximate searches. For more information, see IVFFlat.

To improve performance with pgvector, see Performance.

Limitations

• Babelfish doesn't support Full Text Search for Hybrid Search. For more information, see Hybrid
Search.

• Babelfish doesn't currently support re-indexing functionality. However, you can still use
PostgreSQL endpoint to re-index. For more information, see Vacuuming.

Working with Babelfish 2189

https://github.com/pgvector/pgvector?tab=readme-ov-file#querying
https://github.com/pgvector/pgvector?tab=readme-ov-file#indexing
https://github.com/pgvector/pgvector?tab=readme-ov-file#ivfflat
https://github.com/pgvector/pgvector?tab=readme-ov-file#performance
https://github.com/pgvector/pgvector?tab=readme-ov-file#hybrid-search
https://github.com/pgvector/pgvector?tab=readme-ov-file#hybrid-search
https://github.com/pgvector/pgvector?tab=readme-ov-file#vacuuming

Amazon Aurora User Guide for Aurora

Using Amazon Aurora machine learning with Babelfish

You can extend the capabilities of your Babelfish for Aurora PostgreSQL DB cluster by integrating
it with Amazon Aurora machine learning. This seamless integration grants you access to a range
of powerful services like Amazon Comprehend or Amazon SageMaker or Amazon Bedrock, each
tailored to address distinct machine learning needs.

As a Babelfish user, you can use existing knowledge of T-SQL syntax and semantics when working
with Aurora machine learning. Follow the instructions provided in the AWS documentation for
Aurora PostgreSQL. For more information, see Using Amazon Aurora machine learning with Aurora
PostgreSQL.

Prerequisites

• Before trying to set up your Babelfish for Aurora PostgreSQL DB cluster to use Aurora machine
learning, you must understand the related requirements and prerequisites. For more information,
see Requirements for using Aurora machine learning with Aurora PostgreSQL.

• Make sure you install the aws_ml extension either using Postgres endpoint or the
sp_execute_postgresql store procedure.

exec sys.sp_execute_postgresql 'Create Extension aws_ml'

Note

Currently Babelfish doesn't support cascade operations with sp_execute_postgresql
in Babelfish. Since aws_ml relies on aws_commons, you'll need to install it separately
using Postgres endpoint.

create extension aws_common;

Handling T-SQL syntax and semantics with aws_ml functions

The following examples explains how T-SQL syntax and semantics are applied to the Amazon ML
services:

Working with Babelfish 2190

Amazon Aurora User Guide for Aurora

Example : aws_bedrock.invoke_model – A simple query using Amazon Bedrock functions

aws_bedrock.invoke_model(
 model_id varchar,
 content_type text,
 accept_type text,
 model_input text)
Returns Varchar(MAX)

The following example shows how to invoke a Anthropic Claude 2 model for Bedrock using
invoke_model.

SELECT aws_bedrock.invoke_model (
 'anthropic.claude-v2', -- model_id
 'application/json', -- content_type
 'application/json', -- accept_type
 '{"prompt": "\n\nHuman:
 You are a helpful assistant that answers questions directly
 and only using the information provided in the context below.
 \nDescribe the answerin detail.\n\nContext: %s \n\nQuestion:
 %s \n\nAssistant:","max_tokens_to_sample":4096,"temperature"
 :0.5,"top_k":250,"top_p":0.5,"stop_sequences":[]}' -- model_input
);

Example : aws_comprehend.detect_sentiment – A simple query using Amazon Comprehend
functions

aws_comprehend.detect_sentiment(
 input_text varchar,
 language_code varchar,
 max_rows_per_batch int)
Returns table (sentiment varchar, confidence real)

The following example shows how to invoke the Amazon Comprehend service.

select sentiment from aws_comprehend.detect_sentiment('This is great', 'en');

Working with Babelfish 2191

Amazon Aurora User Guide for Aurora

Example : aws_sagemaker.invoke_endpoint – A simple query using Amazon SageMaker
functions

aws_sagemaker.invoke_endpoint(
 endpoint_name varchar,
 max_rows_per_batch int,
 VARIADIC model_input "any") -- Babelfish inherits PG's variadic parameter type
Rerurns Varchar(MAX)

Since model_input is marked as VARIADIC and of type “any”, users can pass a list of any length
and any datatype to the function which will act as the input the input to the model. The following
example shows how to invoke the Amazon SageMaker service.

SELECT CAST (aws_sagemaker.invoke_endpoint(
 'sagemaker_model_endpoint_name',
 NULL,
 arg1, arg2 -- model inputs are separate arguments)
AS INT) -- cast the output to INT

For more detailed information on using Aurora machine learning with Aurora PostgreSQL, see
Using Amazon Aurora machine learning with Aurora PostgreSQL.

Limitations

• While Babelfish doesn't allow creating arrays, it can still handle data that represents arrays.
When you use functions like aws_bedrock.invoke_model_get_embeddings that return
arrays, the results is delivered as a string containing the array elements.

Babelfish supports linked servers

Babelfish for Aurora PostgreSQL supports linked servers by using the PostgreSQL tds_fdw
extension in version 3.1.0. To work with linked servers, you must install the tds_fdw extension.
For more information about the tds_fdw extension, see Working with the supported foreign data
wrappers for Amazon Aurora PostgreSQL.

Working with Babelfish 2192

Amazon Aurora User Guide for Aurora

Installing the tds_fdw extension

You can install tds_fdw extension using the following methods.

Using CREATE EXTENSION from PostgreSQL endpoint

1. Connect to your PostgreSQL DB instance on the Babelfish database in the PostgreSQL port.
Use an account that has the rds_superuser role.

psql --host=your-DB-instance.aws-region.rds.amazonaws.com --port=5432 --
username=test --dbname=babelfish_db --password

2. Install the tds_fdw extension. This is a one-time installation process. You don't need to
reinstall when the DB cluster restarts.

babelfish_db=> CREATE EXTENSION tds_fdw;
CREATE EXTENSION

Calling sp_execute_postgresql stored procedure from TDS endpoint

Babelfish supports installing tds_fdw extension by calling sp_execute_postgresql procedure
from version 3.3.0. You can execute PostgreSQL statements from T-SQL endpoint without exiting
the T-SQL port. For more information, see Babelfish for Aurora PostgreSQL procedure reference

1. Connect to your PostgreSQL DB instance on the Babelfish database in the T-SQL port.

sqlcmd -S your-DB-instance.aws-region.rds.amazonaws.com -U test -P password

2. Install the tds_fdw extension.

1>EXEC sp_execute_postgresql N'CREATE EXTENSION tds_fdw';
2>go

Supported functionality

Babelfish supports adding remote RDS for SQL Server or Babelfish for Aurora PostgreSQL
endpoints as the linked server. You can also add other remote SQL Server instances as linked

Working with Babelfish 2193

Amazon Aurora User Guide for Aurora

servers. Then, use OPENQUERY() to retrieve data from these linked servers. Starting from Babelfish
version 3.2.0, four-part names are also supported.

The following stored procedures and catalog views are supported in order to use the linked servers.

Stored procedures

• sp_addlinkedserver – Babelfish doesn't support the @provstr parameter.

• sp_addlinkedsrvlogin

• You must provide an explicit remote username and password to connect to the remote data
source. You can't connect with the user's self credentials. Babelfish supports only @useself =
false.

• Babelfish doesn't support the @locallogin parameter since configuring remote server access
specific to local login isn't supported.

• sp_linkedservers

• sp_helplinkedsrvlogin

• sp_dropserver

• sp_droplinkedsrvlogin – Babelfish doesn't support the @locallogin parameter since
configuring remote server access specific to local login isn't supported.

• sp_serveroption – Babelfish supports the following server options:

• query timeout (from Babelfish version 3.2.0)

• connect timeout (from Babelfish version 3.3.0)

• sp_testlinkedserver (from Babelfish version 3.3.0)

• sp_enum_oledb_providers (from Babelfish version 3.3.0)

Catalog views

• sys.servers

• sys.linked_logins

Using encryption in transit for the connection

The connection from the source Babelfish for Aurora PostgreSQL server to the target remote server
uses encryption in transit (TLS/SSL), depending on the remote server database configuration. If

Working with Babelfish 2194

Amazon Aurora User Guide for Aurora

the remote server isn't configured for encryption, the Babelfish server making the request to the
remote database falls back to unencrypted.

To enforce connection encryption

• If the target linked server is an RDS for SQL Server instance, set rds.force_ssl = on for the
target SQL Server instance. For more information about SSL/TLS configuration for RDS for SQL
Server, see Using SSL with a Microsoft SQL Server DB instance

• If the target linked server is a Babelfish for Aurora PostgreSQL cluster, set
babelfishpg_tsql.tds_ssl_encrypt = on and ssl = on for the target server. For more
information about SSL/TLS, see Babelfish SSL settings and client connections.

Adding Babelfish as a linked server from SQL Server

Babelfish for Aurora PostgreSQL can be added as a linked server from a SQL Server. On a SQL
Server database, you can add Babelfish as a linked server using Microsoft OLE DB provider for
ODBC : MSDASQL.

There are two ways to configure Babelfish as a linked server from SQL Server using MSDASQL
provider:

• Providing ODBC connection string as the provider string.

• Provide the System DSN of ODBC data source while adding the linked server.

Limitations

• OPENQUERY() works only for SELECT and doesn't work for DML.

• Four-part object names work only for reading and doesn't work for modifying the remote table.
An UPDATE can reference a remote table in the FROM clause without modifying it.

• Executing stored procedures against Babelfish linked servers isn't supported.

• Babelfish major version upgrade might not work if there are objects dependent on
OPENQUERY() or objects referenced through four-part names. You must ensure that any objects
referencing OPENQUERY() or four-part names are dropped before a major version upgrade.

• The following datatypes don't work as expected against remote Babelfish server:
nvarchar(max), varchar(max), varbinary(max), binary(max) and time. We recommend
using the CAST function to convert these to the supported datatypes.

Working with Babelfish 2195

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/SQLServer.Concepts.General.SSL.Using.html

Amazon Aurora User Guide for Aurora

Example

In the following example, a Babelfish for Aurora PostgreSQL instance is connecting to an instance
of RDS for SQL Server in the cloud.

EXEC master.dbo.sp_addlinkedserver @server=N'rds_sqlserver', @srvproduct=N'',
 @provider=N'SQLNCLI', @datasrc=N'myserver.CB2XKFSFFMY7.US-WEST-2.RDS.AMAZONAWS.COM';
EXEC master.dbo.sp_addlinkedsrvlogin
 @rmtsrvname=N'rds_sqlserver',@useself=N'False',@locallogin=NULL,@rmtuser=N'username',@rmtpassword='password';

When the linked server is in place, you can then use T-SQL OPENQUERY() or standard four-part
naming to reference a table, view, or other supported objects, on the remote server:

SELECT * FROM OPENQUERY(rds_sqlserver, 'SELECT * FROM TestDB.dbo.t1');
SELECT * FROM rds_sqlserver.TestDB.dbo.t1;

To drop the linked server and all associated logins:

EXEC master.dbo.sp_dropserver @server=N'rds_sqlserver', @droplogins=N'droplogins';

Troubleshooting

You can use the same security group for both source and remote servers to allow them to
communicate with each other. Security group should allow only inbound traffic on TDS port (1433
by default) and source IP in security group can be set as the security group ID itself. For more
information on how to set the rules for connecting to an instance from another instance with the
same security group, see Rules to connect to instances from an instance with the same security
group.

If access isn't configured correctly, an error message similar to the following example appears when
you try to query the remote server.

Working with Babelfish 2196

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/security-group-rules-reference.html#sg-rules-other-instances
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/security-group-rules-reference.html#sg-rules-other-instances

Amazon Aurora User Guide for Aurora

TDS client library error: DB #: 20009, DB Msg: Unable to connect: server is unavailable
 or does not exist (mssql2019.aws-region.rds.amazonaws.com), OS #: 110, OS Msg:
 Connection timed out, Level: 9

Using Full Text Search in Babelfish

Starting with version 4.0.0, Babelfish provides limited support for Full Text Search (FTS). FTS is a
powerful feature in relational databases that enables efficient searching and indexing of text-heavy
data. It allows you to perform complex text searches and retrieve relevant results quickly. FTS is
particularly valuable for applications that deal with large volumes of textual data, such as content
management systems, e-commerce platforms, and document archives.

Understanding Babelfish Full Text Search supported features

Babelfish supports the following Full Text Search features:

• CONTAINS Clause:

• Basic support for the CONTAINS clause.

CONTAINS (
 {
 column_name
 }
 , '<contains_search_condition>'
)

Note

Currently, only English language is supported.

• Comprehensive handling and translation of simple_term search strings.

• FULLTEXT INDEX Clause:

• Supports only CREATE FULLTEXT INDEX ON table_name(column_name [...n]) KEY
INDEX index_name statement.

• Supports full DROP FULLTEXT INDEX statement.

Working with Babelfish 2197

Amazon Aurora User Guide for Aurora

Note

In order to re-index the Full Text Index, you need to drop the Full Text Index and create a
new one on the same column.

• Special characters in search condition:

• Babelfish ensures that single occurrences of special characters in search strings are handled
effectively.

Note

While Babelfish now identifies special characters in search string, it's essential to
recognize that the results obtained may vary compared to those obtained with T-SQL.

• Table alias in column_name:

• With table alias support, users can create more concise and readable SQL queries for Full-Text
Search.

Limitations in Babelfish Full Text Search

• Currently, the following options aren't supported in Babelfish for CONTAINS Clause.

• Special characters and Languages other than English aren't supported. You will receive the
generic error message for unsupported characters and language

Full-text search conditions with special characters or languages other than English
 are not currently supported in Babelfish

• Multiple columns like column_list

• PROPERTY attribute

• prefix_term, generation_term, generic_proximity_term,
custom_proximity_term, and weighted_term

• Boolean operators aren't supported and you will receive the following error message when
used:

Working with Babelfish 2198

Amazon Aurora User Guide for Aurora

boolean operators not supported

• Identifier names with dots aren't supported.

• Currently, the following options aren't supported in Babelfish for CREATE FULLTEXT INDEX
Clause.

• [TYPE COLUMN type_column_name]

• [LANGUAGE language_term]

• [STATISTICAL_SEMANTICS]

• catalog filegroup options

• with options

• Creating a full text catalog isn't supported. Creating a full text index doesn't require a full text
catalog.

• CREATE FULLTEXT INDEX doesn't support identifier names with dots.

• Babelfish doesn't currently support consecutive special characters in search strings. You will
receive the following error message when used:

Consecutive special characters in the full-text search condition are not currently
 supported in Babelfish

Babelfish supports Geospatial data types

Starting with versions 3.5.0 and 4.1.0, Babelfish includes support for the following two spatial data
types:

• Geometry data type – This data type is intended for storing planar or Euclidean (flat-earth) data.

• Geography data type – This data type is intended for storing ellipsoidal or round-earth data,
such as GPS latitude and longitude coordinates.

These data types allow for the storage and manipulation of spatial data, but with limitations.

Understanding the Geospatial data types in Babelfish

• Geospatial data types are supported in various database objects such as views, procedures, and
tables.

Working with Babelfish 2199

Amazon Aurora User Guide for Aurora

• Supports 2-D point data type to store location data as points defined by latitude, longitude, and
a valid Spatial Reference System Identifier (SRID).

• Applications connecting to Babelfish through drivers like JDBC, ODBC, DOTNET, and PYTHON can
utilize this Geospatial feature.

Geometry data type functions supported in Babelfish

• STGeomFromText (geometry_tagged_text, SRID) – Creates a geometry instance using Well-
Known Text (WKT) representation.

• STPointFromText (point_tagged_text, SRID) – Creates a point instance using WKT
representation.

• Point (X, Y, SRID) – Creates a point instance using float values of x and y coordinates.

• <geometry_instance>.STAsText () – Extracts WKT representation from geometry instance.

• <geometry_instance>.STDistance (other_geometry) – Calculates the distance between two
geometry instances.

• <geometry_instance>.STX – Extracts the X coordinate (longitude) for geometry instance.

• <geometry_instance>.STY – Extracts the Y coordinate (latitude) for geometry instance.

Geography data type functions supported in Babelfish

• STGeomFromText (geography_tagged_text, SRID) – Creates a geography instance using
WKT representation.

• STPointFromText (point_tagged_text, SRID) – Creates a point instance using WKT
representation.

• Point (Lat, Long, SRID) – Creates a point instance using float values of Latitude and Longitude.

• <geography_instance>.STAsText () – Extracts WKT representation from geography instance.

• <geography_instance>.STDistance (other_geography) – Calculates the distance between two
geography instances.

• <geography_instance>.Lat – Extracts the Latitude value for geography instance.

• <geography_instance>.Long – Extracts the Longitude value for geography instance.

Working with Babelfish 2200

Amazon Aurora User Guide for Aurora

Limitations in Babelfish for Geospatial data types

• Currently, Babelfish doesn't support more advanced features like Z-M flags for point instances of
Geospatial data types.

• Geometry types other than point instance aren't currently supported:

• LineString

• CircularString

• CompoundCurve

• Polygon

• CurvePolygon

• MultiPoint

• MultiLineString

• MultiPolygon

• GeometryCollection

• Currently, spatial indexing isn't supported for Geospatial data types.

• Only the listed functions are currently supported for these data types. For more information,
see Geometry data type functions supported in Babelfish and Geography data type functions
supported in Babelfish.

• STDistance function output for Geography data might have minor precision variations compared
to T-SQL. This is due to the underlying PostGIS implementation. For more information, see
ST_Distance

• For optimal performance, use built-in Geospatial data types, without creating additional layers of
abstraction in Babelfish.

Tip

While you can create custom data types, it's not recommended to create it on top of
Geospatial data. This could introduce complexities, potentially leading to unexpected
behavior due to the limited support.

• In Babelfish, Geospatial function names are used as keywords and will perform spatial operations
only if used in the intended way.

Working with Babelfish 2201

https://postgis.net/docs/ST_Distance.html

Amazon Aurora User Guide for Aurora

Tip

When creating user-defined functions and procedures in Babelfish, avoid using the same
names as built-in Geospatial functions. If you have any existing database objects with the
same names, use sp_rename to rename them.

Working with Babelfish 2202

Amazon Aurora User Guide for Aurora

Troubleshooting Babelfish

Following, you can find troubleshooting ideas and workarounds for some Babelfish DB cluster
issues.

Topics

• Connection failure

Connection failure

Common causes of connection failures to a new Aurora DB cluster with Babelfish include the
following:

• Security group doesn't allow access – If you're having trouble connecting to a Babelfish, make
sure that you added your IP address to the default Amazon EC2 security group. You can use
https://checkip.amazonaws.com/ to determine your IP address and then add it to your in-bound
rule for the TDS port and the PostgreSQL port. For more information, see Add rules to a security
group in the Amazon EC2 User Guide.

• Mismatching SSL configurations – If the rds.force_ssl parameter is turned on (set to 1) on
Aurora PostgreSQL, then clients must connect to Babelfish over SSL. If your client isn't set up
correctly, you see an error message such as the following:

Cannot connect to your-Babelfish-DB-cluster, 1433

ADDITIONAL INFORMATION:
no pg_hba_conf entry for host "256.256.256.256", user "your-user-name",
"database babelfish_db", SSL off (Microsoft SQL Server, Error: 33557097)
...

This error indicates a possible SSL configuration issue between your local client and the Babelfish
DB cluster, and that the cluster requires clients to use SSL (its rds.force_ssl parameter is set
to 1). For more information about configuring SSL, see Using SSL with a PostgreSQL DB instance
in the Amazon RDS User Guide.

If you are using SQL Server Management Studio (SSMS) to connect to Babelfish and you see
this error, you can choose Encrypt connection and Trust server certificate connection options
on the Connection Properties pane and try again. These settings handle the SSL connection
requirement for SSMS.

Troubleshooting Babelfish 2203

https://checkip.amazonaws.com/
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/working-with-security-groups.html#adding-security-group-rule.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/working-with-security-groups.html#adding-security-group-rule.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/PostgreSQL.Concepts.General.SSL.html#PostgreSQL.Concepts.General.SSL.Status

Amazon Aurora User Guide for Aurora

For more information about troubleshooting Aurora connection issues, see Can't connect to
Amazon RDS DB instance.

Troubleshooting Babelfish 2204

Amazon Aurora User Guide for Aurora

Turning off Babelfish

When you no longer need Babelfish, you can turn off Babelfish functionality.

Be aware of some considerations:

• In some cases, you might turn off Babelfish before completing a migration to Aurora
PostgreSQL. If you do and your DDL depends on SQL Server data types or you use any T-SQL
functionality in your code, your code fails.

• If after provisioning a Babelfish instance you turn off the Babelfish extension, you can't provision
that same database again on the same cluster.

To turn off Babelfish, modify your parameter group, setting rds.babelfish_status
to OFF. You can continue to use your SQL Server data types with Babelfish off, by setting
rds.babelfish_status to datatypeonly.

If you turn off Babelfish in parameter group, all clusters that use that parameter group lose
Babelfish functionality.

For more information about modifying parameter groups, see Working with parameter groups.
For information about Babelfish–specific parameters, see DB cluster parameter group settings for
Babelfish.

Turning off Babelfish 2205

Amazon Aurora User Guide for Aurora

Babelfish version updates

Babelfish is an option available with Aurora PostgreSQL version 13.4 and higher releases. Updates
to Babelfish become available with certain new releases of the Aurora PostgreSQL database
engine. For more information, see the Release Notes for Aurora PostgreSQL.

Note

Babelfish DB clusters running on any version of Aurora PostgreSQL 13 can't be upgraded to
Aurora PostgreSQL 14.3, 14.4, and 14.5. Also, Babelfish doesn't support a direct upgrade
from 13.x to 15.x. You must first upgrade your 13.x DB cluster to 14.6 and higher version
and then upgrade to 15.x version.

For a list of supported functionality across different Babelfish releases, see Supported functionality
in Babelfish by version.

For a list of currently unsupported functionality, see Unsupported functionality in Babelfish.

You can use the describe-db-engine-versions AWS CLI command to get a list of Aurora PostgreSQL
versions in your AWS Region that support Babelfish, as shown in the following example.

For Linux, macOS, or Unix:

$ aws rds describe-db-engine-versions --region us-east-1 \
 --engine aurora-postgresql \
 --query '*[]|[?SupportsBabelfish==`true`].[EngineVersion]' \
 --output text
13.4
13.5
13.6
13.7
13.8
14.3
14.4
14.5
14.6
14.7
14.8
14.9
14.10

Babelfish versions 2206

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/Welcome.html
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-engine-versions.html

Amazon Aurora User Guide for Aurora

15.2
15.3
15.4
15.5
16.1
16.2

For more information, see describe-db-engine-versions in the AWS CLI Command Reference.

In the following topics, you can learn how to identify the version of Babelfish running on your
Aurora PostgreSQL DB cluster, and how to upgrade to a new version.

Contents

• Identifying your version of Babelfish

• Upgrading your Babelfish cluster to a new version

• Upgrading Babelfish to a new minor version

• Upgrading Babelfish to a new major version

• Before upgrading Babelfish to a new major version

• Performing major version upgrade

• After upgrading to a new major version

• Example: Upgrading the Babelfish DB cluster to a major release

• Using Babelfish product version parameter

• Configuring Babelfish product version parameter

• Affected queries and parameter

• Interface with babelfishpg_tsql.version parameter

Identifying your version of Babelfish

You can query Babelfish to find details about the Babelfish version, the Aurora PostgreSQL version,
and the compatible Microsoft SQL Server version. You can use the TDS port or the PostgreSQL
port.

• To use the TDS port to query for version information

• To use the PostgreSQL port to query for version information

Babelfish versions 2207

https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-engine-versions.html

Amazon Aurora User Guide for Aurora

To use the TDS port to query for version information

1. Use sqlcmd or ssms to connect to the endpoint for your Babelfish DB cluster.

sqlcmd -S bfish_db.cluster-123456789012.aws-region.rds.amazonaws.com,1433 -U
 login-id -P password -d db_name

2. To identify the Babelfish version, run the following query:

1> SELECT CAST(serverproperty('babelfishversion') AS VARCHAR)
2> GO

The query returns results similar to the following:

serverproperty

3.4.0

(1 rows affected)

3. To identify the version of the Aurora PostgreSQL DB cluster, run the following query:

1> SELECT aurora_version() AS aurora_version
2> GO

The query returns results similar to the following:

aurora_version

15.5.0

(1 rows affected)

4. To identify the compatible Microsoft SQL Server version, run the following query:

1> SELECT @@VERSION AS version
2> GO

The query returns results similar to the following:

Babelfish versions 2208

Amazon Aurora User Guide for Aurora

Babelfish for Aurora PostgreSQL with SQL Server Compatibility - 12.0.2000.8
Dec 7 2023 09:43:06
Copyright (c) Amazon Web Services
PostgreSQL 15.5 on x86_64-pc-linux-gnu (Babelfish 3.4.0)

(1 rows affected)

As an example that shows one minor difference between Babelfish and Microsoft SQL Server, you
can run the following query. On Babelfish, the query returns 1, while on Microsoft SQL Server, the
query returns NULL.

SELECT CAST(serverproperty('babelfish') AS VARCHAR) AS runs_on_babelfish

You can also use the PostgreSQL port to obtain version information, as shown in the following
procedure.

To use the PostgreSQL port to query for version information

1. Use psql or pgAdmin to connect to the endpoint for your Babelfish DB cluster.

psql host=bfish_db.cluster-123456789012.aws-region.rds.amazonaws.com
 port=5432 dbname=babelfish_db user=sa

2. Turn on the extended feature (\x) of psql for more readable output.

babelfish_db=> \x
babelfish_db=> SELECT
babelfish_db=> aurora_version() AS aurora_version,
babelfish_db=> version() AS postgresql_version,
babelfish_db=> sys.version() AS Babelfish_compatibility,
babelfish_db=> sys.SERVERPROPERTY('BabelfishVersion') AS Babelfish_Version;

The query returns output similar to the following:

-[RECORD 1]-----------
+---
aurora_version | 15.5.0

Babelfish versions 2209

Amazon Aurora User Guide for Aurora

postgresql_version | PostgreSQL 15.5 on x86_64-pc-linux-gnu, compiled by
 x86_64-pc-linux-gnu-gcc (GCC) 9.5.0, 64-bit
babelfish_compatibility | Babelfish for Aurora Postgres with SQL Server
 Compatibility - 12.0.2000.8 +
 | Dec 7 2023 09:43:06
 +
 | Copyright (c) Amazon Web Services
 +
 | PostgreSQL 15.5 on x86_64-pc-linux-gnu (Babelfish 3.4.0)
babelfish_version | 3.4.0

Upgrading your Babelfish cluster to a new version

New versions of Babelfish become available with some new releases of the Aurora PostgreSQL
database engine after version 13.4. Each new release of Babelfish has its own version number. As
with Aurora PostgreSQL, Babelfish uses the major.minor.patch naming scheme for versions. For
example, the first Babelfish release, Babelfish version 1.0.0, became available as part of Aurora
PostgreSQL 13.4.0.

Babelfish doesn't require a separate installation process. As discussed in Creating a Babelfish for
Aurora PostgreSQL DB cluster, Turn on Babelfish is an option that you choose when you create an
Aurora PostgreSQL DB cluster.

Likewise, you can't upgrade Babelfish independently from the supporting Aurora DB cluster. To
upgrade an existing Babelfish for Aurora PostgreSQL DB cluster to a new version of Babelfish, you
upgrade the Aurora PostgreSQL DB cluster to a new version that supports the version of Babelfish
that you want to use. The procedure that you follow for the upgrade depends on the version of
Aurora PostgreSQL that's supporting your Babelfish deployment, as follows.

Major version upgrades

You must upgrade the following Aurora PostgreSQL versions to Aurora PostgreSQL 14.6 and
higher version before upgrading to Aurora PostgreSQL 15.2 version.

• Aurora PostgreSQL 13.8 and all higher versions

• Aurora PostgreSQL 13.7.1 and all higher minor versions

• Aurora PostgreSQL 13.6.4 and all higher minor versions

You can upgrade Aurora PostgreSQL 14.6 and higher versions to Aurora PostgreSQL 15.2 and
higher versions.

Babelfish versions 2210

Amazon Aurora User Guide for Aurora

Upgrading an Aurora PostgreSQL DB cluster to a new major version involves several preliminary
tasks. For more information, see How to perform a major version upgrade. To successfully
upgrade your Babelfish for Aurora PostgreSQL DB cluster, you need to create a custom
DB cluster parameter group for the new Aurora PostgreSQL version. This new parameter
group must contain the same Babelfish parameter settings as that of the cluster that you're
upgrading. For more information and for a table of major version upgrade sources and targets,
see Upgrading Babelfish to a new major version.

Minor version upgrades and patches

Minor versions and patches don't require the creation of a new DB cluster parameter group for
the upgrade. Minor versions and patches can use the minor version upgrade process, whether
that's applied automatically or manually. For more information and a table of version sources
and targets, see Upgrading Babelfish to a new minor version.

Note

Before performing a major or a minor upgrade, apply all pending maintenance tasks to
your Babelfish for Aurora PostgreSQL cluster.

Topics

• Upgrading Babelfish to a new minor version

• Upgrading Babelfish to a new major version

Upgrading Babelfish to a new minor version

A new minor version includes only changes that are backward compatible. A patch version includes
important fixes for a minor version after its release. For example, the version label for the first
release of Aurora PostgreSQL 13.4 was Aurora PostgreSQL 13.4.0. Several patches for that minor
version have been released to date, including Aurora PostgreSQL 13.4.1, 13.4.2, and 13.4.4. You
can find the patches available for each Aurora PostgreSQL version in the Patch releases list at the
top of the Aurora PostgreSQL release notes for that version. For an example, see PostgreSQL 14.3
in the Release Notes for Aurora PostgreSQL.

If your Aurora PostgreSQL DB cluster is configured with the Auto minor version upgrade option,
your Babelfish for Aurora PostgreSQL DB cluster is upgraded automatically during the cluster's

Babelfish versions 2211

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.143X

Amazon Aurora User Guide for Aurora

maintenance window. To learn more about auto minor version upgrade (AmVU) and how to use
it, see Automatic minor version upgrades for Aurora DB clusters. If your cluster isn't using AmVU,
you can manually upgrade your Babelfish for Aurora PostgreSQL DB cluster to new minor versions
either by responding to maintenance tasks, or by modifying the cluster to use the new version.

When you choose an Aurora PostgreSQL version to install and when you view an existing Aurora
PostgreSQL DB cluster in the AWS Management Console, the version displays the major.minor
digits only. For example, the following image from the Console for an existing Babelfish for Aurora
PostgreSQL DB cluster with Aurora PostgreSQL 13.4 recommends upgrading the cluster to version
13.7, a new minor release of Aurora PostgreSQL.

To get complete version details, including the patch level, you can query the Aurora PostgreSQL
DB cluster using the aurora_version Aurora PostgreSQL function. For more information, see
aurora_version in the Aurora PostgreSQL functions reference. You can find an example of using
the function in the To use the PostgreSQL port to query for version information procedure in
Identifying your version of Babelfish.

The following table shows Aurora PostgreSQL and Babelfish version and the available target
versions that can support the minor version upgrade process.

Babelfish versions 2212

Amazon Aurora User Guide for Aurora

Current source
versions

Newest upgrade
targets

Other available upgrade versions

Aurora
PostgreSQ
L

Babelfish Aurora
PostgreSQ
L

Babelfish Aurora PostgreSQL versions with Babelfish
option

15.4 3.3.0 15.5 3.4.0

15.3.2 3.2.1 15.5 3.4.0 15.4

15.2.4 3.1.3 15.5 3.4.0 15.4 15.3

14.9.1 2.6.0 14.10 2.7.0

14.8.2 2.5.1 14.10 2.7.0 14.9.1

14.7.4 2.4.3 14.10 2.7.0 14.9.1 14.8.2

14.6.4 2.3.3 14.10 2.7.0 14.9.1 14.8.2 14.7.4

14.5.3 2.2.3 14.10 2.7.0 14.9.1 14.8.2 14.7.4 14.6.4

14.3.1 2.1.1 14.6 2.3.0

14.3.0 2.1.0 14.6 2.3.0 14.3.1

13.8 1.4.0 13.9 1.5

13.7.1 1.3.1 13.9 1.5 13.8

13.7.0 1.3.0 13.9 1.5 13.7.1

13.6.4 1.2.4 13.9 1.5 13.7

13.6.3 1.2.1 13.9 1.5 13.7 13.6.4

13.6.2 1.2.1 13.9 1.5 13.7 13.6.4

13.6.1 1.2.0 13.9 1.5 13.7 13.6.4

Babelfish versions 2213

Amazon Aurora User Guide for Aurora

Current source
versions

Newest upgrade
targets

Other available upgrade versions

13.6.0 1.2.0 13.9 1.5 13.7 13.6.4

13.5 1.1.0 13.9 1.5 13.7 13.6

13.4 1.0.0 13.9 1.5 13.7 13.6 13.5

Upgrading Babelfish to a new major version

For a major version upgrade, you need to first upgrade your Babelfish for Aurora PostgreSQL DB
cluster to a version that supports the major version upgrade. To achieve this, apply patch updates
or minor version upgrades to your DB cluster. For more information,see Upgrading Babelfish to a
new minor version.

The following table shows Aurora PostgreSQL version and Babelfish version that can support a
major version upgrade.

Current source versions Newest available
upgrade target

Other available versions (minor
version upgrades)

Aurora
PostgreSQ
L

Babelfish Aurora
PostgreSQ
L

Babelfish Aurora PostgreSQL version (Babelfish
version)

15.5 3.4.0 16.1 4.0.0

15.4 3.3.0 16.1 4.0.0

15.3 3.2.0 16.1 4.0.0

15.2 3.1.0 16.1 4.0.0

14.10 2.7.0 15.5 3.4.0

14.9 2.6.0 15.5 3.4.0 15.4(3.3.0)

14.8 2.5.0 15.5 3.4.0 15.4(3.3.0) 15.3(3.2.0)

Babelfish versions 2214

Amazon Aurora User Guide for Aurora

Current source versions Newest available
upgrade target

Other available versions (minor
version upgrades)

14.7 2.4.0 15.5 3.4.0 15.4(3.3.0) 15.3(3.2.0) 15.2(3.1.0)

14.6 2.3.0 15.5 3.4.0 15.4(3.3.0) 15.3(3.2.0) 15.2(3.1.0)

13.9 1.5.0 14.6 2.3.0

13.8 1.4.0 14.6 2.3.0

13.7.1 1.3.1 14.6 2.3.0 13.8 (1.4)

13.6.4 1.2.2 14.6 2.3.0 13.8 (1.4) 13.7 (1.3)

Before upgrading Babelfish to a new major version

An upgrade might involve brief outages. For that reason, we recommend that you perform or
schedule upgrades during your maintenance window or during other periods of low usage.

Before you perform a major version upgrade

1. Identify the Babelfish version of your existing Aurora PostgreSQL DB cluster by using the
commands outlined in Identifying your version of Babelfish. The Aurora PostgreSQL version
and Babelfish version information is handled by PostgreSQL, so follow the steps detailed in
the To use the PostgreSQL port to query for version information procedure to get the details.

2. Verify if your version supports the major version upgrade. For the list of versions that support
the major version upgrade feature, see Upgrading Babelfish to a new minor version and
perform the necessary pre-upgrade tasks.

For example, if your Babelfish version is running on an Aurora PostgreSQL 13.5 DB cluster
and you want to upgrade to Aurora PostgreSQL 15.2, then first apply all the minor releases
and patches to upgrade your cluster to Aurora PostgreSQL 14.6 or higher version. When your
cluster is at version 14.6 or higher, continue with the major version upgrade process.

3. Create a manual snapshot of your current Babelfish DB cluster as a backup. The backup lets
you restore the cluster to its Aurora PostgreSQL version, Babelfish version, and restore all data
to the state before the upgrade. For more information, see Creating a DB cluster snapshot. Be
sure to keep your existing custom DB cluster parameter group to use again if you decide to

Babelfish versions 2215

Amazon Aurora User Guide for Aurora

restore this cluster to its pre-upgraded state. For more information, see Restoring from a DB
cluster snapshot and Parameter group considerations.

4. Prepare a custom DB cluster parameter group for the target Aurora PostgreSQL DB version.
Duplicate the settings for the Babelfish parameters from your current Babelfish for Aurora
PostgreSQL DB cluster. To find a list of all Babelfish parameters, see DB cluster parameter
group settings for Babelfish. For a major version upgrade, the following parameters require the
same settings as the source DB cluster. For the upgrade to succeed, all the settings must be the
same.

• rds.babelfish_status

• babelfishpg_tds.tds_default_numeric_precision

• babelfishpg_tds.tds_default_numeric_scale

• babelfishpg_tsql.database_name

• babelfishpg_tsql.default_locale

• babelfishpg_tsql.migration_mode

• babelfishpg_tsql.server_collation_name

Warning

If the settings for the Babelfish parameters in the custom DB cluster parameter
group for the new Aurora PostgreSQL version don't match the parameter values
of the cluster that you're upgrading, the ModifyDBCluster operation fails. An
InvalidParameterCombination error message appears in the AWS Management
Console or in the output from the modify-db-cluster AWS CLI command.

5. Use the AWS Management Console or the AWS CLI to create the custom DB cluster parameter
group. Choose the applicable Aurora PostgreSQL family for the version of Aurora PostgreSQL
that you want for the upgrade.

Tip

Parameter groups are managed at the AWS Region level. When you work with AWS
CLI, you can configure with a default Region instead of specifying the --region in
the command. To learn more about using the AWS CLI, see Quick setup in the AWS
Command Line Interface User Guide.

Babelfish versions 2216

https://docs.aws.amazon.com/cli/latest/userguide/getting-started-quickstart.html

Amazon Aurora User Guide for Aurora

Performing major version upgrade

1. Upgrade Aurora PostgreSQL DB cluster to a new major version. For more information, see
Upgrading the Aurora PostgreSQL engine to a new major version.

2. Reboot the writer instance of the cluster, so that the parameter settings can take effect.

After upgrading to a new major version

After a major version upgrade to a new Aurora PostgreSQL version, the IDENTITY value in tables
with an IDENTITY column might be larger (+32) than the value was before the upgrade. The result
is that when the next row is inserted into such tables, the generated identity column value jumps
to the +32 number and starts the sequence from there. This condition won't negatively affect the
functions of your Babelfish DB cluster. However, if you want, you can reset the sequence object
based on the maximum value of the column. To do so, connect to the T-SQL port on your Babelfish
writer instance using sqlcmd or another SQL Server client. For more information, see Using a SQL
Server client to connect to your DB cluster.

sqlcmd -S bfish-db.cluster-123456789012.aws-region.rds.amazonaws.com,1433 -U
 sa -P ******** -d dbname

When connected, use the following SQL command to generate statements that you can use to seed
the associated sequence object. This SQL command works for both single database and multiple
database Babelfish configurations. For more information about these two deployment models, see
Using Babelfish with a single database or multiple databases.

DECLARE @schema_prefix NVARCHAR(200) = ''
IF current_setting('babelfishpg_tsql.migration_mode') = 'multi-db'
 SET @schema_prefix = db_name() + '_'
SELECT 'SELECT setval(pg_get_serial_sequence(''' + @schema_prefix +
 schema_name(tables.schema_id)
 + '.' + tables.name + ''', ''' + columns.name + '''),(select max(' + columns.name +
 ')
 FROM ' + schema_name(tables.schema_id) + '.' + tables.name + '));
 'FROM sys.tables tables JOIN sys.columns
 columns ON tables.object_id = columns.object_id
 WHERE columns.is_identity = 1
GO

Babelfish versions 2217

Amazon Aurora User Guide for Aurora

The query generates a series of SELECT statements that you can then run to reset the maximum
IDENTITY value and close any gap. The following shows the output when using the sample SQL
Server database, Northwind, running on a Babelfish cluster.

--
SELECT setval(pg_get_serial_sequence('northwind_dbo.categories', 'categoryid'),(select
 max(categoryid)
 FROM dbo.categories));

SELECT setval(pg_get_serial_sequence('northwind_dbo.orders', 'orderid'),(select
 max(orderid)
 FROM dbo.orders));

SELECT setval(pg_get_serial_sequence('northwind_dbo.products', 'productid'),(select
 max(productid)
 FROM dbo.products));

SELECT setval(pg_get_serial_sequence('northwind_dbo.shippers', 'shipperid'),(select
 max(shipperid)
 FROM dbo.shippers));

SELECT setval(pg_get_serial_sequence('northwind_dbo.suppliers', 'supplierid'),(select
 max(supplierid)
 FROM dbo.suppliers));

(5 rows affected)

Run the statements one by one to reset the sequence values.

Example: Upgrading the Babelfish DB cluster to a major release

In this example, you can find the series of AWS CLI commands that explains how to upgrade
an Aurora PostgreSQL 13.6.4 DB cluster running Babelfish version 1.2.2 to Aurora PostgreSQL
14.6. First, you create a custom DB cluster parameter group for Aurora PostgreSQL 14. Next, you
modify the parameter values to match those of your Aurora PostgreSQL version 13 source. Finally,
you perform the upgrade by modifying the source cluster. For more information, see DB cluster
parameter group settings for Babelfish. In that topic, you can also find information about using the
AWS Management Console to perform the upgrade.

Babelfish versions 2218

Amazon Aurora User Guide for Aurora

Use the create-db-cluster-parameter-group CLI command to create the DB cluster parameter group
for the new version.

For Linux, macOS, or Unix:

aws rds create-db-cluster-parameter-group \
 --db-cluster-parameter-group-name docs-lab-babelfish-apg-14 \
 --db-parameter-group-family aurora-postgresql14 \
 --description 'New custom parameter group for upgrade to new major version' \
 --region us-west-1

When you issue this command, the custom DB cluster parameter group is created in the AWS
Region. You see output similar to the following.

{
 "DBClusterParameterGroup": {
 "DBClusterParameterGroupName": "docs-lab-babelfish-apg-14",
 "DBParameterGroupFamily": "aurora-postgresql14",
 "Description": "New custom parameter group for upgrade to new major version",
 "DBClusterParameterGroupArn": "arn:aws:rds:us-west-1:111122223333:cluster-
pg:docs-lab-babelfish-apg-14"
 }
}

For more information, see Creating a DB cluster parameter group.

Use the modify-db-cluster-parameter-group CLI command to modify the settings so that they
match the source cluster.

For Windows:

aws rds modify-db-cluster-parameter-group --db-cluster-parameter-group-name docs-lab-
babelfish-apg-14 ^
 --parameters
 "ParameterName=rds.babelfish_status,ParameterValue=on,ApplyMethod=pending-reboot" ^
 "ParameterName=babelfishpg_tds.tds_default_numeric_precision,ParameterValue=38,ApplyMethod=pending-
reboot" ^
 "ParameterName=babelfishpg_tds.tds_default_numeric_scale,ParameterValue=8,ApplyMethod=pending-
reboot" ^
 "ParameterName=babelfishpg_tsql.database_name,ParameterValue=babelfish_db,ApplyMethod=pending-
reboot" ^

Babelfish versions 2219

https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-cluster-parameter-group.html
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-cluster-parameter-group.html

Amazon Aurora User Guide for Aurora

 "ParameterName=babelfishpg_tsql.default_locale,ParameterValue=en-
US,ApplyMethod=pending-reboot" ^
 "ParameterName=babelfishpg_tsql.migration_mode,ParameterValue=single-
db,ApplyMethod=pending-reboot" ^
 "ParameterName=babelfishpg_tsql.server_collation_name,ParameterValue=sql_latin1_general_cp1_ci_as,ApplyMethod=pending-
reboot"

The response looks similar to the following.

{
 "DBClusterParameterGroupName": "docs-lab-babelfish-apg-14"
}

Use the modify-db-cluster CLI command to modify the cluster to use the new version and the new
custom DB cluster parameter group. You also specify the --allow-major-version-upgrade
argument, as shown in the following sample.

aws rds modify-db-cluster \
--db-cluster-identifier docs-lab-bfish-apg-14 \
--engine-version 14.6 \
--db-cluster-parameter-group-name docs-lab-babelfish-apg-14 \
--allow-major-version-upgrade \
--region us-west-1 \
--apply-immediately

Use the reboot-db-instance CLI command to reboot the writer instance of the cluster, so that the
parameter settings can take effect.

aws rds reboot-db-instance \
--db-instance-identifier docs-lab-bfish-apg-14-instance-1\
--region us-west-1

Using Babelfish product version parameter

A new Grand Unified Configuration (GUC) parameter called
babelfishpg_tds.product_version is introduced from Babelfish 2.4.0 and 3.1.0 versions. This
parameter allows you to set the SQL Server product version number as the output of Babelfish.

The parameter is a 4-part version ID string, and each part should be separated by “.”.

Babelfish versions 2220

https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-cluster.html
https://docs.aws.amazon.com/cli/latest/reference/rds/reboot-db-instance.html

Amazon Aurora User Guide for Aurora

Syntax

Major.Minor.Build.Revision

• Major Version: A number between 11 and 16.

• Minor Version: A number between 0 and 255.

• Build Version: A number between 0 and 65535.

• Revision: 0 and any positive number.

Configuring Babelfish product version parameter

You must use the cluster parameter group to set the babelfishpg_tds.product_version parameter
in the console. For more information on how to modify the DB cluster parameter, see Modifying
parameters in a DB cluster parameter group.

When you set the product version parameter to an invalid value, the change will not take effect.
Although the console might show you the new value, the parameter retains the previous value.
Check the engine log file for details about the error messages.

For Linux, macOS, or Unix:

aws rds modify-db-cluster-parameter-group \
--db-cluster-parameter-group-name mydbparametergroup \
--parameters
 "ParameterName=babelfishpg_tds.product_version,ParameterValue=15.2.4000.1,ApplyMethod=immediate"

For Windows:

aws rds modify-db-cluster-parameter-group ^
--db-cluster-parameter-group-name mydbparametergroup ^
--parameters
 "ParameterName=babelfishpg_tds.product_version,ParameterValue=15.2.4000.1,ApplyMethod=immediate"

Babelfish versions 2221

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_WorkingWithDBClusterParamGroups.html#USER_WorkingWithParamGroups.ModifyingCluster
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_WorkingWithDBClusterParamGroups.html#USER_WorkingWithParamGroups.ModifyingCluster

Amazon Aurora User Guide for Aurora

Affected queries and parameter

Query/Parameter Result Effective time

SELECT @@VERSION Returns user defined SQL
Server version (babelfis
hpg_tsql.version value =
Default)

Immediately

SELECT SERVERPROPERTY('Pr
oductVersion')

Returns user defined SQL
Server version

Immediately

SELECT SERVERPROPERTY('Pr
oductMajorVersion')

Returns Major Version of
the user defined SQL Server
version

Immediately

VERSION tokens in PRELOGIN
Response Message

Server returns PRELOGIN
messages with user defined
SQL Server version

Takes effect when a user
creates a new session

SQLServerVersion in LoginAck
when using JDBC

DatabaseMetaData.g
etDatabaseProductVersion()
returns user defined SQL
Server version

Takes effect when a user
creates a new session

Interface with babelfishpg_tsql.version parameter

You can set the output of the @@VERSION using the parameters babelfishpg_tsql.version and
babelfishpg_tds.product_version. The following examples show how these two parameters
interface.

• When babelfishpg_tsql.version parameter is "default" and babelfishpg_tds.product_version is
15.0.2000.8.

• Output of @@version – 15.0.2000.8.

• When babelfishpg_tsql.version parameter is set to 13.0.2000.8 and
babelfishpg_tds.product_version parameter is 15.0.2000.8.

• Output of @@version – 13.0.2000.8.

Babelfish versions 2222

Amazon Aurora User Guide for Aurora

Babelfish versions 2223

Amazon Aurora User Guide for Aurora

Babelfish for Aurora PostgreSQL reference

Topics

• Unsupported functionality in Babelfish

• Supported functionality in Babelfish by version

• Babelfish for Aurora PostgreSQL procedure reference

Unsupported functionality in Babelfish

In the following table and lists, you can find functionality that isn't currently supported in
Babelfish. Updates to Babelfish are included in Aurora PostgreSQL versions. For more information,
see the Release Notes for Aurora PostgreSQL.

Topics

• Functionality that isn't currently supported

• Settings that aren't supported

• Commands that aren't supported

• Column names or attributes that aren't supported

• Data types that aren't supported

• Object types that aren't supported

• Functions that aren't supported

• Syntax that isn't supported

Functionality that isn't currently supported

In the table you can find information about certain functionality that isn't currently supported.

Functionality or syntax Description

Assembly modules and SQL
Common Language Runtime
(CLR) routines

Functionality related to assembly modules and CLR routines
isn't supported.

Column attributes ROWGUIDCOL, SPARSE, FILESTREAM, and MASKED aren't
supported.

Babelfish reference 2224

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/Welcome.html

Amazon Aurora User Guide for Aurora

Functionality or syntax Description

Contained databases Contained databases with logins authenticated at the
database level rather than at the server level aren't supported.

Cursors (updatable) Updatable cursors aren't supported.

Cursors (global) GLOBAL cursors aren't supported.

Cursor (fetch behaviors) The following cursor fetch behaviors aren't supported: FETCH
PRIOR, FIRST, LAST, ABSOLUTE, abd RELATIVE

Cursor-typed output
parameters

Cursor-typed variables and parameters aren't supported for
output parameters (an error is raised).

Cursor options SCROLL, KEYSET, DYNAMIC, FAST_FORWARD, SCROLL_LOCKS,
OPTIMISTIC, TYPE_WARNING, and FOR UPDATE

Data encryption Data encryption isn't supported.

Data-tier applications (DAC) Data-tier applications (DAC) import or export operations with
DAC package (.dacpac) or DAC backup (.bacpac) files aren't
supported.

DBCC commands Microsoft SQL Server Database Console Commands (DBCC)
aren't supported. DBCC CHECKIDENT is supported in Babelfish
3.4.0 and higher releases.

DROP IF EXISTS This syntax isn't supported for USER and SCHEMA objects.
It's supported for the objects TABLE, VIEW, PROCEDURE,
FUNCTION, and DATABASE.

Encryption Built-in functions and statements don't support encryption.

ENCRYPT_CLIENT_CERT
connections

Client certificate connections aren't supported.

EXECUTE AS statement This statement isn't supported.

EXECUTE AS SELF clause This clause isn't supported in functions, procedures, or triggers.

Babelfish reference 2225

Amazon Aurora User Guide for Aurora

Functionality or syntax Description

EXECUTE AS USER clause This clause isn't supported in functions, procedures, or triggers.

Foreign key constraints
referencing database name

Foreign key constraints that reference the database name
aren't supported.

FORMAT User-defined types aren't supported.

Function declarations with
greater than 100 parameters

Function declarations that contain more than 100 parameters
aren't supported.

Function calls that include
DEFAULT as a parameter
value

DEFAULT isn't a supported parameter value for a function call.
DEFAULT as a parameter value for a function call is supported
from Babelfish 3.4.0 and higher releases.

Functions, externally defined External functions, including SQL CLR functions, aren't
supported.

Global temporary tables
(tables with names that start
with ##)

Global temporary tables aren't supported.

Graph functionality All SQL graph functionality isn't supported.

Identifiers (variables or
parameters) with multiple
leading @ characters

Identifiers that start with more than one leading @ aren't
supported.

Identifiers, table or column
names that contain @ or]]
characters

Table or column names that contain an @ sign or square
brackets aren't supported.

Inline indexes Inline indexes aren't supported.

Invoking a procedure whose
name is in a variable

Using a variable as a procedure name isn't supported.

Materialized views Materialized views aren't supported.

Babelfish reference 2226

Amazon Aurora User Guide for Aurora

Functionality or syntax Description

NOT FOR REPLICATION clause This syntax is accepted and ignored.

ODBC escape functions ODBC escape functions aren't supported.

Partitioning Table and index partitioning isn't supported.

Procedure calls that includes
DEFAULT as a parameter
value

DEFAULT isn't a supported parameter value. DEFAULT as a
parameter value for a function call is supported from Babelfish
3.4.0 and higher releases.

Procedure declarations with
more than 100 parameters

Declarations with more than 100 parameters aren't supported.

Procedures, externally
defined

Externally defined procedures, including SQL CLR procedures,
aren't supported.

Procedure versioning Procedure versioning isn't supported.

Procedures WITH RECOMPILE WITH RECOMPILE (when used in conjunction with the DECLARE
and EXECUTE statements) isn't supported.

Remote object references Executing procedures and functions using four-part names
aren't supported. In remote objects, supports four-part object
names for selected queries. For more information, see DB
cluster parameter group settings for Babelfish.

Row-level security Row-level security with CREATE SECURITY POLICY and inline
table-valued functions isn't supported.

Service broker functionality Service broker functionality isn't supported.

SESSIONPROPERTY Unsupported properties: ANSI_NULLS, ANSI_PADDING,
ANSI_WARNINGS, ARITHABORT, CONCAT_NULL_YIELDS_NULL,
and NUMERIC_ROUNDABORT

SET LANGUAGE This syntax isn't supported with any value other than english
or us_english .

Babelfish reference 2227

Amazon Aurora User Guide for Aurora

Functionality or syntax Description

SP_CONFIGURE This system stored procedure isn't supported.

SQL keyword SPARSE The keyword SPARSE is accepted and ignored.

Table value constructor
syntax (FROM clause)

The unsupported syntax is for a derived table constructed with
the FROM clause.

Temporal tables Temporal tables aren't supported.

Temporary procedures aren't
dropped automatically

This functionality isn't supported.

Triggers, externally defined These triggers aren't supported, including SQL Common
Language Runtime (CLR).

Without SCHEMABINDING
clause

Creating a view without SCHEMABINDING isn't supported, but
the view is created as if WITH SCHEMABINDING was specified
. Using SCHEMABINDING when creating functions, procedures,
triggers is silently ignored.

Settings that aren't supported

The following settings aren't supported:

• SET ANSI_NULL_DFLT_OFF ON

• SET ANSI_NULL_DFLT_ON OFF

• SET ANSI_PADDING OFF

• SET ANSI_WARNINGS OFF

• SET ARITHABORT OFF

• SET ARITHIGNORE ON

• SET CURSOR_CLOSE_ON_COMMIT ON

• SET NUMERIC_ROUNDABORT ON

• SET PARSEONLY ON (command doesn't work as expected)

• SET FMTONLY ON (command doesn't work as expected. It suppresses only the execution of
SELECT statements but not others.)

Babelfish reference 2228

Amazon Aurora User Guide for Aurora

Commands that aren't supported

Certain functionality for the following commands isn't supported:

• ADD SIGNATURE

• ALTER DATABASE, ALTER DATABASE SET

• BACKUP/RESTORE DATABASE/LOG

• BACPAC and DACPAC FILES RESTORE

• CREATE, ALTER, DROP AUTHORIZATION. ALTER AUTHORIZATION is supported for database
objects.

• CREATE, ALTER, DROP AVAILABILITY GROUP

• CREATE, ALTER, DROP BROKER PRIORITY

• CREATE, ALTER, DROP COLUMN ENCRYPTION KEY

• CREATE, ALTER, DROP DATABASE ENCRYPTION KEY

• CREATE, ALTER, DROP, BACKUP CERTIFICATE

• CREATE AGGREGATE

• CREATE CONTRACT

• CHECKPOINT

Column names or attributes that aren't supported

The following column names aren't supported:

• $IDENTITY

• $ROWGUID

• IDENTITYCOL

Data types that aren't supported

The following data types aren't supported:

• Geospatial (GEOGRAPHY and GEOMETRY)

• HIERARCHYID

Babelfish reference 2229

Amazon Aurora User Guide for Aurora

Object types that aren't supported

The following object types aren't supported:

• COLUMN MASTER KEY

• CREATE, ALTER EXTERNAL DATA SOURCE

• CREATE, ALTER, DROP DATABASE AUDIT SPECIFICATION

• CREATE, ALTER, DROP EXTERNAL LIBRARY

• CREATE, ALTER, DROP SERVER AUDIT

• CREATE, ALTER, DROP SERVER AUDIT SPECIFICATION

• CREATE, ALTER, DROP, OPEN/CLOSE SYMMETRIC KEY

• CREATE, DROP DEFAULT

• CREDENTIAL

• CRYPTOGRAPHIC PROVIDER

• DIAGNOSTIC SESSION

• Indexed views

• SERVICE MASTER KEY

• SYNONYM

Functions that aren't supported

The following built-in functions aren't supported:

Aggregate functions

• APPROX_COUNT_DISTINCT

• CHECKSUM_AGG

• GROUPING_ID

• STRING_AGG using the WITHIN GROUP clause

Cryptographic functions

• CERTENCODED function

Babelfish reference 2230

Amazon Aurora User Guide for Aurora

• CERTID function

• CERTPROPERTY function

Metadata functions

• COLUMNPROPERTY

• TYPEPROPERTY

• SERVERPROPERTY function – The following properties aren't supported:

• BuildClrVersion

• ComparisonStyle

• ComputerNamePhysicalNetBIOS

• HadrManagerStatus

• InstanceDefaultDataPath

• InstanceDefaultLogPath

• IsClustered

• IsHadrEnabled

• LCID

• NumLicenses

• ProcessID

• ProductBuild

• ProductBuildType

• ProductUpdateReference

• ResourceLastUpdateDateTime

• ResourceVersion

• ServerName

• SqlCharSet

• SqlCharSetName

• SqlSortOrder

• SqlSortOrderName

• FilestreamShareName

• FilestreamConfiguredLevel
Babelfish reference 2231

Amazon Aurora User Guide for Aurora

• FilestreamEffectiveLevel

Security functions

• CERTPRIVATEKEY

• LOGINPROPERTY

Statements, operators, other functions

• EVENTDATA function

• GET_TRANSMISSION_STATUS

• OPENXML

Syntax that isn't supported

The following syntax isn't supported:

• ALTER DATABASE

• ALTER DATABASE SCOPED CONFIGURATION

• ALTER DATABASE SCOPED CREDENTIAL

• ALTER DATABASE SET HADR

• ALTER FUNCTION

• ALTER INDEX

• ALTER PROCEDURE statement

• ALTER SCHEMA

• ALTER SERVER CONFIGURATION

• ALTER SERVICE, BACKUP/RESTORE SERVICE MASTER KEY clause

• ALTER VIEW

• BEGIN CONVERSATION TIMER

• BEGIN DISTRIBUTED TRANSACTION

• BEGIN DIALOG CONVERSATION

• BULK INSERT

• CREATE COLUMNSTORE INDEX

Babelfish reference 2232

Amazon Aurora User Guide for Aurora

• CREATE EXTERNAL FILE FORMAT

• CREATE EXTERNAL TABLE

• CREATE, ALTER, DROP APPLICATION ROLE

• CREATE, ALTER, DROP ASSEMBLY

• CREATE, ALTER, DROP ASYMMETRIC KEY

• CREATE, ALTER, DROP CREDENTIAL

• CREATE, ALTER, DROP CRYPTOGRAPHIC PROVIDER

• CREATE, ALTER, DROP ENDPOINT

• CREATE, ALTER, DROP EVENT SESSION

• CREATE, ALTER, DROP EXTERNAL LANGUAGE

• CREATE, ALTER, DROP EXTERNAL RESOURCE POOL

• CREATE, ALTER, DROP FULLTEXT CATALOG

• CREATE, ALTER, DROP FULLTEXT INDEX

• CREATE, ALTER, DROP FULLTEXT STOPLIST

• CREATE, ALTER, DROP MESSAGE TYPE

• CREATE, ALTER, DROP, OPEN/CLOSE, BACKUP/RESTORE MASTER KEY

• CREATE, ALTER, DROP PARTITION FUNCTION

• CREATE, ALTER, DROP PARTITION SCHEME

• CREATE, ALTER, DROP QUEUE

• CREATE, ALTER, DROP RESOURCE GOVERNOR

• CREATE, ALTER, DROP RESOURCE POOL

• CREATE, ALTER, DROP ROUTE

• CREATE, ALTER, DROP SEARCH PROPERTY LIST

• CREATE, ALTER, DROP SECURITY POLICY

• CREATE, ALTER, DROP SELECTIVE XML INDEX clause

• CREATE, ALTER, DROP SERVICE

• CREATE, ALTER, DROP SPATIAL INDEX

• CREATE, ALTER, DROP TYPE

• CREATE, ALTER, DROP XML INDEX

• CREATE, ALTER, DROP XML SCHEMA COLLECTION

Babelfish reference 2233

Amazon Aurora User Guide for Aurora

• CREATE/DROP RULE

• CREATE, DROP WORKLOAD CLASSIFIER

• CREATE, ALTER, DROP WORKLOAD GROUP

• ALTER TRIGGER

• CREATE TABLE... GRANT clause

• CREATE TABLE... IDENTITY clause

• CREATE USER – This syntax isn't supported. The PostgreSQL statement CREATE USER doesn't
create a user that is equivalent to the SQL Server CREATE USER syntax. For more information,
see T-SQL differences in Babelfish.

• DENY

• END, MOVE CONVERSATION

• EXECUTE with AS LOGIN or AT option

• GET CONVERSATION GROUP

• GROUP BY ALL clause

• GROUP BY CUBE clause

• GROUP BY ROLLUP clause

• INSERT... DEFAULT VALUES

• MERGE

• READTEXT

• REVERT

• SELECT PIVOT(supported from 3.4.0 and higher releases except when used in a view definition, a
common table expression, or a join)/UNPIVOT

• SELECT TOP x PERCENT WHERE x <> 100

• SELECT TOP... WITH TIES

• SELECT... FOR BROWSE

• SELECT... FOR XML AUTO

• SELECT... FOR XML EXPLICIT

• SEND

• SET DATEFORMAT

• SET DEADLOCK_PRIORITY

• SET FMTONLY

Babelfish reference 2234

Amazon Aurora User Guide for Aurora

• SET FORCEPLAN

• SET NUMERIC_ROUNDABORT ON

• SET OFFSETS

• SET REMOTE_PROC_TRANSACTIONS

• SET SHOWPLAN_TEXT

• SET SHOWPLAN_XML

• SET STATISTICS

• SET STATISTICS PROFILE

• SET STATISTICS TIME

• SET STATISTICS XML

• SHUTDOWN statement

• UPDATE STATISTICS

• UPDATETEXT

• Using EXECUTE to call a SQL function

• VIEW... CHECK OPTION clause

• VIEW... VIEW_METADATA clause

• WAITFOR DELAY

• WAITFOR TIME

• WAITFOR, RECEIVE

• WITH XMLNAMESPACES construct

• WRITETEXT

• XPATH expressions

Babelfish reference 2235

Amazon Aurora User Guide for Aurora

Supported functionality in Babelfish by version

In the following table you can find T-SQL functionality supported by different Babelfish versions.
For lists of unsupported functionality, see Unsupported functionality in Babelfish. For information
about various Babelfish releases, see the Release Notes for Aurora PostgreSQL.

T-
SQL
Functiona
lity
or
syntax

4.1.0 4.0.0 3.5.0 3.4.0 3.3.0 3.2.0 3.1.0 2.8.0 2.7.0 2.6.0 2.5.0 2.4.0 2.3.0 2.2.0 2.1.0

4
parts
object
name
reference
s
for
SELECT
statement
s

✓ ✓ ✓ ✓ ✓ ✓ – ✓ ✓ – – – – – –

AS
keyword
in
CREATE
FUNCTION

✓ – ✓ – – – – – – – – – – – –

ALTER
AUTHORIZA
TION
syntax
to
change

✓ ✓ ✓ ✓ – – – – – – – – – – –

Babelfish reference 2236

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/Welcome.html

Amazon Aurora User Guide for Aurora

T-
SQL
Functiona
lity
or
syntax

4.1.0 4.0.0 3.5.0 3.4.0 3.3.0 3.2.0 3.1.0 2.8.0 2.7.0 2.6.0 2.5.0 2.4.0 2.3.0 2.2.0 2.1.0

database
owner

ALTER
ROLE

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

ALTER
USER...WI
TH
LOGIN

✓ ✓ ✓ ✓ – – – – – – – – – – –

AT
TIME
ZONE
clause

✓ ✓ ✓ ✓ – – – – – – – – – – –

Babelfish
instance
as
a
linked
server

✓ ✓ ✓ ✓ ✓ ✓ – ✓ ✓ – – – – – –

Compariso
n
operators !
<
and !
>

✓ – ✓ – – – – – – – – – – – –

Babelfish reference 2237

Amazon Aurora User Guide for Aurora

T-
SQL
Functiona
lity
or
syntax

4.1.0 4.0.0 3.5.0 3.4.0 3.3.0 3.2.0 3.1.0 2.8.0 2.7.0 2.6.0 2.5.0 2.4.0 2.3.0 2.2.0 2.1.0

CREATE
Instead
of
Triggers
(DML)
on
SQL
Server
Views

– – ✓ – – – – – – – – – – – –

CREATE
ROLE

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

CREATE
TRIGGER

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Create
unique
indexes

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Cross–
dat
abase
procedure
execution

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ –

Babelfish reference 2238

Amazon Aurora User Guide for Aurora

T-
SQL
Functiona
lity
or
syntax

4.1.0 4.0.0 3.5.0 3.4.0 3.3.0 3.2.0 3.1.0 2.8.0 2.7.0 2.6.0 2.5.0 2.4.0 2.3.0 2.2.0 2.1.0

Cross–
dat
abase
reference
s
SELECT,SE
LECT..INT
O,
INSERT,
UPDATE,
DELETE

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Cursor-
ty
ped
parameter
s
for
input
parameter
s
only
(not
output)

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Babelfish reference 2239

Amazon Aurora User Guide for Aurora

T-
SQL
Functiona
lity
or
syntax

4.1.0 4.0.0 3.5.0 3.4.0 3.3.0 3.2.0 3.1.0 2.8.0 2.7.0 2.6.0 2.5.0 2.4.0 2.3.0 2.2.0 2.1.0

Data
migration
using
the
bcp
client
utility

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Datatypes
TIMESTAMP
,
ROWVERSIO
N
(for
usage
informati
on,
see
Features
with
limited
implement
ation

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Babelfish reference 2240

Amazon Aurora User Guide for Aurora

T-
SQL
Functiona
lity
or
syntax

4.1.0 4.0.0 3.5.0 3.4.0 3.3.0 3.2.0 3.1.0 2.8.0 2.7.0 2.6.0 2.5.0 2.4.0 2.3.0 2.2.0 2.1.0

DEFAULT
keyword
in
calls
to
stored
procedure
s
and
functions

✓ ✓ ✓ ✓ – – – – – – – – – – –

DBCC
CHECKIDEN
T

✓ ✓ ✓ ✓ – – – – – – – – – – –

DROP
DATABASE

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ – –

DROP
IF
EXISTS
(for
SCHEMA,
DATABASE,
and
USER
objects)

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Babelfish reference 2241

Amazon Aurora User Guide for Aurora

T-
SQL
Functiona
lity
or
syntax

4.1.0 4.0.0 3.5.0 3.4.0 3.3.0 3.2.0 3.1.0 2.8.0 2.7.0 2.6.0 2.5.0 2.4.0 2.3.0 2.2.0 2.1.0

DROP
INDEX
index
ON
schema.ta
ble

✓ – ✓ – – – – – – – – – – – –

DROP
INDEX
schema.ta
ble.index

✓ – ✓ – – – – – – – – – – – –

DROP
ROLE

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

ENABLE/
DI
SABLE
TRIGGER

✓ ✓ ✓ ✓ – – – – – – – – – – –

FULL
TEXT
SEARCH

✓ ✓ – – – – – – – – – – – – –

Full
Text
Search
with
CONTAINS
clause

✓ – – – – – – – – – – – – – –

Babelfish reference 2242

Amazon Aurora User Guide for Aurora

T-
SQL
Functiona
lity
or
syntax

4.1.0 4.0.0 3.5.0 3.4.0 3.3.0 3.2.0 3.1.0 2.8.0 2.7.0 2.6.0 2.5.0 2.4.0 2.3.0 2.2.0 2.1.0

GRANT✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Geometry
and
Geography
spatial
datatypes

✓ – ✓ – – – – – – – – – – – –

GUC
babelfish
pg_tds.pr
oduct_ver
sion

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ – – –

Identifie
rs
with
leading
dot
character

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

INSTEAD
OF
triggers
on
tables

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Babelfish reference 2243

Amazon Aurora User Guide for Aurora

T-
SQL
Functiona
lity
or
syntax

4.1.0 4.0.0 3.5.0 3.4.0 3.3.0 3.2.0 3.1.0 2.8.0 2.7.0 2.6.0 2.5.0 2.4.0 2.3.0 2.2.0 2.1.0

INSTEAD
OF
triggers
on
views

✓ ✓ – – – – – – – – – – – – –

KILL ✓ ✓ ✓ ✓ – – – – – – – – – – –

Babelfish reference 2244

Amazon Aurora User Guide for Aurora

T-
SQL
Functiona
lity
or
syntax

4.1.0 4.0.0 3.5.0 3.4.0 3.3.0 3.2.0 3.1.0 2.8.0 2.7.0 2.6.0 2.5.0 2.4.0 2.3.0 2.2.0 2.1.0

PIVOT(sup
ported
from
3.4.0
and
higher
releases
except
when
used
in
a
view
definitio
n,
a
common
table
expressio
n,
or
a
join)

✓ ✓ ✓ ✓ – – – – – – – – – – –

REVOKE✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

SELECT...
OFFSET...
FETCH
clauses

✓ – ✓ – – – – – – – – – – – –

Babelfish reference 2245

Amazon Aurora User Guide for Aurora

T-
SQL
Functiona
lity
or
syntax

4.1.0 4.0.0 3.5.0 3.4.0 3.3.0 3.2.0 3.1.0 2.8.0 2.7.0 2.6.0 2.5.0 2.4.0 2.3.0 2.2.0 2.1.0

SELECT
FOR
JSON
AUTO

✓ – ✓ – – – – – – – – – – – –

SET
BABELFISH
_SHOWPLAN
_ALL
ON
(and
OFF)

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

SET
BABELFISH
_STATISTI
CS
PROFILE
ON
(OFF)

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

SET
CONTEXT_I
NFO

✓ ✓ ✓ ✓ ✓ ✓ – ✓ ✓ – – – – – –

SET
LOCK_TIME
OUT

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Babelfish reference 2246

Amazon Aurora User Guide for Aurora

T-
SQL
Functiona
lity
or
syntax

4.1.0 4.0.0 3.5.0 3.4.0 3.3.0 3.2.0 3.1.0 2.8.0 2.7.0 2.6.0 2.5.0 2.4.0 2.3.0 2.2.0 2.1.0

SET
NO_BROWSE
TABLE

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ –

SET
rowcount

✓ ✓ ✓ ✓ ✓ ✓ – ✓ ✓ – – – – – –

SET
SHOWPLAN_
ALL

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ –

SET
STATISTIC
S
IO

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ –

SET
TRANSACTI
ON
ISOLATION
LEVEL
REPEATABL
E
READ

✓ ✓ ✓ ✓ – – – – – – – – – – –

Babelfish reference 2247

Amazon Aurora User Guide for Aurora

T-
SQL
Functiona
lity
or
syntax

4.1.0 4.0.0 3.5.0 3.4.0 3.3.0 3.2.0 3.1.0 2.8.0 2.7.0 2.6.0 2.5.0 2.4.0 2.3.0 2.2.0 2.1.0

SET
TRANSACTI
ON
ISOLATION
LEVEL
SERIALIZA
BLE

✓ ✓ ✓ ✓ – – – – – – – – – – –

SET
TRANSACTI
ON
ISOLATION
LEVEL
syntax

✓ – ✓ – – – – – – – – – – – –

SSMS:
Connectin
g
with
the
object
explorer
connectio
n
dialog

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Babelfish reference 2248

Amazon Aurora User Guide for Aurora

T-
SQL
Functiona
lity
or
syntax

4.1.0 4.0.0 3.5.0 3.4.0 3.3.0 3.2.0 3.1.0 2.8.0 2.7.0 2.6.0 2.5.0 2.4.0 2.3.0 2.2.0 2.1.0

SSMS:
Data
migration
with
the
Import/
Ex
port
Wizard

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

SSMS:
Partial
support
for
the
object
explorer

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

STDEV✓ ✓ ✓ ✓ ✓ – – ✓ ✓ – – – – – –

STDEVP✓ ✓ ✓ ✓ ✓ – – ✓ ✓ – – – – – –

Babelfish reference 2249

Amazon Aurora User Guide for Aurora

T-
SQL
Functiona
lity
or
syntax

4.1.0 4.0.0 3.5.0 3.4.0 3.3.0 3.2.0 3.1.0 2.8.0 2.7.0 2.6.0 2.5.0 2.4.0 2.3.0 2.2.0 2.1.0

Triggers
with
multiple
DML
actions
can
reference
transitio
n
tables

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

T-
SQL
hints
(join
methods,
index
usage,
MAXDOP)

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ – –

T-
SQL
square
bracket
syntax
with
the
LIKE
predicate

✓ ✓ ✓ ✓ ✓ – – ✓ ✓ – – – – – –

Babelfish reference 2250

Amazon Aurora User Guide for Aurora

T-
SQL
Functiona
lity
or
syntax

4.1.0 4.0.0 3.5.0 3.4.0 3.3.0 3.2.0 3.1.0 2.8.0 2.7.0 2.6.0 2.5.0 2.4.0 2.3.0 2.2.0 2.1.0

Unquoted
string
values
in
stored
procedure
calls
and
default
values

✓ ✓ ✓ ✓ – – – – – – – – – – –

VAR ✓ ✓ ✓ ✓ ✓ ✓ – ✓ ✓ – – – – – –

VARP ✓ ✓ ✓ ✓ ✓ ✓ – ✓ ✓ – – – – – –

Aurora and PostgreSQL features:

Aurora
ML
services

✓ – ✓ – – – – – – – – – – – –

Database
authentic
ation
with
Kerberos
using
AWS
Directory
Service

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ – – –

Babelfish reference 2251

Amazon Aurora User Guide for Aurora

T-
SQL
Functiona
lity
or
syntax

4.1.0 4.0.0 3.5.0 3.4.0 3.3.0 3.2.0 3.1.0 2.8.0 2.7.0 2.6.0 2.5.0 2.4.0 2.3.0 2.2.0 2.1.0

Dump
and
restore

✓ ✓ ✓ ✓ – – – – – – – – – – –

pg_stat_s
tatement
extension

✓ ✓ ✓ ✓ ✓ – – ✓ ✓ – – – – – –

pgvector✓ – ✓ – – – – – – – – – – – –

Zero-
down
time
patching
(ZDP)

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ – –

T-SQL Built-in functions:

APP_NAME✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ – – –

ATN2 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ – – –

CHARINDEX✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

CHOOSE✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

COL_LENGT
H

✓ ✓ ✓ ✓ – – – – – – – – – – –

COL_NAME✓ ✓ ✓ ✓ – – – – – – – – – – –

COLUMNS_U
PDATED

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Babelfish reference 2252

Amazon Aurora User Guide for Aurora

T-
SQL
Functiona
lity
or
syntax

4.1.0 4.0.0 3.5.0 3.4.0 3.3.0 3.2.0 3.1.0 2.8.0 2.7.0 2.6.0 2.5.0 2.4.0 2.3.0 2.2.0 2.1.0

COLUMNPRO
PERTY
(CharMaxL
en,
AllowsNul
l
only)

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

CONCAT_WS✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

CONTEXT_I
NFO

✓ ✓ ✓ ✓ ✓ ✓ – ✓ ✓ – – – – – –

CURSOR_ST
ATUS

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

DATABASE_
PRINCIPAL
_ID

✓ ✓ ✓ ✓ ✓ ✓ – ✓ ✓ – – – – – –

DATEADD✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ – –

DATEDIFF✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ – –

DATEDIFF_
BIG

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ – – –

DATEFROMP
ARTS

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

DATENAME✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ – –

Babelfish reference 2253

Amazon Aurora User Guide for Aurora

T-
SQL
Functiona
lity
or
syntax

4.1.0 4.0.0 3.5.0 3.4.0 3.3.0 3.2.0 3.1.0 2.8.0 2.7.0 2.6.0 2.5.0 2.4.0 2.3.0 2.2.0 2.1.0

DATEPART✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ – –

DATETIMEF
ROMPARTS

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

DATETIME2
FROMPARTS

✓ ✓ ✓ ✓ ✓ ✓ – ✓ ✓ – – – – – –

DATETIMEO
FFSETFROM
PARTS

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ – –

DATETRUNC✓ ✓ ✓ ✓ – – – ✓ – – – – – – –

DATE_BUCK
ET

✓ ✓ ✓ ✓ – – – ✓ – – – – – – –

EOMONTH✓ ✓ ✓ ✓ – – – ✓ – – – – – – –

EXECUTE
AS
CALLER

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ – – –

fn_listex
tendedpro
perty

✓ ✓ ✓ ✓ ✓ – – ✓ ✓ – – – – – –

FOR
JSON

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ – –

Babelfish reference 2254

Amazon Aurora User Guide for Aurora

T-
SQL
Functiona
lity
or
syntax

4.1.0 4.0.0 3.5.0 3.4.0 3.3.0 3.2.0 3.1.0 2.8.0 2.7.0 2.6.0 2.5.0 2.4.0 2.3.0 2.2.0 2.1.0

FULLTEXTS
ERVICEPRO
PERTY

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

HAS_DBACC
ESS

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

HAS_PERMS
_BY_NAME

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

HOST_NAME✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ –

HOST_ID✓ ✓ ✓ ✓ ✓ – – ✓ ✓ – – – – – –

IDENTITY✓ ✓ ✓ ✓ – – – – – – – – – – –

IS_MEMBER✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

IS_ROLEME
MBER

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

IS_SRVROL
EMEMBER

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

ISJSON✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

JSON_MODI
FY

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ – –

JSON_QUER
Y

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Babelfish reference 2255

Amazon Aurora User Guide for Aurora

T-
SQL
Functiona
lity
or
syntax

4.1.0 4.0.0 3.5.0 3.4.0 3.3.0 3.2.0 3.1.0 2.8.0 2.7.0 2.6.0 2.5.0 2.4.0 2.3.0 2.2.0 2.1.0

JSON_VALU
E

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

NEXT
VALUE
FOR

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ – – –

OBJECT_DE
FINITION

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ – – –

OBJECT_SC
HEMA_NAME

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ – – –

OPENJSON✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

OPENQUERY✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

ORIGINAL_
LOGIN

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

PARSENAME✓ ✓ ✓ ✓ ✓ – – ✓ ✓ – – – – – –

PATINDEX✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

ROWCOUNT_
BIG

✓ ✓ ✓ ✓ ✓ ✓ – ✓ ✓ – – – – – –

SCHEMA_NA
ME

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

SESSION_C
ONTEXT

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ – – –

Babelfish reference 2256

Amazon Aurora User Guide for Aurora

T-
SQL
Functiona
lity
or
syntax

4.1.0 4.0.0 3.5.0 3.4.0 3.3.0 3.2.0 3.1.0 2.8.0 2.7.0 2.6.0 2.5.0 2.4.0 2.3.0 2.2.0 2.1.0

SESSION_U
SER

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

SID_BINAR
Y
(returns
NULL
always)

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ –

SMALLDATE
TIMEFROMP
ARTS

✓ ✓ ✓ ✓ ✓ – – ✓ ✓ ✓ – – – – –

SQUARE✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

STR ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ – – –

STRING_AG
G

✓ ✓ ✓ ✓ – – – – – – – – – – –

STRING_SP
LIT

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

SUSER_SID✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

SUSER_SNA
ME

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

SWITCHOFF
SET

✓ ✓ ✓ ✓ – – – – – – – – – – –

Babelfish reference 2257

Amazon Aurora User Guide for Aurora

T-
SQL
Functiona
lity
or
syntax

4.1.0 4.0.0 3.5.0 3.4.0 3.3.0 3.2.0 3.1.0 2.8.0 2.7.0 2.6.0 2.5.0 2.4.0 2.3.0 2.2.0 2.1.0

SYSTEM_US
ER

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ –

TIMEFROMP
ARTS

✓ ✓ ✓ ✓ ✓ ✓ – ✓ ✓ – – – – – –

TODATETIM
EOFFSET

✓ ✓ ✓ ✓ – – – – – – – – – – –

TO_CHAR✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ – –

TRIGGER_N
ESTLEVEL
(without
arguments
only)

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

TRY_CONVE
RT

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ – –

TYPE_ID✓ ✓ ✓ ✓ – – – – – – – – – – –

TYPE_NAME✓ ✓ ✓ ✓ – – – – – – – – – – –

UPDATE✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

T-SQL INFORMATION_SCHEMA catalogs

CHECK_CON
STRAINTS

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ –

Babelfish reference 2258

Amazon Aurora User Guide for Aurora

T-
SQL
Functiona
lity
or
syntax

4.1.0 4.0.0 3.5.0 3.4.0 3.3.0 3.2.0 3.1.0 2.8.0 2.7.0 2.6.0 2.5.0 2.4.0 2.3.0 2.2.0 2.1.0

COLUMN_DO
MAIN_USAG
E

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ –

COLUMNS✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

CONSTRAIN
T_COLUMN_
USAGE

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

DOMAINS✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

KEY_COLUM
N_USAGE

✓ ✓ ✓ ✓ – – – – – – – – – – –

ROUTINES✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ –

TABLES✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

TABLE_CON
STRAINTS

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

VIEWS✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

T-SQL System-defined @@ variables:

@@CURSOR_
ROWS

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

@@DATEFIR
ST

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

@@DBTS✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Babelfish reference 2259

Amazon Aurora User Guide for Aurora

T-
SQL
Functiona
lity
or
syntax

4.1.0 4.0.0 3.5.0 3.4.0 3.3.0 3.2.0 3.1.0 2.8.0 2.7.0 2.6.0 2.5.0 2.4.0 2.3.0 2.2.0 2.1.0

@@ERROR✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

@@ERROR=2
13

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

@@FETCH_S
TATUS

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

@@IDENTIT
Y

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

@@LANGUAG
E

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

@@LOCK_TI
MEOUT

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

@@MAX_CON
NECTIONS

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

@@MAX_PRE
CISION

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

@@MICROSO
FTVERSION

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

@@NESTLEV
EL

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

@@PROCID✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

@@ROWCOUN
T

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Babelfish reference 2260

Amazon Aurora User Guide for Aurora

T-
SQL
Functiona
lity
or
syntax

4.1.0 4.0.0 3.5.0 3.4.0 3.3.0 3.2.0 3.1.0 2.8.0 2.7.0 2.6.0 2.5.0 2.4.0 2.3.0 2.2.0 2.1.0

@@SERVERN
AME

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

@@SERVICE
NAME

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

@@SPID✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

@@TRANCOU
NT

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

@@VERSION
(note
format
differenc
e
as
described
in
T-
SQL
differenc
es
in
Babelfish
.

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

T-SQL System stored procedures:

Babelfish reference 2261

Amazon Aurora User Guide for Aurora

T-
SQL
Functiona
lity
or
syntax

4.1.0 4.0.0 3.5.0 3.4.0 3.3.0 3.2.0 3.1.0 2.8.0 2.7.0 2.6.0 2.5.0 2.4.0 2.3.0 2.2.0 2.1.0

sp_addext
endedprop
erty

✓ ✓ ✓ ✓ ✓ – – ✓ ✓ – – – – – –

sp_addlin
kedserver

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ – – –

sp_addlin
kedsrvlog
in

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ – – –

sp_addrol
e

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ – –

sp_addrol
emember

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ – –

sp_babelf
ish_volat
ility

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ – – –

sp_column
_privileg
es

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

sp_column
s

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

sp_column
s_100

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Babelfish reference 2262

Amazon Aurora User Guide for Aurora

T-
SQL
Functiona
lity
or
syntax

4.1.0 4.0.0 3.5.0 3.4.0 3.3.0 3.2.0 3.1.0 2.8.0 2.7.0 2.6.0 2.5.0 2.4.0 2.3.0 2.2.0 2.1.0

sp_column
s_managed

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

sp_cursor✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

sp_cursor
_list

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

sp_cursor
close

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

sp_cursor
execute

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

sp_cursor
fetch

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

sp_cursor
open

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

sp_cursor
option

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

sp_cursor
prepare

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

sp_cursor
prepexec

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

sp_cursor
unprepare

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Babelfish reference 2263

Amazon Aurora User Guide for Aurora

T-
SQL
Functiona
lity
or
syntax

4.1.0 4.0.0 3.5.0 3.4.0 3.3.0 3.2.0 3.1.0 2.8.0 2.7.0 2.6.0 2.5.0 2.4.0 2.3.0 2.2.0 2.1.0

sp_databa
ses

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

sp_dataty
pe_info

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

sp_dataty
pe_info_1
00

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

sp_descri
be_cursor

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

sp_descri
be_first_
result_se
t

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

sp_descri
be_undecl
ared_para
meters

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

sp_dropex
tendedpro
perty

✓ ✓ ✓ ✓ ✓ – – ✓ ✓ – – – – – –

sp_dropli
nkedsrvlo
gin

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ – – –

Babelfish reference 2264

Amazon Aurora User Guide for Aurora

T-
SQL
Functiona
lity
or
syntax

4.1.0 4.0.0 3.5.0 3.4.0 3.3.0 3.2.0 3.1.0 2.8.0 2.7.0 2.6.0 2.5.0 2.4.0 2.3.0 2.2.0 2.1.0

sp_dropro
le

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ – –

sp_dropro
lemember

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ – –

sp_dropse
rver

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ – – –

sp_enum_o
ledb_prov
iders

✓ ✓ ✓ ✓ ✓ – – ✓ ✓ – – – – – –

sp_execut
e

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

sp_execut
e_postgre
sql(CREAT
E,
ALTER,
DROP)

✓ ✓ ✓ ✓ ✓ – – ✓ ✓ – – – – – –

sp_execut
esql

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

sp_fkeys✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

sp_getapp
lock

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

sp_helpdb✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Babelfish reference 2265

Amazon Aurora User Guide for Aurora

T-
SQL
Functiona
lity
or
syntax

4.1.0 4.0.0 3.5.0 3.4.0 3.3.0 3.2.0 3.1.0 2.8.0 2.7.0 2.6.0 2.5.0 2.4.0 2.3.0 2.2.0 2.1.0

sp_helpdb
fixedrole

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ – –

sp_helpli
nkedsrvlo
gin

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ – –

sp_helpro
le

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

sp_helpro
lemember

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

sp_helpsr
vrolememb
er

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ –

sp_helpus
er

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

sp_linked
servers

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ – – –

sp_oledb_
ro_usrnam
e

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

sp_pkeys✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

sp_prefix✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ –

Babelfish reference 2266

Amazon Aurora User Guide for Aurora

T-
SQL
Functiona
lity
or
syntax

4.1.0 4.0.0 3.5.0 3.4.0 3.3.0 3.2.0 3.1.0 2.8.0 2.7.0 2.6.0 2.5.0 2.4.0 2.3.0 2.2.0 2.1.0

sp_prepar
e

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

sp_proced
ure_param
s_100_man
aged

✓ – ✓ – – – – – – – – – – – –

sp_releas
eapplock

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

sp_rename✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ – – –

sp_server
option(co
nnect_tim
eout
option)

✓ ✓ ✓ ✓ ✓ – – ✓ ✓ – – – – – –

sp_set_se
ssion_con
text

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ – – –

sp_specia
l_columns

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

sp_sproc_
columns

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

sp_sproc_
columns_1
00

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Babelfish reference 2267

Amazon Aurora User Guide for Aurora

T-
SQL
Functiona
lity
or
syntax

4.1.0 4.0.0 3.5.0 3.4.0 3.3.0 3.2.0 3.1.0 2.8.0 2.7.0 2.6.0 2.5.0 2.4.0 2.3.0 2.2.0 2.1.0

sp_statis
tics

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

sp_statis
tics_100

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

sp_stored
_procedur
es

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

sp_table_
privilege
s

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

sp_tablec
ollations
_100

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

sp_tables✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

sp_testli
nkedserve
r

✓ ✓ ✓ ✓ ✓ – – ✓ ✓ – – – – – –

sp_unprep
are

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

sp_update
extendedp
roperty

✓ ✓ ✓ ✓ ✓ – – ✓ ✓ – – – – – –

sp_who✓ ✓ ✓ ✓ ✓ – – ✓ ✓ – – – – – –

Babelfish reference 2268

Amazon Aurora User Guide for Aurora

T-
SQL
Functiona
lity
or
syntax

4.1.0 4.0.0 3.5.0 3.4.0 3.3.0 3.2.0 3.1.0 2.8.0 2.7.0 2.6.0 2.5.0 2.4.0 2.3.0 2.2.0 2.1.0

xp_qv✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

T-SQL Properties supported on the CONNECTIONPROPERTY system function

auth_sche
me

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

client_ne
t_address

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

local_net
_address

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

local_tcp
_port

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

net_trans
port

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

protocol_
type

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

physical_
net_trans
port

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

T-SQL Properties supported on the OBJECTPROPERTY system function

IsInlineF
unction

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

IsScalarF
unction

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Babelfish reference 2269

Amazon Aurora User Guide for Aurora

T-
SQL
Functiona
lity
or
syntax

4.1.0 4.0.0 3.5.0 3.4.0 3.3.0 3.2.0 3.1.0 2.8.0 2.7.0 2.6.0 2.5.0 2.4.0 2.3.0 2.2.0 2.1.0

IsTableFu
nction

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

T-SQL Properties supported on the SERVERPROPERTY function

Babelfish✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Collation✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Collation
ID

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Edition✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

EditionID✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

EngineEdi
tion

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

InstanceN
ame

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ –

IsAdvance
dAnalytic
sInstalle
d

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

IsBigData
Cluster

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

IsFullTex
tInstalle
d

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Babelfish reference 2270

Amazon Aurora User Guide for Aurora

T-
SQL
Functiona
lity
or
syntax

4.1.0 4.0.0 3.5.0 3.4.0 3.3.0 3.2.0 3.1.0 2.8.0 2.7.0 2.6.0 2.5.0 2.4.0 2.3.0 2.2.0 2.1.0

IsIntegra
tedSecuri
tyOnly

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

IsLocalDB✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

IsPolyBas
eInstalle
d

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

IsSingleU
ser

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

IsXTPSupp
orted

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Japanese_
CI_AI

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Japanese_
CI_AS

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Japanese_
CS_AS

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

LicenseTy
pe

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

MachineNa
me

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ –

Babelfish reference 2271

Amazon Aurora User Guide for Aurora

T-
SQL
Functiona
lity
or
syntax

4.1.0 4.0.0 3.5.0 3.4.0 3.3.0 3.2.0 3.1.0 2.8.0 2.7.0 2.6.0 2.5.0 2.4.0 2.3.0 2.2.0 2.1.0

ProductLe
vel

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ – – –

ProductMa
jorVersio
n

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

ProductMi
norVersio
n

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

ProductUp
dateLevel

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ – – –

ProductVe
rsion

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

ServerNam
e

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

SQL Server views supported by Babelfish

informati
on_schema
.key_colu
mn_usage

✓ ✓ ✓ ✓ – – – ✓ – – – – – – –

informati
on_schema
.routines

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ – – –

Babelfish reference 2272

Amazon Aurora User Guide for Aurora

T-
SQL
Functiona
lity
or
syntax

4.1.0 4.0.0 3.5.0 3.4.0 3.3.0 3.2.0 3.1.0 2.8.0 2.7.0 2.6.0 2.5.0 2.4.0 2.3.0 2.2.0 2.1.0

informati
on_schema
.schemata

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ – – –

informati
on_schema
.sequence
s

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ – – –

sys.all_c
olumns

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

sys.all_o
bjects

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

sys.all_p
arameters

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ – –

sys.all_s
ql_module
s

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

sys.all_v
iews

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

sys.colum
ns

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

sys.confi
gurations

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Babelfish reference 2273

Amazon Aurora User Guide for Aurora

T-
SQL
Functiona
lity
or
syntax

4.1.0 4.0.0 3.5.0 3.4.0 3.3.0 3.2.0 3.1.0 2.8.0 2.7.0 2.6.0 2.5.0 2.4.0 2.3.0 2.2.0 2.1.0

sys.data_
spaces

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

sys.datab
ase_files

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

sys.datab
ase_mirro
ring

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

sys.datab
ase_princ
ipals

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

sys.datab
ase_role_
members

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

sys.datab
ases

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

sys.dm_ex
ec_connec
tions

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

sys.dm_ex
ec_sessio
ns

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Babelfish reference 2274

Amazon Aurora User Guide for Aurora

T-
SQL
Functiona
lity
or
syntax

4.1.0 4.0.0 3.5.0 3.4.0 3.3.0 3.2.0 3.1.0 2.8.0 2.7.0 2.6.0 2.5.0 2.4.0 2.3.0 2.2.0 2.1.0

sys.dm_ha
dr_databa
se_replic
a_states

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

sys.dm_os
_host_inf
o

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

sys.endpo
ints

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

sys.exten
ded_prope
rties

✓ ✓ ✓ ✓ ✓ – – ✓ ✓ – – – – – –

sys.index
es

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

sys.schem
as

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

sys.serve
r_princip
als

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

sys.serve
r_role_me
mbers

✓ ✓ ✓ ✓ – – – – – – – – – – –

sys.sql_m
odules

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Babelfish reference 2275

Amazon Aurora User Guide for Aurora

T-
SQL
Functiona
lity
or
syntax

4.1.0 4.0.0 3.5.0 3.4.0 3.3.0 3.2.0 3.1.0 2.8.0 2.7.0 2.6.0 2.5.0 2.4.0 2.3.0 2.2.0 2.1.0

sys.sysco
nfigures

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

sys.syscu
rconfigs

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

sys.syslo
gins

✓ ✓ ✓ ✓ ✓ ✓ – ✓ ✓ – – – – – –

sys.syspr
ocesses

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

sys.sysus
ers

✓ ✓ ✓ ✓ ✓ ✓ – ✓ ✓ – – – – – –

sys.table
_types

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

sys.table
s

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

sys.types✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ – – –

sys.xml_s
chema_col
lections

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

syslangua
ges

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

sysobject
s.crdate

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ – –

Babelfish reference 2276

Amazon Aurora User Guide for Aurora

Babelfish for Aurora PostgreSQL procedure reference

Overview

You can use the following procedure for Amazon RDS DB instances running Babelfish for Aurora
PostgreSQL for a better query performance:

• sp_babelfish_volatility

• sp_execute_postgresql

sp_babelfish_volatility

PostgreSQL function volatility helps the optimizer for a better query execution which when used in
parts of certain clauses has a significant impact on query performance.

Syntax

sp_babelfish_volatility ‘function_name’, ‘volatility’

Arguments

function_name (optional)

You can either specify the value of this argument with a two-part name as
schema_name.function_nameor only the function_name. If you specify only the
function_name, the schema name is the default schema for the current user.

volatility (optional)

The valid PostgreSQL values of volatility are stable, volatile, or immutable. For more
information, see https://www.postgresql.org/docs/current/xfunc-volatility.html

Note

When sp_babelfish_volatility is called with function_name which has multiple
definitions, it will throw an error.

Babelfish reference 2277

https://www.postgresql.org/docs/current/xfunc-volatility.html

Amazon Aurora User Guide for Aurora

Result set

If the parameters are not mentioned then the result set is displayed under the following columns:
schemaname, functionname, volatility.

Usage notes

PostgreSQL function volatility helps the optimizer for a better query execution which when used in
parts of certain clauses has a significant impact on query performance.

Examples

The following examples shows how to create simple functions and later explains how to use
sp_babelfish_volatility on these functions using different methods.

1> create function f1() returns int as begin return 0 end
2> go

1> create schema test_schema
2> go

1> create function test_schema.f1() returns int as begin return 0 end
2> go

The following example displays volatility of the functions:

1> exec sp_babelfish_volatility
2> go

schemaname functionname volatility
----------- ------------ ----------
dbo f1 volatile
test_schema f1 volatile

The following example shows how to change the volatility of the functions:

1> exec sp_babelfish_volatility 'f1','stable'
2> go
1> exec sp_babelfish_volatility 'test_schema.f1','immutable'
2> go

Babelfish reference 2278

Amazon Aurora User Guide for Aurora

When you specify only the function_name, it displays the schema name, function name and
volatility of that function. The following example displays volatility of functions after changing the
values:

1> exec sp_babelfish_volatility 'test_schema.f1'
2> go

schemaname functionname volatility
----------- ------------ ----------
test_schema f1 immutable

1> exec sp_babelfish_volatility 'f1'
2> go

schemaname functionname volatility
----------- ------------ ----------
dbo f1 stable

When you don't specify any argument, it displays a list of functions (schema name, function name,
volatility of the functions) present in the current database:

1> exec sp_babelfish_volatility
2> go

schemaname functionname volatility
----------- ------------ ----------
dbo f1 stable
test_schema f1 immutable

sp_execute_postgresql

You can execute PostgreSQL statements from T-SQL endpoint. This simplifies your applications as
you don’t need to exit T-SQL port to execute these statements.

Syntax

Babelfish reference 2279

Amazon Aurora User Guide for Aurora

sp_execute_postgresql [@stmt =] statement

Arguments

[@stmt] statement

The argument is of datatype varchar. This argument accept PG dialect statements.

Note

You can only pass one PG dialect statement as an argument otherwise it will raise the
following error.

1>exec sp_execute_postgresql 'create extension pg_stat_statements; drop extension
 pg_stat_statements'
2>go

Msg 33557097, Level 16, State 1, Server BABELFISH, Line 1
expected 1 statement but got 2 statements after parsing

Usage notes

CREATE EXTENSION

Creates and loads a new extension into the current database.

1>EXEC sp_execute_postgresql 'create extension [IF NOT EXISTS] <extension name>
 [WITH] [SCHEMA schema_name] [VERSION version]';
2>go

The following example shows how to create an extension:

1>EXEC sp_execute_postgresql 'create extension pg_stat_statements with schema sys
 version "1.10"';
2>go

Babelfish reference 2280

Amazon Aurora User Guide for Aurora

Use the following command to access extension objects:

1>select * from pg_stat_statements;
2>go

Note

If schema name is not provided explicitly during extension creation, by default the
extensions are installed in the public schema. You must provide the schema qualifier to
access the extension objects as mentioned below:

1>select * from [public].pg_stat_statements;
2>go

Supported extensions

The following extensions available with Aurora PostgreSQL works with Babelfish.

• pg_stat_statements

• tds_fdw

• fuzzystrmatch

Limitations

• Users need to have sysadmin role on T-SQL and rds_superuser on postgres to install the
extenstions.

• Extensions cannot be installed in user created schemas and also in dbo and guest schemas for
master, tempdb and msdb database.

• CASCADE option is not supported.

ALTER EXTENSION

You can upgrade to a new extension version using ALTER extension.

Babelfish reference 2281

Amazon Aurora User Guide for Aurora

1>EXEC sp_execute_postgresql 'alter extension <extension name> UPDATE TO
 <new_version>';
2>go

Limitations

• You can upgrade the version of your extension only using the ALTER Extension statement. Other
operations aren't supported.

DROP EXTENSION

Drops the specified extension. You can also use if exists or restrict options to drop the
extension.

1>EXEC sp_execute_postgresql 'drop extension <extension name>';
2>go

Limitations

• CASCADE option is not supported.

Managing Amazon Aurora PostgreSQL

The following section discusses managing performance and scaling for an Amazon Aurora
PostgreSQL DB cluster. It also includes information about other maintenance tasks.

Topics

• Scaling Aurora PostgreSQL DB instances

• Maximum connections to an Aurora PostgreSQL DB instance

• Temporary storage limits for Aurora PostgreSQL

• Huge pages for Aurora PostgreSQL

• Testing Amazon Aurora PostgreSQL by using fault injection queries

• Displaying volume status for an Aurora PostgreSQL DB cluster

• Specifying the RAM disk for the stats_temp_directory

• Managing temporary files with PostgreSQL

Managing Aurora PostgreSQL 2282

Amazon Aurora User Guide for Aurora

Scaling Aurora PostgreSQL DB instances

You can scale Aurora PostgreSQL DB instances in two ways, instance scaling and read scaling. For
more information about read scaling, see Read scaling.

You can scale your Aurora PostgreSQL DB cluster by modifying the DB instance class for each DB
instance in the DB cluster. Aurora PostgreSQL supports several DB instance classes optimized for
Aurora. Don't use db.t2 or db.t3 instance classes for larger Aurora clusters of size greater than 40
terabytes (TB).

Note

We recommend using the T DB instance classes only for development and test servers, or
other non-production servers. For more details on the T instance classes, see DB instance
class types.

Scaling isn't instantaneous. It can take 15 minutes or more to complete the change to a different
DB instance class. If you use this approach to modify the DB instance class, you apply the change
during the next scheduled maintenance window (rather than immediately) to avoid affecting users.

As an alternative to modifying the DB instance class directly, you can minimize downtime by using
the high availability features of Amazon Aurora. First, add an Aurora Replica to your cluster. When
creating the replica, choose the DB instance class size that you want to use for your cluster. When
the Aurora Replica is synchronized with the cluster, you then failover to the newly added Replica.
To learn more, see Aurora Replicas and Fast failover with Amazon Aurora PostgreSQL.

For detailed specifications of the DB instance classes supported by Aurora PostgreSQL, see
Supported DB engines for DB instance classes.

Maximum connections to an Aurora PostgreSQL DB instance

An Aurora PostgreSQL DB cluster allocates resources based on the DB instance class and its
available memory. Each connection to the DB cluster consumes incremental amounts of these
resources, such as memory and CPU. Memory consumed per connection varies based on query
type, count, and whether temporary tables are used. Even an idle connection consumes memory
and CPU. That's because when queries run on a connection, more memory is allocated for each
query and it's not released completely, even when processing stops. Thus, we recommend that
you make sure your applications aren't holding on to idle connections: each one of these wastes

Scaling Aurora PostgreSQL DB instances 2283

Amazon Aurora User Guide for Aurora

resources and affects performance negatively. For more information, see Resources consumed by
idle PostgreSQL connections.

The maximum number of connections allowed by an Aurora PostgreSQL DB instance is determined
by the max_connections parameter value specified in the parameter group for that DB instance.
The ideal setting for the max_connections parameter is one that supports all the client
connections your application needs, without an excess of unused connections, plus at least 3 more
connections to support AWS automation. Before modifying the max_connections parameter
setting, we recommend that you consider the following:

• If the max_connections value is too low, the Aurora PostgreSQL DB instance might not have
sufficient connections available when clients attempt to connect. If this happens, attempts to
connect using psql raise error messages such as the following:

psql: FATAL: remaining connection slots are reserved for non-replication superuser
 connections

• If the max_connections value exceeds the number of connections that are actually needed, the
unused connections can cause performance to degrade.

The default value of max_connections is derived from the following Aurora PostgreSQL LEAST
function:

LEAST({DBInstanceClassMemory/9531392},5000).

If you want to change the value for max_connections, you need to create a custom DB cluster
parameter group and change its value there. After applying your custom DB parameter group
to your cluster, be sure to reboot the primary instance so the new value takes effect. For more
information, see Amazon Aurora PostgreSQL parameters and Creating a DB cluster parameter
group.

Tip

If your applications frequently open and close connections, or keep a large number of
long-lived connections open, we recommend that you use Amazon RDS Proxy. RDS Proxy
is a fully managed, highly available database proxy that uses connection pooling to share
database connections securely and efficiently. To learn more about RDS Proxy, see Using
Amazon RDS Proxy for Aurora.

Maximum connections 2284

https://aws.amazon.com/blogs/database/resources-consumed-by-idle-postgresql-connections/
https://aws.amazon.com/blogs/database/resources-consumed-by-idle-postgresql-connections/

Amazon Aurora User Guide for Aurora

For details about how Aurora Serverless v2 instances handle this parameter, see Maximum
connections for Aurora Serverless v2.

Temporary storage limits for Aurora PostgreSQL

Aurora PostgreSQL stores tables and indexes in the Aurora storage subsystem. Aurora PostgreSQL
uses separate temporary storage for non-persistent temporary files. This includes files that are
used for such purposes as sorting large data sets during query processing or for index build
operations. For more information, see the article How can I troubleshoot local storage issues in
Aurora PostgreSQL-Compatible instances?.

These local storage volumes are backed by Amazon Elastic Block Store and can be extended
by using a larger DB instance class. For more information about storage, see Amazon Aurora
storage and reliability. You can also increase your local storage for temporary objects by using an
NVMe enabled instance type and Aurora Optimized Reads-enabled temporary objects. For more
information, see Improving query performance for Aurora PostgreSQL with Aurora Optimized
Reads.

Note

You might see storage-optimization events when scaling DB instances, for example,
from db.r5.2xlarge to db.r5.4xlarge.

The following table shows the maximum amount of temporary storage available for each Aurora
PostgreSQL DB instance class. For more information on DB instance class support for Aurora, see
Aurora DB instance classes.

DB instance class Maximum temporary storage available (GiB)

db.x2g.16xlarge 1829

db.x2g.12xlarge 1606

db.x2g.8xlarge 1071

db.x2g.4xlarge 535

db.x2g.2xlarge 268

Temporary storage limits 2285

https://repost.aws/knowledge-center/postgresql-aurora-storage-issue
https://repost.aws/knowledge-center/postgresql-aurora-storage-issue

Amazon Aurora User Guide for Aurora

DB instance class Maximum temporary storage available (GiB)

db.x2g.xlarge 134

db.x2g.large 67

db.r7g.16xlarge 1008

db.r7g.12xlarge 756

db.r7g.8xlarge 504

db.r7g.4xlarge 252

db.r7g.2xlarge 126

db.r7g.xlarge 63

db.r7g.large 32

db.r6g.16xlarge 1008

db.r6g.12xlarge 756

db.r6g.8xlarge 504

db.r6g.4xlarge 252

db.r6g.2xlarge 126

db.r6g.xlarge 63

db.r6g.large 32

db.r6i.32xlarge 1829

db.r6i.24xlarge 1500

db.r6i.16xlarge 1008

db.r6i.12xlarge 748

Temporary storage limits 2286

Amazon Aurora User Guide for Aurora

DB instance class Maximum temporary storage available (GiB)

db.r6i.8xlarge 504

db.r6i.4xlarge 249

db.r6i.2xlarge 124

db.r6i.xlarge 62

db.r6i.large 31

db.r5.24xlarge 1500

db.r5.16xlarge 1008

db.r5.12xlarge 748

db.r5.8xlarge 504

db.r5.4xlarge 249

db.r5.2xlarge 124

db.r5.xlarge 62

db.r5.large 31

db.r4.16xlarge 960

db.r4.8xlarge 480

db.r4.4xlarge 240

db.r4.2xlarge 120

db.r4.xlarge 60

db.r4.large 30

db.t4g.large 16.5

Temporary storage limits 2287

Amazon Aurora User Guide for Aurora

DB instance class Maximum temporary storage available (GiB)

db.t4g.medium 8.13

db.t3.large 16

db.t3.medium 7.5

Note

NVMe enabled instance types can increase the temporary space available by up to the total
NVMe size. For more information, see Improving query performance for Aurora PostgreSQL
with Aurora Optimized Reads.

You can monitor the temporary storage available for a DB instance with the FreeLocalStorage
CloudWatch metric, --> described in Amazon CloudWatch metrics for Amazon Aurora. (This doesn't
apply to Aurora Serverless v2.)

For some workloads, you can reduce the amount of temporary storage by allocating more memory
to the processes that are performing the operation. To increase the memory available to an
operation, increasing the values of the work_mem or maintenance_work_mem PostgreSQL
parameters.

Huge pages for Aurora PostgreSQL

Huge pages are a memory management feature that reduces overhead when a DB instance is
working with large contiguous chunks of memory, such as that used by shared buffers. This
PostgreSQL feature is supported by all currently available Aurora PostgreSQL versions.

Huge_pages parameter is turned on by default for all DB instance classes other than
t3.medium,db.t3.large,db.t4g.medium,db.t4g.large instance classes. You can't change the
huge_pages parameter value or turn off this feature in the supported instance classes of Aurora
PostgreSQL.

Testing Amazon Aurora PostgreSQL by using fault injection queries

You can test the fault tolerance of your Aurora PostgreSQL DB cluster by using fault injection
queries. Fault injection queries are issued as SQL commands to an Amazon Aurora instance. Fault

Huge pages for Aurora PostgreSQL 2288

https://www.postgresql.org/docs/current/runtime-config-resource.html#GUC-WORK-MEM
https://www.postgresql.org/docs/current/runtime-config-resource.html#GUC-MAINTENANCE-WORK-MEM

Amazon Aurora User Guide for Aurora

injection queries let you crash the instance so that you can test failover and recovery. You can
also simulate Aurora Replica failure, disk failure, and disk congestion. Fault injection queries are
supported by all available Aurora PostgreSQL versions, as follows.

• Aurora PostgreSQL versions 12, 13, 14, and higher

• Aurora PostgreSQL version 11.7 and higher

• Aurora PostgreSQL version 10.11 and higher

Topics

• Testing an instance crash

• Testing an Aurora Replica failure

• Testing a disk failure

• Testing disk congestion

When a fault injection query specifies a crash, it forces a crash of the Aurora PostgreSQL DB
instance. The other fault injection queries result in simulations of failure events, but don't cause
the event to occur. When you submit a fault injection query, you also specify an amount of time for
the failure event simulation to occur.

You can submit a fault injection query to one of your Aurora Replica instances by connecting
to the endpoint for the Aurora Replica. For more information, see Amazon Aurora connection
management.

Testing an instance crash

You can force a crash of an Aurora PostgreSQL instance by using the fault injection query function
aurora_inject_crash().

For this fault injection query, a failover does not occur. If you want to test a failover, then you can
choose the Failover instance action for your DB cluster in the RDS console, or use the failover-db-
cluster AWS CLI command or the FailoverDBCluster RDS API operation.

Syntax

SELECT aurora_inject_crash ('instance' | 'dispatcher' | 'node');

Testing Amazon Aurora PostgreSQL by using fault injection queries 2289

https://docs.aws.amazon.com/cli/latest/reference/rds/failover-db-cluster.html
https://docs.aws.amazon.com/cli/latest/reference/rds/failover-db-cluster.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_FailoverDBCluster.html

Amazon Aurora User Guide for Aurora

Options

This fault injection query takes one of the following crash types. The crash type is not case
sensitive:

'instance'

A crash of the PostgreSQL-compatible database for the Amazon Aurora instance is simulated.

'dispatcher'

A crash of the dispatcher on the primary instance for the Aurora DB cluster is simulated. The
dispatcher writes updates to the cluster volume for an Amazon Aurora DB cluster.

'node'

A crash of both the PostgreSQL-compatible database and the dispatcher for the Amazon Aurora
instance is simulated.

Testing an Aurora Replica failure

You can simulate the failure of an Aurora Replica by using the fault injection query function
aurora_inject_replica_failure().

An Aurora Replica failure blocks replication to the Aurora Replica or all Aurora Replicas in the
DB cluster by the specified percentage for the specified time interval. When the time interval
completes, the affected Aurora Replicas are automatically synchronized with the primary instance.

Syntax

SELECT aurora_inject_replica_failure(
 percentage_of_failure,
 time_interval,
 'replica_name'
);

Options

This fault injection query takes the following parameters:

Testing Amazon Aurora PostgreSQL by using fault injection queries 2290

Amazon Aurora User Guide for Aurora

percentage_of_failure

The percentage of replication to block during the failure event. This value can be a double
between 0 and 100. If you specify 0, then no replication is blocked. If you specify 100, then all
replication is blocked.

time_interval

The amount of time to simulate the Aurora Replica failure. The interval is in seconds. For
example, if the value is 20, the simulation runs for 20 seconds.

Note

Take care when specifying the time interval for your Aurora Replica failure event. If you
specify too long an interval, and your writer instance writes a large amount of data
during the failure event, then your Aurora DB cluster might assume that your Aurora
Replica has crashed and replace it.

replica_name

The Aurora Replica in which to inject the failure simulation. Specify the name of an Aurora
Replica to simulate a failure of the single Aurora Replica. Specify an empty string to simulate
failures for all Aurora Replicas in the DB cluster.

To identify replica names, see the server_id column from the aurora_replica_status()
function. For example:

postgres=> SELECT server_id FROM aurora_replica_status();

Testing a disk failure

You can simulate a disk failure for an Aurora PostgreSQL DB cluster by using the fault injection
query function aurora_inject_disk_failure().

During a disk failure simulation, the Aurora PostgreSQL DB cluster randomly marks disk segments
as faulting. Requests to those segments are blocked for the duration of the simulation.

Syntax

SELECT aurora_inject_disk_failure(

Testing Amazon Aurora PostgreSQL by using fault injection queries 2291

Amazon Aurora User Guide for Aurora

 percentage_of_failure,
 index,
 is_disk,
 time_interval
);

Options

This fault injection query takes the following parameters:

percentage_of_failure

The percentage of the disk to mark as faulting during the failure event. This value can be a
double between 0 and 100. If you specify 0, then none of the disk is marked as faulting. If you
specify 100, then the entire disk is marked as faulting.

index

A specific logical block of data in which to simulate the failure event. If you exceed the range of
available logical blocks or storage nodes data, you receive an error that tells you the maximum
index value that you can specify. To avoid this error, see Displaying volume status for an Aurora
PostgreSQL DB cluster.

is_disk

Indicates whether the injection failure is to a logical block or a storage node. Specifying true
means injection failures are to a logical block. Specifying false means injection failures are to a
storage node.

time_interval

The amount of time to simulate the disk failure. The interval is in seconds. For example, if the
value is 20, the simulation runs for 20 seconds.

Testing disk congestion

You can simulate a disk congestion for an Aurora PostgreSQL DB cluster by using the fault injection
query function aurora_inject_disk_congestion().

During a disk congestion simulation, the Aurora PostgreSQL DB cluster randomly marks disk
segments as congested. Requests to those segments are delayed between the specified minimum
and maximum delay time for the duration of the simulation.

Testing Amazon Aurora PostgreSQL by using fault injection queries 2292

Amazon Aurora User Guide for Aurora

Syntax

SELECT aurora_inject_disk_congestion(
 percentage_of_failure,
 index,
 is_disk,
 time_interval,
 minimum,
 maximum
);

Options

This fault injection query takes the following parameters:

percentage_of_failure

The percentage of the disk to mark as congested during the failure event. This is a double
value between 0 and 100. If you specify 0, then none of the disk is marked as congested. If you
specify 100, then the entire disk is marked as congested.

index

A specific logical block of data or storage node to use to simulate the failure event.

If you exceed the range of available logical blocks or storage nodes of data, you receive an error
that tells you the maximum index value that you can specify. To avoid this error, see Displaying
volume status for an Aurora PostgreSQL DB cluster.

is_disk

Indicates whether the injection failure is to a logical block or a storage node. Specifying true
means injection failures are to a logical block. Specifying false means injection failures are to a
storage node.

time_interval

The amount of time to simulate the disk congestion. The interval is in seconds. For example, if
the value is 20, the simulation runs for 20 seconds.

minimum, maximum

The minimum and maximum amount of congestion delay, in milliseconds. Valid values range
from 0.0 to 100.0 milliseconds. Disk segments marked as congested are delayed for a random

Testing Amazon Aurora PostgreSQL by using fault injection queries 2293

Amazon Aurora User Guide for Aurora

amount of time within the minimum and maximum range for the duration of the simulation.
The maximum value must be greater than the minimum value.

Displaying volume status for an Aurora PostgreSQL DB cluster

In Amazon Aurora, a DB cluster volume consists of a collection of logical blocks. Each of these
represents 10 gigabytes of allocated storage. These blocks are called protection groups.

The data in each protection group is replicated across six physical storage devices, called storage
nodes. These storage nodes are allocated across three Availability Zones (AZs) in the region where
the DB cluster resides. In turn, each storage node contains one or more logical blocks of data for
the DB cluster volume. For more information about protection groups and storage nodes, see
Introducing the Aurora storage engine on the AWS Database Blog. To learn more about Aurora
cluster volumes in general, see Amazon Aurora storage and reliability.

Use the aurora_show_volume_status() function to return the following server status
variables:

• Disks — The total number of logical blocks of data for the DB cluster volume.

• Nodes — The total number of storage nodes for the DB cluster volume.

You can use the aurora_show_volume_status() function to help avoid an error
when using the aurora_inject_disk_failure() fault injection function. The
aurora_inject_disk_failure() fault injection function simulates the failure of an entire
storage node, or a single logical block of data within a storage node. In the function, you specify
the index value of a specific logical block of data or storage node. However, the statement returns
an error if you specify an index value greater than the number of logical blocks of data or storage
nodes used by the DB cluster volume. For more information about fault injection queries, see
Testing Amazon Aurora PostgreSQL by using fault injection queries.

Note

The aurora_show_volume_status() function is available for Aurora PostgreSQL
version 10.11. For more information about Aurora PostgreSQL versions, see Amazon Aurora
PostgreSQL releases and engine versions.

Syntax

Displaying volume status for an Aurora DB cluster 2294

https://aws.amazon.com/blogs/database/introducing-the-aurora-storage-engine/
https://aws.amazon.com/blogs/database/introducing-the-aurora-storage-engine/

Amazon Aurora User Guide for Aurora

SELECT * FROM aurora_show_volume_status();

Example

customer_database=> SELECT * FROM aurora_show_volume_status();
 disks | nodes
-------+-------
 96 | 45

Specifying the RAM disk for the stats_temp_directory

You can use the Aurora PostgreSQL parameter, rds.pg_stat_ramdisk_size, to specify the
system memory allocated to a RAM disk for storing the PostgreSQL stats_temp_directory. The
RAM disk parameter is only available in Aurora PostgreSQL 14 and lower versions.

Under certain workloads, setting this parameter can improve performance and decrease IO
requirements. For more information about the stats_temp_directory, see Run-time Statistics
in the PostgreSQL documentation. From PostgreSQL version 15, the PostgreSQL community
switched to use dynamic shared memory. So, there is no need to set stats_temp_directory.

To enable a RAM disk for your stats_temp_directory, set the rds.pg_stat_ramdisk_size
parameter to a non-zero value in the DB cluster parameter group used by your DB cluster. This
parameter denotes MB, so you must use an integer value. Expressions, formulas, and functions
aren't valid for the rds.pg_stat_ramdisk_size parameter. Be sure to restart the DB cluster
so that the change takes effect. For information about setting parameters, see Working with
parameter groups. For more information about restarting the DB cluster, see Rebooting an Amazon
Aurora DB cluster or Amazon Aurora DB instance.

As an example, the following AWS CLI command sets the RAM disk parameter to 256 MB.

aws rds modify-db-cluster-parameter-group \
 --db-cluster-parameter-group-name db-cl-pg-ramdisk-testing \
 --parameters "ParameterName=rds.pg_stat_ramdisk_size, ParameterValue=256,
 ApplyMethod=pending-reboot"

After you restart the DB cluster, run the following command to see the status of the
stats_temp_directory:

postgres=> SHOW stats_temp_directory;

Specifying the RAM disk for the stats_temp_directory 2295

https://www.postgresql.org/docs/current/static/runtime-config-statistics.html#GUC-STATS-TEMP-DIRECTORY

Amazon Aurora User Guide for Aurora

The command should return the following:

stats_temp_directory

/rdsdbramdisk/pg_stat_tmp
(1 row)

Managing temporary files with PostgreSQL

In PostgreSQL, a query performing sort and hash operations uses the instance memory to store
results up to the value specified in the work_mem parameter. When the instance memory is not
sufficient, temporary files are created to store the results. These are written to disk to complete
the query execution. Later, these files are automatically removed after the query completes. In
Aurora PostgreSQL, these files share local storage with other log files. You can monitor your Aurora
PostgreSQL DB cluster's local storage space by watching the Amazon CloudWatch metric for
FreeLocalStorage. For more information, see Troubleshoot local storage issues.

You can use the following parameters and functions to manage the temporary files in your
instance.

• temp_file_limit – This parameter cancels any query exceeding the size of temp_files in KB.
This limit prevents any query from running endlessly and consuming disk space with temporary
files. You can estimate the value using the results from the log_temp_files parameter. As a
best practice, examine the workload behavior and set the limit according to the estimation. The
following example shows how a query is canceled when it exceeds the limit.

postgres=>select * from pgbench_accounts, pg_class, big_table;

ERROR: temporary file size exceeds temp_file_limit (64kB)

• log_temp_files – This parameter sends messages to the postgresql.log when the temporary
files of a session are removed. This parameter produces logs after a query successfully
completes. Therefore, it might not help in troubleshooting active, long-running queries.

The following example shows that when the query successfully completes, the entries are logged
in the postgresql.log file while the temporary files are cleaned up.

Managing temporary files with PostgreSQL 2296

https://www.postgresql.org/docs/current/runtime-config-resource.html#GUC-WORK-MEM
https://aws.amazon.com/premiumsupport/knowledge-center/postgresql-aurora-storage-issue/
https://www.postgresql.org/docs/current/runtime-config-resource.html#RUNTIME-CONFIG-RESOURCE-DISK
https://www.postgresql.org/docs/current/runtime-config-logging.html#GUC-LOG-TEMP-FILES

Amazon Aurora User Guide for Aurora

2023-02-06 23:48:35 UTC:205.251.233.182(12456):adminuser@postgres:[31236]:LOG:
 temporary file: path "base/pgsql_tmp/pgsql_tmp31236.5", size 140353536
2023-02-06 23:48:35 UTC:205.251.233.182(12456):adminuser@postgres:[31236]:STATEMENT:
 select a.aid from pgbench_accounts a, pgbench_accounts b where a.bid=b.bid order by
 a.bid limit 10;
2023-02-06 23:48:35 UTC:205.251.233.182(12456):adminuser@postgres:[31236]:LOG:
 temporary file: path "base/pgsql_tmp/pgsql_tmp31236.4", size 180428800
2023-02-06 23:48:35 UTC:205.251.233.182(12456):adminuser@postgres:[31236]:STATEMENT:
 select a.aid from pgbench_accounts a, pgbench_accounts b where a.bid=b.bid order by
 a.bid limit 10;

• pg_ls_tmpdir – This function that is available from RDS for PostgreSQL 13 and above provides
visibility into the current temporary file usage. The completed query doesn't appear in the
results of the function. In the following example, you can view the results of this function.

postgres=>select * from pg_ls_tmpdir();

 name | size | modification
-----------------+------------+------------------------
 pgsql_tmp8355.1 | 1072250880 | 2023-02-06 22:54:56+00
 pgsql_tmp8351.0 | 1072250880 | 2023-02-06 22:54:43+00
 pgsql_tmp8327.0 | 1072250880 | 2023-02-06 22:54:56+00
 pgsql_tmp8351.1 | 703168512 | 2023-02-06 22:54:56+00
 pgsql_tmp8355.0 | 1072250880 | 2023-02-06 22:54:00+00
 pgsql_tmp8328.1 | 835031040 | 2023-02-06 22:54:56+00
 pgsql_tmp8328.0 | 1072250880 | 2023-02-06 22:54:40+00
(7 rows)

postgres=>select query from pg_stat_activity where pid = 8355;

query
--
select a.aid from pgbench_accounts a, pgbench_accounts b where a.bid=b.bid order by
 a.bid
(1 row)

Managing temporary files with PostgreSQL 2297

https://www.postgresql.org/docs/current/functions-admin.html#FUNCTIONS-ADMIN-GENFILE

Amazon Aurora User Guide for Aurora

The file name includes the processing ID (PID) of the session that generated the temporary file.
A more advanced query, such as in the following example, performs a sum of the temporary files
for each PID.

postgres=>select replace(left(name, strpos(name, '.')-1),'pgsql_tmp','') as pid,
 count(*), sum(size) from pg_ls_tmpdir() group by pid;

 pid | count | sum
------+-------------------
 8355 | 2 | 2144501760
 8351 | 2 | 2090770432
 8327 | 1 | 1072250880
 8328 | 2 | 2144501760
(4 rows)

• pg_stat_statements – If you activate the pg_stat_statements parameter, then you can view
the average temporary file usage per call. You can identify the query_id of the query and use it
to examine the temporary file usage as shown in the following example.

postgres=>select queryid from pg_stat_statements where query like 'select a.aid from
 pgbench%';

 queryid

 -7170349228837045701
(1 row)

postgres=>select queryid, substr(query,1,25), calls, temp_blks_read/calls
 temp_blks_read_per_call, temp_blks_written/calls temp_blks_written_per_call from
 pg_stat_statements where queryid = -7170349228837045701;

 queryid | substr | calls | temp_blks_read_per_call |
 temp_blks_written_per_call

Managing temporary files with PostgreSQL 2298

https://www.postgresql.org/docs/current/pgstatstatements.html

Amazon Aurora User Guide for Aurora

----------------------+---------------------------+-------+-------------------------
+----------------------------
 -7170349228837045701 | select a.aid from pgbench | 50 | 239226 |
 388678
(1 row)

• Performance Insights – In the Performance Insights dashboard, you can view temporary
file usage by turning on the metrics temp_bytes and temp_files. Then, you can see the
average of both of these metrics and see how they correspond to the query workload. The
view within Performance Insights doesn't show specifically the queries that are generating
the temporary files. However, when you combine Performance Insights with the query shown
for pg_ls_tmpdir, you can troubleshoot, analyze, and determine the changes in your query
workload.

For more information about how to analyze metrics and queries with Performance Insights, see
Analyzing metrics with the Performance Insights dashboard

To view the temporary file usage with Performance Insights

1. In the Performance Insights dashboard, choose Manage Metrics.

2. Choose Database metrics, and select the temp_bytes and temp_files metrics as shown in
the following image.

Managing temporary files with PostgreSQL 2299

https://aws.amazon.com/rds/performance-insights/

Amazon Aurora User Guide for Aurora

3. In the Top SQL tab, choose the Preferences icon.

4. In the Preferences window, turn on the following statistics to appear in the Top SQLtab and
choose Continue.

• Temp writes/sec

• Temp reads/sec

• Tmp blk write/call

• Tmp blk read/call

5. The temporary file is broken out when combined with the query shown for pg_ls_tmpdir,
as shown in the following example.

Managing temporary files with PostgreSQL 2300

Amazon Aurora User Guide for Aurora

The IO:BufFileRead and IO:BufFileWrite events occur when the top queries in your
workload often create temporary files. You can use Performance Insights to identify top queries
waiting on IO:BufFileRead and IO:BufFileWrite by reviewing Average Active Session (AAS)
in Database Load and Top SQL sections.

For more information on how to analyze top queries and load by wait event with Performance
Insights, see Overview of the Top SQL tab. You should identify and tune the queries that cause
increase in temporary file usage and related wait events. For more information on these wait
events and remediation, see IO:BufFileRead and IO:BufFileWrite.

Note

The work_mem parameter controls when the sort operation runs out of memory and results
are written into temporary files. We recommend that you don't change the setting of this
parameter higher than the default value because it would permit every database session
to consume more memory. Also, a single session that performs complex joins and sorts can
perform parallel operations in which each operation consumes memory.
As a best practice, when you have a large report with multiple joins and sorts, set this
parameter at the session level by using the SET work_mem command. Then the change is
only applied to the current session and doesn't change the value globally.

Managing temporary files with PostgreSQL 2301

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/apg-waits.iobuffile.html
https://www.postgresql.org/docs/current/runtime-config-resource.html#GUC-WORK-MEM

Amazon Aurora User Guide for Aurora

Tuning with wait events for Aurora PostgreSQL

Wait events are an important tuning tool for Aurora PostgreSQL. When you can find out
why sessions are waiting for resources and what they are doing, you're better able to reduce
bottlenecks. You can use the information in this section to find possible causes and corrective
actions. Before delving into this section, we strongly recommend that you understand basic Aurora
concepts, especially the following topics:

• Amazon Aurora storage and reliability

• Managing performance and scaling for Aurora DB clusters

Important

The wait events in this section are specific to Aurora PostgreSQL. Use the information in
this section to tune Amazon Aurora only, not RDS for PostgreSQL.
Some wait events in this section have no analogs in the open source versions of these
database engines. Other wait events have the same names as events in open source
engines, but behave differently. For example, Amazon Aurora storage works differently
from open source storage, so storage-related wait events indicate different resource
conditions.

Topics

• Essential concepts for Aurora PostgreSQL tuning

• Aurora PostgreSQL wait events

• Client:ClientRead

• Client:ClientWrite

• CPU

• IO:BufFileRead and IO:BufFileWrite

• IO:DataFileRead

• IO:XactSync

• IPC:DamRecordTxAck

• Lock:advisory

• Lock:extend

Tuning with wait events for Aurora PostgreSQL 2302

Amazon Aurora User Guide for Aurora

• Lock:Relation

• Lock:transactionid

• Lock:tuple

• LWLock:buffer_content (BufferContent)

• LWLock:buffer_mapping

• LWLock:BufferIO (IPC:BufferIO)

• LWLock:lock_manager

• LWLock:MultiXact

• Timeout:PgSleep

Essential concepts for Aurora PostgreSQL tuning

Before you tune your Aurora PostgreSQL database, make sure to learn what wait events are and
why they occur. Also review the basic memory and disk architecture of Aurora PostgreSQL. For a
helpful architecture diagram, see the PostgreSQL wikibook.

Topics

• Aurora PostgreSQL wait events

• Aurora PostgreSQL memory

• Aurora PostgreSQL processes

Aurora PostgreSQL wait events

A wait event indicates a resource for which a session is waiting. For example, the wait event
Client:ClientRead occurs when Aurora PostgreSQL is waiting to receive data from the client.
Typical resources that a session waits for include the following:

• Single-threaded access to a buffer, for example, when a session is attempting to modify a buffer

• A row that is currently locked by another session

• A data file read

• A log file write

For example, to satisfy a query, the session might perform a full table scan. If the data isn't
already in memory, the session waits for the disk I/O to complete. When the buffers are read into

Essential concepts for Aurora PostgreSQL tuning 2303

https://en.wikibooks.org/wiki/PostgreSQL/Architecture

Amazon Aurora User Guide for Aurora

memory, the session might need to wait because other sessions are accessing the same buffers.
The database records the waits by using a predefined wait event. These events are grouped into
categories.

A wait event doesn't by itself show a performance problem. For example, if requested data isn't
in memory, reading data from disk is necessary. If one session locks a row for an update, another
session waits for the row to be unlocked so that it can update it. A commit requires waiting for the
write to a log file to complete. Waits are integral to the normal functioning of a database.

Large numbers of wait events typically show a performance problem. In such cases, you can use
wait event data to determine where sessions are spending time. For example, if a report that
typically runs in minutes now runs for hours, you can identify the wait events that contribute the
most to total wait time. If you can determine the causes of the top wait events, you can sometimes
make changes that improve performance. For example, if your session is waiting on a row that has
been locked by another session, you can end the locking session.

Aurora PostgreSQL memory

Aurora PostgreSQL memory is divided into shared and local.

Topics

• Shared memory in Aurora PostgreSQL

• Local memory in Aurora PostgreSQL

Shared memory in Aurora PostgreSQL

Aurora PostgreSQL allocates shared memory when the instance starts. Shared memory is divided
into multiple subareas. Following, you can find a description of the most important ones.

Topics

• Shared buffers

• Write ahead log (WAL) buffers

Shared buffers

The shared buffer pool is an Aurora PostgreSQL memory area that holds all pages that are or were
being used by application connections. A page is the memory version of a disk block. The shared

Essential concepts for Aurora PostgreSQL tuning 2304

Amazon Aurora User Guide for Aurora

buffer pool caches the data blocks read from disk. The pool reduces the need to reread data from
disk, making the database operate more efficiently.

Every table and index is stored as an array of pages of a fixed size. Each block contains multiple
tuples, which correspond to rows. A tuple can be stored in any page.

The shared buffer pool has finite memory. If a new request requires a page that isn't in
memory, and no more memory exists, Aurora PostgreSQL evicts a less frequently used page to
accommodate the request. The eviction policy is implemented by a clock sweep algorithm.

The shared_buffers parameter determines how much memory the server dedicates to caching
data.

Write ahead log (WAL) buffers

A write-ahead log (WAL) buffer holds transaction data that Aurora PostgreSQL later writes to
persistent storage. Using the WAL mechanism, Aurora PostgreSQL can do the following:

• Recover data after a failure

• Reduce disk I/O by avoiding frequent writes to disk

When a client changes data, Aurora PostgreSQL writes the changes to the WAL buffer. When the
client issues a COMMIT, the WAL writer process writes transaction data to the WAL file.

The wal_level parameter determines how much information is written to the WAL.

Local memory in Aurora PostgreSQL

Every backend process allocates local memory for query processing.

Topics

• Work memory area

• Maintenance work memory area

• Temporary buffer area

Work memory area

The work memory area holds temporary data for queries that performs sorts and hashes. For
example, a query with an ORDER BY clause performs a sort. Queries use hash tables in hash joins
and aggregations.

Essential concepts for Aurora PostgreSQL tuning 2305

Amazon Aurora User Guide for Aurora

The work_mem parameter the amount of memory to be used by internal sort operations and hash
tables before writing to temporary disk files. The default value is 4 MB. Multiple sessions can run
simultaneously, and each session can run maintenance operations in parallel. For this reason, the
total work memory used can be multiples of the work_mem setting.

Maintenance work memory area

The maintenance work memory area caches data for maintenance operations. These operations
include vacuuming, creating an index, and adding foreign keys.

The maintenance_work_mem parameter specifies the maximum amount of memory to be used
by maintenance operations. The default value is 64 MB. A database session can only run one
maintenance operation at a time.

Temporary buffer area

The temporary buffer area caches temporary tables for each database session.

Each session allocates temporary buffers as needed up to the limit you specify. When the session
ends, the server clears the buffers.

The temp_buffers parameter sets the maximum number of temporary buffers used by
each session. Before the first use of temporary tables within a session, you can change the
temp_buffers value.

Aurora PostgreSQL processes

Aurora PostgreSQL uses multiple processes.

Topics

• Postmaster process

• Backend processes

• Background processes

Postmaster process

The postmaster process is the first process started when you start Aurora PostgreSQL. The
postmaster process has the following primary responsibilities:

Essential concepts for Aurora PostgreSQL tuning 2306

Amazon Aurora User Guide for Aurora

• Fork and monitor background processes

• Receive authentication requests from client processes, and authenticate them before allowing
the database to service requests

Backend processes

If the postmaster authenticates a client request, the postmaster forks a new backend process, also
called a postgres process. One client process connects to exactly one backend process. The client
process and the backend process communicate directly without intervention by the postmaster
process.

Background processes

The postmaster process forks several processes that perform different backend tasks. Some of the
more important include the following:

• WAL writer

Aurora PostgreSQL writes data in the WAL (write ahead logging) buffer to the log files. The
principle of write ahead logging is that the database can't write changes to the data files until
after the database writes log records describing those changes to disk. The WAL mechanism
reduces disk I/O, and allows Aurora PostgreSQL to use the logs to recover the database after a
failure.

• Background writer

This process periodically write dirty (modified) pages from the memory buffers to the data files.
A page becomes dirty when a backend process modifies it in memory.

• Autovacuum daemon

The daemon consists of the following:

• The autovacuum launcher

• The autovacuum worker processes

When autovacuum is turned on, it checks for tables that have had a large number of inserted,
updated, or deleted tuples. The daemon has the following responsibilities:

• Recover or reuse disk space occupied by updated or deleted rows

• Update statistics used by the planner

• Protect against loss of old data because of transaction ID wraparound

Essential concepts for Aurora PostgreSQL tuning 2307

Amazon Aurora User Guide for Aurora

The autovacuum feature automates the execution of VACUUM and ANALYZE commands. VACUUM
has the following variants: standard and full. Standard vacuum runs in parallel with other
database operations. VACUUM FULL requires an exclusive lock on the table it is working on. Thus,
it can't run in parallel with operations that access the same table. VACUUM creates a substantial
amount of I/O traffic, which can cause poor performance for other active sessions.

Aurora PostgreSQL wait events

The following table lists the wait events for Aurora PostgreSQL that most commonly indicate
performance problems, and summarizes the most common causes and corrective actions. The
following wait events are a subset of the list in Amazon Aurora PostgreSQL wait events.

Wait event Definition

Client:ClientRead This event occurs when Aurora PostgreSQL is
waiting to receive data from the client.

Client:ClientWrite This event occurs when Aurora PostgreSQL is
waiting to write data to the client.

CPU This event occurs when a thread is active in CPU or
is waiting for CPU.

IO:BufFileRead and IO:BufFileWrite These events occur when Aurora PostgreSQL
creates temporary files.

IO:DataFileRead This event occurs when a connection waits on a
backend process to read a required page from
storage because the page isn't available in shared
memory.

IO:XactSync This event occurs when the database is waiting for
the Aurora storage subsystem to acknowledge the
commit of a regular transaction, or the commit or
rollback of a prepared transaction.

IPC:DamRecordTxAck This event occurs when Aurora PostgreSQL in a
session using database activity streams generates

Aurora PostgreSQL wait events 2308

Amazon Aurora User Guide for Aurora

Wait event Definition

an activity stream event, then waits for that event
to become durable.

Lock:advisory This event occurs when a PostgreSQL application
uses a lock to coordinate activity across multiple
sessions.

Lock:extend This event occurs when a backend process is
waiting to lock a relation to extend it while
another process has a lock on that relation for the
same purpose.

Lock:Relation This event occurs when a query is waiting to
acquire a lock on a table or view that's currently
locked by another transaction.

Lock:transactionid This event occurs when a transaction is waiting for
a row-level lock.

Lock:tuple This event occurs when a backend process is
waiting to acquire a lock on a tuple.

LWLock:buffer_content (BufferContent) This event occurs when a session is waiting to read
or write a data page in memory while another
session has that page locked for writing.

LWLock:buffer_mapping This event occurs when a session is waiting to
associate a data block with a buffer in the shared
buffer pool.

LWLock:BufferIO (IPC:BufferIO) This event occurs when Aurora PostgreSQL or RDS
for PostgreSQL is waiting for other processes to
finish their input/output (I/O) operations when
concurrently trying to access a page.

Aurora PostgreSQL wait events 2309

Amazon Aurora User Guide for Aurora

Wait event Definition

LWLock:lock_manager This event occurs when the Aurora PostgreSQL
engine maintains the shared lock's memory area
to allocate, check, and deallocate a lock when a
fast path lock isn't possible.

LWLock:MultiXact This type of event occurs when Aurora PostgreSQ
L is keeping a session open to complete multiple
transactions that involve the same row in a table.
The wait event denotes which aspect of multiple
transaction processing is generating the wait
event, that is, LWLock:MultiXactOffsetSLRU,
LWLock:MultiXactOffsetBuffer, LWLock:Mu
ltiXactMemberSLRU, or LWLock:MultiXactMe
mberBuffer.

Timeout:PgSleep This event occurs when a server process has called
the pg_sleep function and is waiting for the
sleep timeout to expire.

Client:ClientRead

The Client:ClientRead event occurs when Aurora PostgreSQL is waiting to receive data from
the client.

Topics

• Supported engine versions

• Context

• Likely causes of increased waits

• Actions

Supported engine versions

This wait event information is supported for Aurora PostgreSQL version 10 and higher.

Client:ClientRead 2310

Amazon Aurora User Guide for Aurora

Context

An Aurora PostgreSQL DB cluster is waiting to receive data from the client. The Aurora PostgreSQL
DB cluster must receive the data from the client before it can send more data to the client. The
time that the cluster waits before receiving data from the client is a Client:ClientRead event.

Likely causes of increased waits

Common causes for the Client:ClientRead event to appear in top waits include the following:

Increased network latency

There might be increased network latency between the Aurora PostgreSQL DB cluster and
client. Higher network latency increases the time required for DB cluster to receive data from
the client.

Increased load on the client

There might be CPU pressure or network saturation on the client. An increase in load on the
client can delay transmission of data from the client to the Aurora PostgreSQL DB cluster.

Excessive network round trips

A large number of network round trips between the Aurora PostgreSQL DB cluster and the
client can delay transmission of data from the client to the Aurora PostgreSQL DB cluster.

Large copy operation

During a copy operation, the data is transferred from the client's file system to the Aurora
PostgreSQL DB cluster. Sending a large amount of data to the DB cluster can delay transmission
of data from the client to the DB cluster.

Idle client connection

A connection to an Aurora PostgreSQL DB instance is in idle in transaction state and is waiting
for a client to send more data or issue a command. This state can lead to an increase in
Client:ClientRead events.

PgBouncer used for connection pooling

PgBouncer has a low-level network configuration setting called pkt_buf, which is set to 4,096
by default. If the workload is sending query packets larger than 4,096 bytes through PgBouncer,
we recommend increasing the pkt_buf setting to 8,192. If the new setting doesn't decrease
the number of Client:ClientRead events, we recommend increasing the pkt_buf setting

Client:ClientRead 2311

Amazon Aurora User Guide for Aurora

to larger values, such as 16,384 or 32,768. If the query text is large, the larger setting can be
particularly helpful.

Actions

We recommend different actions depending on the causes of your wait event.

Topics

• Place the clients in the same Availability Zone and VPC subnet as the cluster

• Scale your client

• Use current generation instances

• Increase network bandwidth

• Monitor maximums for network performance

• Monitor for transactions in the "idle in transaction" state

Place the clients in the same Availability Zone and VPC subnet as the cluster

To reduce network latency and increase network throughput, place clients in the same Availability
Zone and virtual private cloud (VPC) subnet as the Aurora PostgreSQL DB cluster. Make sure that
the clients are as geographically close to the DB cluster as possible.

Scale your client

Using Amazon CloudWatch or other host metrics, determine if your client is currently constrained
by CPU or network bandwidth, or both. If the client is constrained, scale your client accordingly.

Use current generation instances

In some cases, you might not be using a DB instance class that supports jumbo frames. If you're
running your application on Amazon EC2, consider using a current generation instance for the
client. Also, configure the maximum transmission unit (MTU) on the client operating system. This
technique might reduce the number of network round trips and increase network throughput. For
more information, see Jumbo frames (9001 MTU) in the Amazon EC2 User Guide.

For information about DB instance classes, see Aurora DB instance classes. To determine the DB
instance class that is equivalent to an Amazon EC2 instance type, place db. before the Amazon
EC2 instance type name. For example, the r5.8xlarge Amazon EC2 instance is equivalent to the
db.r5.8xlarge DB instance class.

Client:ClientRead 2312

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/network_mtu.html#jumbo_frame_instances

Amazon Aurora User Guide for Aurora

Increase network bandwidth

Use NetworkReceiveThroughput and NetworkTransmitThroughput Amazon CloudWatch
metrics to monitor incoming and outgoing network traffic on the DB cluster. These metrics can
help you to determine if network bandwidth is sufficient for your workload.

If your network bandwidth isn't enough, increase it. If the AWS client or your DB instance is
reaching the network bandwidth limits, the only way to increase the bandwidth is to increase your
DB instance size.

For more information about CloudWatch metrics, see Amazon CloudWatch metrics for Amazon
Aurora.

Monitor maximums for network performance

If you are using Amazon EC2 clients, Amazon EC2 provides maximums for network performance
metrics, including aggregate inbound and outbound network bandwidth. It also provides
connection tracking to ensure that packets are returned as expected and link-local services access
for services such as the Domain Name System (DNS). To monitor these maximums, use a current
enhanced networking driver and monitor network performance for your client.

For more information, see Monitor network performance for your Amazon EC2 instance in the
Amazon EC2 User Guide and Monitor network performance for your Amazon EC2 instance in the
Amazon EC2 User Guide.

Monitor for transactions in the "idle in transaction" state

Check whether you have an increasing number of idle in transaction connections. To do this,
monitor the state column in the pg_stat_activity table. You might be able to identify the
connection source by running a query similar to the following.

select client_addr, state, count(1) from pg_stat_activity
where state like 'idle in transaction%'
group by 1,2
order by 3 desc

Client:ClientWrite

The Client:ClientWrite event occurs when Aurora PostgreSQL is waiting to write data to the
client.

Client:ClientWrite 2313

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/monitoring-network-performance-ena.html
https://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/monitoring-network-performance-ena.html

Amazon Aurora User Guide for Aurora

Topics

• Supported engine versions

• Context

• Likely causes of increased waits

• Actions

Supported engine versions

This wait event information is supported for Aurora PostgreSQL version 10 and higher.

Context

A client process must read all of the data received from an Aurora PostgreSQL DB cluster before
the cluster can send more data. The time that the cluster waits before sending more data to the
client is a Client:ClientWrite event.

Reduced network throughput between the Aurora PostgreSQL DB cluster and the client can
cause this event. CPU pressure and network saturation on the client can also cause this event.
CPU pressure is when the CPU is fully utilized and there are tasks waiting for CPU time. Network
saturation is when the network between the database and client is carrying more data than it can
handle.

Likely causes of increased waits

Common causes for the Client:ClientWrite event to appear in top waits include the following:

Increased network latency

There might be increased network latency between the Aurora PostgreSQL DB cluster and
client. Higher network latency increases the time required for the client to receive the data.

Increased load on the client

There might be CPU pressure or network saturation on the client. An increase in load on the
client delays the reception of data from the Aurora PostgreSQL DB cluster.

Large volume of data sent to the client

The Aurora PostgreSQL DB cluster might be sending a large amount of data to the client. A
client might not be able to receive the data as fast as the cluster is sending it. Activities such as
a copy of a large table can result in an increase in Client:ClientWrite events.

Client:ClientWrite 2314

Amazon Aurora User Guide for Aurora

Actions

We recommend different actions depending on the causes of your wait event.

Topics

• Place the clients in the same Availability Zone and VPC subnet as the cluster

• Use current generation instances

• Reduce the amount of data sent to the client

• Scale your client

Place the clients in the same Availability Zone and VPC subnet as the cluster

To reduce network latency and increase network throughput, place clients in the same Availability
Zone and virtual private cloud (VPC) subnet as the Aurora PostgreSQL DB cluster.

Use current generation instances

In some cases, you might not be using a DB instance class that supports jumbo frames. If you're
running your application on Amazon EC2, consider using a current generation instance for the
client. Also, configure the maximum transmission unit (MTU) on the client operating system. This
technique might reduce the number of network round trips and increase network throughput. For
more information, see Jumbo frames (9001 MTU) in the Amazon EC2 User Guide.

For information about DB instance classes, see Aurora DB instance classes. To determine the DB
instance class that is equivalent to an Amazon EC2 instance type, place db. before the Amazon
EC2 instance type name. For example, the r5.8xlarge Amazon EC2 instance is equivalent to the
db.r5.8xlarge DB instance class.

Reduce the amount of data sent to the client

When possible, adjust your application to reduce the amount of data that the Aurora PostgreSQL
DB cluster sends to the client. Making such adjustments relieves CPU and network contention on
the client.

Scale your client

Using Amazon CloudWatch or other host metrics, determine if your client is currently constrained
by CPU or network bandwidth, or both. If the client is constrained, scale your client accordingly.

Client:ClientWrite 2315

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/network_mtu.html#jumbo_frame_instances

Amazon Aurora User Guide for Aurora

CPU

This event occurs when a thread is active in CPU or is waiting for CPU.

Topics

• Supported engine versions

• Context

• Likely causes of increased waits

• Actions

Supported engine versions

This wait event information is relevant for Aurora PostgreSQL version 9.6 and higher.

Context

The central processing unit (CPU) is the component of a computer that runs instructions. For
example, CPU instructions perform arithmetic operations and exchange data in memory. If a
query increases the number of instructions that it performs through the database engine, the time
spent running the query increases. CPU scheduling is giving CPU time to a process. Scheduling is
orchestrated by the kernel of the operating system.

Topics

• How to tell when this wait occurs

• DBLoadCPU metric

• os.cpuUtilization metrics

• Likely cause of CPU scheduling

How to tell when this wait occurs

This CPU wait event indicates that a backend process is active in CPU or is waiting for CPU. You
know that it's occurring when a query shows the following information:

• The pg_stat_activity.state column has the value active.

• The wait_event_type and wait_event columns in pg_stat_activity are both null.

CPU 2316

Amazon Aurora User Guide for Aurora

To see the backend processes that are using or waiting on CPU, run the following query.

SELECT *
FROM pg_stat_activity
WHERE state = 'active'
AND wait_event_type IS NULL
AND wait_event IS NULL;

DBLoadCPU metric

The Performance Insights metric for CPU is DBLoadCPU. The value for DBLoadCPU can differ from
the value for the Amazon CloudWatch metric CPUUtilization. The latter metric is collected from
the HyperVisor for a database instance.

os.cpuUtilization metrics

Performance Insights operating-system metrics provide detailed information about CPU utilization.
For example, you can display the following metrics:

• os.cpuUtilization.nice.avg

• os.cpuUtilization.total.avg

• os.cpuUtilization.wait.avg

• os.cpuUtilization.idle.avg

Performance Insights reports the CPU usage by the database engine as
os.cpuUtilization.nice.avg.

Likely cause of CPU scheduling

From an operating system perspective, the CPU is active when it isn't running the idle thread. The
CPU is active while it performs a computation, but it's also active when it waits on memory I/O.
This type of I/O dominates a typical database workload.

Processes are likely to wait to get scheduled on a CPU when the following conditions are met:

• The CloudWatch CPUUtilization metric is near 100 percent.

• The average load is greater than the number of vCPUs, indicating a heavy load. You can find the
loadAverageMinute metric in the OS metrics section in Performance Insights.

CPU 2317

Amazon Aurora User Guide for Aurora

Likely causes of increased waits

When the CPU wait event occurs more than normal, possibly indicating a performance problem,
typical causes include the following.

Topics

• Likely causes of sudden spikes

• Likely causes of long-term high frequency

• Corner cases

Likely causes of sudden spikes

The most likely causes of sudden spikes are as follows:

• Your application has opened too many simultaneous connections to the database. This scenario
is known as a "connection storm."

• Your application workload changed in any of the following ways:

• New queries

• An increase in the size of your dataset

• Index maintenance or creation

• New functions

• New operators

• An increase in parallel query execution

• Your query execution plans have changed. In some cases, a change can cause an increase in
buffers. For example, the query is now using a sequential scan when it previously used an index.
In this case, the queries need more CPU to accomplish the same goal.

Likely causes of long-term high frequency

The most likely causes of events that recur over a long period:

• Too many backend processes are running concurrently on CPU. These processes can be parallel
workers.

• Queries are performing suboptimally because they need a large number of buffers.

CPU 2318

Amazon Aurora User Guide for Aurora

Corner cases

If none of the likely causes turn out to be actual causes, the following situations might be
occurring:

• The CPU is swapping processes in and out.

• CPU context switching has increased.

• Aurora PostgreSQL code is missing wait events.

Actions

If the CPU wait event dominates database activity, it doesn't necessarily indicate a performance
problem. Respond to this event only when performance degrades.

Topics

• Investigate whether the database is causing the CPU increase

• Determine whether the number of connections increased

• Respond to workload changes

Investigate whether the database is causing the CPU increase

Examine the os.cpuUtilization.nice.avg metric in Performance Insights. If this value is far
less than the CPU usage, nondatabase processes are the main contributor to CPU.

Determine whether the number of connections increased

Examine the DatabaseConnections metric in Amazon CloudWatch. Your action depends on
whether the number increased or decreased during the period of increased CPU wait events.

The connections increased

If the number of connections went up, compare the number of backend processes consuming CPU
to the number of vCPUs. The following scenarios are possible:

• The number of backend processes consuming CPU is less than the number of vCPUs.

In this case, the number of connections isn't an issue. However, you might still try to reduce CPU
utilization.

CPU 2319

Amazon Aurora User Guide for Aurora

• The number of backend processes consuming CPU is greater than the number of vCPUs.

In this case, consider the following options:

• Decrease the number of backend processes connected to your database. For example,
implement a connection pooling solution such as RDS Proxy. To learn more, see Using Amazon
RDS Proxy for Aurora.

• Upgrade your instance size to get a higher number of vCPUs.

• Redirect some read-only workloads to reader nodes, if applicable.

The connections didn't increase

Examine the blks_hit metrics in Performance Insights. Look for a correlation between an
increase in blks_hit and CPU usage. The following scenarios are possible:

• CPU usage and blks_hit are correlated.

In this case, find the top SQL statements that are linked to the CPU usage, and look for plan
changes. You can use either of the following techniques:

• Explain the plans manually and compare them to the expected execution plan.

• Look for an increase in block hits per second and local block hits per second. In the Top SQL
section of Performance Insights dashboard, choose Preferences.

• CPU usage and blks_hit aren't correlated.

In this case, determine whether any of the following occurs:

• The application is rapidly connecting to and disconnecting from the database.

Diagnose this behavior by turning on log_connections and log_disconnections,
then analyzing the PostgreSQL logs. Consider using the pgbadger log analyzer. For more
information, see https://github.com/darold/pgbadger.

• The OS is overloaded.

In this case, Performance Insights shows that backend processes are consuming CPU for a
longer time than usual. Look for evidence in the Performance Insights os.cpuUtilization
metrics or the CloudWatch CPUUtilization metric. If the operating system is overloaded,
look at Enhanced Monitoring metrics to diagnose further. Specifically, look at the process list
and the percentage of CPU consumed by each process.

• Top SQL statements are consuming too much CPU.

CPU 2320

https://github.com/darold/pgbadger

Amazon Aurora User Guide for Aurora

Examine statements that are linked to the CPU usage to see whether they can use less
CPU. Run an EXPLAIN command, and focus on the plan nodes that have the most impact.
Consider using a PostgreSQL execution plan visualizer. To try out this tool, see http://
explain.dalibo.com/.

Respond to workload changes

If your workload has changed, look for the following types of changes:

New queries

Check whether the new queries are expected. If so, ensure that their execution plans and the
number of executions per second are expected.

An increase in the size of the data set

Determine whether partitioning, if it's not already implemented, might help. This strategy
might reduce the number of pages that a query needs to retrieve.

Index maintenance or creation

Check whether the schedule for the maintenance is expected. A best practice is to schedule
maintenance activities outside of peak activities.

New functions

Check whether these functions perform as expected during testing. Specifically, check whether
the number of executions per second is expected.

New operators

Check whether they perform as expected during the testing.

An increase in running parallel queries

Determine whether any of the following situations has occurred:

• The relations or indexes involved have suddenly grown in size so that they differ significantly
from min_parallel_table_scan_size or min_parallel_index_scan_size.

• Recent changes have been made to parallel_setup_cost or parallel_tuple_cost.

• Recent changes have been made to max_parallel_workers or
max_parallel_workers_per_gather.

CPU 2321

http://explain.dalibo.com/
http://explain.dalibo.com/

Amazon Aurora User Guide for Aurora

IO:BufFileRead and IO:BufFileWrite

The IO:BufFileRead and IO:BufFileWrite events occur when Aurora PostgreSQL creates
temporary files. When operations require more memory than the working memory parameters
currently define, they write temporary data to persistent storage. This operation is sometimes
called "spilling to disk."

Topics

• Supported engine versions

• Context

• Likely causes of increased waits

• Actions

Supported engine versions

This wait event information is supported for all versions of Aurora PostgreSQL.

Context

IO:BufFileRead and IO:BufFileWrite relate to the work memory area and maintenance work
memory area. For more information about these local memory areas, see Work memory area and
Maintenance work memory area.

The default value for work_mem is 4 MB. If one session performs operations in parallel, each worker
handling the parallelism uses 4 MB of memory. For this reason, set work_mem carefully. If you
increase the value too much, a database running many sessions might consume too much memory.
If you set the value too low, Aurora PostgreSQL creates temporary files in local storage. The disk I/
O for these temporary files can reduce performance.

If you observe the following sequence of events, your database might be generating temporary
files:

1. Sudden and sharp decreases in availability

2. Fast recovery for the free space

You might also see a "chainsaw" pattern. This pattern can indicate that your database is creating
small files constantly.

IO:BufFileRead and IO:BufFileWrite 2322

Amazon Aurora User Guide for Aurora

Likely causes of increased waits

In general, these wait events are caused by operations that consume more memory than the
work_mem or maintenance_work_mem parameters allocate. To compensate, the operations write
to temporary files. Common causes for the IO:BufFileRead and IO:BufFileWrite events
include the following:

Queries that need more memory than exists in the work memory area

Queries with the following characteristics use the work memory area:

• Hash joins

• ORDER BY clause

• GROUP BY clause

• DISTINCT

• Window functions

• CREATE TABLE AS SELECT

• Materialized view refresh

Statements that need more memory than exists in the maintenance work memory area

The following statements use the maintenance work memory area:

• CREATE INDEX

• CLUSTER

Actions

We recommend different actions depending on the causes of your wait event.

Topics

• Identify the problem

• Examine your join queries

• Examine your ORDER BY and GROUP BY queries

• Avoid using the DISTINCT operation

• Consider using window functions instead of GROUP BY functions

IO:BufFileRead and IO:BufFileWrite 2323

Amazon Aurora User Guide for Aurora

• Investigate materialized views and CTAS statements

• Use pg_repack when you create indexes

• Increase maintenance_work_mem when you cluster tables

• Tune memory to prevent IO:BufFileRead and IO:BufFileWrite

Identify the problem

Assume a situation in which Performance Insights isn't turned on and you suspect that
IO:BufFileRead and IO:BufFileWrite are occurring more frequently than is normal. Do the
following:

1. Examine the FreeLocalStorage metric in Amazon CloudWatch.

2. Look for a chainsaw pattern, which is a series of jagged spikes.

A chainsaw pattern indicates a quick consumption and release of storage, often associated with
temporary files. If you notice this pattern, turn on Performance Insights. When using Performance
Insights, you can identify when the wait events occur and which queries are associated with them.
Your solution depends on the specific query causing the events.

Or set the parameter log_temp_files. This parameter logs all queries generating more than
threshold KB of temporary files. If the value is 0, Aurora PostgreSQL logs all temporary files. If the
value is 1024, Aurora PostgreSQL logs all queries that produces temporary files larger than 1 MB.
For more information about log_temp_files, see Error Reporting and Logging in the PostgreSQL
documentation.

Examine your join queries

Your application probably use joins. For example, the following query joins four tables.

SELECT *
 FROM order
 INNER JOIN order_item
 ON (order.id = order_item.order_id)
 INNER JOIN customer
 ON (customer.id = order.customer_id)
 INNER JOIN customer_address
 ON (customer_address.customer_id = customer.id AND
 order.customer_address_id = customer_address.id)

IO:BufFileRead and IO:BufFileWrite 2324

https://www.postgresql.org/docs/10/runtime-config-logging.html

Amazon Aurora User Guide for Aurora

 WHERE customer.id = 1234567890;

A possible cause of spikes in temporary file usage is a problem in the query itself. For example, a
broken clause might not filter the joins properly. Consider the second inner join in the following
example.

SELECT *
 FROM order
 INNER JOIN order_item
 ON (order.id = order_item.order_id)
 INNER JOIN customer
 ON (customer.id = customer.id)
 INNER JOIN customer_address
 ON (customer_address.customer_id = customer.id AND
 order.customer_address_id = customer_address.id)
 WHERE customer.id = 1234567890;

The preceding query mistakenly joins customer.id to customer.id, generating a Cartesian
product between every customer and every order. This type of accidental join generates large
temporary files. Depending on the size of the tables, a Cartesian query can even fill up storage.
Your application might have Cartesian joins when the following conditions are met:

• You see large, sharp decreases in storage availability, followed by fast recovery.

• No indexes are being created.

• No CREATE TABLE FROM SELECT statements are being issued.

• No materialized views are being refreshed.

To see whether the tables are being joined using the proper keys, inspect your query and object-
relational mapping directives. Bear in mind that certain queries of your application are not called
all the time, and some queries are dynamically generated.

Examine your ORDER BY and GROUP BY queries

In some cases, an ORDER BY clause can result in excessive temporary files. Consider the following
guidelines:

• Only include columns in an ORDER BY clause when they need to be ordered. This guideline is
especially important for queries that return thousands of rows and specify many columns in the
ORDER BY clause.

IO:BufFileRead and IO:BufFileWrite 2325

Amazon Aurora User Guide for Aurora

• Considering creating indexes to accelerate ORDER BY clauses when they match columns that
have the same ascending or descending order. Partial indexes are preferable because they are
smaller. Smaller indexes are read and traversed more quickly.

• If you create indexes for columns that can accept null values, consider whether you want the null
values stored at the end or at the beginning of the indexes.

If possible, reduce the number of rows that need to be ordered by filtering the result set. If you
use WITH clause statements or subqueries, remember that an inner query generates a result set
and passes it to the outside query. The more rows that a query can filter out, the less ordering
the query needs to do.

• If you don't need to obtain the full result set, use the LIMIT clause. For example, if you only
want the top five rows, a query using the LIMIT clause doesn't keep generating results. In this
way, the query requires less memory and temporary files.

A query that uses a GROUP BY clause can also require temporary files. GROUP BY queries
summarize values by using functions such as the following:

• COUNT

• AVG

• MIN

• MAX

• SUM

• STDDEV

To tune GROUP BY queries, follow the recommendations for ORDER BY queries.

Avoid using the DISTINCT operation

If possible, avoid using the DISTINCT operation to remove duplicated rows. The more unnecessary
and duplicated rows that your query returns, the more expensive the DISTINCT operation
becomes. If possible, add filters in the WHERE clause even if you use the same filters for different
tables. Filtering the query and joining correctly improves your performance and reduces resource
use. It also prevents incorrect reports and results.

If you need to use DISTINCT for multiple rows of a same table, consider creating a composite
index. Grouping multiple columns in an index can improve the time to evaluate distinct rows. Also,

IO:BufFileRead and IO:BufFileWrite 2326

Amazon Aurora User Guide for Aurora

if you use Amazon Aurora PostgreSQL version 10 or higher, you can correlate statistics among
multiple columns by using the CREATE STATISTICS command.

Consider using window functions instead of GROUP BY functions

Using GROUP BY, you change the result set, and then retrieve the aggregated result. Using window
functions, you aggregate data without changing the result set. A window function uses the OVER
clause to perform calculations across the sets defined by the query, correlating one row with
another. You can use all the GROUP BY functions in window functions, but also use functions such
as the following:

• RANK

• ARRAY_AGG

• ROW_NUMBER

• LAG

• LEAD

To minimize the number of temporary files generated by a window function, remove duplications
for the same result set when you need two distinct aggregations. Consider the following query.

SELECT sum(salary) OVER (PARTITION BY dept ORDER BY salary DESC) as sum_salary
 , avg(salary) OVER (PARTITION BY dept ORDER BY salary ASC) as avg_salary
 FROM empsalary;

You can rewrite the query with the WINDOW clause as follows.

SELECT sum(salary) OVER w as sum_salary
 , avg(salary) OVER w as_avg_salary
 FROM empsalary
 WINDOW w AS (PARTITION BY dept ORDER BY salary DESC);

By default, the Aurora PostgreSQL execution planner consolidates similar nodes so that it doesn't
duplicate operations. However, by using an explicit declaration for the window block, you can
maintain the query more easily. You might also improve performance by preventing duplication.

Investigate materialized views and CTAS statements

When a materialized view refreshes, it runs a query. This query can contain an operation such
as GROUP BY, ORDER BY, or DISTINCT. During a refresh, you might observe large numbers of

IO:BufFileRead and IO:BufFileWrite 2327

Amazon Aurora User Guide for Aurora

temporary files and the wait events IO:BufFileWrite and IO:BufFileRead. Similarly, when
you create a table based on a SELECT statement, the CREATE TABLE statement runs a query. To
reduce the temporary files needed, optimize the query.

Use pg_repack when you create indexes

When you create an index, the engine orders the result set. As tables grow in size, and as values
in the indexed column become more diverse, the temporary files require more space. In most
cases, you can't prevent the creation of temporary files for large tables without modifying the
maintenance work memory area. For more information, see Maintenance work memory area.

A possible workaround when recreating a large index is to use the pg_repack tool. For more
information, see Reorganize tables in PostgreSQL databases with minimal locks in the pg_repack
documentation.

Increase maintenance_work_mem when you cluster tables

The CLUSTER command clusters the table specified by table_name based on an existing index
specified by index_name. Aurora PostgreSQL physically recreates the table to match the order of a
given index.

When magnetic storage was prevalent, clustering was common because storage throughput was
limited. Now that SSD-based storage is common, clustering is less popular. However, if you cluster
tables, you can still increase performance slightly depending on the table size, index, query, and so
on.

If you run the CLUSTER command and observe the wait events IO:BufFileWrite and
IO:BufFileRead, tune maintenance_work_mem. Increase the memory size to a fairly large
amount. A high value means that the engine can use more memory for the clustering operation.

Tune memory to prevent IO:BufFileRead and IO:BufFileWrite

In some situation, you need to tune memory. Your goal is to balance the following requirements:

• The work_mem value (see Work memory area)

• The memory remaining after discounting the shared_buffers value (see Buffer pool)

• The maximum connections opened and in use, which is limited by max_connections

IO:BufFileRead and IO:BufFileWrite 2328

https://reorg.github.io/pg_repack/

Amazon Aurora User Guide for Aurora

Increase the size of the work memory area

In some situations, your only option is to increase the memory used by your session. If your queries
are correctly written and are using the correct keys for joins, consider increasing the work_mem
value. For more information, see Work memory area.

To find out how many temporary files a query generates, set log_temp_files to 0. If you
increase the work_mem value to the maximum value identified in the logs, you prevent the query
from generating temporary files. However, work_mem sets the maximum per plan node for each
connection or parallel worker. If the database has 5,000 connections, and if each one uses 256 MiB
memory, the engine needs 1.2 TiB of RAM. Thus, your instance might run out of memory.

Reserve sufficient memory for the shared buffer pool

Your database uses memory areas such as the shared buffer pool, not just the work memory area.
Consider the requirements of these additional memory areas before you increase work_mem. For
more information about the buffer pool, see Buffer pool.

For example, assume that your Aurora PostgreSQL instance class is db.r5.2xlarge. This class has 64
GiB of memory. By default, 75 percent of the memory is reserved for the shared buffer pool. After
you subtract the amount allocated to the shared memory area, 16,384 MB remains. Don't allocate
the remaining memory exclusively to the work memory area because the operating system and the
engine also require memory.

The memory that you can allocate to work_mem depends on the instance class. If you use a larger
instance class, more memory is available. However, in the preceding example, you can't use more
than 16 GiB. Otherwise, your instance becomes unavailable when it runs out of memory. To recover
the instance from the unavailable state, the Aurora PostgreSQL automation services automatically
restart.

Manage the number of connections

Suppose that your database instance has 5,000 simultaneous connections. Each connection uses
at least 4 MiB of work_mem. The high memory consumption of the connections is likely to degrade
performance. In response, you have the following options:

• Upgrade to a larger instance class.

• Decrease the number of simultaneous database connections by using a connection proxy or
pooler.

IO:BufFileRead and IO:BufFileWrite 2329

Amazon Aurora User Guide for Aurora

For proxies, consider Amazon RDS Proxy, pgBouncer, or a connection pooler based on your
application. This solution alleviates the CPU load. It also reduces the risk when all connections
require the work memory area. When fewer database connections exist, you can increase
the value of work_mem. In this way, you reduce the occurrence of the IO:BufFileRead and
IO:BufFileWrite wait events. Also, the queries waiting for the work memory area speed up
significantly.

IO:DataFileRead

The IO:DataFileRead event occurs when a connection waits on a backend process to read a
required page from storage because the page isn't available in shared memory.

Topics

• Supported engine versions

• Context

• Likely causes of increased waits

• Actions

Supported engine versions

This wait event information is supported for all versions of Aurora PostgreSQL.

Context

All queries and data manipulation (DML) operations access pages in the buffer pool. Statements
that can induce reads include SELECT, UPDATE, and DELETE. For example, an UPDATE can read
pages from tables or indexes. If the page being requested or updated isn't in the shared buffer
pool, this read can lead to the IO:DataFileRead event.

Because the shared buffer pool is finite, it can fill up. In this case, requests for pages that aren't
in memory force the database to read blocks from disk. If the IO:DataFileRead event occurs
frequently, your shared buffer pool might be too small to accommodate your workload. This
problem is acute for SELECT queries that read a large number of rows that don't fit in the buffer
pool. For more information about the buffer pool, see Buffer pool.

Likely causes of increased waits

Common causes for the IO:DataFileRead event include the following:

IO:DataFileRead 2330

Amazon Aurora User Guide for Aurora

Connection spikes

You might find multiple connections generating the same number of IO:DataFileRead wait
events. In this case, a spike (sudden and large increase) in IO:DataFileRead events can occur.

SELECT and DML statements performing sequential scans

Your application might be performing a new operation. Or an existing operation might change
because of a new execution plan. In such cases, look for tables (particularly large tables) that
have a greater seq_scan value. Find them by querying pg_stat_user_tables. To track
queries that are generating more read operations, use the extension pg_stat_statements.

CTAS and CREATE INDEX for large data sets

A CTAS is a CREATE TABLE AS SELECT statement. If you run a CTAS using a large data set as
a source, or create an index on a large table, the IO:DataFileRead event can occur. When you
create an index, the database might need to read the entire object using a sequential scan. A
CTAS generates IO:DataFile reads when pages aren't in memory.

Multiple vacuum workers running at the same time

Vacuum workers can be triggered manually or automatically. We recommend adopting an
aggressive vacuum strategy. However, when a table has many updated or deleted rows,
the IO:DataFileRead waits increase. After space is reclaimed, the vacuum time spent on
IO:DataFileRead decreases.

Ingesting large amounts of data

When your application ingests large amounts of data, ANALYZE operations might occur more
often. The ANALYZE process can be triggered by an autovacuum launcher or invoked manually.

The ANALYZE operation reads a subset of the table. The number of pages that must be scanned
is calculated by multiplying 30 by the default_statistics_target value. For more
information, see the PostgreSQL documentation. The default_statistics_target
parameter accepts values between 1 and 10,000, where the default is 100.

Resource starvation

If instance network bandwidth or CPU are consumed, the IO:DataFileRead event might
occur more frequently.

Actions

We recommend different actions depending on the causes of your wait event.

IO:DataFileRead 2331

https://www.postgresql.org/docs/current/runtime-config-query.html#GUC-DEFAULT-STATISTICS-TARGET

Amazon Aurora User Guide for Aurora

Topics

• Check predicate filters for queries that generate waits

• Minimize the effect of maintenance operations

• Respond to high numbers of connections

Check predicate filters for queries that generate waits

Assume that you identify specific queries that are generating IO:DataFileRead wait events. You
might identify them using the following techniques:

• Performance Insights

• Catalog views such as the one provided by the extension pg_stat_statements

• The catalog view pg_stat_all_tables, if it periodically shows an increased number of
physical reads

• The pg_statio_all_tables view, if it shows that _read counters are increasing

We recommend that you determine which filters are used in the predicate (WHERE clause) of these
queries. Follow these guidelines:

• Run the EXPLAIN command. In the output, identify which types of scans are used. A sequential
scan doesn't necessarily indicate a problem. Queries that use sequential scans naturally produce
more IO:DataFileRead events when compared to queries that use filters.

Find out whether the column listed in the WHERE clause is indexed. If not, consider creating
an index for this column. This approach avoids the sequential scans and reduces the
IO:DataFileRead events. If a query has restrictive filters and still produces sequential scans,
evaluate whether the proper indexes are being used.

• Find out whether the query is accessing a very large table. In some cases, partitioning a table can
improve performance, allowing the query to only read necessary partitions.

• Examine the cardinality (total number of rows) from your join operations. Note how restrictive
the values are that you're passing in the filters for your WHERE clause. If possible, tune your query
to reduce the number of rows that are passed in each step of the plan.

IO:DataFileRead 2332

Amazon Aurora User Guide for Aurora

Minimize the effect of maintenance operations

Maintenance operations such as VACUUM and ANALYZE are important. We recommend that you
don't turn them off because you find IO:DataFileRead wait events related to these maintenance
operations. The following approaches can minimize the effect of these operations:

• Run maintenance operations manually during off-peak hours. This technique prevents the
database from reaching the threshold for automatic operations.

• For very large tables, consider partitioning the table. This technique reduces the overhead of
maintenance operations. The database only accesses the partitions that require maintenance.

• When you ingest large amounts of data, consider disabling the autoanalyze feature.

The autovacuum feature is automatically triggered for a table when the following formula is true.

pg_stat_user_tables.n_dead_tup > (pg_class.reltuples x autovacuum_vacuum_scale_factor)
 + autovacuum_vacuum_threshold

The view pg_stat_user_tables and catalog pg_class have multiple rows. One row can
correspond to one row in your table. This formula assumes that the reltuples are for a
specific table. The parameters autovacuum_vacuum_scale_factor (0.20 by default) and
autovacuum_vacuum_threshold (50 tuples by default) are usually set globally for the whole
instance. However, you can set different values for a specific table.

Topics

• Find tables consuming space unnecessarily

• Find indexes consuming unnecessary space

• Find tables that are eligible to be autovacuumed

Find tables consuming space unnecessarily

To find tables consuming more space than necessary, run the following query. When this query
is run by a database user role that doesn't have the rds_superuser role, it returns information
about only those tables that the user role has permissions to read. This query is supported by
PostgreSQL version 12 and later versions.

WITH report AS (
 SELECT schemaname

IO:DataFileRead 2333

Amazon Aurora User Guide for Aurora

 ,tblname
 ,n_dead_tup
 ,n_live_tup
 ,block_size*tblpages AS real_size
 ,(tblpages-est_tblpages)*block_size AS extra_size
 ,CASE WHEN tblpages - est_tblpages > 0
 THEN 100 * (tblpages - est_tblpages)/tblpages::float
 ELSE 0
 END AS extra_ratio, fillfactor, (tblpages-est_tblpages_ff)*block_size AS
 bloat_size
 ,CASE WHEN tblpages - est_tblpages_ff > 0
 THEN 100 * (tblpages - est_tblpages_ff)/tblpages::float
 ELSE 0
 END AS bloat_ratio
 ,is_na
 FROM (
 SELECT ceil(reltuples / ((block_size-page_hdr)/tpl_size)) +
 ceil(toasttuples / 4) AS est_tblpages
 ,ceil(reltuples / ((block_size-page_hdr)*fillfactor/
(tpl_size*100))) + ceil(toasttuples / 4) AS est_tblpages_ff
 ,tblpages
 ,fillfactor
 ,block_size
 ,tblid
 ,schemaname
 ,tblname
 ,n_dead_tup
 ,n_live_tup
 ,heappages
 ,toastpages
 ,is_na
 FROM (
 SELECT (4 + tpl_hdr_size + tpl_data_size + (2*ma)
 - CASE WHEN tpl_hdr_size%ma = 0 THEN ma ELSE
 tpl_hdr_size%ma END
 - CASE WHEN ceil(tpl_data_size)::int%ma = 0 THEN ma ELSE
 ceil(tpl_data_size)::int%ma END
) AS tpl_size
 ,block_size - page_hdr AS size_per_block
 ,(heappages + toastpages) AS tblpages
 ,heappages
 ,toastpages
 ,reltuples
 ,toasttuples

IO:DataFileRead 2334

Amazon Aurora User Guide for Aurora

 ,block_size
 ,page_hdr
 ,tblid
 ,schemaname
 ,tblname
 ,fillfactor
 ,is_na
 ,n_dead_tup
 ,n_live_tup
 FROM (
 SELECT tbl.oid AS tblid
 ,ns.nspname AS schemaname
 ,tbl.relname AS tblname
 ,tbl.reltuples AS reltuples
 ,tbl.relpages AS heappages
 ,coalesce(toast.relpages, 0) AS toastpages
 ,coalesce(toast.reltuples, 0) AS toasttuples
 ,psat.n_dead_tup AS n_dead_tup
 ,psat.n_live_tup AS n_live_tup
 ,24 AS page_hdr
 ,current_setting('block_size')::numeric AS
 block_size

 ,coalesce(substring(array_to_string(tbl.reloptions, ' ') FROM
 'fillfactor=([0-9]+)')::smallint, 100) AS fillfactor
 ,CASE WHEN version()~'mingw32' OR version()~'64-
bit|x86_64|ppc64|ia64|amd64' THEN 8 ELSE 4 END AS ma
 ,23 + CASE WHEN MAX(coalesce(null_frac,0)) > 0
 THEN (7 + count(*)) / 8 ELSE 0::int END AS tpl_hdr_size
 ,sum((1-coalesce(s.null_frac, 0)) *
 coalesce(s.avg_width, 1024)) AS tpl_data_size
 ,bool_or(att.atttypid =
 'pg_catalog.name'::regtype) OR count(att.attname) <> count(s.attname) AS is_na
 FROM pg_attribute AS att
 JOIN pg_class AS tbl ON (att.attrelid =
 tbl.oid)
 JOIN pg_stat_all_tables AS psat ON (tbl.oid =
 psat.relid)
 JOIN pg_namespace AS ns ON (ns.oid =
 tbl.relnamespace)
 LEFT JOIN pg_stats AS s ON
 (s.schemaname=ns.nspname AND s.tablename = tbl.relname AND s.inherited=false AND
 s.attname=att.attname)

IO:DataFileRead 2335

Amazon Aurora User Guide for Aurora

 LEFT JOIN pg_class AS toast ON
 (tbl.reltoastrelid = toast.oid)
 WHERE att.attnum > 0
 AND NOT att.attisdropped
 AND tbl.relkind = 'r'
 GROUP BY tbl.oid, ns.nspname, tbl.relname,
 tbl.reltuples, tbl.relpages, toastpages, toasttuples, fillfactor, block_size, ma,
 n_dead_tup, n_live_tup
 ORDER BY schemaname, tblname
) AS s
) AS s2
) AS s3
 ORDER BY bloat_size DESC
)
 SELECT *
 FROM report
 WHERE bloat_ratio != 0
 -- AND schemaname = 'public'
 -- AND tblname = 'pgbench_accounts'
;

-- WHERE NOT is_na
-- AND tblpages*((pst).free_percent + (pst).dead_tuple_percent)::float4/100 >= 1

You can check for table and index bloat in your application. For more information, see

You can use PostgreSQL Multiversion Concurrency Control (MVCC) to help preserve data integrity.
PostgreSQL MVCC works by saving an internal copy of updated or deleted rows (also called tuples)
until a transaction is either committed or rolled back. This saved internal copy is invisible to users.
However, table bloat can occur when those invisible copies aren't cleaned up regularly by the
VACUUM or AUTOVACUUM utilities. Unchecked, table bloat can incur increased storage costs and
slow your processing speed.

In many cases, the default settings for VACUUM or AUTOVACUUM on Aurora are sufficient for
handling unwanted table bloat. However, you may want to check for bloat if your application is
experiencing the following conditions:

• Processes a large number of transactions in a relatively short time between VACUUM processes.

• Performs poorly and runs out of storage.

IO:DataFileRead 2336

Amazon Aurora User Guide for Aurora

To get started, gather the most accurate information about how much space is used by
dead tuples and how much you can recover by cleaning up the table and index bloat. To do
so, use the pgstattuple extension to gather statistics on your Aurora cluster. For more
information, see pgstattuple. Privileges to use the pgstattuple extension are limited to the
pg_stat_scan_tables role and database superusers.

To create the pgstattuple extension on Aurora, connect a client session to the cluster, for
example, psql or pgAdmin, and use the following command:

CREATE EXTENSION pgstattuple;

Create the extension in each database that you want to profile. After creating the extension, use
the command line interface (CLI) to measure how much unusable space you can reclaim. Before
gathering statistics, modify the cluster parameter group by setting AUTOVACUUM to 0. A setting of
0 prevents Aurora from automatically cleaning up any dead tuples left behind by your application,
which can impact the accuracy of the results. Enter the following command to create a simple
table:

postgres=> CREATE TABLE lab AS SELECT generate_series (0,100000);

SELECT 100001

In the following example, we run the query with AUTOVACUUM turned on for the DB cluster. The
dead_tuple_count is 0, which indicates that the AUTOVACUUM has deleted the obsolete data or
tuples from the PostgreSQL database.

To use pgstattuple to gather information about the table, specify the name of a table or an
object identifier (OID) in the query:

postgres=> SELECT * FROM pgstattuple('lab');

table_len | tuple_count | tuple_len | tuple_percent | dead_tuple_count |

 dead_tuple_len | dead_tuple_percent | free_space | free_percent

-----------+-------------+-----------+---------------+------------------

+----------------+--------------------+------------+--------------

3629056 | 100001 | 2800028 | 77.16 | 0 | 0

 | 0 | 16616 | 0.46

(1 row)

IO:DataFileRead 2337

https://www.postgresql.org/docs/current/pgstattuple.html

Amazon Aurora User Guide for Aurora

In the following query, we turn off AUTOVACUUM and enter a command that deletes 25,000 rows
from the table. As a result, the dead_tuple_count increases to 25000.

postgres=> DELETE FROM lab WHERE generate_series < 25000;

DELETE 25000

SELECT * FROM pgstattuple('lab');

table_len | tuple_count | tuple_len | tuple_percent | dead_tuple_count | dead_tuple_len

 | dead_tuple_percent | free_space | free_percent

-----------+-------------+-----------+---------------+------------------

+----------------+--------------------+------------+--------------

3629056 | 75001 | 2100028 | 57.87 | 25000 | 700000 | 19.29 | 16616 | 0.46

(1 row)

To reclaim those dead tuples, start a VACUUM process.

Observing bloat without interrupting your application

Settings on an Aurora cluster are optimized to provide the best practices for most workloads.
However, you might want to optimize a cluster to better suit your applications and use patterns. In
this case, you can use the pgstattuple extension without disrupting a busy application. To do so,
perform the following steps:

1. Clone your Aurora instance.

2. Modify the parameter file to turn off AUTOVACUUM in the clone.

3. Perform a pgstattuple query while testing the clone with a sample workload or with
pgbench, which is a program for running benchmark tests on PostgreSQL. For more
information, see pgbench.

IO:DataFileRead 2338

https://www.postgresql.org/docs/current/pgbench.html

Amazon Aurora User Guide for Aurora

After running your applications and viewing the result, use pg_repack or VACUUM FULL on the
restored copy and compare the differences. If you see a significant drop in the dead_tuple_count,
dead_tuple_len, or dead_tuple_percent, then adjust the vacuum schedule on your production
cluster to minimize the bloat.

Avoiding bloat in temporary tables

If your application creates temporary tables, make sure that your application removes those
temporary tables when they’re no longer needed. Autovacuum processes don’t locate temporary
tables. Left unchecked, temporary tables can quickly create database bloat. Moreover, the bloat
can extend into the system tables, which are the internal tables that track PostgreSQL objects and
attributes, like pg_attribute and pg_depend.

When a temporary table is no longer needed, you can use a TRUNCATE statement to empty
the table and free up the space. Then, manually vacuum the pg_attribute and pg_depend
tables. Vacuuming these tables ensures that creating and truncating/deleting temporary tables
continually isn't adding tuples and contributing to system bloat.

You can avoid this problem while creating a temporary table by including the following syntax that
deletes the new rows when content is committed:

CREATE TEMP TABLE IF NOT EXISTS table_name(table_description) ON COMMIT DELETE ROWS;

The ON COMMIT DELETE ROWS clause truncates the temporary table when the transaction is
committed.

Avoiding bloat in indexes

When you change an indexed field in a table, the index update results in one or more dead tuples
in that index. By default, the autovacuum process cleans up bloat in indexes, but that cleanup uses
a significant amount of time and resources. To specify index cleanup preferences when you create
a table, include the vacuum_index_cleanup clause. By default, at table creation time, the clause is
set to AUTO, which means that the server decides if your index requires cleanup when it vacuums
the table. You can set the clause to ON to turn on index cleanup for a specific table, or OFF to turn
off index cleanup for that table. Remember, turning off index cleanup might save time, but can
potentially lead to a bloated index.

You can manually control index cleanup when you VACUUM a table at the command line. To
vacuum a table and remove dead tuples from the indexes, include the INDEX_CLEANUP clause with
a value of ON and the table name:
IO:DataFileRead 2339

Amazon Aurora User Guide for Aurora

acctg=> VACUUM (INDEX_CLEANUP ON) receivables;

INFO: aggressively vacuuming "public.receivables"

VACUUM

To vacuum a table without cleaning the indexes, specify a value of OFF:

acctg=> VACUUM (INDEX_CLEANUP OFF) receivables;

INFO: aggressively vacuuming "public.receivables"

VACUUM

.

Find indexes consuming unnecessary space

To find indexes consuming unnecessary space, run the following query.

-- WARNING: run with a nonsuperuser role, the query inspects
-- only indexes on tables you have permissions to read.
-- WARNING: rows with is_na = 't' are known to have bad statistics ("name" type is not
 supported).
-- This query is compatible with PostgreSQL 8.2 and later.

SELECT current_database(), nspname AS schemaname, tblname, idxname,
 bs*(relpages)::bigint AS real_size,
 bs*(relpages-est_pages)::bigint AS extra_size,
 100 * (relpages-est_pages)::float / relpages AS extra_ratio,
 fillfactor, bs*(relpages-est_pages_ff) AS bloat_size,
 100 * (relpages-est_pages_ff)::float / relpages AS bloat_ratio,
 is_na
 -- , 100-(sub.pst).avg_leaf_density, est_pages, index_tuple_hdr_bm,
 -- maxalign, pagehdr, nulldatawidth, nulldatahdrwidth, sub.reltuples, sub.relpages
 -- (DEBUG INFO)
FROM (
 SELECT coalesce(1 +
 ceil(reltuples/floor((bs-pageopqdata-pagehdr)/(4+nulldatahdrwidth)::float)), 0
 -- ItemIdData size + computed avg size of a tuple (nulldatahdrwidth)
) AS est_pages,
 coalesce(1 +
 ceil(reltuples/floor((bs-pageopqdata-pagehdr)*fillfactor/
(100*(4+nulldatahdrwidth)::float))), 0
) AS est_pages_ff,

IO:DataFileRead 2340

Amazon Aurora User Guide for Aurora

 bs, nspname, table_oid, tblname, idxname, relpages, fillfactor, is_na
 -- , stattuple.pgstatindex(quote_ident(nspname)||'.'||quote_ident(idxname)) AS
 pst,
 -- index_tuple_hdr_bm, maxalign, pagehdr, nulldatawidth, nulldatahdrwidth,
 reltuples
 -- (DEBUG INFO)
 FROM (
 SELECT maxalign, bs, nspname, tblname, idxname, reltuples, relpages, relam,
 table_oid, fillfactor,
 (index_tuple_hdr_bm +
 maxalign - CASE -- Add padding to the index tuple header to align on MAXALIGN
 WHEN index_tuple_hdr_bm%maxalign = 0 THEN maxalign
 ELSE index_tuple_hdr_bm%maxalign
 END
 + nulldatawidth + maxalign - CASE -- Add padding to the data to align on
 MAXALIGN
 WHEN nulldatawidth = 0 THEN 0
 WHEN nulldatawidth::integer%maxalign = 0 THEN maxalign
 ELSE nulldatawidth::integer%maxalign
 END
)::numeric AS nulldatahdrwidth, pagehdr, pageopqdata, is_na
 -- , index_tuple_hdr_bm, nulldatawidth -- (DEBUG INFO)
 FROM (
 SELECT
 i.nspname, i.tblname, i.idxname, i.reltuples, i.relpages, i.relam, a.attrelid
 AS table_oid,
 current_setting('block_size')::numeric AS bs, fillfactor,
 CASE -- MAXALIGN: 4 on 32bits, 8 on 64bits (and mingw32 ?)
 WHEN version() ~ 'mingw32' OR version() ~ '64-bit|x86_64|ppc64|ia64|amd64'
 THEN 8
 ELSE 4
 END AS maxalign,
 /* per page header, fixed size: 20 for 7.X, 24 for others */
 24 AS pagehdr,
 /* per page btree opaque data */
 16 AS pageopqdata,
 /* per tuple header: add IndexAttributeBitMapData if some cols are null-able */
 CASE WHEN max(coalesce(s.null_frac,0)) = 0
 THEN 2 -- IndexTupleData size
 ELSE 2 + ((32 + 8 - 1) / 8)
 -- IndexTupleData size + IndexAttributeBitMapData size (max num filed per
 index + 8 - 1 /8)
 END AS index_tuple_hdr_bm,

IO:DataFileRead 2341

Amazon Aurora User Guide for Aurora

 /* data len: we remove null values save space using it fractionnal part from
 stats */
 sum((1-coalesce(s.null_frac, 0)) * coalesce(s.avg_width, 1024)) AS
 nulldatawidth,
 max(CASE WHEN a.atttypid = 'pg_catalog.name'::regtype THEN 1 ELSE 0 END) > 0
 AS is_na
 FROM pg_attribute AS a
 JOIN (
 SELECT nspname, tbl.relname AS tblname, idx.relname AS idxname,
 idx.reltuples, idx.relpages, idx.relam,
 indrelid, indexrelid, indkey::smallint[] AS attnum,
 coalesce(substring(
 array_to_string(idx.reloptions, ' ')
 from 'fillfactor=([0-9]+)')::smallint, 90) AS fillfactor
 FROM pg_index
 JOIN pg_class idx ON idx.oid=pg_index.indexrelid
 JOIN pg_class tbl ON tbl.oid=pg_index.indrelid
 JOIN pg_namespace ON pg_namespace.oid = idx.relnamespace
 WHERE pg_index.indisvalid AND tbl.relkind = 'r' AND idx.relpages > 0
) AS i ON a.attrelid = i.indexrelid
 JOIN pg_stats AS s ON s.schemaname = i.nspname
 AND ((s.tablename = i.tblname AND s.attname =
 pg_catalog.pg_get_indexdef(a.attrelid, a.attnum, TRUE))
 -- stats from tbl
 OR (s.tablename = i.idxname AND s.attname = a.attname))
 -- stats from functionnal cols
 JOIN pg_type AS t ON a.atttypid = t.oid
 WHERE a.attnum > 0
 GROUP BY 1, 2, 3, 4, 5, 6, 7, 8, 9
) AS s1
) AS s2
 JOIN pg_am am ON s2.relam = am.oid WHERE am.amname = 'btree'
) AS sub
-- WHERE NOT is_na
ORDER BY 2,3,4;

Find tables that are eligible to be autovacuumed

To find tables that are eligible to be autovacuumed, run the following query.

--This query shows tables that need vacuuming and are eligible candidates.
--The following query lists all tables that are due to be processed by autovacuum.
-- During normal operation, this query should return very little.
WITH vbt AS (SELECT setting AS autovacuum_vacuum_threshold

IO:DataFileRead 2342

Amazon Aurora User Guide for Aurora

 FROM pg_settings WHERE name = 'autovacuum_vacuum_threshold')
 , vsf AS (SELECT setting AS autovacuum_vacuum_scale_factor
 FROM pg_settings WHERE name = 'autovacuum_vacuum_scale_factor')
 , fma AS (SELECT setting AS autovacuum_freeze_max_age
 FROM pg_settings WHERE name = 'autovacuum_freeze_max_age')
 , sto AS (SELECT opt_oid, split_part(setting, '=', 1) as param,
 split_part(setting, '=', 2) as value
 FROM (SELECT oid opt_oid, unnest(reloptions) setting FROM pg_class) opt)
SELECT
 '"'||ns.nspname||'"."'||c.relname||'"' as relation
 , pg_size_pretty(pg_table_size(c.oid)) as table_size
 , age(relfrozenxid) as xid_age
 , coalesce(cfma.value::float, autovacuum_freeze_max_age::float)
 autovacuum_freeze_max_age
 , (coalesce(cvbt.value::float, autovacuum_vacuum_threshold::float) +
 coalesce(cvsf.value::float,autovacuum_vacuum_scale_factor::float) *
 c.reltuples)
 as autovacuum_vacuum_tuples
 , n_dead_tup as dead_tuples
FROM pg_class c
JOIN pg_namespace ns ON ns.oid = c.relnamespace
JOIN pg_stat_all_tables stat ON stat.relid = c.oid
JOIN vbt on (1=1)
JOIN vsf ON (1=1)
JOIN fma on (1=1)
LEFT JOIN sto cvbt ON cvbt.param = 'autovacuum_vacuum_threshold' AND c.oid =
 cvbt.opt_oid
LEFT JOIN sto cvsf ON cvsf.param = 'autovacuum_vacuum_scale_factor' AND c.oid =
 cvsf.opt_oid
LEFT JOIN sto cfma ON cfma.param = 'autovacuum_freeze_max_age' AND c.oid = cfma.opt_oid
WHERE c.relkind = 'r'
AND nspname <> 'pg_catalog'
AND (
 age(relfrozenxid) >= coalesce(cfma.value::float, autovacuum_freeze_max_age::float)
 or
 coalesce(cvbt.value::float, autovacuum_vacuum_threshold::float) +
 coalesce(cvsf.value::float,autovacuum_vacuum_scale_factor::float) * c.reltuples
 <= n_dead_tup
 -- or 1 = 1
)
ORDER BY age(relfrozenxid) DESC;

IO:DataFileRead 2343

Amazon Aurora User Guide for Aurora

Respond to high numbers of connections

When you monitor Amazon CloudWatch, you might find that the DatabaseConnections
metric spikes. This increase indicates an increased number of connections to your database. We
recommend the following approach:

• Limit the number of connections that the application can open with each instance. If your
application has an embedded connection pool feature, set a reasonable number of connections.
Base the number on what the vCPUs in your instance can parallelize effectively.

If your application doesn't use a connection pool feature, considering using Amazon RDS Proxy
or an alternative. This approach lets your application open multiple connections with the load
balancer. The balancer can then open a restricted number of connections with the database. As
fewer connections are running in parallel, your DB instance performs less context switching in
the kernel. Queries should progress faster, leading to fewer wait events. For more information,
see Using Amazon RDS Proxy for Aurora.

• Whenever possible, take advantage of reader nodes for Aurora PostgreSQL and read replicas for
RDS for PostgreSQL. When your application runs a read-only operation, send these requests to
the reader-only endpoint. This technique spreads application requests across all reader nodes,
reducing the I/O pressure on the writer node.

• Consider scaling up your DB instance. A higher-capacity instance class gives more memory, which
gives Aurora PostgreSQL a larger shared buffer pool to hold pages. The larger size also gives the
DB instance more vCPUs to handle connections. More vCPUs are particularly helpful when the
operations that are generating IO:DataFileRead wait events are writes.

IO:XactSync

The IO:XactSync event occurs when the database is waiting for the Aurora storage subsystem
to acknowledge the commit of a regular transaction, or the commit or rollback of a prepared
transaction. A prepared transaction is part of PostgreSQL's support for a two-phase commit.

Topics

• Supported engine versions

• Context

• Likely causes of increased waits

• Actions

IO:XactSync 2344

Amazon Aurora User Guide for Aurora

Supported engine versions

This wait event information is supported for all versions of Aurora PostgreSQL.

Context

The event IO:XactSync indicates that the instance is spending time waiting for the Aurora
storage subsystem to confirm that transaction data was processed.

Likely causes of increased waits

When the IO:XactSync event appears more than normal, possibly indicating a performance
problem, typical causes include the following:

Network saturation

Traffic between clients and the DB instance or traffic to the storage subsystem might be too
heavy for the network bandwidth.

CPU pressure

A heavy workload might be preventing the Aurora storage daemon from getting sufficient CPU
time.

Actions

We recommend different actions depending on the causes of your wait event.

Topics

• Monitor your resources

• Scale up the CPU

• Increase network bandwidth

• Reduce the number of commits

Monitor your resources

To determine the cause of the increased IO:XactSync events, check the following metrics:

• WriteThroughput and CommitThroughput – Changes in write throughput or commit
throughput can show an increase in workload.

IO:XactSync 2345

Amazon Aurora User Guide for Aurora

• WriteLatency and CommitLatency – Changes in write latency or commit latency can show
that the storage subsystem is being asked to do more work.

• CPUUtilization – If the instance's CPU utilization is above 90 percent, the Aurora storage
daemon might not be getting sufficient time on the CPU. In this case, I/O performance degrades.

For information about these metrics, see Instance-level metrics for Amazon Aurora.

Scale up the CPU

To address CPU starvation issues, consider changing to an instance type with more CPU capacity.
For information about CPU capacity for a DB instance class, see Hardware specifications for DB
instance classes for Aurora.

Increase network bandwidth

To determine whether the instance is reaching its network bandwidth limits, check for the
following other wait events:

• IO:DataFileRead, IO:BufferRead, IO:BufferWrite, and IO:XactWrite – Queries using
large amounts of I/O can generate more of these wait events.

• Client:ClientRead and Client:ClientWrite – Queries with large amounts of client
communication can generate more of these wait events.

If network bandwidth is an issue, consider changing to an instance type with more network
bandwidth. For information about network performance for a DB instance class, see Hardware
specifications for DB instance classes for Aurora.

Reduce the number of commits

To reduce the number of commits, combine statements into transaction blocks.

IPC:DamRecordTxAck

The IPC:DamRecordTxAck event occurs when Aurora PostgreSQL in a session using database
activity streams generates an activity stream event, then waits for that event to become durable.

Topics

• Relevant engine versions

• Context

IPC:DamRecordTxAck 2346

Amazon Aurora User Guide for Aurora

• Causes

• Actions

Relevant engine versions

This wait event information is relevant for all Aurora PostgreSQL 10.7 and higher 10 versions, 11.4
and higher 11 versions, and all 12 and 13 versions.

Context

In synchronous mode, durability of activity stream events is favored over database performance.
While waiting for a durable write of the event, the session blocks other database activity, causing
the IPC:DamRecordTxAck wait event.

Causes

The most common cause for the IPC:DamRecordTxAck event to appear in top waits is that the
Database Activity Streams (DAS) feature is a holistic audit. Higher SQL activity generates activity
stream events that need to be recorded.

Actions

We recommend different actions depending on the causes of your wait event:

• Reduce the number of SQL statements or turn off database activity streams. Doing this reduces
the number of events that require durable writes.

• Change to asynchronous mode. Doing this helps to reduce contention on the
IPC:DamRecordTxAck wait event.

However, the DAS feature can't guarantee the durability of every event in asynchronous mode.

Lock:advisory

The Lock:advisory event occurs when a PostgreSQL application uses a lock to coordinate
activity across multiple sessions.

Topics

• Relevant engine versions

• Context

Lock:advisory 2347

Amazon Aurora User Guide for Aurora

• Causes

• Actions

Relevant engine versions

This wait event information is relevant for Aurora PostgreSQL versions 9.6 and higher.

Context

PostgreSQL advisory locks are application-level, cooperative locks explicitly locked and unlocked
by the user's application code. An application can use PostgreSQL advisory locks to coordinate
activity across multiple sessions. Unlike regular, object- or row-level locks, the application has full
control over the lifetime of the lock. For more information, see Advisory Locks in the PostgreSQL
documentation.

Advisory locks can be released before a transaction ends or be held by a session across
transactions. This isn't true for implicit, system-enforced locks, such as an access-exclusive lock on a
table acquired by a CREATE INDEX statement.

For a description of the functions used to acquire (lock) and release (unlock) advisory locks, see
Advisory Lock Functions in the PostgreSQL documentation.

Advisory locks are implemented on top of the regular PostgreSQL locking system and are visible in
the pg_locks system view.

Causes

This lock type is exclusively controlled by an application explicitly using it. Advisory locks that are
acquired for each row as part of a query can cause a spike in locks or a long-term buildup.

These effects happen when the query is run in a way that acquires locks on more rows than are
returned by the query. The application must eventually release every lock, but if locks are acquired
on rows that aren't returned, the application can't find all of the locks.

The following example is from Advisory Locks in the PostgreSQL documentation.

SELECT pg_advisory_lock(id) FROM foo WHERE id > 12345 LIMIT 100;

In this example, the LIMIT clause can only stop the query's output after the rows have already
been internally selected and their ID values locked. This can happen suddenly when a growing

Lock:advisory 2348

https://www.postgresql.org/docs/12/explicit-locking.html#ADVISORY-LOCKS
https://www.postgresql.org/docs/current/functions-admin.html#FUNCTIONS-ADVISORY-LOCKS
https://www.postgresql.org/docs/12/explicit-locking.html#ADVISORY-LOCKS

Amazon Aurora User Guide for Aurora

data volume causes the planner to choose a different execution plan that wasn't tested
during development. The buildup in this case happens because the application explicitly calls
pg_advisory_unlock for every ID value that was locked. However, in this case it can't find the
set of locks acquired on rows that weren't returned. Because the locks are acquired on the session
level, they aren't released automatically at the end of the transaction.

Another possible cause for spikes in blocked lock attempts is unintended conflicts. In these
conflicts, unrelated parts of the application share the same lock ID space by mistake.

Actions

Review application usage of advisory locks and detail where and when in the application flow each
type of advisory lock is acquired and released.

Determine whether a session is acquiring too many locks or a long-running session isn't releasing
locks early enough, leading to a slow buildup of locks. You can correct a slow buildup of session-
level locks by ending the session using pg_terminate_backend(pid).

A client waiting for an advisory lock appears in pg_stat_activity with
wait_event_type=Lock and wait_event=advisory. You can obtain specific lock values by
querying the pg_locks system view for the same pid, looking for locktype=advisory and
granted=f.

You can then identify the blocking session by querying pg_locks for the same advisory lock
having granted=t, as shown in the following example.

SELECT blocked_locks.pid AS blocked_pid,
 blocking_locks.pid AS blocking_pid,
 blocked_activity.usename AS blocked_user,
 blocking_activity.usename AS blocking_user,
 now() - blocked_activity.xact_start AS blocked_transaction_duration,
 now() - blocking_activity.xact_start AS blocking_transaction_duration,
 concat(blocked_activity.wait_event_type,':',blocked_activity.wait_event) AS
 blocked_wait_event,
 concat(blocking_activity.wait_event_type,':',blocking_activity.wait_event) AS
 blocking_wait_event,
 blocked_activity.state AS blocked_state,
 blocking_activity.state AS blocking_state,
 blocked_locks.locktype AS blocked_locktype,
 blocking_locks.locktype AS blocking_locktype,
 blocked_activity.query AS blocked_statement,

Lock:advisory 2349

Amazon Aurora User Guide for Aurora

 blocking_activity.query AS blocking_statement
 FROM pg_catalog.pg_locks blocked_locks
 JOIN pg_catalog.pg_stat_activity blocked_activity ON blocked_activity.pid =
 blocked_locks.pid
 JOIN pg_catalog.pg_locks blocking_locks
 ON blocking_locks.locktype = blocked_locks.locktype
 AND blocking_locks.DATABASE IS NOT DISTINCT FROM blocked_locks.DATABASE
 AND blocking_locks.relation IS NOT DISTINCT FROM blocked_locks.relation
 AND blocking_locks.page IS NOT DISTINCT FROM blocked_locks.page
 AND blocking_locks.tuple IS NOT DISTINCT FROM blocked_locks.tuple
 AND blocking_locks.virtualxid IS NOT DISTINCT FROM blocked_locks.virtualxid
 AND blocking_locks.transactionid IS NOT DISTINCT FROM
 blocked_locks.transactionid
 AND blocking_locks.classid IS NOT DISTINCT FROM blocked_locks.classid
 AND blocking_locks.objid IS NOT DISTINCT FROM blocked_locks.objid
 AND blocking_locks.objsubid IS NOT DISTINCT FROM blocked_locks.objsubid
 AND blocking_locks.pid != blocked_locks.pid
 JOIN pg_catalog.pg_stat_activity blocking_activity ON blocking_activity.pid =
 blocking_locks.pid
 WHERE NOT blocked_locks.GRANTED;

All of the advisory lock API functions have two sets of arguments, either one bigint argument or
two integer arguments:

• For the API functions with one bigint argument, the upper 32 bits are in pg_locks.classid
and the lower 32 bits are in pg_locks.objid.

• For the API functions with two integer arguments, the first argument is pg_locks.classid
and the second argument is pg_locks.objid.

The pg_locks.objsubid value indicates which API form was used: 1 means one bigint
argument; 2 means two integer arguments.

Lock:extend

The Lock:extend event occurs when a backend process is waiting to lock a relation to extend it
while another process has a lock on that relation for the same purpose.

Topics

• Supported engine versions

• Context

Lock:extend 2350

Amazon Aurora User Guide for Aurora

• Likely causes of increased waits

• Actions

Supported engine versions

This wait event information is supported for all versions of Aurora PostgreSQL.

Context

The event Lock:extend indicates that a backend process is waiting to extend a relation that
another backend process holds a lock on while it's extending that relation. Because only one
process at a time can extend a relation, the system generates a Lock:extend wait event. INSERT,
COPY, and UPDATE operations can generate this event.

Likely causes of increased waits

When the Lock:extend event appears more than normal, possibly indicating a performance
problem, typical causes include the following:

Surge in concurrent inserts or updates to the same table

There might be an increase in the number of concurrent sessions with queries that insert into or
update the same table.

Insufficient network bandwidth

The network bandwidth on the DB instance might be insufficient for the storage
communication needs of the current workload. This can contribute to storage latency that
causes an increase in Lock:extend events.

Actions

We recommend different actions depending on the causes of your wait event.

Topics

• Reduce concurrent inserts and updates to the same relation

• Increase network bandwidth

Lock:extend 2351

Amazon Aurora User Guide for Aurora

Reduce concurrent inserts and updates to the same relation

First, determine whether there's an increase in tup_inserted and tup_updated metrics and an
accompanying increase in this wait event. If so, check which relations are in high contention for
insert and update operations. To determine this, query the pg_stat_all_tables view for the
values in n_tup_ins and n_tup_upd fields. For information about the pg_stat_all_tables
view, see pg_stat_all_tables in the PostgreSQL documentation.

To get more information about blocking and blocked queries, query pg_stat_activity as in the
following example:

SELECT
 blocked.pid,
 blocked.usename,
 blocked.query,
 blocking.pid AS blocking_id,
 blocking.query AS blocking_query,
 blocking.wait_event AS blocking_wait_event,
 blocking.wait_event_type AS blocking_wait_event_type
FROM pg_stat_activity AS blocked
JOIN pg_stat_activity AS blocking ON blocking.pid = ANY(pg_blocking_pids(blocked.pid))
where
blocked.wait_event = 'extend'
and blocked.wait_event_type = 'Lock';

 pid | usename | query | blocking_id |
 blocking_query | blocking_wait_event |
 blocking_wait_event_type
 ------+----------+------------------------------+-------------
+--
+---------------------+--------------------------
 7143 | myuser | insert into tab1 values (1); | 4600 | INSERT INTO tab1 (a)
 SELECT s FROM generate_series(1,1000000) s; | DataFileExtend | IO

After you identify relations that contribute to increase Lock:extend events, use the following
techniques to reduce the contention:

• Find out whether you can use partitioning to reduce contention for the same table. Separating
inserted or updated tuples into different partitions can reduce contention. For information about
partitioning, see Managing PostgreSQL partitions with the pg_partman extension.

Lock:extend 2352

https://www.postgresql.org/docs/13/monitoring-stats.html#MONITORING-PG-STAT-ALL-TABLES-VIEW

Amazon Aurora User Guide for Aurora

• If the wait event is mainly due to update activity, consider reducing the relation's fillfactor
value. This can reduce requests for new blocks during the update. The fillfactor is a storage
parameter for a table that determines the maximum amount of space for packing a table page.
It's expressed as a percentage of the total space for a page. For more information about the
fillfactor parameter, see CREATE TABLE in the PostgreSQL documentation.

Important

We highly recommend that you test your system if you change the fillfactor because
changing this value can negatively impact performance, depending on your workload.

Increase network bandwidth

To see whether there's an increase in write latency, check the WriteLatency metric in
CloudWatch. If there is, use the WriteThroughput and ReadThroughput Amazon CloudWatch
metrics to monitor the storage related traffic on the DB cluster. These metrics can help you to
determine if network bandwidth is sufficient for the storage activity of your workload.

If your network bandwidth isn't enough, increase it. If your DB instance is reaching the network
bandwidth limits, the only way to increase the bandwidth is to increase your DB instance size.

For more information about CloudWatch metrics, see Amazon CloudWatch metrics for Amazon
Aurora. For information about network performance for each DB instance class, see Hardware
specifications for DB instance classes for Aurora.

Lock:Relation

The Lock:Relation event occurs when a query is waiting to acquire a lock on a table or view
(relation) that's currently locked by another transaction.

Topics

• Supported engine versions

• Context

• Likely causes of increased waits

• Actions

Lock:Relation 2353

https://www.postgresql.org/docs/13/sql-createtable.html

Amazon Aurora User Guide for Aurora

Supported engine versions

This wait event information is supported for all versions of Aurora PostgreSQL.

Context

Most PostgreSQL commands implicitly use locks to control concurrent access to data in tables.
You can also use these locks explicitly in your application code with the LOCK command. Many
lock modes aren't compatible with each other, and they can block transactions when they're trying
to access the same object. When this happens, Aurora PostgreSQL generates a Lock:Relation
event. Some common examples are the following:

• Exclusive locks such as ACCESS EXCLUSIVE can block all concurrent access. Data definition
language (DDL) operations such as DROP TABLE, TRUNCATE, VACUUM FULL, and CLUSTER
acquire ACCESS EXCLUSIVE locks implicitly. ACCESS EXCLUSIVE is also the default lock mode
for LOCK TABLE statements that don't specify a mode explicitly.

• Using CREATE INDEX (without CONCURRENT) on a table conflicts with data manipulation
language (DML) statements UPDATE, DELETE, and INSERT, which acquire ROW EXCLUSIVE
locks.

For more information about table-level locks and conflicting lock modes, see Explicit Locking in the
PostgreSQL documentation.

Blocking queries and transactions typically unblock in one of the following ways:

• Blocking query – The application can cancel the query or the user can end the process. The
engine can also force the query to end because of a session's statement-timeout or a deadlock
detection mechanism.

• Blocking transaction – A transaction stops blocking when it runs a ROLLBACK or COMMIT
statement. Rollbacks also happen automatically when sessions are disconnected by a client or
by network issues, or are ended. Sessions can be ended when the database engine is shut down,
when the system is out of memory, and so forth.

Likely causes of increased waits

When the Lock:Relation event occurs more frequently than normal, it can indicate a
performance issue. Typical causes include the following:

Lock:Relation 2354

https://www.postgresql.org/docs/13/explicit-locking.html

Amazon Aurora User Guide for Aurora

Increased concurrent sessions with conflicting table locks

There might be an increase in the number of concurrent sessions with queries that lock the
same table with conflicting locking modes.

Maintenance operations

Health maintenance operations such as VACUUM and ANALYZE can significantly increase the
number of conflicting locks. VACUUM FULL acquires an ACCESS EXCLUSIVE lock, and ANALYSE
acquires a SHARE UPDATE EXCLUSIVE lock. Both types of locks can cause a Lock:Relation
wait event. Application data maintenance operations such as refreshing a materialized view can
also increase blocked queries and transactions.

Locks on reader instances

There might be a conflict between the relation locks held by the writer and readers. Currently,
only ACCESS EXCLUSIVE relation locks are replicated to reader instances. However, the
ACCESS EXCLUSIVE relation lock will conflict with any ACCESS SHARE relation locks held by
the reader. This can cause an increase in lock relation wait events on the reader.

Actions

We recommend different actions depending on the causes of your wait event.

Topics

• Reduce the impact of blocking SQL statements

• Minimize the effect of maintenance operations

• Check for reader locks

Reduce the impact of blocking SQL statements

To reduce the impact of blocking SQL statements, modify your application code where possible.
Following are two common techniques for reducing blocks:

• Use the NOWAIT option – Some SQL commands, such as SELECT and LOCK statements, support
this option. The NOWAIT directive cancels the lock-requesting query if the lock can't be acquired
immediately. This technique can help prevent a blocking session from causing a pile-up of
blocked sessions behind it.

Lock:Relation 2355

Amazon Aurora User Guide for Aurora

For example: Assume that transaction A is waiting on a lock held by transaction B. Now, if B
requests a lock on a table that’s locked by transaction C, transaction A might be blocked until
transaction C completes. But if transaction B uses a NOWAIT when it requests the lock on C, it can
fail fast and ensure that transaction A doesn't have to wait indefinitely.

• Use SET lock_timeout – Set a lock_timeout value to limit the time a SQL statement
waits to acquire a lock on a relation. If the lock isn't acquired within the timeout specified, the
transaction requesting the lock is cancelled. Set this value at the session level.

Minimize the effect of maintenance operations

Maintenance operations such as VACUUM and ANALYZE are important. We recommend that you
don't turn them off because you find Lock:Relation wait events related to these maintenance
operations. The following approaches can minimize the effect of these operations:

• Run maintenance operations manually during off-peak hours.

• To reduce Lock:Relation waits caused by autovacuum tasks, perform any needed autovacuum
tuning. For information about tuning autovacuum, see Working with PostgreSQL autovacuum
on Amazon RDS in the Amazon RDS User Guide.

Check for reader locks

You can see how concurrent sessions on a writer and readers might be holding locks that block
each other. One way to do this is by running queries that return the lock type and relation. In the
table you can find a sequence of queries to two such concurrent sessions, a writer session (left-
hand column) and a reader session (right-hand column).

The replay process waits for the duration of max_standby_streaming_delay before cancelling
the reader query. As shown in the example, the lock timeout of 100ms is well below the default
max_standby_streaming_delay of 30 seconds. The lock times out before it's an issue.

Writer session Reader session

export WRITER=aurorapg1.1234567891
0.us-west-1.rds.amazonaws.com

psql -h $WRITER
psql (15devel, server 10.14)

export READER=aurorapg2.1234567891
0.us-west-1.rds.amazonaws.com

psql -h $READER
psql (15devel, server 10.14)

Lock:Relation 2356

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Appendix.PostgreSQL.CommonDBATasks.Autovacuum.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Appendix.PostgreSQL.CommonDBATasks.Autovacuum.html

Amazon Aurora User Guide for Aurora

Writer session Reader session

Type "help" for help. Type "help" for help.

The writer session creates table t1 on the writer instance. The ACCESS EXCLUSIVE lock is
acquired on the writer immediately, assuming that there are no conflicting queries on the writer.

postgres=> CREATE TABLE t1(b
 integer);
CREATE TABLE

The reader session sets a lock timeout interval of 100 milliseconds.

postgres=> SET lock_timeout=100;
SET

The reader session tries to read data from table t1 on the reader instance.

postgres=> SELECT * FROM t1;
 b

(0 rows)

The writer session drops t1.

postgres=> BEGIN;
BEGIN
postgres=> DROP TABLE t1;
DROP TABLE
postgres=>

The query times out and is canceled on the reader.

postgres=> SELECT * FROM t1;
ERROR: canceling statement due to
 lock timeout
LINE 1: SELECT * FROM t1;
 ^

Lock:Relation 2357

Amazon Aurora User Guide for Aurora

Writer session Reader session

The reader session queries pg_locks and pg_stat_activity to determine the cause of
the error. The result indicates that the aurora wal replay process is holding an ACCESS
EXCLUSIVE lock on table t1.

postgres=> SELECT locktype, relation,
 mode, backend_type
postgres-> FROM pg_locks l, pg_stat_a
ctivity t1
postgres-> WHERE l.pid=t1.pid AND
 relation = 't1'::regclass::oid;
 locktype | relation | mode
 | backend_type
----------+----------+----------
-----------+-------------------
 relation | 68628525 | AccessExc
lusiveLock | aurora wal replay
(1 row)

Lock:transactionid

The Lock:transactionid event occurs when a transaction is waiting for a row-level lock.

Topics

• Supported engine versions

• Context

• Likely causes of increased waits

• Actions

Supported engine versions

This wait event information is supported for all versions of Aurora PostgreSQL.

Context

The event Lock:transactionid occurs when a transaction is trying to acquire a row-level lock
that has already been granted to a transaction that is running at the same time. The session that

Lock:transactionid 2358

Amazon Aurora User Guide for Aurora

shows the Lock:transactionid wait event is blocked because of this lock. After the blocking
transaction ends in either a COMMIT or ROLLBACK statement, the blocked transaction can proceed.

The multiversion concurrency control semantics of Aurora PostgreSQL guarantee that readers don't
block writers and writers don't block readers. For row-level conflicts to occur, blocking and blocked
transactions must issue conflicting statements of the following types:

• UPDATE

• SELECT … FOR UPDATE

• SELECT … FOR KEY SHARE

The statement SELECT … FOR KEY SHARE is a special case. The database uses the clause FOR
KEY SHARE to optimize the performance of referential integrity. A row-level lock on a row can
block INSERT, UPDATE, and DELETE commands on other tables that reference the row.

Likely causes of increased waits

When this event appears more than normal, the cause is typically UPDATE, SELECT … FOR
UPDATE, or SELECT … FOR KEY SHARE statements combined with the following conditions.

Topics

• High concurrency

• Idle in transaction

• Long-running transactions

High concurrency

Aurora PostgreSQL can use granular row-level locking semantics. The probability of row-level
conflicts increases when the following conditions are met:

• A highly concurrent workload contends for the same rows.

• Concurrency increases.

Idle in transaction

Sometimes the pg_stat_activity.state column shows the value idle in transaction.
This value appears for sessions that have started a transaction, but haven't yet issued a COMMIT

Lock:transactionid 2359

Amazon Aurora User Guide for Aurora

or ROLLBACK. If the pg_stat_activity.state value isn't active, the query shown in
pg_stat_activity is the most recent one to finish running. The blocking session isn't actively
processing a query because an open transaction is holding a lock.

If an idle transaction acquired a row-level lock, it might be preventing other sessions from
acquiring it. This condition leads to frequent occurrence of the wait event Lock:transactionid.
To diagnose the issue, examine the output from pg_stat_activity and pg_locks.

Long-running transactions

Transactions that run for a long time get locks for a long time. These long-held locks can block
other transactions from running.

Actions

Row-locking is a conflict among UPDATE, SELECT … FOR UPDATE, or SELECT … FOR KEY
SHARE statements. Before attempting a solution, find out when these statements are running on
the same row. Use this information to choose a strategy described in the following sections.

Topics

• Respond to high concurrency

• Respond to idle transactions

• Respond to long-running transactions

Respond to high concurrency

If concurrency is the issue, try one of the following techniques:

• Lower the concurrency in the application. For example, decrease the number of active sessions.

• Implement a connection pool. To learn how to pool connections with RDS Proxy, see Using
Amazon RDS Proxy for Aurora.

• Design the application or data model to avoid contending UPDATE and SELECT … FOR UPDATE
statements. You can also decrease the number of foreign keys accessed by SELECT … FOR KEY
SHARE statements.

Respond to idle transactions

If pg_stat_activity.state shows idle in transaction, use the following strategies:

Lock:transactionid 2360

Amazon Aurora User Guide for Aurora

• Turn on autocommit wherever possible. This approach prevents transactions from blocking other
transactions while waiting for a COMMIT or ROLLBACK.

• Search for code paths that are missing COMMIT, ROLLBACK, or END.

• Make sure that the exception handling logic in your application always has a path to a valid end
of transaction.

• Make sure that your application processes query results after ending the transaction with
COMMIT or ROLLBACK.

Respond to long-running transactions

If long-running transactions are causing the frequent occurrence of Lock:transactionid, try the
following strategies:

• Keep row locks out of long-running transactions.

• Limit the length of queries by implementing autocommit whenever possible.

Lock:tuple

The Lock:tuple event occurs when a backend process is waiting to acquire a lock on a tuple.

Topics

• Supported engine versions

• Context

• Likely causes of increased waits

• Actions

Supported engine versions

This wait event information is supported for all versions of Aurora PostgreSQL.

Context

The event Lock:tuple indicates that a backend is waiting to acquire a lock on a tuple while
another backend holds a conflicting lock on the same tuple. The following table illustrates a
scenario in which sessions generate the Lock:tuple event.

Lock:tuple 2361

Amazon Aurora User Guide for Aurora

Time Session 1 Session 2 Session 3

t1 Starts a transaction.

t2 Updates row 1.

t3 Updates row 1. The session
acquires an exclusive lock on
the tuple and then waits for
session 1 to release the lock
by committing or rolling
back.

t4 Updates row 1. The session
waits for session 2 to release
the exclusive lock on the tuple.

Or you can simulate this wait event by using the benchmarking tool pgbench. Configure a high
number of concurrent sessions to update the same row in a table with a custom SQL file.

To learn more about conflicting lock modes, see Explicit Locking in the PostgreSQL documentation.
To learn more about pgbench, see pgbench in the PostgreSQL documentation.

Likely causes of increased waits

When this event appears more than normal, possibly indicating a performance problem, typical
causes include the following:

• A high number of concurrent sessions are trying to acquire a conflicting lock for the same tuple
by running UPDATE or DELETE statements.

• Highly concurrent sessions are running a SELECT statement using the FOR UPDATE or FOR NO
KEY UPDATE lock modes.

• Various factors drive application or connection pools to open more sessions to execute the
same operations. As new sessions are trying to modify the same rows, DB load can spike, and
Lock:tuple can appear.

For more information, see Row-Level Locks in the PostgreSQL documentation.

Lock:tuple 2362

https://www.postgresql.org/docs/current/explicit-locking.html
https://www.postgresql.org/docs/current/pgbench.html
https://www.postgresql.org/docs/current/explicit-locking.html#LOCKING-ROWS

Amazon Aurora User Guide for Aurora

Actions

We recommend different actions depending on the causes of your wait event.

Topics

• Investigate your application logic

• Find the blocker session

• Reduce concurrency when it is high

• Troubleshoot bottlenecks

Investigate your application logic

Find out whether a blocker session has been in the idle in transaction state for long
time. If so, consider ending the blocker session as a short-term solution. You can use the
pg_terminate_backend function. For more information about this function, see Server Signaling
Functions in the PostgreSQL documentation.

For a long-term solution, do the following:

• Adjust the application logic.

• Use the idle_in_transaction_session_timeout parameter. This parameter ends any
session with an open transaction that has been idle for longer than the specified amount of time.
For more information, see Client Connection Defaults in the PostgreSQL documentation.

• Use autocommit as much as possible. For more information, see SET AUTOCOMMIT in the
PostgreSQL documentation.

Find the blocker session

While the Lock:tuple wait event is occurring, identify the blocker and blocked session by
finding out which locks depend on one another. For more information, see Lock dependency
information in the PostgreSQL wiki. To analyze past Lock:tuple events, use the Aurora function
aurora_stat_backend_waits.

The following example queries all sessions, filtering on tuple and ordering by wait_time.

--AURORA_STAT_BACKEND_WAITS
 SELECT a.pid,
 a.usename,

Lock:tuple 2363

https://www.postgresql.org/docs/13/functions-admin.html#FUNCTIONS-ADMIN-SIGNAL
https://www.postgresql.org/docs/13/functions-admin.html#FUNCTIONS-ADMIN-SIGNAL
https://www.postgresql.org/docs/current/runtime-config-client.html#GUC-IDLE-IN-TRANSACTION-SESSION-TIMEOUT
https://www.postgresql.org/docs/current/ecpg-sql-set-autocommit.html
https://wiki.postgresql.org/wiki/Lock_dependency_information
https://wiki.postgresql.org/wiki/Lock_dependency_information

Amazon Aurora User Guide for Aurora

 a.app_name,
 a.current_query,
 a.current_wait_type,
 a.current_wait_event,
 a.current_state,
 wt.type_name AS wait_type,
 we.event_name AS wait_event,
 a.waits,
 a.wait_time
 FROM (SELECT pid,
 usename,
 left(application_name,16) AS app_name,
 coalesce(wait_event_type,'CPU') AS current_wait_type,
 coalesce(wait_event,'CPU') AS current_wait_event,
 state AS current_state,
 left(query,80) as current_query,
 (aurora_stat_backend_waits(pid)).*
 FROM pg_stat_activity
 WHERE pid <> pg_backend_pid()
 AND usename<>'rdsadmin') a
NATURAL JOIN aurora_stat_wait_type() wt
NATURAL JOIN aurora_stat_wait_event() we
WHERE we.event_name = 'tuple'
 ORDER BY a.wait_time;

 pid | usename | app_name | current_query |
 current_wait_type | current_wait_event | current_state | wait_type | wait_event |
 waits | wait_time
-------+---------+----------+--
+-------------------+--------------------+---------------+-----------+------------
+-------+-----------
 32136 | sys | psql | /*session3*/ update tab set col=1 where col=1; | Lock
 | tuple | active | Lock | tuple | 1 |
 1000018
 11999 | sys | psql | /*session4*/ update tab set col=1 where col=1; | Lock
 | tuple | active | Lock | tuple | 1 |
 1000024

Reduce concurrency when it is high

The Lock:tuple event might occur constantly, especially in a busy workload time. In this
situation, consider reducing the high concurrency for very busy rows. Often, just a few rows control
a queue or the Boolean logic, which makes these rows very busy.

Lock:tuple 2364

Amazon Aurora User Guide for Aurora

You can reduce concurrency by using different approaches based in the business requirement,
application logic, and workload type. For example, you can do the following:

• Redesign your table and data logic to reduce high concurrency.

• Change the application logic to reduce high concurrency at the row level.

• Leverage and redesign queries with row-level locks.

• Use the NOWAIT clause with retry operations.

• Consider using optimistic and hybrid-locking logic concurrency control.

• Consider changing the database isolation level.

Troubleshoot bottlenecks

The Lock:tuple can occur with bottlenecks such as CPU starvation or maximum usage of Amazon
EBS bandwidth. To reduce bottlenecks, consider the following approaches:

• Scale up your instance class type.

• Optimize resource-intensive queries.

• Change the application logic.

• Archive data that is rarely accessed.

LWLock:buffer_content (BufferContent)

The LWLock:buffer_content event occurs when a session is waiting to read or write a data page
in memory while another session has that page locked for writing. In Aurora PostgreSQL 13 and
higher, this wait event is called BufferContent.

Topics

• Supported engine versions

• Context

• Likely causes of increased waits

• Actions

Supported engine versions

This wait event information is supported for all versions of Aurora PostgreSQL.

LWLock:buffer_content (BufferContent) 2365

Amazon Aurora User Guide for Aurora

Context

To read or manipulate data, PostgreSQL accesses it through shared memory buffers. To read
from the buffer, a process gets a lightweight lock (LWLock) on the buffer content in shared mode.
To write to the buffer, it gets that lock in exclusive mode. Shared locks allow other processes to
concurrently acquire shared locks on that content. Exclusive locks prevent other processes from
getting any type of lock on it.

The LWLock:buffer_content (BufferContent) event indicates that multiple processes are
attempting to get a lock on contents of a specific buffer.

Likely causes of increased waits

When the LWLock:buffer_content (BufferContent) event appears more than normal,
possibly indicating a performance problem, typical causes include the following:

Increased concurrent updates to the same data

There might be an increase in the number of concurrent sessions with queries that update the
same buffer content. This contention can be more pronounced on tables with a lot of indexes.

Workload data is not in memory

When data that the active workload is processing is not in memory, these wait events can
increase. This effect is because processes holding locks can keep them longer while they
perform disk I/O operations.

Excessive use of foreign key constraints

Foreign key constraints can increase the amount of time a process holds onto a buffer content
lock. This effect is because read operations require a shared buffer content lock on the
referenced key while that key is being updated.

Actions

We recommend different actions depending on the causes of your wait event. You might identify
LWLock:buffer_content (BufferContent) events by using Amazon RDS Performance Insights
or by querying the view pg_stat_activity.

Topics

LWLock:buffer_content (BufferContent) 2366

Amazon Aurora User Guide for Aurora

• Improve in-memory efficiency

• Reduce usage of foreign key constraints

• Remove unused indexes

Improve in-memory efficiency

To increase the chance that active workload data is in memory, partition tables or scale up your
instance class. For information about DB instance classes, see Aurora DB instance classes.

Reduce usage of foreign key constraints

Investigate workloads experiencing high numbers of LWLock:buffer_content
(BufferContent) wait events for usage of foreign key constraints. Remove unnecessary foreign
key constraints.

Remove unused indexes

For workloads experiencing high numbers of LWLock:buffer_content (BufferContent) wait
events, identify unused indexes and remove them.

LWLock:buffer_mapping

This event occurs when a session is waiting to associate a data block with a buffer in the shared
buffer pool.

Note

This event appears as LWLock:buffer_mapping in Aurora PostgreSQL version 12 and
lower, and LWLock:BufferMapping in version 13 and higher.

Topics

• Supported engine versions

• Context

• Causes

• Actions

LWLock:buffer_mapping 2367

Amazon Aurora User Guide for Aurora

Supported engine versions

This wait event information is relevant for Aurora PostgreSQL version 9.6 and higher.

Context

The shared buffer pool is an Aurora PostgreSQL memory area that holds all pages that are or were
being used by processes. When a process needs a page, it reads the page into the shared buffer
pool. The shared_buffers parameter sets the shared buffer size and reserves a memory area to
store the table and index pages. If you change this parameter, make sure to restart the database.
For more information, see Shared buffers.

The LWLock:buffer_mapping wait event occurs in the following scenarios:

• A process searches the buffer table for a page and acquires a shared buffer mapping lock.

• A process loads a page into the buffer pool and acquires an exclusive buffer mapping lock.

• A process removes a page from the pool and acquires an exclusive buffer mapping lock.

Causes

When this event appears more than normal, possibly indicating a performance problem, the
database is paging in and out of the shared buffer pool. Typical causes include the following:

• Large queries

• Bloated indexes and tables

• Full table scans

• A shared pool size that is smaller than the working set

Actions

We recommend different actions depending on the causes of your wait event.

Topics

• Monitor buffer-related metrics

• Assess your indexing strategy

• Reduce the number of buffers that must be allocated quickly

LWLock:buffer_mapping 2368

Amazon Aurora User Guide for Aurora

Monitor buffer-related metrics

When LWLock:buffer_mapping waits spike, investigate the buffer hit ratio. You can use these
metrics to get a better understanding of what is happening in the buffer cache. Examine the
following metrics:

BufferCacheHitRatio

This Amazon CloudWatch metric measures the percentage of requests that are served by the
buffer cache of a DB instance in your DB cluster. You might see this metric decrease in the lead-
up to the LWLock:buffer_mapping wait event.

blks_hit

This Performance Insights counter metric indicates the number of blocks that were retrieved
from the shared buffer pool. After the LWLock:buffer_mapping wait event appears, you
might observe a spike in blks_hit.

blks_read

This Performance Insights counter metric indicates the number of blocks that required I/O to be
read into the shared buffer pool. You might observe a spike in blks_read in the lead-up to the
LWLock:buffer_mapping wait event.

Assess your indexing strategy

To confirm that your indexing strategy is not degrading performance, check the following:

Index bloat

Ensure that index and table bloat aren't leading to unnecessary pages being read into the
shared buffer. If your tables contain unused rows, consider archiving the data and removing the
rows from the tables. You can then rebuild the indexes for the resized tables.

Indexes for frequently used queries

To determine whether you have the optimal indexes, monitor DB engine metrics in Performance
Insights. The tup_returned metric shows the number of rows read. The tup_fetched metric
shows the number of rows returned to the client. If tup_returned is significantly larger than
tup_fetched, the data might not be properly indexed. Also, your table statistics might not be
current.

LWLock:buffer_mapping 2369

Amazon Aurora User Guide for Aurora

Reduce the number of buffers that must be allocated quickly

To reduce the LWLock:buffer_mapping wait events, try to reduce the number of buffers that
must be allocated quickly. One strategy is to perform smaller batch operations. You might be able
to achieve smaller batches by partitioning your tables.

LWLock:BufferIO (IPC:BufferIO)

The LWLock:BufferIO event occurs when Aurora PostgreSQL or RDS for PostgreSQL is waiting
for other processes to finish their input/output (I/O) operations when concurrently trying to access
a page. Its purpose is for the same page to be read into the shared buffer.

Topics

• Relevant engine versions

• Context

• Causes

• Actions

Relevant engine versions

This wait event information is relevant for all Aurora PostgreSQL versions. For Aurora PostgreSQL
12 and earlier versions this wait event is named as lwlock:buffer_io whereas in Aurora PostgreSQL
13 version it is named as lwlock:bufferio. From Aurora PostgreSQL 14 version BufferIO wait event
moved from LWLock to IPC wait event type (IPC:BufferIO).

Context

Each shared buffer has an I/O lock that is associated with the LWLock:BufferIO wait event, each
time a block (or a page) has to be retrieved outside the shared buffer pool.

This lock is used to handle multiple sessions that all require access to the same block. This block
has to be read from outside the shared buffer pool, defined by the shared_buffers parameter.

As soon as the page is read inside the shared buffer pool, the LWLock:BufferIO lock is released.

LWLock:BufferIO (IPC:BufferIO) 2370

Amazon Aurora User Guide for Aurora

Note

The LWLock:BufferIO wait event precedes the IO:DataFileRead wait event. The
IO:DataFileRead wait event occurs while data is being read from storage.

For more information on lightweight locks, see Locking Overview.

Causes

Common causes for the LWLock:BufferIO event to appear in top waits include the following:

• Multiple backends or connections trying to access the same page that's also pending an I/O
operation

• The ratio between the size of the shared buffer pool (defined by the shared_buffers
parameter) and the number of buffers needed by the current workload

• The size of the shared buffer pool not being well balanced with the number of pages being
evicted by other operations

• Large or bloated indexes that require the engine to read more pages than necessary into the
shared buffer pool

• Lack of indexes that forces the DB engine to read more pages from the tables than necessary

• Sudden spikes for database connections trying to perform operations on the same page

Actions

We recommend different actions depending on the causes of your wait event:

• Observe Amazon CloudWatch metrics for correlation between sharp decreases in the
BufferCacheHitRatio and LWLock:BufferIO wait events. This effect can mean that you
have a small shared buffers setting. You might need to increase it or scale up your DB instance
class. You can split your workload into more reader nodes.

• Tune max_wal_size and checkpoint_timeout based on your workload peak time if you see
LWLock:BufferIO coinciding with BufferCacheHitRatio metric dips. Then identify which
query might be causing it.

• Verify whether you have unused indexes, then remove them.

LWLock:BufferIO (IPC:BufferIO) 2371

https://github.com/postgres/postgres/blob/65dc30ced64cd17f3800ff1b73ab1d358e92efd8/src/backend/storage/lmgr/README#L20

Amazon Aurora User Guide for Aurora

• Use partitioned tables (which also have partitioned indexes). Doing this helps to keep index
reordering low and reduces its impact.

• Avoid indexing columns unnecessarily.

• Prevent sudden database connection spikes by using a connection pool.

• Restrict the maximum number of connections to the database as a best practice.

LWLock:lock_manager

This event occurs when the Aurora PostgreSQL engine maintains the shared lock's memory area to
allocate, check, and deallocate a lock when a fast path lock isn't possible.

Topics

• Supported engine versions

• Context

• Likely causes of increased waits

• Actions

Supported engine versions

This wait event information is relevant for Aurora PostgreSQL version 9.6 and higher.

Context

When you issue a SQL statement, Aurora PostgreSQL records locks to protect the structure, data,
and integrity of your database during concurrent operations. The engine can achieve this goal
using a fast path lock or a path lock that isn't fast. A path lock that isn't fast is more expensive and
creates more overhead than a fast path lock.

Fast path locking

To reduce the overhead of locks that are taken and released frequently, but that rarely conflict,
backend processes can use fast path locking. The database uses this mechanism for locks that meet
the following criteria:

• They use the DEFAULT lock method.

• They represent a lock on a database relation rather than a shared relation.

LWLock:lock_manager 2372

Amazon Aurora User Guide for Aurora

• They are weak locks that are unlikely to conflict.

• The engine can quickly verify that no conflicting locks can possibly exist.

The engine can't use fast path locking when either of the following conditions is true:

• The lock doesn't meet the preceding criteria.

• No more slots are available for the backend process.

For more information about fast path locking, see fast path in the PostgreSQL lock manager
README and pg-locks in the PostgreSQL documentation.

Example of a scaling problem for the lock manager

In this example, a table named purchases stores five years of data, partitioned by day. Each
partition has two indexes. The following sequence of events occurs:

1. You query many days worth of data, which requires the database to read many partitions.

2. The database creates a lock entry for each partition. If partition indexes are part of the optimizer
access path, the database creates a lock entry for them, too.

3. When the number of requested locks entries for the same backend process is higher than 16,
which is the value of FP_LOCK_SLOTS_PER_BACKEND, the lock manager uses the non–fast path
lock method.

Modern applications might have hundreds of sessions. If concurrent sessions are querying the
parent without proper partition pruning, the database might create hundreds or even thousands
of non–fast path locks. Typically, when this concurrency is higher than the number of vCPUs, the
LWLock:lock_manager wait event appears.

Note

The LWLock:lock_manager wait event isn't related to the number of partitions or indexes
in a database schema. Instead, it's related to the number of non–fast path locks that the
database must control.

LWLock:lock_manager 2373

https://github.com/postgres/postgres/blob/master/src/backend/storage/lmgr/README#L70-L76
https://www.postgresql.org/docs/15/view-pg-locks.html

Amazon Aurora User Guide for Aurora

Likely causes of increased waits

When the LWLock:lock_manager wait event occurs more than normal, possibly indicating a
performance problem, the most likely causes of sudden spikes are as follows:

• Concurrent active sessions are running queries that don't use fast path locks. These sessions also
exceed the maximum vCPU.

• A large number of concurrent active sessions are accessing a heavily partitioned table. Each
partition has multiple indexes.

• The database is experiencing a connection storm. By default, some applications and connection
pool software create more connections when the database is slow. This practice makes the
problem worse. Tune your connection pool software so that connection storms don't occur.

• A large number of sessions query a parent table without pruning partitions.

• A data definition language (DDL), data manipulation language (DML), or a maintenance
command exclusively locks either a busy relation or tuples that are frequently accessed or
modified.

Actions

We recommend different actions depending on the causes of your wait event.

Topics

• Use partition pruning

• Remove unnecessary indexes

• Tune your queries for fast path locking

• Tune for other wait events

• Reduce hardware bottlenecks

• Use a connection pooler

• Upgrade your Aurora PostgreSQL version

Use partition pruning

Partition pruning is a query optimization strategy that excludes unneeded partitions from table
scans, thereby improving performance. Partition pruning is turned on by default. If it is turned off,
turn it on as follows.

LWLock:lock_manager 2374

Amazon Aurora User Guide for Aurora

SET enable_partition_pruning = on;

Queries can take advantage of partition pruning when their WHERE clause contains the column
used for the partitioning. For more information, see Partition Pruning in the PostgreSQL
documentation.

Remove unnecessary indexes

Your database might contain unused or rarely used indexes. If so, consider deleting them. Do either
of the following:

• Learn how to find unnecessary indexes by reading Unused Indexes in the PostgreSQL wiki.

• Run PG Collector. This SQL script gathers database information and presents it in a consolidated
HTML report. Check the "Unused indexes" section. For more information, see pg-collector in the
AWS Labs GitHub repository.

Tune your queries for fast path locking

To find out whether your queries use fast path locking, query the fastpath column in the
pg_locks table. If your queries aren't using fast path locking, try to reduce number of relations
per query to fewer than 16.

Tune for other wait events

If LWLock:lock_manager is first or second in the list of top waits, check whether the following
wait events also appear in the list:

• Lock:Relation

• Lock:transactionid

• Lock:tuple

If the preceding events appear high in the list, consider tuning these wait events first. These events
can be a driver for LWLock:lock_manager.

Reduce hardware bottlenecks

You might have a hardware bottleneck, such as CPU starvation or maximum usage of your Amazon
EBS bandwidth. In these cases, consider reducing the hardware bottlenecks. Consider the following
actions:

LWLock:lock_manager 2375

https://www.postgresql.org/docs/current/ddl-partitioning.html#DDL-PARTITION-PRUNING
https://wiki.postgresql.org/wiki/Index_Maintenance#Unused_Indexes
https://github.com/awslabs/pg-collector

Amazon Aurora User Guide for Aurora

• Scale up your instance class.

• Optimize queries that consume large amounts of CPU and memory.

• Change your application logic.

• Archive your data.

For more information about CPU, memory, and EBS network bandwidth, see Amazon RDS Instance
Types.

Use a connection pooler

If your total number of active connections exceeds the maximum vCPU, more OS processes require
CPU than your instance type can support. In this case, consider using or tuning a connection pool.
For more information about the vCPUs for your instance type, see Amazon RDS Instance Types.

For more information about connection pooling, see the following resources:

• Using Amazon RDS Proxy for Aurora

• pgbouncer

• Connection Pools and Data Sources in the PostgreSQL Documentation

Upgrade your Aurora PostgreSQL version

If your current version of Aurora PostgreSQL is lower than 12, upgrade to version 12 or higher.
PostgreSQL versions 12 and 13 have an improved partition mechanism. For more information
about version 12, see PostgreSQL 12.0 Release Notes. For more information about upgrading
Aurora PostgreSQL, see Amazon Aurora PostgreSQL updates.

LWLock:MultiXact

The LWLock:MultiXactMemberBuffer, LWLock:MultiXactOffsetBuffer,
LWLock:MultiXactMemberSLRU, and LWLock:MultiXactOffsetSLRU wait events indicate
that a session is waiting to retrieve a list of transactions that modifies the same row in a given
table.

• LWLock:MultiXactMemberBuffer – A process is waiting for I/O on a simple least-recently
used (SLRU) buffer for a multixact member.

• LWLock:MultiXactMemberSLRU – A process is waiting to access the simple least-recently used
(SLRU) cache for a multixact member.

LWLock:MultiXact 2376

https://aws.amazon.com/rds/instance-types/
https://aws.amazon.com/rds/instance-types/
https://aws.amazon.com/rds/instance-types/
http://www.pgbouncer.org/usage.html
https://www.postgresql.org/docs/7.4/jdbc-datasource.html
https://www.postgresql.org/docs/release/12.0/

Amazon Aurora User Guide for Aurora

• LWLock:MultiXactOffsetBuffer – A process is waiting for I/O on a simple least-recently
used (SLRU) buffer for a multixact offset.

• LWLock:MultiXactOffsetSLRU – A process is waiting to access the simple least-recently used
(SLRU) cache for a multixact offset.

Topics

• Supported engine versions

• Context

• Likely causes of increased waits

• Actions

Supported engine versions

This wait event information is supported for all versions of Aurora PostgreSQL.

Context

A multixact is a data structure that stores a list of transaction IDs (XIDs) that modify the same table
row. When a single transaction references a row in a table, the transaction ID is stored in the table
header row. When multiple transactions reference the same row in a table, the list of transaction
IDs is stored in the multixact data structure. The multixact wait events indicate that a session is
retrieving from the data structure the list of transactions that refer to a given row in a table.

Likely causes of increased waits

Three common causes of multixact use are as follows:

• Sub-transactions from explicit savepoints – Explicitly creating a savepoint in your transactions
spawns new transactions for the same row. For example, using SELECT FOR UPDATE, then
SAVEPOINT, and then UPDATE.

Some drivers, object-relational mappers (ORMs), and abstraction layers have configuration
options for automatically wrapping all operations with savepoints. This can generate many
multixact wait events in some workloads. The PostgreSQL JDBC Driver's autosave option is
an example of this. For more information, see pgJDBC in the PostgreSQL JDBC documentation.
Another example is the PostgreSQL ODBC driver and its protocol option. For more information,
see psqlODBC Configuration Options in the PostgreSQL ODBC driver documentation.

LWLock:MultiXact 2377

https://jdbc.postgresql.org/
https://odbc.postgresql.org/docs/config.html

Amazon Aurora User Guide for Aurora

• Sub-transactions from PL/pgSQL EXCEPTION clauses – Each EXCEPTION clause that you write
in your PL/pgSQL functions or procedures creates a SAVEPOINT internally.

• Foreign keys – Multiple transactions acquire a shared lock on the parent record.

When a given row is included in a multiple transaction operation, processing the row requires
retrieving transaction IDs from the multixact listings. If lookups can't get the multixact from
the memory cache, the data structure must be read from the Aurora storage layer. This I/O from
storage means that SQL queries can take longer. Memory cache misses can start occurring with
heavy usage due to a large number of multiple transactions. All these factors contribute to an
increase in this wait event.

Actions

We recommend different actions depending on the causes of your wait event. Some of these
actions can help in immediate reduction of the wait events. But, others might require investigation
and correction to scale your workload.

Topics

• Perform vacuum freeze on tables with this wait event

• Increase autovacuum frequency on tables with this wait event

• Increase memory parameters

• Reduce long-running transactions

• Long term actions

Perform vacuum freeze on tables with this wait event

If this wait event spikes suddenly and affects your production environment, you can use any of the
following temporary methods to reduce its count.

• Use VACUUM FREEZE on the affected table or table partition to resolve the issue immediately.
For more information, see VACUUM.

• Use the VACUUM (FREEZE, INDEX_CLEANUP FALSE) clause to perform a quick vacuum by
skipping the indexes. For more information, see Vacuuming a table as quickly as possible .

LWLock:MultiXact 2378

https://www.postgresql.org/docs/current/sql-vacuum.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Appendix.PostgreSQL.CommonDBATasks.Autovacuum.html#Appendix.PostgreSQL.CommonDBATasks.Autovacuum.LargeIndexes.Executing

Amazon Aurora User Guide for Aurora

Increase autovacuum frequency on tables with this wait event

After scanning all tables in all databases, VACUUM will eventually remove multixacts, and their
oldest multixact values are advanced. For more information, see Multixacts and Wraparound. To
keep the LWLock:MultiXact wait events to its minimum, you must run the VACUUM as often as
necessary. To do so, ensure that the VACUUM in your Aurora PostgreSQL DB cluster is configured
optimally.

If using VACUUM FREEZE on the affected table or table partition resolves the wait event issue,
we recommend using a scheduler, such as pg_cron, to perform the VACUUM instead of adjusting
autovacuum at the instance level.

For the autovacuum to happen more frequently, you can reduce the value of the storage parameter
autovacuum_multixact_freeze_max_age in the affected table. For more information, see
autovacuum_multixact_freeze_max_age.

Increase memory parameters

You can set the following parameters at the cluster level so that all instances in your cluster remain
consistent. This helps in reducing the wait events in your workload. We recommend you to not set
these values so high that you run out of memory.

• multixact_offsets_cache_size to 128

• multixact_members_cache_size to 256

You must reboot the instance for the parameter change to take affect. With these parameters, you
can use more of the instance RAM to store the multixact structure in memory before spilling to
disk.

Reduce long-running transactions

Long-running transaction causes the vacuum to retain its information until the transaction is
committed or until the read-only transaction is closed. We recommend that you proactively
monitor and manage long-running transactions. For more information, see Database has long
running idle in transaction connection. Try to modify your application to avoid or minimize your
use of long-running transactions.

LWLock:MultiXact 2379

https://www.postgresql.org/docs/current/routine-vacuuming.html#VACUUM-FOR-MULTIXACT-WRAPAROUND
https://www.postgresql.org/docs/current/runtime-config-autovacuum.html#GUC-AUTOVACUUM-MULTIXACT-FREEZE-MAX-AGE
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/proactive-insights.idle-txn.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/proactive-insights.idle-txn.html

Amazon Aurora User Guide for Aurora

Long term actions

Examine your workload to discover the cause for the multixact spillover. You must fix the issue in
order to scale your workload and reduce the wait event.

• You must analyze the DDL (data definition language) used to create your tables. Make sure that
the table structures and indexes are well designed.

• When the affected tables have foreign keys, determine whether they are needed or if there is
another way to enforce referential integrity.

• When a table has large unused indexes, it can cause autovacuum to not fit your workload
and might block it from running. To avoid this, check for unused indexes and remove them
completely. For more information, see Managing autovacuum with large indexes.

• Reduce the use of savepoints in your transactions.

Timeout:PgSleep

The Timeout:PgSleep event occurs when a server process has called the pg_sleep function and
is waiting for the sleep timeout to expire.

Topics

• Supported engine versions

• Likely causes of increased waits

• Actions

Supported engine versions

This wait event information is supported for all versions of Aurora PostgreSQL.

Likely causes of increased waits

This wait event occurs when an application, stored function, or user issues a SQL statement that
calls one of the following functions:

• pg_sleep

• pg_sleep_for

• pg_sleep_until

Timeout:PgSleep 2380

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Appendix.PostgreSQL.CommonDBATasks.Autovacuum.html#Appendix.PostgreSQL.CommonDBATasks.Autovacuum.LargeIndexes

Amazon Aurora User Guide for Aurora

The preceding functions delay execution until the specified number of seconds have elapsed.
For example, SELECT pg_sleep(1) pauses for 1 second. For more information, see Delaying
Execution in the PostgreSQL documentation.

Actions

Identify the statement that was running the pg_sleep function. Determine if the use of the
function is appropriate.

Tuning Aurora PostgreSQL with Amazon DevOps Guru
proactive insights

DevOps Guru proactive insights detects conditions on your Aurora PostgreSQL DB clusters that
can cause problems, and lets you know about them before they occur. DevOps Guru can do the
following:

• Prevent many common database issues by cross-checking your database configuration against
common recommended settings.

• Alert you to critical issues in your fleet that, if left unchecked, can lead to larger problems later.

• Alert you to newly discovered problems.

Every proactive insight contains an analysis of the cause of the problem and recommendations for
corrective actions.

Topics

• Database has long running idle in transaction connection

Database has long running idle in transaction connection

A connection to the database has been in the idle in transaction state for more than 1800
seconds.

Topics

• Supported engine versions

• Context

Tuning Aurora PostgreSQL with Amazon DevOps Guru proactive insights 2381

https://www.postgresql.org/docs/current/functions-datetime.html#FUNCTIONS-DATETIME-DELAY
https://www.postgresql.org/docs/current/functions-datetime.html#FUNCTIONS-DATETIME-DELAY

Amazon Aurora User Guide for Aurora

• Likely causes for this issue

• Actions

• Relevant metrics

Supported engine versions

This insight information is supported for all versions of Aurora PostgreSQL.

Context

A transaction in the idle in transaction state can hold locks that block other queries. It can
also prevent VACUUM (including autovacuum) from cleaning up dead rows, leading to index or table
bloat or transaction ID wraparound.

Likely causes for this issue

A transaction initiated in an interactive session with BEGIN or START TRANSACTION hasn't ended
by using a COMMIT, ROLLBACK, or END command. This causes the transaction to move to idle in
transaction state.

Actions

You can find idle transactions by querying pg_stat_activity.

In your SQL client, run the following query to list all connections in idle in transaction state
and to order them by duration:

SELECT now() - state_change as idle_in_transaction_duration, now() - xact_start as
 xact_duration,*
FROM pg_stat_activity
WHERE state = 'idle in transaction'
AND xact_start is not null
ORDER BY 1 DESC;

We recommend different actions depending on the causes of your insight.

Topics

• End transaction

Database has long running idle in transaction connection 2382

Amazon Aurora User Guide for Aurora

• Terminate the connection

• Configure the idle_in_transaction_session_timeout parameter

• Check the AUTOCOMMIT status

• Check the transaction logic in your application code

End transaction

When you initiate a transaction in an interactive session with BEGIN or START TRANSACTION, it
moves to idle in transaction state. It remains in this state until you end the transaction by
issuing a COMMIT, ROLLBACK, END command or disconnect the connection completely to roll back
the transaction.

Terminate the connection

Terminate the connection with an idle transaction using the following query:

SELECT pg_terminate_backend(pid);

pid is the process ID of the connection.

Configure the idle_in_transaction_session_timeout parameter

Configure the idle_in_transaction_session_timeout parameter in the parameter group.
The advantage of configuring this parameter is that it does not require a manual intervention to
terminate the long idle in transaction. For more information on this parameter, see the PostgreSQL
documentation.

The following message will be reported in the PostgreSQL log file after the connection is
terminated, when a transaction is in the idle_in_transaction state for longer than the specified
time.

FATAL: terminating connection due to idle in transaction timeout

Check the AUTOCOMMIT status

AUTOCOMMIT is turned on by default. But if it is accidentally turned off in the client ensure that
you turn it back on.

Database has long running idle in transaction connection 2383

https://www.postgresql.org/docs/current/runtime-config-client.html
https://www.postgresql.org/docs/current/runtime-config-client.html

Amazon Aurora User Guide for Aurora

• In your psql client, run the following command:

postgres=> \set AUTOCOMMIT on

• In pgadmin, turn it on by choosing the AUTOCOMMIT option from the down arrow.

Check the transaction logic in your application code

Investigate your application logic for possible problems. Consider the following actions:

• Check if the JDBC auto commit is set true in your application. Also, consider using explicit
COMMIT commands in your code.

• Check your error handling logic to see whether it closes a transaction after errors.

• Check whether your application is taking long to process the rows returned by a query while
the transaction is open. If so, consider coding the application to close the transaction before
processing the rows.

• Check whether a transaction contains many long-running operations. If so, divide a single
transaction into multiple transactions.

Relevant metrics

The following PI metrics are related to this insight:

• idle_in_transaction_count - Number of sessions in idle in transaction state.

• idle_in_transaction_max_time - The duration of the longest running transaction in the idle in
transaction state.

Database has long running idle in transaction connection 2384

Amazon Aurora User Guide for Aurora

Best practices with Amazon Aurora PostgreSQL

Following, you can find several best practices for managing your Amazon Aurora PostgreSQL
DB cluster. Be sure to also review basic maintenance tasks. For more information, see Managing
Amazon Aurora PostgreSQL.

Topics

• Avoiding slow performance, automatic restart, and failover for Aurora PostgreSQL DB instances

• Diagnosing table and index bloat

• Improved memory management in Aurora PostgreSQL

• Fast failover with Amazon Aurora PostgreSQL

• Fast recovery after failover with cluster cache management for Aurora PostgreSQL

• Managing Aurora PostgreSQL connection churn with pooling

• Tuning memory parameters for Aurora PostgreSQL

• Using Amazon CloudWatch metrics to analyze resource usage for Aurora PostgreSQL

• Using logical replication to perform a major version upgrade for Aurora PostgreSQL

• Troubleshooting storage issues

Avoiding slow performance, automatic restart, and failover for Aurora
PostgreSQL DB instances

If you're running a heavy workload or workloads that spike beyond the allocated resources of
your DB instance, you can exhaust the resources on which you're running your application and
Aurora database. To get metrics on your database instance such as CPU utilization, memory usage,
and number of database connections used, you can refer to the metrics provided by Amazon
CloudWatch, Performance Insights, and Enhanced Monitoring. For more information on monitoring
your DB instance, see Monitoring metrics in an Amazon Aurora cluster.

If your workload exhausts the resources you're using, your DB instance might slow down, restart, or
even fail over to another DB instance. To avoid this, monitor your resource utilization, examine the
workload running on your DB instance, and make optimizations where necessary. If optimizations
don't improve the instance metrics and mitigate the resource exhaustion, consider scaling up your
DB instance before you reach its limits. For more information on available DB instance classes and
their specifications, see Aurora DB instance classes.

Best practices with Aurora PostgreSQL 2385

Amazon Aurora User Guide for Aurora

Diagnosing table and index bloat

You can use PostgreSQL Multiversion Concurrency Control (MVCC) to help preserve data integrity.
PostgreSQL MVCC works by saving an internal copy of updated or deleted rows (also called tuples)
until a transaction is either committed or rolled back. This saved internal copy is invisible to users.
However, table bloat can occur when those invisible copies aren't cleaned up regularly by the
VACUUM or AUTOVACUUM utilities. Unchecked, table bloat can incur increased storage costs and
slow your processing speed.

In many cases, the default settings for VACUUM or AUTOVACUUM on Aurora are sufficient for
handling unwanted table bloat. However, you may want to check for bloat if your application is
experiencing the following conditions:

• Processes a large number of transactions in a relatively short time between VACUUM processes.

• Performs poorly and runs out of storage.

To get started, gather the most accurate information about how much space is used by
dead tuples and how much you can recover by cleaning up the table and index bloat. To do
so, use the pgstattuple extension to gather statistics on your Aurora cluster. For more
information, see pgstattuple. Privileges to use the pgstattuple extension are limited to the
pg_stat_scan_tables role and database superusers.

To create the pgstattuple extension on Aurora, connect a client session to the cluster, for
example, psql or pgAdmin, and use the following command:

CREATE EXTENSION pgstattuple;

Create the extension in each database that you want to profile. After creating the extension, use
the command line interface (CLI) to measure how much unusable space you can reclaim. Before
gathering statistics, modify the cluster parameter group by setting AUTOVACUUM to 0. A setting of
0 prevents Aurora from automatically cleaning up any dead tuples left behind by your application,
which can impact the accuracy of the results. Enter the following command to create a simple
table:

postgres=> CREATE TABLE lab AS SELECT generate_series (0,100000);
SELECT 100001

Diagnosing table and index bloat 2386

https://www.postgresql.org/docs/current/pgstattuple.html

Amazon Aurora User Guide for Aurora

In the following example, we run the query with AUTOVACUUM turned on for the DB cluster. The
dead_tuple_count is 0, which indicates that the AUTOVACUUM has deleted the obsolete data or
tuples from the PostgreSQL database.

To use pgstattuple to gather information about the table, specify the name of a table or an
object identifier (OID) in the query:

postgres=> SELECT * FROM pgstattuple('lab');

table_len | tuple_count | tuple_len | tuple_percent | dead_tuple_count |
 dead_tuple_len | dead_tuple_percent | free_space | free_percent
-----------+-------------+-----------+---------------+------------------
+----------------+--------------------+------------+--------------
3629056 | 100001 | 2800028 | 77.16 | 0 | 0
 | 0 | 16616 | 0.46
(1 row)

In the following query, we turn off AUTOVACUUM and enter a command that deletes 25,000 rows
from the table. As a result, the dead_tuple_count increases to 25000.

postgres=> DELETE FROM lab WHERE generate_series < 25000;

DELETE 25000

SELECT * FROM pgstattuple('lab');

table_len | tuple_count | tuple_len | tuple_percent | dead_tuple_count | dead_tuple_len
 | dead_tuple_percent | free_space | free_percent
-----------+-------------+-----------+---------------+------------------
+----------------+--------------------+------------+--------------
3629056 | 75001 | 2100028 | 57.87 | 25000 | 700000 | 19.29 | 16616 | 0.46

Diagnosing table and index bloat 2387

Amazon Aurora User Guide for Aurora

(1 row)

To reclaim those dead tuples, start a VACUUM process.

Observing bloat without interrupting your application

Settings on an Aurora cluster are optimized to provide the best practices for most workloads.
However, you might want to optimize a cluster to better suit your applications and use patterns. In
this case, you can use the pgstattuple extension without disrupting a busy application. To do so,
perform the following steps:

1. Clone your Aurora instance.

2. Modify the parameter file to turn off AUTOVACUUM in the clone.

3. Perform a pgstattuple query while testing the clone with a sample workload or with
pgbench, which is a program for running benchmark tests on PostgreSQL. For more
information, see pgbench.

After running your applications and viewing the result, use pg_repack or VACUUM FULL on the
restored copy and compare the differences. If you see a significant drop in the dead_tuple_count,
dead_tuple_len, or dead_tuple_percent, then adjust the vacuum schedule on your production
cluster to minimize the bloat.

Avoiding bloat in temporary tables

If your application creates temporary tables, make sure that your application removes those
temporary tables when they’re no longer needed. Autovacuum processes don’t locate temporary
tables. Left unchecked, temporary tables can quickly create database bloat. Moreover, the bloat
can extend into the system tables, which are the internal tables that track PostgreSQL objects and
attributes, like pg_attribute and pg_depend.

When a temporary table is no longer needed, you can use a TRUNCATE statement to empty
the table and free up the space. Then, manually vacuum the pg_attribute and pg_depend
tables. Vacuuming these tables ensures that creating and truncating/deleting temporary tables
continually isn't adding tuples and contributing to system bloat.

You can avoid this problem while creating a temporary table by including the following syntax that
deletes the new rows when content is committed:

Diagnosing table and index bloat 2388

https://www.postgresql.org/docs/current/pgbench.html

Amazon Aurora User Guide for Aurora

CREATE TEMP TABLE IF NOT EXISTS table_name(table_description) ON COMMIT DELETE ROWS;

The ON COMMIT DELETE ROWS clause truncates the temporary table when the transaction is
committed.

Avoiding bloat in indexes

When you change an indexed field in a table, the index update results in one or more dead tuples
in that index. By default, the autovacuum process cleans up bloat in indexes, but that cleanup uses
a significant amount of time and resources. To specify index cleanup preferences when you create
a table, include the vacuum_index_cleanup clause. By default, at table creation time, the clause is
set to AUTO, which means that the server decides if your index requires cleanup when it vacuums
the table. You can set the clause to ON to turn on index cleanup for a specific table, or OFF to turn
off index cleanup for that table. Remember, turning off index cleanup might save time, but can
potentially lead to a bloated index.

You can manually control index cleanup when you VACUUM a table at the command line. To
vacuum a table and remove dead tuples from the indexes, include the INDEX_CLEANUP clause with
a value of ON and the table name:

acctg=> VACUUM (INDEX_CLEANUP ON) receivables;

INFO: aggressively vacuuming "public.receivables"
VACUUM

To vacuum a table without cleaning the indexes, specify a value of OFF:

acctg=> VACUUM (INDEX_CLEANUP OFF) receivables;

INFO: aggressively vacuuming "public.receivables"
VACUUM

Improved memory management in Aurora PostgreSQL

Customer workloads exhausting the free memory available in the DB instance leads to database
restart by the operating system causing database unavailability. Aurora PostgreSQL has introduced
improved memory management capabilities that proactively prevents stability issues and database
restarts caused by insufficient free memory. This improvement is available by default in the
following versions:

Improved memory management in Aurora PostgreSQL 2389

Amazon Aurora User Guide for Aurora

• 15.3 and higher 15 versions

• 14.8 and higher 14 versions

• 13.11 and higher 13 versions

• 12.15 and higher 12 versions

• 11.20 and higher 11 versions

To improve the memory management, it does the following:

• Cancelling database transactions that request more memory when the system is approaching
critical memory pressure.

• The system is said to be under critical memory pressure, when it exhausts all the physical
memory and is about to exhaust the swap. In these circumstances, any transaction that requests
memory will be cancelled in an effort to immediately reduce memory pressure in the DB
instance.

• Essential PostgreSQL launchers and background workers such as autovacuum workers are always
protected.

Configuring memory management parameters

To turn on memory management

This feature is turned on by default. An error message is displayed when a transaction is cancelled
due to insufficient memory as shown in the following example:

ERROR: out of memory Detail: Failed on request of size 16777216.

To turn off memory management

To turn off this feature, connect to the Aurora PostgreSQL DB cluster with psql and use the SET
statement for the parameter values as mentioned below.

For Aurora PostgreSQL versions 11.21, 12.16, 13.12, 14.9, 15.4, and older versions:

postgres=>SET rds.memory_allocation_guard = true;

The default value of rds.memory_allocation_guard parameter is set to false in the
Parameter group.

Improved memory management in Aurora PostgreSQL 2390

Amazon Aurora User Guide for Aurora

For Aurora PostgreSQL 12.17, 13.13, 14.10, 15.5, and higher versions:

postgres=>rds.enable_memory_management = false;

The default value of rds.enable_memory_management parameter is set to true in the
Parameter group.

Setting the values of these parameters in the DB cluster parameter group prevents the queries
from being canceled. For more information about DB cluster parameter group, see Working with
parameter groups.

The value of these dynamic parameters can also be set at a session level to include or exclude a
session in improved memory management.

Note

We don't recommend turning off this feature as it might lead to out-of-memory error that
can cause workload induced database restart due to the memory exhaustion in the system.

Fast failover with Amazon Aurora PostgreSQL

Following, you can learn how to make sure that failover occurs as fast as possible. To recover
quickly after failover, you can use cluster cache management for your Aurora PostgreSQL DB
cluster. For more information, see Fast recovery after failover with cluster cache management for
Aurora PostgreSQL.

Some of the steps that you can take to make failover perform fast include the following:

• Set Transmission Control Protocol (TCP) keepalives with short time frames, to stop longer
running queries before the read timeout expires if there's a failure.

• Set timeouts for Java Domain Name System (DNS) caching aggressively. Doing this helps ensure
the Aurora read-only endpoint can properly cycle through read-only nodes on later connection
attempts.

• Set the timeout variables used in the JDBC connection string as low as possible. Use separate
connection objects for short- and long-running queries.

• Use the read and write Aurora endpoints that are provided to connect to the cluster.

Fast failover 2391

Amazon Aurora User Guide for Aurora

• Use RDS API operations to test application response on server-side failures. Also, use a packet
dropping tool to test application response for client-side failures.

• Use the AWS JDBC Driver to take full advantage of the failover capabilities of Aurora
PostgreSQL. For more information about the AWS JDBC Driver and complete instructions for
using it, see the Amazon Web Services (AWS) JDBC Driver GitHub repository.

These are covered in more detail following.

Topics

• Setting TCP keepalives parameters

• Configuring your application for fast failover

• Testing failover

• Fast failover example in Java

Setting TCP keepalives parameters

When you set up a TCP connection, a set of timers is associated with the connection. When the
keepalive timer reaches zero, a keepalive probe packet is sent to the connection endpoint. If the
probe receives a reply, you can assume that the connection is still up and running.

Turning on TCP keepalive parameters and setting them aggressively ensures that if your client
can't connect to the database, any active connections are quickly closed. The application can then
connect to a new endpoint.

Make sure to set the following TCP keepalive parameters:

• tcp_keepalive_time controls the time, in seconds, after which a keepalive packet is sent
when no data has been sent by the socket. ACKs aren't considered data. We recommend the
following setting:

tcp_keepalive_time = 1

• tcp_keepalive_intvl controls the time, in seconds, between sending subsequent keepalive
packets after the initial packet is sent. Set this time by using the tcp_keepalive_time
parameter. We recommend the following setting:

tcp_keepalive_intvl = 1

Fast failover 2392

https://github.com/aws/aws-advanced-jdbc-wrapper

Amazon Aurora User Guide for Aurora

• tcp_keepalive_probes is the number of unacknowledged keepalive probes that occur before
the application is notified. We recommend the following setting:

tcp_keepalive_probes = 5

These settings should notify the application within five seconds when the database stops
responding. If keepalive packets are often dropped within the application's network, you can set a
higher tcp_keepalive_probes value. Doing this allows for more buffer in less reliable networks,
although it increases the time that it takes to detect an actual failure.

To set TCP keepalive parameters on Linux

1. Test how to configure your TCP keepalive parameters.

We recommend doing so by using the command line with the following commands. This
suggested configuration is system-wide. In other words, it also affects all other applications
that create sockets with the SO_KEEPALIVE option on.

sudo sysctl net.ipv4.tcp_keepalive_time=1
sudo sysctl net.ipv4.tcp_keepalive_intvl=1
sudo sysctl net.ipv4.tcp_keepalive_probes=5

2. After you've found a configuration that works for your application, persist these settings by
adding the following lines to /etc/sysctl.conf, including any changes you made:

tcp_keepalive_time = 1
tcp_keepalive_intvl = 1
tcp_keepalive_probes = 5

Configuring your application for fast failover

Following, you can find a discussion of several configuration changes for Aurora PostgreSQL
that you can make for fast failover. To learn more about PostgreSQL JDBC driver setup and
configuration, see the PostgreSQL JDBC Driver documentation.

Topics

• Reducing DNS cache timeouts

• Setting an Aurora PostgreSQL connection string for fast failover

Fast failover 2393

https://jdbc.postgresql.org/documentation/head/index.html

Amazon Aurora User Guide for Aurora

• Other options for obtaining the host string

Reducing DNS cache timeouts

When your application tries to establish a connection after a failover, the new Aurora PostgreSQL
writer will be a previous reader. You can find it by using the Aurora read-only endpoint before
DNS updates have fully propagated. Setting the java DNS time to live (TTL) to a low value, such as
under 30 seconds, helps cycle between reader nodes on later connection attempts.

// Sets internal TTL to match the Aurora RO Endpoint TTL
java.security.Security.setProperty("networkaddress.cache.ttl" , "1");
// If the lookup fails, default to something like small to retry
java.security.Security.setProperty("networkaddress.cache.negative.ttl" , "3");

Setting an Aurora PostgreSQL connection string for fast failover

To use Aurora PostgreSQL fast failover, make sure that your application's connection string has a
list of hosts instead of just a single host. Following is an example connection string that you can
use to connect to an Aurora PostgreSQL cluster. In this example, the hosts are in bold.

jdbc:postgresql://myauroracluster.cluster-c9bfei4hjlrd.us-east-1-
beta.rds.amazonaws.com:5432,
myauroracluster.cluster-ro-c9bfei4hjlrd.us-east-1-beta.rds.amazonaws.com:5432
/postgres?user=<primaryuser>&password=<primarypw>&loginTimeout=2
&connectTimeout=2&cancelSignalTimeout=2&socketTimeout=60
&tcpKeepAlive=true&targetServerType=primary

For best availability and to avoid a dependency on the RDS API, we recommend that you maintain
a file to connect with. This file contains a host string that your application reads from when you
establish a connection to the database. This host string has all the Aurora endpoints available
for the cluster. For more information about Aurora endpoints, see Amazon Aurora connection
management.

For example, you might store your endpoints in a local file as shown following.

myauroracluster.cluster-c9bfei4hjlrd.us-east-1-beta.rds.amazonaws.com:5432,
myauroracluster.cluster-ro-c9bfei4hjlrd.us-east-1-beta.rds.amazonaws.com:5432

Fast failover 2394

Amazon Aurora User Guide for Aurora

Your application reads from this file to populate the host section of the JDBC connection string.
Renaming the DB cluster causes these endpoints to change. Make sure that your application
handles this event if it occurs.

Another option is to use a list of DB instance nodes, as follows.

my-node1.cksc6xlmwcyw.us-east-1-beta.rds.amazonaws.com:5432,
my-node2.cksc6xlmwcyw.us-east-1-beta.rds.amazonaws.com:5432,
my-node3.cksc6xlmwcyw.us-east-1-beta.rds.amazonaws.com:5432,
my-node4.cksc6xlmwcyw.us-east-1-beta.rds.amazonaws.com:5432

The benefit of this approach is that the PostgreSQL JDBC connection driver loops through all nodes
on this list to find a valid connection. In contrast, when you use the Aurora endpoints only two
nodes are tried in each connection attempt. However, there's a downside to using DB instance
nodes. If you add or remove nodes from your cluster and the list of instance endpoints becomes
stale, the connection driver might never find the correct host to connect to.

To help ensure that your application doesn't wait too long to connect to any one host, set the
following parameters aggressively:

• targetServerType – Controls whether the driver connects to a write or read node. To ensure
that your applications reconnect only to a write node, set the targetServerType value to
primary.

Values for the targetServerType parameter include primary, secondary, any, and
preferSecondary. The preferSecondary value attempts to establish a connection to a
reader first. It connects to the writer if no reader connection can be established.

• loginTimeout – Controls how long your application waits to log in to the database after a
socket connection has been established.

• connectTimeout – Controls how long the socket waits to establish a connection to the
database.

You can modify other application parameters to speed up the connection process, depending on
how aggressive you want your application to be:

• cancelSignalTimeout – In some applications, you might want to send a "best effort" cancel
signal on a query that has timed out. If this cancel signal is in your failover path, consider setting
it aggressively to avoid sending this signal to a dead host.

Fast failover 2395

Amazon Aurora User Guide for Aurora

• socketTimeout – This parameter controls how long the socket waits for read operations. This
parameter can be used as a global "query timeout" to ensure no query waits longer than this
value. A good practice is to have two connection handlers. One connection handler runs short-
lived queries and sets this value lower. Another connection handler, for long-running queries, has
this value set much higher. With this approach, you can rely on TCP keepalive parameters to stop
long-running queries if the server goes down.

• tcpKeepAlive – Turn on this parameter to ensure the TCP keepalive parameters that you set
are respected.

• loadBalanceHosts – When set to true, this parameter has the application connect to a
random host chosen from a list of candidate hosts.

Other options for obtaining the host string

You can get the host string from several sources, including the aurora_replica_status
function and by using the Amazon RDS API.

In many cases, you need to determine who the writer of the cluster is or to find other reader nodes
in the cluster. To do this, your application can connect to any DB instance in the DB cluster and
query the aurora_replica_status function. You can use this function to reduce the amount
of time it takes to find a host to connect to. However, in certain network failure scenarios the
aurora_replica_status function might show out-of-date or incomplete information.

A good way to ensure that your application can find a node to connect to is to try to connect to the
cluster writer endpoint and then the cluster reader endpoint. You do this until you can establish a
readable connection. These endpoints don't change unless you rename your DB cluster. Thus, you
can generally leave them as static members of your application or store them in a resource file that
your application reads from.

After you establish a connection using one of these endpoints, you can get information about
the rest of the cluster. To do this, call the aurora_replica_status function. For example, the
following command retrieves information with aurora_replica_status.

postgres=> SELECT server_id, session_id, highest_lsn_rcvd, cur_replay_latency_in_usec,
 now(), last_update_timestamp
FROM aurora_replica_status();

server_id | session_id | highest_lsn_rcvd | cur_replay_latency_in_usec | now |
 last_update_timestamp

Fast failover 2396

Amazon Aurora User Guide for Aurora

-----------+--------------------------------------+------------------
+----------------------------+-------------------------------+------------------------
mynode-1 | 3e3c5044-02e2-11e7-b70d-95172646d6ca | 594221001 | 201421 | 2017-03-07
 19:50:24.695322+00 | 2017-03-07 19:50:23+00
mynode-2 | 1efdd188-02e4-11e7-becd-f12d7c88a28a | 594221001 | 201350 | 2017-03-07
 19:50:24.695322+00 | 2017-03-07 19:50:23+00
mynode-3 | MASTER_SESSION_ID | | | 2017-03-07 19:50:24.695322+00 | 2017-03-07
 19:50:23+00
(3 rows)

For example, the hosts section of your connection string might start with both the writer and
reader cluster endpoints, as shown following.

myauroracluster.cluster-c9bfei4hjlrd.us-east-1-beta.rds.amazonaws.com:5432,
myauroracluster.cluster-ro-c9bfei4hjlrd.us-east-1-beta.rds.amazonaws.com:5432

In this scenario, your application attempts to establish a connection to any node type,
primary or secondary. When your application is connected, a good practice is to first examine
the read/write status of the node. To do this, query for the result of the command SHOW
transaction_read_only.

If the return value of the query is OFF, then you successfully connected to the primary node.
However, suppose that the return value is ON and your application requires a read/write
connection. In this case, you can call the aurora_replica_status function to determine the
server_id that has session_id='MASTER_SESSION_ID'. This function gives you the name of
the primary node. You can use this with the endpointPostfix described following.

Make sure that you're aware when you connect to a replica that has stale data. When this
happens, the aurora_replica_status function might show out-of-date information. You
can set a threshold for staleness at the application level. To check this, you can look at the
difference between the server time and the last_update_timestamp value. In general, your
application should avoid flipping between two hosts due to conflicting information returned by the
aurora_replica_status function. Your application should try all known hosts first instead of
following the data returned by aurora_replica_status.

Listing instances using the DescribeDBClusters API operation, example in Java

You can programmatically find the list of instances by using the AWS SDK for Java, specifically the
DescribeDBClusters API operation.

Fast failover 2397

https://aws.amazon.com/sdk-for-java/
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DescribeDBClusters.html

Amazon Aurora User Guide for Aurora

Following is a small example of how you might do this in Java 8.

AmazonRDS client = AmazonRDSClientBuilder.defaultClient();
DescribeDBClustersRequest request = new DescribeDBClustersRequest()
 .withDBClusterIdentifier(clusterName);
DescribeDBClustersResult result =
rdsClient.describeDBClusters(request);

DBCluster singleClusterResult = result.getDBClusters().get(0);

String pgJDBCEndpointStr =
singleClusterResult.getDBClusterMembers().stream()
 .sorted(Comparator.comparing(DBClusterMember::getIsClusterWriter)
 .reversed()) // This puts the writer at the front of the list
 .map(m -> m.getDBInstanceIdentifier() + endpointPostfix + ":" +
 singleClusterResult.getPort()))
 .collect(Collectors.joining(","));

Here, pgJDBCEndpointStr contains a formatted list of endpoints, as shown following.

my-node1.cksc6xlmwcyw.us-east-1-beta.rds.amazonaws.com:5432,
my-node2.cksc6xlmwcyw.us-east-1-beta.rds.amazonaws.com:5432

The variable endpointPostfix can be a constant that your application sets. Or your application
can get it by querying the DescribeDBInstances API operation for a single instance in your
cluster. This value remains constant within an AWS Region and for an individual customer. So it
saves an API call to simply keep this constant in a resource file that your application reads from. In
the example preceding, it's set to the following.

.cksc6xlmwcyw.us-east-1-beta.rds.amazonaws.com

For availability purposes, a good practice is to default to using the Aurora endpoints of your DB
cluster if the API isn't responding or takes too long to respond. The endpoints are guaranteed to
be up to date within the time it takes to update the DNS record. Updating the DNS record with an
endpoint typically takes less than 30 seconds. You can store the endpoint in a resource file that
your application consumes.

Testing failover

In all cases you must have a DB cluster with two or more DB instances in it.

Fast failover 2398

Amazon Aurora User Guide for Aurora

From the server side, certain API operations can cause an outage that can be used to test how your
applications responds:

• FailoverDBCluster – This operation attempts to promote a new DB instance in your DB cluster to
writer.

The following code example shows how you can use failoverDBCluster to cause an outage.
For more details about setting up an Amazon RDS client, see Using the AWS SDK for Java.

public void causeFailover() {

 final AmazonRDS rdsClient = AmazonRDSClientBuilder.defaultClient();

 FailoverDBClusterRequest request = new FailoverDBClusterRequest();
 request.setDBClusterIdentifier("cluster-identifier");

 rdsClient.failoverDBCluster(request);
}

• RebootDBInstance – Failover isn't guaranteed with this API operation. It shuts down the database
on the writer, however. You can use it to test how your application responds to connections
dropping. The ForceFailover parameter doesn't apply for Aurora engines. Instead, use the
FailoverDBCluster API operation.

• ModifyDBCluster – Modifying the Port parameter causes an outage when the nodes in the
cluster begin listening on a new port. In general, your application can respond to this failure
first by ensuring that only your application controls port changes. Also, ensure that it can
appropriately update the endpoints it depends on. You can do this by having someone manually
update the port when they make modifications at the API level. Or you can do this by using the
RDS API in your application to determine if the port has changed.

• ModifyDBInstance – Modifying the DBInstanceClass parameter causes an outage.

• DeleteDBInstance – Deleting the primary (writer) causes a new DB instance to be promoted to
writer in your DB cluster.

From the application or client side, if you use Linux, you can test how the application responds to
sudden packet drops. You can do this based on whether port, host, or if TCP keepalive packets are
sent or received by using the iptables command.

Fast failover 2399

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_FailoverDBCluster.html
https://docs.aws.amazon.com/sdk-for-java/v1/developer-guide/basics.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_RebootDBInstance.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBCluster.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBInstance.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DeleteDBInstance.html

Amazon Aurora User Guide for Aurora

Fast failover example in Java

The following code example shows how an application might set up an Aurora PostgreSQL driver
manager.

The application calls the getConnection function when it needs a connection. A call to
getConnection can fail to find a valid host. An example is when no writer is found but the
targetServerType parameter is set to primary. In this case, the calling application should
simply retry calling the function.

To avoid pushing the retry behavior onto the application, you can wrap this retry call into a
connection pooler. With most connection poolers, you can specify a JDBC connection string. So
your application can call into getJdbcConnectionString and pass that to the connection
pooler. Doing this means you can use faster failover with Aurora PostgreSQL.

import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.SQLException;
import java.sql.Statement;
import java.util.ArrayList;
import java.util.List;
import java.util.stream.Collectors;
import java.util.stream.IntStream;

import org.joda.time.Duration;

public class FastFailoverDriverManager {
 private static Duration LOGIN_TIMEOUT = Duration.standardSeconds(2);
 private static Duration CONNECT_TIMEOUT = Duration.standardSeconds(2);
 private static Duration CANCEL_SIGNAL_TIMEOUT = Duration.standardSeconds(1);
 private static Duration DEFAULT_SOCKET_TIMEOUT = Duration.standardSeconds(5);

 public FastFailoverDriverManager() {
 try {
 Class.forName("org.postgresql.Driver");
 } catch (ClassNotFoundException e) {
 e.printStackTrace();
 }

 /*
 * RO endpoint has a TTL of 1s, we should honor that here. Setting this
 aggressively makes sure that when

Fast failover 2400

Amazon Aurora User Guide for Aurora

 * the PG JDBC driver creates a new connection, it will resolve a new different
 RO endpoint on subsequent attempts
 * (assuming there is > 1 read node in your cluster)
 */
 java.security.Security.setProperty("networkaddress.cache.ttl" , "1");
 // If the lookup fails, default to something like small to retry
 java.security.Security.setProperty("networkaddress.cache.negative.ttl" , "3");
 }

 public Connection getConnection(String targetServerType) throws SQLException {
 return getConnection(targetServerType, DEFAULT_SOCKET_TIMEOUT);
 }

 public Connection getConnection(String targetServerType, Duration queryTimeout)
 throws SQLException {
 Connection conn =
 DriverManager.getConnection(getJdbcConnectionString(targetServerType, queryTimeout));

 /*
 * A good practice is to set socket and statement timeout to be the same thing
 since both
 * the client AND server will stop the query at the same time, leaving no
 running queries
 * on the backend
 */
 Statement st = conn.createStatement();
 st.execute("set statement_timeout to " + queryTimeout.getMillis());
 st.close();

 return conn;
 }

 private static String urlFormat = "jdbc:postgresql://%s"
 + "/postgres"
 + "?user=%s"
 + "&password=%s"
 + "&loginTimeout=%d"
 + "&connectTimeout=%d"
 + "&cancelSignalTimeout=%d"
 + "&socketTimeout=%d"
 + "&targetServerType=%s"
 + "&tcpKeepAlive=true"
 + "&ssl=true"
 + "&loadBalanceHosts=true";

Fast failover 2401

Amazon Aurora User Guide for Aurora

 public String getJdbcConnectionString(String targetServerType, Duration
 queryTimeout) {
 return String.format(urlFormat,
 getFormattedEndpointList(getLocalEndpointList()),
 CredentialManager.getUsername(),
 CredentialManager.getPassword(),
 LOGIN_TIMEOUT.getStandardSeconds(),
 CONNECT_TIMEOUT.getStandardSeconds(),
 CANCEL_SIGNAL_TIMEOUT.getStandardSeconds(),
 queryTimeout.getStandardSeconds(),
 targetServerType
);
 }

 private List<String> getLocalEndpointList() {
 /*
 * As mentioned in the best practices doc, a good idea is to read a local
 resource file and parse the cluster endpoints.
 * For illustration purposes, the endpoint list is hardcoded here
 */
 List<String> newEndpointList = new ArrayList<>();
 newEndpointList.add("myauroracluster.cluster-c9bfei4hjlrd.us-east-1-
beta.rds.amazonaws.com:5432");
 newEndpointList.add("myauroracluster.cluster-ro-c9bfei4hjlrd.us-east-1-
beta.rds.amazonaws.com:5432");

 return newEndpointList;
 }

 private static String getFormattedEndpointList(List<String> endpoints) {
 return IntStream.range(0, endpoints.size())
 .mapToObj(i -> endpoints.get(i).toString())
 .collect(Collectors.joining(","));
 }
}

Fast recovery after failover with cluster cache management for Aurora
PostgreSQL

For fast recovery of the writer DB instance in your Aurora PostgreSQL clusters if there's a failover,
use cluster cache management for Amazon Aurora PostgreSQL. Cluster cache management ensures
that application performance is maintained if there's a failover.

Fast recovery after failover 2402

Amazon Aurora User Guide for Aurora

In a typical failover situation, you might see a temporary but large performance degradation after
failover. This degradation occurs because when the failover DB instance starts, the buffer cache is
empty. An empty cache is also known as a cold cache. A cold cache degrades performance because
the DB instance has to read from the slower disk, instead of taking advantage of values stored in
the buffer cache.

With cluster cache management, you set a specific reader DB instance as the failover target. Cluster
cache management ensures that the data in the designated reader's cache is kept synchronized
with the data in the writer DB instance's cache. The designated reader's cache with prefilled values
is known as a warm cache. If a failover occurs, the designated reader uses values in its warm cache
immediately when it's promoted to the new writer DB instance. This approach provides your
application much better recovery performance.

Cluster cache management requires that the designated reader instance have the same instance
class type and size (db.r5.2xlarge or db.r5.xlarge, for example) as the writer. Keep this in
mind when you create your Aurora PostgreSQL DB clusters so that your cluster can recover during
a failover. For a listing of instance class types and sizes, see Hardware specifications for DB instance
classes for Aurora.

Note

Cluster cache management is not supported for Aurora PostgreSQL DB clusters that are
part of Aurora global databases. It is recommended that no workload should run on the
designated tier-0 reader.

Contents

• Configuring cluster cache management

• Enabling cluster cache management

• Setting the promotion tier priority for the writer DB instance

• Setting the promotion tier priority for a reader DB instance

• Monitoring the buffer cache

• Troubleshooting CCM configuration

Configuring cluster cache management

To configure cluster cache management, do the following processes in order.

Fast recovery after failover 2403

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Concepts.DBInstanceClass.html#Concepts.DBInstanceClass.Summary
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Concepts.DBInstanceClass.html#Concepts.DBInstanceClass.Summary

Amazon Aurora User Guide for Aurora

Topics

• Enabling cluster cache management

• Setting the promotion tier priority for the writer DB instance

• Setting the promotion tier priority for a reader DB instance

Note

Allow at least 1 minute after completing these steps for cluster cache management to be
fully operational.

Enabling cluster cache management

To enable cluster cache management, take the steps described following.

Console

To enable cluster cache management

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Parameter groups.

3. In the list, choose the parameter group for your Aurora PostgreSQL DB cluster.

The DB cluster must use a parameter group other than the default, because you can't change
values in a default parameter group.

4. For Parameter group actions, choose Edit.

5. Set the value of the apg_ccm_enabled cluster parameter to 1.

6. Choose Save changes.

AWS CLI

To enable cluster cache management for an Aurora PostgreSQL DB cluster, use the AWS CLI
modify-db-cluster-parameter-group command with the following required parameters:

• --db-cluster-parameter-group-name

Fast recovery after failover 2404

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-cluster-parameter-group.html

Amazon Aurora User Guide for Aurora

• --parameters

Example

For Linux, macOS, or Unix:

aws rds modify-db-cluster-parameter-group \
 --db-cluster-parameter-group-name my-db-cluster-parameter-group \
 --parameters "ParameterName=apg_ccm_enabled,ParameterValue=1,ApplyMethod=immediate"

For Windows:

aws rds modify-db-cluster-parameter-group ^
 --db-cluster-parameter-group-name my-db-cluster-parameter-group ^
 --parameters "ParameterName=apg_ccm_enabled,ParameterValue=1,ApplyMethod=immediate"

Setting the promotion tier priority for the writer DB instance

For cluster cache management, make sure that the promotion priority is tier-0 for the writer DB
instance of the Aurora PostgreSQL DB cluster. The promotion tier priority is a value that specifies
the order in which an Aurora reader is promoted to the writer DB instance after a failure. Valid
values are 0–15, where 0 is the first priority and 15 is the last priority. For more information about
the promotion tier, see Fault tolerance for an Aurora DB cluster.

Console

To set the promotion priority for the writer DB instance to tier-0

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Databases.

3. Choose the Writer DB instance of the Aurora PostgreSQL DB cluster.

4. Choose Modify. The Modify DB Instance page appears.

5. On the Additional configuration panel, choose tier-0 for the Failover priority.

6. Choose Continue and check the summary of modifications.

7. To apply the changes immediately after you save them, choose Apply immediately.

8. Choose Modify DB Instance to save your changes.

Fast recovery after failover 2405

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Aurora User Guide for Aurora

AWS CLI

To set the promotion tier priority to 0 for the writer DB instance using the AWS CLI, call the
modify-db-instance command with the following required parameters:

• --db-instance-identifier

• --promotion-tier

• --apply-immediately

Example

For Linux, macOS, or Unix:

aws rds modify-db-instance \
 --db-instance-identifier writer-db-instance \
 --promotion-tier 0 \
 --apply-immediately

For Windows:

aws rds modify-db-instance ^
 --db-instance-identifier writer-db-instance ^
 ---promotion-tier 0 ^
 --apply-immediately

Setting the promotion tier priority for a reader DB instance

You must set only one reader DB instance for cluster cache management. To do so, choose a
reader from the Aurora PostgreSQL cluster that is the same instance class and size as the writer
DB instance. For example, if the writer uses db.r5.xlarge, choose a reader that uses this same
instance class type and size. Then set its promotion tier priority to 0.

The promotion tier priority is a value that specifies the order in which an Aurora reader is promoted
to the writer DB instance after a failure. Valid values are 0–15, where 0 is the first priority and 15 is
the last priority.

Fast recovery after failover 2406

https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-instance.html

Amazon Aurora User Guide for Aurora

Console

To set the promotion priority of the reader DB instance to tier-0

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Databases.

3. Choose a Reader DB instance of the Aurora PostgreSQL DB cluster that is the same instance
class as the writer DB instance.

4. Choose Modify. The Modify DB Instance page appears.

5. On the Additional configuration panel, choose tier-0 for the Failover priority.

6. Choose Continue and check the summary of modifications.

7. To apply the changes immediately after you save them, choose Apply immediately.

8. Choose Modify DB Instance to save your changes.

AWS CLI

To set the promotion tier priority to 0 for the reader DB instance using the AWS CLI, call the
modify-db-instance command with the following required parameters:

• --db-instance-identifier

• --promotion-tier

• --apply-immediately

Example

For Linux, macOS, or Unix:

aws rds modify-db-instance \
 --db-instance-identifier reader-db-instance \
 --promotion-tier 0 \
 --apply-immediately

For Windows:

aws rds modify-db-instance ^

Fast recovery after failover 2407

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-instance.html

Amazon Aurora User Guide for Aurora

 --db-instance-identifier reader-db-instance ^
 ---promotion-tier 0 ^
 --apply-immediately

Monitoring the buffer cache

After setting up cluster cache management, you can monitor the state of synchronization between
the writer DB instance's buffer cache and the designated reader's warm buffer cache. To examine
the buffer cache contents on both the writer DB instance and the designated reader DB instance,
use the PostgreSQL pg_buffercache module. For more information, see the PostgreSQL
pg_buffercache documentation.

Using the aurora_ccm_status Function

Cluster cache management also provides the aurora_ccm_status function. Use the
aurora_ccm_status function on the writer DB instance to get the following information about
the progress of cache warming on the designated reader:

• buffers_sent_last_minute – How many buffers have been sent to the designated reader in
the last minute.

• buffers_found_last_minute – The number of frequently accessed buffers identified during
the past minute.

• buffers_sent_last_scan – How many buffers have been sent to the designated reader
during the last complete scan of the buffer cache.

• buffers_found_last_scan – How many buffers have been identified as frequently accessed
and needed to be sent during the last complete scan of the buffer cache. Buffers already cached
on the designated reader aren't sent.

• buffers_sent_current_scan – How many buffers have been sent so far during the current
scan.

• buffers_found_current_scan – How many buffers have been identified as frequently
accessed in the current scan.

• current_scan_progress – How many buffers have been visited so far during the current scan.

The following example shows how to use the aurora_ccm_status function to convert some of
its output into a warm rate and warm percentage.

SELECT buffers_sent_last_minute*8/60 AS warm_rate_kbps,

Fast recovery after failover 2408

https://www.postgresql.org/docs/current/pgbuffercache.html
https://www.postgresql.org/docs/current/pgbuffercache.html

Amazon Aurora User Guide for Aurora

 100*(1.0-buffers_sent_last_scan::float/buffers_found_last_scan) AS warm_percent
 FROM aurora_ccm_status();

Troubleshooting CCM configuration

When you enable apg_ccm_enabled cluster parameter, cluster cache management is
automatically turned on at the instance level on the writer DB instance and one reader DB instance
on the Aurora PostgreSQL DB cluster. The writer and reader instance should use the same instance
class type and size. Their promotion tier priority is set to 0. Other reader instances in the DB
cluster should have a non-zero promotion tier and cluster cache management is disabled for those
instances.

The following reasons may lead to issues in the configuration and disable cluster cache
management:

• When there is no single reader DB instance set to promotion tier 0.

• When the writer DB instance is not set to promotion tier 0.

• When more than one reader DB instances are set to promotion tier 0.

• When the writer and one reader DB instances with promotion tier 0 doesn't have the same
instance size.

Managing Aurora PostgreSQL connection churn with pooling

When client applications connect and disconnect so often that Aurora PostgreSQL DB cluster
response time slows, the cluster is said to be experiencing connection churn. Each new connection
to the Aurora PostgreSQL DB cluster endpoint consumes resources, thus reducing the resources
that can be used to process the actual workload. Connection churn is an issue that we recommend
that you manage by following some of the best practices discussed following.

For starters, you can improve response times on Aurora PostgreSQL DB clusters that have high
rates of connection churn. To do this, you can use a connection pooler, such as RDS Proxy. A
connection pooler provides a cache of ready to use connections for clients. Almost all versions of
Aurora PostgreSQL support RDS Proxy. For more information, see Amazon RDS Proxy with Aurora
PostgreSQL.

If your specific version of Aurora PostgreSQL doesn't support RDS Proxy, you can use another
PostgreSQL–compatible connection pooler, such as PgBouncer. To learn more, see the PgBouncer
website.

Managing connection churn 2409

https://www.pgbouncer.org/

Amazon Aurora User Guide for Aurora

To see if your Aurora PostgreSQL DB cluster can benefit from connection pooling, you can check
the postgresql.log file for connections and disconnections. You can also use Performance
Insights to find out how much connection churn your Aurora PostgreSQL DB cluster is experiencing.
Following, you can find information about both topics.

Logging connections and disconnections

The PostgreSQL log_connections and log_disconnections parameters can capture
connections and disconnections to the writer instance of the Aurora PostgreSQL DB cluster. By
default, these parameters are turned off. To turn these parameters on, use a custom parameter
group and turn on by changing the value to 1. For more information about custom parameter
groups, see Working with DB cluster parameter groups. To check the settings, connect to your DB
cluster endpoint for Aurora PostgreSQL by using psql and query as follows.

labdb=> SELECT setting FROM pg_settings
 WHERE name = 'log_connections';
 setting

on
(1 row)
labdb=> SELECT setting FROM pg_settings
 WHERE name = 'log_disconnections';
setting

on
(1 row)

With both of these parameters turned on, the log captures all new connections and disconnections.
You see the user and database for each new authorized connection. At disconnection time, the
session duration is also logged, as shown in the following example.

2022-03-07 21:44:53.978 UTC [16641] LOG: connection authorized: user=labtek
 database=labdb application_name=psql
2022-03-07 21:44:55.718 UTC [16641] LOG: disconnection: session time: 0:00:01.740
 user=labtek database=labdb host=[local]

To check your application for connection churn, turn on these parameters if they're not on
already. Then gather data in the PostgreSQL log for analysis by running your application with a
realistic workload and time period. You can view the log file in the RDS console. Choose the writer

Managing connection churn 2410

Amazon Aurora User Guide for Aurora

instance of your Aurora PostgreSQL DB cluster, and then choose the Logs & events tab. For more
information, see Viewing and listing database log files.

Or you can download the log file from the console and use the following command sequence. This
sequence finds the total number of connections authorized and dropped per minute.

grep "connection authorized\|disconnection: session time:"
 postgresql.log.2022-03-21-16|\
awk {'print $1,$2}' |\
sort |\
uniq -c |\
sort -n -k1

In the example output, you can see a spike in authorized connections followed by disconnections
starting at 16:12:10.

.....
,......
.........
5 2022-03-21 16:11:55 connection authorized:
9 2022-03-21 16:11:55 disconnection: session
5 2022-03-21 16:11:56 connection authorized:
5 2022-03-21 16:11:57 connection authorized:
5 2022-03-21 16:11:57 disconnection: session
32 2022-03-21 16:12:10 connection authorized:
30 2022-03-21 16:12:10 disconnection: session
31 2022-03-21 16:12:11 connection authorized:
27 2022-03-21 16:12:11 disconnection: session
27 2022-03-21 16:12:12 connection authorized:
27 2022-03-21 16:12:12 disconnection: session
41 2022-03-21 16:12:13 connection authorized:
47 2022-03-21 16:12:13 disconnection: session
46 2022-03-21 16:12:14 connection authorized:
41 2022-03-21 16:12:14 disconnection: session
24 2022-03-21 16:12:15 connection authorized:
29 2022-03-21 16:12:15 disconnection: session
28 2022-03-21 16:12:16 connection authorized:
24 2022-03-21 16:12:16 disconnection: session
40 2022-03-21 16:12:17 connection authorized:
42 2022-03-21 16:12:17 disconnection: session
40 2022-03-21 16:12:18 connection authorized:
40 2022-03-21 16:12:18 disconnection: session

Managing connection churn 2411

Amazon Aurora User Guide for Aurora

.....
,......
.........
1 2022-03-21 16:14:10 connection authorized:
1 2022-03-21 16:14:10 disconnection: session
1 2022-03-21 16:15:00 connection authorized:
1 2022-03-21 16:16:00 connection authorized:

With this information, you can decide if your workload can benefit from a connection pooler. For
more detailed analysis, you can use Performance Insights.

Detecting connection churn with Performance Insights

You can use Performance Insights to assess the amount of connection churn on your Aurora
PostgreSQL-Compatible Edition DB cluster. When you create an Aurora PostgreSQL DB cluster,
the setting for Performance Insights is turned on by default. If you cleared this choice when you
created your DB cluster, modify your cluster to turn on the feature. For more information, see
Modifying an Amazon Aurora DB cluster.

With Performance Insights running on your Aurora PostgreSQL DB cluster, you can choose the
metrics that you want to monitor. You can access Performance Insights from the navigation pane
in the console. You can also access Performance Insights from the Monitoring tab of the writer
instance for your Aurora PostgreSQL DB cluster, as shown in the following image.

Managing connection churn 2412

Amazon Aurora User Guide for Aurora

From the Performance Insights console, choose Manage metrics. To analyze your Aurora
PostgreSQL DB cluster's connection and disconnection activity, choose the following metrics. These
are all metrics from PostgreSQL.

• xact_commit – The number of committed transactions.

• total_auth_attempts – The number of attempted authenticated user connections per
minute.

• numbackends – The number of backends currently connected to the database.

To save the settings and display connection activity, choose Update graph.

Managing connection churn 2413

Amazon Aurora User Guide for Aurora

In the following image, you can see the impact of running pgbench with 100 users. The line
showing connections is on a consistent upward slope. To learn more about pgbench and how to use
it, see pgbench in PostgreSQL documentation.

The image shows that running a workload with as few as 100 users without a connection pooler
can cause a significant increase in the number of total_auth_attempts throughout the duration
of workload processing.

With RDS Proxy connection pooling, the connection attempts increase at the start of the workload.
After setting up the connection pool, the average declines. The resources used by transactions and
backend use stays consistent throughout workload processing.

For more information about using Performance Insights with your Aurora PostgreSQL DB cluster,
see Monitoring DB load with Performance Insights on Amazon Aurora. To analyze the metrics, see
Analyzing metrics with the Performance Insights dashboard.

Demonstrating the benefits of connection pooling

As mentioned previously, if you determine that your Aurora PostgreSQL DB cluster has a
connection churn problem, you can use RDS Proxy for improved performance. Following, you can
find an example that shows the differences in processing a workload when connections are pooled
and when they're not. The example uses pgbench to model a transaction workload.

Managing connection churn 2414

https://www.postgresql.org/docs/current/pgbench.html

Amazon Aurora User Guide for Aurora

As is psql, pgbench is a PostgreSQL client application that you can install and run from your
local client machine. You can also install and run it from the Amazon EC2 instance that you use
for managing your Aurora PostgreSQL DB cluster. For more information, see pgbench in the
PostgreSQL documentation.

To step through this example, you first create the pgbench environment in your database. The
following command is the basic template for initializing the pgbench tables in the specified
database. This example uses the default main user account, postgres, for the login. Change it as
needed for your Aurora PostgreSQL DB cluster. You create the pgbench environment in a database
on the writer instance of your cluster.

Note

The pgbench initialization process drops and recreates tables named pgbench_accounts,
pgbench_branches, pgbench_history, and pgbench_tellers. Be sure that the
database that you choose for dbname when you initialize pgbench doesn't use these
names.

pgbench -U postgres -h db-cluster-instance-1.111122223333.aws-region.rds.amazonaws.com
 -p 5432 -d -i -s 50 dbname

For pgbench, specify the following parameters.

-d

Outputs a debugging report as pgbench runs.

-h

Specifies the endpoint of the Aurora PostgreSQL DB cluster's writer instance.

-i

Initializes the pgbench environment in the database for the benchmark tests.

-p

Identifies the port used for database connections. The default for Aurora PostgreSQL is typically
5432 or 5433.

Managing connection churn 2415

https://www.postgresql.org/docs/current/pgbench.html

Amazon Aurora User Guide for Aurora

-s

Specifies the scaling factor to use for populating the tables with rows. The default scaling
factor is 1, which generates 1 row in the pgbench_branches table, 10 rows in the
pgbench_tellers table, and 100000 rows in the pgbench_accounts table.

-U

Specifies the user account for the Aurora PostgreSQL DB cluster's writer instance.

After the pgbench environment is set up, you can then run benchmarking tests with and without
connection pooling. The default test consists of a series of five SELECT, UPDATE, and INSERT
commands per transaction that run repeatedly for the time specified. You can specify scaling
factor, number of clients, and other details to model your own use cases.

As an example, the command that follows runs the benchmark for 60 seconds (-T option, for time)
with 20 concurrent connections (the -c option). The -C option makes the test run using a new
connection each time, rather than once per client session. This setting gives you an indication of
the connection overhead.

pgbench -h docs-lab-apg-133-test-instance-1.c3zr2auzukpa.us-west-1.rds.amazonaws.com -U
 postgres -p 5432 -T 60 -c 20 -C labdb
Password:**********
pgbench (14.3, server 13.3)
 starting vacuum...end.
 transaction type: <builtin: TPC-B (sort of)>
 scaling factor: 50
 query mode: simple
 number of clients: 20
 number of threads: 1
 duration: 60 s
 number of transactions actually processed: 495
 latency average = 2430.798 ms
 average connection time = 120.330 ms
 tps = 8.227750 (including reconnection times)

Running pgbench on the writer instance of an Aurora PostgreSQL DB cluster without reusing
connections shows that only about 8 transactions are processed each second. This gives a total of
495 transactions during the 1-minute test.

Managing connection churn 2416

Amazon Aurora User Guide for Aurora

If you reuse connections, the response from Aurora PostgreSQL DB cluster for the number of users
is almost 20 times faster. With reuse, a total of 9,042 transactions is processed compared to 495 in
the same amount of time and for the same number of user connections. The difference is that in
the following, each connection is being reused.

pgbench -h docs-lab-apg-133-test-instance-1.c3zr2auzukpa.us-west-1.rds.amazonaws.com -U
 postgres -p 5432 -T 60 -c 20 labdb
Password:*********
pgbench (14.3, server 13.3)
 starting vacuum...end.
 transaction type: <builtin: TPC-B (sort of)>
 scaling factor: 50
 query mode: simple
 number of clients: 20
 number of threads: 1
 duration: 60 s
 number of transactions actually processed: 9042
 latency average = 127.880 ms
 initial connection time = 2311.188 ms
 tps = 156.396765 (without initial connection time)

This example shows you that pooling connections can significantly improve response times. For
information about setting up RDS Proxy for your Aurora PostgreSQL DB cluster, see Using Amazon
RDS Proxy for Aurora.

Tuning memory parameters for Aurora PostgreSQL

In Amazon Aurora PostgreSQL, you can use several parameters that control the amount of memory
used for various processing tasks. If a task takes more memory than the amount set for a given
parameter, Aurora PostgreSQL uses other resources for processing, such as by writing to disk. This
can cause your Aurora PostgreSQL DB cluster to slow or potentially halt, with an out-of-memory
error.

The default setting for each memory parameter can usually handle its intended processing tasks.
However, you can also tune your Aurora PostgreSQL DB cluster's memory-related parameters. You
do this tuning to ensure that enough memory is allocated for processing your specific workload.

Following, you can find information about parameters that control memory management. You can
also learn how to assess memory utilization.

Tuning memory parameters for Aurora PostgreSQL 2417

Amazon Aurora User Guide for Aurora

Checking and setting parameter values

The parameters that you can set to manage memory and assess your Aurora PostgreSQL DB
cluster's memory usage include the following:

• work_mem – Specifies the amount of memory that the Aurora PostgreSQL DB cluster uses for
internal sort operations and hash tables before it writes to temporary disk files.

• log_temp_files – Logs temporary file creation, file names, and sizes. When this parameter
is turned on, a log entry is stored for each temporary file that gets created. Turn this on to
see how frequently your Aurora PostgreSQL DB cluster needs to write to disk. Turn it off again
after you've gathered information about your Aurora PostgreSQL DB cluster's temporary file
generation, to avoid excessive logging.

• logical_decoding_work_mem – Specifies the amount of memory (in megabytes) to use for
logical decoding. Logical decoding is the process used to create a replica. This process is done by
converting data from the write-ahead log (WAL) file to the logical streaming output needed by
the target.

The value of this parameter creates a single buffer of the size specified for each replication
connection. By default, it's 65536 KB. After this buffer is filled, the excess is written to disk as
a file. To minimize disk activity, you can set the value of this parameter to a much higher value
than that of work_mem.

These are all dynamic parameters, so you can change them for the current session. To do this,
connect to the Aurora PostgreSQL DB cluster with psql and using the SET statement, as shown
following.

SET parameter_name TO parameter_value;

Session settings last for the duration of the session only. When the session ends, the parameter
reverts to its setting in the DB cluster parameter group. Before changing any parameters, first
check the current values by querying the pg_settings table, as follows.

SELECT unit, setting, max_val
 FROM pg_settings WHERE name='parameter_name';

For example, to find the value of the work_mem parameter, connect to the Aurora PostgreSQL DB
cluster's writer instance and run the following query.

Tuning memory parameters for Aurora PostgreSQL 2418

Amazon Aurora User Guide for Aurora

SELECT unit, setting, max_val, pg_size_pretty(max_val::numeric)
 FROM pg_settings WHERE name='work_mem';
unit | setting | max_val | pg_size_pretty
------+----------+-----------+----------------
 kB | 1024 | 2147483647| 2048 MB
(1 row)

Changing parameter settings so that they persist requires using a custom DB cluster parameter
group. After exercising your Aurora PostgreSQL DB cluster with different values for these
parameters using the SET statement, you can create a custom parameter group and apply to your
Aurora PostgreSQL DB cluster. For more information, see Working with parameter groups.

Understanding the working memory parameter

The working memory parameter (work_mem) specifies the maximum amount of memory that
Aurora PostgreSQL can use to process complex queries. Complex queries include those that involve
sorting or grouping operations—in other words, queries that use the following clauses:

• ORDER BY

• DISTINCT

• GROUP BY

• JOIN (MERGE and HASH)

The query planner indirectly affects how your Aurora PostgreSQL DB cluster uses working memory.
The query planner generates execution plans for processing SQL statements. A given plan might
break up a complex query into multiple units of work that can be run in parallel. When possible,
Aurora PostgreSQL uses the amount of memory specified in the work_mem parameter for each
session before writing to disk for each parallel process.

Multiple database users running multiple operations concurrently and generating multiple units
of work in parallel can exhaust your Aurora PostgreSQL DB cluster's allocated working memory.
This can lead to excessive temporary file creation and disk I/O, or worse, it can lead to an out-of-
memory error.

Identifying temporary file use

Whenever the memory required to process queries exceeds the value specified in the work_mem
parameter, the working data is offloaded to disk in a temporary file. You can see how often this

Tuning memory parameters for Aurora PostgreSQL 2419

Amazon Aurora User Guide for Aurora

occurs by turning on the log_temp_files parameter. By default, this parameter is off (it's set
to -1). To capture all temporary file information, set this parameter to 0. Set log_temp_files
to any other positive integer to capture temporary file information for files equal to or greater
than that amount of data (in kilobytes). In the following image, you can see an example from AWS
Management Console.

After configuring temporary file logging, you can test with your own workload to see if your
working memory setting is sufficient. You can also simulate a workload by using pgbench, a simple
benchmarking application from the PostgreSQL community.

The following example initializes (-i) pgbench by creating the necessary tables and rows
for running the tests. In this example, the scaling factor (-s 50) creates 50 rows in the
pgbench_branches table, 500 rows in pgbench_tellers, and 5,000,000 rows in the
pgbench_accounts table in the labdb database.

pgbench -U postgres -h your-cluster-instance-1.111122223333.aws-regionrds.amazonaws.com
 -p 5432 -i -s 50 labdb
Password:
dropping old tables...
NOTICE: table "pgbench_accounts" does not exist, skipping
NOTICE: table "pgbench_branches" does not exist, skipping
NOTICE: table "pgbench_history" does not exist, skipping
NOTICE: table "pgbench_tellers" does not exist, skipping
creating tables...
generating data (client-side)...
5000000 of 5000000 tuples (100%) done (elapsed 15.46 s, remaining 0.00 s)
vacuuming...
creating primary keys...
done in 61.13 s (drop tables 0.08 s, create tables 0.39 s, client-side generate 54.85
 s, vacuum 2.30 s, primary keys 3.51 s)

Tuning memory parameters for Aurora PostgreSQL 2420

Amazon Aurora User Guide for Aurora

After initializing the environment, you can run the benchmark for a specific time (-T) and the
number of clients (-c). This example also uses the -d option to output debugging information as
the transactions are processed by the Aurora PostgreSQL DB cluster.

pgbench -h -U postgres your-cluster-instance-1.111122223333.aws-regionrds.amazonaws.com
 -p 5432 -d -T 60 -c 10 labdb
Password:*******
pgbench (14.3)
starting vacuum...end.
transaction type: <builtin: TPC-B (sort of)>
scaling factor: 50
query mode: simple
number of clients: 10
number of threads: 1
duration: 60 s
number of transactions actually processed: 1408
latency average = 398.467 ms
initial connection time = 4280.846 ms
tps = 25.096201 (without initial connection time)

For more information about pgbench, see pgbench in the PostgreSQL documentation.

You can use the psql metacommand command (\d) to list the relations such as tables, views, and
indexes created by pgbench.

labdb=> \d pgbench_accounts
 Table "public.pgbench_accounts"
 Column | Type | Collation | Nullable | Default
----------+---------------+-----------+----------+---------
 aid | integer | | not null |
 bid | integer | | |
 abalance | integer | | |
 filler | character(84) | | |
Indexes:
 "pgbench_accounts_pkey" PRIMARY KEY, btree (aid)

As shown in the output, the pgbench_accounts table is indexed on the aid column. To ensure
that this next query uses working memory, query any nonindexed column, such as that shown in
the following example.

postgres=> SELECT * FROM pgbench_accounts ORDER BY bid;

Tuning memory parameters for Aurora PostgreSQL 2421

https://www.postgresql.org/docs/current/pgbench.html

Amazon Aurora User Guide for Aurora

Check the log for the temporary files. To do so, open the AWS Management Console, choose the
Aurora PostgreSQL DB cluster instance, and then choose the Logs & Events tab. View the logs
in the console or download for further analysis. As shown in the following image, the size of the
temporary files needed to process the query indicates that you should consider increasing the
amount specified for the work_mem parameter.

You can configure this parameter differently for individuals and groups, based on your operational
needs. For example, you can set the work_mem parameter to 8 GB for the role named dev_team.

postgres=> ALTER ROLE dev_team SET work_mem=‘8GB';

With this setting for work_mem, any role that's a member of the dev_team role is allotted up to 8
GB of working memory.

Using indexes for faster response time

If your queries are taking too long to return results, you can verify that your indexes are being used
as expected. First, turn on \timing, the psql metacommand, as follows.

postgres=> \timing on

After turning on timing, use a simple SELECT statement.

postgres=> SELECT COUNT(*) FROM
 (SELECT * FROM pgbench_accounts
 ORDER BY bid)
 AS accounts;
count

Tuning memory parameters for Aurora PostgreSQL 2422

Amazon Aurora User Guide for Aurora

5000000
(1 row)
Time: 3119.049 ms (00:03.119)

As shown in the output, this query took just over 3 seconds to complete. To improve the response
time, create an index on pgbench_accounts, as follows.

postgres=> CREATE INDEX ON pgbench_accounts(bid);
CREATE INDEX

Rerun the query, and notice the faster response time. In this example, the query completed about 5
times faster, in about half a second.

postgres=> SELECT COUNT(*) FROM (SELECT * FROM pgbench_accounts ORDER BY bid) AS
 accounts;
 count

 5000000
(1 row)
Time: 567.095 ms

Adjusting working memory for logical decoding

Logical replication has been available in all versions of Aurora PostgreSQL since its introduction
in PostgreSQL version 10. When you configure logical replication, you can also set the
logical_decoding_work_mem parameter to specify the amount of memory that the logical
decoding process can use for the decoding and streaming process.

During logical decoding, write-ahead log (WAL) records are converted to SQL statements that
are then sent to another target for logical replication or another task. When a transaction is
written to the WAL and then converted, the entire transaction must fit into the value specified
for logical_decoding_work_mem. By default, this parameter is set to 65536 KB. Any overflow
is written to disk. This means that it must be reread from the disk before it can be sent to its
destination, thus slowing the overall process.

You can assess the amount of transaction overflow in your current workload at a specific point in
time by using the aurora_stat_file function as shown in the following example.

SELECT split_part (filename, '/', 2)

Tuning memory parameters for Aurora PostgreSQL 2423

Amazon Aurora User Guide for Aurora

 AS slot_name, count(1) AS num_spill_files,
 sum(used_bytes) AS slot_total_bytes,
 pg_size_pretty(sum(used_bytes)) AS slot_total_size
 FROM aurora_stat_file()
 WHERE filename like '%spill%'
 GROUP BY 1;
 slot_name | num_spill_files | slot_total_bytes | slot_total_size
------------+-----------------+------------------+-----------------
 slot_name | 590 | 411600000 | 393 MB
(1 row)

This query returns the count and size of spill files on your Aurora PostgreSQL DB cluster when the
query is invoked. Longer running workloads might not have any spill files on disk yet. To profile
long-running workloads, we recommend that you create a table to capture the spill file information
as the workload runs. You can create the table as follows.

CREATE TABLE spill_file_tracking AS
 SELECT now() AS spill_time,*
 FROM aurora_stat_file()
 WHERE filename LIKE '%spill%';

To see how spill files are used during logical replication, set up a publisher and subscriber and then
start a simple replication. For more information, see Setting up logical replication for your Aurora
PostgreSQL DB cluster. With replication under way, you can create a job that captures the result set
from the aurora_stat_file() spill file function, as follows.

INSERT INTO spill_file_tracking
 SELECT now(),*
 FROM aurora_stat_file()
 WHERE filename LIKE '%spill%';

Use the following psql command to run the job once per second.

\watch 0.5

As the job is running, connect to the writer instance from another psql session. Use the following
series of statements to run a workload that exceeds the memory configuration and causes Aurora
PostgreSQL to create a spill file.

labdb=> CREATE TABLE my_table (a int PRIMARY KEY, b int);

Tuning memory parameters for Aurora PostgreSQL 2424

Amazon Aurora User Guide for Aurora

CREATE TABLE
labdb=> INSERT INTO my_table SELECT x,x FROM generate_series(0,10000000) x;
INSERT 0 10000001
labdb=> UPDATE my_table SET b=b+1;
UPDATE 10000001

These statements take several minutes to complete. When finished, press the Ctrl key and the C
key together to stop the monitoring function. Then use the following command to create a table to
hold the information about the Aurora PostgreSQL DB cluster's spill file usage.

SELECT spill_time, split_part (filename, '/', 2)
 AS slot_name, count(1)
 AS spills, sum(used_bytes)
 AS slot_total_bytes, pg_size_pretty(sum(used_bytes))
 AS slot_total_size FROM spill_file_tracking
 GROUP BY 1,2 ORDER BY 1;
 spill_time | slot_name | spills | slot_total_bytes |
 slot_total_size
------------------------------+-----------------------+--------+------------------
+-----------------
2022-04-15 13:42:52.528272+00 | replication_slot_name | 1 | 142352280 | 136
 MB
2022-04-15 14:11:33.962216+00 | replication_slot_name | 4 | 467637996 | 446
 MB
2022-04-15 14:12:00.997636+00 | replication_slot_name | 4 | 569409176 | 543
 MB
2022-04-15 14:12:03.030245+00 | replication_slot_name | 4 | 569409176 | 543
 MB
2022-04-15 14:12:05.059761+00 | replication_slot_name | 5 | 618410996 | 590
 MB
2022-04-15 14:12:07.22905+00 | replication_slot_name | 5 | 640585316 | 611
 MB
(6 rows)

The output shows that running the example created five spill files that used 611 MB of memory.
To avoid writing to disk, we recommend setting the logical_decoding_work_mem parameter to
the next highest memory size, 1024.

Tuning memory parameters for Aurora PostgreSQL 2425

Amazon Aurora User Guide for Aurora

Using Amazon CloudWatch metrics to analyze resource usage for
Aurora PostgreSQL

Aurora automatically sends metric data to CloudWatch in 1-minute periods. You can analyze
resource usage for Aurora PostgreSQL using CloudWatch metrics. You can evaluate the network
throughput and the network usage with the metrics.

Evaluating network throughput with CloudWatch

When your system usage approaches the resource limits for your instance type, the processing can
slow down. You can use CloudWatch Logs Insights to monitor your storage resource usage and
ensure that sufficient resources are available. When needed, you can modify the DB instance to a
larger instance class.

Aurora storage processing may be slow because of:

• Insufficient network bandwidth between the client and DB instance.

• Insufficient network bandwidth to the storage subsystem.

• A workload that is large for your instance type.

You can query CloudWatch Logs Insights to generate a graph of Aurora storage resource
usage to monitor the resources. The graph shows the CPU utilization and metrics to help you
decide whether to scale up to a larger instance size. For information about the query syntax for
CloudWatch Logs Insights, see CloudWatch Logs Insights query syntax

To use CloudWatch, you need to export your Aurora PostgreSQL log files to CloudWatch. You can
also modify your existing cluster to export logs to CloudWatch. For information about exporting
logs to CloudWatch, see Turning on the option to publish logs to Amazon CloudWatch.

You need the Resource ID of your DB instance to query the CloudWatch Logs Insights. The
Resource ID is available in the Configuration tab in your console:

Analyze resource usage with CloudWatch metrics 2426

https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/CWL_QuerySyntax.html

Amazon Aurora User Guide for Aurora

To query your log files for resource storage metrics:

1. Open the CloudWatch console at https://console.aws.amazon.com/cloudwatch/.

The CloudWatch overview home page appears.

2. If necessary, change the AWS Region. In the navigation bar, choose the AWS Region where your
AWS resources are located. For more information, see Regions and endpoints.

3. In the navigation pane, choose Logs and then Logs Insights.

The Logs Insights page appears.

4. Select the log files from the drop-down list to analyze.

5. Enter the following query in the field, replacing <resource ID> with the resource ID of your
DB cluster:

filter @logStream = <resource ID> | parse @message "\"Aurora Storage
Daemon\"*memoryUsedPc\":*,\"cpuUsedPc\":*," as a,memoryUsedPc,cpuUsedPc
| display memoryUsedPc,cpuUsedPc #| stats avg(xcpu) as avgCpu by
bin(5m) | limit 10000

6. Click Run query.

The storage utilization graph is displayed.

The following image provides the Logs Insights page and the graph display.

Analyze resource usage with CloudWatch metrics 2427

https://console.aws.amazon.com/cloudwatch/
https://docs.aws.amazon.com/general/latest/gr/rande.html

Amazon Aurora User Guide for Aurora

Evaluating DB instance usage with CloudWatch metrics

You can use CloudWatch metrics to watch your instance throughput and discover if your instance
class provides sufficient resources for your applications. For information about your DB instance
class limits, go to Hardware specifications for DB instance classes for Aurora and locate the
specifications for your DB instance class to find your network performance.

If your DB instance usage is near the instance class limit, then performance may begin to slow. The
CloudWatch metrics can confirm this situation so you can plan to manually scale-up to a larger
instance class.

Combine the following CloudWatch metrics values to find out if you are nearing the instance class
limit:

Analyze resource usage with CloudWatch metrics 2428

Amazon Aurora User Guide for Aurora

• NetworkThroughput – The amount of network throughput received and transmitted by the
clients for each instance in the Aurora DB cluster. This throughput value doesn't include network
traffic between instances in the DB cluster and the cluster volume.

• StorageNetworkThroughput – The amount of network throughput received and sent to the
Aurora storage subsystem by each instance in the Aurora DB cluster.

Add the NetworkThroughput to the StorageNetworkThroughput to find the network throughput
received from and sent to the Aurora storage subsystem by each instance in your Aurora DB cluster.
The instance class limit for your instance should be greater than the sum of these two combined
metrics.

You can use the following metrics to review additional details of the network traffic from your
client applications when sending and receiving:

• NetworkReceiveThroughput – The amount of network throughput received from clients by each
instance in the Aurora PostgreSQL DB cluster. This throughput doesn't include network traffic
between instances in the DB cluster and the cluster volume.

• NetworkTransmitThroughput – The amount of network throughput sent to clients by each
instance in the Aurora DB cluster. This throughput doesn't include network traffic between
instances in the DB cluster and the cluster volume.

• StorageNetworkReceiveThroughput – The amount of network throughput received from the
Aurora storage subsystem by each instance in the DB cluster.

• StorageNetworkTransmitThroughput – The amount of network throughput sent to the Aurora
storage subsystem by each instance in the DB cluster.

Add all of these metrics together to evaluate how your network usage compares to the instance
class limit. The instance class limit should be greater than the sum of these combined metrics.

The network limits and CPU utilization for storage are mutual. When the network throughput
increases, then the CPU utilization also increases. Monitoring the CPU and network usage provides
information about how and why the resources are being exhausted.

To help minimize network usage, you can consider:

• Using a larger instance class.

• Using pg_partman partitioning strategies.

• Dividing the write requests in batches to reduce overall transactions.

Analyze resource usage with CloudWatch metrics 2429

Amazon Aurora User Guide for Aurora

• Directing the read-only workload to a read-only instance.

• Deleting any unused indexes.

• Checking for bloated objects and VACUUM. In the case of severe bloat, use the PostgreSQL
extension pg_repack. For more information about pg_repack, see Reorganize tables in
PostgreSQL databases with minimal locks.

Using logical replication to perform a major version upgrade for Aurora
PostgreSQL

Using logical replication and Aurora fast cloning, you can perform a major version upgrade that
uses the current version of Aurora PostgreSQL database while gradually migrating the changing
data to the new major version database. This low downtime upgrade process is referred to as a
blue/green upgrade. The current version of the database is referred as the "blue" environment and
the new database version is referred as the "green" environment.

Aurora fast cloning fully loads the existing data by taking a snapshot of the source database. Fast
cloning uses a copy-on-write protocol built on top of the Aurora storage layer, which allows you to
create a clone of database in a short time. This method is very effective when upgrading to a large
database.

Logical replication in PostgreSQL tracks and transfers your data changes from initial instance to
a new instance running in parallel until you move to the newer version of PostgreSQL. Logical
replication uses a publish and subscribe model. For more information about Aurora PostgreSQL
logical replication, see Replication with Amazon Aurora PostgreSQL.

Tip

You can minimize the downtime required for a major version upgrade by using the
managed Amazon RDS Blue/Green Deployment feature. For more information, see Using
Amazon RDS Blue/Green Deployments for database updates.

Topics

• Requirements

• Limitations

• Setting and checking parameter values

Using logical replication for a major version upgrade 2430

https://reorg.github.io/pg_repack/
https://reorg.github.io/pg_repack/

Amazon Aurora User Guide for Aurora

• Upgrading Aurora PostgreSQL to a new major version

• Performing post-upgrade tasks

Requirements

You must meet the following requirements to perform this low downtime upgrade process:

• You must have rds_superuser permissions.

• The Aurora PostgreSQL DB cluster you intend to upgrade must be running a supported version
that can perform major version upgrades using logical replication. Make sure to apply any minor
version updates and patches to your DB cluster. The aurora_volume_logical_start_lsn
function that is used in this technique is supported in the following versions of Aurora
PostgreSQL:

• 15.2 and higher 15 versions

• 14.3 and higher 14 versions

• 13.6 and higher 13 versions

• 12.10 and higher 12 versions

• 11.15 and higher 11 versions

• 10.20 and higher 10 versions

For more information on aurora_volume_logical_start_lsn function, see
aurora_volume_logical_start_lsn.

• All of your tables must have a primary key or include a PostgreSQL identity column.

• Configure the security group for your VPC to allow inbound and outbound access between the
two Aurora PostgreSQL DB clusters, both old and new. You can grant access to a specific classless
inter-domain routing (CIDR) range or to another security group in your VPC or in a peer VPC.
(Peer VPC requires a VPC peering connection.)

Note

For detailed information about the permissions required to configure and manage a
running logical replication scenario, see the PostgreSQL core documentation.

Using logical replication for a major version upgrade 2431

https://www.postgresql.org/docs/current/sql-createtable.html
https://www.postgresql.org/docs/13/logical-replication-security.html

Amazon Aurora User Guide for Aurora

Limitations

When you are performing low downtime upgrade on your Aurora PostgreSQL DB cluster to
upgrade it to a new major version, you are using the native PostgreSQL logical replication feature.
It has the same capabilities and limitations as the PostgreSQL logical replication. For more
information, see PostgreSQL logical replication.

• Data definition language (DDL) commands are not replicated.

• Replication doesn't support schema changes in a live database. The schema is recreated in its
original form during the cloning process. If you change the schema after cloning, but before
completing the upgrade, it isn't reflected in the upgraded instance.

• Large objects are not replicated, but you can store data in normal tables.

• Replication is only supported by tables, including partitioned tables. Replication to other types
of relations, such as views, materialized views, or foreign tables, is not supported.

• Sequence data is not replicated and requires a manual update post-failover.

Note

This upgrade doesn't support auto-scripting. You should perform all the steps manually.

Setting and checking parameter values

Before upgrading, configure the writer instance of your Aurora PostgreSQL DB cluster to act
as a publication server. The instance should use a custom DB cluster parameter group with the
following settings:

• rds.logical_replication – Set this parameter to 1. The rds.logical_replication
parameter serves the same purpose as a standalone PostgreSQL server's wal_level parameter
and other parameters that control the write-ahead log file management.

• max_replication_slots – Set this parameter to the total number of subscriptions that you
plan to create. If you are using AWS DMS, set this parameter to the number of AWS DMS tasks
that you plan to use for changed data capture from this DB cluster.

• max_wal_senders – Set to the number of concurrent connections, plus a few extra, to make
available for management tasks and new sessions. If you are using AWS DMS, the number of

Using logical replication for a major version upgrade 2432

https://www.postgresql.org/docs/13/logical-replication.html

Amazon Aurora User Guide for Aurora

max_wal_senders should be equal to the number of concurrent sessions plus the number of AWS
DMS tasks that may be working at any given time.

• max_logical_replication_workers – Set to the number of logical replication workers and
table synchronization workers that you expect. It's generally safe to set the number of replication
workers to the same value used for max_wal_senders. The workers are taken from the pool of
background processes (max_worker_processes) allocated for the server.

• max_worker_processes – Set to the number of background processes for the server. This
number should be large enough to allocate workers for replication, auto-vacuum processes, and
other maintenance processes that may take place concurrently.

When you upgrade to a newer version of Aurora PostgreSQL, you need to duplicate any parameters
that you modified in the earlier version of the parameter group. These parameters are applied to
the upgraded version. You can query the pg_settings table to get a list of parameter settings so
that you can re-create them on your new Aurora PostgreSQL DB cluster.

For example, to get the settings for replication parameters, run the following query:

SELECT name, setting FROM pg_settings WHERE name in
('rds.logical_replication', 'max_replication_slots',
'max_wal_senders', 'max_logical_replication_workers',
'max_worker_processes');

Upgrading Aurora PostgreSQL to a new major version

To prepare the publisher (blue)

1. In the example that follows, the source writer instance (blue) is an Aurora PostgreSQL DB
cluster running PostgreSQL version 11.15. This is the publication node in our replication
scenario. For this demonstration, our source writer instance hosts a sample table that holds a
series of values:

CREATE TABLE my_table (a int PRIMARY KEY);
INSERT INTO my_table VALUES (generate_series(1,100));

2. To create a publication on the source instance, connect to the writer node of the instance with
psql (the CLI for PostgreSQL) or with the client of your choice). Enter the following command
in each database:

Using logical replication for a major version upgrade 2433

Amazon Aurora User Guide for Aurora

CREATE PUBLICATION publication_name FOR ALL TABLES;

The publication_name specifies the name of the publication.

3. You also need to create a replication slot on the instance. The following command creates a
replication slot and loads the pgoutput logical decoding plug-in. The plug-in changes content
read from write-ahead logging (WAL) to the logical replication protocol, and filters the data
according to the publication specification.

SELECT pg_create_logical_replication_slot('replication_slot_name', 'pgoutput');

To clone the publisher

1. Use the Amazon RDS Console to create a clone of the source instance. Highlight the instance
name in the Amazon RDS Console, and then choose Create clone in the Actions menu.

2. Provide a unique name for the instance. Most of the settings are defaults from the source
instance. When you’ve made changes required for the new instance, choose Create clone.

3. While the target instance is initiating, the Status column of the writer node displays Creating
in the Status column. When the instance is ready, the status changes to Available.

Using logical replication for a major version upgrade 2434

https://www.postgresql.org/docs/current/logicaldecoding-explanation.html

Amazon Aurora User Guide for Aurora

To prepare the clone for an upgrade

1. The clone is the ‘green’ instance in the deployment model. It is the host of the replication
subscription node. When the node becomes available, connect with psql and query the new
writer node to obtain the log sequence number (LSN). The LSN identifies the beginning of a
record in the WAL stream.

SELECT aurora_volume_logical_start_lsn();

2. In the response from the query, you find the LSN number. You need this number later in the
process, so make a note of it.

postgres=> SELECT aurora_volume_logical_start_lsn();
aurora_volume_logical_start_lsn

0/402E2F0
(1 row)

3. Before upgrading the clone, drop the clone's replication slot.

SELECT pg_drop_replication_slot('replication_slot_name');

To upgrade the cluster to a new major version

• After cloning the provider node, use the Amazon RDS Console to initiate a major version upgrade
on the subscription node. Highlight the instance name in the RDS console, and select the Modify
button. Select the updated version and your updated parameter groups, and apply the settings
immediately to upgrade the target instance.

Using logical replication for a major version upgrade 2435

Amazon Aurora User Guide for Aurora

• You can also use the CLI to perform an upgrade:

aws rds modify-db-cluster —db-cluster-identifier $TARGET_Aurora_ID —engine-version
 13.6 —allow-major-version-upgrade —apply-immediately

To prepare the subscriber (green)

1. When the clone becomes available after the upgrade, connect with psql and define
the subscription. To do so, you need to specify the following options in the CREATE
SUBSCRIPTION command:

• subscription_name – The name of the subscription.

• admin_user_name – The name of an administrative user with rds_superuser permissions.

• admin_user_password – The password associated with the administrative user.

• source_instance_URL – The URL of the publication server instance.

• database – The database that the subscription server will connect with.

• publication_name – The name of the publication server.

• replication_slot_name – The name of the replication slot.

CREATE SUBSCRIPTION subscription_name

Using logical replication for a major version upgrade 2436

Amazon Aurora User Guide for Aurora

CONNECTION 'postgres://admin_user_name:admin_user_password@source_instance_URL/
database' PUBLICATION publication_name
WITH (copy_data = false, create_slot = false, enabled = false, connect = true,
 slot_name = 'replication_slot_name');

2. After creating the subscription, query the pg_replication_origin view to retrieve the roname
value, which is the identifier of the replication origin. Each instance has one roname:

SELECT * FROM pg_replication_origin;

For example:

postgres=>
SELECT * FROM pg_replication_origin;

roident | roname
---------+----------
1 | pg_24586

3. Provide the LSN that you saved from the earlier query of the publication node and the roname
returned from the subscription node [INSTANCE] in the command. This command uses
the pg_replication_origin_advance function to specify the starting point in the log
sequence for replication.

SELECT pg_replication_origin_advance('roname', 'log_sequence_number');

roname is the identifier returned by the pg_replication_origin view.

log_sequence_number is the value returned by the earlier query of the
aurora_volume_logical_start_lsn function.

4. Then, use the ALTER SUBSCRIPTION... ENABLE clause to turn on logical replication.

ALTER SUBSCRIPTION subscription_name ENABLE;

5. At this point, you can confirm that replication is working. Add a value to the publication
instance, then confirm that the value is replicated to the subscription node.

Then, use the following command to monitor replication lag on the publication node:

Using logical replication for a major version upgrade 2437

https://www.postgresql.org/docs/14/catalog-pg-replication-origin.html
https://www.postgresql.org/docs/14/functions-admin.html

Amazon Aurora User Guide for Aurora

SELECT now() AS CURRENT_TIME, slot_name, active, active_pid,
 pg_size_pretty(pg_wal_lsn_diff(pg_current_wal_lsn(),
confirmed_flush_lsn)) AS diff_size, pg_wal_lsn_diff(pg_current_wal_lsn(),
confirmed_flush_lsn) AS diff_bytes FROM pg_replication_slots WHERE slot_type =
 'logical';

For example:

postgres=> SELECT now() AS CURRENT_TIME, slot_name, active, active_pid,
 pg_size_pretty(pg_wal_lsn_diff(pg_current_wal_lsn(),
confirmed_flush_lsn)) AS diff_size, pg_wal_lsn_diff(pg_current_wal_lsn(),
 confirmed_flush_lsn) AS diff_bytes FROM pg_replication_slots WHERE slot_type =
 'logical';

current_time | slot_name | active | active_pid |
 diff_size | diff_bytes
-------------------------------+-----------------------+--------+------------
+-----------+------------
2022-04-13 15:11:00.243401+00 | replication_slot_name | t | 21854 | 136
 bytes | 136
(1 row)

You can monitor the replication lag using diff_size and diff_bytes values. When these
values reach 0, the replica has caught up to the source DB instance.

Performing post-upgrade tasks

When the upgrade is complete, the instance status displays as Available in the Status column of
the console dashboard. On the new instance, we recommend you do the following:

• Redirect your applications to point to the writer node.

• Add reader nodes to manage the caseload and provide high-availability in the event of an issue
with the writer node.

• Aurora PostgreSQL DB clusters occasionally require operating system updates. These updates
might include a newer version of glibc library. During such updates, we recommend you to follow
the guidelines as described in Collations supported in Aurora PostgreSQL.

• Update user permissions on the new instance to ensure access.

Using logical replication for a major version upgrade 2438

Amazon Aurora User Guide for Aurora

After testing your application and data on the new instance, we recommend that you make a
final backup of your initial instance before removing it. For more information about using logical
replication on an Aurora host, see Setting up logical replication for your Aurora PostgreSQL DB
cluster.

Troubleshooting storage issues

If the amount of working memory needed for sort or index-creation operations exceeds the
amount allocated by the work_mem parameter, Aurora PostgreSQL writes the excess data to
temporary disk files. When it writes the data, Aurora PostgreSQL uses the same storage space
that it uses for storing error and message logs, that is, local storage. Each instance in your Aurora
PostgreSQL DB cluster has an amount of local storage available. The amount of storage is based on
its DB instance class. To increase the amount of local storage, you need to modify the instance to
use a larger DB instance class. For DB instance class specifications, see Hardware specifications for
DB instance classes for Aurora.

You can monitor your Aurora PostgreSQL DB cluster's local storage space by watching the Amazon
CloudWatch metric for FreeLocalStorage. This metric reports the amount of storage available
to each DB instance in the Aurora DB cluster for temporary tables and logs. For more information,
see Monitoring Amazon Aurora metrics with Amazon CloudWatch.

Sorting, indexing, and grouping operations start in working memory but often must be offloaded
to local storage. If your Aurora PostgreSQL DB cluster runs out of local storage because of these
types of operations, you can resolve the issue by taking one of the following actions.

• Increase the amount of working memory. This reduces the need to use local storage. By default,
PostgreSQL allocates 4 MB for each sort, group, and index operation. To check the current
working memory value for your Aurora PostgreSQL DB cluster's writer instance, connect to the
instance using psql and run the following command.

postgres=> SHOW work_mem;
work_mem

 4MB
(1 row)

You can increase the working memory at the session level before sort, group, and other
operations, as follows.

Troubleshooting storage issues 2439

Amazon Aurora User Guide for Aurora

SET work_mem TO '1 GB';

For more information about working memory, see Resource Consumption in the PostgreSQL
documentation.

• Change the log retention period so that logs are stored for shorter timeframes. To learn how, see
Aurora PostgreSQL database log files.

For Aurora PostgreSQL DB clusters larger than 40 TB, don't use db.t2, db.t3, or db.t4g instance
classes. We recommend using the T DB instance classes only for development and test servers, or
other non-production servers. For more information, see DB instance class types.

Replication with Amazon Aurora PostgreSQL

Following, you can find information about replication with Amazon Aurora PostgreSQL, including
how to monitor replication.

Topics

• Using Aurora Replicas

• Improving the read availability of Aurora Replicas

• Monitoring Aurora PostgreSQL replication

• Using PostgreSQL logical replication with Aurora

Using Aurora Replicas

An Aurora Replica is an independent endpoint in an Aurora DB cluster, best used for scaling read
operations and increasing availability. An Aurora DB cluster can include up to 15 Aurora Replicas
located throughout the Availability Zones of the Aurora DB cluster's AWS Region.

The DB cluster volume is made up of multiple copies of the data for the DB cluster. However,
the data in the cluster volume is represented as a single, logical volume to the primary writer DB
instance and to Aurora Replicas in the DB cluster. For more information about Aurora Replicas, see
Aurora Replicas.

Aurora Replicas work well for read scaling because they're fully dedicated to read operations
on your cluster volume. The writer DB instance manages write operations. The cluster volume is

Replication with Aurora PostgreSQL 2440

https://www.postgresql.org/docs/current/runtime-config-resource.html#RUNTIME-CONFIG-RESOURCE-MEMORY

Amazon Aurora User Guide for Aurora

shared among all instances in your Aurora PostgreSQL DB cluster. Thus, no extra work is needed to
replicate a copy of the data for each Aurora Replica.

With Aurora PostgreSQL, when an Aurora Replica is deleted, its instance endpoint is removed
immediately, and the Aurora Replica is removed from the reader endpoint. If there are statements
running on the Aurora Replica that is being deleted, there is a three minute grace period. Existing
statements can finish gracefully during the grace period. When the grace period ends, the Aurora
Replica is shut down and deleted.

Aurora PostgreSQL DB clusters support Aurora Replicas in different AWS Regions, using Aurora
global database. For more information, see Using Amazon Aurora global databases.

Note

With the improved read availability feature, if you want to reboot the Aurora Replicas in the
DB cluster, you have to perform it manually. For the DB clusters created prior to this feature
rebooting the writer DB instance automatically reboots the Aurora Replicas. The automatic
reboot re-establishes an entry point that guarantees read/write consistency across the DB
cluster.

Improving the read availability of Aurora Replicas

Aurora PostgreSQL improves the read availability in the DB cluster by continuously serving the read
requests when the writer DB instance restarts or when the Aurora Replica is unable to keep up with
the write traffic.

The read availability feature is available by default on the following versions of Aurora PostgreSQL:

• 16.1 and all higher versions

• 15.2 and higher 15 versions

• 14.7 and higher 14 versions

• 13.10 and higher 13 versions

• 12.14 and higher 12 versions

The read availability feature is supported by Aurora global database in the following versions:

• 16.1 and all higher versions

Improving the availability of Aurora Replicas 2441

Amazon Aurora User Guide for Aurora

• 15.4 and higher 15 versions

• 14.9 and higher 14 versions

• 13.12 and higher 13 versions

• 12.16 and higher 12 versions

To use the read availability feature for a DB cluster created on one of these versions prior to this
launch, restart the writer instance of the DB cluster.

When you modify static parameters of your Aurora PostgreSQL DB cluster, you must restart the
writer instance so that the parameter changes take effect. For example, you must restart the writer
instance when you set the value of shared_buffers. With the improved availability of Aurora
Replicas, the DB cluster maintains read availability during these restarts, which reduces the impact
of changes to the writer instance. The reader instances don't restart and continue to respond to the
read requests. To apply static parameter changes, reboot each individual reader instance.

An Aurora PostgreSQL DB cluster's Aurora Replica can recover from replication errors such as writer
restarts, failover, slow replication, and network issues by quickly recovering to in-memory database
state after it reconnects with the writer. This approach allows Aurora Replica instances to reach
consistency with the latest storage updates while the client database is still available.

The in-progress transactions that conflict with replication recovery might receive an error but the
client can retry these transactions, after the readers catch up with the writer.

Monitoring Aurora Replicas

You can monitor the Aurora Replicas when recovering from a writer disconnect. Use the metrics
below to check for the latest information about the reader instance and to track in-process read-
only transactions.

• The aurora_replica_status function is updated to return the most up-to-date
information for the reader instance when it is still connected. The last update time stamp in
aurora_replica_status is always empty for the row corresponding to the DB instance that
the query is executed on. This indicates that the reader instance has the latest data.

• When the Aurora replica disconnects from the writer instance and reconnects back, the following
database event is emitted:

Read replica has been disconnected from the writer instance and
reconnected.

Improving the availability of Aurora Replicas 2442

Amazon Aurora User Guide for Aurora

• When a read-only query is canceled due to a recovery conflict, you might see one or more of the
following error messages in the database error log:

Canceling statement due to conflict with recovery.

User query may not have access to page data to replica disconnect.

User query might have tried to access a file that no longer exists.

When the replica reconnects, you will be able to repeat your command.

Limitations

The following limitations apply to Aurora Replicas with improved availability:

• Aurora Replicas of secondary DB cluster can restart if the data can't be streamed from the writer
instance during replication recovery.

• Aurora Replicas don't support online replication recovery if one is already in progress and will
restart.

• Aurora Replicas will restart when your DB instance is nearing the transaction ID wraparound.
For more information on transaction ID wraparound, see Preventing Transaction ID Wraparound
Failures.

• Aurora Replicas can restart when the replication process is blocked under certain circumstances.

Monitoring Aurora PostgreSQL replication

Read scaling and high availability depend on minimal lag time. You can monitor how far an
Aurora Replica is lagging behind the writer DB instance of your Aurora PostgreSQL DB cluster by
monitoring the Amazon CloudWatch ReplicaLag metric. Because Aurora Replicas read from the
same cluster volume as the writer DB instance, the ReplicaLag metric has a different meaning for
an Aurora PostgreSQL DB cluster. The ReplicaLag metric for an Aurora Replica indicates the lag
for the page cache of the Aurora Replica compared to that of the writer DB instance.

For more information on monitoring RDS instances and CloudWatch metrics, see Monitoring
metrics in an Amazon Aurora cluster.

Monitoring replication 2443

https://www.postgresql.org/docs/current/routine-vacuuming.html#VACUUM-FOR-WRAPAROUND
https://www.postgresql.org/docs/current/routine-vacuuming.html#VACUUM-FOR-WRAPAROUND

Amazon Aurora User Guide for Aurora

Using PostgreSQL logical replication with Aurora

By using PostgreSQL's logical replication feature with your Aurora PostgreSQL DB cluster, you
can replicate and synchronize individual tables rather than the entire database instance. Logical
replication uses a publish and subscribe model to replicate changes from a source to one or more
recipients. It works by using change records from the PostgreSQL write-ahead log (WAL). The
source, or publisher, sends WAL data for the specified tables to one or more recipients (subscriber),
thus replicating the changes and keeping a subscriber's table synchronized with the publisher's
table. The set of changes from the publisher are identified using a publication. Subscribers get
the changes by creating a subscription that defines the connection to the publisher's database
and its publications. A replication slot is the mechanism used in this scheme to track progress of a
subscription.

For Aurora PostgreSQL DB clusters, the WAL records are saved on Aurora storage. The Aurora
PostgreSQL DB cluster that's acting as the publisher in a logical replication scenario reads the
WAL data from Aurora storage, decodes it, and sends it to the subscriber so that the changes
can be applied to the table on that instance. The publisher uses a logical decoder to decode the
data for use by subscribers. By default, Aurora PostgreSQL DB clusters use the native PostgreSQL
pgoutput plugin when sending data. Other logical decoders are available. For example, Aurora
PostgreSQL also supports the wal2json plugin that converts WAL data to JSON.

As of Aurora PostgreSQL version 14.5, 13.8, 12.12, and 11.17, Aurora PostgreSQL augments the
PostgreSQL logical replication process with a write-through cache to improve performance. The
WAL transaction logs are cached locally, in a buffer, to reduce the amount of disk I/O, that is,
reading from Aurora storage during logical decoding. The write-through cache is used by default
whenever you use logical replication for your Aurora PostgreSQL DB cluster. Aurora provides
several functions that you can use to manage the cache. For more information, see Managing the
Aurora PostgreSQL logical replication write-through cache.

Logical replication is supported by all currently available Aurora PostgreSQL versions. For more
information, Amazon Aurora PostgreSQL updates in the Release Notes for Aurora PostgreSQL.

Note

In addition to the native PostgreSQL logical replication feature introduced in PostgreSQL
10, Aurora PostgreSQL also supports the pglogical extension. For more information, see
Using pglogical to synchronize data across instances.

Using logical replication 2444

https://github.com/eulerto/wal2json
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html

Amazon Aurora User Guide for Aurora

For more information about PostgreSQL logical replication, see Logical replication and Logical
decoding concepts in the PostgreSQL documentation.

In the following topics, you can find information about how to set up logical replication between
your Aurora PostgreSQL DB clusters.

Topics

• Setting up logical replication for your Aurora PostgreSQL DB cluster

• Turning off logical replication

• Managing the Aurora PostgreSQL logical replication write-through cache

• Managing logical slots for Aurora PostgreSQL

• Example: Using logical replication with Aurora PostgreSQL DB clusters

• Example: Logical replication using Aurora PostgreSQL and AWS Database Migration Service

Setting up logical replication for your Aurora PostgreSQL DB cluster

Setting up logical replication requires rds_superuser privileges. Your Aurora PostgreSQL DB
cluster must be configured to use a custom DB cluster parameter group so that you can set the
necessary parameters as detailed in the procedure following. For more information, see Working
with DB cluster parameter groups.

To set up PostgreSQL logical replication for an Aurora PostgreSQL DB cluster

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose your Aurora PostgreSQL DB cluster.

3. Open the Configuration tab. Among the Instance details, find the Parameter group link with
DB cluster parameter group for Type.

4. Choose the link to open the custom parameters associated with your Aurora PostgreSQL DB
cluster.

5. In the Parameters search field, type rds to find the rds.logical_replication parameter.
The default value for this parameter is 0, meaning that it's turned off by default.

6. Choose Edit parameters to access the property values, and then choose 1 from the selector
to turn on the feature. Depending on your expected usage, you might also need to change
the settings for the following parameters. However, in many cases, the default values are
sufficient.

Using logical replication 2445

https://www.postgresql.org/docs/current/logical-replication.html
https://www.postgresql.org/docs/current/logicaldecoding-explanation.html
https://www.postgresql.org/docs/current/logicaldecoding-explanation.html
https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Aurora User Guide for Aurora

• max_replication_slots – Set this parameter to a value that's at least equal to your
planned total number of logical replication publications and subscriptions. If you are using
AWS DMS, this parameter should equal at least your planned change data capture tasks
from the cluster, plus logical replication publications and subscriptions.

• max_wal_senders and max_logical_replication_workers – Set these parameters
to a value that's at least equal to the number of logical replication slots that you intend to
be active, or the number of active AWS DMS tasks for change data capture. Leaving a logical
replication slot inactive prevents the vacuum from removing obsolete tuples from tables, so
we recommend that you monitor replication slots and remove inactive slots as needed.

• max_worker_processes – Set this parameter to a value that's at least equal to the
total of the max_logical_replication_workers, autovacuum_max_workers,
and max_parallel_workers values. On small DB instance classes, background worker
processes can affect application workloads, so monitor the performance of your database
if you set max_worker_processes higher than the default value. (The default value is
the result of GREATEST(${DBInstanceVCPU*2},8}, which means that, by default, this is
either 8 or twice the CPU equivalent of the DB instance class, whichever is greater).

Note

You can modify parameter values in a customer-created DB parameter group. you can't
change the parameter values in a default DB parameter group.

7. Choose Save changes.

8. Reboot the writer instance of your Aurora PostgreSQL DB cluster so that your changes takes
effect. In the Amazon RDS console, choose the primary DB instance of the cluster and choose
Reboot from the Actions menu.

9. When the instance is available, you can verify that logical replication is turned on, as follows.

a. Use psql to connect to the writer instance of your Aurora PostgreSQL DB cluster.

psql --host=your-db-cluster-instance-1.aws-region.rds.amazonaws.com --port=5432
 --username=postgres --password --dbname=labdb

b. Verify that logical replication has been enabled by using the following command.

labdb=> SHOW rds.logical_replication;

Using logical replication 2446

Amazon Aurora User Guide for Aurora

 rds.logical_replication

 on
(1 row)

c. Verify that the wal_level is set to logical.

labdb=> SHOW wal_level;
 wal_level

 logical
(1 row)

For an example of using logical replication to keep a database table synchronized with changes
from a source Aurora PostgreSQL DB cluster, see Example: Using logical replication with Aurora
PostgreSQL DB clusters.

Turning off logical replication

After completing your replication tasks, you should stop the replication process, drop replication
slots, and turn off logical replication. Before dropping slots, make sure that they're no longer
needed. Active replication slots can't be dropped.

To turn off logical replication

1. Drop all replication slots.

To drop all of the replication slots, connect to the publisher and run the following SQL
command.

SELECT pg_drop_replication_slot(slot_name)
 FROM pg_replication_slots
 WHERE slot_name IN (SELECT slot_name FROM pg_replication_slots);

The replication slots can't be active when you run this command.

2. Modify the custom DB cluster parameter group associated with the publisher as detailed
in Setting up logical replication for your Aurora PostgreSQL DB cluster, but set the
rds.logical_replication parameter to 0.

Using logical replication 2447

Amazon Aurora User Guide for Aurora

For more information about custom parameter groups, see Modifying parameters in a DB
cluster parameter group.

3. Restart the publisher Aurora PostgreSQL DB cluster for the change to the
rds.logical_replication parameter to take effect.

Managing the Aurora PostgreSQL logical replication write-through cache

By default, Aurora PostgreSQL versions 14.5, 13.8, 12.12, and 11.17 and higher use a write-
through cache to improve the performance for logical replication. Without the write-through
cache, Aurora PostgreSQL uses the Aurora storage layer in its implementation of the native
PostgreSQL logical replication process. It does so by writing WAL data to storage and then reading
the data back from storage to decode it and send (replicate) to its targets (subscribers). This can
result in bottlenecks during logical replication for Aurora PostgreSQL DB clusters.

The write-through cache reduces the need to use the Aurora storage layer. Instead of always
writing and reading from the Aurora storage layer, Aurora PostgreSQL uses a buffer to cache the
logical WAL stream so that it can be used during the replication process, rather than always pulling
from disk. This buffer is the PostgreSQL native cache used by logical replication, identified in
Aurora PostgreSQL DB cluster parameters as rds.logical_wal_cache. By default, this cache
uses 1/32 of the Aurora PostgreSQL DB cluster's buffer cache setting (shared_buffers) but not
less than 64kB nor more than the size of one WAL segment, typically 16MB.

When you use logical replication with your Aurora PostgreSQL DB cluster (for the versions that
support the write-through cache), you can monitor the cache hit ratio to see how well it's working
for your use case. To do so, connect to your Aurora PostgreSQL DB cluster's write instance using
psql and then use the Aurora function, aurora_stat_logical_wal_cache, as shown in the
following example.

SELECT * FROM aurora_stat_logical_wal_cache();

The function returns output such as the following.

name | active_pid | cache_hit | cache_miss | blks_read | hit_rate |
 last_reset_timestamp
-----------+------------+-----------+------------+-----------+----------+--------------
test_slot1 | 79183 | 24 | 0 | 24 | 100.00% | 2022-08-05
 17:39...

Using logical replication 2448

Amazon Aurora User Guide for Aurora

test_slot2 | | 1 | 0 | 1 | 100.00% | 2022-08-05
 17:34...
(2 rows)

The last_reset_timestamp values have been shortened for readability. For more information
about this function, see aurora_stat_logical_wal_cache.

Aurora PostgreSQL provides the following two functions for monitoring the write-through cache.

• The aurora_stat_logical_wal_cache function – For reference documentation, see
aurora_stat_logical_wal_cache.

• The aurora_stat_reset_wal_cache function – For reference documentation, see
aurora_stat_reset_wal_cache.

If you find that the automatically adjusted WAL cache size isn't sufficient for your workloads, you
can change the the value of the rds.logical_wal_cache manually, by modifying the parameter
in your custom DB cluster parameter group. Note that any positive value less than 32kB is treated
as 32kB. For more information about the wal_buffers, see Write Ahead Log in the PostgreSQL
documentation.

Managing logical slots for Aurora PostgreSQL

Streaming activity is captured in the pg_replication_origin_status view. To see the
contents of this view, you can use the pg_show_replication_origin_status() function, as
shown following:

SELECT * FROM pg_show_replication_origin_status();

You can get a list of your logical slots by using the following SQL query.

SELECT * FROM pg_replication_slots;

To drop a logical slot, use the pg_drop_replication_slot with the name of the slot, as shown
in the following command.

SELECT pg_drop_replication_slot('test_slot');

Using logical replication 2449

https://www.postgresql.org/docs/current/runtime-config-wal.html#RUNTIME-CONFIG-WAL-SETTINGS

Amazon Aurora User Guide for Aurora

Example: Using logical replication with Aurora PostgreSQL DB clusters

The following procedure shows you how to start logical replication between two Aurora
PostgreSQL DB clusters. Both the publisher and the subscriber must be configured for logical
replication as detailed in Setting up logical replication for your Aurora PostgreSQL DB cluster.

The Aurora PostgreSQL DB cluster that's the designated publisher must also allow access to the
replication slot. To do so, modify the security group associated with the Aurora PostgreSQL DB
cluster 's virtual public cloud (VPC) based on the Amazon VPC service. Allow inbound access by
adding the security group associated with the subscriber's VPC to the publisher's security group.
For more information, see Control traffic to resources using security groups in the Amazon VPC
User Guide.

With these preliminary steps complete, you can use PostgreSQL commands CREATE
PUBLICATION on the publisher and the CREATE SUBSCRIPTION on the subscriber, as detailed in
the following procedure.

To start the logical replication process between two Aurora PostgreSQL DB clusters

These steps assume that your Aurora PostgreSQL DB clusters have a writer instance with a
database in which to create the example tables.

1. On the publisher Aurora PostgreSQL DB cluster

a. Create a table using the following SQL statement.

CREATE TABLE LogicalReplicationTest (a int PRIMARY KEY);

b. Insert data into the publisher database by using the following SQL statement.

INSERT INTO LogicalReplicationTest VALUES (generate_series(1,10000));

c. Verify that data exists in the table by using the following SQL statement.

SELECT count(*) FROM LogicalReplicationTest;

d. Create a publication for this table by using the CREATE PUBLICATION statement, as
follows.

CREATE PUBLICATION testpub FOR TABLE LogicalReplicationTest;

Using logical replication 2450

https://docs.aws.amazon.com/vpc/latest/userguide/VPC_SecurityGroups.html

Amazon Aurora User Guide for Aurora

2. On the subscriber Aurora PostgreSQL DB cluster

a. Create the same LogicalReplicationTest table on the subscriber that you created on
the publisher, as follows.

CREATE TABLE LogicalReplicationTest (a int PRIMARY KEY);

b. Verify that this table is empty.

SELECT count(*) FROM LogicalReplicationTest;

c. Create a subscription to get the changes from the publisher. You need to use the following
details about the publisher Aurora PostgreSQL DB cluster.

• host – The publisher Aurora PostgreSQL DB cluster's writer DB instance.

• port – The port on which the writer DB instance is listening. The default for PostgreSQL
is 5432.

• dbname – The name of the database.

CREATE SUBSCRIPTION testsub CONNECTION
 'host=publisher-cluster-writer-endpoint port=5432 dbname=db-name user=user
 password=password'
 PUBLICATION testpub;

Note

Specify a password other than the prompt shown here as a security best practice.

After the subscription is created, a logical replication slot is created at the publisher.

d. To verify for this example that the initial data is replicated on the subscriber, use the
following SQL statement on the subscriber database.

SELECT count(*) FROM LogicalReplicationTest;

Any further changes on the publisher are replicated to the subscriber.

Using logical replication 2451

Amazon Aurora User Guide for Aurora

Logical replication affects performance. We recommend that you turn off logical replication after
your replication tasks are complete.

Example: Logical replication using Aurora PostgreSQL and AWS Database
Migration Service

You can use the AWS Database Migration Service (AWS DMS) to replicate a database or a portion
of a database. Use AWS DMS to migrate your data from an Aurora PostgreSQL database to
another open source or commercial database. For more information about AWS DMS, see the AWS
Database Migration Service User Guide.

The following example shows how to set up logical replication from an Aurora PostgreSQL
database as the publisher and then use AWS DMS for migration. This example uses the same
publisher and subscriber that were created in Example: Using logical replication with Aurora
PostgreSQL DB clusters.

To set up logical replication with AWS DMS, you need details about your publisher and subscriber
from Amazon RDS. In particular, you need details about the publisher's writer DB instance and the
subscriber's DB instance.

Get the following information for the publisher's writer DB instance:

• The virtual private cloud (VPC) identifier

• The subnet group

• The Availability Zone (AZ)

• The VPC security group

• The DB instance ID

Get the following information for the subscriber's DB instance:

• The DB instance ID

• The source engine

To use AWS DMS for logical replication with Aurora PostgreSQL

1. Prepare the publisher database to work with AWS DMS.

Using logical replication 2452

https://docs.aws.amazon.com/dms/latest/userguide/
https://docs.aws.amazon.com/dms/latest/userguide/

Amazon Aurora User Guide for Aurora

To do this, PostgreSQL 10.x and later databases require that you apply AWS DMS wrapper
functions to the publisher database. For details on this and later steps, see the instructions
in Using PostgreSQL version 10.x and later as a source for AWS DMS in the AWS Database
Migration Service User Guide.

2. Sign in to the AWS Management Console and open the AWS DMS console at https://
console.aws.amazon.com/dms/v2. At top right, choose the same AWS Region in which the
publisher and subscriber are located.

3. Create an AWS DMS replication instance.

Choose values that are the same as for your publisher's writer DB instance. These include the
following settings:

• For VPC, choose the same VPC as for the writer DB instance.

• For Replication Subnet Group, choose a subnet group with the same values as the writer DB
instance. Create a new one if necessary.

• For Availability zone, choose the same zone as for the writer DB instance.

• For VPC Security Group, choose the same group as for the writer DB instance.

4. Create an AWS DMS endpoint for the source.

Specify the publisher as the source endpoint by using the following settings:

• For Endpoint type, choose Source endpoint.

• Choose Select RDS DB Instance.

• For RDS Instance, choose the DB identifier of the publisher's writer DB instance.

• For Source engine, choose postgres.

5. Create an AWS DMS endpoint for the target.

Specify the subscriber as the target endpoint by using the following settings:

• For Endpoint type, choose Target endpoint.

• Choose Select RDS DB Instance.

• For RDS Instance, choose the DB identifier of the subscriber DB instance.

• Choose a value for Source engine. For example, if the subscriber is an RDS PostgreSQL
database, choose postgres. If the subscriber is an Aurora PostgreSQL database, choose
aurora-postgresql.

Using logical replication 2453

https://docs.aws.amazon.com/dms/latest/userguide/CHAP_Source.PostgreSQL.html#CHAP_Source.PostgreSQL.v10
https://console.aws.amazon.com/dms/v2
https://console.aws.amazon.com/dms/v2

Amazon Aurora User Guide for Aurora

6. Create an AWS DMS database migration task.

You use a database migration task to specify what database tables to migrate, to map data
using the target schema, and to create new tables on the target database. At a minimum, use
the following settings for Task configuration:

• For Replication instance, choose the replication instance that you created in an earlier step.

• For Source database endpoint, choose the publisher source that you created in an earlier
step.

• For Target database endpoint, choose the subscriber target that you created in an earlier
step.

The rest of the task details depend on your migration project. For more information about
specifying all the details for DMS tasks, see Working with AWS DMS tasks in the AWS Database
Migration Service User Guide.

After AWS DMS creates the task, it begins migrating data from the publisher to the subscriber.

Using Aurora PostgreSQL as a knowledge base for Amazon
Bedrock

You can use an Aurora PostgreSQL DB cluster as a knowledge base for Amazon Bedrock. For more
information, see Create a vector store in Amazon Aurora. A knowledge base automatically takes
unstructured text data stored in an Amazon S3 bucket, converts it to text chunks and vectors,
and stores it in a PostgreSQL database. With the generative AI applications, you can use Agents
for Amazon Bedrock to query the data stored in the knowledge base and use the results of those
queries to augment answers provided by foundational models. This workflow is called Retrieval
Augmented Generation (RAG). For more information on RAG, see Retrieval Augmented Generation
(RAG).

For detailed information about using Aurora PostgreSQL to build generative AI applications using
RAG, see this blog post.

Topics

• Prerequisites

• Preparing Aurora PostgreSQL to be used as a knowledge base for Amazon Bedrock

Using Aurora PostgreSQL as a knowledge base for Amazon Bedrock 2454

https://docs.aws.amazon.com/dms/latest/userguide/CHAP_Tasks.html
https://docs.aws.amazon.com/bedrock/latest/userguide/knowledge-base-setup.html
https://docs.aws.amazon.com/sagemaker/latest/dg/jumpstart-foundation-models-customize-rag.html
https://docs.aws.amazon.com/sagemaker/latest/dg/jumpstart-foundation-models-customize-rag.html
https://aws.amazon.com/blogs/database/build-generative-ai-applications-with-amazon-aurora-and-knowledge-bases-for-amazon-bedrock/

Amazon Aurora User Guide for Aurora

• Creating a knowledge base in the Bedrock console

Prerequisites

Familiarize yourself with the following prerequisites to use Aurora PostgreSQL cluster as a
knowledge base for Amazon Bedrock. At a high level, you need to configure the following services
for use with Bedrock:

• Amazon Aurora PostgreSQL DB cluster created in any of the following versions:

• 16.1 and all higher versions

• 15.4 and higher versions

• 14.9 and higher versions

• 13.12 and higher versions

• 12.16 and higher versions

Note

You must enable the pgvector extension in your target database and use version 0.5.0
or higher. For more information, see pgvector v0.5.0 with HNSW indexing.

• RDS Data API

• A user managed in AWS Secrets Manager. For more information, see Password management with
Amazon Aurora and AWS Secrets Manager.

Preparing Aurora PostgreSQL to be used as a knowledge base for
Amazon Bedrock

Follow the steps explained in the below sections to prepare Aurora PostgreSQL to be used as a
knowledge base for Amazon Bedrock.

Creating and configuring Aurora PostgreSQL

To configure Amazon Bedrock with an Aurora PostgreSQL DB cluster, you must first create an
Aurora PostgreSQL DB cluster and take note of the important fields for configuring it with Amazon
Bedrock. For more information about creating Aurora PostgreSQL DB cluster, see Creating and
connecting to an Aurora PostgreSQL DB cluster.

Prerequisites 2455

https://aws.amazon.com/about-aws/whats-new/2023/10/amazon-aurora-postgresql-pgvector-v0-5-0-hnsw-indexing/

Amazon Aurora User Guide for Aurora

• Enable Data API while creating Aurora PostgreSQL DB cluster. For more information on the
versions supported, see Using RDS Data API.

• Make sure to note down the Amazon Resource Names (ARN) of your Aurora PostgreSQL DB
cluster. You'll need it to configure the DB cluster for use with Amazon Bedrock. For more
information, see Amazon Resource Names (ARNs).

Connecting to a database and installing pgvector

You can connect to Aurora PostgreSQL using any of the connection utilities. For more detailed
information on these utilities, see Connecting to an Amazon Aurora PostgreSQL DB cluster.
Alternatively, you can use the RDS console query editor to run the queries. You need an Aurora DB
cluster with the RDS Data API enabled to use the query editor.

1. Log in to the database with your master user and set up pgvector. Use the following command
if the extension is not installed:

CREATE EXTENSION IF NOT EXISTS vector;

Use pgvector 0.5.0 and higher version that supports HNSW indexing. For more information,
see pgvector v0.5.0 with HNSW indexing.

2. Use the following command to check the version of the pg_vector installed:

SELECT extversion FROM pg_extension WHERE extname='vector';

Setting up database objects and privileges

1. Create a specific schema that Bedrock can use to query the data. Use the following command
to create a schema:

CREATE SCHEMA bedrock_integration;

2. Create a new role that Bedrock can use to query the database. Use the following command to
create a new role:

CREATE ROLE bedrock_user WITH PASSWORD 'password' LOGIN;

Preparing Aurora PostgreSQL to be a knowledge base 2456

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/USER_Tagging.ARN.html
https://aws.amazon.com/about-aws/whats-new/2023/10/amazon-aurora-postgresql-pgvector-v0-5-0-hnsw-indexing/

Amazon Aurora User Guide for Aurora

Note

Make a note of this password as you will need it later to create a Secrets Manager
password.

If you are using psql client, then use the following commands to create a new role:

CREATE ROLE bedrock_user LOGIN;
\PASSWORD password;

3. Grant the bedrock_user permissions to manage the bedrock_integration schema. This
will provide the ability to create tables or indexes within the schema.

GRANT ALL ON SCHEMA bedrock_integration to bedrock_user;

4. Login as the bedrock_user and create a table in the bedrock_integration schema.

CREATE TABLE bedrock_integration.bedrock_kb (id uuid PRIMARY KEY, embedding
 vector(1024), chunks text, metadata json);

This command will create the bedrock_kb table in the bedrock_integration schema with
Titan V2 embeddings.

5. We recommend you to create an index with the cosine operator which the bedrock can use to
query the data.

CREATE INDEX ON bedrock_integration.bedrock_kb USING hnsw (embedding
 vector_cosine_ops);

6. We recommend you to set the value of ef_construction to 256 for pgvector 0.6.0 and
higher version that use parallel index building.

CREATE INDEX ON bedrock_integration.bedrock_kb USING hnsw (embedding
 vector_cosine_ops) WITH (ef_construction=256);

Preparing Aurora PostgreSQL to be a knowledge base 2457

Amazon Aurora User Guide for Aurora

Create a secret in Secrets Manager

Secrets Manager lets you store your Aurora credentials so that they can be securely transmitted
to applications. If you didn't choose the AWS secrets manager option when creating Aurora
PostgreSQL DB cluster, you can create a secret now. For more information about creating AWS
Secrets Manager database secret, see AWS Secrets Manager database secret.

Creating a knowledge base in the Bedrock console

While preparing Aurora PostgreSQL to be used as the vector store for a knowledge base, you must
gather the following details that you need to provide to Amazon Bedrock console.

• Amazon Aurora DB cluster ARN – The ARN of your DB cluster.

• Secret ARN – The ARN of the AWS Secrets Manager key for your DB cluster.

• Database name – The name of your database. For example, you can use the default database
postgres.

• Table name – We recommend you to provide a schema qualified name while creating the table
using the command similar to the following:

CREATE TABLE bedrock_integration.bedrock_kb;

This command will create the bedrock_kb table in the bedrock_integration schema.

• When creating the table, make sure to configure it with the specified columns and data types.
You can use your preferred column names instead of those listed in the table. Remember to take
a note of the names you chose for reference during the knowledge base set up.

Column name Data type Description

id UUID primary key Contains unique identifiers
for each record.

chunks Text Contains the chunks of raw
text from your data sources.

embedding Vector Contains the vector
embeddings of the data
sources.

Creating a knowledge base in the Bedrock console 2458

https://docs.aws.amazon.com/secretsmanager/latest/userguide/create_database_secret.html

Amazon Aurora User Guide for Aurora

Column name Data type Description

metadata JSON Contains metadata required
to carry out source attributi
on and to enable data
ingestion and querying.

With these details, you can now create a knowledge base in the Bedrock console. For more detailed
information on setting up a vector index and creating a knowledge base information, see Create a
vector store in Amazon Aurora and Create a vector store in Amazon Aurora.

After adding Aurora as your knowledge base, you can now ingest your data sources for searching
and querying. For more information, see Ingest your data sources into the knowledge base.

Integrating Amazon Aurora PostgreSQL with other AWS
services

Amazon Aurora integrates with other AWS services so that you can extend your Aurora PostgreSQL
DB cluster to use additional capabilities in the AWS Cloud. Your Aurora PostgreSQL DB cluster can
use AWS services to do the following:

• Quickly collect, view, and assess performance for your Aurora PostgreSQL DB instances with
Amazon RDS Performance Insights. Performance Insights expands on existing Amazon RDS
monitoring features to illustrate your database's performance and help you analyze any issues
that affect it. With the Performance Insights dashboard, you can visualize the database load
and filter the load by waits, SQL statements, hosts, or users. For more information about
Performance Insights, see Monitoring DB load with Performance Insights on Amazon Aurora.

• Configure your Aurora PostgreSQL DB cluster to publish log data to Amazon CloudWatch
Logs. CloudWatch Logs provide highly durable storage for your log records. With CloudWatch
Logs, you can perform real-time analysis of the log data, and use CloudWatch to create alarms
and view metrics. For more information, see Publishing Aurora PostgreSQL logs to Amazon
CloudWatch Logs.

• Import data from an Amazon S3 bucket to an Aurora PostgreSQL DB cluster, or export data from
an Aurora PostgreSQL DB cluster to an Amazon S3 bucket. For more information, see Importing
data from Amazon S3 into an Aurora PostgreSQL DB cluster and Exporting data from an Aurora
PostgreSQL DB cluster to Amazon S3.

Integrating Aurora PostgreSQL with AWS services 2459

https://docs.aws.amazon.com/bedrock/latest/userguide/knowledge-base-setup-rds.html
https://docs.aws.amazon.com/bedrock/latest/userguide/knowledge-base-setup-rds.html
https://docs.aws.amazon.com/bedrock/latest/userguide/knowledge-base-create.html
https://docs.aws.amazon.com/bedrock/latest/userguide/knowledge-base-ingest.html

Amazon Aurora User Guide for Aurora

• Add machine learning-based predictions to database applications using the SQL language.
Aurora machine learning uses a highly optimized integration between the Aurora database
and the AWS machine learning (ML) services SageMaker and Amazon Comprehend. For more
information, see Using Amazon Aurora machine learning with Aurora PostgreSQL.

• Invoke AWS Lambda functions from an Aurora PostgreSQL DB cluster. To do this, use the
aws_lambda PostgreSQL extension provided with Aurora PostgreSQL. For more information, see
Invoking an AWS Lambda function from an Aurora PostgreSQL DB cluster.

• Integrate queries from Amazon Redshift and Aurora PostgreSQL. For more information, see
Getting started with using federated queries to PostgreSQL in the Amazon Redshift Database
Developer Guide.

Importing data from Amazon S3 into an Aurora PostgreSQL DB cluster

You can import data that's been stored using Amazon Simple Storage Service into a table on an
Aurora PostgreSQL DB cluster instance. To do this, you first install the Aurora PostgreSQL aws_s3
extension. This extension provides the functions that you use to import data from an Amazon S3
bucket. A bucket is an Amazon S3 container for objects and files. The data can be in a comma-
separate value (CSV) file, a text file, or a compressed (gzip) file. Following, you can learn how to
install the extension and how to import data from Amazon S3 into a table.

Your database must be running PostgreSQL version 10.7 or higher to import from Amazon S3 into
Aurora PostgreSQL.

If you don't have data stored on Amazon S3, you need to first create a bucket and store the data.
For more information, see the following topics in the Amazon Simple Storage Service User Guide.

• Create a bucket

• Add an object to a bucket

Cross-account import from Amazon S3 is supported. For more information, see Granting cross-
account permissions in the Amazon Simple Storage Service User Guide.

You can use the customer managed key for encryption while importing data from S3. For more
information, see KMS keys stored in AWS KMS in the Amazon Simple Storage Service User Guide.

Importing data from Amazon S3 into Aurora PostgreSQL 2460

https://docs.aws.amazon.com/redshift/latest/dg/getting-started-federated.html
https://docs.aws.amazon.com/redshift/latest/dg/getting-started-federated.html
https://docs.aws.amazon.com/AmazonS3/latest/gsg/CreatingABucket.html
https://docs.aws.amazon.com/AmazonS3/latest/gsg/PuttingAnObjectInABucket.html
https://docs.aws.amazon.com/AmazonS3/latest/gsg/example-walkthroughs-managing-access-example2.html
https://docs.aws.amazon.com/AmazonS3/latest/gsg/example-walkthroughs-managing-access-example2.html
https://docs.aws.amazon.com/AmazonS3/latest/gsg/UsingKMSEncryption.html

Amazon Aurora User Guide for Aurora

Note

Importing data from Amazon S3 isn't supported for Aurora Serverless v1. It is supported
for Aurora Serverless v2.

Topics

• Installing the aws_s3 extension

• Overview of importing data from Amazon S3 data

• Setting up access to an Amazon S3 bucket

• Importing data from Amazon S3 to your Aurora PostgreSQL DB cluster

• Function reference

Installing the aws_s3 extension

Before you can use Amazon S3 with your Aurora PostgreSQL DB cluster, you need to install the
aws_s3 extension. This extension provides functions for importing data from an Amazon S3. It
also provides functions for exporting data from an instance of an Aurora PostgreSQL DB cluster
to an Amazon S3 bucket. For more information, see Exporting data from an Aurora PostgreSQL
DB cluster to Amazon S3. The aws_s3 extension depends on some of the helper functions in the
aws_commons extension, which is installed automatically when needed.

To install the aws_s3 extension

1. Use psql (or pgAdmin) to connect to the writer instance of your Aurora PostgreSQL DB cluster
as a user that has rds_superuser privileges. If you kept the default name during the setup
process, you connect as postgres.

psql --host=111122223333.aws-region.rds.amazonaws.com --port=5432 --
username=postgres --password

2. To install the extension, run the following command.

postgres=> CREATE EXTENSION aws_s3 CASCADE;
NOTICE: installing required extension "aws_commons"
CREATE EXTENSION

3. To verify that the extension is installed, you can use the psql \dx metacommand.

Importing data from Amazon S3 into Aurora PostgreSQL 2461

Amazon Aurora User Guide for Aurora

postgres=> \dx
 List of installed extensions
 Name | Version | Schema | Description
-------------+---------+------------+---
 aws_commons | 1.2 | public | Common data types across AWS services
 aws_s3 | 1.1 | public | AWS S3 extension for importing data from S3
 plpgsql | 1.0 | pg_catalog | PL/pgSQL procedural language
(3 rows)

The functions for importing data from Amazon S3 and exporting data to Amazon S3 are now
available to use.

Overview of importing data from Amazon S3 data

To import S3 data into Aurora PostgreSQL

First, gather the details that you need to supply to the function. These include the name of the
table on your Aurora PostgreSQL DB cluster's instance, and the bucket name, file path, file type,
and AWS Region where the Amazon S3 data is stored. For more information, see View an object in
the Amazon Simple Storage Service User Guide.

Note

Multi part data import from Amazon S3 isn't currently supported.

1. Get the name of the table into which the aws_s3.table_import_from_s3 function is to
import the data. As an example, the following command creates a table t1 that can be used in
later steps.

postgres=> CREATE TABLE t1
 (col1 varchar(80),
 col2 varchar(80),
 col3 varchar(80));

2. Get the details about the Amazon S3 bucket and the data to import. To do this, open the
Amazon S3 console at https://console.aws.amazon.com/s3/, and choose Buckets. Find the
bucket containing your data in the list. Choose the bucket, open its Object overview page, and
then choose Properties.

Importing data from Amazon S3 into Aurora PostgreSQL 2462

https://docs.aws.amazon.com/AmazonS3/latest/gsg/OpeningAnObject.html
https://console.aws.amazon.com/s3/

Amazon Aurora User Guide for Aurora

Make a note of the bucket name, path, the AWS Region, and file type. You need the Amazon
Resource Name (ARN) later, to set up access to Amazon S3 through an IAM role. For more more
information, see Setting up access to an Amazon S3 bucket. The image following shows an
example.

3. You can verify the path to the data on the Amazon S3 bucket by using the AWS CLI command
aws s3 cp. If the information is correct, this command downloads a copy of the Amazon S3
file.

aws s3 cp s3://DOC-EXAMPLE-BUCKET/sample_file_path ./

4. Set up permissions on your Aurora PostgreSQL DB cluster to allow access to the file on the
Amazon S3 bucket. To do so, you use either an AWS Identity and Access Management (IAM)
role or security credentials. For more information, see Setting up access to an Amazon S3
bucket.

5. Supply the path and other Amazon S3 object details gathered (see step 2) to the
create_s3_uri function to construct an Amazon S3 URI object. To learn more about this
function, see aws_commons.create_s3_uri. The following is an example of constructing this
object during a psql session.

Importing data from Amazon S3 into Aurora PostgreSQL 2463

Amazon Aurora User Guide for Aurora

postgres=> SELECT aws_commons.create_s3_uri(
 'docs-lab-store-for-rpg',
 'versions_and_jdks_listing.csv',
 'us-west-1'
) AS s3_uri \gset

In the next step, you pass this object (aws_commons._s3_uri_1) to the
aws_s3.table_import_from_s3 function to import the data to the table.

6. Invoke the aws_s3.table_import_from_s3 function to import the data from Amazon S3
into your table. For reference information, see aws_s3.table_import_from_s3. For examples,
see Importing data from Amazon S3 to your Aurora PostgreSQL DB cluster.

Setting up access to an Amazon S3 bucket

To import data from an Amazon S3 file, give the Aurora PostgreSQL DB cluster permission to
access the Amazon S3 bucket containing the file. You provide access to an Amazon S3 bucket in
one of two ways, as described in the following topics.

Topics

• Using an IAM role to access an Amazon S3 bucket

• Using security credentials to access an Amazon S3 bucket

• Troubleshooting access to Amazon S3

Using an IAM role to access an Amazon S3 bucket

Before you load data from an Amazon S3 file, give your Aurora PostgreSQL DB cluster permission
to access the Amazon S3 bucket the file is in. This way, you don't have to manage additional
credential information or provide it in the aws_s3.table_import_from_s3 function call.

To do this, create an IAM policy that provides access to the Amazon S3 bucket. Create an IAM role
and attach the policy to the role. Then assign the IAM role to your DB cluster.

Note

You can't associate an IAM role with an Aurora Serverless v1 DB cluster, so the following
steps don't apply.

Importing data from Amazon S3 into Aurora PostgreSQL 2464

Amazon Aurora User Guide for Aurora

To give an Aurora PostgreSQL DB cluster access to Amazon S3 through an IAM role

1. Create an IAM policy.

This policy provides the bucket and object permissions that allow your Aurora PostgreSQL DB
cluster to access Amazon S3.

Include in the policy the following required actions to allow the transfer of files from an
Amazon S3 bucket to Aurora PostgreSQL:

• s3:GetObject

• s3:ListBucket

Include in the policy the following resources to identify the Amazon S3 bucket and objects in
the bucket. This shows the Amazon Resource Name (ARN) format for accessing Amazon S3.

• arn:aws:s3:::DOC-EXAMPLE-BUCKET

• arn:aws:s3:::DOC-EXAMPLE-BUCKET/*

For more information on creating an IAM policy for Aurora PostgreSQL, see Creating and using
an IAM policy for IAM database access. See also Tutorial: Create and attach your first customer
managed policy in the IAM User Guide.

The following AWS CLI command creates an IAM policy named rds-s3-import-policy with
these options. It grants access to a bucket named DOC-EXAMPLE-BUCKET.

Note

Make a note of the Amazon Resource Name (ARN) of the policy returned by this
command. You need the ARN in a subsequent step when you attach the policy to an
IAM role.

Example

For Linux, macOS, or Unix:

aws iam create-policy \

Importing data from Amazon S3 into Aurora PostgreSQL 2465

https://docs.aws.amazon.com/IAM/latest/UserGuide/tutorial_managed-policies.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/tutorial_managed-policies.html

Amazon Aurora User Guide for Aurora

 --policy-name rds-s3-import-policy \
 --policy-document '{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "s3import",
 "Action": [
 "s3:GetObject",
 "s3:ListBucket"
],
 "Effect": "Allow",
 "Resource": [
 "arn:aws:s3:::DOC-EXAMPLE-BUCKET",
 "arn:aws:s3:::DOC-EXAMPLE-BUCKET/*"
]
 }
]
 }'

For Windows:

aws iam create-policy ^
 --policy-name rds-s3-import-policy ^
 --policy-document '{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "s3import",
 "Action": [
 "s3:GetObject",
 "s3:ListBucket"
],
 "Effect": "Allow",
 "Resource": [
 "arn:aws:s3:::DOC-EXAMPLE-BUCKET",
 "arn:aws:s3:::DOC-EXAMPLE-BUCKET/*"
]
 }
]
 }'

2. Create an IAM role.

Importing data from Amazon S3 into Aurora PostgreSQL 2466

Amazon Aurora User Guide for Aurora

You do this so Aurora PostgreSQL can assume this IAM role to access your Amazon S3 buckets.
For more information, see Creating a role to delegate permissions to an IAM user in the IAM
User Guide.

We recommend using the aws:SourceArn and aws:SourceAccount global condition
context keys in resource-based policies to limit the service's permissions to a specific resource.
This is the most effective way to protect against the confused deputy problem.

If you use both global condition context keys and the aws:SourceArn value contains the
account ID, the aws:SourceAccount value and the account in the aws:SourceArn value
must use the same account ID when used in the same policy statement.

• Use aws:SourceArn if you want cross-service access for a single resource.

• Use aws:SourceAccount if you want to allow any resource in that account to be associated
with the cross-service use.

In the policy, be sure to use the aws:SourceArn global condition context key with the full
ARN of the resource. The following example shows how to do so using the AWS CLI command
to create a role named rds-s3-import-role.

Example

For Linux, macOS, or Unix:

aws iam create-role \
 --role-name rds-s3-import-role \
 --assume-role-policy-document '{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "rds.amazonaws.com"
 },
 "Action": "sts:AssumeRole",
 "Condition": {
 "StringEquals": {
 "aws:SourceAccount": "111122223333",
 "aws:SourceArn": "arn:aws:rds:us-
east-1:111122223333:cluster:clustername"

Importing data from Amazon S3 into Aurora PostgreSQL 2467

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-user.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-sourcearn
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-sourceaccount
https://docs.aws.amazon.com/IAM/latest/UserGuide/confused-deputy.html

Amazon Aurora User Guide for Aurora

 }
 }
 }
]
 }'

For Windows:

aws iam create-role ^
 --role-name rds-s3-import-role ^
 --assume-role-policy-document '{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "rds.amazonaws.com"
 },
 "Action": "sts:AssumeRole",
 "Condition": {
 "StringEquals": {
 "aws:SourceAccount": "111122223333",
 "aws:SourceArn": "arn:aws:rds:us-
east-1:111122223333:cluster:clustername"
 }
 }
 }
]
 }'

3. Attach the IAM policy that you created to the IAM role that you created.

The following AWS CLI command attaches the policy created in the previous step to the role
named rds-s3-import-role Replace your-policy-arn with the policy ARN that you
noted in an earlier step.

Example

For Linux, macOS, or Unix:

aws iam attach-role-policy \
 --policy-arn your-policy-arn \

Importing data from Amazon S3 into Aurora PostgreSQL 2468

Amazon Aurora User Guide for Aurora

 --role-name rds-s3-import-role

For Windows:

aws iam attach-role-policy ^
 --policy-arn your-policy-arn ^
 --role-name rds-s3-import-role

4. Add the IAM role to the DB cluster.

You do so by using the AWS Management Console or AWS CLI, as described following.

Console

To add an IAM role for a PostgreSQL DB cluster using the console

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. Choose the PostgreSQL DB cluster name to display its details.

3. On the Connectivity & security tab, in the Manage IAM roles section, choose the role to add
under Add IAM roles to this cluster .

4. Under Feature, choose s3Import.

5. Choose Add role.

AWS CLI

To add an IAM role for a PostgreSQL DB cluster using the CLI

• Use the following command to add the role to the PostgreSQL DB cluster named my-db-
cluster. Replace your-role-arn with the role ARN that you noted in a previous step. Use
s3Import for the value of the --feature-name option.

Example

For Linux, macOS, or Unix:

aws rds add-role-to-db-cluster \
 --db-cluster-identifier my-db-cluster \
 --feature-name s3Import \

Importing data from Amazon S3 into Aurora PostgreSQL 2469

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Aurora User Guide for Aurora

 --role-arn your-role-arn \
 --region your-region

For Windows:

aws rds add-role-to-db-cluster ^
 --db-cluster-identifier my-db-cluster ^
 --feature-name s3Import ^
 --role-arn your-role-arn ^
 --region your-region

RDS API

To add an IAM role for a PostgreSQL DB cluster using the Amazon RDS API, call the
AddRoleToDBCluster operation.

Using security credentials to access an Amazon S3 bucket

If you prefer, you can use security credentials to provide access to an Amazon S3 bucket instead
of providing access with an IAM role. You do so by specifying the credentials parameter in the
aws_s3.table_import_from_s3 function call.

The credentials parameter is a structure of type aws_commons._aws_credentials_1, which
contains AWS credentials. Use the aws_commons.create_aws_credentials function to set the access
key and secret key in an aws_commons._aws_credentials_1 structure, as shown following.

postgres=> SELECT aws_commons.create_aws_credentials(
 'sample_access_key', 'sample_secret_key', '')
AS creds \gset

After creating the aws_commons._aws_credentials_1 structure, use the
aws_s3.table_import_from_s3 function with the credentials parameter to import the data, as
shown following.

postgres=> SELECT aws_s3.table_import_from_s3(
 't', '', '(format csv)',
 :'s3_uri',
 :'creds'
);

Importing data from Amazon S3 into Aurora PostgreSQL 2470

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_AddRoleToDBCluster.html

Amazon Aurora User Guide for Aurora

Or you can include the aws_commons.create_aws_credentials function call inline within the
aws_s3.table_import_from_s3 function call.

postgres=> SELECT aws_s3.table_import_from_s3(
 't', '', '(format csv)',
 :'s3_uri',
 aws_commons.create_aws_credentials('sample_access_key', 'sample_secret_key', '')
);

Troubleshooting access to Amazon S3

If you encounter connection problems when attempting to import data from Amazon S3, see the
following for recommendations:

• Troubleshooting Amazon Aurora identity and access

• Troubleshooting Amazon S3 in the Amazon Simple Storage Service User Guide

• Troubleshooting Amazon S3 and IAM in the IAM User Guide

Importing data from Amazon S3 to your Aurora PostgreSQL DB cluster

You import data from your Amazon S3 bucket by using the table_import_from_s3 function of
the aws_s3 extension. For reference information, see aws_s3.table_import_from_s3.

Note

The following examples use the IAM role method to allow access to the Amazon S3 bucket.
Thus, the aws_s3.table_import_from_s3 function calls don't include credential
parameters.

The following shows a typical example.

postgres=> SELECT aws_s3.table_import_from_s3(
 't1',
 '',
 '(format csv)',
 :'s3_uri'
);

Importing data from Amazon S3 into Aurora PostgreSQL 2471

https://docs.aws.amazon.com/AmazonS3/latest/dev/troubleshooting.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/troubleshoot_iam-s3.html

Amazon Aurora User Guide for Aurora

The parameters are the following:

• t1 – The name for the table in the PostgreSQL DB cluster to copy the data into.

• '' – An optional list of columns in the database table. You can use this parameter to indicate
which columns of the S3 data go in which table columns. If no columns are specified, all the
columns are copied to the table. For an example of using a column list, see Importing an Amazon
S3 file that uses a custom delimiter.

• (format csv) – PostgreSQL COPY arguments. The copy process uses the arguments and
format of the PostgreSQL COPY command to import the data. Choices for format include
comma-separated value (CSV) as shown in this example, text, and binary. The default is text.

• s3_uri – A structure that contains the information identifying the Amazon S3 file. For an
example of using the aws_commons.create_s3_uri function to create an s3_uri structure, see
Overview of importing data from Amazon S3 data.

For more information about this function, see aws_s3.table_import_from_s3.

The aws_s3.table_import_from_s3 function returns text. To specify other kinds of files for
import from an Amazon S3 bucket, see one of the following examples.

Note

Importing 0 bytes file will cause an error.

Topics

• Importing an Amazon S3 file that uses a custom delimiter

• Importing an Amazon S3 compressed (gzip) file

• Importing an encoded Amazon S3 file

Importing an Amazon S3 file that uses a custom delimiter

The following example shows how to import a file that uses a custom delimiter. It also shows how
to control where to put the data in the database table using the column_list parameter of the
aws_s3.table_import_from_s3 function.

For this example, assume that the following information is organized into pipe-delimited columns
in the Amazon S3 file.

Importing data from Amazon S3 into Aurora PostgreSQL 2472

https://www.postgresql.org/docs/current/sql-copy.html

Amazon Aurora User Guide for Aurora

1|foo1|bar1|elephant1
2|foo2|bar2|elephant2
3|foo3|bar3|elephant3
4|foo4|bar4|elephant4
...

To import a file that uses a custom delimiter

1. Create a table in the database for the imported data.

postgres=> CREATE TABLE test (a text, b text, c text, d text, e text);

2. Use the following form of the aws_s3.table_import_from_s3 function to import data from the
Amazon S3 file.

You can include the aws_commons.create_s3_uri function call inline within the
aws_s3.table_import_from_s3 function call to specify the file.

postgres=> SELECT aws_s3.table_import_from_s3(
 'test',
 'a,b,d,e',
 'DELIMITER ''|''',
 aws_commons.create_s3_uri('DOC-EXAMPLE-BUCKET', 'pipeDelimitedSampleFile', 'us-
east-2')
);

The data is now in the table in the following columns.

postgres=> SELECT * FROM test;
a | b | c | d | e
---+------+---+---+------+-----------
1 | foo1 | | bar1 | elephant1
2 | foo2 | | bar2 | elephant2
3 | foo3 | | bar3 | elephant3
4 | foo4 | | bar4 | elephant4

Importing an Amazon S3 compressed (gzip) file

The following example shows how to import a file from Amazon S3 that is compressed with gzip.
The file that you import needs to have the following Amazon S3 metadata:

Importing data from Amazon S3 into Aurora PostgreSQL 2473

Amazon Aurora User Guide for Aurora

• Key: Content-Encoding

• Value: gzip

If you upload the file using the AWS Management Console, the metadata is typically applied by the
system. For information about uploading files to Amazon S3 using the AWS Management Console,
the AWS CLI, or the API, see Uploading objects in the Amazon Simple Storage Service User Guide.

For more information about Amazon S3 metadata and details about system-provided metadata,
see Editing object metadata in the Amazon S3 console in the Amazon Simple Storage Service User
Guide.

Import the gzip file into your Aurora PostgreSQL DB cluster as shown following.

postgres=> CREATE TABLE test_gzip(id int, a text, b text, c text, d text);
postgres=> SELECT aws_s3.table_import_from_s3(
 'test_gzip', '', '(format csv)',
 'DOC-EXAMPLE-BUCKET', 'test-data.gz', 'us-east-2'
);

Importing an encoded Amazon S3 file

The following example shows how to import a file from Amazon S3 that has Windows-1252
encoding.

postgres=> SELECT aws_s3.table_import_from_s3(
 'test_table', '', 'encoding ''WIN1252''',
 aws_commons.create_s3_uri('DOC-EXAMPLE-BUCKET', 'SampleFile', 'us-east-2')
);

Function reference

Functions

• aws_s3.table_import_from_s3

• aws_commons.create_s3_uri

• aws_commons.create_aws_credentials

Importing data from Amazon S3 into Aurora PostgreSQL 2474

https://docs.aws.amazon.com/AmazonS3/latest/userguide/upload-objects.html
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/add-object-metadata.html

Amazon Aurora User Guide for Aurora

aws_s3.table_import_from_s3

Imports Amazon S3 data into an Aurora PostgreSQL table. The aws_s3 extension provides the
aws_s3.table_import_from_s3 function. The return value is text.

Syntax

The required parameters are table_name, column_list and options. These identify the
database table and specify how the data is copied into the table.

You can also use the following parameters:

• The s3_info parameter specifies the Amazon S3 file to import. When you use this parameter,
access to Amazon S3 is provided by an IAM role for the PostgreSQL DB cluster.

aws_s3.table_import_from_s3 (
 table_name text,
 column_list text,
 options text,
 s3_info aws_commons._s3_uri_1
)

• The credentials parameter specifies the credentials to access Amazon S3. When you use this
parameter, you don't use an IAM role.

aws_s3.table_import_from_s3 (
 table_name text,
 column_list text,
 options text,
 s3_info aws_commons._s3_uri_1,
 credentials aws_commons._aws_credentials_1
)

Parameters

table_name

A required text string containing the name of the PostgreSQL database table to import the data
into.

Importing data from Amazon S3 into Aurora PostgreSQL 2475

Amazon Aurora User Guide for Aurora

column_list

A required text string containing an optional list of the PostgreSQL database table columns in
which to copy the data. If the string is empty, all columns of the table are used. For an example,
see Importing an Amazon S3 file that uses a custom delimiter.

options

A required text string containing arguments for the PostgreSQL COPY command. These
arguments specify how the data is to be copied into the PostgreSQL table. For more details, see
the PostgreSQL COPY documentation.

s3_info

An aws_commons._s3_uri_1 composite type containing the following information about the
S3 object:

• bucket – The name of the Amazon S3 bucket containing the file.

• file_path – The Amazon S3 file name including the path of the file.

• region – The AWS Region that the file is in. For a listing of AWS Region names and
associated values, see Regions and Availability Zones.

credentials

An aws_commons._aws_credentials_1 composite type containing the following credentials
to use for the import operation:

• Access key

• Secret key

• Session token

For information about creating an aws_commons._aws_credentials_1 composite structure,
see aws_commons.create_aws_credentials.

Alternate syntax

To help with testing, you can use an expanded set of parameters instead of the s3_info
and credentials parameters. Following are additional syntax variations for the
aws_s3.table_import_from_s3 function:

Importing data from Amazon S3 into Aurora PostgreSQL 2476

https://www.postgresql.org/docs/current/sql-copy.html

Amazon Aurora User Guide for Aurora

• Instead of using the s3_info parameter to identify an Amazon S3 file, use the combination
of the bucket, file_path, and region parameters. With this form of the function, access to
Amazon S3 is provided by an IAM role on the PostgreSQL DB instance.

aws_s3.table_import_from_s3 (
 table_name text,
 column_list text,
 options text,
 bucket text,
 file_path text,
 region text
)

• Instead of using the credentials parameter to specify Amazon S3 access, use the combination
of the access_key, session_key, and session_token parameters.

aws_s3.table_import_from_s3 (
 table_name text,
 column_list text,
 options text,
 bucket text,
 file_path text,
 region text,
 access_key text,
 secret_key text,
 session_token text
)

Alternate parameters

bucket

A text string containing the name of the Amazon S3 bucket that contains the file.

file_path

A text string containing the Amazon S3 file name including the path of the file.

region

A text string identifying the AWS Region location of the file. For a listing of AWS Region names
and associated values, see Regions and Availability Zones.

Importing data from Amazon S3 into Aurora PostgreSQL 2477

Amazon Aurora User Guide for Aurora

access_key

A text string containing the access key to use for the import operation. The default is NULL.

secret_key

A text string containing the secret key to use for the import operation. The default is NULL.

session_token

(Optional) A text string containing the session key to use for the import operation. The default
is NULL.

aws_commons.create_s3_uri

Creates an aws_commons._s3_uri_1 structure to hold Amazon S3 file information. Use the
results of the aws_commons.create_s3_uri function in the s3_info parameter of the
aws_s3.table_import_from_s3 function.

Syntax

aws_commons.create_s3_uri(
 bucket text,
 file_path text,
 region text
)

Parameters

bucket

A required text string containing the Amazon S3 bucket name for the file.

file_path

A required text string containing the Amazon S3 file name including the path of the file.

region

A required text string containing the AWS Region that the file is in. For a listing of AWS Region
names and associated values, see Regions and Availability Zones.

Importing data from Amazon S3 into Aurora PostgreSQL 2478

Amazon Aurora User Guide for Aurora

aws_commons.create_aws_credentials

Sets an access key and secret key in an aws_commons._aws_credentials_1 structure. Use
the results of the aws_commons.create_aws_credentials function in the credentials
parameter of the aws_s3.table_import_from_s3 function.

Syntax

aws_commons.create_aws_credentials(
 access_key text,
 secret_key text,
 session_token text
)

Parameters

access_key

A required text string containing the access key to use for importing an Amazon S3 file. The
default is NULL.

secret_key

A required text string containing the secret key to use for importing an Amazon S3 file. The
default is NULL.

session_token

An optional text string containing the session token to use for importing an Amazon S3 file.
The default is NULL. If you provide an optional session_token, you can use temporary
credentials.

Exporting data from an Aurora PostgreSQL DB cluster to Amazon S3

You can query data from an Aurora PostgreSQL DB cluster and export it directly into files stored in
an Amazon S3 bucket. To do this, you first install the Aurora PostgreSQL aws_s3 extension. This
extension provides you with the functions that you use to export the results of queries to Amazon
S3. Following, you can find out how to install the extension and how to export data to Amazon S3.

You can export from a provisioned or an Aurora Serverless v2 DB instance. These steps aren't
supported for Aurora Serverless v1.

Exporting PostgreSQL data to Amazon S3 2479

Amazon Aurora User Guide for Aurora

Note

Cross-account export to Amazon S3 isn't supported.

All currently available versions of Aurora PostgreSQL support exporting data to Amazon Simple
Storage Service. For detailed version information, see Amazon Aurora PostgreSQL updates in the
Release Notes for Aurora PostgreSQL.

If you don't have a bucket set up for your export, see the following topics the Amazon Simple
Storage Service User Guide.

• Setting up Amazon S3

• Create a bucket

By default, the data exported from Aurora PostgreSQL to Amazon S3 uses server-side encryption
with AWS managed key. You can alternatively use customer managed key that you have already
created. If you are using bucket encryption, the Amazon S3 bucket must be encrypted with AWS
Key Management Service (AWS KMS) key (SSE-KMS). Currently, buckets encrypted with Amazon S3
managed keys (SSE-S3) are not supported.

Note

You can save DB and DB cluster snapshot data to Amazon S3 using the AWS Management
Console, AWS CLI, or Amazon RDS API. For more information, see Exporting DB cluster
snapshot data to Amazon S3.

Topics

• Installing the aws_s3 extension

• Overview of exporting data to Amazon S3

• Specifying the Amazon S3 file path to export to

• Setting up access to an Amazon S3 bucket

• Exporting query data using the aws_s3.query_export_to_s3 function

• Troubleshooting access to Amazon S3

Exporting PostgreSQL data to Amazon S3 2480

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/setting-up-s3.html
https://docs.aws.amazon.com/AmazonS3/latest/gsg/CreatingABucket.html

Amazon Aurora User Guide for Aurora

• Function reference

Installing the aws_s3 extension

Before you can use Amazon Simple Storage Service with your Aurora PostgreSQL DB cluster, you
need to install the aws_s3 extension. This extension provides functions for exporting data from
the writer instance of an Aurora PostgreSQL DB cluster to an Amazon S3 bucket. It also provides
functions for importing data from an Amazon S3. For more information, see Importing data from
Amazon S3 into an Aurora PostgreSQL DB cluster. The aws_s3 extension depends on some of the
helper functions in the aws_commons extension, which is installed automatically when needed.

To install the aws_s3 extension

1. Use psql (or pgAdmin) to connect to the writer instance of your Aurora PostgreSQL DB cluster
as a user that has rds_superuser privileges. If you kept the default name during the setup
process, you connect as postgres.

psql --host=111122223333.aws-region.rds.amazonaws.com --port=5432 --
username=postgres --password

2. To install the extension, run the following command.

postgres=> CREATE EXTENSION aws_s3 CASCADE;
NOTICE: installing required extension "aws_commons"
CREATE EXTENSION

3. To verify that the extension is installed, you can use the psql \dx metacommand.

postgres=> \dx
 List of installed extensions
 Name | Version | Schema | Description
-------------+---------+------------+---
 aws_commons | 1.2 | public | Common data types across AWS services
 aws_s3 | 1.1 | public | AWS S3 extension for importing data from S3
 plpgsql | 1.0 | pg_catalog | PL/pgSQL procedural language
(3 rows)

The functions for importing data from Amazon S3 and exporting data to Amazon S3 are now
available to use.

Exporting PostgreSQL data to Amazon S3 2481

Amazon Aurora User Guide for Aurora

Verify that your Aurora PostgreSQL version supports exports to Amazon S3

You can verify that your Aurora PostgreSQL version supports export to Amazon S3 by using the
describe-db-engine-versions command. The following example checks to see if version
10.14 can export to Amazon S3.

aws rds describe-db-engine-versions --region us-east-1 \
--engine aurora-postgresql --engine-version 10.14 | grep s3Export

If the output includes the string "s3Export", then the engine supports Amazon S3 exports.
Otherwise, the engine doesn't support them.

Overview of exporting data to Amazon S3

To export data stored in an Aurora PostgreSQL database to an Amazon S3 bucket, use the
following procedure.

To export Aurora PostgreSQL data to S3

1. Identify an Amazon S3 file path to use for exporting data. For details about this process, see
Specifying the Amazon S3 file path to export to.

2. Provide permission to access the Amazon S3 bucket.

To export data to an Amazon S3 file, give the Aurora PostgreSQL DB cluster permission to
access the Amazon S3 bucket that the export will use for storage. Doing this includes the
following steps:

1. Create an IAM policy that provides access to an Amazon S3 bucket that you want to export
to.

2. Create an IAM role.

3. Attach the policy you created to the role you created.

4. Add this IAM role to your DB cluster .

For details about this process, see Setting up access to an Amazon S3 bucket.

3. Identify a database query to get the data. Export the query data by calling the
aws_s3.query_export_to_s3 function.

Exporting PostgreSQL data to Amazon S3 2482

Amazon Aurora User Guide for Aurora

After you complete the preceding preparation tasks, use the aws_s3.query_export_to_s3
function to export query results to Amazon S3. For details about this process, see Exporting
query data using the aws_s3.query_export_to_s3 function.

Specifying the Amazon S3 file path to export to

Specify the following information to identify the location in Amazon S3 where you want to export
data to:

• Bucket name – A bucket is a container for Amazon S3 objects or files.

For more information on storing data with Amazon S3, see Create a bucket and View an object in
the Amazon Simple Storage Service User Guide.

• File path – The file path identifies where the export is stored in the Amazon S3 bucket. The file
path consists of the following:

• An optional path prefix that identifies a virtual folder path.

• A file prefix that identifies one or more files to be stored. Larger exports are stored in multiple
files, each with a maximum size of approximately 6 GB. The additional file names have the
same file prefix but with _partXX appended. The XX represents 2, then 3, and so on.

For example, a file path with an exports folder and a query-1-export file prefix is /
exports/query-1-export.

• AWS Region (optional) – The AWS Region where the Amazon S3 bucket is located. If you don't
specify an AWS Region value, then Aurora saves your files into Amazon S3 in the same AWS
Region as the exporting DB cluster.

Note

Currently, the AWS Region must be the same as the region of the exporting DB cluster.

For a listing of AWS Region names and associated values, see Regions and Availability Zones.

To hold the Amazon S3 file information about where the export is to be stored, you can use the
aws_commons.create_s3_uri function to create an aws_commons._s3_uri_1 composite structure
as follows.

Exporting PostgreSQL data to Amazon S3 2483

https://docs.aws.amazon.com/AmazonS3/latest/gsg/CreatingABucket.html
https://docs.aws.amazon.com/AmazonS3/latest/gsg/OpeningAnObject.html

Amazon Aurora User Guide for Aurora

psql=> SELECT aws_commons.create_s3_uri(
 'DOC-EXAMPLE-BUCKET',
 'sample-filepath',
 'us-west-2'
) AS s3_uri_1 \gset

You later provide this s3_uri_1 value as a parameter in the call to the aws_s3.query_export_to_s3
function. For examples, see Exporting query data using the aws_s3.query_export_to_s3 function.

Setting up access to an Amazon S3 bucket

To export data to Amazon S3, give your PostgreSQL DB cluster permission to access the Amazon S3
bucket that the files are to go in.

To do this, use the following procedure.

To give a PostgreSQL DB cluster access to Amazon S3 through an IAM role

1. Create an IAM policy.

This policy provides the bucket and object permissions that allow your PostgreSQL DB cluster
to access Amazon S3.

As part of creating this policy, take the following steps:

a. Include in the policy the following required actions to allow the transfer of files from your
PostgreSQL DB cluster to an Amazon S3 bucket:

• s3:PutObject

• s3:AbortMultipartUpload

b. Include the Amazon Resource Name (ARN) that identifies the Amazon S3 bucket and
objects in the bucket. The ARN format for accessing Amazon S3 is: arn:aws:s3:::DOC-
EXAMPLE-BUCKET/*

For more information on creating an IAM policy for Aurora PostgreSQL, see Creating and using
an IAM policy for IAM database access. See also Tutorial: Create and attach your first customer
managed policy in the IAM User Guide.

The following AWS CLI command creates an IAM policy named rds-s3-export-policy with
these options. It grants access to a bucket named DOC-EXAMPLE-BUCKET.

Exporting PostgreSQL data to Amazon S3 2484

https://docs.aws.amazon.com/IAM/latest/UserGuide/tutorial_managed-policies.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/tutorial_managed-policies.html

Amazon Aurora User Guide for Aurora

Warning

We recommend that you set up your database within a private VPC that has endpoint
policies configured for accessing specific buckets. For more information, see Using
endpoint policies for Amazon S3 in the Amazon VPC User Guide.
We strongly recommend that you do not create a policy with all-resource access.
This access can pose a threat for data security. If you create a policy that gives
S3:PutObject access to all resources using "Resource":"*", then a user with
export privileges can export data to all buckets in your account. In addition, the user
can export data to any publicly writable bucket within your AWS Region.

After you create the policy, note the Amazon Resource Name (ARN) of the policy. You need the
ARN for a subsequent step when you attach the policy to an IAM role.

aws iam create-policy --policy-name rds-s3-export-policy --policy-document '{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "s3export",
 "Action": [
 "s3:PutObject*",
 "s3:ListBucket",
 "s3:GetObject*",
 "s3:DeleteObject*",
 "s3:GetBucketLocation",
 "s3:AbortMultipartUpload"
],
 "Effect": "Allow",
 "Resource": [
 "arn:aws:s3:::DOC-EXAMPLE-BUCKET/*"
]
 }
]
 }'

2. Create an IAM role.

Exporting PostgreSQL data to Amazon S3 2485

https://docs.aws.amazon.com/vpc/latest/userguide/vpc-endpoints-s3.html#vpc-endpoints-policies-s3
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-endpoints-s3.html#vpc-endpoints-policies-s3

Amazon Aurora User Guide for Aurora

You do this so Aurora PostgreSQL can assume this IAM role on your behalf to access your
Amazon S3 buckets. For more information, see Creating a role to delegate permissions to an
IAM user in the IAM User Guide.

We recommend using the aws:SourceArn and aws:SourceAccount global condition
context keys in resource-based policies to limit the service's permissions to a specific resource.
This is the most effective way to protect against the confused deputy problem.

If you use both global condition context keys and the aws:SourceArn value contains the
account ID, the aws:SourceAccount value and the account in the aws:SourceArn value
must use the same account ID when used in the same policy statement.

• Use aws:SourceArn if you want cross-service access for a single resource.

• Use aws:SourceAccount if you want to allow any resource in that account to be associated
with the cross-service use.

In the policy, be sure to use the aws:SourceArn global condition context key with the full
ARN of the resource. The following example shows how to do so using the AWS CLI command
to create a role named rds-s3-export-role.

Example

For Linux, macOS, or Unix:

aws iam create-role \
 --role-name rds-s3-export-role \
 --assume-role-policy-document '{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "rds.amazonaws.com"
 },
 "Action": "sts:AssumeRole",
 "Condition": {
 "StringEquals": {
 "aws:SourceAccount": "111122223333",
 "aws:SourceArn": "arn:aws:rds:us-east-1:111122223333:db:dbname"
 }

Exporting PostgreSQL data to Amazon S3 2486

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-user.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-user.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-sourcearn
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-sourceaccount
https://docs.aws.amazon.com/IAM/latest/UserGuide/confused-deputy.html

Amazon Aurora User Guide for Aurora

 }
 }
]
 }'

For Windows:

aws iam create-role ^
 --role-name rds-s3-export-role ^
 --assume-role-policy-document '{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "rds.amazonaws.com"
 },
 "Action": "sts:AssumeRole",
 "Condition": {
 "StringEquals": {
 "aws:SourceAccount": "111122223333",
 "aws:SourceArn": "arn:aws:rds:us-east-1:111122223333:db:dbname"
 }
 }
 }
]
 }'

3. Attach the IAM policy that you created to the IAM role that you created.

The following AWS CLI command attaches the policy created earlier to the role named rds-
s3-export-role. Replace your-policy-arn with the policy ARN that you noted in an
earlier step.

aws iam attach-role-policy --policy-arn your-policy-arn --role-name rds-s3-
export-role

4. Add the IAM role to the DB cluster. You do so by using the AWS Management Console or AWS
CLI, as described following.

Exporting PostgreSQL data to Amazon S3 2487

Amazon Aurora User Guide for Aurora

Console

To add an IAM role for a PostgreSQL DB cluster using the console

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. Choose the PostgreSQL DB cluster name to display its details.

3. On the Connectivity & security tab, in the Manage IAM roles section, choose the role to add
under Add IAM roles to this instance.

4. Under Feature, choose s3Export.

5. Choose Add role.

AWS CLI

To add an IAM role for a PostgreSQL DB cluster using the CLI

• Use the following command to add the role to the PostgreSQL DB cluster named my-db-
cluster. Replace your-role-arn with the role ARN that you noted in a previous step. Use
s3Export for the value of the --feature-name option.

Example

For Linux, macOS, or Unix:

aws rds add-role-to-db-cluster \
 --db-cluster-identifier my-db-cluster \
 --feature-name s3Export \
 --role-arn your-role-arn \
 --region your-region

For Windows:

aws rds add-role-to-db-cluster ^
 --db-cluster-identifier my-db-cluster ^
 --feature-name s3Export ^
 --role-arn your-role-arn ^
 --region your-region

Exporting PostgreSQL data to Amazon S3 2488

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Aurora User Guide for Aurora

Exporting query data using the aws_s3.query_export_to_s3 function

Export your PostgreSQL data to Amazon S3 by calling the aws_s3.query_export_to_s3 function.

Topics

• Prerequisites

• Calling aws_s3.query_export_to_s3

• Exporting to a CSV file that uses a custom delimiter

• Exporting to a binary file with encoding

Prerequisites

Before you use the aws_s3.query_export_to_s3 function, be sure to complete the following
prerequisites:

• Install the required PostgreSQL extensions as described in Overview of exporting data to
Amazon S3.

• Determine where to export your data to Amazon S3 as described in Specifying the Amazon S3
file path to export to.

• Make sure that the DB cluster has export access to Amazon S3 as described in Setting up access
to an Amazon S3 bucket.

The examples following use a database table called sample_table. These examples export the
data into a bucket called DOC-EXAMPLE-BUCKET. The example table and data are created with the
following SQL statements in psql.

psql=> CREATE TABLE sample_table (bid bigint PRIMARY KEY, name varchar(80));
psql=> INSERT INTO sample_table (bid,name) VALUES (1, 'Monday'), (2,'Tuesday'), (3,
 'Wednesday');

Calling aws_s3.query_export_to_s3

The following shows the basic ways of calling the aws_s3.query_export_to_s3 function.

These examples use the variable s3_uri_1 to identify a structure that contains the information
identifying the Amazon S3 file. Use the aws_commons.create_s3_uri function to create the
structure.

Exporting PostgreSQL data to Amazon S3 2489

Amazon Aurora User Guide for Aurora

psql=> SELECT aws_commons.create_s3_uri(
 'DOC-EXAMPLE-BUCKET',
 'sample-filepath',
 'us-west-2'
) AS s3_uri_1 \gset

Although the parameters vary for the following two aws_s3.query_export_to_s3 function
calls, the results are the same for these examples. All rows of the sample_table table are
exported into a bucket called DOC-EXAMPLE-BUCKET.

psql=> SELECT * FROM aws_s3.query_export_to_s3('SELECT * FROM
 sample_table', :'s3_uri_1');

psql=> SELECT * FROM aws_s3.query_export_to_s3('SELECT * FROM
 sample_table', :'s3_uri_1', options :='format text');

The parameters are described as follows:

• 'SELECT * FROM sample_table' – The first parameter is a required text string containing an
SQL query. The PostgreSQL engine runs this query. The results of the query are copied to the S3
bucket identified in other parameters.

• :'s3_uri_1' – This parameter is a structure that identifies the Amazon S3 file. This example
uses a variable to identify the previously created structure. You can instead create the
structure by including the aws_commons.create_s3_uri function call inline within the
aws_s3.query_export_to_s3 function call as follows.

SELECT * from aws_s3.query_export_to_s3('select * from sample_table',
 aws_commons.create_s3_uri('DOC-EXAMPLE-BUCKET', 'sample-filepath', 'us-west-2')
);

• options :='format text' – The options parameter is an optional text string containing
PostgreSQL COPY arguments. The copy process uses the arguments and format of the
PostgreSQL COPY command.

If the file specified doesn't exist in the Amazon S3 bucket, it's created. If the file already exists, it's
overwritten. The syntax for accessing the exported data in Amazon S3 is the following.

s3-region://bucket-name[/path-prefix]/file-prefix

Exporting PostgreSQL data to Amazon S3 2490

https://www.postgresql.org/docs/current/sql-copy.html

Amazon Aurora User Guide for Aurora

Larger exports are stored in multiple files, each with a maximum size of approximately 6 GB. The
additional file names have the same file prefix but with _partXX appended. The XX represents 2,
then 3, and so on. For example, suppose that you specify the path where you store data files as the
following.

s3-us-west-2://DOC-EXAMPLE-BUCKET/my-prefix

If the export has to create three data files, the Amazon S3 bucket contains the following data files.

s3-us-west-2://DOC-EXAMPLE-BUCKET/my-prefix
s3-us-west-2://DOC-EXAMPLE-BUCKET/my-prefix_part2
s3-us-west-2://DOC-EXAMPLE-BUCKET/my-prefix_part3

For the full reference for this function and additional ways to call it, see
aws_s3.query_export_to_s3. For more about accessing files in Amazon S3, see View an object in the
Amazon Simple Storage Service User Guide.

Exporting to a CSV file that uses a custom delimiter

The following example shows how to call the aws_s3.query_export_to_s3 function to export
data to a file that uses a custom delimiter. The example uses arguments of the PostgreSQL COPY
command to specify the comma-separated value (CSV) format and a colon (:) delimiter.

SELECT * from aws_s3.query_export_to_s3('select * from basic_test', :'s3_uri_1',
 options :='format csv, delimiter $$:$$');

Exporting to a binary file with encoding

The following example shows how to call the aws_s3.query_export_to_s3 function to export data
to a binary file that has Windows-1253 encoding.

SELECT * from aws_s3.query_export_to_s3('select * from basic_test', :'s3_uri_1',
 options :='format binary, encoding WIN1253');

Troubleshooting access to Amazon S3

If you encounter connection problems when attempting to export data to Amazon S3, first confirm
that the outbound access rules for the VPC security group associated with your DB instance permit

Exporting PostgreSQL data to Amazon S3 2491

https://docs.aws.amazon.com/AmazonS3/latest/gsg/OpeningAnObject.html
https://www.postgresql.org/docs/current/sql-copy.html

Amazon Aurora User Guide for Aurora

network connectivity. Specifically, the security group must have a rule that allows the DB instance
to send TCP traffic to port 443 and to any IPv4 addresses (0.0.0.0/0). For more information, see
Provide access to the DB cluster in the VPC by creating a security group.

See also the following for recommendations:

• Troubleshooting Amazon Aurora identity and access

• Troubleshooting Amazon S3 in the Amazon Simple Storage Service User Guide

• Troubleshooting Amazon S3 and IAM in the IAM User Guide

Function reference

Functions

• aws_s3.query_export_to_s3

• aws_commons.create_s3_uri

aws_s3.query_export_to_s3

Exports a PostgreSQL query result to an Amazon S3 bucket. The aws_s3 extension provides the
aws_s3.query_export_to_s3 function.

The two required parameters are query and s3_info. These define the query to be exported and
identify the Amazon S3 bucket to export to. An optional parameter called options provides for
defining various export parameters. For examples of using the aws_s3.query_export_to_s3
function, see Exporting query data using the aws_s3.query_export_to_s3 function.

Syntax

aws_s3.query_export_to_s3(
 query text,
 s3_info aws_commons._s3_uri_1,
 options text,
 kms_key text
)

Exporting PostgreSQL data to Amazon S3 2492

https://docs.aws.amazon.com/AmazonS3/latest/dev/troubleshooting.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/troubleshoot_iam-s3.html

Amazon Aurora User Guide for Aurora

Input parameters

query

A required text string containing an SQL query that the PostgreSQL engine runs. The results of
this query are copied to an S3 bucket identified in the s3_info parameter.

s3_info

An aws_commons._s3_uri_1 composite type containing the following information about the
S3 object:

• bucket – The name of the Amazon S3 bucket to contain the file.

• file_path – The Amazon S3 file name and path.

• region – The AWS Region that the bucket is in. For a listing of AWS Region names and
associated values, see Regions and Availability Zones.

Currently, this value must be the same AWS Region as that of the exporting DB cluster . The
default is the AWS Region of the exporting DB cluster .

To create an aws_commons._s3_uri_1 composite structure, see the
aws_commons.create_s3_uri function.

options

An optional text string containing arguments for the PostgreSQL COPY command. These
arguments specify how the data is to be copied when exported. For more details, see the
PostgreSQL COPY documentation.

kms_key text

An optional text string containing the customer managed KMS key of the S3 bucket to export
the data to.

Alternate input parameters

To help with testing, you can use an expanded set of parameters instead of the s3_info
parameter. Following are additional syntax variations for the aws_s3.query_export_to_s3
function.

Instead of using the s3_info parameter to identify an Amazon S3 file, use the combination of the
bucket, file_path, and region parameters.

Exporting PostgreSQL data to Amazon S3 2493

https://www.postgresql.org/docs/current/sql-copy.html

Amazon Aurora User Guide for Aurora

aws_s3.query_export_to_s3(
 query text,
 bucket text,
 file_path text,
 region text,
 options text,
 kms_key text
)

query

A required text string containing an SQL query that the PostgreSQL engine runs. The results of
this query are copied to an S3 bucket identified in the s3_info parameter.

bucket

A required text string containing the name of the Amazon S3 bucket that contains the file.

file_path

A required text string containing the Amazon S3 file name including the path of the file.

region

An optional text string containing the AWS Region that the bucket is in. For a listing of AWS
Region names and associated values, see Regions and Availability Zones.

Currently, this value must be the same AWS Region as that of the exporting DB cluster . The
default is the AWS Region of the exporting DB cluster .

options

An optional text string containing arguments for the PostgreSQL COPY command. These
arguments specify how the data is to be copied when exported. For more details, see the
PostgreSQL COPY documentation.

kms_key text

An optional text string containing the customer managed KMS key of the S3 bucket to export
the data to.

Output parameters

aws_s3.query_export_to_s3(

Exporting PostgreSQL data to Amazon S3 2494

https://www.postgresql.org/docs/current/sql-copy.html

Amazon Aurora User Guide for Aurora

 OUT rows_uploaded bigint,
 OUT files_uploaded bigint,
 OUT bytes_uploaded bigint
)

rows_uploaded

The number of table rows that were successfully uploaded to Amazon S3 for the given query.

files_uploaded

The number of files uploaded to Amazon S3. Files are created in sizes of approximately 6 GB.
Each additional file created has _partXX appended to the name. The XX represents 2, then 3,
and so on as needed.

bytes_uploaded

The total number of bytes uploaded to Amazon S3.

Examples

psql=> SELECT * from aws_s3.query_export_to_s3('select * from sample_table', 'DOC-
EXAMPLE-BUCKET', 'sample-filepath');
psql=> SELECT * from aws_s3.query_export_to_s3('select * from sample_table', 'DOC-
EXAMPLE-BUCKET', 'sample-filepath','us-west-2');
psql=> SELECT * from aws_s3.query_export_to_s3('select * from sample_table', 'DOC-
EXAMPLE-BUCKET', 'sample-filepath','us-west-2','format text');

aws_commons.create_s3_uri

Creates an aws_commons._s3_uri_1 structure to hold Amazon S3 file information. You use
the results of the aws_commons.create_s3_uri function in the s3_info parameter of the
aws_s3.query_export_to_s3 function. For an example of using the aws_commons.create_s3_uri
function, see Specifying the Amazon S3 file path to export to.

Syntax

aws_commons.create_s3_uri(
 bucket text,
 file_path text,
 region text

Exporting PostgreSQL data to Amazon S3 2495

Amazon Aurora User Guide for Aurora

)

Input parameters

bucket

A required text string containing the Amazon S3 bucket name for the file.

file_path

A required text string containing the Amazon S3 file name including the path of the file.

region

A required text string containing the AWS Region that the file is in. For a listing of AWS Region
names and associated values, see Regions and Availability Zones.

Invoking an AWS Lambda function from an Aurora PostgreSQL DB
cluster

AWS Lambda is an event-driven compute service that lets you run code without provisioning or
managing servers. It's available for use with many AWS services, including Aurora PostgreSQL. For
example, you can use Lambda functions to process event notifications from a database, or to load
data from files whenever a new file is uploaded to Amazon S3. To learn more about Lambda, see
What is AWS Lambda? in the AWS Lambda Developer Guide.

Note

Invoking AWS Lambda functions is supported in Aurora PostgreSQL 11.9 and higher
(including Aurora Serverless v2).

Setting up Aurora PostgreSQL to work with Lambda functions is a multi-step process involving
AWS Lambda, IAM, your VPC, and your Aurora PostgreSQL DB cluster. Following, you can find
summaries of the necessary steps.

For more information about Lambda functions, see Getting started with Lambda and AWS Lambda
foundations in the AWS Lambda Developer Guide.

Topics

Invoking a Lambda function from Aurora PostgreSQL 2496

https://docs.aws.amazon.com/lambda/latest/dg/welcome.html
https://docs.aws.amazon.com/lambda/latest/dg/getting-started.html
https://docs.aws.amazon.com/lambda/latest/dg/lambda-foundation.html
https://docs.aws.amazon.com/lambda/latest/dg/lambda-foundation.html

Amazon Aurora User Guide for Aurora

• Step 1: Configure your Aurora PostgreSQL DB cluster for outbound connections to AWS Lambda

• Step 2: Configure IAM for your Aurora PostgreSQL DB cluster and AWS Lambda

• Step 3: Install the aws_lambda extension for an Aurora PostgreSQL DB cluster

• Step 4: Use Lambda helper functions with your Aurora PostgreSQL DB cluster (Optional)

• Step 5: Invoke a Lambda function from your Aurora PostgreSQL DB cluster

• Step 6: Grant other users permission to invoke Lambda functions

• Examples: Invoking Lambda functions from your Aurora PostgreSQL DB cluster

• Lambda function error messages

• AWS Lambda function and parameter reference

Step 1: Configure your Aurora PostgreSQL DB cluster for outbound connections to
AWS Lambda

Lambda functions always run inside an Amazon VPC that's owned by the AWS Lambda service.
Lambda applies network access and security rules to this VPC and it maintains and monitors
the VPC automatically. Your Aurora PostgreSQL DB cluster sends network traffic to the Lambda
service's VPC. How you configure this depends on whether your Aurora DB cluster's primary DB
instance is public or private.

• Public Aurora PostgreSQL DB cluster – A DB cluster's primary DB instance is public if it's located
in a public subnet on your VPC, and if the instance's "PubliclyAccessible" property is true. To
find the value of this property, you can use the describe-db-instances AWS CLI command. Or, you
can use the AWS Management Console to open the Connectivity & security tab and check that
Publicly accessible is Yes. To verify that the instance is in the public subnet of your VPC, you can
use the AWS Management Console or the AWS CLI.

To set up access to Lambda, you use the AWS Management Console or the AWS CLI to create an
outbound rule on your VPC's security group. The outbound rule specifies that TCP can use port
443 to send packets to any IPv4 addresses (0.0.0.0/0).

• Private Aurora PostgreSQL DB cluster – In this case, the instance's "PubliclyAccessible" property
is false or it's in a private subnet. To allow the instance to work with Lambda, you can use
a Network Address Translation) NAT gateway. For more information, see NAT gateways. Or,
you can configure your VPC with a VPC endpoint for Lambda. For more information, see VPC
endpoints in the Amazon VPC User Guide. The endpoint responds to calls made by your Aurora
PostgreSQL DB cluster to your Lambda functions.

Invoking a Lambda function from Aurora PostgreSQL 2497

https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-instances.html
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-nat-gateway.html
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-endpoints.html
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-endpoints.html

Amazon Aurora User Guide for Aurora

Your VPC can now interact with the AWS Lambda VPC at the network level. Next, you configure the
permissions using IAM.

Step 2: Configure IAM for your Aurora PostgreSQL DB cluster and AWS Lambda

Invoking Lambda functions from your Aurora PostgreSQL DB cluster requires certain privileges.
To configure the necessary privileges, we recommend that you create an IAM policy that allows
invoking Lambda functions, assign that policy to a role, and then apply the role to your DB cluster.
This approach gives the DB cluster privileges to invoke the specified Lambda function on your
behalf. The following steps show you how to do this using the AWS CLI.

To configure IAM permissions for using your cluster with Lambda

1. Use the create-policy AWS CLI command to create an IAM policy that allows your Aurora
PostgreSQL DB cluster to invoke the specified Lambda function. (The statement ID (Sid) is an
optional description for your policy statement and has no effect on usage.) This policy gives
your Aurora DB cluster the minimum permissions needed to invoke the specified Lambda
function.

aws iam create-policy --policy-name rds-lambda-policy --policy-document '{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "AllowAccessToExampleFunction",
 "Effect": "Allow",
 "Action": "lambda:InvokeFunction",
 "Resource": "arn:aws:lambda:aws-region:444455556666:function:my-function"
 }
]
}'

Alternatively, you can use the predefined AWSLambdaRole policy that allows you to invoke any
of your Lambda functions. For more information, see Identity-based IAM policies for Lambda

2. Use the create-role AWS CLI command to create an IAM role that the policy can assume at
runtime.

aws iam create-role --role-name rds-lambda-role --assume-role-policy-document '{
 "Version": "2012-10-17",
 "Statement": [
 {

Invoking a Lambda function from Aurora PostgreSQL 2498

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/iam/create-policy.html
https://docs.aws.amazon.com/lambda/latest/dg/access-control-identity-based.html#access-policy-examples-aws-managed
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/iam/create-role.html

Amazon Aurora User Guide for Aurora

 "Effect": "Allow",
 "Principal": {
 "Service": "rds.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }
]
}'

3. Apply the policy to the role by using the attach-role-policy AWS CLI command.

aws iam attach-role-policy \
 --policy-arn arn:aws:iam::444455556666:policy/rds-lambda-policy \
 --role-name rds-lambda-role --region aws-region

4. Apply the role to your Aurora PostgreSQL DB cluster by using the add-role-to-db-cluster
AWS CLI command. This last step allows your DB cluster's database users to invoke Lambda
functions.

aws rds add-role-to-db-cluster \
 --db-cluster-identifier my-cluster-name \
 --feature-name Lambda \
 --role-arn arn:aws:iam::444455556666:role/rds-lambda-role \
 --region aws-region

With the VPC and the IAM configurations complete, you can now install the aws_lambda
extension. (Note that you can install the extension at any time, but until you set up the correct VPC
support and IAM privileges, the aws_lambda extension adds nothing to your Aurora PostgreSQL
DB cluster's capabilities.)

Step 3: Install the aws_lambda extension for an Aurora PostgreSQL DB cluster

To use AWS Lambda with your Aurora PostgreSQL DB cluster, add the aws_lambda PostgreSQL
extension to your Aurora PostgreSQL DB cluster. This extension provides your Aurora PostgreSQL
DB cluster with the ability to call Lambda functions from PostgreSQL.

To install the aws_lambda extension in your Aurora PostgreSQL DB cluster

Use the PostgreSQL psql command-line or the pgAdmin tool to connect to your Aurora
PostgreSQL DB cluster .

Invoking a Lambda function from Aurora PostgreSQL 2499

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/iam/attach-role-policy.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/rds/add-role-to-db-cluster.html

Amazon Aurora User Guide for Aurora

1. Connect to your Aurora PostgreSQL DB cluster instance as a user with rds_superuser
privileges. The default postgres user is shown in the example.

psql -h cluster-instance.444455556666.aws-region.rds.amazonaws.com -U postgres -p
 5432

2. Install the aws_lambda extension. The aws_commons extension is also required. It provides
helper functions to aws_lambda and many other Aurora extensions for PostgreSQL. If it's
not already on your Aurora PostgreSQLDB cluster , it's installed with aws_lambda as shown
following.

CREATE EXTENSION IF NOT EXISTS aws_lambda CASCADE;
NOTICE: installing required extension "aws_commons"
CREATE EXTENSION

The aws_lambda extension is installed in your Aurora PostgreSQL DB cluster's primary DB
instance. You can now create convenience structures for invoking your Lambda functions.

Step 4: Use Lambda helper functions with your Aurora PostgreSQL DB cluster
(Optional)

You can use the helper functions in the aws_commons extension to prepare entities that you can
more easily invoke from PostgreSQL. To do this, you need to have the following information about
your Lambda functions:

• Function name – The name, Amazon Resource Name (ARN), version, or alias of the Lambda
function. The IAM policy created in Step 2: Configure IAM for your cluster and Lambda requires
the ARN, so we recommend that you use your function's ARN.

• AWS Region – (Optional) The AWS Region where the Lambda function is located if it's not in the
same Region as your Aurora PostgreSQL DB cluster.

To hold the Lambda function name information, you use the
aws_commons.create_lambda_function_arn function. This helper function creates an
aws_commons._lambda_function_arn_1 composite structure with the details needed by the
invoke function. Following, you can find three alternative approaches to setting up this composite
structure.

Invoking a Lambda function from Aurora PostgreSQL 2500

Amazon Aurora User Guide for Aurora

SELECT aws_commons.create_lambda_function_arn(
 'my-function',
 'aws-region'
) AS aws_lambda_arn_1 \gset

SELECT aws_commons.create_lambda_function_arn(
 '111122223333:function:my-function',
 'aws-region'
) AS lambda_partial_arn_1 \gset

SELECT aws_commons.create_lambda_function_arn(
 'arn:aws:lambda:aws-region:111122223333:function:my-function'
) AS lambda_arn_1 \gset

Any of these values can be used in calls to the aws_lambda.invoke function. For examples, see Step
5: Invoke a Lambda function from your Aurora PostgreSQL DB cluster.

Step 5: Invoke a Lambda function from your Aurora PostgreSQL DB cluster

The aws_lambda.invoke function behaves synchronously or asynchronously, depending on the
invocation_type. The two alternatives for this parameter are RequestResponse (the default)
and Event, as follows.

• RequestResponse – This invocation type is synchronous. It's the default behavior when the call
is made without specifying an invocation type. The response payload includes the results of the
aws_lambda.invoke function. Use this invocation type when your workflow requires receiving
results from the Lambda function before proceeding.

• Event – This invocation type is asynchronous. The response doesn't include a payload containing
results. Use this invocation type when your workflow doesn't need a result from the Lambda
function to continue processing.

As a simple test of your setup, you can connect to your DB instance using psql and invoke an
example function from the command line. Suppose that you have one of the basic functions set up
on your Lambda service, such as the simple Python function shown in the following screenshot.

Invoking a Lambda function from Aurora PostgreSQL 2501

Amazon Aurora User Guide for Aurora

To invoke an example function

1. Connect to your primary DB instance using psql or pgAdmin.

psql -h cluster.444455556666.aws-region.rds.amazonaws.com -U postgres -p 5432

2. Invoke the function using its ARN.

SELECT * from
 aws_lambda.invoke(aws_commons.create_lambda_function_arn('arn:aws:lambda:aws-
region:444455556666:function:simple', 'us-west-1'), '{"body": "Hello from
 Postgres!"}'::json);

The response looks as follows.

status_code | payload |
 executed_version | log_result
-------------+---
+------------------+------------
 200 | {"statusCode": 200, "body": "\"Hello from Lambda!\""} | $LATEST
 |
(1 row)

If your invocation attempt doesn't succeed, see Lambda function error messages .

Invoking a Lambda function from Aurora PostgreSQL 2502

Amazon Aurora User Guide for Aurora

Step 6: Grant other users permission to invoke Lambda functions

At this point in the procedures, only you as rds_superuser can invoke your Lambda functions. To
allow other users to invoke any functions that you create, you need to grant them permission.

To grant others permission to invoke Lambda functions

1. Connect to your primary DB instance using psql or pgAdmin.

psql -h cluster.444455556666.aws-region.rds.amazonaws.com -U postgres -p 5432

2. Run the following SQL commands:

postgres=> GRANT USAGE ON SCHEMA aws_lambda TO db_username;
GRANT EXECUTE ON ALL FUNCTIONS IN SCHEMA aws_lambda TO db_username;

Examples: Invoking Lambda functions from your Aurora PostgreSQL DB cluster

Following, you can find several examples of calling the aws_lambda.invoke function. Most of
the examples use the composite structure aws_lambda_arn_1 that you create in Step 4: Use
Lambda helper functions with your Aurora PostgreSQL DB cluster (Optional) to simplify passing
the function details. For an example of asynchronous invocation, see Example: Asynchronous
(Event) invocation of Lambda functions. All the other examples listed use synchronous invocation.

To learn more about Lambda invocation types, see Invoking Lambda functions in the
AWS Lambda Developer Guide. For more information about aws_lambda_arn_1, see
aws_commons.create_lambda_function_arn.

Examples list

• Example: Synchronous (RequestResponse) invocation of Lambda functions

• Example: Asynchronous (Event) invocation of Lambda functions

• Example: Capturing the Lambda execution log in a function response

• Example: Including client context in a Lambda function

• Example: Invoking a specific version of a Lambda function

Invoking a Lambda function from Aurora PostgreSQL 2503

https://docs.aws.amazon.com/lambda/latest/dg/lambda-invocation.html

Amazon Aurora User Guide for Aurora

Example: Synchronous (RequestResponse) invocation of Lambda functions

Following are two examples of a synchronous Lambda function invocation. The results of these
aws_lambda.invoke function calls are the same.

SELECT * FROM aws_lambda.invoke('aws_lambda_arn_1', '{"body": "Hello from
 Postgres!"}'::json);

SELECT * FROM aws_lambda.invoke('aws_lambda_arn_1', '{"body": "Hello from
 Postgres!"}'::json, 'RequestResponse');

The parameters are described as follows:

• :'aws_lambda_arn_1' – This parameter identifies the composite structure created in Step
4: Use Lambda helper functions with your Aurora PostgreSQL DB cluster (Optional), with the
aws_commons.create_lambda_function_arn helper function. You can also create this
structure inline within your aws_lambda.invoke call as follows.

SELECT * FROM aws_lambda.invoke(aws_commons.create_lambda_function_arn('my-function',
 'aws-region'),
'{"body": "Hello from Postgres!"}'::json
);

• '{"body": "Hello from PostgreSQL!"}'::json – The JSON payload to pass to the
Lambda function.

• 'RequestResponse' – The Lambda invocation type.

Example: Asynchronous (Event) invocation of Lambda functions

Following is an example of an asynchronous Lambda function invocation. The Event invocation
type schedules the Lambda function invocation with the specified input payload and returns
immediately. Use the Event invocation type in certain workflows that don't depend on the results
of the Lambda function.

SELECT * FROM aws_lambda.invoke('aws_lambda_arn_1', '{"body": "Hello from
 Postgres!"}'::json, 'Event');

Invoking a Lambda function from Aurora PostgreSQL 2504

Amazon Aurora User Guide for Aurora

Example: Capturing the Lambda execution log in a function response

You can include the last 4 KB of the execution log in the function response by using the log_type
parameter in your aws_lambda.invoke function call. By default, this parameter is set to None,
but you can specify Tail to capture the results of the Lambda execution log in the response, as
shown following.

SELECT *, select convert_from(decode(log_result, 'base64'), 'utf-8') as log FROM
 aws_lambda.invoke(:'aws_lambda_arn_1', '{"body": "Hello from Postgres!"}'::json,
 'RequestResponse', 'Tail');

Set the aws_lambda.invoke function's log_type parameter to Tail to include the execution log in
the response. The default value for the log_type parameter is None.

The log_result that's returned is a base64 encoded string. You can decode the contents using a
combination of the decode and convert_from PostgreSQL functions.

For more information about log_type, see aws_lambda.invoke.

Example: Including client context in a Lambda function

The aws_lambda.invoke function has a context parameter that you can use to pass
information separate from the payload, as shown following.

SELECT *, convert_from(decode(log_result, 'base64'), 'utf-8') as log FROM
 aws_lambda.invoke(:'aws_lambda_arn_1', '{"body": "Hello from Postgres!"}'::json,
 'RequestResponse', 'Tail');

To include client context, use a JSON object for the aws_lambda.invoke function's context
parameter.

For more information about the context parameter, see the aws_lambda.invoke reference.

Example: Invoking a specific version of a Lambda function

You can specify a particular version of a Lambda function by including the qualifier parameter
with the aws_lambda.invoke call. Following, you can find an example that does this using
'custom_version' as an alias for the version.

SELECT * FROM aws_lambda.invoke('aws_lambda_arn_1', '{"body": "Hello from
 Postgres!"}'::json, 'RequestResponse', 'None', NULL, 'custom_version');

Invoking a Lambda function from Aurora PostgreSQL 2505

Amazon Aurora User Guide for Aurora

You can also supply a Lambda function qualifier with the function name details instead, as follows.

SELECT * FROM aws_lambda.invoke(aws_commons.create_lambda_function_arn('my-
function:custom_version', 'us-west-2'),
'{"body": "Hello from Postgres!"}'::json);

For more information about qualifier and other parameters, see the aws_lambda.invoke
reference.

Lambda function error messages

In the following list you can find information about error messages, with possible causes and
solutions.

• VPC configuration issues

VPC configuration issues can raise the following error messages when trying to connect:

ERROR: invoke API failed
DETAIL: AWS Lambda client returned 'Unable to connect to endpoint'.
CONTEXT: SQL function "invoke" statement 1

A common cause for this error is improperly configured VPC security group. Make sure you have
an outbound rule for TCP open on port 443 of your VPC security group so that your VPC can
connect to the Lambda VPC.

• Lack of permissions needed to invoke Lambda functions

If you see either of the following error messages, the user (role) invoking the function doesn't
have proper permissions.

ERROR: permission denied for schema aws_lambda

ERROR: permission denied for function invoke

A user (role) must be given specific grants to invoke Lambda functions. For more information, see
Step 6: Grant other users permission to invoke Lambda functions.

• Improper handling of errors in your Lambda functions

Invoking a Lambda function from Aurora PostgreSQL 2506

Amazon Aurora User Guide for Aurora

If a Lambda function throws an exception during request processing, aws_lambda.invoke fails
with a PostgreSQL error such as the following.

SELECT * FROM aws_lambda.invoke('aws_lambda_arn_1', '{"body": "Hello from
 Postgres!"}'::json);
ERROR: lambda invocation failed
DETAIL: "arn:aws:lambda:us-west-2:555555555555:function:my-function" returned error
 "Unhandled", details: "<Error details string>".

Be sure to handle errors in your Lambda functions or in your PostgreSQL application.

AWS Lambda function and parameter reference

Following is the reference for the functions and parameters to use for invoking Lambda with
Aurora PostgreSQL .

Functions and parameters

• aws_lambda.invoke

• aws_commons.create_lambda_function_arn

• aws_lambda parameters

aws_lambda.invoke

Runs a Lambda function for an Aurora PostgreSQL DB cluster .

For more details about invoking Lambda functions, see also Invoke in the AWS Lambda Developer
Guide.

Syntax

JSON

aws_lambda.invoke(
IN function_name TEXT,
IN payload JSON,
IN region TEXT DEFAULT NULL,
IN invocation_type TEXT DEFAULT 'RequestResponse',
IN log_type TEXT DEFAULT 'None',
IN context JSON DEFAULT NULL,

Invoking a Lambda function from Aurora PostgreSQL 2507

https://docs.aws.amazon.com/lambda/latest/dg/API_Invoke.html

Amazon Aurora User Guide for Aurora

IN qualifier VARCHAR(128) DEFAULT NULL,
OUT status_code INT,
OUT payload JSON,
OUT executed_version TEXT,
OUT log_result TEXT)

aws_lambda.invoke(
IN function_name aws_commons._lambda_function_arn_1,
IN payload JSON,
IN invocation_type TEXT DEFAULT 'RequestResponse',
IN log_type TEXT DEFAULT 'None',
IN context JSON DEFAULT NULL,
IN qualifier VARCHAR(128) DEFAULT NULL,
OUT status_code INT,
OUT payload JSON,
OUT executed_version TEXT,
OUT log_result TEXT)

JSONB

aws_lambda.invoke(
IN function_name TEXT,
IN payload JSONB,
IN region TEXT DEFAULT NULL,
IN invocation_type TEXT DEFAULT 'RequestResponse',
IN log_type TEXT DEFAULT 'None',
IN context JSONB DEFAULT NULL,
IN qualifier VARCHAR(128) DEFAULT NULL,
OUT status_code INT,
OUT payload JSONB,
OUT executed_version TEXT,
OUT log_result TEXT)

aws_lambda.invoke(
IN function_name aws_commons._lambda_function_arn_1,
IN payload JSONB,
IN invocation_type TEXT DEFAULT 'RequestResponse',
IN log_type TEXT DEFAULT 'None',
IN context JSONB DEFAULT NULL,
IN qualifier VARCHAR(128) DEFAULT NULL,
OUT status_code INT,
OUT payload JSONB,

Invoking a Lambda function from Aurora PostgreSQL 2508

Amazon Aurora User Guide for Aurora

OUT executed_version TEXT,
OUT log_result TEXT
)

Input parameters

function_name

The identifying name of the Lambda function. The value can be the function name, an ARN, or
a partial ARN. For a listing of possible formats, see Lambda function name formats in the AWS
Lambda Developer Guide.

payload

The input for the Lambda function. The format can be JSON or JSONB. For more information,
see JSON Types in the PostgreSQL documentation.

region

(Optional) The Lambda Region for the function. By default, Aurora resolves the AWS Region
from the full ARN in the function_name or it uses the Aurora PostgreSQL DB instance Region.
If this Region value conflicts with the one provided in the function_name ARN, an error is
raised.

invocation_type

The invocation type of the Lambda function. The value is case-sensitive. Possible values include
the following:

• RequestResponse – The default. This type of invocation for a Lambda function is
synchronous and returns a response payload in the result. Use the RequestResponse
invocation type when your workflow depends on receiving the Lambda function result
immediately.

• Event – This type of invocation for a Lambda function is asynchronous and returns
immediately without a returned payload. Use the Event invocation type when you don't need
results of the Lambda function before your workflow moves on.

• DryRun – This type of invocation tests access without running the Lambda function.

log_type

The type of Lambda log to return in the log_result output parameter. The value is case-
sensitive. Possible values include the following:

Invoking a Lambda function from Aurora PostgreSQL 2509

https://docs.aws.amazon.com/lambda/latest/dg/API_Invoke.html#API_Invoke_RequestParameters
https://www.postgresql.org/docs/current/datatype-json.html

Amazon Aurora User Guide for Aurora

• Tail – The returned log_result output parameter will include the last 4 KB of the execution
log.

• None – No Lambda log information is returned.

context

Client context in JSON or JSONB format. Fields to use include than custom and env.

qualifier

A qualifier that identifies a Lambda function's version to be invoked. If this value conflicts with
one provided in the function_name ARN, an error is raised.

Output parameters

status_code

An HTTP status response code. For more information, see Lambda Invoke response elements in
the AWS Lambda Developer Guide.

payload

The information returned from the Lambda function that ran. The format is in JSON or JSONB.

executed_version

The version of the Lambda function that ran.

log_result

The execution log information returned if the log_type value is Tail when the Lambda
function was invoked. The result contains the last 4 KB of the execution log encoded in Base64.

aws_commons.create_lambda_function_arn

Creates an aws_commons._lambda_function_arn_1 structure to hold Lambda function name
information. You can use the results of the aws_commons.create_lambda_function_arn
function in the function_name parameter of the aws_lambda.invoke aws_lambda.invoke
function.

Syntax

aws_commons.create_lambda_function_arn(

Invoking a Lambda function from Aurora PostgreSQL 2510

https://docs.aws.amazon.com/lambda/latest/dg/API_Invoke.html#API_Invoke_ResponseElements

Amazon Aurora User Guide for Aurora

 function_name TEXT,
 region TEXT DEFAULT NULL
)
 RETURNS aws_commons._lambda_function_arn_1

Input parameters

function_name

A required text string containing the Lambda function name. The value can be a function name,
a partial ARN, or a full ARN.

region

An optional text string containing the AWS Region that the Lambda function is in. For a listing
of Region names and associated values, see Regions and Availability Zones.

aws_lambda parameters

In this table, you can find parameters associated with the aws_lambda function.

Parameter Description

aws_lambda.connect
_timeout_ms

This is a dynamic parameter and it sets the maximum wait time
while connecting to AWS Lambda. The default values is 1000.
Allowed values for this parameter are 1 - 900000.

aws_lambda.request
_timeout_ms

This is a dynamic parameter and it sets the maximum wait time
while waiting for response from AWS Lambda. The default
values is 3000. Allowed values for this parameter are 1 -
900000.

aws_lambda.endpoin
t_override

Specifies the endpoint that can be used to connect to AWS
Lambda. An empty string selects the default AWS Lambda
endpoint for the region. You must restart the database for this
static parameter change to take effect.

Invoking a Lambda function from Aurora PostgreSQL 2511

Amazon Aurora User Guide for Aurora

Publishing Aurora PostgreSQL logs to Amazon CloudWatch Logs

You can configure your Aurora PostgreSQL DB cluster to export log data to Amazon CloudWatch
Logs on a regular basis. When you do so, events from your Aurora PostgreSQL DB cluster's
PostgreSQL log are automatically published to Amazon CloudWatch, as Amazon CloudWatch Logs.
In CloudWatch, you can find the exported log data in a Log group for your Aurora PostgreSQL
DB cluster. The log group contains one or more log streams that contain the events from the
PostgreSQL log from each instance in the cluster.

Publishing the logs to CloudWatch Logs allows you to keep your cluster's PostgreSQL log records
in highly durable storage. With the log data available in CloudWatch Logs, you can evaluate and
improve your cluster's operations. You can also use CloudWatch to create alarms and view metrics.
To learn more, see Monitoring log events in Amazon CloudWatch.

Note

Publishing your PostgreSQL logs to CloudWatch Logs consumes storage, and you incur
charges for that storage. Be sure to delete any CloudWatch Logs that you no longer need.

Turning the export log option off for an existing Aurora PostgreSQL DB cluster doesn't affect any
data that's already held in CloudWatch Logs. Existing logs remain available in CloudWatch Logs
based on your log retention settings. To learn more about CloudWatch Logs, see What is Amazon
CloudWatch Logs?

Aurora PostgreSQL supports publishing logs to CloudWatch Logs for the following versions.

• 14.3 and higher 14 versions

• 13.3 and higher 13 versions

• 12.8 and higher 12 versions

• 11.12 and higher 11 versions

Turning on the option to publish logs to Amazon CloudWatch

To publish your Aurora PostgreSQL DB cluster's PostgreSQL log to CloudWatch Logs, choose
the Log export option for the cluster. You can choose the Log export setting when you create
your Aurora PostgreSQL DB cluster. Or, you can modify the cluster later on. When you modify an
existing cluster, its PostgreSQL logs from each instance are published to CloudWatch cluster from

Publishing Aurora PostgreSQL logs to CloudWatch Logs 2512

https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/WhatIsCloudWatchLogs.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/WhatIsCloudWatchLogs.html

Amazon Aurora User Guide for Aurora

that point on. For Aurora PostgreSQL, the PostgreSQL log (postgresql.log) is the only log that
gets published to Amazon CloudWatch.

You can use the AWS Management Console, the AWS CLI, or the RDS API to turn on the Log export
feature for your Aurora PostgreSQL DB cluster.

Console

You choose the Log exports option to start publishing the PostgreSQL logs from your Aurora
PostgreSQL DB cluster to CloudWatch Logs.

To turn on the Log export feature from the console

1. Open the Amazon RDS console at https://console.aws.amazon.com/rds/.

2. In the navigation pane, choose Databases.

3. Choose the Aurora PostgreSQL DB cluster whose log data you want to publish to CloudWatch
Logs.

4. Choose Modify.

5. In the Log exports section, choose PostgreSQL log.

6. Choose Continue, and then choose Modify cluster on the summary page.

AWS CLI

You can turn on the log export option to start publishing Aurora PostgreSQL logs to Amazon
CloudWatch Logs with the AWS CLI. To do so, run the modify-db-cluster AWS CLI command with
the following options:

• --db-cluster-identifier—The DB cluster identifier.

• --cloudwatch-logs-export-configuration—The configuration setting for the log types
to be set for export to CloudWatch Logs for the DB cluster.

You can also publish Aurora PostgreSQL logs by running one of the following AWS CLI commands:

• create-db-cluster

• restore-db-cluster-from-s3

• restore-db-cluster-from-snapshot

• restore-db-cluster-to-point-in-time

Publishing Aurora PostgreSQL logs to CloudWatch Logs 2513

https://console.aws.amazon.com/rds/
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-cluster.html
https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-cluster.html
https://docs.aws.amazon.com/cli/latest/reference/rds/restore-db-cluster-from-s3.html
https://docs.aws.amazon.com/cli/latest/reference/rds/restore-db-cluster-from-snapshot.html
https://docs.aws.amazon.com/cli/latest/reference/rds/restore-db-cluster-to-point-in-time.html

Amazon Aurora User Guide for Aurora

Run one of these AWS CLI commands with the following options:

• --db-cluster-identifier—The DB cluster identifier.

• --engine—The database engine.

• --enable-cloudwatch-logs-exports—The configuration setting for the log types to be
enabled for export to CloudWatch Logs for the DB cluster.

Other options might be required depending on the AWS CLI command that you run.

Example

The following command creates an Aurora PostgreSQL DB cluster to publish log files to
CloudWatch Logs.

For Linux, macOS, or Unix:

aws rds create-db-cluster \
 --db-cluster-identifier my-db-cluster \
 --engine aurora-postgresql \
 --enable-cloudwatch-logs-exports postgresql

For Windows:

aws rds create-db-cluster ^
 --db-cluster-identifier my-db-cluster ^
 --engine aurora-postgresql ^
 --enable-cloudwatch-logs-exports postgresql

Example

The following command modifies an existing Aurora PostgreSQL DB cluster to publish log files to
CloudWatch Logs. The --cloudwatch-logs-export-configuration value is a JSON object.
The key for this object is EnableLogTypes, and its value is postgresql.

For Linux, macOS, or Unix:

aws rds modify-db-cluster \
 --db-cluster-identifier my-db-cluster \
 --cloudwatch-logs-export-configuration '{"EnableLogTypes":["postgresql"]}'

Publishing Aurora PostgreSQL logs to CloudWatch Logs 2514

Amazon Aurora User Guide for Aurora

For Windows:

aws rds modify-db-cluster ^
 --db-cluster-identifier my-db-cluster ^
 --cloudwatch-logs-export-configuration '{\"EnableLogTypes\":[\"postgresql\"]}'

Note

When using the Windows command prompt, make sure to escape double quotation marks
(") in JSON code by prefixing them with a backslash (\).

Example

The following example modifies an existing Aurora PostgreSQL DB cluster to disable publishing log
files to CloudWatch Logs. The --cloudwatch-logs-export-configuration value is a JSON
object. The key for this object is DisableLogTypes, and its value is postgresql.

For Linux, macOS, or Unix:

aws rds modify-db-cluster \
 --db-cluster-identifier mydbinstance \
 --cloudwatch-logs-export-configuration '{"DisableLogTypes":["postgresql"]}'

For Windows:

aws rds modify-db-cluster ^
 --db-cluster-identifier mydbinstance ^
 --cloudwatch-logs-export-configuration "{\"DisableLogTypes\":[\"postgresql\"]}"

Note

When using the Windows command prompt, you must escape double quotes (") in JSON
code by prefixing them with a backslash (\).

RDS API

You can turn on the log export option to start publishing Aurora PostgreSQL logs with the RDS API.
To do so, run the ModifyDBCluster operation with the following options:

Publishing Aurora PostgreSQL logs to CloudWatch Logs 2515

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBCluster.html

Amazon Aurora User Guide for Aurora

• DBClusterIdentifier – The DB cluster identifier.

• CloudwatchLogsExportConfiguration – The configuration setting for the log types to be
enabled for export to CloudWatch Logs for the DB cluster.

You can also publish Aurora PostgreSQL logs with the RDS API by running one of the following RDS
API operations:

• CreateDBCluster

• RestoreDBClusterFromS3

• RestoreDBClusterFromSnapshot

• RestoreDBClusterToPointInTime

Run the RDS API action with the following parameters:

• DBClusterIdentifier—The DB cluster identifier.

• Engine—The database engine.

• EnableCloudwatchLogsExports—The configuration setting for the log types to be enabled
for export to CloudWatch Logs for the DB cluster.

Other parameters might be required depending on the AWS CLI command that you run.

Monitoring log events in Amazon CloudWatch

With Aurora PostgreSQL log events published and available as Amazon CloudWatch Logs, you can
view and monitor events using Amazon CloudWatch. For more information about monitoring, see
View log data sent to CloudWatch Logs.

When you turn on Log exports, a new log group is automatically created using the prefix /aws/
rds/cluster/ with the name of your Aurora PostgreSQL and the log type, as in the following
pattern.

/aws/rds/cluster/your-cluster-name/postgresql

As an example, suppose that an Aurora PostgreSQL DB cluster named docs-lab-apg-small
exports its log to Amazon CloudWatch Logs. Its log group name in Amazon CloudWatch is shown
following.

Publishing Aurora PostgreSQL logs to CloudWatch Logs 2516

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateDBCluster.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_RestoreDBClusterFromS3.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_RestoreDBClusterFromSnapshot.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_RestoreDBClusterToPointInTime.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/Working-with-log-groups-and-streams.html#ViewingLogData

Amazon Aurora User Guide for Aurora

/aws/rds/cluster/docs-lab-apg-small/postgresql

If a log group with the specified name exists, Aurora uses that log group to export log data for the
Aurora DB cluster. Each DB instance in the Aurora PostgreSQL DB cluster uploads its PostgreSQL
log to the log group as a distinct log stream. You can examine the log group and its log streams
using the various graphical and analytical tools available in Amazon CloudWatch.

For example, you can search for information within the log events from your Aurora PostgreSQL DB
cluster, and filter events by using the CloudWatch Logs console, the AWS CLI, or the CloudWatch
Logs API. For more information, Searching and filtering log data in the Amazon CloudWatch Logs
User Guide.

By default, new log groups are created using Never expire for their retention period. You can
use the CloudWatch Logs console, the AWS CLI, or the CloudWatch Logs API to change the log
retention period. To learn more, see Change log data retention in CloudWatch Logs in the Amazon
CloudWatch Logs User Guide.

Tip

You can use automated configuration, such as AWS CloudFormation, to create log groups
with predefined log retention periods, metric filters, and access permissions.

Analyzing PostgreSQL logs using CloudWatch Logs Insights

With the PostgreSQL logs from your Aurora PostgreSQL DB cluster published as CloudWatch Logs,
you can use CloudWatch Logs Insights to interactively search and analyze your log data in Amazon
CloudWatch Logs. CloudWatch Logs Insights includes a query language, sample queries, and other
tools for analyzing your log data so that you can identify potential issues and verify fixes. To learn
more, see Analyzing log data with CloudWatch Logs Insights in the Amazon CloudWatch Logs User
Guide. Amazon CloudWatch Logs

To analyze PostgreSQL logs with CloudWatch Logs Insights

1. Open the CloudWatch console at https://console.aws.amazon.com/cloudwatch/.

2. In the navigation pane, open Logs and choose Log insights.

3. In Select log group(s), select the log group for your Aurora PostgreSQL DB cluster.

Publishing Aurora PostgreSQL logs to CloudWatch Logs 2517

https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/MonitoringLogData.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/SettingLogRetention.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/AnalyzingLogData.html
https://console.aws.amazon.com/cloudwatch/

Amazon Aurora User Guide for Aurora

4. In the query editor, delete the query that is currently shown, enter the following, and then
choose Run query.

##Autovacuum execution time in seconds per 5 minute
fields @message
| parse @message "elapsed: * s" as @duration_sec
| filter @message like / automatic vacuum /
| display @duration_sec
| sort @timestamp
| stats avg(@duration_sec) as avg_duration_sec,
max(@duration_sec) as max_duration_sec
by bin(5 min)

Publishing Aurora PostgreSQL logs to CloudWatch Logs 2518

Amazon Aurora User Guide for Aurora

5. Choose the Visualization tab.

6. Choose Add to dashboard.

7. In Select a dashboard, either select a dashboard or enter a name to create a new dashboard.

8. In Widget type, choose a widget type for your visualization.

Publishing Aurora PostgreSQL logs to CloudWatch Logs 2519

Amazon Aurora User Guide for Aurora

9. (Optional) Add more widgets based on your log query results.

a. Choose Add widget.

b. Choose a widget type, such as Line.

Publishing Aurora PostgreSQL logs to CloudWatch Logs 2520

Amazon Aurora User Guide for Aurora

c. In the Add to this dashboard window, choose Logs.

d. In Select log group(s), select the log group for your DB cluster.

e. In the query editor, delete the query that is currently shown, enter the following, and then
choose Run query.

##Autovacuum tuples statistics per 5 min
fields @timestamp, @message
| parse @message "tuples: " as @tuples_temp

Publishing Aurora PostgreSQL logs to CloudWatch Logs 2521

Amazon Aurora User Guide for Aurora

| parse @tuples_temp "* removed," as @tuples_removed
| parse @tuples_temp "remain, * are dead but not yet removable, " as
 @tuples_not_removable
| filter @message like / automatic vacuum /
| sort @timestamp
| stats avg(@tuples_removed) as avg_tuples_removed,
avg(@tuples_not_removable) as avg_tuples_not_removable
by bin(5 min)

f. Choose Create widget.

Your dashboard should look similar to the following image.

Publishing Aurora PostgreSQL logs to CloudWatch Logs 2522

Amazon Aurora User Guide for Aurora

Monitoring query execution plans for Aurora PostgreSQL

You can monitor query execution plans in your Aurora PostgreSQL DB instance to detect the
execution plans contributing to current database load and to track performance statistics of
execution plans over time using aurora_compute_plan_id parameter. Whenever a query
executes, the execution plan used by the query is assigned an identifier and the same identifier is
used by subsequent executions of the same plan.

The aurora_compute_plan_id is turned on by default in DB parameter group from Aurora
PostgreSQL versions 14.10, 15.5, and higher versions. Assignment of a plan identifier is default
behavior and can be turned off by setting aurora_compute_plan_id to OFF in the parameter
group.

This plan identifier is used in several utilities that serve a different purpose.

Topics

• Accessing query execution plans using Aurora functions

• Parameter reference for Aurora PostgreSQL query execution plans

Accessing query execution plans using Aurora functions

With aurora_compute_plan_id, you can access the execution plans using the following
functions:

• aurora_stat_activity

• aurora_stat_plans

For more information on these functions, see Aurora PostgreSQL functions reference.

Parameter reference for Aurora PostgreSQL query execution plans

You can monitor the query execution plans using the below parameters in a DB parameter group.

Parameters

• aurora_compute_plan_id

• aurora_stat_plans.minutes_until_recapture

Monitoring query execution plans for Aurora PostgreSQL 2523

Amazon Aurora User Guide for Aurora

• aurora_stat_plans.calls_until_recapture

• aurora_stat_plans.with_costs

• aurora_stat_plans.with_analyze

• aurora_stat_plans.with_timing

• aurora_stat_plans.with_buffers

• aurora_stat_plans.with_wal

• aurora_stat_plans.with_triggers

Note

The configuration for aurora_stat_plans.with_* parameters takes effect only for
newly captured plans.

aurora_compute_plan_id

Set to off to prevent a plan identifier from being assigned.

Default Allowed values Description

0(off) Set to off to prevent a plan identifier from being assigned.on

1(on) Set to on to assign a plan identifier.

aurora_stat_plans.minutes_until_recapture

The number of minutes to pass before a plan is recaptured. Default is 0 which will disable
recapturing a plan. When the aurora_stat_plans.calls_until_recapture threshold is
passed, the plan will be recaptured.

Default Allowed values Description

0 0-1073741823 Set the number of minutes to pass before a plan is recaptured.

Parameter reference for Aurora PostgreSQL query execution plans 2524

Amazon Aurora User Guide for Aurora

aurora_stat_plans.calls_until_recapture

The number of calls to a plan before it is recaptured. Default is 0 which will disable recapturing
a plan after a number of calls. When the aurora_stat_plans.minutes_until_recapture
threshold is passed, the plan will be recaptured.

Default Allowed values Description

0 0-1073741823 Set the number of calls before a plan is recaptured.

aurora_stat_plans.with_costs

Captures an EXPLAIN plan with estimated costs. The allowed values are on and off. The default is
on.

Default Allowed values Description

0(off) Doesn't show estimated cost and rows for each plan node.on

1(on) Shows estimated cost and rows for each plan node.

aurora_stat_plans.with_analyze

Controls the EXPLAIN plan with ANALYZE. This mode is only used the first time a plan is captured.
The allowed values are on and off. The default is off.

Default Allowed values Description

0(off) Doesn't include actual run time statistics for the plan.off

1(on) Includes actual run time statistics for the plan.

aurora_stat_plans.with_timing

Plan timing will be captured in the explain when ANALYZE is used. The default is on.

Parameter reference for Aurora PostgreSQL query execution plans 2525

Amazon Aurora User Guide for Aurora

Default Allowed values Description

0(off) Doesn't include actual start up time and time spent in each
plan node.

on

1(on) Includes actual start up time and time spent in each plan node.

aurora_stat_plans.with_buffers

Plan buffer usage statistics will be captured in the explain when ANALYZE is used. The default is
off.

Default Allowed values Description

0(off) Doesn't include information on buffer usage.off

1(on) Includes information on buffer usage.

aurora_stat_plans.with_wal

Plan wal usage statistics will be captured in the explain when ANALYZE is used. The default is off.

Default Allowed values Description

0(off) Doesn't include information on WAL record generation.off

1(on) Includes information on WAL record generation.

aurora_stat_plans.with_triggers

Plan trigger execution statistics will be captured in the explain when ANALYZE is used. The default
is off.

Default Allowed values Description

off 0(off) Doesn't include triggers execution statistics.

Parameter reference for Aurora PostgreSQL query execution plans 2526

Amazon Aurora User Guide for Aurora

Default Allowed values Description

1(on) Includes triggers execution statistics.

Parameter reference for Aurora PostgreSQL query execution plans 2527

Amazon Aurora User Guide for Aurora

Managing query execution plans for Aurora PostgreSQL

Aurora PostgreSQL query plan management is an optional feature that you can use with your
Amazon Aurora PostgreSQL-Compatible Edition DB cluster. This feature is packaged as the
apg_plan_mgmt extension that you can install in your Aurora PostgreSQL DB cluster. Query plan
management allows you to manage the query execution plans generated by the optimizer for
your SQL applications. The apg_plan_mgmt AWS extension builds on the native query processing
functionality of the PostgreSQL database engine.

Following, you can find information about Aurora PostgreSQL query plan management features,
how to set it up, and how to use it with your Aurora PostgreSQL DB cluster. Before you get started,
we recommend that you review any release notes for the specific version of the apg_plan_mgmt
extension available for your Aurora PostgreSQL version. For more information, see Aurora
PostgreSQL apg_plan_mgmt extension versions in the Release Notes for Aurora PostgreSQL.

Topics

• Overview of Aurora PostgreSQL query plan management

• Best practices for Aurora PostgreSQL query plan management

• Understanding Aurora PostgreSQL query plan management

• Capturing Aurora PostgreSQL execution plans

• Using Aurora PostgreSQL managed plans

• Examining Aurora PostgreSQL query plans in the dba_plans view

• Maintaining Aurora PostgreSQL execution plans

• Reference for Aurora PostgreSQL query plan management

• Advanced features in Query Plan Management

Overview of Aurora PostgreSQL query plan management

Aurora PostgreSQL query plan management is designed to ensure plan stability regardless of
changes to the database that might cause query plan regression. Query plan regression occurs when
the optimizer chooses a sub-optimal plan for a given SQL statement after system or database
changes. Changes to statistics, constraints, environment settings, query parameter bindings, and
upgrades to the PostgreSQL database engine can all cause plan regression.

With Aurora PostgreSQL query plan management, you can control how and when query execution
plans change. The benefits of Aurora PostgreSQL query plan management include the following.

Managing query execution plans for Aurora PostgreSQL 2528

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Extensions.html#AuroraPostgreSQL.Extensions.apg_plan_mgmt
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Extensions.html#AuroraPostgreSQL.Extensions.apg_plan_mgmt

Amazon Aurora User Guide for Aurora

• Improve plan stability by forcing the optimizer to choose from a small number of known, good
plans.

• Optimize plans centrally and then distribute the best plans globally.

• Identify indexes that aren't used and assess the impact of creating or dropping an index.

• Automatically detect a new minimum-cost plan discovered by the optimizer.

• Try new optimizer features with less risk, because you can choose to approve only the plan
changes that improve performance.

You can use the tools provided by query plan management proactively, to specify the best plan for
certain queries. Or you can use query plan management to react to changing circumstances and
avoid plan regressions. For more information, see Best practices for Aurora PostgreSQL query plan
management.

Topics

• Supported SQL statements

• Query plan management limitations

• Query plan management terminology

• Aurora PostgreSQL query plan management versions

• Turning on Aurora PostgreSQL query plan management

• Upgrading Aurora PostgreSQL query plan management

• Turning off Aurora PostgreSQL query plan management

Supported SQL statements

Query plan management supports the following types of SQL statements.

• Any SELECT, INSERT, UPDATE, or DELETE statement, regardless of complexity.

• Prepared statements. For more information, see PREPARE in the PostgreSQL documentation.

• Dynamic statements, including those run in immediate-mode. For more information, see
Dynamic SQL and EXECUTE IMMEDIATE in PostgreSQL documentation.

• Embedded SQL commands and statements. For more information, see Embedded SQL
Commands in the PostgreSQL documentation.

• Statements inside named functions. For more information, see CREATE FUNCTION in the
PostgreSQL documentation.

Overview of Aurora PostgreSQL query plan management 2529

https://www.postgresql.org/docs/14/sql-prepare.html
https://www.postgresql.org/docs/current/ecpg-dynamic.html
https://www.postgresql.org/docs/current/ecpg-sql-execute-immediate.html
https://www.postgresql.org/docs/current/ecpg-sql-commands.html
https://www.postgresql.org/docs/current/ecpg-sql-commands.html
https://www.postgresql.org/docs/current/sql-createfunction.html

Amazon Aurora User Guide for Aurora

• Statements containing temp tables.

• Statements inside procedures and DO-blocks.

You can use query plan management with EXPLAIN in manual mode to capture a plan without
actually running it. For more information, see Analyzing the optimizer's chosen plan. To learn more
about query plan management's modes (manual, automatic), see Capturing Aurora PostgreSQL
execution plans.

Aurora PostgreSQL query plan management supports all PostgreSQL language features, including
partitioned tables, inheritance, row-level security, and recursive common table expressions (CTEs).
To learn more about these PostgreSQL language features, see Table Partitioning, Row Security
Policies, and WITH Queries (Common Table Expressions) and other topics in the PostgreSQL
documentation.

For information about different versions of the Aurora PostgreSQL query plan management
feature, see Aurora PostgreSQL apg_plan_mgmt extension versions in the Release Notes for Aurora
PostgreSQL.

Query plan management limitations

The current release of Aurora PostgreSQL query plan management has the following limitations.

• Plans aren't captured for statements that reference system relations – Statements that
reference system relations, such as pg_class, aren't captured. This is by design, to prevent a
large number of system-generated plans that are used internally from being captured. This also
applies to system tables inside views.

• Larger DB instance class might be needed for your Aurora PostgreSQL DB cluster – Depending
on the workload, query plan management might need a DB instance class that has more than
2 vCPUs. The number of max_worker_processes is limited by the DB instance class size. The
number of max_worker_processes provided by a 2-vCPU DB instance class (db.t3.medium,
for example) might not be sufficient for a given workload. We recommend that you choose a DB
instance class with more than 2 vCPUs for your Aurora PostgreSQL DB cluster if you use query
plan managment.

When the DB instance class can't support the workload, query plan management raises an error
message such as the following.

WARNING: could not register plan insert background process

Overview of Aurora PostgreSQL query plan management 2530

https://www.postgresql.org/docs/current/ddl-partitioning.html
https://www.postgresql.org/docs/current/ddl-rowsecurity.html
https://www.postgresql.org/docs/current/ddl-rowsecurity.html
https://www.postgresql.org/docs/current/queries-with.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Extensions.html#AuroraPostgreSQL.Extensions.apg_plan_mgmt

Amazon Aurora User Guide for Aurora

HINT: You may need to increase max_worker_processes.

In this case, you should scale up your Aurora PostgreSQL DB cluster to a DB instance class size
with more memory. For more information, see Supported DB engines for DB instance classes.

• Plans already stored in sessions aren't affected – Query plan management provides a way to
influence query plans without changing the application code. However, when a generic plan is
already stored in an existing session and if you want to change its query plan, then you must first
setplan_cache_mode to force_custom_plan in the DB cluster parameter group.

• queryid in apg_plan_mgmt.dba_plans and pg_stat_statements can diverge when:

• Objects are dropped and recreated after storing in apg_plan_mgmt.dba_plans.

• apg_plan_mgmt.plans table is imported from another cluster.

For information about different versions of the Aurora PostgreSQL query plan management
feature, see Aurora PostgreSQL apg_plan_mgmt extension versions in the Release Notes for Aurora
PostgreSQL.

Query plan management terminology

The following terms are used throughout this topic.

managed statement

A SQL statement captured by the optimizer under query plan management. A managed
statement has one or more query execution plans stored in the apg_plan_mgmt.dba_plans
view.

plan baseline

The set of approved plans for a given managed statement. That is, all the plans for the
managed statement that have "Approved" for their status column in the dba_plan view.

plan history

The set of all captured plans for a given managed statement. The plan history contains all plans
captured for the statement, regardless of status.

query plan regression

The case when the optimizer chooses a less optimal plan than it did before a given change to
the database environment, such as a new PostgreSQL version or changes to statistics.

Overview of Aurora PostgreSQL query plan management 2531

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Extensions.html#AuroraPostgreSQL.Extensions.apg_plan_mgmt

Amazon Aurora User Guide for Aurora

Aurora PostgreSQL query plan management versions

Query plan management is supported by all currently available Aurora PostgreSQL releases. For
more information, see the list of Amazon Aurora PostgreSQL updates in the Release Notes for
Aurora PostgreSQL.

Query plan management functionality is added to your Aurora PostgreSQL DB cluster when you
install the apg_plan_mgmt extension. Different versions of Aurora PostgreSQL support different
versions of the apg_plan_mgmt extension. We recommend that you upgrade the query plan
management extension to the latest release for your version of Aurora PostgreSQL.

Note

For release notes for each apg_plan_mgmt extension versions, see Aurora PostgreSQL
apg_plan_mgmt extension versions in the Release Notes for Aurora PostgreSQL.

You can identify the version running on your cluster by connecting to an instance using psql and
using the metacommand \dx to list extensions as shown following.

labdb=> \dx
 List of installed extensions
 Name | Version | Schema | Description
---------------+---------+---------------
+---
 apg_plan_mgmt | 1.0 | apg_plan_mgmt | Amazon Aurora with PostgreSQL compatibility
 Query Plan Management
 plpgsql | 1.0 | pg_catalog | PL/pgSQL procedural language
(2 rows)

The output shows that this cluster is using 1.0 version of the extension. Only certain
apg_plan_mgmt versions are available for a given Aurora PostgreSQL version. In some cases,
you might need to upgrade the Aurora PostgreSQL DB cluster to a new minor release or apply
a patch so that you can upgrade to the most recent version of query plan management. The
apg_plan_mgmt version 1.0 shown in the output is from an Aurora PostgreSQL version 10.17 DB
cluster, which doesn't have a newer version of apg_plan_mgmt available. In this case, the Aurora
PostgreSQL DB cluster should be upgraded to a more recent version of PostgreSQL.

For more information about upgrading your Aurora PostgreSQL DB cluster to a new version of
PostgreSQL, see Amazon Aurora PostgreSQL updates.

Overview of Aurora PostgreSQL query plan management 2532

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Extensions.html#AuroraPostgreSQL.Extensions.apg_plan_mgmt
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Extensions.html#AuroraPostgreSQL.Extensions.apg_plan_mgmt

Amazon Aurora User Guide for Aurora

To learn how to upgrade the apg_plan_mgmt extension, see Upgrading Aurora PostgreSQL query
plan management.

Turning on Aurora PostgreSQL query plan management

Setting up query plan management for your Aurora PostgreSQL DB cluster involves installing
an extension and changing several DB cluster parameter settings. You need rds_superuser
permissions to install the apg_plan_mgmt extension and to turn on the feature for the Aurora
PostgreSQL DB cluster.

Installing the extension creates a new role, apg_plan_mgmt. This role allows database users to
view, manage, and maintain query plans. As an administrator with rds_superuser privileges, be
sure to grant the apg_plan_mgmt role to database users as needed.

Only users with the rds_superuser role can complete the following procedure. The
rds_superuser is required for creating the apg_plan_mgmt extension and its apg_plan_mgmt
role. Users must be granted the apg_plan_mgmt role to administer the apg_plan_mgmt
extension.

To turn on query plan management for your Aurora PostgreSQL DB cluster

The following steps turn on query plan management for all SQL statements that get submitted
to the Aurora PostgreSQL DB cluster. This is known as automatic mode. To learn more about the
difference between modes, see Capturing Aurora PostgreSQL execution plans.

1. Open the Amazon RDS console at https://console.aws.amazon.com/rds/.

2. Create a custom DB cluster parameter group for your Aurora PostgreSQL DB cluster. You need
to change certain parameters to activate query plan management and to set its behavior. For
more information, see Creating a DB parameter group.

3. Open the custom DB cluster parameter group and set the rds.enable_plan_management
parameter to 1, as shown in the following image.

Overview of Aurora PostgreSQL query plan management 2533

https://console.aws.amazon.com/rds/

Amazon Aurora User Guide for Aurora

For more information, see Modifying parameters in a DB cluster parameter group.

4. Create a custom DB parameter group that you can use to set query plan parameters at the
instance level. For more information, see Creating a DB cluster parameter group.

5. Modify the writer instance of the Aurora PostgreSQL DB cluster to use the custom DB
parameter group. For more information, see Modifying a DB instance in a DB cluster.

6. Modify the Aurora PostgreSQL DB cluster to use the custom DB cluster parameter group. For
more information, see Modifying the DB cluster by using the console, CLI, and API.

7. Reboot your DB instance to enable the custom parameter group settings.

8. Connect to your Aurora PostgreSQL DB cluster's DB instance endpoint using psql or pgAdmin.
The following example uses the default postgres account for the rds_superuser role.

psql --host=cluster-instance-1.111122223333.aws-region.rds.amazonaws.com --
port=5432 --username=postgres --password --dbname=my-db

9. Create the apg_plan_mgmt extension for your DB instance, as shown following.

labdb=> CREATE EXTENSION apg_plan_mgmt;
CREATE EXTENSION

Tip

Install the apg_plan_mgmt extension in the template database for your application.
The default template database is named template1. To learn more, see Template
Databases in the PostgreSQL documentation.

10. Change the apg_plan_mgmt.capture_plan_baselines parameter to automatic. This
setting causes the optimizer to generate plans for every SQL statement that is either planned
or executed two or more times.

Note

Query plan management also has a manual mode that you can use for specific SQL
statements. To learn more, see Capturing Aurora PostgreSQL execution plans.

Overview of Aurora PostgreSQL query plan management 2534

https://www.postgresql.org/docs/current/manage-ag-templatedbs.html
https://www.postgresql.org/docs/current/manage-ag-templatedbs.html

Amazon Aurora User Guide for Aurora

11. Change the value of apg_plan_mgmt.use_plan_baselines parameter to "on." This
parameter causes the optimizer to choose a plan for the statement from its plan baseline. To
learn more, see Using Aurora PostgreSQL managed plans.

Note

You can modify the value of either of these dynamic parameters for the session
without needing to reboot the instance.

When your query plan management set up is complete, be sure to grant the apg_plan_mgmt role
to any database users that need to view, manage, or maintain query plans.

Upgrading Aurora PostgreSQL query plan management

We recommend that you upgrade the query plan management extension to the latest release for
your version of Aurora PostgreSQL.

1. Connect to the writer instance of your Aurora PostgreSQL DB cluster as a user that has
rds_superuser privileges. If you kept the default name when you set up your instance, you
connect as postgres This example shows how to use psql, but you can also use pgAdmin if
you prefer.

psql --host=111122223333.aws-region.rds.amazonaws.com --port=5432 --
username=postgres --password

2. Run the following query to upgrade the extension.

ALTER EXTENSION apg_plan_mgmt UPDATE TO '2.1';

3. Use the apg_plan_mgmt.validate_plans function to update the hashes of all plans. The
optimizer validates all Approved, Unapproved, and Rejected plans to ensure that they's still
viable plans for new version of the extension.

SELECT apg_plan_mgmt.validate_plans('update_plan_hash');

To learn more about using this function, see Validating plans.

4. Use the apg_plan_mgmt.reload function to refresh any plans in the shared memory with the
validated plans from the dba_plans view.

Overview of Aurora PostgreSQL query plan management 2535

Amazon Aurora User Guide for Aurora

SELECT apg_plan_mgmt.reload();

To learn more about all functions available for query plan management, see Function reference for
Aurora PostgreSQL query plan management.

Turning off Aurora PostgreSQL query plan management

You can disable query plan management at any time by turning off the
apg_plan_mgmt.use_plan_baselines and apg_plan_mgmt.capture_plan_baselines.

labdb=> SET apg_plan_mgmt.use_plan_baselines = off;

labdb=> SET apg_plan_mgmt.capture_plan_baselines = off;

Best practices for Aurora PostgreSQL query plan management

Query plan management lets you control how and when query execution plans change. As a DBA,
your main goals when using QPM include preventing regressions when there are changes to your
database, and controlling whether to allow the optimizer to use a new plan. In the following, you
can find some recommended best practices for using query plan management. Proactive and
reactive plan management approaches differ in how and when new plans get approved for use.

Contents

• Proactive plan management to help prevent performance regression

• Ensuring plan stability after a major version upgrade

• Reactive plan management to detect and repair performance regressions

Proactive plan management to help prevent performance regression

To prevent plan performance regressions from occurring, you evolve plan baselines by running a
procedure that compares the performance of newly discovered plans to the performance of the
existing baseline of Approved plans, and then automatically approves the fastest set of plans as the
new baseline. In this way, the baseline of plans improves over time as faster plans are discovered.

Best practices for Aurora PostgreSQL query plan management 2536

Amazon Aurora User Guide for Aurora

1. In a development environment, identify the SQL statements that have the greatest impact on
performance or system throughput. Then capture the plans for these statements as described in
Manually capturing plans for specific SQL statements and Automatically capturing plans.

2. Export the captured plans from the development environment and import them into the
production environment. For more information, see Exporting and importing plans.

3. In production, run your application and enforce the use of approved managed plans. For more
information, see Using Aurora PostgreSQL managed plans. While the application runs, also add
new plans as the optimizer discovers them. For more information, see Automatically capturing
plans.

4. Analyze the unapproved plans and approve those that perform well. For more information, see
Evaluating plan performance.

5. While your application continues to run, the optimizer begins to use the new plans as
appropriate.

Ensuring plan stability after a major version upgrade

Each major version of PostgreSQL includes enhancements and changes to the query optimizer that
are designed to improve performance. However, query execution plans generated by the optimizer
in earlier versions might cause performance regressions in newer upgraded versions. You can use
query plan management to resolve these performance issues and to ensure plan stability after a
major version upgrade.

The optimizer always uses a minimum-cost Approved plan, even if more than one Approved
plan for the same statement exists. After an upgrade the optimizer might discover new plans
but they will be saved as Unapproved plans. These plans are performed only if approved
using the reactive style of plan management with the unapproved_plan_execution_threshold
parameter. You can maximize plan stability using the proactive style of plan management with
the evolve_plan_baselines parameter. This compares the performance of the new plans to the old
plans and approves or rejects plans that are at least 10% faster than the next best plan.

After upgrading, you can use the evolve_plan_baselines function to compare plan
performance before and after the upgrade using your query parameter bindings. The following
steps assume that you have been using approved managed plans in your production environment,
as detailed in Using Aurora PostgreSQL managed plans.

Best practices for Aurora PostgreSQL query plan management 2537

Amazon Aurora User Guide for Aurora

1. Before upgrading, run your application with the query plan manager running. While the
application runs, add new plans as the optimizer discovers them. For more information, see
Automatically capturing plans.

2. Evaluate each plan's performance. For more information, see Evaluating plan performance.

3. After upgrading, analyze your approved plans again using the evolve_plan_baselines
function. Compare performance before and after using your query parameter bindings. If the
new plan is fast, you can add it to your approved plans. If it's faster than another plan for the
same parameter bindings, then you can mark the slower plan as Rejected.

For more information, see Approving better plans. For reference information about this function,
see apg_plan_mgmt.evolve_plan_baselines.

For more information, see Ensuring consistent performance after major version upgrades with
Amazon Aurora PostgreSQL-Compatible Edition Query Plan Management.

Note

When you perform a major version upgrade using logical replication or AWS DMS, make
sure that you replicate the apg_plan_mgmt schema to ensure existing plans are copied
to the upgraded instance. For more information on logical replication, see Using logical
replication to perform a major version upgrade for Aurora PostgreSQL.

Reactive plan management to detect and repair performance regressions

By monitoring your application as it runs, you can detect plans that cause performance regressions.
When you detect regressions, you manually reject or fix the bad plans by following these steps:

1. While your application runs, enforce the use of managed plans and automatically add newly
discovered plans as unapproved. For more information, see Using Aurora PostgreSQL managed
plans and Automatically capturing plans.

2. Monitor your running application for performance regressions.

3. When you discover a plan regression, set the plan's status to rejected. The next time the
optimizer runs the SQL statement, it automatically ignores the rejected plan and uses a different
approved plan instead. For more information, see Rejecting or disabling slower plans.

Best practices for Aurora PostgreSQL query plan management 2538

https://aws.amazon.com/blogs/database/ensuring-consistent-performance-after-major-version-upgrades-with-amazon-aurora-postgresql-query-plan-management/
https://aws.amazon.com/blogs/database/ensuring-consistent-performance-after-major-version-upgrades-with-amazon-aurora-postgresql-query-plan-management/

Amazon Aurora User Guide for Aurora

In some cases, you might prefer to fix a bad plan rather than reject, disable, or delete it. Use
the pg_hint_plan extension to experiment with improving a plan. With pg_hint_plan, you
use special comments to tell the optimizer to override how it normally creates a plan. For more
information, see Fixing plans using pg_hint_plan.

Understanding Aurora PostgreSQL query plan management

With query plan management turned on for your Aurora PostgreSQL DB cluster, the optimizer
generates and stores query execution plans for any SQL statement that it processes more than
once. The optimizer always sets the status of a managed statement's first generated plan to
Approved, and stores it in the dba_plans view.

The set of approved plans saved for a managed statement is known as its plan baseline. As your
application runs, the optimizer might generate additional plans for managed statements. The
optimizer sets additional captured plans to a status of Unapproved.

Later, you can decide if the Unapproved plans perform well and change them to Approved,
Rejected, or Preferred. To do so, you use the apg_plan_mgmt.evolve_plan_baselines
function or the apg_plan_mgmt.set_plan_status function.

When the optimizer generates a plan for a SQL statement, query plan management saves the plan
in the apg_plan_mgmt.plans table. Database users that have been granted the apg_plan_mgmt
role can see the plan details by querying the apg_plan_mgmt.dba_plans view. For example, the
following query lists details for plans currently in the view for a non-production Aurora PostgreSQL
DB cluster.

• sql_hash – An identifier for the SQL statement that's the hash value for the normalized text of
the SQL statement.

• plan_hash – A unique identifier for the plan that's a combination of the sql_hash and a hash
of the plan.

• status – The status of the plan. The optimizer can run an approved plan.

• enabled – Indicates whether the plan is ready to use (true) or not (false).

• plan_outline – A representation of the plan that's used to recreate the actual execution plan.
Operators in the tree structure map to operators in EXPLAIN output.

Understanding query plan management 2539

Amazon Aurora User Guide for Aurora

The apg_plan_mgmt.dba_plans view has many more columns that contain all details of
the plan, such as when the plan was last used. For complete details, see Reference for the
apg_plan_mgmt.dba_plans view.

Normalization and the SQL hash

In the apg_plan_mgmt.dba_plans view, you can identify a managed statement by its SQL
hash value. The SQL hash is calculated on a normalized representation of the SQL statement that
removes some differences, such as literal values.

The normalization process for each SQL statement preserves space and case, so that you can
still read and understand the gist of the SQL statement. Normalization removes or replaces the
following items.

• Leading block comments

• The EXPLAIN keyword and EXPLAIN options, and EXPLAIN ANALYZE

• Trailing spaces

• All literals

As an example, take the following statement.

/*Leading comment*/ EXPLAIN SELECT /* Query 1 */ * FROM t WHERE x > 7 AND y = 1;

The optimizer normalizes this statement as shown following.

SELECT /* Query 1 */ * FROM t WHERE x > CONST AND y = CONST;

Normalization allows the same SQL hash to be used for similar SQL statements that might differ
only in their literal or parameter values. In other words, multiple plans for the same SQL hash can
exist, with a different plan that's optimal under different conditions.

Note

A single SQL statement that's used with different schemas has different plans because it's
bound to the specific schema at runtime. The planner uses the statistics for schema binding
to choose the optimal plan.

Understanding query plan management 2540

Amazon Aurora User Guide for Aurora

To learn more about how the optimizer chooses a plan, see Using Aurora PostgreSQL managed
plans. In that section, you can learn how to use EXPLAIN and EXPLAIN ANALYZE to preview a plan
before it's actually used. For details, see Analyzing the optimizer's chosen plan. For an image that
outlines the process for choosing a plan, see How the optimizer chooses which plan to run.

Capturing Aurora PostgreSQL execution plans

Aurora PostgreSQL query plan management offers two different modes for capturing query
execution plans, automatic or manual. You choose the mode by setting the value of the
apg_plan_mgmt.capture_plans_baselines to automatic or to manual. You can capture
execution plans for specific SQL statements by using manual plan capture. Alternatively, you can
capture all (or the slowest) plans that are executed two or more times as your application runs by
using automatic plan capture.

When capturing plans, the optimizer sets the status of a managed statement's first captured
plan to approved. The optimizer sets the status of any additional plans captured for a managed
statement to unapproved. However, more than one plan might occasionally be saved with the
approved status. This can happen when multiple plans are created for a statement in parallel and
before the first plan for the statement is committed.

To control the maximum number of plans that can be captured and stored in the dba_plans view,
set the apg_plan_mgmt.max_plans parameter in your DB instance-level parameter group. A
change to the apg_plan_mgmt.max_plans parameter requires a DB instance reboot for a new
value to take effect. For more information, see the apg_plan_mgmt.max_plans parameter.

Manually capturing plans for specific SQL statements

If you have a known set of SQL statements to manage, put the statements into a SQL script file
and then manually capture plans. The following shows a psql example of how to capture query
plans manually for a set of SQL statements.

psql> SET apg_plan_mgmt.capture_plan_baselines = manual;
psql> \i my-statements.sql
psql> SET apg_plan_mgmt.capture_plan_baselines = off;

After capturing a plan for each SQL statement, the optimizer adds a new row to the
apg_plan_mgmt.dba_plans view.

Capturing Aurora PostgreSQL execution plans 2541

Amazon Aurora User Guide for Aurora

We recommend that you use either EXPLAIN or EXPLAIN EXECUTE statements in the SQL script
file. Make sure that you include enough variations in parameter values to capture all the plans of
interest.

If you know of a better plan than the optimizer's minimum cost plan, you might be able to force
the optimizer to use the better plan. To do so, specify one or more optimizer hints. For more
information, see Fixing plans using pg_hint_plan. To compare the performance of the unapproved
and approved plans and approve, reject, or delete them, see Evaluating plan performance.

Automatically capturing plans

Use automatic plan capture for situations such as the following:

• You don't know the specific SQL statements that you want to manage.

• You have hundreds or thousands of SQL statements to manage.

• Your application uses a client API. For example, JDBC uses unnamed prepared statements or
bulk-mode statements that can't be expressed in psql.

To capture plans automatically

1. Turn on automatic plan capture by setting apg_plan_mgmt.capture_plan_baselines to
automatic in the DB instance-level parameter group. For more information, see Modifying
parameters in a DB parameter group.

2. Reboot your DB instance.

3. As the application runs, the optimizer captures plans for each SQL statement that runs at least
twice.

As the application runs with default query plan management parameter settings, the
optimizer captures plans for each SQL statement that runs at least twice. Capturing all plans
while using the defaults has very little run-time overhead and can be enabled in production.

To turn off automatic plan capture

• Set the apg_plan_mgmt.capture_plan_baselines parameter to off from the DB
instance-level parameter group.

Capturing Aurora PostgreSQL execution plans 2542

Amazon Aurora User Guide for Aurora

To measure the performance of the unapproved plans and approve, reject, or delete them, see
Evaluating plan performance.

Capturing Aurora PostgreSQL execution plans 2543

Amazon Aurora User Guide for Aurora

Using Aurora PostgreSQL managed plans

To get the optimizer to use captured plans for your managed statements, set the parameter
apg_plan_mgmt.use_plan_baselines to true. The following is a local instance example.

SET apg_plan_mgmt.use_plan_baselines = true;

While the application runs, this setting causes the optimizer to use the minimum-cost, preferred, or
approved plan that is valid and enabled for each managed statement.

Analyzing the optimizer's chosen plan

When the apg_plan_mgmt.use_plan_baselines parameter is set to true, you can use
EXPLAIN ANALYZE SQL statements to cause the optimizer to show the plan it would use if it were
to run the statement. The following is an example.

EXPLAIN ANALYZE EXECUTE rangeQuery (1,10000);

 QUERY PLAN
--
 Aggregate (cost=393.29..393.30 rows=1 width=8) (actual time=7.251..7.251 rows=1
 loops=1)
 -> Index Only Scan using t1_pkey on t1 t (cost=0.29..368.29 rows=10000 width=0)
 (actual time=0.061..4.859 rows=10000 loops=1)
Index Cond: ((id >= 1) AND (id <= 10000))
 Heap Fetches: 10000
 Planning time: 1.408 ms
 Execution time: 7.291 ms
 Note: An Approved plan was used instead of the minimum cost plan.
 SQL Hash: 1984047223, Plan Hash: 512153379

The output shows the Approved plan from the baseline that would run. However, the output also
shows that it found a lower-cost plan. In this case, you capture this new minimum cost plan by
turning on automatic plan capture as described in Automatically capturing plans.

New plans are always captured by the optimizer as Unapproved. Use the
apg_plan_mgmt.evolve_plan_baselines function to compare plans and change them to
approved, rejected, or disabled. For more information, see Evaluating plan performance.

Using Aurora PostgreSQL managed plans 2544

Amazon Aurora User Guide for Aurora

How the optimizer chooses which plan to run

The cost of an execution plan is an estimate that the optimizer makes to compare different plans.
When calculating a plan's cost, the optimizer includes factors such as CPU and I/O operations
required by that plan. To learn more about PostgreSQL query planner cost estimates, see Query
Planning in the PostgreSQL documentation.

The following image shows how a plan is chosen for a given SQL statement when query plan
management is active, and when it's not.

Using Aurora PostgreSQL managed plans 2545

https://www.postgresql.org/docs/current/runtime-config-query.html
https://www.postgresql.org/docs/current/runtime-config-query.html

Amazon Aurora User Guide for Aurora

Using Aurora PostgreSQL managed plans 2546

Amazon Aurora User Guide for Aurora

The flow is as follows:

1. The optimizer generates a minimum-cost plan for the SQL statement.

2. If query plan management isn't active, the optimizer's plan is run
immediately (A. Run Optimizer's plan). Query plan management is
inactive when the apg_plan_mgmt.capture_plan_baselines and the
apg_plan_mgmt.use_plan_baselines parameters are both at their default settings ("off"
and "false," respectively).

Otherwise, query plan management is active. In this case, the SQL statement and the optimizer's
plan for it are further assessed before a plan is chosen.

Tip

Database users with the apg_plan_mgmt role can pro-actively compare plans, change
status of plans, and force the use of specific plans as needed. For more information, see
Maintaining Aurora PostgreSQL execution plans.

3. The SQL statement might already have plans that were stored by query plan management in the
past. Plans are stored in the apg_plan_mgmt.dba_plans, along with information about the
SQL statements that were used to create them. Information about a plan includes its status. A
plan's status can determine whether it's used or not, as follows.

a. If the plan isn't among the stored plans for the SQL statement, it means that it's the first time
this particular plan was generated by the optimizer for the given SQL statement. The plan is
sent to Capture Plan Processing (4).

b. If the plan is among the stored plans and its status is Approved or Preferred, the plan is run
(A. Run Optimizer's plan).

If the plan is among the stored plans but it's neither Approved nor Preferred, the plan is sent
to Capture Plan Processing (4).

4. When a plan is captured for the first time for a given SQL statement, the plan's status is always
set to Approved (P1). If the optimizer subsequently generates the same plan for the same SQL
statement, the status of that plan is changed to Unapproved (P1+n).

With the plan captured and its status updated, the evaluation continues at the next step (5).

Using Aurora PostgreSQL managed plans 2547

Amazon Aurora User Guide for Aurora

5. A plan's baseline consists of the history of the SQL statement and its plans at various states.
Query plan management can take the baseline into account when choosing a plan, depending
on whether the use plan baselines option is turned on or not, as follows.

• Use plan baselines is "off" when the apg_plan_mgmt.use_plan_baselines parameter is
set to its default value (false). The plan isn't compared to the baseline before it's run (A. Run
Optimizer's plan).

• Use plan baselines is "on" when the apg_plan_mgmt.use_plan_baselines parameter is
set to true. The plan is further assessed using the baseline (6).

6. The plan is compared to other plans for the statement in the baseline.

a. If the optimizer's plan is among the plans in the baseline, its status is checked (7a).

b. If the optimizer's plan isn't among plans in the baseline, the plan is added to the plans for the
statement as a new Unapproved plan.

7. The plan's status is checked to determine only if it's Unapproved.

a. If the plan's status is Unapproved, the plan's estimated cost is compared to the cost estimate
specified for the unapproved execution plan threshold.

• If the plan's estimated cost is below the threshold, the optimizer uses it
even though it's an Unapproved plan (A. Run Optimizer's plan). Generally,
the optimizer won't run an Unapproved plan. However, when the
apg_plan_mgmt.unapproved_plan_execution_threshold parameter specifies a cost
threshold value, the optimizer compares the Unapproved plan's cost to the threshold. If the
estimated cost is less than the threshold, the optimizer runs the plan. For more information,
see apg_plan_mgmt.unapproved_plan_execution_threshold.

• If the plan's estimated cost isn't below the threshold, the plan's other attributes are checked
(8a).

b. If the plan's status is anything other than Unapproved, its other attributes are checked (8a).

8. The optimizer won't use a plan that's disabled. That is, the plan that has its enable attribute set
to 'f' (false). The optimizer also won't use a plan that has a status of Rejected.

The optimizer can't use any plans that aren't valid. Plans can become invalid over time when the
objects that they depend on, such as indexes and table partitions, are removed or deleted.

a. If the statement has any enabled and valid Preferred plans, the optimizer chooses the
minimum-cost plan from among the Preferred plans stored for this SQL statement. The
optimizer then runs the minimum-cost Preferred plan.

Using Aurora PostgreSQL managed plans 2548

Amazon Aurora User Guide for Aurora

b. If the statement doesn't have any enabled and valid Preferred plans, it's assessed in the next
step (9).

9. If the statement has any enabled and valid Approved plans, the optimizer chooses the
minimum-cost plan from among the Approved plans stored for this SQL statement. The
optimizer then runs the minimum-cost Approved plan.

If the statement doesn't have any valid and enabled Approved plans, the optimizer uses the
minimum cost plan (A. Run Optimizer's plan).

Examining Aurora PostgreSQL query plans in the dba_plans view

Database users and administrators that have been granted the apg_plan_mgmt role can view and
manage the plans stored in the apg_plan_mgmt.dba_plans. An Aurora PostgreSQL DB cluster's
administrator (someone with rds_superuser permissions) must explicitly grant this role to the
database users who need to work with query plan management.

The apg_plan_mgmt view contains the plan history for all managed SQL statements for every
database on the writer instance of the Aurora PostgreSQL DB cluster. This view lets you examine
plans, their state, when last used, and all other relevant details.

As discussed in Normalization and the SQL hash, each managed plan is identified by the combined
SQL hash value and a plan hash value. With these identifiers, you can use tools such as Amazon
RDS Performance Insights to track individual plan performance. For more information about
Performance Insights, see Using Amazon RDS performance insights.

Listing managed plans

To list the managed plans, use a SELECT statement on the apg_plan_mgmt.dba_plans view.
The following example displays some columns in the dba_plans view such as the status, which
identifies the approved and unapproved plans.

SELECT sql_hash, plan_hash, status, enabled, stmt_name
FROM apg_plan_mgmt.dba_plans;

 sql_hash | plan_hash | status | enabled | stmt_name
------------+-----------+------------+---------+------------
 1984047223 | 512153379 | Approved | t | rangequery
 1984047223 | 512284451 | Unapproved | t | rangequery

Examining Aurora PostgreSQL query plans in the dba_plans view 2549

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_PerfInsights.html

Amazon Aurora User Guide for Aurora

 (2 rows)

For readability, the query and the output shown list just a few of the columns from the dba_plans
view. For complete information, see Reference for the apg_plan_mgmt.dba_plans view.

Maintaining Aurora PostgreSQL execution plans

Query plan management provides techniques and functions to add, maintain, and improve
execution plans.

Evaluating plan performance

After the optimizer captures plans as unapproved, use the
apg_plan_mgmt.evolve_plan_baselines function to compare plans based on their actual
performance. Depending on the outcome of your performance experiments, you can change a
plan's status from unapproved to either approved or rejected. You can instead decide to use the
apg_plan_mgmt.evolve_plan_baselines function to temporarily disable a plan if it does not
meet your requirements.

Approving better plans

The following example demonstrates how to change the status of managed plans to approved
using the apg_plan_mgmt.evolve_plan_baselines function.

SELECT apg_plan_mgmt.evolve_plan_baselines (
 sql_hash,
 plan_hash,
 min_speedup_factor := 1.0,
 action := 'approve'
)
FROM apg_plan_mgmt.dba_plans WHERE status = 'Unapproved';

NOTICE: rangequery (1,10000)
NOTICE: Baseline [Planning time 0.761 ms, Execution time 13.261 ms]
NOTICE: Baseline+1 [Planning time 0.204 ms, Execution time 8.956 ms]
NOTICE: Total time benefit: 4.862 ms, Execution time benefit: 4.305 ms
NOTICE: Unapproved -> Approved
evolve_plan_baselines

0
(1 row)

Maintaining Aurora PostgreSQL execution plans 2550

Amazon Aurora User Guide for Aurora

The output shows a performance report for the rangequery statement with parameter
bindings of 1 and 10,000. The new unapproved plan (Baseline+1) is better than the best
previously approved plan (Baseline). To confirm that the new plan is now Approved, check the
apg_plan_mgmt.dba_plans view.

SELECT sql_hash, plan_hash, status, enabled, stmt_name
FROM apg_plan_mgmt.dba_plans;

sql_hash | plan_hash | status | enabled | stmt_name
------------+-----------+----------+---------+------------
1984047223 | 512153379 | Approved | t | rangequery
1984047223 | 512284451 | Approved | t | rangequery
(2 rows)

The managed plan now includes two approved plans that are the statement's plan baseline. You
can also call the apg_plan_mgmt.set_plan_status function to directly set a plan's status field
to 'Approved', 'Rejected', 'Unapproved', or 'Preferred'.

Rejecting or disabling slower plans

To reject or disable plans, pass 'reject' or 'disable' as the action parameter to the
apg_plan_mgmt.evolve_plan_baselines function. This example disables any captured
Unapproved plan that is slower by at least 10 percent than the best Approved plan for the
statement.

SELECT apg_plan_mgmt.evolve_plan_baselines(
sql_hash, -- The managed statement ID
plan_hash, -- The plan ID
1.1, -- number of times faster the plan must be
'disable' -- The action to take. This sets the enabled field to false.
)
FROM apg_plan_mgmt.dba_plans
WHERE status = 'Unapproved' AND -- plan is Unapproved
origin = 'Automatic'; -- plan was auto-captured

You can also directly set a plan to rejected or disabled. To directly set a plan's enabled field
to true or false, call the apg_plan_mgmt.set_plan_enabled function. To directly set a
plan's status field to 'Approved', 'Rejected', 'Unapproved', or 'Preferred', call the
apg_plan_mgmt.set_plan_status function.

Maintaining Aurora PostgreSQL execution plans 2551

Amazon Aurora User Guide for Aurora

Validating plans

Use the apg_plan_mgmt.validate_plans function to delete or disable plans that are invalid.

Plans can become invalid or stale when objects that they depend on are removed, such as an index
or a table. However, a plan might be invalid only temporarily if the removed object gets recreated.
If an invalid plan can become valid later, you might prefer to disable an invalid plan or do nothing
rather than delete it.

To find and delete all plans that are invalid and haven't been used in the past week, use the
apg_plan_mgmt.validate_plans function as follows.

SELECT apg_plan_mgmt.validate_plans(sql_hash, plan_hash, 'delete')
FROM apg_plan_mgmt.dba_plans
WHERE last_used < (current_date - interval '7 days');

To enable or disabled a plan directly, use the apg_plan_mgmt.set_plan_enabled function.

Fixing plans using pg_hint_plan

The query optimizer is well-designed to find an optimal plan for all statements, and in most
cases the optimizer finds a good plan. However, occasionally you might know that a much better
plan exists than that generated by the optimizer. Two recommended ways to get the optimizer
to generate a desired plan include using the pg_hint_plan extension or setting Grand Unified
Configuration (GUC) variables in PostgreSQL:

• pg_hint_plan extension – Specify a "hint" to modify how the planner works by using
PostgreSQL's pg_hint_plan extension. To install and learn more about how to use the
pg_hint_plan extension, see the pg_hint_plan documentation.

• GUC variables – Override one or more cost model parameters or other optimizer parameters,
such as the from_collapse_limit or GEQO_threshold.

When you use one of these techniques to force the query optimizer to use a plan, you can also use
query plan management to capture and enforce use of the new plan.

You can use the pg_hint_plan extension to change the join order, the join methods, or the access
paths for a SQL statement. You use a SQL comment with special pg_hint_plan syntax to modify
how the optimizer creates a plan. For example, assume the problem SQL statement has a two-way
join.

Maintaining Aurora PostgreSQL execution plans 2552

https://github.com/ossc-db/pg_hint_plan

Amazon Aurora User Guide for Aurora

SELECT *
FROM t1, t2
WHERE t1.id = t2.id;

Then suppose that the optimizer chooses the join order (t1, t2), but you know that the join order
(t2, t1) is faster. The following hint forces the optimizer to use the faster join order, (t2, t1). Include
EXPLAIN so that the optimizer generates a plan for the SQL statement but without running the
statement. (Output not shown.)

/*+ Leading ((t2 t1)) */ EXPLAIN SELECT *
FROM t1, t2
WHERE t1.id = t2.id;

The following steps show how to use pg_hint_plan.

To modify the optimizer's generated plan and capture the plan using pg_hint_plan

1. Turn on the manual capture mode.

SET apg_plan_mgmt.capture_plan_baselines = manual;

2. Specify a hint for the SQL statement of interest.

/*+ Leading ((t2 t1)) */ EXPLAIN SELECT *
FROM t1, t2
WHERE t1.id = t2.id;

After this runs, the optimizer captures the plan in the apg_plan_mgmt.dba_plans view. The
captured plan doesn't include the special pg_hint_plan comment syntax because query plan
management normalizes the statement by removing leading comments.

3. View the managed plans by using the apg_plan_mgmt.dba_plans view.

SELECT sql_hash, plan_hash, status, sql_text, plan_outline
FROM apg_plan_mgmt.dba_plans;

4. Set the status of the plan to Preferred. Doing so makes sure that the optimizer chooses to
run it, instead of selecting from the set of approved plans, when the minimum-cost plan isn't
already Approved or Preferred.

Maintaining Aurora PostgreSQL execution plans 2553

Amazon Aurora User Guide for Aurora

SELECT apg_plan_mgmt.set_plan_status(sql-hash, plan-hash, 'preferred');

5. Turn off manual plan capture and enforce the use of managed plans.

SET apg_plan_mgmt.capture_plan_baselines = false;
SET apg_plan_mgmt.use_plan_baselines = true;

Now, when the original SQL statement runs, the optimizer chooses either an Approved or
Preferred plan. If the minimum-cost plan isn't Approved or Preferred, then the optimizer
chooses the Preferred plan.

Deleting plans

Plans are automatically deleted if they haven't been used in over a month, specifically, 32 days.
That's the default setting for the apg_plan_mgmt.plan_retention_period parameter. You can
change the plan retention period to a longer period of time, or to a shorter period of time starting
from the value of 1. Determining the number of days since a plan was last used is calculated by
subtracting the last_used date from the current date. The last_used date is the most recent
date that the optimizer chose the plan as the minimum cost plan or that the plan was run. The date
is stored for the plan in the apg_plan_mgmt.dba_plans view.

We recommend that you delete plans that haven't been used for a long time or that aren't useful.
Every plan has a last_used date that the optimizer updates each time it executes a plan or
chooses the plan as the minimum-cost plan for a statement. Check the last last_used dates to
identify the plans that you can safely delete.

The following query returns a three column table with the count on the total number of plans,
plans failed to delete, and the plans successfully deleted. It has a nested query that is an example
of how to use the apg_plan_mgmt.delete_plan function to delete all plans that haven't been
chosen as the minimum-cost plan in the last 31 days and its status is not Rejected.

SELECT (SELECT COUNT(*) from apg_plan_mgmt.dba_plans) total_plans,
 COUNT(*) FILTER (WHERE result = -1) failed_to_delete,
 COUNT(*) FILTER (WHERE result = 0) successfully_deleted
 FROM (
 SELECT apg_plan_mgmt.delete_plan(sql_hash, plan_hash) as result
 FROM apg_plan_mgmt.dba_plans
 WHERE last_used < (current_date - interval '31 days')

Maintaining Aurora PostgreSQL execution plans 2554

Amazon Aurora User Guide for Aurora

 AND status <> 'Rejected'
) as dba_plans ;

 total_plans | failed_to_delete | successfully_deleted
-------------+------------------+----------------------
 3 | 0 | 2

For more information, see apg_plan_mgmt.delete_plan.

To delete plans that aren't valid and that you expect to remain invalid, use the
apg_plan_mgmt.validate_plans function. This function lets you delete or disable invalid
plans. For more information, see Validating plans.

Important

If you don't delete extraneous plans, you might eventually run out of shared memory
that's set aside for query plan management. To control how much memory is available for
managed plans, use the apg_plan_mgmt.max_plans parameter. Set this parameter in
your custom DB parameter group and reboot your DB instance for changes to take effect.
For more information, see the apg_plan_mgmt.max_plans parameter.

Exporting and importing plans

You can export your managed plans and import them into another DB instance.

To export managed plans

An authorized user can copy any subset of the apg_plan_mgmt.plans table to another table, and
then save it using the pg_dump command. The following is an example.

CREATE TABLE plans_copy AS SELECT *
FROM apg_plan_mgmt.plans [WHERE predicates] ;

% pg_dump --table apg_plan_mgmt.plans_copy -Ft mysourcedatabase > plans_copy.tar

DROP TABLE apg_plan_mgmt.plans_copy;

Maintaining Aurora PostgreSQL execution plans 2555

Amazon Aurora User Guide for Aurora

To import managed plans

1. Copy the .tar file of the exported managed plans to the system where the plans are to be
restored.

2. Use the pg_restore command to copy the tar file into a new table.

% pg_restore --dbname mytargetdatabase -Ft plans_copy.tar

3. Merge the plans_copy table with the apg_plan_mgmt.plans table, as shown in the
following example.

Note

In some cases, you might dump from one version of the apg_plan_mgmt extension
and restore into a different version. In these cases, the columns in the plans table
might be different. If so, name the columns explicitly instead of using SELECT *.

INSERT INTO apg_plan_mgmt.plans SELECT * FROM plans_copy
 ON CONFLICT ON CONSTRAINT plans_pkey
 DO UPDATE SET
 status = EXCLUDED.status,
 enabled = EXCLUDED.enabled,
 -- Save the most recent last_used date
 --
 last_used = CASE WHEN EXCLUDED.last_used > plans.last_used
 THEN EXCLUDED.last_used ELSE plans.last_used END,
 -- Save statistics gathered by evolve_plan_baselines, if it ran:
 --
 estimated_startup_cost = EXCLUDED.estimated_startup_cost,
 estimated_total_cost = EXCLUDED.estimated_total_cost,
 planning_time_ms = EXCLUDED.planning_time_ms,
 execution_time_ms = EXCLUDED.execution_time_ms,
 total_time_benefit_ms = EXCLUDED.total_time_benefit_ms,
 execution_time_benefit_ms = EXCLUDED.execution_time_benefit_ms;

4. Reload the managed plans into shared memory and remove the temporary plans table.

SELECT apg_plan_mgmt.reload(); -- refresh shared memory
DROP TABLE plans_copy;

Maintaining Aurora PostgreSQL execution plans 2556

Amazon Aurora User Guide for Aurora

Reference for Aurora PostgreSQL query plan management

Following, you can find reference information for several Aurora PostgreSQL query plan
management features and functionality.

Topics

• Parameter reference for Aurora PostgreSQL query plan management

• Function reference for Aurora PostgreSQL query plan management

• Reference for the apg_plan_mgmt.dba_plans view

Parameter reference for Aurora PostgreSQL query plan management

You can set your preferences for the apg_plan_mgmt extension by using the parameters listed in
this section. These are available in the custom DB cluster parameter and the DB parameter group
associated with your Aurora PostgreSQL DB cluster. These parameters control the behavior of the
query plan management feature and how it affects the optimizer. For information about setting up
query plan management, see Turning on Aurora PostgreSQL query plan management. Changing
the parameters following has no effect if the apg_plan_mgmt extension isn't set up as detailed
in that section. For information about modifying parameters, see Modifying parameters in a DB
cluster parameter group and Working with DB parameter groups in a DB instance.

Parameters

• apg_plan_mgmt.capture_plan_baselines

• apg_plan_mgmt.plan_capture_threshold

• apg_plan_mgmt.explain_hashes

• apg_plan_mgmt.log_plan_enforcement_result

• apg_plan_mgmt.max_databases

• apg_plan_mgmt.max_plans

• apg_plan_mgmt.plan_hash_version

• apg_plan_mgmt.plan_retention_period

• apg_plan_mgmt.unapproved_plan_execution_threshold

• apg_plan_mgmt.use_plan_baselines

• auto_explain.hashes

Reference 2557

Amazon Aurora User Guide for Aurora

apg_plan_mgmt.capture_plan_baselines

Captures query execution plans generated by the optimizer for each SQL statement and stores
them in the dba_plans view. By default, the maximum number of plans that can be stored is
10,000 as specified by the apg_plan_mgmt.max_plans parameter. For reference information, see
apg_plan_mgmt.max_plans.

You can set this parameter in the custom DB cluster parameter group or in the custom DB
parameter group. Changing the value of this parameter doesn't require a reboot.

Default Allowed values Description

automatic Turns on plan capture for all databases on the DB instance.
Collects a plan for each SQL statement that runs two or more
times. Use this setting for large or evolving workloads to
provide plan stability.

manual Turns on plan capture for subsequent statements only, until
you turn it off again. Using this setting lets you capture query
execution plans for specific critical SQL statements only or for
known problematic queries.

off

off Turns off plan capture.

For more information, see Capturing Aurora PostgreSQL execution plans.

apg_plan_mgmt.plan_capture_threshold

Specifies a threshold so that if the total cost of the query execution plan is below the threshold,
the plan won’t be captured in the apg_plan_mgmt.dba_plans view.

Changing the value of this parameter doesn't require a reboot.

Default Allowed values Description

0 0 - 1.79769e+308 Sets the threshold of the apg_plan_mgmt query plan total
execution cost for capturing plans.

Reference 2558

Amazon Aurora User Guide for Aurora

For more information, see Examining Aurora PostgreSQL query plans in the dba_plans view.

apg_plan_mgmt.explain_hashes

Specifies if the EXPLAIN [ANALYZE] shows sql_hash and plan_hash at the end of its output.
Changing the value of this parameter doesn't require a reboot.

Default Allowed values Description

0 (off) EXPLAIN does not show sql_hash and plan_hash without
hashes true option.

0

1 (on) EXPLAIN shows sql_hash and plan_hash without hashes true
option.

apg_plan_mgmt.log_plan_enforcement_result

Specifies if the results has to be recorded to see if the QPM managed plans are used properly.
When a stored generic plan is used, there will be no records written in the log files. Changing the
value of this parameter doesn't require a reboot.

Default Allowed values Description

none Does not show any plan enforcement result in log files.

on_error Only shows plan enforcement result in log files when QPM fails
to use managed plans.

none

all Shows all plan enforcement results in log files including both
successes and failures.

apg_plan_mgmt.max_databases

Specifies the maximum number of databases on your Aurora PostgreSQL DB cluster's Writer
instance that can use query plan management. By default, up to 10 databases can use query plan
management. If you have more than 10 databases on the instance, you can change the value of
this setting. To find out how many databases are on a given instance, connect to the instance using
psql. Then, use the psql metacommand, \l, to list the databases.

Reference 2559

Amazon Aurora User Guide for Aurora

Changing the value of this parameter requires that you reboot the instance for the setting to take
effect.

Default Allowed values Description

10 10-2147483647 Maximum number of databases that can use query plan
management on the instance.

You can set this parameter in the custom DB cluster parameter group or in the custom DB
parameter group.

apg_plan_mgmt.max_plans

Sets the maximum number of SQL statements that the query plan manager can maintain in the
apg_plan_mgmt.dba_plans view. We recommend setting this parameter to 10000 or higher for
all Aurora PostgreSQL versions.

You can set this parameter in the custom DB cluster parameter group or in the custom DB
parameter group. Changing the value of this parameter requires that you reboot the instance for
the setting to take effect.

Default Allowed values Description

10000 10-2147483647 Maximum number of plans that can be stored in the
apg_plan_mgmt.dba_plans view.

Default for Aurora PostgreSQL version 10 and older versions is
1000.

For more information, see Examining Aurora PostgreSQL query plans in the dba_plans view.

apg_plan_mgmt.plan_hash_version

Specifies the use cases that the plan_hash calculation is designed to cover. A higher version of
apg_plan_mgmt.plan_hash_version covers all the functionality of the lower version. For
example, version 3 covers the use cases supported by version 2.

Changing the value of this parameter must be followed by a call to
apg_plan_mgmt.validate_plans('update_plan_hash'). It updates the plan_hash values in

Reference 2560

Amazon Aurora User Guide for Aurora

each database with apg_plan_mgmt installed and entries in the plans table. For more information,
see Validating plans

Default Allowed values Description

1 Default plan_hash calculation.

2 plan_hash calculation modified for multi-schema support.

3 plan_hash calculation modified for multi-schema support and
partitioned table support.

1

4 plan_hash calculation modified for parallel operators and to
support materialize nodes.

apg_plan_mgmt.plan_retention_period

Specifies the number of days to keep plans in the apg_plan_mgmt.dba_plans view, after which
they're automatically deleted. By default, a plan is deleted when 32 days have elapsed since the
plan was last used (the last_used column in the apg_plan_mgmt.dba_plans view). You can
change this setting to any number, 1 and over.

Changing the value of this parameter requires that you reboot the instance for the setting to take
effect.

Default Allowed values Description

32 1-2147483647 Maximum number of days since a plan was last used before it's
deleted.

For more information, see Examining Aurora PostgreSQL query plans in the dba_plans view.

apg_plan_mgmt.unapproved_plan_execution_threshold

Specifies a cost threshold below which an Unapproved plan can be used by the optimizer. By
default the threshold is 0, so the optimizer doesn't run Unapproved plans. Setting this parameter
to a trivially low cost threshold such as 100 avoids plan enforcement overhead on trivial plans.

Reference 2561

Amazon Aurora User Guide for Aurora

You can also set this parameter to an extremely large value like 10000000 using the reactive style
of plan management. This allows the optimizer to use all chosen plans with no plan enforcement
overhead. But, when a bad plan is found, you can manually mark it as "rejected" so that it is not
used next time.

The value of this parameter represents a cost estimate for running a given plan. If an Unapproved
plan is below that estimated cost, the optimizer uses it for the SQL statement. You can see
captured plans and their status (Approved, Unapproved) in the dba_plans view. To learn more, see
Examining Aurora PostgreSQL query plans in the dba_plans view.

Changing the value of this parameter doesn't require a reboot.

Default Allowed values Description

0 0-2147483647 Estimated plan cost below which an Unapproved plan is used.

For more information, see Using Aurora PostgreSQL managed plans.

apg_plan_mgmt.use_plan_baselines

Specifies that the optimizer should use one of the Approved plans captured and stored in the
apg_plan_mgmt.dba_plans view. By default, this parameter is off (false), causing the optimizer
to use the minimum-cost plan that it generates without any further assessment. Turning this
parameter on (setting it to true) forces the optimizer to choose a query execution plan for the
statement from its plan baseline. For more information, see Using Aurora PostgreSQL managed
plans. To find an image detailing this process, see How the optimizer chooses which plan to run.

You can set this parameter in the custom DB cluster parameter group or in the custom DB
parameter group. Changing the value of this parameter doesn't require a reboot.

Default Allowed values Description

false true Use an Approved, Preferred, or Unapproved plan from the
apg_plan_mgmt.dba_plans . If none of those meet all
evaluation criterion for the optimizer, it can then use its own
generated minimum-cost plan. For more information, see How
the optimizer chooses which plan to run.

Reference 2562

Amazon Aurora User Guide for Aurora

Default Allowed values Description

false Use the minimum cost plan generated by the optimizer.

You can evaluate response times of different captured plans and change plan status, as needed. For
more information, see Maintaining Aurora PostgreSQL execution plans.

auto_explain.hashes

Specifies if the auto_explain output shows sql_hash and plan_hash. Changing the value of this
parameter doesn't require a reboot.

Default Allowed values Description

0(off) auto_explain result does not show sql_hash and
plan_hash .

0(off)

1(on) auto_explain result shows sql_hash and plan_hash .

Function reference for Aurora PostgreSQL query plan management

The apg_plan_mgmt extension provides the following functions.

Functions

• apg_plan_mgmt.copy_outline

• apg_plan_mgmt.delete_plan

• apg_plan_mgmt.evolve_plan_baselines

• apg_plan_mgmt.get_explain_plan

• apg_plan_mgmt.plan_last_used

• apg_plan_mgmt.reload

• apg_plan_mgmt.set_plan_enabled

• apg_plan_mgmt.set_plan_status

• apg_plan_mgmt.update_plans_last_used

• apg_plan_mgmt.validate_plans

Reference 2563

Amazon Aurora User Guide for Aurora

apg_plan_mgmt.copy_outline

Copy a given SQL plan hash and plan outline to a target SQL plan hash and outline, thereby
overwriting the target's plan hash and outline. This function is available in apg_plan_mgmt 2.3
and higher releases.

Syntax

apg_plan_mgmt.copy_outline(
 source_sql_hash,
 source_plan_hash,
 target_sql_hash,
 target_plan_hash,
 force_update_target_plan_hash
)

Return value

Returns 0 when the copy is successful. Raises exceptions for invalid inputs.

Parameters

Parameter Description

source_sql_hash The sql_hash ID associated with the
plan_hash to copy to the target query.

source_plan_hash The plan_hash ID to copy to the target
query.

target_sql_hash The sql_hash ID of the query to update with
the source plan hash and outline.

target_plan_hash The plan_hash ID of the query to update
with the source plan hash and outline.

force_update_target_plan_hash (Optional) The target_plan_hash ID
of the query is updated even if the source
plan isn't reproducible for the target_sq
l_hash . When set to true, the function can

Reference 2564

Amazon Aurora User Guide for Aurora

Parameter Description

be used to copy plans across schemas where
relation names and columns are consistent.

Usage notes

This function allows you to copy a plan hash and plan outline that uses hints to other, similar
statements, and thus saves you from needing to use in-line hint statements at every occurrence in
the target statements. If the updated target query results in an invalid plan, this function raises an
error and rolls back the attempted update.

apg_plan_mgmt.delete_plan

Delete a managed plan.

Syntax

apg_plan_mgmt.delete_plan(
 sql_hash,
 plan_hash
)

Return value

Returns 0 if the delete was successful or -1 if the delete failed.

Parameters

Parameter Description

sql_hash The sql_hash ID of the plan's managed SQL
statement.

plan_hash The managed plan's plan_hash ID.

Reference 2565

Amazon Aurora User Guide for Aurora

apg_plan_mgmt.evolve_plan_baselines

Verifies whether an already approved plan is faster or whether a plan identified by the query
optimizer as a minimum cost plan is faster.

Syntax

apg_plan_mgmt.evolve_plan_baselines(
 sql_hash,
 plan_hash,
 min_speedup_factor,
 action
)

Return value

The number of plans that were not faster than the best approved plan.

Parameters

Parameter Description

sql_hash The sql_hash ID of the plan's managed SQL statement.

plan_hash The managed plan's plan_hash ID. Use NULL to mean all plans that
have the same sql_hash ID value.

min_speed
up_factor

The minimum speedup factor can be the number of times faster that a
plan must be than the best of the already approved plans to approve it.
Alternatively, this factor can be the number of times slower that a plan
must be to reject or disable it.

This is a positive float value.

action The action the function is to perform. Valid values include the following
. Case does not matter.

• 'disable' – Disable each matching plan that does not meet the
minimum speedup factor.

• 'approve' – Enable each matching plan that meets the minimum
speedup factor and set its status to approved.

Reference 2566

Amazon Aurora User Guide for Aurora

Parameter Description

• 'reject' – For each matching plan that does not meet the
minimum speedup factor, set its status to rejected.

• NULL – The function simply returns the number of plans that have
no performance benefit because they do not meet the minimum
speedup factor.

Usage notes

Set specified plans to approved, rejected, or disabled based on whether the planning plus
execution time is faster than the best approved plan by a factor that you can set. The action
parameter might be set to 'approve' or 'reject' to automatically approve or reject a plan
that meets the performance criteria. Alternatively, it might be set to '' (empty string) to do the
performance experiment and produce a report, but take no action.

You can avoid pointlessly rerunning of the apg_plan_mgmt.evolve_plan_baselines
function for a plan on which it was recently run. To do so, restrict the plans to just
the recently created unapproved plans. Alternatively, you can avoid running the
apg_plan_mgmt.evolve_plan_baselines function on any approved plan that has a recent
last_verified timestamp.

Conduct a performance experiment to compare the planning plus execution time of each plan
relative to the other plans in the baseline. In some cases, there is only one plan for a statement and
the plan is approved. In such a case, compare the planning plus execution time of the plan to the
planning plus execution time of using no plan.

The incremental benefit (or disadvantage) of each plan is recorded in the
apg_plan_mgmt.dba_plans view in the total_time_benefit_ms column. When this value is
positive, there is a measurable performance advantage to including this plan in the baseline.

In addition to collecting the planning and execution time of each candidate plan, the
last_verified column of the apg_plan_mgmt.dba_plans view is updated with the
current_timestamp. The last_verified timestamp might be used to avoid running this
function again on a plan that recently had its performance verified.

apg_plan_mgmt.get_explain_plan

Generates the text of an EXPLAIN statement for the specified SQL statement.

Reference 2567

Amazon Aurora User Guide for Aurora

Syntax

apg_plan_mgmt.get_explain_plan(
 sql_hash,
 plan_hash,
 [explainOptionList]
)

Return value

Returns runtime statistics for the specified SQL statements. Use without explainOptionList to
return a simple EXPLAIN plan.

Parameters

Parameter Description

sql_hash The sql_hash ID of the plan's managed SQL
statement.

plan_hash The managed plan's plan_hash ID.

explainOptionList A comma-separated list of explain options.
Valid values include 'analyze' , 'verbose'

, 'buffers' , 'hashes', and 'format
json'. If the explainOptionList is NULL
or an empty string (''), this function generates
an EXPLAIN statement, without any statistics.

Usage notes

For the explainOptionList, you can use any of the same options that you would use with an
EXPLAIN statement. The Aurora PostgreSQL optimizer concatenates the list of options that you
provide to the EXPLAIN statement.

apg_plan_mgmt.plan_last_used

Returns the last_used date of the specified plan from shared memory.

Reference 2568

Amazon Aurora User Guide for Aurora

Note

The value in shared memory is always current on the primary DB instance in the
DB cluster. The value is only periodically flushed to the last_used column of the
apg_plan_mgmt.dba_plans view.

Syntax

apg_plan_mgmt.plan_last_used(
 sql_hash,
 plan_hash
)

Return value

Returns the last_used date.

Parameters

Parameter Description

sql_hash The sql_hash ID of the plan's managed SQL
statement.

plan_hash The managed plan's plan_hash ID.

apg_plan_mgmt.reload

Reload plans into shared memory from the apg_plan_mgmt.dba_plans view.

Syntax

apg_plan_mgmt.reload()

Return value

None.

Reference 2569

Amazon Aurora User Guide for Aurora

Parameters

None.

Usage notes

Call reload for the following situations:

• Use it to refresh the shared memory of a read-only replica immediately, rather than wait for new
plans to propagate to the replica.

• Use it after importing managed plans.

apg_plan_mgmt.set_plan_enabled

Enable or disable a managed plan.

Syntax

apg_plan_mgmt.set_plan_enabled(
 sql_hash,
 plan_hash,
 [true | false]
)

Return value

Returns 0 if the setting was successful or -1 if the setting failed.

Parameters

Parameter Description

sql_hash The sql_hash ID of the plan's managed SQL statement.

plan_hash The managed plan's plan_hash ID.

enabled Boolean value of true or false:

• A value of true enables the plan.

Reference 2570

Amazon Aurora User Guide for Aurora

Parameter Description

• A value of false disables the plan.

apg_plan_mgmt.set_plan_status

Set a managed plan's status to Approved, Unapproved, Rejected, or Preferred.

Syntax

apg_plan_mgmt.set_plan_status(
 sql_hash,
 plan_hash,
 status
)

Return value

Returns 0 if the setting was successful or -1 if the setting failed.

Parameters

Parameter Description

sql_hash The sql_hash ID of the plan's managed SQL statement.

plan_hash The managed plan's plan_hash ID.

status A string with one of the following values:

• 'Approved'

• 'Unapproved'

• 'Rejected'

• 'Preferred'

The case you use does not matter, however the status value is set to initial
uppercase in the apg_plan_mgmt.dba_plans view. For more information

Reference 2571

Amazon Aurora User Guide for Aurora

Parameter Description

about these values, see status in Reference for the apg_plan_mgmt.dba_plans
view.

apg_plan_mgmt.update_plans_last_used

Immediately updates the plans table with the last_used date stored in shared memory.

Syntax

apg_plan_mgmt.update_plans_last_used()

Return value

None.

Parameters

None.

Usage notes

Call update_plans_last_used to make sure queries against the dba_plans.last_used
column use the most current information. If the last_used date isn't updated immediately,
a background process updates the plans table with the last_used date once every hour (by
default).

For example, if a statement with a certain sql_hash begins to run slowly, you can determine
which plans for that statement were executed since the performance regression began.
To do that, first flush the data in shared memory to disk so that the last_used dates
are current, and then query for all plans of the sql_hash of the statement with the
performance regression. In the query, make sure the last_used date is greater than or
equal to the date on which the performance regression began. The query identifies the
plan or set of plans that might be responsible for the performance regression. You can use
apg_plan_mgmt.get_explain_plan with explainOptionList set to verbose, hashes.
You can also use apg_plan_mgmt.evolve_plan_baselines to analyze the plan and any
alternative plans that might perform better.

Reference 2572

Amazon Aurora User Guide for Aurora

The update_plans_last_used function has an effect only on the primary DB instance of the DB
cluster.

apg_plan_mgmt.validate_plans

Validate that the optimizer can still recreate plans. The optimizer validates Approved,
Unapproved, and Preferred plans, whether the plan is enabled or disabled. Rejected plans are
not validated. Optionally, you can use the apg_plan_mgmt.validate_plans function to delete
or disable invalid plans.

Syntax

apg_plan_mgmt.validate_plans(
 sql_hash,
 plan_hash,
 action)

apg_plan_mgmt.validate_plans(
 action)

Return value

The number of invalid plans.

Parameters

Parameter Description

sql_hash The sql_hash ID of the plan's managed SQL statement.

plan_hash The managed plan's plan_hash ID. Use NULL to mean all plans for the same
sql_hash ID value.

action The action the function is to perform for invalid plans. Valid string values include
the following. Case does not matter.

• 'disable' – Each invalid plan is disabled.

• 'delete' – Each invalid plan is deleted.

• 'update_plan_hash' – Updates the plan_hash ID for plans that can't
be reproduced exactly. It also allows you to fix a plan by rewriting the SQL. You
can then register the good plan as an Approved plan for the original SQL.

Reference 2573

Amazon Aurora User Guide for Aurora

Parameter Description

• NULL – The function simply returns the number of invalid plans. No other
action is performed.

• '' – An empty string produces a message indicating the number of both valid
and invalid plans.

Any other value is treated like the empty string.

Usage notes

Use the form validate_plans(action) to validate all the managed plans for all the managed
statements in the entire apg_plan_mgmt.dba_plans view.

Use the form validate_plans(sql_hash, plan_hash, action) to validate a managed plan
specified with plan_hash, for a managed statement specified with sql_hash.

Use the form validate_plans(sql_hash, NULL, action) to validate all the managed plans
for the managed statement specified with sql_hash.

Reference for the apg_plan_mgmt.dba_plans view

The columns of plan information in the apg_plan_mgmt.dba_plans view include the following.

dba_plans column Description

cardinality_error A measure of the error between the estimated cardinality
versus the actual cardinality. Cardinality is the number of table
rows that the plan is to process. If the cardinality error is large,
then it increases the likelihood that the plan isn't optimal. This
column is populated by the apg_plan_mgmt.evolve_plan_b
aselines function.

compatibility_level The feature level of the Aurora PostgreSQL optimizer.

created_by The authenticated user (session_user) who created the
plan.

Reference 2574

Amazon Aurora User Guide for Aurora

dba_plans column Description

enabled An indicator of whether the plan is enabled or disabled. All
plans are enabled by default. You can disable plans to prevent
them from being used by the optimizer. To modify this value,
use the apg_plan_mgmt.set_plan_enabled function.

environment_variab
les

The PostgreSQL Grand Unified Configuration (GUC) parameter
s and values that the optimizer has overridden at the time the
plan was captured.

estimated_startup_
cost

The estimated optimizer setup cost before the optimizer
delivers rows of a table.

estimated_total_cost The estimated optimizer cost to deliver the final table row.

execution_time_ben
efit_ms

The execution time benefit in milliseconds of enabling the
plan. This column is populated by the apg_plan_mgmt.evol
ve_plan_baselines function.

execution_time_ms The estimated time in milliseconds that the plan would
run. This column is populated by the apg_plan_mgmt.evol
ve_plan_baselines function.

has_side_effects A value that indicates that the SQL statement is a data
manipulation language (DML) statement or a SELECT
statement that contains a VOLATILE function.

last_used This value is updated to the current date whenever the plan
is either executed or when the plan is the query optimizer's
minimum-cost plan. This value is stored in shared memory
and periodically flushed to disk. To get the most up-to-dat
e value, read the date from shared memory by calling the
function apg_plan_mgmt.plan_last_used(sql_has
h, plan_hash) instead of reading the last_used value.
For additional information, see the apg_plan_mgmt.plan
_retention_period parameter.

Reference 2575

Amazon Aurora User Guide for Aurora

dba_plans column Description

last_validated The most recent date and time when it was verified that the
plan could be recreated by either the apg_plan_mgmt.vali
date_plans function or the apg_plan_mgmt.evolve_plan_b
aselines function.

last_verified The most recent date and time when a plan was verified to be
the best-performing plan for the specified parameters by the
apg_plan_mgmt.evolve_plan_baselines function.

origin How the plan was captured with the apg_plan_mgmt.capt
ure_plan_baselines parameter. Valid values include the
following:

M – The plan was captured with manual plan capture.

A – The plan was captured with automatic plan capture.

param_list The parameter values that were passed to the statement if this
is a prepared statement.

plan_created The date and time the plan that was created.

plan_hash The plan identifier. The combination of plan_hash and
sql_hash uniquely identifies a specific plan.

plan_outline A representation of the plan that is used to recreate the actual
execution plan, and that is database-independent. Operators
in the tree correspond to operators that appear in the EXPLAIN
output.

planning_time_ms The actual time to run the planner, in milliseconds. This column
is populated by the apg_plan_mgmt.evolve_plan_baselines
function.

Reference 2576

Amazon Aurora User Guide for Aurora

dba_plans column Description

queryId A statement hash, as calculated by the pg_stat_s
tatements extension. This isn't a stable or database-
independent identifier because it depends on object identifie
rs (OIDs). The value will be 0 if compute_query_id is off
when capturing the query plan.

sql_hash A hash value of the SQL statement text, normalized with
literals removed.

sql_text The full text of the SQL statement.

status A plan's status, which determines how the optimizer uses a
plan. Valid values include the following.

• Approved – A usable plan that the optimizer can choose to
run. The optimizer runs the least-cost plan from a managed
statement's set of approved plans (baseline). To reset a plan
to approved, use the apg_plan_mgmt.evolve_plan_baselines
function.

• Unapproved – A captured plan that you have not
verified for use. For more information, see Evaluating plan
performance.

• Rejected – A plan that the optimizer won't use. For more
information, see Rejecting or disabling slower plans.

• Preferred – A plan that you have determined is a
preferred plan to use for a managed statement.

If the optimizer's minimum-cost plan isn't an approved or
preferred plan, you can reduce plan enforcement overhead.
To do so, make a subset of the approved plans Preferred .
When the optimizer's minimum cost isn't an Approved plan,
a Preferred plan is chosen before an Approved plan.

To reset a plan to Preferred , use the apg_plan_
mgmt.set_plan_status function.

Reference 2577

Amazon Aurora User Guide for Aurora

dba_plans column Description

stmt_name The name of the SQL statement within a PREPARE statement
. This value is an empty string for an unnamed prepared
statement. This value is NULL for a nonprepared statement.

total_time_benefit
_ms

The total time benefit in milliseconds of enabling this plan.
This value considers both planning time and execution time.

If this value is negative, there is a disadvantage to enabling this
plan. This column is populated by the apg_plan_mgmt.evol
ve_plan_baselines function.

Advanced features in Query Plan Management

Following you can find information about the advanced Aurora PostgreSQL Query Plan
Management (QPM) features:

Topics

• Capturing Aurora PostgreSQL execution plans in Replicas

• Supporting table partition

Capturing Aurora PostgreSQL execution plans in Replicas

QPM (Query Plan Management) allows you to capture the query plans generated by Aurora
Replicas and stores them on the primary DB instance of the Aurora DB cluster. You can collect the
query plans from all the Aurora Replicas, and maintain a set of optimal plans in a central persistent
table on the primary instance. You can then apply these plans on other Replicas when needed.
This helps you to maintain the stability of execution plans and improve performance of the queries
across the DB clusters and engine versions.

Topics

• Prerequisites

• Managing plan capture for Aurora Replicas

• Troubleshooting

Advanced features in Query Plan Management 2578

Amazon Aurora User Guide for Aurora

Prerequisites

Turn on capture_plan_baselines parameter in Aurora Replica - Set
capture_plan_baselines parameter to automatic or manual to capture plans in Aurora
Replicas. For more information, see apg_plan_mgmt.capture_plan_baselines.

Install postgres_fdw extension - You must install postgres_fdw foreign data wrapper extension
to capture plans in Aurora Replicas. Run the following command in each database, to install the
extension.

postgres=> CREATE EXTENSION IF NOT EXISTS postgres_fdw;

Managing plan capture for Aurora Replicas

Turn on plan capture for Aurora Replicas

You must have rds_superuser privileges to create or remove Plan Capture in Aurora Replicas.
For more information on user roles and permissions, see Understanding PostgreSQL roles and
permissions.

To capture plans, call the function apg_plan_mgmt.create_replica_plan_capture in the writer DB
instance, as shown in the following:

postgres=> CALL
 apg_plan_mgmt.create_replica_plan_capture('cluster_endpoint', 'password');

• cluster_endpoint - cluster_endpoint (writer endpoint) provides failover support for Plan Capture
in Aurora Replicas.

• password - We recommend you to follow the below guidelines while creating the password to
enhance the security:

• It must contain at least 8 characters.

• It must contain at least one uppercase, one lowercase letter, and one number.

• It must have at least one special character (?, !, #, <, >, *, and so on).

Note

If you change the cluster endpoint, password, or port number, you must run
apg_plan_mgmt.create_replica_plan_capture() again with the cluster endpoint

Advanced features in Query Plan Management 2579

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Appendix.PostgreSQL.CommonDBATasks.Roles.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Appendix.PostgreSQL.CommonDBATasks.Roles.html

Amazon Aurora User Guide for Aurora

and password to re-initialize the plan capture. If not, capturing plans from Aurora Replicas
will fail.

Turn off plan capture for Aurora Replicas

You can turn off capture_plan_baselines parameter in Aurora Replica by setting its value to
off in the Parameter group.

Remove plan capture for Aurora Replicas

You can completely remove Plan Capture in Aurora Replicas but make sure before you do. To
remove plan capture, call apg_plan_mgmt.remove_replica_plan_capture as shown:

postgres=> CALL apg_plan_mgmt.remove_replica_plan_capture();

You must call apg_plan_mgmt.create_replica_plan_capture() again to turn on plan capture in
Aurora Replicas with the cluster endpoint and password.

Troubleshooting

Following, you can find troubleshooting ideas and workarounds if the plan is not captured in
Aurora Replicas as expected.

• Parameter settings - Check if the capture_plan_baselines parameter is set to proper value
to turn on plan capture.

• postgres_fdw extension is installed - Use the following query to check if postgres_fdw is
installed.

postgres=> SELECT * FROM pg_extension WHERE extname = 'postgres_fdw'

• create_replica_plan_capture() is called - Use the following command to check if the user
mapping exits. Otherwise, call create_replica_plan_capture() to initialize the feature.

postgres=> SELECT * FROM pg_foreign_server WHERE srvname =
 'apg_plan_mgmt_writer_foreign_server';

• Cluster endpoint and port number - Check if the cluster endpoint and port number if
appropriate. There won't be any error message displayed if these values are incorrect.

Advanced features in Query Plan Management 2580

Amazon Aurora User Guide for Aurora

Use the following command to verify if the endpoint used in the create() and to check which
database it resides in:

postgres=> SELECT srvoptions FROM pg_foreign_server WHERE srvname =
 'apg_plan_mgmt_writer_foreign_server';

• reload() - You must call apg_plan_mgmt.reload() after calling apg_plan_mgmt.delete_plan() in
Aurora Replicas to make the delete function effective. This ensures that the change has been
successfully implemented.

• Password - You must enter password in create_replica_plan_capture() as per the guidelines
mentioned. Otherwise, you will receive an error message. For more information,see Managing
plan capture for Aurora Replicas. Use another password that aligns with the requirements.

• Cross-Region connection - Plan capture in Aurora Replicas is also supported in Aurora global
database, where writer instance and Aurora Replicas can be in different regions. The writer
instance and cross-Region Replica must be able to communicate, using VPC Peering. For more
information, see VPC peering. If a cross-Region failover happens, you must reconfigure the
endpoint to new primary DB cluster endpoint.

Supporting table partition

Aurora PostgreSQL Query Plan Management (QPM) supports declarative table partitioning in the
following versions:

• 15.3 and higher 15 versions

• 14.8 and higher 14 versions

• 13.11 and higher 13 versions

For more information, see Table Partitioning.

Topics

• Setting up table partition

• Capturing plans for table partition

• Enforcing a table partition plan

• Naming Convention

Advanced features in Query Plan Management 2581

https://docs.aws.amazon.com/vpc/latest/peering/what-is-vpc-peering.html
https://www.postgresql.org/docs/current/ddl-partitioning.html

Amazon Aurora User Guide for Aurora

Setting up table partition

To set up table partition in Aurora PostgreSQL QPM, do as follows:

1. Set apg_plan_mgmt.plan_hash_version to 3 or more in the DB cluster parameter group.

2. Navigate to a database that uses Query Plan Management and has entries in
apg_plan_mgmt.dba_plans view.

3. Call apg_plan_mgmt.validate_plans('update_plan_hash') to update the plan_hash
value in the plans table.

4. Repeat steps 2-3 for all databases with Query Plan Management enabled that have entries in
apg_plan_mgmt.dba_plans view.

For more information on these parameters, see Parameter reference for Aurora PostgreSQL query
plan management.

Capturing plans for table partition

In QPM, different plans are distinguished by their plan_hash value. To understand how the
plan_hash changes, you must first understand similar kind of plans.

The combination of access methods, digit-stripped index names and digit-stripped partition names,
accumulated at the Append node level must be constant for plans to be considered the same. The
specific partitions accessed in the plans are not significant. In the following example, a table tbl_a
is created with 4 partitions.

postgres=>create table tbl_a(i int, j int, k int, l int, m int) partition by range(i);
CREATE TABLE
postgres=>create table tbl_a1 partition of tbl_a for values from (0) to (1000);
CREATE TABLE
postgres=>create table tbl_a2 partition of tbl_a for values from (1001) to (2000);
CREATE TABLE
postgres=>create table tbl_a3 partition of tbl_a for values from (2001) to (3000);
CREATE TABLE
postgres=>create table tbl_a4 partition of tbl_a for values from (3001) to (4000);
CREATE TABLE
postgres=>create index t_i on tbl_a using btree (i);
CREATE INDEX
postgres=>create index t_j on tbl_a using btree (j);
CREATE INDEX

Advanced features in Query Plan Management 2582

Amazon Aurora User Guide for Aurora

postgres=>create index t_k on tbl_a using btree (k);
CREATE INDEX

The following plans are considered the same because a single scan method is being used to scan
tbl_a irrespective of the number of partitions that the query looks up.

postgres=>explain (hashes true, costs false) select j, k from tbl_a where i between 990
 and 999 and j < 9910 and k > 50;

 QUERY PLAN

Seq Scan on tbl_a1 tbl_a
 Filter: ((i >= 990) AND (i <= 999) AND (j < 9910) AND (k > 50))
SQL Hash: 1553185667, Plan Hash: -694232056
(3 rows)

postgres=>explain (hashes true, costs false) select j, k from tbl_a where i between 990
 and 1100 and j < 9910 and k > 50;

 QUERY PLAN

Append
 -> Seq Scan on tbl_a1 tbl_a_1
 Filter: ((i >= 990) AND (i <= 1100) AND (j < 9910) AND (k > 50))
 -> Seq Scan on tbl_a2 tbl_a_2
 Filter: ((i >= 990) AND (i <= 1100) AND (j < 9910) AND (k > 50))
 SQL Hash: 1553185667, Plan Hash: -694232056
 (6 rows)

postgres=>explain (hashes true, costs false) select j, k from tbl_a where i between 990
 and 2100 and j < 9910 and k > 50;

 QUERY PLAN
--
 Append
 -> Seq Scan on tbl_a1 tbl_a_1
 Filter: ((i >= 990) AND (i <= 2100) AND (j < 9910) AND (k > 50))
 -> Seq Scan on tbl_a2 tbl_a_2
 Filter: ((i >= 990) AND (i <= 2100) AND (j < 9910) AND (k > 50))
 -> Seq Scan on tbl_a3 tbl_a_3
 Filter: ((i >= 990) AND (i <= 2100) AND (j < 9910) AND (k > 50))
 SQL Hash: 1553185667, Plan Hash: -694232056

Advanced features in Query Plan Management 2583

Amazon Aurora User Guide for Aurora

(8 rows)

The following 3 plans are also considered the same because at the parent level, the access
methods, digit-stripped index names and digit-stripped partition names are SeqScan tbl_a,
IndexScan (i_idx) tbl_a.

postgres=>explain (hashes true, costs false) select j, k from tbl_a where i between 990
 and 1100 and j < 9910 and k > 50;

 QUERY PLAN
--
 Append
 -> Seq Scan on tbl_a1 tbl_a_1
 Filter: ((i >= 990) AND (i <= 1100) AND (j < 9910) AND (k > 50))
 -> Index Scan using tbl_a2_i_idx on tbl_a2 tbl_a_2
 Index Cond: ((i >= 990) AND (i <= 1100))
 Filter: ((j < 9910) AND (k > 50))
 SQL Hash: 1553185667, Plan Hash: -993736942
(7 rows)

postgres=>explain (hashes true, costs false) select j, k from tbl_a where i between 990
 and 2100 and j < 9910 and k > 50;

 QUERY PLAN
--
 Append
 -> Index Scan using tbl_a1_i_idx on tbl_a1 tbl_a_1
 Index Cond: ((i >= 990) AND (i <= 2100))
 Filter: ((j < 9910) AND (k > 50))
 -> Seq Scan on tbl_a2 tbl_a_2
 Filter: ((i >= 990) AND (i <= 2100) AND (j < 9910) AND (k > 50))
 -> Index Scan using tbl_a3_i_idx on tbl_a3 tbl_a_3
 Index Cond: ((i >= 990) AND (i <= 2100))
 Filter: ((j < 9910) AND (k > 50))
 SQL Hash: 1553185667, Plan Hash: -993736942
(10 rows)

postgres=>explain (hashes true, costs false) select j, k from tbl_a where i between 990
 and 3100 and j < 9910 and k > 50;

 QUERY PLAN
--

Advanced features in Query Plan Management 2584

Amazon Aurora User Guide for Aurora

 Append
 -> Seq Scan on tbl_a1 tbl_a_1
 Filter: ((i >= 990) AND (i <= 3100) AND (j < 9910) AND (k > 50))
 -> Seq Scan on tbl_a2 tbl_a_2
 Filter: ((i >= 990) AND (i <= 3100) AND (j < 9910) AND (k > 50))
 -> Seq Scan on tbl_a3 tbl_a_3
 Filter: ((i >= 990) AND (i <= 3100) AND (j < 9910) AND (k > 50))
 -> Index Scan using tbl_a4_i_idx on tbl_a4 tbl_a_4
 Index Cond: ((i >= 990) AND (i <= 3100))
 Filter: ((j < 9910) AND (k > 50))
 SQL Hash: 1553185667, Plan Hash: -993736942
(11 rows)

Irrespective of different order and number of occurrences in child partitions, the access methods,
digit-stripped index names and digit-stripped partition names are constant at the parent level for
each of the above plans.

However, the plans would be considered different if any of the following conditions are met:

• Any additional access methods are used in the plan.

postgres=>explain (hashes true, costs false) select j, k from tbl_a where i between
 990 and 2100 and j < 9910 and k > 50;

 QUERY PLAN
--
 Append
 -> Seq Scan on tbl_a1 tbl_a_1
 Filter: ((i >= 990) AND (i <= 2100) AND (j < 9910) AND (k > 50))
 -> Seq Scan on tbl_a2 tbl_a_2
 Filter: ((i >= 990) AND (i <= 2100) AND (j < 9910) AND (k > 50))
 -> Bitmap Heap Scan on tbl_a3 tbl_a_3
 Recheck Cond: ((i >= 990) AND (i <= 2100))
 Filter: ((j < 9910) AND (k > 50))
 -> Bitmap Index Scan on tbl_a3_i_idx
 Index Cond: ((i >= 990) AND (i <= 2100))
 SQL Hash: 1553185667, Plan Hash: 1134525070
(11 rows)

• Any of the access methods in the plan are not used anymore.

postgres=>explain (hashes true, costs false) select j, k from tbl_a where i between
 990 and 1100 and j < 9910 and k > 50;

Advanced features in Query Plan Management 2585

Amazon Aurora User Guide for Aurora

 QUERY PLAN
--
 Append
 -> Seq Scan on tbl_a1 tbl_a_1
 Filter: ((i >= 990) AND (i <= 1100) AND (j < 9910) AND (k > 50))
 -> Seq Scan on tbl_a2 tbl_a_2
 Filter: ((i >= 990) AND (i <= 1100) AND (j < 9910) AND (k > 50))
 SQL Hash: 1553185667, Plan Hash: -694232056
(6 rows)

• The index associated with an index method is changed.

postgres=>explain (hashes true, costs false) select j, k from tbl_a where i between
 990 and 1100 and j < 9910 and k > 50;

 QUERY PLAN
--
 Append
 -> Seq Scan on tbl_a1 tbl_a_1
 Filter: ((i >= 990) AND (i <= 1100) AND (j < 9910) AND (k > 50))
 -> Index Scan using tbl_a2_j_idx on tbl_a2 tbl_a_2
 Index Cond: (j < 9910)
 Filter: ((i >= 990) AND (i <= 1100) AND (k > 50))
 SQL Hash: 1553185667, Plan Hash: -993343726
(7 rows)

Enforcing a table partition plan

Approved plans for partitioned tables are enforced with positional correspondence. The plans are
not specific to the partitions, and can be enforced on partitions other than the plans referenced in
the original query. Plans also have the capability of being enforced for queries accessing a different
number of partitions than the original approved outline.

For example, if the approved outline is for the following plan:

postgres=>explain (hashes true, costs false) select j, k from tbl_a where i between 990
 and 2100 and j < 9910 and k > 50;

 QUERY PLAN
--
 Append

Advanced features in Query Plan Management 2586

Amazon Aurora User Guide for Aurora

 -> Index Scan using tbl_a1_i_idx on tbl_a1 tbl_a_1
 Index Cond: ((i >= 990) AND (i <= 2100))
 Filter: ((j < 9910) AND (k > 50))
 -> Seq Scan on tbl_a2 tbl_a_2
 Filter: ((i >= 990) AND (i <= 2100) AND (j < 9910) AND (k > 50))
 -> Index Scan using tbl_a3_i_idx on tbl_a3 tbl_a_3
 Index Cond: ((i >= 990) AND (i <= 2100))
 Filter: ((j < 9910) AND (k > 50))
 SQL Hash: 1553185667, Plan Hash: -993736942
(10 rows)

Then, this plan can be enforced on SQL queries referencing 2, 4, or more partitions as well. The
possible plans that could arise from these scenarios for 2 and 4 partition access are:

postgres=>explain (hashes true, costs false) select j, k from tbl_a where i between 990
 and 1100 and j < 9910 and k > 50;

 QUERY PLAN
--
 Append
 -> Index Scan using tbl_a1_i_idx on tbl_a1 tbl_a_1
 Index Cond: ((i >= 990) AND (i <= 1100))
 Filter: ((j < 9910) AND (k > 50))
 -> Seq Scan on tbl_a2 tbl_a_2
 Filter: ((i >= 990) AND (i <= 1100) AND (j < 9910) AND (k > 50))
 Note: An Approved plan was used instead of the minimum cost plan.
 SQL Hash: 1553185667, Plan Hash: -993736942, Minimum Cost Plan Hash: -1873216041
(8 rows)

postgres=>explain (hashes true, costs false) select j, k from tbl_a where i between 990
 and 3100 and j < 9910 and k > 50;

 QUERY PLAN
--
 Append
 -> Index Scan using tbl_a1_i_idx on tbl_a1 tbl_a_1
 Index Cond: ((i >= 990) AND (i <= 3100))
 Filter: ((j < 9910) AND (k > 50))
 -> Seq Scan on tbl_a2 tbl_a_2
 Filter: ((i >= 990) AND (i <= 3100) AND (j < 9910) AND (k > 50))
 -> Index Scan using tbl_a3_i_idx on tbl_a3 tbl_a_3
 Index Cond: ((i >= 990) AND (i <= 3100))
 Filter: ((j < 9910) AND (k > 50))

Advanced features in Query Plan Management 2587

Amazon Aurora User Guide for Aurora

 -> Seq Scan on tbl_a4 tbl_a_4
 Filter: ((i >= 990) AND (i <= 3100) AND (j < 9910) AND (k > 50))
 Note: An Approved plan was used instead of the minimum cost plan.
 SQL Hash: 1553185667, Plan Hash: -993736942, Minimum Cost Plan Hash: -1873216041
(12 rows)

postgres=>explain (hashes true, costs false) select j, k from tbl_a where i between 990
 and 3100 and j < 9910 and k > 50;

 QUERY PLAN
--
 Append
 -> Index Scan using tbl_a1_i_idx on tbl_a1 tbl_a_1
 Index Cond: ((i >= 990) AND (i <= 3100))
 Filter: ((j < 9910) AND (k > 50))
 -> Seq Scan on tbl_a2 tbl_a_2
 Filter: ((i >= 990) AND (i <= 3100) AND (j < 9910) AND (k > 50))
 -> Index Scan using tbl_a3_i_idx on tbl_a3 tbl_a_3
 Index Cond: ((i >= 990) AND (i <= 3100))
 Filter: ((j < 9910) AND (k > 50))
 -> Index Scan using tbl_a4_i_idx on tbl_a4 tbl_a_4
 Index Cond: ((i >= 990) AND (i <= 3100))
 Filter: ((j < 9910) AND (k > 50))
 Note: An Approved plan was used instead of the minimum cost plan.
 SQL Hash: 1553185667, Plan Hash: -993736942, Minimum Cost Plan Hash: -1873216041
(14 rows)

Consider another approved plan with different access methods for each partition:

postgres=>explain (hashes true, costs false) select j, k from tbl_a where i between 990
 and 2100 and j < 9910 and k > 50;

 QUERY PLAN
--
 Append
 -> Index Scan using tbl_a1_i_idx on tbl_a1 tbl_a_1
 Index Cond: ((i >= 990) AND (i <= 2100))
 Filter: ((j < 9910) AND (k > 50))
 -> Seq Scan on tbl_a2 tbl_a_2
 Filter: ((i >= 990) AND (i <= 2100) AND (j < 9910) AND (k > 50))
 -> Bitmap Heap Scan on tbl_a3 tbl_a_3
 Recheck Cond: ((i >= 990) AND (i <= 2100))
 Filter: ((j < 9910) AND (k > 50))

Advanced features in Query Plan Management 2588

Amazon Aurora User Guide for Aurora

 -> Bitmap Index Scan on tbl_a3_i_idx
 Index Cond: ((i >= 990) AND (i <= 2100))
 SQL Hash: 1553185667, Plan Hash: 2032136998
(12 rows)

In this case, any plan that reads from two partitions would fail to be enforced. Unless all of the
(access method, index name) combinations from the approved plan are usable, the plan cannot be
enforced. For example, the following plans have different plan hashes and the approved plan can't
be enforced in these cases:

postgres=>explain (hashes true, costs false) select j, k from tbl_a where i between 990
 and 1900 and j < 9910 and k > 50;

 QUERY PLAN

 Append
 -> Bitmap Heap Scan on tbl_a1 tbl_a_1
 Recheck Cond: ((i >= 990) AND (i <= 1900))
 Filter: ((j < 9910) AND (k > 50))
 -> Bitmap Index Scan on tbl_a1_i_idx
 Index Cond: ((i >= 990) AND (i <= 1900))
 -> Bitmap Heap Scan on tbl_a2 tbl_a_2
 Recheck Cond: ((i >= 990) AND (i <= 1900))
 Filter: ((j < 9910) AND (k > 50))
 -> Bitmap Index Scan on tbl_a2_i_idx
 Index Cond: ((i >= 990) AND (i <= 1900))
 Note: This is not an Approved plan. No usable Approved plan was found.
 SQL Hash: 1553185667, Plan Hash: -568647260
(13 rows)

postgres=>explain (hashes true, costs false) select j, k from tbl_a where i between 990
 and 1900 and j < 9910 and k > 50;

 QUERY PLAN
--
 Append
 -> Index Scan using tbl_a1_i_idx on tbl_a1 tbl_a_1
 Index Cond: ((i >= 990) AND (i <= 1900))
 Filter: ((j < 9910) AND (k > 50))
 -> Seq Scan on tbl_a2 tbl_a_2
 Filter: ((i >= 990) AND (i <= 1900) AND (j < 9910) AND (k > 50))
 Note: This is not an Approved plan. No usable Approved plan was found.

Advanced features in Query Plan Management 2589

Amazon Aurora User Guide for Aurora

 SQL Hash: 1553185667, Plan Hash: -496793743
(8 rows)

Naming Convention

For QPM to enforce a plan with declarative partitioned tables, you must follow specific naming
rules for parent tables, table partitions, and indexes:

• Parent table names – These names must differ by alphabets or special characters, and not by
just digits. For example, tA, tB, and tC are acceptable names for separate parent tables while t1,
t2, and t3 are not.

• Individual partition table names – Partitions of the same parent should differ from one another
by digits only. For example, acceptable partition names of tA could be tA1, tA2 or t1A, t2A or
even multiple digits.

Any other differences (letters, special characters) will not guarantee plan enforcement.

• Index names – In partition table hierarchy, make sure that all indexes have unique names. This
means that the non-numeric parts of the names must be different. For example, if you have a
partitioned table named tA with an index named tA_col1_idx1, you can't have another index
named tA_col1_idx2. However, you can have an index called tA_a_col1_idx2 because the
non-numeric part of the name is unique. This rule applies to indexes created on both the parent
table and individual partition tables.

Failure to adhere to the above naming conventions may result in failure of approved plans
enforcement. The following example illustrates such a failed enforcement:

postgres=>create table t1(i int, j int, k int, l int, m int) partition by range(i);
CREATE TABLE
postgres=>create table t1a partition of t1 for values from (0) to (1000);
CREATE TABLE
postgres=>create table t1b partition of t1 for values from (1001) to (2000);
CREATE TABLE
postgres=>SET apg_plan_mgmt.capture_plan_baselines TO 'manual';
SET
postgres=>explain (hashes true, costs false) select count(*) from t1 where i > 0;

 QUERY PLAN
--
 Aggregate
 -> Append

Advanced features in Query Plan Management 2590

Amazon Aurora User Guide for Aurora

 -> Seq Scan on t1a t1_1
 Filter: (i > 0)
 -> Seq Scan on t1b t1_2
 Filter: (i > 0)
 SQL Hash: -1720232281, Plan Hash: -1010664377
(7 rows)

postgres=>SET apg_plan_mgmt.use_plan_baselines TO 'on';
SET
postgres=>explain (hashes true, costs false) select count(*) from t1 where i > 1000;

 QUERY PLAN

 Aggregate
 -> Seq Scan on t1b t1
 Filter: (i > 1000)
 Note: This is not an Approved plan. No usable Approved plan was found.
 SQL Hash: -1720232281, Plan Hash: 335531806
(5 rows)

Even though the two plans might appear identical, their Plan Hash values are different due to the
names of the child tables. The table names vary by alpha characters instead of just digits leading to
an enforcement failure.

Advanced features in Query Plan Management 2591

Amazon Aurora User Guide for Aurora

Working with extensions and foreign data wrappers

To extend the functionality to your Aurora PostgreSQL-Compatible Edition DB cluster, you can
install and use various PostgreSQL extensions. For example, if your use case calls for intensive data
entry across very large tables, you can install the pg_partman extension to partition your data and
thus spread the workload.

Note

As of Aurora PostgreSQL 14.5, Aurora PostgreSQL supports Trusted Language Extensions
for PostgreSQL. This feature is implemented as the extension pg_tle, which you can
add to your Aurora PostgreSQL. By using this extension, developers can create their own
PostgreSQL extensions in a safe environment that simplifies the setup and configuration
requirements, as well as much of the preliminary testing for new extensions. For more
information, see Working with Trusted Language Extensions for PostgreSQL.

In some cases, rather than installing an extension, you might add a specific module to the
list of shared_preload_libraries in your Aurora PostgreSQL DB cluster's custom DB
cluster parameter group. Typically, the default DB cluster parameter group loads only the
pg_stat_statements, but several other modules are available to add to the list. For example,
you can add scheduling capability by adding the pg_cron module, as detailed in Scheduling
maintenance with the PostgreSQL pg_cron extension. As another example, you can log query
execution plans by loading the auto_explain module. To learn more, see Logging execution
plans of queries in the AWS knowledge center.

An extension that provides access to external data is more specifically known as a foreign data
wrapper (FDW). As one example, the oracle_fdw extension allows your Aurora PostgreSQL DB
cluster to work with Oracle databases.

You can also specify precisely which extensions can be installed on your Aurora PostgreSQL DB
instance, by listing them in the rds.allowed_extensions parameter. For more information, see
Restricting installation of PostgreSQL extensions.

Following, you can find information about setting up and using some of the extensions, modules,
and FDWs available for Aurora PostgreSQL. For simplicity's sake, these are all referred to as
"extensions." You can find listings of extensions that you can use with the currently available

Working with extensions and foreign data wrappers 2592

https://pgxn.org/dist/pg_partman/doc/pg_partman.html
https://aws.amazon.com/premiumsupport/knowledge-center/rds-postgresql-tune-query-performance/#
https://aws.amazon.com/premiumsupport/knowledge-center/rds-postgresql-tune-query-performance/#
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_PostgreSQL.html#PostgreSQL.Concepts.General.FeatureSupport.Extensions.Restriction.html

Amazon Aurora User Guide for Aurora

Aurora PostgreSQL versions, see Extension versions for Amazon Aurora PostgreSQL in the Release
Notes for Aurora PostgreSQL.

• Managing large objects with the lo module

• Managing spatial data with the PostGIS extension

• Managing PostgreSQL partitions with the pg_partman extension

• Scheduling maintenance with the PostgreSQL pg_cron extension

• Using pgAudit to log database activity

• Using pglogical to synchronize data across instances

• Working with Oracle databases by using the oracle_fdw extension

• Working with SQL Server databases by using the tds_fdw extension

Using Amazon Aurora delegated extension support for PostgreSQL

Using Amazon Aurora delegated extension support for PostgreSQL, you can delegate the extension
management to a user who need not be an rds_superuser. With this delegated extension
support, a new role called rds_extension is created and you must assign this to a user to
manage other extensions. This role can create, update, and drop extensions.

You can specify the extensions that can be installed on your Aurora PostgreSQL DB instance, by
listing them in the rds.allowed_extensions parameter. For more information, see Using
PostgreSQL extensions with Amazon RDS for PostgreSQL.

You can restrict the list of extensions available that can be managed by the user with the
rds_extension role using rds.allowed_delegated_extensions parameter.

The delegated extension support is available in the following versions:

• All higher versions

• 15.5 and higher 15 versions

• 14.10 and higher 14 versions

• 13.13 and higher 13 versions

• 12.17 and higher 12 versions

Topics

Using Amazon Aurora delegated extension support for PostgreSQL 2593

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Extensions.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Appendix.PostgreSQL.CommonDBATasks.Extensions.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Appendix.PostgreSQL.CommonDBATasks.Extensions.html

Amazon Aurora User Guide for Aurora

• Turning on delegate extension support to a user

• Configuration used in Aurora delegated extension support for PostgreSQL

• Turning off the support for the delegated extension

• Benefits of using Amazon Aurora delegated extension support

• Limitation of Aurora delegated extension support for PostgreSQL

• Permissions required for certain extensions

• Security Considerations

• Drop extension cascade disabled

• Example extensions that can be added using delegated extension support

Turning on delegate extension support to a user

You must perform the following to enable delegate extension support to a user:

1. Grant rds_extension role to a user – Connect to the database as rds_superuser and
execute the following command:

Postgres => grant rds_extension to user_name;

2. Set the list of extensions available for delegated users to manage – The
rds.allowed_delegated_extensions allows you to specify a subset of the available
extensions using rds.allowed_extensions in the DB cluster parameter. You can perform
this at one of the following levels:

• In the cluster or the instance parameter group, through the AWS Management Console or
API. For more information, see Working with parameter groups.

• Use the following command at the database level:

alter database database_name set rds.allowed_delegated_extensions =
 'extension_name_1,
 extension_name_2,...extension_name_n';

• Use the following command at the user level:

alter user user_name set rds.allowed_delegated_extensions = 'extension_name_1,
 extension_name_2,...extension_name_n';

Using Amazon Aurora delegated extension support for PostgreSQL 2594

Amazon Aurora User Guide for Aurora

Note

You need not restart the database after changing the
rds.allowed_delegated_extensions dynamic parameter.

3. Allow access to the delegated user to objects created during the extension creation process
– Certain extensions create objects that require additional permissions to be granted before
the user with rds_extension role can access them. The rds_superuser must grant
the delegated user access to those objects. One of the options is to use an event trigger to
automatically grant permission to the delegated user. For more information, refer to the event
trigger example in Turning off the support for the delegated extension.

Configuration used in Aurora delegated extension support for PostgreSQL

Configura
tion
Name

Description Default Value Notes Who can modify or
grant permission

rds.allow
ed_delega
ted_exten
sions

This parameter
limits the extension
s a rds_extension
role can manage
in a database. It
must be a subset of
rds.allowed_extens
ions.

empty string • By default, this
parameter is
empty string,
which means
that no extension
s have been
delegated to
users with
rds_exten
sion .

• Any supported
extension can be
added if the user
has permissio
n to do so. To
do this, set the
rds.allow

rds_superuser

Using Amazon Aurora delegated extension support for PostgreSQL 2595

Amazon Aurora User Guide for Aurora

Configura
tion
Name

Description Default Value Notes Who can modify or
grant permission

ed_delega
ted_exten
sions
parameter to a
string of comma-
separated
extension names.
By adding a list
of extensions to
this parameter
, you explicitl
y identify the
extensions that
the user with
the rds_exten
sion role can
install.

• When set to *,
it means that all
extensions listed
in rds_allow
ed_extens
ions are
delegated to
users with
rds_exten
sion role.

To learn more
about setting up
this parameter
, see Turning on

Using Amazon Aurora delegated extension support for PostgreSQL 2596

Amazon Aurora User Guide for Aurora

Configura
tion
Name

Description Default Value Notes Who can modify or
grant permission

delegate extension
support to a user.

rds.allow
ed_extens
ions

This parameter lets
the customer limit
the extensions that
can be installed
in the Aurora
PostgreSQL DB
instance. For more
information, see
Restricting installat
ion of PostgreSQL
extensions

"*" By default, this
parameter is set to
"*", which means
that all extensions
supported on RDS
for PostgreSQL and
Aurora PostgreSQ
L are allowed to be
created by users
with necessary
privileges.

Empty means no
extensions can be
installed in the
Aurora PostgreSQL
DB instance.

administrator

Using Amazon Aurora delegated extension support for PostgreSQL 2597

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_PostgreSQL.html#PostgreSQL.Concepts.General.FeatureSupport.Extensions.Restriction
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_PostgreSQL.html#PostgreSQL.Concepts.General.FeatureSupport.Extensions.Restriction
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_PostgreSQL.html#PostgreSQL.Concepts.General.FeatureSupport.Extensions.Restriction

Amazon Aurora User Guide for Aurora

Configura
tion
Name

Description Default Value Notes Who can modify or
grant permission

rds-
deleg
ated_exte
nsion_all
ow_drop_c
ascade

This parameter
controls the
ability for user
with rds_exten
sion to drop the
extension using a
cascade option.

off By default, rds-
delegated_exte
nsion_all
ow_drop_c
ascade is set to
off. This means
that users with
rds_extension
are not allowed to
drop an extension
using the cascade
option.

To grant that
ability, the
rds.deleg
ated_exte
nsion_all
ow_drop_c
ascade
parameter should
be set to on.

rds_superuser

Turning off the support for the delegated extension

Turning off partially

The delegated users can’t create new extensions but can still update existing extensions.

• Reset rds.allowed_delegated_extensions to the default value in the DB cluster parameter
group.

• Use the following command at the database level:

Using Amazon Aurora delegated extension support for PostgreSQL 2598

Amazon Aurora User Guide for Aurora

alter database database_name reset rds.allowed_delegated_extensions;

• Use the following command at the user level:

alter user user_name reset rds.allowed_delegated_extensions;

Turning off fully

Revoking rds_extension role from a user will revert the user to standard permissions. The user
can no longer create, update, or drop extensions.

postgres => revoke rds_extension from user_name;

Example of event trigger

If you want to allow a delegated user with rds_extension to use extensions that require setting
permissions on their objects created by the extension creation, you can customize the below
example of an event trigger and add only the extensions for which you want the delegated users
to have access to the full functionality. This event trigger can be created on template1 (the default
template), therefore all database created from template1 will have that event trigger. When a
delegated user installs the extension, this trigger will automatically grant ownership on the objects
created by the extension.

CREATE OR REPLACE FUNCTION create_ext()

 RETURNS event_trigger AS $$

DECLARE

 schemaname TEXT;
 databaseowner TEXT;

 r RECORD;

BEGIN

 IF tg_tag = 'CREATE EXTENSION' and current_user != 'rds_superuser' THEN
 RAISE NOTICE 'SECURITY INVOKER';

Using Amazon Aurora delegated extension support for PostgreSQL 2599

Amazon Aurora User Guide for Aurora

 RAISE NOTICE 'user: %', current_user;
 FOR r IN SELECT * FROM pg_event_trigger_ddl_commands()
 LOOP
 CONTINUE WHEN r.command_tag != 'CREATE EXTENSION' OR r.object_type !=
 'extension';

 schemaname = (
 SELECT n.nspname
 FROM pg_catalog.pg_extension AS e
 INNER JOIN pg_catalog.pg_namespace AS n
 ON e.extnamespace = n.oid
 WHERE e.oid = r.objid
);

 databaseowner = (
 SELECT pg_catalog.pg_get_userbyid(d.datdba)
 FROM pg_catalog.pg_database d
 WHERE d.datname = current_database()
);
 RAISE NOTICE 'Record for event trigger %, objid: %,tag: %, current_user: %,
 schema: %, database_owenr: %', r.object_identity, r.objid, tg_tag, current_user,
 schemaname, databaseowner;
 IF r.object_identity = 'address_standardizer_data_us' THEN
 EXECUTE format('GRANT SELECT, UPDATE, INSERT, DELETE ON TABLE %I.us_gaz TO
 %I WITH GRANT OPTION;', schemaname, databaseowner);
 EXECUTE format('GRANT SELECT, UPDATE, INSERT, DELETE ON TABLE %I.us_lex TO
 %I WITH GRANT OPTION;', schemaname, databaseowner);
 EXECUTE format('GRANT SELECT, UPDATE, INSERT, DELETE ON TABLE %I.us_rules
 TO %I WITH GRANT OPTION;', schemaname, databaseowner);
 ELSIF r.object_identity = 'dict_int' THEN
 EXECUTE format('ALTER TEXT SEARCH DICTIONARY %I.intdict OWNER TO %I;',
 schemaname, databaseowner);
 ELSIF r.object_identity = 'pg_partman' THEN
 EXECUTE format('GRANT SELECT, UPDATE, INSERT, DELETE ON TABLE
 %I.part_config TO %I WITH GRANT OPTION;', schemaname, databaseowner);
 EXECUTE format('GRANT SELECT, UPDATE, INSERT, DELETE ON TABLE
 %I.part_config_sub TO %I WITH GRANT OPTION;', schemaname, databaseowner);
 EXECUTE format('GRANT SELECT, UPDATE, INSERT, DELETE ON TABLE
 %I.custom_time_partitions TO %I WITH GRANT OPTION;', schemaname, databaseowner);
 ELSIF r.object_identity = 'postgis_topology' THEN
 EXECUTE format('GRANT SELECT, UPDATE, INSERT, DELETE ON ALL TABLES IN
 SCHEMA topology TO %I WITH GRANT OPTION;', databaseowner);
 EXECUTE format('GRANT USAGE, SELECT ON ALL SEQUENCES IN SCHEMA topology TO
 %I WITH GRANT OPTION;', databaseowner);

Using Amazon Aurora delegated extension support for PostgreSQL 2600

Amazon Aurora User Guide for Aurora

 EXECUTE format('GRANT EXECUTE ON ALL FUNCTIONS IN SCHEMA topology TO %I
 WITH GRANT OPTION;', databaseowner);
 EXECUTE format('GRANT USAGE ON SCHEMA topology TO %I WITH GRANT OPTION;',
 databaseowner);
 END IF;
 END LOOP;
 END IF;
END;
$$ LANGUAGE plpgsql SECURITY DEFINER;

CREATE EVENT TRIGGER log_create_ext ON ddl_command_end EXECUTE PROCEDURE create_ext();

Benefits of using Amazon Aurora delegated extension support

By using Amazon Aurora delegated extension support for PostgreSQL, you securely delegate the
extension management to users who do not have the rds_superuser role. This feature provides
the following benefits:

• You can easily delegate extension management to users of your choice.

• This doesn’t require rds_superuser role.

• Provides ability to support different set of extensions for different databases in the same DB
cluster.

Limitation of Aurora delegated extension support for PostgreSQL

• Objects created during the extension creation process may require additional privileges for the
extension to function properly.

Permissions required for certain extensions

In order to create, use, or update the following extensions, the delegated user should have the
necessary privileges on the following functions, tables, and schema.

Using Amazon Aurora delegated extension support for PostgreSQL 2601

Amazon Aurora User Guide for Aurora

Extension
s
that
need
ownership
or
permissio
ns

Function Tables Schema Text Search
Dictionary

Comment

address_s
tandardiz
er_data_u
s

us_gaz, us_lex,
us_lex, I.us_rule
s

amcheckbt_index_
check,
bt_index_
parent_check

dict_int intdict

pg_partma
n

custom_ti
me_partit
ions, part_conf
ig, part_conf
ig_sub

pg_stat_s
tatements

PostGISst_tileenvelope spatial_ref_sys

postgis_r
aster

postgis_t
opology

topology, layer topology the delegated
user Must be

Using Amazon Aurora delegated extension support for PostgreSQL 2602

Amazon Aurora User Guide for Aurora

Extension
s
that
need
ownership
or
permissio
ns

Function Tables Schema Text Search
Dictionary

Comment

the database
owner

log_fdwcreate_fo
reign_tab
le_for_log_file

rds_toolsrole_pass
word_encr
yption_type

postgis_t
iger_geoc
oder

geocode_s
ettings_d
efault,
geocode_s
ettings

tiger

pg_freesp
acemap

pg_freespace

pg_visibi
lity

pg_visibility

Security Considerations

Keep in mind that a user with rds_extension role will be able to manage extensions on all
databases they have the connect privilege on. If the intention is to have a delegated user manage
extension on a single database, a good practice is to revoke all privileges from public on each
database, then explicitly grant the connect privilege for that specific database to the delegate user.

Using Amazon Aurora delegated extension support for PostgreSQL 2603

Amazon Aurora User Guide for Aurora

There are several extensions that can allow a user to access information from multiple database.
Ensure the users you grant rds_extension has cross database capabilities before adding
these extensions to rds.allowed_delegated_extensions. For example, postgres_fdw
and dblink provide functionality to query across databases on the same instance or remote
instances. log_fdw reads the postgres engine log files, which are for all databases in the instance,
potentially containing slow queries or error messages from multiple databases. pg_cron enables
running scheduled background jobs on the DB instance and can configure jobs to run in a different
database.

Drop extension cascade disabled

The ability to drop the extension with cascade option by a user with the rds_extension role is
controlled by rds.delegated_extension_allow_drop_cascade parameter. By default, rds-
delegated_extension_allow_drop_cascade is set to off. This means that users with the
rds_extension role are not allowed to drop an extension using the cascade option as shown in
the below query.

DROP EXTENSION CASCADE;

As this will automatically drop objects that depend on the extension, and in turn all objects that
depend on those objects. Attempting to use the cascade option will result in an error.

To grant that ability, the rds.delegated_extension_allow_drop_cascade parameter should
be set to on.

Changing the rds.delegated_extension_allow_drop_cascade dynamic parameter doesn't
require a database restart. You can do this at one of the following levels:

• In the cluster or the instance parameter group, through the AWS Management Console or API.

• Using the following command at the database level:

alter database database_name set rds.delegated_extension_allow_drop_cascade = 'on';

• Using the following command at the user level:

alter role tenant_user set rds.delegated_extension_allow_drop_cascade = 'on';

Using Amazon Aurora delegated extension support for PostgreSQL 2604

Amazon Aurora User Guide for Aurora

Example extensions that can be added using delegated extension support

• rds_tools

extension_test_db=> create extension rds_tools;
CREATE EXTENSION
extension_test_db=> SELECT * from rds_tools.role_password_encryption_type() where
 rolname = 'pg_read_server_files';
ERROR: permission denied for function role_password_encryption_type

• amcheck

extension_test_db=> CREATE TABLE amcheck_test (id int);
CREATE TABLE
extension_test_db=> INSERT INTO amcheck_test VALUES (generate_series(1,100000));
INSERT 0 100000
extension_test_db=> CREATE INDEX amcheck_test_btree_idx ON amcheck_test USING btree
 (id);
CREATE INDEX
extension_test_db=> create extension amcheck;
CREATE EXTENSION
extension_test_db=> SELECT bt_index_check('amcheck_test_btree_idx'::regclass);
ERROR: permission denied for function bt_index_check
extension_test_db=> SELECT bt_index_parent_check('amcheck_test_btree_idx'::regclass);
ERROR: permission denied for function bt_index_parent_check

• pg_freespacemap

extension_test_db=> create extension pg_freespacemap;
CREATE EXTENSION
extension_test_db=> SELECT * FROM pg_freespace('pg_authid');
ERROR: permission denied for function pg_freespace
extension_test_db=> SELECT * FROM pg_freespace('pg_authid',0);
ERROR: permission denied for function pg_freespace

• pg_visibility

extension_test_db=> create extension pg_visibility;
CREATE EXTENSION
extension_test_db=> select * from pg_visibility('pg_database'::regclass);
ERROR: permission denied for function pg_visibility

• postgres_fdw

Using Amazon Aurora delegated extension support for PostgreSQL 2605

Amazon Aurora User Guide for Aurora

extension_test_db=> create extension postgres_fdw;
CREATE EXTENSION
extension_test_db=> create server myserver foreign data wrapper postgres_fdw options
 (host 'foo', dbname 'foodb', port '5432');
ERROR: permission denied for foreign-data wrapper postgres_fdw

Managing large objects with the lo module

The lo module (extension) is for database users and developers working with PostgreSQL
databases through JDBC or ODBC drivers. Both JDBC and ODBC expect the database to handle
deletion of large objects when references to them change. However, PostgreSQL doesn't work that
way. PostgreSQL doesn't assume that an object should be deleted when its reference changes. The
result is that objects remain on disk, unreferenced. The lo extension includes a function that you
use to trigger on reference changes to delete objects if needed.

Tip

To determine if your database can benefit from the lo extension, use the vacuumlo utility
to check for orphaned large objects. To get counts of orphaned large objects without taking
any action, run the utility with the -n option (no-op). To learn how, see vacuumlo utility
following.

The lo module is available for Aurora PostgreSQL 13.7, 12.11, 11.16, 10.21 and higher minor
versions.

To install the module (extension), you need rds_superuser privileges. Installing the lo extension
adds the following to your database:

• lo – This is a large object (lo) data type that you can use for binary large objects (BLOBs) and
other large objects. The lo data type is a domain of the oid data type. In other words, it's an
object identifier with optional constraints. For more information, see Object identifiers in the
PostgreSQL documentation. In simple terms, you can use the lo data type to distinguish your
database columns that hold large object references from other object identifiers (OIDs).

• lo_manage – This is a function that you can use in triggers on table columns that contain large
object references. Whenever you delete or modify a value that references a large object, the

Managing large objects more efficiently with the lo module 2606

https://www.postgresql.org/docs/14/datatype-oid.html

Amazon Aurora User Guide for Aurora

trigger unlinks the object (lo_unlink) from its reference. Use the trigger on a column only if
the column is the sole database reference to the large object.

For more information about the large objects module, see lo in the PostgreSQL documentation.

Installing the lo extension

Before installing the lo extension, make sure that you have rds_superuser privileges.

To install the lo extension

1. Use psql to connect to the primary DB instance of your Aurora PostgreSQL DB cluster.

psql --host=your-cluster-instance-1.666666666666.aws-region.rds.amazonaws.com --
port=5432 --username=postgres --password

When prompted, enter your password. The psql client connects and displays the default
administrative connection database, postgres=>, as the prompt.

2. Install the extension as follows.

postgres=> CREATE EXTENSION lo;
CREATE EXTENSION

You can now use the lo data type to define columns in your tables. For example, you can create a
table (images) that contains raster image data. You can use the lo data type for a column raster,
as shown in the following example, which creates a table.

postgres=> CREATE TABLE images (image_name text, raster lo);

Using the lo_manage trigger function to delete objects

You can use the lo_manage function in a trigger on a lo or other large object columns to clean up
(and prevent orphaned objects) when the lo is updated or deleted.

To set up triggers on columns that reference large objects

• Do one of the following:

Managing large objects more efficiently with the lo module 2607

https://www.postgresql.org/docs/current/lo.html

Amazon Aurora User Guide for Aurora

• Create a BEFORE UPDATE OR DELETE trigger on each column to contain unique references
to large objects, using the column name for the argument.

postgres=> CREATE TRIGGER t_raster BEFORE UPDATE OR DELETE ON images
 FOR EACH ROW EXECUTE FUNCTION lo_manage(raster);

• Apply a trigger only when the column is being updated.

postgres=> CREATE TRIGGER t_raster BEFORE UPDATE OF images
 FOR EACH ROW EXECUTE FUNCTION lo_manage(raster);

The lo_manage trigger function works only in the context of inserting or deleting column data,
depending on how you define the trigger. It has no effect when you perform a DROP or TRUNCATE
operation on a database. That means that you should delete object columns from any tables before
dropping, to prevent creating orphaned objects.

For example, suppose that you want to drop the database containing the images table. You delete
the column as follows.

postgres=> DELETE FROM images COLUMN raster

Assuming that the lo_manage function is defined on that column to handle deletes, you can now
safely drop the table.

Using the vacuumlo utility

The vacuumlo utility identifies and can remove orphaned large objects from databases. This
utility has been available since PostgreSQL 9.1.24. If your database users routinely work with large
objects, we recommend that you run vacuumlo occasionally to clean up orphaned large objects.

Before installing the lo extension, you can use vacuumlo to assess whether your Aurora PostgreSQL
DB cluster can benefit. To do so, run vacuumlo with the -n option (no-op) to show what would be
removed, as shown in the following:

$ vacuumlo -v -n -h your-cluster-instance-1.666666666666.aws-region.rds.amazonaws.com -
p 5433 -U postgres docs-lab-spatial-db
Password:*****
Connected to database "docs-lab-spatial-db"
Test run: no large objects will be removed!

Managing large objects more efficiently with the lo module 2608

Amazon Aurora User Guide for Aurora

Would remove 0 large objects from database "docs-lab-spatial-db".

As the output shows, orphaned large objects aren't a problem for this particular database.

For more information about this utility, see vacuumlo in the PostgreSQL documentation.

Managing spatial data with the PostGIS extension

PostGIS is an extension to PostgreSQL for storing and managing spatial information. To learn more
about PostGIS, see PostGIS.net.

Starting with version 10.5, PostgreSQL supports the libprotobuf 1.3.0 library used by PostGIS for
working with map box vector tile data.

Setting up the PostGIS extension requires rds_superuser privileges. We recommend that you
create a user (role) to manage the PostGIS extension and your spatial data. The PostGIS extension
and its related components add thousands of functions to PostgreSQL. Consider creating the
PostGIS extension in its own schema if that makes sense for your use case. The following example
shows how to install the extension in its own database, but this isn't required.

Topics

• Step 1: Create a user (role) to manage the PostGIS extension

• Step 2: Load the PostGIS extensions

• Step 3: Transfer ownership of the extensions

• Step 4: Transfer ownership of the PostGIS objects

• Step 5: Test the extensions

• Step 6: Upgrade the PostGIS extension

• PostGIS extension versions

• Upgrading PostGIS 2 to PostGIS 3

Step 1: Create a user (role) to manage the PostGIS extension

First, connect to your RDS for PostgreSQL DB instance as a user that has rds_superuser
privileges. If you kept the default name when you set up your instance, you connect as postgres.

psql --host=111122223333.aws-region.rds.amazonaws.com --port=5432 --username=postgres
 --password

Managing spatial data with PostGIS 2609

https://www.postgresql.org/docs/current/vacuumlo.html
https://postgis.net/

Amazon Aurora User Guide for Aurora

Create a separate role (user) to administer the PostGIS extension.

postgres=> CREATE ROLE gis_admin LOGIN PASSWORD 'change_me';
CREATE ROLE

Grant this role rds_superuser privileges, to allow the role to install the extension.

postgres=> GRANT rds_superuser TO gis_admin;
GRANT

Create a database to use for your PostGIS artifacts. This step is optional. Or you can create a
schema in your user database for the PostGIS extensions, but this also isn't required.

postgres=> CREATE DATABASE lab_gis;
CREATE DATABASE

Give the gis_admin all privileges on the lab_gis database.

postgres=> GRANT ALL PRIVILEGES ON DATABASE lab_gis TO gis_admin;
GRANT

Exit the session and reconnect to your RDS for PostgreSQL DB instance as gis_admin.

postgres=> psql --host=111122223333.aws-region.rds.amazonaws.com --port=5432 --
username=gis_admin --password --dbname=lab_gis
Password for user gis_admin:...
lab_gis=>

Continue setting up the extension as detailed in the next steps.

Step 2: Load the PostGIS extensions

The PostGIS extension includes several related extensions that work together to provide geospatial
functionality. Depending on your use case, you might not need all the extensions created in this
step.

Use CREATE EXTENSION statements to load the PostGIS extensions.

CREATE EXTENSION postgis;
CREATE EXTENSION

Managing spatial data with PostGIS 2610

Amazon Aurora User Guide for Aurora

CREATE EXTENSION postgis_raster;
CREATE EXTENSION
CREATE EXTENSION fuzzystrmatch;
CREATE EXTENSION
CREATE EXTENSION postgis_tiger_geocoder;
CREATE EXTENSION
CREATE EXTENSION postgis_topology;
CREATE EXTENSION
CREATE EXTENSION address_standardizer_data_us;
CREATE EXTENSION

You can verify the results by running the SQL query shown in the following example, which lists
the extensions and their owners.

SELECT n.nspname AS "Name",
 pg_catalog.pg_get_userbyid(n.nspowner) AS "Owner"
 FROM pg_catalog.pg_namespace n
 WHERE n.nspname !~ '^pg_' AND n.nspname <> 'information_schema'
 ORDER BY 1;
List of schemas
 Name | Owner
--------------+-----------
 public | postgres
 tiger | rdsadmin
 tiger_data | rdsadmin
 topology | rdsadmin
(4 rows)

Step 3: Transfer ownership of the extensions

Use the ALTER SCHEMA statements to transfer ownership of the schemas to the gis_admin role.

ALTER SCHEMA tiger OWNER TO gis_admin;
ALTER SCHEMA
ALTER SCHEMA tiger_data OWNER TO gis_admin;
ALTER SCHEMA
ALTER SCHEMA topology OWNER TO gis_admin;
ALTER SCHEMA

You can confirm the ownership change by running the following SQL query. Or you can use the
\dn metacommand from the psql command line.

Managing spatial data with PostGIS 2611

Amazon Aurora User Guide for Aurora

SELECT n.nspname AS "Name",
 pg_catalog.pg_get_userbyid(n.nspowner) AS "Owner"
 FROM pg_catalog.pg_namespace n
 WHERE n.nspname !~ '^pg_' AND n.nspname <> 'information_schema'
 ORDER BY 1;

 List of schemas
 Name | Owner
--------------+---------------
 public | postgres
 tiger | gis_admin
 tiger_data | gis_admin
 topology | gis_admin
(4 rows)

Step 4: Transfer ownership of the PostGIS objects

Use the following function to transfer ownership of the PostGIS objects to the gis_admin role.
Run the following statement from the psql prompt to create the function.

CREATE FUNCTION exec(text) returns text language plpgsql volatile AS f BEGIN EXECUTE
 $1; RETURN $1; END; f;
CREATE FUNCTION

Next, run the following query to run the exec function that in turn runs the statements and alters
the permissions.

SELECT exec('ALTER TABLE ' || quote_ident(s.nspname) || '.' || quote_ident(s.relname)
 || ' OWNER TO gis_admin;')
 FROM (
 SELECT nspname, relname
 FROM pg_class c JOIN pg_namespace n ON (c.relnamespace = n.oid)
 WHERE nspname in ('tiger','topology') AND
 relkind IN ('r','S','v') ORDER BY relkind = 'S')
s;

Step 5: Test the extensions

To avoid needing to specify the schema name, add the tiger schema to your search path using
the following command.

Managing spatial data with PostGIS 2612

Amazon Aurora User Guide for Aurora

SET search_path=public,tiger;
SET

Test the tiger schema by using the following SELECT statement.

SELECT address, streetname, streettypeabbrev, zip
 FROM normalize_address('1 Devonshire Place, Boston, MA 02109') AS na;
address | streetname | streettypeabbrev | zip
---------+------------+------------------+-------
 1 | Devonshire | Pl | 02109
(1 row)

To learn more about this extension, see Tiger Geocoder in the PostGIS documentation.

Test access to the topology schema by using the following SELECT statement. This calls the
createtopology function to register a new topology object (my_new_topo) with the specified
spatial reference identifier (26986) and default tolerance (0.5). To learn more, see CreateTopology
in the PostGIS documentation.

SELECT topology.createtopology('my_new_topo',26986,0.5);
 createtopology

 1
(1 row)

Step 6: Upgrade the PostGIS extension

Each new release of PostgreSQL supports one or more versions of the PostGIS extension
compatible with that release. Upgrading the PostgreSQL engine to a new version doesn't
automatically upgrade the PostGIS extension. Before upgrading the PostgreSQL engine, you
typically upgrade PostGIS to the newest available version for the current PostgreSQL version. For
details, see PostGIS extension versions.

After the PostgreSQL engine upgrade, you then upgrade the PostGIS extension again, to the
version supported for the newly upgraded PostgreSQL engine version. For more information about
upgrading the PostgreSQL engine, see Testing an upgrade of your production DB cluster to a new
major version.

Managing spatial data with PostGIS 2613

https://postgis.net/docs/Extras.html#Tiger_Geocoder
https://postgis.net/docs/CreateTopology.html

Amazon Aurora User Guide for Aurora

You can check for available PostGIS extension version updates on your Aurora PostgreSQL DB
cluster at any time. To do so, run the following command. This function is available with PostGIS
2.5.0 and higher versions.

SELECT postGIS_extensions_upgrade();

If your application doesn't support the latest PostGIS version, you can install an older version of
PostGIS that's available in your major version as follows.

CREATE EXTENSION postgis VERSION "2.5.5";

If you want to upgrade to a specific PostGIS version from an older version, you can also use the
following command.

ALTER EXTENSION postgis UPDATE TO "2.5.5";

Depending on the version that you're upgrading from, you might need to use this function again.
The result of the first run of the function determines if an additional upgrade function is needed.
For example, this is the case for upgrading from PostGIS 2 to PostGIS 3. For more information, see
Upgrading PostGIS 2 to PostGIS 3.

If you upgraded this extension to prepare for a major version upgrade of the PostgreSQL engine,
you can continue with other preliminary tasks. For more information, see Testing an upgrade of
your production DB cluster to a new major version.

PostGIS extension versions

We recommend that you install the versions of all extensions such as PostGIS as listed in Extension
versions for Aurora PostgreSQL-Compatible Edition in the Release Notes for Aurora PostgreSQL. To
get a list of versions that are available in your release, use the following command.

SELECT * FROM pg_available_extension_versions WHERE name='postgis';

You can find version information in the following sections in the Release Notes for Aurora
PostgreSQL:

• Extension versions for Aurora PostgreSQL 14

• Extension versions for Aurora PostgreSQL-Compatible Edition 13

• Extension versions for Aurora PostgreSQL-Compatible Edition 12

Managing spatial data with PostGIS 2614

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Extensions.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Extensions.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Extensions.html#AuroraPostgreSQL.Extensions.14
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Extensions.html#AuroraPostgreSQL.Extensions.13
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Extensions.html#AuroraPostgreSQL.Extensions.12

Amazon Aurora User Guide for Aurora

• Extension versions for Aurora PostgreSQL-Compatible Edition 11

• Extension versions for Aurora PostgreSQL-Compatible Edition 10

• Extension versions for Aurora PostgreSQL-Compatible Edition 9.6

Upgrading PostGIS 2 to PostGIS 3

Starting with version 3.0, the PostGIS raster functionality is now a separate extension,
postgis_raster. This extension has its own installation and upgrade path. This removes dozens
of functions, data types, and other artifacts required for raster image processing from the core
postgis extension. That means that if your use case doesn't require raster processing, you don't
need to install the postgis_raster extension.

In the following upgrade example, the first upgrade command extracts raster functionality
into the postgis_raster extension. A second upgrade command is then required to upgrade
postgis_raster to the new version.

To upgrade from PostGIS 2 to PostGIS 3

1. Identify the default version of PostGIS that's available to the PostgreSQL version on your
Aurora PostgreSQL DB cluster. To do so, run the following query.

SELECT * FROM pg_available_extensions
 WHERE default_version > installed_version;
 name | default_version | installed_version | comment
---------+-----------------+-------------------
+--
 postgis | 3.1.4 | 2.3.7 | PostGIS geometry and geography
 spatial types and functions
(1 row)

2. Identify the versions of PostGIS installed in each database on the writer instance of your
Aurora PostgreSQL DB cluster. In other words, query each user database as follows.

SELECT
 e.extname AS "Name",
 e.extversion AS "Version",
 n.nspname AS "Schema",
 c.description AS "Description"
FROM
 pg_catalog.pg_extension e

Managing spatial data with PostGIS 2615

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Extensions.html#AuroraPostgreSQL.Extensions.11
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Extensions.html#AuroraPostgreSQL.Extensions.10
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Extensions.html#AuroraPostgreSQL.Extensions.96

Amazon Aurora User Guide for Aurora

 LEFT JOIN pg_catalog.pg_namespace n ON n.oid = e.extnamespace
 LEFT JOIN pg_catalog.pg_description c ON c.objoid = e.oid
 AND c.classoid = 'pg_catalog.pg_extension'::pg_catalog.regclass
WHERE
 e.extname LIKE '%postgis%'
ORDER BY
 1;
 Name | Version | Schema | Description
---------+---------+--------
+---
 postgis | 2.3.7 | public | PostGIS geometry, geography, and raster spatial types
 and functions
(1 row)

This mismatch between the default version (PostGIS 3.1.4) and the installed version (PostGIS
2.3.7) means that you need to upgrade the PostGIS extension.

ALTER EXTENSION postgis UPDATE;
ALTER EXTENSION
WARNING: unpackaging raster
WARNING: PostGIS Raster functionality has been unpackaged

3. Run the following query to verify that the raster functionality is now in its own package.

SELECT
 probin,
 count(*)
FROM
 pg_proc
WHERE
 probin LIKE '%postgis%'
GROUP BY
 probin;
 probin | count
--------------------------+-------
 $libdir/rtpostgis-2.3 | 107
 $libdir/postgis-3 | 487
(2 rows)

The output shows that there's still a difference between versions. The PostGIS functions are
version 3 (postgis-3), while the raster functions (rtpostgis) are version 2 (rtpostgis-2.3). To
complete the upgrade, you run the upgrade command again, as follows.

Managing spatial data with PostGIS 2616

Amazon Aurora User Guide for Aurora

postgres=> SELECT postgis_extensions_upgrade();

You can safely ignore the warning messages. Run the following query again to verify that the
upgrade is complete. The upgrade is complete when PostGIS and all related extensions aren't
marked as needing upgrade.

SELECT postgis_full_version();

4. Use the following query to see the completed upgrade process and the separately packaged
extensions, and verify that their versions match.

SELECT
 e.extname AS "Name",
 e.extversion AS "Version",
 n.nspname AS "Schema",
 c.description AS "Description"
FROM
 pg_catalog.pg_extension e
 LEFT JOIN pg_catalog.pg_namespace n ON n.oid = e.extnamespace
 LEFT JOIN pg_catalog.pg_description c ON c.objoid = e.oid
 AND c.classoid = 'pg_catalog.pg_extension'::pg_catalog.regclass
WHERE
 e.extname LIKE '%postgis%'
ORDER BY
 1;
 Name | Version | Schema | Description
----------------+---------+--------
+---
 postgis | 3.1.5 | public | PostGIS geometry, geography, and raster
 spatial types and functions
 postgis_raster | 3.1.5 | public | PostGIS raster types and functions
(2 rows)

The output shows that the PostGIS 2 extension was upgraded to PostGIS 3, and both postgis
and the now separate postgis_raster extension are version 3.1.5.

After this upgrade completes, if you don't plan to use the raster functionality, you can drop the
extension as follows.

Managing spatial data with PostGIS 2617

Amazon Aurora User Guide for Aurora

DROP EXTENSION postgis_raster;

Managing PostgreSQL partitions with the pg_partman extension

PostgreSQL table partitioning provides a framework for high-performance handling of data input
and reporting. Use partitioning for databases that require very fast input of large amounts of
data. Partitioning also provides for faster queries of large tables. Partitioning helps maintain data
without impacting the database instance because it requires less I/O resources.

By using partitioning, you can split data into custom-sized chunks for processing. For example, you
can partition time-series data for ranges such as hourly, daily, weekly, monthly, quarterly, yearly,
custom, or any combination of these. For a time-series data example, if you partition the table
by hour, each partition contains one hour of data. If you partition the time-series table by day,
the partitions holds one day's worth of data, and so on. The partition key controls the size of a
partition.

When you use an INSERT or UPDATE SQL command on a partitioned table, the database engine
routes the data to the appropriate partition. PostgreSQL table partitions that store the data are
child tables of the main table.

During database query reads, the PostgreSQL optimizer examines the WHERE clause of the query
and, if possible, directs the database scan to only the relevant partitions.

Starting with version 10, PostgreSQL uses declarative partitioning to implement table partitioning.
This is also known as native PostgreSQL partitioning. Before PostgreSQL version 10, you used
triggers to implement partitions.

PostgreSQL table partitioning provides the following features:

• Creation of new partitions at any time.

• Variable partition ranges.

• Detachable and reattachable partitions using data definition language (DDL) statements.

For example, detachable partitions are useful for removing historical data from the main
partition but keeping historical data for analysis.

• New partitions inherit the parent database table properties, including the following:

• Indexes

Managing partitions with the pg_partman extension 2618

Amazon Aurora User Guide for Aurora

• Primary keys, which must include the partition key column

• Foreign keys

• Check constraints

• References

• Creating indexes for the full table or each specific partition.

You can't alter the schema for an individual partition. However, you can alter the parent table (such
as adding a new column), which propagates to partitions.

Topics

• Overview of the PostgreSQL pg_partman extension

• Enabling the pg_partman extension

• Configuring partitions using the create_parent function

• Configuring partition maintenance using the run_maintenance_proc function

Overview of the PostgreSQL pg_partman extension

You can use the PostgreSQL pg_partman extension to automate the creation and maintenance
of table partitions. For more general information, see PG Partition Manager in the pg_partman
documentation.

Note

The pg_partman extension is supported on Aurora PostgreSQL versions 12.6 and higher.

Instead of having to manually create each partition, you configure pg_partman with the following
settings:

• Table to be partitioned

• Partition type

• Partition key

• Partition granularity

• Partition precreation and management options

Managing partitions with the pg_partman extension 2619

https://github.com/pgpartman/pg_partman

Amazon Aurora User Guide for Aurora

After you create a PostgreSQL partitioned table, you register it with pg_partman by calling the
create_parent function. Doing this creates the necessary partitions based on the parameters
you pass to the function.

The pg_partman extension also provides the run_maintenance_proc function, which you can
call on a scheduled basis to automatically manage partitions. To ensure that the proper partitions
are created as needed, schedule this function to run periodically (such as hourly). You can also
ensure that partitions are automatically dropped.

Enabling the pg_partman extension

If you have multiple databases inside the same PostgreSQL DB instance for which you want to
manage partitions, enable the pg_partman extension separately for each database. To enable the
pg_partman extension for a specific database, create the partition maintenance schema and then
create the pg_partman extension as follows.

CREATE SCHEMA partman;
CREATE EXTENSION pg_partman WITH SCHEMA partman;

Note

To create the pg_partman extension, make sure that you have rds_superuser privileges.

If you receive an error such as the following, grant the rds_superuser privileges to the account
or use your superuser account.

ERROR: permission denied to create extension "pg_partman"
HINT: Must be superuser to create this extension.

To grant rds_superuser privileges, connect with your superuser account and run the following
command.

GRANT rds_superuser TO user-or-role;

For the examples that show using the pg_partman extension, we use the following sample
database table and partition. This database uses a partitioned table based on a timestamp. A

Managing partitions with the pg_partman extension 2620

Amazon Aurora User Guide for Aurora

schema data_mart contains a table named events with a column named created_at. The
following settings are included in the events table:

• Primary keys event_id and created_at, which must have the column used to guide the
partition.

• A check constraint ck_valid_operation to enforce values for an operation table column.

• Two foreign keys, where one (fk_orga_membership) points to the external table
organization and the other (fk_parent_event_id) is a self-referenced foreign key.

• Two indexes, where one (idx_org_id) is for the foreign key and the other (idx_event_type) is
for the event type.

The following DDL statements create these objects, which are automatically included on each
partition.

CREATE SCHEMA data_mart;
CREATE TABLE data_mart.organization (org_id BIGSERIAL,
 org_name TEXT,
 CONSTRAINT pk_organization PRIMARY KEY (org_id)
);

CREATE TABLE data_mart.events(
 event_id BIGSERIAL,
 operation CHAR(1),
 value FLOAT(24),
 parent_event_id BIGINT,
 event_type VARCHAR(25),
 org_id BIGSERIAL,
 created_at timestamp,
 CONSTRAINT pk_data_mart_event PRIMARY KEY (event_id, created_at),
 CONSTRAINT ck_valid_operation CHECK (operation = 'C' OR operation = 'D'),
 CONSTRAINT fk_orga_membership
 FOREIGN KEY(org_id)
 REFERENCES data_mart.organization (org_id),
 CONSTRAINT fk_parent_event_id
 FOREIGN KEY(parent_event_id, created_at)
 REFERENCES data_mart.events (event_id,created_at)
) PARTITION BY RANGE (created_at);

CREATE INDEX idx_org_id ON data_mart.events(org_id);
CREATE INDEX idx_event_type ON data_mart.events(event_type);

Managing partitions with the pg_partman extension 2621

Amazon Aurora User Guide for Aurora

Configuring partitions using the create_parent function

After you enable the pg_partman extension, use the create_parent function to configure
partitions inside the partition maintenance schema. The following example uses the events table
example created in Enabling the pg_partman extension. Call the create_parent function as
follows.

SELECT partman.create_parent(p_parent_table => 'data_mart.events',
 p_control => 'created_at',
 p_type => 'native',
 p_interval=> 'daily',
 p_premake => 30);

The parameters are as follows:

• p_parent_table – The parent partitioned table. This table must already exist and be fully
qualified, including the schema.

• p_control – The column on which the partitioning is to be based. The data type must be an
integer or time-based.

• p_type – The type is either 'native' or 'partman'. You typically use the native type for its
performance improvements and flexibility. The partman type relies on inheritance.

• p_interval – The time interval or integer range for each partition. Example values include
daily, hourly, and so on.

• p_premake – The number of partitions to create in advance to support new inserts.

For a complete description of the create_parent function, see Creation Functions in the
pg_partman documentation.

Configuring partition maintenance using the run_maintenance_proc function

You can run partition maintenance operations to automatically create new partitions, detach
partitions, or remove old partitions. Partition maintenance relies on the run_maintenance_proc
function of the pg_partman extension and the pg_cron extension, which initiates an internal
scheduler. The pg_cron scheduler automatically executes SQL statements, functions, and
procedures defined in your databases.

Managing partitions with the pg_partman extension 2622

https://github.com/pgpartman/pg_partman/blob/master/doc/pg_partman.md#user-content-creation-functions

Amazon Aurora User Guide for Aurora

The following example uses the events table example created in Enabling the pg_partman
extension to set partition maintenance operations to run automatically. As a prerequisite, add
pg_cron to the shared_preload_libraries parameter in the DB instance's parameter group.

CREATE EXTENSION pg_cron;

UPDATE partman.part_config
SET infinite_time_partitions = true,
 retention = '3 months',
 retention_keep_table=true
WHERE parent_table = 'data_mart.events';
SELECT cron.schedule('@hourly', $$CALL partman.run_maintenance_proc()$$);

Following, you can find a step-by-step explanation of the preceding example:

1. Modify the parameter group associated with your DB instance and add pg_cron to the
shared_preload_libraries parameter value. This change requires a DB instance restart for
it to take effect. For more information, see Modifying parameters in a DB parameter group.

2. Run the command CREATE EXTENSION pg_cron; using an account that has the
rds_superuser permissions. Doing this enables the pg_cron extension. For more information,
see Scheduling maintenance with the PostgreSQL pg_cron extension.

3. Run the command UPDATE partman.part_config to adjust the pg_partman settings for the
data_mart.events table.

4. Run the command SET . . . to configure the data_mart.events table, with these clauses:

a. infinite_time_partitions = true, – Configures the table to be able to automatically
create new partitions without any limit.

b. retention = '3 months', – Configures the table to have a maximum retention of three
months.

c. retention_keep_table=true – Configures the table so that when the retention period is
due, the table isn't deleted automatically. Instead, partitions that are older than the retention
period are only detached from the parent table.

5. Run the command SELECT cron.schedule . . . to make a pg_cron function call. This
call defines how often the scheduler runs the pg_partman maintenance procedure,
partman.run_maintenance_proc. For this example, the procedure runs every hour.

Managing partitions with the pg_partman extension 2623

Amazon Aurora User Guide for Aurora

For a complete description of the run_maintenance_proc function, see Maintenance Functions
in the pg_partman documentation.

Scheduling maintenance with the PostgreSQL pg_cron extension

You can use the PostgreSQL pg_cron extension to schedule maintenance commands within a
PostgreSQL database. For more information about the extension, see What is pg_cron? in the
pg_cron documentation.

The pg_cron extension is supported on Aurora PostgreSQL engine versions 12.6 and higher
version

To learn more about using pg_cron, see Schedule jobs with pg_cron on your RDS for PostgreSQL
or your Aurora PostgreSQL-Compatible Edition databases.

Topics

• Setting up the pg_cron extension

• Granting database users permissions to use pg_cron

• Scheduling pg_cron jobs

• Reference for the pg_cron extension

Setting up the pg_cron extension

Set up the pg_cron extension as follows:

1. Modify the custom parameter group associated with your PostgreSQL DB instance by adding
pg_cron to the shared_preload_libraries parameter value.

Restart the PostgreSQL DB instance to have changes to the parameter group take effect. To
learn more about working with parameter groups, see Amazon Aurora PostgreSQL parameters.

2. After the PostgreSQL DB instance has restarted, run the following command using an account
that has rds_superuser permissions. For example, if you used the default settings when you
created your Aurora PostgreSQL DB cluster, connect as user postgres and create the extension.

CREATE EXTENSION pg_cron;

Scheduling maintenance with the pg_cron extension 2624

https://github.com/pgpartman/pg_partman/blob/master/doc/pg_partman.md#maintenance-functions
https://github.com/citusdata/pg_cron
https://aws.amazon.com/blogs/database/schedule-jobs-with-pg_cron-on-your-amazon-rds-for-postgresql-or-amazon-aurora-for-postgresql-databases/
https://aws.amazon.com/blogs/database/schedule-jobs-with-pg_cron-on-your-amazon-rds-for-postgresql-or-amazon-aurora-for-postgresql-databases/

Amazon Aurora User Guide for Aurora

The pg_cron scheduler is set in the default PostgreSQL database named postgres. The
pg_cron objects are created in this postgres database and all scheduling actions run in this
database.

3. You can use the default settings, or you can schedule jobs to run in other databases within
your PostgreSQL DB instance. To schedule jobs for other databases within your PostgreSQL
DB instance, see the example in Scheduling a cron job for a database other than the default
database.

Granting database users permissions to use pg_cron

Installing the pg_cron extension requires the rds_superuser privileges. However, permissions
to use the pg_cron can be granted (by a member of the rds_superuser group/role) to
other database users, so that they can schedule their own jobs. We recommend that you grant
permissions to the cron schema only as needed if it improves operations in your production
environment.

To grant a database user permission in the cron schema, run the following command:

postgres=> GRANT USAGE ON SCHEMA cron TO db-user;

This gives db-user permission to access the cron schema to schedule cron jobs for the objects
that they have permissions to access. If the database user doesn't have permissions, the job fails
after posting the error message to the postgresql.log file, as shown in the following:

2020-12-08 16:41:00 UTC::@:[30647]:ERROR: permission denied for table table-name
2020-12-08 16:41:00 UTC::@:[27071]:LOG: background worker "pg_cron" (PID 30647) exited
 with exit code 1

In other words, make sure that database users that are granted permissions on the cron schema
also have permissions on the objects (tables, schemas, and so on) that they plan to schedule.

The details of the cron job and its success or failure are also captured in the
cron.job_run_details table. For more information, see Tables for scheduling jobs and
capturing status .

Scheduling pg_cron jobs

The following sections show how you can schedule various management tasks using pg_cron jobs.

Scheduling maintenance with the pg_cron extension 2625

Amazon Aurora User Guide for Aurora

Note

When you create pg_cron jobs, check that the max_worker_processes setting is
larger than the number of cron.max_running_jobs. A pg_cron job fails if it runs out
of background worker processes. The default number of pg_cron jobs is 5. For more
information, see Parameters for managing the pg_cron extension.

Topics

• Vacuuming a table

• Purging the pg_cron history table

• Logging errors to the postgresql.log file only

• Scheduling a cron job for a database other than the default database

Vacuuming a table

Autovacuum handles vacuum maintenance for most cases. However, you might want to schedule a
vacuum of a specific table at a time of your choosing.

Following is an example of using the cron.schedule function to set up a job to use VACUUM
FREEZE on a specific table every day at 22:00 (GMT).

SELECT cron.schedule('manual vacuum', '0 22 * * *', 'VACUUM FREEZE pgbench_accounts');
 schedule

1
(1 row)

After the preceding example runs, you can check the history in the cron.job_run_details table
as follows.

postgres=> SELECT * FROM cron.job_run_details;
jobid | runid | job_pid | database | username | command |
 status | return_message | start_time | end_time
-------+-------+---------+----------+----------+--------------------------------
+-----------+----------------+-------------------------------
+-------------------------------

Scheduling maintenance with the pg_cron extension 2626

Amazon Aurora User Guide for Aurora

 1 | 1 | 3395 | postgres | adminuser| vacuum freeze pgbench_accounts
 | succeeded | VACUUM | 2020-12-04 21:10:00.050386+00 | 2020-12-04
 21:10:00.072028+00
(1 row)

Following is a query of the cron.job_run_details table to see the failed jobs.

postgres=> SELECT * FROM cron.job_run_details WHERE status = 'failed';
jobid | runid | job_pid | database | username | command | status
 | return_message | start_time |
 end_time
------+-------+---------+----------+----------+-------------------------------+--------
+--+-------------------------------
+------------------------------
 5 | 4 | 30339 | postgres | adminuser| vacuum freeze pgbench_account | failed
 | ERROR: relation "pgbench_account" does not exist | 2020-12-04 21:48:00.015145+00 |
 2020-12-04 21:48:00.029567+00
(1 row)

For more information, see Tables for scheduling jobs and capturing status .

Purging the pg_cron history table

The cron.job_run_details table contains a history of cron jobs that can become very large
over time. We recommend that you schedule a job that purges this table. For example, keeping a
week's worth of entries might be sufficient for troubleshooting purposes.

The following example uses the cron.schedule function to schedule a job that runs every day at
midnight to purge the cron.job_run_details table. The job keeps only the last seven days. Use
your rds_superuser account to schedule the job such as the following.

SELECT cron.schedule('0 0 * * *', $$DELETE
 FROM cron.job_run_details
 WHERE end_time < now() - interval '7 days'$$);

For more information, see Tables for scheduling jobs and capturing status .

Logging errors to the postgresql.log file only

To prevent writing to the cron.job_run_details table, modify the parameter group associated
with the PostgreSQL DB instance and set the cron.log_run parameter to off. The pg_cron

Scheduling maintenance with the pg_cron extension 2627

Amazon Aurora User Guide for Aurora

extension no longer writes to the table and captures errors to the postgresql.log file only. For
more information, see Modifying parameters in a DB parameter group.

Use the following command to check the value of the cron.log_run parameter.

postgres=> SHOW cron.log_run;

For more information, see Parameters for managing the pg_cron extension.

Scheduling a cron job for a database other than the default database

The metadata for pg_cron is all held in the PostgreSQL default database named postgres.
Because background workers are used for running the maintenance cron jobs, you can schedule a
job in any of your databases within the PostgreSQL DB instance:

1. In the cron database, schedule the job as you normally do using the cron.schedule.

postgres=> SELECT cron.schedule('database1 manual vacuum', '29 03 * * *', 'vacuum
 freeze test_table');

2. As a user with the rds_superuser role, update the database column for the job that you just
created so that it runs in another database within your PostgreSQL DB instance.

postgres=> UPDATE cron.job SET database = 'database1' WHERE jobid = 106;

3. Verify by querying the cron.job table.

postgres=> SELECT * FROM cron.job;
jobid | schedule | command | nodename | nodeport |
 database | username | active | jobname
------+-------------+--------------------------------+-----------+----------
+----------+-----------+--------+-------------------------
106 | 29 03 * * * | vacuum freeze test_table | localhost | 8192 |
 database1| adminuser | t | database1 manual vacuum
 1 | 59 23 * * * | vacuum freeze pgbench_accounts | localhost | 8192 |
 postgres | adminuser | t | manual vacuum
(2 rows)

Scheduling maintenance with the pg_cron extension 2628

Amazon Aurora User Guide for Aurora

Note

In some situations, you might add a cron job that you intend to run on a different database.
In such cases, the job might try to run in the default database (postgres) before you
update the correct database column. If the user name has permissions, the job successfully
runs in the default database.

Reference for the pg_cron extension

You can use the following parameters, functions, and tables with the pg_cron extension. For more
information, see What is pg_cron? in the pg_cron documentation.

Topics

• Parameters for managing the pg_cron extension

• Function reference: cron.schedule

• Function reference: cron.unschedule

• Tables for scheduling jobs and capturing status

Parameters for managing the pg_cron extension

Following is a list of parameters that control the pg_cron extension behavior.

Parameter Description

cron.database_name The database in which pg_cron metadata is
kept.

cron.host The hostname to connect to PostgreSQL. You
can't modify this value.

cron.log_run Log every job that runs in the job_run_d
etails table. Values are on or off. For
more information, see Tables for scheduling
jobs and capturing status .

Scheduling maintenance with the pg_cron extension 2629

https://github.com/citusdata/pg_cron

Amazon Aurora User Guide for Aurora

Parameter Description

cron.log_statement Log all cron statements before running them.
Values are on or off.

cron.max_running_jobs The maximum number of jobs that can run
concurrently.

cron.use_background_workers Use background workers instead of client
sessions. You can't modify this value.

Use the following SQL command to display these parameters and their values.

postgres=> SELECT name, setting, short_desc FROM pg_settings WHERE name LIKE 'cron.%'
 ORDER BY name;

Function reference: cron.schedule

This function schedules a cron job. The job is initially scheduled in the default postgres database.
The function returns a bigint value representing the job identifier. To schedule jobs to run in
other databases within your PostgreSQL DB instance, see the example in Scheduling a cron job for
a database other than the default database.

The function has two syntax formats.

Syntax

cron.schedule (job_name,
 schedule,
 command
);

cron.schedule (schedule,
 command
);

Scheduling maintenance with the pg_cron extension 2630

Amazon Aurora User Guide for Aurora

Parameters

Parameter Description

job_name The name of the cron job.

schedule Text indicating the schedule for the cron job.
The format is the standard cron format.

command Text of the command to run.

Examples

postgres=> SELECT cron.schedule ('test','0 10 * * *', 'VACUUM pgbench_history');
 schedule

 145
(1 row)

postgres=> SELECT cron.schedule ('0 15 * * *', 'VACUUM pgbench_accounts');
 schedule

 146
(1 row)

Function reference: cron.unschedule

This function deletes a cron job. You can specify either the job_name or the job_id. A policy
makes sure that you are the owner to remove the schedule for the job. The function returns a
Boolean indicating success or failure.

The function has the following syntax formats.

Syntax

cron.unschedule (job_id);

cron.unschedule (job_name);

Scheduling maintenance with the pg_cron extension 2631

Amazon Aurora User Guide for Aurora

Parameters

Parameter Description

job_id A job identifier that was returned from the
cron.schedule function when the cron
job was scheduled.

job_name The name of a cron job that was scheduled
with the cron.schedule function.

Examples

postgres=> SELECT cron.unschedule(108);
 unschedule

 t
(1 row)

postgres=> SELECT cron.unschedule('test');
 unschedule

 t
(1 row)

Tables for scheduling jobs and capturing status

The following tables are used to schedule the cron jobs and record how the jobs completed.

Table Description

cron.job Contains the metadata about each scheduled job. Most
interactions with this table should be done by using the
cron.schedule and cron.unschedule functions.

Scheduling maintenance with the pg_cron extension 2632

Amazon Aurora User Guide for Aurora

Table Description

Important

We recommend that you don't give update or insert
privileges directly to this table. Doing so would allow
the user to update the username column to run as
rds-superuser .

cron.job_run_details Contains historic information about past scheduled jobs that
ran. This is useful to investigate the status, return messages,
 and start and end time from the job that ran.

Note

To prevent this table from growing indefinitely, purge
it on a regular basis. For an example, see Purging the
pg_cron history table.

Using pgAudit to log database activity

Financial institutions, government agencies, and many industries need to keep audit logs to meet
regulatory requirements. By using the PostgreSQL Audit extension (pgAudit) with your Aurora
PostgreSQL DB cluster, you can capture the detailed records that are typically needed by auditors
or to meet regulatory requirements. For example, you can set up the pgAudit extension to track
changes made to specific databases and tables, to record the user who made the change, and many
other details.

The pgAudit extension builds on the functionality of the native PostgreSQL logging infrastructure
by extending the log messages with more detail. In other words, you use the same approach to
view your audit log as you do to view any log messages. For more information about PostgreSQL
logging, see Aurora PostgreSQL database log files.

The pgAudit extension redacts sensitive data such as cleartext passwords from the logs. If your
Aurora PostgreSQL DB cluster is configured to log data manipulation language (DML) statements

Using pgAudit to log database activity 2633

Amazon Aurora User Guide for Aurora

as detailed in Turning on query logging for your Aurora PostgreSQL DB cluster, you can avoid the
cleartext password issue by using the PostgreSQL Audit extension.

You can configure auditing on your database instances with a great degree of specificity. You can
audit all databases and all users. Or, you can choose to audit only certain databases, users, and
other objects. You can also explicitly exclude certain users and databases from being audited. For
more information, see Excluding users or databases from audit logging.

Given the amount of detail that can be captured, we recommend that if you do use pgAudit, you
monitor your storage consumption.

The pgAudit extension is supported on all available Aurora PostgreSQL versions. For a list of
pgAudit versions supported by Aurora PostgreSQL version, see Extension versions for Amazon
Aurora PostgreSQL in the Release Notes for Aurora PostgreSQL.

Topics

• Setting up the pgAudit extension

• Auditing database objects

• Excluding users or databases from audit logging

• Reference for the pgAudit extension

Setting up the pgAudit extension

To set up the pgAudit extension on your Aurora PostgreSQL DB cluster, you first add pgAudit to the
shared libraries on the custom DB cluster parameter group for your Aurora PostgreSQL DB cluster.
For information about creating a custom DB cluster parameter group, see Working with parameter
groups. Next, you install the pgAudit extension. Finally, you specify the databases and objects that
you want to audit. The procedures in this section show you how. You can use the AWS Management
Console or the AWS CLI.

You must have permissions as the rds_superuser role to perform all these tasks.

The steps following assume that your Aurora PostgreSQL DB cluster is associated with a custom DB
cluster parameter group.

Using pgAudit to log database activity 2634

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Extensions.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Extensions.html

Amazon Aurora User Guide for Aurora

Console

To set up the pgAudit extension

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose your Aurora PostgreSQL DB cluster's Writer instance .

3. Open the Configuration tab for your Aurora PostgreSQL DB cluster writer instance. Among
the Instance details, find the Parameter group link.

4. Choose the link to open the custom parameters associated with your Aurora PostgreSQL DB
cluster.

5. In the Parameters search field, type shared_pre to find the shared_preload_libraries
parameter.

6. Choose Edit parameters to access the property values.

7. Add pgaudit to the list in the Values field. Use a comma to separate items in the list of
values.

8. Reboot the writer instance of your Aurora PostgreSQL DB cluster so that your change to the
shared_preload_libraries parameter takes effect.

9. When the instance is available, verify that pgAudit has been initialized. Use psql to connect
to the writer instance of your Aurora PostgreSQL DB cluster, and then run the following
command.

SHOW shared_preload_libraries;

Using pgAudit to log database activity 2635

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Aurora User Guide for Aurora

shared_preload_libraries

rdsutils,pgaudit
(1 row)

10. With pgAudit initialized, you can now create the extension. You need to create the extension
after initializing the library because the pgaudit extension installs event triggers for auditing
data definition language (DDL) statements.

CREATE EXTENSION pgaudit;

11. Close the psql session.

labdb=> \q

12. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

13. Find the pgaudit.log parameter in the list and set to the appropriate value for your use
case. For example, setting the pgaudit.log parameter to write as shown in the following
image captures inserts, updates, deletes, and some other types changes to the log.

You can also choose one of the following values for the pgaudit.log parameter.

• none – This is the default. No database changes are logged.

• all – Logs everything (read, write, function, role, ddl, misc).

Using pgAudit to log database activity 2636

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Aurora User Guide for Aurora

• ddl – Logs all data definition language (DDL) statements that aren't included in the ROLE
class.

• function – Logs function calls and DO blocks.

• misc – Logs miscellaneous commands, such as DISCARD, FETCH, CHECKPOINT, VACUUM, and
SET.

• read – Logs SELECT and COPY when the source is a relation (such as a table) or a query.

• role – Logs statements related to roles and privileges, such as GRANT, REVOKE, CREATE
ROLE, ALTER ROLE, and DROP ROLE.

• write – Logs INSERT, UPDATE, DELETE, TRUNCATE, and COPY when the destination is a
relation (table).

14. Choose Save changes.

15. Open the Amazon RDS console at https://console.aws.amazon.com/rds/.

16. Choose your Aurora PostgreSQL DB cluster's writer instance from the Databases list.

AWS CLI

To setup pgAudit

To setup pgAudit using the AWS CLI, you call the modify-db-parameter-group operation to modify
the audit log parameters in your custom parameter group, as shown in the following procedure.

1. Use the following AWS CLI command to add pgaudit to the shared_preload_libraries
parameter.

aws rds modify-db-parameter-group \
 --db-parameter-group-name custom-param-group-name \
 --parameters
 "ParameterName=shared_preload_libraries,ParameterValue=pgaudit,ApplyMethod=pending-
reboot" \
 --region aws-region

2. Use the following AWS CLI command to reboot the writer instance of your Aurora PostgreSQL
DB cluster so that the pgaudit library is initialized.

aws rds reboot-db-instance \
 --db-instance-identifier writer-instance \
 --region aws-region

Using pgAudit to log database activity 2637

https://console.aws.amazon.com/rds/
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-parameter-group.html

Amazon Aurora User Guide for Aurora

3. When the instance is available, you can verify that pgaudit has been initialized. Use psql
to connect to the writer instance of your Aurora PostgreSQL DB cluster, and then run the
following command.

SHOW shared_preload_libraries;
shared_preload_libraries

rdsutils,pgaudit
(1 row)

With pgAudit initialized, you can now create the extension.

CREATE EXTENSION pgaudit;

4. Close the psql session so that you can use the AWS CLI.

labdb=> \q

5. Use the following AWS CLI command to specify the classes of statement that want logged
by session audit logging. The example sets the pgaudit.log parameter to write, which
captures inserts, updates, and deletes to the log.

aws rds modify-db-parameter-group \
 --db-parameter-group-name custom-param-group-name \
 --parameters
 "ParameterName=pgaudit.log,ParameterValue=write,ApplyMethod=pending-reboot" \
 --region aws-region

You can also choose one of the following values for the pgaudit.log parameter.

• none – This is the default. No database changes are logged.

• all – Logs everything (read, write, function, role, ddl, misc).

• ddl – Logs all data definition language (DDL) statements that aren't included in the ROLE
class.

• function – Logs function calls and DO blocks.

• misc – Logs miscellaneous commands, such as DISCARD, FETCH, CHECKPOINT, VACUUM, and
SET.

• read – Logs SELECT and COPY when the source is a relation (such as a table) or a query.
Using pgAudit to log database activity 2638

Amazon Aurora User Guide for Aurora

• role – Logs statements related to roles and privileges, such as GRANT, REVOKE, CREATE
ROLE, ALTER ROLE, and DROP ROLE.

• write – Logs INSERT, UPDATE, DELETE, TRUNCATE, and COPY when the destination is a
relation (table).

Reboot the writer instance of your Aurora PostgreSQL DB cluster using the following AWS CLI
command.

aws rds reboot-db-instance \
 --db-instance-identifier writer-instance \
 --region aws-region

Auditing database objects

With pgAudit set up on your Aurora PostgreSQL DB cluster and configured for your requirements,
more detailed information is captured in the PostgreSQL log. For example, while the default
PostgreSQL logging configuration identifies the date and time that a change was made in a
database table, with the pgAudit extension the log entry can include the schema, user who made
the change, and other details depending on how the extension parameters are configured. You can
set up auditing to track changes in the following ways.

• For each session, by user. For the session level, you can capture the fully qualified command text.

• For each object, by user and by database.

The object auditing capability is activated when you create the rds_pgaudit role on your
system and then add this role to the pgaudit.role parameter in your custom parameter
parameter group. By default, the pgaudit.role parameter is unset and the only allowable value
is rds_pgaudit. The following steps assume that pgaudit has been initialized and that you have
created the pgaudit extension by following the procedure in Setting up the pgAudit extension.

Using pgAudit to log database activity 2639

Amazon Aurora User Guide for Aurora

As shown in this example, the "LOG: AUDIT: SESSION" line provides information about the table
and its schema, among other details.

To set up object auditing

1. Use psql to connect to the writer instance of your Aurora PostgreSQL DB cluster.

psql --host=your-instance-name.aws-region.rds.amazonaws.com --port=5432 --
username=postgrespostgres --password --dbname=labdb

2. Create a database role named rds_pgaudit using the following command.

labdb=> CREATE ROLE rds_pgaudit;
CREATE ROLE
labdb=>

3. Close the psql session.

labdb=> \q

In the next few steps, use the AWS CLI to modify the audit log parameters in your custom
parameter group.

4. Use the following AWS CLI command to set the pgaudit.role parameter to rds_pgaudit.
By default, this parameter is empty, and rds_pgaudit is the only allowable value.

aws rds modify-db-parameter-group \
 --db-parameter-group-name custom-param-group-name \
 --parameters
 "ParameterName=pgaudit.role,ParameterValue=rds_pgaudit,ApplyMethod=pending-reboot"
 \
 --region aws-region

5. Use the following AWS CLI command to reboot the writer instance of your Aurora PostgreSQL
DB cluster so that your changes to the parameters take effect.

aws rds reboot-db-instance \
 --db-instance-identifier writer-instance \
 --region aws-region

6. Run the following command to confirm that the pgaudit.role is set to rds_pgaudit.

Using pgAudit to log database activity 2640

Amazon Aurora User Guide for Aurora

SHOW pgaudit.role;
pgaudit.role

rds_pgaudit

To test pgAudit logging, you can run several example commands that you want to audit. For
example, you might run the following commands.

CREATE TABLE t1 (id int);
GRANT SELECT ON t1 TO rds_pgaudit;
SELECT * FROM t1;
id

(0 rows)

The database logs should contain an entry similar to the following.

...
2017-06-12 19:09:49 UTC:...:rds_test@postgres:[11701]:LOG: AUDIT:
OBJECT,1,1,READ,SELECT,TABLE,public.t1,select * from t1;
...

For information on viewing the logs, see Monitoring Amazon Aurora log files.

To learn more about the pgAudit extension, see pgAudit on GitHub.

Excluding users or databases from audit logging

As discussed in Aurora PostgreSQL database log files, PostgreSQL logs consume storage space.
Using the pgAudit extension adds to the volume of data gathered in your logs to varying degrees,
depending on the changes that you track. You might not need to audit every user or database in
your Aurora PostgreSQL DB cluster.

To minimize impacts to your storage and to avoid needlessly capturing audit records, you can
exclude users and databases from being audited. You can also change logging within a given
session. The following examples show you how.

Using pgAudit to log database activity 2641

https://github.com/pgaudit/pgaudit/blob/master/README.md

Amazon Aurora User Guide for Aurora

Note

Parameter settings at the session level take precedence over the settings in the custom DB
cluster parameter group for the Aurora PostgreSQL DB cluster's writer instance. If you don't
want database users to bypass your audit logging configuration settings, be sure to change
their permissions.

Suppose that your Aurora PostgreSQL DB cluster is configured to audit the same level of activity
for all users and databases. You then decide that you don't want to audit the user myuser. You can
turn off auditing for myuser with the following SQL command.

ALTER USER myuser SET pgaudit.log TO 'NONE';

Then, you can use the following query to check the user_specific_settings column for
pgaudit.log to confirm that the parameter is set to NONE.

SELECT
 usename AS user_name,
 useconfig AS user_specific_settings
FROM
 pg_user
WHERE
 usename = 'myuser';

You see output such as the following.

 user_name | user_specific_settings
-----------+------------------------
 myuser | {pgaudit.log=NONE}
(1 row)

You can turn off logging for a given user in the midst of their session with the database with the
following command.

ALTER USER myuser IN DATABASE mydatabase SET pgaudit.log TO 'none';

Use the following query to check the settings column for pgaudit.log for a specific user and
database combination.

Using pgAudit to log database activity 2642

Amazon Aurora User Guide for Aurora

SELECT
 usename AS "user_name",
 datname AS "database_name",
 pg_catalog.array_to_string(setconfig, E'\n') AS "settings"
FROM
 pg_catalog.pg_db_role_setting s
 LEFT JOIN pg_catalog.pg_database d ON d.oid = setdatabase
 LEFT JOIN pg_catalog.pg_user r ON r.usesysid = setrole
WHERE
 usename = 'myuser'
 AND datname = 'mydatabase'
ORDER BY
 1,
 2;

You see output similar to the following.

 user_name | database_name | settings
-----------+---------------+------------------
 myuser | mydatabase | pgaudit.log=none
(1 row)

After turning off auditing for myuser, you decide that you don't want to track changes to
mydatabase. You turn off auditing for that specific database by using the following command.

ALTER DATABASE mydatabase SET pgaudit.log to 'NONE';

Then, use the following query to check the database_specific_settings column to confirm that
pgaudit.log is set to NONE.

SELECT
a.datname AS database_name,
b.setconfig AS database_specific_settings
FROM
pg_database a
FULL JOIN pg_db_role_setting b ON a.oid = b.setdatabase
WHERE
a.datname = 'mydatabase';

You see output such as the following.

Using pgAudit to log database activity 2643

Amazon Aurora User Guide for Aurora

 database_name | database_specific_settings
---------------+----------------------------
 mydatabase | {pgaudit.log=NONE}
(1 row)

To return settings to the default setting for myuser, use the following command:

ALTER USER myuser RESET pgaudit.log;

To return settings to their default setting for a database, use the following command.

ALTER DATABASE mydatabase RESET pgaudit.log;

To reset user and database to the default setting, use the following command.

ALTER USER myuser IN DATABASE mydatabase RESET pgaudit.log;

You can also capture specific events to the log by setting the pgaudit.log to one of the other
allowed values for the pgaudit.log parameter. For more information, see List of allowable
settings for the pgaudit.log parameter.

ALTER USER myuser SET pgaudit.log TO 'read';
ALTER DATABASE mydatabase SET pgaudit.log TO 'function';
ALTER USER myuser IN DATABASE mydatabase SET pgaudit.log TO 'read,function'

Reference for the pgAudit extension

You can specify the level of detail that you want for your audit log by changing one or more of the
parameters listed in this section.

Controlling pgAudit behavior

You can control the audit logging by changing one or more of the parameters listed in the
following table.

Parameter Description

pgaudit.log Specifies the statement classes that will be logged by session
audit logging. Allowable values include ddl, function, misc,

Using pgAudit to log database activity 2644

Amazon Aurora User Guide for Aurora

Parameter Description

read, role, write, none, all. For more information, see List of
allowable settings for the pgaudit.log parameter.

pgaudit.log_catalog When turned on (set to 1), adds statements to audit trail if all
relations in a statement are in pg_catalog.

pgaudit.log_level Specifies the log level to use for log entries. Allowed values:
debug5, debug4, debug3, debug2, debug1, info, notice,
warning, log

pgaudit.log_parame
ter

When turned on (set to 1), parameters passed with the
statement are captured in the audit log.

pgaudit.log_relation When turned on (set to 1), the audit log for the session creates
a separate log entry for each relation (TABLE, VIEW, and so on)
referenced in a SELECT or DML statement.

pgaudit.log_statem
ent_once

Specifies whether logging will include the statement text and
parameters with the first log entry for a statement/substate
ment combination or with every entry.

pgaudit.role Specifies the master role to use for object audit logging. The
only allowable entry is rds_pgaudit .

List of allowable settings for the pgaudit.log parameter

Value Description

none This is the default. No database changes are logged.

all Logs everything (read, write, function, role, ddl, misc).

ddl Logs all data definition language (DDL) statements that aren't included
in the ROLE class.

function Logs function calls and DO blocks.

Using pgAudit to log database activity 2645

Amazon Aurora User Guide for Aurora

Value Description

misc Logs miscellaneous commands, such as DISCARD, FETCH, CHECKPOIN
T , VACUUM, and SET.

read Logs SELECT and COPY when the source is a relation (such as a table)
or a query.

role Logs statements related to roles and privileges, such as GRANT,
REVOKE, CREATE ROLE, ALTER ROLE, and DROP ROLE.

write Logs INSERT, UPDATE, DELETE, TRUNCATE, and COPY when the
destination is a relation (table).

To log multiple event types with session auditing, use a comma-separated list. To log all event
types, set pgaudit.log to ALL. Reboot your DB instance to apply the changes.

With object auditing, you can refine audit logging to work with specific relations. For example, you
can specify that you want audit logging for READ operations on one or more tables.

Using pglogical to synchronize data across instances

All currently available Aurora PostgreSQL versions support the pglogical extension. The
pglogical extension predates the functionally similar logical replication feature that was introduced
by PostgreSQL in version 10. For more information, see Using PostgreSQL logical replication with
Aurora.

The pglogical extension supports logical replication between two or more Aurora PostgreSQL
DB clusters. It also supports replication between different PostgreSQL versions, and between
databases running on RDS for PostgreSQL DB instances and Aurora PostgreSQL DB clusters. The
pglogical extension uses a publish-subscribe model to replicate changes to tables and other
objects, such as sequences, from a publisher to a subscriber. It relies on a replication slot to ensure
that changes are synchronized from a publisher node to a subscriber node, defined as follows.

• The publisher node is the Aurora PostgreSQL DB cluster that's the source of data to be replicated
to other nodes. The publisher node defines the tables to be replicated in a publication set.

• The subscriber node is the Aurora PostgreSQL DB cluster that receives WAL updates from the
publisher. The subscriber creates a subscription to connect to the publisher and get the decoded

Using pglogical to synchronize data 2646

Amazon Aurora User Guide for Aurora

WAL data. When the subscriber creates the subscription, the replication slot is created on the
publisher node.

Following, you can find information about setting up the pglogical extension.

Topics

• Requirements and limitations for the pglogical extension

• Setting up the pglogical extension

• Setting up logical replication for Aurora PostgreSQL DB cluster

• Reestablishing logical replication after a major upgrade

• Managing logical replication slots for Aurora PostgreSQL

• Parameter reference for the pglogical extension

Requirements and limitations for the pglogical extension

All currently available releases of Aurora PostgreSQL support the pglogical extension.

Both the publisher node and the subscriber node must be set up for logical replication.

The tables that you want to replicate from a publisher to a subscriber must have the same names
and the same schema. These tables must also contain the same columns, and the columns must
use the same data types. Both publisher and subscriber tables must have the same primary keys.
We recommend that you use only the PRIMARY KEY as the unique constraint.

The tables on the subscriber node can have more permissive constraints than those on the
publisher node for CHECK constraints and NOT NULL constraints.

The pglogical extension provides features such as two-way replication that aren't supported by
the logical replication feature built into PostgreSQL (version 10 and higher). For more information,
see PostgreSQL bi-directional replication using pglogical.

Setting up the pglogical extension

To set up the pglogical extension on your Aurora PostgreSQL DB cluster, you add pglogical
to the shared libraries on the custom DB cluster parameter group for your Aurora PostgreSQL DB
cluster. You also need to set the value of the rds.logical_replication parameter to 1, to
turn on logical decoding. Finally, you create the extension in the database. You can use the AWS
Management Console or the AWS CLI for these tasks.

Using pglogical to synchronize data 2647

https://aws.amazon.com/blogs/database/postgresql-bi-directional-replication-using-pglogical/

Amazon Aurora User Guide for Aurora

You must have permissions as the rds_superuser role to perform these tasks.

The steps following assume that your Aurora PostgreSQL DB cluster is associated with a custom DB
cluster parameter group. For information about creating a custom DB cluster parameter group, see
Working with parameter groups.

Console

To set up the pglogical extension

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose your Aurora PostgreSQL DB cluster's Writer instance .

3. Open the Configuration tab for your Aurora PostgreSQL DB cluster writer instance. Among
the Instance details, find the Parameter group link.

4. Choose the link to open the custom parameters associated with your Aurora PostgreSQL DB
cluster.

5. In the Parameters search field, type shared_pre to find the shared_preload_libraries
parameter.

6. Choose Edit parameters to access the property values.

7. Add pglogical to the list in the Values field. Use a comma to separate items in the list of
values.

Using pglogical to synchronize data 2648

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Aurora User Guide for Aurora

8. Find the rds.logical_replication parameter and set it to 1, to turn on logical replication.

9. Reboot the writer instance of your Aurora PostgreSQL DB cluster so that your changes take
effect.

10. When the instance is available, you can use psql (or pgAdmin) to connect to the writer
instance of your Aurora PostgreSQL DB cluster.

psql --host=111122223333.aws-region.rds.amazonaws.com --port=5432 --
username=postgres --password --dbname=labdb

11. To verify that pglogical is initialized, run the following command.

SHOW shared_preload_libraries;
shared_preload_libraries

rdsutils,pglogical
(1 row)

12. Verify the setting that enables logical decoding, as follows.

SHOW wal_level;
wal_level

 logical
(1 row)

13. Create the extension, as follows.

CREATE EXTENSION pglogical;
EXTENSION CREATED

14. Choose Save changes.

15. Open the Amazon RDS console at https://console.aws.amazon.com/rds/.

16. Choose your Aurora PostgreSQL DB cluster's writer instance from the Databases list to select it,
and then choose Reboot from the Actions menu.

Using pglogical to synchronize data 2649

https://console.aws.amazon.com/rds/

Amazon Aurora User Guide for Aurora

AWS CLI

To setup the pglogical extension

To setup pglogical using the AWS CLI, you call the modify-db-parameter-group operation to
modify certain parameters in your custom parameter group as shown in the following procedure.

1. Use the following AWS CLI command to add pglogical to the
shared_preload_libraries parameter.

aws rds modify-db-parameter-group \
 --db-parameter-group-name custom-param-group-name \
 --parameters
 "ParameterName=shared_preload_libraries,ParameterValue=pglogical,ApplyMethod=pending-
reboot" \
 --region aws-region

2. Use the following AWS CLI command to set rds.logical_replication to 1 to turn on the
logical decoding capability for the writer instance of the Aurora PostgreSQL DB cluster.

aws rds modify-db-parameter-group \
 --db-parameter-group-name custom-param-group-name \
 --parameters
 "ParameterName=rds.logical_replication,ParameterValue=1,ApplyMethod=pending-
reboot" \
 --region aws-region

3. Use the following AWS CLI command to reboot the writer instance of your Aurora PostgreSQL
DB cluster so that the pglogical library is initialized.

aws rds reboot-db-instance \
 --db-instance-identifier writer-instance \
 --region aws-region

4. When the instance is available, use psql to connect to the writer instance of your Aurora
PostgreSQL DB cluster.

psql --host=111122223333.aws-region.rds.amazonaws.com --port=5432 --
username=postgres --password --dbname=labdb

5. Create the extension, as follows.

Using pglogical to synchronize data 2650

https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-parameter-group.html

Amazon Aurora User Guide for Aurora

CREATE EXTENSION pglogical;
EXTENSION CREATED

6. Reboot the writer instance of your Aurora PostgreSQL DB cluster using the following AWS CLI
command.

aws rds reboot-db-instance \
 --db-instance-identifier writer-instance \
 --region aws-region

Setting up logical replication for Aurora PostgreSQL DB cluster

The following procedure shows you how to start logical replication between two Aurora
PostgreSQL DB clusters. The steps assume that both the source (publisher) and the target
(subscriber) have the pglogical extension set up as detailed in Setting up the pglogical
extension.

To create the publisher node and define the tables to replicate

These steps assume that your Aurora PostgreSQL DB cluster has a writer instance with a database
that has one or more tables that you want to replicate to another node. You need to recreate the
table structure from the publisher on the subscriber, so first, get the table structure if necessary.
You can do that by using the psq1 metacommand \d tablename and then creating the same
table on the subscriber instance. The following procedure creates an example table on the
publisher (source) for demonstration purposes.

1. Use psql to connect to the instance that has the table you want to use as a source for
subscribers.

psql --host=source-instance.aws-region.rds.amazonaws.com --port=5432 --
username=postgres --password --dbname=labdb

If you don't have an existing table that you want to replicate, you can create a sample table as
follows.

a. Create an example table using the following SQL statement.

Using pglogical to synchronize data 2651

Amazon Aurora User Guide for Aurora

CREATE TABLE docs_lab_table (a int PRIMARY KEY);

b. Populate the table with generated data by using the following SQL statement.

INSERT INTO docs_lab_table VALUES (generate_series(1,5000));
INSERT 0 5000

c. Verify that data exists in the table by using the following SQL statement.

SELECT count(*) FROM docs_lab_table;

2. Identify this Aurora PostgreSQL DB cluster as the publisher node, as follows.

SELECT pglogical.create_node(
 node_name := 'docs_lab_provider',
 dsn := 'host=source-instance.aws-region.rds.amazonaws.com port=5432
 dbname=labdb');
 create_node

 3410995529
(1 row)

3. Add the table that you want to replicate to the default replication set. For more information
about replication sets, see Replication sets in the pglogical documentation.

SELECT pglogical.replication_set_add_table('default', 'docs_lab_table', 'true',
 NULL, NULL);
 replication_set_add_table

 t
 (1 row)

The publisher node setup is complete. You can now set up the subscriber node to receive the
updates from the publisher.

To set up the subscriber node and create a subscription to receive updates

These steps assume that the Aurora PostgreSQL DB cluster has been set up with the pglogical
extension. For more information, see Setting up the pglogical extension.

Using pglogical to synchronize data 2652

https://github.com/2ndQuadrant/pglogical/tree/REL2_x_STABLE/docs#replication-sets

Amazon Aurora User Guide for Aurora

1. Use psql to connect to the instance that you want to receive updates from the publisher.

psql --host=target-instance.aws-region.rds.amazonaws.com --port=5432 --
username=postgres --password --dbname=labdb

2. On the subscriber Aurora PostgreSQL DB cluster, ,create the same table that exists on the
publisher. For this example, the table is docs_lab_table. You can create the table as follows.

CREATE TABLE docs_lab_table (a int PRIMARY KEY);

3. Verify that this table is empty.

SELECT count(*) FROM docs_lab_table;
 count

 0
(1 row)

4. Identify this Aurora PostgreSQL DB cluster as the subscriber node, as follows.

SELECT pglogical.create_node(
 node_name := 'docs_lab_target',
 dsn := 'host=target-instance.aws-region.rds.amazonaws.com port=5432
 sslmode=require dbname=labdb user=postgres password=********');
 create_node

 2182738256
(1 row)

5. Create the subscription.

SELECT pglogical.create_subscription(
 subscription_name := 'docs_lab_subscription',
 provider_dsn := 'host=source-instance.aws-region.rds.amazonaws.com port=5432
 sslmode=require dbname=labdb user=postgres password=*******',
 replication_sets := ARRAY['default'],
 synchronize_data := true,
 forward_origins := '{}');
 create_subscription

1038357190
(1 row)

Using pglogical to synchronize data 2653

Amazon Aurora User Guide for Aurora

When you complete this step, the data from the table on the publisher is created in the table
on the subscriber. You can verify that this has occurred by using the following SQL query.

SELECT count(*) FROM docs_lab_table;
 count

 5000
(1 row)

From this point forward, changes made to the table on the publisher are replicated to the table on
the subscriber.

Reestablishing logical replication after a major upgrade

Before you can perform a major version upgrade of an Aurora PostgreSQL DB cluster that's set
up as a publisher node for logical replication, you must drop all replication slots, even those that
aren't active. We recommend that you temporarily divert database transactions from the publisher
node, drop the replication slots, upgrade the Aurora PostgreSQL DB cluster, and then re-establish
and restart replication.

The replication slots are hosted on the publisher node only. The Aurora PostgreSQL subscriber
node in a logical replication scenario has no slots to drop. The Aurora PostgreSQL major version
upgrade process supports upgrading the subscriber to a new major version of PostgreSQL
independent of the publisher node. However, the upgrade process does disrupt the replication
process and interferes with the synchronization of WAL data between publisher node and
subscriber node. You need to re-establish logical replication between publisher and subscriber
after upgrading the publisher, the subscriber, or both. The following procedure shows you how to
determine that replication has been disrupted and how to resolve the issue.

Determining that logical replication has been disrupted

You can determine that the replication process has been disrupted by querying either the publisher
node or the subscriber node, as follows.

To check the publisher node

• Use psql to connect to the publisher node, and then query the pg_replication_slots
function. Note the value in the active column. Normally, this will return t (true), showing

Using pglogical to synchronize data 2654

Amazon Aurora User Guide for Aurora

that replication is active. If the query returns f (false), it's an indication that replication to the
subscriber has stopped.

SELECT slot_name,plugin,slot_type,active FROM pg_replication_slots;
 slot_name | plugin | slot_type | active
---+------------------+-----------+--------
 pgl_labdb_docs_labcb4fa94_docs_lab3de412c | pglogical_output | logical | f
(1 row)

To check the subscriber node

On the subscriber node, you can check the status of replication in three different ways.

• Look through the PostgreSQL logs on the subscriber node to find failure messages. The log
identifies failure with messages that include exit code 1, as shown following.

2022-07-06 16:17:03 UTC::@:[7361]:LOG: background worker "pglogical apply
 16404:2880255011" (PID 14610) exited with exit code 1
2022-07-06 16:19:44 UTC::@:[7361]:LOG: background worker "pglogical apply
 16404:2880255011" (PID 21783) exited with exit code 1

• Query the pg_replication_origin function. Connect to the database on the subscriber node
using psql and query the pg_replication_origin function, as follows.

SELECT * FROM pg_replication_origin;
 roident | roname
---------+--------
(0 rows)

The empty result set means that replication has been disrupted. Normally, you see output such
as the following.

 roident | roname
 ---------+--
 1 | pgl_labdb_docs_labcb4fa94_docs_lab3de412c
 (1 row)

• Query the pglogical.show_subscription_status function as shown in the following
example.

Using pglogical to synchronize data 2655

Amazon Aurora User Guide for Aurora

SELECT subscription_name,status,slot_name FROM pglogical.show_subscription_status();
 subscription_name | status | slot_name
---====----------------+--------+-------------------------------------
 docs_lab_subscription | down | pgl_labdb_docs_labcb4fa94_docs_lab3de412c
(1 row)

This output shows that replication has been disrupted. Its status is down. Normally, the output
shows the status as replicating.

If your logical replication process has been disrupted, you can re-establish replication by following
these steps.

To reestablish logical replication between publisher and subscriber nodes

To re-establish replication, you first disconnect the subscriber from the publisher node and then re-
establish the subscription, as outlined in these steps.

1. Connect to the subscriber node using psql as follows.

psql --host=222222222222.aws-region.rds.amazonaws.com --port=5432 --
username=postgres --password --dbname=labdb

2. Deactivate the subscription by using the pglogical.alter_subscription_disable
function.

SELECT pglogical.alter_subscription_disable('docs_lab_subscription',true);
 alter_subscription_disable

 t
(1 row)

3. Get the publisher node's identifier by querying the pg_replication_origin, as follows.

SELECT * FROM pg_replication_origin;
 roident | roname
---------+-------------------------------------
 1 | pgl_labdb_docs_labcb4fa94_docs_lab3de412c
(1 row)

Using pglogical to synchronize data 2656

Amazon Aurora User Guide for Aurora

4. Use the response from the previous step with the pg_replication_origin_create
command to assign the identifier that can be used by the subscription when re-established.

SELECT pg_replication_origin_create('pgl_labdb_docs_labcb4fa94_docs_lab3de412c');
 pg_replication_origin_create

 1
(1 row)

5. Turn on the subscription by passing its name with a status of true, as shown in the following
example.

SELECT pglogical.alter_subscription_enable('docs_lab_subscription',true);
 alter_subscription_enable

 t
(1 row)

Check the status of the node. Its status should be replicating as shown in this example.

SELECT subscription_name,status,slot_name
 FROM pglogical.show_subscription_status();
 subscription_name | status | slot_name
-------------------------------+-------------+-------------------------------------
 docs_lab_subscription | replicating |
 pgl_labdb_docs_lab98f517b_docs_lab3de412c
(1 row)

Check the status of the subscriber's replication slot on the publisher node. The slot's active
column should return t (true), indicating that replication has been re-established.

SELECT slot_name,plugin,slot_type,active
 FROM pg_replication_slots;
 slot_name | plugin | slot_type | active
---+------------------+-----------+--------
 pgl_labdb_docs_lab98f517b_docs_lab3de412c | pglogical_output | logical | t
(1 row)

Using pglogical to synchronize data 2657

Amazon Aurora User Guide for Aurora

Managing logical replication slots for Aurora PostgreSQL

Before you can perform a major version upgrade on an Aurora PostgreSQL DB cluster's writer
instance that's serving as a publisher node in a logical replication scenario, you must drop the
replication slots on the instance. The major version upgrade pre-check process notifies you that the
upgrade can't proceed until the slots are dropped.

To identify replication slots that were created using the pglogical extension, log in to each
database and get the name of the nodes. When you query the subscriber node, you get both the
publisher and the subscriber nodes in the output, as shown in this example.

SELECT * FROM pglogical.node;
node_id | node_name
------------+-------------------
 2182738256 | docs_lab_target
 3410995529 | docs_lab_provider
(2 rows)

You can get the details about the subscription with the following query.

SELECT sub_name,sub_slot_name,sub_target
 FROM pglogical.subscription;
 sub_name | sub_slot_name | sub_target
----------+--------------------------------+------------
 docs_lab_subscription | pgl_labdb_docs_labcb4fa94_docs_lab3de412c | 2182738256
(1 row)

You can now drop the subscription, as follows.

SELECT pglogical.drop_subscription(subscription_name := 'docs_lab_subscription');
 drop_subscription

 1
(1 row)

After dropping the subscription, you can delete the node.

SELECT pglogical.drop_node(node_name := 'docs-lab-subscriber');
 drop_node

 t

Using pglogical to synchronize data 2658

Amazon Aurora User Guide for Aurora

(1 row)

You can verify that the node no longer exists, as follows.

SELECT * FROM pglogical.node;
 node_id | node_name
---------+-----------
(0 rows)

Parameter reference for the pglogical extension

In the table you can find parameters associated with the pglogical extension. Parameters such
as pglogical.conflict_log_level and pglogical.conflict_resolution are used
to handle update conflicts. Conflicts can emerge when changes are made locally to the same
tables that are subscribed to changes from the publisher. Conflicts can also occur during various
scenarios, such as two-way replication or when multiple subscribers are replicating from the same
publisher. For more information, see PostgreSQL bi-directional replication using pglogical.

Parameter Description

pglogical.batch_inserts Batch inserts if possible. Not set by default. Change to '1' to
turn on, '0' to turn off.

pglogical.conflict_log_level Sets the log level to use for logging resolved conflicts.
Supported string values are debug5, debug4, debug3, debug2,
debug1, info, notice, warning, error, log, fatal, panic.

pglogical.conflict_resolution Sets method to use to resolve conflicts when conflicts are
resolvable. Supported string values are error, apply_remote,
keep_local, last_update_wins, first_update_wins.

pglogical.extra_connection_
options

Connection options to add to all peer node connections.

pglogical.synchronous_commi
t

pglogical specific synchronous commit value

pglogical.use_spi Use SPI (server programming interface) instead of low-level
API to apply changes. Set to '1' to turn on, '0' to turn off. For

Using pglogical to synchronize data 2659

https://aws.amazon.com/blogs/database/postgresql-bi-directional-replication-using-pglogical/

Amazon Aurora User Guide for Aurora

Parameter Description

more information about SPI, see Server Programming Interface
 in the PostgreSQL documentation.

Working with the supported foreign data wrappers for Amazon Aurora
PostgreSQL

A foreign data wrapper (FDW) is a specific type of extension that provides access to external data.
For example, the oracle_fdw extension allows your Aurora PostgreSQL DB instance to work with
Oracle databases.

Following, you can find information about several supported PostgreSQL foreign data wrappers.

Topics

• Using the log_fdw extension to access the DB log using SQL

• Using the postgres_fdw extension to access external data

• Working with MySQL databases by using the mysql_fdw extension

• Working with Oracle databases by using the oracle_fdw extension

• Working with SQL Server databases by using the tds_fdw extension

Using the log_fdw extension to access the DB log using SQL

Aurora PostgreSQL DB cluster supports the log_fdw extension, which you can use to access your
database engine log using a SQL interface. The log_fdw extension provides two functions that
make it easy to create foreign tables for database logs:

• list_postgres_log_files – Lists the files in the database log directory and the file size in
bytes.

• create_foreign_table_for_log_file(table_name text, server_name text,
log_file_name text) – Builds a foreign table for the specified file in the current database.

All functions created by log_fdw are owned by rds_superuser. Members of the
rds_superuser role can grant access to these functions to other database users.

Supported foreign data wrappers 2660

https://www.postgresql.org/docs/current/spi.html
https://www.postgresql.org/docs/current/spi.html

Amazon Aurora User Guide for Aurora

By default, the log files are generated by Amazon Aurora in stderr (standard error) format, as
specified in log_destination parameter. There are only two options for this parameter, stderr
and csvlog (comma-separated values, CSV). If you add the csvlog option to the parameter,
Amazon Aurora generates both stderr and csvlog logs. This can affect the storage capacity
on your DB cluster, so you need to be aware of the other parameters that affect log handling. For
more information, see Setting the log destination (stderr, csvlog).

One benefit of generating csvlog logs is that the log_fdw extension lets you build foreign tables
with the data neatly split into several columns. To do this, your instance needs to be associated
with a custom DB parameter group so that you can change the setting for log_destination. For
more information about how to do so, see Working with parameter groups.

The following example assumes that the log_destination parameter includes cvslog.

To use the log_fdw extension

1. Install the log_fdw extension.

postgres=> CREATE EXTENSION log_fdw;
CREATE EXTENSION

2. Create the log server as a foreign data wrapper.

postgres=> CREATE SERVER log_server FOREIGN DATA WRAPPER log_fdw;
CREATE SERVER

3. Select all from a list of log files.

postgres=> SELECT * FROM list_postgres_log_files() ORDER BY 1;

A sample response is as follows.

 file_name | file_size_bytes
------------------------------+-----------------
 postgresql.log.2023-08-09-22.csv | 1111
 postgresql.log.2023-08-09-23.csv | 1172
 postgresql.log.2023-08-10-00.csv | 1744
 postgresql.log.2023-08-10-01.csv | 1102
(4 rows)

4. Create a table with a single 'log_entry' column for the selected file.

Supported foreign data wrappers 2661

Amazon Aurora User Guide for Aurora

postgres=> SELECT create_foreign_table_for_log_file('my_postgres_error_log',
 'log_server', 'postgresql.log.2023-08-09-22.csv');

The response provides no detail other than that the table now exists.

(1 row)

5. Select a sample of the log file. The following code retrieves the log time and error message
description.

postgres=> SELECT log_time, message FROM my_postgres_error_log ORDER BY 1;

A sample response is as follows.

 log_time | message

+---
Tue Aug 09 15:45:18.172 2023 PDT | ending log output to stderr
Tue Aug 09 15:45:18.175 2023 PDT | database system was interrupted; last known up
 at 2023-08-09 22:43:34 UTC
Tue Aug 09 15:45:18.223 2023 PDT | checkpoint record is at 0/90002E0
Tue Aug 09 15:45:18.223 2023 PDT | redo record is at 0/90002A8; shutdown FALSE
Tue Aug 09 15:45:18.223 2023 PDT | next transaction ID: 0/1879; next OID: 24578
Tue Aug 09 15:45:18.223 2023 PDT | next MultiXactId: 1; next MultiXactOffset: 0
Tue Aug 09 15:45:18.223 2023 PDT | oldest unfrozen transaction ID: 1822, in
 database 1
(7 rows)

Using the postgres_fdw extension to access external data

You can access data in a table on a remote database server with the postgres_fdw extension. If you
set up a remote connection from your PostgreSQL DB instance, access is also available to your read
replica.

To use postgres_fdw to access a remote database server

1. Install the postgres_fdw extension.

Supported foreign data wrappers 2662

https://www.postgresql.org/docs/current/static/postgres-fdw.html

Amazon Aurora User Guide for Aurora

CREATE EXTENSION postgres_fdw;

2. Create a foreign data server using CREATE SERVER.

CREATE SERVER foreign_server
FOREIGN DATA WRAPPER postgres_fdw
OPTIONS (host 'xxx.xx.xxx.xx', port '5432', dbname 'foreign_db');

3. Create a user mapping to identify the role to be used on the remote server.

CREATE USER MAPPING FOR local_user
SERVER foreign_server
OPTIONS (user 'foreign_user', password 'password');

4. Create a table that maps to the table on the remote server.

CREATE FOREIGN TABLE foreign_table (
 id integer NOT NULL,
 data text)
SERVER foreign_server
OPTIONS (schema_name 'some_schema', table_name 'some_table');

Working with MySQL databases by using the mysql_fdw extension

To access a MySQL-compatible database from your Aurora PostgreSQL DB cluster, you can install
and use the mysql_fdw extension. This foreign data wrapper lets you work with RDS for MySQL,
Aurora MySQL, MariaDB, and other MySQL-compatible databases. The connection from Aurora
PostgreSQL DB cluster to the MySQL database is encrypted on a best-effort basis, depending on
the client and server configurations. However, you can enforce encryption if you like. For more
information, see Using encryption in transit with the extension.

The mysql_fdw extension is supported on Amazon Aurora PostgreSQL version 15.4, 14.9, 13.12,
12.16, and higher releases. It supports selects, inserts, updates, and deletes from an RDS for
PostgreSQL DB to tables on a MySQL-compatible database instance.

Topics

• Setting up your Aurora PostgreSQL DB to use the mysql_fdw extension

• Example: Working with an Aurora MySQL database from Aurora PostgreSQL

Supported foreign data wrappers 2663

Amazon Aurora User Guide for Aurora

• Using encryption in transit with the extension

Setting up your Aurora PostgreSQL DB to use the mysql_fdw extension

Setting up the mysql_fdw extension on your Aurora PostgreSQL DB cluster involves loading the
extension in your DB cluster and then creating the connection point to the MySQL DB instance. For
that task, you need to have the following details about the MySQL DB instance:

• Hostname or endpoint. For an Aurora MySQL DB cluster, you can find the endpoint by using the
Console. Choose the Connectivity & security tab and look in the "Endpoint and port" section.

• Port number. The default port number for MySQL is 3306.

• Name of the database. The DB identifier.

You also need to provide access on the security group or the access control list (ACL) for the MySQL
port, 3306. Both the Aurora PostgreSQL DB cluster and the Aurora MySQL DB cluster need access
to port 3306. If access isn't configured correctly, when you try to connect to MySQL-compatible
table you see an error message similar to the following:

ERROR: failed to connect to MySQL: Can't connect to MySQL server on 'hostname.aws-
region.rds.amazonaws.com:3306' (110)

In the following procedure, you (as the rds_superuser account) create the foreign server.
You then grant access to the foreign server to specific users. These users then create their own
mappings to the appropriate MySQL user accounts to work with the MySQL DB instance.

To use mysql_fdw to access a MySQL database server

1. Connect to your PostgreSQL DB instance using an account that has the rds_superuser role.
If you accepted the defaults when you created your Aurora PostgreSQL DB cluster , the user
name is postgres, and you can connect using the psql command line tool as follows:

psql --host=your-DB-instance.aws-region.rds.amazonaws.com --port=5432 --
username=postgres –-password

2. Install the mysql_fdw extension as follows:

postgres=> CREATE EXTENSION mysql_fdw;
CREATE EXTENSION

Supported foreign data wrappers 2664

Amazon Aurora User Guide for Aurora

After the extension is installed on your Aurora PostgreSQL DB cluster , you set up the foreign
server that provides the connection to a MySQL database.

To create the foreign server

Perform these tasks on the Aurora PostgreSQL DB cluster . The steps assume that you're connected
as a user with rds_superuser privileges, such as postgres.

1. Create a foreign server in the Aurora PostgreSQL DB cluster :

postgres=> CREATE SERVER mysql-db FOREIGN DATA WRAPPER mysql_fdw OPTIONS (host 'db-
name.111122223333.aws-region.rds.amazonaws.com', port '3306');
CREATE SERVER

2. Grant the appropriate users access to the foreign server. These should be non-administrator
users, that is, users without the rds_superuser role.

postgres=> GRANT USAGE ON FOREIGN SERVER mysql-db to user1;
GRANT

PostgreSQL users create and manage their own connections to the MySQL database through the
foreign server.

Example: Working with an Aurora MySQL database from Aurora PostgreSQL

Suppose that you have a simple table on an Aurora PostgreSQL DB instance . Your Aurora
PostgreSQL users want to query (SELECT), INSERT, UPDATE, and DELETE items on that table.
Assume that the mysql_fdw extension was created on your RDS for PostgreSQL DB instance, as
detailed in the preceding procedure. After you connect to the RDS for PostgreSQL DB instance as a
user that has rds_superuser privileges, you can proceed with the following steps.

1. On the Aurora PostgreSQL DB instance, create a foreign server:

test=> CREATE SERVER mysqldb FOREIGN DATA WRAPPER mysql_fdw OPTIONS (host 'your-
DB.aws-region.rds.amazonaws.com', port '3306');
CREATE SERVER

2. Grant usage to a user who doesn't have rds_superuser permissions, for example, user1:

test=> GRANT USAGE ON FOREIGN SERVER mysqldb TO user1;

Supported foreign data wrappers 2665

Amazon Aurora User Guide for Aurora

GRANT

3. Connect as user1, and then create a mapping to the MySQL user:

test=> CREATE USER MAPPING FOR user1 SERVER mysqldb OPTIONS (username 'myuser',
 password 'mypassword');
CREATE USER MAPPING

4. Create a foreign table linked to the MySQL table:

test=> CREATE FOREIGN TABLE mytab (a int, b text) SERVER mysqldb OPTIONS (dbname
 'test', table_name '');
CREATE FOREIGN TABLE

5. Run a simple query against the foreign table:

test=> SELECT * FROM mytab;
a | b
---+-------
1 | apple
(1 row)

6. You can add, change, and remove data from the MySQL table. For example:

test=> INSERT INTO mytab values (2, 'mango');
INSERT 0 1

Run the SELECT query again to see the results:

test=> SELECT * FROM mytab ORDER BY 1;
 a | b
---+-------
1 | apple
2 | mango
(2 rows)

Using encryption in transit with the extension

The connection to MySQL from Aurora PostgreSQL uses encryption in transit (TLS/SSL) by default.
However, the connection falls back to non-encrypted when the client and server configuration
differ. You can enforce encryption for all outgoing connections by specifying the REQUIRE SSL

Supported foreign data wrappers 2666

Amazon Aurora User Guide for Aurora

option on the RDS for MySQL user accounts. This same approach also works for MariaDB and
Aurora MySQL user accounts.

For MySQL user accounts configured to REQUIRE SSL, the connection attempt fails if a secure
connection can't be established.

To enforce encryption for existing MySQL database user accounts, you can use the ALTER USER
command. The syntax varies, depending on the MySQL version, as shown in the following table. For
more information, see ALTER USER in MySQL Reference Manual.

MySQL 5.7, MySQL 8.0 MySQL 5.6

ALTER USER 'user'@'%' REQUIRE SSL; GRANT USAGE ON *.* to 'user'@'%'
REQUIRE SSL;

For more information about the mysql_fdw extension, see the mysql_fdw documentation.

Working with Oracle databases by using the oracle_fdw extension

To access an Oracle database from your Aurora PostgreSQL DB cluster you can install and use the
oracle_fdw extension. This extension is a foreign data wrapper for Oracle databases. To learn
more about this extension, see the oracle_fdw documentation.

The oracle_fdw extension is supported on Aurora PostgreSQL 12.7 (Amazon Aurora release 4.2)
and higher versions.

Topics

• Turning on the oracle_fdw extension

• Example: Using a foreign server linked to an Amazon RDS for Oracle database

• Working with encryption in transit

• Understanding the pg_user_mappings view and permissions

Turning on the oracle_fdw extension

To use the oracle_fdw extension, perform the following procedure.

Supported foreign data wrappers 2667

https://dev.mysql.com/doc/refman/8.0/en/alter-user.html
https://github.com/EnterpriseDB/mysql_fdw
https://github.com/laurenz/oracle_fdw

Amazon Aurora User Guide for Aurora

To turn on the oracle_fdw extension

• Run the following command using an account that has rds_superuser permissions.

CREATE EXTENSION oracle_fdw;

Example: Using a foreign server linked to an Amazon RDS for Oracle database

The following example shows the use of a foreign server linked to an Amazon RDS for Oracle
database.

To create a foreign server linked to an RDS for Oracle database

1. Note the following on the RDS for Oracle DB instance:

• Endpoint

• Port

• Database name

2. Create a foreign server.

test=> CREATE SERVER oradb FOREIGN DATA WRAPPER oracle_fdw OPTIONS (dbserver
 '//endpoint:port/DB_name');
CREATE SERVER

3. Grant usage to a user who doesn't have rds_superuser privileges, for example user1.

test=> GRANT USAGE ON FOREIGN SERVER oradb TO user1;
GRANT

4. Connect as user1, and create a mapping to an Oracle user.

test=> CREATE USER MAPPING FOR user1 SERVER oradb OPTIONS (user 'oracleuser',
 password 'mypassword');
CREATE USER MAPPING

5. Create a foreign table linked to an Oracle table.

test=> CREATE FOREIGN TABLE mytab (a int) SERVER oradb OPTIONS (table 'MYTABLE');
CREATE FOREIGN TABLE

Supported foreign data wrappers 2668

Amazon Aurora User Guide for Aurora

6. Query the foreign table.

test=> SELECT * FROM mytab;
a

1
(1 row)

If the query reports the following error, check your security group and access control list (ACL) to
make sure that both instances can communicate.

ERROR: connection for foreign table "mytab" cannot be established
DETAIL: ORA-12170: TNS:Connect timeout occurred

Working with encryption in transit

PostgreSQL-to-Oracle encryption in transit is based on a combination of client and server
configuration parameters. For an example using Oracle 21c, see About the Values for Negotiating
Encryption and Integrity in the Oracle documentation. The client used for oracle_fdw on Amazon
RDS is configured with ACCEPTED, meaning that the encryption depends on the Oracle database
server configuration.

If your database is on RDS for Oracle, see Oracle native network encryption to configure the
encryption.

Understanding the pg_user_mappings view and permissions

The PostgreSQL catalog pg_user_mapping stores the mapping from an Aurora PostgreSQL user
to the user on a foreign data (remote) server. Access to the catalog is restricted, but you use the
pg_user_mappings view to see the mappings. In the following, you can find an example that
shows how permissions apply with an example Oracle database, but this information applies more
generally to any foreign data wrapper.

In the following output, you can find roles and permissions mapped to three different example
users. Users rdssu1 and rdssu2 are members of the rds_superuser role, and user1 isn't. The
example uses the psql metacommand \du to list existing roles.

test=> \du

Supported foreign data wrappers 2669

https://docs.oracle.com/en/database/oracle/oracle-database/21/dbseg/configuring-network-data-encryption-and-integrity.html#GUID-3A2AF4AA-AE3E-446B-8F64-31C48F27A2B5
https://docs.oracle.com/en/database/oracle/oracle-database/21/dbseg/configuring-network-data-encryption-and-integrity.html#GUID-3A2AF4AA-AE3E-446B-8F64-31C48F27A2B5
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Appendix.Oracle.Options.NetworkEncryption.html

Amazon Aurora User Guide for Aurora

 List of roles
 Role name | Attributes |
 Member of
-----------------+--
+---
 rdssu1 | |
 {rds_superuser}
 rdssu2 | |
 {rds_superuser}
 user1 | | {}

All users, including users that have rds_superuser privileges, are allowed to view their own
user mappings (umoptions) in the pg_user_mappings table. As shown in the following
example, when rdssu1 tries to obtain all user mappings, an error is raised even though
rdssu1rds_superuser privileges:

test=> SELECT * FROM pg_user_mapping;
ERROR: permission denied for table pg_user_mapping

Following are some examples.

test=> SET SESSION AUTHORIZATION rdssu1;
SET
test=> SELECT * FROM pg_user_mappings;
 umid | srvid | srvname | umuser | usename | umoptions
-------+-------+---------+--------+------------+----------------------------------
 16414 | 16411 | oradb | 16412 | user1 |
 16423 | 16411 | oradb | 16421 | rdssu1 | {user=oracleuser,password=mypwd}
 16424 | 16411 | oradb | 16422 | rdssu2 |
 (3 rows)

test=> SET SESSION AUTHORIZATION rdssu2;
SET
test=> SELECT * FROM pg_user_mappings;
 umid | srvid | srvname | umuser | usename | umoptions
-------+-------+---------+--------+------------+----------------------------------
 16414 | 16411 | oradb | 16412 | user1 |
 16423 | 16411 | oradb | 16421 | rdssu1 |
 16424 | 16411 | oradb | 16422 | rdssu2 | {user=oracleuser,password=mypwd}
 (3 rows)

test=> SET SESSION AUTHORIZATION user1;

Supported foreign data wrappers 2670

Amazon Aurora User Guide for Aurora

SET
test=> SELECT * FROM pg_user_mappings;
 umid | srvid | srvname | umuser | usename | umoptions
-------+-------+---------+--------+------------+--------------------------------
 16414 | 16411 | oradb | 16412 | user1 | {user=oracleuser,password=mypwd}
 16423 | 16411 | oradb | 16421 | rdssu1 |
 16424 | 16411 | oradb | 16422 | rdssu2 |
 (3 rows)

Because of implementation differences between information_schema._pg_user_mappings
and pg_catalog.pg_user_mappings, a manually created rds_superuser requires additional
permissions to view passwords in pg_catalog.pg_user_mappings.

No additional permissions are required for an rds_superuser to view passwords in
information_schema._pg_user_mappings.

Users who don't have the rds_superuser role can view passwords in pg_user_mappings only
under the following conditions:

• The current user is the user being mapped and owns the server or holds the USAGE privilege on
it.

• The current user is the server owner and the mapping is for PUBLIC.

Working with SQL Server databases by using the tds_fdw extension

You can use the PostgreSQL tds_fdw extension to access databases that support the tabular
data stream (TDS) protocol, such as Sybase and Microsoft SQL Server databases. This foreign data
wrapper lets you connect from your Aurora PostgreSQL DB cluster to databases that use the TDS
protocol, including Amazon RDS for Microsoft SQL Server. For more information, see tds-fdw/
tds_fdw documentation on GitHub.

The tds_fdw extension is supported on Amazon Aurora PostgreSQL version 13.6 and higher
releases.

Setting up your Aurora PostgreSQL DB to use the tds_fdw extension

In the following procedures, you can find an example of setting up and using the tds_fdw with an
Aurora PostgreSQL DB cluster. Before you can connect to a SQL Server database using tds_fdw,
you need to get the following details for the instance:

Supported foreign data wrappers 2671

https://github.com/tds-fdw/tds_fdw
https://github.com/tds-fdw/tds_fdw

Amazon Aurora User Guide for Aurora

• Hostname or endpoint. For an RDS for SQL Server DB instance, you can find the endpoint by
using the Console. Choose the Connectivity & security tab and look in the "Endpoint and port"
section.

• Port number. The default port number for Microsoft SQL Server is 1433.

• Name of the database. The DB identifier.

You also need to provide access on the security group or the access control list (ACL) for the SQL
Server port, 1433. Both the Aurora PostgreSQL DB cluster and the RDS for SQL Server DB instance
need access to port 1433. If access isn't configured correctly, when you try to query the Microsoft
SQL Server you see the following error message:

ERROR: DB-Library error: DB #: 20009, DB Msg: Unable to connect:
Adaptive Server is unavailable or does not exist (mssql2019.aws-
region.rds.amazonaws.com), OS #: 0, OS Msg: Success, Level: 9

To use tds_fdw to connect to a SQL Server database

1. Connect to your Aurora PostgreSQL DB cluster's primary instance using an account that has
the rds_superuser role:

psql --host=your-cluster-name-instance-1.aws-region.rds.amazonaws.com --port=5432
 --username=test –-password

2. Install the tds_fdw extension:

test=> CREATE EXTENSION tds_fdw;
CREATE EXTENSION

After the extension is installed on your Aurora PostgreSQL DB cluster , you set up the foreign
server.

To create the foreign server

Perform these tasks on the Aurora PostgreSQL DB cluster using an account that has
rds_superuser privileges.

1. Create a foreign server in the Aurora PostgreSQL DB cluster:

Supported foreign data wrappers 2672

Amazon Aurora User Guide for Aurora

test=> CREATE SERVER sqlserverdb FOREIGN DATA WRAPPER tds_fdw OPTIONS
 (servername 'mssql2019.aws-region.rds.amazonaws.com', port '1433', database
 'tds_fdw_testing');
CREATE SERVER

To access non-ASCII data on the SQLServer side, create a server link with the character_set
option in the Aurora PostgreSQL DB cluster:

test=> CREATE SERVER sqlserverdb FOREIGN DATA WRAPPER tds_fdw OPTIONS (servername
 'mssql2019.aws-region.rds.amazonaws.com', port '1433', database 'tds_fdw_testing',
 character_set 'UTF-8');
CREATE SERVER

2. Grant permissions to a user who doesn't have rds_superuser role privileges, for example,
user1:

test=> GRANT USAGE ON FOREIGN SERVER sqlserverdb TO user1;

3. Connect as user1 and create a mapping to a SQL Server user:

test=> CREATE USER MAPPING FOR user1 SERVER sqlserverdb OPTIONS (username
 'sqlserveruser', password 'password');
CREATE USER MAPPING

4. Create a foreign table linked to a SQL Server table:

test=> CREATE FOREIGN TABLE mytab (a int) SERVER sqlserverdb OPTIONS (table
 'MYTABLE');
CREATE FOREIGN TABLE

5. Query the foreign table:

test=> SELECT * FROM mytab;
 a

 1
(1 row)

Supported foreign data wrappers 2673

Amazon Aurora User Guide for Aurora

Using encryption in transit for the connection

The connection from Aurora PostgreSQL to SQL Server uses encryption in transit (TLS/SSL)
depending on the SQL Server database configuration. If the SQL Server isn't configured for
encryption, the RDS for PostgreSQL client making the request to the SQL Server database falls
back to unencrypted.

You can enforce encryption for the connection to RDS for SQL Server DB instances by setting the
rds.force_ssl parameter. To learn how, see Forcing connections to your DB instance to use SSL.
For more information about SSL/TLS configuration for RDS for SQL Server, see Using SSL with a
Microsoft SQL Server DB instance.

Supported foreign data wrappers 2674

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/SQLServer.Concepts.General.SSL.Using.html#SQLServer.Concepts.General.SSL.Forcing
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/SQLServer.Concepts.General.SSL.Using.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/SQLServer.Concepts.General.SSL.Using.html

Amazon Aurora User Guide for Aurora

Working with Trusted Language Extensions for PostgreSQL

Trusted Language Extensions for PostgreSQL is an open source development kit for building
PostgreSQL extensions. It allows you to build high performance PostgreSQL extensions and safely
run them on your Aurora PostgreSQL DB cluster. By using Trusted Language Extensions (TLE) for
PostgreSQL, you can create PostgreSQL extensions that follow the documented approach for
extending PostgreSQL functionality. For more information, see Packaging Related Objects into an
Extension in the PostgreSQL documentation.

One key benefit of TLE is that you can use it in environments that don't provide access to the file
system underlying the PostgreSQL instance. Previously, installing a new extension required access
to the file system. TLE removes this constraint. It provides a development environment for creating
new extensions for any PostgreSQL database, including those running on your Aurora PostgreSQL
DB clusters.

TLE is designed to prevent access to unsafe resources for the extensions that you create using TLE.
Its runtime environment limits the impact of any extension defect to a single database connection.
TLE also gives database administrators fine-grained control over who can install extensions, and it
provides a permissions model for running them.

TLE is supported on Aurora PostgreSQL version 14.5 and higher versions.

The Trusted Language Extensions development environment and runtime are packaged as the
pg_tle PostgreSQL extension, version 1.0.1. It supports creating extensions in JavaScript, Perl, Tcl,
PL/pgSQL, and SQL. You install the pg_tle extension in your Aurora PostgreSQL DB cluster in the
same way that you install other PostgreSQL extensions. After the pg_tle is set up, developers can
use it to create new PostgreSQL extensions, known as TLE extensions.

In the following topics, you can find information about how to set up Trusted Language Extensions
and how to get started creating your own TLE extensions.

Topics

• Terminology

• Requirements for using Trusted Language Extensions for PostgreSQL

• Setting up Trusted Language Extensions in your Aurora PostgreSQL DB cluster

• Overview of Trusted Language Extensions for PostgreSQL

Working with Trusted Language Extensions for PostgreSQL 2675

https://www.postgresql.org/docs/current/extend-extensions.html
https://www.postgresql.org/docs/current/extend-extensions.html

Amazon Aurora User Guide for Aurora

• Creating TLE extensions for Aurora PostgreSQL

• Dropping your TLE extensions from a database

• Uninstalling Trusted Language Extensions for PostgreSQL

• Using PostgreSQL hooks with your TLE extensions

• Functions reference for Trusted Language Extensions for PostgreSQL

• Hooks reference for Trusted Language Extensions for PostgreSQL

Terminology

To help you better understand Trusted Language Extensions, view the following glossary for terms
used in this topic.

Trusted Language Extensions for PostgreSQL

Trusted Language Extensions for PostgreSQL is the official name of the open source
development kit that's packaged as the pg_tle extension. It's available for use on any
PostgreSQL system. For more information, see aws/pg_tle on GitHub.

Trusted Language Extensions

Trusted Language Extensions is the short name for Trusted Language Extensions for
PostgreSQL. This shortened name and its abbreviation (TLE) are also used in this
documentation.

trusted language

A trusted language is a programming or scripting language that has specific security attributes.
For example, trusted languages typically restrict access to the file system, and they limit
use of specified networking properties. The TLE development kit is designed to support
trusted languages. PostgreSQL supports several different languages that are used to create
trusted or untrusted extensions. For an example, see Trusted and Untrusted PL/Perl in the
PostgreSQL documentation. When you create an extension using Trusted Language Extensions,
the extension inherently uses trusted language mechanisms.

TLE extension

A TLE extension is a PostgreSQL extension that's been created by using the Trusted Language
Extensions (TLE) development kit.

Terminology 2676

https://github.com/aws/pg_tle
https://www.postgresql.org/docs/current/plperl-trusted.html

Amazon Aurora User Guide for Aurora

Requirements for using Trusted Language Extensions for PostgreSQL

The following are requirements for setting up and using the TLE development kit.

• Aurora PostgreSQL versions – Trusted Language Extensions is supported on Aurora PostgreSQL
version 14.5 and higher versions only.

• If you need to upgrade your Aurora PostgreSQL DB cluster, see Upgrading Amazon Aurora
PostgreSQL DB clusters.

• If you don't yet have an Aurora DB cluster running PostgreSQL, you can create one. For more
information, see Creating and connecting to an Aurora PostgreSQL DB cluster.

• Requires rds_superuser privileges – To set up and configure the pg_tle extension, your
database user role must have the permissions of the rds_superuser role. By default, this role is
granted to the postgres user that creates the Aurora PostgreSQL DB cluster.

• Requires a custom DB parameter group – Your Aurora PostgreSQL DB cluster must be
configured with a custom DB parameter group. You use the custom DB parameter group for the
writer instance of your Aurora PostgreSQL DB cluster.

• If your Aurora PostgreSQL DB cluster isn't configured with a custom DB parameter group,
you should create one and associate it with the writer instance of your Aurora PostgreSQL
DB cluster. For a short summary of steps, see Creating and applying a custom DB parameter
group.

• If your Aurora PostgreSQL DB cluster is already configured using a custom DB parameter
group, you can set up Trusted Language Extensions. For details, see Setting up Trusted
Language Extensions in your Aurora PostgreSQL DB cluster.

Creating and applying a custom DB parameter group

Use the following steps to create a custom DB parameter group and configure your Aurora
PostgreSQL DB cluster to use it.

Console

To create a custom DB parameter group and use it with your Aurora PostgreSQL DB cluster

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. Choose Parameter groups from the Amazon RDS menu.

Requirements for using Trusted Language Extensions 2677

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Aurora User Guide for Aurora

3. Choose Create parameter group.

4. In the Parameter group details page, enter the following information.

• For Parameter group family, choose aurora-postgresql14.

• For Type, choose DB Parameter Group.

• For Group name, give your parameter group a meaningful name in the context of your
operations.

• For Description, enter a useful description so that others on your team can easily find it.

5. Choose Create. Your custom DB parameter group is created in your AWS Region. You can now
modify your Aurora PostgreSQL DB cluster to use it by following the next steps.

6. Choose Databases from the Amazon RDS menu.

7. Choose the Aurora PostgreSQL DB cluster that you want to use with TLE from among those
listed, and then choose Modify.

8. In the Modify DB cluster settings page, find Database options and use the selector to choose
your custom DB parameter group.

9. Choose Continue to save the change.

10. Choose Apply immediately so that you can continue setting up the Aurora PostgreSQL DB
cluster to use TLE.

To continue setting up your system for Trusted Language Extensions, see Setting up Trusted
Language Extensions in your Aurora PostgreSQL DB cluster.

For more information working with DB cluster and DB parameter groups, see Working with DB
cluster parameter groups.

AWS CLI

You can avoid specifying the --region argument when you use CLI commands by configuring
your AWS CLI with your default AWS Region. For more information, see Configuration basics in the
AWS Command Line Interface User Guide.

To create a custom DB parameter group and use it with your Aurora PostgreSQL DB cluster

1. Use the create-db-parameter-group AWS CLI command to create a custom DB parameter
group based on aurora-postgresql14 for your AWS Region. Note that in this step you create a
DB parameter group to apply to the writer instance of your Aurora PostgreSQL DB cluster.

Requirements for using Trusted Language Extensions 2678

https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-quickstart.html#cli-configure-quickstart-config
https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-parameter-group.html

Amazon Aurora User Guide for Aurora

For Linux, macOS, or Unix:

aws rds create-db-parameter-group \
 --region aws-region \
 --db-parameter-group-name custom-params-for-pg-tle \
 --db-parameter-group-family aurora-postgresql14 \
 --description "My custom DB parameter group for Trusted Language Extensions"

For Windows:

aws rds create-db-parameter-group ^
 --region aws-region ^
 --db-parameter-group-name custom-params-for-pg-tle ^
 --db-parameter-group-family aurora-postgresql14 ^
 --description "My custom DB parameter group for Trusted Language Extensions"

Your custom DB parameter group is available in your AWS Region, so you can modify the
writer instance of your Aurora PostgreSQL DB cluster to use it.

2. Use the modify-db-instance AWS CLI command to apply your custom DB parameter group to
the writer instance of your Aurora PostgreSQL DB cluster. This command immediately reboots
the active instance.

For Linux, macOS, or Unix:

aws rds modify-db-instance \
 --region aws-region \
 --db-instance-identifier your-writer-instance-name \
 --db-parameter-group-name custom-params-for-pg-tle \
 --apply-immediately

For Windows:

aws rds modify-db-instance ^
 --region aws-region ^
 --db-instance-identifier your-writer-instance-name ^
 --db-parameter-group-name custom-params-for-pg-tle ^
 --apply-immediately

Requirements for using Trusted Language Extensions 2679

https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-instance.html

Amazon Aurora User Guide for Aurora

To continue setting up your system for Trusted Language Extensions, see Setting up Trusted
Language Extensions in your Aurora PostgreSQL DB cluster.

For more information, see Working with DB parameter groups in a DB instance .

Setting up Trusted Language Extensions in your Aurora PostgreSQL DB
cluster

The following steps assume that your Aurora PostgreSQL DB cluster is associated with a custom
DB cluster parameter group. You can use the AWS Management Console or the AWS CLI for these
steps.

When you set up Trusted Language Extensions in your Aurora PostgreSQL DB cluster , you install it
in a specific database for use by the database users who have permissions on that database.

Console

To set up Trusted Language Extensions

Perform the following steps using an account that's a member of the rds_superuser group
(role).

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose your Aurora PostgreSQL DB cluster's Writer instance .

3. Open the Configuration tab for your Aurora PostgreSQL DB cluster writer instance. Among
the Instance details, find the Parameter group link.

4. Choose the link to open the custom parameters associated with your Aurora PostgreSQL DB
cluster.

5. In the Parameters search field, type shared_pre to find the shared_preload_libraries
parameter.

6. Choose Edit parameters to access the property values.

7. Add pg_tle to the list in the Values field. Use a comma to separate items in the list of values.

Setting up Trusted Language Extensions 2680

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Aurora User Guide for Aurora

8. Reboot the writer instance of your Aurora PostgreSQL DB cluster so that your change to the
shared_preload_libraries parameter takes effect.

9. When the instance is available, verify that pg_tle has been initialized. Use psql to connect
to the writer instance of your Aurora PostgreSQL DB cluster, and then run the following
command.

SHOW shared_preload_libraries;
shared_preload_libraries

rdsutils,pg_tle
(1 row)

10. With the pg_tle extension initialized, you can now create the extension.

CREATE EXTENSION pg_tle;

You can verify that the extension is installed by using the following psql metacommand.

labdb=> \dx
 List of installed extensions
 Name | Version | Schema | Description
---------+---------+------------+--
 pg_tle | 1.0.1 | pgtle | Trusted-Language Extensions for PostgreSQL
 plpgsql | 1.0 | pg_catalog | PL/pgSQL procedural language

Setting up Trusted Language Extensions 2681

Amazon Aurora User Guide for Aurora

11. Grant the pgtle_admin role to the primary user name that you created for your Aurora
PostgreSQL DB cluster when you set it up. If you accepted the default, it's postgres.

labdb=> GRANT pgtle_admin TO postgres;
GRANT ROLE

You can verify that the grant has occurred by using the psql metacommand as shown in the
following example. Only the pgtle_admin and postgres roles are shown in the output. For
more information, see Understanding PostgreSQL roles and permissions.

labdb=> \du
 List of roles
 Role name | Attributes | Member of
-----------------+---------------------------------
+-----------------------------------
pgtle_admin | Cannot login | {}
postgres | Create role, Create DB +| {rds_superuser,pgtle_admin}
 | Password valid until infinity |...

12. Close the psql session using the \q metacommand.

\q

To get started creating TLE extensions, see Example: Creating a trusted language extension using
SQL.

AWS CLI

You can avoid specifying the --region argument when you use CLI commands by configuring
your AWS CLI with your default AWS Region. For more information, see Configuration basics in the
AWS Command Line Interface User Guide.

To set up Trusted Language Extensions

1. Use the modify-db-parameter-group AWS CLI command to add pg_tle to the
shared_preload_libraries parameter.

aws rds modify-db-parameter-group \
 --db-parameter-group-name custom-param-group-name \

Setting up Trusted Language Extensions 2682

https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-quickstart.html#cli-configure-quickstart-config
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-parameter-group.html

Amazon Aurora User Guide for Aurora

 --parameters
 "ParameterName=shared_preload_libraries,ParameterValue=pg_tle,ApplyMethod=pending-
reboot" \
 --region aws-region

2. Use the reboot-db-instance AWS CLI command to reboot the writer instance of your Aurora
PostgreSQL DB cluster and initialize the pg_tle library.

aws rds reboot-db-instance \
 --db-instance-identifier writer-instance \
 --region aws-region

3. When the instance is available, you can verify that pg_tle has been initialized. Use psql
to connect to the writer instance of your Aurora PostgreSQL DB cluster, and then run the
following command.

SHOW shared_preload_libraries;
shared_preload_libraries

rdsutils,pg_tle
(1 row)

With pg_tle initialized, you can now create the extension.

CREATE EXTENSION pg_tle;

4. Grant the pgtle_admin role to the primary user name that you created for your Aurora
PostgreSQL DB cluster when you set it up. If you accepted the default, it's postgres.

GRANT pgtle_admin TO postgres;
GRANT ROLE

5. Close the psql session as follows.

labdb=> \q

To get started creating TLE extensions, see Example: Creating a trusted language extension using
SQL.

Setting up Trusted Language Extensions 2683

https://docs.aws.amazon.com/cli/latest/reference/rds/reboot-db-instance

Amazon Aurora User Guide for Aurora

Overview of Trusted Language Extensions for PostgreSQL

Trusted Language Extensions for PostgreSQL is a PostgreSQL extension that you install in your
Aurora PostgreSQL DB cluster in the same way that you set up other PostgreSQL extensions. In
the following image of an example database in the pgAdmin client tool, you can view some of the
components that comprise the pg_tle extension.

You can see the following details.

1. The Trusted Language Extensions (TLE) for PostgreSQL development kit is packaged as the
pg_tle extension. As such, pg_tle is added to the available extensions for the database in
which it's installed.

2. TLE has its own schema, pgtle. This schema contains helper functions (3) for installing and
managing the extensions that you create.

Overview of Trusted Language Extensions 2684

Amazon Aurora User Guide for Aurora

3. TLE provides over a dozen helper functions for installing, registering, and managing your
extensions. To learn more about these functions, see Functions reference for Trusted Language
Extensions for PostgreSQL.

Other components of the pg_tle extension include the following:

• The pgtle_admin role – The pgtle_admin role is created when the pg_tle extension is
installed. This role is privileged and should be treated as such. We strongly recommend that you
follow the principle of least privilege when granting the pgtle_admin role to database users.
In other words, grant the pgtle_admin role only to database users that are allowed to create,
install, and manage new TLE extensions, such as postgres.

• The pgtle.feature_info table – The pgtle.feature_info table is a protected table that
contains information about your TLEs, hooks, and the custom stored procedures and functions
that they use. If you have pgtle_admin privileges, you use the following Trusted Language
Extensions functions to add and update that information in the table.

• pgtle.register_feature

• pgtle.register_feature_if_not_exists

• pgtle.unregister_feature

• pgtle.unregister_feature_if_exists

Creating TLE extensions for Aurora PostgreSQL

You can install any extensions that you create with TLE in any Aurora PostgreSQL DB cluster that
has the pg_tle extension installed. The pg_tle extension is scoped to the PostgreSQL database
in which it's installed. The extensions that you create using TLE are scoped to the same database.

Use the various pgtle functions to install the code that makes up your TLE extension. The
following Trusted Language Extensions functions all require the pgtle_admin role.

• pgtle.install_extension

• pgtle.install_update_path

• pgtle.register_feature

• pgtle.register_feature_if_not_exists

• pgtle.set_default_version

• pgtle.uninstall_extension(name)

Creating TLE extensions 2685

Amazon Aurora User Guide for Aurora

• pgtle.uninstall_extension(name, version)

• pgtle.uninstall_extension_if_exists

• pgtle.uninstall_update_path

• pgtle.uninstall_update_path_if_exists

• pgtle.unregister_feature

• pgtle.unregister_feature_if_exists

Example: Creating a trusted language extension using SQL

The following example shows you how to create a TLE extension named pg_distance that
contains a few SQL functions for calculating distances using different formulas. In the listing, you
can find the function for calculating the Manhattan distance and the function for calculating the
Euclidean distance. For more information about the difference between these formulas, see Taxicab
geometry and Euclidean geometry in Wikipedia.

You can use this example in your own Aurora PostgreSQL DB cluster if you have the pg_tle
extension set up as detailed in Setting up Trusted Language Extensions in your Aurora PostgreSQL
DB cluster.

Note

You need to have the privileges of the pgtle_admin role to follow this procedure.

To create the example TLE extension

The following steps use an example database named labdb. This database is owned by the
postgres primary user. The postgres role also has the permissions of the pgtle_admin role.

1. Use psql to connect to the writer instance of your Aurora PostgreSQL DB cluster.

psql --host=db-instance-123456789012.aws-region.rds.amazonaws.com
--port=5432 --username=postgres --password --dbname=labdb

2. Create a TLE extension named pg_distance by copying the following code and pasting it into
your psql session console.

SELECT pgtle.install_extension

Creating TLE extensions 2686

https://en.wikipedia.org/wiki/Taxicab_geometry
https://en.wikipedia.org/wiki/Taxicab_geometry
https://en.wikipedia.org/wiki/Euclidean_geometry

Amazon Aurora User Guide for Aurora

(
 'pg_distance',
 '0.1',
 'Distance functions for two points',
$_pg_tle_$
 CREATE FUNCTION dist(x1 float8, y1 float8, x2 float8, y2 float8, norm int)
 RETURNS float8
 AS $$
 SELECT (abs(x2 - x1) ^ norm + abs(y2 - y1) ^ norm) ^ (1::float8 / norm);
 $$ LANGUAGE SQL;

 CREATE FUNCTION manhattan_dist(x1 float8, y1 float8, x2 float8, y2 float8)
 RETURNS float8
 AS $$
 SELECT dist(x1, y1, x2, y2, 1);
 $$ LANGUAGE SQL;

 CREATE FUNCTION euclidean_dist(x1 float8, y1 float8, x2 float8, y2 float8)
 RETURNS float8
 AS $$
 SELECT dist(x1, y1, x2, y2, 2);
 $$ LANGUAGE SQL;
$_pg_tle_$
);

You see the output, such as the following.

install_extension

 t
(1 row)

The artifacts that make up the pg_distance extension are now installed in your database.
These artifacts include the control file and the code for the extension, which are items that
need to be present so that the extension can be created using the CREATE EXTENSION
command. In other words, you still need to create the extension to make its functions available
to database users.

3. To create the extension, use the CREATE EXTENSION command as you do for any other
extension. As with other extensions, the database user needs to have the CREATE permissions
in the database.

Creating TLE extensions 2687

Amazon Aurora User Guide for Aurora

CREATE EXTENSION pg_distance;

4. To test the pg_distance TLE extension, you can use it to calculate the Manhattan distance
between four points.

labdb=> SELECT manhattan_dist(1, 1, 5, 5);
8

To calculate the Euclidean distance between the same set of points, you can use the following.

labdb=> SELECT euclidean_dist(1, 1, 5, 5);
5.656854249492381

The pg_distance extension loads the functions in the database and makes them available to any
users with permissions on the database.

Modifying your TLE extension

To improve query performance for the functions packaged in this TLE extension, add the following
two PostgreSQL attributes to their specifications.

• IMMUTABLE – The IMMUTABLE attribute ensures that the query optimizer can use optimizations
to improve query response times. For more information, see Function Volatility Categories in the
PostgreSQL documentation.

• PARALLEL SAFE – The PARALLEL SAFE attribute is another attribute that allows PostgreSQL
to run the function in parallel mode. For more information, see CREATE FUNCTION in the
PostgreSQL documentation.

In the following example, you can see how the pgtle.install_update_path function is used to
add these attributes to each function to create a version 0.2 of the pg_distance TLE extension.
For more information about this function, see pgtle.install_update_path. You need to have the
pgtle_admin role to perform this task.

To update an existing TLE extension and specify the default version

1. Connect to the writer instance of your Aurora PostgreSQL DB cluster using psql or another
client tool, such as pgAdmin.

Creating TLE extensions 2688

https://en.wikipedia.org/wiki/Taxicab_geometry
https://en.wikipedia.org/wiki/Euclidean_geometry
https://www.postgresql.org/docs/current/xfunc-volatility.html
https://www.postgresql.org/docs/current/sql-createfunction.html

Amazon Aurora User Guide for Aurora

psql --host=db-instance-123456789012.aws-region.rds.amazonaws.com
--port=5432 --username=postgres --password --dbname=labdb

2. Modify the existing TLE extension by copying the following code and pasting it into your psql
session console.

SELECT pgtle.install_update_path
(
 'pg_distance',
 '0.1',
 '0.2',
$_pg_tle_$
 CREATE OR REPLACE FUNCTION dist(x1 float8, y1 float8, x2 float8, y2 float8,
 norm int)
 RETURNS float8
 AS $$
 SELECT (abs(x2 - x1) ^ norm + abs(y2 - y1) ^ norm) ^ (1::float8 / norm);
 $$ LANGUAGE SQL IMMUTABLE PARALLEL SAFE;

 CREATE OR REPLACE FUNCTION manhattan_dist(x1 float8, y1 float8, x2 float8, y2
 float8)
 RETURNS float8
 AS $$
 SELECT dist(x1, y1, x2, y2, 1);
 $$ LANGUAGE SQL IMMUTABLE PARALLEL SAFE;

 CREATE OR REPLACE FUNCTION euclidean_dist(x1 float8, y1 float8, x2 float8, y2
 float8)
 RETURNS float8
 AS $$
 SELECT dist(x1, y1, x2, y2, 2);
 $$ LANGUAGE SQL IMMUTABLE PARALLEL SAFE;
$_pg_tle_$
);

You see a response similar to the following.

install_update_path

 t
(1 row)

Creating TLE extensions 2689

Amazon Aurora User Guide for Aurora

You can make this version of the extension the default version, so that database users don't
have to specify a version when they create or update the extension in their database.

3. To specify that the modified version (version 0.2) of your TLE extension is the default version,
use the pgtle.set_default_version function as shown in the following example.

SELECT pgtle.set_default_version('pg_distance', '0.2');

For more information about this function, see pgtle.set_default_version.

4. With the code in place, you can update the installed TLE extension in the usual way, by using
ALTER EXTENSION ... UPDATE command, as shown here:

ALTER EXTENSION pg_distance UPDATE;

Dropping your TLE extensions from a database

You can drop your TLE extensions by using the DROP EXTENSION command in the same way that
you do for other PostgreSQL extensions. Dropping the extension doesn't remove the installation
files that make up the extension, which allows users to re-create the extension. To remove the
extension and its installation files, do the following two-step process.

To drop the TLE extension and remove its installation files

1. Use psql or another client tool to connect to the writer instance of your Aurora PostgreSQL
DB cluster.

psql --host=cluster-instance-1.111122223333.aws-region.rds.amazonaws.com --
port=5432 --username=postgres --password --dbname=dbname

2. Drop the extension as you would any PostgreSQL extension.

DROP EXTENSION your-TLE-extension

For example, if you create the pg_distance extension as detailed in Example: Creating a
trusted language extension using SQL, you can drop the extension as follows.

DROP EXTENSION pg_distance;

Dropping your TLE extensions from a database 2690

Amazon Aurora User Guide for Aurora

You see output confirming that the extension has been dropped, as follows.

DROP EXTENSION

At this point, the extension is no longer active in the database. However, its installation files
and control file are still available in the database, so database users can create the extension
again if they like.

• If you want to leave the extension files intact so that database users can create your TLE
extension, you can stop here.

• If you want to remove all files that make up the extension, continue to the next step.

3. To remove all installation files for your extension, use the pgtle.uninstall_extension
function. This function removes all the code and control files for your extension.

SELECT pgtle.uninstall_extension('your-tle-extension-name');

For example, to remove all pg_distance installation files, use the following command.

SELECT pgtle.uninstall_extension('pg_distance');
 uninstall_extension

 t
(1 row)

Uninstalling Trusted Language Extensions for PostgreSQL

If you no longer want to create your own TLE extensions using TLE, you can drop the pg_tle
extension and remove all artifacts. This action includes dropping any TLE extensions in the
database and dropping the pgtle schema.

To drop the pg_tle extension and its schema from a database

1. Use psql or another client tool to connect to the writer instance of your Aurora PostgreSQL
DB cluster.

Uninstalling Trusted Language Extensions 2691

Amazon Aurora User Guide for Aurora

psql --host=cluster-instance-1.111122223333.aws-region.rds.amazonaws.com --
port=5432 --username=postgres --password --dbname=dbname

2. Drop the pg_tle extension from the database. If the database has your own TLE extensions
still running in the database, you need to also drop those extensions. To do so, you can use the
CASCADE keyword, as shown in the following.

DROP EXTENSION pg_tle CASCADE;

If the pg_tle extension isn't still active in the database, you don't need to use the CASCADE
keyword.

3. Drop the pgtle schema. This action removes all the management functions from the
database.

DROP SCHEMA pgtle CASCADE;

The command returns the following when the process completes.

DROP SCHEMA

The pg_tle extension, its schema and functions, and all artifacts are removed. To create new
extensions using TLE, go through the setup process again. For more information, see Setting
up Trusted Language Extensions in your Aurora PostgreSQL DB cluster.

Using PostgreSQL hooks with your TLE extensions

A hook is a callback mechanism available in PostgreSQL that allows developers to call custom
functions or other routines during regular database operations. The TLE development kit supports
PostgreSQL hooks so that you can integrate custom functions with PostgreSQL behavior at
runtime. For example, you can use a hook to associate the authentication process with your own
custom code, or to modify the query planning and execution process for your specific needs.

Your TLE extensions can use hooks. If a hook is global in scope, it applies across all databases.
Therefore, if your TLE extension uses a global hook, then you need to create your TLE extension in
all databases that your users can access.

Using PostgreSQL hooks with your TLE extensions 2692

Amazon Aurora User Guide for Aurora

When you use the pg_tle extension to build your own Trusted Language Extensions, you can
use the available hooks from a SQL API to build out the functions of your extension. You should
register any hooks with pg_tle. For some hooks, you might also need to set various configuration
parameters. For example, the passcode check hook can be set to on, off, or require. For more
information about specific requirements for available pg_tle hooks, see Hooks reference for
Trusted Language Extensions for PostgreSQL.

Example: Creating an extension that uses a PostgreSQL hook

The example discussed in this section uses a PostgreSQL hook to check the password provided
during specific SQL operations and prevents database users from setting their passwords to any of
those contained in the password_check.bad_passwords table. The table contains the top-ten
most commonly used, but easily breakable choices for passwords.

To set up this example in your Aurora PostgreSQL DB cluster, you must have already installed
Trusted Language Extensions. For details, see Setting up Trusted Language Extensions in your
Aurora PostgreSQL DB cluster.

To set up the password-check hook example

1. Use psql to connect to the writer instance of your Aurora PostgreSQL DB cluster.

psql --host=db-instance-123456789012.aws-region.rds.amazonaws.com
--port=5432 --username=postgres --password --dbname=labdb

2. Copy the code from the Password-check hook code listing and paste it into your database.

SELECT pgtle.install_extension (
 'my_password_check_rules',
 '1.0',
 'Do not let users use the 10 most commonly used passwords',
$_pgtle_$
 CREATE SCHEMA password_check;
 REVOKE ALL ON SCHEMA password_check FROM PUBLIC;
 GRANT USAGE ON SCHEMA password_check TO PUBLIC;

 CREATE TABLE password_check.bad_passwords (plaintext) AS
 VALUES
 ('123456'),
 ('password'),
 ('12345678'),

Using PostgreSQL hooks with your TLE extensions 2693

Amazon Aurora User Guide for Aurora

 ('qwerty'),
 ('123456789'),
 ('12345'),
 ('1234'),
 ('111111'),
 ('1234567'),
 ('dragon');
 CREATE UNIQUE INDEX ON password_check.bad_passwords (plaintext);

 CREATE FUNCTION password_check.passcheck_hook(username text, password text,
 password_type pgtle.password_types, valid_until timestamptz, valid_null boolean)
 RETURNS void AS $$
 DECLARE
 invalid bool := false;
 BEGIN
 IF password_type = 'PASSWORD_TYPE_MD5' THEN
 SELECT EXISTS(
 SELECT 1
 FROM password_check.bad_passwords bp
 WHERE ('md5' || md5(bp.plaintext || username)) = password
) INTO invalid;
 IF invalid THEN
 RAISE EXCEPTION 'Cannot use passwords from the common password
 dictionary';
 END IF;
 ELSIF password_type = 'PASSWORD_TYPE_PLAINTEXT' THEN
 SELECT EXISTS(
 SELECT 1
 FROM password_check.bad_passwords bp
 WHERE bp.plaintext = password
) INTO invalid;
 IF invalid THEN
 RAISE EXCEPTION 'Cannot use passwords from the common common password
 dictionary';
 END IF;
 END IF;
 END
 $$ LANGUAGE plpgsql SECURITY DEFINER;

 GRANT EXECUTE ON FUNCTION password_check.passcheck_hook TO PUBLIC;

 SELECT pgtle.register_feature('password_check.passcheck_hook', 'passcheck');
$_pgtle_$

Using PostgreSQL hooks with your TLE extensions 2694

Amazon Aurora User Guide for Aurora

);

When the extension has been loaded into your database, you see the output such as the
following.

 install_extension

 t
(1 row)

3. While still connected to the database, you can now create the extension.

CREATE EXTENSION my_password_check_rules;

4. You can confirm that the extension has been created in the database by using the following
psql metacommand.

\dx
 List of installed extensions
 Name | Version | Schema |
 Description
-------------------------+---------+------------
+---
 my_password_check_rules | 1.0 | public | Prevent use of any of the top-ten
 most common bad passwords
 pg_tle | 1.0.1 | pgtle | Trusted-Language Extensions for
 PostgreSQL
 plpgsql | 1.0 | pg_catalog | PL/pgSQL procedural language
(3 rows)

5. Open another terminal session to work with the AWS CLI. You need to modify your custom DB
parameter group to turn on the password-check hook. To do so, use the modify-db-parameter-
group CLI command as shown in the following example.

aws rds modify-db-parameter-group \
 --region aws-region \
 --db-parameter-group-name your-custom-parameter-group \
 --parameters
 "ParameterName=pgtle.enable_password_check,ParameterValue=on,ApplyMethod=immediate"

Using PostgreSQL hooks with your TLE extensions 2695

https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-parameter-group.html
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-parameter-group.html

Amazon Aurora User Guide for Aurora

It might take a few minutes for the change to the parameter group setting to take effect. This
parameter is dynamic, however, so you don't need to restart the writer instance of the Aurora
PostgreSQL DB cluster for the setting to take effect.

6. Open the psql session and query the database to verify that the password_check hook has
been turned on.

labdb=> SHOW pgtle.enable_password_check;
pgtle.enable_password_check

on
(1 row)

The password-check hook is now active. You can test it by creating a new role and using one of the
bad passwords, as shown in the following example.

CREATE ROLE test_role PASSWORD 'password';
ERROR: Cannot use passwords from the common password dictionary
CONTEXT: PL/pgSQL function
 password_check.passcheck_hook(text,text,pgtle.password_types,timestamp with time
 zone,boolean) line 21 at RAISE
SQL statement "SELECT password_check.passcheck_hook(
 $1::pg_catalog.text,
 $2::pg_catalog.text,
 $3::pgtle.password_types,
 $4::pg_catalog.timestamptz,
 $5::pg_catalog.bool)"

The output has been formatted for readability.

The following example shows that pgsql interactive metacommand \password behavior is also
affected by the password_check hook.

postgres=> SET password_encryption TO 'md5';
SET
postgres=> \password
Enter new password for user "postgres":*****
Enter it again:*****
ERROR: Cannot use passwords from the common password dictionary

Using PostgreSQL hooks with your TLE extensions 2696

Amazon Aurora User Guide for Aurora

CONTEXT: PL/pgSQL function
 password_check.passcheck_hook(text,text,pgtle.password_types,timestamp with time
 zone,boolean) line 12 at RAISE
SQL statement "SELECT password_check.passcheck_hook($1::pg_catalog.text,
 $2::pg_catalog.text, $3::pgtle.password_types, $4::pg_catalog.timestamptz,
 $5::pg_catalog.bool)"

You can drop this TLE extension and uninstall its source files if you want. For more information, see
Dropping your TLE extensions from a database.

Password-check hook code listing

The example code shown here defines the specification for the my_password_check_rules
TLE extension. When you copy this code and paste it into your database, the code for the
my_password_check_rules extension is loaded into the database, and the password_check
hook is registered for use by the extension.

SELECT pgtle.install_extension (
 'my_password_check_rules',
 '1.0',
 'Do not let users use the 10 most commonly used passwords',
$_pgtle_$
 CREATE SCHEMA password_check;
 REVOKE ALL ON SCHEMA password_check FROM PUBLIC;
 GRANT USAGE ON SCHEMA password_check TO PUBLIC;

 CREATE TABLE password_check.bad_passwords (plaintext) AS
 VALUES
 ('123456'),
 ('password'),
 ('12345678'),
 ('qwerty'),
 ('123456789'),
 ('12345'),
 ('1234'),
 ('111111'),
 ('1234567'),
 ('dragon');
 CREATE UNIQUE INDEX ON password_check.bad_passwords (plaintext);

 CREATE FUNCTION password_check.passcheck_hook(username text, password text,
 password_type pgtle.password_types, valid_until timestamptz, valid_null boolean)
 RETURNS void AS $$

Using PostgreSQL hooks with your TLE extensions 2697

Amazon Aurora User Guide for Aurora

 DECLARE
 invalid bool := false;
 BEGIN
 IF password_type = 'PASSWORD_TYPE_MD5' THEN
 SELECT EXISTS(
 SELECT 1
 FROM password_check.bad_passwords bp
 WHERE ('md5' || md5(bp.plaintext || username)) = password
) INTO invalid;
 IF invalid THEN
 RAISE EXCEPTION 'Cannot use passwords from the common password dictionary';
 END IF;
 ELSIF password_type = 'PASSWORD_TYPE_PLAINTEXT' THEN
 SELECT EXISTS(
 SELECT 1
 FROM password_check.bad_passwords bp
 WHERE bp.plaintext = password
) INTO invalid;
 IF invalid THEN
 RAISE EXCEPTION 'Cannot use passwords from the common common password
 dictionary';
 END IF;
 END IF;
 END
 $$ LANGUAGE plpgsql SECURITY DEFINER;

 GRANT EXECUTE ON FUNCTION password_check.passcheck_hook TO PUBLIC;

 SELECT pgtle.register_feature('password_check.passcheck_hook', 'passcheck');
$_pgtle_$
);

Functions reference for Trusted Language Extensions for PostgreSQL

View the following reference documentation about functions available in Trusted Language
Extensions for PostgreSQL. Use these functions to install, register, update, and manage your
TLE extensions, that is, the PostgreSQL extensions that you develop using the Trusted Language
Extensions development kit.

Topics

• pgtle.available_extensions

• pgtle.available_extension_versions

Functions reference for Trusted Language Extensions 2698

Amazon Aurora User Guide for Aurora

• pgtle.extension_update_paths

• pgtle.install_extension

• pgtle.install_update_path

• pgtle.register_feature

• pgtle.register_feature_if_not_exists

• pgtle.set_default_version

• pgtle.uninstall_extension(name)

• pgtle.uninstall_extension(name, version)

• pgtle.uninstall_extension_if_exists

• pgtle.uninstall_update_path

• pgtle.uninstall_update_path_if_exists

• pgtle.unregister_feature

• pgtle.unregister_feature_if_exists

pgtle.available_extensions

The pgtle.available_extensions function is a set-returning function. It returns all available
TLE extensions in the database. Each returned row contains information about a single TLE
extension.

Function prototype

pgtle.available_extensions()

Role

None.

Arguments

None.

Output

• name – The name of the TLE extension.

Functions reference for Trusted Language Extensions 2699

Amazon Aurora User Guide for Aurora

• default_version – The version of the TLE extension to use when CREATE EXTENSION is
called without a version specified.

• description – A more detailed description about the TLE extension.

Usage example

SELECT * FROM pgtle.available_extensions();

pgtle.available_extension_versions

The available_extension_versions function is a set-returning function. It returns a list of all
available TLE extensions and their versions. Each row contains information about a specific version
of the given TLE extension, including whether it requires a specific role.

Function prototype

pgtle.available_extension_versions()

Role

None.

Arguments

None.

Output

• name – The name of the TLE extension.

• version – The version of the TLE extension.

• superuser – This value is always false for your TLE extensions. The permissions needed to
create the TLE extension or update it are the same as for creating other objects in the given
database.

• trusted – This value is always false for a TLE extension.

• relocatable – This value is always false for a TLE extension.

• schema – Specifies the name of the schema in which the TLE extension is installed.

• requires – An array containing the names of other extensions needed by this TLE extension.

• description – A detailed description of the TLE extension.

Functions reference for Trusted Language Extensions 2700

Amazon Aurora User Guide for Aurora

For more information about output values, see Packaging Related Objects into an Extension >
Extension Files in the PostgreSQL documentation.

Usage example

SELECT * FROM pgtle.available_extension_versions();

pgtle.extension_update_paths

The extension_update_paths function is a set-returning function. It returns a list of all the
possible update paths for a TLE extension. Each row includes the available upgrades or downgrades
for that TLE extension.

Function prototype

pgtle.extension_update_paths(name)

Role

None.

Arguments

name – The name of the TLE extension from which to get upgrade paths.

Output

• source – The source version for an update.

• target – The target version for an update.

• path – The upgrade path used to update a TLE extension from source version to target
version, for example, 0.1--0.2.

Usage example

SELECT * FROM pgtle.extension_update_paths('your-TLE');

pgtle.install_extension

The install_extension function lets you install the artifacts that make up your TLE extension
in the database, after which it can be created using the CREATE EXTENSION command.

Functions reference for Trusted Language Extensions 2701

https://www.postgresql.org/docs/current/extend-extensions.html#id-1.8.3.20.11
https://www.postgresql.org/docs/current/extend-extensions.html#id-1.8.3.20.11

Amazon Aurora User Guide for Aurora

Function prototype

pgtle.install_extension(name text, version text, description text, ext text, requires
 text[] DEFAULT NULL::text[])

Role

None.

Arguments

• name – The name of the TLE extension. This value is used when calling CREATE EXTENSION.

• version – The version of the TLE extension.

• description – A detailed description about the TLE extension. This description is displayed in
the comment field in pgtle.available_extensions().

• ext – The contents of the TLE extension. This value contains objects such as functions.

• requires – An optional parameter that specifies dependencies for this TLE extension. The
pg_tle extension is automatically added as a dependency.

Many of these arguments are the same as those that are included in an extension control file
for installing a PostgreSQL extension on the file system of a PostgreSQL instance. For more
information, see the Extension Files in Packaging Related Objects into an Extension in the
PostgreSQL documentation.

Output

This functions returns OK on success and NULL on error.

• OK – The TLE extension has been successfully installed in the database.

• NULL – The TLE extension hasn't been successfully installed in the database.

Usage example

SELECT pgtle.install_extension(
 'pg_tle_test',
 '0.1',
 'My first pg_tle extension',
$_pgtle_$

Functions reference for Trusted Language Extensions 2702

http://www.postgresql.org/docs/current/extend-extensions.html#id-1.8.3.20.11
https://www.postgresql.org/docs/current/extend-extensions.html

Amazon Aurora User Guide for Aurora

 CREATE FUNCTION my_test()
 RETURNS INT
 AS $$
 SELECT 42;
 $$ LANGUAGE SQL IMMUTABLE;
$_pgtle_$
);

pgtle.install_update_path

The install_update_path function provides an update path between two different versions of
a TLE extension. This function allows users of your TLE extension to update its version by using the
ALTER EXTENSION ... UPDATE syntax.

Function prototype

pgtle.install_update_path(name text, fromvers text, tovers text, ext text)

Role

pgtle_admin

Arguments

• name – The name of the TLE extension. This value is used when calling CREATE EXTENSION.

• fromvers – The source version of the TLE extension for the upgrade.

• tovers – The destination version of the TLE extension for the upgrade.

• ext – The contents of the update. This value contains objects such as functions.

Output

None.

Usage example

SELECT pgtle.install_update_path('pg_tle_test', '0.1', '0.2',
 $_pgtle_$
 CREATE OR REPLACE FUNCTION my_test()
 RETURNS INT
 AS $$
 SELECT 21;

Functions reference for Trusted Language Extensions 2703

Amazon Aurora User Guide for Aurora

 $$ LANGUAGE SQL IMMUTABLE;
 $_pgtle_$
);

pgtle.register_feature

The register_feature function adds the specified internal PostgreSQL feature to the
pgtle.feature_info table. PostgreSQL hooks are an example of an internal PostgreSQL
feature. The Trusted Language Extensions development kit supports the use of PostgreSQL hooks.
Currently, this function supports the following feature.

• passcheck – Registers the password-check hook with your procedure or function that
customizes PostgreSQL's password-check behavior.

Function prototype

pgtle.register_feature(proc regproc, feature pg_tle_feature)

Role

pgtle_admin

Arguments

• proc – The name of a stored procedure or function to use for the feature.

• feature – The name of the pg_tle feature (such as passcheck) to register with the function.

Output

None.

Usage example

SELECT pgtle.register_feature('pw_hook', 'passcheck');

pgtle.register_feature_if_not_exists

The pgtle.register_feature_if_not_exists function adds the specified PostgreSQL
feature to the pgtle.feature_info table and identifies the TLE extension or other procedure

Functions reference for Trusted Language Extensions 2704

Amazon Aurora User Guide for Aurora

or function that uses the feature. For more information about hooks and Trusted Language
Extensions, see Using PostgreSQL hooks with your TLE extensions.

Function prototype

pgtle.register_feature_if_not_exists(proc regproc, feature pg_tle_feature)

Role

pgtle_admin

Arguments

• proc – The name of a stored procedure or function that contains the logic (code) to use as a
feature for your TLE extension. For example, the pw_hook code.

• feature – The name of the PostgreSQL feature to register for the TLE function. Currently, the
only available feature is the passcheck hook. For more information, see Password-check hook
(passcheck).

Output

Returns true after registering the feature for the specified extension. Returns false if the feature
is already registered.

Usage example

SELECT pgtle.register_feature_if_not_exists('pw_hook', 'passcheck');

pgtle.set_default_version

The set_default_version function lets you specify a default_version for your TLE
extension. You can use this function to define an upgrade path and designate the version as the
default for your TLE extension. When database users specify your TLE extension in the CREATE
EXTENSION and ALTER EXTENSION ... UPDATE commands, that version of your TLE extension
is created in the database for that user.

This function returns true on success. If the TLE extension specified in the name argument doesn't
exist, the function returns an error. Similarly, if the version of the TLE extension doesn't exist, it
returns an error.

Functions reference for Trusted Language Extensions 2705

Amazon Aurora User Guide for Aurora

Function prototype

pgtle.set_default_version(name text, version text)

Role

pgtle_admin

Arguments

• name – The name of the TLE extension. This value is used when calling CREATE EXTENSION.

• version – The version of the TLE extension to set the default.

Output

• true – When setting default version succeeds, the function returns true.

• ERROR – Returns an error message if a TLE extension with the specified name or version doesn't
exist.

Usage example

SELECT * FROM pgtle.set_default_version('my-extension', '1.1');

pgtle.uninstall_extension(name)

The uninstall_extension function removes all versions of a TLE extension from a database.
This function prevents future calls of CREATE EXTENSION from installing the TLE extension. If the
TLE extension doesn't exist in the database, an error is raised.

The uninstall_extension function won't drop a TLE extension that's currently active in the
database. To remove a TLE extension that's currently active, you need to explicitly call DROP
EXTENSION to remove it.

Function prototype

pgtle.uninstall_extension(extname text)

Functions reference for Trusted Language Extensions 2706

Amazon Aurora User Guide for Aurora

Role

pgtle_admin

Arguments

• extname – The name of the TLE extension to uninstall. This name is the same as the one used
with CREATE EXTENSION to load the TLE extension for use in a given database.

Output

None.

Usage example

SELECT * FROM pgtle.uninstall_extension('pg_tle_test');

pgtle.uninstall_extension(name, version)

The uninstall_extension(name, version) function removes the specified version of
the TLE extension from the database. This function prevents CREATE EXTENSION and ALTER
EXTENSION from installing or updating a TLE extension to the specified version. This function
also removes all update paths for the specified version of the TLE extension. This function
won't uninstall the TLE extension if it's currently active in the database. You must explicitly call
DROP EXTENSION to remove the TLE extension. To uninstall all versions of a TLE extension, see
pgtle.uninstall_extension(name).

Function prototype

pgtle.uninstall_extension(extname text, version text)

Role

pgtle_admin

Arguments

• extname – The name of the TLE extension. This value is used when calling CREATE EXTENSION.

• version – The version of the TLE extension to uninstall from the database.

Functions reference for Trusted Language Extensions 2707

Amazon Aurora User Guide for Aurora

Output

None.

Usage example

SELECT * FROM pgtle.uninstall_extension('pg_tle_test', '0.2');

pgtle.uninstall_extension_if_exists

The uninstall_extension_if_exists function removes all versions of a TLE extension from a
given database. If the TLE extension doesn't exist, the function returns silently (no error message is
raised). If the specified extension is currently active within a database, this function doesn't drop it.
You must explicitly call DROP EXTENSION to remove the TLE extension before using this function
to uninstall its artifacts.

Function prototype

pgtle.uninstall_extension_if_exists(extname text)

Role

pgtle_admin

Arguments

• extname – The name of the TLE extension. This value is used when calling CREATE EXTENSION.

Output

The uninstall_extension_if_exists function returns true after uninstalling the specified
extension. If the specified extension doesn't exist, the function returns false.

• true – Returns true after uninstalling the TLE extension.

• false – Returns false when the TLE extension doesn't exist in the database.

Usage example

SELECT * FROM pgtle.uninstall_extension_if_exists('pg_tle_test');

Functions reference for Trusted Language Extensions 2708

Amazon Aurora User Guide for Aurora

pgtle.uninstall_update_path

The uninstall_update_path function removes the specific update path from a TLE extension.
This prevents ALTER EXTENSION ... UPDATE TO from using this as an update path.

If the TLE extension is currently being used by one of the versions on this update path, it remains in
the database.

If the update path specified doesn't exist, this function raises an error.

Function prototype

pgtle.uninstall_update_path(extname text, fromvers text, tovers text)

Role

pgtle_admin

Arguments

• extname – The name of the TLE extension. This value is used when calling CREATE EXTENSION.

• fromvers – The source version of the TLE extension used on the update path.

• tovers – The destination version of the TLE extension used on the update path.

Output

None.

Usage example

SELECT * FROM pgtle.uninstall_update_path('pg_tle_test', '0.1', '0.2');

pgtle.uninstall_update_path_if_exists

The uninstall_update_path_if_exists function is similar to uninstall_update_path
in that it removes the specified update path from a TLE extension. However, if the update path
doesn't exist, this function doesn't raise an error message. Instead, the function returns false.

Function prototype

pgtle.uninstall_update_path_if_exists(extname text, fromvers text, tovers text)

Functions reference for Trusted Language Extensions 2709

Amazon Aurora User Guide for Aurora

Role

pgtle_admin

Arguments

• extname – The name of the TLE extension. This value is used when calling CREATE EXTENSION.

• fromvers – The source version of the TLE extension used on the update path.

• tovers – The destination version of the TLE extension used on the update path.

Output

• true – The function has successfully updated the path for the TLE extension.

• false – The function wasn't able to update the path for the TLE extension.

Usage example

SELECT * FROM pgtle.uninstall_update_path_if_exists('pg_tle_test', '0.1', '0.2');

pgtle.unregister_feature

The unregister_feature function provides a way to remove functions that were registered
to use pg_tle features, such as hooks. For information about registering a feature, see
pgtle.register_feature.

Function prototype

pgtle.unregister_feature(proc regproc, feature pg_tle_features)

Role

pgtle_admin

Arguments

• proc – The name of a stored function to register with a pg_tle feature.

• feature – The name of the pg_tle feature to register with the function. For example,
passcheck is a feature that can be registered for use by the trusted language extensions that
you develop. For more information, see Password-check hook (passcheck).

Functions reference for Trusted Language Extensions 2710

Amazon Aurora User Guide for Aurora

Output

None.

Usage example

SELECT * FROM pgtle.unregister_feature('pw_hook', 'passcheck');

pgtle.unregister_feature_if_exists

The unregister_feature function provides a way to remove functions that were registered to
use pg_tle features, such as hooks. For more information, see Using PostgreSQL hooks with your
TLE extensions. Returns true after successfully unregistering the feature. Returns false if the
feature wasn't registered.

For information about registering pg_tle features for your TLE extensions, see
pgtle.register_feature.

Function prototype

pgtle.unregister_feature_if_exists('proc regproc', 'feature pg_tle_features')

Role

pgtle_admin

Arguments

• proc – The name of the stored function that was registered to include a pg_tle feature.

• feature – The name of the pg_tle feature that was registered with the trusted language
extension.

Output

Returns true or false, as follows.

• true – The function has successfully unregistered the feature from extension.

• false – The function wasn't able to unregister the feature from the TLE extension.

Functions reference for Trusted Language Extensions 2711

Amazon Aurora User Guide for Aurora

Usage example

SELECT * FROM pgtle.unregister_feature_if_exists('pw_hook', 'passcheck');

Hooks reference for Trusted Language Extensions for PostgreSQL

Trusted Language Extensions for PostgreSQL supports PostgreSQL hooks. A hook is an internal
callback mechanism available to developers for extending PostgreSQL's core functionality. By
using hooks, developers can implement their own functions or procedures for use during various
database operations, thereby modifying PostgreSQL's behavior in some way. For example, you
can use a passcheck hook to customize how PostgreSQL handles the passwords supplied when
creating or changing passwords for users (roles).

View the following documentation to learn about the hooks available for your TLE extensions.

Topics

• Password-check hook (passcheck)

Password-check hook (passcheck)

The passcheck hook is used to customize PostgreSQL behavior during the password-checking
process for the following SQL commands and psql metacommand.

• CREATE ROLE username ...PASSWORD – For more information, see CREATE ROLE in the
PostgreSQL documentation.

• ALTER ROLE username...PASSWORD – For more information, see ALTER ROLE in the
PostgreSQL documentation.

• \password username – This interactive psql metacommand securely changes the password
for the specified user by hashing the password before transparently using the ALTER ROLE ...
PASSWORD syntax. The metacommand is a secure wrapper for the ALTER ROLE ... PASSWORD
command, thus the hook applies to the behavior of the psql metacommand.

For an example, see Password-check hook code listing.

Hooks reference for Trusted Language Extensions 2712

https://www.postgresql.org/docs/current/sql-createrole.html
https://www.postgresql.org/docs/current/sql-alterrole.html

Amazon Aurora User Guide for Aurora

Function prototype

passcheck_hook(username text, password text, password_type pgtle.password_types,
 valid_until timestamptz, valid_null boolean)

Arguments

A passcheck hook function takes the following arguments.

• username – The name (as text) of the role (username) that's setting a password.

• password – The plaintext or hashed password. The password entered should match the type
specified in password_type.

• password_type – Specify the pgtle.password_type format of the password. This format
can be one of the following options.

• PASSWORD_TYPE_PLAINTEXT – A plaintext password.

• PASSWORD_TYPE_MD5 – A password that's been hashed using MD5 (message digest 5)
algorithm.

• PASSWORD_TYPE_SCRAM_SHA_256 – A password that's been hashed using SCRAM-SHA-256
algorithm.

• valid_until – Specify the time when the password becomes invalid. This argument is optional.
If you use this argument, specify the time as a timestamptz value.

• valid_null – If this Boolean is set to true, the valid_until option is set to NULL.

Configuration

The function pgtle.enable_password_check controls whether the passcheck hook is active.
The passcheck hook has three possible settings.

• off – Turns off the passcheck password-check hook. This is the default value.

• on – Turns on the passcode password-check hook so that passwords are checked against the
table.

• require – Requires a password check hook to be defined.

Hooks reference for Trusted Language Extensions 2713

Amazon Aurora User Guide for Aurora

Usage notes

To turn the passcheck hook on or off, you need to modify the custom DB parameter group for the
writer instance of your Aurora PostgreSQL DB cluster.

For Linux, macOS, or Unix:

aws rds modify-db-parameter-group \
 --region aws-region \
 --db-parameter-group-name your-custom-parameter-group \
 --parameters
 "ParameterName=pgtle.enable_password_check,ParameterValue=on,ApplyMethod=immediate"

For Windows:

aws rds modify-db-parameter-group ^
 --region aws-region ^
 --db-parameter-group-name your-custom-parameter-group ^
 --parameters
 "ParameterName=pgtle.enable_password_check,ParameterValue=on,ApplyMethod=immediate"

Hooks reference for Trusted Language Extensions 2714

Amazon Aurora User Guide for Aurora

Amazon Aurora PostgreSQL reference

Topics

• Aurora PostgreSQL collations for EBCDIC and other mainframe migrations

• Collations supported in Aurora PostgreSQL

• Aurora PostgreSQL functions reference

• Amazon Aurora PostgreSQL parameters

• Amazon Aurora PostgreSQL wait events

Aurora PostgreSQL collations for EBCDIC and other mainframe
migrations

Migrating mainframe applications to new platforms such as AWS ideally preserves application
behavior. To preserve application behavior on a new platform exactly as it was on the mainframe
requires that migrated data be collated using the same collation and sorting rules. For example,
many Db2 migration solutions shift null values to u0180 (Unicode position 0180), so these
collations sort u0180 first. This is one example of how collations can vary from their mainframe
source and why it's necessary to choose a collation that better maps to the original EBCDIC
collation.

Aurora PostgreSQL 14.3 and higher versions provide many ICU and EBCDIC collations to support
such migration to AWS using the AWS Mainframe Modernization service. To learn more about this
service, see What is AWS Mainframe Modernization?

In the following table, you can find Aurora PostgreSQL–provided collations. These collations follow
EBCDIC rules and ensure that mainframe applications function the same on AWS as they did in the
mainframe environment. The collation name includes the relevant code page, (cpnnnn), so that you
can choose the appropriate collation for your mainframe source. For example, use en-US-cp037-
x-icu for to achieve the collation behavior for EBCDIC data that originated from a mainframe
application that used code page 037.

EBCDIC collations AWS Blu Age collations AWS Micro Focus collations

da-DK-cp1142-x-icu da-DK-cp1142b-x-icu da-DK-cp1142m-x-icu

da-DK-cp277-x-icu da-DK-cp277b-x-icu –

Aurora PostgreSQL reference 2715

https://docs.aws.amazon.com/m2/latest/userguide/what-is-m2.html

Amazon Aurora User Guide for Aurora

EBCDIC collations AWS Blu Age collations AWS Micro Focus collations

de-DE-cp1141-x-icu de-DE-cp1141b-x-icu de-DE-cp1141m-x-icu

de-DE-cp273-x-icu de-DE-cp273b-x-icu –

en-GB-cp1146-x-icu en-GB-cp1146b-x-icu en-GB-cp1146m-x-icu

en-GB-cp285-x-icu en-GB-cp285b-x-icu –

en-US-cp037-x-icu en-US-cp037b-x-icu –

en-US-cp1140-x-icu en-US-cp1140b-x-icu en-US-cp1140m-x-icu

es-ES-cp1145-x-icu es-ES-cp1145b-x-icu es-ES-cp1145m-x-icu

es-ES-cp284-x-icu es-ES-cp284b-x-icu –

fi-FI-cp1143-x-icu fi-FI-cp1143b-x-icu fi-FI-cp1143m-x-icu

fi-FI-cp278-x-icu fi-FI-cp278b-x-icu –

fr-FR-cp1147-x-icu fr-FR-cp1147b-x-icu fr-FR-cp1147m-x-icu

fr-FR-cp297-x-icu fr-FR-cp297b-x-icu –

it-IT-cp1144-x-icu it-IT-cp1144b-x-icu it-IT-cp1144m-x-icu

it-IT-cp280-x-icu it-IT-cp280b-x-icu –

nl-BE-cp1148-x-icu nl-BE-cp1148b-x-icu nl-BE-cp1148m-x-icu

nl-BE-cp500-x-icu nl-BE-cp500b-x-icu –

To learn more about AWS Blu Age, see Tutorial: Managed Runtime for AWS Blu Age in the AWS
Mainframe Modernization User Guide.

For more information about working with AWS Micro Focus, see Tutorial: Managed Runtime for
Micro Focus in the AWS Mainframe Modernization User Guide.

Aurora PostgreSQL collations for EBCDIC and other mainframe migrations 2716

https://docs.aws.amazon.com/m2/latest/userguide/tutorial-runtime-ba.html
https://docs.aws.amazon.com/m2/latest/userguide/tutorial-runtime.html
https://docs.aws.amazon.com/m2/latest/userguide/tutorial-runtime.html

Amazon Aurora User Guide for Aurora

For more information about managing collations in PostgreSQL, see Collation Support in the
PostgreSQL documentation.

Collations supported in Aurora PostgreSQL

Collations are set of rules that determine how character strings stored in the database are sorted
and compared. Collations play a fundamental role in the computer system and are included as part
of the operating system. Collations change over time when new characters are added to languages
or when ordering rules change.

Collation libraries define specific rules and algorithms for a collation. The most popular collation
libraries used within PostgreSQL are GNU C (glibc) and Internationalization components for
Unicode (ICU). By default, Aurora PostgreSQL uses the glibc collation that includes unicode
character sort orders for multi-byte character sequences.

When you create a new Aurora PostgreSQL DB cluster, it checks the operating system for the
available collation. The PostgreSQL parameters of the CREATE DATABASE command LC_COLLATE
and LC_CTYPE are used to specify a collation, which stands as the default collation in that
database. Alternatively, you can also use the LOCALE parameter in CREATE DATABASE to set these
parameters. This determines the default collation for character strings in the database and the
rules for classifying characters as letters, numbers, or symbols. You can also choose a collation to
use on a column, index, or on a query.

Aurora PostgreSQL depends on the glibc library in the operating system for collation support.
Aurora PostgreSQL instance is periodically updated with the latest versions of the operating
system. These updates sometimes include a newer version of the glibc library. Rarely, newer
versions of glibc change the sort order or collation of some characters, which can cause the data to
sort differently or produce invalid index entries. If you discover sort order issues for collation during
an update, you might need to rebuild the indexes.

To reduce the possible impacts of the glibc updates, Aurora PostgreSQL now includes an
independent default collation library. This collation library is available in Aurora PostgreSQL 14.6,
13.9, 12.13, 11.18 and newer minor version releases. It is compatible with glibc 2.26-59.amzn2,
and provides sort order stability to prevent incorrect query results.

Aurora PostgreSQL functions reference

Following, you can find a list of Aurora PostgreSQL functions that are available for your Aurora DB
clusters that run the Aurora PostgreSQL-Compatible Edition DB engine. These Aurora PostgreSQL

Collations supported in Aurora PostgreSQL 2717

https://www.postgresql.org/docs/current/collation.html

Amazon Aurora User Guide for Aurora

functions are in addition to the standard PostgreSQL functions. For more information about
standard PostgreSQL functions, see PostgreSQL–Functions and Operators.

Overview

You can use the following functions for Amazon RDS DB instances running Aurora PostgreSQL:

• aurora_db_instance_identifier

• aurora_ccm_status

• aurora_global_db_instance_status

• aurora_global_db_status

• aurora_list_builtins

• aurora_replica_status

• aurora_stat_activity

• aurora_stat_backend_waits

• aurora_stat_bgwriter

• aurora_stat_database

• aurora_stat_dml_activity

• aurora_stat_get_db_commit_latency

• aurora_stat_logical_wal_cache

• aurora_stat_memctx_usage

• aurora_stat_optimized_reads_cache

• aurora_stat_plans

• aurora_stat_reset_wal_cache

• aurora_stat_statements

• aurora_stat_system_waits

• aurora_stat_wait_event

• aurora_stat_wait_type

• aurora_version

• aurora_volume_logical_start_lsn

• aurora_wait_report

Aurora PostgreSQL functions reference 2718

https://www.postgresql.org/docs/current/functions.html

Amazon Aurora User Guide for Aurora

aurora_db_instance_identifier

Reports the name of the DB instance name to which you're connected.

Syntax

aurora_db_instance_identifier()

Arguments

None

Return type

VARCHAR string

Usage notes

This function displays the name of Aurora PostgreSQL-Compatible Edition cluster's DB instance for
your database client or application connection.

This function is available starting with the release of Aurora PostgreSQL versions 13.7, 12.11,
11.16, 10.21 and for all other later versions.

Examples

The following example shows results of calling the aurora_db_instance_identifier function.

=> SELECT aurora_db_instance_identifier();
aurora_db_instance_identifier

 test-my-instance-name

You can join the results of this function with the aurora_replica_status function to obtain
details about the DB instance for your connection. The aurora_replica_status alone doesn't provide
show you which DB instance you're using. The following example shows you how.

=> SELECT *
 FROM aurora_replica_status() rt,
 aurora_db_instance_identifier() di
 WHERE rt.server_id = di;

Aurora PostgreSQL functions reference 2719

Amazon Aurora User Guide for Aurora

-[RECORD 1]----------------------+-----------------------
server_id | test-my-instance-name
session_id | MASTER_SESSION_ID
durable_lsn | 88492069
highest_lsn_rcvd |
current_read_lsn |
cur_replay_latency_in_usec |
active_txns |
is_current | t
last_transport_error | 0
last_error_timestamp |
last_update_timestamp | 2022-06-03 11:18:25+00
feedback_xmin |
feedback_epoch |
replica_lag_in_msec |
log_stream_speed_in_kib_per_second | 0
log_buffer_sequence_number | 0
oldest_read_view_trx_id |
oldest_read_view_lsn |
pending_read_ios | 819

aurora_ccm_status

Displays the status of cluster cache manager.

Syntax

aurora_ccm_status()

Arguments

None.

Return type

SETOF record with the following columns:

• buffers_sent_last_minute – The number of buffers sent to the designated reader in the
past minute.

• buffers_found_last_minute – The number of frequently accessed buffers identified during
the past minute.

Aurora PostgreSQL functions reference 2720

Amazon Aurora User Guide for Aurora

• buffers_sent_last_scan – The number of buffers sent to the designated reader during the
last complete scan of the buffer cache.

• buffers_found_last_scan – The number of frequently accessed buffers sent during the last
complete scan of the buffer cache. Buffers that are already cached on the designated reader
aren't sent.

• buffers_sent_current_scan – The number of buffers sent during the current scan.

• buffers_found_current_scan – The number of frequently accessed buffers that were
identified in the current scan.

• current_scan_progress – The number of buffers visited so far during the current scan.

Usage notes

You can use this function to check and monitor the cluster cache management (CCM) feature. This
function works only if CCM is active on your Aurora PostgreSQL DB cluster. To use this function you
connect to the Write DB instance on your Aurora PostgreSQL DB cluster.

You turn on CCM for an Aurora PostgreSQL DB cluster by setting the apg_ccm_enabled to 1
in the cluster's custom DB cluster parameter group. To learn how, see Configuring cluster cache
management.

Cluster cache management is active on an Aurora PostgreSQL DB cluster when the cluster has an
Aurora Reader instance configured as follows:

• The Aurora Reader instance uses same DB instance class type and size as the cluster's Writer
instance.

• The Aurora Reader instance is configured as Tier-0 for the cluster. If the cluster has more than
one Reader, this is its only Tier-0 Reader.

Setting more than one Reader to Tier-0 disables CCM. When CCM is disabled, calling this function
returns the following error message:

ERROR: Cluster Cache Manager is disabled

You can also the PostgreSQL pg_buffercache extension to analyze the buffer cache. For more
information, see pg_buffercache in the PostgreSQL documentation.

For more information, see Introduction to Aurora PostgreSQL cluster cache management.

Aurora PostgreSQL functions reference 2721

https://www.postgresql.org/docs/current/pgbuffercache.html
https://aws.amazon.com/blogs/database/introduction-to-aurora-postgresql-cluster-cache-management/

Amazon Aurora User Guide for Aurora

Examples

The following example shows the results of calling the aurora_ccm_status function. This first
example shows CCM statistics.

=> SELECT * FROM aurora_ccm_status();
 buffers_sent_last_minute | buffers_found_last_minute | buffers_sent_last_scan |
 buffers_found_last_scan | buffers_sent_current_scan | buffers_found_current_scan |
 current_scan_progress
--------------------------+---------------------------+------------------------
+-------------------------+---------------------------+----------------------------
+-----------------------
 2242000 | 2242003 | 17920442 |
 17923410 | 14098000 | 14100964 |
 15877443

For more complete detail, you can use expanded display, as shown following:

\x
Expanded display is on.
SELECT * FROM aurora_ccm_status();
[RECORD 1]-----------------------+---------
buffers_sent_last_minute | 2242000
buffers_found_last_minute | 2242003
buffers_sent_last_scan | 17920442
buffers_found_last_scan | 17923410
buffers_sent_current_scan | 14098000
buffers_found_current_scan | 14100964
current_scan_progress | 15877443

This example shows how to check warm rate and warm percentage.

=> SELECT buffers_sent_last_minute * 8/60 AS warm_rate_kbps,
100 * (1.0-buffers_sent_last_scan/buffers_found_last_scan) AS warm_percent
FROM aurora_ccm_status ();
 warm_rate_kbps | warm_percent
----------------+--------------
 16523 | 100.0

aurora_global_db_instance_status

Displays the status of all Aurora instances, including replicas in an Aurora global DB cluster.

Aurora PostgreSQL functions reference 2722

Amazon Aurora User Guide for Aurora

Syntax

aurora_global_db_instance_status()

Arguments

None

Return type

SETOF record with the following columns:

• server_id – The identifier of the DB instance.

• session_id – A unique identifier for the current session. A value of MASTER_SESSION_ID
identifies the Writer (primary) DB instance.

• aws_region – The AWS Region in which this global DB instance runs. For a list of Regions, see
Region availability.

• durable_lsn – The log sequence number (LSN) made durable in storage. A log sequence
number (LSN) is a unique sequential number that identifies a record in the database transaction
log. LSNs are ordered such that a larger LSN represents a later transaction.

• highest_lsn_rcvd – The highest LSN received by the DB instance from the writer DB instance.

• feedback_epoch – The epoch that the DB instance uses when it generates hot standby
information. A hot standby is a DB instance that supports connections and queries while the
primary DB is in recovery or standby mode. The hot standby information includes the epoch
(point in time) and other details about the DB instance that's being used as a hot standby. For
more information, see Hot Standby in the PostgreSQL documentation.

• feedback_xmin – The minimum (oldest) active transaction ID used by the DB instance.

• oldest_read_view_lsn – The oldest LSN used by the DB instance to read from storage.

• visibility_lag_in_msec – How far this DB instance is lagging behind the writer DB instance
in milliseconds.

Usage notes

This function shows replication statistics for an Aurora DB cluster. For each Aurora PostgreSQL DB
instance in the cluster, the function shows a row of data that includes any cross-Region replicas in a
global database configuration.

Aurora PostgreSQL functions reference 2723

https://www.postgresql.org/docs/current/hot-standby.html

Amazon Aurora User Guide for Aurora

You can run this function from any instance in an Aurora PostgreSQL DB cluster or an Aurora
PostgreSQL global database. The function returns details about lag for all replica instances.

To learn more about monitoring lag using this function (aurora_global_db_instance_status)
or by using using aurora_global_db_status, see Monitoring Aurora PostgreSQL-based global
databases.

For more information about Aurora global databases, see Overview of Amazon Aurora global
databases.

To get started with Aurora global databases, see Getting started with Amazon Aurora global
databases or see Amazon Aurora FAQs.

Examples

This example shows cross-Region instance stats.

=> SELECT *
 FROM aurora_global_db_instance_status();
 server_id | session_id |
 aws_region | durable_lsn | highest_lsn_rcvd | feedback_epoch | feedback_xmin |
 oldest_read_view_lsn | visibility_lag_in_msec
--+--------------------------------------
+--------------+-------------+------------------+----------------+---------------
+----------------------+------------------------
 db-119-001-instance-01 | MASTER_SESSION_ID | eu-
west-1 | 2534560273 | [NULL] | [NULL] | [NULL] |
 [NULL] | [NULL]
 db-119-001-instance-02 | 4ecff34d-d57c-409c-ba28-278b31d6fc40 | eu-
west-1 | 2534560266 | 2534560273 | 0 | 19669196 |
 2534560266 | 6
 db-119-001-instance-03 | 3e8a20fc-be86-43d5-95e5-bdf19d27ad6b | eu-
west-1 | 2534560266 | 2534560273 | 0 | 19669196 |
 2534560266 | 6
 db-119-001-instance-04 | fc1b0023-e8b4-4361-bede-2a7e926cead6 | eu-
west-1 | 2534560266 | 2534560273 | 0 | 19669196 |
 2534560254 | 23
 db-119-001-instance-05 | 30319b74-3f08-4e13-9728-e02aa1aa8649 | eu-
west-1 | 2534560266 | 2534560273 | 0 | 19669196 |
 2534560254 | 23
 db-119-001-global-instance-1 | a331ffbb-d982-49ba-8973-527c96329c60 | eu-
central-1 | 2534560254 | 2534560266 | 0 | 19669196 |
 2534560247 | 996

Aurora PostgreSQL functions reference 2724

https://aws.amazon.com/rds/aurora/faqs/

Amazon Aurora User Guide for Aurora

 db-119-001-global-instance-1 | e0955367-7082-43c4-b4db-70674064a9da | eu-
west-2 | 2534560254 | 2534560266 | 0 | 19669196 |
 2534560247 | 14
 db-119-001-global-instance-1-eu-west-2a | 1248dc12-d3a4-46f5-a9e2-85850491a897 | eu-
west-2 | 2534560254 | 2534560266 | 0 | 19669196 |
 2534560247 | 0

This example shows how to check global replica lag in milliseconds.

=> SELECT CASE
 WHEN 'MASTER_SESSION_ID' = session_id THEN 'Primary'
 ELSE 'Secondary'
 END AS global_role,
 aws_region,
 server_id,
 visibility_lag_in_msec
 FROM aurora_global_db_instance_status()
 ORDER BY 1, 2, 3;
 global_role | aws_region | server_id |
 visibility_lag_in_msec
-------------+--------------+---
+------------------------
 Primary | eu-west-1 | db-119-001-instance-01 |
 [NULL]
 Secondary | eu-central-1 | db-119-001-global-instance-1 |
 13
 Secondary | eu-west-1 | db-119-001-instance-02 |
 10
 Secondary | eu-west-1 | db-119-001-instance-03 |
 9
 Secondary | eu-west-1 | db-119-001-instance-04 |
 2
 Secondary | eu-west-1 | db-119-001-instance-05 |
 18
 Secondary | eu-west-2 | db-119-001-global-instance-1 |
 14
 Secondary | eu-west-2 | db-119-001-global-instance-1-eu-west-2a |
 13

This example shows how to check min, max and average lag per AWS Region from the global
database configuration.

=> SELECT 'Secondary' global_role,

Aurora PostgreSQL functions reference 2725

Amazon Aurora User Guide for Aurora

 aws_region,
 min(visibility_lag_in_msec) min_lag_in_msec,
 max(visibility_lag_in_msec) max_lag_in_msec,
 round(avg(visibility_lag_in_msec),0) avg_lag_in_msec
 FROM aurora_global_db_instance_status()
 WHERE aws_region NOT IN (SELECT aws_region
 FROM aurora_global_db_instance_status()
 WHERE session_id='MASTER_SESSION_ID')
 GROUP BY aws_region
UNION ALL
SELECT 'Primary' global_role,
 aws_region,
 NULL,
 NULL,
 NULL
 FROM aurora_global_db_instance_status()
 WHERE session_id='MASTER_SESSION_ID'
ORDER BY 1, 5;
 global_role | aws_region | min_lag_in_msec | max_lag_in_msec | avg_lag_in_msec
------------+--------------+-----------------+-----------------+-----------------
 Primary | eu-west-1 | [NULL] | [NULL] | [NULL]
 Secondary | eu-central-1 | 133 | 133 | 133
 Secondary | eu-west-2 | 0 | 495 | 248

aurora_global_db_status

Displays information about various aspects of Aurora global database lag, specifically, lag of the
underlying Aurora storage (so called durability lag) and lag between the recovery point objective
(RPO).

Syntax

aurora_global_db_status()

Arguments

None.

Return type

SETOF record with the following columns:

Aurora PostgreSQL functions reference 2726

Amazon Aurora User Guide for Aurora

• aws_region – The AWS Region that this DB cluster is in. For a complete listing of AWS Regions
by engine, see Regions and Availability Zones.

• highest_lsn_written – The highest log sequence number (LSN) that currently exists on
this DB cluster. A log sequence number (LSN) is a unique sequential number that identifies a
record in the database transaction log. LSNs are ordered such that a larger LSN represents a later
transaction.

• durability_lag_in_msec – The difference in the timestamp values between the
highest_lsn_written on a secondary DB cluster and the highest_lsn_written on the
primary DB cluster. A value of -1 identifies the primary DB cluster of the Aurora global database.

• rpo_lag_in_msec – The recovery point objective (RPO) lag. The RPO lag is the time it takes
for the most recent user transaction COMMIT to be stored on a secondary DB cluster after it's
been stored on the primary DB cluster of the Aurora global database. A value of -1 denotes the
primary DB cluster (and thus, lag isn't relevant).

In simple terms, this metric calculates the recovery point objective for each Aurora PostgreSQL
DB cluster in the Aurora global database, that is, how much data might be lost if there were an
outage. As with lag, RPO is measured in time.

• last_lag_calculation_time – The timestamp that specifies when values were last
calculated for durability_lag_in_msec and rpo_lag_in_msec. A time value such as
1970-01-01 00:00:00+00 means this is the primary DB cluster.

• feedback_epoch – The epoch that the secondary DB cluster uses when it generates hot
standby information. A hot standby is a DB instance that supports connections and queries while
the primary DB is in recovery or standby mode. The hot standby information includes the epoch
(point in time) and other details about the DB instance that's being used as a hot standby. For
more information, see Hot Standby in the PostgreSQL documentation.

• feedback_xmin – The minimum (oldest) active transaction ID used by a secondary DB cluster.

Usage notes

This function shows replication statistics for an Aurora global database. It shows one row for each
DB cluster in an Aurora PostgreSQL global database. You can run this function from any instance in
your Aurora PostgreSQL global database.

To evaluate Aurora global database replication lag, which is the visible data lag, see
aurora_global_db_instance_status.

Aurora PostgreSQL functions reference 2727

https://www.postgresql.org/docs/current/hot-standby.html

Amazon Aurora User Guide for Aurora

To learn more about using aurora_global_db_status and
aurora_global_db_instance_status to monitor Aurora global database lag, see Monitoring
Aurora PostgreSQL-based global databases. For more information about Aurora global databases,
see Overview of Amazon Aurora global databases.

Examples

This example shows how to display cross-region storage statistics.

=> SELECT CASE
 WHEN '-1' = durability_lag_in_msec THEN 'Primary'
 ELSE 'Secondary'
 END AS global_role,
 *
 FROM aurora_global_db_status();
 global_role | aws_region | highest_lsn_written | durability_lag_in_msec |
 rpo_lag_in_msec | last_lag_calculation_time | feedback_epoch | feedback_xmin
-------------+------------+---------------------+------------------------
+-----------------+----------------------------+----------------+---------------
 Primary | eu-west-1 | 131031557 | -1 |
 -1 | 1970-01-01 00:00:00+00 | 0 | 0
 Secondary | eu-west-2 | 131031554 | 410 |
 0 | 2021-06-01 18:59:36.124+00 | 0 | 12640
 Secondary | eu-west-3 | 131031554 | 410 |
 0 | 2021-06-01 18:59:36.124+00 | 0 | 12640

aurora_list_builtins

Lists all available Aurora PostgreSQL built-in functions, along with brief descriptions and function
details.

Syntax

aurora_list_builtins()

Arguments

None

Return type

SETOF record

Aurora PostgreSQL functions reference 2728

Amazon Aurora User Guide for Aurora

Examples

The following example shows results from calling the aurora_list_builtins function.

=> SELECT *
FROM aurora_list_builtins();

 Name | Result data type | Argument data
 types | Type | Volatility | Parallel | Security |
 Description
-----------------------------------+------------------
+--+------+------------
+------------+----------
+---
 aurora_version | text |
 | func | stable | safe | invoker | Amazon Aurora
 PostgreSQL-Compatible Edition version string
 aurora_stat_wait_type | SETOF record | OUT type_id smallint, OUT
 type_name text | func | volatile | restricted | invoker | Lists all
 supported wait types
 aurora_stat_wait_event | SETOF record | OUT type_id smallint, OUT
 event_id integer, OUT event_na.| func | volatile | restricted | invoker | Lists all
 supported wait events
 | |.me text
 | | | | |
 aurora_list_builtins | SETOF record | OUT "Name" text, OUT "Result
 data type" text, OUT "Argum.| func | stable | safe | invoker | Lists all
 Aurora built-in functions
 | |.ent data types" text, OUT
 "Type" text, OUT "Volatility" .| | | | |
 | |.text, OUT "Parallel" text, OUT
 "Security" text, OUT "Des.| | | | |
 | |.cription" text
 | | | | |
 .
 .
 .
 aurora_stat_file | SETOF record | OUT filename text, OUT
 allocated_bytes bigint, OUT used_.| func | stable | safe | invoker | Lists
 all files present in Aurora storage
 | |.bytes bigint
 | | | | |

Aurora PostgreSQL functions reference 2729

Amazon Aurora User Guide for Aurora

 aurora_stat_get_db_commit_latency | bigint | oid
 | func | stable | restricted | invoker | Per DB commit
 latency in microsecs

aurora_replica_status

Displays the status of all Aurora PostgreSQL reader nodes.

Syntax

aurora_replica_status()

Arguments

None

Return type

SETOF record with the following columns:

• server_id – The DB instance ID (identifier).

• session_id – A unique identifier for the current session, returned for primary instance and
reader instances as follows:

• For the primary instance, session_id is always `MASTER_SESSION_ID’.

• For reader instances, session_id is always the UUID (universally unique identifier) of the
reader instance.

• durable_lsn – The log sequence number (LSN) that's been saved in storage.

• For the primary volume, the primary volume durable LSN (VDL) that's currently in effect.

• For any secondary volumes, the VDL of the primary up to which the secondary has successfully
been applied.

Note

A log sequence number (LSN) is a unique sequential number that identifies a record
in the database transaction log. LSNs are ordered such that a larger LSN represents a
transaction that's occurred later in the sequence.

Aurora PostgreSQL functions reference 2730

Amazon Aurora User Guide for Aurora

• highest_lsn_rcvd – The highest (most recent) LSN received by the DB instance from the
writer DB instance.

• current_read_lsn – The LSN of the most recent snapshot that's been applied to all readers.

• cur_replay_latency_in_usec – The number of microseconds that it's expected to take to
replay the log on the secondary.

• active_txns – The number of currently active transactions.

• is_current – Not used.

• last_transport_error – Last replication error code.

• last_error_timestamp – Timestamp of last replication error.

• last_update_timestamp – Timestamp of last update to replica status. From Aurora
PostgreSQL 13.9, the last_update_timestamp value for the DB instance that you are
connected to is set to NULL.

• feedback_xmin – The hot standby feedback_xmin of the replica. The minimum (oldest) active
transaction ID used by the DB instance.

• feedback_epoch – The epoch the DB instance uses when it generates hot standby information.

• replica_lag_in_msec – Time that reader instance lags behind writer writer instance, in
milliseconds.

• log_stream_speed_in_kib_per_second – The log stream throughput in kilobytes per
second.

• log_buffer_sequence_number – The log buffer sequence number.

• oldest_read_view_trx_id – Not used.

• oldest_read_view_lsn – The oldest LSN used by the DB instance to read from storage.

• pending_read_ios – The outstanding page reads that are still pending on replica.

• read_ios – The total number of page reads on replica.

• iops – Not used.

• cpu – CPU usage by the replica process. Note that this isn't CPU usage by the instance but rather
the process. For information about CPU usage by the instance, see Instance-level metrics for
Amazon Aurora.

Usage notes

The aurora_replica_status function returns values from an Aurora PostgreSQL DB cluster's
replica status manager. You can use this function to obtain information about the status of

Aurora PostgreSQL functions reference 2731

Amazon Aurora User Guide for Aurora

replication on your Aurora PostgreSQL DB cluster, including metrics for all DB instances in your
Aurora DB cluster. For example, you can do the following:

• Get information about the type of instance (writer, reader) in the Aurora PostgreSQL DB
cluster – You can obtain this information by checking the values of the following columns:

• server_id – Contains the name of the instance that you specified when you created the
instance. In some cases, such as for the primary (writer) instance, the name is typically created
for you by appending -instance-1 to the name that you create for your Aurora PostgreSQL DB
cluster.

• session_id – The session_id field indicates whether the instance is a reader or a writer.
For a writer instance, session_id is always set to "MASTER_SESSION_ID". For a reader
instance, session_id is set to the UUID of the specific reader.

• Diagnose common replication issues, such as replica lag – Replica lag is the time in
milliseconds that the page cache of a reader instance is behind that of the writer instance. This
lag occurs because Aurora clusters use asynchronous replication, as described in Replication
with Amazon Aurora. It's shown in the replica_lag_in_msec column in the results returned
by this function. Lag can also occur when a query is cancelled due to conflicts with recovery
on a standby server. You can check pg_stat_database_conflicts() to verify that such
a conflict is causing the replica lag (or not). For more information, see The Statistics Collector
in the PostgreSQL documentation. To learn more about high availability and replication, see
Amazon Aurora FAQs.

Amazon CloudWatch stores replica_lag_in_msec results over time, as the
AuroraReplicaLag metric. For information about using CloudWatch metrics for Aurora, see
Monitoring Amazon Aurora metrics with Amazon CloudWatch

To learn more about troubleshooting Aurora read replicas and restarts, see Why did my Amazon
Aurora read replica fall behind and restart? in the AWS Support Center.

Examples

The following example shows how to get the replication status of all instances in an Aurora
PostgreSQL DB cluster:

=> SELECT *
FROM aurora_replica_status();

Aurora PostgreSQL functions reference 2732

https://www.postgresql.org/docs/current/monitoring-stats.html#MONITORING-PG-STAT-DATABASE-CONFLICTS-VIEW
https://aws.amazon.com/rds/aurora/faqs/#High_Availability_and_Replication
https://aws.amazon.com/premiumsupport/knowledge-center/aurora-read-replica-restart/
https://aws.amazon.com/premiumsupport/knowledge-center/aurora-read-replica-restart/
https://console.aws.amazon.com/support/home#/

Amazon Aurora User Guide for Aurora

The following example shows the writer instance in the docs-lab-apg-main Aurora PostgreSQL
DB cluster:

=> SELECT server_id,
 CASE
 WHEN 'MASTER_SESSION_ID' = session_id THEN 'writer'
 ELSE 'reader'
 END AS instance_role
FROM aurora_replica_status()
WHERE session_id = 'MASTER_SESSION_ID';
 server_id | instance_role
------------------------+---------------
 db-119-001-instance-01 | writer

The following example example lists all reader instances in a cluster:

=> SELECT server_id,
 CASE
 WHEN 'MASTER_SESSION_ID' = session_id THEN 'writer'
 ELSE 'reader'
 END AS instance_role
FROM aurora_replica_status()
WHERE session_id <> 'MASTER_SESSION_ID';
 server_id | instance_role
------------------------+---------------
db-119-001-instance-02 | reader
db-119-001-instance-03 | reader
db-119-001-instance-04 | reader
db-119-001-instance-05 | reader
(4 rows)

The following example lists all instances, how far each instance is lagging behind the writer, and
how long since the last update:

=> SELECT server_id,
 CASE
 WHEN 'MASTER_SESSION_ID' = session_id THEN 'writer'
 ELSE 'reader'
 END AS instance_role,
 replica_lag_in_msec AS replica_lag_ms,
 round(extract (epoch FROM (SELECT age(clock_timestamp(), last_update_timestamp))) *
 1000) AS last_update_age_ms

Aurora PostgreSQL functions reference 2733

Amazon Aurora User Guide for Aurora

FROM aurora_replica_status()
ORDER BY replica_lag_in_msec NULLS FIRST;
 server_id | instance_role | replica_lag_ms | last_update_age_ms
------------------------+---------------+----------------+--------------------
 db-124-001-instance-03 | writer | [NULL] | 1756
 db-124-001-instance-01 | reader | 13 | 1756
 db-124-001-instance-02 | reader | 13 | 1756
(3 rows)

aurora_stat_activity

Returns one row per server process, showing information related to the current activity of that
process.

Syntax

aurora_stat_activity();

Arguments

None

Return type

Returns one row per server process. In additional to pg_stat_activity columns, the following
field is added:

• planid – plan identifier

Usage notes

A supplementary view to pg_stat_activity returning the same columns with an additional
plan_id column which shows the current query execution plan.

aurora_compute_plan_id must be enabled for the view to return a plan_id.

This function is available from Aurora PostgreSQL versions 14.10, 15.5, and for all other later
versions.

Examples

The example query below aggregates the top load by query_id and plan_id.

Aurora PostgreSQL functions reference 2734

Amazon Aurora User Guide for Aurora

db1=# select count(*), query_id, plan_id
db1-# from aurora_stat_activity() where state = 'active'
db1-# and pid <> pg_backend_pid()
db1-# group by query_id, plan_id
db1-# order by 1 desc;

count | query_id | plan_id
-------+----------------------+-------------
 11 | -5471422286312252535 | -2054628807
 3 | -6907107586630739258 | -815866029
 1 | 5213711845501580017 | 300482084
(3 rows)

If the plan used for query_id changes, a new plan_id will be reported by aurora_stat_activity.

count | query_id | plan_id
-------+----------------------+-------------
 10 | -5471422286312252535 | 1602979607
 1 | -6907107586630739258 | -1809935983
 1 | -2446282393000597155 | -207532066
(3 rows)

aurora_stat_backend_waits

Displays statistics for wait activity for a specific backend process.

Syntax

aurora_stat_backend_waits(pid)

Arguments

pid – The ID for the backend process. You can obtain process IDs by using the pg_stat_activity
view.

Aurora PostgreSQL functions reference 2735

Amazon Aurora User Guide for Aurora

Return type

SETOF record with the following columns:

• type_id – A number that denotes the type of wait event, such as 1 for a lightweight
lock (LWLock), 3 for a lock, or 6 for a client session, to name some examples. These
values become meaningful when you join the results of this function with columns from
aurora_stat_wait_type function, as shown in the Examples.

• event_id – An identifying number for the wait event. Join this value with the columns from
aurora_stat_wait_event to obtain meaningful event names.

• waits – A count of the number of waits accumulated for the specified process ID.

• wait_time – Wait time in milliseconds.

Usage notes

You can use this function to analyze specific backend (session) wait events that occurred since a
connection opened. To get more meaningful information about wait event names and types, you
can combine this function aurora_stat_wait_type and aurora_stat_wait_event, by using
JOIN as shown in the examples.

Examples

This example shows all waits, types, and event names for a backend process ID 3027.

=> SELECT type_name, event_name, waits, wait_time
 FROM aurora_stat_backend_waits(3027)
NATURAL JOIN aurora_stat_wait_type()
NATURAL JOIN aurora_stat_wait_event();
type_name | event_name | waits | wait_time
-----------+------------------------+-------+------------
 LWLock | ProcArrayLock | 3 | 27
 LWLock | wal_insert | 423 | 16336
 LWLock | buffer_content | 11840 | 1033634
 LWLock | lock_manager | 23821 | 5664506
 Lock | tuple | 10258 | 152280165
 Lock | transactionid | 78340 | 1239808783
 Client | ClientRead | 34072 | 17616684
 IO | ControlFileSyncUpdate | 2 | 0
 IO | ControlFileWriteUpdate | 4 | 32
 IO | RelationMapRead | 2 | 795
 IO | WALWrite | 36666 | 98623

Aurora PostgreSQL functions reference 2736

Amazon Aurora User Guide for Aurora

 IO | XactSync | 4867 | 7331963

This example shows current and cumulative wait types and wait events for all active sessions
(pg_stat_activity state <> 'idle') (but without the current session that's invoking the
function (pid <> pg_backend_pid()).

=> SELECT a.pid,
 a.usename,
 a.app_name,
 a.current_wait_type,
 a.current_wait_event,
 a.current_state,
 wt.type_name AS wait_type,
 we.event_name AS wait_event,
 a.waits,
 a.wait_time
 FROM (SELECT pid,
 usename,
 left(application_name,16) AS app_name,
 coalesce(wait_event_type,'CPU') AS current_wait_type,
 coalesce(wait_event,'CPU') AS current_wait_event,
 state AS current_state,
 (aurora_stat_backend_waits(pid)).*
 FROM pg_stat_activity
 WHERE pid <> pg_backend_pid()
 AND state <> 'idle') a
NATURAL JOIN aurora_stat_wait_type() wt
NATURAL JOIN aurora_stat_wait_event() we;
 pid | usename | app_name | current_wait_type | current_wait_event | current_state |
 wait_type | wait_event | waits | wait_time
-------+----------+----------+-------------------+--------------------+---------------
+-----------+------------------------+-------+-----------
 30099 | postgres | pgbench | Lock | transactionid | active |
 LWLock | wal_insert | 1937 | 29975
 30099 | postgres | pgbench | Lock | transactionid | active |
 LWLock | buffer_content | 22903 | 760498
 30099 | postgres | pgbench | Lock | transactionid | active |
 LWLock | lock_manager | 10012 | 223207
 30099 | postgres | pgbench | Lock | transactionid | active |
 Lock | tuple | 20315 | 63081529
 .
 .
 .

Aurora PostgreSQL functions reference 2737

Amazon Aurora User Guide for Aurora

 30099 | postgres | pgbench | Lock | transactionid | active |
 IO | WALWrite | 93293 | 237440
 30099 | postgres | pgbench | Lock | transactionid | active |
 IO | XactSync | 13010 | 19525143
 30100 | postgres | pgbench | Lock | transactionid | active |
 LWLock | ProcArrayLock | 6 | 53
 30100 | postgres | pgbench | Lock | transactionid | active |
 LWLock | wal_insert | 1913 | 25450
 30100 | postgres | pgbench | Lock | transactionid | active |
 LWLock | buffer_content | 22874 | 778005
 .
 .
 .
 30109 | postgres | pgbench | IO | XactSync | active |
 LWLock | ProcArrayLock | 3 | 71
 30109 | postgres | pgbench | IO | XactSync | active |
 LWLock | wal_insert | 1940 | 27741
 30109 | postgres | pgbench | IO | XactSync | active |
 LWLock | buffer_content | 22962 | 776352
 30109 | postgres | pgbench | IO | XactSync | active |
 LWLock | lock_manager | 9879 | 218826
 30109 | postgres | pgbench | IO | XactSync | active |
 Lock | tuple | 20401 | 63581306
 30109 | postgres | pgbench | IO | XactSync | active |
 Lock | transactionid | 50769 | 211645008
 30109 | postgres | pgbench | IO | XactSync | active |
 Client | ClientRead | 89901 | 44192439

This example shows current and the top three (3) cumulative wait type and wait events for
all active sessions (pg_stat_activity state <> 'idle') excluding current session (pid
<>pg_backend_pid()).

=> SELECT top3.*
 FROM (SELECT a.pid,
 a.usename,
 a.app_name,
 a.current_wait_type,
 a.current_wait_event,
 a.current_state,
 wt.type_name AS wait_type,
 we.event_name AS wait_event,
 a.waits,
 a.wait_time,

Aurora PostgreSQL functions reference 2738

Amazon Aurora User Guide for Aurora

 RANK() OVER (PARTITION BY pid ORDER BY a.wait_time DESC)
 FROM (SELECT pid,
 usename,
 left(application_name,16) AS app_name,
 coalesce(wait_event_type,'CPU') AS current_wait_type,
 coalesce(wait_event,'CPU') AS current_wait_event,
 state AS current_state,
 (aurora_stat_backend_waits(pid)).*
 FROM pg_stat_activity
 WHERE pid <> pg_backend_pid()
 AND state <> 'idle') a
 NATURAL JOIN aurora_stat_wait_type() wt
 NATURAL JOIN aurora_stat_wait_event() we) top3
 WHERE RANK <=3;
 pid | usename | app_name | current_wait_type | current_wait_event | current_state |
 wait_type | wait_event | waits | wait_time | rank
-------+----------+----------+-------------------+--------------------+---------------
+-----------+-----------------+---------+------------+------
 20567 | postgres | psql | CPU | CPU | active |
 LWLock | wal_insert | 25000 | 67512003 | 1
 20567 | postgres | psql | CPU | CPU | active |
 IO | WALWrite | 3071758 | 1016961 | 2
 20567 | postgres | psql | CPU | CPU | active |
 IO | BufFileWrite | 20750 | 184559 | 3
 27743 | postgres | pgbench | Lock | transactionid | active |
 Lock | transactionid | 237350 | 1265580011 | 1
 27743 | postgres | pgbench | Lock | transactionid | active |
 Lock | tuple | 93641 | 341472318 | 2
 27743 | postgres | pgbench | Lock | transactionid | active |
 Client | ClientRead | 417556 | 204796837 | 3
 .
 .
 .
 27745 | postgres | pgbench | IO | XactSync | active |
 Lock | transactionid | 238068 | 1265816822 | 1
 27745 | postgres | pgbench | IO | XactSync | active |
 Lock | tuple | 93210 | 338312247 | 2
 27745 | postgres | pgbench | IO | XactSync | active |
 Client | ClientRead | 419157 | 207836533 | 3
 27746 | postgres | pgbench | Lock | transactionid | active |
 Lock | transactionid | 237621 | 1264528811 | 1
 27746 | postgres | pgbench | Lock | transactionid | active |
 Lock | tuple | 93563 | 339799310 | 2

Aurora PostgreSQL functions reference 2739

Amazon Aurora User Guide for Aurora

 27746 | postgres | pgbench | Lock | transactionid | active |
 Client | ClientRead | 417304 | 208372727 | 3

aurora_stat_bgwriter

aurora_stat_bgwriter is a statistics view showing information about Optimized Reads cache
writes.

Syntax

aurora_stat_bgwriter()

Arguments

None

Return type

SETOF record with all pg_stat_bgwriter columns and the following additional columns. For
more information on pg_stat_bgwriter columns, see pg_stat_bgwriter.

You can reset stats for this function using pg_stat_reset_shared("bgwriter").

• orcache_blks_written – Total number of optimized reads cache data blocks written.

• orcache_blk_write_time – If track_io_timing is enabled, it tracks the total time spent
writing optimized reads cache data file blocks, in milliseconds. For more information, see
track_io_timing.

Usage notes

This function is available in the following Aurora PostgreSQL versions:

• 15.4 and higher 15 versions

• 14.9 and higher 14 versions

Examples

=> select * from aurora_stat_bgwriter();
-[RECORD 1]-----------------+-----------
orcache_blks_written | 246522

Aurora PostgreSQL functions reference 2740

https://www.postgresql.org/docs/current/monitoring-stats.html#MONITORING-PG-STAT-BGWRITER-VIEW
https://www.postgresql.org/docs/current/runtime-config-statistics.html#GUC-TRACK-IO-TIMING

Amazon Aurora User Guide for Aurora

orcache_blk_write_time | 339276.404

aurora_stat_database

It carries all columns of pg_stat_database and adds new columns in the end.

Syntax

aurora_stat_database()

Arguments

None

Return type

SETOF record with all pg_stat_database columns and the following additional columns. For
more information on pg_stat_database columns, see pg_stat_database.

• storage_blks_read – Total number of shared blocks read from aurora storage in this
database.

• orcache_blks_hit – Total number of optimized reads cache hits in this database.

• local_blks_read – Total number of local blocks read in this database.

• storage_blk_read_time – If track_io_timing is enabled, it tracks the total time spent
reading data file blocks from aurora storage, in milliseconds, otherwise the value is zero. For
more information, see track_io_timing.

• local_blk_read_time – If track_io_timing is enabled, it tracks the total time spent
reading local data file blocks, in milliseconds, otherwise the value is zero. For more information,
see track_io_timing.

• orcache_blk_read_time – If track_io_timing is enabled, it tracks the total time spent
reading data file blocks from optimized reads cache, in milliseconds, otherwise the value is zero.
For more information, see track_io_timing.

Note

The value of blks_read is the sum of storage_blks_read, orcache_blks_hit, and
local_blks_read.

Aurora PostgreSQL functions reference 2741

https://www.postgresql.org/docs/current/monitoring-stats.html#MONITORING-PG-STAT-DATABASE-VIEW
https://www.postgresql.org/docs/current/runtime-config-statistics.html#GUC-TRACK-IO-TIMING
https://www.postgresql.org/docs/current/runtime-config-statistics.html#GUC-TRACK-IO-TIMING
https://www.postgresql.org/docs/current/runtime-config-statistics.html#GUC-TRACK-IO-TIMING

Amazon Aurora User Guide for Aurora

The value of blk_read_time is the sum of storage_blk_read_time,
orcache_blk_read_time, and local_blk_read_time.

Usage notes

This function is available in the following Aurora PostgreSQL versions:

• 15.4 and higher 15 versions

• 14.9 and higher 14 versions

Examples

The following example shows how it carries all the pg_stat_database columns and appends 6
new columns in the end:

=> select * from aurora_stat_database() where datid=14717;
-[RECORD 1]------------+------------------------------
datid | 14717
datname | postgres
numbackends | 1
xact_commit | 223
xact_rollback | 4
blks_read | 1059
blks_hit | 11456
tup_returned | 27746
tup_fetched | 5220
tup_inserted | 165
tup_updated | 42
tup_deleted | 91
conflicts | 0
temp_files | 0
temp_bytes | 0
deadlocks | 0
checksum_failures |
checksum_last_failure |
blk_read_time | 3358.689
blk_write_time | 0
session_time | 1076007.997
active_time | 3684.371
idle_in_transaction_time | 0
sessions | 10

Aurora PostgreSQL functions reference 2742

Amazon Aurora User Guide for Aurora

sessions_abandoned | 0
sessions_fatal | 0
sessions_killed | 0
stats_reset | 2023-01-12 20:15:17.370601+00
orcache_blks_hit | 425
orcache_blk_read_time | 89.934
storage_blks_read | 623
storage_blk_read_time | 3254.914
local_blks_read | 0
local_blk_read_time | 0

aurora_stat_dml_activity

Reports cumulative activity for each type of data manipulation language (DML) operation on a
database in an Aurora PostgreSQL cluster.

Syntax

aurora_stat_dml_activity(database_oid)

Arguments

database_oid

The object ID (OID) of the database in the Aurora PostgreSQL cluster.

Return type

SETOF record

Usage notes

The aurora_stat_dml_activity function is only available with Aurora PostgreSQL release 3.1
compatible with PostgreSQL engine 11.6 and later.

Use this function on Aurora PostgreSQL clusters with a large number of databases to identify
which databases have more or slower DML activity, or both.

The aurora_stat_dml_activity function returns the number of times the operations ran and
the cumulative latency in microseconds for SELECT, INSERT, UPDATE, and DELETE operations. The
report includes only successful DML operations.

Aurora PostgreSQL functions reference 2743

Amazon Aurora User Guide for Aurora

You can reset this statistic by using the PostgreSQL statistics access function pg_stat_reset. You
can check the last time this statistic was reset by using the pg_stat_get_db_stat_reset_time
function. For more information about PostgreSQL statistics access functions, see The Statistics
Collector in the PostgreSQL documentation.

Examples

The following example shows how to report DML activity statistics for the connected database.

––Define the oid variable from connected database by using \gset
=> SELECT oid,
 datname
 FROM pg_database
 WHERE datname=(select current_database()) \gset
=> SELECT *
 FROM aurora_stat_dml_activity(:oid);
select_count | select_latency_microsecs | insert_count | insert_latency_microsecs |
 update_count | update_latency_microsecs | delete_count | delete_latency_microsecs
--------------+--------------------------+--------------+--------------------------
+--------------+--------------------------+--------------+--------------------------
 178957 | 66684115 | 171065 | 28876649 |
 519538 | 1454579206167 | 1 | 53027

–– Showing the same results with expanded display on
=> SELECT *
 FROM aurora_stat_dml_activity(:oid);
-[RECORD 1]------------+--------------
select_count | 178957
select_latency_microsecs | 66684115
insert_count | 171065
insert_latency_microsecs | 28876649
update_count | 519538
update_latency_microsecs | 1454579206167
delete_count | 1
delete_latency_microsecs | 53027

The following example shows DML activity statistics for all databases in the Aurora PostgreSQL
cluster. This cluster has two databases, postgres and mydb. The comma-separated list
corresponds with the select_count, select_latency_microsecs, insert_count,
insert_latency_microsecs, update_count, update_latency_microsecs, delete_count,
and delete_latency_microsecs fields.

Aurora PostgreSQL functions reference 2744

https://www.postgresql.org/docs/9.1/monitoring-stats.html
https://www.postgresql.org/docs/9.1/monitoring-stats.html

Amazon Aurora User Guide for Aurora

Aurora PostgreSQL creates and uses a system database named rdsadmin to support
administrative operations such as backups, restores, health checks, replication, and so on. These
DML operations have no impact on your Aurora PostgreSQL cluster.

=> SELECT oid,
 datname,
 aurora_stat_dml_activity(oid)
 FROM pg_database;
oid | datname | aurora_stat_dml_activity
-------+----------------
+---
 14006 | template0 | (,,,,,,,)
 16384 | rdsadmin | (2346623,1211703821,4297518,817184554,0,0,0,0)
 1 | template1 | (,,,,,,,)
 14007 | postgres |
 (178961,66716329,171065,28876649,519538,1454579206167,1,53027)
 16401 | mydb | (200246,64302436,200036,107101855,600000,83659417514,0,0)

The following example shows DML activity statistics for all databases, organized in columns for
better readability.

SELECT db.datname,
 BTRIM(SPLIT_PART(db.asdmla::TEXT, ',', 1), '()') AS select_count,
 BTRIM(SPLIT_PART(db.asdmla::TEXT, ',', 2), '()') AS select_latency_microsecs,
 BTRIM(SPLIT_PART(db.asdmla::TEXT, ',', 3), '()') AS insert_count,
 BTRIM(SPLIT_PART(db.asdmla::TEXT, ',', 4), '()') AS insert_latency_microsecs,
 BTRIM(SPLIT_PART(db.asdmla::TEXT, ',', 5), '()') AS update_count,
 BTRIM(SPLIT_PART(db.asdmla::TEXT, ',', 6), '()') AS update_latency_microsecs,
 BTRIM(SPLIT_PART(db.asdmla::TEXT, ',', 7), '()') AS delete_count,
 BTRIM(SPLIT_PART(db.asdmla::TEXT, ',', 8), '()') AS delete_latency_microsecs
FROM (SELECT datname,
 aurora_stat_dml_activity(oid) AS asdmla
 FROM pg_database
) AS db;

 datname | select_count | select_latency_microsecs | insert_count |
 insert_latency_microsecs | update_count | update_latency_microsecs | delete_count |
 delete_latency_microsecs
----------------+--------------+--------------------------+--------------
+--------------------------+--------------+--------------------------+--------------
+--------------------------

Aurora PostgreSQL functions reference 2745

Amazon Aurora User Guide for Aurora

 template0 | | | |
 | | | |
 rdsadmin | 4206523 | 2478812333 | 7009414 | 1338482258
 | 0 | 0 | 0 | 0
 template1 | | | |
 | | | |
 fault_test | 66 | 452099 | 0 | 0
 | 0 | 0 | 0 | 0
 db_access_test | 1 | 5982 | 0 | 0
 | 0 | 0 | 0 | 0
 postgres | 42035 | 95179203 | 5752 | 2678832898
 | 21157 | 441883182488 | 2 | 1520
 mydb | 71 | 453514 | 0 | 0
 | 1 | 190 | 1 | 152

The following example shows the average cumulative latency (cumulative latency divided by count)
for each DML operation for the database with the OID 16401.

=> SELECT select_count,
 select_latency_microsecs,
 select_latency_microsecs/NULLIF(select_count,0) select_latency_per_exec,
 insert_count,
 insert_latency_microsecs,
 insert_latency_microsecs/NULLIF(insert_count,0) insert_latency_per_exec,
 update_count,
 update_latency_microsecs,
 update_latency_microsecs/NULLIF(update_count,0) update_latency_per_exec,
 delete_count,
 delete_latency_microsecs,
 delete_latency_microsecs/NULLIF(delete_count,0) delete_latency_per_exec
 FROM aurora_stat_dml_activity(16401);
-[RECORD 1]------------+-------------
select_count | 451312
select_latency_microsecs | 80205857
select_latency_per_exec | 177
insert_count | 451001
insert_latency_microsecs | 123667646
insert_latency_per_exec | 274
update_count | 1353067
update_latency_microsecs | 200900695615
update_latency_per_exec | 148478
delete_count | 12
delete_latency_microsecs | 448

Aurora PostgreSQL functions reference 2746

Amazon Aurora User Guide for Aurora

delete_latency_per_exec | 37

aurora_stat_get_db_commit_latency

Gets the cumulative commit latency in microseconds for Aurora PostgreSQL databases. Commit
latency is measured as the time between when a client submits a commit request and when it
receives the commit acknowledgement.

Syntax

aurora_stat_get_db_commit_latency(database_oid)

Arguments

database_oid

The object ID (OID) of the Aurora PostgreSQL database.

Return type

SETOF record

Usage notes

Amazon CloudWatch uses this function to calculate the average commit latency. For more
information about Amazon CloudWatch metrics and how to troubleshoot high commit latency, see
Viewing metrics in the Amazon RDS console and Making better decisions about Amazon RDS with
Amazon CloudWatch metrics.

You can reset this statistic by using the PostgreSQL statistics access function pg_stat_reset. You
can check the last time this statistic was reset by using the pg_stat_get_db_stat_reset_time
function. For more information about PostgreSQL statistics access functions, see The Statistics
Collector in the PostgreSQL documentation.

Examples

The following example gets the cumulative commit latency for each database in the pg_database
cluster.

=> SELECT oid,
 datname,

Aurora PostgreSQL functions reference 2747

https://aws.amazon.com/blogs/database/making-better-decisions-about-amazon-rds-with-amazon-cloudwatch-metrics/
https://aws.amazon.com/blogs/database/making-better-decisions-about-amazon-rds-with-amazon-cloudwatch-metrics/
https://www.postgresql.org/docs/9.1/monitoring-stats.html
https://www.postgresql.org/docs/9.1/monitoring-stats.html

Amazon Aurora User Guide for Aurora

 aurora_stat_get_db_commit_latency(oid)
 FROM pg_database;

 oid | datname | aurora_stat_get_db_commit_latency
-------+----------------+-----------------------------------
 14006 | template0 | 0
 16384 | rdsadmin | 654387789
 1 | template1 | 0
 16401 | mydb | 229556
 69768 | postgres | 22011

The following example gets the cumulative commit latency for the currently connected database.
Before calling the aurora_stat_get_db_commit_latency function, the example first uses
\gset to define a variable for the oid argument and sets its value from the connected database.

––Get the oid value from the connected database before calling
 aurora_stat_get_db_commit_latency
=> SELECT oid
 FROM pg_database
 WHERE datname=(SELECT current_database()) \gset
=> SELECT *
 FROM aurora_stat_get_db_commit_latency(:oid);

 aurora_stat_get_db_commit_latency

 1424279160

The following example gets the cumulative commit latency for the mydb database in the
pg_database cluster. Then, it resets this statistic by using the pg_stat_reset function and
shows the results. Finally, it uses the pg_stat_get_db_stat_reset_time function to check the
last time this statistic was reset.

=> SELECT oid,
 datname,
 aurora_stat_get_db_commit_latency(oid)
 FROM pg_database
 WHERE datname = 'mydb';

 oid | datname | aurora_stat_get_db_commit_latency
-------+-----------+-----------------------------------
 16427 | mydb | 3320370

Aurora PostgreSQL functions reference 2748

Amazon Aurora User Guide for Aurora

=> SELECT pg_stat_reset();
 pg_stat_reset

=> SELECT oid,
 datname,
 aurora_stat_get_db_commit_latency(oid)
 FROM pg_database
 WHERE datname = 'mydb';
 oid | datname | aurora_stat_get_db_commit_latency
-------+-----------+-----------------------------------
 16427 | mydb | 6

=> SELECT *
 FROM pg_stat_get_db_stat_reset_time(16427);

 pg_stat_get_db_stat_reset_time

 2021-04-29 21:36:15.707399+00

aurora_stat_logical_wal_cache

Shows logical write-ahead log (WAL) cache usage per slot.

Syntax

SELECT * FROM aurora_stat_logical_wal_cache()

Arguments

None

Return type

SETOF record with the following columns:

• name – The name of the replication slot.

• active_pid – ID of the walsender process.

• cache_hit – The total number of wal cache hits since last reset.

Aurora PostgreSQL functions reference 2749

Amazon Aurora User Guide for Aurora

• cache_miss – The total number of wal cache misses since last reset.

• blks_read – The total number of wal cache read requests.

• hit_rate – The WAL cache hit rate (cache_hit / blks_read).

• last_reset_timestamp – Last time that the counter was reset.

Usage notes

This function is available for the following versions.

• Aurora PostgreSQL 14.7

• Aurora PostgreSQL version 13.8 and higher

• Aurora PostgreSQL version 12.12 and higher

• Aurora PostgreSQLversion 11.17 and higher

Examples

The following example shows two replication slots with only one active.
aurora_stat_logical_wal_cache function.

=> SELECT *
 FROM aurora_stat_logical_wal_cache();
 name | active_pid | cache_hit | cache_miss | blks_read | hit_rate |
 last_reset_timestamp
------------+------------+-----------+------------+-----------+----------
+-------------------------------
 test_slot1 | 79183 | 24 | 0 | 24 | 100.00% | 2022-08-05
 17:39:56.830635+00
 test_slot2 | | 1 | 0 | 1 | 100.00% | 2022-08-05
 17:34:04.036795+00
(2 rows)

aurora_stat_memctx_usage

Reports the memory context usage for each PostgreSQL process.

Syntax

aurora_stat_memctx_usage()

Aurora PostgreSQL functions reference 2750

Amazon Aurora User Guide for Aurora

Arguments

None

Return type

SETOF record with the following columns:

• pid – The ID of the process.

• name – The name of the memory context.

• allocated – The number of bytes obtained from the underlying memory subsystem by the
memory context.

• used – The number of bytes committed to clients of the memory context.

• instances – The count of currently existing contexts of this type.

Usage notes

This function displays the memory context usage for each PostgreSQL process. Some processes are
labeled anonymous. The processes aren't exposed because they contain restricted keywords.

This function is available starting with the following Aurora PostgreSQL versions:

• 15.3 and higher 15 versions

• 14.8 and higher 14 versions

• 13.11 and higher 13 versions

• 12.15 and higher 12 versions

• 11.20 and higher 11 versions

Examples

The following example shows the results of calling the aurora_stat_memctx_usage function.

=> SELECT *
 FROM aurora_stat_memctx_usage();

 pid| name | allocated | used | instances
-------+---------------------------------+-----------+---------+-----------
123864 | Miscellaneous | 19520 | 15064 | 3

Aurora PostgreSQL functions reference 2751

Amazon Aurora User Guide for Aurora

123864 | Aurora File Context | 8192 | 616 | 1
123864 | Aurora WAL Context | 8192 | 296 | 1
123864 | CacheMemoryContext | 524288 | 422600 | 1
123864 | Catalog tuple context | 16384 | 13736 | 1
123864 | ExecutorState | 32832 | 28304 | 1
123864 | ExprContext | 8192 | 1720 | 1
123864 | GWAL record construction | 1024 | 832 | 1
123864 | MdSmgr | 8192 | 296 | 1
123864 | MessageContext | 532480 | 353832 | 1
123864 | PortalHeapMemory | 1024 | 488 | 1
123864 | PortalMemory | 8192 | 576 | 1
123864 | printtup | 8192 | 296 | 1
123864 | RelCache hash table entries | 8192 | 8152 | 1
123864 | RowDescriptionContext | 8192 | 1344 | 1
123864 | smgr relation context | 8192 | 296 | 1
123864 | Table function arguments | 8192 | 352 | 1
123864 | TopTransactionContext | 8192 | 632 | 1
123864 | TransactionAbortContext | 32768 | 296 | 1
123864 | WAL record construction | 50216 | 43904 | 1
123864 | hash table | 65536 | 52744 | 6
123864 | Relation metadata | 191488 | 124240 | 87
104992 | Miscellaneous | 9280 | 7728 | 3
104992 | Aurora File Context | 8192 | 376 | 1
104992 | Aurora WAL Context | 8192 | 296 | 1
104992 ||Autovacuum Launcher | 8192 | 296 | 1
104992 | Autovacuum database list | 16384 | 744 | 2
104992 | CacheMemoryContext | 262144 | 140288 | 1
104992 | Catalog tuple context | 8192 | 296 | 1
104992 | GWAL record construction | 1024 | 832 | 1
104992 | MdSmgr | 8192 | 296 | 1
104992 | PortalMemory | 8192 | 296 | 1
104992 | RelCache hash table entries | 8192 | 296 | 1
104992 | smgr relation context | 8192 | 296 | 1
104992 | Autovacuum start worker (tmp) | 8192 | 296 | 1
104992 | TopTransactionContext | 16384 | 592 | 2
104992 | TransactionAbortContext | 32768 | 296 | 1
104992 | WAL record construction | 50216 | 43904 | 1
104992 | hash table | 49152 | 34024 | 4
(39 rows)

Some restricted keywords will be hidden and the output will look as follows:

postgres=>SELECT *

Aurora PostgreSQL functions reference 2752

Amazon Aurora User Guide for Aurora

 FROM aurora_stat_memctx_usage();

 pid| name | allocated | used | instances
-------+---------------------------------+-----------+---------+-----------
 5482 | anonymous | 8192 | 456 | 1
 5482 | anonymous | 8192 | 296 | 1

aurora_stat_optimized_reads_cache

This function shows tiered cache stats.

Syntax

aurora_stat_optimized_reads_cache()

Arguments

None

Return type

SETOF record with the following columns:

• total_size – Total optimized reads cache size.

• used_size – Used page size in optimized reads cache.

Usage notes

This function is available in the following Aurora PostgreSQL versions:

• 15.4 and higher 15 versions

• 14.9 and higher 14 versions

Examples

The following example shows the output on a r6gd.8xlarge instance :

=> select pg_size_pretty(total_size) as total_size, pg_size_pretty(used_size)

Aurora PostgreSQL functions reference 2753

Amazon Aurora User Guide for Aurora

 as used_size from aurora_stat_optimized_reads_cache();
total_size | used_size
-----------+-----------
1054 GB | 975 GB

aurora_stat_plans

Returns a row for every tracked execution plan.

Syntax

aurora_stat_plans(
 showtext
)

Arguments

• showtext – Show the query and plan text. Valid values are NULL, true or false. True will show the
query and plan text.

Return type

Returns a row for each tracked plan that contains all the columns from
aurora_stat_statements and the following additional columns.

• planid – plan identifier

• explain_plan – explain plan text

• plan_type:

• no plan - no plan was captured

• estimate - plan captured with estimated costs

• actual - plan captured with EXPLAIN ANALYZE

• plan_captured_time – last time a plan was captured

Usage notes

aurora_compute_plan_id must be enabled and pg_stat_statements must be in
shared_preload_libraries for the plans to be tracked.

Aurora PostgreSQL functions reference 2754

Amazon Aurora User Guide for Aurora

The number of plans available is controlled by the value set in the pg_stat_statements.max
parameter. When compute_plan_id is enabled, you can track the plans up to this specified value
in aurora_stat_plans.

This function is available from Aurora PostgreSQL versions 14.10, 15.5, and for all other later
versions.

Examples

In the example below, the two plans that are for the query identifier -5471422286312252535 are
captured and the statements statistics are tracked by the planid.

db1=# select calls, total_exec_time, planid, plan_captured_time, explain_plan
db1-# from aurora_stat_plans(true)
db1-# where queryid = '-5471422286312252535'

calls | total_exec_time | planid | plan_captured_time |
 explain_plan
---------+--------------------+-------------+-------------------------------
+--
 1532632 | 3209846.097107853 | 1602979607 | 2023-10-31 03:27:16.925497+00 | Update on
 pgbench_branches +
 | | | | ->
 Bitmap Heap Scan on pgbench_branches +
 | | | |
 Recheck Cond: (bid = 76) +
 | | | | -
> Bitmap Index Scan on pgbench_branches_pkey +
 | | | |
 Index Cond: (bid = 76)
 61365 | 124078.18012200127 | -2054628807 | 2023-10-31 03:20:09.85429+00 | Update on
 pgbench_branches +
 | | | | ->
 Index Scan using pgbench_branches_pkey on pgbench_branches+
 | | | |
 Index Cond: (bid = 17)

aurora_stat_reset_wal_cache

Resets the counter for logical wal cache.

Aurora PostgreSQL functions reference 2755

Amazon Aurora User Guide for Aurora

Syntax

To reset a specific slot

SELECT * FROM aurora_stat_reset_wal_cache('slot_name')

To reset all slots

SELECT * FROM aurora_stat_reset_wal_cache(NULL)

Arguments

NULL or slot_name

Return type

Status message, text string

• Reset the logical wal cache counter – Success message. This text is returned when the function
succeeds.

• Replication slot not found. Please try again. – Failure message. This text is returned when the
function doesn't succeed.

Usage notes

This function is available for the following versions.

• Aurora PostgreSQL 14.5 and higher

• Aurora PostgreSQL version 13.8 and higher

• Aurora PostgreSQL version 12.12 and higher

• Aurora PostgreSQLversion 11.17 and higher

Examples

The following example uses the aurora_stat_reset_wal_cache function to reset a slot named
test_results, and then tries to reset a slot that doesn't exist.

=> SELECT *
 FROM aurora_stat_reset_wal_cache('test_slot');

Aurora PostgreSQL functions reference 2756

Amazon Aurora User Guide for Aurora

aurora_stat_reset_wal_cache

 Reset the logical wal cache counter.
(1 row)
=> SELECT *
 FROM aurora_stat_reset_wal_cache('slot-not-exist');
aurora_stat_reset_wal_cache

 Replication slot not found. Please try again.
(1 row)

aurora_stat_statements

Displays all pg_stat_statements columns and adds more columns in the end.

Syntax

aurora_stat_statements(showtext boolean)

Arguments

showtext boolean

Return type

SETOF record with all pg_stat_statements columns and the following additional columns. For
more information on pg_stat_statements columns, see pg_stat_statements.

You can reset stats for this function using pg_stat_statements_reset().

• storage_blks_read – Total number of shared blocks read from aurora storage by this
statement.

• orcache_blks_hit – Total number of optimized reads cache hits by this statement.

• storage_blk_read_time – If track_io_timing is enabled, it tracks the total time the
statement spent reading data file blocks from aurora storage, in milliseconds, otherwise the
value is zero. For more information, see track_io_timing.

• local_blk_read_time – If track_io_timing is enabled, it tracks the total time the
statement spent reading local data file blocks, in milliseconds, otherwise the value is zero. For
more information, see track_io_timing.

Aurora PostgreSQL functions reference 2757

https://www.postgresql.org/docs/current/pgstatstatements.html
https://www.postgresql.org/docs/current/runtime-config-statistics.html#GUC-TRACK-IO-TIMING
https://www.postgresql.org/docs/current/runtime-config-statistics.html#GUC-TRACK-IO-TIMING

Amazon Aurora User Guide for Aurora

• orcache_blk_read_time – If track_io_timing is enabled, it tracks the total time the
statement spent reading data file blocks from optimized reads cache, in milliseconds, otherwise
the value is zero. For more information, see track_io_timing.

Usage notes

To use the aurora_stat_statements() function, you must include pg_stat_statements extension
in the shared_preload_libraries parameter.

This function is available in the following Aurora PostgreSQL versions:

• 15.4 and higher 15 versions

• 14.9 and higher 14 versions

Examples

The following example shows how it carries all the pg_stat_statements columns and append 5 new
columns in the end:

=> select * from aurora_stat_statements(true) where queryid=-7342090857217643794;
-[RECORD 1]---------+--
userid | 10
dbid | 16419
toplevel | t
queryid | -7342090857217643794
query | CREATE TABLE quad_point_tbl AS +
 | SELECT point(unique1,unique2) AS p FROM tenk1
plans | 0
total_plan_time | 0
min_plan_time | 0
max_plan_time | 0
mean_plan_time | 0
stddev_plan_time | 0
calls | 1
total_exec_time | 571.844376
min_exec_time | 571.844376
max_exec_time | 571.844376
mean_exec_time | 571.844376
stddev_exec_time | 0
rows | 10000
shared_blks_hit | 462

Aurora PostgreSQL functions reference 2758

https://www.postgresql.org/docs/current/runtime-config-statistics.html#GUC-TRACK-IO-TIMING

Amazon Aurora User Guide for Aurora

shared_blks_read | 422
shared_blks_dirtied | 0
shared_blks_written | 55
local_blks_hit | 0
local_blks_read | 0
local_blks_dirtied | 0
local_blks_written | 0
temp_blks_read | 0
temp_blks_written | 0
blk_read_time | 170.634621
blk_write_time | 0
wal_records | 0
wal_fpi | 0
wal_bytes | 0
storage_blks_read | 47
orcache_blks_hit | 375
storage_blk_read_time | 124.505772
local_blk_read_time | 0
orcache_blk_read_time | 44.684038

aurora_stat_system_waits

Reports wait event information for the Aurora PostgreSQL DB instance.

Syntax

aurora_stat_system_waits()

Arguments

None

Return type

SETOF record

Usage notes

This function returns the cumulative number of waits and cumulative wait time for each wait event
generated by the DB instance that you're currently connected to.

The returned recordset includes the following fields:

Aurora PostgreSQL functions reference 2759

Amazon Aurora User Guide for Aurora

• type_id – The ID of the type of wait event.

• event_id – The ID of the wait event.

• waits – The number of times the wait event occurred.

• wait_time – The total amount of time in microseconds spent waiting for this event.

Statistics returned by this function are reset when a DB instance restarts.

Examples

The following example shows results from calling the aurora_stat_system_waits function.

=> SELECT *
 FROM aurora_stat_system_waits();
 type_id | event_id | waits | wait_time
---------+-----------+-----------+--------------
 1 | 16777219 | 11 | 12864
 1 | 16777220 | 501 | 174473
 1 | 16777270 | 53171 | 23641847
 1 | 16777271 | 23 | 319668
 1 | 16777274 | 60 | 12759
.
.
.
 10 | 167772231 | 204596 | 790945212
 10 | 167772232 | 2 | 47729
 10 | 167772234 | 1 | 888
 10 | 167772235 | 2 | 64

The following example shows how you can use this function together with
aurora_stat_wait_event and aurora_stat_wait_type to produce more readable results.

=> SELECT type_name,
 event_name,
 waits,
 wait_time
 FROM aurora_stat_system_waits()
NATURAL JOIN aurora_stat_wait_event()
NATURAL JOIN aurora_stat_wait_type();

 type_name | event_name | waits | wait_time
-----------+------------------------+----------+--------------

Aurora PostgreSQL functions reference 2760

Amazon Aurora User Guide for Aurora

 LWLock | XidGenLock | 11 | 12864
 LWLock | ProcArrayLock | 501 | 174473
 LWLock | buffer_content | 53171 | 23641847
 LWLock | rdsutils | 2 | 12764
 Lock | tuple | 75686 | 2033956052
 Lock | transactionid | 1765147 | 47267583409
 Activity | AutoVacuumMain | 136868 | 56305604538
 Activity | BgWriterHibernate | 7486 | 55266949471
 Activity | BgWriterMain | 7487 | 1508909964
.
.
.
 IO | SLRURead | 3 | 11756
 IO | WALWrite | 52544463 | 388850428
 IO | XactSync | 187073 | 597041642
 IO | ClogRead | 2 | 47729
 IO | OutboundCtrlRead | 1 | 888
 IO | OutboundCtrlWrite | 2 | 64

aurora_stat_wait_event

Lists all supported wait events for Aurora PostgreSQL. For information about Aurora PostgreSQL
wait events, see Amazon Aurora PostgreSQL wait events.

Syntax

aurora_stat_wait_event()

Arguments

None

Return type

SETOF record with the following columns:

• type_id – The ID of the type of wait event.

• event_id – The ID of the wait event.

• type_name – Wait type name

• event_name – Wait event name

Aurora PostgreSQL functions reference 2761

Amazon Aurora User Guide for Aurora

Usage notes

To see event names with event types instead of IDs, use this function together with other functions
such as aurora_stat_wait_type and aurora_stat_system_waits. Wait event names
returned by this function are the same as those returned by the aurora_wait_report function.

Examples

The following example shows results from calling the aurora_stat_wait_event function.

=> SELECT *
 FROM aurora_stat_wait_event();

 type_id | event_id | event_name
---------+-----------+---
 1 | 16777216 | <unassigned:0>
 1 | 16777217 | ShmemIndexLock
 1 | 16777218 | OidGenLock
 1 | 16777219 | XidGenLock
.
.
.
 9 | 150994945 | PgSleep
 9 | 150994946 | RecoveryApplyDelay
 10 | 167772160 | BufFileRead
 10 | 167772161 | BufFileWrite
 10 | 167772162 | ControlFileRead
.
.
.
 10 | 167772226 | WALInitWrite
 10 | 167772227 | WALRead
 10 | 167772228 | WALSync
 10 | 167772229 | WALSyncMethodAssign
 10 | 167772230 | WALWrite
 10 | 167772231 | XactSync
.
.
.
 11 | 184549377 | LsnAllocate

The following example joins aurora_stat_wait_type and aurora_stat_wait_event to
return type names and event names for improved readability.

Aurora PostgreSQL functions reference 2762

Amazon Aurora User Guide for Aurora

=> SELECT *
 FROM aurora_stat_wait_type() t
 JOIN aurora_stat_wait_event() e
 ON t.type_id = e.type_id;

 type_id | type_name | type_id | event_id | event_name
---------+-----------+---------+-----------+---
 1 | LWLock | 1 | 16777216 | <unassigned:0>
 1 | LWLock | 1 | 16777217 | ShmemIndexLock
 1 | LWLock | 1 | 16777218 | OidGenLock
 1 | LWLock | 1 | 16777219 | XidGenLock
 1 | LWLock | 1 | 16777220 | ProcArrayLock
.
.
.
 3 | Lock | 3 | 50331648 | relation
 3 | Lock | 3 | 50331649 | extend
 3 | Lock | 3 | 50331650 | page
 3 | Lock | 3 | 50331651 | tuple
.
.
.
 10 | IO | 10 | 167772214 | TimelineHistorySync
 10 | IO | 10 | 167772215 | TimelineHistoryWrite
 10 | IO | 10 | 167772216 | TwophaseFileRead
 10 | IO | 10 | 167772217 | TwophaseFileSync
.
.
.
 11 | LSN | 11 | 184549376 | LsnDurable

aurora_stat_wait_type

Lists all supported wait types for Aurora PostgreSQL.

Syntax

aurora_stat_wait_type()

Arguments

None

Aurora PostgreSQL functions reference 2763

Amazon Aurora User Guide for Aurora

Return type

SETOF record with the following columns:

• type_id – The ID of the type of wait event.

• type_name – Wait type name.

Usage notes

To see wait event names with wait event types instead of IDs, use this function together with other
functions such as aurora_stat_wait_event and aurora_stat_system_waits. Wait type
names returned by this function are the same as those returned by the aurora_wait_report
function.

Examples

The following example shows results from calling the aurora_stat_wait_type function.

=> SELECT *
 FROM aurora_stat_wait_type();
 type_id | type_name
---------+-----------
 1 | LWLock
 3 | Lock
 4 | BufferPin
 5 | Activity
 6 | Client
 7 | Extension
 8 | IPC
 9 | Timeout
 10 | IO
 11 | LSN

aurora_version

Returns the string value of the Amazon Aurora PostgreSQL-Compatible Edition version number.

Syntax

aurora_version()

Aurora PostgreSQL functions reference 2764

Amazon Aurora User Guide for Aurora

Arguments

None

Return type

CHAR or VARCHAR string

Usage notes

This function displays the version of the Amazon Aurora PostgreSQL-Compatible Edition database
engine. The version number is returned as a string formatted as major.minor.patch. For more
information about Aurora PostgreSQL version numbers, see Aurora version number.

You can choose when to apply minor version upgrades by setting the maintenance window for your
Aurora PostgreSQL DB cluster. To learn how, see Maintaining an Amazon Aurora DB cluster.

Starting with the release of Aurora PostgreSQL versions 13.3, 12.8, 11.13, 10.18, and for all other
later versions, Aurora version numbers follow PostgreSQL version numbers. For more information
about all Aurora PostgreSQL releases, see Amazon Aurora PostgreSQL updates in the Release Notes
for Aurora PostgreSQL.

Examples

The following example shows the results of calling the aurora_version function on an Aurora
PostgreSQL DB cluster running PostgreSQL 12.7, Aurora PostgreSQL release 4.2 and then running
the same function on a cluster running Aurora PostgreSQL version 13.3.

=> SELECT * FROM aurora_version();
aurora_version

 4.2.2
SELECT * FROM aurora_version();
aurora_version

 13.3.0

This example shows how to use the function with various options to get more detail about the
Aurora PostgreSQL version. This example has an Aurora version number that's distinct from the
PostgreSQL version number.

Aurora PostgreSQL functions reference 2765

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.42
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.133X

Amazon Aurora User Guide for Aurora

=> SHOW SERVER_VERSION;
 server_version

 12.7
(1 row)

=> SELECT * FROM aurora_version();
aurora_version

 4.2.2
(1 row)

=> SELECT current_setting('server_version') AS "PostgreSQL Compatiblility";
PostgreSQL Compatiblility

 12.7
(1 row)

=> SELECT version() AS "PostgreSQL Compatiblility Full String";
PostgreSQL Compatiblility Full String

 PostgreSQL 12.7 on aarch64-unknown-linux-gnu, compiled by aarch64-unknown-linux-gnu-
gcc (GCC) 7.4.0, 64-bit
(1 row)

=> SELECT 'Aurora: '
 || aurora_version()
 || ' Compatible with PostgreSQL: '
 || current_setting('server_version') AS "Instance Version";
Instance Version
--
 Aurora: 4.2.2 Compatible with PostgreSQL: 12.7
(1 row)

This next example uses the function with the same options in the previous example. This example
doesn't have an Aurora version number that's distinct from the PostgreSQL version number.

=> SHOW SERVER_VERSION;
server_version

 13.3

Aurora PostgreSQL functions reference 2766

Amazon Aurora User Guide for Aurora

=> SELECT * FROM aurora_version();
aurora_version

 13.3.0
=> SELECT current_setting('server_version') AS "PostgreSQL Compatiblility";
PostgreSQL Compatiblility

 13.3

=> SELECT version() AS "PostgreSQL Compatiblility Full String";
PostgreSQL Compatiblility Full String

 PostgreSQL 13.3 on x86_64-pc-linux-gnu, compiled by x86_64-pc-linux-gnu-gcc (GCC)
 7.4.0, 64-bit
=> SELECT 'Aurora: '
 || aurora_version()
 || ' Compatible with PostgreSQL: '
 || current_setting('server_version') AS "Instance Version";
Instance Version

 Aurora: 13.3.0 Compatible with PostgreSQL: 13.3

aurora_volume_logical_start_lsn

Returns the log sequence number (LSN) used for identifying the beginning of a record in the logical
write-ahead log (WAL) stream of the Aurora cluster volume.

Syntax

aurora_volume_logical_start_lsn()

Arguments

None

Return type

pg_lsn

Usage notes

This function identifies the beginning of the record in the logical WAL stream for a given Aurora
cluster volume. You can use this function while performing major version upgrade using logical

Aurora PostgreSQL functions reference 2767

Amazon Aurora User Guide for Aurora

replication and Aurora fast cloning to determine the LSN at which a snapshot or database clone is
taken. You can then use logical replication to continuously stream the newer data recorded after
the LSN and synchronize the changes from publisher to subscriber.

For more information on using logical replication for a major version upgrade, see Using logical
replication to perform a major version upgrade for Aurora PostgreSQL.

This function is available on the following versions of Aurora PostgreSQL:

• 15.2 and higher 15 versions

• 14.3 and higher 14 versions

• 13.6 and higher 13 versions

• 12.10 and higher 12 versions

• 11.15 and higher 11 versions

• 10.20 and higher 10 versions

Examples

You can obtain the log sequence number (LSN) using the following query:

postgres=> SELECT aurora_volume_logical_start_lsn();

aurora_volume_logical_start_lsn

0/402E2F0
(1 row)

aurora_wait_report

This function shows wait event activity over a period of time.

Syntax

aurora_wait_report([time])

Aurora PostgreSQL functions reference 2768

Amazon Aurora User Guide for Aurora

Arguments

time (optional)

The time in seconds. Default is 10 seconds.

Return type

SETOF record with the following columns:

• type_name – Wait type name

• event_name – Wait event name

• wait – Number of waits

• wait_time – Wait time in milliseconds

• ms_per_wait – Average milliseconds by the number of an wait

• waits_per_xact – Average waits by the number of one transaction

• ms_per_xact – Average milliseconds by the number of transactions

Usage notes

This function is available as of Aurora PostgreSQL release 1.1 compatible with PostgreSQL 9.6.6
and higher versions.

To use this function, you need to first create the Aurora PostgreSQL aurora_stat_utils
extension, as follows:

=> CREATE extension aurora_stat_utils;
CREATE EXTENSION

For more information about available Aurora PostgreSQL extension versions, see Extension
versions for Amazon Aurora PostgreSQL in Release Notes for Aurora PostgreSQL.

This function calculates the instance-level wait events by comparing two snapshots of statistics
data from aurora_stat_system_waits() function and pg_stat_database PostgreSQL Statistics Views.

For more information about aurora_stat_system_waits() and pg_stat_database, see The
Statistics Collector in the PostgreSQL documentation.

Aurora PostgreSQL functions reference 2769

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Extensions.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Extensions.html
https://www.postgresql.org/docs/current/monitoring-stats.html#PG-STAT-DATABASE-VIEW
https://www.postgresql.org/docs/current/monitoring-stats.html#PG-STAT-DATABASE-VIEW

Amazon Aurora User Guide for Aurora

When run, this function takes an initial snapshot, waits the number of seconds specified, and then
takes a second snapshot. The function compares the two snapshots and returns the difference. This
difference represents the instance's activity for that time interval.

On the writer instance, the function also displays the number of committed transactions and TPS
(transactions per second). This function returns information at the instance level and includes all
databases on the instance.

Examples

This example shows how to create aurora_stat_utils extension to be able to use aurora_wait_report
function.

=> CREATE extension aurora_stat_utils;
CREATE EXTENSION

This example shows how to check wait report for 10 seconds.

=> SELECT *
 FROM aurora_wait_report();
NOTICE: committed 34 transactions in 10 seconds (tps 3)
 type_name | event_name | waits | wait_time | ms_per_wait | waits_per_xact |
 ms_per_xact
-----------+-------------------+-------+-----------+-------------+----------------
+-------------
 Client | ClientRead | 26 | 30003.00 | 1153.961 | 0.76 |
 882.441
 Activity | WalWriterMain | 50 | 10051.32 | 201.026 | 1.47 |
 295.627
 Timeout | PgSleep | 1 | 10049.52 | 10049.516 | 0.03 |
 295.574
 Activity | BgWriterHibernate | 1 | 10048.15 | 10048.153 | 0.03 |
 295.534
 Activity | AutoVacuumMain | 18 | 9941.66 | 552.314 | 0.53 |
 292.402
 Activity | BgWriterMain | 1 | 201.09 | 201.085 | 0.03 |
 5.914
 IO | XactSync | 15 | 25.34 | 1.690 | 0.44 |
 0.745
 IO | RelationMapRead | 12 | 0.54 | 0.045 | 0.35 |
 0.016
 IO | WALWrite | 84 | 0.21 | 0.002 | 2.47 |
 0.006

Aurora PostgreSQL functions reference 2770

Amazon Aurora User Guide for Aurora

 IO | DataFileExtend | 1 | 0.02 | 0.018 | 0.03 |
 0.001

This example shows how to check wait report for 60 seconds.

=> SELECT *
 FROM aurora_wait_report(60);
NOTICE: committed 1544 transactions in 60 seconds (tps 25)
 type_name | event_name | waits | wait_time | ms_per_wait |
 waits_per_xact | ms_per_xact
-----------+------------------------+---------+-----------+-------------
+----------------+-------------
 Lock | transactionid | 6422 | 477000.53 | 74.276 |
 4.16 | 308.938
 Client | ClientRead | 8265 | 270752.99 | 32.759 |
 5.35 | 175.358
 Activity | CheckpointerMain | 1 | 60100.25 | 60100.246 |
 0.00 | 38.925
 Timeout | PgSleep | 1 | 60098.49 | 60098.493 |
 0.00 | 38.924
 Activity | WalWriterMain | 296 | 60010.99 | 202.740 |
 0.19 | 38.867
 Activity | AutoVacuumMain | 107 | 59827.84 | 559.139 |
 0.07 | 38.749
 Activity | BgWriterMain | 290 | 58821.83 | 202.834 |
 0.19 | 38.097
 IO | XactSync | 1295 | 55220.13 | 42.641 |
 0.84 | 35.764
 IO | WALWrite | 6602259 | 47810.94 | 0.007 |
 4276.07 | 30.966
 Lock | tuple | 473 | 29880.67 | 63.173 |
 0.31 | 19.353
 LWLock | buffer_mapping | 142 | 3540.13 | 24.930 |
 0.09 | 2.293
 Activity | BgWriterHibernate | 290 | 1124.15 | 3.876 |
 0.19 | 0.728
 IO | BufFileRead | 7615 | 618.45 | 0.081 |
 4.93 | 0.401
 LWLock | buffer_content | 73 | 345.93 | 4.739 |
 0.05 | 0.224
 LWLock | lock_manager | 62 | 191.44 | 3.088 |
 0.04 | 0.124

Aurora PostgreSQL functions reference 2771

Amazon Aurora User Guide for Aurora

 IO | RelationMapRead | 72 | 5.16 | 0.072 |
 0.05 | 0.003
 LWLock | ProcArrayLock | 1 | 2.01 | 2.008 |
 0.00 | 0.001
 IO | ControlFileWriteUpdate | 2 | 0.03 | 0.013 |
 0.00 | 0.000
 IO | DataFileExtend | 1 | 0.02 | 0.018 |
 0.00 | 0.000
 IO | ControlFileSyncUpdate | 1 | 0.00 | 0.000 |
 0.00 | 0.000

Amazon Aurora PostgreSQL parameters

You manage your Amazon Aurora DB cluster in the same way that you manage Amazon RDS DB
instances, by using parameters in a DB parameter group. However, Amazon Aurora differs from
Amazon RDS in that an Aurora DB cluster has multiple DB instances. Some of the parameters
that you use to manage your Amazon Aurora DB cluster apply to the entire cluster, while other
parameters apply only to a given DB instance in the DB cluster, as follows:

• DB cluster parameter group – A DB cluster parameter group contains the set of engine
configuration parameters that apply throughout the Aurora DB cluster. For example,
cluster cache management is a feature of an Aurora DB cluster that's controlled by the
apg_ccm_enabled parameter which is part of the DB cluster parameter group. The DB cluster
parameter group also contains default settings for the DB parameter group for the DB instances
that make up the cluster.

• DB parameter group – A DB parameter group is the set of engine configuration values that
apply to a specific DB instance of that engine type. The DB parameter groups for the PostgreSQL
DB engine are used by an RDS for PostgreSQL DB instance and Aurora PostgreSQL DB cluster.
These configuration settings apply to properties that can vary among the DB instances within an
Aurora cluster, such as the sizes for memory buffers.

You manage cluster-level parameters in DB cluster parameter groups. You manage instance-level
parameters in DB parameter groups. You can manage parameters using the Amazon RDS console,
the AWS CLI, or the Amazon RDS API. There are separate commands for managing cluster-level
parameters and instance-level parameters.

• To manage cluster-level parameters in a DB cluster parameter group, use the modify-db-cluster-
parameter-group AWS CLI command.

Aurora PostgreSQL parameters 2772

https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-cluster-parameter-group.html
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-cluster-parameter-group.html

Amazon Aurora User Guide for Aurora

• To manage instance-level parameters in a DB parameter group for a DB instance in a DB cluster,
use the modify-db-parameter-group AWS CLI command.

To learn more about the AWS CLI, see Using the AWS CLI in the AWS Command Line Interface User
Guide.

For more information about parameter groups, see Working with parameter groups.

Viewing Aurora PostgreSQL DB cluster and DB parameters

You can view all available default parameter groups for RDS for PostgreSQL DB instances and for
Aurora PostgreSQL DB clusters in the AWS Management Console. The default parameter groups
for all DB engines and DB cluster types and versions are listed for each AWS Region. Any custom
parameter groups are also listed.

Rather than viewing in the AWS Management Console, you can also list parameters contained in DB
cluster parameter groups and DB parameter groups by using the AWS CLI or the Amazon RDS API.
For example, to list parameters in a DB cluster parameter group you use the describe-db-cluster-
parameters AWS CLI command as follows:

aws rds describe-db-cluster-parameters --db-cluster-parameter-group-name
 default.aurora-postgresql12

The command returns detailed JSON descriptions of each parameter. To reduce the amount of
information returned, you can specify what you want by using the --query option. For example,
you can get the parameter name, its description, and allowed values for the default Aurora
PostgreSQL 12 DB cluster parameter group as follows:

For Linux, macOS, or Unix:

aws rds describe-db-cluster-parameters --db-cluster-parameter-group-name
 default.aurora-postgresql12 \
 --query 'Parameters[].
[{ParameterName:ParameterName,Description:Description,ApplyType:ApplyType,AllowedValues:AllowedValues}]'

For Windows:

aws rds describe-db-cluster-parameters --db-cluster-parameter-group-name
 default.aurora-postgresql12 ^

Aurora PostgreSQL parameters 2773

https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-parameter-group.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-using.html
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-cluster-parameters.html
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-cluster-parameters.html

Amazon Aurora User Guide for Aurora

 --query "Parameters[].
[{ParameterName:ParameterName,Description:Description,ApplyType:ApplyType,AllowedValues:AllowedValues}]"

An Aurora DB cluster parameter group includes the DB instance parameter group and default
values for a given Aurora DB engine. You can get the list of DB parameters from the same default
Aurora PostgreSQL default parameter group by usng the describe-db-parameters AWS CLI
command as shown following.

For Linux, macOS, or Unix:

aws rds describe-db-parameters --db-parameter-group-name default.aurora-postgresql12 \
 --query 'Parameters[].
[{ParameterName:ParameterName,Description:Description,ApplyType:ApplyType,AllowedValues:AllowedValues}]'

For Windows:

aws rds describe-db-parameters --db-parameter-group-name default.aurora-postgresql12 ^
 --query "Parameters[].
[{ParameterName:ParameterName,Description:Description,ApplyType:ApplyType,AllowedValues:AllowedValues}]"

The preceding commands return lists of parameters from the DB cluster or DB parameter group
with descriptions and other details specified in the query. Following is an example response.

[
 [
 {
 "ParameterName": "apg_enable_batch_mode_function_execution",
 "ApplyType": "dynamic",
 "Description": "Enables batch-mode functions to process sets of rows at a
 time.",
 "AllowedValues": "0,1"
 }
],
 [
 {
 "ParameterName": "apg_enable_correlated_any_transform",
 "ApplyType": "dynamic",
 "Description": "Enables the planner to transform correlated ANY Sublink
 (IN/NOT IN subquery) to JOIN when possible.",
 "AllowedValues": "0,1"
 }

Aurora PostgreSQL parameters 2774

https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-parameters.html

Amazon Aurora User Guide for Aurora

],...

Following are tables containing values for the default DB cluster parameter and DB parameter for
Aurora PostgreSQL version 14.

Aurora PostgreSQL parameters 2775

Amazon Aurora User Guide for Aurora

Aurora PostgreSQL cluster-level parameters

You can view the cluster-level parameters available for a specific Aurora PostgreSQL version
using the AWS Management console, the AWS CLI, or the Amazon RDS API. For information about
viewing the parameters in an Aurora PostgreSQL DB cluster parameter groups in the RDS console,
see Viewing parameter values for a DB cluster parameter group.

Some cluster-level parameters aren't available in all versions and some are being deprecated. For
information about viewing the parameters of a specific Aurora PostgreSQL version, see Viewing
Aurora PostgreSQL DB cluster and DB parameters.

For example, the following table lists the parameters available in the default DB cluster
parameter group for Aurora PostgreSQL version 14. If you create an Aurora PostgreSQL DB cluster
without specifying your own custom DB parameter group, your DB cluster is created using the
default Aurora DB cluster parameter group for the version chosen, such as default.aurora-
postgresql14, default.aurora-postgresql13, and so on.

For a listing of the DB instance parameters for this same default DB cluster parameter group, see
Aurora PostgreSQL instance-level parameters.

Parameter name Description Default

ansi_constraint_tr
igger_ordering

Change the firing order of constraint triggers
to be compatible with the ANSI SQL standard.

–

ansi_force_foreign
_key_checks

Ensure referential actions such as cascaded
delete or cascaded update will always occur
regardless of the various trigger contexts that
exist for the action.

–

ansi_qualified_upd
ate_set_target

Support table and schema qualifiers in
UPDATE ... SET statements.

–

apg_ccm_enabled Enable or disable cluster cache management
for the cluster.

–

apg_enable_batch_m
ode_function_execu
tion

Enables batch-mode functions to process sets
of rows at a time.

–

Aurora PostgreSQL parameters 2776

Amazon Aurora User Guide for Aurora

Parameter name Description Default

apg_enable_correla
ted_any_transform

Enables the planner to transform correlated
ANY Sublink (IN/NOT IN subquery) to JOIN
when possible.

–

apg_enable_functio
n_migration

Enables the planner to migrate eligible scalar
functions to the FROM clause.

–

apg_enable_not_in_
transform

Enables the planner to transform NOT IN
subquery to ANTI JOIN when possible.

–

apg_enable_remove_
redundant_inner_jo
ins

Enables the planner to remove redundant
inner joins.

–

apg_enable_semijoi
n_push_down

Enables the use of semijoin filters for hash
joins.

–

apg_plan_mgmt.capt
ure_plan_baselines

Capture plan baseline mode. manual - enable
plan capture for any SQL statement, off -
disable plan capture, automatic - enable
plan capture for for statements in pg_stat_s
tatements that satisfy the eligibility criteria.

off

apg_plan_
mgmt.max_databases

Sets the maximum number of databases that
that may manage queries using apg_plan_
mgmt.

10

apg_plan_
mgmt.max_plans

Sets the maximum number of plans that may
be cached by apg_plan_mgmt.

10000

apg_plan_mgmt.plan
_retention_period

Maximum number of days since a plan was
last_used before a plan will be automatically
deleted.

32

Aurora PostgreSQL parameters 2777

Amazon Aurora User Guide for Aurora

Parameter name Description Default

apg_plan_
mgmt.unapproved_pl
an_execution_thres
hold

Estimated total plan cost below which an
Unapproved plan will be executed.

0

apg_plan_mgmt.use_
plan_baselines

Use only approved or fixed plans for managed
statements.

false

application_name Sets the application name to be reported in
statistics and logs.

–

array_nulls Enable input of NULL elements in arrays. –

aurora_compute_pla
n_id

Monitors query execution plans to detect
the execution plans contributing to current
database load and to track performance
statistics of execution plans over time. For
more information, see Monitoring query
execution plans for Aurora PostgreSQL.

on

authentication_tim
eout

(s) Sets the maximum allowed time to
complete client authentication.

–

auto_explain.log_a
nalyze

Use EXPLAIN ANALYZE for plan logging. –

auto_explain.log_b
uffers

Log buffers usage. –

auto_explain.log_f
ormat

EXPLAIN format to be used for plan logging. –

auto_explain.log_m
in_duration

Sets the minimum execution time above which
plans will be logged.

–

auto_explain.log_n
ested_statements

Log nested statements. –

Aurora PostgreSQL parameters 2778

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraPostgreSQL.Monitoring.Query.Plans.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraPostgreSQL.Monitoring.Query.Plans.html

Amazon Aurora User Guide for Aurora

Parameter name Description Default

auto_explain.log_t
iming

Collect timing data, not just row counts. –

auto_explain.log_t
riggers

Include trigger statistics in plans. –

auto_explain.log_v
erbose

Use EXPLAIN VERBOSE for plan logging. –

auto_explain.sampl
e_rate

Fraction of queries to process. –

autovacuum Starts the autovacuum subprocess. –

autovacuum_analyze
_scale_factor

Number of tuple inserts, updates or deletes
prior to analyze as a fraction of reltuples.

0.05

autovacuum_analyze
_threshold

Minimum number of tuple inserts, updates or
deletes prior to analyze.

–

autovacuum_freeze_
max_age

Age at which to autovacuum a table to
prevent transaction ID wraparound.

–

autovacuu
m_max_workers

Sets the maximum number of simultaneously
running autovacuum worker processes.

GREATEST(DBInstanc
eClassMemory/64371
566592,3)

autovacuum_multixa
ct_freeze_max_age

Multixact age at which to autovacuum a table
to prevent multixact wraparound.

–

autovacuum_naptime (s) Time to sleep between autovacuum runs. 5

autovacuu
m_vacuum_cost_dela
y

(ms) Vacuum cost delay in milliseconds, for
autovacuum.

5

Aurora PostgreSQL parameters 2779

Amazon Aurora User Guide for Aurora

Parameter name Description Default

autovacuu
m_vacuum_cost_limit

Vacuum cost amount available before
napping, for autovacuum.

GREATEST(log(DBIns
tanceClassMemory/2
1474836480)*600,20
0)

autovacuu
m_vacuum_insert_sc
ale_factor

Number of tuple inserts prior to vacuum as a
fraction of reltuples.

–

autovacuu
m_vacuum_insert_th
reshold

Minimum number of tuple inserts prior to
vacuum, or -1 to disable insert vacuums.

–

autovacuu
m_vacuum_scale_fac
tor

Number of tuple updates or deletes prior to
vacuum as a fraction of reltuples.

0.1

autovacuu
m_vacuum_threshold

Minimum number of tuple updates or deletes
prior to vacuum.

–

autovacuu
m_work_mem

(kB) Sets the maximum memory to be used by
each autovacuum worker process.

GREATEST(DBInstanc
eClassMemory/32768
,131072)

babelfishpg_tds.de
fault_server_name

Default Babelfish server name Microsoft SQL Server

babelfishpg_tds.li
sten_addresses

Sets the host name or IP address(es) to listen
TDS to.

*

babelfishpg_tds.port Sets the TDS TCP port the server listens on. 1433

babelfishpg_tds.td
s_debug_log_level

Sets logging level in TDS, 0 disables logging 1

Aurora PostgreSQL parameters 2780

Amazon Aurora User Guide for Aurora

Parameter name Description Default

babelfishpg_tds.td
s_default_numeric_
precision

Sets the default precision of numeric type to
be sent in the TDS column metadata if the
engine does not specify one.

38

babelfishpg_tds.td
s_default_numeric_
scale

Sets the default scale of numeric type to be
sent in the TDS column metadata if the engine
does not specify one.

8

babelfishpg_tds.td
s_default_packet_size

Sets the default packet size for all the SQL
Server clients being connected

4096

babelfishpg_tds.td
s_default_protocol
_version

Sets a default TDS protocol version for all the
clients being connected

DEFAULT

babelfishpg_tds.td
s_ssl_encrypt

Sets the SSL Encryption option 0

babelfishpg_tds.td
s_ssl_max_protocol
_version

Sets the maximum SSL/TLS protocol version
to use for tds session.

TLSv1.2

babelfishpg_tds.td
s_ssl_min_protocol
_version

Sets the minimum SSL/TLS protocol version to
use for tds session.

TLSv1.2 from
Aurora PostgreSQL
version 16, TLSv1 for
versions older than
Aurora PostgreSQL
version 16

babelfishpg_tsql.d
efault_locale

Default locale to be used for collations created
by CREATE COLLATION.

en-US

Aurora PostgreSQL parameters 2781

Amazon Aurora User Guide for Aurora

Parameter name Description Default

babelfishpg_tsql.m
igration_mode

Defines if multiple user databases are
supported

multi-db from Aurora
PostgreSQL version
16, single-db for
versions older than
Aurora PostgreSQL
version 16

babelfishpg_tsql.s
erver_collation_name

Name of the default server collation sql_latin1_general
_cp1_ci_as

babelfishpg_tsql.v
ersion

Sets the output of @@VERSION variable default

backend_flush_after (8Kb) Number of pages after which previously
performed writes are flushed to disk.

–

backslash_quote Sets whether \\ is allowed in string literals. –

backtrace_functions Log backtrace for errors in these functions. –

bytea_output Sets the output format for bytea. –

check_function_bod
ies

Check function bodies during CREATE
FUNCTION.

–

client_connection_
check_interval

Sets the time interval between checks for
disconnection while running queries.

–

client_encoding Sets the clients character set encoding. UTF8

client_min_messages Sets the message levels that are sent to the
client.

–

compute_query_id Compute query identifiers. auto

config_file Sets the servers main configuration file. /rdsdbdata/config/
postgresql.conf

Aurora PostgreSQL parameters 2782

Amazon Aurora User Guide for Aurora

Parameter name Description Default

constraint_exclusion Enables the planner to use constraints to
optimize queries.

–

cpu_index_tuple_cost Sets the planners estimate of the cost of
processing each index entry during an index
scan.

–

cpu_operator_cost Sets the planners estimate of the cost of
processing each operator or function call.

–

cpu_tuple_cost Sets the planners estimate of the cost of
processing each tuple (row).

–

cron.database_name Sets the database to store pg_cron metadata
tables

postgres

cron.log_run Log all jobs runs into the job_run_details table on

cron.log_statement Log all cron statements prior to execution. off

cron.max_running_j
obs

Maximum number of jobs that can run
concurrently.

5

cron.use_backgroun
d_workers

Enables background workers for pg_cron on

cursor_tuple_fraction Sets the planners estimate of the fraction of a
cursors rows that will be retrieved.

–

data_directory Sets the servers data directory. /rdsdbdata/db

datestyle Sets the display format for date and time
values.

–

db_user_namespace Enables per-database user names. –

deadlock_timeout (ms) Sets the time to wait on a lock before
checking for deadlock.

–

Aurora PostgreSQL parameters 2783

Amazon Aurora User Guide for Aurora

Parameter name Description Default

debug_pretty_print Indents parse and plan tree displays. –

debug_print_parse Logs each querys parse tree. –

debug_print_plan Logs each querys execution plan. –

debug_print_rewrit
ten

Logs each querys rewritten parse tree. –

default_statistics
_target

Sets the default statistics target. –

default_tablespace Sets the default tablespace to create tables
and indexes in.

–

default_toast_comp
ression

Sets the default compression method for
compressible values.

–

default_transactio
n_deferrable

Sets the default deferrable status of new
transactions.

–

default_transactio
n_isolation

Sets the transaction isolation level of each
new transaction.

–

default_transactio
n_read_only

Sets the default read-only status of new
transactions.

–

effective_cache_size (8kB) Sets the planners assumption about the
size of the disk cache.

SUM(DBInstanceClas
sMemory/1
2038,-50003)

effective_io_concu
rrency

Number of simultaneous requests that can be
handled efficiently by the disk subsystem.

–

enable_async_appen
d

Enables the planners use of async append
plans.

–

Aurora PostgreSQL parameters 2784

Amazon Aurora User Guide for Aurora

Parameter name Description Default

enable_bitmapscan Enables the planners use of bitmap-scan
plans.

–

enable_gathermerge Enables the planners use of gather merge
plans.

–

enable_hashagg Enables the planners use of hashed aggregati
on plans.

–

enable_hashjoin Enables the planners use of hash join plans. –

enable_incremental
_sort

Enables the planners use of incremental sort
steps.

–

enable_indexonlyscan Enables the planners use of index-only-scan
plans.

–

enable_indexscan Enables the planners use of index-scan plans. –

enable_material Enables the planners use of materialization. –

enable_memoize Enables the planners use of memoization –

enable_mergejoin Enables the planners use of merge join plans. –

enable_nestloop Enables the planners use of nested-loop join
plans.

–

enable_parallel_ap
pend

Enables the planners use of parallel append
plans.

–

enable_parallel_hash Enables the planners user of parallel hash
plans.

–

enable_partition_p
runing

Enable plan-time and run-time partition
pruning.

–

Aurora PostgreSQL parameters 2785

Amazon Aurora User Guide for Aurora

Parameter name Description Default

enable_partitionwi
se_aggregate

Enables partitionwise aggregation and
grouping.

–

enable_partitionwi
se_join

Enables partitionwise join. –

enable_seqscan Enables the planners use of sequential-scan
plans.

–

enable_sort Enables the planners use of explicit sort steps. –

enable_tidscan Enables the planners use of TID scan plans. –

escape_string_warn
ing

Warn about backslash escapes in ordinary
string literals.

–

exit_on_error Terminate session on any error. –

extra_float_digits Sets the number of digits displayed for
floating-point values.

–

force_parallel_mode Forces use of parallel query facilities. –

from_collapse_limit Sets the FROM-list size beyond which
subqueries are not collapsed.

–

geqo Enables genetic query optimization. –

geqo_effort GEQO: effort is used to set the default for
other GEQO parameters.

–

geqo_generations GEQO: number of iterations of the algorithm. –

geqo_pool_size GEQO: number of individuals in the populatio
n.

–

geqo_seed GEQO: seed for random path selection. –

Aurora PostgreSQL parameters 2786

Amazon Aurora User Guide for Aurora

Parameter name Description Default

geqo_selection_bias GEQO: selective pressure within the populatio
n.

–

geqo_threshold Sets the threshold of FROM items beyond
which GEQO is used.

–

gin_fuzzy_search_l
imit

Sets the maximum allowed result for exact
search by GIN.

–

gin_pending_list_l
imit

(kB) Sets the maximum size of the pending list
for GIN index.

–

hash_mem_multiplier Multiple of work_mem to use for hash tables. –

hba_file Sets the servers hba configuration file. /rdsdbdata/config/
pg_hba.conf

hot_standby_feedba
ck

Allows feedback from a hot standby to the
primary that will avoid query conflicts.

on

huge_pages Reduces overhead when a DB instance is
working with large contiguous chunks of
memory, such as that used by shared buffers.
It is turned on by default for all the DB
instance classes other than t3.medium,db.t3.la
rge,db.t4g.medium,db.t4g.large instance
classes.

on

ident_file Sets the servers ident configuration file. /rdsdbdata/config/
pg_ident.conf

idle_in_transactio
n_session_timeout

(ms) Sets the maximum allowed duration of
any idling transaction.

86400000

Aurora PostgreSQL parameters 2787

Amazon Aurora User Guide for Aurora

Parameter name Description Default

idle_session_timeout Terminate any session that has been idle
(that is, waiting for a client query), but not
within an open transaction, for longer than
the specified amount of time

–

intervalstyle Sets the display format for interval values. –

join_collapse_limit Sets the FROM-list size beyond which JOIN
constructs are not flattened.

–

krb_caseins_users Sets whether GSSAPI (Generic Security Service
API) user names should be treated case-
insensitively (true) or not. By default, this
parameter is set to false, so Kerberos expects
user names to be case sensitive. For more
information, see GSSAPI Authentication in the
PostgreSQL documentation.

false

lc_messages Sets the language in which messages are
displayed.

–

lc_monetary Sets the locale for formatting monetary
amounts.

–

lc_numeric Sets the locale for formatting numbers. –

lc_time Sets the locale for formatting date and time
values.

–

listen_addresses Sets the host name or IP address(es) to listen
to.

*

lo_compat_privileges Enables backward compatibility mode for
privilege checks on large objects.

0

log_autovacuum_min
_duration

(ms) Sets the minimum execution time above
which autovacuum actions will be logged.

10000

Aurora PostgreSQL parameters 2788

https://www.postgresql.org/docs/current/gssapi-auth.html

Amazon Aurora User Guide for Aurora

Parameter name Description Default

log_connections Logs each successful connection. –

log_destination Sets the destination for server log output. stderr

log_directory Sets the destination directory for log files. /rdsdbdata/log/error

log_disconnections Logs end of a session, including duration. –

log_duration Logs the duration of each completed SQL
statement.

–

log_error_verbosity Sets the verbosity of logged messages. –

log_executor_stats Writes executor performance statistics to the
server log.

–

log_file_mode Sets the file permissions for log files. 0644

log_filename Sets the file name pattern for log files. postgresql.log.%Y-
%m-%d-%H%M

logging_collector Start a subprocess to capture stderr output
and/or csvlogs into log files.

1

log_hostname Logs the host name in the connection logs. 0

logical_decoding_w
ork_mem

(kB) This much memory can be used by each
internal reorder buffer before spilling to disk.

–

log_line_prefix Controls information prefixed to each log line. %t:%r:%u@%d:%p]:

log_lock_waits Logs long lock waits. –

log_min_duration_s
ample

(ms) Sets the minimum execution time
above which a sample of statements will be
logged. Sampling is determined by log_state
ment_sample_rate.

–

Aurora PostgreSQL parameters 2789

Amazon Aurora User Guide for Aurora

Parameter name Description Default

log_min_duration_s
tatement

(ms) Sets the minimum execution time above
which statements will be logged.

–

log_min_error_stat
ement

Causes all statements generating error at or
above this level to be logged.

–

log_min_messages Sets the message levels that are logged. –

log_parameter_max_
length

(B) When logging statements, limit logged
parameter values to first N bytes.

–

log_parameter_max_
length_on_error

(B) When reporting an error, limit logged
parameter values to first N bytes.

–

log_parser_stats Writes parser performance statistics to the
server log.

–

log_planner_stats Writes planner performance statistics to the
server log.

–

log_replication_co
mmands

Logs each replication command. –

log_rotation_age (min) Automatic log file rotation will occur
after N minutes.

60

log_rotation_size (kB) Automatic log file rotation will occur after
N kilobytes.

100000

log_statement Sets the type of statements logged. –

log_statement_samp
le_rate

Fraction of statements exceeding log_min_d
uration_sample to be logged.

–

log_statement_stats Writes cumulative performance statistics to
the server log.

–

Aurora PostgreSQL parameters 2790

Amazon Aurora User Guide for Aurora

Parameter name Description Default

log_temp_files (kB) Log the use of temporary files larger than
this number of kilobytes.

–

log_timezone Sets the time zone to use in log messages. UTC

log_transaction_sa
mple_rate

Set the fraction of transactions to log for new
transactions.

–

log_truncate_on_ro
tation

Truncate existing log files of same name
during log rotation.

0

maintenance_io_con
currency

A variant of effective_io_concurrency that is
used for maintenance work.

1

maintenan
ce_work_mem

(kB) Sets the maximum memory to be used for
maintenance operations.

GREATEST(DBInstanc
eClassMemory/63963
136*1024,65536)

max_connections Sets the maximum number of concurrent
connections.

LEAST(DBInstanceCl
assMemory
/9531392,5000)

max_files_per_proc
ess

Sets the maximum number of simultaneously
open files for each server process.

–

max_locks_per_tran
saction

Sets the maximum number of locks per
transaction.

64

max_logical_replic
ation_workers

Maximum number of logical replication worker
processes.

–

max_parallel_maint
enance_workers

Sets the maximum number of parallel
processes per maintenance operation.

–

max_parallel_workers Sets the maximum number of parallel workers
than can be active at one time.

GREATEST($DBInstan
ceVCPU/2,8)

Aurora PostgreSQL parameters 2791

Amazon Aurora User Guide for Aurora

Parameter name Description Default

max_parallel_worke
rs_per_gather

Sets the maximum number of parallel
processes per executor node.

–

max_pred_locks_per
_page

Sets the maximum number of predicate-
locked tuples per page.

–

max_pred_locks_per
_relation

Sets the maximum number of predicate-
locked pages and tuples per relation.

–

max_pred_locks_per
_transaction

Sets the maximum number of predicate locks
per transaction.

–

max_prepared_trans
actions

Sets the maximum number of simultaneously
prepared transactions.

0

max_replication_slots Sets the maximum number of replication slots
that the server can support.

20

max_slot_wal_keep_
size

(MB) Replication slots will be marked as
failed, and segments released for deletion or
recycling, if this much space is occupied by
WAL on disk.

–

max_stack_depth (kB) Sets the maximum stack depth, in
kilobytes.

6144

max_standby_stream
ing_delay

(ms) Sets the maximum delay before canceling
queries when a hot standby server is processin
g streamed WAL data.

14000

max_sync_workers_p
er_subscription

Maximum number of synchronization workers
per subscription

2

max_wal_senders Sets the maximum number of simultaneously
running WAL sender processes.

10

Aurora PostgreSQL parameters 2792

Amazon Aurora User Guide for Aurora

Parameter name Description Default

max_worker_process
es

Sets the maximum number of concurrent
worker processes.

GREATEST($DBInstan
ceVCPU*2,8)

min_dynamic_shared
_memory

(MB) Amount of dynamic shared memory
reserved at startup.

–

min_parallel_index
_scan_size

(8kB) Sets the minimum amount of index data
for a parallel scan.

–

min_parallel_table
_scan_size

(8kB) Sets the minimum amount of table data
for a parallel scan.

–

old_snapshot_thres
hold

(min) Time before a snapshot is too old to
read pages changed after the snapshot was
taken.

–

orafce.nls_date_fo
rmat

Emulate oracles date output behaviour. –

orafce.timezone Specify timezone used for sysdate function. –

parallel_leader_pa
rticipation

Controls whether Gather and Gather Merge
also run subplans.

–

parallel_setup_cost Sets the planners estimate of the cost of
starting up worker processes for parallel
query.

–

parallel_tuple_cost Sets the planners estimate of the cost of
passing each tuple (row) from worker to
master backend.

–

password_encryption Encrypt passwords. –

pgaudit.log Specifies which classes of statements will be
logged by session audit logging.

–

Aurora PostgreSQL parameters 2793

Amazon Aurora User Guide for Aurora

Parameter name Description Default

pgaudit.log_catalog Specifies that session logging should be
enabled in the case where all relations in a
statement are in pg_catalog.

–

pgaudit.log_level Specifies the log level that will be used for log
entries.

–

pgaudit.log_parame
ter

Specifies that audit logging should include
the parameters that were passed with the
statement.

–

pgaudit.log_relation Specifies whether session audit logging should
create a separate log entry for each relation
(TABLE, VIEW, etc.) referenced in a SELECT or
DML statement.

–

pgaudit.log_statem
ent_once

Specifies whether logging will include the
statement text and parameters with the first
log entry for a statement/substatement
combination or with every entry.

–

pgaudit.role Specifies the master role to use for object
audit logging.

–

pg_bigm.enable_rec
heck

It specifies whether to perform Recheck which
is an internal process of full text search.

on

pg_bigm.gin_key_li
mit

It specifies the maximum number of 2-grams
of the search keyword to be used for full text
search.

0

pg_bigm.last_update It reports the last updated date of the
pg_bigm module.

2013.11.22

pg_bigm.similarity
_limit

It specifies the minimum threshold used by
the similarity search.

0.3

Aurora PostgreSQL parameters 2794

Amazon Aurora User Guide for Aurora

Parameter name Description Default

pg_hint_plan.debug
_print

Logs results of hint parsing. –

pg_hint_plan.enabl
e_hint

Force planner to use plans specified in the hint
comment preceding to the query.

–

pg_hint_plan.enabl
e_hint_table

Force planner to not get hint by using table
lookups.

–

pg_hint_plan.messa
ge_level

Message level of debug messages. –

pg_hint_plan.parse
_messages

Message level of parse errors. –

pglogical.batch_in
serts

Batch inserts if possible –

pglogical.conflict
_log_level

Sets log level used for logging resolved
conflicts.

–

pglogical.conflict
_resolution

Sets method used for conflict resolution for
resolvable conflicts.

–

pglogical.extra_co
nnection_options

connection options to add to all peer node
connections

–

pglogical.synchron
ous_commit

pglogical specific synchronous commit value –

pglogical.use_spi Use SPI instead of low-level API for applying
changes

–

pgtle.clientauth_d
atabases_to_skip

List of databases to skip for clientauth feature. –

pgtle.clientauth_d
b_name

Controls which database is used for clientauth
feature.

–

Aurora PostgreSQL parameters 2795

Amazon Aurora User Guide for Aurora

Parameter name Description Default

pgtle.clientauth_n
um_parallel_workers

Number of background workers used for
clientauth feature.

–

pgtle.clientauth_u
sers_to_skip

List of users to skip for clientauth feature. –

pgtle.enable_clien
tauth

Enables the clientauth feature. –

pgtle.passcheck_db
_name

Sets which database is used for cluster-wide
passcheck feature.

–

pg_prewarm.autopre
warm

Starts the autoprewarm worker. –

pg_prewarm.autopre
warm_interval

Sets the interval between dumps of shared
buffers

–

pg_similarity.bloc
k_is_normalized

Sets if the result value is normalized or not. –

pg_similarity.bloc
k_threshold

Sets the threshold used by the Block similarity
function.

–

pg_similarity.bloc
k_tokenizer

Sets the tokenizer for Block similarity
function.

–

pg_similarity.cosi
ne_is_normalized

Sets if the result value is normalized or not. –

pg_similarity.cosi
ne_threshold

Sets the threshold used by the Cosine similarit
y function.

–

pg_similarity.cosi
ne_tokenizer

Sets the tokenizer for Cosine similarity
function.

–

pg_similarity.dice
_is_normalized

Sets if the result value is normalized or not. –

Aurora PostgreSQL parameters 2796

Amazon Aurora User Guide for Aurora

Parameter name Description Default

pg_similarity.dice
_threshold

Sets the threshold used by the Dice similarity
measure.

–

pg_similarity.dice
_tokenizer

Sets the tokenizer for Dice similarity measure. –

pg_similarity.eucl
idean_is_normalized

Sets if the result value is normalized or not. –

pg_similarity.eucl
idean_threshold

Sets the threshold used by the Euclidean
similarity measure.

–

pg_similarity.eucl
idean_tokenizer

Sets the tokenizer for Euclidean similarity
measure.

–

pg_similarity.hamm
ing_is_normalized

Sets if the result value is normalized or not. –

pg_similarity.hamm
ing_threshold

Sets the threshold used by the Block similarity
metric.

–

pg_similarity.jacc
ard_is_normalized

Sets if the result value is normalized or not. –

pg_similarity.jacc
ard_threshold

Sets the threshold used by the Jaccard
similarity measure.

–

pg_similarity.jacc
ard_tokenizer

Sets the tokenizer for Jaccard similarity
measure.

–

pg_similarity.jaro
_is_normalized

Sets if the result value is normalized or not. –

pg_similarity.jaro
_threshold

Sets the threshold used by the Jaro similarity
measure.

–

Aurora PostgreSQL parameters 2797

Amazon Aurora User Guide for Aurora

Parameter name Description Default

pg_similarity.jaro
winkler_is_normali
zed

Sets if the result value is normalized or not. –

pg_similarity.jaro
winkler_threshold

Sets the threshold used by the Jarowinkler
similarity measure.

–

pg_similarity.leve
nshtein_is_normali
zed

Sets if the result value is normalized or not. –

pg_similarity.leve
nshtein_threshold

Sets the threshold used by the Levenshtein
similarity measure.

–

pg_similarity.matc
hing_is_normalized

Sets if the result value is normalized or not. –

pg_similarity.matc
hing_threshold

Sets the threshold used by the Matching
Coefficient similarity measure.

–

pg_similarity.matc
hing_tokenizer

Sets the tokenizer for Matching Coefficient
similarity measure.

–

pg_similarity.mong
eelkan_is_normalized

Sets if the result value is normalized or not. –

pg_similarity.mong
eelkan_threshold

Sets the threshold used by the Monge-Elkan
similarity measure.

–

pg_similarity.mong
eelkan_tokenizer

Sets the tokenizer for Monge-Elkan similarity
measure.

–

pg_similarity.nw_g
ap_penalty

Sets the gap penalty used by the Needleman-
Wunsch similarity measure.

–

pg_similarity.nw_i
s_normalized

Sets if the result value is normalized or not. –

Aurora PostgreSQL parameters 2798

Amazon Aurora User Guide for Aurora

Parameter name Description Default

pg_similarity.nw_t
hreshold

Sets the threshold used by the Needleman-
Wunsch similarity measure.

–

pg_similarity.over
lap_is_normalized

Sets if the result value is normalized or not. –

pg_similarity.over
lap_threshold

Sets the threshold used by the Overlap
Coefficient similarity measure.

–

pg_similarity.over
lap_tokenizer

Sets the tokenizer for Overlap Coefficie
ntsimilarity measure.

–

pg_similarity.qgra
m_is_normalized

Sets if the result value is normalized or not. –

pg_similarity.qgra
m_threshold

Sets the threshold used by the Q-Gram
similarity measure.

–

pg_similarity.qgra
m_tokenizer

Sets the tokenizer for Q-Gram measure. –

pg_similarity.swg_
is_normalized

Sets if the result value is normalized or not. –

pg_similarity.swg_
threshold

Sets the threshold used by the Smith-Wat
erman-Gotoh similarity measure.

–

pg_similarity.sw_i
s_normalized

Sets if the result value is normalized or not. –

pg_similarity.sw_t
hreshold

Sets the threshold used by the Smith-Wat
erman similarity measure.

–

pg_stat_statements
.max

Sets the maximum number of statements
tracked by pg_stat_statements.

–

pg_stat_statements
.save

Save pg_stat_statements statistics across
server shutdowns.

–

Aurora PostgreSQL parameters 2799

Amazon Aurora User Guide for Aurora

Parameter name Description Default

pg_stat_statements
.track

Selects which statements are tracked by
pg_stat_statements.

–

pg_stat_statements
.track_planning

Selects whether planning duration is tracked
by pg_stat_statements.

–

pg_stat_statements
.track_utility

Selects whether utility commands are tracked
by pg_stat_statements.

–

plan_cache_mode Controls the planner selection of custom or
generic plan.

–

port Sets the TCP port the server listens on. EndPointPort

postgis.gdal_enabl
ed_drivers

Enable or disable GDAL drivers used with
PostGIS in Postgres 9.3.5 and above.

ENABLE_ALL

quote_all_identifiers When generating SQL fragments, quote all
identifiers.

–

random_page_cost Sets the planners estimate of the cost of a
nonsequentially fetched disk page.

–

rdkit.dice_threshold Lower threshold of Dice similarity. Molecules
with similarity lower than threshold are not
similar by # operation.

–

rdkit.do_chiral_sss Should stereochemistry be taken into
account in substructure matching. If false,
no stereochemistry information is used in
substructure matches.

–

rdkit.tanimoto_thr
eshold

Lower threshold of Tanimoto similarity.
Molecules with similarity lower than threshold
are not similar by % operation.

–

Aurora PostgreSQL parameters 2800

Amazon Aurora User Guide for Aurora

Parameter name Description Default

rds.accepted_passw
ord_auth_method

Force authentication for connections with
password stored locally.

md5+scram

rds.adaptive_autov
acuum

RDS parameter to enable/disable adaptive
autovacuum.

1

rds.babelfish_status RDS parameter to enable/disable Babelfish for
Aurora PostgreSQL.

off

rds.enable_plan_ma
nagement

Enable or disable the apg_plan_mgmt
extension.

0

Aurora PostgreSQL parameters 2801

Amazon Aurora User Guide for Aurora

Parameter name Description Default

rds.extensions List of extensions provided by RDS address_standardiz
er, address_s
tandardizer_data_u
s, apg_plan_mgmt,
aurora_stat_utils,
amcheck, autoinc,
aws_commons,
aws_ml, aws_s3,
aws_lambda,
bool_plperl, bloom,
btree_gin, btree_gis
t, citext, cube, dblink,
dict_int, dict_xsyn
, earthdistance,
fuzzystrmatch, hll,
hstore, hstore_plperl,
insert_username,
intagg, intarray,
ip4r, isn, jsonb_plp
erl, lo, log_fdw,
ltree, moddateti
me, old_snaps
hot, oracle_fdw,
orafce, pgaudit,
pgcrypto, pglogical,
pgrouting, pgrowlock
s, pgstattuple,
pgtap, pg_bigm,
pg_buffercache,
pg_cron, pg_freesp
acemap, pg_hint_p
lan, pg_partma
n, pg_prewar
m, pg_proctab,

Aurora PostgreSQL parameters 2802

Amazon Aurora User Guide for Aurora

Parameter name Description Default

pg_repack, pg_simila
rity, pg_stat_s
tatements, pg_trgm,
pg_visibility, plcoffee,
plls, plperl, plpgsql,
plprofiler, pltcl,
plv8, postgis,
postgis_tiger_geoc
oder, postgis_r
aster, postgis_t
opology, postgres_
fdw, prefix, rdkit,
rds_tools, refint,
sslinfo, tablefunc,
tds_fdw, test_parser,
tsm_system_rows,
tsm_system_time,
unaccent, uuid-ossp

rds.force_admin_lo
gging_level

See log messages for RDS admin user actions
in customer databases.

–

rds.force_autovacu
um_logging_level

See log messages related to autovacuum
operations.

WARNING

rds.force_ssl Force SSL connections. 0

Aurora PostgreSQL parameters 2803

Amazon Aurora User Guide for Aurora

Parameter name Description Default

rds.global_db_rpo (s) Recovery point objective threshold, in
seconds, that blocks user commits when it is
violated.

Important

This parameter is meant for Aurora
PostgreSQL-based global databases.
For a nonglobal database, leave it at
the default value. For more informati
on about using this parameter, see
the section called “Managing RPOs
for Aurora PostgreSQL–based global
databases”.

–

rds.logical_replication Enables logical decoding. 0

rds.logically_repl
icate_unlogged_tab
les

Unlogged tables are logically replicated. 1

rds.log_retention_
period

Amazon RDS will delete PostgreSQL log that
are older than N minutes.

4320

rds.pg_stat_ramdis
k_size

Size of the stats ramdisk in MB. A nonzero
value will setup the ramdisk. This parameter
is only available in Aurora PostgreSQL 14 and
lower versions.

0

rds.rds_superuser_
reserved_connections

Sets the number of connection slots reserved
for rds_superusers. This parameter is only
available in versions 15 and earlier. For more
information, see the PostgreSQL documenta
tion reserved connections.

2

Aurora PostgreSQL parameters 2804

https://www.postgresql.org/docs/current/runtime-config-connection.html#GUC-RESERVED-CONNECTIONS

Amazon Aurora User Guide for Aurora

Parameter name Description Default

rds.restrict_passw
ord_commands

restricts password-related commands to
members of rds_password

–

rds.superuser_vari
ables

List of superuser-only variables for which we
elevate rds_superuser modification statement
s.

session_replicatio
n_role

recovery_init_sync
_method

Sets the method for synchronizing the data
directory before crash recovery.

syncfs

remove_temp_files_
after_crash

Remove temporary files after backend crash. 0

restart_after_crash Reinitialize server after backend crash. –

row_security Enable row security. –

search_path Sets the schema search order for names that
are not schema-qualified.

–

seq_page_cost Sets the planners estimate of the cost of a
sequentially fetched disk page.

–

session_replicatio
n_role

Sets the sessions behavior for triggers and
rewrite rules.

–

shared_buffers (8kB) Sets the number of shared memory
buffers used by the server.

SUM(DBInstanceClas
sMemory/1
2038,-50003)

shared_preload_lib
raries

Lists shared libraries to preload into server. pg_stat_statements

ssl Enables SSL connections. 1

ssl_ca_file Location of the SSL server authority file. /rdsdbdata/rds-met
adata/ca-cert.pem

Aurora PostgreSQL parameters 2805

Amazon Aurora User Guide for Aurora

Parameter name Description Default

ssl_cert_file Location of the SSL server certificate file. /rdsdbdata/rds-met
adata/server-cert.
pem

ssl_ciphers Sets the list of allowed TLS ciphers to be used
on secure connections.

–

ssl_crl_dir Location of the SSL certificate revocation list
directory.

/rdsdbdata/rds-met
adata/ssl_crl_dir/

ssl_key_file Location of the SSL server private key file /rdsdbdata/rds-met
adata/server-key.pem

ssl_max_protocol_v
ersion

Sets the maximum SSL/TLS protocol version
allowed

–

ssl_min_protocol_v
ersion

Sets the minimum SSL/TLS protocol version
allowed

TLSv1.2

standard_conformin
g_strings

Causes ... strings to treat backslashes literally. –

statement_timeout (ms) Sets the maximum allowed duration of
any statement.

–

stats_temp_directory Writes temporary statistics files to the
specified directory.

/rdsdbdata/db/pg_s
tat_tmp

superuser_reserved
_connections

Sets the number of connection slots reserved
for superusers.

3

synchronize_seqscans Enable synchronized sequential scans. –

synchronous_commit Sets the current transactions synchronization
level.

on

tcp_keepalives_count Maximum number of TCP keepalive retransmi
ts.

–

Aurora PostgreSQL parameters 2806

Amazon Aurora User Guide for Aurora

Parameter name Description Default

tcp_keepalives_idle (s) Time between issuing TCP keepalives. –

tcp_keepalives_int
erval

(s) Time between TCP keepalive retransmits. –

temp_buffers (8kB) Sets the maximum number of temporary
buffers used by each session.

–

temp_file_limit Constrains the total amount disk space in
kilobytes that a given PostgreSQL process can
use for temporary files, excluding space used
for explicit temporary tables

-1

temp_tablespaces Sets the tablespace(s) to use for temporary
tables and sort files.

–

timezone Sets the time zone for displaying and interpret
ing time stamps.

UTC

track_activities Collects information about executing
commands.

–

track_activity_que
ry_size

Sets the size reserved for pg_stat_activity.c
urrent_query, in bytes.

4096

track_commit_times
tamp

Collects transaction commit time. –

track_counts Collects statistics on database activity. –

track_functions Collects function-level statistics on database
activity.

pl

track_io_timing Collects timing statistics on database IO
activity.

1

track_wal_io_timing Collects timing statistics for WAL I/O activity. –

Aurora PostgreSQL parameters 2807

Amazon Aurora User Guide for Aurora

Parameter name Description Default

transform_null_equ
als

Treats expr=NULL as expr IS NULL. –

update_process_title Updates the process title to show the active
SQL command.

–

vacuum_cost_delay (ms) Vacuum cost delay in milliseconds. –

vacuum_cost_limit Vacuum cost amount available before
napping.

–

vacuum_cost_page_d
irty

Vacuum cost for a page dirtied by vacuum. –

vacuum_cost_page_h
it

Vacuum cost for a page found in the buffer
cache.

–

vacuum_co
st_page_miss

Vacuum cost for a page not found in the
buffer cache.

0

vacuum_defer_clean
up_age

Number of transactions by which VACUUM
and HOT cleanup should be deferred, if any.

–

vacuum_failsafe_age Age at which VACUUM should trigger failsafe
to avoid a wraparound outage.

1200000000

vacuum_freeze_min_
age

Minimum age at which VACUUM should freeze
a table row.

–

vacuum_freeze_tabl
e_age

Age at which VACUUM should scan whole
table to freeze tuples.

–

vacuum_multixact_f
ailsafe_age

Multixact age at which VACUUM should trigger
failsafe to avoid a wraparound outage.

1200000000

vacuum_multixact_f
reeze_min_age

Minimum age at which VACUUM should freeze
a MultiXactId in a table row.

–

Aurora PostgreSQL parameters 2808

Amazon Aurora User Guide for Aurora

Parameter name Description Default

vacuum_multixact_f
reeze_table_age

Multixact age at which VACUUM should scan
whole table to freeze tuples.

–

wal_buffers (8kB) Sets the number of disk-page buffers in
shared memory for WAL.

–

wal_receiver_creat
e_temp_slot

Sets whether a WAL receiver should create a
temporary replication slot if no permanent
slot is configured.

0

wal_receiver_statu
s_interval

(s) Sets the maximum interval between WAL
receiver status reports to the primary.

–

wal_receiver_timeout (ms) Sets the maximum wait time to receive
data from the primary.

30000

wal_sender_timeout (ms) Sets the maximum time to wait for WAL
replication.

–

work_mem (kB) Sets the maximum memory to be used for
query workspaces.

–

xmlbinary Sets how binary values are to be encoded in
XML.

–

xmloption Sets whether XML data in implicit parsing and
serialization operations is to be considered as
documents or content fragments.

–

Aurora PostgreSQL parameters 2809

Amazon Aurora User Guide for Aurora

Aurora PostgreSQL instance-level parameters

You can view the instance-level parameters available for a specific Aurora PostgreSQL version
using the AWS Management console, the AWS CLI, or the Amazon RDS API. For information about
viewing the parameters in an Aurora PostgreSQL DB parameter groups in the RDS console, see
Viewing parameter values for a DB parameter group.

Some instance-level parameters aren't available in all versions and some are being deprecated. For
information about viewing the parameters of a specific Aurora PostgreSQL version, see Viewing
Aurora PostgreSQL DB cluster and DB parameters.

For example, the following table lists the parameters that apply to a specific DB instance in an
Aurora PostgreSQL DB cluster. This list was generated by running the describe-db-parameters AWS
CLI command with default.aurora-postgresql14 for the --db-parameter-group-name
value.

For a listing of the DB cluster parameters for this same default DB parameter group, see Aurora
PostgreSQL cluster-level parameters.

Parameter name Description Default

apg_enable_batch_m
ode_function_execu
tion

Enables batch-mode functions to process sets
of rows at a time.

–

apg_enable_correla
ted_any_transform

Enables the planner to transform correlate
d ANY Sublink (IN/NOT IN subquery to JOIN
when possible.

–

apg_enable_functio
n_migration

Enables the planner to migrate eligible scalar
functions to the FROM clause.

–

apg_enable_not_in_
transform

Enables the planner to transform NOT IN
subquery to ANTI JOIN when possible.

–

apg_enable_remove_
redundant_inner_jo
ins

Enables the planner to remove redundant
inner joins.

–

Aurora PostgreSQL parameters 2810

https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-parameters.html

Amazon Aurora User Guide for Aurora

Parameter name Description Default

apg_enable_semijoi
n_push_down

Enables the use of semijoin filters for hash
joins.

–

apg_plan_mgmt.capt
ure_plan_baselines

Capture plan baseline mode. manual - enable
plan capture for any SQL statement, off -
disable plan capture, automatic - enable
plan capture for for statements in pg_stat_s
tatements that satisfy the eligibility criteria.

off

apg_plan_
mgmt.max_databases

Sets the maximum number of databases that
that may manage queries using apg_plan_
mgmt.

10

apg_plan_
mgmt.max_plans

Sets the maximum number of plans that may
be cached by apg_plan_mgmt.

10000

apg_plan_mgmt.plan
_retention_period

Maximum number of days since a plan was
last_used before a plan will be automatically
deleted.

32

apg_plan_
mgmt.unapproved_pl
an_execution_thres
hold

Estimated total plan cost below which an
Unapproved plan will be executed.

0

apg_plan_mgmt.use_
plan_baselines

Use only approved or fixed plans for managed
statements.

false

application_name Sets the application name to be reported in
statistics and logs.

–

aurora_compute_pla
n_id

Monitors query execution plans to detect
the execution plans contributing to current
database load and to track performance
statistics of execution plans over time. For
more information, see Monitoring query
execution plans for Aurora PostgreSQL.

on

Aurora PostgreSQL parameters 2811

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraPostgreSQL.Monitoring.Query.Plans.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraPostgreSQL.Monitoring.Query.Plans.html

Amazon Aurora User Guide for Aurora

Parameter name Description Default

authentication_tim
eout

(s Sets the maximum allowed time to
complete client authentication.

–

auto_explain.log_a
nalyze

Use EXPLAIN ANALYZE for plan logging. –

auto_explain.log_b
uffers

Log buffers usage. –

auto_explain.log_f
ormat

EXPLAIN format to be used for plan logging. –

auto_explain.log_m
in_duration

Sets the minimum execution time above which
plans will be logged.

–

auto_explain.log_n
ested_statements

Log nested statements. –

auto_explain.log_t
iming

Collect timing data, not just row counts. –

auto_explain.log_t
riggers

Include trigger statistics in plans. –

auto_explain.log_v
erbose

Use EXPLAIN VERBOSE for plan logging. –

auto_explain.sampl
e_rate

Fraction of queries to process. –

babelfishpg_tds.li
sten_addresses

Sets the host name or IP address(es to listen
TDS to.

*

babelfishpg_tds.td
s_debug_log_level

Sets logging level in TDS, 0 disables logging 1

backend_flush_after (8Kb Number of pages after which previously
performed writes are flushed to disk.

–

Aurora PostgreSQL parameters 2812

Amazon Aurora User Guide for Aurora

Parameter name Description Default

bytea_output Sets the output format for bytea. –

check_function_bod
ies

Check function bodies during CREATE
FUNCTION.

–

client_connection_
check_interval

Sets the time interval between checks for
disconnection while running queries.

–

client_min_messages Sets the message levels that are sent to the
client.

–

config_file Sets the servers main configuration file. /rdsdbdata/config/
postgresql.conf

constraint_exclusion Enables the planner to use constraints to
optimize queries.

–

cpu_index_tuple_cost Sets the planners estimate of the cost of
processing each index entry during an index
scan.

–

cpu_operator_cost Sets the planners estimate of the cost of
processing each operator or function call.

–

cpu_tuple_cost Sets the planners estimate of the cost of
processing each tuple (row.

–

cron.database_name Sets the database to store pg_cron metadata
tables

postgres

cron.log_run Log all jobs runs into the job_run_details table on

cron.log_statement Log all cron statements prior to execution. off

cron.max_running_j
obs

Maximum number of jobs that can run
concurrently.

5

Aurora PostgreSQL parameters 2813

Amazon Aurora User Guide for Aurora

Parameter name Description Default

cron.use_backgroun
d_workers

Enables background workers for pg_cron on

cursor_tuple_fraction Sets the planners estimate of the fraction of a
cursors rows that will be retrieved.

–

db_user_namespace Enables per-database user names. –

deadlock_timeout (ms Sets the time to wait on a lock before
checking for deadlock.

–

debug_pretty_print Indents parse and plan tree displays. –

debug_print_parse Logs each querys parse tree. –

debug_print_plan Logs each querys execution plan. –

debug_print_rewrit
ten

Logs each querys rewritten parse tree. –

default_statistics
_target

Sets the default statistics target. –

default_transactio
n_deferrable

Sets the default deferrable status of new
transactions.

–

default_transactio
n_isolation

Sets the transaction isolation level of each
new transaction.

–

default_transactio
n_read_only

Sets the default read-only status of new
transactions.

–

effective_cache_size (8kB Sets the planners assumption about the
size of the disk cache.

SUM(DBInstanceClas
sMemory/1
2038,-50003

effective_io_concu
rrency

Number of simultaneous requests that can be
handled efficiently by the disk subsystem.

–

Aurora PostgreSQL parameters 2814

Amazon Aurora User Guide for Aurora

Parameter name Description Default

enable_async_appen
d

Enables the planners use of async append
plans.

–

enable_bitmapscan Enables the planners use of bitmap-scan
plans.

–

enable_gathermerge Enables the planners use of gather merge
plans.

–

enable_hashagg Enables the planners use of hashed aggregati
on plans.

–

enable_hashjoin Enables the planners use of hash join plans. –

enable_incremental
_sort

Enables the planners use of incremental sort
steps.

–

enable_indexonlyscan Enables the planners use of index-only-scan
plans.

–

enable_indexscan Enables the planners use of index-scan plans. –

enable_material Enables the planners use of materialization. –

enable_memoize Enables the planners use of memoization –

enable_mergejoin Enables the planners use of merge join plans. –

enable_nestloop Enables the planners use of nested-loop join
plans.

–

enable_parallel_ap
pend

Enables the planners use of parallel append
plans.

–

enable_parallel_hash Enables the planners user of parallel hash
plans.

–

Aurora PostgreSQL parameters 2815

Amazon Aurora User Guide for Aurora

Parameter name Description Default

enable_partition_p
runing

Enable plan-time and run-time partition
pruning.

–

enable_partitionwi
se_aggregate

Enables partitionwise aggregation and
grouping.

–

enable_partitionwi
se_join

Enables partitionwise join. –

enable_seqscan Enables the planners use of sequential-scan
plans.

–

enable_sort Enables the planners use of explicit sort steps. –

enable_tidscan Enables the planners use of TID scan plans. –

escape_string_warn
ing

Warn about backslash escapes in ordinary
string literals.

–

exit_on_error Terminate session on any error. –

force_parallel_mode Forces use of parallel query facilities. –

from_collapse_limit Sets the FROM-list size beyond which
subqueries are not collapsed.

–

geqo Enables genetic query optimization. –

geqo_effort GEQO: effort is used to set the default for
other GEQO parameters.

–

geqo_generations GEQO: number of iterations of the algorithm. –

geqo_pool_size GEQO: number of individuals in the populatio
n.

–

geqo_seed GEQO: seed for random path selection. –

Aurora PostgreSQL parameters 2816

Amazon Aurora User Guide for Aurora

Parameter name Description Default

geqo_selection_bias GEQO: selective pressure within the populatio
n.

–

geqo_threshold Sets the threshold of FROM items beyond
which GEQO is used.

–

gin_fuzzy_search_l
imit

Sets the maximum allowed result for exact
search by GIN.

–

gin_pending_list_l
imit

(kB Sets the maximum size of the pending list
for GIN index.

–

hash_mem_multiplier Multiple of work_mem to use for hash tables. –

hba_file Sets the servers hba configuration file. /rdsdbdata/config/
pg_hba.conf

hot_standby_feedba
ck

Allows feedback from a hot standby to the
primary that will avoid query conflicts.

on

ident_file Sets the servers ident configuration file. /rdsdbdata/config/
pg_ident.conf

idle_in_transactio
n_session_timeout

(ms Sets the maximum allowed duration of
any idling transaction.

86400000

idle_session_timeout Terminate any session that has been idle (that
is, waiting for a client query, but not within an
open transaction, for longer than the specified
amount of time

–

join_collapse_limit Sets the FROM-list size beyond which JOIN
constructs are not flattened.

–

lc_messages Sets the language in which messages are
displayed.

–

Aurora PostgreSQL parameters 2817

Amazon Aurora User Guide for Aurora

Parameter name Description Default

listen_addresses Sets the host name or IP address(es to listen
to.

*

lo_compat_privileges Enables backward compatibility mode for
privilege checks on large objects.

0

log_connections Logs each successful connection. –

log_destination Sets the destination for server log output. stderr

log_directory Sets the destination directory for log files. /rdsdbdata/log/error

log_disconnections Logs end of a session, including duration. –

log_duration Logs the duration of each completed SQL
statement.

–

log_error_verbosity Sets the verbosity of logged messages. –

log_executor_stats Writes executor performance statistics to the
server log.

–

log_file_mode Sets the file permissions for log files. 0644

log_filename Sets the file name pattern for log files. postgresql.log.%Y-
%m-%d-%H%M

logging_collector Start a subprocess to capture stderr output
and/or csvlogs into log files.

1

log_hostname Logs the host name in the connection logs. 0

logical_decoding_w
ork_mem

(kB This much memory can be used by each
internal reorder buffer before spilling to disk.

–

log_line_prefix Controls information prefixed to each log line. %t:%r:%u@%d:%p]:

log_lock_waits Logs long lock waits. –

Aurora PostgreSQL parameters 2818

Amazon Aurora User Guide for Aurora

Parameter name Description Default

log_min_duration_s
ample

(ms Sets the minimum execution time
above which a sample of statements will be
logged. Sampling is determined by log_state
ment_sample_rate.

–

log_min_duration_s
tatement

(ms Sets the minimum execution time above
which statements will be logged.

–

log_min_error_stat
ement

Causes all statements generating error at or
above this level to be logged.

–

log_min_messages Sets the message levels that are logged. –

log_parameter_max_
length

(B When logging statements, limit logged
parameter values to first N bytes.

–

log_parameter_max_
length_on_error

(B When reporting an error, limit logged
parameter values to first N bytes.

–

log_parser_stats Writes parser performance statistics to the
server log.

–

log_planner_stats Writes planner performance statistics to the
server log.

–

log_replication_co
mmands

Logs each replication command. –

log_rotation_age (min Automatic log file rotation will occur
after N minutes.

60

log_rotation_size (kB Automatic log file rotation will occur after
N kilobytes.

100000

log_statement Sets the type of statements logged. –

log_statement_samp
le_rate

Fraction of statements exceeding log_min_d
uration_sample to be logged.

–

Aurora PostgreSQL parameters 2819

Amazon Aurora User Guide for Aurora

Parameter name Description Default

log_statement_stats Writes cumulative performance statistics to
the server log.

–

log_temp_files (kB Log the use of temporary files larger than
this number of kilobytes.

–

log_timezone Sets the time zone to use in log messages. UTC

log_truncate_on_ro
tation

Truncate existing log files of same name
during log rotation.

0

maintenance_io_con
currency

A variant of effective_io_concurrency that is
used for maintenance work.

1

maintenan
ce_work_mem

(kB Sets the maximum memory to be used for
maintenance operations.

GREATEST(DBInstanc
eClassMemory/63963
136*1024,65536

max_connections Sets the maximum number of concurrent
connections.

LEAST(DBInstanceCl
assMemory
/9531392,5000

max_files_per_proc
ess

Sets the maximum number of simultaneously
open files for each server process.

–

max_locks_per_tran
saction

Sets the maximum number of locks per
transaction.

64

max_parallel_maint
enance_workers

Sets the maximum number of parallel
processes per maintenance operation.

–

max_parallel_workers Sets the maximum number of parallel workers
than can be active at one time.

GREATEST($DBInstan
ceVCPU/2,8

max_parallel_worke
rs_per_gather

Sets the maximum number of parallel
processes per executor node.

–

Aurora PostgreSQL parameters 2820

Amazon Aurora User Guide for Aurora

Parameter name Description Default

max_pred_locks_per
_page

Sets the maximum number of predicate-
locked tuples per page.

–

max_pred_locks_per
_relation

Sets the maximum number of predicate-
locked pages and tuples per relation.

–

max_pred_locks_per
_transaction

Sets the maximum number of predicate locks
per transaction.

–

max_slot_wal_keep_
size

(MB Replication slots will be marked as
failed, and segments released for deletion or
recycling, if this much space is occupied by
WAL on disk.

–

max_stack_depth (kB Sets the maximum stack depth, in
kilobytes.

6144

max_standby_stream
ing_delay

(ms Sets the maximum delay before canceling
queries when a hot standby server is processin
g streamed WAL data.

14000

max_worker_process
es

Sets the maximum number of concurrent
worker processes.

GREATEST($DBInstan
ceVCPU*2,8

min_dynamic_shared
_memory

(MB Amount of dynamic shared memory
reserved at startup.

–

min_parallel_index
_scan_size

(8kB Sets the minimum amount of index data
for a parallel scan.

–

min_parallel_table
_scan_size

(8kB Sets the minimum amount of table data
for a parallel scan.

–

old_snapshot_thres
hold

(min Time before a snapshot is too old to read
pages changed after the snapshot was taken.

–

Aurora PostgreSQL parameters 2821

Amazon Aurora User Guide for Aurora

Parameter name Description Default

parallel_leader_pa
rticipation

Controls whether Gather and Gather Merge
also run subplans.

–

parallel_setup_cost Sets the planners estimate of the cost of
starting up worker processes for parallel
query.

–

parallel_tuple_cost Sets the planners estimate of the cost of
passing each tuple (row from worker to master
backend.

–

pgaudit.log Specifies which classes of statements will be
logged by session audit logging.

–

pgaudit.log_catalog Specifies that session logging should be
enabled in the case where all relations in a
statement are in pg_catalog.

–

pgaudit.log_level Specifies the log level that will be used for log
entries.

–

pgaudit.log_parame
ter

Specifies that audit logging should include
the parameters that were passed with the
statement.

–

pgaudit.log_relation Specifies whether session audit logging should
create a separate log entry for each relation
(TABLE, VIEW, etc. referenced in a SELECT or
DML statement.

–

pgaudit.log_statem
ent_once

Specifies whether logging will include the
statement text and parameters with the first
log entry for a statement/substatement
combination or with every entry.

–

pgaudit.role Specifies the master role to use for object
audit logging.

–

Aurora PostgreSQL parameters 2822

Amazon Aurora User Guide for Aurora

Parameter name Description Default

pg_bigm.enable_rec
heck

It specifies whether to perform Recheck which
is an internal process of full text search.

on

pg_bigm.gin_key_li
mit

It specifies the maximum number of 2-grams
of the search keyword to be used for full text
search.

0

pg_bigm.last_update It reports the last updated date of the
pg_bigm module.

2013.11.22

pg_bigm.similarity
_limit

It specifies the minimum threshold used by
the similarity search.

0.3

pg_hint_plan.debug
_print

Logs results of hint parsing. –

pg_hint_plan.enabl
e_hint

Force planner to use plans specified in the hint
comment preceding to the query.

–

pg_hint_plan.enabl
e_hint_table

Force planner to not get hint by using table
lookups.

–

pg_hint_plan.messa
ge_level

Message level of debug messages. –

pg_hint_plan.parse
_messages

Message level of parse errors. –

pglogical.batch_in
serts

Batch inserts if possible –

pglogical.conflict
_log_level

Sets log level used for logging resolved
conflicts.

–

pglogical.conflict
_resolution

Sets method used for conflict resolution for
resolvable conflicts.

–

Aurora PostgreSQL parameters 2823

Amazon Aurora User Guide for Aurora

Parameter name Description Default

pglogical.extra_co
nnection_options

connection options to add to all peer node
connections

–

pglogical.synchron
ous_commit

pglogical specific synchronous commit value –

pglogical.use_spi Use SPI instead of low-level API for applying
changes

–

pg_similarity.bloc
k_is_normalized

Sets if the result value is normalized or not. –

pg_similarity.bloc
k_threshold

Sets the threshold used by the Block similarity
function.

–

pg_similarity.bloc
k_tokenizer

Sets the tokenizer for Block similarity
function.

–

pg_similarity.cosi
ne_is_normalized

Sets if the result value is normalized or not. –

pg_similarity.cosi
ne_threshold

Sets the threshold used by the Cosine similarit
y function.

–

pg_similarity.cosi
ne_tokenizer

Sets the tokenizer for Cosine similarity
function.

–

pg_similarity.dice
_is_normalized

Sets if the result value is normalized or not. –

pg_similarity.dice
_threshold

Sets the threshold used by the Dice similarity
measure.

–

pg_similarity.dice
_tokenizer

Sets the tokenizer for Dice similarity measure. –

pg_similarity.eucl
idean_is_normalized

Sets if the result value is normalized or not. –

Aurora PostgreSQL parameters 2824

Amazon Aurora User Guide for Aurora

Parameter name Description Default

pg_similarity.eucl
idean_threshold

Sets the threshold used by the Euclidean
similarity measure.

–

pg_similarity.eucl
idean_tokenizer

Sets the tokenizer for Euclidean similarity
measure.

–

pg_similarity.hamm
ing_is_normalized

Sets if the result value is normalized or not. –

pg_similarity.hamm
ing_threshold

Sets the threshold used by the Block similarity
metric.

–

pg_similarity.jacc
ard_is_normalized

Sets if the result value is normalized or not. –

pg_similarity.jacc
ard_threshold

Sets the threshold used by the Jaccard
similarity measure.

–

pg_similarity.jacc
ard_tokenizer

Sets the tokenizer for Jaccard similarity
measure.

–

pg_similarity.jaro
_is_normalized

Sets if the result value is normalized or not. –

pg_similarity.jaro
_threshold

Sets the threshold used by the Jaro similarity
measure.

–

pg_similarity.jaro
winkler_is_normali
zed

Sets if the result value is normalized or not. –

pg_similarity.jaro
winkler_threshold

Sets the threshold used by the Jarowinkler
similarity measure.

–

pg_similarity.leve
nshtein_is_normali
zed

Sets if the result value is normalized or not. –

Aurora PostgreSQL parameters 2825

Amazon Aurora User Guide for Aurora

Parameter name Description Default

pg_similarity.leve
nshtein_threshold

Sets the threshold used by the Levenshtein
similarity measure.

–

pg_similarity.matc
hing_is_normalized

Sets if the result value is normalized or not. –

pg_similarity.matc
hing_threshold

Sets the threshold used by the Matching
Coefficient similarity measure.

–

pg_similarity.matc
hing_tokenizer

Sets the tokenizer for Matching Coefficient
similarity measure.

–

pg_similarity.mong
eelkan_is_normalized

Sets if the result value is normalized or not. –

pg_similarity.mong
eelkan_threshold

Sets the threshold used by the Monge-Elkan
similarity measure.

–

pg_similarity.mong
eelkan_tokenizer

Sets the tokenizer for Monge-Elkan similarity
measure.

–

pg_similarity.nw_g
ap_penalty

Sets the gap penalty used by the Needleman-
Wunsch similarity measure.

–

pg_similarity.nw_i
s_normalized

Sets if the result value is normalized or not. –

pg_similarity.nw_t
hreshold

Sets the threshold used by the Needleman-
Wunsch similarity measure.

–

pg_similarity.over
lap_is_normalized

Sets if the result value is normalized or not. –

pg_similarity.over
lap_threshold

Sets the threshold used by the Overlap
Coefficient similarity measure.

–

pg_similarity.over
lap_tokenizer

Sets the tokenizer for Overlap Coefficie
ntsimilarity measure.

–

Aurora PostgreSQL parameters 2826

Amazon Aurora User Guide for Aurora

Parameter name Description Default

pg_similarity.qgra
m_is_normalized

Sets if the result value is normalized or not. –

pg_similarity.qgra
m_threshold

Sets the threshold used by the Q-Gram
similarity measure.

–

pg_similarity.qgra
m_tokenizer

Sets the tokenizer for Q-Gram measure. –

pg_similarity.swg_
is_normalized

Sets if the result value is normalized or not. –

pg_similarity.swg_
threshold

Sets the threshold used by the Smith-Wat
erman-Gotoh similarity measure.

–

pg_similarity.sw_i
s_normalized

Sets if the result value is normalized or not. –

pg_similarity.sw_t
hreshold

Sets the threshold used by the Smith-Wat
erman similarity measure.

–

pg_stat_statements
.max

Sets the maximum number of statements
tracked by pg_stat_statements.

–

pg_stat_statements
.save

Save pg_stat_statements statistics across
server shutdowns.

–

pg_stat_statements
.track

Selects which statements are tracked by
pg_stat_statements.

–

pg_stat_statements
.track_planning

Selects whether planning duration is tracked
by pg_stat_statements.

–

pg_stat_statements
.track_utility

Selects whether utility commands are tracked
by pg_stat_statements.

–

postgis.gdal_enabl
ed_drivers

Enable or disable GDAL drivers used with
PostGIS in Postgres 9.3.5 and above.

ENABLE_ALL

Aurora PostgreSQL parameters 2827

Amazon Aurora User Guide for Aurora

Parameter name Description Default

quote_all_identifiers When generating SQL fragments, quote all
identifiers.

–

random_page_cost Sets the planners estimate of the cost of a
nonsequentially fetched disk page.

–

rds.enable_memory_
management

Improves memory management capabilities in
Aurora PostgreSQL 12.17, 13.13, 14.10, 15.5,
and higher versions that prevents stability
issues and database restarts caused by
insufficient free memory. For more informati
on, see Improved memory management in
Aurora PostgreSQL.

True

rds.force_admin_lo
gging_level

See log messages for RDS admin user actions
in customer databases.

–

rds.log_retention_
period

Amazon RDS will delete PostgreSQL log that
are older than N minutes.

4320

rds.memory_allocat
ion_guard

Improves memory management capabilities in
Aurora PostgreSQL 11.21, 12.16, 13.12, 14.9,
15.4, and older versions that prevents stability
issues and database restarts caused by
insufficient free memory. For more informati
on, see Improved memory management in
Aurora PostgreSQL.

False

rds.pg_stat_ramdis
k_size

Size of the stats ramdisk in MB. A nonzero
value will setup the ramdisk.

0

rds.rds_superuser_
reserved_connections

Sets the number of connection slots reserved
for rds_superusers. This parameter is only
available in versions 15 and earlier. For more
information, see the PostgreSQL documenta
tion reserved connections.

2

Aurora PostgreSQL parameters 2828

https://www.postgresql.org/docs/current/runtime-config-connection.html#GUC-RESERVED-CONNECTIONS

Amazon Aurora User Guide for Aurora

Parameter name Description Default

rds.superuser_vari
ables

List of superuser-only variables for which we
elevate rds_superuser modification statement
s.

session_replicatio
n_role

remove_temp_files_
after_crash

Remove temporary files after backend crash. 0

restart_after_crash Reinitialize server after backend crash. –

row_security Enable row security. –

search_path Sets the schema search order for names that
are not schema-qualified.

–

seq_page_cost Sets the planners estimate of the cost of a
sequentially fetched disk page.

–

session_replicatio
n_role

Sets the sessions behavior for triggers and
rewrite rules.

–

shared_buffers (8kB Sets the number of shared memory
buffers used by the server.

SUM(DBInstanceClas
sMemory/1
2038,-50003

shared_preload_lib
raries

Lists shared libraries to preload into server. pg_stat_statements

ssl_ca_file Location of the SSL server authority file. /rdsdbdata/rds-met
adata/ca-cert.pem

ssl_cert_file Location of the SSL server certificate file. /rdsdbdata/rds-met
adata/server-cert.
pem

ssl_crl_dir Location of the SSL certificate revocation list
directory.

/rdsdbdata/rds-met
adata/ssl_crl_dir/

Aurora PostgreSQL parameters 2829

Amazon Aurora User Guide for Aurora

Parameter name Description Default

ssl_key_file Location of the SSL server private key file /rdsdbdata/rds-met
adata/server-key.pem

standard_conformin
g_strings

Causes ... strings to treat backslashes literally. –

statement_timeout (ms Sets the maximum allowed duration of
any statement.

–

stats_temp_directory Writes temporary statistics files to the
specified directory.

/rdsdbdata/db/pg_s
tat_tmp

superuser_reserved
_connections

Sets the number of connection slots reserved
for superusers.

3

synchronize_seqscans Enable synchronized sequential scans. –

tcp_keepalives_count Maximum number of TCP keepalive retransmi
ts.

–

tcp_keepalives_idle (s Time between issuing TCP keepalives. –

tcp_keepalives_int
erval

(s Time between TCP keepalive retransmits. –

temp_buffers (8kB Sets the maximum number of temporary
buffers used by each session.

–

temp_file_limit Constrains the total amount disk space in
kilobytes that a given PostgreSQL process can
use for temporary files, excluding space used
for explicit temporary tables

-1

temp_tablespaces Sets the tablespace(s to use for temporary
tables and sort files.

–

track_activities Collects information about executing
commands.

–

Aurora PostgreSQL parameters 2830

Amazon Aurora User Guide for Aurora

Parameter name Description Default

track_activity_que
ry_size

Sets the size reserved for pg_stat_activity.c
urrent_query, in bytes.

4096

track_counts Collects statistics on database activity. –

track_functions Collects function-level statistics on database
activity.

pl

track_io_timing Collects timing statistics on database IO
activity.

1

transform_–_equals Treats expr=– as expr IS –. –

update_process_title Updates the process title to show the active
SQL command.

–

wal_receiver_statu
s_interval

(s Sets the maximum interval between WAL
receiver status reports to the primary.

–

work_mem (kB Sets the maximum memory to be used for
query workspaces.

–

xmlbinary Sets how binary values are to be encoded in
XML.

–

xmloption Sets whether XML data in implicit parsing and
serialization operations is to be considered as
documents or content fragments.

–

Amazon Aurora PostgreSQL wait events

The following are common wait events for Aurora PostgreSQL. To learn more about wait events
and tuning your Aurora PostgreSQL DB cluster, see Tuning with wait events for Aurora PostgreSQL.

Activity:ArchiverMain

The archiver process is waiting for activity.

Aurora PostgreSQL wait events 2831

Amazon Aurora User Guide for Aurora

Activity:AutoVacuumMain

The autovacuum launcher process is waiting for activity.

Activity:BgWriterHibernate

The background writer process is hibernating while waiting for activity.

Activity:BgWriterMain

The background writer process is waiting for activity.

Activity:CheckpointerMain

The checkpointer process is waiting for activity.

Activity:LogicalApplyMain

The logical replication apply process is waiting for activity.

Activity:LogicalLauncherMain

The logical replication launcher process is waiting for activity.

Activity:PgStatMain

The statistics collector process is waiting for activity.

Activity:RecoveryWalAll

A process is waiting for the write-ahead log (WAL) from a stream at recovery.

Activity:RecoveryWalStream

The startup process is waiting for the write-ahead log (WAL) to arrive during streaming
recovery.

Activity:SysLoggerMain

The syslogger process is waiting for activity.

Activity:WalReceiverMain

The write-ahead log (WAL) receiver process is waiting for activity.

Activity:WalSenderMain

The write-ahead log (WAL) sender process is waiting for activity.

Aurora PostgreSQL wait events 2832

Amazon Aurora User Guide for Aurora

Activity:WalWriterMain

The write-ahead log (WAL) writer process is waiting for activity.

BufferPin:BufferPin

A process is waiting to acquire an exclusive pin on a buffer.

Client:GSSOpenServer

A process is waiting to read data from the client while establishing a Generic Security Service
Application Program Interface (GSSAPI) session.

Client:ClientRead

A backend process is waiting to receive data from a PostgreSQL client. For more information,
see Client:ClientRead.

Client:ClientWrite

A backend process is waiting to send more data to a PostgreSQL client. For more information,
see Client:ClientWrite.

Client:LibPQWalReceiverConnect

A process is waiting in the write-ahead log (WAL) receiver to establish connection to remote
server.

Client:LibPQWalReceiverReceive

A process is waiting in the write-ahead log (WAL) receiver to receive data from remote server.

Client:SSLOpenServer

A process is waiting for Secure Sockets Layer (SSL) while attempting connection.

Client:WalReceiverWaitStart

A process is waiting for startup process to send initial data for streaming replication.

Client:WalSenderWaitForWAL

A process is waiting for the write-ahead log (WAL) to be flushed in the WAL sender process.

Client:WalSenderWriteData

A process is waiting for any activity when processing replies from the write-ahead log (WAL)
receiver in the WAL sender process.

Aurora PostgreSQL wait events 2833

Amazon Aurora User Guide for Aurora

CPU

A backend process is active in or is waiting for CPU. For more information, see CPU.

Extension:extension

A backend process is waiting for a condition defined by an extension or module.

IO:AuroraOptimizedReadsCacheRead

A process is waiting for a read from Optimized Reads tiered cache because the page isn't
available in shared memory.

IO:AuroraOptimizedReadsCacheSegmentTruncate

A process is waiting for an Optimized Reads tiered cache segment file to be truncated.

IO:AuroraOptimizedReadsCacheWrite

The background writer process is waiting to write in Optimized Reads tiered cache.

IO:AuroraStorageLogAllocate

A session is allocating metadata and preparing for a transaction log write.

IO:BufFileRead

When operations require more memory than the amount defined by working memory
parameters, the engine creates temporary files on disk. This wait event occurs when operations
read from the temporary files. For more information, see IO:BufFileRead and IO:BufFileWrite.

IO:BufFileWrite

When operations require more memory than the amount defined by working memory
parameters, the engine creates temporary files on disk. This wait event occurs when operations
write to the temporary files. For more information, see IO:BufFileRead and IO:BufFileWrite.

IO:ControlFileRead

A process is waiting for a read from the pg_control file.

IO:ControlFileSync

A process is waiting for the pg_control file to reach durable storage.

IO:ControlFileSyncUpdate

A process is waiting for an update to the pg_control file to reach durable storage.

Aurora PostgreSQL wait events 2834

Amazon Aurora User Guide for Aurora

IO:ControlFileWrite

A process is waiting for a write to the pg_control file.

IO:ControlFileWriteUpdate

A process is waiting for a write to update the pg_control file.

IO:CopyFileRead

A process is waiting for a read during a file copy operation.

IO:CopyFileWrite

A process is waiting for a write during a file copy operation.

IO:DataFileExtend

A process is waiting for a relation data file to be extended.

IO:DataFileFlush

A process is waiting for a relation data file to reach durable storage.

IO:DataFileImmediateSync

A process is waiting for an immediate synchronization of a relation data file to durable storage.

IO:DataFilePrefetch

A process is waiting for an asynchronous prefetch from a relation data file.

IO:DataFileSync

A process is waiting for changes to a relation data file to reach durable storage.

IO:DataFileRead

A backend process tried to find a page in the shared buffers, didn't find it, and so read it from
storage. For more information, see IO:DataFileRead.

IO:DataFileTruncate

A process is waiting for a relation data file to be truncated.

IO:DataFileWrite

A process is waiting for a write to a relation data file.

Aurora PostgreSQL wait events 2835

Amazon Aurora User Guide for Aurora

IO:DSMFillZeroWrite

A process is waiting to write zero bytes to a dynamic shared memory backing file.

IO:LockFileAddToDataDirRead

A process is waiting for a read while adding a line to the data directory lock file.

IO:LockFileAddToDataDirSync

A process is waiting for data to reach durable storage while adding a line to the data directory
lock file.

IO:LockFileAddToDataDirWrite

A process is waiting for a write while adding a line to the data directory lock file.

IO:LockFileCreateRead

A process is waiting to read while creating the data directory lock file.

IO:LockFileCreateSync

A process is waiting for data to reach durable storage while creating the data directory lock file.

IO:LockFileCreateWrite

A process is waiting for a write while creating the data directory lock file.

IO:LockFileReCheckDataDirRead

A process is waiting for a read during recheck of the data directory lock file.

IO:LogicalRewriteCheckpointSync

A process is waiting for logical rewrite mappings to reach durable storage during a checkpoint.

IO:LogicalRewriteMappingSync

A process is waiting for mapping data to reach durable storage during a logical rewrite.

IO:LogicalRewriteMappingWrite

A process is waiting for a write of mapping data during a logical rewrite.

IO:LogicalRewriteSync

A process is waiting for logical rewrite mappings to reach durable storage.

IO:LogicalRewriteTruncate

A process is waiting for the truncation of mapping data during a logical rewrite.

Aurora PostgreSQL wait events 2836

Amazon Aurora User Guide for Aurora

IO:LogicalRewriteWrite

A process is waiting for a write of logical rewrite mappings.

IO:RelationMapRead

A process is waiting for a read of the relation map file.

IO:RelationMapSync

A process is waiting for the relation map file to reach durable storage.

IO:RelationMapWrite

A process is waiting for a write to the relation map file.

IO:ReorderBufferRead

A process is waiting for a read during reorder buffer management.

IO:ReorderBufferWrite

A process is waiting for a write during reorder buffer management.

IO:ReorderLogicalMappingRead

A process is waiting for a read of a logical mapping during reorder buffer management.

IO:ReplicationSlotRead

A process is waiting for a read from a replication slot control file.

IO:ReplicationSlotRestoreSync

A process is waiting for a replication slot control file to reach durable storage while restoring it
to memory.

IO:ReplicationSlotSync

A process is waiting for a replication slot control file to reach durable storage.

IO:ReplicationSlotWrite

A process is waiting for a write to a replication slot control file.

IO:SLRUFlushSync

A process is waiting for simple least-recently used (SLRU) data to reach durable storage during a
checkpoint or database shutdown.

Aurora PostgreSQL wait events 2837

Amazon Aurora User Guide for Aurora

IO:SLRURead

A process is waiting for a read of a simple least-recently used (SLRU) page.

IO:SLRUSync

A process is waiting for simple least-recently used (SLRU) data to reach durable storage
following a page write.

IO:SLRUWrite

A process is waiting for a write of a simple least-recently used (SLRU) page.

IO:SnapbuildRead

A process is waiting for a read of a serialized historical catalog snapshot.

IO:SnapbuildSync

A process is waiting for a serialized historical catalog snapshot to reach durable storage.

IO:SnapbuildWrite

A process is waiting for a write of a serialized historical catalog snapshot.

IO:TimelineHistoryFileSync

A process is waiting for a timeline history file received through streaming replication to reach
durable storage.

IO:TimelineHistoryFileWrite

A process is waiting for a write of a timeline history file received through streaming replication.

IO:TimelineHistoryRead

A process is waiting for a read of a timeline history file.

IO:TimelineHistorySync

A process is waiting for a newly created timeline history file to reach durable storage.

IO:TimelineHistoryWrite

A process is waiting for a write of a newly created timeline history file.

IO:TwophaseFileRead

A process is waiting for a read of a two phase state file.

Aurora PostgreSQL wait events 2838

Amazon Aurora User Guide for Aurora

IO:TwophaseFileSync

A process is waiting for a two phase state file to reach durable storage.

IO:TwophaseFileWrite

A process is waiting for a write of a two phase state file.

IO:WALBootstrapSync

A process is waiting for the write-ahead log (WAL) to reach durable storage during
bootstrapping.

IO:WALBootstrapWrite

A process is waiting for a write of a write-ahead log (WAL) page during bootstrapping.

IO:WALCopyRead

A process is waiting for a read when creating a new write-ahead log (WAL) segment by copying
an existing one.

IO:WALCopySync

A process is waiting for a new write-ahead log (WAL) segment created by copying an existing
one to reach durable storage.

IO:WALCopyWrite

A process is waiting for a write when creating a new write-ahead log (WAL) segment by copying
an existing one.

IO:WALInitSync

A process is waiting for a newly initialized write-ahead log (WAL) file to reach durable storage.

IO:WALInitWrite

A process is waiting for a write while initializing a new write-ahead log (WAL) file.

IO:WALRead

A process is waiting for a read from a write-ahead log (WAL) file.

IO:WALSenderTimelineHistoryRead

A process is waiting for a read from a timeline history file during a WAL sender timeline
command.

Aurora PostgreSQL wait events 2839

Amazon Aurora User Guide for Aurora

IO:WALSync

A process is waiting for a write-ahead log (WAL) file to reach durable storage.

IO:WALSyncMethodAssign

A process is waiting for data to reach durable storage while assigning a new write-ahead log
(WAL) sync method.

IO:WALWrite

A process is waiting for a write to a write-ahead log (WAL) file.

IO:XactSync

A backend process is waiting for the Aurora storage subsystem to acknowledge the commit of a
regular transaction, or the commit or rollback of a prepared transaction. For more information,
see IO:XactSync.

IPC:BackupWaitWalArchive

A process is waiting for write-ahead log (WAL) files required for a backup to be successfully
archived.

IPC:AuroraOptimizedReadsCacheWriteStop

A process is waiting for the background writer to stop writing into Optimized Reads tiered
cache.

IPC:BgWorkerShutdown

A process is waiting for a background worker to shut down.

IPC:BgWorkerStartup

A process is waiting for a background worker to start.

IPC:BtreePage

A process is waiting for the page number needed to continue a parallel B-tree scan to become
available.

IPC:CheckpointDone

A process is waiting for a checkpoint to complete.

IPC:CheckpointStart

A process is waiting for a checkpoint to start.

Aurora PostgreSQL wait events 2840

Amazon Aurora User Guide for Aurora

IPC:ClogGroupUpdate

A process is waiting for the group leader to update the transaction status at a transaction's end.

IPC:DamRecordTxAck

A backend process has generated a database activity streams event and is waiting for the event
to become durable. For more information, see IPC:DamRecordTxAck.

IPC:ExecuteGather

A process is waiting for activity from a child process while executing a Gather plan node.

IPC:Hash/Batch/Allocating

A process is waiting for an elected parallel hash participant to allocate a hash table.

IPC:Hash/Batch/Electing

A process is electing a parallel hash participant to allocate a hash table.

IPC:Hash/Batch/Loading

A process is waiting for other parallel hash participants to finish loading a hash table.

IPC:Hash/Build/Allocating

A process is waiting for an elected parallel hash participant to allocate the initial hash table.

IPC:Hash/Build/Electing

A process is electing a parallel hash participant to allocate the initial hash table.

IPC:Hash/Build/HashingInner

A process is waiting for other parallel hash participants to finish hashing the inner relation.

IPC:Hash/Build/HashingOuter

A process is waiting for other parallel hash participants to finish partitioning the outer relation.

IPC:Hash/GrowBatches/Allocating

A process is waiting for an elected parallel hash participant to allocate more batches.

IPC:Hash/GrowBatches/Deciding

A process is electing a parallel hash participant to decide on future batch growth.

Aurora PostgreSQL wait events 2841

Amazon Aurora User Guide for Aurora

IPC:Hash/GrowBatches/Electing

A process is electing a parallel hash participant to allocate more batches.

IPC:Hash/GrowBatches/Finishing

A process is waiting for an elected parallel hash participant to decide on future batch growth.

IPC:Hash/GrowBatches/Repartitioning

A process is waiting for other parallel hash participants to finishing repartitioning.

IPC:Hash/GrowBuckets/Allocating

A process is waiting for an elected parallel hash participant to finish allocating more buckets.

IPC:Hash/GrowBuckets/Electing

A process is electing a parallel hash participant to allocate more buckets.

IPC:Hash/GrowBuckets/Reinserting

A process is waiting for other parallel hash participants to finish inserting tuples into new
buckets.

IPC:HashBatchAllocate

A process is waiting for an elected parallel hash participant to allocate a hash table.

IPC:HashBatchElect

A process is waiting to elect a parallel hash participant to allocate a hash table.

IPC:HashBatchLoad

A process is waiting for other parallel hash participants to finish loading a hash table.

IPC:HashBuildAllocate

A process is waiting for an elected parallel hash participant to allocate the initial hash table.

IPC:HashBuildElect

A process is waiting to elect a parallel hash participant to allocate the initial hash table.

IPC:HashBuildHashInner

A process is waiting for other parallel hash participants to finish hashing the inner relation.

Aurora PostgreSQL wait events 2842

Amazon Aurora User Guide for Aurora

IPC:'HashBuildHashOuter

A process is waiting for other parallel hash participants to finish partitioning the outer relation.

IPC:HashGrowBatchesAllocate

A process is waiting for an elected parallel hash participant to allocate more batches.

IPC:'HashGrowBatchesDecide

A process is waiting to elect a parallel hash participant to decide on future batch growth.

IPC:HashGrowBatchesElect

A process is waiting to elect a parallel hash participant to allocate more batches.

IPC:HashGrowBatchesFinish

A process is waiting for an elected parallel hash participant to decide on future batch growth.

IPC:HashGrowBatchesRepartition

A process is waiting for other parallel hash participants to finish repartitioning.

IPC:HashGrowBucketsAllocate

A process is waiting for an elected parallel hash participant to finish allocating more buckets.

IPC:HashGrowBucketsElect

A process is waiting to elect a parallel hash participant to allocate more buckets.

IPC:HashGrowBucketsReinsert

A process is waiting for other parallel hash participants to finish inserting tuples into new
buckets.

IPC:LogicalSyncData

A process is waiting for a logical replication remote server to send data for initial table
synchronization.

IPC:LogicalSyncStateChange

A process is waiting for a logical replication remote server to change state.

IPC:MessageQueueInternal

A process is waiting for another process to be attached to a shared message queue.

Aurora PostgreSQL wait events 2843

Amazon Aurora User Guide for Aurora

IPC:MessageQueuePutMessage

A process is waiting to write a protocol message to a shared message queue.

IPC:MessageQueueReceive

A process is waiting to receive bytes from a shared message queue.

IPC:MessageQueueSend

A process is waiting to send bytes to a shared message queue.

IPC:ParallelBitmapScan

A process is waiting for a parallel bitmap scan to become initialized.

IPC:ParallelCreateIndexScan

A process is waiting for parallel CREATE INDEX workers to finish a heap scan.

IPC:ParallelFinish

A process is waiting for parallel workers to finish computing.

IPC:ProcArrayGroupUpdate

A process is waiting for the group leader to clear the transaction ID at the end of a parallel
operation.

IPC:ProcSignalBarrier

A process is waiting for a barrier event to be processed by all backends.

IPC:Promote

A process is waiting for standby promotion.

IPC:RecoveryConflictSnapshot

A process is waiting for recovery conflict resolution for a vacuum cleanup.

IPC:RecoveryConflictTablespace

A process is waiting for recovery conflict resolution for dropping a tablespace.

IPC:RecoveryPause

A process is waiting for recovery to be resumed.

IPC:ReplicationOriginDrop

A process is waiting for a replication origin to become inactive so it can be dropped.

Aurora PostgreSQL wait events 2844

Amazon Aurora User Guide for Aurora

IPC:ReplicationSlotDrop

A process is waiting for a replication slot to become inactive so it can be dropped.

IPC:SafeSnapshot

A process is waiting to obtain a valid snapshot for a READ ONLY DEFERRABLE transaction.

IPC:SyncRep

A process is waiting for confirmation from a remote server during synchronous replication.

IPC:XactGroupUpdate

A process is waiting for the group leader to update the transaction status at the end of a
parallel operation.

Lock:advisory

A backend process requested an advisory lock and is waiting for it. For more information, see
Lock:advisory.

Lock:extend

A backend process is waiting for a lock to be released so that it can extend a relation. This
lock is needed because only one backend process can extend a relation at a time. For more
information, see Lock:extend.

Lock:frozenid

A process is waiting to update pg_database.datfrozenxid and
pg_database.datminmxid.

Lock:object

A process is waiting to get a lock on a nonrelation database object.

Lock:page

A process is waiting to get a lock on a page of a relation.

Lock:Relation

A backend process is waiting to acquire a lock on a relation that is locked by another
transaction. For more information, see Lock:Relation.

Lock:spectoken

A process is waiting to get a speculative insertion lock.

Aurora PostgreSQL wait events 2845

Amazon Aurora User Guide for Aurora

Lock:speculative token

A process is waiting to acquire a speculative insertion lock.

Lock:transactionid

A transaction is waiting for a row-level lock. For more information, see Lock:transactionid.

Lock:tuple

A backend process is waiting to acquire a lock on a tuple while another backend process holds a
conflicting lock on the same tuple. For more information, see Lock:tuple.

Lock:userlock

A process is waiting to get a user lock.

Lock:virtualxid

A process is waiting to get a virtual transaction ID lock.

LWLock:AddinShmemInit

A process is waiting to manage an extension's space allocation in shared memory.

LWLock:AddinShmemInitLock

A process is waiting to manage space allocation in shared memory.

LWLock:async

A process is waiting for I/O on an async (notify) buffer.

LWLock:AsyncCtlLock

A process is waiting to read or update a shared notification state.

LWLock:AsyncQueueLock

A process is waiting to read or update notification messages.

LWLock:AuroraOptimizedReadsCacheMapping

A process is waiting to associate a data block with a page in the Optimized Reads tiered cache.

LWLock:AutoFile

A process is waiting to update the postgresql.auto.conf file.

Aurora PostgreSQL wait events 2846

Amazon Aurora User Guide for Aurora

LWLock:AutoFileLock

A process is waiting to update the postgresql.auto.conf file.

LWLock:Autovacuum

A process is waiting to read or update the current state of autovacuum workers.

LWLock:AutovacuumLock

An autovacuum worker or launcher is waiting to update or read the current state of autovacuum
workers.

LWLock:AutovacuumSchedule

A process is waiting to ensure that a table selected for autovacuum still needs vacuuming.

LWLock:AutovacuumScheduleLock

A process is waiting to ensure that the table it has selected for a vacuum still needs vacuuming.

LWLock:BackendRandomLock

A process is waiting to generate a random number.

LWLock:BackgroundWorker

A process is waiting to read or update background worker state.

LWLock:BackgroundWorkerLock

A process is waiting to read or update the background worker state.

LWLock:BtreeVacuum

A process is waiting to read or update vacuum-related information for a B-tree index.

LWLock:BtreeVacuumLock

A process is waiting to read or update vacuum-related information for a B-tree index.

LWLock:buffer_content

A backend process is waiting to acquire a lightweight lock on the contents of a shared memory
buffer. For more information, see LWLock:buffer_content (BufferContent).

LWLock:buffer_mapping

A backend process is waiting to associate a data block with a buffer in the shared buffer pool.
For more information, see LWLock:buffer_mapping.

Aurora PostgreSQL wait events 2847

Amazon Aurora User Guide for Aurora

LWLock:BufferIO

A backend process wants to read a page into shared memory. The process is waiting for
other processes to finish their I/O for the page. For more information, see LWLock:BufferIO
(IPC:BufferIO).

LWLock:Checkpoint

A process is waiting to begin a checkpoint.

LWLock:CheckpointLock

A process is waiting to perform checkpoint.

LWLock:CheckpointerComm

A process is waiting to manage fsync requests.

LWLock:CheckpointerCommLock

A process is waiting to manage fsync requests.

LWLock:clog

A process is waiting for I/O on a clog (transaction status) buffer.

LWLock:CLogControlLock

A process is waiting to read or update transaction status.

LWLock:CLogTruncationLock

A process is waiting to run txid_status or update the oldest transaction ID available to it.

LWLock:commit_timestamp

A process is waiting for I/O on a commit timestamp buffer.

LWLock:CommitTs

A process is waiting to read or update the last value set for a transaction commit timestamp.

LWLock:CommitTsBuffer

A process is waiting for I/O on a simple least-recently used (SLRU) buffer for a commit
timestamp.

LWLock:CommitTsControlLock

A process is waiting to read or update transaction commit timestamps.

Aurora PostgreSQL wait events 2848

Amazon Aurora User Guide for Aurora

LWLock:CommitTsLock

A process is waiting to read or update the last value set for the transaction timestamp.

LWLock:CommitTsSLRU

A process is waiting to access the simple least-recently used (SLRU) cache for a commit
timestamp.

LWLock:ControlFile

A process is waiting to read or update the pg_control file or create a new write-ahead log
(WAL) file.

LWLock:ControlFileLock

A process is waiting to read or update the control file or creation of a new write-ahead log
(WAL) file.

LWLock:DynamicSharedMemoryControl

A process is waiting to read or update dynamic shared memory allocation information.

LWLock:DynamicSharedMemoryControlLock

A process is waiting to read or update the dynamic shared memory state.

LWLock:lock_manager

A backend process is waiting to add or examine locks for backend processes. Or it's waiting
to join or exit a locking group that is used by parallel query. For more information, see
LWLock:lock_manager.

LWLock:LockFastPath

A process is waiting to read or update a process's fast-path lock information.

LWLock:LogicalRepWorker

A process is waiting to read or update the state of logical replication workers.

LWLock:LogicalRepWorkerLock

A process is waiting for an action on a logical replication worker to finish.

LWLock:multixact_member

A process is waiting for I/O on a multixact_member buffer.

Aurora PostgreSQL wait events 2849

Amazon Aurora User Guide for Aurora

LWLock:multixact_offset

A process is waiting for I/O on a multixact offset buffer.

LWLock:MultiXactGen

A process is waiting to read or update shared multixact state.

LWLock:MultiXactGenLock

A process is waiting to read or update a shared multixact state.

LWLock:MultiXactMemberBuffer

A process is waiting for I/O on a simple least-recently used (SLRU) buffer for a multixact
member. For more information, see LWLock:MultiXact.

LWLock:MultiXactMemberControlLock

A process is waiting to read or update multixact member mappings.

LWLock:MultiXactMemberSLRU

A process is waiting to access the simple least-recently used (SLRU) cache for a multixact
member. For more information, see LWLock:MultiXact.

LWLock:MultiXactOffsetBuffer

A process is waiting for I/O on a simple least-recently used (SLRU) buffer for a multixact offset.
For more information, see LWLock:MultiXact.

LWLock:MultiXactOffsetControlLock

A process is waiting to read or update multixact offset mappings.

LWLock:MultiXactOffsetSLRU

A process is waiting to access the simple least-recently used (SLRU) cache for a multixact offset.
For more information, see LWLock:MultiXact.

LWLock:MultiXactTruncation

A process is waiting to read or truncate multixact information.

LWLock:MultiXactTruncationLock

A process is waiting to read or truncate multixact information.

Aurora PostgreSQL wait events 2850

Amazon Aurora User Guide for Aurora

LWLock:NotifyBuffer

A process is waiting for I/O on the simple least-recently used (SLRU) buffer for a NOTIFY
message.

LWLock:NotifyQueue

A process is waiting to read or update NOTIFY messages.

LWLock:NotifyQueueTail

A process is waiting to update a limit on NOTIFY message storage.

LWLock:NotifyQueueTailLock

A process is waiting to update limit on notification message storage.

LWLock:NotifySLRU

A process is waiting to access the simple least-recently used (SLRU) cache for a NOTIFY
message.

LWLock:OidGen

A process is waiting to allocate a new object ID (OID).

LWLock:OidGenLock

A process is waiting to allocate or assign an object ID (OID).

LWLock:oldserxid

A process is waiting for I/O on an oldserxid buffer.

LWLock:OldSerXidLock

A process is waiting to read or record conflicting serializable transactions.

LWLock:OldSnapshotTimeMap

A process is waiting to read or update old snapshot control information.

LWLock:OldSnapshotTimeMapLock

A process is waiting to read or update old snapshot control information.

LWLock:parallel_append

A process is waiting to choose the next subplan during parallel append plan execution.

Aurora PostgreSQL wait events 2851

Amazon Aurora User Guide for Aurora

LWLock:parallel_hash_join

A process is waiting to allocate or exchange a chunk of memory or update counters during a
parallel hash plan execution.

LWLock:parallel_query_dsa

A process is waiting for a lock on dynamic shared memory allocation for a parallel query.

LWLock:ParallelAppend

A process is waiting to choose the next subplan during parallel append plan execution.

LWLock:ParallelHashJoin

A process is waiting to synchronize workers during plan execution for a parallel hash join.

Lwlock:ParallelQueryDSA

A process is waiting for dynamic shared memory allocation for a parallel query.

Lwlock:PerSessionDSA

A process is waiting for dynamic shared memory allocation for a parallel query.

Lwlock:PerSessionRecordType

A process is waiting to access a parallel query's information about composite types.

Lwlock:PerSessionRecordTypmod

A process is waiting to access a parallel query's information about type modifiers that identify
anonymous record types.

Lwlock:PerXactPredicateList

A process is waiting to access the list of predicate locks held by the current serializable
transaction during a parallel query.

Lwlock:predicate_lock_manager

A process is waiting to add or examine predicate lock information.

Lwlock:PredicateLockManager

A process is waiting to access predicate lock information used by serializable transactions.

Lwlock:proc

A process is waiting to read or update the fast-path lock information.

Aurora PostgreSQL wait events 2852

Amazon Aurora User Guide for Aurora

LWLock:ProcArray

A process is waiting to access the shared per-process data structures (typically, to get a
snapshot or report a session's transaction ID).

LWLock:ProcArrayLock

A process is waiting to get a snapshot or clearing a transaction Id at a transaction's end.

LWLock:RelationMapping

A process is waiting to read or update a pg_filenode.map file (used to track the file-node
assignments of certain system catalogs).

LWLock:RelationMappingLock

A process is waiting to update the relation map file used to store catalog-to-file-node mapping.

LWLock:RelCacheInit

A process is waiting to read or update a pg_internal.init file (a relation cache initialization
file).

LWLock:RelCacheInitLock

A process is waiting to read or write a relation cache initialization file.

LWLock:replication_origin

A process is waiting to read or update the replication progress.

LWLock:replication_slot_io

A process is waiting for I/O on a replication slot.

LWLock:ReplicationOrigin

A process is waiting to create, drop, or use a replication origin.

LWLock:ReplicationOriginLock

A process is waiting to set up, drop, or use a replication origin.

LWLock:ReplicationOriginState

A process is waiting to read or update the progress of one replication origin.

LWLock:ReplicationSlotAllocation

A process is waiting to allocate or free a replication slot.

Aurora PostgreSQL wait events 2853

Amazon Aurora User Guide for Aurora

LWLock:ReplicationSlotAllocationLock

A process is waiting to allocate or free a replication slot.

LWLock:ReplicationSlotControl

A process is waiting to read or update a replication slot state.

LWLock:ReplicationSlotControlLock

A process is waiting to read or update the replication slot state.

LWLock:ReplicationSlotIO

A process is waiting for I/O on a replication slot.

LWLock:SerialBuffer

A process is waiting for I/O on a simple least-recently used (SLRU) buffer for a serializable
transaction conflict.

LWLock:SerializableFinishedList

A process is waiting to access the list of finished serializable transactions.

LWLock:SerializableFinishedListLock

A process is waiting to access the list of finished serializable transactions.

LWLock:SerializablePredicateList

A process is waiting to access the list of predicate locks held by serializable transactions.

LWLock:SerializablePredicateLockListLock

A process is waiting to perform an operation on a list of locks held by serializable transactions.

LWLock:SerializableXactHash

A process is waiting to read or update information about serializable transactions.

LWLock:SerializableXactHashLock

A process is waiting to retrieve or store information about serializable transactions.

LWLock:SerialSLRU

A process is waiting to access the simple least-recently used (SLRU) cache for a serializable
transaction conflict.

Aurora PostgreSQL wait events 2854

Amazon Aurora User Guide for Aurora

LWLock:SharedTidBitmap

A process is waiting to access a shared tuple identifier (TID) bitmap during a parallel bitmap
index scan.

LWLock:SharedTupleStore

A process is waiting to access a shared tuple store during a parallel query.

LWLock:ShmemIndex

A process is waiting to find or allocate space in shared memory.

LWLock:ShmemIndexLock

A process is waiting to find or allocate space in shared memory.

LWLock:SInvalRead

A process is waiting to retrieve messages from the shared catalog invalidation queue.

LWLock:SInvalReadLock

A process is waiting to retrieve or remove messages from a shared invalidation queue.

LWLock:SInvalWrite

A process is waiting to add a message to the shared catalog invalidation queue.

LWLock:SInvalWriteLock

A process is waiting to add a message in a shared invalidation queue.

LWLock:subtrans

A process is waiting for I/O on a subtransaction buffer.

LWLock:SubtransBuffer

A process is waiting for I/O on a simple least-recently used (SLRU) buffer for a subtransaction.

LWLock:SubtransControlLock

A process is waiting to read or update subtransaction information.

LWLock:SubtransSLRU

A process is waiting to access the simple least-recently used (SLRU) cache for a subtransaction.

Aurora PostgreSQL wait events 2855

Amazon Aurora User Guide for Aurora

LWLock:SyncRep

A process is waiting to read or update information about the state of synchronous replication.

LWLock:SyncRepLock

A process is waiting to read or update information about synchronous replicas.

LWLock:SyncScan

A process is waiting to select the starting location of a synchronized table scan.

LWLock:SyncScanLock

A process is waiting to get the start location of a scan on a table for synchronized scans.

LWLock:TablespaceCreate

A process is waiting to create or drop a tablespace.

LWLock:TablespaceCreateLock

A process is waiting to create or drop the tablespace.

LWLock:tbm

A process is waiting for a shared iterator lock on a tree bitmap (TBM).

LWLock:TwoPhaseState

A process is waiting to read or update the state of prepared transactions.

LWLock:TwoPhaseStateLock

A process is waiting to read or update the state of prepared transactions.

LWLock:wal_insert

A process is waiting to insert the write-ahead log (WAL) into a memory buffer.

LWLock:WALBufMapping

A process is waiting to replace a page in write-ahead log (WAL) buffers.

LWLock:WALBufMappingLock

A process is waiting to replace a page in write-ahead log (WAL) buffers.

LWLock:WALInsert

A process is waiting to insert write-ahead log (WAL) data into a memory buffer.

Aurora PostgreSQL wait events 2856

Amazon Aurora User Guide for Aurora

LWLock:WALWrite

A process is waiting for write-ahead log (WAL) buffers to be written to disk.

LWLock:WALWriteLock

A process is waiting for write-ahead log (WAL) buffers to be written to disk.

LWLock:WrapLimitsVacuum

A process is waiting to update limits on transaction ID and multixact consumption.

LWLock:WrapLimitsVacuumLock

A process is waiting to update limits on transaction ID and multixact consumption.

LWLock:XactBuffer

A process is waiting for I/O on a simple least-recently used (SLRU) buffer for a transaction
status.

LWLock:XactSLRU

A process is waiting to access the simple least-recently used (SLRU) cache for a transaction
status.

LWLock:XactTruncation

A process is waiting to run pg_xact_status or update the oldest transaction ID available to it.

LWLock:XidGen

A process is waiting to allocate a new transaction ID.

LWLock:XidGenLock

A process is waiting to allocate or assign a transaction ID.

Timeout:BaseBackupThrottle

A process is waiting during base backup when throttling activity.

Timeout:PgSleep

A backend process has called the pg_sleep function and is waiting for the sleep timeout to
expire. For more information, see Timeout:PgSleep.

Timeout:RecoveryApplyDelay

A process is waiting to apply write-ahead log (WAL) during recovery because of a delay setting.

Aurora PostgreSQL wait events 2857

Amazon Aurora User Guide for Aurora

Timeout:RecoveryRetrieveRetryInterval

A process is waiting during recovery when write-ahead log (WAL) data is not available from any
source (pg_wal, archive, or stream).

Timeout:VacuumDelay

A process is waiting in a cost-based vacuum delay point.

For a complete list of PostgreSQL wait events, see The Statistics Collector > Wait Event tables in
the PostgreSQL documentation.

Aurora PostgreSQL wait events 2858

https://www.postgresql.org/docs/current/monitoring-stats.html#WAIT-EVENT-TABLE

Amazon Aurora User Guide for Aurora

Amazon Aurora PostgreSQL updates

Following, you can find information about Amazon Aurora PostgreSQL engine version releases and
updates. You can also find information about how to upgrade your Aurora PostgreSQL engine. For
more information about Aurora releases in general, see Amazon Aurora versions.

Tip

You can minimize the downtime required for a DB cluster upgrade by using a blue/green
deployment. For more information, see Using Blue/Green Deployments for database
updates.

Topics

• Identifying versions of Amazon Aurora PostgreSQL

• Amazon Aurora PostgreSQL releases and engine versions

• Extension versions for Amazon Aurora PostgreSQL

• Upgrading Amazon Aurora PostgreSQL DB clusters

• Aurora PostgreSQL long-term support (LTS) releases

Identifying versions of Amazon Aurora PostgreSQL

Amazon Aurora includes certain features that are general to Aurora and available to all Aurora DB
clusters. Aurora includes other features that are specific to a particular database engine that Aurora
supports. These features are available only to those Aurora DB clusters that use that database
engine, such as Aurora PostgreSQL.

An Aurora database release typically has two version numbers, the database engine version
number and the Aurora version number. If an Aurora PostgreSQL release has an Aurora version
number, it's included after the engine version number in the Amazon Aurora PostgreSQL releases
and engine versions listing.

Aurora version number

Aurora version numbers use the major.minor.patch naming scheme. An Aurora patch version
includes important bug fixes added to a minor version after its release. To learn more about

Aurora PostgreSQL updates 2859

Amazon Aurora User Guide for Aurora

Amazon Aurora major, minor, and patch releases, see Amazon Aurora major versions, Amazon
Aurora minor versions, and Amazon Aurora patch versions.

You can find out the Aurora version number of your Aurora PostgreSQL DB instance with the
following SQL query:

postgres=> SELECT aurora_version();

Starting with the release of PostgreSQL versions 13.3, 12.8, 11.13, 10.18, and for all other later
versions, Aurora version numbers align more closely to the PostgreSQL engine version. For
example, querying an Aurora PostgreSQL 13.3 DB cluster returns the following:

aurora_version

 13.3.1
(1 row)

Prior releases, such as Aurora PostgreSQL 10.14 DB cluster, return version numbers similar to the
following:

aurora_version

 2.7.3
(1 row)

PostgreSQL engine version numbers

Starting with PostgreSQL 10, PostgreSQL database engine versions use a major.minor numbering
scheme for all releases. Some examples include PostgreSQL 10.18, PostgreSQL 12.7, and
PostgreSQL 13.3.

Releases prior to PostgreSQL 10 used a major.major.minor numbering scheme in which the
first two digits make up the major version number and a third digit denotes a minor version. For
example, PostgreSQL 9.6 was a major version, with minor versions 9.6.21 or 9.6.22 indicated by the
third digit.

Identifying versions of Amazon Aurora PostgreSQL 2860

Amazon Aurora User Guide for Aurora

Note

The PostgreSQL engine version 9.6 is no longer supported. To upgrade, see Upgrading
Amazon Aurora PostgreSQL DB clusters. For version policies and release timelines, see How
long Amazon Aurora major versions remain available.

You can find out the PostgreSQL database engine version number with the following SQL query:

postgres=> SELECT version();

For an Aurora PostgreSQL 13.3 DB cluster, the results are as follows:

version

 PostgreSQL 13.3 on x86_64-pc-linux-gnu, compiled by x86_64-pc-linux-gnu-gcc (GCC)
 7.4.0, 64-bit
(1 row)

Amazon Aurora PostgreSQL releases and engine versions

Amazon Aurora PostgreSQL-Compatible Edition releases are updated regularly. Updates are
applied to Aurora PostgreSQL DB clusters during system maintenance windows. When updates
are applied depends on the type of update, the AWS Region, and maintenance window setting
for the DB cluster. Many of the listed releases include both a PostgreSQL version number and an
Amazon Aurora version number. However, starting with the release of PostgreSQL versions 13.3,
12.8, 11.13, 10.18, and for all other later versions, Aurora version numbers aren't used. To identify
the version numbers of your Aurora PostgreSQL database, see Identifying versions of Amazon
Aurora PostgreSQL.

For information about extensions and modules, see Extension versions for Amazon Aurora
PostgreSQL.

Note

For information about Amazon Aurora version policies and release timelines, see How long
Amazon Aurora major versions remain available.

Aurora PostgreSQL releases 2861

Amazon Aurora User Guide for Aurora

For information about support for Amazon Aurora see Amazon RDS FAQs.

To determine which Aurora PostgreSQL DB engine versions are available in an AWS Region, use the
describe-db-engine-versions AWS CLI command. For example:

aws rds describe-db-engine-versions --engine aurora-postgresql --query '*[].
[EngineVersion]' --output text --region aws-region

For a list of AWS Regions, see Aurora PostgreSQL Region availability.

For details about the PostgreSQL versions that are available on Aurora PostgreSQL, see the Release
Notes for Aurora PostgreSQL.

Extension versions for Amazon Aurora PostgreSQL

You can install and configure various PostgreSQL extensions for use with Aurora PostgreSQL
DB clusters. For example, you can use the PostgreSQL pg_partman extension to automate the
creation and maintenance of table partitions. To learn more about this and other extensions
available for Aurora PostgreSQL, see Working with extensions and foreign data wrappers.

For details about the PostgreSQL extensions that are supported on Aurora PostgreSQL, see
Extension versions for Amazon Aurora PostgreSQL in Release Notes for Aurora PostgreSQL.

Upgrading Amazon Aurora PostgreSQL DB clusters

Amazon Aurora makes new versions of the PostgreSQL database engine available in AWS Regions
only after extensive testing. You can upgrade your Aurora PostgreSQL DB clusters to the new
version when it's available in your Region.

Depending on the version of Aurora PostgreSQL that your DB cluster is currently running, an
upgrade to the new release is either a minor upgrade or a major upgrade. For example, upgrading
an Aurora PostgreSQL 11.15 DB cluster to Aurora PostgreSQL 13.6 is a major version upgrade.
Upgrading an Aurora PostgreSQL 13.3 DB cluster to Aurora PostgreSQL 13.7 is a minor version
upgrade. In the following topics, you can find information about how to perform both types of
upgrades.

Contents

• Overview of the Aurora PostgreSQL upgrade processes

• Getting a list of available versions in your AWS Region

Extension versions for Aurora PostgreSQL 2862

https://aws.amazon.com/rds/faqs/
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-engine-versions.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/Welcome.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/Welcome.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Extensions.html

Amazon Aurora User Guide for Aurora

• How to perform a major version upgrade

• Testing an upgrade of your production DB cluster to a new major version

• Post-upgrade recommendations

• Upgrading the Aurora PostgreSQL engine to a new major version

• Major upgrades for global databases

• Before performing a minor version upgrade

• How to perform minor version upgrades and apply patches

• Minor release upgrades and zero-downtime patching

• Upgrading the Aurora PostgreSQL engine to a new minor version

• Upgrading PostgreSQL extensions

• Alternative blue/green upgrade technique

Overview of the Aurora PostgreSQL upgrade processes

The differences between major and minor version upgrades are as follows:

Minor version upgrades and patches

Minor version upgrades and patches include only those changes that are backward-compatible
with existing applications. Minor version upgrades and patches become available to you only
after Aurora PostgreSQL tests and approves them.

Minor version upgrades can be applied for you automatically by Aurora. When you create a
new Aurora PostgreSQL DB cluster, the Enable minor version upgrade option is preselected.
Unless you turn off this option, minor version upgrades are applied automatically during your
scheduled maintenance window. For more information about the automatic minor version
upgrade (AmVU) option and how to modify your Aurora DB cluster to use it, see Automatic
minor version upgrades for Aurora DB clusters.

If the automatic minor version upgrade option isn't set for your Aurora PostgreSQL DB cluster,
your Aurora PostgreSQL isn't automatically upgraded to the new minor version. Instead, when
a new minor version is released in your AWS Region and your Aurora PostgreSQL DB cluster
is running an older minor version, Aurora prompts you to upgrade. It does so by adding a
recommendation to the maintenance tasks for your cluster.

Patches aren't considered an upgrade, and they aren't applied automatically. Aurora PostgreSQL
prompts you to apply any patches by adding a recommendation to maintenance tasks for

Upgrading Amazon Aurora PostgreSQL DB clusters 2863

Amazon Aurora User Guide for Aurora

your Aurora PostgreSQL DB cluster. For more information, see How to perform minor version
upgrades and apply patches.

Note

Patches that resolve security or other critical issues are also added as maintenance
tasks. However, these patches are required. Make sure to apply security patches to
your Aurora PostgreSQL DB cluster when they become available in your pending
maintenance tasks.

The upgrade process involves the possibility of brief outages as each instance in the cluster
is upgraded to the new version. However, after Aurora PostgreSQL versions 14.3.3, 13.7.3,
12.11.3, 11.16.3, 10.21.3 and other higher releases of these minor versions and newer major
versions, the upgrade process uses the zero-downtime patching (ZDP) feature. This feature
minimizes outages, and in most cases completely eliminates them. For more information, see
Minor release upgrades and zero-downtime patching.

Note

ZDP isn't supported in the following cases:

• When Aurora PostgreSQL DB clusters are configured as Aurora Serverless v1.

• When Aurora PostgreSQL DB clusters are configured as Aurora global database in the
secondary AWS Regions.

• During the upgrade of reader instances in Aurora global database.

• During OS patches and OS upgrades.
ZDP is supported for Aurora PostgreSQL DB clusters that are configured as Aurora
Serverless v2.

Major version upgrades

Unlike for minor version upgrades and patches, Aurora PostgreSQL doesn't have an automatic
major version upgrade option. New major PostgreSQL versions might contain database changes
that aren't backward-compatible with existing applications. The new functionality can cause
your existing applications to stop working correctly.

Upgrading Amazon Aurora PostgreSQL DB clusters 2864

Amazon Aurora User Guide for Aurora

To prevent any issues, we strongly recommend that you follow the process outlined in Testing
an upgrade of your production DB cluster to a new major version before upgrading the DB
instances in your Aurora PostgreSQL DB clusters. First ensure that your applications can run
on the new version by following that procedure. Then you can manually upgrade your Aurora
PostgreSQL DB cluster to the new version.

The upgrade process involves the possibility of brief outage when all the instances in the
cluster are upgraded to the new version. The preliminary planning process also takes time. We
recommend that you always perform upgrade tasks during your cluster's maintenance window
or when operations are minimal. For more information, see How to perform a major version
upgrade.

Note

Both minor version upgrades and major version upgrades might involve brief outages. For
that reason, we recommend strongly that you perform or schedule upgrades during your
maintenance window or during other periods of low utilization.

Aurora PostgreSQL DB clusters occasionally require operating system updates. These updates
might include a newer version of glibc library. During such updates, we recommend you to follow
the guidelines as described in Collations supported in Aurora PostgreSQL.

Getting a list of available versions in your AWS Region

You can get a list of all engine versions available as upgrade targets for your Aurora PostgreSQL DB
cluster by querying your AWS Region using the describe-db-engine-versions AWS CLI command, as
follows.

For Linux, macOS, or Unix:

aws rds describe-db-engine-versions \
 --engine aurora-postgresql \
 --engine-version version-number \
 --query 'DBEngineVersions[*].ValidUpgradeTarget[*].{EngineVersion:EngineVersion}' \
 --output text

For Windows:

Upgrading Amazon Aurora PostgreSQL DB clusters 2865

https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-engine-versions.html

Amazon Aurora User Guide for Aurora

aws rds describe-db-engine-versions ^
 --engine aurora-postgresql ^
 --engine-version version-number ^
 --query "DBEngineVersions[*].ValidUpgradeTarget[*].{EngineVersion:EngineVersion}" ^
 --output text

For example, to identify the valid upgrade targets for an Aurora PostgreSQL version 12.10 DB
cluster, run the following AWS CLI command:

For Linux, macOS, or Unix:

aws rds describe-db-engine-versions \
 --engine aurora-postgresql \
 --engine-version 12.10 \
 --query 'DBEngineVersions[*].ValidUpgradeTarget[*].{EngineVersion:EngineVersion}' \
 --output text

For Windows:

aws rds describe-db-engine-versions ^
 --engine aurora-postgresql ^
 --engine-version 12.10 ^
 --query "DBEngineVersions[*].ValidUpgradeTarget[*].{EngineVersion:EngineVersion}" ^
 --output text

In this table, you can find both major and minor version upgrade targets that are available for
various Aurora PostgreSQL DB versions.

Current
source
version

Upgrade targets

16.1 16.2

15.6 16.2

15.5 16.216.115.6

15.4 16.216.115.615.5

Upgrading Amazon Aurora PostgreSQL DB clusters 2866

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.162X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.162X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.162X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.161X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.156X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.162X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.161X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.156X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.155X

Amazon Aurora User Guide for Aurora

Current
source
version

Upgrade targets

15.3 16.216.115.615.515.4

15.2 16.216.115.615.515.415.3

14.11 16.215.6

14.10 16.216.115.615.5

14.9 16.216.115.615.515.414.1114.10

14.8 16.216.115.615.515.415.315.214.1114.1014.9

14.7 16.216.115.615.515.415.315.214.1114.1014.914.8

14.6 16.216.115.615.515.415.315.214.1114.1014.914.814.7

14.5 16.216.115.615.515.415.315.214.1114.1014.914.814.714.6

14.4 16.216.115.615.515.415.315.214.1114.1014.914.814.714.614.5

14.3 16.216.115.615.515.415.315.214.1114.1014.914.814.714.614.514.4

13.14 16.215.614.11

13.13 16.216.115.615.514.1114.10

13.12 16.216.115.615.515.414.1114.1014.9

13.11 16.216.115.615.515.415.314.1114.1014.914.8

13.10 16.216.115.615.515.415.315.214.1114.1014.914.814.713.1413.1313.1213.11

13.9 16.216.115.615.515.415.315.214.1114.1014.914.814.714.613.1413.1113.10

13.8 16.216.115.615.515.415.315.214.1114.1014.914.814.714.614.513.1413.1313.1213.1113.1013.9

13.7 16.216.115.615.515.415.315.214.1114.1014.914.814.714.614.514.414.313.1413.1313.1213.1113.1013.913.8

Upgrading Amazon Aurora PostgreSQL DB clusters 2867

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.162X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.161X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.156X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.155X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.154X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.162X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.161X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.156X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.155X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.154X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.153X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.162X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.156X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.162X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.161X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.156X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.155X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.162X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.161X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.156X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.155X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.154X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.1411X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.153X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.162X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.161X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.156X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.155X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.154X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.153X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.152X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.1411X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.1410X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.149X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.162X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.161X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.156X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.155X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.154X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.153X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.152X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.1411X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.1410X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.149X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.148X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.162X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.161X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.156X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.155X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.154X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.153X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.152X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.1411X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.1410X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.149X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.148X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.147X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.162X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.161X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.156X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.155X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.154X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.153X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.152X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.1411X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.1410X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.149X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.148X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.147X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.146X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.162X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.161X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.156X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.155X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.154X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.153X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.152X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.1411X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.1410X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.149X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.148X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.147X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.146X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.145X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.162X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.161X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.156X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.155X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.154X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.153X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.152X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.1411X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.1410X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.149X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.148X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.147X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.146X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.145X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.144X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.162X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.156X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.1411X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.162X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.161X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.156X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.155X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.1411X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.1410X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.162X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.161X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.156X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.155X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.154X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.1411X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.1410X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.149X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.162X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.161X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.156X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.155X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.154X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.153X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.1411X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.1410X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.149X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.148X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.162X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.161X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.156X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.155X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.154X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.153X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.152X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.1411X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.1410X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.149X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.148X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.147X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.1314X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.1313X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.1312X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.1311X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.162X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.161X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.156X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.155X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.154X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.153X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.152X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.1411X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.1410X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.149X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.148X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.147X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.146X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.1314X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.1311X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.1310X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.162X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.161X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.156X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.155X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.154X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.153X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.152X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.1411X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.1410X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.149X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.148X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.147X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.146X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.145X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.1314X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.1313X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.1312X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.1311X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.1310X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.139X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.162X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.161X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.156X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.155X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.154X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.153X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.152X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.1411X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.1410X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.149X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.148X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.147X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.146X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.145X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.144X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.143X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.1314X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.1313X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.1312X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.1311X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.1310X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.139X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.138X

Amazon Aurora User Guide for Aurora

Current
source
version

Upgrade targets

12.18 16.215.614.1113.14

12.17 16.216.115.615.514.1114.1013.13

12.16 16.216.115.615.515.414.1114.1014.913.1413.1313.12

12.15 16.216.115.615.515.415.314.1114.1014.914.813.1413.1313.1213.11

12.14 16.216.115.615.515.515.415.315.214.1114.1014.914.814.713.1413.1313.1213.1113.1012.15

12.13 16.216.115.615.515.415.315.214.1114.1014.914.814.714.613.1413.1313.1213.1113.1013.912.1712.1612.1512.14

12.12 16.216.115.615.515.415.315.214.1114.1014.914.814.714.614.513.1413.1313.1213.1113.1013.912.1712.1612.1513.812.1512.1412.13

12.11 16.216.115.615.515.415.315.214.1114.1014.914.814.714.514.414.313.1413.1313.1213.1113.1013.913.813.712.1512.1412.1312.12

12.9 16.216.115.615.515.415.315.214.1114.1014.914.814.713.1413.1313.1213.1113.1013.913.813.712.1712.1612.1512.1412.1312.1212.11

11.21 16.216.115.615.515.414.1114.1014.913.1413.1313.1212.1712.16

11.9 16.216.115.615.515.415.315.214.1114.1014.914.814.714.613.1413.1313.1213.1113.1013.912.1712.1612.1512.1412.1312.1212.1112.0911.21

For any version that you're considering, always check the availability of your cluster's DB instance
class. For example, db.r4 isn't supported for Aurora PostgreSQL 13. If your Aurora PostgreSQL DB
cluster currently uses a db.r4 instance class, you need to move to db.r5 before trying to upgrade.
For more information about DB instance classes, including which ones are Graviton2-based and
which ones are Intel-based, see Aurora DB instance classes.

How to perform a major version upgrade

Major version upgrades might contain database changes that are not backward-compatible with
previous versions of the database. New functionality in a new version can cause your existing
applications to stop working correctly. To avoid issues, Amazon Aurora doesn't apply major version
upgrades automatically. Rather, we recommend that you carefully plan for a major version upgrade
by following these steps:

Upgrading Amazon Aurora PostgreSQL DB clusters 2868

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.162X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.156X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.1411X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.1314X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.162X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.161X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.156X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.155X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.1411X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.1410X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.1313X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.162X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.161X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.156X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.155X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.154X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.1411X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.1410X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.149X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.1314X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.1313X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.1312X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.162X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.161X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.156X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.155X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.154X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.153X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.1411X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.1410X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.149X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.148X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.1314X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.1313X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.1312X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.1311X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.162X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.161X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.156X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.155X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.155X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.154X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.153X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.152X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.1411X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.1410X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.149X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.148X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.147X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.1314X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.1313X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.1312X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.1311X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.1310X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.1215X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.162X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.161X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.156X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.155X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.154X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.153X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.152X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.1411X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.1410X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.149X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.148X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.147X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.146X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.1314X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.1313X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.1312X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.1311X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.1310X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.139X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.1217X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.1216X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.1215X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.1214X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.162X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.161X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.156X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.155X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.154X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.153X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.152X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.1411X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.1410X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.149X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.148X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.147X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.146X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.145X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.1314X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.1313X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.1312X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.1311X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.1310X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.139X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.1217X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.1216X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.1215X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.138X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.1215X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.1214X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.1213X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.162X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.161X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.156X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.155X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.154X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.153X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.152X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.1411X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.1410X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.149X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.148X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.147X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.145X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.144X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.143X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.1314X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.1313X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.1312X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.1311X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.1310X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.139X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.138X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.137X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.1215X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.1214X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.1213X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.1212X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.162X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.161X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.156X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.155X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.154X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.153X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.152X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.1411X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.1410X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.149X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.148X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.147X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.1314X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.1313X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.1312X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.1311X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.1310X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.139X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.138X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.137X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.1217X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.1216X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.1215X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.1214X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.1213X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.1212X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.1211X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.162X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.161X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.156X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.155X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.154X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.1411X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.1410X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.149X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.1314X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.1313X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.1312X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.1217X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.1216X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.162X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.161X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.156X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.155X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.154X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.153X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.152X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.1411X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.1410X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.149X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.148X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.147X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.146X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.1314X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.1313X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.1312X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.1311X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.1310X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.139X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.1217X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.1216X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.1215X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.1214X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.1213X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.1212X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.1211X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.1209X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.1121X

Amazon Aurora User Guide for Aurora

1. Choose the major version that you want from the list of available targets from those listed for
your version in the table. You can get a precise list of versions available in your AWS Region for
your current version by using the AWS CLI. For details, see Getting a list of available versions in
your AWS Region.

2. Verify that your applications work as expected on a trial deployment of the new version. For
information about the complete process, see Testing an upgrade of your production DB cluster
to a new major version.

3. After verifying that your applications work as expected on the trial deployment, you can
upgrade your cluster. For details, see Upgrading the Aurora PostgreSQL engine to a new major
version.

Note

You can perform a major version upgrade from Babelfish for Aurora PostgreSQL 13-based
versions starting from 13.6 to Aurora PostgreSQL 14-based versions starting from 14.6.
Babelfish for Aurora PostgreSQL 13.4 and 13.5 don't support major version upgrade.

You can get a list of engine versions available as major version upgrade targets for your Aurora
PostgreSQL DB cluster by querying your AWS Region using the describe-db-engine-versions AWS
CLI command, as follows.

For Linux, macOS, or Unix:

aws rds describe-db-engine-versions \
 --engine aurora-postgresql \
 --engine-version version-number \
 --query 'DBEngineVersions[].ValidUpgradeTarget[?IsMajorVersionUpgrade == `true`].
{EngineVersion:EngineVersion}' \
 --output text

For Windows:

aws rds describe-db-engine-versions ^
 --engine aurora-postgresql ^
 --engine-version version-number ^
 --query "DBEngineVersions[].ValidUpgradeTarget[?IsMajorVersionUpgrade == `true`].
{EngineVersion:EngineVersion}" ^

Upgrading Amazon Aurora PostgreSQL DB clusters 2869

https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-engine-versions.html

Amazon Aurora User Guide for Aurora

 --output text

In some cases, the version that you want to upgrade to isn't a target for your current version. In
such cases, use the information in the versions table to perform minor version upgrades until your
cluster is at a version that has your chosen target in its row of targets.

Testing an upgrade of your production DB cluster to a new major version

Each new major version includes enhancements to the query optimizer that are designed to
improve performance. However, your workload might include queries that result in a worse
performing plan in the new version. That's why we recommend that you test and review
performance before upgrading in production. You can manage query plan stability across versions
by using the Query Plan Management (QPM) extension, as detailed in Ensuring plan stability after a
major version upgrade.

Before upgrading your production Aurora PostgreSQL DB clusters to a new major version, we
strongly recommend that you test the upgrade to verify that all your applications work correctly:

1. Have a version-compatible parameter group ready.

If you are using a custom DB instance or DB cluster parameter group, you can choose from two
options:

a. Specify the default DB instance, DB cluster parameter group, or both for the new DB engine
version.

b. Create your own custom parameter group for the new DB engine version.

If you associate a new DB instance or DB cluster parameter group as a part of the upgrade
request, make sure to reboot the database after the upgrade completes to apply the parameters.
If a DB instance needs to be rebooted to apply the parameter group changes, the instance's
parameter group status shows pending-reboot. You can view an instance's parameter group
status in the console or by using a CLI command such as describe-db-instances or describe-db-
clusters.

2. Check for unsupported usage:

• Commit or roll back all open prepared transactions before attempting an upgrade. You
can use the following query to verify that there are no open prepared transactions on your
instance.

SELECT count(*) FROM pg_catalog.pg_prepared_xacts;

Upgrading Amazon Aurora PostgreSQL DB clusters 2870

https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-instances.html
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-clusters.html
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-clusters.html

Amazon Aurora User Guide for Aurora

• Remove all uses of the reg* data types before attempting an upgrade. Except for regtype and
regclass, you can't upgrade the reg* data types. The pg_upgrade utility (used by Amazon
Aurora to do the upgrade) can't persist this data type. To learn more about this utility, see
pg_upgrade in the PostgreSQL documentation.

To verify that there are no uses of unsupported reg* data types, use the following query for
each database.

SELECT count(*) FROM pg_catalog.pg_class c, pg_catalog.pg_namespace n,
 pg_catalog.pg_attribute a
 WHERE c.oid = a.attrelid
 AND NOT a.attisdropped
 AND a.atttypid IN ('pg_catalog.regproc'::pg_catalog.regtype,
 'pg_catalog.regprocedure'::pg_catalog.regtype,
 'pg_catalog.regoper'::pg_catalog.regtype,
 'pg_catalog.regoperator'::pg_catalog.regtype,
 'pg_catalog.regconfig'::pg_catalog.regtype,
 'pg_catalog.regdictionary'::pg_catalog.regtype)
 AND c.relnamespace = n.oid
 AND n.nspname NOT IN ('pg_catalog', 'information_schema');

• If you are upgrading an Aurora PostgreSQL version 10.18 or higher DB cluster that has the
pgRouting extension installed, drop the extension before upgrading to version 12.4 or
higher.

If you are upgrading an Aurora PostgreSQL 10.x version that has the extension pg_repack
version 1.4.3 installed, drop the extension before upgrading to any higher version.

3. Check for template1 and template0 databases.

For a successful upgrade, template 1 and template 0 databases must exist and should be listed
as a template. To check on this, use the following command:

SELECT datname, datistemplate FROM pg_database;

datname | datistemplate
-----------+---------------
template0 | t
rdsadmin | f
template1 | t
postgres | f

Upgrading Amazon Aurora PostgreSQL DB clusters 2871

https://www.postgresql.org/docs/current/pgupgrade.html

Amazon Aurora User Guide for Aurora

In the command output, the datistemplate value for template1 and template0 databases
should be t.

4. Drop logical replication slots.

The upgrade process can't proceed if the Aurora PostgreSQL DB cluster is using any logical
replication slots. Logical replication slots are typically used for short-term data migration tasks,
such as migrating data using AWS DMS or for replicating tables from the database to data lakes,
BI tools, or other targets. Before upgrading, make sure that you know the purpose of any logical
replication slots that exist, and confirm that it's okay to delete them. You can check for logical
replication slots using the following query:

SELECT * FROM pg_replication_slots;

If logical replication slots are still being used, you shouldn't delete them, and you can't proceed
with the upgrade. However, if the logical replication slots aren't needed, you can delete them
using the following SQL:

SELECT pg_drop_replication_slot(slot_name);

Logical replication scenarios that use the pglogical extension also need to have slots dropped
from the publisher node for a successful major version upgrade on that node. However, you
can restart the replication process from the subscriber node after the upgrade. For more
information, see Reestablishing logical replication after a major upgrade.

5. Perform a backup.

The upgrade process creates a DB cluster snapshot of your DB cluster during upgrading. If you
also want to do a manual backup before the upgrade process, see Creating a DB cluster snapshot
for more information.

6. Upgrade certain extensions to the latest available version before performing the major version
upgrade. The extensions to update include the following:

• pgRouting

• postgis_raster

• postgis_tiger_geocoder

• postgis_topology

• address_standardizer

Upgrading Amazon Aurora PostgreSQL DB clusters 2872

Amazon Aurora User Guide for Aurora

• address_standardizer_data_us

Run the following command for each extension that's currently installed.

ALTER EXTENSION PostgreSQL-extension UPDATE TO 'new-version';

For more information, see Upgrading PostgreSQL extensions. To learn more about upgrading
PostGIS, see Step 6: Upgrade the PostGIS extension.

7. If you're upgrading to version 11.x, drop the extensions that it doesn't support before
performing the major version upgrade. The extensions to drop include:

• chkpass

• tsearch2

8. Drop unknown data types, depending on your target version.

PostgreSQL version 10 doesn't support the unknown data type. If a version 9.6 database uses
the unknown data type, an upgrade to version 10 shows an error message such as the following.

Database instance is in a state that cannot be upgraded: PreUpgrade checks failed:
The instance could not be upgraded because the 'unknown' data type is used in user
 tables.
Please remove all usages of the 'unknown' data type and try again."

To find the unknown data type in your database so that you can remove such columns or change
them to supported data types, use the following SQL code for each database.

SELECT n.nspname, c.relname, a.attname
 FROM pg_catalog.pg_class c,
 pg_catalog.pg_namespace n,
 pg_catalog.pg_attribute a
 WHERE c.oid = a.attrelid AND NOT a.attisdropped AND
 a.atttypid = 'pg_catalog.unknown'::pg_catalog.regtype AND
 c.relkind IN ('r','m','c') AND
 c.relnamespace = n.oid AND
 n.nspname !~ '^pg_temp_' AND
 n.nspname !~ '^pg_toast_temp_' AND n.nspname NOT IN ('pg_catalog',
 'information_schema');

9. Perform a dry-run upgrade.

Upgrading Amazon Aurora PostgreSQL DB clusters 2873

Amazon Aurora User Guide for Aurora

We highly recommend testing a major version upgrade on a duplicate of your production
database before trying the upgrade on your production database. You can monitor the execution
plans on the duplicate test instance for any possible execution plan regressions and to evaluate
its performance. To create a duplicate test instance, you can either restore your database from a
recent snapshot or clone your database. For more information, see Restoring from a snapshot or
Cloning a volume for an Amazon Aurora DB cluster.

For more information, see Upgrading the Aurora PostgreSQL engine to a new major version.

10.Upgrade your production instance.

When your dry-run major version upgrade is successful, you should be able to upgrade your
production database with confidence. For more information, see Upgrading the Aurora
PostgreSQL engine to a new major version.

Note

During the upgrade process, Aurora PostgreSQL takes a DB cluster snapshot if the
cluster's backup retention period is greater than 0. You can't do a point-in-time restore
of your cluster during this process. Later, you can perform a point-in-time restore to
times before the upgrade began and after the automatic snapshot of your instance
has completed. However, you can't perform a point-in-time restore to a previous minor
version.

For information about an upgrade in progress, you can use Amazon RDS to view two
logs that the pg_upgrade utility produces. These are pg_upgrade_internal.log and
pg_upgrade_server.log. Amazon Aurora appends a timestamp to the file name for these
logs. You can view these logs as you can any other log. For more information, see Monitoring
Amazon Aurora log files.

11.Upgrade PostgreSQL extensions. The PostgreSQL upgrade process doesn't upgrade any
PostgreSQL extensions. For more information, see Upgrading PostgreSQL extensions.

Post-upgrade recommendations

After you complete a major version upgrade, we recommend the following:

Upgrading Amazon Aurora PostgreSQL DB clusters 2874

Amazon Aurora User Guide for Aurora

• Run the ANALYZE operation to refresh the pg_statistic table. You should do this for every
database on all your PostgreSQL DB instances. Optimizer statistics aren't transferred during a
major version upgrade, so you need to regenerate all statistics to avoid performance issues. Run
the command without any parameters to generate statistics for all regular tables in the current
database, as follows:

ANALYZE VERBOSE;

The VERBOSE flag is optional, but using it shows you the progress. For more information, see
ANALYZE in the PostgreSQL documentation.

Note

Run ANALYZE on your system after the upgrade to avoid performance issues.

• If you upgraded to PostgreSQL version 10, run REINDEX on any hash indexes you have. Hash
indexes were changed in version 10 and must be rebuilt. To locate invalid hash indexes, run the
following SQL for each database that contains hash indexes.

SELECT idx.indrelid::regclass AS table_name,
 idx.indexrelid::regclass AS index_name
FROM pg_catalog.pg_index idx
 JOIN pg_catalog.pg_class cls ON cls.oid = idx.indexrelid
 JOIN pg_catalog.pg_am am ON am.oid = cls.relam
WHERE am.amname = 'hash'
AND NOT idx.indisvalid;

• We recommend that you test your application on the upgraded database with a similar workload
to verify that everything works as expected. After the upgrade is verified, you can delete this test
instance.

Upgrading the Aurora PostgreSQL engine to a new major version

When you initiate the upgrade process to a new major version, Aurora PostgreSQL takes a
snapshot of the Aurora DB cluster before it makes any changes to your cluster. This snapshot is
created for major version upgrades only, not minor version upgrades. When the upgrade process
completes, you can find this snapshot among the manual snapshots listed under Snapshots in
the RDS console. The snapshot name includes preupgrade as its prefix, the name of your Aurora

Upgrading Amazon Aurora PostgreSQL DB clusters 2875

https://www.postgresql.org/docs/10/sql-analyze.html

Amazon Aurora User Guide for Aurora

PostgreSQL DB cluster, the source version, the target version, and the date and timestamp, as
shown in the following example.

preupgrade-docs-lab-apg-global-db-12-8-to-13-6-2022-05-19-00-19

After the upgrade completes, you can use the snapshot that Aurora created and stored in your
manual snapshot list to restore the DB cluster to its previous version, if necessary.

Tip

In general, snapshots provide many ways to restore your Aurora DB cluster to various points
in time. To learn more, see Restoring from a DB cluster snapshot and Restoring a DB cluster
to a specified time. However, Aurora PostgreSQL doesn't support using a snapshot to
restore to a previous minor version.

During the major version upgrade process, Aurora allocates a volume and clones the source Aurora
PostgreSQL DB cluster. If the upgrade fails for any reason, Aurora PostgreSQL uses the clone to
roll back the upgrade. After more than 15 clones of a source volume are allocated, subsequent
clones become full copies and take longer. This can cause the upgrade process also to take longer.
If Aurora PostgreSQL rolls back the upgrade, be aware of the following:

• You might see billing entries and metrics for both the original volume and the cloned volume
allocated during the upgrade. Aurora PostgreSQL cleans up the extra volume after the cluster
backup retention window is beyond the time of the upgrade.

• The next cross-Region snapshot copy from this cluster will be a full copy instead of an
incremental copy.

To safely upgrade the DB instances that make up your cluster, Aurora PostgreSQL uses the
pg_upgrade utility. After the writer upgrade completes, each reader instance experiences a brief
outage while it's upgraded to the new major version. To learn more about this PostgreSQL utility,
see pg_upgrade in the PostgreSQL documentation.

You can upgrade your Aurora PostgreSQL DB cluster to a new version by using the AWS
Management Console, the AWS CLI, or the RDS API.

Upgrading Amazon Aurora PostgreSQL DB clusters 2876

https://www.postgresql.org/docs/current/pgupgrade.html

Amazon Aurora User Guide for Aurora

Console

To upgrade the engine version of a DB cluster

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Databases, and then choose the DB cluster that you want to
upgrade.

3. Choose Modify. The Modify DB cluster page appears.

4. For Engine version, choose the new version.

5. Choose Continue and check the summary of modifications.

6. To apply the changes immediately, choose Apply immediately. Choosing this option can cause
an outage in some cases. For more information, see Modifying an Amazon Aurora DB cluster.

7. On the confirmation page, review your changes. If they are correct, choose Modify Cluster to
save your changes.

Or choose Back to edit your changes or Cancel to cancel your changes.

AWS CLI

To upgrade the engine version of a DB cluster, use the modify-db-cluster AWS CLI command.
Specify the following parameters:

• --db-cluster-identifier – The name of the DB cluster.

• --engine-version – The version number of the database engine to upgrade to. For
information about valid engine versions, use the AWS CLI describe-db-engine-versions
command.

• --allow-major-version-upgrade – A required flag when the --engine-version
parameter is a different major version than the DB cluster's current major version.

• --no-apply-immediately – Apply changes during the next maintenance window. To apply
changes immediately, use --apply-immediately.

Example

For Linux, macOS, or Unix:

Upgrading Amazon Aurora PostgreSQL DB clusters 2877

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-cluster.html
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-engine-versions.html

Amazon Aurora User Guide for Aurora

aws rds modify-db-cluster \
 --db-cluster-identifier mydbcluster \
 --engine-version new_version \
 --allow-major-version-upgrade \
 --no-apply-immediately

For Windows:

aws rds modify-db-cluster ^
 --db-cluster-identifier mydbcluster ^
 --engine-version new_version ^
 --allow-major-version-upgrade ^
 --no-apply-immediately

RDS API

To upgrade the engine version of a DB cluster, use the ModifyDBCluster operation. Specify the
following parameters:

• DBClusterIdentifier – The name of the DB cluster, for example mydbcluster.

• EngineVersion – The version number of the database engine to upgrade to. For information
about valid engine versions, use the DescribeDBEngineVersions operation.

• AllowMajorVersionUpgrade – A required flag when the EngineVersion parameter is a
different major version than the DB cluster's current major version.

• ApplyImmediately – Whether to apply changes immediately or during the next maintenance
window. To apply changes immediately, set the value to true. To apply changes during the next
maintenance window, set the value to false.

Major upgrades for global databases

For an Aurora global database cluster, the upgrade process upgrades all DB clusters that make up
your Aurora global database at the same time. It does so to ensure that each runs the same Aurora
PostgreSQL version. It also ensures that any changes to system tables, data file formats, and so on,
are automatically replicated to all secondary clusters.

To upgrade a global database cluster to a new major version of Aurora PostgreSQL, we recommend
that you test your applications on the upgraded version, as detailed in Testing an upgrade of your
production DB cluster to a new major version. Be sure to prepare your DB cluster parameter group

Upgrading Amazon Aurora PostgreSQL DB clusters 2878

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBCluster.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DescribeDBEngineVersions.html

Amazon Aurora User Guide for Aurora

and DB parameter group settings for each AWS Region in your Aurora global database before the
upgrade as detailed in step 1. of Testing an upgrade of your production DB cluster to a new major
version.

If your Aurora PostgreSQL global database cluster has a recovery point objective (RPO) set for its
rds.global_db_rpo parameter, make sure to reset the parameter before upgrading. The major
version upgrade process doesn't work if the RPO is turned on. By default, this parameter is turned
off. For more information about Aurora PostgreSQL global databases and RPO, see Managing RPOs
for Aurora PostgreSQL–based global databases.

If you verify that your applications can run as expected on the trial deployment of the new version,
you can start the upgrade process. To do so, see Upgrading the Aurora PostgreSQL engine to a new
major version. Be sure to choose the top-level item from the Databases list in the RDS console,
Global database, as shown in the following image.

As with any modification, you can confirm that you want the process to proceed when prompted.

Upgrading Amazon Aurora PostgreSQL DB clusters 2879

Amazon Aurora User Guide for Aurora

Rather than using the console, you can start the upgrade process by using the AWS CLI or the RDS
API. As with the console, you operate on the Aurora global database cluster rather than any of its
constituents, as follows:

• Use the modify-global-cluster AWS CLI command to start the upgrade for your Aurora global
database by using the AWS CLI.

• Use the ModifyGlobalCluster API to start the upgrade.

Upgrading Amazon Aurora PostgreSQL DB clusters 2880

https://docs.aws.amazon.com/cli/latest/reference/rds/modify-global-cluster.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyGlobalCluster.html

Amazon Aurora User Guide for Aurora

Before performing a minor version upgrade

We recommend that you perform the following actions to reduce the downtime during a minor
version upgrade:

• The Aurora DB cluster maintenance should be performed during a period of low traffic. Use
Performance Insights to identify these time periods in order to configure the maintenance
windows correctly. For more information on Performance Insights, see Monitoring DB load with
Performance Insights on Amazon RDS. For more information on DB cluster maintenance window,
Adjusting the preferred DB cluster maintenance window.

• Use AWS SDKs that support exponential backoff and jitter as a best practice. For more
information, see Exponential Backoff And Jitter.

How to perform minor version upgrades and apply patches

Minor version upgrades and patches become available in AWS Regions only after rigorous testing.
Before releasing upgrades and patches, Aurora PostgreSQL tests to ensure that known security
issues, bugs, and other issues that emerge after the release of the minor community version don't
disrupt overall Aurora PostgreSQL fleet stability.

As Aurora PostgreSQL makes new minor versions available, the instances that make up your Aurora
PostgreSQL DB cluster can be automatically upgraded during your specified maintenance window.
For this to happen, your Aurora PostgreSQL DB cluster must have the Enable auto minor version
upgrade option turned on. All DB instances that make up your Aurora PostgreSQL DB cluster must
have the automatic minor version upgrade (AmVU) option turned on so that the minor upgrade to
be applied throughout the cluster.

Tip

Make sure that the Enable auto minor version upgrade option is turned on for all
PostgreSQL DB instances that make up your Aurora PostgreSQL DB cluster. This option
must be turned on for every instance in the DB cluster to work. For information on how to
set Auto minor version upgrade, and how the setting works when applied at the cluster
and instance levels, see Automatic minor version upgrades for Aurora DB clusters.

Upgrading Amazon Aurora PostgreSQL DB clusters 2881

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_PerfInsights.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_PerfInsights.html
https://aws.amazon.com/blogs/architecture/exponential-backoff-and-jitter/

Amazon Aurora User Guide for Aurora

You can check the value of the Enable auto minor version upgrade option for all your Aurora
PostgreSQL DB clusters by using the describe-db-instances AWS CLI command with the following
query.

aws rds describe-db-instances \
 --query '*[].
{DBClusterIdentifier:DBClusterIdentifier,DBInstanceIdentifier:DBInstanceIdentifier,AutoMinorVersionUpgrade:AutoMinorVersionUpgrade}'

This query returns a list of all Aurora DB clusters and their instances with a true or false value
for the status of the AutoMinorVersionUpgrade setting. The command as shown assumes that
you have your AWS CLI configured to target your default AWS Region.

For more information about the AmVU option and how to modify your Aurora DB cluster to use it,
see Automatic minor version upgrades for Aurora DB clusters.

You can upgrade your Aurora PostgreSQL DB clusters to new minor versions either by responding
to maintenance tasks, or by modifying the cluster to use the new version.

You can identify any available upgrades or patches for your Aurora PostgreSQL DB clusters
by using the RDS console and opening the Recommendations menu. There, you can find a
list of various maintenance issues such as Old minor versions. Depending on your production
environment, you can choose to Schedule the upgrade or take immediate action, by choosing
Apply now, as shown following.

Upgrading Amazon Aurora PostgreSQL DB clusters 2882

https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-instances.html

Amazon Aurora User Guide for Aurora

To learn more about how to maintain an Aurora DB cluster, including how to manually apply
patches and minor version upgrades, see Maintaining an Amazon Aurora DB cluster.

Minor release upgrades and zero-downtime patching

Upgrading an Aurora PostgreSQL DB cluster involves the possibility of an outage. During the
upgrade process, the database is shut down as it's being upgraded. If you start the upgrade while
the database is busy, you lose all connections and transactions that the DB cluster is processing. If
you wait until the database is idle to perform the upgrade, you might have to wait a long time.

The zero-downtime patching (ZDP) feature improves the upgrading process. With ZDP, both minor
version upgrades and patches can be applied with minimal impact to your Aurora PostgreSQL DB
cluster. ZDP is used when applying patches or newer minor version upgrades to Aurora PostgreSQL
versions and other higher releases of these minor versions and newer major versions. That is,
upgrading to new minor versions from any of these releases onward uses ZDP.

The following table shows the Aurora PostgreSQL versions and DB instance classes where ZDP is
available:

Version db.r* instance
classes

db.t* instance
classes

db.x* instance
classes

db.serverless
instance class

10.21.0 and
higher 10.21
versions

Yes Yes Yes N/A

11.16.0 and
higher 11.16
versions

Yes Yes Yes N/A

11.17 and
higher versions

Yes Yes Yes N/A

12.11.0 and
higher 12.11
versions

Yes Yes Yes N/A

12.12 and
higher versions

Yes Yes Yes N/A

Upgrading Amazon Aurora PostgreSQL DB clusters 2883

Amazon Aurora User Guide for Aurora

Version db.r* instance
classes

db.t* instance
classes

db.x* instance
classes

db.serverless
instance class

13.7.0 and
higher 13.7
versions

Yes Yes Yes N/A

13.8 and higher
versions

Yes Yes Yes Yes

14.3.1 and
higher 14.3
versions

Yes Yes Yes N/A

14.4.0 and
higher 14.4
versions

Yes Yes Yes N/A

14.5 and higher
versions

Yes Yes Yes Yes

15.3 and higher
versions

Yes Yes Yes Yes

ZDP works by preserving current client connections to your Aurora PostgreSQL DB cluster
throughout the Aurora PostgreSQL upgrade process. However, in the following cases, connections
will be dropped for ZDP to complete:

• Long running query or transactions are in progress.

• Data definition language (DDL) statements are running.

• Temporary tables or table locks are in use.

• All sessions are listening on notification channels.

• A cursor in ‘WITH HOLD’ status is in use.

• TLSv1.3 or TLSv1.1 connections are in use.

Upgrading Amazon Aurora PostgreSQL DB clusters 2884

Amazon Aurora User Guide for Aurora

During the upgrade process using ZDP, the database engine looks for a quiet point to pause all new
transactions. This action safeguards the database during patches and upgrades. To make sure that
your applications run smoothly with paused transactions, we recommend integrating retry logic
into your code. This approach ensures that the system can manage any brief downtime without
failing and can retry the new transactions after the upgrade.

When ZDP completes successfully, application sessions are maintained except for those with
dropped connections, and the database engine restarts while the upgrade is still in progress.
Although the database engine restart can cause a temporary drop in throughput, this typically lasts
only for a few seconds or at most, approximately one minute.

In some cases, zero-downtime patching (ZDP) might not succeed. For example, parameter changes
that are in a pending state on your Aurora PostgreSQL DB cluster or its instances interfere with
ZDP.

You can find metrics and events for ZDP operations in Events page in the console. The events
include the start of the ZDP upgrade and completion of the upgrade. In this event you can find
how long the process took, and the numbers of preserved and dropped connections that occurred
during the restart. You can find details in your database error log.

Upgrading the Aurora PostgreSQL engine to a new minor version

You can upgrade your Aurora PostgreSQL DB cluster to a new minor version by using the console,
the AWS CLI, or the RDS API. Before performing the upgrade, we recommend that you follow the
same best practice that we recommend for major version upgrades. As with new major versions,
new minor versions can also have optimizer improvements, such as fixes, that can cause query plan
regressions. To ensure plan stability, we recommend that you use the Query Plan Management
(QPM) extension as detailed in Ensuring plan stability after a major version upgrade.

Console

To upgrade the engine version of your Aurora PostgreSQL DB cluster

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Databases, and then choose the DB cluster that you want to
upgrade.

3. Choose Modify. The Modify DB cluster page appears.

4. For Engine version, choose the new version.

Upgrading Amazon Aurora PostgreSQL DB clusters 2885

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Aurora User Guide for Aurora

5. Choose Continue and check the summary of modifications.

6. To apply the changes immediately, choose Apply immediately. Choosing this option can cause
an outage in some cases. For more information, see Modifying an Amazon Aurora DB cluster.

7. On the confirmation page, review your changes. If they are correct, choose Modify Cluster to
save your changes.

Or choose Back to edit your changes or Cancel to cancel your changes.

AWS CLI

To upgrade the engine version of a DB cluster, use the modify-db-cluster AWS CLI command with
the following parameters:

• --db-cluster-identifier – The name of your Aurora PostgreSQL DB cluster.

• --engine-version – The version number of the database engine to upgrade to. For
information about valid engine versions, use the AWS CLI describe-db-engine-versions
command.

• --no-apply-immediately – Apply changes during the next maintenance window. To apply
changes immediately, use --apply-immediately instead.

For Linux, macOS, or Unix:

aws rds modify-db-cluster \
 --db-cluster-identifier mydbcluster \
 --engine-version new_version \
 --no-apply-immediately

For Windows:

aws rds modify-db-cluster ^
 --db-cluster-identifier mydbcluster ^
 --engine-version new_version ^
 --no-apply-immediately

RDS API

To upgrade the engine version of a DB cluster, use the ModifyDBCluster operation. Specify the
following parameters:

Upgrading Amazon Aurora PostgreSQL DB clusters 2886

https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-cluster.html
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-engine-versions.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBCluster.html

Amazon Aurora User Guide for Aurora

• DBClusterIdentifier – The name of the DB cluster, for example mydbcluster.

• EngineVersion – The version number of the database engine to upgrade to. For information
about valid engine versions, use the DescribeDBEngineVersions operation.

• ApplyImmediately – Whether to apply changes immediately or during the next maintenance
window. To apply changes immediately, set the value to true. To apply changes during the next
maintenance window, set the value to false.

Upgrading PostgreSQL extensions

Upgrading your Aurora PostgreSQL DB cluster to a new major or minor version doesn't upgrade
the PostgreSQL extensions at the same time. For most extensions, you upgrade the extension
after the major or minor version upgrade completes. However, in some cases, you upgrade the
extension before you upgrade the Aurora PostgreSQL DB engine. For more information, see the
list of extensions to update in Testing an upgrade of your production DB cluster to a new major
version.

Installing PostgreSQL extensions requires rds_superuser privileges. Typically, an
rds_superuser delegates permissions over specific extensions to relevant users (roles), to
facilitate the management of a given extension. That means that the task of upgrading all the
extensions in your Aurora PostgreSQL DB cluster might involve many different users (roles). Keep
this in mind especially if you want to automate the upgrade process by using scripts. For more
information about PostgreSQL privileges and roles, see Security with Amazon Aurora PostgreSQL.

Note

For information about updating the PostGIS extension, see Managing spatial data with the
PostGIS extension (Step 6: Upgrade the PostGIS extension).
To update the pg_repack extension, drop the extension and then create the new version
in the upgraded DB instance. For more information, see pg_repack installation in the
pg_repack documentation.

To update an extension after an engine upgrade, use the ALTER EXTENSION UPDATE command.

ALTER EXTENSION extension_name UPDATE TO 'new_version';

Upgrading Amazon Aurora PostgreSQL DB clusters 2887

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DescribeDBEngineVersions.html
https://reorg.github.io/pg_repack/

Amazon Aurora User Guide for Aurora

To list your currently installed extensions, use the PostgreSQL pg_extension catalog in the
following command.

SELECT * FROM pg_extension;

To view a list of the specific extension versions that are available for your installation, use the
PostgreSQL pg_available_extension_versions view in the following command.

SELECT * FROM pg_available_extension_versions;

Alternative blue/green upgrade technique

In some situations, your top priority is to perform an immediate switchover from the old cluster
to an upgraded one. In such situations, you can use a multistep process that runs the old and new
clusters side-by-side. Here, you replicate data from the old cluster to the new one until you are
ready for the new cluster to take over. For details, see Using Blue/Green Deployments for database
updates.

Aurora PostgreSQL long-term support (LTS) releases

Each new Aurora PostgreSQL version remains available for a certain amount of time for you to use
when you create or upgrade a DB cluster. After this period, you must upgrade any clusters that use
that version. You can manually upgrade your cluster before the support period ends, or Aurora can
automatically upgrade it for you when its Aurora PostgreSQL version is no longer supported.

Aurora designates certain Aurora PostgreSQL versions as long-term support (LTS) releases.
Database clusters that use LTS releases can stay on the same version longer and undergo fewer
upgrade cycles than clusters that use non-LTS releases. LTS minor versions include only bug
fixes (through patch versions); an LTS version doesn't include new features released after its
introduction.

Once a year, DB clusters running on an LTS minor version are patched to the latest patch version of
the LTS release. We do this patching to help ensure that you benefit from cumulative security and
stability fixes. We might patch an LTS minor version more frequently if there are critical fixes, such
as for security, that need to be applied.

Using a long-term support (LTS) release 2888

https://www.postgresql.org/docs/current/catalog-pg-extension.html
https://www.postgresql.org/docs/current/view-pg-available-extension-versions.html

Amazon Aurora User Guide for Aurora

Note

To remain on an LTS minor version for the duration of its lifecycle, make sure to turn off
Auto minor version upgrade for your DB instances. To avoid automatically upgrading your
DB cluster from the LTS minor version, set Auto minor version upgrade to No on all DB
instances in your Aurora cluster.

We recommend that you upgrade to the latest release, instead of using the LTS release, for most
of your Aurora PostgreSQL clusters. Doing so takes advantage of Aurora as a managed service and
gives you access to the latest features and bug fixes. LTS releases are intended for clusters with the
following characteristics:

• You can't afford downtime on your Aurora PostgreSQL application for upgrades outside of rare
occurrences for critical patches.

• The testing cycle for the cluster and associated applications takes a long time for each update to
the Aurora PostgreSQL database engine.

• The database version for your Aurora PostgreSQL cluster has all the DB engine features and bug
fixes that your application needs.

The current LTS releases for Aurora PostgreSQL are as follows:

• PostgreSQL 14.6. It was released on January 20, 2023. For more information, see PostgreSQL
14.6 in the Release Notes for Aurora PostgreSQL.

• PostgreSQL 13.9. It was released on January 20, 2023. For more information, see PostgreSQL
13.9 in the Release Notes for Aurora PostgreSQL.

• PostgreSQL 12.9. It was released on February 25, 2022. For more information, see PostgreSQL
12.9 in the Release Notes for Aurora PostgreSQL.

• PostgreSQL 11.9 (Aurora PostgreSQL release 3.4. It was released on December 11, 2020. For
more information about this version, see PostgreSQL 11.9, Aurora PostgreSQL release 3.4 in the
Release Notes for Aurora PostgreSQL.

For information about how to identify Aurora and database engine versions, see Identifying
versions of Amazon Aurora PostgreSQL.

Using a long-term support (LTS) release 2889

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.146X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.146X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.139X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.139X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.129
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.129
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.34

Amazon Aurora User Guide for Aurora

Using Amazon Aurora global databases

Amazon Aurora global databases span multiple AWS Regions, enabling low latency global reads
and providing fast recovery from the rare outage that might affect an entire AWS Region. An
Aurora global database has a primary DB cluster in one Region, and up to five secondary DB
clusters in different Regions.

Topics

• Overview of Amazon Aurora global databases

• Advantages of Amazon Aurora global databases

• Region and version availability

• Limitations of Amazon Aurora global databases

• Getting started with Amazon Aurora global databases

• Managing an Amazon Aurora global database

• Connecting to an Amazon Aurora global database

• Using write forwarding in an Amazon Aurora global database

• Using switchover or failover in an Amazon Aurora global database

• Monitoring an Amazon Aurora global database

• Using Amazon Aurora global databases with other AWS services

• Upgrading an Amazon Aurora global database

Overview of Amazon Aurora global databases

By using an Amazon Aurora global database, you can run your globally distributed applications
using a single Aurora database that spans multiple AWS Regions.

An Aurora global database consists of one primary AWS Region where your data is written, and
up to five read-only secondary AWS Regions. You issue write operations directly to the primary DB
cluster in the primary AWS Region. Aurora replicates data to the secondary AWS Regions using
dedicated infrastructure, with latency typically under a second.

In the following diagram, you can find an example Aurora global database that spans two AWS
Regions.

Overview of Aurora global databases 2890

Amazon Aurora User Guide for Aurora

You can scale up each secondary cluster independently, by adding one or more Aurora Replicas
(read-only Aurora DB instances) to serve read-only workloads.

Only the primary cluster performs write operations. Clients that perform write operations connect
to the DB cluster endpoint of the primary DB cluster. As shown in the diagram, Aurora global
database uses the cluster storage volume and not the database engine for replication. To learn
more, see Overview of Amazon Aurora storage.

Aurora global databases are designed for applications with a worldwide footprint. The read-only
secondary DB clusters (AWS Regions) allow you to support read operations closer to application
users. By using the write forwarding feature, you can also configure an Aurora global database so
that secondary clusters send data to the primary. For more information, see Using write forwarding
in an Amazon Aurora global database.

An Aurora global database supports two different operations for changing the Region of your
primary DB cluster, depending on the scenario: global database switchover and global database
failover.

• For planned operational procedures such as Regional rotation, use global database switchover
(previously called "managed planned failover"). With this feature, you can relocate the primary
cluster of a healthy Aurora global database to one of its secondary Regions with no data loss. To
learn more, see Performing switchovers for Amazon Aurora global databases.

• To recover your Aurora global database after an outage in the primary Region, use global
database failover. With this feature, you fail over your primary DB cluster to another Region

Overview of Aurora global databases 2891

Amazon Aurora User Guide for Aurora

(cross-Region failover). To learn more, see Performing managed failovers for Aurora global
databases.

Advantages of Amazon Aurora global databases

By using Aurora global databases, you can get the following advantages:

• Global reads with local latency – If you have offices around the world, you can use an Aurora
global database to keep your main sources of information updated in the primary AWS Region.
Offices in your other Regions can access the information in their own Region, with local latency.

• Scalable secondary Aurora DB clusters – You can scale your secondary clusters by adding more
read-only instances (Aurora Replicas) to a secondary AWS Region. The secondary cluster is read-
only, so it can support up to 16 read-only Aurora Replica instances rather than the usual limit of
15 for a single Aurora cluster.

• Fast replication from primary to secondary Aurora DB clusters – The replication performed
by an Aurora global database has little performance impact on the primary DB cluster. The
resources of the DB instances are fully devoted to serve application read and write workloads.

• Recovery from Region-wide outages – The secondary clusters allow you to make an Aurora
global database available in a new primary AWS Region more quickly (lower RTO) and with less
data loss (lower RPO) than traditional replication solutions.

Region and version availability

Feature availability and support vary across specific versions of each Aurora database engine, and
across AWS Regions. For more information on version and Region availability with Aurora and
global databases, see Supported Regions and DB engines for Aurora global databases.

Limitations of Amazon Aurora global databases

The following limitations currently apply to Aurora global databases:

• Aurora global databases are available in certain AWS Regions and for specific Aurora MySQL and
Aurora PostgreSQL versions only. For more information, see Supported Regions and DB engines
for Aurora global databases.

Advantages of Amazon Aurora global databases 2892

Amazon Aurora User Guide for Aurora

• Aurora global databases have specific configuration requirements for supported Aurora DB
instance classes, maximum number of AWS Regions, and so on. For more information, see
Configuration requirements of an Amazon Aurora global database.

• For Aurora MySQL with MySQL 5.7 compatibility, Aurora global database switchovers require
version 2.09.1 or a higher minor version.

• You can perform managed cross-Region switchovers or failovers on an Aurora global database
only if the primary and secondary DB clusters have the same major, minor, and patch level
engine versions. However, the patch levels can be different if the minor engine versions are one
of the following.

Database engine Minor engine versions

Aurora PostgreSQL • Version 14.5 or higher minor version

• Version 13.8 or higher minor version

• Version 12.12 or higher minor version

• Version 11.17 or higher minor version

For more information, see Patch level compatibility for managed cross-Region switchovers and
failovers.

• Aurora global databases currently don't support the following Aurora features:

• Aurora Serverless v1

• Backtracking in Aurora

• For limitations with using the RDS Proxy feature with global databases, see Limitations for RDS
Proxy with global databases.

• Automatic minor version upgrade doesn't apply to Aurora MySQL and Aurora PostgreSQL
clusters that are part of an Aurora global database. Note that you can specify this setting for a
DB instance that is part of a global database cluster, but the setting has no effect.

• Aurora global databases currently don't support Aurora Auto Scaling for secondary DB clusters.

• To use database activity streams on Aurora global databases running Aurora MySQL 5.7, the
engine version must be version 2.08 or higher. For information about database activity streams,
see Monitoring Amazon Aurora with Database Activity Streams.

• The following limitations currently apply to upgrading Aurora global databases:

Limitations of Aurora global databases 2893

Amazon Aurora User Guide for Aurora

• You can't apply a custom parameter group to the global database cluster while you're
performing a major version upgrade of that Aurora global database. You create your custom
parameter groups in each Region of the global cluster and you apply them manually to the
Regional clusters after the upgrade.

• With an Aurora global database based on Aurora MySQL, you can't perform an in-place
upgrade from Aurora MySQL version 2 to version 3 if the lower_case_table_names
parameter is turned on. For more information on the methods that you can use, see Major
version upgrades.

• With an Aurora global database based on Aurora PostgreSQL, you can't perform a major
version upgrade of the Aurora DB engine if the recovery point objective (RPO) feature is turned
on. For information about the RPO feature, see Managing RPOs for Aurora PostgreSQL–based
global databases.

• With an Aurora global database based on Aurora MySQL, you can't perform a minor version
upgrade from version 3.01 or 3.02 to 3.03 or higher by using the standard process. For details
about the process to use, see Upgrading Aurora MySQL by modifying the engine version.

For information about upgrading an Aurora global database, see Upgrading an Amazon Aurora
global database.

• You can't stop or start the Aurora DB clusters in your Aurora global database individually. To
learn more, see Stopping and starting an Amazon Aurora DB cluster.

• Aurora Replicas attached to the secondary Aurora DB cluster can restart under certain
circumstances. If the primary AWS Region's writer DB instance restarts or fails over, Aurora
Replicas in secondary Regions also restart. The secondary cluster is then unavailable until all
replicas are back in sync with the primary DB cluster's writer instance. The behavior of the
primary cluster when rebooting or failing over is the same as for a singular, nonglobal DB cluster.
For more information, see Replication with Amazon Aurora.

Be sure that you understand the impacts to your Aurora global database before making changes
to your primary DB cluster. To learn more, see Recovering an Amazon Aurora global database
from an unplanned outage.

• Aurora global databases currently don't support the inaccessible-encryption-
credentials-recoverable status when Amazon Aurora loses access to the AWS KMS key
for the DB cluster. In these cases, the encrypted DB cluster goes directly into the terminal
inaccessible-encryption-credentials state. For more information about these states,
see Viewing DB cluster status.

Limitations of Aurora global databases 2894

Amazon Aurora User Guide for Aurora

• Aurora PostgreSQL–based DB clusters running in an Aurora global database have the following
limitations:

• Cluster cache management isn't supported for Aurora PostgreSQL DB clusters that are part of
Aurora global databases.

• If the primary DB cluster of your Aurora global database is based on a replica of an Amazon
RDS PostgreSQL instance, you can't create a secondary cluster. Don't attempt to create
a secondary from that cluster using the AWS Management Console, the AWS CLI, or the
CreateDBCluster API operation. Attempts to do so time out, and the secondary cluster isn't
created.

We recommend that you create secondary DB clusters for your Aurora global databases by using
the same version of the Aurora DB engine as the primary. For more information, see Creating an
Amazon Aurora global database.

Getting started with Amazon Aurora global databases

To get started with Aurora global databases, first decide which Aurora DB engine you want to use
and in which AWS Regions. Only specific versions of the Aurora MySQL and Aurora PostgreSQL
database engines in certain AWS Regions support Aurora global databases. For the complete list,
see Supported Regions and DB engines for Aurora global databases.

You can create an Aurora global database in one of the following ways:

• Create a new Aurora global database with new Aurora DB clusters and Aurora DB instances –
You can do this by following the steps in Creating an Amazon Aurora global database. After you
create the primary Aurora DB cluster, you then add the secondary AWS Region by following the
steps in Adding an AWS Region to an Amazon Aurora global database.

• Use an existing Aurora DB cluster that supports the Aurora global database feature and add
an AWS Region to it – You can do this only if your existing Aurora DB cluster uses a DB engine
version that supports the Aurora global mode or is global-compatible. For some DB engine
versions, this mode is explicit, but for others, it's not.

Check whether you can choose Add region for Action on the AWS Management Console when
your Aurora DB cluster is selected. If you can, you can use that Aurora DB cluster for your Aurora
global cluster. For more information, see Adding an AWS Region to an Amazon Aurora global
database.

Getting started with Aurora global databases 2895

Amazon Aurora User Guide for Aurora

Before creating an Aurora global database, we recommend that you understand all configuration
requirements.

Topics

• Configuration requirements of an Amazon Aurora global database

• Creating an Amazon Aurora global database

• Adding an AWS Region to an Amazon Aurora global database

• Creating a headless Aurora DB cluster in a secondary Region

• Using a snapshot for your Amazon Aurora global database

Configuration requirements of an Amazon Aurora global database

An Aurora global database spans at least two AWS Regions. The primary AWS Region supports an
Aurora DB cluster that has one writer Aurora DB instance. A secondary AWS Region runs a read-
only Aurora DB cluster made up entirely of Aurora Replicas. At least one secondary AWS Region is
required, but an Aurora global database can have up to five secondary AWS Regions. The table lists
the maximum Aurora DB clusters, Aurora DB instances, and Aurora Replicas allowed in an Aurora
global database.

Description Primary AWS Region Secondary AWS Regions

Aurora DB clusters 1 5 (maximum)

Writer instances 1 0

Read-only instances (Aurora
replicas), per Aurora DB cluster

15 (max) 16 (total)

Read-only instances (max allowed,
given actual number of secondary
Regions)

15 - s s = total number of secondary
AWS Regions

The Aurora DB clusters that make up an Aurora global database have the following specific
requirements:

Configuration requirements of an Amazon Aurora global database 2896

Amazon Aurora User Guide for Aurora

• DB instance class requirements – An Aurora global database requires DB instance classes that
are optimized for memory-intensive applications. For information about the memory optimized
DB instance classes, see DB instance classes. We recommend that you use a db.r5 or higher
instance class.

• AWS Region requirements – An Aurora global database needs a primary Aurora DB cluster
in one AWS Region, and at least one secondary Aurora DB cluster in a different Region. You
can create up to five secondary (read-only) Aurora DB clusters, and each must be in a different
Region. In other words, no two Aurora DB clusters in an Aurora global database can be in the
same AWS Region.

• Naming requirements – The names you choose for each of your Aurora DB clusters must be
unique, across all AWS Regions. You can't use the same name for different Aurora DB clusters
even though they're in different Regions.

• Capacity requirements for Aurora Serverless v2 – For a global database with Aurora Serverless
v2, the minimum capacity required for the DB cluster in the primary AWS Region is 8 ACUs.

Before you can follow the procedures in this section, you need an AWS account. Complete
the setup tasks for working with Amazon Aurora. For more information, see Setting up your
environment for Amazon Aurora. You also need to complete other preliminary steps for creating
any Aurora DB cluster. To learn more, see Creating an Amazon Aurora DB cluster.

Creating an Amazon Aurora global database

In some cases, you might have an existing Aurora provisioned DB cluster running an Aurora
database engine that's global-compatible. If so, you can add another AWS Region to it to create
your Aurora global database. To do so, see Adding an AWS Region to an Amazon Aurora global
database.

To create an Aurora global database by using the AWS Management Console, the AWS CLI, or the
RDS API, use the following steps.

Console

The steps for creating an Aurora global database begin by signing in to an AWS Region that
supports the Aurora global database feature. For a complete list, see Supported Regions and DB
engines for Aurora global databases.

One of the following steps is choosing a virtual private cloud (VPC) based on Amazon VPC for
your Aurora DB cluster. To use your own VPC, we recommend that you create it in advance so it's

Creating an Aurora global database 2897

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Concepts.DBInstanceClass.html#Concepts.DBInstanceClass.Types

Amazon Aurora User Guide for Aurora

available for you to choose. At the same time, create any related subnets, and as needed a subnet
group and security group. To learn how, see Tutorial: Create an Amazon VPC for use with a DB
instance.

For general information about creating an Aurora DB cluster, see Creating an Amazon Aurora DB
cluster.

To create an Aurora global database

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. Choose Create database. On the Create database page, do the following:

• For the database creation method, choose Standard create. (Don't choose Easy create.)

• For Engine type in the Engine options section, choose the applicable engine type, Aurora
(MySQL Compatible) or Aurora (PostgreSQL Compatible).

3. Continue creating your Aurora global database by using the steps from the following
procedures.

Creating a global database using Aurora MySQL

The following steps apply to all versions of Aurora MySQL.

To create an Aurora global database using Aurora MySQL

Complete the Create database page.

1. For Engine options, choose the following:

• For Engine version, choose the version of Aurora MySQL that you want to use for your
Aurora global database.

2. For Templates, choose Production. Or you can choose Dev/Test if appropriate for your use
case. Don't use Dev/Test in production environments.

3. For Settings, do the following:

a. Enter a meaningful name for the DB cluster identifier. When you finish creating the Aurora
global database, this name identifies the primary DB cluster.

Creating an Aurora global database 2898

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/CHAP_Tutorials.WebServerDB.CreateVPC.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/CHAP_Tutorials.WebServerDB.CreateVPC.html
https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Aurora User Guide for Aurora

b. Enter your own password for the admin user account for the DB instance, or have Aurora
generate one for you. If you choose to autogenerate a password, you get an option to
copy the password.

4. For DB instance class, choose db.r5.large or another memory optimized DB instance class.
We recommend that you use a db.r5 or higher instance class.

5. For Availability & durability, we recommend that you choose to have Aurora create an Aurora
Replica in a different Availability Zone (AZ) for you. If you don't create an Aurora Replica now,
you need to do it later.

Creating an Aurora global database 2899

Amazon Aurora User Guide for Aurora

6. For Connectivity, choose the virtual private cloud (VPC) based on Amazon VPC that defines
the virtual networking environment for this DB instance. You can choose the defaults to
simplify this task.

7. Complete the Database authentication settings. To simplify the process, you can choose
Password authentication now and set up AWS Identity and Access Management (IAM) later.

8. For Additional configuration, do the following:

a. Enter a name for Initial database name to create the primary Aurora DB instance for this
cluster. This is the writer node for the Aurora primary DB cluster.

Leave the defaults selected for the DB cluster parameter group and DB parameter group,
unless you have your own custom parameter groups that you want to use.

b. Clear the Enable backtrack check box if it's selected. Aurora global databases don't
support backtracking. Otherwise, accept the other default settings for Additional
configuration.

9. Choose Create database.

It can take several minutes for Aurora to complete the process of creating the Aurora DB
instance, its Aurora Replica, and the Aurora DB cluster. You can tell when the Aurora DB cluster
is ready to use as the primary DB cluster in an Aurora global database by its status. When
that's so, its status and that of the writer and replica node is Available, as shown following.

When your primary DB cluster is available, create the Aurora global database by adding a
secondary cluster to it. To do this, follow the steps in Adding an AWS Region to an Amazon Aurora
global database.

Creating an Aurora global database 2900

Amazon Aurora User Guide for Aurora

Creating a global database using Aurora PostgreSQL

To create an Aurora global database using Aurora PostgreSQL

Complete the Create database page.

1. For Engine options, choose the following:

• For Engine version, choose the version of Aurora PostgreSQL that you want to use for
your Aurora global database.

2. For Templates, choose Production. Or you can choose Dev/Test if appropriate. Don't use Dev/
Test in production environments.

3. For Settings, do the following:

a. Enter a meaningful name for the DB cluster identifier. When you finish creating the Aurora
global database, this name identifies the primary DB cluster.

b. Enter your own password for the default admin account for the DB cluster, or have Aurora
generate one for you. If you choose Auto generate a password, you get an option to copy
the password.

Creating an Aurora global database 2901

Amazon Aurora User Guide for Aurora

4. For DB instance class, choose db.r5.large or another memory optimized DB instance class.
We recommend that you use a db.r5 or higher instance class.

5. For Availability & durability, we recommend that you choose to have Aurora create an Aurora
Replica in a different AZ for you. If you don't create an Aurora Replica now, you need to do it
later.

6. For Connectivity, choose the virtual private cloud (VPC) based on Amazon VPC that defines
the virtual networking environment for this DB instance. You can choose the defaults to
simplify this task.

7. (Optional) Complete the Database authentication settings. Password authentication is always
enabled. To simplify the process, you can skip this section and set up IAM or password and
Kerberos authentication later.

8. For Additional configuration, do the following:

Creating an Aurora global database 2902

Amazon Aurora User Guide for Aurora

a. Enter a name for Initial database name to create the primary Aurora DB instance for this
cluster. This is the writer node for the Aurora primary DB cluster.

Leave the defaults selected for the DB cluster parameter group and DB parameter group,
unless you have your own custom parameter groups that you want to use.

b. Accept all other default settings for Additional configuration, such as Encryption, Log
exports, and so on.

9. Choose Create database.

It can take several minutes for Aurora to complete the process of creating the Aurora DB
instance, its Aurora Replica, and the Aurora DB cluster. When the cluster is ready to use, the
Aurora DB cluster and its writer and replica nodes display Available status. This becomes the
primary DB cluster of your Aurora global database, after you add a secondary.

When your primary DB cluster is available, create one or more secondary clusters by following the
steps in Adding an AWS Region to an Amazon Aurora global database.

AWS CLI

The AWS CLI commands in the procedures following accomplish the following tasks:

1. Create an Aurora global database, giving it a name and specifying the Aurora database engine
type that you plan to use.

2. Create an Aurora DB cluster for the Aurora global database.

Creating an Aurora global database 2903

Amazon Aurora User Guide for Aurora

3. Create the Aurora DB instance for the cluster. This is the primary Aurora DB cluster for the global
database.

4. Create a second DB instance for Aurora DB cluster. This is a reader to complete the Aurora DB
cluster.

5. Create a second Aurora DB cluster in another Region and then add it to your Aurora global
database, by following the steps in Adding an AWS Region to an Amazon Aurora global
database.

Follow the procedure for your Aurora database engine.

Creating a global database using Aurora MySQL

To create an Aurora global database using Aurora MySQL

1. Use the create-global-cluster CLI command, passing the name of the AWS Region,
Aurora database engine, and version.

For Linux, macOS, or Unix:

aws rds create-global-cluster --region primary_region \
 --global-cluster-identifier global_database_id \
 --engine aurora-mysql \
 --engine-version version # optional

For Windows:

aws rds create-global-cluster ^
 --global-cluster-identifier global_database_id ^
 --engine aurora-mysql ^
 --engine-version version # optional

This creates an "empty" Aurora global database, with just a name (identifier) and Aurora
database engine. It can take a few minutes for the Aurora global database to be available.
Before going to the next step, use the describe-global-clusters CLI command to see if
it's available.

aws rds describe-global-clusters --region primary_region --global-cluster-
identifier global_database_id

Creating an Aurora global database 2904

https://docs.aws.amazon.com/cli/latest/reference/rds/create-global-cluster.html
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-global-clusters.html

Amazon Aurora User Guide for Aurora

When the Aurora global database is available, you can create its primary Aurora DB cluster.

2. To create a primary Aurora DB cluster, use the create-db-cluster CLI command. Include
the name of your Aurora global database by using the --global-cluster-identifier
parameter.

For Linux, macOS, or Unix:

aws rds create-db-cluster \
 --region primary_region \
 --db-cluster-identifier primary_db_cluster_id \
 --master-username userid \
 --master-user-password password \
 --engine aurora-mysql \
 --engine-version version \
 --global-cluster-identifier global_database_id

For Windows:

aws rds create-db-cluster ^
 --region primary_region ^
 --db-cluster-identifier primary_db_cluster_id ^
 --master-username userid ^
 --master-user-password password ^
 --engine aurora-mysql ^
 --engine-version version ^
 --global-cluster-identifier global_database_id

Use the describe-db-clusters AWS CLI command to confirm that the Aurora DB cluster is
ready. To single out a specific Aurora DB cluster, use --db-cluster-identifier parameter.
Or you can leave out the Aurora DB cluster name in the command to get details about all your
Aurora DB clusters in the given Region.

aws rds describe-db-clusters --region primary_region --db-cluster-
identifier primary_db_cluster_id

When the response shows "Status": "available" for the cluster, it's ready to use.

3. Create the DB instance for your primary Aurora DB cluster. To do so, use the create-db-
instance CLI command. Give the command your Aurora DB cluster's name, and specify the

Creating an Aurora global database 2905

https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-cluster.html
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-clusters.html
https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-instance.html
https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-instance.html

Amazon Aurora User Guide for Aurora

configuration details for the instance. You don't need to pass the --master-username and
--master-user-password parameters in the command, because it gets those from the
Aurora DB cluster.

For the --db-instance-class, you can use only those from the memory optimized classes,
such as db.r5.large. We recommend that you use a db.r5 or higher instance class. For
information about these classes, see DB instance classes.

For Linux, macOS, or Unix:

aws rds create-db-instance \
 --db-cluster-identifier primary_db_cluster_id \
 --db-instance-class instance_class \
 --db-instance-identifier db_instance_id \
 --engine aurora-mysql \
 --engine-version version \
 --region primary_region

For Windows:

aws rds create-db-instance ^
 --db-cluster-identifier primary_db_cluster_id ^
 --db-instance-class instance_class ^
 --db-instance-identifier db_instance_id ^
 --engine aurora-mysql ^
 --engine-version version ^
 --region primary_region

The create-db-instance operation might take some time to complete. Check the status to
see if the Aurora DB instance is available before continuing.

aws rds describe-db-clusters --db-cluster-identifier primary_db_cluster_id

When the command returns a status of "available," you can create another Aurora DB instance
for your primary DB cluster. This is the reader instance (the Aurora Replica) for the Aurora DB
cluster.

4. To create another Aurora DB instance for the cluster, use the create-db-instance CLI
command.

Creating an Aurora global database 2906

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Concepts.DBInstanceClass.html#Concepts.DBInstanceClass.Types
https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-instance.html

Amazon Aurora User Guide for Aurora

For Linux, macOS, or Unix:

aws rds create-db-instance \
 --db-cluster-identifier primary_db_cluster_id \
 --db-instance-class instance_class \
 --db-instance-identifier replica_db_instance_id \
 --engine aurora-mysql

For Windows:

aws rds create-db-instance ^
 --db-cluster-identifier primary_db_cluster_id ^
 --db-instance-class instance_class ^
 --db-instance-identifier replica_db_instance_id ^
 --engine aurora-mysql

When the DB instance is available, replication begins from the writer node to the replica. Before
continuing, check that the DB instance is available with the describe-db-instances CLI
command.

At this point, you have an Aurora global database with its primary Aurora DB cluster containing
a writer DB instance and an Aurora Replica. You can now add a read-only Aurora DB cluster in a
different Region to complete your Aurora global database. To do so, follow the steps in Adding an
AWS Region to an Amazon Aurora global database.

Creating a global database using Aurora PostgreSQL

When you create Aurora objects for an Aurora global database by using the following commands,
it can take a few minutes for each to become available. We recommend that after completing
any given command, you check the specific Aurora object's status to make sure that the status is
available.

To do so, use the describe-global-clusters CLI command.

aws rds describe-global-clusters --region primary_region
 --global-cluster-identifier global_database_id

Creating an Aurora global database 2907

https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-instances.html
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-global-clusters.html

Amazon Aurora User Guide for Aurora

To create an Aurora global database using Aurora PostgreSQL

1. Use the create-global-cluster CLI command.

For Linux, macOS, or Unix:

aws rds create-global-cluster --region primary_region \
 --global-cluster-identifier global_database_id \
 --engine aurora-postgresql \
 --engine-version version # optional

For Windows:

aws rds create-global-cluster ^
 --global-cluster-identifier global_database_id ^
 --engine aurora-postgresql ^
 --engine-version version # optional

When the Aurora global database is available, you can create its primary Aurora DB cluster.

2. To create a primary Aurora DB cluster, use the create-db-cluster CLI command. Include
the name of your Aurora global database by using the --global-cluster-identifier
parameter.

For Linux, macOS, or Unix:

aws rds create-db-cluster \
 --region primary_region \
 --db-cluster-identifier primary_db_cluster_id \
 --master-username userid \
 --master-user-password password \
 --engine aurora-postgresql \
 --engine-version version \
 --global-cluster-identifier global_database_id

For Windows:

aws rds create-db-cluster ^
 --region primary_region ^
 --db-cluster-identifier primary_db_cluster_id ^
 --master-username userid ^

Creating an Aurora global database 2908

https://docs.aws.amazon.com/cli/latest/reference/rds/create-global-cluster.html
https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-cluster.html

Amazon Aurora User Guide for Aurora

 --master-user-password password ^
 --engine aurora-postgresql ^
 --engine-version version ^
 --global-cluster-identifier global_database_id

Check that the Aurora DB cluster is ready. When the response from the following command
shows "Status": "available" for the Aurora DB cluster, you can continue.

aws rds describe-db-clusters --region primary_region --db-cluster-
identifier primary_db_cluster_id

3. Create the DB instance for your primary Aurora DB cluster. To do so, use the create-db-
instance CLI command.

Pass the name of your Aurora DB cluster with the --db-cluster-identifier parameter.

You don't need to pass the --master-username and --master-user-password
parameters in the command, because it gets those from the Aurora DB cluster.

For the --db-instance-class, you can use only those from the memory optimized classes,
such as db.r5.large. We recommend that you use a db.r5 or higher instance class. For
information about these classes, see DB instance classes.

For Linux, macOS, or Unix:

aws rds create-db-instance \
 --db-cluster-identifier primary_db_cluster_id \
 --db-instance-class instance_class \
 --db-instance-identifier db_instance_id \
 --engine aurora-postgresql \
 --engine-version version \
 --region primary_region

For Windows:

aws rds create-db-instance ^
 --db-cluster-identifier primary_db_cluster_id ^
 --db-instance-class instance_class ^
 --db-instance-identifier db_instance_id ^
 --engine aurora-postgresql ^
 --engine-version version ^

Creating an Aurora global database 2909

https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-instance.html
https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-instance.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Concepts.DBInstanceClass.html#Concepts.DBInstanceClass.Types

Amazon Aurora User Guide for Aurora

 --region primary_region

4. Check the status of the Aurora DB instance before continuing.

aws rds describe-db-clusters --db-cluster-identifier primary_db_cluster_id

If the response shows that Aurora DB instance status is "available," you can create another
Aurora DB instance for your primary DB cluster.

5. To create an Aurora Replica for Aurora DB cluster, use the create-db-instance CLI
command.

For Linux, macOS, or Unix:

aws rds create-db-instance \
 --db-cluster-identifier primary_db_cluster_id \
 --db-instance-class instance_class \
 --db-instance-identifier replica_db_instance_id \
 --engine aurora-postgresql

For Windows:

aws rds create-db-instance ^
 --db-cluster-identifier primary_db_cluster_id ^
 --db-instance-class instance_class ^
 --db-instance-identifier replica_db_instance_id ^
 --engine aurora-postgresql

When the DB instance is available, replication begins from the writer node to the replica. Before
continuing, check that the DB instance is available with the describe-db-instances CLI
command.

Your Aurora global database exists, but it has only its primary Region with an Aurora DB cluster
made up of a writer DB instance and an Aurora Replica. You can now add a read-only Aurora DB
cluster in a different Region to complete your Aurora global database. To do so, follow the steps in
Adding an AWS Region to an Amazon Aurora global database.

RDS API

To create an Aurora global database with the RDS API, run the CreateGlobalCluster operation.

Creating an Aurora global database 2910

https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-instance.html
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-instances.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateGlobalCluster.html

Amazon Aurora User Guide for Aurora

Adding an AWS Region to an Amazon Aurora global database

An Aurora global database needs at least one secondary Aurora DB cluster in a different AWS
Region than the primary Aurora DB cluster. You can attach up to five secondary DB clusters to
your Aurora global database. For each secondary DB cluster that you add to your Aurora global
database, reduce the number of Aurora Replicas allowed to the primary DB cluster by one.

For example, if your Aurora global database has 5 secondary Regions, your primary DB cluster
can have only 10 (rather than 15) Aurora Replicas. For more information, see Configuration
requirements of an Amazon Aurora global database.

The number of Aurora Replicas (reader instances) in the primary DB cluster determines the number
of secondary DB clusters you can add. The total number of reader instances in the primary DB
cluster plus the number of secondary clusters can't exceed 15. For example, if you have 14 reader
instances in the primary DB cluster and 1 secondary cluster, you can't add another secondary
cluster to the global database.

Note

For Aurora MySQL version 3, when you create a secondary cluster, make sure that the value
of lower_case_table_names matches the value in the primary cluster. This setting is a
database parameter that affects how the server handles identifier case sensitivity. For more
information about database parameters, see Working with parameter groups.
We recommend that when you create a secondary cluster, you use the same DB engine
version for the primary and secondary. If necessary, upgrade the primary to be the same
version as the secondary. For more information, see Patch level compatibility for managed
cross-Region switchovers and failovers.

Console

To add an AWS Region to an Aurora global database

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane of the AWS Management Console, choose Databases.

3. Choose the Aurora global database that needs a secondary Aurora DB cluster. Ensure that the
primary Aurora DB cluster is Available.

Adding an AWS Region to an Aurora global database 2911

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Aurora User Guide for Aurora

4. For Actions, choose Add region.

5. On the Add a region page, choose the secondary AWS Region.

You can't choose an AWS Region that already has a secondary Aurora DB cluster for the same
Aurora global database. Also, it can't be the same Region as the primary Aurora DB cluster.

Note

Babelfish for Aurora PostgreSQL global databases works in secondary regions only if
the parameters that control Babelfish preferences are turned on in those regions. For
more information, see DB cluster parameter group settings for Babelfish

Adding an AWS Region to an Aurora global database 2912

Amazon Aurora User Guide for Aurora

6. Complete the remaining fields for the secondary Aurora cluster in the new AWS Region.
These are the same configuration options as for any Aurora DB cluster instance, except for the
following option for Aurora MySQL–based Aurora global databases only:

• Enable read replica write forwarding – This optional setting let's your Aurora global
database's secondary DB clusters forward write operations to the primary cluster. For more
information, see Using write forwarding in an Amazon Aurora global database.

7. Choose Add region.

Adding an AWS Region to an Aurora global database 2913

Amazon Aurora User Guide for Aurora

After you finish adding the Region to your Aurora global database, you can see it in the list of
Databases in the AWS Management Console as shown in the screenshot.

AWS CLI

To add a secondary AWS Region to an Aurora global database

1. Use the create-db-cluster CLI command with the name (--global-cluster-
identifier) of your Aurora global database. For other parameters, do the following:

2. For --region, choose a different AWS Region than that of your Aurora primary Region.

3. Choose specific values for the --engine and --engine-version parameters. These values
are the same as those for the primary Aurora DB cluster in your Aurora global database.

4. For an encrypted cluster, specify your primary AWS Region as the --source-region for
encryption.

The following example creates a new Aurora DB cluster and attaches it to an Aurora global
database as a read-only secondary Aurora DB cluster. In the last step, an Aurora DB instance is
added to the new Aurora DB cluster.

For Linux, macOS, or Unix:

aws rds --region secondary_region \
 create-db-cluster \
 --db-cluster-identifier secondary_cluster_id \
 --global-cluster-identifier global_database_id \

Adding an AWS Region to an Aurora global database 2914

https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-cluster.html

Amazon Aurora User Guide for Aurora

 --engine aurora-mysql|aurora-postgresql
 --engine-version version

aws rds --region secondary_region \
 create-db-instance \
 --db-instance-class instance_class \
 --db-cluster-identifier secondary_cluster_id \
 --db-instance-identifier db_instance_id \
 --engine aurora-mysql|aurora-postgresql

For Windows:

aws rds --region secondary_region ^
 create-db-cluster ^
 --db-cluster-identifier secondary_cluster_id ^
 --global-cluster-identifier global_database_id_id ^
 --engine aurora-mysql|aurora-postgresql ^
 --engine-version version

aws rds --region secondary_region ^
 create-db-instance ^
 --db-instance-class instance_class ^
 --db-cluster-identifier secondary_cluster_id ^
 --db-instance-identifier db_instance_id ^
 --engine aurora-mysql|aurora-postgresql

RDS API

To add a new AWS Region to an Aurora global database with the RDS API, run the
CreateDBCluster operation. Specify the identifier of the existing global database using the
GlobalClusterIdentifier parameter.

Creating a headless Aurora DB cluster in a secondary Region

Although an Aurora global database requires at least one secondary Aurora DB cluster in a
different AWS Region than the primary, you can use a headless configuration for the secondary
cluster. A headless secondary Aurora DB cluster is one without a DB instance. This type of
configuration can lower expenses for an Aurora global database. In an Aurora DB cluster, compute
and storage are decoupled. Without the DB instance, you're not charged for compute, only for
storage. If it's set up correctly, a headless secondary's storage volume is kept in-sync with the
primary Aurora DB cluster.

Creating a headless Aurora DB cluster in a secondary Region 2915

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateDBCluster.html

Amazon Aurora User Guide for Aurora

You add the secondary cluster as you normally do when creating an Aurora global database.
However, after the primary Aurora DB cluster begins replication to the secondary, you delete the
Aurora read-only DB instance from the secondary Aurora DB cluster. This secondary cluster is now
considered "headless" because it no longer has a DB instance. Yet, the storage volume is kept in
sync with the primary Aurora DB cluster.

Warning

With Aurora PostgreSQL, to create a headless cluster in a secondary AWS Region, use the
AWS CLI or RDS API to add the secondary AWS Region. Skip the step to create the reader
DB instance for the secondary cluster. Currently, creating a headless cluster isn't supported
in the RDS Console. For the CLI and API procedures to use, see Adding an AWS Region to an
Amazon Aurora global database.
If your global database is using an engine version lower than 13.4, 12.8, or 11.13, creating
a reader DB instance in a secondary Region and subsequently deleting it could lead to
an Aurora PostgreSQL vacuum issue on the primary Region's writer DB instance. If you
encounter this issue, restart the primary Region's writer DB instance after you delete the
secondary Region's reader DB instance.

To add a headless secondary Aurora DB cluster to your Aurora global database

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane of the AWS Management Console, choose Databases.

3. Choose the Aurora global database that needs a secondary Aurora DB cluster. Ensure that the
primary Aurora DB cluster is Available.

4. For Actions, choose Add region.

5. On the Add a region page, choose the secondary AWS Region.

You can't choose an AWS Region that already has a secondary Aurora DB cluster for the same
Aurora global database. Also, it can't be the same Region as the primary Aurora DB cluster.

6. Complete the remaining fields for the secondary Aurora cluster in the new AWS Region. These
are the same configuration options as for any Aurora DB cluster instance.

For an Aurora MySQL–based Aurora global database, disregard the Enable read replica write
forwarding option. This option has no function after you delete the reader instance.

Creating a headless Aurora DB cluster in a secondary Region 2916

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Aurora User Guide for Aurora

7. Choose Add region. After you finish adding the Region to your Aurora global database,
you can see it in the list of Databases in the AWS Management Console as shown in the
screenshot.

8. Check the status of the secondary Aurora DB cluster and its reader instance before continuing,
by using the AWS Management Console or the AWS CLI. For example:

$ aws rds describe-db-clusters --db-cluster-identifier secondary-cluster-id --query
 '*[].[Status]' --output text

It can take several minutes for the status of a newly added secondary Aurora DB cluster to
change from creating to available. When the Aurora DB cluster is available, you can
delete the reader instance.

9. Select the reader instance in the secondary Aurora DB cluster, and then choose Delete.

Creating a headless Aurora DB cluster in a secondary Region 2917

Amazon Aurora User Guide for Aurora

After deleting the reader instance, the secondary cluster remains part of the Aurora global
database. It has no instance associated with it, as shown following.

You can use this headless secondary Aurora DB cluster to manually recover your Amazon Aurora
global database from an unplanned outage in the primary AWS Region if such an outage occurs.

Using a snapshot for your Amazon Aurora global database

You can restore a snapshot of an Aurora DB cluster or from an Amazon RDS DB instance to use
as the starting point for your Aurora global database. You restore the snapshot and create a new
Aurora provisioned DB cluster at the same time. You then add another AWS Region to the restored
DB cluster, thus turning it into an Aurora global database. Any Aurora DB cluster that you create
using a snapshot in this way becomes the primary cluster of your Aurora global database.

The snapshot that you use can be from a provisioned or from a serverless Aurora DB cluster.

During the restore process, choose the same DB engine type as the snapshot. For example, suppose
that you want to restore a snapshot that was made from an Aurora Serverless DB cluster running
Aurora PostgreSQL. In this case, you create an Aurora PostgreSQL DB cluster using that same
Aurora DB engine and version.

The restored DB cluster assumes the role of primary cluster for the Aurora global database
when you add an AWS Region to it. All data contained in this primary cluster is replicated to any
secondary clusters that you add to your Aurora global database.

Using a snapshot for your Aurora global database 2918

Amazon Aurora User Guide for Aurora

Managing an Amazon Aurora global database

You perform most management operations on the individual clusters that make up an Aurora
global database. When you choose Group related resources on the Databases page in the console,
you see the primary cluster and secondary clusters grouped under the associated global database.
To find the AWS Regions where a global database's DB clusters are running, its Aurora DB engine
and version, and its identifier, use its Configuration tab.

The cross-Region database failover processes are available to Aurora global databases only, not
for a single Aurora DB cluster. To learn more, see Using switchover or failover in an Amazon Aurora
global database.

To recover an Aurora global database from an unplanned outage in its primary Region, see
Recovering an Amazon Aurora global database from an unplanned outage.

Managing an Aurora global database 2919

Amazon Aurora User Guide for Aurora

Topics

• Modifying an Amazon Aurora global database

• Modifying parameters for an Aurora global database

• Removing a cluster from an Amazon Aurora global database

• Deleting an Amazon Aurora global database

Modifying an Amazon Aurora global database

The Databases page in the AWS Management Console lists all your Aurora global databases,
showing the primary cluster and secondary clusters for each one. The Aurora global database has
its own configuration settings. Specifically, it has AWS Regions associated with its primary and
secondary clusters, as shown in the screenshot following.

Modifying an Aurora global database 2920

Amazon Aurora User Guide for Aurora

When you make changes to the Aurora global database, you have a chance to cancel changes, as
shown in the following screenshot.

When you choose Continue, you confirm the changes.

Modifying parameters for an Aurora global database

You can configure the Aurora DB cluster parameter groups independently for each Aurora cluster
within the Aurora global database. Most parameters work the same as for other kinds of Aurora
clusters. We recommend that you keep settings consistent among all the clusters in a global
database. Doing this helps to avoid unexpected behavior changes if you promote a secondary
cluster to be the primary.

For example, use the same settings for time zones and character sets to avoid inconsistent behavior
if a different cluster takes over as the primary cluster.

The aurora_enable_repl_bin_log_filtering and
aurora_enable_replica_log_compression configuration settings have no effect.

Modifying global database parameters 2921

Amazon Aurora User Guide for Aurora

Removing a cluster from an Amazon Aurora global database

You can remove Aurora DB clusters from your Aurora global database for several different reasons.
For example, you might want to remove an Aurora DB cluster from an Aurora global database
if the primary cluster becomes degraded or isolated. It then becomes a standalone provisioned
Aurora DB cluster that could be used to create a new Aurora global database. To learn more, see
Recovering an Amazon Aurora global database from an unplanned outage.

You also might want to remove Aurora DB clusters because you want to delete an Aurora global
database that you no longer need. You can't delete the Aurora global database until after
you remove (detach) all associated Aurora DB clusters, leaving the primary for last. For more
information, see Deleting an Amazon Aurora global database.

When an Aurora DB cluster is detached from the Aurora global database, it's no longer
synchronized with the primary. It becomes a standalone provisioned Aurora DB cluster with full
read/write capabilities.

You can remove Aurora DB clusters from your Aurora global database using the AWS Management
Console, the AWS CLI, or the RDS API.

Console

To remove an Aurora cluster from an Aurora global database

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. Choose the cluster on the Databases page.

3. For Actions, choose Remove from Global.

Removing a cluster from an Aurora global database 2922

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Aurora User Guide for Aurora

You see a prompt to confirm that you want to detach the secondary from the Aurora global
database.

4. Choose Remove and promote to remove the cluster from the global database.

The Aurora DB cluster is no longer serving as a secondary in the Aurora global database, and is no
longer synchronized with the primary DB cluster. It is a standalone Aurora DB cluster with full read/
write capability.

Removing a cluster from an Aurora global database 2923

Amazon Aurora User Guide for Aurora

After you remove or delete all secondary clusters, then you can remove the primary cluster
the same way. You can't detach (remove) the primary Aurora DB cluster from an Aurora global
database until after you remove all secondary clusters.

The Aurora global database might remain in the Databases list, with zero Regions and AZs. You can
delete if you no longer want to use this Aurora global database. For more information, see Deleting
an Amazon Aurora global database.

AWS CLI

To remove an Aurora cluster from an Aurora global database, run the remove-from-global-cluster
CLI command with the following parameters:

• --global-cluster-identifier – The name (identifier) of your Aurora global database.

• --db-cluster-identifier – The name of each Aurora DB cluster to remove from the Aurora
global database. Remove all secondary Aurora DB clusters before removing the primary.

The following examples first remove a secondary cluster and then the primary cluster from an
Aurora global database.

For Linux, macOS, or Unix:

aws rds --region secondary_region \
 remove-from-global-cluster \
 --db-cluster-identifier secondary_cluster_ARN \
 --global-cluster-identifier global_database_id

aws rds --region primary_region \
 remove-from-global-cluster \
 --db-cluster-identifier primary_cluster_ARN \
 --global-cluster-identifier global_database_id

Removing a cluster from an Aurora global database 2924

https://docs.aws.amazon.com/cli/latest/reference/rds/remove-from-global-cluster.html

Amazon Aurora User Guide for Aurora

Repeat the remove-from-global-cluster --db-cluster-identifier
secondary_cluster_ARN command for each secondary AWS Region in your Aurora global
database.

For Windows:

aws rds --region secondary_region ^
 remove-from-global-cluster ^
 --db-cluster-identifier secondary_cluster_ARN ^
 --global-cluster-identifier global_database_id

aws rds --region primary_region ^
 remove-from-global-cluster ^
 --db-cluster-identifier primary_cluster_ARN ^
 --global-cluster-identifier global_database_id

Repeat the remove-from-global-cluster --db-cluster-identifier
secondary_cluster_ARN command for each secondary AWS Region in your Aurora global
database.

RDS API

To remove an Aurora cluster from an Aurora global database with the RDS API, run the
RemoveFromGlobalCluster action.

Deleting an Amazon Aurora global database

Because an Aurora global database typically holds business-critical data, you can't delete the
global database and its associated clusters in a single step. To delete an Aurora global database, do
the following:

• Remove all secondary DB clusters from the Aurora global database. Each cluster becomes a
standalone Aurora DB cluster. To learn how, see Removing a cluster from an Amazon Aurora
global database.

• From each standalone Aurora DB cluster, delete all Aurora Replicas.

• Remove the primary DB cluster from the Aurora global database. This becomes a standalone
Aurora DB cluster.

• From the Aurora primary DB cluster, first delete all Aurora Replicas, then delete the writer DB
instance.

Deleting an Aurora global database 2925

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_RemoveFromGlobalCluster.html

Amazon Aurora User Guide for Aurora

Deleting the writer instance from the newly standalone Aurora DB cluster also typically removes
the Aurora DB cluster and the Aurora global database.

For more general information, see Deleting a DB instance from an Aurora DB cluster.

To delete an Aurora global database, you can use the AWS Management Console, the AWS CLI, or
the RDS API.

Console

To delete an Aurora global database

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. Choose Databases and find the Aurora global database you want to delete in the listing.

3. Confirm that all clusters are removed from the Aurora global database. The Aurora global
database should show 0 Regions and AZs and a size of 0 clusters.

If the Aurora global database contains any Aurora DB clusters, you can't delete it. If necessary,
detach the primary and secondary Aurora DB clusters from the Aurora global database. For
more information, see Removing a cluster from an Amazon Aurora global database.

4. Choose your Aurora global database in the list, and then choose Delete from the Actions
menu.

AWS CLI

To delete an Aurora global database, run the delete-global-cluster CLI command with the name of
the AWS Region and the Aurora global database identifier, as shown in the following example.

Deleting an Aurora global database 2926

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/
https://docs.aws.amazon.com/cli/latest/reference/rds/delete-global-cluster.html

Amazon Aurora User Guide for Aurora

For Linux, macOS, or Unix:

aws rds --region primary_region delete-global-cluster \
 --global-cluster-identifier global_database_id

For Windows:

aws rds --region primary_region delete-global-cluster ^
 --global-cluster-identifier global_database_id

RDS API

To delete a cluster that is part of an Aurora global database, run the DeleteGlobalCluster API
operation.

Connecting to an Amazon Aurora global database

How you connect to an Aurora global database depends on whether you need to write to the
database or read from the database:

• For read-only requests or queries, you connect to the reader endpoint for the Aurora cluster in
your AWS Region.

• To run data manipulation language (DML) or data definition language (DDL) statements, you
connect to the cluster endpoint for the primary cluster. This endpoint might be in a different
AWS Region than your application.

When you view an Aurora global database in the console, you can see all the general-purpose
endpoints associated with all of its clusters. The following screenshot shows an example. There
is a single cluster endpoint associated with the primary cluster that you use for write operations.
The primary cluster and each secondary cluster has a reader endpoint that you use for read-only
queries. To minimize latency, choose whichever reader endpoint is in your AWS Region or the AWS
Region closest to you. The following shows an Aurora MySQL example.

Connecting to an Aurora global database 2927

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DeleteGlobalCluster.html

Amazon Aurora User Guide for Aurora

Using write forwarding in an Amazon Aurora global database

You can reduce the number of endpoints that you need to manage for applications running on
your Aurora global database, by using write forwarding. With write forwarding enabled, secondary
clusters in an Aurora global database forward SQL statements that perform write operations to
the primary cluster. The primary cluster updates the source and then propagates resulting changes
back to all secondary AWS Regions.

The write forwarding configuration saves you from implementing your own mechanism to send
write operations from a secondary AWS Region to the primary Region. Aurora handles the cross-
Region networking setup. Aurora also transmits all necessary session and transactional context
for each statement. The data is always changed first on the primary cluster and then replicated to
the secondary clusters in the Aurora global database. This way, the primary cluster is the source of
truth and always has an up-to-date copy of all your data.

Topics

• Using write forwarding in an Aurora MySQL global database

• Using write forwarding in an Aurora PostgreSQL global database

Using write forwarding in an Aurora global database 2928

Amazon Aurora User Guide for Aurora

Using write forwarding in an Aurora MySQL global database

Topics

• Region and version availability of write forwarding in Aurora MySQL

• Enabling write forwarding in Aurora MySQL

• Checking if a secondary cluster has write forwarding enabled in Aurora MySQL

• Application and SQL compatibility with write forwarding in Aurora MySQL

• Isolation and consistency for write forwarding in Aurora MySQL

• Running multipart statements with write forwarding in Aurora MySQL

• Transactions with write forwarding in Aurora MySQL

• Configuration parameters for write forwarding in Aurora MySQL

• Amazon CloudWatch metrics for write forwarding in Aurora MySQL

Region and version availability of write forwarding in Aurora MySQL

Write forwarding is supported with Aurora MySQL 2.08.1 and higher versions, in every Region
where Aurora MySQL-based global databases are available.

For information on version and Region availability of Aurora MySQL global databases, see Aurora
global databases with Aurora MySQL.

Enabling write forwarding in Aurora MySQL

By default, write forwarding isn't enabled when you add a secondary cluster to an Aurora global
database.

To enable write forwarding using the AWS Management Console, select the Turn on global
write forwarding check box under Read replica write forwarding when you add a Region for
a global database. For an existing secondary cluster, modify the cluster to Turn on global write
forwarding. To turn off write forwarding, clear the Turn on global write forwarding check box
when adding the Region or modifying the secondary cluster.

To enable write forwarding using the AWS CLI, use the --enable-global-write-forwarding
option. This option works when you create a new secondary cluster using the create-db-
cluster command. It also works when you modify an existing secondary cluster using the

Using write forwarding in Aurora MySQL 2929

Amazon Aurora User Guide for Aurora

modify-db-cluster command. It requires that the global database uses an Aurora version that
supports write forwarding. You can turn write forwarding off by using the --no-enable-global-
write-forwarding option with these same CLI commands.

To enable write forwarding using the Amazon RDS API, set the EnableGlobalWriteForwarding
parameter to true. This parameter works when you create a new secondary cluster using the
CreateDBCluster operation. It also works when you modify an existing secondary cluster
using the ModifyDBCluster operation. It requires that the global database uses an Aurora
version that supports write forwarding. You can turn write forwarding off by setting the
EnableGlobalWriteForwarding parameter to false.

Note

For a database session to use write forwarding, specify a setting for the
aurora_replica_read_consistency configuration parameter. Do this in every session
that uses the write forwarding feature. For information about this parameter, see Isolation
and consistency for write forwarding in Aurora MySQL.
The RDS Proxy feature doesn't support the SESSION value for the
aurora_replica_read_consistency variable. Setting this value can cause unexpected
behavior.

The following CLI examples show how you can set up an Aurora global database with write
forwarding enabled or disabled. The highlighted items represent the commands and options that
are important to specify and keep consistent when setting up the infrastructure for an Aurora
global database.

The following example creates an Aurora global database, a primary cluster, and a secondary
cluster with write forwarding enabled. Substitute your own choices for the user name, password,
and primary and secondary AWS Regions.

Create overall global database.
aws rds create-global-cluster --global-cluster-identifier write-forwarding-test \
 --engine aurora-mysql --engine-version 5.7.mysql_aurora.2.11.1 \
 --region us-east-1

Create primary cluster, in the same AWS Region as the global database.
aws rds create-db-cluster --global-cluster-identifier write-forwarding-test \
 --db-cluster-identifier write-forwarding-test-cluster-1 \

Using write forwarding in Aurora MySQL 2930

Amazon Aurora User Guide for Aurora

 --engine aurora-mysql --engine-version 5.7.mysql_aurora.2.11.1 \
 --master-username user_name --master-user-password password \
 --region us-east-1

aws rds create-db-instance --db-cluster-identifier write-forwarding-test-cluster-1 \
 --db-instance-identifier write-forwarding-test-cluster-1-instance-1 \
 --db-instance-class db.r5.large \
 --engine aurora-mysql --engine-version 5.7.mysql_aurora.2.11.1 \
 --region us-east-1

aws rds create-db-instance --db-cluster-identifier write-forwarding-test-cluster-1 \
 --db-instance-identifier write-forwarding-test-cluster-1-instance-2 \
 --db-instance-class db.r5.large \
 --engine aurora-mysql --engine-version 5.7.mysql_aurora.2.11.1 \
 --region us-east-1

Create secondary cluster, in a different AWS Region than the global database,
with write forwarding enabled.
aws rds create-db-cluster --global-cluster-identifier write-forwarding-test \
 --db-cluster-identifier write-forwarding-test-cluster-2 \
 --engine aurora-mysql --engine-version 5.7.mysql_aurora.2.11.1 \
 --region us-east-2 \
 --enable-global-write-forwarding

aws rds create-db-instance --db-cluster-identifier write-forwarding-test-cluster-2 \
 --db-instance-identifier write-forwarding-test-cluster-2-instance-1 \
 --db-instance-class db.r5.large \
 --engine aurora-mysql --engine-version 5.7.mysql_aurora.2.11.1 \
 --region us-east-2

aws rds create-db-instance --db-cluster-identifier write-forwarding-test-cluster-2 \
 --db-instance-identifier write-forwarding-test-cluster-2-instance-2 \
 --db-instance-class db.r5.large \
 --engine aurora-mysql --engine-version 5.7.mysql_aurora.2.11.1 \
 --region us-east-2

The following example continues from the previous one. It creates a secondary cluster without
write forwarding enabled, then enables write forwarding. After this example finishes, all secondary
clusters in the global database have write forwarding enabled.

Create secondary cluster, in a different AWS Region than the global database,
without write forwarding enabled.
aws rds create-db-cluster --global-cluster-identifier write-forwarding-test \

Using write forwarding in Aurora MySQL 2931

Amazon Aurora User Guide for Aurora

 --db-cluster-identifier write-forwarding-test-cluster-2 \
 --engine aurora-mysql --engine-version 5.7.mysql_aurora.2.11.1 \
 --region us-west-1

aws rds create-db-instance --db-cluster-identifier write-forwarding-test-cluster-2 \
 --db-instance-identifier write-forwarding-test-cluster-2-instance-1 \
 --db-instance-class db.r5.large \
 --engine aurora-mysql --engine-version 5.7.mysql_aurora.2.11.1 \
 --region us-west-1

aws rds create-db-instance --db-cluster-identifier write-forwarding-test-cluster-2 \
 --db-instance-identifier write-forwarding-test-cluster-2-instance-2 \
 --db-instance-class db.r5.large \
 --engine aurora-mysql --engine-version 5.7.mysql_aurora.2.11.1 \
 --region us-west-1

aws rds modify-db-cluster --db-cluster-identifier write-forwarding-test-cluster-2 \
 --region us-east-2 \
 --enable-global-write-forwarding

Checking if a secondary cluster has write forwarding enabled in Aurora MySQL

To determine whether you can use write forwarding from a secondary cluster, you can check
whether the cluster has the attribute "GlobalWriteForwardingStatus": "enabled".

In the AWS Management Console, on the Configuration tab of the details page for the cluster, you
see the status Enabled for Global read replica write forwarding.

To see the status of the global write forwarding setting for all of your clusters, run the following
AWS CLI command.

A secondary cluster shows the value "enabled" or "disabled" to indicate if write forwarding
is turned on or off. A value of null indicates that write forwarding isn't available for that cluster.
Either the cluster isn't part of a global database, or is the primary cluster instead of a secondary
cluster. The value can also be "enabling" or "disabling" if write forwarding is in the process of
being turned on or off.

Example

aws rds describe-db-clusters \
--query '*[].
{DBClusterIdentifier:DBClusterIdentifier,GlobalWriteForwardingStatus:GlobalWriteForwardingStatus}'

Using write forwarding in Aurora MySQL 2932

Amazon Aurora User Guide for Aurora

[
 {
 "GlobalWriteForwardingStatus": "enabled",
 "DBClusterIdentifier": "aurora-write-forwarding-test-replica-1"
 },
 {
 "GlobalWriteForwardingStatus": "disabled",
 "DBClusterIdentifier": "aurora-write-forwarding-test-replica-2"
 },
 {
 "GlobalWriteForwardingStatus": null,
 "DBClusterIdentifier": "non-global-cluster"
 }
]

To find all secondary clusters that have global write forwarding enabled, run the following
command. This command also returns the cluster's reader endpoint. You use the secondary
cluster's reader endpoint when you use write forwarding from the secondary to the primary in your
Aurora global database.

Example

aws rds describe-db-clusters --query 'DBClusters[].
{DBClusterIdentifier:DBClusterIdentifier,GlobalWriteForwardingStatus:GlobalWriteForwardingStatus,ReaderEndpoint:ReaderEndpoint}
 | [?GlobalWriteForwardingStatus == `enabled`]'
[
 {
 "GlobalWriteForwardingStatus": "enabled",
 "ReaderEndpoint": "aurora-write-forwarding-test-replica-1.cluster-ro-
cnpexample.us-west-2.rds.amazonaws.com",
 "DBClusterIdentifier": "aurora-write-forwarding-test-replica-1"
 }
]

Application and SQL compatibility with write forwarding in Aurora MySQL

You can use the following kinds of SQL statements with write forwarding:

• Data manipulation language (DML) statements, such as INSERT, DELETE, and UPDATE. There are
some restrictions on the properties of these statements that you can use with write forwarding,
as described following.

Using write forwarding in Aurora MySQL 2933

Amazon Aurora User Guide for Aurora

• SELECT ... LOCK IN SHARE MODE and SELECT FOR UPDATE statements.

• PREPARE and EXECUTE statements.

Certain statements aren't allowed or can produce stale results when you use them in a global
database with write forwarding. Thus, the EnableGlobalWriteForwarding setting is turned off
by default for secondary clusters. Before turning it on, check to make sure that your application
code isn't affected by any of these restrictions.

The following restrictions apply to the SQL statements you use with write forwarding. In some
cases, you can use the statements on secondary clusters with write forwarding enabled at the
cluster level. This approach works if write forwarding isn't turned on within the session by the
aurora_replica_read_consistency configuration parameter. Trying to use a statement when
it's not allowed because of write forwarding causes an error message with the following format.

ERROR 1235 (42000): This version of MySQL doesn't yet support 'operation with write
 forwarding'.

Data definition language (DDL)

Connect to the primary cluster to run DDL statements. You can't run them from reader DB
instances.

Updating a permanent table using data from a temporary table

You can use temporary tables on secondary clusters with write forwarding enabled. However,
you can't use a DML statement to modify a permanent table if the statement refers to a
temporary table. For example, you can't use an INSERT ... SELECT statement that takes
the data from a temporary table. The temporary table exists on the secondary cluster and isn't
available when the statement runs on the primary cluster.

XA transactions

You can't use the following statements on a secondary cluster when write forwarding is turned
on within the session. You can use these statements on secondary clusters that don't have write
forwarding enabled, or within sessions where the aurora_replica_read_consistency
setting is empty. Before turning on write forwarding within a session, check if your code uses
these statements.

XA {START|BEGIN} xid [JOIN|RESUME]

Using write forwarding in Aurora MySQL 2934

Amazon Aurora User Guide for Aurora

XA END xid [SUSPEND [FOR MIGRATE]]
XA PREPARE xid
XA COMMIT xid [ONE PHASE]
XA ROLLBACK xid
XA RECOVER [CONVERT XID]

LOAD statements for permanent tables

You can't use the following statements on a secondary cluster with write forwarding enabled.

LOAD DATA INFILE 'data.txt' INTO TABLE t1;
 LOAD XML LOCAL INFILE 'test.xml' INTO TABLE t1;

You can load data into a temporary table on a secondary cluster. However, make sure that you
run any LOAD statements that refer to permanent tables only on the primary cluster.

Plugin statements

You can't use the following statements on a secondary cluster with write forwarding enabled.

INSTALL PLUGIN example SONAME 'ha_example.so';
UNINSTALL PLUGIN example;

SAVEPOINT statements

You can't use the following statements on a secondary cluster when write forwarding is turned
on within the session. You can use these statements on secondary clusters that don't have write
forwarding enabled, or within sessions where the aurora_replica_read_consistency
setting is blank. Check if your code uses these statements before turning on write forwarding
within a session.

SAVEPOINT t1_save;
ROLLBACK TO SAVEPOINT t1_save;
RELEASE SAVEPOINT t1_save;

Isolation and consistency for write forwarding in Aurora MySQL

In sessions that use write forwarding, you can only use the REPEATABLE READ isolation level.
Although you can also use the READ COMMITTED isolation level with read-only clusters in

Using write forwarding in Aurora MySQL 2935

Amazon Aurora User Guide for Aurora

secondary AWS Regions, that isolation level doesn't work with write forwarding. For information
about the REPEATABLE READ and READ COMMITTED isolation levels, see Aurora MySQL isolation
levels.

You can control the degree of read consistency on a secondary cluster. The read consistency
level determines how much waiting the secondary cluster does before each read operation to
ensure that some or all changes are replicated from the primary cluster. You can adjust the
read consistency level to ensure that all forwarded write operations from your session are
visible in the secondary cluster before any subsequent queries. You can also use this setting
to ensure that queries on the secondary cluster always see the most current updates from the
primary cluster. This is so even for those submitted by other sessions or other clusters. To specify
this type of behavior for your application, you choose a value for the session-level parameter
aurora_replica_read_consistency.

Important

Always set the aurora_replica_read_consistency parameter for any session for
which you want to forward writes. If you don't, Aurora doesn't enable write forwarding for
that session. This parameter has an empty value by default, so choose a specific value when
you use this parameter. The aurora_replica_read_consistency parameter has an
effect only on secondary clusters that have write forwarding enabled.
For Aurora MySQL version 2 and version 3 lower than 3.04, use
aurora_replica_read_consistency as a session variable. For Aurora MySQL version
3.04 and higher, you can use aurora_replica_read_consistency as either a session
variable or as a DB cluster parameter.

For the aurora_replica_read_consistency parameter, you can specify the values EVENTUAL,
SESSION, and GLOBAL.

As you increase the consistency level, your application spends more time waiting for changes to be
propagated between AWS Regions. You can choose the balance between fast response time and
ensuring that changes made in other locations are fully available before your queries run.

With the read consistency set to EVENTUAL, queries in a secondary AWS Region that uses write
forwarding might see data that is slightly stale due to replication lag. Results of write operations
in the same session aren't visible until the write operation is performed on the primary Region and
replicated to the current Region. The query doesn't wait for the updated results to be available.

Using write forwarding in Aurora MySQL 2936

Amazon Aurora User Guide for Aurora

Thus, it might retrieve the older data or the updated data, depending on the timing of the
statements and the amount of replication lag.

With the read consistency set to SESSION, all queries in a secondary AWS Region that uses write
forwarding see the results of all changes made in that session. The changes are visible regardless
of whether the transaction is committed. If necessary, the query waits for the results of forwarded
write operations to be replicated to the current Region. It doesn't wait for updated results from
write operations performed in other Regions or in other sessions within the current Region.

With the read consistency set to GLOBAL, a session in a secondary AWS Region sees changes made
by that session. It also sees all committed changes from both the primary AWS Region and other
secondary AWS Regions. Each query might wait for a period that varies depending on the amount
of session lag. The query proceeds when the secondary cluster is up-to-date with all committed
data from the primary cluster, as of the time that the query began.

For more information about all the parameters involved with write forwarding, see Configuration
parameters for write forwarding in Aurora MySQL.

Examples of using write forwarding

These examples use aurora_replica_read_consistency as a session variable. For Aurora
MySQL version 3.04 and higher, you can use aurora_replica_read_consistency as either a
session variable or as a DB cluster parameter.

In the following example, the primary cluster is in the US East (N. Virginia) Region. The
secondary cluster is in the US East (Ohio) Region. The example shows the effects of running
INSERT statements followed by SELECT statements. Depending on the value of the
aurora_replica_read_consistency setting, the results might differ depending on the timing
of the statements. To achieve higher consistency, you might wait briefly before issuing the SELECT
statement. Or Aurora can automatically wait until the results finish replicating before proceeding
with SELECT.

In this example, there is a read consistency setting of eventual. Running an INSERT statement
immediately followed by a SELECT statement still returns the value of COUNT(*). This value
reflects the number of rows before the new row is inserted. Running the SELECT again a short time
later returns the updated row count. The SELECT statements don't wait.

mysql> set aurora_replica_read_consistency = 'eventual';
mysql> select count(*) from t1;

Using write forwarding in Aurora MySQL 2937

Amazon Aurora User Guide for Aurora

+----------+
| count(*) |
+----------+
| 5 |
+----------+
1 row in set (0.00 sec)
mysql> insert into t1 values (6); select count(*) from t1;
+----------+
| count(*) |
+----------+
| 5 |
+----------+
1 row in set (0.00 sec)
mysql> select count(*) from t1;
+----------+
| count(*) |
+----------+
| 6 |
+----------+
1 row in set (0.00 sec)

With a read consistency setting of session, a SELECT statement immediately after an INSERT
waits until the changes from the INSERT statement are visible. Subsequent SELECT statements
don't wait.

mysql> set aurora_replica_read_consistency = 'session';
mysql> select count(*) from t1;
+----------+
| count(*) |
+----------+
| 6 |
+----------+
1 row in set (0.01 sec)
mysql> insert into t1 values (6); select count(*) from t1; select count(*) from t1;
Query OK, 1 row affected (0.08 sec)
+----------+
| count(*) |
+----------+
| 7 |
+----------+
1 row in set (0.37 sec)
+----------+
| count(*) |

Using write forwarding in Aurora MySQL 2938

Amazon Aurora User Guide for Aurora

+----------+
| 7 |
+----------+
1 row in set (0.00 sec)

With the read consistency setting still set to session, introducing a brief wait after performing an
INSERT statement makes the updated row count available by the time the next SELECT statement
runs.

mysql> insert into t1 values (6); select sleep(2); select count(*) from t1;
Query OK, 1 row affected (0.07 sec)
+----------+
| sleep(2) |
+----------+
| 0 |
+----------+
1 row in set (2.01 sec)
+----------+
| count(*) |
+----------+
| 8 |
+----------+
1 row in set (0.00 sec)

With a read consistency setting of global, each SELECT statement waits to ensure that all data
changes as of the start time of the statement are visible before performing the query. The amount
of waiting for each SELECT statement varies, depending on the amount of replication lag between
the primary and secondary clusters.

mysql> set aurora_replica_read_consistency = 'global';
mysql> select count(*) from t1;
+----------+
| count(*) |
+----------+
| 8 |
+----------+
1 row in set (0.75 sec)
mysql> select count(*) from t1;
+----------+
| count(*) |
+----------+
| 8 |

Using write forwarding in Aurora MySQL 2939

Amazon Aurora User Guide for Aurora

+----------+
1 row in set (0.37 sec)
mysql> select count(*) from t1;
+----------+
| count(*) |
+----------+
| 8 |
+----------+
1 row in set (0.66 sec)

Running multipart statements with write forwarding in Aurora MySQL

A DML statement might consist of multiple parts, such as a INSERT ... SELECT statement or
a DELETE ... WHERE statement. In this case, the entire statement is forwarded to the primary
cluster and run there.

Transactions with write forwarding in Aurora MySQL

Whether the transaction is forwarded to the primary cluster depends on the access mode of the
transaction. You can specify the access mode for the transaction by using the SET TRANSACTION
statement or the START TRANSACTION statement. You can also specify the transaction access
mode by changing the value of the Aurora MySQL session variable tx_read_only. You can only
change this session value while you're connected to a secondary cluster that has write forwarding
enabled.

If a long-running transaction doesn't issue any statement for a substantial period of time, it might
exceed the idle timeout period. This period has a default of one minute. You can increase it up to
one day. A transaction that exceeds the idle timeout is canceled by the primary cluster. The next
subsequent statement you submit receives a timeout error. Then Aurora rolls back the transaction.

This type of error can occur in other cases when write forwarding becomes unavailable. For
example, Aurora cancels any transactions that use write forwarding if you restart the primary
cluster or if you turn off the write forwarding configuration setting.

Configuration parameters for write forwarding in Aurora MySQL

The Aurora cluster parameter groups include settings for the write forwarding feature. Because
these are cluster parameters, all DB instances in each cluster have the same values for these
variables. Details about these parameters are summarized in the following table, with usage notes
after the table.

Using write forwarding in Aurora MySQL 2940

Amazon Aurora User Guide for Aurora

Name Scope Type Default
value

Valid
values

aurora_fwd_master_idle_time
out (Aurora MySQL version 2)

Global unsigned
integer

60 1–86,400

aurora_fwd_master_max_conne
ctions_pct (Aurora MySQL version
2)

Global unsigned
long
integer

10 0–90

aurora_fwd_writer_idle_time
out (Aurora MySQL version 3)

Global unsigned
integer

60 1–86,400

aurora_fwd_writer_max_conne
ctions_pct (Aurora MySQL version
3)

Global unsigned
long
integer

10 0–90

aurora_replica_read_consist
ency

Session Enum '' (null) EVENTUAL,
SESSION,
GLOBAL

To control incoming write requests from secondary clusters, use these settings on the primary
cluster:

• aurora_fwd_master_idle_timeout, aurora_fwd_writer_idle_timeout: The number of
seconds the primary cluster waits for activity on a connection that's forwarded from a secondary
cluster before closing it. If the session remains idle beyond this period, Aurora cancels the
session.

• aurora_fwd_master_max_connections_pct,
aurora_fwd_writer_max_connections_pct: The upper limit on database connections that
can be used on a writer DB instance to handle queries forwarded from readers. It's expressed as
a percentage of the max_connections setting for the writer DB instance in the primary cluster.
For example, if max_connections is 800 and aurora_fwd_master_max_connections_pct
or aurora_fwd_writer_max_connections_pct is 10, then the writer allows a maximum of
80 simultaneous forwarded sessions. These connections come from the same connection pool
managed by the max_connections setting.

Using write forwarding in Aurora MySQL 2941

Amazon Aurora User Guide for Aurora

This setting applies only on the primary cluster, when one or more secondary clusters have
write forwarding enabled. If you decrease the value, existing connections aren't affected. Aurora
takes the new value of the setting into account when attempting to create a new connection
from a secondary cluster. The default value is 10, representing 10% of the max_connections
value. If you enable query forwarding on any of the secondary clusters, this setting must have a
nonzero value for write operations from secondary clusters to succeed. If the value is zero, the
write operations receive the error code ER_CON_COUNT_ERROR with the message Not enough
connections on writer to handle your request.

The aurora_replica_read_consistency parameter is a session-level parameter that enables
write forwarding. You use it in each session. You can specify EVENTUAL, SESSION, or GLOBAL for
read consistency level. To learn more about consistency levels, see Isolation and consistency for
write forwarding in Aurora MySQL. The following rules apply to this parameter:

• This is a session-level parameter. The default value is '' (empty).

• Write forwarding is available in a session only if aurora_replica_read_consistency is
set to EVENTUAL or SESSION or GLOBAL. This parameter is relevant only in reader instances of
secondary clusters that have write forwarding enabled and that are in an Aurora global database.

• You can't set this variable (when empty) or unset (when already set) inside a multistatement
transaction. However, you can change it from one valid value (EVENTUAL, SESSION, or GLOBAL)
to another valid value (EVENTUAL, SESSION, or GLOBAL) during such a transaction.

• The variable can't be SET when write forwarding isn't enabled on the secondary cluster.

• Setting the session variable on a primary cluster doesn't have any effect. If you try to modify this
variable on a primary cluster, you receive an error.

Amazon CloudWatch metrics for write forwarding in Aurora MySQL

The following Amazon CloudWatch metrics and Aurora MySQL status variables apply to the
primary cluster when you use write forwarding on one or more secondary clusters. These metrics
are all measured on the writer DB instance in the primary cluster.

Using write forwarding in Aurora MySQL 2942

Amazon Aurora User Guide for Aurora

CloudWatch metric Aurora MySQL status
variable

Unit Description

AuroraDML
RejectedM
asterFull

– Count The number of
forwarded queries
that are rejected
because the session is
full on the writer DB
instance.

For Aurora MySQL
version 2.

AuroraDML
RejectedW
riterFull

– Count The number of
forwarded queries
that are rejected
because the session is
full on the writer DB
instance.

For Aurora MySQL
version 3.

Forwardin
gMasterDM
LLatency

– Milliseconds Average time
to process each
forwarded DML
statement on the
writer DB instance.

It doesn't include
the time for the
secondary cluster to
forward the write
request, or the
time to replicate
changes back to the
secondary cluster.

Using write forwarding in Aurora MySQL 2943

Amazon Aurora User Guide for Aurora

CloudWatch metric Aurora MySQL status
variable

Unit Description

For Aurora MySQL
version 2.

Forwardin
gMasterDM
LThroughput

– Count per second Number of forwarded
DML statement
s processed each
second by this writer
DB instance.

For Aurora MySQL
version 2.

Forwardin
gMasterOp
enSessions

Aurora_fw
d_master_
open_sessions

Count Number of forwarded
sessions on the writer
DB instance.

For Aurora MySQL
version 2.

– Aurora_fw
d_master_
dml_stmt_count

Count Total number of
DML statements
forwarded to this
writer DB instance.
For Aurora MySQL
version 2.

– Aurora_fw
d_master_
dml_stmt_
duration

Microseconds Total duration of
DML statements
forwarded to this
writer DB instance.

For Aurora MySQL
version 2.

Using write forwarding in Aurora MySQL 2944

Amazon Aurora User Guide for Aurora

CloudWatch metric Aurora MySQL status
variable

Unit Description

– Aurora_fw
d_master_
select_st
mt_count

Count Total number of
SELECT statement
s forwarded to this
writer DB instance.

For Aurora MySQL
version 2.

– Aurora_fw
d_master_
select_st
mt_duration

Microseconds Total duration of
SELECT statement
s forwarded to this
writer DB instance.

For Aurora MySQL
version 2.

Forwardin
gWriterDM
LLatency

– Milliseconds Average time
to process each
forwarded DML
statement on the
writer DB instance.

It doesn't include
the time for the
secondary cluster to
forward the write
request, or the
time to replicate
changes back to the
secondary cluster.

For Aurora MySQL
version 3.

Using write forwarding in Aurora MySQL 2945

Amazon Aurora User Guide for Aurora

CloudWatch metric Aurora MySQL status
variable

Unit Description

Forwardin
gWriterDM
LThroughput

– Count per second Number of forwarded
DML statement
s processed each
second by this writer
DB instance.
For Aurora MySQL
version 3.

Forwardin
gWriterOp
enSessions

Aurora_fw
d_writer_
open_sessions

Count Number of forwarded
sessions on the writer
DB instance.
For Aurora MySQL
version 3.

– Aurora_fw
d_writer_
dml_stmt_count

Count Total number of
DML statements
forwarded to this
writer DB instance.
For Aurora MySQL
version 3.

– Aurora_fw
d_writer_
dml_stmt_
duration

Microseconds Total duration of
DML statements
forwarded to this
writer DB instance.

– Aurora_fw
d_writer_
select_st
mt_count

Count Total number of
SELECT statement
s forwarded to this
writer DB instance.
For Aurora MySQL
version 3.

Using write forwarding in Aurora MySQL 2946

Amazon Aurora User Guide for Aurora

CloudWatch metric Aurora MySQL status
variable

Unit Description

– Aurora_fw
d_writer_
select_st
mt_duration

Microseconds Total duration of
SELECT statement
s forwarded to this
writer DB instance.

For Aurora MySQL
version 3.

The following CloudWatch metrics and Aurora MySQL status variables apply to each secondary
cluster. These metrics are measured on each reader DB instance in a secondary cluster with write
forwarding enabled.

CloudWatch metric Aurora MySQL status
variable

Unit Description

Forwardin
gReplicaD
MLLatency

– Milliseconds Average response
time of forwarded
DMLs on the replica.

Forwardin
gReplicaD
MLThroughput

– Count per second Number of forwarded
DML statement
s processed each
second.

Forwardin
gReplicaO
penSessions

Aurora_fw
d_replica
_open_sessions

Count Number of sessions
that are using write
forwarding on a
reader DB instance.

Forwardin
gReplicaR
eadWaitLatency

– Milliseconds Average wait time
that a SELECT
statement on a
reader DB instance

Using write forwarding in Aurora MySQL 2947

Amazon Aurora User Guide for Aurora

CloudWatch metric Aurora MySQL status
variable

Unit Description

waits to catch up to
the primary cluster.

The degree to
which the reader
DB instance waits
before processing
a query depends
on the aurora_re
plica_rea
d_consistency
setting.

Forwardin
gReplicaR
eadWaitTh
roughput

– Count per second Total number of
SELECT statement
s processed each
second in all sessions
that are forwarding
writes.

Forwardin
gReplicaS
electLatency

(–) Milliseconds Forwarded SELECT
latency, average over
all forwarded SELECT
statements within the
monitoring period.

Forwardin
gReplicaS
electThro
ughput

– Count per second Forwarded SELECT
throughput per
second average
within the monitoring
period.

Using write forwarding in Aurora MySQL 2948

Amazon Aurora User Guide for Aurora

CloudWatch metric Aurora MySQL status
variable

Unit Description

– Aurora_fw
d_replica
_dml_stmt
_count

Count Total number of
DML statements
forwarded from this
reader DB instance.

– Aurora_fw
d_replica
_dml_stmt
_duration

Microseconds Total duration of
all DML statements
forwarded from this
reader DB instance.

– Aurora_fw
d_replica
_errors_s
ession_limit

Count Number of sessions
rejected by the
primary cluster
due to one of the
following error
conditions:

• writer full

• Too many
forwarded
statements in
progress.

– Aurora_fw
d_replica
_read_wai
t_count

Count Total number of
read-after-write waits
on this reader DB
instance.

– Aurora_fw
d_replica
_read_wai
t_duration

Microseconds Total duration of
waits due to the read
consistency setting
on this reader DB
instance.

Using write forwarding in Aurora MySQL 2949

Amazon Aurora User Guide for Aurora

CloudWatch metric Aurora MySQL status
variable

Unit Description

– Aurora_fw
d_replica
_select_s
tmt_count

Count Total number of
SELECT statements
forwarded from this
reader DB instance.

– Aurora_fw
d_replica
_select_s
tmt_duration

Microseconds Total duration of
SELECT statements
forwarded from this
reader DB instance.

Using write forwarding in an Aurora PostgreSQL global database

Topics

• Region and version availability of write forwarding in Aurora PostgreSQL

• Enabling write forwarding in Aurora PostgreSQL

• Checking if a secondary cluster has write forwarding enabled in Aurora PostgreSQL

• Application and SQL compatibility with write forwarding in Aurora PostgreSQL

• Isolation and consistency for write forwarding in Aurora PostgreSQL

• Running multipart statements with write forwarding in Aurora PostgreSQL

• Configuration parameters for write forwarding in Aurora PostgreSQL

• Amazon CloudWatch metrics for write forwarding in Aurora PostgreSQL

• Wait events for write forwarding in Aurora PostgreSQL

Region and version availability of write forwarding in Aurora PostgreSQL

Write forwarding is supported with Aurora PostgreSQL version 15.4 and higher minor versions, and
version 14.9 and higher minor versions. Write forwarding is available in every Region where Aurora
PostgreSQL-based global databases are available.

For more information on version and Region availability of Aurora PostgreSQL global databases,
see Aurora global databases with Aurora PostgreSQL.

Using write forwarding in Aurora PostgreSQL 2950

Amazon Aurora User Guide for Aurora

Enabling write forwarding in Aurora PostgreSQL

By default, write forwarding isn't enabled when you add a secondary cluster to an Aurora global
database. You can enable write forwarding for your secondary DB cluster while you're creating
it or anytime after you create it. If needed, you can disable it later. Enabling or disabling write
forwarding doesn't cause downtime or a reboot.

Console

In the console, you can enable or disable write forwarding when you create or modify a secondary
DB cluster.

Enabling or disabling write forwarding when creating a secondary DB cluster

When you create a new secondary DB cluster, you enable write forwarding by selecting the Turn on
global write forwarding check box under Read replica write forwarding. Or clear the check box to
disable it. To create a secondary DB cluster, follow the instructions for your DB engine in Creating
an Amazon Aurora DB cluster.

The following screenshot shows the Read replica write forwarding section with the Turn on
global write forwarding check box selected.

Enabling or disabling write forwarding when modifying a secondary DB cluster

In the console, you can modify a secondary DB cluster to enable or disable write forwarding.

To enable or disable write forwarding for a secondary DB cluster by using the console

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. Choose Databases.

3. Choose the secondary DB cluster, and choose Modify.

4. In the Read replica write forwarding section, check or clear the Turn on global write
forwarding check box.

Using write forwarding in Aurora PostgreSQL 2951

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Aurora User Guide for Aurora

5. Choose Continue.

6. For Schedule modifications, choose Apply immediately. If you choose Apply during the next
scheduled maintenance window, Aurora ignores this setting and turns on write forwarding
immediately.

7. Choose Modify cluster.

AWS CLI

To enable write forwarding by using the AWS CLI, use the --enable-global-write-
forwarding option. This option works when you create a new secondary cluster using the create-
db-cluster command. It also works when you modify an existing secondary cluster using the
modify-db-cluster command. It requires that the global database uses an Aurora version that
supports write forwarding. You can disable write forwarding by using the --no-enable-global-
write-forwarding option with these same CLI commands.

The following procedures describe how to enable or disable write forwarding for a secondary DB
cluster in your global cluster by using the AWS CLI.

To enable or disable write forwarding for an existing secondary DB cluster

• Call the modify-db-cluster AWS CLI command and supply the following values:

• --db-cluster-identifier – The name of the DB cluster.

• --enable-global-write-forwarding to turn on or --no-enable-global-write-
forwarding to turn off.

The following example enables write forwarding for DB cluster sample-secondary-db-
cluster.

For Linux, macOS, or Unix:

aws rds modify-db-cluster \
 --db-cluster-identifier sample-secondary-db-cluster \
 --enable-global-write-forwarding

For Windows:

aws rds modify-db-cluster ^

Using write forwarding in Aurora PostgreSQL 2952

https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-cluster.html
https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-cluster.html
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-cluster.html
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-cluster.html

Amazon Aurora User Guide for Aurora

 --db-cluster-identifier sample-secondary-db-cluster ^
 --enable-global-write-forwarding

RDS API

To enable write forwarding using the Amazon RDS API, set the EnableGlobalWriteForwarding
parameter to true. This parameter works when you create a new secondary cluster using
the CreateDBCluster operation. It also works when you modify an existing secondary cluster
using the ModifyDBCluster operation. It requires that the global database uses an Aurora
version that supports write forwarding. You can disable write forwarding by setting the
EnableGlobalWriteForwarding parameter to false.

Checking if a secondary cluster has write forwarding enabled in Aurora
PostgreSQL

To determine whether you can use write forwarding from a secondary cluster, you can check
whether the cluster has the attribute "GlobalWriteForwardingStatus": "enabled".

In the AWS Management Console, you see Read replica write forwarding on the
Configuration tab of the details page for the cluster. To see the status of the global write
forwarding setting for all of your clusters, run the following AWS CLI command.

A secondary cluster shows the value "enabled" or "disabled" to indicate if write forwarding
is turned on or off. A value of null indicates that write forwarding isn't available for that cluster.
Either the cluster isn't part of a global database, or is the primary cluster instead of a secondary
cluster. The value can also be "enabling" or "disabling" if write forwarding is in the process of
being turned on or off.

Example

aws rds describe-db-clusters --query '*[].
{DBClusterIdentifier:DBClusterIdentifier,GlobalWriteForwardingStatus:GlobalWriteForwardingStatus}'
[
 {
 "GlobalWriteForwardingStatus": "enabled",
 "DBClusterIdentifier": "aurora-write-forwarding-test-replica-1"
 },
 {
 "GlobalWriteForwardingStatus": "disabled",
 "DBClusterIdentifier": "aurora-write-forwarding-test-replica-2"

Using write forwarding in Aurora PostgreSQL 2953

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateDBCluster.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBCluster.html

Amazon Aurora User Guide for Aurora

 },
 {
 "GlobalWriteForwardingStatus": null,
 "DBClusterIdentifier": "non-global-cluster"
 }
]

To find all secondary clusters that have global write forwarding enabled, run the following
command. This command also returns the cluster's reader endpoint. You use the secondary
cluster's reader endpoint when you use write forwarding from the secondary to the primary in your
Aurora global database.

Example

aws rds describe-db-clusters --query 'DBClusters[].
{DBClusterIdentifier:DBClusterIdentifier,GlobalWriteForwardingStatus:GlobalWriteForwardingStatus,ReaderEndpoint:ReaderEndpoint}
 | [?GlobalWriteForwardingStatus == `enabled`]'
[
 {
 "GlobalWriteForwardingStatus": "enabled",
 "ReaderEndpoint": "aurora-write-forwarding-test-replica-1.cluster-ro-
cnpexample.us-west-2.rds.amazonaws.com",
 "DBClusterIdentifier": "aurora-write-forwarding-test-replica-1"
 }
]

Application and SQL compatibility with write forwarding in Aurora PostgreSQL

Certain statements aren't allowed or can produce stale results when you use them in a global
database with write forwarding. In addition, user defined functions and user defined procedures
aren't supported. Thus, the EnableGlobalWriteForwarding setting is turned off by default
for secondary clusters. Before turning it on, check to make sure that your application code isn't
affected by any of these restrictions.

You can use the following kinds of SQL statements with write forwarding:

• Data manipulation language (DML) statements, such as INSERT, DELETE, and UPDATE

• SELECT FOR { UPDATE | NO KEY UPDATE | SHARE | KEY SHARE } statements

• PREPARE and EXECUTE statements

• EXPLAIN statements with the statements in this list

Using write forwarding in Aurora PostgreSQL 2954

Amazon Aurora User Guide for Aurora

The following kinds of SQL statements aren't supported with write forwarding:

• Data definition language (DDL) statements

• ANALYZE

• CLUSTER

• COPY

• Cursors – Cursors aren't supported, so make sure to close them before using write forwarding.

• GRANT|REVOKE|REASSIGN OWNED|SECURITY LABEL

• LOCK

• SAVEPOINT statements

• SELECT INTO

• SET CONSTRAINTS

• TRUNCATE

• VACUUM

Isolation and consistency for write forwarding in Aurora PostgreSQL

In sessions that use write forwarding, you can use the REPEATABLE READ and READ COMMITTED
isolation levels. However, the SERIALIZABLE isolation level isn't supported.

You can control the degree of read consistency on a secondary cluster. The read consistency
level determines how much waiting the secondary cluster does before each read operation to
ensure that some or all changes are replicated from the primary cluster. You can adjust the read
consistency level to ensure that all forwarded write operations from your session are visible in
the secondary cluster before any subsequent queries. You can also use this setting to ensure that
queries on the secondary cluster always see the most current updates from the primary cluster.
This is so even for those submitted by other sessions or other clusters. To specify this type of
behavior for your application, you choose the appropriate value for the session-level parameter
apg_write_forward.consistency_mode. The apg_write_forward.consistency_mode
parameter has an effect only on secondary clusters that have write forwarding enabled.

Using write forwarding in Aurora PostgreSQL 2955

Amazon Aurora User Guide for Aurora

Note

For the apg_write_forward.consistency_mode parameter, you can specify the value
SESSION, EVENTUAL, GLOBAL, or OFF. By default, the value is set to SESSION. Setting the
value to OFF disables write forwarding in the session.

As you increase the consistency level, your application spends more time waiting for changes to be
propagated between AWS Regions. You can choose the balance between fast response time and
ensuring that changes made in other locations are fully available before your queries run.

With each available consistency mode setting, the effect is as follows:

• SESSION – All queries in a secondary AWS Region that uses write forwarding see the results of
all changes made in that session. The changes are visible regardless of whether the transaction
is committed. If necessary, the query waits for the results of forwarded write operations to
be replicated to the current Region. It doesn't wait for updated results from write operations
performed in other Regions or in other sessions within the current Region.

• EVENTUAL – Queries in a secondary AWS Region that uses write forwarding might see data that
is slightly stale due to replication lag. Results of write operations in the same session aren't
visible until the write operation is performed on the primary Region and replicated to the current
Region. The query doesn't wait for the updated results to be available. Thus, it might retrieve the
older data or the updated data, depending on the timing of the statements and the amount of
replication lag.

• GLOBAL – A session in a secondary AWS Region sees changes made by that session. It also sees
all committed changes from both the primary AWS Region and other secondary AWS Regions.
Each query might wait for a period that varies depending on the amount of session lag. The
query proceeds when the secondary cluster is up-to-date with all committed data from the
primary cluster, as of the time that the query began.

• OFF – Write forwarding is disabled in the session.

For more information about all the parameters involved with write forwarding, see Configuration
parameters for write forwarding in Aurora PostgreSQL.

Using write forwarding in Aurora PostgreSQL 2956

Amazon Aurora User Guide for Aurora

Running multipart statements with write forwarding in Aurora PostgreSQL

A DML statement might consist of multiple parts, such as a INSERT ... SELECT statement or
a DELETE ... WHERE statement. In this case, the entire statement is forwarded to the primary
cluster and run there.

Configuration parameters for write forwarding in Aurora PostgreSQL

The Aurora cluster parameter groups include settings for the write forwarding feature. Because
these are cluster parameters, all DB instances in each cluster have the same values for these
variables. Details about these parameters are summarized in the following table, with usage notes
after the table.

Name Scope Type Default
value

Valid
values

apg_write_forward.connect_t
imeout

Session seconds 30 0–
2147483
647

apg_write_forward.consisten
cy_mode

Session enum Session SESSION,
EVENTUAL,
GLOBAL,
OFF

apg_write_forward.idle_in_t
ransaction_session_timeout

Session milliseco
nds

86400000 0–
2147483
647

apg_write_forward.idle_sess
ion_timeout

Session milliseco
nds

300000 0–
2147483
647

apg_write_forward.max_forwa
rding_connections_percent

Global int 25 1–100

The apg_write_forward.max_forwarding_connections_percent parameter is the
upper limit on database connection slots that can be used to handle queries forwarded

Using write forwarding in Aurora PostgreSQL 2957

Amazon Aurora User Guide for Aurora

from readers. It is expressed as a percentage of the max_connections setting for the
writer DB instance in the primary cluster. For example, if max_connections is 800 and
apg_write_forward.max_forwarding_connections_percent is 10, then the writer allows
a maximum of 80 simultaneous forwarded sessions. These connections come from the same
connection pool managed by the max_connections setting. This setting applies only on the
primary cluster when at least one secondary clusters has write forwarding enabled.

Use the following settings on the secondary cluster:

• apg_write_forward.consistency_mode – A session-level parameter that controls the
degree of read consistency on the secondary cluster. Valid values are SESSION, EVENTUAL,
GLOBAL, or OFF. By default, the value is set to SESSION. Setting the value to OFF disables write
forwarding in the session. To learn more about consistency levels, see Isolation and consistency
for write forwarding in Aurora PostgreSQL. This parameter is relevant only in reader instances of
secondary clusters that have write forwarding enabled and that are in an Aurora global database.

• apg_write_forward.connect_timeout – The maximum number of seconds the secondary
cluster waits when establishing a connection to the primary cluster before giving up. A value of 0
means to wait indefinitely.

• apg_write_forward.idle_in_transaction_session_timeout – The number of
milliseconds the primary cluster waits for activity on a connection that's forwarded from a
secondary cluster that has an open transaction before closing it. If the session remains idle in
transaction beyond this period, Aurora terminates the session. A value of 0 disables the timeout.

• apg_write_forward.idle_session_timeout – The number of milliseconds the primary
cluster waits for activity on a connection that's forwarded from a secondary cluster before
closing it. If the session remains idle beyond this period, Aurora terminates the session. A value
of 0 disables the timeout.

Amazon CloudWatch metrics for write forwarding in Aurora PostgreSQL

The following Amazon CloudWatch metrics apply to the primary cluster when you use write
forwarding on one or more secondary clusters. These metrics are all measured on the writer DB
instance in the primary cluster.

Using write forwarding in Aurora PostgreSQL 2958

Amazon Aurora User Guide for Aurora

CloudWatch Metric Units and description

AuroraForwardingWriterDMLTh
roughput

Count (per second). Number of forwarded
DML statements processed each second by
this writer DB instance.

AuroraForwardingWriterOpenS
essions

Count. Number of open sessions on this writer
DB instance processing forwarded queries.

AuroraForwardingWriterTotal
Sessions

Count. Total number of forwarded sessions on
this writer DB instance.

The following CloudWatch metrics apply to each secondary cluster. These metrics are measured on
each reader DB instance in a secondary cluster with write forwarding enabled.

CloudWatch Metric Unit and description

AuroraForwardingReplicaComm
itThroughput

Count (per second). Number of commits
in sessions forwarded by this replica each
second.

AuroraForwardingReplicaDMLL
atency

Milliseconds. Average response time in
milliseconds of forwarded DMLs on replica.

AuroraForwardingReplicaDMLT
hroughput

Count (per second). Number of forwarded
DML statements processed on this replica each
second.

AuroraForwardingReplicaErro
rSessionsLimit

Count. Number of sessions rejected by the
primary cluster because the limit for max
connections or max write forward connections
was reached.

AuroraForwardingReplicaOpen
Sessions

Count. The number of sessions that are using
write forwarding on a replica instance.

AuroraForwardingReplicaRead
WaitLatency

Milliseconds. Average wait time in milliseco
nds that the replica waits to be consistent with

Using write forwarding in Aurora PostgreSQL 2959

Amazon Aurora User Guide for Aurora

CloudWatch Metric Unit and description

the LSN of the primary cluster. The degree to
which the reader DB instance waits depends
on the apg_write_forward.consisten
cy_mode setting. For information about this
setting, see the section called “Configuration
parameters for write forwarding in Aurora
PostgreSQL”.

Wait events for write forwarding in Aurora PostgreSQL

Amazon Aurora generates the following wait events when you use write forwarding with Aurora
PostgreSQL.

Topics

• IPC:AuroraWriteForwardConnect

• IPC:AuroraWriteForwardConsistencyPoint

• IPC:AuroraWriteForwardExecute

• IPC:AuroraWriteForwardGetGlobalConsistencyPoint

• IPC:AuroraWriteForwardXactAbort

• IPC:AuroraWriteForwardXactCommit

• IPC:AuroraWriteForwardXactStart

IPC:AuroraWriteForwardConnect

The IPC:AuroraWriteForwardConnect event occurs when a backend process on the secondary
DB cluster is waiting for a connection to the writer node of the primary DB cluster to be opened.

Likely causes of increased waits

This event increases as the number of connection attempts from a secondary Region's reader node
to the writer node of the primary DB cluster increases.

Actions

Using write forwarding in Aurora PostgreSQL 2960

Amazon Aurora User Guide for Aurora

Reduce the number of simultaneous connections from a secondary node to the primary Region's
writer node.

IPC:AuroraWriteForwardConsistencyPoint

The IPC:AuroraWriteForwardConsistencyPoint event describes how long a query from
a node on the secondary DB cluster will wait for the results of forwarded write operations to
be replicated to the current Region. This event is only generated if the session-level parameter
apg_write_forward.consistency_mode is set to one of the following:

• SESSION – queries on a secondary node wait for the results of all changes made in that session.

• GLOBAL – queries on a secondary node wait for the results of changes made by that session, plus
all committed changes from both the primary Region and other secondary Regions in the global
cluster.

For more information about the apg_write_forward.consistency_mode parameter settings,
see the section called “Configuration parameters for write forwarding in Aurora PostgreSQL”.

Likely causes of increased waits

Common causes for longer wait times include the following:

• Increased replica lag, as measured by the Amazon CloudWatch ReplicaLag metric. For more
information about this metric, see Monitoring Aurora PostgreSQL replication.

• Increased load on the primary Region's writer node or on the secondary node.

Actions

Change your consistency mode, depending on your application's requirements.

IPC:AuroraWriteForwardExecute

The IPC:AuroraWriteForwardExecute event occurs when a backend process on the secondary
DB cluster is waiting for a forwarded query to complete and obtain results from the writer node of
the primary DB cluster.

Likely causes of increased waits

Common causes for increased waits include the following:

• Fetching a large number of rows from the primary Region's writer node.

Using write forwarding in Aurora PostgreSQL 2961

Amazon Aurora User Guide for Aurora

• Increased network latency between the secondary node and primary Region's writer node
increases the time it takes the secondary node to receive data from the writer node.

• Increased load on the secondary node can delay transmission of the query request from the
secondary node to the primary Region's writer node.

• Increased load on the primary Region's writer node can delay transmission of data from the
writer node to the secondary node.

Actions

We recommend different actions depending on the causes of your wait event.

• Optimize queries to retrieve only necessary data.

• Optimize data manipulation language (DML) operations to only modify necessary data.

• If the secondary node or primary Region's writer node is constrained by CPU or network
bandwidth, consider changing it to an instance type with more CPU capacity or more network
bandwidth.

IPC:AuroraWriteForwardGetGlobalConsistencyPoint

The IPC:AuroraWriteForwardGetGlobalConsistencyPoint event occurs when a backend
process on the secondary DB cluster that's using the GLOBAL consistency mode is waiting to obtain
the global consistency point from the writer node before executing a query.

Likely causes of increased waits

Common causes for increased waits include the following:

• Increased network latency between the secondary node and primary Region's writer node
increases the time it takes the secondary node to receive data from the writer node.

• Increased load on the secondary node can delay transmission of the query request from the
secondary node to the primary Region's writer node.

• Increased load on the primary Region's writer node can delay transmission of data from the
writer node to the secondary node.

Actions

We recommend different actions depending on the causes of your wait event.

Using write forwarding in Aurora PostgreSQL 2962

Amazon Aurora User Guide for Aurora

• Change your consistency mode, depending on your application's requirements.

• If the secondary node or primary Region's writer node is constrained by CPU or network
bandwidth, consider changing it to an instance type with more CPU capacity or more network
bandwidth.

IPC:AuroraWriteForwardXactAbort

The IPC:AuroraWriteForwardXactAbort event occurs when a backend process on the
secondary DB cluster is waiting for the result of a remote cleanup query. Cleanup queries are issued
to return the process to the appropriate state after a write-forwarded transaction is aborted.
Amazon Aurora performs them either because an error was found or because an user issued an
explicit ABORT command or cancelled a running query.

Likely causes of increased waits

Common causes for increased waits include the following:

• Increased network latency between the secondary node and primary Region's writer node
increases the time it takes the secondary node to receive data from the writer node.

• Increased load on the secondary node can delay transmission of the cleanup query request from
the secondary node to the primary Region's writer node.

• Increased load on the primary Region's writer node can delay transmission of data from the
writer node to the secondary node.

Actions

We recommend different actions depending on the causes of your wait event.

• Investigate the cause of the aborted transaction.

• If the secondary node or primary Region's writer node is constrained by CPU or network
bandwidth, consider changing it to an instance type with more CPU capacity or more network
bandwidth.

IPC:AuroraWriteForwardXactCommit

The IPC:AuroraWriteForwardXactCommit event occurs when a backend process on the
secondary DB cluster is waiting for the result of a forwarded commit transaction command.

Using write forwarding in Aurora PostgreSQL 2963

Amazon Aurora User Guide for Aurora

Likely causes of increased waits

Common causes for increased waits include the following:

• Increased network latency between the secondary node and primary Region's writer node
increases the time it takes the secondary node to receive data from the writer node.

• Increased load on the secondary node can delay transmission of the query request from the
secondary node to the primary Region's writer node.

• Increased load on the primary Region's writer node can delay transmission of data from the
writer node to the secondary node.

Actions

If the secondary node or primary Region's writer node is constrained by CPU or network
bandwidth, consider changing it to an instance type with more CPU capacity or more network
bandwidth.

IPC:AuroraWriteForwardXactStart

The IPC:AuroraWriteForwardXactStart event occurs when a backend process on the
secondary DB cluster is waiting for the result of a forwarded start transaction command.

Likely causes of increased waits

Common causes for increased waits include the following:

• Increased network latency between the secondary node and primary Region's writer node
increases the time it takes the secondary node to receive data from the writer node.

• Increased load on the secondary node can delay transmission of the query request from the
secondary node to the primary Region's writer node.

• Increased load on the primary Region's writer node can delay transmission of data from the
writer node to the secondary node.

Actions

If the secondary node or primary Region's writer node is constrained by CPU or network
bandwidth, consider changing it to an instance type with more CPU capacity or more network
bandwidth.

Using write forwarding in Aurora PostgreSQL 2964

Amazon Aurora User Guide for Aurora

Using switchover or failover in an Amazon Aurora global
database

An Aurora global database provides more business continuity and disaster recovery (BCDR)
protection than the standard high availability provided by an Aurora DB cluster in a single AWS
Region. By using an Aurora global database, you can plan for and recover from true Regional
disasters or complete service-level outages quickly. Recovery from disaster is typically driven by the
following two business objectives:

• Recovery time objective (RTO) – The time it takes a system to return to a working state after
a disaster or service outage. In other words, RTO measures downtime. For an Aurora global
database, RTO can be in the order of minutes.

• Recovery point objective (RPO) – The amount of data that can be lost (measured in time) after
a disaster or service outage. This data loss is usually due to asynchronous replication lag. For an
Aurora global database, RPO is typically measured in seconds. With an Aurora PostgreSQL–based
global database, you can use the rds.global_db_rpo parameter to set and track the upper
bound on RPO, but doing so might affect transaction processing on the primary cluster's writer
node. For more information, see Managing RPOs for Aurora PostgreSQL–based global databases.

Switching over or failing over an Aurora global database involves promoting a DB cluster in one of
your global database's secondary Regions to be the primary DB cluster. The term "regional outage"
is often used to describe a variety of failure scenarios. A worst case scenario could be a wide-spread
outage from a catastrophic event that affects hundreds of square miles. However, most outages
are much more localized, affecting only a small subset of cloud services or customer systems.
Consider the full scope of the outage to make sure cross-Region failover is the proper solution and
to choose the appropriate failover method for the situation. Whether you should use the failover or
switchover approach depends on the specific outage scenario:

• Failover – Use this approach to recover from an unplanned outage. With this approach, you
perform a cross-Region failover to one of the secondary DB clusters in your Aurora global
database. The RPO for this approach is typically a non-zero value measured in seconds. The
amount of data loss depends on the Aurora global database replication lag across the AWS
Regions at the time of the failure. To learn more, see Recovering an Amazon Aurora global
database from an unplanned outage.

• Switchover – This operation was previously called "managed planned failover." Use this approach
for controlled scenarios, such as operational maintenance and other planned operational

Using switchover or failover in an Aurora global database 2965

Amazon Aurora User Guide for Aurora

procedures. Because this feature synchronizes secondary DB clusters with the primary before
making any other changes, RPO is 0 (no data loss). To learn more, see Performing switchovers for
Amazon Aurora global databases.

Note

If you want to switch over or fail over to a headless secondary Aurora DB cluster, you
need to first add a DB instance to it. For more information about headless DB clusters, see
Creating a headless Aurora DB cluster in a secondary Region.

Topics

• Recovering an Amazon Aurora global database from an unplanned outage

• Performing switchovers for Amazon Aurora global databases

• Managing RPOs for Aurora PostgreSQL–based global databases

Recovering an Amazon Aurora global database from an unplanned
outage

On very rare occasions, your Aurora global database might experience an unexpected outage in
its primary AWS Region. If this happens, your primary Aurora DB cluster and its writer node aren't
available, and the replication between the primary and secondary DB clusters stops. To minimize
both downtime (RTO) and data loss (RPO), you can work quickly to perform a cross-Region failover.

There are two methods for failing over in a disaster recovery situation:

• Managed failover – This method is recommended for disaster recovery. When you use this
method, Aurora automatically adds back the old primary Region to the global database as a
secondary Region when it becomes available again. Thus, the original topology of your global
cluster is maintained. To learn how to use this method, see Performing managed failovers for
Aurora global databases.

• Manual failover – This alternative method can be used when managed failover isn't an option, for
example, when your primary and secondary Regions are running incompatible engine versions.
To learn how to use this method, see Performing manual failovers for Aurora global databases.

Recovering an Aurora global database from an unplanned outage 2966

Amazon Aurora User Guide for Aurora

Important

Both failover methods can result in a loss of write transaction data that wasn't replicated
to the chosen secondary before the failover event occurred. However, the recovery process
that promotes a DB instance on the chosen secondary DB cluster to be the primary writer
DB instance guarantees that the data is in a transactionally consistent state.

Performing managed failovers for Aurora global databases

This approach is intended for business continuity in the event of a true Regional disaster or
complete service-level outage.

During a managed failover, your primary cluster is failed over to your choice of secondary Region
while your Aurora global database's existing replication topology is maintained. The chosen
secondary cluster promotes one of its read-only nodes to full writer status. This step allows the
cluster to assume the role of primary cluster. Your database is unavailable for a short time while
this cluster is assuming its new role. Data that wasn't replicated from the old primary to the chosen
secondary cluster is missing when this secondary becomes the new primary.

Note

You can only perform a managed cross-Region database failover on an Aurora global
database if the primary and secondary DB clusters have the same major, minor, and patch
level engine versions. However, the patch levels can be different, depending on the minor
engine version. For more information, see Patch level compatibility for managed cross-
Region switchovers and failovers. If your engine versions are incompatible, you can perform
the failover manually by following the steps in Performing manual failovers for Aurora
global databases.

To minimize data loss, we recommend that you do the following before using this feature:

• Take applications offline to prevent writes from being sent to the primary cluster of Aurora
global database.

• Check lag times for all secondary Aurora DB clusters in the Aurora global database. Choosing
the secondary Region with the least replication lag can minimize data loss with the current
failed primary Region. For all Aurora PostgreSQL-based global databases and for Aurora

Recovering an Aurora global database from an unplanned outage 2967

Amazon Aurora User Guide for Aurora

MySQL-based global databases starting with engine versions 3.04.0 and higher, or 2.12.0 and
higher, use Amazon CloudWatch to view the AuroraGlobalDBRPOLag metric for all secondary
DB clusters. For lower minor versions of Aurora MySQL-based global databases, view the
AuroraGlobalDBReplicationLag metric instead. These metrics show you how far behind (in
milliseconds) replication to a secondary cluster is to the primary DB cluster.

For more information about CloudWatch metrics for Aurora, see Cluster-level metrics for
Amazon Aurora.

During a managed failover, the chosen secondary DB cluster is promoted to its new role as primary.
However, it doesn't inherit the various configuration options of the primary DB cluster. A mismatch
in configuration can lead to performance issues, workload incompatibilities, and other anomalous
behavior. To avoid such issues, we recommend that you resolve differences between your Aurora
global database clusters for the following:

• Configure Aurora DB cluster parameter group for the new primary, if necessary – You can
configure your Aurora DB cluster parameter groups independently for each Aurora cluster in
your Aurora global database. Therefore, when you promote a secondary DB cluster to take over
the primary role, the parameter group from the secondary might be configured differently than
for the primary. If so, modify the promoted secondary DB cluster's parameter group to conform
to your primary cluster's settings. To learn how, see Modifying parameters for an Aurora global
database.

• Configure monitoring tools and options, such as Amazon CloudWatch Events and alarms –
Configure the promoted DB cluster with the same logging ability, alarms, and so on as needed
for the global database. As with parameter groups, configuration for these features isn't
inherited from the primary during the failover process. Some CloudWatch metrics, such as
replication lag, are only available for secondary Regions. Thus, a failover changes how to view
those metrics and set alarms on them, and could require changes to any predefined dashboards.
For more information about Aurora DB clusters and monitoring, see Overview of monitoring
Amazon Aurora.

• Configure integrations with other AWS services – If your Aurora global database integrates
with AWS services, such as AWS Secrets Manager, AWS Identity and Access Management,
Amazon S3, and AWS Lambda, you need to make sure these are configured as needed. For more
information about integrating Aurora global databases with IAM, Amazon S3 and Lambda, see
Using Amazon Aurora global databases with other AWS services. To learn more about Secrets

Recovering an Aurora global database from an unplanned outage 2968

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/MonitoringOverview.html#monitoring-cloudwatch
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/MonitoringOverview.html#monitoring-cloudwatch

Amazon Aurora User Guide for Aurora

Manager, see How to automate replication of secrets in AWS Secrets Manager across AWS
Regions.

Typically, the chosen secondary cluster assumes the primary role within a few minutes. As soon
as the new primary Region's writer node is available, you can connect your applications to it and
resume your workloads. After Aurora promotes the new primary cluster, it automatically rebuilds
all additional secondary Region clusters.

Because Aurora global databases use asynchronous replication, the replication lag in each
secondary Region can vary. Aurora rebuilds these secondary Regions to have the exact same point-
in-time data as the new primary Region cluster. The duration of the complete rebuilding task can
take a few minutes to several hours, depending on the size of the storage volume and the distance
between the Regions. When the secondary Region clusters finish rebuilding from the new primary
Region, they become available for read access.

As soon as the new primary writer is promoted and available, the new primary Region's cluster
can handle read and write operations for the Aurora global database. Make sure to change the
endpoint for your application to use the new endpoint. If you accepted the provided names when
you created the Aurora global database, you can change the endpoint by removing the -ro from
the promoted cluster's endpoint string in your application.

For example, the secondary cluster's endpoint my-global.cluster-ro-aaaaaabbbbbb.us-
west-1.rds.amazonaws.com becomes my-global.cluster-aaaaaabbbbbb.us-
west-1.rds.amazonaws.com when that cluster is promoted to primary.

If you are using RDS Proxy, make sure to redirect your application's write operations to the
appropriate read/write endpoint of the proxy that's associated with the new primary cluster.
This proxy endpoint might be the default endpoint or a custom read/write endpoint. For more
information see How RDS Proxy endpoints work with global databases.

To restore the global database cluster's original topology, Aurora monitors the availability of the
old primary Region. As soon as that Region is healthy and available again, Aurora automatically
adds it back to the global cluster as a secondary Region. Before creating the new storage
volume in the old primary Region, Aurora tries to take a snapshot of the old storage volume
at the point of failure. It does this so that you can use it to recover any of the missing data.
If this operation is successful, Aurora places this snapshot named "rds:unplanned-global-
failover-name-of-old-primary-DB-cluster-timestamp" in the snapshot section of the AWS

Recovering an Aurora global database from an unplanned outage 2969

https://aws.amazon.com/blogs/security/how-to-automate-replication-of-secrets-in-aws-secrets-manager-across-aws-regions/
https://aws.amazon.com/blogs/security/how-to-automate-replication-of-secrets-in-aws-secrets-manager-across-aws-regions/

Amazon Aurora User Guide for Aurora

Management Console. You can also see this snapshot listed in the information returned by the
DescribeDBClusterSnapshots API operation.

Note

The snapshot of the old storage volume is a system snapshot that's subject to the backup
retention period configured on the old primary cluster. To preserve this snapshot outside of
the retention period, you can copy it to save it as a manual snapshot. To learn more about
copying snapshots, including pricing, see Copying a DB cluster snapshot.

After the original topology is restored, you can fail back your global database to the original
primary Region by performing a switchover operation when it makes the most sense for your
business and workload. To do so, follow the steps in Performing switchovers for Amazon Aurora
global databases.

You can fail over your Aurora global database using the AWS Management Console, the AWS CLI, or
the RDS API.

Console

To perform the managed failover on your Aurora global database

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. Choose Databases and find the Aurora global database you want to fail over.

3. Choose Switch over or fail over global database from the Actions menu.

Recovering an Aurora global database from an unplanned outage 2970

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DescribeDBClusterSnapshots.html
https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Aurora User Guide for Aurora

4. Choose Failover (allow data loss).

5. For New primary cluster, choose an active cluster in one of your secondary AWS Regions to be
the new primary cluster.

6. Enter confirm, and then choose Confirm.

When the failover completes, you can see the Aurora DB clusters and their current state in the
Databases list, as shown in the following image.

Recovering an Aurora global database from an unplanned outage 2971

Amazon Aurora User Guide for Aurora

AWS CLI

To perform the managed failover on an Aurora global database

Use the failover-global-cluster CLI command to fail over your Aurora global database. With
the command, pass values for the following parameters.

• --region – Specify the AWS Region where the secondary DB cluster that you want to be the
new primary for the Aurora global database is running.

• --global-cluster-identifier – Specify the name of your Aurora global database.

• --target-db-cluster-identifier – Specify the Amazon Resource Name (ARN) of the
Aurora DB cluster that you want to promote to be the new primary for the Aurora global
database.

• --allow-data-loss – Explicitly make this a failover operation instead of a switchover
operation. A failover operation can result in some data loss if the asynchronous replication
components haven't completed sending all replicated data to the secondary Region.

For Linux, macOS, or Unix:

aws rds --region region_of_selected_secondary \
 failover-global-cluster --global-cluster-identifier global_database_id \
 --target-db-cluster-identifier arn_of_secondary_to_promote \

Recovering an Aurora global database from an unplanned outage 2972

https://docs.aws.amazon.com/cli/latest/reference/rds/failover-global-cluster.html

Amazon Aurora User Guide for Aurora

 --allow-data-loss

For Windows:

aws rds --region region_of_selected_secondary ^
 failover-global-cluster --global-cluster-identifier global_database_id ^
 --target-db-cluster-identifier arn_of_secondary_to_promote ^
 --allow-data-loss

RDS API

To fail over an Aurora global database, run the FailoverGlobalCluster API operation.

Performing manual failovers for Aurora global databases

In some scenarios, you might not be able to use the managed failover process. One example is if
your primary and secondary DB clusters aren't running compatible engine versions. In this case, you
can follow this manual process to fail over your global database to your target secondary Region.

Tip

We recommend that you understand this process before using it. Have a plan ready to
quickly proceed at the first sign of a Region-wide issue. You can be ready to identify the
secondary Region with the least replication lag by using Amazon CloudWatch regularly to
track lag times for the secondary clusters. Make sure to test your plan to check that your
procedures are complete and accurate, and that staff are trained to perform a disaster
recovery failover before it really happens.

To manually fail over to a secondary cluster after an unplanned outage in the primary Region

1. Stop issuing DML statements and other write operations to the primary Aurora DB cluster in
the AWS Region with the outage.

2. Identify an Aurora DB cluster from a secondary AWS Region to use as a new primary DB
cluster. If you have two or more secondary AWS Regions in your Aurora global database,
choose the secondary cluster that has the least replication lag.

3. Detach your chosen secondary DB cluster from the Aurora global database.

Removing a secondary DB cluster from an Aurora global database immediately stops the
replication from the primary to this secondary and promotes it to a standalone provisioned

Recovering an Aurora global database from an unplanned outage 2973

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_FailoverGlobalCluster.html

Amazon Aurora User Guide for Aurora

Aurora DB cluster with full read/write capabilities. Any other secondary Aurora DB clusters
associated with the primary cluster in the Region with the outage are still available and can
accept calls from your application. They also consume resources. Because you're recreating
the Aurora global database, remove the other secondary DB clusters before creating the new
Aurora global database in the following steps. Doing this avoids data inconsistencies among
the DB clusters in the Aurora global database (split-brain issues).

For detailed steps for detaching, see Removing a cluster from an Amazon Aurora global
database.

4. Reconfigure your application to send all write operations to this now standalone Aurora DB
cluster using its new endpoint. If you accepted the provided names when you created the
Aurora global database, you can change the endpoint by removing the -ro from the cluster's
endpoint string in your application.

For example, the secondary cluster's endpoint my-global.cluster-ro-
aaaaaabbbbbb.us-west-1.rds.amazonaws.com becomes my-global.cluster-
aaaaaabbbbbb.us-west-1.rds.amazonaws.com when that cluster is detached from the
Aurora global database.

This Aurora DB cluster becomes the primary cluster of a new Aurora global database when you
start adding Regions to it in the next step.

If you are using RDS Proxy, make sure to redirect your application's write operations to the
appropriate read/write endpoint of the proxy that's associated with the new primary cluster.
This proxy endpoint might be the default endpoint or a custom read/write endpoint. For more
information see How RDS Proxy endpoints work with global databases.

5. Add an AWS Region to the DB cluster. When you do this, the replication process from primary
to secondary begins. For detailed steps to add a Region, see Adding an AWS Region to an
Amazon Aurora global database.

6. Add more AWS Regions as needed to recreate the topology needed to support your
application.

Make sure that application writes are sent to the correct Aurora DB cluster before, during, and after
making these changes. Doing this avoids data inconsistencies among the DB clusters in the Aurora
global database (split-brain issues).

Recovering an Aurora global database from an unplanned outage 2974

Amazon Aurora User Guide for Aurora

If you reconfigured in response to an outage in an AWS Region, you can make that AWS Region
the primary again after the outage is resolved. To do so, you add the old AWS Region to your
new global database, and then use the switchover process to switch its role. Your Aurora global
database must use a version of Aurora PostgreSQL or Aurora MySQL that supports switchovers. For
more information, see Performing switchovers for Amazon Aurora global databases.

Performing switchovers for Amazon Aurora global databases

Note

Switchovers were previously called "managed planned failovers."

By using switchovers, you can change the Region of your primary cluster on a routine basis. This
approach is intended for controlled scenarios, such as operational maintenance and other planned
operational procedures.

There are three common use cases for using switchovers.

• For "regional rotation" requirements imposed on specific industries. For example, financial
service regulations might want tier-0 systems to switch to a different Region for several months
to ensure that disaster recovery procedures are regularly exercised.

• For multi-Region "follow-the-sun" applications. For example, a business might want to provide
lower latency writes in different Regions based on business hours across different time zones.

• As a zero-data-loss method to fail back to the original primary Region after a failover.

Note

Switchovers are designed to be used on a healthy Aurora global database. To recover from
an unplanned outage, follow the appropriate procedure in Recovering an Amazon Aurora
global database from an unplanned outage.
To perform a switchover, your target secondary DB cluster must be running the exact same
engine version as the primary, including the patch level, depending on the engine version.
For more information, see Patch level compatibility for managed cross-Region switchovers
and failovers. Before you begin the switchover, check the engine versions in your global
cluster to make sure that they support managed cross-Region switchover, and upgrade
them if needed.

Performing switchovers for Aurora global databases 2975

Amazon Aurora User Guide for Aurora

During a switchover, Aurora switches over your primary cluster to your chosen secondary Region
while it maintains your global database's existing replication topology. Before it starts the
switchover process, Aurora waits for all secondary Region clusters to be fully synchronized with
the primary Region cluster. Then, the DB cluster in the primary Region becomes read-only and
the chosen secondary cluster promotes one of its read-only nodes to full writer status. Promoting
this node to a writer allows that secondary cluster to assume the role of primary cluster. Because
all secondary clusters were synchronized with the primary at the beginning of the process, the
new primary continues operations for the Aurora global database without losing any data. Your
database is unavailable for a short time while the primary and selected secondary clusters are
assuming their new roles.

To optimize application availability, we recommend that you do the following before using this
feature:

• Perform this operation during nonpeak hours or at another time when writes to the primary DB
cluster are minimal.

• Take applications offline to prevent writes from being sent to the primary cluster of Aurora
global database.

• Check lag times for all secondary Aurora DB clusters in the Aurora global database. For all Aurora
PostgreSQL-based global databases and for Aurora MySQL-based global databases starting
with engine versions 3.04.0 and higher or 2.12.0 and higher, use Amazon CloudWatch to view
the AuroraGlobalDBRPOLag metric for all secondary DB clusters. For lower minor versions of
Aurora MySQL-based global databases, view the AuroraGlobalDBReplicationLag metric
instead. These metrics show you how far behind (in milliseconds) replication to a secondary
cluster is to the primary DB cluster. This value is directly proportional to the time it takes for
Aurora to complete the switchover. Therefore, the larger the lag value, the longer the switchover
will take.

For more information about CloudWatch metrics for Aurora, see Cluster-level metrics for
Amazon Aurora.

During a switchover, the chosen secondary DB cluster is promoted to its new role as primary.
However, it doesn't inherit the various configuration options of the primary DB cluster. A mismatch
in configuration can lead to performance issues, workload incompatibilities, and other anomalous
behavior. To avoid such issues, we recommend that you resolve differences between your Aurora
global database clusters for the following:

Performing switchovers for Aurora global databases 2976

Amazon Aurora User Guide for Aurora

• Configure Aurora DB cluster parameter group for the new primary, if necessary – You can
configure your Aurora DB cluster parameter groups independently for each Aurora cluster in your
Aurora global database. That means that when you promote a secondary DB cluster to take over
the primary role, the parameter group from the secondary might be configured differently than
for the primary. If so, modify the promoted secondary DB cluster's parameter group to conform
to your primary cluster's settings. To learn how, see Modifying parameters for an Aurora global
database.

• Configure monitoring tools and options, such as Amazon CloudWatch Events and alarms –
Configure the promoted DB cluster with the same logging ability, alarms, and so on as needed
for the global database. As with parameter groups, configuration for these features isn't
inherited from the primary during the switchover process. Some CloudWatch metrics, such as
replication lag, are only available for secondary Regions. Thus, a switchover changes how to view
those metrics and set alarms on them, and could require changes to any predefined dashboards.
For more information about Aurora DB clusters and monitoring, see Overview of monitoring
Amazon Aurora.

• Configure integrations with other AWS services – If your Aurora global database integrates
with AWS services, such as AWS Secrets Manager, AWS Identity and Access Management, Amazon
S3, and AWS Lambda, make sure to configure your integrations with these services as needed.
For more information about integrating Aurora global databases with IAM, Amazon S3 and
Lambda, see Using Amazon Aurora global databases with other AWS services. To learn more
about Secrets Manager, see How to automate replication of secrets in AWS Secrets Manager
across AWS Regions.

Note

Typically, the role switchover can take up to several minutes. However, building additional
secondary clusters can take a few minutes to several hours, depending on the size of your
database and the physical distance between the Regions.

When the switchover process completes, the promoted Aurora DB cluster can handle write
operations for the Aurora global database. Make sure to change the endpoint for your application
to use the new endpoint. If you accepted the provided names when you created the Aurora global
database, you can change the endpoint by removing the -ro from the promoted cluster's endpoint
string in your application.

Performing switchovers for Aurora global databases 2977

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/MonitoringOverview.html#monitoring-cloudwatch
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/MonitoringOverview.html#monitoring-cloudwatch
https://aws.amazon.com/blogs/security/how-to-automate-replication-of-secrets-in-aws-secrets-manager-across-aws-regions/
https://aws.amazon.com/blogs/security/how-to-automate-replication-of-secrets-in-aws-secrets-manager-across-aws-regions/

Amazon Aurora User Guide for Aurora

For example, the secondary cluster's endpoint my-global.cluster-ro-aaaaaabbbbbb.us-
west-1.rds.amazonaws.com becomes my-global.cluster-aaaaaabbbbbb.us-
west-1.rds.amazonaws.com when that cluster is promoted to primary.

If you are using RDS Proxy, make sure to redirect your application's write operations to the
appropriate read/write endpoint of the proxy that's associated with the new primary cluster.
This proxy endpoint might be the default endpoint or a custom read/write endpoint. For more
information see How RDS Proxy endpoints work with global databases.

You can switch over your Aurora global database using the AWS Management Console, the AWS
CLI, or the RDS API.

Console

To perform the switchover on your Aurora global database

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. Choose Databases and find the Aurora global database you want to switch over.

3. Choose Switch over or fail over global database from the Actions menu.

4. Choose Switchover.

Performing switchovers for Aurora global databases 2978

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Aurora User Guide for Aurora

5. For New primary cluster, choose an active cluster in one of your secondary AWS Regions to be
the new primary cluster.

6. Choose Confirm.

When the switchover completes, you can see the Aurora DB clusters and their current roles in the
Databases list, as shown in the following image.

Performing switchovers for Aurora global databases 2979

Amazon Aurora User Guide for Aurora

AWS CLI

To perform the switchover on an Aurora global database

Use the switchover-global-cluster CLI command to switch over your Aurora global
database. With the command, pass values for the following parameters.

• --region – Specify the AWS Region where the primary DB cluster of the Aurora global database
is running.

• --global-cluster-identifier – Specify the name of your Aurora global database.

• --target-db-cluster-identifier – Specify the Amazon Resource Name (ARN) of the
Aurora DB cluster that you want to promote to be the primary for the Aurora global database.

For Linux, macOS, or Unix:

aws rds --region region_of_primary \
 switchover-global-cluster --global-cluster-identifier global_database_id \
 --target-db-cluster-identifier arn_of_secondary_to_promote

For Windows:

aws rds --region region_of_primary ^
 switchover-global-cluster --global-cluster-identifier global_database_id ^

Performing switchovers for Aurora global databases 2980

https://docs.aws.amazon.com/cli/latest/reference/rds/switchover-global-cluster.html

Amazon Aurora User Guide for Aurora

 --target-db-cluster-identifier arn_of_secondary_to_promote

RDS API

To switch over an Aurora global database, run the SwitchoverGlobalCluster API operation.

Managing RPOs for Aurora PostgreSQL–based global databases

With an Aurora PostgreSQL–based global database, you can manage the recovery point objective
(RPO) for your Aurora global database by using the rds.global_db_rpo parameter. RPO
represents the maximum amount of data that can be lost in the event of an outage.

When you set an RPO for your Aurora PostgreSQL–based global database, Aurora monitors the
RPO lag time of all secondary clusters to make sure that at least one secondary cluster stays within
the target RPO window. RPO lag time is another time-based metric.

The RPO is used when your database resumes operations in a new AWS Region after a failover.
Aurora evaluates RPO and RPO lag times to commit (or block) transactions on the primary as
follows:

• Commits the transaction if at least one secondary DB cluster has an RPO lag time less than the
RPO.

• Blocks the transaction if all secondary DB clusters have RPO lag times that are larger than the
RPO. It also logs the event to the PostgreSQL log file and emits "wait" events that show the
blocked sessions.

In other words, if all secondary clusters are behind the target RPO, Aurora pauses transactions on
the primary cluster until at least one of the secondary clusters catches up. Paused transactions are
resumed and committed as soon as the lag time of at least one secondary DB cluster becomes less
than the RPO. The result is that no transactions can commit until the RPO is met.

The rds.global_db_rpo parameter is dynamic. If you decide that you don't want all write
transactions to stall until the lag decreases sufficiently, you can reset it quickly. In this case, Aurora
recognizes and implements the change after a short delay.

Important

In a global database with only two Regions, we recommend keeping the
rds.global_db_rpo parameter's default value in the secondary Region's parameter

Managing RPOs for Aurora PostgreSQL–based global databases 2981

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_SwitchoverGlobalCluster.html

Amazon Aurora User Guide for Aurora

group. Otherwise, failing over to this Region due to a loss of the primary Region could
cause Aurora to pause transactions. Instead, wait until Aurora completes rebuilding the
cluster in the old failed Region before changing this parameter to enforce a maximum RPO.

If you set this parameter as outlined in the following, you can then also monitor the metrics that
it generates. You can do so by using psql or another tool to query the Aurora global database's
primary DB cluster and obtain detailed information about your Aurora PostgreSQL–based global
database's operations. To learn how, see Monitoring Aurora PostgreSQL-based global databases.

Topics

• Setting the recovery point objective

• Viewing the recovery point objective

• Disabling the recovery point objective

Setting the recovery point objective

The rds.global_db_rpo parameter controls the RPO setting for a PostgreSQL database. This
parameter is supported by Aurora PostgreSQL. Valid values for rds.global_db_rpo range from
20 seconds to 2,147,483,647 seconds (68 years). Choose a realistic value to meet your business
need and use case. For example, you might want to allow up to 10 minutes for your RPO, in which
case you set the value to 600.

You can set this value for your Aurora PostgreSQL–based global database by using the AWS
Management Console, the AWS CLI, or the RDS API.

Console

To set the RPO

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. Choose the primary cluster of your Aurora global database and open the Configuration tab to
find its DB cluster parameter group. For example, the default parameter group for a primary
DB cluster running Aurora PostgreSQL 11.7 is default.aurora-postgresql11.

Parameter groups can't be edited directly. Instead, you do the following:

Managing RPOs for Aurora PostgreSQL–based global databases 2982

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Aurora User Guide for Aurora

• Create a custom DB cluster parameter group using the appropriate default parameter group
as the starting point. For example, create a custom DB cluster parameter group based on the
default.aurora-postgresql11.

• On your custom DB parameter group, set the value of the rds.global_db_rpo parameter to
meet your use case. Valid values range from 20 seconds up to the maximum integer value of
2,147,483,647 (68 years).

• Apply the modified DB cluster parameter group to your Aurora DB cluster.

For more information, see Modifying parameters in a DB cluster parameter group.

AWS CLI

To set the rds.global_db_rpo parameter, use the modify-db-cluster-parameter-group CLI
command. In the command, specify the name of your primary cluster's parameter group and values
for RPO parameter.

The following example sets the RPO to 600 seconds (10 minutes) for the primary DB cluster's
parameter group named my_custom_global_parameter_group.

For Linux, macOS, or Unix:

aws rds modify-db-cluster-parameter-group \
 --db-cluster-parameter-group-name my_custom_global_parameter_group \
 --parameters
 "ParameterName=rds.global_db_rpo,ParameterValue=600,ApplyMethod=immediate"

For Windows:

aws rds modify-db-cluster-parameter-group ^
 --db-cluster-parameter-group-name my_custom_global_parameter_group ^
 --parameters
 "ParameterName=rds.global_db_rpo,ParameterValue=600,ApplyMethod=immediate"

RDS API

To modify the rds.global_db_rpo parameter, use the Amazon RDS
ModifyDBClusterParameterGroup API operation.

Managing RPOs for Aurora PostgreSQL–based global databases 2983

https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-cluster-parameter-group.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBClusterParameterGroup.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBClusterParameterGroup.html

Amazon Aurora User Guide for Aurora

Viewing the recovery point objective

The recovery point objective (RPO) of a global database is stored in the rds.global_db_rpo
parameter for each DB cluster. You can connect to the endpoint for the secondary cluster you want
to view and use psql to query the instance for this value.

db-name=>show rds.global_db_rpo;

If this parameter isn't set, the query returns the following:

rds.global_db_rpo

 -1
(1 row)

This next response is from a secondary DB cluster that has 1 minute RPO setting.

rds.global_db_rpo

 60
(1 row)

You can also use the CLI to get values for find out if rds.global_db_rpo is active on any of the
Aurora DB clusters by using the CLI to get values of all user parameters for the cluster.

For Linux, macOS, or Unix:

aws rds describe-db-cluster-parameters \
 --db-cluster-parameter-group-name lab-test-apg-global \
 --source user

For Windows:

aws rds describe-db-cluster-parameters ^
 --db-cluster-parameter-group-name lab-test-apg-global *
 --source user

The command returns output similar to the following for all user parameters. that aren't
default-engine or system DB cluster parameters.

Managing RPOs for Aurora PostgreSQL–based global databases 2984

Amazon Aurora User Guide for Aurora

{
 "Parameters": [
 {
 "ParameterName": "rds.global_db_rpo",
 "ParameterValue": "60",
 "Description": "(s) Recovery point objective threshold, in seconds, that
 blocks user commits when it is violated.",
 "Source": "user",
 "ApplyType": "dynamic",
 "DataType": "integer",
 "AllowedValues": "20-2147483647",
 "IsModifiable": true,
 "ApplyMethod": "immediate",
 "SupportedEngineModes": [
 "provisioned"
]
 }
]
}

To learn more about viewing parameters of the cluster parameter group, see Viewing parameter
values for a DB cluster parameter group.

Disabling the recovery point objective

To disable the RPO, reset the rds.global_db_rpo parameter. You can reset parameters using the
AWS Management Console, the AWS CLI, or the RDS API.

Console

To disable the RPO

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Parameter groups.

3. In the list, choose your primary DB cluster parameter group.

4. Choose Edit parameters.

5. Choose the box next to the rds.global_db_rpo parameter.

6. Choose Reset.

7. When the screen shows Reset parameters in DB parameter group, choose Reset parameters.

Managing RPOs for Aurora PostgreSQL–based global databases 2985

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Aurora User Guide for Aurora

For more information on how to reset a parameter with the console, see Modifying parameters in a
DB cluster parameter group.

AWS CLI

To reset the rds.global_db_rpo parameter, use the reset-db-cluster-parameter-group
command.

For Linux, macOS, or Unix:

aws rds reset-db-cluster-parameter-group \
 --db-cluster-parameter-group-name global_db_cluster_parameter_group \
 --parameters "ParameterName=rds.global_db_rpo,ApplyMethod=immediate"

For Windows:

aws rds reset-db-cluster-parameter-group ^
 --db-cluster-parameter-group-name global_db_cluster_parameter_group ^
 --parameters "ParameterName=rds.global_db_rpo,ApplyMethod=immediate"

RDS API

To reset the rds.global_db_rpo parameter, use the Amazon RDS API
ResetDBClusterParameterGroup operation.

Monitoring an Amazon Aurora global database

When you create the Aurora DB clusters that make up your Aurora global database, you can choose
many options that let you monitor your DB cluster's performance. These options include the
following:

• Amazon RDS Performance Insights – Enables performance schema in the underlying Aurora
database engine. To learn more about Performance Insights and Aurora global databases, see
Monitoring an Amazon Aurora global database with Amazon RDS Performance Insights.

• Enhanced monitoring – Generates metrics for process or thread utilization on the CPU. To learn
about enhanced monitoring, see Monitoring OS metrics with Enhanced Monitoring.

• Amazon CloudWatch Logs – Publishes specified log types to CloudWatch Logs. Error logs are
published by default, but you can choose other logs specific to your Aurora database engine.

Monitoring an Aurora global database 2986

https://docs.aws.amazon.com/cli/latest/reference/rds/reset-db-cluster-parameter-group.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ResetDBClusterParameterGroup.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ResetDBClusterParameterGroup.html

Amazon Aurora User Guide for Aurora

• For Aurora MySQL–based Aurora DB clusters, you can export the audit log, general log, and
slow query log.

• For Aurora PostgreSQL–based Aurora DB clusters, you can export the PostgreSQL log.

• For Aurora MySQL–based global databases, you can query specific information_schema
tables to check the status of your Aurora global database and its instances. To learn how, see
Monitoring Aurora MySQL-based global databases.

• For Aurora PostgreSQL–based global databases, you can use specific functions to check the
status of your Aurora global database and its instances. To learn how, see Monitoring Aurora
PostgreSQL-based global databases.

The following screenshot shows some of the options available on the Monitoring tab of a primary
Aurora DB cluster in an Aurora global database.

For more information, see Monitoring metrics in an Amazon Aurora cluster.

Monitoring an Aurora global database 2987

Amazon Aurora User Guide for Aurora

Monitoring an Amazon Aurora global database with Amazon RDS
Performance Insights

You can use Amazon RDS Performance Insights for your Aurora global databases. You enable
this feature individually, for each Aurora DB cluster in your Aurora global database. To do so,
you choose Enable Performance Insights in the Additional configuration section of the Create
database page. Or you can modify your Aurora DB clusters to use this feature after they are up and
running. You can enable or turn off Performance Insights for each cluster that's part of your Aurora
global database.

The reports created by Performance Insights apply to each cluster in the global database.
When you add a new secondary AWS Region to an Aurora global database that's already using
Performance Insights, be sure that you enable Performance Insights in the newly added cluster. It
doesn't inherit the Performance Insights setting from the existing global database.

You can switch AWS Regions while viewing the Performance Insights page for a DB instance that's
attached to a global database. However, you might not see performance information immediately
after switching AWS Regions. Although the DB instances might have identical names in each AWS
Region, the associated Performance Insights URL is different for each DB instance. After switching
AWS Regions, choose the name of the DB instance again in the Performance Insights navigation
pane.

For DB instances associated with a global database, the factors affecting performance might be
different in each AWS Region. For example, the DB instances in each AWS Region might have
different capacity.

To learn more about using Performance Insights, see Monitoring DB load with Performance
Insights on Amazon Aurora.

Monitoring Aurora global databases with Database Activity Streams

By using the Database Activity Streams feature, you can monitor and set alarms for auditing
activity in the DB clusters in your global database. You start a database activity stream on each DB
cluster separately. Each cluster delivers audit data to its own Kinesis stream within its own AWS
Region. For more information, see Monitoring Amazon Aurora with Database Activity Streams.

Monitoring an Aurora global database with Performance Insights 2988

Amazon Aurora User Guide for Aurora

Monitoring Aurora MySQL-based global databases

To view the status of an Aurora MySQL-based global database, query the
information_schema.aurora_global_db_status and
information_schema.aurora_global_db_instance_status tables.

Note

The information_schema.aurora_global_db_status and
information_schema.aurora_global_db_instance_status tables are only
available with Aurora MySQL version 3.04.0 and higher global databases.

To monitor an Aurora MySQL-based global database

1. Connect to the global database primary cluster endpoint using a MySQL client. For more
information about how to connect, see Connecting to an Amazon Aurora global database.

2. Query the information_schema.aurora_global_db_status table in a mysql command
to list the primary and secondary volumes. This query returns the lag times of the global
database secondary DB clusters, as in the following example.

mysql> select * from information_schema.aurora_global_db_status;

AWS_REGION | HIGHEST_LSN_WRITTEN | DURABILITY_LAG_IN_MILLISECONDS |
 RPO_LAG_IN_MILLISECONDS | LAST_LAG_CALCULATION_TIMESTAMP | OLDEST_READ_VIEW_TRX_ID
-----------+---------------------+--------------------------------
+------------------------+---------------------------------
+------------------------
us-east-1 | 183537946 | 0 |
 0 | 1970-01-01 00:00:00.000000 | 0
us-west-2 | 183537944 | 428 |
 0 | 2023-02-18 01:26:41.925000 | 20806982
(2 rows)

The output includes a row for each DB cluster of the global database containing the following
columns:

• AWS_REGION – The AWS Region that this DB cluster is in. For tables listing AWS Regions by
engine, see Regions and Availability Zones.

Monitoring Aurora MySQL-based global databases 2989

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Concepts.RegionsAndAvailabilityZones.html#Aurora.Overview.Availability

Amazon Aurora User Guide for Aurora

• HIGHEST_LSN_WRITTEN – The highest log sequence number (LSN) currently written on this
DB cluster.

A log sequence number (LSN) is a unique sequential number that identifies a record in
the database transaction log. LSNs are ordered such that a larger LSN represents a later
transaction.

• DURABILITY_LAG_IN_MILLISECONDS – The difference in the timestamp values between
the HIGHEST_LSN_WRITTEN on a secondary DB cluster and the HIGHEST_LSN_WRITTEN on
the primary DB cluster. This value is always 0 on the primary DB cluster of the Aurora global
database.

• RPO_LAG_IN_MILLISECONDS – The recovery point objective (RPO) lag. The RPO lag is the
time it takes for the most recent user transaction COMMIT to be stored on a secondary DB
cluster after it's been stored on the primary DB cluster of the Aurora global database. This
value is always 0 on the primary DB cluster of the Aurora global database.

In simple terms, this metric calculates the recovery point objective for each Aurora MySQL
DB cluster in the Aurora global database, that is, how much data might be lost if there were
an outage. As with lag, RPO is measured in time.

• LAST_LAG_CALCULATION_TIMESTAMP – The timestamp that specifies when
values were last calculated for DURABILITY_LAG_IN_MILLISECONDS and
RPO_LAG_IN_MILLISECONDS. A time value such as 1970-01-01 00:00:00+00 means
this is the primary DB cluster.

• OLDEST_READ_VIEW_TRX_ID – The ID of the oldest transaction that the writer DB instance
can purge to.

3. Query the information_schema.aurora_global_db_instance_status table to list all
secondary DB instances for both the primary DB cluster and the secondary DB clusters.

mysql> select * from information_schema.aurora_global_db_instance_status;

SERVER_ID | SESSION_ID | AWS_REGION
 | DURABLE_LSN | HIGHEST_LSN_RECEIVED | OLDEST_READ_VIEW_TRX_ID |
 OLDEST_READ_VIEW_LSN | VISIBILITY_LAG_IN_MSEC
---------------------+--------------------------------------+------------
+-------------+----------------------+-------------------------
+----------------------+------------------------

Monitoring Aurora MySQL-based global databases 2990

Amazon Aurora User Guide for Aurora

ams-gdb-primary-i2 | MASTER_SESSION_ID | us-east-1 |
 183537698 | 0 | 0 |
 0 | 0
ams-gdb-secondary-i1 | cc43165b-bdc6-4651-abbf-4f74f08bf931 | us-west-2 |
 183537689 | 183537692 | 20806928 |
 183537682 | 0
ams-gdb-secondary-i2 | 53303ff0-70b5-411f-bc86-28d7a53f8c19 | us-west-2 |
 183537689 | 183537692 | 20806928 |
 183537682 | 677
ams-gdb-primary-i1 | 5af1e20f-43db-421f-9f0d-2b92774c7d02 | us-east-1 |
 183537697 | 183537698 | 20806930 |
 183537691 | 21
(4 rows)

The output includes a row for each DB instance of the global database containing the
following columns:

• SERVER_ID – The server identifier for the DB instance.

• SESSION_ID – A unique identifier for the current session. A value of MASTER_SESSION_ID
identifies the Writer (primary) DB instance.

• AWS_REGION – The AWS Region that this DB instance is in. For tables listing AWS Regions
by engine, see Regions and Availability Zones.

• DURABLE_LSN – The LSN made durable in storage.

• HIGHEST_LSN_RECEIVED – The highest LSN received by the DB instance from the writer DB
instance.

• OLDEST_READ_VIEW_TRX_ID – The ID of the oldest transaction that the writer DB instance
can purge to.

• OLDEST_READ_VIEW_LSN – The oldest LSN used by the DB instance to read from storage.

• VISIBILITY_LAG_IN_MSEC – For readers in the primary DB cluster, how far this DB instance
is lagging behind the writer DB instance in milliseconds. For readers in a secondary DB
cluster, how far this DB instance is lagging behind the secondary volume in milliseconds.

To see how these values change over time, consider the following transaction block where a table
insert takes an hour.

mysql> BEGIN;
mysql> INSERT INTO table1 SELECT Large_Data_That_Takes_1_Hr_To_Insert;

Monitoring Aurora MySQL-based global databases 2991

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Concepts.RegionsAndAvailabilityZones.html#Aurora.Overview.Availability

Amazon Aurora User Guide for Aurora

mysql> COMMIT;

In some cases, there might be a network disconnect between the primary DB cluster and
the secondary DB cluster after the BEGIN statement. If so, the secondary DB cluster's
DURABILITY_LAG_IN_MILLISECONDS value starts increasing. At the end of the INSERT
statement, the DURABILITY_LAG_IN_MILLISECONDS value is 1 hour. However, the
RPO_LAG_IN_MILLISECONDS value is 0 because all the user data committed between the
primary DB cluster and secondary DB cluster are still the same. As soon as the COMMIT statement
completes, the RPO_LAG_IN_MILLISECONDS value increases.

Monitoring Aurora PostgreSQL-based global databases

To view the status of an Aurora PostgreSQL-based global database, use the
aurora_global_db_status and aurora_global_db_instance_status functions.

Note

Only Aurora PostgreSQL supports the aurora_global_db_status and
aurora_global_db_instance_status functions.

To monitor an Aurora PostgreSQL-based global database

1. Connect to the global database primary cluster endpoint using a PostgreSQL utility such as
psql. For more information about how to connect, see Connecting to an Amazon Aurora global
database.

2. Use the aurora_global_db_status function in a psql command to list the primary and
secondary volumes. This shows the lag times of the global database secondary DB clusters.

postgres=> select * from aurora_global_db_status();

aws_region | highest_lsn_written | durability_lag_in_msec | rpo_lag_in_msec |
 last_lag_calculation_time | feedback_epoch | feedback_xmin
------------+---------------------+------------------------+-----------------
+----------------------------+----------------+---------------
us-east-1 | 93763984222 | -1 | -1 |
 1970-01-01 00:00:00+00 | 0 | 0
us-west-2 | 93763984222 | 900 | 1090 |
 2020-05-12 22:49:14.328+00 | 2 | 3315479243

Monitoring Aurora PostgreSQL-based global databases 2992

Amazon Aurora User Guide for Aurora

(2 rows)

The output includes a row for each DB cluster of the global database containing the following
columns:

• aws_region – The AWS Region that this DB cluster is in. For tables listing AWS Regions by
engine, see Regions and Availability Zones.

• highest_lsn_written – The highest log sequence number (LSN) currently written on this DB
cluster.

A log sequence number (LSN) is a unique sequential number that identifies a record in
the database transaction log. LSNs are ordered such that a larger LSN represents a later
transaction.

• durability_lag_in_msec – The timestamp difference between the highest log sequence
number written on a secondary DB cluster (highest_lsn_written) and the
highest_lsn_written on the primary DB cluster.

• rpo_lag_in_msec – The recovery point objective (RPO) lag. This lag is the time difference
between the most recent user transaction commit stored on a secondary DB cluster and the
most recent user transaction commit stored on the primary DB cluster.

• last_lag_calculation_time – The timestamp when values were last calculated for
durability_lag_in_msec and rpo_lag_in_msec.

• feedback_epoch – The epoch a secondary DB cluster uses when it generates hot standby
information.

Hot standby is when a DB cluster can connect and query while the server is in recovery or
standby mode. Hot standby feedback is information about the DB cluster when it's in hot
standby. For more information, see Hot standby in the PostgreSQL documentation.

• feedback_xmin – The minimum (oldest) active transaction ID used by a secondary DB
cluster.

3. Use the aurora_global_db_instance_status function to list all secondary DB instances
for both the primary DB cluster and secondary DB clusters.

postgres=> select * from aurora_global_db_instance_status();

Monitoring Aurora PostgreSQL-based global databases 2993

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Concepts.RegionsAndAvailabilityZones.html#Aurora.Overview.Availability
https://www.postgresql.org/docs/current/hot-standby.html

Amazon Aurora User Guide for Aurora

server_id | session_id
 | aws_region | durable_lsn | highest_lsn_rcvd | feedback_epoch | feedback_xmin |
 oldest_read_view_lsn | visibility_lag_in_msec
--+--------------------------------------
+------------+-------------+------------------+----------------+---------------
+----------------------+------------------------
apg-global-db-rpo-mammothrw-elephantro-1-n1 | MASTER_SESSION_ID
 | us-east-1 | 93763985102 | | | |
 |
apg-global-db-rpo-mammothrw-elephantro-1-n2 | f38430cf-6576-479a-b296-dc06b1b1964a
 | us-east-1 | 93763985099 | 93763985102 | 2 | 3315479243 |
 93763985095 | 10
apg-global-db-rpo-elephantro-mammothrw-n1 | 0d9f1d98-04ad-4aa4-8fdd-e08674cbbbfe
 | us-west-2 | 93763985095 | 93763985099 | 2 | 3315479243 |
 93763985089 | 1017
(3 rows)

The output includes a row for each DB instance of the global database containing the
following columns:

• server_id – The server identifier for the DB instance.

• session_id – A unique identifier for the current session.

• aws_region – The AWS Region that this DB instance is in. For tables listing AWS Regions by
engine, see Regions and Availability Zones.

• durable_lsn – The LSN made durable in storage.

• highest_lsn_rcvd – The highest LSN received by the DB instance from the writer DB
instance.

• feedback_epoch – The epoch the DB instance uses when it generates hot standby
information.

Hot standby is when a DB instance can connect and query while the server is in recovery or
standby mode. Hot standby feedback is information about the DB instance when it's in hot
standby. For more information, see the PostgreSQL documentation on Hot standby.

• feedback_xmin – The minimum (oldest) active transaction ID used by the DB instance.

• oldest_read_view_lsn – The oldest LSN used by the DB instance to read from storage.

• visibility_lag_in_msec – How far this DB instance is lagging behind the writer DB instance.

Monitoring Aurora PostgreSQL-based global databases 2994

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Concepts.RegionsAndAvailabilityZones.html#Aurora.Overview.Availability
https://www.postgresql.org/docs/current/hot-standby.html

Amazon Aurora User Guide for Aurora

To see how these values change over time, consider the following transaction block where a table
insert takes an hour.

psql> BEGIN;
psql> INSERT INTO table1 SELECT Large_Data_That_Takes_1_Hr_To_Insert;
psql> COMMIT;

In some cases, there might be a network disconnect between the primary DB cluster and
the secondary DB cluster after the BEGIN statement. If so, the secondary DB cluster's
durability_lag_in_msec value starts increasing. At the end of the INSERT statement, the
durability_lag_in_msec value is 1 hour. However, the rpo_lag_in_msec value is 0 because
all the user data committed between the primary DB cluster and secondary DB cluster are still the
same. As soon as the COMMIT statement completes, the rpo_lag_in_msec value increases.

Using Amazon Aurora global databases with other AWS services

You can use your Aurora global databases with other AWS services, such as Amazon S3 and AWS
Lambda. Doing so requires that all Aurora DB clusters in your global database have the same
privileges, external functions, and so on in the respective AWS Regions. Because a read-only
Aurora secondary DB cluster in an Aurora global database can be promoted to the role of primary,
we recommend that you set up write privileges ahead of time, on all Aurora DB clusters for any
services you plan to use with your Aurora global database.

The following procedures summarize the actions to take for each AWS service.

To invoke AWS Lambda functions from an Aurora global database

1. For all the Aurora clusters that make up the Aurora global database, perform the procedures in
Invoking a Lambda function from an Amazon Aurora MySQL DB cluster.

2. For each cluster in the Aurora global database, set the (ARN) of the new IAM (IAM) role.

3. To permit database users in an Aurora global database to invoke Lambda functions, associate
the role that you created in Creating an IAM role to allow Amazon Aurora to access AWS
services with each cluster in the Aurora global database.

4. Configure each cluster in the Aurora global database to allow outbound connections to
Lambda. For instructions, see Enabling network communication from Amazon Aurora MySQL
to other AWS services.

Using Aurora global databases with other AWS services 2995

Amazon Aurora User Guide for Aurora

To load data from Amazon S3

1. For all the Aurora clusters that make up the Aurora global database, perform the procedures
in Loading data into an Amazon Aurora MySQL DB cluster from text files in an Amazon S3
bucket.

2. For each Aurora cluster in the global database, set either the aurora_load_from_s3_role
or aws_default_s3_role DB cluster parameter to the Amazon Resource Name (ARN) of the
new IAM role. If an IAM role isn't specified for aurora_load_from_s3_role, Aurora uses the
IAM role specified in aws_default_s3_role.

3. To permit database users in an Aurora global database to access S3, associate the role that
you created in Creating an IAM role to allow Amazon Aurora to access AWS services with each
Aurora cluster in the global database.

4. Configure each Aurora cluster in the global database to allow outbound connections to S3. For
instructions, see Enabling network communication from Amazon Aurora MySQL to other AWS
services.

To save queried data to Amazon S3

1. For all the Aurora clusters that make up the Aurora global database, perform the procedures in
Saving data from an Amazon Aurora MySQL DB cluster into text files in an Amazon S3 bucket.

2. For each Aurora cluster in the global database, set either the
aurora_select_into_s3_role or aws_default_s3_role DB cluster parameter
to the Amazon Resource Name (ARN) of the new IAM role. If an IAM role isn't
specified for aurora_select_into_s3_role, Aurora uses the IAM role specified in
aws_default_s3_role.

3. To permit database users in an Aurora global database to access S3, associate the role that
you created in Creating an IAM role to allow Amazon Aurora to access AWS services with each
Aurora cluster in the global database.

4. Configure each Aurora cluster in the global database to allow outbound connections to S3. For
instructions, see Enabling network communication from Amazon Aurora MySQL to other AWS
services.

Using Aurora global databases with other AWS services 2996

Amazon Aurora User Guide for Aurora

Upgrading an Amazon Aurora global database

Upgrading an Aurora global database follows the same procedures as upgrading Aurora DB
clusters. However, following are some important differences to take note of before you start the
process.

We recommend that you upgrade the primary and secondary DB clusters to the same version. You
can only perform a managed cross-Region database failover on an Aurora global database if the
primary and secondary DB clusters have the same major, minor, and patch level engine versions.
However, the patch levels can be different, depending on the minor engine version. For more
information, see Patch level compatibility for managed cross-Region switchovers and failovers.

Major version upgrades

When you perform a major version upgrade of an Amazon Aurora global database, you upgrade
the global database cluster instead the individual clusters that it contains.

To learn how to upgrade an Aurora PostgreSQL global database to a higher major version, see
Major upgrades for global databases.

Note

With an Aurora global database based on Aurora PostgreSQL, you can't perform a major
version upgrade of the Aurora DB engine if the recovery point objective (RPO) feature
is turned on. For information about the RPO feature, see Managing RPOs for Aurora
PostgreSQL–based global databases.

To learn how to upgrade an Aurora MySQL global database to a higher major version, see In-place
major upgrades for global databases.

Note

With an Aurora global database based on Aurora MySQL, you can't perform an in-place
upgrade from Aurora MySQL version 2 to version 3 if the lower_case_table_names
parameter is turned on.
To perform a major version upgrade to Aurora MySQL version 3 when using
lower_case_table_names, use the following process:

Upgrading an Amazon Aurora global database 2997

Amazon Aurora User Guide for Aurora

1. Remove all secondary Regions from the global cluster. Follow the steps in Removing a
cluster from an Amazon Aurora global database.

2. Upgrade the engine version of the primary Region to Aurora MySQL version 3. Follow
the steps in How to perform an in-place upgrade.

3. Add secondary Regions to the global cluster. Follow the steps in Adding an AWS Region
to an Amazon Aurora global database.

You can also use the snapshot restore method instead. For more information, see Restoring
from a DB cluster snapshot.

Minor version upgrades

For a minor upgrade on an Aurora global database, you upgrade all of the secondary clusters
before you upgrade the primary cluster.

To learn how to upgrade an Aurora PostgreSQL global database to a higher minor version, see How
to perform minor version upgrades and apply patches. To learn how to upgrade an Aurora MySQL
global database to a higher minor version, see Upgrading Aurora MySQL by modifying the engine
version.

Before you perform the upgrade, review the following considerations:

• Upgrading the minor version of a secondary cluster doesn't affect availability or usage of the
primary cluster in any way.

• A secondary cluster must have at least one DB instance to perform a minor upgrade.

• If you upgrade an Aurora MySQL global database to version 2.11.*, you must upgrade your
primary and secondary DB clusters to the exact same version, including the patch level.

• To support managed cross-Region switchovers or failovers, you must upgrade your primary and
secondary DB clusters to the exact same version, including the patch level, depending on the
engine version. For more information, see Patch level compatibility for managed cross-Region
switchovers and failovers.

Minor version upgrades 2998

Amazon Aurora User Guide for Aurora

Patch level compatibility for managed cross-Region switchovers and failovers

When you upgrade your Aurora global database to one of the following minor engine versions,
you can perform managed cross-Region switchovers or failovers even if the patch levels of your
primary and secondary DB clusters don't match. For minor engine versions lower than the ones on
this list, you must upgrade your primary and secondary DB clusters to the same major, minor, and
patch levels to perform managed cross-Region switchovers or failovers. Make sure to review the
version information and the notes in the following table.

Note

For manual cross-Region failovers, you can perform the failover process as long as the
target secondary DB cluster is running the same major and minor engine version as the
primary DB cluster. In this case, the patch levels don't need to match.

Database
engine

Minor engine versions Notes

Aurora MySQL No minor versions With all minor versions, you can
perform managed cross-Region
switchovers or failovers only if the
patch levels of the primary and
secondary DB clusters match.

Aurora
PostgreSQL

• Version 14.5 or higher minor
version

• Version 13.8 or higher minor
version

• Version 12.12 or higher minor
version

• Version 11.17 or higher minor
version

With the minor engine versions
listed in the previous column, you
can perform managed cross-Reg
ion switchovers or failovers from a
primary DB cluster with one patch
level to a secondary DB cluster with
a different patch level.

With minor versions lower than
these, you can perform managed
cross-Region switchovers or failovers
only if the patch levels of the

Minor version upgrades 2999

Amazon Aurora User Guide for Aurora

Database
engine

Minor engine versions Notes

primary and secondary DB clusters
match.

Minor version upgrades 3000

Amazon Aurora User Guide for Aurora

Using Amazon RDS Proxy for Aurora

By using Amazon RDS Proxy, you can allow your applications to pool and share database
connections to improve their ability to scale. RDS Proxy makes applications more resilient
to database failures by automatically connecting to a standby DB instance while preserving
application connections. By using RDS Proxy, you can also enforce AWS Identity and Access
Management (IAM) authentication for databases, and securely store credentials in AWS Secrets
Manager.

Using RDS Proxy, you can handle unpredictable surges in database traffic. Otherwise, these surges
might cause issues due to oversubscribing connections or new connections being created at a
fast rate. RDS Proxy establishes a database connection pool and reuses connections in this pool.
This approach avoids the memory and CPU overhead of opening a new database connection each
time. To protect a database against oversubscription, you can control the number of database
connections that are created.

RDS Proxy queues or throttles application connections that can't be served immediately from
the connection pool. Although latencies might increase, your application can continue to scale
without abruptly failing or overwhelming the database. If connection requests exceed the limits
you specify, RDS Proxy rejects application connections (that is, it sheds load). At the same time, it
maintains predictable performance for the load that RDS can serve with the available capacity.

You can reduce the overhead to process credentials and establish a secure connection for each new
connection. RDS Proxy can handle some of that work on behalf of the database.

RDS Proxy is fully compatible with the engine versions that it supports. You can enable RDS Proxy
for most applications with no code changes. For a list of supported engine versions, see Supported
Regions and Aurora DB engines for Amazon RDS Proxy.

Topics

• Region and version availability

• Quotas and limitations for RDS Proxy

• Planning where to use RDS Proxy

• RDS Proxy concepts and terminology

• Getting started with RDS Proxy

• Managing an RDS Proxy

3001

Amazon Aurora User Guide for Aurora

• Working with Amazon RDS Proxy endpoints

• Monitoring RDS Proxy metrics with Amazon CloudWatch

• Working with RDS Proxy events

• RDS Proxy command-line examples

• Troubleshooting for RDS Proxy

• Using RDS Proxy with AWS CloudFormation

• Using RDS Proxy with Aurora global databases

Region and version availability

For information about database engine version support and availability of RDS Proxy in a given
AWS Region, see Supported Regions and Aurora DB engines for Amazon RDS Proxy.

Quotas and limitations for RDS Proxy

The following quotas and limitations apply to RDS Proxy:

• Each AWS account ID is limited to 20 proxies. If your application requires more proxies, request
an increase via the Service Quotas page within the AWS Management Console. In the Service
Quotas page, select Amazon Relational Database Service (Amazon RDS) and locate Proxies to
request a quota increase. AWS can automatically increase your quota or pending review of your
request by AWS Support.

• Each proxy can have up to 200 associated Secrets Manager secrets. Thus, each proxy can connect
to with up to 200 different user accounts at any given time.

• Each proxy has a default endpoint. You can also add up to 20 proxy endpoints for each proxy.
You can create, view, modify, and delete these endpoints.

• In an Aurora cluster, all of the connections using the default proxy endpoint are handled by the
Aurora writer instance. To perform load balancing for read-intensive workloads, you can create a
read-only endpoint for a proxy. That endpoint passes connections to the reader endpoint of the
cluster. That way, your proxy connections can take advantage of Aurora read scalability. For more
information, see Overview of proxy endpoints.

• You can use RDS Proxy with Aurora Serverless v2 clusters, but not with Aurora Serverless v1
clusters.

Region and version availability 3002

Amazon Aurora User Guide for Aurora

• Your RDS Proxy must be in the same virtual private cloud (VPC) as the database. The proxy
can't be publicly accessible, although the database can be. For example, if you're prototyping
your database on a local host, you can't connect to your proxy unless you set up the necessary
network requirements to allow connection to the proxy. This is because your local host is outside
of the proxy’s VPC.

Note

For Aurora DB clusters, you can turn on cross-VPC access. To do this, create an additional
endpoint for a proxy and specify a different VPC, subnets, and security groups with that
endpoint. For more information, see Accessing Aurora databases across VPCs.

• You can't use RDS Proxy with a VPC that has its tenancy set to dedicated.

• If you use RDS Proxy with an Aurora DB cluster that has IAM authentication enabled, check
user authentication. Users who connect through a proxy must authenticate through sign-
in credentials. For details about Secrets Manager and IAM support in RDS Proxy, see Setting
up database credentials in AWS Secrets Manager and Setting up AWS Identity and Access
Management (IAM) policies.

• You can't use RDS Proxy with custom DNS when using SSL hostname validation.

• Each proxy can be associated with a single target DB cluster. However, you can associate multiple
proxies with the same DB cluster.

• Any statement with a text size greater than 16 KB causes the proxy to pin the session to the
current connection.

• Certain Regions have Availability-Zone (AZ) restrictions to consider while creating your proxy.
US East (N. Virginia) Region does not support RDS Proxy in the use1-az3 Availability Zone.
US West (N. California) Region does not support RDS Proxy in the usw1-az2 Availability Zone.
When selecting subnets while creating your proxy, make sure that you don't select subnets in the
Availability Zones mentioned above.

• Currently, RDS Proxy does't support any global condition context keys.

For more information about global condition context keys, see AWS global condition context
keys in the IAM User Guide.

For additional limitations for each DB engine, see the following sections:

• Additional limitations for Aurora MySQL

Quotas and limitations 3003

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html

Amazon Aurora User Guide for Aurora

• Additional limitations for Aurora PostgreSQL

Additional limitations for Aurora MySQL

The following additional limitations apply to RDS Proxy with Aurora MySQL databases:

• RDS Proxy doesn't support the MySQL sha256_password and caching_sha2_password
authentication plugins. These plugins implement SHA-256 hashing for user account passwords.

• Currently, all proxies listen on port 3306 for MySQL. The proxies still connect to your database
using the port that you specified in the database settings.

• You can't use RDS Proxy with self-managed MySQL databases in EC2 instances.

• You can't use RDS Proxy with an RDS for MySQL DB instance that has the read_only parameter
in its DB parameter group set to 1.

• RDS Proxy doesn't support MySQL compressed mode. For example, it doesn't support the
compression used by the --compress or -C options of the mysql command.

• Database connections processing a GET DIAGNOSTIC command might return inaccurate
information when RDS Proxy reuses the same database connection to run another query. This
can happen when RDS Proxy multiplexes database connections.

• Some SQL statements and functions such as SET LOCAL can change the connection state
without causing pinning. For the most current pinning behavior, see Avoiding pinning.

• Using the ROW_COUNT() function in a multi-statement query is not supported.

• RDS Proxy does not support client applications that can't handle multiple response messages in
one TLS record.

Important

For proxies associated with MySQL databases, don't set the configuration parameter
sql_auto_is_null to true or a nonzero value in the initialization query. Doing so might
cause incorrect application behavior.

Additional limitations for Aurora PostgreSQL

The following additional limitations apply to RDS Proxy with Aurora PostgreSQL databases:

MySQL limitations 3004

Amazon Aurora User Guide for Aurora

• RDS Proxy doesn't support session pinning filters for PostgreSQL.

• Currently, all proxies listen on port 5432 for PostgreSQL.

• For PostgreSQL, RDS Proxy doesn't currently support canceling a query from a client by issuing
a CancelRequest. This is the case, for example, when you cancel a long-running query in an
interactive psql session by using Ctrl+C.

• The results of the PostgreSQL function lastval aren't always accurate. As a work-around, use the
INSERT statement with the RETURNING clause.

• RDS Proxy currently doesn't support streaming replication mode.

Important

For existing proxies with PostgreSQL databases, if you modify the database authentication
to use SCRAM only, the proxy becomes unavailable for up to 60 seconds. To avoid the issue,
do one of the following:

• Ensure that the database allows both SCRAM and MD5 authentication.

• To use only SCRAM authentication, create a new proxy, migrate your application traffic to
the new proxy, then delete the proxy previously associated with the database.

Planning where to use RDS Proxy

You can determine which of your DB instances, clusters, and applications might benefit the most
from using RDS Proxy. To do so, consider these factors:

• Any DB cluster that encounters "too many connections" errors is a good candidate for associating
with a proxy. This is often characterized by a high value of the ConnectionAttempts
CloudWatch metric. The proxy enables applications to open many client connections, while the
proxy manages a smaller number of long-lived connections to the DB cluster.

• For DB clusters that use smaller AWS instance classes, such as T2 or T3, using a proxy can help
avoid out-of-memory conditions. It can also help reduce the CPU overhead for establishing
connections. These conditions can occur when dealing with large numbers of connections.

• You can monitor certain Amazon CloudWatch metrics to determine whether a DB cluster is
approaching certain types of limit. These limits are for the number of connections and the
memory associated with connection management. You can also monitor certain CloudWatch

Planning where to use RDS Proxy 3005

https://www.postgresql.org/docs/current/functions-sequence.html
https://www.postgresql.org/docs/current/sql-insert.html

Amazon Aurora User Guide for Aurora

metrics to determine whether a DB cluster is handling many short-lived connections. Opening
and closing such connections can impose performance overhead on your database. For
information about the metrics to monitor, see Monitoring RDS Proxy metrics with Amazon
CloudWatch.

• AWS Lambda functions can also be good candidates for using a proxy. These functions make
frequent short database connections that benefit from connection pooling offered by RDS Proxy.
You can take advantage of any IAM authentication you already have for Lambda functions,
instead of managing database credentials in your Lambda application code.

• Applications that typically open and close large numbers of database connections and don't have
built-in connection pooling mechanisms are good candidates for using a proxy.

• Applications that keep a large number of connections open for long periods are typically good
candidates for using a proxy. Applications in industries such as software as a service (SaaS) or
ecommerce often minimize the latency for database requests by leaving connections open. With
RDS Proxy, an application can keep more connections open than it can when connecting directly
to the DB cluster.

• You might not have adopted IAM authentication and Secrets Manager due to the complexity of
setting up such authentication for all DB clusters. If so, you can leave the existing authentication
methods in place and delegate the authentication to a proxy. The proxy can enforce the
authentication policies for client connections for particular applications. You can take advantage
of any IAM authentication you already have for Lambda functions, instead of managing database
credentials in your Lambda application code.

• RDS Proxy can help make applications more resilient and transparent to database failures.
RDS Proxy bypasses Domain Name System (DNS) caches to reduce failover times by up to 66%
for Aurora Multi-AZ databases. RDS Proxy also automatically routes traffic to a new database
instance while preserving application connections. This makes failovers more transparent for
applications.

RDS Proxy concepts and terminology

You can simplify connection management for your Amazon Aurora DB clusters by using RDS Proxy.

RDS Proxy handles the network traffic between the client application and the database. It does so
in an active way first by understanding the database protocol. It then adjusts its behavior based on
the SQL operations from your application and the result sets from the database.

RDS Proxy concepts and terminology 3006

Amazon Aurora User Guide for Aurora

RDS Proxy reduces the memory and CPU overhead for connection management on your database.
The database needs less memory and CPU resources when applications open many simultaneous
connections. It also doesn't require logic in your applications to close and reopen connections that
stay idle for a long time. Similarly, it requires less application logic to reestablish connections in
case of a database problem.

The infrastructure for RDS Proxy is highly available and deployed over multiple Availability Zones
(AZs). The computation, memory, and storage for RDS Proxy are independent of your Aurora DB
cluster. This separation helps lower overhead on your database servers, so that they can devote
their resources to serving database workloads. The RDS Proxy compute resources are serverless,
automatically scaling based on your database workload.

Topics

• Overview of RDS Proxy concepts

• Connection pooling

• RDS Proxy security

• Failover

• Transactions

Overview of RDS Proxy concepts

RDS Proxy handles the infrastructure to perform connection pooling and the other features
described in the sections that follow. You see the proxies represented in the RDS console on the
Proxies page.

Each proxy handles connections to a single Aurora DB cluster. The proxy automatically determines
the current writer instance for Aurora provisioned clusters.

The connections that a proxy keeps open and available for your database applications to use make
up the connection pool.

By default, RDS Proxy can reuse a connection after each transaction in your session. This
transaction-level reuse is called multiplexing. When RDS Proxy temporarily removes a connection
from the connection pool to reuse it, that operation is called borrowing the connection. When it's
safe to do so, RDS Proxy returns that connection to the connection pool.

Overview of RDS Proxy concepts 3007

Amazon Aurora User Guide for Aurora

In some cases, RDS Proxy can't be sure that it's safe to reuse a database connection outside of the
current session. In these cases, it keeps the session on the same connection until the session ends.
This fallback behavior is called pinning.

A proxy has a default endpoint. You connect to this endpoint when you work with an Amazon
Aurora DB cluster. You do so instead of connecting to the read/write endpoint that connects
directly to the cluster. The special-purpose endpoints for an Aurora cluster remain available for you
to use. For Aurora DB clusters, you can also create additional read/write and read-only endpoints.
For more information, see Overview of proxy endpoints.

For example, you can still connect to the cluster endpoint for read/write connections without
connection pooling. You can still connect to the reader endpoint for load-balanced read-only
connections. You can still connect to the instance endpoints for diagnosis and troubleshooting
of specific DB instances within a cluster. If you use other AWS services such as AWS Lambda
to connect to RDS databases, change their connection settings to use the proxy endpoint. For
example, you specify the proxy endpoint to allow Lambda functions to access your database while
taking advantage of RDS Proxy functionality.

Each proxy contains a target group. This target group embodies the Aurora DB cluster that the
proxy can connect to. For an Aurora cluster, by default the target group is associated with all the
DB instances in that cluster. That way, the proxy can connect to whichever Aurora DB instance
is promoted to be the writer instance in the cluster. The Aurora DB cluster associated with a
proxy are called the targets of that proxy. For convenience, when you create a proxy through the
console, RDS Proxy also creates the corresponding target group and registers the associated targets
automatically.

An engine family is a related set of database engines that use the same DB protocol. You choose
the engine family for each proxy that you create.

Connection pooling

Each proxy performs connection pooling for the writer instance of its associated Aurora DB.
Connection pooling is an optimization that reduces the overhead associated with opening and
closing connections and with keeping many connections open simultaneously. This overhead
includes memory needed to handle each new connection. It also involves CPU overhead to close
each connection and open a new one. Examples include Transport Layer Security/Secure Sockets
Layer (TLS/SSL) handshaking, authentication, negotiating capabilities, and so on. Connection
pooling simplifies your application logic. You don't need to write application code to minimize the
number of simultaneous open connections.

Connection pooling 3008

Amazon Aurora User Guide for Aurora

Each proxy also performs connection multiplexing, also known as connection reuse. With
multiplexing, RDS Proxy performs all the operations for a transaction using one underlying
database connection. RDS then can use a different connection for the next transaction. You can
open many simultaneous connections to the proxy, and the proxy keeps a smaller number of
connections open to the DB instance or cluster. Doing so further minimizes the memory overhead
for connections on the database server. This technique also reduces the chance of "too many
connections" errors.

RDS Proxy security

RDS Proxy uses the existing RDS security mechanisms such as TLS/SSL and AWS Identity and
Access Management (IAM). For general information about those security features, see Security in
Amazon Aurora. Also, make sure to familiarize yourself with how Aurora work with authentication,
authorization, and other areas of security.

RDS Proxy can act as an additional layer of security between client applications and the underlying
database. For example, you can connect to the proxy using TLS 1.3, even if the underlying DB
instance supports an older version of TLS. You can connect to the proxy using an IAM role. This is
so even if the proxy connects to the database using the native user and password authentication
method. By using this technique, you can enforce strong authentication requirements for database
applications without a costly migration effort for the DB instances themselves.

You store the database credentials used by RDS Proxy in AWS Secrets Manager. Each database user
for the Aurora DB cluster accessed by a proxy must have a corresponding secret in Secrets Manager.
You can also set up IAM authentication for users of RDS Proxy. By doing so, you can enforce IAM
authentication for database access even if the databases use native password authentication.
We recommend using these security features instead of embedding database credentials in your
application code.

Using TLS/SSL with RDS Proxy

You can connect to RDS Proxy using the TLS/SSL protocol.

Note

RDS Proxy uses certificates from the AWS Certificate Manager (ACM). If you are using RDS
Proxy, you don't need to download Amazon RDS certificates or update applications that use
RDS Proxy connections.

Security 3009

Amazon Aurora User Guide for Aurora

To enforce TLS for all connections between the proxy and your database, you can specify a setting
Require Transport Layer Security when you create or modify a proxy in the AWS Management
Console.

RDS Proxy can also ensure that your session uses TLS/SSL between your client and the RDS
Proxy endpoint. To have RDS Proxy do so, specify the requirement on the client side. SSL session
variables are not set for SSL connections to a database using RDS Proxy.

• For Aurora MySQL, specify the requirement on the client side with the --ssl-mode parameter
when you run the mysql command.

• For and Aurora PostgreSQL, specify sslmode=require as part of the conninfo string when
you run the psql command.

RDS Proxy supports TLS protocol version 1.0, 1.1, 1.2, and 1.3. You can connect to the proxy using
a higher version of TLS than you use in the underlying database.

By default, client programs establish an encrypted connection with RDS Proxy, with further control
available through the --ssl-mode option. From the client side, RDS Proxy supports all SSL modes.

For the client, the SSL modes are the following:

PREFERRED

SSL is the first choice, but it isn't required.

DISABLED

No SSL is allowed.

REQUIRED

Enforce SSL.

VERIFY_CA

Enforce SSL and verify the certificate authority (CA).

VERIFY_IDENTITY

Enforce SSL and verify the CA and CA hostname.

Security 3010

Amazon Aurora User Guide for Aurora

When using a client with --ssl-mode VERIFY_CA or VERIFY_IDENTITY, specify the --ssl-ca
option pointing to a CA in .pem format. For the .pem file to use, download all root CA PEMs from
Amazon Trust Services and place them into a single .pem file.

RDS Proxy uses wildcard certificates, which apply to both a domain and its subdomains. If you use
the mysql client to connect with SSL mode VERIFY_IDENTITY, currently you must use the MySQL
8.0-compatible mysql command.

Failover

Failover is a high-availability feature that replaces a database instance with another one when
the original instance becomes unavailable. A failover might happen because of a problem with
a database instance. It might also be part of normal maintenance procedures, such as during a
database upgrade. Failover applies to Aurora DB clusters with one or more reader instances in
addition to the writer instance.

Connecting through a proxy makes your applications more resilient to database failovers. When the
original DB instance becomes unavailable, RDS Proxy connects to the standby database without
dropping idle application connections. This helps speed up and simplify the failover process. This is
less disruptive to your application than a typical reboot or database problem.

Without RDS Proxy, a failover involves a brief outage. During the outage, you can't perform write
operations on the database in failover. Any existing database connections are disrupted, and your
application must reopen them. The database becomes available for new connections and write
operations when a read-only DB instance is promoted in place of one that's unavailable.

During DB failovers, RDS Proxy continues to accept connections at the same IP address and
automatically directs connections to the new primary DB instance. Clients connecting through RDS
Proxy are not susceptible to the following:

• Domain Name System (DNS) propagation delays on failover.

• Local DNS caching.

• Connection timeouts.

• Uncertainty about which DB instance is the current writer.

• Waiting for a query response from a former writer that became unavailable without closing
connections.

Failover 3011

https://www.amazontrust.com/repository/

Amazon Aurora User Guide for Aurora

For applications that maintain their own connection pool, going through RDS Proxy means that
most connections stay alive during failovers or other disruptions. Only connections that are in
the middle of a transaction or SQL statement are canceled. RDS Proxy immediately accepts new
connections. When the database writer is unavailable, RDS Proxy queues up incoming requests.

For applications that don't maintain their own connection pools, RDS Proxy offers faster
connection rates and more open connections. It offloads the expensive overhead of frequent
reconnects from the database. It does so by reusing database connections maintained in the RDS
Proxy connection pool. This approach is particularly important for TLS connections, where setup
costs are significant.

Transactions

All the statements within a single transaction always use the same underlying database
connection. The connection becomes available for use by a different session when the transaction
ends. Using the transaction as the unit of granularity has the following consequences:

• Connection reuse can happen after each individual statement when the Aurora MySQL
autocommit setting is turned on.

• Conversely, when the autocommit setting is turned off, the first statement you issue in a session
begins a new transaction. For example, suppose that you enter a sequence of SELECT, INSERT,
UPDATE, and other data manipulation language (DML) statements. In this case, connection reuse
doesn't happen until you issue a COMMIT, ROLLBACK, or otherwise end the transaction.

• Entering a data definition language (DDL) statement causes the transaction to end after that
statement completes.

RDS Proxy detects when a transaction ends through the network protocol used by the database
client application. Transaction detection doesn't rely on keywords such as COMMIT or ROLLBACK
appearing in the text of the SQL statement.

In some cases, RDS Proxy might detect a database request that makes it impractical to move your
session to a different connection. In these cases, it turns off multiplexing for that connection the
remainder of your session. The same rule applies if RDS Proxy can't be certain that multiplexing is
practical for the session. This operation is called pinning. For ways to detect and minimize pinning,
see Avoiding pinning.

Transactions 3012

Amazon Aurora User Guide for Aurora

Getting started with RDS Proxy

Use the information in the following pages to set up and manage Using Amazon RDS Proxy for
Auroraand set related security options. The security options control who can access each proxy and
how each proxy connects to DB instances.

If you're new to RDS Proxy, we recommend following the pages in the order that we present them.

Topics

• Setting up network prerequisites

• Setting up database credentials in AWS Secrets Manager

• Setting up AWS Identity and Access Management (IAM) policies

• Creating an RDS Proxy

• Viewing an RDS Proxy

• Connecting to a database through RDS Proxy

Setting up network prerequisites

Using RDS Proxy requires you to have a common virtual private cloud (VPC) between your Aurora
DB cluster and RDS Proxy. This VPC should have a minimum of two subnets that are in different
Availability Zones. Your account can either own these subnets or share them with other accounts.
For information about VPC sharing, see Work with shared VPCs.

Your client application resources such as Amazon EC2, Lambda, or Amazon ECS can be in the same
VPC as the proxy. Or they can be in a separate VPC from the proxy. If you successfully connected to
any Aurora DB clusters, you already have the required network resources.

Topics

• Getting information about your subnets

• Planning for IP address capacity

Getting information about your subnets

If you're just getting started with Aurora, you can learn the basics of connecting to a database by
following the procedures in Setting up your environment for Amazon Aurora. You can also follow
the tutorial in Getting started with Amazon Aurora.

Getting started with RDS Proxy 3013

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/rds-proxy.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/rds-proxy.html
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-sharing.html

Amazon Aurora User Guide for Aurora

To create a proxy, you must provide the subnets and the VPC that the proxy operates within. The
following Linux example shows AWS CLI commands that examine the VPCs and subnets owned by
your AWS account. In particular, you pass subnet IDs as parameters when you create a proxy using
the CLI.

aws ec2 describe-vpcs
aws ec2 describe-internet-gateways
aws ec2 describe-subnets --query '*[].[VpcId,SubnetId]' --output text | sort

The following Linux example shows AWS CLI commands to determine the subnet IDs
corresponding to a specific Aurora DB cluster.

For an Aurora cluster, first you find the ID for one of the associated DB instances. You can
extract the subnet IDs used by that DB instance. To do so, examine the nested fields within the
DBSubnetGroup and Subnets attributes in the describe output for the DB instance. You specify
some or all of those subnet IDs when setting up a proxy for that database server.

$ # Find the ID of any DB instance in the cluster.
$ aws rds describe-db-clusters --db-cluster-identifier my_cluster_id --query '*[].
[DBClusterMembers]|[0]|[0][*].DBInstanceIdentifier' --output text

my_instance_id
instance_id_2
instance_id_3

After finding the DB instance identifier, examine the associated VPC to find its subnets. The
following Linux example shows how.

$ #From the DB instance, trace through the DBSubnetGroup and Subnets to find the subnet
 IDs.
$ aws rds describe-db-instances --db-instance-identifier my_instance_id --query '*[].
[DBSubnetGroup]|[0]|[0]|[Subnets]|[0]|[*].SubnetIdentifier' --output text

subnet_id_1
subnet_id_2
subnet_id_3
...

$ #From the DB instance, find the VPC.

Set up a proxy network 3014

Amazon Aurora User Guide for Aurora

$ aws rds describe-db-instances --db-instance-identifier my_instance_id --query '*[].
[DBSubnetGroup]|[0]|[0].VpcId' --output text

my_vpc_id

$ aws ec2 describe-subnets --filters Name=vpc-id,Values=my_vpc_id --query '*[].
[SubnetId]' --output text

subnet_id_1
subnet_id_2
subnet_id_3
subnet_id_4
subnet_id_5
subnet_id_6

Planning for IP address capacity

An RDS Proxy automatically adjusts its capacity as needed based on the size and number of DB
instances registered with it. Certain operations might also require additional proxy capacity such as
increasing the size of a registered database or internal RDS Proxy maintenance operations. During
these operations, your proxy might need more IP addresses to provision the extra capacity. These
additional addresses allow your proxy to scale without affecting your workload. A lack of free IP
addresses in your subnets prevents a proxy from scaling up. This can lead to higher query latencies
or client connection failures. RDS notifies you through event RDS-EVENT-0243 when there aren't
enough free IP addresses in your subnets. For information about this event, see Working with RDS
Proxy events.

Following are the recommended minimum numbers of IP addresses to leave free in your subnets
for your proxy based on DB instance class sizes.

DB instance class Minimum free IP addresses

db.*.xlarge or smaller 10

db.*.2xlarge 15

db.*.4xlarge 25

db.*.8xlarge 45

Set up a proxy network 3015

Amazon Aurora User Guide for Aurora

DB instance class Minimum free IP addresses

db.*.12xlarge 60

db.*.16xlarge 75

db.*.24xlarge 110

These recommended numbers of IP addresses are estimates for a proxy with only the default
endpoint. A proxy with additional endpoints or read replicas might need more free IP addresses.
For each additional endpoint, we recommend that you reserve three more IP addresses. For each
read replica, we recommend that you reserve additional IP addresses as specified in the table based
on that read replica's size.

Note

RDS Proxy doesn't support more than 215 IP addresses in a VPC.

For example, suppose that you want to estimate the required IP addresses for a proxy that's
associated with an Aurora DB cluster.

In this case, assume the following:

• Your Aurora DB cluster has 1 writer instance of size db.r5.8xlarge and 1 reader instance of size
db.r5.2xlarge.

• The proxy that's attached to this DB cluster has the default endpoint and 1 custom endpoint with
the read-only role.

In this case, the proxy needs approximately 63 free IP addresses (45 for the writer instance, 15 for
reader instance, and 3 for the additional custom endpoint).

Setting up database credentials in AWS Secrets Manager

For each proxy that you create, you first use the Secrets Manager service to store sets of user name
and password credentials. You create a separate Secrets Manager secret for each database user
account that the proxy connects to on the Aurora DB cluster.

Setting up database credentials in Secrets Manager 3016

Amazon Aurora User Guide for Aurora

In Secrets Manager console, you create these secrets with values for the username and password
fields. Doing so allows the proxy to connect to the corresponding database users on a Aurora DB
cluster that you associate with the proxy. To do this, you can use the setting Credentials for other
database, Credentials for RDS database, or Other type of secrets. Fill in the appropriate values
for the User name and Password fields, and values for any other required fields. The proxy ignores
other fields such as Host and Port if they're present in the secret. Those details are automatically
supplied by the proxy.

You can also choose Other type of secrets. In this case, you create the secret with keys named
username and password.

To connect through the proxy as a specific database user, make sure that the password associated
with a secret matches the database password for that user. If there's a mismatch, you can update
the associated secret in Secrets Manager. In this case, you can still connect to other accounts where
the secret credentials and the database passwords do match.

When you create a proxy through the AWS CLI or RDS API, you specify the Amazon Resource
Names (ARNs) of the corresponding secrets. You do so for all the DB user accounts that the proxy
can access. In the AWS Management Console, you choose the secrets by their descriptive names.

For instructions about creating secrets in Secrets Manager, see the Creating a secret page in the
Secrets Manager documentation. Use one of the following techniques:

• Use Secrets Manager in the console.

• To use the CLI to create a Secrets Manager secret for use with RDS Proxy, use a command such as
the following.

aws secretsmanager create-secret
 --name "secret_name"
 --description "secret_description"
 --region region_name
 --secret-string '{"username":"db_user","password":"db_user_password"}'

• You can also create a custom key to encrypt your Secrets Manager secret. The following
command creates an example key.

PREFIX=my_identifier
aws kms create-key --description "$PREFIX-test-key" --policy '{
 "Id":"$PREFIX-kms-policy",
 "Version":"2012-10-17",

Setting up database credentials in Secrets Manager 3017

https://docs.aws.amazon.com/secretsmanager/latest/userguide/manage_create-basic-secret.html
https://aws.amazon.com/secrets-manager/

Amazon Aurora User Guide for Aurora

 "Statement":
 [
 {
 "Sid":"Enable IAM User Permissions",
 "Effect":"Allow",
 "Principal":{"AWS":"arn:aws:iam::account_id:root"},
 "Action":"kms:*","Resource":"*"
 },
 {
 "Sid":"Allow access for Key Administrators",
 "Effect":"Allow",
 "Principal":
 {
 "AWS":
 ["$USER_ARN","arn:aws:iam:account_id::role/Admin"]
 },
 "Action":
 [
 "kms:Create*",
 "kms:Describe*",
 "kms:Enable*",
 "kms:List*",
 "kms:Put*",
 "kms:Update*",
 "kms:Revoke*",
 "kms:Disable*",
 "kms:Get*",
 "kms:Delete*",
 "kms:TagResource",
 "kms:UntagResource",
 "kms:ScheduleKeyDeletion",
 "kms:CancelKeyDeletion"
],
 "Resource":"*"
 },
 {
 "Sid":"Allow use of the key",
 "Effect":"Allow",
 "Principal":{"AWS":"$ROLE_ARN"},
 "Action":["kms:Decrypt","kms:DescribeKey"],
 "Resource":"*"
 }
]

Setting up database credentials in Secrets Manager 3018

Amazon Aurora User Guide for Aurora

}'

For example, the following commands create Secrets Manager secrets for two database users:

aws secretsmanager create-secret \
 --name secret_name_1 --description "db admin user" \
 --secret-string '{"username":"admin","password":"choose_your_own_password"}'

aws secretsmanager create-secret \
 --name secret_name_2 --description "application user" \
 --secret-string '{"username":"app-user","password":"choose_your_own_password"}'

To create these secrets encrypted with your custom AWS KMS key, use the following commands:

aws secretsmanager create-secret \
 --name secret_name_1 --description "db admin user" \
 --secret-string '{"username":"admin","password":"choose_your_own_password"}'
 --kms-key-id arn:aws:kms:us-east-2:account_id:key/key_id

aws secretsmanager create-secret \
 --name secret_name_2 --description "application user" \
 --secret-string '{"username":"app-user","password":"choose_your_own_password"}'
 --kms-key-id arn:aws:kms:us-east-2:account_id:key/key_id

To see the secrets owned by your AWS account, use a command such as the following.

aws secretsmanager list-secrets

When you create a proxy using the CLI, you pass the Amazon Resource Names (ARNs) of one or
more secrets to the --auth parameter. The following Linux example shows how to prepare a
report with only the name and ARN of each secret owned by your AWS account. This example uses
the --output table parameter that is available in AWS CLI version 2. If you are using AWS CLI
version 1, use --output text instead.

aws secretsmanager list-secrets --query '*[].[Name,ARN]' --output table

To verify that you stored the correct credentials and in the right format in a secret, use a command
such as the following. Substitute the short name or the ARN of the secret for your_secret_name.

Setting up database credentials in Secrets Manager 3019

Amazon Aurora User Guide for Aurora

aws secretsmanager get-secret-value --secret-id your_secret_name

The output should include a line displaying a JSON-encoded value like the following.

"SecretString": "{\"username\":\"your_username\",\"password\":\"your_password\"}",

Setting up AWS Identity and Access Management (IAM) policies

After you create the secrets in Secrets Manager, you create an IAM policy that can access those
secrets. For general information about using IAM, see Identity and access management for Amazon
Aurora.

Tip

The following procedure applies if you use the IAM console. If you use the AWS
Management Console for RDS, RDS can create the IAM policy for you automatically. In that
case, you can skip the following procedure.

To create an IAM policy that accesses your Secrets Manager secrets for use with your proxy

1. Sign in to the IAM console. Follow the Create role process, as described in Creating IAM roles,
choosing Creating a role to delegate permissions to an AWS service.

Choose AWS service for the Trusted entity type. Under Use case, select RDS from Use cases
for other AWS services dropdown. Select RDS - Add Role to Database.

2. For the new role, perform the Add inline policy step. Use the same general procedures
as in Editing IAM policies. Paste the following JSON into the JSON text box. Substitute
your own account ID. Substitute your AWS Region for us-east-2. Substitute the Amazon
Resource Names (ARNs) for the secrets that you created, see Specifying KMS keys in IAM
policy statements. For the kms:Decrypt action, substitute the ARN of the default AWS KMS
key or your own KMS key. Which one you use depends on which one you used to encrypt the
Secrets Manager secrets.

{
 "Version": "2012-10-17",
 "Statement": [
 {

Setting up IAM policies 3020

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_manage-edit.html
https://docs.aws.amazon.com/kms/latest/developerguide/cmks-in-iam-policies.html
https://docs.aws.amazon.com/kms/latest/developerguide/cmks-in-iam-policies.html

Amazon Aurora User Guide for Aurora

 "Sid": "VisualEditor0",
 "Effect": "Allow",
 "Action": "secretsmanager:GetSecretValue",
 "Resource": [
 "arn:aws:secretsmanager:us-east-2:account_id:secret:secret_name_1",
 "arn:aws:secretsmanager:us-east-2:account_id:secret:secret_name_2"
]
 },
 {
 "Sid": "VisualEditor1",
 "Effect": "Allow",
 "Action": "kms:Decrypt",
 "Resource": "arn:aws:kms:us-east-2:account_id:key/key_id",
 "Condition": {
 "StringEquals": {
 "kms:ViaService": "secretsmanager.us-east-2.amazonaws.com"
 }
 }
 }
]
}

3. Edit the trust policy for this IAM role. Paste the following JSON into the JSON text box.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "",
 "Effect": "Allow",
 "Principal": {
 "Service": "rds.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }
]
}

The following commands perform the same operation through the AWS CLI.

PREFIX=my_identifier
USER_ARN=$(aws sts get-caller-identity --query "Arn" --output text)

Setting up IAM policies 3021

Amazon Aurora User Guide for Aurora

aws iam create-role --role-name my_role_name \
 --assume-role-policy-document '{"Version":"2012-10-17","Statement":
[{"Effect":"Allow","Principal":{"Service":
["rds.amazonaws.com"]},"Action":"sts:AssumeRole"}]}'

ROLE_ARN=arn:aws:iam::account_id:role/my_role_name

aws iam put-role-policy --role-name my_role_name \
 --policy-name $PREFIX-secret-reader-policy --policy-document '{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "VisualEditor0",
 "Effect": "Allow",
 "Action": "secretsmanager:GetSecretValue",
 "Resource": [
 "arn:aws:secretsmanager:us-east-2:account_id:secret:secret_name_1",
 "arn:aws:secretsmanager:us-east-2:account_id:secret:secret_name_2"
]
 },
 {
 "Sid": "VisualEditor1",
 "Effect": "Allow",
 "Action": "kms:Decrypt",
 "Resource": "arn:aws:kms:us-east-2:account_id:key/key_id",
 "Condition": {
 "StringEquals": {
 "kms:ViaService": "secretsmanager.us-east-2.amazonaws.com"
 }
 }
 }
]
}

Creating an RDS Proxy

To manage connections for a DB cluster, create a proxy. You can associate a proxy with an Aurora
MySQL or Aurora PostgreSQL DB cluster.

Creating an RDS Proxy 3022

Amazon Aurora User Guide for Aurora

AWS Management Console

To create a proxy

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Proxies.

3. Choose Create proxy.

4. Choose all the settings for your proxy.

For Proxy configuration, provide information for the following:

• Engine family. This setting determines which database network protocol the proxy
recognizes when it interprets network traffic to and from the database. For Aurora MySQL,
choose MariaDB and MySQL. For Aurora PostgreSQL, choose PostgreSQL.

• Proxy identifier. Specify a name of that is unique within your AWS account ID and current
AWS Region.

• Idle client connection timeout. Choose a time period that a client connection can be idle
before the proxy closes it. The default is 1,800 seconds (30 minutes). A client connection is
considered idle when the application doesn't submit a new request within the specified time
after the previous request completed. The underlying database connection stays open and is
returned to the connection pool. Thus, it's available to be reused for new client connections.

To have the proxy proactively remove stale connections, lower the idle client connection
timeout. When the workload is spiking, to save the cost of establishing connections, increase
the idle client connection timeout."

For Target group configuration, provide information for the following:

• Database. Choose one Aurora DB cluster to access through this proxy. The list only includes
DB instances and clusters with compatible database engines, engine versions, and other
settings. If the list is empty, create a new DB instance or cluster that's compatible with RDS
Proxy. To do so, follow the procedure in Creating an Amazon Aurora DB cluster. Then try
creating the proxy again.

• Connection pool maximum connections. Specify a value from 1 through 100. This
setting represents the percentage of the max_connections value that RDS Proxy can use
for its connections. If you only intend to use one proxy with this DB instance or cluster,

Creating an RDS Proxy 3023

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Aurora User Guide for Aurora

you can set this value to 100. For details about how RDS Proxy uses this setting, see
MaxConnectionsPercent.

• Session pinning filters. (Optional) This option allows you to force RDS Proxy to not pin for
certain types of detected session states. This circumvents the default safety measures for
multiplexing database connections across client connections. Currently, the setting isn't
supported for PostgreSQL. The only choice is EXCLUDE_VARIABLE_SETS.

Enabling this setting can cause session variables of one connection to impact other
connections. This can cause errors or correctness issues if your queries depend on session
variable values set outside of the current transaction. Consider using this option after
verifying it is safe for your applications to share database connections across client
connections.

The following patterns can be considered safe:

• SET statements where there is no change to the effective session variable value, i.e., there
is no change to the session variable.

• You change the session variable value and execute a statement in the same transaction.

For more information, see Avoiding pinning.

• Connection borrow timeout. In some cases, you might expect the proxy to sometimes use
all available database connections. In such cases, you can specify how long the proxy waits
for a database connection to become available before returning a timeout error. You can
specify a period up to a maximum of five minutes. This setting only applies when the proxy
has the maximum number of connections open and all connections are already in use.

• Initialization query. (Optional) You can specify one or more SQL statements for the proxy
to run when opening each new database connection. The setting is typically used with SET
statements to make sure that each connection has identical settings, such as time zone
and character sets. For multiple statements, use semicolons as the separator. You can also
include multiple variables in a single SET statement, such as SET x=1, y=2.

For Authentication, provide information for the following:

• IAM role. Choose an IAM role that has permission to access the Secrets Manager secrets that
you chose earlier. Or, you can create a new IAM role from the AWS Management Console.

• Secrets Manager secrets. Choose at least one Secrets Manager secret that contains database
user credentials that allow the proxy to access the Aurora DB cluster.

Creating an RDS Proxy 3024

Amazon Aurora User Guide for Aurora

• Client authentication type. Choose the type of authentication the proxy uses for
connections from clients. Your choice applies to all Secrets Manager secrets that you
associate with this proxy. If you need to specify a different client authentication type for
each secret, then create your proxy by using the AWS CLI or the API instead.

• IAM authentication. Choose whether to require or disallow IAM authentication for
connections to your proxy. Your choice applies to all Secrets Manager secrets that you
associate with this proxy. If you need to specify a different IAM authentication for each
secret, create your proxy by using the AWS CLI or the API instead.

For Connectivity, provide information for the following:

• Require Transport Layer Security. Choose this setting if you want the proxy to enforce
TLS/SSL for all client connections. For an encrypted or unencrypted connection to a proxy,
the proxy uses the same encryption setting when it makes a connection to the underlying
database.

• Subnets. This field is prepopulated with all the subnets associated with your VPC. You can
remove any subnets that you don't need for this proxy. You must leave at least two subnets.

Provide additional connectivity configuration:

• VPC security group. Choose an existing VPC security group. Or, you can create a new
security group from the AWS Management Console. You must configure the Inbound rules
to allow your applications to access the proxy. You must also configure the Outbound rules
to allow traffic from your DB targets.

Note

This security group must allow connections from the proxy to the database. The
same security group is used for ingress from your applications to the proxy, and for
egress from the proxy to the database. For example, suppose that you use the same
security group for your database and your proxy. In this case, make sure that you
specify that resources in that security group can communicate with other resources
in the same security group.
When using a shared VPC, you can't use the default security group for the VPC, or
one that belongs to another account. Choose a security group that belongs to your

Creating an RDS Proxy 3025

Amazon Aurora User Guide for Aurora

account. If one doesn't exist, create one. For more information about this limitation,
see Work with shared VPCs.

RDS deploys a proxy over multiple Availability Zones to ensure high availability. To enable
cross-AZ communication for such a proxy, the network access control list (ACL) for your
proxy subnet must allow engine port specific egress and all ports to ingress. For more
information about network ACLs, see Control traffic to subnets using network ACLs. If the
network ACL for your proxy and target are identical, you must add a TCP protocol ingress
rule where the Source is set to the VPC CIDR. You must also add an engine port specific TCP
protocol egress rule where the Destination is set to the VPC CIDR.

(Optional) Provide advanced configuration:

• Enable enhanced logging. You can enable this setting to troubleshoot proxy compatibility
or performance issues.

When this setting is enabled, RDS Proxy includes detailed information about proxy
performance in its logs. This information helps you to debug issues involving SQL behavior
or the performance and scalability of the proxy connections. Thus, only enable this setting
for debugging and when you have security measures in place to safeguard any sensitive
information that appears in the logs.

To minimize overhead associated with your proxy, RDS Proxy automatically turns this setting
off 24 hours after you enable it. Enable it temporarily to troubleshoot a specific issue.

5. Choose Create Proxy.

AWS CLI

To create a proxy by using the AWS CLI, call the create-db-proxy command with the following
required parameters:

• --db-proxy-name

• --engine-family

• --role-arn

• --auth

Creating an RDS Proxy 3026

https://docs.aws.amazon.com/vpc/latest/userguide/vpc-sharing.html#vpc-share-limitations
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-network-acls.html
https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-proxy.html

Amazon Aurora User Guide for Aurora

• --vpc-subnet-ids

The --engine-family value is case-sensitive.

Example

For Linux, macOS, or Unix:

aws rds create-db-proxy \
 --db-proxy-name proxy_name \
 --engine-family { MYSQL | POSTGRESQL | SQLSERVER } \
 --auth ProxyAuthenticationConfig_JSON_string \
 --role-arn iam_role \
 --vpc-subnet-ids space_separated_list \
 [--vpc-security-group-ids space_separated_list] \
 [--require-tls | --no-require-tls] \
 [--idle-client-timeout value] \
 [--debug-logging | --no-debug-logging] \
 [--tags comma_separated_list]

For Windows:

aws rds create-db-proxy ^
 --db-proxy-name proxy_name ^
 --engine-family { MYSQL | POSTGRESQL | SQLSERVER } ^
 --auth ProxyAuthenticationConfig_JSON_string ^
 --role-arn iam_role ^
 --vpc-subnet-ids space_separated_list ^
 [--vpc-security-group-ids space_separated_list] ^
 [--require-tls | --no-require-tls] ^
 [--idle-client-timeout value] ^
 [--debug-logging | --no-debug-logging] ^
 [--tags comma_separated_list]

The following is an example of the JSON value for the --auth option. This example
applies a different client authentication type to each secret.

[
 {
 "Description": "proxy description 1",
 "AuthScheme": "SECRETS",

Creating an RDS Proxy 3027

Amazon Aurora User Guide for Aurora

 "SecretArn": "arn:aws:secretsmanager:us-
west-2:123456789123:secret/1234abcd-12ab-34cd-56ef-1234567890ab",
 "IAMAuth": "DISABLED",
 "ClientPasswordAuthType": "POSTGRES_SCRAM_SHA_256"
 },

 {
 "Description": "proxy description 2",
 "AuthScheme": "SECRETS",
 "SecretArn": "arn:aws:secretsmanager:us-
west-2:111122223333:secret/1234abcd-12ab-34cd-56ef-1234567890cd",
 "IAMAuth": "DISABLED",
 "ClientPasswordAuthType": "POSTGRES_MD5"

 },

 {
 "Description": "proxy description 3",
 "AuthScheme": "SECRETS",
 "SecretArn": "arn:aws:secretsmanager:us-
west-2:111122221111:secret/1234abcd-12ab-34cd-56ef-1234567890ef",
 "IAMAuth": "REQUIRED"
 }

]

Tip

If you don't already know the subnet IDs to use for the --vpc-subnet-ids parameter, see
Setting up network prerequisites for examples of how to find them.

Note

The security group must allow access to the database the proxy connects to. The same
security group is used for ingress from your applications to the proxy, and for egress from
the proxy to the database. For example, suppose that you use the same security group for
your database and your proxy. In this case, make sure that you specify that resources in that
security group can communicate with other resources in the same security group.
When using a shared VPC, you can't use the default security group for the VPC, or one that
belongs to another account. Choose a security group that belongs to your account. If one

Creating an RDS Proxy 3028

Amazon Aurora User Guide for Aurora

doesn't exist, create one. For more information about this limitation, see Work with shared
VPCs.

To create the right associations for the proxy, you also use the register-db-proxy-targets command.
Specify the target group name default. RDS Proxy automatically creates a target group with this
name when you create each proxy.

aws rds register-db-proxy-targets
 --db-proxy-name value
 [--target-group-name target_group_name]
 [--db-instance-identifiers space_separated_list] # rds db instances, or
 [--db-cluster-identifiers cluster_id] # rds db cluster (all instances)

RDS API

To create an RDS proxy, call the Amazon RDS API operation CreateDBProxy. You pass a parameter
with the AuthConfig data structure.

RDS Proxy automatically creates a target group named default when you create each
proxy. You associate an Aurora DB cluster with the target group by calling the function
RegisterDBProxyTargets.

Viewing an RDS Proxy

After you create one or more RDS proxies, you can view them all. Doing so makes it possible to
examine their configuration details and choose which ones to modify, delete, and so on.

In order for database applications to use a proxy, you must provide the proxy endpoint in the
connection string.

AWS Management Console

To view your proxy

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the upper-right corner of the AWS Management Console, choose the AWS Region in which
you created the RDS Proxy.

Viewing an RDS Proxy 3029

https://docs.aws.amazon.com/vpc/latest/userguide/vpc-sharing.html#vpc-share-limitations
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-sharing.html#vpc-share-limitations
https://docs.aws.amazon.com/cli/latest/reference/rds/register-db-proxy-targets.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateDBProxy.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_AuthConfig.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_RegisterDBProxyTargets.html
https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Aurora User Guide for Aurora

3. In the navigation pane, choose Proxies.

4. Choose the name of an RDS proxy to display its details.

5. On the details page, the Target groups section shows how the proxy is associated with
a specific Aurora DB cluster. You can follow the link to the default target group page to
see more details about the association between the proxy and the database. This page is
where you see settings that you specified when creating the proxy. These include maximum
connection percentage, connection borrow timeout, engine family, and session pinning filters.

CLI

To view your proxy using the CLI, use the describe-db-proxies command. By default, it displays all
proxies owned by your AWS account. To see details for a single proxy, specify its name with the --
db-proxy-name parameter.

aws rds describe-db-proxies [--db-proxy-name proxy_name]

To view the other information associated with the proxy, use the following commands.

aws rds describe-db-proxy-target-groups --db-proxy-name proxy_name

aws rds describe-db-proxy-targets --db-proxy-name proxy_name

Use the following sequence of commands to see more detail about the things that are associated
with the proxy:

1. To get a list of proxies, run describe-db-proxies.

2. To show connection parameters such as the maximum percentage of connections that the proxy
can use, run describe-db-proxy-target-groups --db-proxy-name. Use the name of the proxy as
the parameter value.

3. To see the details of the Aurora DB cluster associated with the returned target group, run
describe-db-proxy-targets.

RDS API

To view your proxies using the RDS API, use the DescribeDBProxies operation. It returns values of
the DBProxy data type.

Viewing an RDS Proxy 3030

https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-proxies.html
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-proxies.html
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-proxy-target-groups.html
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-proxy-targets.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DescribeDBProxies.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DBProxy.html

Amazon Aurora User Guide for Aurora

To see details of the connection settings for the proxy, use the proxy identifiers from this
return value with the DescribeDBProxyTargetGroups operation. It returns values of the
DBProxyTargetGroup data type.

To see the RDS instance or Aurora DB cluster associated with the proxy, use the
DescribeDBProxyTargets operation. It returns values of the DBProxyTarget data type.

Connecting to a database through RDS Proxy

You connect to an Aurora DB cluster or cluster that uses Aurora Serverless v2 through a proxy in
generally the same way as you connect directly to the database. The main difference is that you
specify the proxy endpoint instead of the cluster endpoint. By default all proxy connections have
read/write capability and use the writer instance. If you normally use the reader endpoint for read-
only connections, you can create an additional read-only endpoint for the proxy. You can use that
endpoint the same way. For more information, see Overview of proxy endpoints.

Topics

• Connecting to a proxy using native authentication

• Connecting to a proxy using IAM authentication

• Considerations for connecting to a proxy with PostgreSQL

Connecting to a proxy using native authentication

Use the following steps to connect to a proxy using native authentication:

1. Find the proxy endpoint. In the AWS Management Console, you can find the endpoint on the
details page for the corresponding proxy. With the AWS CLI, you can use the describe-db-proxies
command. The following example shows how.

Add --output text to get output as a simple tab-separated list.
$ aws rds describe-db-proxies --query '*[*].
{DBProxyName:DBProxyName,Endpoint:Endpoint}'
[
 [
 {
 "Endpoint": "the-proxy.proxy-demo.us-east-1.rds.amazonaws.com",
 "DBProxyName": "the-proxy"
 },
 {

Connecting through RDS Proxy 3031

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DescribeDBProxyTargetGroups.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DBProxyTargetGroup.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DescribeDBProxyTargets.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DBProxyTarget.html
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-proxies.html

Amazon Aurora User Guide for Aurora

 "Endpoint": "the-proxy-other-secret.proxy-demo.us-
east-1.rds.amazonaws.com",
 "DBProxyName": "the-proxy-other-secret"
 },
 {
 "Endpoint": "the-proxy-rds-secret.proxy-demo.us-
east-1.rds.amazonaws.com",
 "DBProxyName": "the-proxy-rds-secret"
 },
 {
 "Endpoint": "the-proxy-t3.proxy-demo.us-east-1.rds.amazonaws.com",
 "DBProxyName": "the-proxy-t3"
 }
]
]

2. Specify the endpoint as the host parameter in the connection string for your client application.
For example, specify the proxy endpoint as the value for the mysql -h option or psql -h
option.

3. Supply the same database user name and password as you usually do.

Connecting to a proxy using IAM authentication

When you use IAM authentication with RDS Proxy, set up your database users to authenticate with
regular user names and passwords. The IAM authentication applies to RDS Proxy retrieving the
user name and password credentials from Secrets Manager. The connection from RDS Proxy to the
underlying database doesn't go through IAM.

To connect to RDS Proxy using IAM authentication, use the same general connection procedure as
for IAM authentication with an Aurora DB cluster. For general information about using IAM, see
Security in Amazon Aurora.

The major differences in IAM usage for RDS Proxy include the following:

• You don't configure each individual database user with an authorization plugin. The database
users still have regular user names and passwords within the database. You set up Secrets
Manager secrets containing these user names and passwords, and authorize RDS Proxy to
retrieve the credentials from Secrets Manager.

Connecting through RDS Proxy 3032

Amazon Aurora User Guide for Aurora

The IAM authentication applies to the connection between your client program and the proxy.
The proxy then authenticates to the database using the user name and password credentials
retrieved from Secrets Manager.

• Instead of the instance, cluster, or reader endpoint, you specify the proxy endpoint. For details
about the proxy endpoint, see Connecting to your DB cluster using IAM authentication.

• In the direct database IAM authentication case, you selectively choose database users and
configure them to be identified with a special authentication plugin. You can then connect to
those users using IAM authentication.

In the proxy use case, you provide the proxy with Secrets that contain some user's user name and
password (native authentication). You then connect to the proxy using IAM authentication. Here,
you do this by generating an authentication token with the proxy endpoint, not the database
endpoint. You also use a user name that matches one of the user names for the secrets that you
provided.

• Make sure that you use Transport Layer Security (TLS)/Secure Sockets Layer (SSL) when
connecting to a proxy using IAM authentication.

You can grant a specific user access to the proxy by modifying the IAM policy. An example follows.

"Resource": "arn:aws:rds-db:us-east-2:1234567890:dbuser:prx-ABCDEFGHIJKL01234/db_user"

Considerations for connecting to a proxy with PostgreSQL

For PostgreSQL, when a client starts a connection to a PostgreSQL database, it sends a startup
message. This message includes pairs of parameter name and value strings. For details, see the
StartupMessage in PostgreSQL message formats in the PostgreSQL documentation.

When connecting through an RDS proxy, the startup message can include the following currently
recognized parameters:

• user

• database

The startup message can also include the following additional runtime parameters:

• application_name

Connecting through RDS Proxy 3033

https://www.postgresql.org/docs/current/protocol-message-formats.html
https://www.postgresql.org/docs/current/runtime-config-logging.html#GUC-APPLICATION-NAME

Amazon Aurora User Guide for Aurora

• client_encoding

• DateStyle

• TimeZone

• extra_float_digits

• search_path

For more information about PostgreSQL messaging, see the Frontend/Backend protocol in the
PostgreSQL documentation.

For PostgreSQL, if you use JDBC, we recommend the following to avoid pinning:

• Set the JDBC connection parameter assumeMinServerVersion to at least 9.0 to avoid
pinning. This prevents the JDBC driver from performing an extra round trip during connection
startup when it runs SET extra_float_digits = 3.

• Set the JDBC connection parameter ApplicationName to any/your-application-name to
avoid pinning. Doing this prevents the JDBC driver from performing an extra round trip during
connection startup when it runs SET application_name = "PostgreSQL JDBC Driver".
Note the JDBC parameter is ApplicationName but the PostgreSQL StartupMessage
parameter is application_name.

For more information, see Avoiding pinning. For more information about connecting using JDBC,
see Connecting to the database in the PostgreSQL documentation.

Managing an RDS Proxy

This section provides information on how to manage RDS Proxy operation and configuration. These
procedures help your application make the most efficient use of database connections and achieve
maximum connection reuse. The more that you can take advantage of connection reuse, the more
CPU and memory overhead that you can save. This in turn reduces latency for your application and
enables the database to devote more of its resources to processing application requests.

Topics

• Modifying an RDS Proxy

• Adding a new database user

• Changing the password for a database user

Managing an RDS Proxy 3034

https://www.postgresql.org/docs/current/runtime-config-client.html#GUC-CLIENT-ENCODING
https://www.postgresql.org/docs/current/runtime-config-client.html#GUC-DATESTYLE
https://www.postgresql.org/docs/current/runtime-config-client.html#GUC-TIMEZONE
https://www.postgresql.org/docs/current/runtime-config-client.html#GUC-EXTRA-FLOAT-DIGITS
https://www.postgresql.org/docs/current/runtime-config-client.html#GUC-SEARCH-PATH
https://www.postgresql.org/docs/current/protocol.html
https://jdbc.postgresql.org/documentation/setup/

Amazon Aurora User Guide for Aurora

• Client and database connections

• Configuring connection settings

• Avoiding pinning

• Deleting an RDS Proxy

Modifying an RDS Proxy

You can change specific settings associated with a proxy after you create the proxy. You do so by
modifying the proxy itself, its associated target group, or both. Each proxy has an associated target
group.

AWS Management Console

Important

The values in the Client authentication type and IAM authentication fields apply to all
Secrets Manager secrets that are associated with this proxy. To specify different values for
each secret, modify your proxy by using the AWS CLI or the API instead.

To modify the settings for a proxy

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Proxies.

3. In the list of proxies, choose the proxy whose settings you want to modify or go to its details
page.

4. For Actions, choose Modify.

5. Enter or choose the properties to modify. You can modify the following:

• Proxy identifier – Rename the proxy by entering a new identifier.

• Idle client connection timeout – Enter a time period for the idle client connection timeout.

• IAM role – Change the IAM role used to retrieve the secrets from Secrets Manager.

• Secrets Manager secrets – Add or remove Secrets Manager secrets. These secrets correspond
to database user names and passwords.

Modifying an RDS Proxy 3035

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Aurora User Guide for Aurora

• Client authentication type – (PostgreSQL only) Change the type of authentication for client
connections to the proxy.

• IAM authentication – Require or disallow IAM authentication for connections to the proxy.

• Require Transport Layer Security – Turn the requirement for Transport layer Security (TLS)
on or off.

• VPC security group – Add or remove VPC security groups for the proxy to use.

• Enable enhanced logging – Enable or disable enhanced logging.

6. Choose Modify.

If you didn't find the settings listed that you want to change, use the following procedure to
update the target group for the proxy. The target group associated with a proxy controls the
settings related to the physical database connections. Each proxy has one associated target group
named default, which is created automatically along with the proxy.

You can only modify the target group from the proxy details page, not from the list on the Proxies
page.

To modify the settings for a proxy target group

1. On the Proxies page, go to the details page for a proxy.

2. For Target groups, choose the default link. Currently, all proxies have a single target group
named default.

3. On the details page for the default target group, choose Modify.

4. Choose new settings for the properties that you can modify:

• Database – Choose a different Aurora cluster.

• Connection pool maximum connections – Adjust what percentage of the maximum
available connections the proxy can use.

• Session pinning filters – (Optional) Choose a session pinning filter. This circumvents
the default safety measures for multiplexing database connections across client
connections. Currently, the setting isn't supported for PostgreSQL. The only choice is
EXCLUDE_VARIABLE_SETS.

Enabling this setting can cause session variables of one connection to impact other
connections. This can cause errors or correctness issues if your queries depend on session
variable values set outside of the current transaction. Consider using this option after

Modifying an RDS Proxy 3036

Amazon Aurora User Guide for Aurora

verifying it is safe for your applications to share database connections across client
connections.

The following patterns can be considered safe:

• SET statements where there is no change to the effective session variable value, i.e., there
is no change to the session variable.

• You change the session variable value and execute a statement in the same transaction.

For more information, see Avoiding pinning.

• Connection borrow timeout – Adjust the connection borrow timeout interval. This setting
applies when the maximum number of connections is already being used for the proxy. The
setting determines how long the proxy waits for a connection to become available before
returning a timeout error.

• Initialization query – (Optional) Add an initialization query, or modify the current one.
You can specify one or more SQL statements for the proxy to run when opening each new
database connection. The setting is typically used with SET statements to make sure that
each connection has identical settings such as time zone and character set. For multiple
statements, use semicolons as the separator. You can also include multiple variables in a
single SET statement, such as SET x=1, y=2.

You can't change certain properties, such as the target group identifier and the database
engine.

5. Choose Modify target group.

AWS CLI

To modify a proxy using the AWS CLI, use the commands modify-db-proxy, modify-db-proxy-
target-group, deregister-db-proxy-targets, and register-db-proxy-targets.

With the modify-db-proxy command, you can change properties such as the following:

• The set of Secrets Manager secrets used by the proxy.

• Whether TLS is required.

• The idle client timeout.

• Whether to log additional information from SQL statements for debugging.

• The IAM role used to retrieve Secrets Manager secrets.

Modifying an RDS Proxy 3037

https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-proxy.html
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-proxy-target-group.html
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-proxy-target-group.html
https://docs.aws.amazon.com/cli/latest/reference/rds/deregister-db-proxy-targets.html
https://docs.aws.amazon.com/cli/latest/reference/rds/register-db-proxy-targets.html

Amazon Aurora User Guide for Aurora

• The security groups used by the proxy.

The following example shows how to rename an existing proxy.

aws rds modify-db-proxy --db-proxy-name the-proxy --new-db-proxy-name the_new_name

To modify connection-related settings or rename the target group, use the modify-db-proxy-
target-group command. Currently, all proxies have a single target group named default. When
working with this target group, you specify the name of the proxy and default for the name of
the target group.

The following example shows how to first check the MaxIdleConnectionsPercent setting for a
proxy and then change it, using the target group.

aws rds describe-db-proxy-target-groups --db-proxy-name the-proxy

{
 "TargetGroups": [
 {
 "Status": "available",
 "UpdatedDate": "2019-11-30T16:49:30.342Z",
 "ConnectionPoolConfig": {
 "MaxIdleConnectionsPercent": 50,
 "ConnectionBorrowTimeout": 120,
 "MaxConnectionsPercent": 100,
 "SessionPinningFilters": []
 },
 "TargetGroupName": "default",
 "CreatedDate": "2019-11-30T16:49:27.940Z",
 "DBProxyName": "the-proxy",
 "IsDefault": true
 }
]
}

aws rds modify-db-proxy-target-group --db-proxy-name the-proxy --target-group-name
 default --connection-pool-config '
{ "MaxIdleConnectionsPercent": 75 }'

{
 "DBProxyTargetGroup": {
 "Status": "available",

Modifying an RDS Proxy 3038

Amazon Aurora User Guide for Aurora

 "UpdatedDate": "2019-12-02T04:09:50.420Z",
 "ConnectionPoolConfig": {
 "MaxIdleConnectionsPercent": 75,
 "ConnectionBorrowTimeout": 120,
 "MaxConnectionsPercent": 100,
 "SessionPinningFilters": []
 },
 "TargetGroupName": "default",
 "CreatedDate": "2019-11-30T16:49:27.940Z",
 "DBProxyName": "the-proxy",
 "IsDefault": true
 }
}

With the deregister-db-proxy-targets and register-db-proxy-targets commands, you
change which Aurora DB clusters the proxy is associated with through its target group. Currently,
each proxy can connect to one Aurora DB cluster. The target group tracks the connection details for
all the all the DB instances in an Aurora cluster.

The following example starts with a proxy that is associated with an Aurora MySQL cluster named
cluster-56-2020-02-25-1399. The example shows how to change the proxy so that it can
connect to a different cluster named provisioned-cluster.

When you work with an Aurora DB cluster, you specify the --db-cluster-identifier option.

The following example modifies an Aurora MySQL proxy. An Aurora PostgreSQL proxy has port
5432.

aws rds describe-db-proxy-targets --db-proxy-name the-proxy

{
 "Targets": [
 {
 "Endpoint": "instance-9814.demo.us-east-1.rds.amazonaws.com",
 "Type": "RDS_INSTANCE",
 "Port": 3306,
 "RdsResourceId": "instance-9814"
 },
 {
 "Endpoint": "instance-8898.demo.us-east-1.rds.amazonaws.com",
 "Type": "RDS_INSTANCE",
 "Port": 3306,
 "RdsResourceId": "instance-8898"

Modifying an RDS Proxy 3039

Amazon Aurora User Guide for Aurora

 },
 {
 "Endpoint": "instance-1018.demo.us-east-1.rds.amazonaws.com",
 "Type": "RDS_INSTANCE",
 "Port": 3306,
 "RdsResourceId": "instance-1018"
 },
 {
 "Type": "TRACKED_CLUSTER",
 "Port": 0,
 "RdsResourceId": "cluster-56-2020-02-25-1399"
 },
 {
 "Endpoint": "instance-4330.demo.us-east-1.rds.amazonaws.com",
 "Type": "RDS_INSTANCE",
 "Port": 3306,
 "RdsResourceId": "instance-4330"
 }
]
}

aws rds deregister-db-proxy-targets --db-proxy-name the-proxy --db-cluster-identifier
 cluster-56-2020-02-25-1399

aws rds describe-db-proxy-targets --db-proxy-name the-proxy

{
 "Targets": []
}

aws rds register-db-proxy-targets --db-proxy-name the-proxy --db-cluster-identifier
 provisioned-cluster

{
 "DBProxyTargets": [
 {
 "Type": "TRACKED_CLUSTER",
 "Port": 0,
 "RdsResourceId": "provisioned-cluster"
 },
 {
 "Endpoint": "gkldje.demo.us-east-1.rds.amazonaws.com",
 "Type": "RDS_INSTANCE",
 "Port": 3306,

Modifying an RDS Proxy 3040

Amazon Aurora User Guide for Aurora

 "RdsResourceId": "gkldje"
 },
 {
 "Endpoint": "provisioned-1.demo.us-east-1.rds.amazonaws.com",
 "Type": "RDS_INSTANCE",
 "Port": 3306,
 "RdsResourceId": "provisioned-1"
 }
]
}

RDS API

To modify a proxy using the RDS API, you use the operations ModifyDBProxy,
ModifyDBProxyTargetGroup, DeregisterDBProxyTargets, and RegisterDBProxyTargets operations.

With ModifyDBProxy, you can change properties such as the following:

• The set of Secrets Manager secrets used by the proxy.

• Whether TLS is required.

• The idle client timeout.

• Whether to log additional information from SQL statements for debugging.

• The IAM role used to retrieve Secrets Manager secrets.

• The security groups used by the proxy.

With ModifyDBProxyTargetGroup, you can modify connection-related settings or rename the
target group. Currently, all proxies have a single target group named default. When working
with this target group, you specify the name of the proxy and default for the name of the target
group.

With DeregisterDBProxyTargets and RegisterDBProxyTargets, you change which Aurora
cluster the proxy is associated with through its target group. Currently, each proxy can connect to
one Aurora cluster. The target group tracks the connection details for the DB instances in an Aurora
cluster.

Modifying an RDS Proxy 3041

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBProxy.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBProxyTargetGroup.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DeregisterDBProxyTargets.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_RegisterDBProxyTargets.html

Amazon Aurora User Guide for Aurora

Adding a new database user

In some cases, you might add a new database user to an Aurora cluster that's associated with a
proxy. If so, add or repurpose a Secrets Manager secret to store the credentials for that user. To do
this, run through the following steps:

1. Create a new Secrets Manager secret, using the procedure described in Setting up database
credentials in AWS Secrets Manager.

2. Update the IAM role to give RDS Proxy access to the new Secrets Manager secret. To do so,
update the resources section of the IAM role policy.

3. Modify the RDS Proxy to add the new Secrets Manager secret under Secrets Manager secrets.

4. If the new user takes the place of an existing one, update the credentials stored in the proxy's
Secrets Manager secret for the existing user.

Adding a new database user to a PostgreSQL database

When adding a new user to your PostgreSQL database, if you have run the following command:

REVOKE CONNECT ON DATABASE postgres FROM PUBLIC;

Grant the rdsproxyadmin user the CONNECT privilege so the user can monitor connections on the
target database.

GRANT CONNECT ON DATABASE postgres TO rdsproxyadmin;

You can also allow other target database users to perform health checks by changing
rdsproxyadmin to the database user in the command above.

Changing the password for a database user

In some cases, you might change the password for a database user in an Aurora cluster that's
associated with a proxy. If so, update the corresponding Secrets Manager secret with the new
password.

Adding a database user 3042

Amazon Aurora User Guide for Aurora

Client and database connections

Connections from your application to RDS Proxy are known as client connections. Connections
from a proxy to the database are database connections. When using RDS Proxy, client connections
terminate at the proxy while database connections are managed within RDS Proxy.

Application-side connection pooling can provide the benefit of reducing recurring connection
establishment between your application and RDS Proxy.

Consider the following configuration aspects before implementing an application-side connection
pool:

• Client connection max life: RDS Proxy enforces a maximum life of client connections of 24 hours.
This value is not configurable. Configure your pool with a maximum connection life less than 24
hours to avoid unexpected client connection drops.

• Client connection idle timeout: RDS Proxy enforces a maximum idle time for client connections.
Configure your pool with an idle connection timeout of a value lower than your client connection
idle timeout setting for RDS Proxy to avoid unexpected connection drops.

The maximum number of client connections configured in your application-side connection pool
does not have to be limited to the max_connections setting for RDS Proxy.

Client connection pooling results in a longer client connection life. If your connections experience
pinning, then pooling client connections might reduce multiplexing efficiency. Client connections
that are pinned but idle in the application-side connection pool continue to hold on to a database
connection and prevent the database connection to be reused by other client connections. Review
your proxy logs to check whether your connections experience pinning.

Note

RDS Proxy closes database connections some time after 24 hours when they are no
longer in use. The proxy performs this action regardless of the value of the maximum idle
connections setting.

Configuring connection settings

To adjust RDS Proxy's connection pooling, you can modify the following settings:

Client and database connections 3043

Amazon Aurora User Guide for Aurora

• IdleClientTimeout

• MaxConnectionsPercent

• MaxIdleConnectionsPercent

• ConnectionBorrowTimeout

IdleClientTimeout

You can specify how long a client connection can be idle before the proxy closes it. The default is
1,800 seconds (30 minutes).

A client connection is considered idle when the application doesn't submit a new request within
the specified time after the previous request completed. The underlying database connection
stays open and is returned to the connection pool. Thus, it's available to be reused for new client
connections. If you want the proxy to proactively remove stale connections, then lowering the idle
client connection timeout. If your workload establishes frequent connections with the proxy, then
raising the idle client connection timeout to save the cost of establishing connections.

This setting is represented by the Idle client connection timeout field in the RDS console and the
IdleClientTimeout setting in the AWS CLI and the API. To learn how to change the value of the
Idle client connection timeout field in the RDS console, see AWS Management Console. To learn
how to change the value of the IdleClientTimeout setting, see the CLI command modify-db-
proxy or the API operation ModifyDBProxy.

MaxConnectionsPercent

You can limit the number of connections that an RDS Proxy can establish with the target database.
You specify the limit as a percentage of the maximum connections available for your database. This
setting is represented by the Connection pool maximum connections field in the RDS console and
the MaxConnectionsPercent setting in the AWS CLI and the API.

The MaxConnectionsPercent value is expressed as a percentage of the max_connections
setting for the Aurora DB cluster used by the target group. The proxy doesn't create all of these
connections in advance. This setting allows the proxy to establish these connections as the
workload needs them.

For example, for a registered database target with max_connections set to 1000, and
MaxConnectionsPercent set to 95, RDS Proxy sets 950 connections as the upper limit for
concurrent connections to that database target.

Configuring connection settings 3044

https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-proxy.html
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-proxy.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBProxy.html

Amazon Aurora User Guide for Aurora

A common side-effect of your workload reaching the maximum number of allowed
database connections is an increase in overall query latency, along with an increase in
the DatabaseConnectionsBorrowLatency metric. You can monitor currently used
and total allowed database connections by comparing the DatabaseConnections and
MaxDatabaseConnectionsAllowed metrics.

When setting this parameter, note the following best practices:

• Allow sufficient connection headroom for changes in workload pattern. It is recommended to
set the parameter at least 30% above your maximum recent monitored usage. As RDS Proxy
redistributes database connection quotas across multiple nodes, internal capacity changes might
require at least 30% headroom for additional connections to avoid increased borrow latencies.

• RDS Proxy reserves a certain number of connections for active monitoring to support fast
failover, traffic routing and internal operations. The MaxDatabaseConnectionsAllowed
metric does not include these reserved connections. It represents the number of connections
available to serve the workload, and can be lower than the value derived from the
MaxConnectionsPercent setting.

Minimal recommended MaxConnectionsPercent values are as follows:

• db.t3.small: 100

• db.t3.medium: 55

• db.t3.large: 35

• db.r3.large or above: 20

If multiple target instances are registered with RDS Proxy like an Aurora cluster with reader
nodes, set the minimum value based on the smallest registered instance.

To learn how to change the value of the Connection pool maximum connections field in
the RDS console, see AWS Management Console. To learn how to change the value of the
MaxConnectionsPercent setting, see the CLI command modify-db-proxy-target-group or the
API operation ModifyDBProxyTargetGroup.

Important

If the DB cluster is part of a global database with write forwarding turned on,
reduce your proxy's MaxConnectionsPercent value by the quota that's allotted
for write forwarding. The write forwarding quota is set in the DB cluster parameter

Configuring connection settings 3045

https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-proxy-target-group.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBProxyTargetGroup.html

Amazon Aurora User Guide for Aurora

aurora_fwd_writer_max_connections_pct. For information about write forwarding,
see Using write forwarding in an Amazon Aurora global database.

For information on database connection limits, see Maximum connections to an Aurora MySQL DB
instance and Maximum connections to an Aurora PostgreSQL DB instance.

MaxIdleConnectionsPercent

You can control the number of idle database connections that RDS Proxy can keep in the
connection pool. By default, RDS Proxy considers a database connection in its pool to be idle when
there's been no activity on the connection for five minutes.

The MaxIdleConnectionsPercent value is expressed as a percentage of the
max_connections setting for the RDS DB instance target group. The default value
is 50 percent of MaxConnectionsPercent, and the upper limit is the value of
MaxConnectionsPercent. For example, if MaxConnectionsPercent, is 80, then the default
value of MaxIdleConnectionsPercent is 40.

With a high value, the proxy leaves a high percentage of idle database connections open. With
a low value, the proxy closes a high percentage of idle database connections. If your workloads
are unpredictable, consider setting a high value for MaxIdleConnectionsPercent. Doing so
means that RDS Proxy can accommodate surges in activity without opening a lot of new database
connections.

This setting is represented by the MaxIdleConnectionsPercent setting of
DBProxyTargetGroup in the AWS CLI and the API. To learn how to change the value of the
MaxIdleConnectionsPercent setting, see the CLI command modify-db-proxy-target-group or
the API operation ModifyDBProxyTargetGroup.

For information on database connection limits, see Maximum connections to an Aurora MySQL DB
instance and Maximum connections to an Aurora PostgreSQL DB instance.

ConnectionBorrowTimeout

You can choose how long RDS Proxy waits for a database connection in the connection pool to
become available for use before returning a timeout error. The default is 120 seconds. This setting
applies when the number of connections is at the maximum, and so no connections are available in
the connection pool. It also applies when no appropriate database instance is available to handle

Configuring connection settings 3046

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraMySQL.Managing.Performance.html#AuroraMySQL.Managing.MaxConnections
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraMySQL.Managing.Performance.html#AuroraMySQL.Managing.MaxConnections
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraPostgreSQL.Managing.html#AuroraPostgreSQL.Managing.MaxConnections
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-proxy-target-group.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBProxyTargetGroup.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraMySQL.Managing.Performance.html#AuroraMySQL.Managing.MaxConnections
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraMySQL.Managing.Performance.html#AuroraMySQL.Managing.MaxConnections
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraPostgreSQL.Managing.html#AuroraPostgreSQL.Managing.MaxConnections

Amazon Aurora User Guide for Aurora

the request, such as when a failover operation is in process. Using this setting, you can set the best
wait period for your application without changing the query timeout in your application code.

This setting is represented by the Connection borrow timeout field in the RDS console
or the ConnectionBorrowTimeout setting of DBProxyTargetGroup in the AWS CLI
or API. To learn how to change the value of the Connection borrow timeout field in the
RDS console, see AWS Management Console. To learn how to change the value of the
ConnectionBorrowTimeout setting, see the CLI command modify-db-proxy-target-group or the
API operation ModifyDBProxyTargetGroup.

Avoiding pinning

Multiplexing is more efficient when database requests don't rely on state information from
previous requests. In that case, RDS Proxy can reuse a connection at the conclusion of each
transaction. Examples of such state information include most variables and configuration
parameters that you can change through SET or SELECT statements. SQL transactions on a client
connection can multiplex between underlying database connections by default.

Your connections to the proxy can enter a state known as pinning. When a connection is pinned,
each later transaction uses the same underlying database connection until the session ends. Other
client connections also can't reuse that database connection until the session ends. The session
ends when the client connection is dropped.

RDS Proxy automatically pins a client connection to a specific DB connection when it detects a
session state change that isn't appropriate for other sessions. Pinning reduces the effectiveness of
connection reuse. If all or almost all of your connections experience pinning, consider modifying
your application code or workload to reduce the conditions that cause the pinning.

For example, your application changes a session variable or configuration parameter. In this case,
later statements can rely on the new variable or parameter to be in effect. Thus, when RDS Proxy
processes requests to change session variables or configuration settings, it pins that session to the
DB connection. That way, the session state remains in effect for all later transactions in the same
session.

For some database engines, this rule doesn't apply to all parameters that you can set. RDS Proxy
tracks certain statements and variables. Thus, RDS Proxy doesn't pin the session when you modify
them. In this case, RDS Proxy only reuses the connection for other sessions that have the same
values for those settings. For the lists of tracked statements and variables for Aurora MySQL, see
What RDS Proxy tracks for Aurora MySQL databases.

Avoiding pinning 3047

https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-proxy-target-group.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBProxyTargetGroup.html

Amazon Aurora User Guide for Aurora

What RDS Proxy tracks for Aurora MySQL databases

Following are the MySQL statements that RDS Proxy tracks:

• DROP DATABASE

• DROP SCHEMA

• USE

Following are the MySQL variables that RDS Proxy tracks:

• AUTOCOMMIT

• AUTO_INCREMENT_INCREMENT

• CHARACTER SET (or CHAR SET)

• CHARACTER_SET_CLIENT

• CHARACTER_SET_DATABASE

• CHARACTER_SET_FILESYSTEM

• CHARACTER_SET_CONNECTION

• CHARACTER_SET_RESULTS

• CHARACTER_SET_SERVER

• COLLATION_CONNECTION

• COLLATION_DATABASE

• COLLATION_SERVER

• INTERACTIVE_TIMEOUT

• NAMES

• NET_WRITE_TIMEOUT

• QUERY_CACHE_TYPE

• SESSION_TRACK_SCHEMA

• SQL_MODE

• TIME_ZONE

• TRANSACTION_ISOLATION (or TX_ISOLATION)

• TRANSACTION_READ_ONLY (or TX_READ_ONLY)

Avoiding pinning 3048

Amazon Aurora User Guide for Aurora

• WAIT_TIMEOUT

Minimizing pinning

Performance tuning for RDS Proxy involves trying to maximize transaction-level connection reuse
(multiplexing) by minimizing pinning.

You can minimize pinning by doing the following:

• Avoid unnecessary database requests that might cause pinning.

• Set variables and configuration settings consistently across all connections. That way, later
sessions are more likely to reuse connections that have those particular settings.

However, for PostgreSQL setting a variable leads to session pinning.

• For a MySQL engine family database, apply a session pinning filter to the proxy. You can exempt
certain kinds of operations from pinning the session if you know that doing so doesn't affect the
correct operation of your application.

• See how frequently pinning occurs by monitoring the Amazon CloudWatch metric
DatabaseConnectionsCurrentlySessionPinned. For information about this and other
CloudWatch metrics, see Monitoring RDS Proxy metrics with Amazon CloudWatch.

• If you use SET statements to perform identical initialization for each client connection, you can
do so while preserving transaction-level multiplexing. In this case, you move the statements
that set up the initial session state into the initialization query used by a proxy. This property is a
string containing one or more SQL statements, separated by semicolons.

For example, you can define an initialization query for a proxy that sets certain configuration
parameters. Then, RDS Proxy applies those settings whenever it sets up a new connection for
that proxy. You can remove the corresponding SET statements from your application code, so
that they don't interfere with transaction-level multiplexing.

For metrics about how often pinning occurs for a proxy, see Monitoring RDS Proxy metrics with
Amazon CloudWatch.

Conditions that cause pinning for all engine families

The proxy pins the session to the current connection in the following situations where multiplexing
might cause unexpected behavior:

Avoiding pinning 3049

Amazon Aurora User Guide for Aurora

• Any statement with a text size greater than 16 KB causes the proxy to pin the session.

Conditions that cause pinning for Aurora MySQL

For MySQL, the following interactions also cause pinning:

• Explicit table lock statements LOCK TABLE, LOCK TABLES, or FLUSH TABLES WITH READ
LOCK cause the proxy to pin the session.

• Creating named locks by using GET_LOCK causes the proxy to pin the session.

• Setting a user variable or a system variable (with some exceptions) causes the proxy to pin the
session. If this situation reduces your connection reuse too much, then choose for SET operations
to not cause pinning. For information about how to do so by setting the session pinning filters
property, see Creating an RDS Proxy and Modifying an RDS Proxy.

• Creating a temporary table causes the proxy to pin the session. That way, the contents of the
temporary table are preserved throughout the session regardless of transaction boundaries.

• Calling the functions ROW_COUNT, FOUND_ROWS, and LAST_INSERT_ID sometimes causes
pinning.

The exact circumstances where these functions cause pinning might differ among Aurora MySQL
versions that are compatible with MySQL 5.7.

• Prepared statements cause the proxy to pin the session. This rule applies whether the prepared
statement uses SQL text or the binary protocol.

• RDS Proxy does not pin connections when you use SET LOCAL.

• Calling stored procedures and stored functions doesn't cause pinning. RDS Proxy doesn't detect
any session state changes resulting from such calls. Make sure that your application doesn't
change session state inside stored routines if you rely on that session state to persist across
transactions. For example, RDS Proxy isn't currently compatible with a stored procedure that
creates a temporary table that persists across all transactions.

If you have expert knowledge about your application behavior, you can skip the pinning behavior
for certain application statements. To do so, choose the Session pinning filters option when
creating the proxy. Currently, you can opt out of session pinning for setting session variables and
configuration settings.

Avoiding pinning 3050

Amazon Aurora User Guide for Aurora

Conditions that cause pinning for Aurora PostgreSQL

For PostgreSQL, the following interactions also cause pinning:

• Using SET commands.

• Using PREPARE, DISCARD, DEALLOCATE, or EXECUTE commands to manage prepared
statements.

• Creating temporary sequences, tables, or views.

• Declaring cursors.

• Discarding the session state.

• Listening on a notification channel.

• Loading a library module such as auto_explain.

• Manipulating sequences using functions such as nextval and setval.

• Interacting with locks using functions such as pg_advisory_lock and
pg_try_advisory_lock.

Note

RDS Proxy does not pin on transaction level advisory locks, specifically
pg_advisory_xact_lock, pg_advisory_xact_lock_shared,
pg_try_advisory_xact_lock, and pg_try_advisory_xact_lock_shared.

• Setting a parameter, or resetting a parameter to its default. Specifically, using SET and
set_config commands to assign default values to session variables.

• Calling stored procedures and stored functions doesn't cause pinning. RDS Proxy doesn't detect
any session state changes resulting from such calls. Make sure that your application doesn't
change session state inside stored routines if you rely on that session state to persist across
transactions. For example, RDS Proxy isn't currently compatible with a stored procedure that
creates a temporary table that persists across all transactions.

Deleting an RDS Proxy

You can delete a proxy when you no longer need it. Or, you might delete a proxy if you take the DB
instance or cluster associated with it out of service.

Deleting an RDS Proxy 3051

Amazon Aurora User Guide for Aurora

AWS Management Console

To delete a proxy

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Proxies.

3. Choose the proxy to delete from the list.

4. Choose Delete Proxy.

AWS CLI

To delete a DB proxy, use the AWS CLI command delete-db-proxy. To remove related associations,
also use the deregister-db-proxy-targets command.

aws rds delete-db-proxy --name proxy_name

aws rds deregister-db-proxy-targets
 --db-proxy-name proxy_name
 [--target-group-name target_group_name]
 [--target-ids comma_separated_list] # or
 [--db-instance-identifiers instance_id] # or
 [--db-cluster-identifiers cluster_id]

RDS API

To delete a DB proxy, call the Amazon RDS API function DeleteDBProxy. To delete related
items and associations, you also call the functions DeleteDBProxyTargetGroup and
DeregisterDBProxyTargets.

Working with Amazon RDS Proxy endpoints

Learn about endpoints for RDS Proxy and how to use them. By using proxy endpoints, you can take
advantage of the following capabilities:

• You can use multiple endpoints with a proxy to monitor and troubleshoot connections from
different applications independently.

Working with RDS Proxy endpoints 3052

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/
https://docs.aws.amazon.com/cli/latest/reference/rds/delete-db-proxy.html
https://docs.aws.amazon.com/cli/latest/reference/rds/deregister-db-proxy-targets.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DeleteDBProxy.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DeleteDBProxyTargetGroup.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DeregisterDBProxyTargets.html

Amazon Aurora User Guide for Aurora

• You can use reader endpoints with Aurora DB clusters to improve read scalability and high
availability for your query-intensive applications.

• You can use a cross-VPC endpoint to allow access to databases in one VPC from resources such as
Amazon EC2 instances in a different VPC.

Topics

• Overview of proxy endpoints

• Using reader endpoints with Aurora clusters

• Accessing Aurora databases across VPCs

• Creating a proxy endpoint

• Viewing proxy endpoints

• Modifying a proxy endpoint

• Deleting a proxy endpoint

• Limitations for proxy endpoints

Overview of proxy endpoints

Working with RDS Proxy endpoints involves the same kinds of procedures as with Aurora DB
cluster and reader endpoints. If you aren't familiar with Aurora endpoints, find more information in
Amazon Aurora connection management.

By default, the endpoint that you connect to when you use RDS Proxy with an Aurora cluster
has read/write capability. As a result, this endpoint sends all requests to the writer instance of
the cluster. All of those connections count against the max_connections value for the writer
instance. If your proxy is associated with an Aurora DB cluster, you can create additional read/write
or read-only endpoints for that proxy.

You can use a read-only endpoint with your proxy for read-only queries. You do this the same way
that you use the reader endpoint for an Aurora provisioned cluster. Doing so helps you to take
advantage of the read scalability of an Aurora cluster with one or more reader DB instances. You
can run more simultaneous queries and make more simultaneous connections by using a read-only
endpoint and adding more reader DB instances to your Aurora cluster as needed.

Overview of proxy endpoints 3053

Amazon Aurora User Guide for Aurora

Tip

When you create a proxy for an Aurora cluster using the AWS Management Console, you
can have RDS Proxy automatically create a reader endpoint. For information about the
benefits of a reader endpoint, see Using reader endpoints with Aurora clusters.

For a proxy endpoint that you create, you can also associate the endpoint with a different virtual
private cloud (VPC) than the proxy itself uses. By doing so, you can connect to the proxy from a
different VPC, for example a VPC used by a different application within your organization.

For information about limits associated with proxy endpoints, see Limitations for proxy endpoints.

In the RDS Proxy logs, each entry is prefixed with the name of the associated proxy endpoint. This
name can be the name you specified for a user-defined endpoint. Or, it can be the special name
default for the default endpoint of a proxy that performs read/write requests.

Each proxy endpoint has its own set of CloudWatch metrics. You can monitor the metrics for all
endpoints of a proxy. You can also monitor metrics for a specific endpoint, or for all the read/write
or read-only endpoints of a proxy. For more information, see Monitoring RDS Proxy metrics with
Amazon CloudWatch.

A proxy endpoint uses the same authentication mechanism as its associated proxy. RDS Proxy
automatically sets up permissions and authorizations for the user-defined endpoint, consistent
with the properties of the associated proxy.

To learn how proxy endpoints work for DB clusters in an Aurora global database, see How RDS
Proxy endpoints work with global databases.

Using reader endpoints with Aurora clusters

You can create and connect to read-only endpoints called reader endpoints when you use RDS
Proxy with Aurora clusters. These reader endpoints help to improve the read scalability of your
query-intensive applications. Reader endpoints also help to improve the availability of your
connections if a reader DB instance in your cluster becomes unavailable.

Note

When you specify that a new endpoint is read-only, RDS Proxy requires that the Aurora
cluster has one or more reader DB instances. In some cases, you might change the target

Using reader endpoints with Aurora clusters 3054

Amazon Aurora User Guide for Aurora

of the proxy to an Aurora cluster containing only a single writer or a multi-writer Aurora
cluster. If you do, any requests to the reader endpoint fail with an error. Requests also fail if
the target of the proxy is an RDS instance instead of an Aurora cluster.
If an Aurora cluster has reader instances but those instances aren't available, RDS Proxy
waits to send the request instead of returning an error immediately. If no reader instance
becomes available within the connection borrow timeout period, the request fails with an
error.

How reader endpoints help application availability

In some cases, one or more reader instances in your cluster might become unavailable. If so,
connections that use a reader endpoint of a DB proxy can recover more quickly than ones that use
the Aurora reader endpoint. RDS Proxy routes connections to only the available reader instances in
the cluster. There isn't a delay due to DNS caching when an instance becomes unavailable.

If the connection is multiplexed, RDS Proxy directs subsequent queries to a different reader DB
instance without any interruption to your application. During the automatic switchover to a new
reader instance, RDS Proxy checks the replication lag of the old and new reader instances. RDS
Proxy makes sure that the new reader instance is up to date with the same changes as the previous
reader instance. That way, your application never sees stale data when RDS Proxy switches from
one reader DB instance to another.

If the connection is pinned, the next query on the connection returns an error. However, your
application can immediately reconnect to the same endpoint. RDS Proxy routes the connection to a
different reader DB instance that's in available state. When you manually reconnect, RDS Proxy
doesn't check the replication lag between the old and new reader instances.

If your Aurora cluster doesn't have any available reader instances, RDS Proxy checks whether this
condition is temporary or permanent. The behavior in each case is as follows:

• Suppose that your cluster has one or more reader DB instances, but none of them are in the
Available state. For example, all reader instances might be rebooting or encountering
problems. In that case, attempts to connect to a reader endpoint wait for a reader instance to
become available. If no reader instance becomes available within the connection borrow timeout
period, the connection attempt fails. If a reader instance does become available, the connection
attempt succeeds.

Using reader endpoints with Aurora clusters 3055

Amazon Aurora User Guide for Aurora

• Suppose that your cluster has no reader DB instances. In that case, RDS Proxy returns an error
immediately if you try to connect to a reader endpoint. To resolve this problem, add one or more
reader instances to your cluster before you connect to the reader endpoint.

How reader endpoints help query scalability

Reader endpoints for a proxy help with Aurora query scalability in the following ways:

• As you add reader instances to your Aurora cluster, RDS Proxy can route new connections to
any reader endpoints to the different reader instances. That way, queries performed using one
reader endpoint connection don't slow down queries performed using another reader endpoint
connection. The queries run on separate DB instances. Each DB instance has its own compute
resources, buffer cache, and so on.

• Where practical, RDS Proxy uses the same reader DB instance for all the queries issue using a
particular reader endpoint connection. That way, a set of related queries on the same tables can
take advantage of caching, plan optimization, and so on, on a particular DB instance.

• If a reader DB instance becomes unavailable, the effect on your application depends on whether
the session is multiplexed or pinned. If the session is multiplexed, RDS Proxy routes any
subsequent queries to a different reader DB instance without any action on your part. If the
session is pinned, your application gets an error and must reconnect. You can reconnect to the
reader endpoint immediately and RDS Proxy routes the connection to an available reader DB
instance. For more information about multiplexing and pinning for proxy sessions, see Overview
of RDS Proxy concepts.

• The more reader DB instances that you have in the cluster, the more simultaneous connections
you can make using reader endpoints. For example, suppose that your cluster has four reader
DB instances, each configured to support 200 simultaneous connections. Suppose also that your
proxy is configured to use 50% of the maximum connections. Here, the maximum number of
connections that you can make through the reader endpoints in the proxy is 100 (50% of 200)
for reader 1. It's also 100 for reader 2, and so on, for a total of 400. If you double the number
of cluster reader DB instances to eight, then the maximum number of connections through the
reader endpoints also doubles, to 800.

Examples of using reader endpoints

The following Linux example shows how you can confirm that you're connected to an Aurora
MySQL cluster through a reader endpoint. The innodb_read_only configuration setting is

Using reader endpoints with Aurora clusters 3056

Amazon Aurora User Guide for Aurora

enabled. Attempts to perform write operations such as CREATE DATABASE statements fail with
an error. And you can confirm that you're connected to a reader DB instance by checking the DB
instance name using the aurora_server_id variable.

Tip

Don't rely only on checking the DB instance name to determine whether the connection is
read/write or read-only. Remember that DB instances in an Aurora cluster can change roles
between writer and reader when failovers happen.

$ mysql -h endpoint-demo-reader.endpoint.proxy-demo.us-east-1.rds.amazonaws.com -u
 admin -p
...
mysql> select @@innodb_read_only;
+--------------------+
| @@innodb_read_only |
+--------------------+
| 1 |
+--------------------+
mysql> create database shouldnt_work;
ERROR 1290 (HY000): The MySQL server is running with the --read-only option so it
 cannot execute this statement

mysql> select @@aurora_server_id;
+---------------------------------------+
| @@aurora_server_id |
+---------------------------------------+
| proxy-reader-endpoint-demo-instance-3 |
+---------------------------------------+

The following example shows how your connection to a proxy reader endpoint can keep working
even when the reader DB instance is deleted. In this example, the Aurora cluster has two reader
instances, instance-5507 and instance-7448. The connection to the reader endpoint
begins using one of the reader instances. During the example, this reader instance is deleted
by a delete-db-instance command. RDS Proxy switches to a different reader instance for
subsequent queries.

$ mysql -h reader-demo.endpoint.proxy-demo.us-east-1.rds.amazonaws.com
 -u my_user -p

Using reader endpoints with Aurora clusters 3057

Amazon Aurora User Guide for Aurora

...
mysql> select @@aurora_server_id;
+--------------------+
| @@aurora_server_id |
+--------------------+
| instance-5507 |
+--------------------+

mysql> select @@innodb_read_only;
+--------------------+
| @@innodb_read_only |
+--------------------+
| 1 |
+--------------------+

mysql> select count(*) from information_schema.tables;
+----------+
| count(*) |
+----------+
| 328 |
+----------+

While the mysql session is still running, the following command deletes the reader instance that
the reader endpoint is connected to.

aws rds delete-db-instance --db-instance-identifier instance-5507 --skip-final-snapshot

Queries in the mysql session continue working without the need to reconnect. RDS Proxy
automatically switches to a different reader DB instance.

mysql> select @@aurora_server_id;
+--------------------+
| @@aurora_server_id |
+--------------------+
| instance-7448 |
+--------------------+

mysql> select count(*) from information_schema.TABLES;
+----------+
| count(*) |
+----------+
| 328 |

Using reader endpoints with Aurora clusters 3058

Amazon Aurora User Guide for Aurora

+----------+

Accessing Aurora databases across VPCs

By default, the components of your Aurora technology stack are all in the same Amazon VPC. For
example, suppose that an application running on an Amazon EC2 instance connects to an Aurora
DB cluster. In this case, the application server and database must both be within the same VPC.

With RDS Proxy, you can set up access to an Aurora DB cluster in one VPC from resources
in another VPC, such as EC2 instances. For example, your organization might have multiple
applications that access the same database resources. Each application might be in its own VPC.

To enable cross-VPC access, you create a new endpoint for the proxy. The proxy itself resides in
the same VPC as the Aurora DB cluster. However, the cross-VPC endpoint resides in the other VPC,
along with the other resources such as the EC2 instances. The cross-VPC endpoint is associated
with subnets and security groups from the same VPC as the EC2 and other resources. These
associations let you connect to the endpoint from the applications that otherwise can't access the
database due to the VPC restrictions.

The following steps explain how to create and access a cross-VPC endpoint through RDS Proxy:

1. Create two VPCs, or choose two VPCs that you already use for Aurora work. Each VPC should
have its own associated network resources such as an internet gateway, route tables, subnets,
and security groups. If you only have one VPC, you can consult Getting started with Amazon
Aurora for the steps to set up another VPC to use Aurora successfully. You can also examine your
existing VPC in the Amazon EC2 console to see the kinds of resources to connect together.

2. Create a DB proxy associated with the Aurora DB cluster that you want to connect to. Follow the
procedure in Creating an RDS Proxy.

3. On the Details page for your proxy in the RDS console, under the Proxy endpoints section,
choose Create endpoint. Follow the procedure in Creating a proxy endpoint.

4. Choose whether to make the cross-VPC endpoint read/write or read-only.

5. Instead of accepting the default of the same VPC as the Aurora DB cluster, choose a different
VPC. This VPC must be in the same AWS Region as the VPC where the proxy resides.

6. Now instead of accepting the defaults for subnets and security groups from the same VPC as the
Aurora DB cluster, make new selections. Make these based on the subnets and security groups
from the VPC that you chose.

Accessing Aurora databases across VPCs 3059

Amazon Aurora User Guide for Aurora

7. You don't need to change any of the settings for the Secrets Manager secrets. The same
credentials work for all endpoints for your proxy, regardless of which VPC each endpoint is in.

8. Wait for the new endpoint to reach the Available state.

9. Make a note of the full endpoint name. This is the value ending in
Region_name.rds.amazonaws.com that you supply as part of the connection string for your
database application.

10.Access the new endpoint from a resource in the same VPC as the endpoint. A simple way to test
this process is to create a new EC2 instance in this VPC. Then, log into the EC2 instance and run
the mysql or psql commands to connect by using the endpoint value in your connection string.

Creating a proxy endpoint

Console

To create a proxy endpoint

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Proxies.

3. Click the name of the proxy that you want to create a new endpoint for.

The details page for that proxy appears.

4. In the Proxy endpoints section, choose Create proxy endpoint.

The Create proxy endpoint window appears.

5. For Proxy endpoint name, enter a descriptive name of your choice.

6. For Target role, choose whether to make the endpoint read/write or read-only.

Connections that use read/write endpoints can perform any kind of operations, such as data
definition language (DDL) statements, data manipulation language (DML) statements, and
queries. These endpoints always connect to the primary instance of the Aurora cluster. You can
use read/write endpoints for general database operations when you only use a single endpoint
in your application. You can also use read/write endpoints for administrative operations,
online transaction processing (OLTP) applications, and extract-transform-load (ETL) jobs.

Creating a proxy endpoint 3060

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Aurora User Guide for Aurora

Connections that use a read-only endpoint can only perform queries. When there are multiple
reader instances in the Aurora cluster, RDS Proxy can use a different reader instance for each
connection to the endpoint. That way, a query-intensive application can take advantage of
Aurora's clustering capability. You can add more query capacity to the cluster by adding more
reader DB instances. These read-only connections don't impose any overhead on the primary
instance of the cluster. That way, your reporting and analysis queries don't slow down the write
operations of your OLTP applications.

7. For Virtual Private Cloud (VPC), choose the default to access the endpoint from the same EC2
instances or other resources that normally use to access the proxy or its associated database.
To set up cross-VPC access for this proxy, choose a VPC other than the default. For more
information about cross-VPC access, see Accessing Aurora databases across VPCs.

8. For Subnets, RDS Proxy fills in the same subnets as the associated proxy by default. To restrict
access to the endpoint to only a portion of the VPC's address range being able to connect to it,
remove one or more subnets.

9. For VPC security group, you can choose an existing security group or create a new one. RDS
Proxy fills in the same security group or groups as the associated proxy by default. If the
inbound and outbound rules for the proxy are appropriate for this endpoint, then keep the
default choice.

If you choose to create a new security group, specify a name for the security group on this
page. Then edit the security group settings from the EC2 console later.

10. Choose Create proxy endpoint.

AWS CLI

To create a proxy endpoint, use the AWS CLI create-db-proxy-endpoint command.

Include the following required parameters:

• --db-proxy-name value

• --db-proxy-endpoint-name value

• --vpc-subnet-ids list_of_ids. Separate the subnet IDs with spaces. You don't specify the
ID of the VPC itself.

You can also include the following optional parameters:

Creating a proxy endpoint 3061

https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-proxy-endpoint.html

Amazon Aurora User Guide for Aurora

• --target-role { READ_WRITE | READ_ONLY }. This parameter defaults to READ_WRITE.
The READ_ONLY value affects only Aurora provisioned clusters that contain one or more reader
DB instances. When the proxy is associated with an Aurora cluster that only contains a writer DB
instance, you can't specify READ_ONLY. For more information about the intended use of read-
only endpoints with Aurora clusters, see Using reader endpoints with Aurora clusters .

• --vpc-security-group-ids value. Separate the security group IDs with spaces. If you omit
this parameter, RDS Proxy uses the default security group for the VPC. RDS Proxy determines the
VPC based on the subnet IDs that you specify for the --vpc-subnet-ids parameter.

Example

The following example creates a proxy endpoint named my-endpoint.

For Linux, macOS, or Unix:

aws rds create-db-proxy-endpoint \
 --db-proxy-name my-proxy \
 --db-proxy-endpoint-name my-endpoint \
 --vpc-subnet-ids subnet_id subnet_id subnet_id ... \
 --target-role READ_ONLY \
 --vpc-security-group-ids security_group_id]

For Windows:

aws rds create-db-proxy-endpoint ^
 --db-proxy-name my-proxy ^
 --db-proxy-endpoint-name my-endpoint ^
 --vpc-subnet-ids subnet_id_1 subnet_id_2 subnet_id_3 ... ^
 --target-role READ_ONLY ^
 --vpc-security-group-ids security_group_id

RDS API

To create a proxy endpoint, use the RDS API CreateDBProxyEndpoint action.

Viewing proxy endpoints

Viewing proxy endpoints 3062

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateDBProxyEndpoint.html

Amazon Aurora User Guide for Aurora

Console

To view the details for a proxy endpoint

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Proxies.

3. In the list, choose the proxy whose endpoint you want to view. Click the proxy name to view its
details page.

4. In the Proxy endpoints section, choose the endpoint that you want to view. Click its name to
view the details page.

5. Examine the parameters whose values you're interested in. You can check properties such as
the following:

• Whether the endpoint is read/write or read-only.

• The endpoint address that you use in a database connection string.

• The VPC, subnets, and security groups associated with the endpoint.

AWS CLI

To view one or more proxy endpoints, use the AWS CLI describe-db-proxy-endpoints command.

You can include the following optional parameters:

• --db-proxy-endpoint-name

• --db-proxy-name

The following example describes the my-endpoint proxy endpoint.

Example

For Linux, macOS, or Unix:

aws rds describe-db-proxy-endpoints \
 --db-proxy-endpoint-name my-endpoint

For Windows:

Viewing proxy endpoints 3063

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-proxy-endpoints.html

Amazon Aurora User Guide for Aurora

aws rds describe-db-proxy-endpoints ^
 --db-proxy-endpoint-name my-endpoint

RDS API

To describe one or more proxy endpoints, use the RDS API DescribeDBProxyEndpoints operation.

Modifying a proxy endpoint

Console

To modify one or more proxy endpoints

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Proxies.

3. In the list, choose the proxy whose endpoint you want to modify. Click the proxy name to view
its

4. In the Proxy endpoints section, choose the endpoint that you want to modify. You can select it
in the list, or click its name to view the details page.

5. On the proxy details page, under the Proxy endpoints section, choose Edit. Or, on the proxy
endpoint details page, for Actions, choose Edit.

6. Change the values of the parameters that you want to modify.

7. Choose Save changes.

AWS CLI

To modify a proxy endpoint, use the AWS CLI modify-db-proxy-endpoint command with the
following required parameters:

• --db-proxy-endpoint-name

Specify changes to the endpoint properties by using one or more of the following parameters:

• --new-db-proxy-endpoint-name

• --vpc-security-group-ids. Separate the security group IDs with spaces.

Modifying a proxy endpoint 3064

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DescribeDBProxyEndpoints.html
https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-proxy-endpoint.html

Amazon Aurora User Guide for Aurora

The following example renames the my-endpoint proxy endpoint to new-endpoint-name.

Example

For Linux, macOS, or Unix:

aws rds modify-db-proxy-endpoint \
 --db-proxy-endpoint-name my-endpoint \
 --new-db-proxy-endpoint-name new-endpoint-name

For Windows:

aws rds modify-db-proxy-endpoint ^
 --db-proxy-endpoint-name my-endpoint ^
 --new-db-proxy-endpoint-name new-endpoint-name

RDS API

To modify a proxy endpoint, use the RDS API ModifyDBProxyEndpoint operation.

Deleting a proxy endpoint

You can delete an endpoint for your proxy using the console as described following.

Note

You can't delete the default proxy endpoint that RDS Proxy automatically creates for each
proxy.
When you delete a proxy, RDS Proxy automatically deletes all the associated endpoints.

Console

To delete a proxy endpoint using the AWS Management Console

1. In the navigation pane, choose Proxies.

2. In the list, choose the proxy whose endpoint you want to endpoint. Click the proxy name to
view its details page.

3. In the Proxy endpoints section, choose the endpoint that you want to delete. You can select
one or more endpoints in the list, or click the name of a single endpoint to view the details
page.

Deleting a proxy endpoint 3065

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBProxyEndpoint.html

Amazon Aurora User Guide for Aurora

4. On the proxy details page, under the Proxy endpoints section, choose Delete. Or, on the proxy
endpoint details page, for Actions, choose Delete.

AWS CLI

To delete a proxy endpoint, run the delete-db-proxy-endpoint command with the following
required parameters:

• --db-proxy-endpoint-name

The following command deletes the proxy endpoint named my-endpoint.

For Linux, macOS, or Unix:

aws rds delete-db-proxy-endpoint \
 --db-proxy-endpoint-name my-endpoint

For Windows:

aws rds delete-db-proxy-endpoint ^
 --db-proxy-endpoint-name my-endpoint

RDS API

To delete a proxy endpoint with the RDS API, run the DeleteDBProxyEndpoint operation. Specify
the name of the proxy endpoint for the DBProxyEndpointName parameter.

Limitations for proxy endpoints

RDS Proxy endpoints have the following limitations:

• Each proxy has a default endpoint that you can modify but not create or delete.

• The maximum number of user-defined endpoints for a proxy is 20. Thus, a proxy can have up to
21 endpoints: the default endpoint, plus 20 that you create.

• When you associate additional endpoints with a proxy, RDS Proxy automatically determines
which DB instances in your cluster to use for each endpoint. You can't choose specific instances
the way that you can with Aurora custom endpoints.

Limitations for proxy endpoints 3066

https://docs.aws.amazon.com/cli/latest/reference/rds/delete-db-proxy-endpoint.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DeleteDBProxyEndpoint.html

Amazon Aurora User Guide for Aurora

• Reader endpoints aren't available for Aurora multi-writer clusters.

Monitoring RDS Proxy metrics with Amazon CloudWatch

You can monitor RDS Proxy by using Amazon CloudWatch. CloudWatch collects and processes
raw data from the proxies into readable, near-real-time metrics. To find these metrics in the
CloudWatch console, choose Metrics, then choose RDS, and choose Per-Proxy Metrics. For more
information, see Using Amazon CloudWatch metrics in the Amazon CloudWatch User Guide.

Note

RDS publishes these metrics for each underlying Amazon EC2 instance associated with a
proxy. A single proxy might be served by more than one EC2 instance. Use CloudWatch
statistics to aggregate the values for a proxy across all the associated instances.
Some of these metrics might not be visible until after the first successful connection by a
proxy.

In the RDS Proxy logs, each entry is prefixed with the name of the associated proxy endpoint. This
name can be the name you specified for a user-defined endpoint, or the special name default for
the default endpoint of a proxy that performs read/write requests.

All RDS Proxy metrics are in the group proxy.

Each proxy endpoint has its own CloudWatch metrics. You can monitor the usage of each proxy
endpoint independently. For more information about proxy endpoints, see Working with Amazon
RDS Proxy endpoints.

You can aggregate the values for each metric using one of the following dimension sets. For
example, by using the ProxyName dimension set, you can analyze all the traffic for a particular
proxy. By using the other dimension sets, you can split the metrics in different ways. You can split
the metrics based on the different endpoints or target databases of each proxy, or the read/write
and read-only traffic to each database.

• Dimension set 1: ProxyName

• Dimension set 2: ProxyName, EndpointName

• Dimension set 3: ProxyName, TargetGroup, Target

Monitoring RDS Proxy with CloudWatch 3067

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/working_with_metrics.html

Amazon Aurora User Guide for Aurora

• Dimension set 4: ProxyName, TargetGroup, TargetRole

Metric Description Valid period CloudWatch
dimension set

Availabil
ityPercentage

The percentage of
time for which the
target group was
available in the role
indicated by the
dimension. This
metric is reported
every minute. The
most useful statistic
for this metric is
Average.

1 minute Dimension set 4

ClientCon
nections

The current number
of client connectio
ns. This metric is
reported every
minute. The most
useful statistic for
this metric is Sum.

1 minute Dimension set 1,
Dimension set 2

ClientCon
nectionsClosed

The number of client
connections closed.
The most useful
statistic for this
metric is Sum.

1 minute and above Dimension set 1,
Dimension set 2

ClientCon
nectionsNoTLS

The current number
of client connectio
ns without Transport
Layer Security
(TLS). This metric
is reported every

1 minute and above Dimension set 1,
Dimension set 2

Monitoring RDS Proxy with CloudWatch 3068

Amazon Aurora User Guide for Aurora

Metric Description Valid period CloudWatch
dimension set

minute. The most
useful statistic for
this metric is Sum.

ClientCon
nectionsR
eceived

The number of client
connection requests
received. The most
useful statistic for
this metric is Sum.

1 minute and above Dimension set 1,
Dimension set 2

ClientCon
nectionsS
etupFailedAuth

The number of
client connection
attempts that failed
due to misconfig
ured authentication
or TLS. The most
useful statistic for
this metric is Sum.

1 minute and above Dimension set 1,
Dimension set 2

ClientCon
nectionsS
etupSucceeded

The number of client
connections successfu
lly established with
any authentication
mechanism with or
without TLS. The
most useful statistic
for this metric is Sum.

1 minute and above Dimension set 1,
Dimension set 2

ClientCon
nectionsTLS

The current number
of client connections
with TLS. This metric
is reported every
minute. The most
useful statistic for
this metric is Sum.

1 minute and above Dimension set 1,
Dimension set 2

Monitoring RDS Proxy with CloudWatch 3069

Amazon Aurora User Guide for Aurora

Metric Description Valid period CloudWatch
dimension set

DatabaseC
onnection
Requests

The number of
requests to create a
database connectio
n. The most useful
statistic for this
metric is Sum.

1 minute and above Dimension set 1,
Dimension set 3,
Dimension set 4

DatabaseC
onnection
RequestsW
ithTLS

The number of
requests to create a
database connectio
n with TLS. The most
useful statistic for
this metric is Sum.

1 minute and above Dimension set 1,
Dimension set 3,
Dimension set 4

DatabaseC
onnections

The current number
of database
connections. This
metric is reported
every minute. The
most useful statistic
for this metric is Sum.

1 minute Dimension set 1,
Dimension set 3,
Dimension set 4

DatabaseC
onnection
sBorrowLatency

The time in microseco
nds that it takes
for the proxy being
monitored to get a
database connectio
n. The most useful
statistic for this
metric is Average.

1 minute and above Dimension set 1,
Dimension set 2

Monitoring RDS Proxy with CloudWatch 3070

Amazon Aurora User Guide for Aurora

Metric Description Valid period CloudWatch
dimension set

DatabaseC
onnection
sCurrentl
yBorrowed

The current number
of database
connections in the
borrow state. This
metric is reported
every minute. The
most useful statistic
for this metric is Sum.

1 minute Dimension set 1,
Dimension set 3,
Dimension set 4

DatabaseC
onnection
sCurrentl
yInTransaction

The current number
of database
connections in a
transaction. This
metric is reported
every minute. The
most useful statistic
for this metric is Sum.

1 minute Dimension set 1,
Dimension set 3,
Dimension set 4

DatabaseC
onnection
sCurrentl
ySessionPinned

The current number
of database
connections currently
pinned because of
operations in client
requests that change
session state. This
metric is reported
every minute. The
most useful statistic
for this metric is Sum.

1 minute Dimension set 1,
Dimension set 3,
Dimension set 4

Monitoring RDS Proxy with CloudWatch 3071

Amazon Aurora User Guide for Aurora

Metric Description Valid period CloudWatch
dimension set

DatabaseC
onnection
sSetupFailed

The number of
database connection
requests that failed.
The most useful
statistic for this
metric is Sum.

1 minute and above Dimension set 1,
Dimension set 3,
Dimension set 4

DatabaseC
onnection
sSetupSuc
ceeded

The number of
database connections
successfully establish
ed with or without
TLS. The most useful
statistic for this
metric is Sum.

1 minute and above Dimension set 1,
Dimension set 3,
Dimension set 4

DatabaseC
onnection
sWithTLS

The current number
of database
connections with
TLS. This metric
is reported every
minute. The most
useful statistic for
this metric is Sum.

1 minute Dimension set 1,
Dimension set 3,
Dimension set 4

MaxDataba
seConnect
ionsAllowed

The maximum
number of database
connections allowed.
This metric is
reported every
minute. The most
useful statistic for
this metric is Sum.

1 minute Dimension set 1,
Dimension set 3,
Dimension set 4

Monitoring RDS Proxy with CloudWatch 3072

Amazon Aurora User Guide for Aurora

Metric Description Valid period CloudWatch
dimension set

QueryData
baseRespo
nseLatency

The time in microseco
nds that the database
took to respond
to the query. The
most useful statistic
for this metric is
Average.

1 minute and above Dimension set 1,
Dimension set 2,
Dimension set 3,
Dimension set 4

QueryRequests The number of
queries received.
A query including
multiple statement
s is counted as one
query. The most
useful statistic for
this metric is Sum.

1 minute and above Dimension set 1,
Dimension set 2

QueryRequ
estsNoTLS

The number of
queries received from
non-TLS connectio
ns. A query including
multiple statement
s is counted as one
query. The most
useful statistic for
this metric is Sum.

1 minute and above Dimension set 1,
Dimension set 2

Monitoring RDS Proxy with CloudWatch 3073

Amazon Aurora User Guide for Aurora

Metric Description Valid period CloudWatch
dimension set

QueryRequ
estsTLS

The number of
queries received from
TLS connections.
A query including
multiple statement
s is counted as one
query. The most
useful statistic for
this metric is Sum.

1 minute and above Dimension set 1,
Dimension set 2

QueryResp
onseLatency

The time in microseco
nds between getting
a query request and
the proxy responding
to it. The most useful
statistic for this
metric is Average.

1 minute and above Dimension set 1,
Dimension set 2

You can find logs of RDS Proxy activity under CloudWatch in the AWS Management Console. Each
proxy has an entry in the Log groups page.

Important

These logs are intended for human consumption for troubleshooting purposes and not for
programmatic access. The format and content of the logs is subject to change.
In particular, older logs don't contain any prefixes indicating the endpoint for each request.
In newer logs, each entry is prefixed with the name of the associated proxy endpoint. This
name can be the name that you specified for a user-defined endpoint, or the special name
default for requests using the default endpoint of a proxy.

Monitoring RDS Proxy with CloudWatch 3074

Amazon Aurora User Guide for Aurora

Working with RDS Proxy events

An event indicates a change in an environment such as an AWS environment or a service or
application from a software as a service (SaaS) partner. Or, it can be one of your own custom
applications or services. For example, Amazon Aurora generates an event when you create or
modify an RDS Proxy. Amazon Aurora delivers events to Amazon EventBridge in near-real time.
Following, you can find a list of RDS Proxy events that you can subscribe to and an example of an
RDS Proxy event.

For more information about working with events, see the following:

• For instructions on how to view events by using the AWS Management Console, AWS CLI, or RDS
API, see Viewing Amazon RDS events.

• To learn how to configure Amazon Aurora to send events to EventBridge, see Creating a rule that
triggers on an Amazon Aurora event.

RDS Proxy events

The following table shows the event category and a list of events when an RDS Proxy is the source
type.

Category RDS event ID Message Notes

configuration
change

RDS-EVENT-0204 RDS modified DB proxy
name.

configuration
change

RDS-EVENT-0207 RDS modified the end
point of the DB proxy
name.

configuration
change

RDS-EVENT-0213 RDS detected the addition
of the DB instance and
automatically added it to
the target group of the DB
proxy name.

configuration
change

RDS-EVENT-0213 RDS detected creation
of DB instance name and

Working with RDS Proxy events 3075

Amazon Aurora User Guide for Aurora

Category RDS event ID Message Notes

automatically added it to
target group name of DB
proxy name.

configuration
change

RDS-EVENT-0214 RDS detected deletion
of DB instance name and
automatically removed it
from target group name of
DB proxy name.

configuration
change

RDS-EVENT-0215 RDS detected deletion
of DB cluster name and
automatically removed it
from target group name of
DB proxy name.

creation RDS-EVENT-0203 RDS created DB proxy
name.

creation RDS-EVENT-0206 RDS created endpoint
name for DB proxy name.

deletion RDS-EVENT-0205 RDS deleted DB proxy
name.

deletion RDS-EVENT-0208 RDS deleted endpoint
name for DB proxy name.

RDS Proxy events 3076

Amazon Aurora User Guide for Aurora

Category RDS event ID Message Notes

failure RDS-EVENT-0243 RDS failed to provision
capacity for proxy name
because there aren't
enough IP addresses
available in your subnets:
name. To fix the issue,
make sure that your
subnets have the minimum
number of unused IP
addresses as recommend
ed in the RDS Proxy
documentation.

To determine the
recommended number for
your instance class, see
Planning for IP address
capacity.

failure RDS-EVENT-0275 RDS throttled some
connections to DB proxy
name. The number of
simultaneous connection
requests from the client to
the proxy has exceeded the
limit.

The following is an example of an RDS Proxy event in JSON format. The event shows that RDS
modified the endpoint named my-endpoint of the RDS Proxy named my-rds-proxy. The event
ID is RDS-EVENT-0207.

{
 "version": "0",
 "id": "68f6e973-1a0c-d37b-f2f2-94a7f62ffd4e",
 "detail-type": "RDS DB Proxy Event",
 "source": "aws.rds",
 "account": "123456789012",
 "time": "2018-09-27T22:36:43Z",
 "region": "us-east-1",
 "resources": [
 "arn:aws:rds:us-east-1:123456789012:db-proxy:my-rds-proxy"
],

RDS Proxy events 3077

Amazon Aurora User Guide for Aurora

 "detail": {
 "EventCategories": [
 "configuration change"
],
 "SourceType": "DB_PROXY",
 "SourceArn": "arn:aws:rds:us-east-1:123456789012:db-proxy:my-rds-proxy",
 "Date": "2018-09-27T22:36:43.292Z",
 "Message": "RDS modified endpoint my-endpoint of DB Proxy my-rds-proxy.",
 "SourceIdentifier": "my-endpoint",
 "EventID": "RDS-EVENT-0207"
 }
}

RDS Proxy command-line examples

To see how combinations of connection commands and SQL statements interact with RDS Proxy,
look at the following examples.

Examples

• Preserving Connections to a MySQL Database Across a Failover

• Adjusting the max_connections Setting for an Aurora DB Cluster

Example Preserving connections to a MySQL database across a failover

This MySQL example demonstrates how open connections continue working during a failover. An
example is when you reboot a database or it becomes unavailable due to a problem. This example
uses a proxy named the-proxy and an Aurora DB cluster with DB instances instance-8898 and
instance-9814. When you run the failover-db-cluster command from the Linux command
line, the writer instance that the proxy is connected to changes to a different DB instance. You can
see that the DB instance associated with the proxy changes while the connection remains open.

$ mysql -h the-proxy.proxy-demo.us-east-1.rds.amazonaws.com -u admin_user -p
Enter password:
...

mysql> select @@aurora_server_id;
+--------------------+
| @@aurora_server_id |
+--------------------+

RDS Proxy examples 3078

Amazon Aurora User Guide for Aurora

| instance-9814 |
+--------------------+
1 row in set (0.01 sec)

mysql>
[1]+ Stopped mysql -h the-proxy.proxy-demo.us-east-1.rds.amazonaws.com
 -u admin_user -p
$ # Initially, instance-9814 is the writer.
$ aws rds failover-db-cluster --db-cluster-identifier cluster-56-2019-11-14-1399
JSON output
$ # After a short time, the console shows that the failover operation is complete.
$ # Now instance-8898 is the writer.
$ fg
mysql -h the-proxy.proxy-demo.us.us-east-1.rds.amazonaws.com -u admin_user -p

mysql> select @@aurora_server_id;
+--------------------+
| @@aurora_server_id |
+--------------------+
| instance-8898 |
+--------------------+
1 row in set (0.01 sec)

mysql>
[1]+ Stopped mysql -h the-proxy.proxy-demo.us-east-1.rds.amazonaws.com
 -u admin_user -p
$ aws rds failover-db-cluster --db-cluster-identifier cluster-56-2019-11-14-1399
JSON output
$ # After a short time, the console shows that the failover operation is complete.
$ # Now instance-9814 is the writer again.
$ fg
mysql -h the-proxy.proxy-demo.us-east-1.rds.amazonaws.com -u admin_user -p

mysql> select @@aurora_server_id;
+--------------------+
| @@aurora_server_id |
+--------------------+
| instance-9814 |
+--------------------+
1 row in set (0.01 sec)
+---------------+---------------+
| Variable_name | Value |
+---------------+---------------+
| hostname | ip-10-1-3-178 |

RDS Proxy examples 3079

Amazon Aurora User Guide for Aurora

+---------------+---------------+
1 row in set (0.02 sec)

Example Adjusting the max_connections setting for an Aurora DB cluster

This example demonstrates how you can adjust the max_connections setting for an Aurora
MySQL DB cluster. To do so, you create your own DB cluster parameter group based on the default
parameter settings for clusters that are compatible with MySQL 5.7. You specify a value for the
max_connections setting, overriding the formula that sets the default value. You associate the
DB cluster parameter group with your DB cluster.

export REGION=us-east-1
export CLUSTER_PARAM_GROUP=rds-proxy-mysql-57-max-connections-demo
export CLUSTER_NAME=rds-proxy-mysql-57

aws rds create-db-parameter-group --region $REGION \
 --db-parameter-group-family aurora-mysql5.7 \
 --db-parameter-group-name $CLUSTER_PARAM_GROUP \
 --description "Aurora MySQL 5.7 cluster parameter group for RDS Proxy demo."

aws rds modify-db-cluster --region $REGION \
 --db-cluster-identifier $CLUSTER_NAME \
 --db-cluster-parameter-group-name $CLUSTER_PARAM_GROUP

echo "New cluster param group is assigned to cluster:"
aws rds describe-db-clusters --region $REGION \
 --db-cluster-identifier $CLUSTER_NAME \
 --query '*[*].{DBClusterParameterGroup:DBClusterParameterGroup}'

echo "Current value for max_connections:"
aws rds describe-db-cluster-parameters --region $REGION \
 --db-cluster-parameter-group-name $CLUSTER_PARAM_GROUP \
 --query '*[*].{ParameterName:ParameterName,ParameterValue:ParameterValue}' \
 --output text | grep "^max_connections"

echo -n "Enter number for max_connections setting: "
read answer

aws rds modify-db-cluster-parameter-group --region $REGION --db-cluster-parameter-
group-name $CLUSTER_PARAM_GROUP \
 --parameters "ParameterName=max_connections,ParameterValue=$
$answer,ApplyMethod=immediate"

RDS Proxy examples 3080

Amazon Aurora User Guide for Aurora

echo "Updated value for max_connections:"
aws rds describe-db-cluster-parameters --region $REGION \
 --db-cluster-parameter-group-name $CLUSTER_PARAM_GROUP \
 --query '*[*].{ParameterName:ParameterName,ParameterValue:ParameterValue}' \
 --output text | grep "^max_connections"

Troubleshooting for RDS Proxy

Following, you can find troubleshooting ideas for some common RDS Proxy issues and information
on CloudWatch logs for RDS Proxy.

In the RDS Proxy logs, each entry is prefixed with the name of the associated proxy endpoint. This
name can be the name that you specified for a user-defined endpoint. Or, it can be the special
name default for the default endpoint of a proxy that performs read/write requests. For more
information about proxy endpoints, see Working with Amazon RDS Proxy endpoints.

Topics

• Verifying connectivity for a proxy

• Common issues and solutions

Verifying connectivity for a proxy

You can use the following commands to verify that all components such as the proxy, database,
and compute instances in the connection can communicate with the each other.

Examine the proxy itself using the describe-db-proxies command. Also examine the associated
target group using the describe-db-proxy-target-groups command. Check that the details of the
targets match the Aurora cluster that you intend to associate with the proxy. Use commands such
as the following.

aws rds describe-db-proxies --db-proxy-name $DB_PROXY_NAME
aws rds describe-db-proxy-target-groups --db-proxy-name $DB_PROXY_NAME

To confirm that the proxy can connect to the underlying database, examine the targets specified
in the target groups using the describe-db-proxy-targets command. Use a command such as the
following.

aws rds describe-db-proxy-targets --db-proxy-name $DB_PROXY_NAME

Troubleshooting RDS Proxy 3081

https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-proxies.html
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-proxy-target-groups.html
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-proxy-targets.html

Amazon Aurora User Guide for Aurora

The output of the describe-db-proxy-targets command includes a TargetHealth field. You can
examine the fields State, Reason, and Description inside TargetHealth to check if the proxy
can communicate with the underlying DB instance.

• A State value of AVAILABLE indicates that the proxy can connect to the DB instance.

• A State value of UNAVAILABLE indicates a temporary or permanent connection problem. In
this case, examine the Reason and Description fields. For example, if Reason has a value of
PENDING_PROXY_CAPACITY, try connecting again after the proxy finishes its scaling operation.
If Reason has a value of UNREACHABLE, CONNECTION_FAILED, or AUTH_FAILURE, use the
explanation from the Description field to help you diagnose the issue.

• The State field might have a value of REGISTERING for a brief time before changing to
AVAILABLE or UNAVAILABLE.

If the following Netcat command (nc) is successful, you can access the proxy endpoint from the
EC2 instance or other system where you're logged in. This command reports failure if you're not in
the same VPC as the proxy and the associated database. You might be able to log directly in to the
database without being in the same VPC. However, you can't log into the proxy unless you're in the
same VPC.

nc -zx MySQL_proxy_endpoint 3306

nc -zx PostgreSQL_proxy_endpoint 5432

You can use the following commands to make sure that your EC2 instance has the required
properties. In particular, the VPC for the EC2 instance must be the same as the VPC for the RDS DB
instance Aurora cluster that the proxy connects to.

aws ec2 describe-instances --instance-ids your_ec2_instance_id

Examine the Secrets Manager secrets used for the proxy.

aws secretsmanager list-secrets
aws secretsmanager get-secret-value --secret-id your_secret_id

Make sure that the SecretString field displayed by get-secret-value is encoded as a JSON
string that includes the username and password fields. The following example shows the format
of the SecretString field.

Verifying connectivity for a proxy 3082

https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-proxy-targets.html

Amazon Aurora User Guide for Aurora

{
 "ARN": "some_arn",
 "Name": "some_name",
 "VersionId": "some_version_id",
 "SecretString": '{"username":"some_username","password":"some_password"}',
 "VersionStages": ["some_stage"],
 "CreatedDate": some_timestamp
}

Common issues and solutions

This section describes some common issues and potential solutions when using RDS Proxy.

After running the aws rds describe-db-proxy-targets CLI command, if the TargetHealth
description states Proxy does not have any registered credentials, verify the
following:

• There are credentials registered for the user to access the proxy.

• The IAM role to access the Secrets Manager secret used by the proxy is valid.

You might encounter the following RDS events while creating or connecting to a DB proxy.

Category RDS event ID Description

failure RDS-EVENT-0243 RDS couldn't provision
capacity for the proxy
because there aren't enough
IP addresses available in your
subnets. To fix the issue,
make sure that your subnets
have the minimum number
of unused IP addresses. To
determine the recommend
ed number for your instance
class, see Planning for IP
address capacity.

Common issues and solutions 3083

Amazon Aurora User Guide for Aurora

Category RDS event ID Description

failure RDS-EVENT-0275 RDS throttled some connectio
ns to DB proxy name. The
number of simultaneous
connection requests from
the client to the proxy has
exceeded the limit.

You might encounter the following issues while creating a new proxy or connecting to a proxy.

Error Causes or workarounds

403: The
security token
included in
the request is
invalid

Select an existing IAM role instead of choosing to create a new one.

You might encounter the following issues while connecting to a MySQL proxy.

Error Causes or workarounds

ERROR 1040
(HY000):
Connections
rate limit
exceeded
(limit_value)

The rate of connection requests from the client to the proxy has
exceeded the limit.

ERROR 1040
(HY000): IAM
authentication
rate limit
exceeded

The number of simultaneous requests with IAM authentication from
the client to the proxy has exceeded the limit.

Common issues and solutions 3084

Amazon Aurora User Guide for Aurora

Error Causes or workarounds

ERROR 1040
(HY000): Number
simultane
ous connectio
ns exceeded
(limit_value)

The number of simultaneous connection requests from the client to the
proxy exceeded the limit.

ERROR 1045
(28000): Access
denied for user
'DB_USER'@'%' (using
password: YES)

The Secrets Manager secret used by the proxy doesn't match the user
name and password of an existing database user. Either update the
credentials in the Secrets Manager secret, or make sure the database
user exists and has the same password as in the secret.

ERROR 1105
(HY000): Unknown
error

An unknown error occurred.

ERROR 1231
(42000):
Variable
''charact
er_set_cl
ient'' can't be
set to the value
of value

The value set for the character_set_client parameter is not
valid. For example, the value ucs2 is not valid because it can crash the
MySQL server.

ERROR 3159
(HY000): This
RDS Proxy
requires TLS
connections.

You enabled the setting Require Transport Layer Security in the proxy
but your connection included the parameter ssl-mode=DISABLED in
the MySQL client. Do either of the following:

• Disable the setting Require Transport Layer Security for the proxy.

• Connect to the database using the minimum setting of ssl-mode=
REQUIRED in the MySQL client.

Common issues and solutions 3085

Amazon Aurora User Guide for Aurora

Error Causes or workarounds

ERROR 2026
(HY000): SSL
connection
error: Internal
Server Error

The TLS handshake to the proxy failed. Some possible reasons include
the following:

• SSL is required but the server doesn't support it.

• An internal server error occurred.

• A bad handshake occurred.

ERROR 9501
(HY000): Timed-
out waiting to
acquire database
connection

The proxy timed-out waiting to acquire a database connection. Some
possible reasons include the following:

• The proxy is unable to establish a database connection because the
maximum connections have been reached

• The proxy is unable to establish a database connection because the
database is unavailable.

You might encounter the following issues while connecting to a PostgreSQL proxy.

Error Cause Solution

IAM authentication is
allowed only with SSL
connections.

The user tried to connect
to the database using IAM
authentication with the
setting sslmode=disable
in the PostgreSQL client.

The user needs to connect
to the database using
the minimum setting of
sslmode=require in
the PostgreSQL client. For
more information, see the
PostgreSQL SSL support
documentation.

This RDS Proxy
requires TLS connectio
ns.

The user enabled the option
Require Transport Layer
Security but tried to connect
with sslmode=disable in
the PostgreSQL client.

To fix this error, do one of the
following:

• Disable the proxy's Require
Transport Layer Security
option.

Common issues and solutions 3086

https://www.postgresql.org/docs/current/libpq-ssl.html

Amazon Aurora User Guide for Aurora

Error Cause Solution

• Connect to the database
using the minimum setting
of sslmode=allow in the
PostgreSQL client.

IAM authentication
failed for user
user_name . Check the
IAM token for this
user and try again.

This error might be due to the
following reasons:

• The client supplied the
incorrect IAM user name.

• The client supplied an
incorrect IAM authorization
token for the user.

• The client is using an IAM
policy that does not have
the necessary permissions.

• The client supplied an
expired IAM authorization
token for the user.

To fix this error, do the
following:

1. Confirm that the provided
IAM user exists.

2. Confirm that the IAM
authorization token
belongs to the provided
IAM user.

3. Confirm that the IAM
policy has adequate
permissions for RDS.

4. Check the validity of the
IAM authorization token
used.

 This RDS proxy has
no credentials for
the role role_name .
Check the credentials
for this role and try
again.

 There is no Secrets Manager
secret for this role.

Add a Secrets Manager
secret for this role. For more
information, see Setting up
AWS Identity and Access
Management (IAM) policies.

 RDS supports only
IAM, MD5, or SCRAM
authentication.

 The database client being
used to connect to the proxy
is using an authentication
mechanism not currently
 supported by the proxy.

 If you're not using IAM
authentication, use the MD5
or SCRAM password authentic
ation.

Common issues and solutions 3087

Amazon Aurora User Guide for Aurora

Error Cause Solution

 A user name is missing
from the connectio
n startup packet.
Provide a user name
for this connection.

 The database client being
used to connect to the proxy
isn't sending a user name
when trying to establish a
connection.

 Make sure to define a user
name when setting up a
connection to the proxy using
the PostgreSQL client of your
choice.

 Feature not supported
: RDS Proxy supports
only version 3.0
of the PostgreSQL
messaging protocol.

 The PostgreSQL client used
to connect to the proxy uses a
protocol older than 3.0.

 Use a newer PostgreSQL
client that supports the 3.0
messaging protocol. If you're
using the PostgreSQL psql
CLI, use a version greater than
or equal to 7.4.

 Feature not supported
: RDS Proxy currently
doesn't support
streaming replication
mode.

 The PostgreSQL client used
to connect to the proxy is
trying to use the streaming
replication mode, which isn't
currently supported by RDS
Proxy.

 Turn off the streaming
replication mode in the
PostgreSQL client being used
to connect.

 Feature not supported
: RDS Proxy currently
doesn't support the
option option_name .

 Through the startup
message, the PostgreSQL
client used to connect to the
proxy is requesting an option
that isn't currently supported
by RDS Proxy.

 Turn off the option being
shown as not supported from
the message above in the
PostgreSQL client being used
to connect.

 The IAM authentic
ation failed because
of too many competing
requests.

 The number of simultaneous
requests with IAM authentic
ation from the client to the
proxy has exceeded the limit.

 Reduce the rate in which
connections using IAM
authentication from a
PostgreSQL client are
established.

Common issues and solutions 3088

Amazon Aurora User Guide for Aurora

Error Cause Solution

 The maximum number of
client connections
to the proxy exceeded
number_value .

 The number of simultaneous
connection requests from the
client to the proxy exceeded
the limit.

 Reduce the number of active
connections from PostgreSQL
clients to this RDS proxy.

 Rate of connectio
n to proxy exceeded
number_value .

 The rate of connection
requests from the client to
the proxy has exceeded the
limit.

 Reduce the rate in which
connections from a
PostgreSQL client are
established.

 The password that was
provided for the role
role_name is wrong.

 The password for this role
doesn't match the Secrets
Manager secret.

 Check the secret for this role
in Secrets Manager to see
if the password is the same
as what's being used in your
PostgreSQL client.

 The IAM authentic
ation failed for the
role role_name . Check
the IAM token for this
role and try again.

 There is a problem with
the IAM token used for IAM
authentication.

 Generate a new authentic
ation token and use it in a
new connection.

 IAM is allowed only
with SSL connections.

 A client tried to connect
using IAM authentication, but
SSL wasn't enabled.

 Enable SSL in the PostgreSQ
L client.

 Unknown error. An unknown error occurred. Reach out to AWS Support to
investigate the issue.

Common issues and solutions 3089

Amazon Aurora User Guide for Aurora

Error Cause Solution

 Timed-out waiting
to acquire database
connection.

 The proxy timed-out waiting
to acquire a database
connection. Some possible
reasons include the following
:

•
 The proxy can't establish
a database connection
because the maximum
connections have been
reached.

•
 The proxy can't establish
a database connection
because the database is
unavailable.

Possible solutions are the
following:

•
 Check the target of the
RDS DB instance Aurora
cluster status to see if it's
unavailable.

•
 Check if there are long-
running transactions and/
or queries being executed.
They can use database
connections from the
connection pool for a long
time.

 Request returned
an error: database_
error .

 The database connection
established from the proxy
returned an error.

The solution depends on
the specific database error.
One example is: Request
returned an error:
database "your-dat
abase-name" does not
exist. This means that the
specified database name
doesn't exist on the database
server. Or it means that the
user name used as a database
name (if a database name
isn't specified) doesn't exist
on the server.

Common issues and solutions 3090

Amazon Aurora User Guide for Aurora

Using RDS Proxy with AWS CloudFormation

You can use RDS Proxy with AWS CloudFormation. This helps you to create groups of related
resources. Such a group can include a proxy that can connect to a newly created Aurora DB
cluster. RDS Proxy support in AWS CloudFormation involves two new registry types: DBProxy and
DBProxyTargetGroup.

The following listing shows a sample AWS CloudFormation template for RDS Proxy.

Resources:
 DBProxy:
 Type: AWS::RDS::DBProxy
 Properties:
 DBProxyName: CanaryProxy
 EngineFamily: MYSQL
 RoleArn:
 Fn::ImportValue: SecretReaderRoleArn
 Auth:
 - {AuthScheme: SECRETS, SecretArn: !ImportValue ProxySecret, IAMAuth: DISABLED}
 VpcSubnetIds:
 Fn::Split: [",", "Fn::ImportValue": SubnetIds]

 ProxyTargetGroup:
 Type: AWS::RDS::DBProxyTargetGroup
 Properties:
 DBProxyName: CanaryProxy
 TargetGroupName: default
 DBInstanceIdentifiers:
 - Fn::ImportValue: DBInstanceName
 DependsOn: DBProxy

For more information about the resources in this sample, see DBProxy and
DBProxyTargetGroup.

For more information about resources that you can create using AWS CloudFormation, see RDS
resource type reference.

Using RDS Proxy with Aurora global databases

An Aurora global database is a single database that spans multiple AWS Regions, allowing for low-
latency global reads and disaster recovery from any Region-wide outage. It provides built-in fault

Using RDS Proxy with AWS CloudFormation 3091

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-rds-dbproxy.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-rds-dbproxytargetgroup.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/AWS_RDS.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/AWS_RDS.html

Amazon Aurora User Guide for Aurora

tolerance for your deployment because the DB instance relies not on a single AWS Region, but
upon multiple Regions and different Availability Zones. For more information, see Using Amazon
Aurora global databases.

You can use RDS Proxy with any DB cluster in an Aurora global database. Before you begin to use
these features together, make sure that you familiarize yourself with the following information.

Important

If the DB cluster is part of a global database with write forwarding turned on,
reduce your proxy's MaxConnectionsPercent value by the quota that's allotted
for write forwarding. The write forwarding quota is set in the DB cluster parameter
aurora_fwd_writer_max_connections_pct. For information about write forwarding,
see Using write forwarding in an Amazon Aurora global database.

Limitations for RDS Proxy with global databases

When the Aurora DB cluster has write forwarding turned on, RDS Proxy doesn't support the
SESSION value for the aurora_replica_read_consistency variable. Setting this value can
cause unexpected behavior.

How RDS Proxy endpoints work with global databases

When you understand how RDS Proxy endpoints work with global databases, you can better
manage your applications that use Aurora databases with both of these features.

For a proxy with a global database's primary cluster as the registered target, the proxy endpoints
work the same way as with any Aurora DB cluster. The proxy's read/write endpoints send all
requests to the writer instance of the cluster. The proxy's read-only endpoints send all requests
to the reader instances. If a reader becomes unavailable while a connection is open, RDS Proxy
redirects subsequent queries on the connection to another reader instance. For a proxy with a
secondary cluster as the registered target, requests that are sent to the proxy's read-only endpoints
are also sent to the reader instances. Because the cluster has no writer instances, requests that
are sent to read/write endpoints fail with the error "The target group doesn't have any
associated read/write instances".

Global database switchover and failover operations both involve a role switch between the primary
and one of the secondary DB clusters. When the selected secondary cluster becomes the new

Limitations for RDS Proxy with global databases 3092

Amazon Aurora User Guide for Aurora

primary, one of its reader instances is promoted to a writer. This DB instance is now the new writer
instance for the global cluster. Make sure to redirect your application's write operations to the
appropriate read/write endpoint of the proxy that's associated with the new primary cluster. This
proxy endpoint might be the default endpoint or a custom read/write endpoint.

RDS Proxy queues all requests through read/write endpoints and sends them to the writer instance
of the new primary cluster as soon as it's available. It does so regardless of whether the switchover
or failover operation has completed. During switchover or failover, the default endpoint of the
proxy for the old primary cluster still accepts write operations. However, as soon as that cluster
becomes a secondary cluster, all of the write operations fail. To learn how and when to perform
specific global switchover or failover tasks, see the following topics:

• Global database switchover – Performing switchovers for Amazon Aurora global databases

• Global database failover – Recovering an Amazon Aurora global database from an unplanned
outage

How RDS Proxy endpoints work with global databases 3093

Amazon Aurora User Guide for Aurora

Working with Aurora zero-ETL integrations with Amazon
Redshift

An Aurora zero-ETL integration with Amazon Redshift enables near real-time analytics and
machine learning (ML) using Amazon Redshift on petabytes of transactional data from Aurora.
It's a fully managed solution for making transactional data available in Amazon Redshift after it is
written to an Aurora DB cluster. Extract, transform, and load (ETL) is the process of combining data
from multiple sources into a large, central data warehouse.

A zero-ETL integration makes the data in your Aurora DB cluster available in Amazon Redshift
in near real-time. Once that data is in Amazon Redshift, you can power your analytics, ML,
and AI workloads using the built-in capabilities of Amazon Redshift, such as machine learning,
materialized views, data sharing, federated access to multiple data stores and data lakes, and
integrations with Amazon SageMaker, Amazon QuickSight, and other AWS services.

To create a zero-ETL integration, you specify an Aurora DB cluster as the source, and an Amazon
Redshift data warehouse as the target. The integration replicates data from the source database
into the target data warehouse.

The following diagram illustrates this functionality:

The integration monitors the health of the data pipeline and recovers from issues when possible.
You can create integrations from multiple Aurora DB clusters into a single Amazon Redshift
namespace, enabling you to derive insights across multiple applications.

3094

Amazon Aurora User Guide for Aurora

For information about pricing for zero-ETL integrations, see Amazon Aurora pricing and Amazon
Redshift pricing.

Topics

• Benefits

• Key concepts

• Limitations

• Quotas

• Supported Regions

• Getting started with Aurora zero-ETL integrations with Amazon Redshift

• Creating Aurora zero-ETL integrations with Amazon Redshift

• Data filtering for Aurora zero-ETL integrations with Amazon Redshift

• Adding data to a source Aurora DB cluster and querying it in Amazon Redshift

• Viewing and monitoring Aurora zero-ETL integrations with Amazon Redshift

• Modifying Aurora zero-ETL integrations with Amazon Redshift

• Deleting Aurora zero-ETL integrations with Amazon Redshift

• Troubleshooting Aurora zero-ETL integrations with Amazon Redshift

Benefits

Aurora zero-ETL integrations with Amazon Redshift have the following benefits:

• Help you derive holistic insights from multiple data sources.

• Eliminate the need to build and maintain complex data pipelines that perform extract,
transform, and load (ETL) operations. Zero-ETL integrations remove the challenges that come
with building and managing pipelines by provisioning and managing them for you.

• Reduce operational burden and cost, and let you focus on improving your applications.

• Let you leverage Amazon Redshift's analytics and ML capabilities to derive insights from
transactional and other data, to respond effectively to critical, time-sensitive events.

Key concepts

As you get started with zero-ETL integrations, consider the following concepts:

Benefits 3095

https://aws.amazon.com/rds/aurora/pricing/
https://aws.amazon.com/redshift/pricing/
https://aws.amazon.com/redshift/pricing/

Amazon Aurora User Guide for Aurora

Integration

A fully managed data pipeline that automatically replicates transactional data and schemas
from an Aurora DB cluster to an Amazon Redshift data warehouse.

Source DB cluster

The Aurora DB cluster where data is replicated from. For Aurora MySQL, you can specify a DB
cluster that uses provisioned DB instances or Aurora Serverless v2 DB instances as the source.
For the Aurora PostgreSQL preview, you can only specify a cluster that uses provisioned DB
instances.

Target data warehouse

The Amazon Redshift data warehouse where the data is replicated to. There are two types
of data warehouse: a provisioned cluster data warehouse and a serverless data warehouse.
A provisioned cluster data warehouse is a collection of computing resources called nodes,
which are organized into a group called a cluster. A serverless data warehouse is comprised of a
workgroup that stores compute resources, and a namespace that houses the database objects
and users. Both data warehouses run an Amazon Redshift engine and contain one or more
databases.

Multiple source DB clusters can write to the same target.

For more information, see Data warehouse system architecture in the Amazon Redshift
Developer Guide.

Limitations

The following limitations apply to Aurora zero-ETL integrations with Amazon Redshift.

Topics

• General limitations

• Aurora MySQL limitations

• Aurora PostgreSQL preview limitations

• Amazon Redshift limitations

Limitations 3096

https://docs.aws.amazon.com/redshift/latest/mgmt/working-with-clusters.html
https://docs.aws.amazon.com/redshift/latest/mgmt/serverless-workgroup-namespace.html
https://docs.aws.amazon.com/redshift/latest/dg/c_high_level_system_architecture.html

Amazon Aurora User Guide for Aurora

General limitations

• The source DB cluster must be in the same Region as the target Amazon Redshift data
warehouse.

• You can't rename a DB cluster or any of its instances if it has existing integrations.

• You can't delete a DB cluster that has existing integrations. You must delete all associated
integrations first.

• If you stop the source DB cluster, the last few transactions might not be replicated to the target
data warehouse until you resume the cluster.

• If your cluster is the source of a blue/green deployment, the blue and green environments can't
have existing zero-ETL integrations during switchover. You must delete the integration first and
switch over, then recreate it.

• A DB cluster must contain at least one DB instance in order to be the source of an integration.

• If your source cluster is the primary DB cluster in an Aurora global database and it fails over to
one of its secondary clusters, the integration becomes inactive. You must delete and recreate the
integration.

• You can't create an integration for a source database that has another integration being actively
created.

• When you initially create an integration, or when a table is being resynchronized, data seeding
from the source to the target can take 20-25 minutes or more depending on the size of the
source database. This delay can lead to increased replica lag.

• Some data types aren't supported. For more information, see the section called “Data type
differences”.

• Foreign key references with predefined table updates aren't supported. Specifically, ON DELETE
and ON UPDATE rules aren't supported with CASCADE, SET NULL, and SET DEFAULT actions.
Attempting to create or update a table with such references to another table will put the table
into a failed state.

• ALTER TABLE partition operations cause your table to resynchronize in order to reload
data from Aurora to Amazon Redshift. The table will be unavailable for querying while it's
resynchronizing. For more information, see the section called “One or more of my Amazon
Redshift tables requires a resync”.

• XA transaction aren't supported.

• Object identifiers (including database name, table name, column names, and others) can contain
only alphanumeric characters, numbers, $, and _ (underscore).

General limitations 3097

Amazon Aurora User Guide for Aurora

Aurora MySQL limitations

• Your source DB cluster must be running Aurora MySQL version 3.05 (compatible with MySQL
8.0.32) or higher.

• Zero-ETL integrations rely on MySQL binary logging (binlog) to capture ongoing data changes.
Don't use binlog-based data filtering, as it can cause data inconsistencies between the source
and target databases.

• Aurora MySQL system tables, temporary tables, and views aren't replicated to Amazon Redshift.

• Zero-ETL integrations are supported only for databases configured to use the InnoDB storage
engine.

Aurora PostgreSQL preview limitations

Important

The zero-ETL integrations with Amazon Redshift feature for Aurora PostgreSQL is in
preview release. The documentation and the feature are both subject to change. You can
use this feature only in test environments, not in production environments. For preview
terms and conditions, see Betas and Previews in AWS Service Terms.

• Your source DB cluster must be running Aurora PostgreSQL (compatible with PostgreSQL 15.4
and Zero-ETL Support).

• You can create and manage zero-ETL integrations for Aurora PostgreSQL only in the Amazon
RDS Database Preview Environment, in the US East (Ohio) (us-east-2) AWS Region. You can
use the preview environment to test beta, release candidate, and early production versions of
PostgreSQL database engine software.

• You can create and manage integrations for Aurora PostgreSQL only using the AWS Management
Console. You can't use the AWS Command Line Interface (AWS CLI), the Amazon RDS API, or any
of the AWS SDKs.

• When you create a source DB cluster, the parameter group that you choose must already have
the required DB cluster parameter values configured. You can't create a new parameter group
afterwards and then associate it with the cluster. For a list of required parameters, see the
section called “Step 1: Create a custom DB cluster parameter group”.

Aurora MySQL limitations 3098

https://aws.amazon.com/service-terms/
https://aws.amazon.com/rds/databasepreview/
https://aws.amazon.com/rds/databasepreview/

Amazon Aurora User Guide for Aurora

• You can't modify an integration after you create it. If you need to change certain settings, you
must delete and recreate the integration.

• Currently, Aurora PostgreSQL DB clusters that are the source of an integration don't perform
garbage collection of logical replication data.

• All databases created within the source Aurora PostgreSQL DB cluster must use UTF-8 encoding.

• Column names can't contain any of the following characters: commas (,), semicolons (;),
parentheses (), curly brackets { }, newlines (\n), tabs (\t), equal signs (=), and spaces.

• Zero-ETL integrations with Aurora PostgreSQL don't support the following:

• Aurora Serverless v2 DB instances. Your source DB cluster must use provisioned DB instances.

• Custom data types or data types created by extensions.

• Subtransactions on the source DB cluster.

• Renaming of schemas or databases within a source DB cluster.

• Restoring from a DB cluster snapshot or using Aurora cloning to create a source DB cluster.
If you want to bring existing data into a preview cluster, then you must use the pg_dump or
pg_restore utilities.

• Creation of logical replication slots on the writer instance of the source DB cluster.

• Large field values that require The Oversized-Attribute Storage Technique (TOAST).

• ALTER TABLE partition operations. These operations can cause your table to resynchronize
and eventually enter a Failed state. If a table fails, then you must drop and recreate it.

Amazon Redshift limitations

For a list of Amazon Redshift limitations related to zero-ETL integrations, see Considerations in the
Amazon Redshift Management Guide.

Quotas

Your account has the following quotas related to Aurora zero-ETL integrations with Amazon
Redshift. Each quota is per-Region unless otherwise specified.

Name Default Description

Integrations 100 The total number of integrations within an AWS account.

Amazon Redshift limitations 3099

https://www.postgresql.org/docs/current/subxacts.html
https://docs.aws.amazon.com/redshift/latest/mgmt/zero-etl.reqs-lims.html

Amazon Aurora User Guide for Aurora

Name Default Description

Integrati
ons per
target data
warehouse

50 The number of integrations sending data to a single target
Amazon Redshift data warehouse.

Integrations
per source
cluster

5 for Aurora
MySQL, 1
for Aurora
PostgreSQL

The number of integrations sending data from a single source
DB cluster.

In addition, Amazon Redshift places certain limits on the number of tables allowed in each DB
instance or cluster node. For more information, see Quotas and limits in Amazon Redshift in the
Amazon Redshift Management Guide.

Supported Regions

Aurora zero-ETL integrations with Amazon Redshift are available in a subset of AWS Regions. For a
list of supported Regions, see the section called “Zero-ETL integrations ”.

Getting started with Aurora zero-ETL integrations with Amazon
Redshift

Before you create a zero-ETL integration with Amazon Redshift, configure your Aurora DB cluster
and your Amazon Redshift data warehouse with the required parameters and permissions. During
setup, you'll complete the following steps:

1. Create a custom DB cluster parameter group.

2. Create a source DB cluster.

3. Create a target Amazon Redshift data warehouse.

After you complete these tasks, continue to the section called “Creating zero-ETL integrations”.

You can use the AWS SDKs to automate the setup process for you. For more information, see the
section called “Set up an integration using the AWS SDKs (Aurora MySQL only)”.

Supported Regions 3100

https://docs.aws.amazon.com/redshift/latest/mgmt/amazon-redshift-limits.html

Amazon Aurora User Guide for Aurora

Step 1: Create a custom DB cluster parameter group

Aurora zero-ETL integrations with Amazon Redshift require specific values for the DB cluster
parameters that control replication. Specifically, Aurora MySQL requires enhanced binlog
(aurora_enhanced_binlog), and Aurora PostgreSQL requires enhanced logical replication
(aurora.enhanced_logical_replication).

To configure binary logging or logical replication, you must first create a custom DB cluster
parameter group, and then associate it with the source DB cluster.

Create a custom DB cluster parameter group with the following settings depending on your source
DB engine. For instructions to create a parameter group, see the section called “Working with DB
cluster parameter groups”.

Aurora MySQL (aurora-mysql8.0 family):

• aurora_enhanced_binlog=1

• binlog_backup=0

• binlog_format=ROW

• binlog_replication_globaldb=0

• binlog_row_image=full

• binlog_row_metadata=full

In addition, make sure that the binlog_transaction_compression parameter is not set to ON,
and that the binlog_row_value_options parameter is not set to PARTIAL_JSON.

For more information about Aurora MySQL enhanced binlog, see the section called “Setting up
enhanced binlog”.

Aurora PostgreSQL (aurora-postgresql15 family):

Note

For Aurora PostgreSQL DB clusters, you must create the custom parameter group within
the Amazon RDS Database Preview Environment, in the US East (Ohio) (us-east-2) AWS
Region.

Step 1: Create a custom DB cluster parameter group 3101

https://aws.amazon.com/rds/databasepreview/

Amazon Aurora User Guide for Aurora

• rds.logical_replication=1

• aurora.enhanced_logical_replication=1

• aurora.logical_replication_backup=0

• aurora.logical_replication_globaldb=0

Enabling enhanced logical replication (aurora.enhanced_logical_replication)
automatically sets the REPLICA IDENTITY parameter to FULL, which means that all column
values are written to the write ahead log (WAL). This will increase the IOPS for your source DB
cluster.

Step 2: Select or create a source DB cluster

After you create a custom DB cluster parameter group, choose or create an Aurora MySQL or
Aurora PostgreSQL DB cluster. This cluster will be the source of data replication to Amazon
Redshift.

The cluster must be running Aurora MySQL version 3.05 (compatible with MySQL 8.0.32) or higher,
or Aurora PostgreSQL (compatible with PostgreSQL 15.4 and Zero-ETL Support). For instructions to
create a DB cluster, see the section called “Creating a DB cluster”.

Note

You must create Aurora PostgreSQL DB clusters within the Amazon RDS Database Preview
Environment, in the US East (Ohio) (us-east-2) AWS Region.

Under Additional configuration, change the default DB cluster parameter group to the custom
parameter group that you created in the previous step.

Note

For Aurora MySQL, if you associate the parameter group with the DB cluster after the
cluster is already created, you must reboot the primary DB instance in the cluster to apply
the changes before you can create a zero-ETL integration. For instructions, see the section
called “Rebooting an Aurora DB cluster or instance”.
During the preview release of Aurora PostgreSQL zero-ETL integrations with Amazon
Redshift, you must associate the cluster with the custom DB cluster parameter group while

Step 2: Select or create a source DB cluster 3102

https://aws.amazon.com/rds/databasepreview/
https://aws.amazon.com/rds/databasepreview/

Amazon Aurora User Guide for Aurora

creating the cluster. You can't perform this action after the source DB cluster is already
created, otherwise you need to delete and recreate the cluster.

Step 3: Create a target Amazon Redshift data warehouse

After you create your source DB cluster, you must create and configure a target data warehouse in
Amazon Redshift. The data warehouse must meet the following requirements:

• Created in preview (for Aurora PostgreSQL sources only). For Aurora MySQL sources, you must
create production clusters and workgroups.

• To create a provisioned cluster in preview, choose Create preview cluster from the banner on
the provisioned clusters dashboard. For more information, see Creating a preview cluster.

When creating the cluster, set the Preview track to preview_2023.

• To create a Redshift Serverless workgroup in preview, choose Create preview workgroup
from the banner on the Serverless dashboard. For more information, see Creating a preview
workgroup.

• Using an RA3 node type (ra3.xlplus, ra3.4xlarge, or ra3.16xlarge) , or Redshift
Serverless.

• Encrypted (if using a provisioned cluster). For more information, see Amazon Redshift database
encryption.

For instructions to create a data warehouse, see Creating a cluster for provisioned clusters, or
Creating a workgroup with a namespace for Redshift Serverless.

Step 3: Create a target Amazon Redshift data warehouse 3103

https://docs.aws.amazon.com/redshift/latest/mgmt/managing-clusters-console.html#cluster-preview
https://docs.aws.amazon.com/redshift/latest/mgmt/serverless-workgroup-preview.html
https://docs.aws.amazon.com/redshift/latest/mgmt/serverless-workgroup-preview.html
https://docs.aws.amazon.com/redshift/latest/mgmt/working-with-db-encryption.html
https://docs.aws.amazon.com/redshift/latest/mgmt/working-with-db-encryption.html
https://docs.aws.amazon.com/redshift/latest/mgmt/managing-clusters-console.html#create-cluster
https://docs.aws.amazon.com/redshift/latest/mgmt/serverless-console-workgroups-create-workgroup-wizard.html

Amazon Aurora User Guide for Aurora

Enable case sensitivity on the data warehouse

For the integration to be successful, the case sensitivity parameter
(enable_case_sensitive_identifier) must be enabled for the data warehouse. By default,
case sensitivity is disabled on all provisioned clusters and Redshift Serverless workgroups.

To enable case sensitivity, perform the following steps depending on your data warehouse type:

• Provisioned cluster – To enable case sensitivity on a provisioned cluster, create a custom
parameter group with the enable_case_sensitive_identifier parameter enabled. Then,
associate the parameter group with the cluster. For instructions, see Managing parameter groups
using the console or Configuring parameter values using the AWS CLI.

Note

Remember to reboot the cluster after you associate the custom parameter group with it.

• Serverless workgroup – To enable case sensitivity on a Redshift Serverless workgroup, you must
use the AWS CLI. The Amazon Redshift console doesn't currently support modifying Redshift
Serverless parameter values. Send the following update-workgroup request:

aws redshift-serverless update-workgroup \
 --workgroup-name target-workgroup \
 --config-parameters
 parameterKey=enable_case_sensitive_identifier,parameterValue=true

You don't need to reboot a workgroup after you modify its parameter values.

Configure authorization for the data warehouse

After you create a data warehouse, you must configure the source Aurora DB cluster as an
authorized integration source. For instructions, see Configure authorization for your Amazon
Redshift data warehouse.

Set up an integration using the AWS SDKs (Aurora MySQL only)

Rather than setting up each resource manually, you can run the following Python script to
automatically set up the required resources for you. The code example uses the AWS SDK for
Python (Boto3) to create a source Aurora MySQL DB cluster and target Amazon Redshift data

Set up an integration using the AWS SDKs (Aurora MySQL only) 3104

https://docs.aws.amazon.com/redshift/latest/dg/r_enable_case_sensitive_identifier.html
https://docs.aws.amazon.com/redshift/latest/mgmt/managing-parameter-groups-console.html
https://docs.aws.amazon.com/redshift/latest/mgmt/managing-parameter-groups-console.html
https://docs.aws.amazon.com/redshift/latest/mgmt/working-with-parameter-groups.html#configure-parameters-using-the-clil
https://docs.aws.amazon.com/cli/latest/reference/redshift-serverless/update-workgroup.html
https://docs.aws.amazon.com/redshift/latest/mgmt/zero-etl-using.setting-up.html#zero-etl-using.redshift-iam
https://docs.aws.amazon.com/redshift/latest/mgmt/zero-etl-using.setting-up.html#zero-etl-using.redshift-iam
https://boto3.amazonaws.com/v1/documentation/api/latest/index.html
https://boto3.amazonaws.com/v1/documentation/api/latest/index.html

Amazon Aurora User Guide for Aurora

warehouse, each with the required parameter values. It then waits for the clusters to be available
before creating a zero-ETL integration between them. You can comment out different functions
depending on which resources you need to set up.

To install the required dependencies, run the following commands:

pip install boto3
pip install time

Within the script, optionally modify the names of the source, target, and parameter groups. The
final function creates an integration named my-integration after the resources are set up.

Python code example

import boto3
import time

Build the client using the default credential configuration.
You can use the CLI and run 'aws configure' to set access key, secret
key, and default Region.

rds = boto3.client('rds')
redshift = boto3.client('redshift')
sts = boto3.client('sts')

source_cluster_name = 'my-source-cluster' # A name for the source cluster
source_param_group_name = 'my-source-param-group' # A name for the source parameter
 group
target_cluster_name = 'my-target-cluster' # A name for the target cluster
target_param_group_name = 'my-target-param-group' # A name for the target parameter
 group

def create_source_cluster(*args):
 """Creates a source Aurora MySQL DB cluster"""

 response = rds.create_db_cluster_parameter_group(
 DBClusterParameterGroupName=source_param_group_name,
 DBParameterGroupFamily='aurora-mysql8.0',
 Description='For Aurora MySQL zero-ETL integrations'
)
 print('Created source parameter group: ' + response['DBClusterParameterGroup']
['DBClusterParameterGroupName'])

Set up an integration using the AWS SDKs (Aurora MySQL only) 3105

Amazon Aurora User Guide for Aurora

 response = rds.modify_db_cluster_parameter_group(
 DBClusterParameterGroupName=source_param_group_name,
 Parameters=[
 {
 'ParameterName': 'aurora_enhanced_binlog',
 'ParameterValue': '1',
 'ApplyMethod': 'pending-reboot'
 },
 {
 'ParameterName': 'binlog_backup',
 'ParameterValue': '0',
 'ApplyMethod': 'pending-reboot'
 },
 {
 'ParameterName': 'binlog_format',
 'ParameterValue': 'ROW',
 'ApplyMethod': 'pending-reboot'
 },
 {
 'ParameterName': 'binlog_replication_globaldb',
 'ParameterValue': '0',
 'ApplyMethod': 'pending-reboot'
 },
 {
 'ParameterName': 'binlog_row_image',
 'ParameterValue': 'full',
 'ApplyMethod': 'pending-reboot'
 },
 {
 'ParameterName': 'binlog_row_metadata',
 'ParameterValue': 'full',
 'ApplyMethod': 'pending-reboot'
 }
]
)
 print('Modified source parameter group: ' +
 response['DBClusterParameterGroupName'])

 response = rds.create_db_cluster(
 DBClusterIdentifier=source_cluster_name,
 DBClusterParameterGroupName=source_param_group_name,
 Engine='aurora-mysql',
 EngineVersion='8.0.mysql_aurora.3.05.2',
 DatabaseName='myauroradb',

Set up an integration using the AWS SDKs (Aurora MySQL only) 3106

Amazon Aurora User Guide for Aurora

 MasterUsername='username',
 MasterUserPassword='Password01**'
)
 print('Creating source cluster: ' + response['DBCluster']['DBClusterIdentifier'])
 source_arn = (response['DBCluster']['DBClusterArn'])
 create_target_cluster(target_cluster_name, source_arn, target_param_group_name)

 response = rds.create_db_instance(
 DBInstanceClass='db.r6g.2xlarge',
 DBClusterIdentifier=source_cluster_name,
 DBInstanceIdentifier=source_cluster_name + '-instance',
 Engine='aurora-mysql'
)
 return(response)

def create_target_cluster(target_cluster_name, source_arn, target_param_group_name):
 """Creates a target Redshift cluster"""

 response = redshift.create_cluster_parameter_group(
 ParameterGroupName=target_param_group_name,
 ParameterGroupFamily='redshift-1.0',
 Description='For Aurora MySQL zero-ETL integrations'
)
 print('Created target parameter group: ' + response['ClusterParameterGroup']
['ParameterGroupName'])

 response = redshift.modify_cluster_parameter_group(
 ParameterGroupName=target_param_group_name,
 Parameters=[
 {
 'ParameterName': 'enable_case_sensitive_identifier',
 'ParameterValue': 'true'
 }
]
)
 print('Modified target parameter group: ' + response['ParameterGroupName'])

 response = redshift.create_cluster(
 ClusterIdentifier=target_cluster_name,
 NodeType='ra3.4xlarge',
 NumberOfNodes=2,
 Encrypted=True,
 MasterUsername='username',
 MasterUserPassword='Password01**',

Set up an integration using the AWS SDKs (Aurora MySQL only) 3107

Amazon Aurora User Guide for Aurora

 ClusterParameterGroupName=target_param_group_name
)
 print('Creating target cluster: ' + response['Cluster']['ClusterIdentifier'])

 # Retrieve the target cluster ARN
 response = redshift.describe_clusters(
 ClusterIdentifier=target_cluster_name
)
 target_arn = response['Clusters'][0]['ClusterNamespaceArn']

 # Retrieve the current user's account ID
 response = sts.get_caller_identity()
 account_id = response['Account']

 # Create a resource policy specifying cluster ARN and account ID
 response = redshift.put_resource_policy(
 ResourceArn=target_arn,
 Policy='''
 {
 \"Version\":\"2012-10-17\",
 \"Statement\":[
 {\"Effect\":\"Allow\",
 \"Principal\":{
 \"Service\":\"redshift.amazonaws.com\"
 },
 \"Action\":[\"redshift:AuthorizeInboundIntegration\"],
 \"Condition\":{
 \"StringEquals\":{
 \"aws:SourceArn\":\"%s\"}
 }
 },
 {\"Effect\":\"Allow\",
 \"Principal\":{
 \"AWS\":\"arn:aws:iam::%s:root\"},
 \"Action\":\"redshift:CreateInboundIntegration\"}
]
 }
 ''' % (source_arn, account_id)
)
 return(response)

def wait_for_cluster_availability(*args):
 """Waits for both clusters to be available"""

Set up an integration using the AWS SDKs (Aurora MySQL only) 3108

Amazon Aurora User Guide for Aurora

 print('Waiting for clusters to be available...')

 response = rds.describe_db_clusters(
 DBClusterIdentifier=source_cluster_name
)
 source_status = response['DBClusters'][0]['Status']
 source_arn = response['DBClusters'][0]['DBClusterArn']

 response = rds.describe_db_instances(
 DBInstanceIdentifier=source_cluster_name + '-instance'
)
 source_instance_status = response['DBInstances'][0]['DBInstanceStatus']

 response = redshift.describe_clusters(
 ClusterIdentifier=target_cluster_name
)
 target_status = response['Clusters'][0]['ClusterStatus']
 target_arn = response['Clusters'][0]['ClusterNamespaceArn']

 # Every 60 seconds, check whether the clusters are available.
 if source_status != 'available' or target_status != 'available' or
 source_instance_status != 'available':
 time.sleep(60)
 response = wait_for_cluster_availability(
 source_cluster_name, target_cluster_name)
 else:
 print('Clusters available. Ready to create zero-ETL integration.')
 create_integration(source_arn, target_arn)
 return

def create_integration(source_arn, target_arn):
 """Creates a zero-ETL integration using the source and target clusters"""

 response = rds.create_integration(
 SourceArn=source_arn,
 TargetArn=target_arn,
 IntegrationName='my-integration'
)
 print('Creating integration: ' + response['IntegrationName'])

def main():
 """main function"""
 create_source_cluster(source_cluster_name, source_param_group_name)
 wait_for_cluster_availability(source_cluster_name, target_cluster_name)

Set up an integration using the AWS SDKs (Aurora MySQL only) 3109

Amazon Aurora User Guide for Aurora

if __name__ == "__main__":
 main()

Next steps

With a source Aurora DB cluster and an Amazon Redshift target data warehouse, you can now
create a zero-ETL integration and replicate data. For instructions, see the section called “Creating
zero-ETL integrations”.

Creating Aurora zero-ETL integrations with Amazon Redshift

When you create an Aurora zero-ETL integration, you specify the source Aurora DB cluster and the
target Amazon Redshift data warehouse. You can also customize encryption settings and add tags.
Aurora creates an integration between the source DB cluster and its target. Once the integration
is active, any data that you insert into the source DB cluster will be replicated into the configured
Amazon Redshift target.

Topics

• Prerequisites

• Required permissions

• Creating zero-ETL integrations

• Next steps

Prerequisites

Before you create a zero-ETL integration, you must create a source DB cluster and a target Amazon
Redshift data warehouse. You also must allow replication into the data warehouse by adding the
DB cluster as an authorized integration source.

For instructions to complete each of these steps, see the section called “Getting started with zero-
ETL integrations”.

Required permissions

Certain IAM permissions are required to create a zero-ETL integration. At minimum, you need
permissions to perform the following actions:

Next steps 3110

Amazon Aurora User Guide for Aurora

• Create zero-ETL integrations for the source Aurora DB cluster.

• View and delete all zero-ETL integrations.

• Create inbound integrations into the target data warehouse. You don't need this permission if
the same account owns the Amazon Redshift data warehouse and this account is an authorized
principal for that data warehouse. For information about adding authorized principals, see
Configure authorization for your Amazon Redshift data warehouse.

The following sample policy demonstrates the least privilege permissions required to create and
manage integrations. You might not need these exact permissions if your user or role has broader
permissions, such as an AdministratorAccess managed policy.

Note

Redshift Amazon Resource Names (ARNs) have the following format. Note the use of a
forward slash (/) rather than a colon (:) before the serverless namespace UUID.

• Provisioned cluster – arn:aws:redshift:{region}:{account-
id}:namespace:namespace-uuid

• Serverless – arn:aws:redshift-serverless:{region}:{account-
id}:namespace/namespace-uuid

Sample policy

Important

For the Aurora PostgreSQL preview, all ARNs and actions within the Amazon RDS Database
Preview Environment have -preview appended to the service namespace. For example,
rds-preview:CreateIntegration and arn:aws:rds-preview:….

{
 "Version": "2012-10-17",
 "Statement": [{
 "Effect": "Allow",
 "Action": [
 "rds:CreateIntegration"

Required permissions 3111

https://docs.aws.amazon.com/redshift/latest/mgmt/zero-etl-using.setting-up.html#zero-etl-using.redshift-iam
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#grant-least-privilege
https://aws.amazon.com/rds/databasepreview/
https://aws.amazon.com/rds/databasepreview/

Amazon Aurora User Guide for Aurora

],
 "Resource": [
 "arn:aws:rds:{region}:{account-id}:cluster:source-db",
 "arn:aws:rds:{region}:{account-id}:integration:*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "rds:DescribeIntegrations"
],
 "Resource": ["*"]
 },
 {
 "Effect": "Allow",
 "Action": [
 "rds:DeleteIntegration",
 "rds:ModifyIntegration"
],
 "Resource": [
 "arn:aws:rds:{region}:{account-id}:integration:*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "redshift:CreateInboundIntegration"
],
 "Resource": [
 "arn:aws:redshift:{region}:{account-id}:namespace:namespace-uuid"
]
 }]
}

Choosing a target data warehouse in a different account

If you plan to specify a target Amazon Redshift data warehouse that's in another AWS account, you
must create a role that allows users in the current account to access resources in the target account.
For more information, see Providing access to an IAM user in another AWS account that you own.

The role must have the following permissions, which allow the user to view available Amazon
Redshift provisioned clusters and Redshift Serverless namespaces in the target account.

Required permissions 3112

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_aws-accounts.html

Amazon Aurora User Guide for Aurora

Required permissions and trust policy

{
 "Version":"2012-10-17",
 "Statement":[
 {
 "Effect":"Allow",
 "Action":[
 "redshift:DescribeClusters",
 "redshift-serverless:ListNamespaces"
],
 "Resource":[
 "*"
]
 }
]
}

The role must have the following trust policy, which specifies the target account ID.

{
 "Version":"2012-10-17",
 "Statement":[
 {
 "Effect":"Allow",
 "Principal":{
 "AWS": "arn:aws:iam::{external-account-id}:root"
 },
 "Action":"sts:AssumeRole"
 }
]
}

For instructions to create the role, see Creating a role using custom trust policies.

Creating zero-ETL integrations

You can create an Aurora MySQL zero-ETL integration using the AWS Management Console, the
AWS CLI, or the RDS API. To create an Aurora PostgreSQL integration, you must use the AWS
Management Console.

Creating zero-ETL integrations 3113

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-custom.html

Amazon Aurora User Guide for Aurora

RDS console

To create a zero-ETL integration

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

If you're using an Aurora PostgreSQL DB cluster as the source of the integration,
you must sign in to the Amazon RDS Database Preview Environment at https://us-
east-2.console.aws.amazon.com/rds-preview/home?region=us-east-2#databases.

2. In the left navigation pane, choose Zero-ETL integrations.

3. Choose Create zero-ETL integration.

4. For Integration identifier, enter a name for the integration. The name can have up to 63
alphanumeric characters and can include hyphens.

5. Choose Next.

6. For Source, select the Aurora DB cluster where the data will originate from. The cluster must
be running Aurora MySQL version 3.05 or higher, or Aurora PostgreSQL (compatible with
PostgreSQL 15.4 and Zero-ETL Support).

Note

For MySQL sources, RDS notifies you if the DB cluster parameters aren't configured
correctly. If you receive this message, you can either choose Fix it for me, or configure
them manually. For instructions to fix them manually, see the section called “Step 1:
Create a custom DB cluster parameter group”.
Modifying DB cluster parameters requires a reboot. Before you can create the
integration, the reboot must be complete and the new parameter values must be
successfully applied to the cluster.

7. If you selected an Aurora PostgreSQL source cluster, under Named database, specify the
named database to use as the source for your integration. The PostgreSQL resource model
allows the creation of multiple databases within a single DB cluster, but only one can be used
for each zero-ETL integration.

The named database must be created from template1. For more information, see Template
Databases in the PostgreSQL documentation.

Creating zero-ETL integrations 3114

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/
https://us-east-2.console.aws.amazon.com/rds-preview/home?region=us-east-2#databases:
https://us-east-2.console.aws.amazon.com/rds-preview/home?region=us-east-2#databases:
https://www.postgresql.org/docs/current/manage-ag-templatedbs.html
https://www.postgresql.org/docs/current/manage-ag-templatedbs.html

Amazon Aurora User Guide for Aurora

8. (Optional) If you selected an Aurora MySQL source DB cluster, select Customize data filtering
options and add data filters to your integration. You can use data filters to define the scope of
replication to the target data warehouse. For more information, see the section called “Data
filtering for zero-ETL integrations”.

9. Once your source DB cluster is successfully configured, choose Next.

10. For Target, do the following:

1. (Optional) To use a different AWS account for the Amazon Redshift target, choose Specify
a different account. Then, enter the ARN of an IAM role with permissions to display your
data warehouses. For instructions to create the IAM role, see the section called “Choosing a
target data warehouse in a different account”.

2. For Amazon Redshift data warehouse, select the target for replicated data from the source
DB cluster. You can choose a provisioned Amazon Redshift cluster or a Redshift Serverless
namespace as the target.

Note

RDS notifies you if the resource policy or case sensitivity settings for the specified
data warehouse aren't configured correctly. If you receive this message, you can
either choose Fix it for me, or configure them manually. For instructions to fix
them manually, see Turn on case sensitivity for your data warehouse and Configure
authorization for your data warehouse in the Amazon Redshift Management Guide.
Modifying case sensitivity for a provisioned Redshift cluster requires a reboot. Before
you can create the integration, the reboot must be complete and the new parameter
value must be successfully applied to the cluster.
If your selected source and target are in different AWS accounts, then Amazon RDS
cannot fix these settings for you. You must navigate to the other account and fix them
manually in Amazon Redshift.

11. Once your target data warehouse is configured correctly, choose Next.

12. (Optional) For Tags, add one or more tags to the integration. For more information, see the
section called “Tagging Aurora and RDS resources”.

13. For Encryption, specify how you want your integration to be encrypted. By default, RDS
encrypts all integrations with an AWS owned key. To choose a customer managed key instead,
enable Customize encryption settings and choose a KMS key to use for encryption. For more
information, see the section called “Encrypting Amazon Aurora resources”.

Creating zero-ETL integrations 3115

https://docs.aws.amazon.com/redshift/latest/mgmt/zero-etl-using.setting-up.html#zero-etl-setting-up.case-sensitivity
https://docs.aws.amazon.com/redshift/latest/mgmt/zero-etl-using.setting-up.html#zero-etl-using.redshift-iam
https://docs.aws.amazon.com/redshift/latest/mgmt/zero-etl-using.setting-up.html#zero-etl-using.redshift-iam

Amazon Aurora User Guide for Aurora

Note

If you specify a custom KMS key, the key policy must allow the kms:CreateGrant
action for the Amazon Redshift service principal (redshift.amazonaws.com). For
more information, see Creating a key policy in the AWS Key Management Service
Developer Guide.

Optionally, add an encryption context. For more information, see Encryption context in the
AWS Key Management Service Developer Guide.

14. Choose Next.

15. Review your integration settings and choose Create zero-ETL integration.

If creation fails, see the section called “I can't create a zero-ETL integration” for
troubleshooting steps.

The integration has a status of Creating while it's being created, and the target Amazon Redshift
data warehouse has a status of Modifying. During this time, you can't query the data warehouse
or make any configuration changes on it.

When the integration is successfully created, the status of the integration and the target Amazon
Redshift data warehouse both change to Active.

AWS CLI

Note

During the preview of Aurora PostgreSQL zero-ETL integrations, you can only create
integrations through the AWS Management Console. You can't use the AWS CLI, the
Amazon RDS API, or any of the SDKs.

To create a zero-ETL integration using the AWS CLI, use the create-integration command with the
following options:

• --integration-name – Specify a name for the integration.

Creating zero-ETL integrations 3116

https://docs.aws.amazon.com/kms/latest/developerguide/key-policy-overview.html
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#encrypt_context
https://docs.aws.amazon.com/cli/latest/reference/rds/create-integration.html

Amazon Aurora User Guide for Aurora

• --source-arn – Specify the ARN of the Aurora DB cluster that will be the source for the
integration.

• --target-arn – Specify the ARN of the Amazon Redshift data warehouse that will be the
target for the integration.

Example

For Linux, macOS, or Unix:

aws rds create-integration \
 --integration-name my-integration \
 --source-arn arn:aws:rds:{region}:{account-id}:my-db \
 --target-arn arn:aws:redshift:{region}:{account-id}:namespace:namespace-uuid

For Windows:

aws rds create-integration ^
 --integration-name my-integration ^
 --source-arn arn:aws:rds:{region}:{account-id}:my-db ^
 --target-arn arn:aws:redshift:{region}:{account-id}:namespace:namespace-uuid

RDS API

Note

During the preview of Aurora PostgreSQL zero-ETL integrations, you can only create
integrations through the AWS Management Console. You can't use the AWS CLI, the
Amazon RDS API, or any of the SDKs.

To create a zero-ETL integration by using the Amazon RDS API, use the CreateIntegration
operation with the following parameters:

• IntegrationName – Specify a name for the integration.

• SourceArn – Specify the ARN of the Aurora DB cluster that will be the source for the
integration.

• TargetArn – Specify the ARN of the Amazon Redshift data warehouse that will be the target for
the integration.

Creating zero-ETL integrations 3117

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateIntegration.html

Amazon Aurora User Guide for Aurora

Next steps

After you successfully create a zero-ETL integration, you must create a destination database within
your target Amazon Redshift cluster or workgroup. Then, you can start adding data to the source
Aurora DB cluster and querying it in Amazon Redshift. For instructions, see Creating destination
databases in Amazon Redshift.

Data filtering for Aurora zero-ETL integrations with Amazon
Redshift

You can use data filtering for Aurora zero-ETL integrations to define the scope of replication
from the source Aurora DB cluster to the target Amazon Redshift data warehouse. Rather than
replicating all data to the target, you can define one or more filters that selectively include or
exclude certain tables from being replicated. Only filtering at the database and table level is
available for zero-ETL integrations. You can't filter by columns or rows.

Data filtering can be useful when you want to:

• Join certain tables from two or more different source clusters and you don't need complete data
from either cluster.

• Save costs by performing analytics using only a subset of tables rather than an entire fleet of
databases.

• Filter out sensitive information—such as phone numbers, addresses, or credit card details—from
certain tables.

You can add data filters to a zero-ETL integration using the AWS Management Console, the AWS
Command Line Interface (AWS CLI), or the Amazon RDS API.

If the integration has a provisioned Amazon Redshift cluster as its target, the cluster must be on
patch 180 or higher.

Note

Currently, you can perform data filtering only on integrations that have Aurora MySQL
sources. The preview release of Aurora PostgreSQL zero-ETL integrations with Amazon
Redshift doesn't support data filtering.

Next steps 3118

https://docs.aws.amazon.com/redshift/latest/mgmt/zero-etl-using.creating-db.html
https://docs.aws.amazon.com/redshift/latest/mgmt/zero-etl-using.creating-db.html
https://docs.aws.amazon.com/redshift/latest/mgmt/cluster-versions.html#cluster-version-180

Amazon Aurora User Guide for Aurora

Topics

• Format of a data filter

• Filter logic

• Filter precedence

• Examples

• Adding data filters to an integration

• Removing data filters from an integration

Format of a data filter

You can define multiple filters for a single integration. Each filter either includes or excludes any
existing and future database tables that match one of the patterns in the filter expression. Aurora
zero-ETL integrations use Maxwell filter syntax for data filtering.

Each filter has the following elements:

Element Description

Filter type An Include filter type includes all tables
that match one of the patterns in the filter
expression. An Exclude filter type excludes
all tables that match one of the patterns.

Filter expression A comma-separated list of patterns.
Expressions must use Maxwell filter syntax.

Pattern A filter pattern in the format
database.table. You can specify
literal database and table names (such as
mydb.mytable , or use wildcards (*). You
can also define regular expressions in the
database and table name.

Aurora supports filtering only at the
database and table level. You can't
include column-level filters (database.

Format of a data filter 3119

https://maxwells-daemon.io/filtering/
https://maxwells-daemon.io/filtering/

Amazon Aurora User Guide for Aurora

Element Description

table.column) or blacklists
(blacklist: bad_db.*).

A single integration can have a maximum
of 99 total patterns. In the console, you
can contain patterns within a single filter
expression, or spread them out among
multiple expressions. A single pattern can't
exceed 256 characters in length.

The following image shows the structure of data filters in the console:

Important

Do not include personally identifying, confidential, or sensitive information in your filter
patterns.

Data filters in the AWS CLI

When using the AWS CLI to add a data filter, the syntax differs slightly compared to the console.
Each individual pattern must be associated with its own filter type (Include or Exclude). You
can't group multiple patterns with a single filter type.

Format of a data filter 3120

Amazon Aurora User Guide for Aurora

For example, in the console you can group the following comma-separated patterns within a single
Include statement:

mydb.mytable, mydb./table_\d+/

However, when using the AWS CLI, the same data filter must be in the following format:

'include: mydb.mytable, include: mydb./table_\d+/'

Filter logic

If you don't specify any data filters in your integration, Aurora assumes a default filter of
include:*.* and replicates all tables to the target data warehouse. However, if you specify
at least one filter, the logic starts with an assumed exclude:*.*, meaning that all tables are
automatically excluded from replication. This allows you to directly define which tables and
databases to include.

For example, if you define the following filter:

'include: db.table1, include: db.table2'

Aurora evaluates the filter as follows:

'exclude:*.*, include: db.table1, include: db.table2'

Therefore, only table1 and table2 from the database named db are replicated to the target data
warehouse.

Filter precedence

Aurora evaluates data filters in the order in which they're specified. In the AWS Management
Console, this means that Aurora evaluates filter expressions from left to right and from top to
bottom. If you specify a certain pattern for the first filter, then a second filter or even an individual
pattern specified immediately after it can override it.

For example, your first filter might be Include books.stephenking, which includes a single
table named stephenking from within the books database. However, if you add a second filter

Filter logic 3121

Amazon Aurora User Guide for Aurora

of Exclude books.*, it overrides the Include filter defined before it. Thus, no tables from the
books index are replicated to Amazon Redshift.

If you specify at least one filter, the logic starts with an assumed exclude:*.*, meaning that all
tables are automatically excluded from replication. Therefore, as a general best practice, define
your filters from most broad to least broad. For example, use one or more Include statements to
define all of the data that you want to replicate. Then, begin adding Exclude filters to selectively
exclude certain tables from being replicated.

The same principle applies to filters that you define using the AWS CLI. Aurora evaluates these
filter patterns in the order that they're specified, so a pattern might override one specified before
it.

Examples

The following examples demonstrate how data filtering works for zero-ETL integrations:

• Include all databases and all tables:

'include: *.*'

• Include all tables within the books database:

'include: books.*'

• Exclude any tables named mystery:

'include: *.*, exclude: *.mystery'

• Include two specific tables within the books database:

'include: books.stephen_king, include: books.carolyn_keene'

• Include all tables in the books database, except for those containing the substring mystery:

'include: books.*, exclude: books./.*mystery.*/

• Include all tables in the books database, except those starting with mystery:

'include: books.*, exclude: books./mystery.*/'

Examples 3122

Amazon Aurora User Guide for Aurora

• Include all tables in the books database, except those ending with mystery:

'include: books.*, exclude: books./.*mystery/'

• Include all tables in the books database that start with table_, except for the one named
table_stephen_king. For example, table_movies or table_books would be replicated, but
not table_stephen_king.

'include: books./table_.*/, exclude: books.table_stephen_king'

Adding data filters to an integration

You can configure data filtering using the AWS Management Console, the AWS CLI, or the Amazon
RDS API.

Important

If you add a filter after creating an integration, then Aurora reevaluates the filter as if it
always existed. It removes any data that is currently in the target Amazon Redshift data
warehouse that doesn't match the new filtering criteria. This action causes all affected
tables to resynchronize.

Currently, you can only perform data filtering on integrations that have Aurora MySQL sources. The
preview release of Aurora PostgreSQL zero-ETL integrations with Amazon Redshift doesn't support
data filtering.

RDS console

To add data filters to a zero-ETL integration

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Zero-ETL integrations. Select the integration that you want to
add data filters to, and then choose Modify.

3. Under Source, add one or more Include and Exclude statements.

The following image shows an example of data filters for an integration:

Adding data filters 3123

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Aurora User Guide for Aurora

4. When all the changes are as you want them, choose Continue and Save changes.

AWS CLI

To add data filters to a zero-ETL integration using the AWS CLI, call the modify-integration
command. In addition to the integration identifier, specify the --data-filter parameter with a
comma-separated list of Include and Exclude Maxwell filters.

Example

The following example adds filter patterns to my-integration.

For Linux, macOS, or Unix:

aws rds modify-integration \

Adding data filters 3124

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/rds/modify-integration.html

Amazon Aurora User Guide for Aurora

 --integration-identifier my-integration \
 --data-filter 'include: foodb.*, exclude: foodb.tbl, exclude: foodb./table_\d+/'

For Windows:

aws rds modify-integration ^
 --integration-identifier my-integration ^
 --data-filter 'include: foodb.*, exclude: foodb.tbl, exclude: foodb./table_\d+/'

RDS API

To modify a zero-ETL integration using the RDS API, call the ModifyIntegration operation. Specify
the integration identifier and provide a comma-separated list of filter patterns.

Removing data filters from an integration

When you remove a data filter from an integration, Aurora reevaluates the remaining filters as if
the removed filter never existed. Aurora then replicates any data that previously didn't match the
filtering criteria (but now does) into the target Amazon Redshift data warehouse.

Removing one or more data filters causes all affected tables to resynchronize.

Adding data to a source Aurora DB cluster and querying it in
Amazon Redshift

To finish creating a zero-ETL integration that replicates data from Amazon Aurora into Amazon
Redshift, you must create a destination database in Amazon Redshift.

First, connect to your Amazon Redshift cluster or workgroup and create a database with a reference
to your integration identifier. Then, you can add data to your source Aurora DB cluster and see it
replicated in Amazon Redshift.

Topics

• Creating a destination database in Amazon Redshift

• Adding data to the source DB cluster

• Querying your Aurora data in Amazon Redshift

• Data type differences between Aurora and Amazon Redshift databases

Removing data filters 3125

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyIntegration.html

Amazon Aurora User Guide for Aurora

Creating a destination database in Amazon Redshift

Before you can start replicating data into Amazon Redshift, after you create an integration, you
must create a destination database in your target data warehouse. This destination database must
include a reference to the integration identifier. You can use the Amazon Redshift console or the
Query editor v2 to create the database.

For instructions to create a destination database, see Create a destination database in Amazon
Redshift.

Adding data to the source DB cluster

After you configure your integration, you can add some data to the Aurora DB cluster that you
want to replicate into your Amazon Redshift data warehouse.

Note

There are differences between data types in Amazon Aurora and Amazon Redshift. For a
table of data type mappings, see the section called “Data type differences”.

First, connect to the source DB cluster using the MySQL or PostgreSQL client of your choice. For
instructions, see the section called “Connecting to a DB cluster”.

Then, create a table and insert a row of sample data.

Important

Make sure that the table has a primary key. Otherwise, it can't be replicated to the target
data warehouse.

The pg_dump and pg_restore PostgreSQL utilities initially create tables without a primary key and
then add it afterwards. If you're using one of these utilities, we recommend first creating a schema
and then loading data in a separate command.

MySQL

The following example uses the MySQL Workbench utility.

CREATE DATABASE my_db;

Creating a destination database in Amazon Redshift 3126

https://docs.aws.amazon.com/redshift/latest/mgmt/zero-etl-using.creating-db.html#zero-etl-using.create-db
https://docs.aws.amazon.com/redshift/latest/mgmt/zero-etl-using.creating-db.html#zero-etl-using.create-db
https://dev.mysql.com/downloads/workbench/

Amazon Aurora User Guide for Aurora

USE my_db;

CREATE TABLE books_table (ID int NOT NULL, Title VARCHAR(50) NOT NULL, Author
 VARCHAR(50) NOT NULL,
Copyright INT NOT NULL, Genre VARCHAR(50) NOT NULL, PRIMARY KEY (ID));

INSERT INTO books_table VALUES (1, 'The Shining', 'Stephen King', 1977, 'Supernatural
 fiction');

PostgreSQL

The following example uses the psql PostgreSQL interactive terminal. When connecting to the
cluster, include the named database that you specified when creating the integration.

psql -h mycluster.cluster-123456789012.us-east-2.rds.amazonaws.com -p 5432 -U username
 -d named_db;

named_db=> CREATE TABLE books_table (ID int NOT NULL, Title VARCHAR(50) NOT NULL,
 Author VARCHAR(50) NOT NULL,
Copyright INT NOT NULL, Genre VARCHAR(50) NOT NULL, PRIMARY KEY (ID));

named_db=> INSERT INTO books_table VALUES (1, "The Shining", "Stephen King", 1977,
 "Supernatural fiction");

Querying your Aurora data in Amazon Redshift

After you add data to the Aurora DB cluster, it's replicated into Amazon Redshift and is ready to be
queried.

To query the replicated data

1. Navigate to the Amazon Redshift console and choose Query editor v2 from the left navigation
pane.

2. Connect to your cluster or workgroup and choose your destination database (which you
created from the integration) from the dropdown menu (destination_database in this
example). For instructions to create a destination database, see Create a destination database
in Amazon Redshift.

3. Use a SELECT statement to query your data. In this example, you can run the following
command to select all data from the table that you created in the source Aurora DB cluster:

Querying your Aurora data in Amazon Redshift 3127

https://www.postgresql.org/docs/current/app-psql.html
https://docs.aws.amazon.com/redshift/latest/mgmt/zero-etl-using.creating-db.html#zero-etl-using.create-db
https://docs.aws.amazon.com/redshift/latest/mgmt/zero-etl-using.creating-db.html#zero-etl-using.create-db

Amazon Aurora User Guide for Aurora

SELECT * from my_db."books_table";

• my_db is the Aurora database schema name. This option is only needed for MySQL
databases.

• books_table is the Aurora table name.

You can also query the data using the a command line client. For example:

destination_database=# select * from my_db."books_table";

 ID | Title | Author | Copyright | Genre | txn_seq |
 txn_id
----+–------------+---------------+-------------+------------------------+----------
+--------+
 1 | The Shining | Stephen King | 1977 | Supernatural fiction | 2 |
 12192

Note

For case-sensitivity, use double quotes (" ") for schema, table, and column names. For more
information, see enable_case_sensitive_identifier.

Data type differences between Aurora and Amazon Redshift databases

The following tables show the mappings of an Aurora MySQL or Aurora PostgreSQL data type to a
corresponding Amazon Redshift data type. Amazon Aurora currently supports only these data types
for zero-ETL integrations.

Data type differences 3128

https://docs.aws.amazon.com/redshift/latest/dg/r_enable_case_sensitive_identifier.html

Amazon Aurora User Guide for Aurora

If a table in your source DB cluster includes an unsupported data type, the table goes out of sync
and isn't consumable by the Amazon Redshift target. Streaming from the source to the target
continues, but the table with the unsupported data type isn't available. To fix the table and make it
available in Amazon Redshift, you must manually revert the breaking change and then refresh the
integration by running ALTER DATABASE...INTEGRATION REFRESH.

Topics

• Aurora MySQL

• Aurora PostgreSQL

Aurora MySQL

Aurora MySQL data type Amazon Redshift data
type

Description Limitations

INT INTEGER Signed four-byte
integer

SMALLINT SMALLINT Signed two-byte
integer

TINYINT SMALLINT Signed two-byte
integer

MEDIUMINT INTEGER Signed four-byte
integer

BIGINT BIGINT Signed eight-byt
e integer

INT UNSIGNED BIGINT Signed eight-byt
e integer

TINYINT UNSIGNED SMALLINT Signed two-byte
integer

MEDIUMINT UNSIGNED INTEGER Signed four-byte
integer

Data type differences 3129

https://docs.aws.amazon.com/redshift/latest/dg/r_ALTER_DATABASE.html

Amazon Aurora User Guide for Aurora

Aurora MySQL data type Amazon Redshift data
type

Description Limitations

BIGINT UNSIGNED DECIMAL(20,0) Exact numeric
of selectable
precision

DECIMAL(p,s) = NUMERIC(p,s) DECIMAL(p,s) Exact numeric
of selectable
precision

Precision greater
than 38 and
scale greater
than 37 not
supported

DECIMAL(p,s) UNSIGNED =
NUMERIC(p,s) UNSIGNED

DECIMAL(p,s) Exact numeric
of selectable
precision

Precision greater
than 38 and
scale greater
than 37 not
supported

FLOAT4/REAL REAL Single precision
floating-point
number

FLOAT4/REAL UNSIGNED REAL Single precision
floating-point
number

DOUBLE/REAL/FLOAT8 DOUBLE PRECISION Double precision
floating-point
number

DOUBLE/REAL/FLOAT8
UNSIGNED

DOUBLE PRECISION Double precision
floating-point
number

BIT(n) VARBYTE(8) Variable-length
binary value

Data type differences 3130

Amazon Aurora User Guide for Aurora

Aurora MySQL data type Amazon Redshift data
type

Description Limitations

BINARY(n) VARBYTE(n) Variable-length
binary value

VARBINARY(n) VARBYTE(n) Variable-length
binary value

CHAR(n) VARCHAR(n) Variable-length
string value

VARCHAR(n) VARCHAR(n) Variable-length
string value

TEXT VARCHAR(65535) Variable-length
string value up
to 65535 bytes

TINYTEXT VARCHAR(255) Variable-length
string value up
to 255 bytes

MEDIUMTEXT VARCHAR(65535) Variable-length
string value up
to 65535 bytes

LONGTEXT VARCHAR(65535) Variable-length
string value up
to 65535 bytes

ENUM VARCHAR(1020) Variable-length
string value up
to 1020 bytes

SET VARCHAR(1020) Variable-length
string value up
to 1020 bytes

Data type differences 3131

Amazon Aurora User Guide for Aurora

Aurora MySQL data type Amazon Redshift data
type

Description Limitations

DATE DATE Calendar date
(year, month,
day)

DATETIME TIMESTAMP Date and time
(without time
zone)

TIMESTAMP(p) TIMESTAMP Date and time
(without time
zone)

TIME VARCHAR(18) Variable-length
string value up
to 18 bytes

YEAR VARCHAR(4) Variable-length
string value up
to 4 bytes

JSON SUPER Semistruc
tured data or
documents as
values

Aurora PostgreSQL

Zero-ETL integrations for Aurora PostgreSQL don't support custom data types or data types
created by extensions.

Important

The zero-ETL integrations with Amazon Redshift feature for Aurora PostgreSQL is in
preview release. The documentation and the feature are both subject to change. You can

Data type differences 3132

Amazon Aurora User Guide for Aurora

use this feature only in test environments, not in production environments. For preview
terms and conditions, see Betas and Previews in AWS Service Terms.

Aurora PostgreSQL data type Amazon Redshift data
type

Description Limitations

bigint BIGINT Signed eight-byt
e integer

bigserial BIGINT Signed eight-byt
e integer

bit(n) VARBYTE(n) Variable-length
binary value

bit varying(n) VARBYTE(n) Variable-length
binary value

bit VARBYTE(1024000) Variable-length
string value up
to 1,024,000
 bytes

boolean BOOLEAN Logical boolean
(true/false)

bytea VARBYTE(1024000) Variable-length
string value up
to 1,024,000
 bytes

character(n) CHAR(n) Fixed-length
character string

character varying(n) VARCHAR(65535) Variable-length
string value

Data type differences 3133

https://aws.amazon.com/service-terms/

Amazon Aurora User Guide for Aurora

Aurora PostgreSQL data type Amazon Redshift data
type

Description Limitations

date DATE Calendar date
(year, month,
day)

• Values
greater than
9999-12-31
not supported

• B.C. values not
supported

double precision DOUBLE PRECISION Double precision
floating-point
numbers

Subnormal
values not
supported

integer INTEGER Signed four-byte
integer

money DECIMAL(20,3) Currency
amount

numeric(p,s) DECIMAL(p,s) Variable-length
string value

• NaN values
not supported

• Precision
greater than
38 and scale
greater
than 37 not
supported

• Negative scale
not supported

real REAL Single precision
floating-point
number

smallint SMALLINT Signed two-byte
integer

Data type differences 3134

Amazon Aurora User Guide for Aurora

Aurora PostgreSQL data type Amazon Redshift data
type

Description Limitations

smallserial SMALLINT Signed two-byte
integer

serial INTEGER Signed four-byte
integer

text VARCHAR(65535) Variable-length
string value up
to 65,535 bytes

time [(p)] [without time
zone]

VARCHAR(19) Variable-length
string value up
to 19 bytes

Infinity and
-Infinity

 values not
supported

time [(p)] with time zone VARCHAR(22) Variable-length
string value up
to 22 bytes

• Infinity
and -
Infinity

 values not
supported

timestamp [(p)] [without
timezone]

TIMESTAMP Date and time
(without time
zone)

• Infinity
and -
Infinity

 values not
supported

• Values
greater than
9999-12-31
not supported

• B.C. values not
supported

Data type differences 3135

Amazon Aurora User Guide for Aurora

Aurora PostgreSQL data type Amazon Redshift data
type

Description Limitations

timestamp [(p)] with time
zone

TIMESTAMPTZ Date and time
(with time zone)

• Infinity
and -
Infinity

 values not
supported

• Values
greater than
9999-12-31
not supported

• B.C. values not
supported

Viewing and monitoring Aurora zero-ETL integrations with
Amazon Redshift

You can view the details of an Amazon Aurora zero-ETL integration to see its configuration
information and current status. You can also monitor the status of your integration by querying
specific system views in Amazon Redshift. In addition, Amazon Redshift publishes certain
integration-related metrics to Amazon CloudWatch, which you can view within the Amazon
Redshift console.

Topics

• Viewing integrations

• Monitoring integrations using system tables

• Monitoring integrations with Amazon EventBridge

Viewing integrations

You can view Aurora zero-ETL integrations with Amazon Redshift using the AWS Management
Console, the AWS CLI, or the RDS API.

Viewing and monitoring zero-ETL integrations 3136

Amazon Aurora User Guide for Aurora

Console

To view the details of a zero-ETL integration

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

If the integration has an Aurora PostgreSQL source DB cluster, you must sign in to the Amazon
RDS Database Preview Environment at https://us-east-2.console.aws.amazon.com/rds-
preview/home?region=us-east-2#databases.

2. From the left navigation pane, choose Zero-ETL integrations.

3. Select an integration to view more details about it, such as its source DB cluster and target
data warehouse.

An integration can have the following statuses:

• Creating – The integration is being created.

• Active – The integration is sending transactional data to the target data warehouse.

• Syncing – The integration has encountered a recoverable error and is reseeding data. Affected
tables aren't available for querying in Amazon Redshift until they finish resyncing.

• Needs attention – The integration encountered an event or error that requires manual
intervention to resolve it. To fix the issue, follow the instructions in the error message on the
integration details page.

• Failed – The integration encountered an unrecoverable event or error that can't be fixed. You
must delete and recreate the integration.

Viewing integrations 3137

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/
https://us-east-2.console.aws.amazon.com/rds-preview/home?region=us-east-2#databases:
https://us-east-2.console.aws.amazon.com/rds-preview/home?region=us-east-2#databases:

Amazon Aurora User Guide for Aurora

• Deleting – The integration is being deleted.

AWS CLI

To view all zero-ETL integrations in the current account using the AWS CLI, use the describe-
integrations command and specify the --integration-identifier option.

Example

For Linux, macOS, or Unix:

aws rds describe-integrations \
 --integration-identifier ee605691-6c47-48e8-8622-83f99b1af374

For Windows:

aws rds describe-integrations ^
 --integration-identifier ee605691-6c47-48e8-8622-83f99b1af374

RDS API

To view zero-ETL integration using the Amazon RDS API, use the DescribeIntegrations
operation with the IntegrationIdentifier parameter.

Monitoring integrations using system tables

Amazon Redshift has system tables and views that contain information about how the system is
functioning. You can query these system tables and views the same way that you would query any
other database table. For more information about system tables and views in Amazon Redshift, see
System tables reference in the Amazon Redshift Database Developer Guide.

You can query the following system views and tables to get information about your Aurora zero-
ETL integrations with Amazon Redshift:

• SVV_INTEGRATION – Provides configuration details for your integrations.

• SVV_INTEGRATION_TABLE_STATE – Describes the state of each table within an integration.

• SYS_INTEGRATION_TABLE_STATE_CHANGE – Displays table state change logs for an integration.

• SYS_INTEGRATION_ACTIVITY – Provides information about completed integration runs.

Monitoring using system tables 3138

https://docs.aws.amazon.com/cli/latest/reference/rds/describe-integrations.html
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-integrations.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DescribeIntegrations.html
https://docs.aws.amazon.com/redshift/latest/dg/cm_chap_system-tables.html
https://docs.aws.amazon.com/redshift/latest/dg/r_SVV_INTEGRATION.html
https://docs.aws.amazon.com/redshift/latest/dg/r_SVV_INTEGRATION_TABLE_STATE.html
https://docs.aws.amazon.com/redshift/latest/dg/r_SYS_INTEGRATION_TABLE_STATE_CHANGE.html
https://docs.aws.amazon.com/redshift/latest/dg/r_SYS_INTEGRATION_ACTIVITY.html

Amazon Aurora User Guide for Aurora

All integration-related Amazon CloudWatch metrics originate from Amazon Redshift. For more
information, see Monitoring zero-ETL integrations in the Amazon Redshift Management Guide.
Currently, Amazon Aurora doesn't publish any integration metrics to CloudWatch.

Monitoring integrations with Amazon EventBridge

Amazon Redshift sends integration-related events to Amazon EventBridge. For a list of events
and their corresponding event IDs, see Zero-ETL integration event notifications with Amazon
EventBridge in the Amazon Redshift Management Guide.

Modifying Aurora zero-ETL integrations with Amazon Redshift

You can modify only the name, description, and data filtering options for a zero-ETL integration
with Amazon Redshift. You can't modify the AWS KMS key used to encrypt the integration, or the
source or target databases.

If you add a data filter to an existing integration, Aurora reevaluates the filter as if it always
existed. It removes any data that is currently in the target Amazon Redshift data warehouse that
doesn't match the new filtering criteria. If you remove a data filter from an integration, it replicates
any data that previously didn't match the filtering criteria (but now does) into the target data
warehouse. For more information, see the section called “Data filtering for zero-ETL integrations”.

You can modify a zero-ETL integration using the AWS Management Console, the AWS CLI, or the
Amazon RDS API.

Note

Currently, you can only modify integrations that have Aurora MySQL source DB clusters.
Modifying integrations isn't supported for the preview release of Aurora PostgreSQL zero-
ETL integrations with Amazon Redshift.

RDS console

To modify a zero-ETL integration

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

Monitoring with EventBridge 3139

https://docs.aws.amazon.com/redshift/latest/mgmt/zero-etl-using.monitoring.html
https://docs.aws.amazon.com/redshift/latest/mgmt/integration-event-notifications
https://docs.aws.amazon.com/redshift/latest/mgmt/integration-event-notifications
https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Aurora User Guide for Aurora

2. In the navigation pane, choose Zero-ETL integrations, and then choose the integration that
you want to modify.

3. Choose Modify and make modifications to any available settings.

4. When all the changes are as you want them, choose Modify.

AWS CLI

To modify a zero-ETL integration using the AWS CLI, call the modify-integration command. Along
with the --integration-identifier, specify any of the following options:

• --integration-name – Specify a new name for the integration.

• --description – Specify a new description for the integration.

• --data-filter – Specify data filtering options for the integration. For more information, see
the section called “Data filtering for zero-ETL integrations”.

Example

The following request modifies an existing integration.

For Linux, macOS, or Unix:

aws rds modify-integration \
 --integration-identifier ee605691-6c47-48e8-8622-83f99b1af374 \
 --integration-name my-renamed-integration

For Windows:

aws rds modify-integration ^
 --integration-identifier ee605691-6c47-48e8-8622-83f99b1af374 ^
 --integration-name my-renamed-integration

RDS API

To modify a zero-ETL integration using the RDS API, call the ModifyIntegration operation. Specify
the integration identifier, and the parameters that you want to modify.

Modifying zero-ETL integrations 3140

https://docs.aws.amazon.com/cli/latest/reference/rds/modify-integration.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyIntegration.html

Amazon Aurora User Guide for Aurora

Deleting Aurora zero-ETL integrations with Amazon Redshift

When you delete a zero-ETL integration, Amazon Aurora removes it from the source Aurora DB
cluster. Your transactional data isn't deleted from Amazon Aurora or Amazon Redshift, but Aurora
doesn't send new data to Amazon Redshift.

You can only delete an integration when it has a status of Active, Failed, Syncing, or Needs
attention.

You can delete zero-ETL integrations using the AWS Management Console, the AWS CLI, or the RDS
API.

Console

To delete a zero-ETL integration

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

If the integration has an Aurora PostgreSQL source DB cluster, you must sign in to the Amazon
RDS Database Preview Environment at https://us-east-2.console.aws.amazon.com/rds-
preview/home?region=us-east-2#databases.

2. From the left navigation pane, choose Zero-ETL integrations.

3. Select the zero-ETL integration that you want to delete.

4. Choose Actions, Delete, and confirm deletion.

AWS CLI

Note

During the preview of Aurora PostgreSQL zero-ETL integrations, you can only delete
integrations through the AWS Management Console. You can't use the AWS CLI, the
Amazon RDS API, or any of the SDKs.

To delete a zero-ETL integration, use the delete-integration command and specify the --
integration-identifier option.

Deleting zero-ETL integrations 3141

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/
https://us-east-2.console.aws.amazon.com/rds-preview/home?region=us-east-2#databases:
https://us-east-2.console.aws.amazon.com/rds-preview/home?region=us-east-2#databases:
https://docs.aws.amazon.com/cli/latest/reference/rds/delete-integration.html

Amazon Aurora User Guide for Aurora

Example

For Linux, macOS, or Unix:

aws rds delete-integration \
 --integration-identifier ee605691-6c47-48e8-8622-83f99b1af374

For Windows:

aws rds delete-integration ^
 --integration-identifier ee605691-6c47-48e8-8622-83f99b1af374

RDS API

Note

During the preview of Aurora PostgreSQL zero-ETL integrations, you can only delete
integrations through the AWS Management Console. You can't use the AWS CLI, the
Amazon RDS API, or any of the SDKs.

To delete a zero-ETL integration using the Amazon RDS API, use the DeleteIntegration
operation with the IntegrationIdentifier parameter.

Troubleshooting Aurora zero-ETL integrations with Amazon
Redshift

You can check the state of a zero-ETL integration by querying the SVV_INTEGRATION system table
in Amazon Redshift. If the state column has a value of ErrorState, it means something's wrong.
For more information, see the section called “Monitoring using system tables”.

Use the following information to troubleshoot common issues with Aurora zero-ETL integrations
with Amazon Redshift.

Topics

• I can't create a zero-ETL integration

• My integration is stuck in a state of Syncing

Troubleshooting zero-ETL integrations 3142

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DeleteIntegration.html
https://docs.aws.amazon.com/redshift/latest/dg/r_SVV_INTEGRATION.html

Amazon Aurora User Guide for Aurora

• My tables aren't replicating to Amazon Redshift

• One or more of my Amazon Redshift tables requires a resync

I can't create a zero-ETL integration

If you can't create a zero-ETL integration, make sure that the following are correct for your source
DB cluster:

• Your source DB cluster is running Aurora MySQL version 3.05 (compatible with MySQL 8.0.32)
or higher, or Aurora PostgreSQL (compatible with PostgreSQL 15.4 and Zero-ETL Support).
To validate the engine version, choose the Configuration tab for the DB cluster and check the
Engine version.

• You correctly configured DB cluster parameters. If the required parameters are set incorrectly or
not associated with the cluster, creation fails. See the section called “Step 1: Create a custom DB
cluster parameter group”.

In addition, make sure the following are correct for your target data warehouse:

• Case sensitivity is enabled. See Turn on case sensitivity for your data warehouse.

• You added the correct authorized principal and integration source. See Configure authorization
for your Amazon Redshift data warehouse.

• The data warehouse is encrypted (if it's a provisioned cluster). See Amazon Redshift database
encryption.

My integration is stuck in a state of Syncing

Your integration might consistently show a status of Syncing if you change the value of one of
the required DB parameters.

To fix this issue, check the values of the parameters in the parameter group associated with the
source DB cluster, and make sure that they match the required values. For more information, see
the section called “Step 1: Create a custom DB cluster parameter group”.

If you modify any parameters, make sure to reboot the DB cluster to apply the changes.

I can't create a zero-ETL integration 3143

https://docs.aws.amazon.com/redshift/latest/mgmt/zero-etl-using.setting-up.html#zero-etl-setting-up.case-sensitivity
https://docs.aws.amazon.com/redshift/latest/mgmt/zero-etl-using.setting-up.html#zero-etl-using.redshift-iam
https://docs.aws.amazon.com/redshift/latest/mgmt/zero-etl-using.setting-up.html#zero-etl-using.redshift-iam
https://docs.aws.amazon.com/redshift/latest/mgmt/working-with-db-encryption.html
https://docs.aws.amazon.com/redshift/latest/mgmt/working-with-db-encryption.html

Amazon Aurora User Guide for Aurora

My tables aren't replicating to Amazon Redshift

If you don't see one or more tables reflected in Amazon Redshift, you can run the following
command to resynchronize them:

ALTER DATABASE dbname INTEGRATION REFRESH TABLES table1, table2;

For more information, see ALTER DATABASE in the Amazon Redshift SQL reference.

Your data might not be replicating because one or more of your source tables doesn't have a
primary key. The monitoring dashboard in Amazon Redshift displays the status of these tables
as Failed, and the status of the overall zero-ETL integration changes to Needs attention. To
resolve this issue, you can identify an existing key in your table that can become a primary key, or
you can add a synthetic primary key. For detailed solutions, see the following resources:

• Handle tables without primary keys while creating Amazon Aurora MySQL or Amazon RDS for
MySQL zero-ETL integrations with Amazon Redshift

• Handle tables without primary keys while creating Amazon Aurora PostgreSQL zero-ETL
integrations with Amazon Redshift

One or more of my Amazon Redshift tables requires a resync

Running certain commands on your source DB cluster might require your tables to be
resynchronized. In these cases, the SVV_INTEGRATION_TABLE_STATE system view shows a
table_state of ResyncRequired, which means that the integration must completely reload
data for that specific table from MySQL to Amazon Redshift.

When the table starts to resynchronize, it enters a state of Syncing. You don't need to take any
manual action to resynchronize a table. While table data is resynchronizing, you can't access it in
Amazon Redshift.

The following are some example operations that can put a table into a ResyncRequired state,
and possible alternatives to consider.

Operation Example Alternative

Adding a
column into

ALTER TABLE table_name
 ADD COLUMN column_name INTEGER

Amazon
Redshift

My tables aren't replicating to Amazon Redshift 3144

https://docs.aws.amazon.com/redshift/latest/dg/r_ALTER_DATABASE.html
https://aws.amazon.com/blogs/database/handle-tables-without-primary-keys-while-creating-amazon-aurora-mysql-or-amazon-rds-for-mysql-zero-etl-integrations-with-amazon-redshift/
https://aws.amazon.com/blogs/database/handle-tables-without-primary-keys-while-creating-amazon-aurora-mysql-or-amazon-rds-for-mysql-zero-etl-integrations-with-amazon-redshift/
https://aws.amazon.com/blogs/database/handle-tables-without-primary-keys-while-creating-amazon-aurora-postgresql-zero-etl-integrations-with-amazon-redshift/
https://aws.amazon.com/blogs/database/handle-tables-without-primary-keys-while-creating-amazon-aurora-postgresql-zero-etl-integrations-with-amazon-redshift/
https://docs.aws.amazon.com/redshift/latest/dg/r_SVV_INTEGRATION_TABLE_STATE.html

Amazon Aurora User Guide for Aurora

Operation Example Alternative

a specific
position

 NOT NULL first; doesn't
support
adding
columns
into specific
positions
using first
or after
keywords.
If the order
of columns
in the target
table isn't
critical, add
the column
to the end
of the table
using a
simpler
command:

ALTER
 TABLE table_nam
e
 ADD
 COLUMN column_na
me column_ty
pe ;

One or more of my Amazon Redshift tables requires a resync 3145

Amazon Aurora User Guide for Aurora

Operation Example Alternative

Adding a
timestamp
column with
the default
CURRENT_T
IMESTAMP

ALTER TABLE table_name
 ADD COLUMN column_name TIMESTAMP
 NOT NULL DEFAULT CURRENT_TIMESTAMP;

The
CURRENT_T
IMESTAMP
value for
existing
table rows
is calculate
d by Aurora
MySQL and
can't be
simulated
in Amazon
Redshift
without full
table data
resynchro
nization.

If possible,
switch the
default value
to a literal
constant like
2023-01-0
1
00:00:15 to
avoid latency
in table
availability.

One or more of my Amazon Redshift tables requires a resync 3146

Amazon Aurora User Guide for Aurora

Operation Example Alternative

Performin
g multiple
column
operation
s within
a single
command

ALTER TABLE table_name
 ADD COLUMN column_1,
 RENAME COLUMN column_2 TO column_3;

Consider
splitting the
command
into two
separate
operation
s, ADD and
RENAME,
which won't
require
resynchro
nization.

One or more of my Amazon Redshift tables requires a resync 3147

Amazon Aurora User Guide for Aurora

Using Aurora Serverless v2

Aurora Serverless v2 is an on-demand, autoscaling configuration for Amazon Aurora. Aurora
Serverless v2 helps to automate the processes of monitoring the workload and adjusting the
capacity for your databases. Capacity is adjusted automatically based on application demand.
You're charged only for the resources that your DB clusters consume. Thus, Aurora Serverless v2
can help you to stay within budget and avoid paying for computer resources that you don't use.

This type of automation is especially valuable for multitenant databases, distributed databases,
development and test systems, and other environments with highly variable and unpredictable
workloads.

Topics

• Aurora Serverless v2 use cases

• Advantages of Aurora Serverless v2

• How Aurora Serverless v2 works

• Requirements and limitations for Aurora Serverless v2

• Creating a DB cluster that uses Aurora Serverless v2

• Managing Aurora Serverless v2 DB clusters

• Performance and scaling for Aurora Serverless v2

• Migrating to Aurora Serverless v2

Aurora Serverless v2 use cases

Aurora Serverless v2 supports many types of database workloads. These range from development
and testing environments, to websites and applications that have unpredictable workloads, to the
most demanding, business-critical applications that require high scale and availability.

Aurora Serverless v2 is especially useful for the following use cases:

• Variable workloads – You're running workloads that have sudden and unpredictable increases
in activity. An example is a traffic site that sees a surge of activity when it starts raining. Another
is an e-commerce site with increased traffic when you offer sales or special promotions. With
Aurora Serverless v2, your database automatically scales capacity to meet the needs of the

Aurora Serverless v2 use cases 3148

Amazon Aurora User Guide for Aurora

application's peak load and scales back down when the surge of activity is over. With Aurora
Serverless v2, you no longer need to provision for peak or average capacity. You can specify an
upper capacity limit to handle the worst-case situation, and that capacity isn't used unless it's
needed.

The granularity of scaling in Aurora Serverless v2 helps you to match capacity closely to your
database's needs. For a provisioned cluster, scaling up requires adding a whole new DB instance.
For an Aurora Serverless v1 cluster, scaling up requires doubling the number of Aurora capacity
units (ACUs) for the cluster, such as from 16 to 32 or 32 to 64. In contrast, Aurora Serverless
v2 can add half an ACU when only a little more capacity is needed. It can add 0.5, 1, 1.5, 2, or
additional half-ACUs based on the additional capacity needed to handle an increase in workload.
And it can remove 0.5, 1, 1.5, 2, or additional half-ACUs when the workload decreases and that
capacity is no longer needed.

• Multi-tenant applications – With Aurora Serverless v2, you don't have to individually manage
database capacity for each application in your fleet. Aurora Serverless v2 manages individual
database capacity for you.

You can create a cluster for each tenant. That way, you can use features such as cloning,
snapshot restore, and Aurora global databases to enhance high availability and disaster recovery
as appropriate for each tenant.

Each tenant might have specific busy and idle periods depending on the time of day, time of
year, promotional events, and so on. Each cluster can have a wide capacity range. That way,
clusters with low activity incur minimal DB instance charges. Any cluster can quickly scale up to
handle periods of high activity.

• New applications – You're deploying a new application and you're unsure about the DB instance
size you need. By using Aurora Serverless v2, you can set up a cluster with one or many DB
instances and have the database autoscale to the capacity requirements of your application.

• Mixed-use applications – Suppose that you have an online transaction processing (OLTP)
application, but you periodically experience spikes in query traffic. By specifying promotion tiers
for the Aurora Serverless v2 DB instances in a cluster, you can configure your cluster so that the
reader DB instances can scale independently of the writer DB instance to handle the additional
load. When the usage spike subsides, the reader DB instances scale back down to match the
capacity of the writer DB instance.

• Capacity planning – Suppose that you usually adjust your database capacity, or verify the
optimal database capacity for your workload, by modifying the DB instance classes of all the DB
instances in a cluster. With Aurora Serverless v2, you can avoid this administrative overhead. You

Aurora Serverless v2 use cases 3149

Amazon Aurora User Guide for Aurora

can determine the appropriate minimum and maximum capacity by running the workload and
checking how much the DB instances actually scale.

You can modify existing DB instances from provisioned to Aurora Serverless v2 or from Aurora
Serverless v2 to provisioned. You don't need to create a new cluster or a new DB instance in such
cases.

With an Aurora global database, you might not need as much capacity for the secondary clusters
as in the primary cluster. You can use Aurora Serverless v2 DB instances in the secondary clusters.
That way, the cluster capacity can scale up if a secondary region is promoted and takes over your
application's workload.

• Development and testing – In addition to running your most demanding applications, you can
also use Aurora Serverless v2 for development and testing environments. With Aurora Serverless
v2, you can create DB instances with a low minimum capacity instead of using burstable db.t* DB
instance classes. You can set the maximum capacity high enough that those DB instances can still
run substantial workloads without running low on memory. When the database isn't in use, all of
the DB instances scale down to avoid unnecessary charges.

Tip

To make it convenient to use Aurora Serverless v2 in development and test
environments, the AWS Management Console provides the Easy create shortcut when
you create a new cluster. If you choose the Dev/Test option, Aurora creates a cluster
with an Aurora Serverless v2 DB instance and a capacity range that's typical for a
development and test system.

Using Aurora Serverless v2 for existing provisioned workloads

Suppose that you already have an Aurora application running on a provisioned cluster. You can
check how the application would work with Aurora Serverless v2 by adding one or more Aurora
Serverless v2 DB instances to the existing cluster as reader DB instances. You can check how
often the reader DB instances scale up and down. You can use the Aurora failover mechanism to
promote an Aurora Serverless v2 DB instance to be the writer and check how it handles the read/
write workload. That way, you can switch over with minimal downtime and without changing the
endpoint that your client applications use. For details on the procedure to convert existing clusters
to Aurora Serverless v2, see Migrating to Aurora Serverless v2.

Converting provisioned workloads 3150

Amazon Aurora User Guide for Aurora

Advantages of Aurora Serverless v2

Aurora Serverless v2 is intended for variable or "spiky" workloads. With such unpredictable
workloads, you might have difficulty planning when to change your database capacity. You might
also have trouble making capacity changes quickly enough using the familiar mechanisms such as
adding DB instances or changing DB instance classes. Aurora Serverless v2 provides the following
advantages to help with such use cases:

• Simpler capacity management than provisioned – Aurora Serverless v2 reduces the effort for
planning DB instance sizes and resizing DB instances as the workload changes. It also reduces the
effort for maintaining consistent capacity for all the DB instances in a cluster.

• Faster and easier scaling during periods of high activity – Aurora Serverless v2 scales compute
and memory capacity as needed, with no disruption to client transactions or your overall
workload. The ability to use reader DB instances with Aurora Serverless v2 helps you to take
advantage of horizontal scaling in addition to vertical scaling. The ability to use Aurora global
databases means that you can spread your Aurora Serverless v2 read workload across multiple
AWS Regions. This capability is more convenient than the scaling mechanisms for provisioned
clusters. It's also faster and more granular than the scaling capabilities in Aurora Serverless v1.

• Cost-effective during periods of low activity – Aurora Serverless v2 helps you to avoid
overprovisioning your DB instances. Aurora Serverless v2 adds resources in granular increments
when DB instances scale up. You pay only for the database resources that you consume. Aurora
Serverless v2 resource usage is measured on a per-second basis. That way, when a DB instance
scales down, the reduced resource usage is registered right away.

• Greater feature parity with provisioned – You can use many Aurora features with Aurora
Serverless v2 that aren't available for Aurora Serverless v1. For example, with Aurora Serverless
v2 you can use reader DB instances, global databases, AWS Identity and Access Management
(IAM) database authentication, and Performance Insights. You can also use many more
configuration parameters than with Aurora Serverless v1.

In particular, with Aurora Serverless v2 you can take advantage of the following features from
provisioned clusters:

• Reader DB instances – Aurora Serverless v2 can take advantage of reader DB instances to scale
horizontally. When a cluster contains one or more reader DB instances, the cluster can fail
over immediately in case of problems with the writer DB instance. This is a capability that isn't
available with Aurora Serverless v1.

Advantages of Aurora Serverless v2 3151

Amazon Aurora User Guide for Aurora

• Multi-AZ clusters – You can distribute the Aurora Serverless v2 DB instances of a cluster
across multiple Availability Zones (AZs). Setting up a Multi-AZ cluster helps to ensure business
continuity even in the rare case of issues that affect an entire AZ. This is a capability that isn't
available with Aurora Serverless v1.

• Global databases – You can use Aurora Serverless v2 in combination with Aurora global
databases to create additional read-only copies of your cluster in other AWS Regions for
disaster recovery purposes.

• RDS Proxy – You can use Amazon RDS Proxy to allow your applications to pool and share
database connections to improve their ability to scale.

• Faster, more granular, less disruptive scaling than Aurora Serverless v1 – Aurora Serverless
v2 can scale up and down faster. Scaling can change capacity by as little as 0.5 ACUs, instead of
doubling or halving the number of ACUs. Scaling typically happens with no pause in processing
at all. Scaling doesn't involve an event that you have to be aware of, as with Aurora Serverless
v1. Scaling can happen while SQL statements are running and transactions are open, without the
need to wait for a quiet point.

How Aurora Serverless v2 works

The following overview describes how Aurora Serverless v2 works.

Topics

• Aurora Serverless v2 overview

• Configurations for Aurora DB clusters

• Aurora Serverless v2 capacity

• Aurora Serverless v2 scaling

• Aurora Serverless v2 and high availability

• Aurora Serverless v2 and storage

• Configuration parameters for Aurora clusters

Aurora Serverless v2 overview

Amazon Aurora Serverless v2 is suitable for the most demanding, highly variable workloads.
For example, your database usage might be heavy for a short period of time, followed by long
periods of light activity or no activity at all. Some examples are retail, gaming, or sports websites

How Aurora Serverless v2 works 3152

Amazon Aurora User Guide for Aurora

with periodic promotional events, and databases that produce reports when needed. Others are
development and testing environments, and new applications where usage might ramp up quickly.
For cases such as these and many others, configuring capacity correctly in advance isn't always
possible with the provisioned model. It can also result in higher costs if you overprovision and have
capacity that you don't use.

In contrast, Aurora provisioned clusters are suitable for steady workloads. With provisioned
clusters, you choose a DB instance class that has a predefined amount of memory, CPU power, I/
O bandwidth, and so on. If your workload changes, you manually modify the instance class of your
writer and readers. The provisioned model works well when you can adjust capacity in advance
of expected consumption patterns and it's acceptable to have brief outages while you change the
instance class of the writer and readers in your cluster.

Aurora Serverless v2 is architected from the ground up to support serverless DB clusters that
are instantly scalable. Aurora Serverless v2 is engineered to provide the same degree of security
and isolation as with provisioned writers and readers. These aspects are crucial in multitenant
serverless cloud environments. The dynamic scaling mechanism has very little overhead so that
it can respond quickly to changes in the database workload. It's also powerful enough to meet
dramatic increases in processing demand.

By using Aurora Serverless v2, you can create an Aurora DB cluster without being locked into a
specific database capacity for each writer and reader. You specify the minimum and maximum
capacity range. Aurora scales each Aurora Serverless v2 writer or reader in the cluster within that
capacity range. By using a Multi-AZ cluster where each writer or reader can scale dynamically, you
can take advantage of dynamic scaling and high availability.

Aurora Serverless v2 scales the database resources automatically based on your minimum and
maximum capacity specifications. Scaling is fast because most scaling events operations keep the
writer or reader on the same host. In the rare cases that an Aurora Serverless v2 writer or reader is
moved from one host to another, Aurora Serverless v2 manages the connections automatically. You
don't need to change your database client application code or your database connection strings.

With Aurora Serverless v2, as with provisioned clusters, storage capacity and compute capacity are
separate. When we refer to Aurora Serverless v2 capacity and scaling, it's always compute capacity
that's increasing or decreasing. Thus, your cluster can contain many terabytes of data even when
the CPU and memory capacity scale down to low levels.

Instead of provisioning and managing database servers, you specify database capacity. For details
about Aurora Serverless v2 capacity, see Aurora Serverless v2 capacity. The actual capacity of each

Overview 3153

Amazon Aurora User Guide for Aurora

Aurora Serverless v2 writer or reader varies over time, depending on your workload. For details
about that mechanism, see Aurora Serverless v2 scaling.

Important

With Aurora Serverless v1, your cluster has a single measure of compute capacity that
can scale between the minimum and maximum capacity values. With Aurora Serverless
v2, your cluster can contain readers in addition to the writer. Each Aurora Serverless v2
writer and reader can scale between the minimum and maximum capacity values. Thus,
the total capacity of your Aurora Serverless v2 cluster depends on both the capacity range
that you define for your DB cluster and the number of writers and readers in the cluster. At
any specific time, you are only charged for the Aurora Serverless v2 capacity that is being
actively used in your Aurora DB cluster.

Configurations for Aurora DB clusters

For each of your Aurora DB clusters, you can choose any combination of Aurora Serverless v2
capacity, provisioned capacity, or both.

You can set up a cluster that contains both Aurora Serverless v2 and provisioned capacity, called a
mixed-configuration cluster. For example, suppose that you need more read/write capacity than is
available for an Aurora Serverless v2 writer. In this case, you can set up the cluster with a very large
provisioned writer. In that case, you can still use Aurora Serverless v2 for the readers. Or suppose
that the write workload for your cluster varies but the read workload is steady. In this case, you can
set up your cluster with an Aurora Serverless v2 writer and one or more provisioned readers.

You can also set up a DB cluster where all the capacity is managed by Aurora Serverless v2. To do
this, you can create a new cluster and use Aurora Serverless v2 from the start. Or you can replace
all the provisioned capacity in an existing cluster with Aurora Serverless v2. For example, some
of the upgrade paths from older engine versions require starting with a provisioned writer and
replacing it with a Aurora Serverless v2 writer. For the procedures to create a new DB cluster with
Aurora Serverless v2 or to switch an existing DB cluster to Aurora Serverless v2, see Creating an
Aurora Serverless v2 DB cluster and Switching from a provisioned cluster to Aurora Serverless v2.

If you don't use Aurora Serverless v2 at all in a DB cluster, all the writers and readers in the DB
cluster are provisioned. This is the oldest and most common kind of DB cluster that most users are
familiar with. In fact, before Aurora Serverless, there wasn't a special name for this kind of Aurora
DB cluster. Provisioned capacity is constant. The charges are relatively easy to forecast. However,

Cluster configurations 3154

Amazon Aurora User Guide for Aurora

you have to predict in advance how much capacity you need. In some cases, your predictions might
be inaccurate or your capacity needs might change. In these cases, your DB cluster can become
underprovisioned (slower than you want) or overprovisioned (more expensive than you want).

Aurora Serverless v2 capacity

The unit of measure for Aurora Serverless v2 is the Aurora capacity unit (ACU). Aurora Serverless v2
capacity isn't tied to the DB instance classes that you use for provisioned clusters.

Each ACU is a combination of approximately 2 gibibytes (GiB) of memory, corresponding CPU,
and networking. You specify the database capacity range using this unit of measure. The
ServerlessDatabaseCapacity and ACUUtilization metrics help you to determine how
much capacity your database is actually using and where that capacity falls within the specified
range.

At any moment in time, each Aurora Serverless v2 DB writer or reader has a capacity. The capacity
is represented as a floating-point number representing ACUs. The capacity increases or decreases
whenever the writer or reader scales. This value is measured every second. For each DB cluster
where you intend to use Aurora Serverless v2, you define a capacity range: the minimum and
maximum capacity values that each Aurora Serverless v2 writer or reader can scale between. The
capacity range is the same for each Aurora Serverless v2 writer or reader in a DB cluster. Each
Aurora Serverless v2 writer or reader has its own capacity, falling somewhere in that range.

The largest Aurora Serverless v2 capacity that you can define is 128 ACUs. For all the
considerations when choosing the maximum capacity value, see Choosing the maximum Aurora
Serverless v2 capacity setting for a cluster.

The smallest Aurora Serverless v2 capacity that you can define is 0.5 ACUs. You can specify a higher
number if it's less than or equal to the maximum capacity value. Setting the minimum capacity to
a small number lets lightly loaded DB clusters consume minimal compute resources. At the same
time, they stay ready to accept connections immediately and scale up when they become busy.

We recommend setting the minimum to a value that allows each DB writer or reader to hold the
working set of the application in the buffer pool. That way, the contents of the buffer pool aren't
discarded during idle periods. For all the considerations when choosing the minimum capacity
value, see Choosing the minimum Aurora Serverless v2 capacity setting for a cluster.

Depending on how you configure the readers in a Multi-AZ DB cluster, their capacities can be
tied to the capacity of the writer or independently. For details about how to do that, see Aurora
Serverless v2 scaling.

Capacity 3155

Amazon Aurora User Guide for Aurora

Monitoring Aurora Serverless v2 involves measuring the capacity values for the writer and readers
in your DB cluster over time. If your database doesn't scale down to the minimum capacity, you
can take actions such as adjusting the minimum and optimizing your database application. If your
database consistently reaches its maximum capacity, you can take actions such as increasing the
maximum. You can also optimize your database application and spread the query load across more
readers.

The charges for Aurora Serverless v2 capacity are measured in terms of ACU-hours. For information
about how Aurora Serverless v2 charges are calculated, see the Aurora pricing page.

Suppose that the total number of writers and readers in your cluster is N. In that case, the cluster
consumes approximately n x minimum ACUs when you aren't running any database operations.
Aurora itself might run monitoring or maintenance operations that cause some small amount of
load. That cluster consumes no more than n x maximum ACUs when the database is running at
full capacity.

For more details about choosing appropriate minimum and maximum ACU values, see Choosing
the Aurora Serverless v2 capacity range for an Aurora cluster. The minimum and maximum
ACU values that you specify also affect the way some of the Aurora configuration parameters
work for Aurora Serverless v2. For details about the interaction between the capacity range and
configuration parameters, see Working with parameter groups for Aurora Serverless v2.

Aurora Serverless v2 scaling

For each Aurora Serverless v2 writer or reader, Aurora continuously tracks utilization of resources
such as CPU, memory, and network. These measurements collectively are called the load. The
load includes the database operations performed by your application. It also includes background
processing for the database server and Aurora administrative tasks. When capacity is constrained
by any of these, Aurora Serverless v2 scales up. Aurora Serverless v2 also scales up when it
detects performance issues that it can resolve by doing so. You can monitor resource utilization
and how it affects Aurora Serverless v2 scaling by using the procedures in Important Amazon
CloudWatch metrics for Aurora Serverless v2 and Monitoring Aurora Serverless v2 performance
with Performance Insights.

The load can vary across the writer and readers in your DB cluster. The writer handles all data
definition language (DDL) statements, such as CREATE TABLE, ALTER TABLE, and DROP TABLE.
The writer also handles all data manipulation language (DML) statements, such as INSERT and
UPDATE. Readers can process read-only statements, such as SELECT queries.

Scaling 3156

https://aws.amazon.com/rds/aurora/pricing/

Amazon Aurora User Guide for Aurora

Scaling is the operation that increases or decreases Aurora Serverless v2 capacity for your database.
With Aurora Serverless v2, each writer and reader has its own current capacity value, measured
in ACUs. Aurora Serverless v2 scales a writer or reader up to a higher capacity when its current
capacity is too low to handle the load. It scales the writer or reader down to a lower capacity when
its current capacity is higher than needed.

Unlike Aurora Serverless v1, which scales by doubling the capacity each time the DB cluster
reaches a threshold, Aurora Serverless v2 can increase capacity incrementally. When your workload
demand begins to reach the current database capacity of a writer or reader, Aurora Serverless v2
increases the number of ACUs for that writer or reader. Aurora Serverless v2 scales capacity in the
increments required to provide the best performance for the resources consumed. Scaling happens
in increments as small as 0.5 ACUs. The larger the current capacity, the larger the scaling increment
and thus the faster scaling can happen.

Because Aurora Serverless v2 scaling is so frequent, granular, and nondisruptive, it doesn't cause
discrete events in the AWS Management Console the way that Aurora Serverless v1 does. Instead,
you can measure the Amazon CloudWatch metrics such as ServerlessDatabaseCapacity and
ACUUtilization and track their minimum, maximum, and average values over time. To learn
more about Aurora metrics, see Monitoring metrics in an Amazon Aurora cluster. For tips about
monitoring Aurora Serverless v2, see Important Amazon CloudWatch metrics for Aurora Serverless
v2.

You can choose to make a reader scale at the same time as the associated writer, or independently
from the writer. You do so by specifying the promotion tier for that reader.

• Readers in promotion tiers 0 and 1 scale at the same time as the writer. That scaling behavior
makes readers in priority tiers 0 and 1 ideal for availability. That's because they are always sized
to the right capacity to take over the workload from the writer in case of failover.

• Readers in promotion tiers 2–15 scale independently from the writer. Each reader remains within
the minimum and maximum ACU values that you specified for your cluster. When a reader scales
independently of the associated writer DB, it can become idle and scale down while the writer
continues to process a high volume of transactions. It's still available as a failover target, if no
other readers are available in lower promotion tiers. However, if it's promoted to be the writer, it
might need to scale up to handle the full workload of the writer.

For details about promotion tiers, see Choosing the promotion tier for an Aurora Serverless v2
reader.

Scaling 3157

Amazon Aurora User Guide for Aurora

The notions of scaling points and associated timeout periods from Aurora Serverless v1 don't apply
in Aurora Serverless v2. Aurora Serverless v2 scaling can happen while database connections are
open, while SQL transactions are in process, while tables are locked, and while temporary tables
are in use. Aurora Serverless v2 doesn't wait for a quiet point to begin scaling. Scaling doesn't
disrupt any database operations that are underway.

If your workload requires more read capacity than is available with a single writer and a single
reader, you can add multiple Aurora Serverless v2 readers to the cluster. Each Aurora Serverless
v2 reader can scale within the range of minimum and maximum capacity values that you specified
for your DB cluster. You can use the cluster's reader endpoint to direct read-only sessions to the
readers and reduce the load on the writer.

Whether Aurora Serverless v2 performs scaling, and how fast scaling occurs once it starts, also
depends on the minimum and maximum ACU settings for the cluster. In addition, it depends on
whether a reader is configured to scale along with the writer or independently from it. For details
about the factors that affect Aurora Serverless v2 scaling, see Performance and scaling for Aurora
Serverless v2.

Note

Currently, Aurora Serverless v2 writers and readers don't scale all the way down to zero
ACUs. Idle Aurora Serverless v2 writers and readers can scale down to the minimum ACU
value that you specified for the cluster.
That behavior is different than Aurora Serverless v1, which can pause after a period of
idleness, but then takes some time to resume when you open a new connection. When
your DB cluster with Aurora Serverless v2 capacity isn't needed for some time, you can stop
and start clusters as with provisioned DB clusters. For details about stopping and starting
clusters, see Stopping and starting an Amazon Aurora DB cluster.

Aurora Serverless v2 and high availability

The way to establish high availability for an Aurora DB cluster is to make it a Multi-AZ DB cluster. A
Multi-AZ Aurora DB cluster has compute capacity available at all times in more than one Availability
Zone (AZ). That configuration keeps your database up and running even in case of a significant
outage. Aurora performs an automatic failover in case of an issue that affects the writer or even
the entire AZ. With Aurora Serverless v2, you can choose for the standby compute capacity to scale
up and down along with the capacity of the writer. That way, the compute capacity in the second

High availability 3158

Amazon Aurora User Guide for Aurora

AZ is ready to take over the current workload at any time. At the same time, the compute capacity
in all AZs can scale down when the database is idle. For details about how Aurora works with AWS
Regions and Availability Zones, see High availability for Aurora DB instances.

The Aurora Serverless v2 Multi-AZ capability uses readers in addition to the writer. Support for
readers is new for Aurora Serverless v2 compared to Aurora Serverless v1. You can add up to 15
Aurora Serverless v2 readers spread across 3 AZs to an Aurora DB cluster.

For business-critical applications that must remain available even in case of an issue that affects
your entire cluster or the whole AWS Region, you can set up an Aurora global database. You can
use Aurora Serverless v2 capacity in the secondary clusters so they're ready to take over during
disaster recovery. They can also scale down when the database isn't busy. For details about Aurora
global databases, see Using Amazon Aurora global databases.

Aurora Serverless v2 works like provisioned for failover and other high availability features. For
more information, see High availability for Amazon Aurora.

Suppose that you want to ensure maximum availability for your Aurora Serverless v2 cluster.
You can create a reader in addition to the writer. If you assign the reader to promotion tier 0 or
1, whatever scaling happens for the writer also happens for the reader. That way, a reader with
identical capacity is always ready to take over for the writer in case of a failover.

Suppose that you want to run quarterly reports for your business at the same time as your cluster
continues to process transactions. If you add an Aurora Serverless v2 reader to the cluster and
assign it to a promotion tier from 2 through 15, you can connect directly to that reader to run the
reports. Depending on how memory-intensive and CPU-intensive the reporting queries are, that
reader can scale up to accommodate the workload. It can then scale down again when the reports
are finished.

Aurora Serverless v2 and storage

The storage for each Aurora DB cluster consists of six copies of all your data, spread across three
AZs. This built-in data replication applies regardless of whether your DB cluster includes any
readers in addition to the writer. That way, your data is safe, even from issues that affect the
compute capacity of the cluster.

Aurora Serverless v2 storage has the same reliability and durability characteristics as described in
Amazon Aurora storage and reliability. That's because the storage for Aurora DB clusters works the
same whether the compute capacity uses Aurora Serverless v2 or provisioned.

Storage 3159

Amazon Aurora User Guide for Aurora

Configuration parameters for Aurora clusters

You can adjust all the same cluster and database configuration parameters for clusters with Aurora
Serverless v2 capacity as for provisioned DB clusters. However, some capacity-related parameters
are handled differently for Aurora Serverless v2. In a mixed-configuration cluster, the parameter
values that you specify for those capacity-related parameters still apply to any provisioned writers
and readers.

Almost all of the parameters work the same way for Aurora Serverless v2 writers and readers as for
provisioned ones. The exceptions are some parameters that Aurora automatically adjusts during
scaling, and some parameters that Aurora keeps at fixed values that depend on the maximum
capacity setting.

For example, the amount of memory reserved for the buffer cache increases as a writer or reader
scales up, and decreases as it scales down. That way, memory can be released when your database
isn't busy. Conversely, Aurora automatically sets the maximum number of connections to a value
that's appropriate based on the maximum capacity setting. That way, active connections aren't
dropped if the load drops and Aurora Serverless v2 scales down. For information about how
Aurora Serverless v2 handles specific parameters, see Working with parameter groups for Aurora
Serverless v2.

Requirements and limitations for Aurora Serverless v2

When you create a cluster where you intend to use Aurora Serverless v2 DB instances, pay
attention to the following requirements and limitations.

Topics

• Region and version availability

• Clusters that use Aurora Serverless v2 must have a capacity range specified

• Some provisioned features aren't supported in Aurora Serverless v2

• Some Aurora Serverless v2 aspects are different from Aurora Serverless v1

Region and version availability

Feature availability and support varies across specific versions of each Aurora database engine,
and across AWS Regions. For more information on version and Region availability with Aurora and
Aurora Serverless v2, see Supported Regions and Aurora DB engines for Aurora Serverless v2.

Configuration parameters 3160

Amazon Aurora User Guide for Aurora

The following example shows the AWS CLI commands to confirm the exact DB engine values
you can use with Aurora Serverless v2 for a specific AWS Region. The --db-instance-class
parameter for Aurora Serverless v2 is always db.serverless. The --engine parameter can be
aurora-mysql or aurora-postgresql. Substitute the appropriate --region and --engine
values to confirm the --engine-version values that you can use. If the command doesn't
produce any output, Aurora Serverless v2 isn't available for that combination of AWS Region and
DB engine.

aws rds describe-orderable-db-instance-options --engine aurora-mysql --db-instance-
class db.serverless \
 --region my_region --query 'OrderableDBInstanceOptions[].[EngineVersion]' --output
 text

aws rds describe-orderable-db-instance-options --engine aurora-postgresql --db-
instance-class db.serverless \
 --region my_region --query 'OrderableDBInstanceOptions[].[EngineVersion]' --output
 text

Clusters that use Aurora Serverless v2 must have a capacity range
specified

An Aurora cluster must have a ServerlessV2ScalingConfiguration attribute before you
can add any DB instances that use the db.serverless DB instance class. This attribute specifies
the capacity range. Aurora Serverless v2 capacity ranges from a minimum of 0.5 Aurora capacity
units (ACU) through 128 ACUs, in increments of 0.5 ACU. Each ACU provides the equivalent of
approximately 2 gibibytes (GiB) of RAM and associated CPU and networking. For details about how
Aurora Serverless v2 uses the capacity range settings, see How Aurora Serverless v2 works.

You can specify the minimum and maximum ACU values in the AWS Management Console when
you create a cluster and associated Aurora Serverless v2 DB instance. You can also specify the
--serverless-v2-scaling-configuration option in the AWS CLI. Or you can specify the
ServerlessV2ScalingConfiguration parameter with the Amazon RDS API. You can specify
this attribute when you create a cluster or modify an existing cluster. For the procedures to set the
capacity range, see Setting the Aurora Serverless v2 capacity range for a cluster. For a detailed
discussion of how to pick minimum and maximum capacity values and how those settings affect
some database parameters, see Choosing the Aurora Serverless v2 capacity range for an Aurora
cluster.

Clusters that use Aurora Serverless v2 must have a capacity range specified 3161

Amazon Aurora User Guide for Aurora

Some provisioned features aren't supported in Aurora Serverless v2

The following features from Aurora provisioned DB instances currently aren't available for Amazon
Aurora Serverless v2:

• Database activity streams (DAS).

• Cluster cache management for Aurora PostgreSQL. The apg_ccm_enabled configuration
parameter doesn't apply to Aurora Serverless v2 DB instances.

Some Aurora features work with Aurora Serverless v2, but might cause issues if your capacity range
is lower than needed for the memory requirements for those features with your specific workload.
In that case, your database might not perform as well as usual, or might encounter out-of-memory
errors. For recommendations about setting the appropriate capacity range, see Choosing the
Aurora Serverless v2 capacity range for an Aurora cluster. For troubleshooting information if your
database encounters out-of-memory errors due to a misconfigured capacity range, see Avoiding
out-of-memory errors.

Aurora Auto Scaling isn't supported. This type of scaling adds new readers to handle additional
read-intensive workload, based on CPU usage. However, scaling based on CPU usage isn't
meaningful for Aurora Serverless v2. As an alternative, you can create Aurora Serverless v2 reader
DB instances in advance and leave them scaled down to low capacity. That's a faster and less
disruptive way to scale a cluster's read capacity than adding new DB instances dynamically.

Some Aurora Serverless v2 aspects are different from Aurora Serverless
v1

If you are an Aurora Serverless v1 user and this is your first time using Aurora Serverless v2, consult
the differences between Aurora Serverless v2 and Aurora Serverless v1 requirements to understand
how requirements are different between Aurora Serverless v1 and Aurora Serverless v2.

Creating a DB cluster that uses Aurora Serverless v2

To create an Aurora cluster where you can add Aurora Serverless v2 DB instances, you follow the
same procedure as in Creating an Amazon Aurora DB cluster. With Aurora Serverless v2, your
clusters are interchangeable with provisioned clusters. You can have clusters where some DB
instances use Aurora Serverless v2 and some DB instances are provisioned.

Some provisioned features aren't supported in Aurora Serverless v2 3162

Amazon Aurora User Guide for Aurora

Topics

• Settings for Aurora Serverless v2 DB clusters

• Creating an Aurora Serverless v2 DB cluster

• Creating an Aurora Serverless v2 writer DB instance

Settings for Aurora Serverless v2 DB clusters

Make sure that the cluster's initial settings meet the requirements listed in Requirements and
limitations for Aurora Serverless v2. Specify the following settings to make sure that you can add
Aurora Serverless v2 DB instances to the cluster:

AWS Region

Create the cluster in an AWS Region where Aurora Serverless v2 DB instances are available.
For details about available Regions, see Supported Regions and Aurora DB engines for Aurora
Serverless v2.

DB engine version

Choose an engine version that's compatible with Aurora Serverless v2. For information about
the Aurora Serverless v2 version requirements, see Requirements and limitations for Aurora
Serverless v2.

DB instance class

If you create a cluster using the AWS Management Console, you choose the DB instance class
for the writer DB instance at the same time. Choose the Serverless DB instance class. When you
choose that DB instance class, you also specify the capacity range for the writer DB instance.
That same capacity range applies to all other Aurora Serverless v2 DB instances that you add to
that cluster.

If you don't see the Serverless choice for the DB instance class, make sure that you chose a
DB engine version that's supported for Supported Regions and Aurora DB engines for Aurora
Serverless v2.

When you use the AWS CLI or the Amazon RDS API, the parameter that you specify for the DB
instance class is db.serverless.

Settings 3163

Amazon Aurora User Guide for Aurora

Capacity range

Fill in the minimum and maximum Aurora capacity unit (ACU) values that apply to all the DB
instances in the cluster. This option is available on both the Create cluster and Add reader
console pages when you choose Serverless for the DB instance class.

If you don't see the minimum and maximum ACU fields, make sure that you chose the
Serverless DB instance class for the writer DB instance.

If you initially create the cluster with a provisioned DB instance, you don't specify the minimum and
maximum ACUs. In that case you can modify the cluster afterward to add that setting. You can also
add an Aurora Serverless v2 reader DB instance to the cluster. You specify the capacity range as
part of that process.

Until you specify the capacity range for your cluster, you can't add any Aurora Serverless v2 DB
instances to the cluster using the AWS CLI or RDS API. If you try to add a Aurora Serverless v2
DB instance, you get an error. In the AWS CLI or the RDS API procedures, the capacity range is
represented by the ServerlessV2ScalingConfiguration attribute.

For clusters containing more than one reader DB instance, the failover priority of each Aurora
Serverless v2 reader DB instance plays an important part in how that DB instance scales up and
down. You can't specify the priority when you initially create the cluster. Keep this property in
mind when you add a second or later reader DB instance to your cluster. For more information, see
Choosing the promotion tier for an Aurora Serverless v2 reader.

Creating an Aurora Serverless v2 DB cluster

You can use the AWS Management Console, AWS CLI, or RDS API to create an Aurora Serverless v2
DB cluster.

Console

To create a cluster with an Aurora Serverless v2 writer

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Databases.

3. Choose Create database. On the page that appears, choose the following options:

• For Engine type, choose Aurora (MySQL Compatible) or Aurora (PostgreSQL Compatible).

Creating an Aurora Serverless v2 DB cluster 3164

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Aurora User Guide for Aurora

• For Version, choose one of the supported versions for Supported Regions and Aurora DB
engines for Aurora Serverless v2.

4. For DB instance class, select Serverless v2.

5. For Capacity range, you can accept the default range. Or you can choose other values for
minimum and maximum capacity units. You can choose from 0.5 ACUs minimum through 128
ACUs maximum, in increments of 0.5 ACU.

For more information about Aurora Serverless v2 capacity units, see Aurora Serverless v2
capacity and Performance and scaling for Aurora Serverless v2.

6. Choose any other DB cluster settings, as described in Settings for Aurora DB clusters.

7. Choose Create database to create your Aurora DB cluster with an Aurora Serverless v2 DB
instance as the writer instance, also known as the primary DB instance.

CLI

To create a DB cluster that's compatible with Aurora Serverless v2 DB instances using the AWS
CLI, you follow the CLI procedure in Creating an Amazon Aurora DB cluster. Include the following
parameters in your create-db-cluster command:

• --region AWS_Region_where_Aurora Serverless v2_instances_are_available

• --engine-version serverless_v2_compatible_engine_version

• --serverless-v2-scaling-configuration
MinCapacity=minimum_capacity,MaxCapacity=maximum_capacity

Creating an Aurora Serverless v2 DB cluster 3165

Amazon Aurora User Guide for Aurora

The following example shows the creation of an Aurora Serverless v2 DB cluster.

aws rds create-db-cluster \
 --db-cluster-identifier my-serverless-v2-cluster \
 --region eu-central-1 \
 --engine aurora-mysql \
 --engine-version 8.0.mysql_aurora.3.04.1 \
 --serverless-v2-scaling-configuration MinCapacity=1,MaxCapacity=4 \
 --master-username myuser \
 --manage-master-user-password

Note

When you create an Aurora Serverless v2 DB cluster using the AWS CLI, the engine mode
appears in the output as provisioned rather than serverless. The serverless engine
mode refers to Aurora Serverless v1.

This example specifies the --manage-master-user-password option to generate the
administrative password and manage it in Secrets Manager. For more information, see Password
management with Amazon Aurora and AWS Secrets Manager. Alternatively, you can use the --
master-password option to specify and manage the password yourself.

For information about the Aurora Serverless v2 version requirements, see Requirements and
limitations for Aurora Serverless v2. For information about the allowed numbers for the capacity
range and what those numbers represent, see Aurora Serverless v2 capacity and Performance and
scaling for Aurora Serverless v2.

To verify whether an existing cluster has the capacity settings specified, check the output of the
describe-db-clusters command for the ServerlessV2ScalingConfiguration attribute.
That attribute looks similar to the following.

"ServerlessV2ScalingConfiguration": {
 "MinCapacity": 1.5,
 "MaxCapacity": 24.0
}

Creating an Aurora Serverless v2 DB cluster 3166

Amazon Aurora User Guide for Aurora

Tip

If you don't specify the minimum and maximum ACUs when you create the cluster, you
can use the modify-db-cluster command afterward to add that setting. Until you
do, you can't add any Aurora Serverless v2 DB instances to the cluster. If you try to add a
db.serverless DB instance, you get an error.

API

To create a DB cluster that's compatible with Aurora Serverless v2 DB instances using the RDS
API, you follow the API procedure in Creating an Amazon Aurora DB cluster. Choose the following
settings. Make sure that your CreateDBCluster operation includes the following parameters:

EngineVersion serverless_v2_compatible_engine_version
ServerlessV2ScalingConfiguration with MinCapacity=minimum_capacity and
 MaxCapacity=maximum_capacity

For information about the Aurora Serverless v2 version requirements, see Requirements and
limitations for Aurora Serverless v2. For information about the allowed numbers for the capacity
range and what those numbers represent, see Aurora Serverless v2 capacity and Performance and
scaling for Aurora Serverless v2.

To check if an existing cluster has the capacity settings specified, check the output of the
DescribeDBClusters operation for the ServerlessV2ScalingConfiguration attribute.
That attribute looks similar to the following.

"ServerlessV2ScalingConfiguration": {
 "MinCapacity": 1.5,
 "MaxCapacity": 24.0
}

Tip

If you don't specify the minimum and maximum ACUs when you create the cluster, you
can use the ModifyDBCluster operation afterward to add that setting. Until you do,
you can't add any Aurora Serverless v2 DB instances to the cluster. If you try to add a
db.serverless DB instance, you get an error.

Creating an Aurora Serverless v2 DB cluster 3167

Amazon Aurora User Guide for Aurora

Creating an Aurora Serverless v2 writer DB instance

Console

When you create a DB cluster using the AWS Management Console, you specify the properties of
the writer DB instance at the same time. To make the writer DB instance use Aurora Serverless v2,
choose the Serverless DB instance class.

Then you set the capacity range for the cluster by specifying the minimum and maximum Aurora
capacity unit (ACU) values. These minimum and maximum values apply to each Aurora Serverless
v2 DB instance in the cluster.

If you don't create an Aurora Serverless v2 DB instance when you first create the cluster, you
can add one or more Aurora Serverless v2 DB instances later. To do so, follow the procedures in
Adding an Aurora Serverless v2 reader and Converting a provisioned writer or reader to Aurora
Serverless v2. You specify the capacity range at the time that you add the first Aurora Serverless v2
DB instance to the cluster. You can change the capacity range later by following the procedure in
Setting the Aurora Serverless v2 capacity range for a cluster.

CLI

When you create a Aurora Serverless v2 DB cluster using the AWS CLI, you explicitly add the writer
DB instance using the create-db-instance command. Include the following parameter:

• --db-instance-class db.serverless

Creating an Aurora Serverless v2 writer 3168

https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-instance.html

Amazon Aurora User Guide for Aurora

The following example shows the creation of an Aurora Serverless v2 writer DB instance.

aws rds create-db-instance \
 --db-cluster-identifier my-serverless-v2-cluster \
 --db-instance-identifier my-serverless-v2-instance \
 --db-instance-class db.serverless \
 --engine aurora-mysql

Managing Aurora Serverless v2 DB clusters

With Aurora Serverless v2, your clusters are interchangeable with provisioned clusters. The Aurora
Serverless v2 properties apply to one or more DB instances within a cluster. Thus, the procedures
for creating clusters, modifying clusters, creating and restoring snapshots, and so on, are basically
the same as for other kinds of Aurora clusters. For general procedures for managing Aurora clusters
and DB instances, see Managing an Amazon Aurora DB cluster.

In the following topics, you can learn about management considerations for clusters that contain
Aurora Serverless v2 DB instances.

Topics

• Setting the Aurora Serverless v2 capacity range for a cluster

• Checking the capacity range for Aurora Serverless v2

• Adding an Aurora Serverless v2 reader

• Converting a provisioned writer or reader to Aurora Serverless v2

• Converting an Aurora Serverless v2 writer or reader to provisioned

• Choosing the promotion tier for an Aurora Serverless v2 reader

• Using TLS/SSL with Aurora Serverless v2

• Viewing Aurora Serverless v2 writers and readers

• Logging for Aurora Serverless v2

Setting the Aurora Serverless v2 capacity range for a cluster

To modify configuration parameters or other settings for clusters containing Aurora Serverless
v2 DB instances, or the DB instances themselves, follow the same general procedures as for
provisioned clusters. For details, see Modifying an Amazon Aurora DB cluster.

Managing Aurora Serverless v2 3169

Amazon Aurora User Guide for Aurora

The most important setting that's unique to Aurora Serverless v2 is the capacity range. After you
set the minimum and maximum Aurora capacity unit (ACU) values for an Aurora cluster, you don't
need to actively adjust the capacity of the Aurora Serverless v2 DB instances in the cluster. Aurora
does that for you. This setting is managed at the cluster level. The same minimum and maximum
ACU values apply to each Aurora Serverless v2 DB instance in the cluster.

You can set the following specific values:

• Minimum ACUs – The Aurora Serverless v2 DB instance can reduce capacity down to this number
of ACUs.

• Maximum ACUs – The Aurora Serverless v2 DB instance can increase capacity up to this number
of ACUs.

Note

When you modify the capacity range for an Aurora Serverless v2 DB cluster, the change
takes place immediately, regardless of whether you choose to apply it immediately or
during the next scheduled maintenance window.

For details about the effects of the capacity range and how to monitor and fine-tune it, see
Important Amazon CloudWatch metrics for Aurora Serverless v2 and Performance and scaling for
Aurora Serverless v2. Your goal is to make sure that the maximum capacity for the cluster is high
enough to handle spikes in workload, and the minimum is low enough to minimize costs when the
cluster isn't busy.

Suppose that you determine based on your monitoring that the ACU range for the cluster should
be higher, lower, wider, or narrower. You can set the capacity of an Aurora cluster to a specific
range of ACUs with the AWS Management Console, the AWS CLI, or the Amazon RDS API. This
capacity range applies to every Aurora Serverless v2 DB instance in the cluster.

For example, suppose that your cluster has a capacity range of 1–16 ACUs and contains two Aurora
Serverless v2 DB instances. Then the cluster as a whole consumes somewhere between 2 ACUs
(when idle) and 32 ACUs (when fully utilized). If you change the capacity range from 8 to 20.5
ACUs, now the cluster consumes 16 ACUs when idle, and up to 41 ACUs when fully utilized.

Aurora automatically sets certain parameters for Aurora Serverless v2 DB instances to values that
depend on the maximum ACU value in the capacity range. For the list of such parameters, see

Setting the Aurora Serverless v2 capacity range for a cluster 3170

Amazon Aurora User Guide for Aurora

Maximum connections for Aurora Serverless v2. For static parameters that rely on this type of
calculation, the value is evaluated again when you reboot the DB instance. Thus, you can update
the value of such parameters by rebooting the DB instance after changing the capacity range. To
check whether you need to reboot your DB instance to pick up such parameter changes, check the
ParameterApplyStatus attribute of the DB instance. A value of pending-reboot indicates that
rebooting will apply changes to some parameter values.

Console

You can set the capacity range of a cluster that contains Aurora Serverless v2 DB instances with the
AWS Management Console.

When you use the console, you set the capacity range for the cluster at the time that you add
the first Aurora Serverless v2 DB instance to that cluster. You might do so when you choose the
Serverless v2 DB instance class for the writer DB instance when you create the cluster. Or you
might do so when you choose the Serverless DB instance class when you add an Aurora Serverless
v2 reader DB instance to the cluster. Or you might do so when you convert an existing provisioned
DB instance in the cluster to the Serverless DB instance class. For the full versions of those
procedures, see Creating an Aurora Serverless v2 writer DB instance, Adding an Aurora Serverless
v2 reader, and Converting a provisioned writer or reader to Aurora Serverless v2.

Whatever capacity range that you set at the cluster level applies to all Aurora Serverless v2 DB
instances in your cluster. The following image shows a cluster with multiple Aurora Serverless v2
reader DB instances. Each has an identical capacity range of 2–64 ACUs.

To modify the capacity range of an Aurora Serverless v2 cluster

1. Open the Amazon RDS console at https://console.aws.amazon.com/rds/.

2. In the navigation pane, choose Databases.

Setting the Aurora Serverless v2 capacity range for a cluster 3171

https://console.aws.amazon.com/rds/

Amazon Aurora User Guide for Aurora

3. Choose the cluster containing your Aurora Serverless v2 DB instances from the list. The cluster
must already contain at least one Aurora Serverless v2 DB instance. Otherwise, Aurora doesn't
show the Capacity range section.

4. For Actions, choose Modify.

5. In the Capacity range section, choose the following:

a. Enter a value for Minimum ACUs. The console shows the allowed range of values. You can
choose a minimum capacity from 0.5 to 128 ACUs. You can choose a maximum capacity
from 1 to 128 ACUs. You can adjust the capacity values in increments of 0.5 ACU.

b. Enter a value for Maximum ACUs. This value must be greater than or equal to Minimum
ACUs. The console shows the allowed range of values. The following figure shows that
choice.

6. Choose Continue. The Summary of modifications page appears.

7. Choose Apply immediately.

The capacity modification takes place immediately, regardless of whether you choose to apply
it immediately or during the next scheduled maintenance window.

8. Choose Modify cluster to accept the summary of modifications. You can also choose Back to
modify your changes or Cancel to discard your changes.

AWS CLI

To set the capacity of a cluster where you intend to use Aurora Serverless v2 DB instances
using the AWS CLI, run the modify-db-cluster AWS CLI command. Specify the --serverless-
v2-scaling-configuration option. The cluster might already contain one or more

Setting the Aurora Serverless v2 capacity range for a cluster 3172

https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-cluster.html

Amazon Aurora User Guide for Aurora

Aurora Serverless v2 DB instances, or you can add the DB instances later. Valid values for the
MinCapacity and MaxCapacity fields include the following:

• 0.5, 1, 1.5, 2, and so on, in steps of 0.5, up to a maximum of 128.

In this example, you set the ACU range of an Aurora DB cluster named sample-cluster to a
minimum of 48.5 and a maximum of 64.

aws rds modify-db-cluster --db-cluster-identifier sample-cluster \
--serverless-v2-scaling-configuration MinCapacity=48.5,MaxCapacity=64

The capacity modification takes place immediately, regardless of whether you choose to apply it
immediately or during the next scheduled maintenance window.

After doing so, you can add Aurora Serverless v2 DB instances to the cluster and each new DB
instance can scale between 48.5 and 64 ACUs. The new capacity range also applies to any Aurora
Serverless v2 DB instances that were already in the cluster. The DB instances scale up or down if
necessary to fall within the new capacity range.

For additional examples of setting the capacity range using the CLI, see Choosing the Aurora
Serverless v2 capacity range for an Aurora cluster.

To modify the scaling configuration of an Aurora Serverless DB cluster using the AWS CLI,
run the modify-db-cluster AWS CLI command. Specify the --serverless-v2-scaling-
configuration option to configure the minimum capacity and maximum capacity. Valid capacity
values include the following:

• Aurora MySQL: 0.5, 1, 1.5, 2, and so on, in increments of 0.5 ACUs up to a maximum of 128.

• Aurora PostgreSQL: 0.5, 1, 1.5, 2, and so on, in increments of 0.5 ACUs up to a maximum of
128.

In the following example, you modify the scaling configuration of an Aurora Serverless v2 DB
instance named sample-instance that's part of a cluster named sample-cluster.

For Linux, macOS, or Unix:

aws rds modify-db-cluster --db-cluster-identifier sample-cluster \
--serverless-v2-scaling-configuration MinCapacity=8,MaxCapacity=64

Setting the Aurora Serverless v2 capacity range for a cluster 3173

https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-cluster.html

Amazon Aurora User Guide for Aurora

For Windows:

aws rds modify-db-cluster --db-cluster-identifier sample-cluster ^
--serverless-v2-scaling-configuration MinCapacity=8,MaxCapacity=64

RDS API

You can set the capacity of an Aurora DB instance with the ModifyDBCluster API operation. Specify
the ServerlessV2ScalingConfiguration parameter. Valid values for the MinCapacity and
MaxCapacity fields include the following:

• 0.5, 1, 1.5, 2, and so on, in steps of 0.5, up to a maximum of 128.

You can modify the scaling configuration of a cluster containing Aurora Serverless v2 DB instances
with the ModifyDBCluster API operation. Specify the ServerlessV2ScalingConfiguration
parameter to configure the minimum capacity and the maximum capacity. Valid capacity values
include the following:

• Aurora MySQL: 0.5, 1, 1.5, 2, and so on, in increments of 0.5 ACUs up to a maximum of 128.

• Aurora PostgreSQL: 0.5, 1, 1.5, 2, and so on, in increments of 0.5 ACUs up to a maximum of
128.

The capacity modification takes place immediately, regardless of whether you choose to apply it
immediately or during the next scheduled maintenance window.

Checking the capacity range for Aurora Serverless v2

The procedure to check the capacity range for your Aurora Serverless v2 cluster requires that
you first set a capacity range. If you haven't done so, follow the procedure in Setting the Aurora
Serverless v2 capacity range for a cluster.

Whatever capacity range you set at the cluster level applies to all Aurora Serverless v2 DB instances
in your cluster. The following image shows a cluster with multiple Aurora Serverless v2 DB
instances. Each has an identical capacity range.

Checking the Aurora Serverless v2 capacity range 3174

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBCluster.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBCluster.html

Amazon Aurora User Guide for Aurora

You can also view the details page for any Aurora Serverless v2 DB instance in the cluster. DB
instances' capacity range appears on the Configuration tab.

You can also see the current capacity range for the cluster on the Modify page for the cluster. The
following image shows how. At that point, you can change the capacity range. For all the ways that
you can set or change the capacity range, see Setting the Aurora Serverless v2 capacity range for a
cluster.

Checking the Aurora Serverless v2 capacity range 3175

Amazon Aurora User Guide for Aurora

Checking the current capacity range for an Aurora cluster

You can check the capacity range that's configured for Aurora Serverless v2 DB instances in a
cluster by examining the ServerlessV2ScalingConfiguration attribute for the cluster. The
following AWS CLI example shows a cluster with a minimum capacity of 0.5 Aurora capacity units
(ACUs) and a maximum capacity of 16 ACUs.

$ aws rds describe-db-clusters --db-cluster-identifier serverless-v2-64-acu-cluster \
 --query 'DBClusters[*].[ServerlessV2ScalingConfiguration]'
[
 [
 {
 "MinCapacity": 0.5,
 "MaxCapacity": 16.0
 }
]
]

Adding an Aurora Serverless v2 reader

To add an Aurora Serverless v2 reader DB instance to your cluster, you follow the same general
procedure as in Adding Aurora Replicas to a DB cluster. Choose the Serverless v2 instance class for
the new DB instance.

If the reader DB instance is the first Aurora Serverless v2 DB instance in the cluster, you also choose
the capacity range. The following image shows the controls that you use to specify the minimum
and maximum Aurora capacity units (ACUs). This setting applies to this reader DB instance and to
any other Aurora Serverless v2 DB instances that you add to the cluster. Each Aurora Serverless v2
DB instance can scale between the minimum and maximum ACU values.

Adding an Aurora Serverless v2 reader 3176

Amazon Aurora User Guide for Aurora

If you already added any Aurora Serverless v2 DB instances to the cluster, adding another Aurora
Serverless v2 reader DB instance shows you the current capacity range. The following image shows
those read-only controls.

If you want to change the capacity range for the cluster, follow the procedure in Setting the Aurora
Serverless v2 capacity range for a cluster.

For clusters containing more than one reader DB instance, the failover priority of each Aurora
Serverless v2 reader DB instance plays an important part in how that DB instance scales up and
down. You can't specify the priority when you initially create the cluster. Keep this property in
mind when you add a second reader or later DB instance to your cluster. For more information, see
Choosing the promotion tier for an Aurora Serverless v2 reader.

Adding an Aurora Serverless v2 reader 3177

Amazon Aurora User Guide for Aurora

For other ways that you can see the current capacity range for a cluster, see Checking the capacity
range for Aurora Serverless v2.

Converting a provisioned writer or reader to Aurora Serverless v2

You can convert a provisioned DB instance to use Aurora Serverless v2. To do so, you follow the
procedure in Modifying a DB instance in a DB cluster. The cluster must meet the requirements
in Requirements and limitations for Aurora Serverless v2. For example, Aurora Serverless v2 DB
instances require that the cluster be running certain minimum engine versions.

Suppose that you are converting a running provisioned cluster to take advantage of Aurora
Serverless v2. In that case, you can minimize downtime by converting a DB instance to Aurora
Serverless v2 as the first step in the switchover process. For the full procedure, see Switching from
a provisioned cluster to Aurora Serverless v2.

If the DB instance that you convert is the first Aurora Serverless v2 DB instance in the cluster, you
choose the capacity range for the cluster as part of the Modify operation. This capacity range
applies to each Aurora Serverless v2 DB instance that you add to the cluster. The following image
shows the page where you specify the minimum and maximum Aurora capacity units (ACUs).

For details about the significance of the capacity range, see Aurora Serverless v2 capacity.

If the cluster already contains one or more Aurora Serverless v2 DB instances, you see the existing
capacity range during the Modify operation. The following image shows an example of that
information panel.

Converting from provisioned to Aurora Serverless v2 3178

Amazon Aurora User Guide for Aurora

If you want to change the capacity range for the cluster after you add more Aurora Serverless v2
DB instances, follow the procedure in Setting the Aurora Serverless v2 capacity range for a cluster.

Converting an Aurora Serverless v2 writer or reader to provisioned

You can convert an Aurora Serverless v2 DB instance to a provisioned DB instance. To do so, you
follow the procedure in Modifying a DB instance in a DB cluster. Choose a DB instance class other
than Serverless.

You might convert an Aurora Serverless v2 DB instance to provisioned if it needs a larger capacity
than is available with the maximum Aurora capacity units (ACUs) of an Aurora Serverless v2 DB
instance. For example, the largest db.r5 and db.r6g DB instance classes have a larger memory
capacity than an Aurora Serverless v2 DB instance can scale to.

Tip

Some of the older DB instance classes such as db.r3 and db.t2 aren't available for the
Aurora versions that you use with Aurora Serverless v2. To see which DB instance classes
you can use when converting an Aurora Serverless v2 DB instance to a provisioned one, see
Supported DB engines for DB instance classes.

If you are converting the writer DB instance of your cluster from Aurora Serverless v2 to
provisioned, you can follow the procedure in Switching from a provisioned cluster to Aurora
Serverless v2 but in reverse. Switch one of the reader DB instances in the cluster from Aurora
Serverless v2 to provisioned. Then perform a failover to make that provisioned DB instance into the
writer.

Converting from Aurora Serverless v2 to provisioned 3179

Amazon Aurora User Guide for Aurora

Any capacity range that you previously specified for the cluster remains in place, even if all Aurora
Serverless v2 DB instances are removed from the cluster. If you want to change the capacity range,
you can modify the cluster, as explained in Setting the Aurora Serverless v2 capacity range for a
cluster.

Choosing the promotion tier for an Aurora Serverless v2 reader

For clusters containing multiple Aurora Serverless v2 DB instances or a mixture of provisioned
and Aurora Serverless v2 DB instances, pay attention to the promotion tier setting for each
Aurora Serverless v2 DB instance. This setting controls more behavior for Aurora Serverless v2 DB
instances than for provisioned DB instances.

In the AWS Management Console, you specify this setting using the Failover priority choice under
Additional configuration for the Create database, Modify instance, and Add reader pages. You
see this property for existing DB instances in the optional Priority tier column on the Databases
page. You can also see this property on the details page for a DB cluster or DB instance.

For provisioned DB instances, the choice of tier 0–15 determines only the order in which Aurora
chooses which reader DB instance to promote to the writer during a failover operation. For Aurora
Serverless v2 reader DB instances, the tier number also determines whether the DB instance scales
up to match the capacity of the writer DB instance or scales independently based on its own
workload. Aurora Serverless v2 reader DB instances in tier 0 or 1 are kept at a minimum capacity
at least as high as the writer DB instance. That way, they are ready to take over from the writer
DB instance in case of a failover. If the writer DB instance is a provisioned DB instance, Aurora
estimates the equivalent Aurora Serverless v2 capacity. It uses that estimate as the minimum
capacity for the Aurora Serverless v2 reader DB instance.

Aurora Serverless v2 reader DB instances in tiers 2–15 don't have the same constraint on their
minimum capacity. When they are idle, they can scale down to the minimum Aurora capacity unit
(ACU) value specified in the cluster's capacity range.

The following Linux AWS CLI example shows how to examine the promotion tiers of all the DB
instances in your cluster. The final field includes a value of True for the writer DB instance and
False for all the reader DB instances.

$ aws rds describe-db-clusters --db-cluster-identifier promotion-tier-demo \
 --query 'DBClusters[*].DBClusterMembers[*].
[PromotionTier,DBInstanceIdentifier,IsClusterWriter]' \
 --output text

Choosing the promotion tier for an Aurora Serverless v2 reader 3180

Amazon Aurora User Guide for Aurora

1 instance-192 True
1 tier-01-4840 False
10 tier-10-7425 False
15 tier-15-6694 False

The following Linux AWS CLI example shows how to change the promotion tier of a specific DB
instance in your cluster. The commands first modify the DB instance with a new promotion tier.
Then they wait for the DB instance to become available again and confirm the new promotion tier
for the DB instance.

$ aws rds modify-db-instance --db-instance-identifier instance-192 --promotion-tier 0
$ aws rds wait db-instance-available --db-instance-identifier instance-192
$ aws rds describe-db-instances --db-instance-identifier instance-192 \
 --query '*[].[PromotionTier]' --output text
0

For more guidance about specifying promotion tiers for different use cases, see Aurora Serverless
v2 scaling.

Using TLS/SSL with Aurora Serverless v2

Aurora Serverless v2 can use the Transport Layer Security/Secure Sockets Layer (TLS/SSL) protocol
to encrypt communications between clients and your Aurora Serverless v2 DB instances. It
supports TLS/SSL versions 1.0, 1.1, and 1.2. For general information about using TLS/SSL with
Aurora, see Using TLS with Aurora MySQL DB clusters.

To learn more about connecting to Aurora MySQL database with the MySQL client, see Connecting
to a DB instance running the MySQL database engine.

Aurora Serverless v2 supports all TLS/SSL modes available to the MySQL client (mysql) and
PostgreSQL client (psql), including those listed in the following table.

Description of TLS/SSL
mode

mysql psql

Connect without using TLS/
SSL.

DISABLED disable

Using TLS/SSL with Aurora Serverless v2 3181

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_ConnectToInstance.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_ConnectToInstance.html

Amazon Aurora User Guide for Aurora

Description of TLS/SSL
mode

mysql psql

Try the connection using TLS/
SSL first, but fall back to non-
SSL if necessary.

PREFERRED prefer (default)

Enforce using TLS/SSL. REQUIRED require

Enforce TLS/SSL and verify
the certificate authority (CA).

VERIFY_CA verify-ca

Enforce TLS/SSL, verify
the CA, and verify the CA
hostname.

VERIFY_IDENTITY verify-full

Aurora Serverless v2 uses wildcard certificates. If you specify the "verify CA" or the "verify CA and
CA hostname" option when using TLS/SSL, first download the Amazon root CA 1 trust store from
Amazon Trust Services. After doing so, you can identify this PEM-formatted file in your client
command. To do so using the PostgreSQL client, do the following.

For Linux, macOS, or Unix:

psql 'host=endpoint user=user sslmode=require sslrootcert=amazon-root-CA-1.pem
 dbname=db-name'

To learn more about working with the Aurora PostgreSQL database using the Postgres client, see
Connecting to a DB instance running the PostgreSQL database engine.

For more information about connecting to Aurora DB clusters in general, see Connecting to an
Amazon Aurora DB cluster.

Supported cipher suites for connections to Aurora Serverless v2 DB clusters

By using configurable cipher suites, you can have more control over the security of your database
connections. You can specify a list of cipher suites that you want to allow to secure client TLS/
SSL connections to your database. With configurable cipher suites, you can control the connection
encryption that your database server accepts. Doing this prevents the use of ciphers that aren't
secure or that are no longer used.

Using TLS/SSL with Aurora Serverless v2 3182

https://www.amazontrust.com/repository/AmazonRootCA1.pem
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_ConnectToPostgreSQLInstance.html

Amazon Aurora User Guide for Aurora

Aurora Serverless v2 DB clusters that are based on Aurora MySQL support the same cipher suites as
Aurora MySQL provisioned DB clusters. For information about these cipher suites, see Configuring
cipher suites for connections to Aurora MySQL DB clusters.

Aurora Serverless v2 DB clusters that are based on Aurora PostgreSQL support the same cipher
suites as Aurora PostgreSQL provisioned DB clusters. For information about these cipher suites, see
Configuring cipher suites for connections to Aurora PostgreSQL DB clusters.

Viewing Aurora Serverless v2 writers and readers

You can view the details of Aurora Serverless v2 DB instances in the same way that you do for
provisioned DB instances. To do so, follow the general procedure from Viewing an Amazon Aurora
DB cluster. A cluster might contain all Aurora Serverless v2 DB instances, all provisioned DB
instances, or some of each.

After you create one or more Aurora Serverless v2 DB instances, you can view which DB instances
are type Serverless and which are type Instance. You can also view the minimum and maximum
Aurora capacity units (ACUs) that the Aurora Serverless v2 DB instance can use. Each ACU is a
combination of processing (CPU) and memory (RAM) capacity. This capacity range applies to each
Aurora Serverless v2 DB instance in the cluster. For the procedure to check the capacity range of a
cluster or any Aurora Serverless v2 DB instance in the cluster, see Checking the capacity range for
Aurora Serverless v2.

In the AWS Management Console, Aurora Serverless v2 DB instances are marked under the Size
column in the Databases page. Provisioned DB instances show the name of a DB instance class
such as r6g.xlarge. The Aurora Serverless DB instances show Serverless for the DB instance
class, along with the DB instance's minimum and maximum capacity. For example, you might see
Serverless v2 (4–64 ACUs) or Serverless v2 (1–40 ACUs).

You can find the same information on the Configuration tab for each Aurora Serverless v2 DB
instance in the console. For example, you might see an Instance type section such as the following.
Here, the Instance type value is Serverless v2, the Minimum capacity value is 2 ACUs (4 GiB), and
the Maximum capacity value is 64 ACUs (128 GiB).

Viewing Aurora Serverless v2 writers and readers 3183

Amazon Aurora User Guide for Aurora

You can monitor the capacity of each Aurora Serverless v2 DB instance over time. That way, you
can check the minimum, maximum, and average ACUs consumed by each DB instance. You can
also check how close the DB instance came to its minimum or maximum capacity. To see such
details in the AWS Management Console, examine the graphs of Amazon CloudWatch metrics on
the Monitoring tab for the DB instance. For information about the metrics to watch and how to
interpret them, see Important Amazon CloudWatch metrics for Aurora Serverless v2.

Logging for Aurora Serverless v2

To turn on database logging, you specify the logs to enable using configuration parameters in your
custom parameter group.

For Aurora MySQL, you can enable the following logs.

Aurora MySQL Description

general_log Creates the general log. Set to 1 to turn on.
Default is off (0).

log_queries_not_using_indexes Logs any queries to the slow query log that
don't use an index. Default is off (0). Set to 1
to turn on this log.

long_query_time Prevents fast-running queries from being
logged in the slow query log. Can be set to a
float between 0 and 31536000. Default is 0
(not active).

server_audit_events The list of events to capture in the logs.
Supported values are CONNECT, QUERY,

Logging for Aurora Serverless v2 3184

Amazon Aurora User Guide for Aurora

Aurora MySQL Description

QUERY_DCL , QUERY_DDL , QUERY_DML ,
and TABLE.

server_audit_logging Set to 1 to turn on server audit logging. If you
turn this on, you can specify the audit events
to send to CloudWatch by listing them in the
server_audit_events parameter.

slow_query_log Creates a slow query log. Set to 1 to turn on
the slow query log. Default is off (0).

For more information, see Using Advanced Auditing with an Amazon Aurora MySQL DB cluster.

For Aurora PostgreSQL, you can enable the following logs on your Aurora Serverless v2 DB
instances.

Aurora PostgreSQL Description

log_connections Logs each successful connection.

log_disconnections Logs end of a session including duration.

log_lock_waits Default is 0 (off). Set to 1 to log lock waits.

log_min_duration_statement The minimum duration (in milliseconds) for a
statement to run before it's logged.

log_min_messages Sets the message levels that are logged.
Supported values are debug5, debug4,
debug3, debug2, debug1, info, notice,
warning, error, log, fatal, panic. To log
performance data to the postgres log, set
the value to debug1.

log_temp_files Logs the use of temporary files that are above
the specified kilobytes (kB).

Logging for Aurora Serverless v2 3185

Amazon Aurora User Guide for Aurora

Aurora PostgreSQL Description

log_statement Controls the specific SQL statements that get
logged. Supported values are none, ddl, mod,
and all. Default is none.

Topics

• Logging with Amazon CloudWatch

• Viewing Aurora Serverless v2 logs in Amazon CloudWatch

• Monitoring capacity with Amazon CloudWatch

Logging with Amazon CloudWatch

After you use the procedure in Logging for Aurora Serverless v2 to choose which database logs to
turn on, you can choose which logs to upload ("publish") to Amazon CloudWatch.

You can use Amazon CloudWatch to analyze log data, create alarms, and view metrics. By default,
error logs for Aurora Serverless v2 are enabled and automatically uploaded to CloudWatch. You
can also upload other logs from Aurora Serverless v2 DB instances to CloudWatch.

Then you choose which of those logs to upload to CloudWatch, by using the Log exports settings
in the AWS Management Console or the --enable-cloudwatch-logs-exports option in the
AWS CLI.

You can choose which of your Aurora Serverless v2 logs to upload to CloudWatch. For more
information, see Using Advanced Auditing with an Amazon Aurora MySQL DB cluster.

As with any type of Aurora DB cluster, you can't modify the default DB cluster parameter group.
Instead, create your own DB cluster parameter group based on a default parameter for your DB
cluster and engine type. We recommend that you create your custom DB cluster parameter group
before creating your Aurora Serverless v2 DB cluster, so that it's available to choose when you
create a database on the console.

Logging for Aurora Serverless v2 3186

Amazon Aurora User Guide for Aurora

Note

For Aurora Serverless v2, you can create both DB cluster and DB parameter groups. This
contrasts with Aurora Serverless v1, where you can only create DB cluster parameter
groups.

Viewing Aurora Serverless v2 logs in Amazon CloudWatch

After you use the procedure in Logging with Amazon CloudWatch to choose which database logs to
turn on, you can view the contents of the logs.

For more information on using CloudWatch with Aurora MySQL and Aurora PostgreSQL logs, see
Monitoring log events in Amazon CloudWatch and Publishing Aurora PostgreSQL logs to Amazon
CloudWatch Logs.

To view logs for your Aurora Serverless v2 DB cluster

1. Open the CloudWatch console at https://console.aws.amazon.com/cloudwatch/.

2. Choose your AWS Region.

3. Choose Log groups.

4. Choose your Aurora Serverless v2 DB cluster log from the list. The log naming pattern is as
follows.

/aws/rds/cluster/cluster-name/log_type

Note

For Aurora MySQL–compatible Aurora Serverless v2 DB clusters, the error log includes
buffer pool scaling events even when there are no errors.

Monitoring capacity with Amazon CloudWatch

With Aurora Serverless v2, you can use CloudWatch to to monitor the capacity and utilization of
all the Aurora Serverless v2 DB instances in your cluster. You can view instance-level metrics to
check the capacity of each Aurora Serverless v2 DB instance as it scales up and down. You can

Logging for Aurora Serverless v2 3187

https://console.aws.amazon.com/cloudwatch/

Amazon Aurora User Guide for Aurora

also compare the capacity-related metrics to other metrics to see how changes in workloads
affect resource consumption. For example, you can compare ServerlessDatabaseCapacity to
DatabaseUsedMemory, DatabaseConnections, and DMLThroughput to assess how your DB
cluster is responding during operations. For details about the capacity-related metrics that apply to
Aurora Serverless v2, see Important Amazon CloudWatch metrics for Aurora Serverless v2.

To monitor your Aurora Serverless v2 DB cluster's capacity

1. Open the CloudWatch console at https://console.aws.amazon.com/cloudwatch/.

2. Choose Metrics. All available metrics appear as cards in the console, grouped by service name.

3. Choose RDS.

4. (Optional) Use the Search box to find the metrics that are especially important for Aurora
Serverless v2: ServerlessDatabaseCapacity, ACUUtilization, CPUUtilization, and
FreeableMemory.

We recommend that you set up a CloudWatch dashboard to monitor your Aurora Serverless v2
DB cluster capacity using the capacity-related metrics. To learn how, see Building dashboards with
CloudWatch.

To learn more about using Amazon CloudWatch with Amazon Aurora, see Publishing Amazon
Aurora MySQL logs to Amazon CloudWatch Logs.

Performance and scaling for Aurora Serverless v2

The following procedures and examples show how you can set the capacity range for Aurora
Serverless v2 clusters and their associated DB instances. You can also use procedures following to
monitor how busy your DB instances are. Then you can use your findings to determine if you need
to adjust the capacity range upward or downward.

Before you use these procedures, make sure that you are familiar with how Aurora Serverless v2
scaling works. The scaling mechanism is different than in Aurora Serverless v1. For details, see
Aurora Serverless v2 scaling.

Contents

• Choosing the Aurora Serverless v2 capacity range for an Aurora cluster

• Choosing the minimum Aurora Serverless v2 capacity setting for a cluster

Performance and scaling for Aurora Serverless v2 3188

https://console.aws.amazon.com/cloudwatch/
https://docs.aws.amazon.com/autoscaling/application/userguide/monitoring-cloudwatch.html
https://docs.aws.amazon.com/autoscaling/application/userguide/monitoring-cloudwatch.html

Amazon Aurora User Guide for Aurora

• Choosing the maximum Aurora Serverless v2 capacity setting for a cluster

• Example: Change the Aurora Serverless v2 capacity range of an Aurora MySQL cluster

• Example: Change the Aurora Serverless v2 capacity range of an Aurora PostgreSQL cluster

• Working with parameter groups for Aurora Serverless v2

• Default parameter values

• Maximum connections for Aurora Serverless v2

• Parameters that Aurora adjusts as Aurora Serverless v2 scales up and down

• Parameters that Aurora computes based on Aurora Serverless v2 maximum capacity

• Avoiding out-of-memory errors

• Important Amazon CloudWatch metrics for Aurora Serverless v2

• How Aurora Serverless v2 metrics apply to your AWS bill

• Examples of CloudWatch commands for Aurora Serverless v2 metrics

• Monitoring Aurora Serverless v2 performance with Performance Insights

• Troubleshooting Aurora Serverless v2 capacity issues

Choosing the Aurora Serverless v2 capacity range for an Aurora cluster

With Aurora Serverless v2 DB instances, you set the capacity range that applies to all the DB
instances in your DB cluster at the same time that you add the first Aurora Serverless v2 DB
instance to the DB cluster. For the procedure to do so, see Setting the Aurora Serverless v2 capacity
range for a cluster.

You can also change the capacity range for an existing cluster. The following sections discuss in
more detail how to choose appropriate minimum and maximum values and what happens when
you make a change to the capacity range. For example, changing the capacity range can modify the
default values of some configuration parameters. Applying all the parameter changes can require
rebooting each Aurora Serverless v2 DB instance.

Topics

• Choosing the minimum Aurora Serverless v2 capacity setting for a cluster

• Choosing the maximum Aurora Serverless v2 capacity setting for a cluster

• Example: Change the Aurora Serverless v2 capacity range of an Aurora MySQL cluster

• Example: Change the Aurora Serverless v2 capacity range of an Aurora PostgreSQL cluster

Choosing the capacity range 3189

Amazon Aurora User Guide for Aurora

Choosing the minimum Aurora Serverless v2 capacity setting for a cluster

It's tempting to always choose 0.5 for the minimum Aurora Serverless v2 capacity setting. That
value allows the DB instance to scale down the most when it's completely idle. However, depending
on how you use that cluster and the other settings that you configure, a different value might be
the most effective. Consider the following factors when choosing the minimum capacity setting:

• The scaling rate for an Aurora Serverless v2 DB instance depends on its current capacity. The
higher the current capacity, the faster it can scale up. If you need the DB instance to quickly scale
up to a very high capacity, consider setting the minimum capacity to a value where the scaling
rate meets your requirement.

• If you typically modify the DB instance class of your DB instances in anticipation of especially
high or low workload, you can use that experience to make a rough estimate of the equivalent
Aurora Serverless v2 capacity range. To determine the memory size to use in times of low traffic,
consult Hardware specifications for DB instance classes for Aurora.

For example, suppose that you use the db.r6g.xlarge DB instance class when your cluster has a
low workload. That DB instance class has 32 GiB of memory. Thus, you can specify a minimum
Aurora capacity unit (ACU) setting of 16 to set up an Aurora Serverless v2 DB instance that
can scale down to approximately that same capacity. That's because each ACU corresponds
to approximately 2 GiB of memory. You might specify a somewhat lower value to let the DB
instance scale down further in case your db.r6g.xlarge DB instance was sometimes underutilized.

• If your application works most efficiently when the DB instances have a certain amount of data in
the buffer cache, consider specifying a minimum ACU setting where the memory is large enough
to hold the frequently accessed data. Otherwise, some data is evicted from the buffer cache
when the Aurora Serverless v2 DB instances scale down to a lower memory size. Then when
the DB instances scale back up, the information is read back into the buffer cache over time. If
the amount of I/O to bring the data back into the buffer cache is substantial, it might be more
effective to choose a higher minimum ACU value.

• If your Aurora Serverless v2 DB instances run most of the time at a particular capacity, consider
specifying a minimum capacity setting that's lower than that baseline, but not too much lower.
Aurora Serverless v2 DB instances can most effectively estimate how much and how fast to scale
up when the current capacity isn't drastically lower than the required capacity.

• If your provisioned workload has memory requirements that are too high for small DB instance
classes such as T3 or T4g, choose a minimum ACU setting that provides memory comparable to
an R5 or R6g DB instance.

Choosing the capacity range 3190

Amazon Aurora User Guide for Aurora

In particular, we recommend the following minimum capacity for use with the specified features
(these recommendations are subject to change):

• Performance Insights – 2 ACUs

• Aurora global databases – 8 ACUs (applies only to the primary AWS Region)

• In some cases, your cluster might contain Aurora Serverless v2 reader DB instances that scale
independently from the writer. If so, choose a minimum capacity setting that's high enough that
when the writer DB instance is busy with a write-intensive workload, the reader DB instances can
apply the changes from the writer without falling behind. If you observe replica lag in readers
that are in promotion tiers 2–15, consider increasing the minimum capacity setting for your
cluster. For details on choosing whether reader DB instances scale along with the writer or
independently, see Choosing the promotion tier for an Aurora Serverless v2 reader.

• If you have a DB cluster with Aurora Serverless v2 reader DB instances, the readers don't scale
along with the writer DB instance when the promotion tier of the readers isn't 0 or 1. In that
case, setting a low minimum capacity can result in excessive replication lag. That's because the
readers might not have enough capacity to apply changes from the writer when the database is
busy. We recommend that you set the minimum capacity to a value that represents a comparable
amount of memory and CPU to the writer DB instance.

• The value of the max_connections parameter for Aurora Serverless v2DB instances is
based on the memory size derived from the maximum ACUs. However, when you specify a
minimum capacity of 0.5 ACUs on PostgreSQL-compatible DB instances, the maximum value of
max_connections is capped at 2,000.

If you intend to use the Aurora PostgreSQL cluster for a high-connection workload, consider
using a minimum ACU setting of 1 or higher. For details about how Aurora Serverless v2
handles the max_connections configuration parameter, see Maximum connections for Aurora
Serverless v2.

• The time it takes for an Aurora Serverless v2 DB instance to scale from its minimum capacity
to its maximum capacity depends on the difference between its minimum and maximum ACU
values. When the current capacity of the DB instance is large, Aurora Serverless v2 scales up in
larger increments than when the DB instance starts from a small capacity. Thus, if you specify
a relatively large maximum capacity and the DB instance spends most of its time near that
capacity, consider increasing the minimum ACU setting. That way, an idle DB instance can scale
back up to maximum capacity more quickly.

Choosing the capacity range 3191

Amazon Aurora User Guide for Aurora

Choosing the maximum Aurora Serverless v2 capacity setting for a cluster

It's tempting to always choose some high value for the maximum Aurora Serverless v2 capacity
setting. A large maximum capacity allows the DB instance to scale up the most when it's running
an intensive workload. A low value avoids the possibility of unexpected charges. Depending on
how you use that cluster and the other settings that you configure, the most effective value might
be higher or lower than you originally thought. Consider the following factors when choosing the
maximum capacity setting:

• The maximum capacity must be at least as high as the minimum capacity. You can set the
minimum and maximum capacity to be identical. However, in that case the capacity never scales
up or down. Thus, using identical values for minimum and maximum capacity isn't appropriate
outside of testing situations.

• The maximum capacity must be higher than 0.5 ACUs. You can set the minimum and maximum
capacity to be the same in most cases. However, you can't specify 0.5 for both the minimum and
maximum. Use a value of 1 or higher for the maximum capacity.

• If you typically modify the DB instance class of your DB instances in anticipation of especially
high or low workload, you can use that experience to estimate the equivalent Aurora Serverless
v2 capacity range. To determine the memory size to use in times of high traffic, consult
Hardware specifications for DB instance classes for Aurora.

For example, suppose that you use the db.r6g.4xlarge DB instance class when your cluster
has a high workload. That DB instance class has 128 GiB of memory. Thus, you can specify a
maximum ACU setting of 64 to set up an Aurora Serverless v2 DB instance that can scale up to
approximately that same capacity. That's because each ACU corresponds to approximately 2 GiB
of memory. You might specify a somewhat higher value to let the DB instance scale up farther
in case your db.r6g.4xlarge DB instance sometimes doesn't have enough capacity to handle the
workload effectively.

• If you have a budgetary cap on your database usage, choose a value that stays within that
cap even if all your Aurora Serverless v2 DB instances run at maximum capacity all the time.
Remember that when you have n Aurora Serverless v2 DB instances in your cluster, the
theoretical maximum Aurora Serverless v2 capacity that the cluster can consume at any moment
is n times the maximum ACU setting for the cluster. (The actual amount consumed might be less,
for example if some readers scale independently from the writer.)

• If you make use of Aurora Serverless v2 reader DB instances to offload some of the read-only
workload from the writer DB instance, you might be able to choose a lower maximum capacity

Choosing the capacity range 3192

Amazon Aurora User Guide for Aurora

setting. You do this to reflect that each reader DB instance doesn't need to scale as high as if the
cluster contains only a single DB instance.

• Suppose that you want to protect against excessive usage due to misconfigured database
parameters or inefficient queries in your application. In that case, you might avoid accidental
overuse by choosing a maximum capacity setting that's lower than the absolute highest that you
could set.

• If spikes due to real user activity are rare but do happen, you can take those occasions into
account when choosing the maximum capacity setting. If the priority is for the application to
keep running with full performance and scalability, you can specify a maximum capacity setting
that's higher than you observe in normal usage. If it's OK for the application to run with reduced
throughput during very extreme spikes in activity, you can choose a slightly lower maximum
capacity setting. Make sure that you choose a setting that still has enough memory and CPU
resources to keep the application running.

• If you turn on settings in your cluster that increase the memory usage for each DB instance, take
that memory into account when deciding on the maximum ACU value. Such settings include
those for Performance Insights, Aurora MySQL parallel queries, Aurora MySQL performance
schema, and Aurora MySQL binary log replication. Make sure that the maximum ACU value
allows the Aurora Serverless v2 DB instances to scale up enough to handle the workload when
those feature are being used. For information about troubleshooting problems caused by the
combination of a low maximum ACU setting and Aurora features that impose memory overhead,
see Avoiding out-of-memory errors.

Example: Change the Aurora Serverless v2 capacity range of an Aurora MySQL
cluster

The following AWS CLI example shows how to update the ACU range for Aurora Serverless v2 DB
instances in an existing Aurora MySQL cluster. Initially, the capacity range for the cluster is 8–32
ACUs.

aws rds describe-db-clusters --db-cluster-identifier serverless-v2-cluster \
 --query 'DBClusters[*].ServerlessV2ScalingConfiguration|[0]'
{
 "MinCapacity": 8.0,
 "MaxCapacity": 32.0
}

Choosing the capacity range 3193

Amazon Aurora User Guide for Aurora

The DB instance is idle and scaled down to 8 ACUs. The following capacity-related settings apply
to the DB instance at this point. To represent the size of the buffer pool in easily readable units,
we divide it by 2 to the power of 30, yielding a measurement in gibibytes (GiB). That's because
memory-related measurements for Aurora use units based on powers of 2, not powers of 10.

mysql> select @@max_connections;
+-------------------+
| @@max_connections |
+-------------------+
| 3000 |
+-------------------+
1 row in set (0.00 sec)

mysql> select @@innodb_buffer_pool_size;
+---------------------------+
| @@innodb_buffer_pool_size |
+---------------------------+
| 9294577664 |
+---------------------------+
1 row in set (0.00 sec)

mysql> select @@innodb_buffer_pool_size / pow(2,30) as gibibytes;
+-----------+
| gibibytes |
+-----------+
| 8.65625 |
+-----------+
1 row in set (0.00 sec)

Next, we change the capacity range for the cluster. After the modify-db-cluster command
finishes, the ACU range for the cluster is 12.5–80.

aws rds modify-db-cluster --db-cluster-identifier serverless-v2-cluster \
 --serverless-v2-scaling-configuration MinCapacity=12.5,MaxCapacity=80

aws rds describe-db-clusters --db-cluster-identifier serverless-v2-cluster \
 --query 'DBClusters[*].ServerlessV2ScalingConfiguration|[0]'
{
 "MinCapacity": 12.5,
 "MaxCapacity": 80.0
}

Choosing the capacity range 3194

Amazon Aurora User Guide for Aurora

Changing the capacity range caused changes to the default values of some configuration
parameters. Aurora can apply some of those new defaults immediately. However, some of the
parameter changes take effect only after a reboot. The pending-reboot status indicates that a
reboot is needed to apply some parameter changes.

aws rds describe-db-clusters --db-cluster-identifier serverless-v2-cluster \
 --query '*[].{DBClusterMembers:DBClusterMembers[*].
{DBInstanceIdentifier:DBInstanceIdentifier,DBClusterParameterGroupStatus:DBClusterParameterGroupStatus}}|
[0]'
{
 "DBClusterMembers": [
 {
 "DBInstanceIdentifier": "serverless-v2-instance-1",
 "DBClusterParameterGroupStatus": "pending-reboot"
 }
]
}

At this point, the cluster is idle and the DB instance serverless-v2-instance-1 is consuming
12.5 ACUs. The innodb_buffer_pool_size parameter is already adjusted based on the current
capacity of the DB instance. The max_connections parameter still reflects the value from the
former maximum capacity. Resetting that value requires rebooting the DB instance.

Note

If you set the max_connections parameter directly in a custom DB parameter group, no
reboot is required.

mysql> select @@max_connections;
+-------------------+
| @@max_connections |
+-------------------+
| 3000 |
+-------------------+
1 row in set (0.00 sec)

mysql> select @@innodb_buffer_pool_size;
+---------------------------+
| @@innodb_buffer_pool_size |
+---------------------------+

Choosing the capacity range 3195

Amazon Aurora User Guide for Aurora

| 15572402176 |
+---------------------------+
1 row in set (0.00 sec)

mysql> select @@innodb_buffer_pool_size / pow(2,30) as gibibytes;
+---------------+
| gibibytes |
+---------------+
| 14.5029296875 |
+---------------+
1 row in set (0.00 sec)

Now we reboot the DB instance and wait for it to become available again.

aws rds reboot-db-instance --db-instance-identifier serverless-v2-instance-1
{
 "DBInstanceIdentifier": "serverless-v2-instance-1",
 "DBInstanceStatus": "rebooting"
}

aws rds wait db-instance-available --db-instance-identifier serverless-v2-instance-1

The pending-reboot status is cleared. The value in-sync confirms that Aurora has applied all
the pending parameter changes.

aws rds describe-db-clusters --db-cluster-identifier serverless-v2-cluster \
 --query '*[].{DBClusterMembers:DBClusterMembers[*].
{DBInstanceIdentifier:DBInstanceIdentifier,DBClusterParameterGroupStatus:DBClusterParameterGroupStatus}}|
[0]'
{
 "DBClusterMembers": [
 {
 "DBInstanceIdentifier": "serverless-v2-instance-1",
 "DBClusterParameterGroupStatus": "in-sync"
 }
]
}

The innodb_buffer_pool_size parameter has increased to its final size for an idle DB instance.
The max_connections parameter has increased to reflect a value derived from the maximum ACU
value. The formula that Aurora uses for max_connections causes an increase of 1,000 when the
memory size doubles.

Choosing the capacity range 3196

Amazon Aurora User Guide for Aurora

mysql> select @@innodb_buffer_pool_size;
+---------------------------+
| @@innodb_buffer_pool_size |
+---------------------------+
| 16139681792 |
+---------------------------+
1 row in set (0.00 sec)

mysql> select @@innodb_buffer_pool_size / pow(2,30) as gibibytes;
+-----------+
| gibibytes |
+-----------+
| 15.03125 |
+-----------+
1 row in set (0.00 sec)

mysql> select @@max_connections;
+-------------------+
| @@max_connections |
+-------------------+
| 4000 |
+-------------------+
1 row in set (0.00 sec)

We set the capacity range to 0.5–128 ACUs, and reboot the DB instance. Now the idle DB
instance has a buffer cache size that's less than 1 GiB, so we measure it in mebibytes (MiB). The
max_connections value of 5000 is derived from the memory size of the maximum capacity
setting.

mysql> select @@innodb_buffer_pool_size / pow(2,20) as mebibytes, @@max_connections;
+-----------+-------------------+
| mebibytes | @@max_connections |
+-----------+-------------------+
| 672 | 5000 |
+-----------+-------------------+
1 row in set (0.00 sec)

Choosing the capacity range 3197

Amazon Aurora User Guide for Aurora

Example: Change the Aurora Serverless v2 capacity range of an Aurora
PostgreSQL cluster

The following CLI examples show how to update the ACU range for Aurora Serverless v2 DB
instances in an existing Aurora PostgreSQL cluster.

1. The capacity range for the cluster starts at 0.5–1 ACU.

2. Change the capacity range to 8–32 ACUs.

3. Change the capacity range to 12.5–80 ACUs.

4. Change the capacity range to 0.5–128 ACUs.

5. Return the capacity to its initial range of 0.5–1 ACU.

The following figure shows the capacity changes in Amazon CloudWatch.

The DB instance is idle and scaled down to 0.5 ACUs. The following capacity-related settings apply
to the DB instance at this point.

postgres=> show max_connections;
 max_connections

 189
(1 row)

postgres=> show shared_buffers;
 shared_buffers

 16384
(1 row)

Next, we change the capacity range for the cluster. After the modify-db-cluster command
finishes, the ACU range for the cluster is 8.0–32.

Choosing the capacity range 3198

Amazon Aurora User Guide for Aurora

aws rds describe-db-clusters --db-cluster-identifier serverless-v2-cluster \
 --query 'DBClusters[*].ServerlessV2ScalingConfiguration|[0]'
{
 "MinCapacity": 8.0,
 "MaxCapacity": 32.0
}

Changing the capacity range causes changes to the default values of some configuration
parameters. Aurora can apply some of those new defaults immediately. However, some of the
parameter changes take effect only after a reboot. The pending-reboot status indicates that you
need a reboot to apply some parameter changes.

aws rds describe-db-clusters --db-cluster-identifier serverless-v2-cluster \
 --query '*[].{DBClusterMembers:DBClusterMembers[*].
{DBInstanceIdentifier:DBInstanceIdentifier,DBClusterParameterGroupStatus:DBClusterParameterGroupStatus}}|
[0]'
{
 "DBClusterMembers": [
 {
 "DBInstanceIdentifier": "serverless-v2-instance-1",
 "DBClusterParameterGroupStatus": "pending-reboot"
 }
]
}

At this point, the cluster is idle and the DB instance serverless-v2-instance-1 is consuming
8.0 ACUs. The shared_buffers parameter is already adjusted based on the current capacity
of the DB instance. The max_connections parameter still reflects the value from the former
maximum capacity. Resetting that value requires rebooting the DB instance.

Note

If you set the max_connections parameter directly in a custom DB parameter group, no
reboot is required.

postgres=> show max_connections;
 max_connections

Choosing the capacity range 3199

Amazon Aurora User Guide for Aurora

 189
(1 row)

postgres=> show shared_buffers;
 shared_buffers

 1425408
(1 row)

We reboot the DB instance and wait for it to become available again.

aws rds reboot-db-instance --db-instance-identifier serverless-v2-instance-1
{
 "DBInstanceIdentifier": "serverless-v2-instance-1",
 "DBInstanceStatus": "rebooting"
}

aws rds wait db-instance-available --db-instance-identifier serverless-v2-instance-1

Now that the DB instance is rebooted, the pending-reboot status is cleared. The value in-sync
confirms that Aurora has applied all the pending parameter changes.

aws rds describe-db-clusters --db-cluster-identifier serverless-v2-cluster \
 --query '*[].{DBClusterMembers:DBClusterMembers[*].
{DBInstanceIdentifier:DBInstanceIdentifier,DBClusterParameterGroupStatus:DBClusterParameterGroupStatus}}|
[0]'
{
 "DBClusterMembers": [
 {
 "DBInstanceIdentifier": "serverless-v2-instance-1",
 "DBClusterParameterGroupStatus": "in-sync"
 }
]
}

After rebooting, max_connections shows the value from the new maximum capacity.

postgres=> show max_connections;
 max_connections

 5000
(1 row)

Choosing the capacity range 3200

Amazon Aurora User Guide for Aurora

postgres=> show shared_buffers;
 shared_buffers

 1425408
(1 row)

Next, we change the capacity range for the cluster to 12.5–80 ACUs.

aws rds modify-db-cluster --db-cluster-identifier serverless-v2-cluster \
 --serverless-v2-scaling-configuration MinCapacity=12.5,MaxCapacity=80

aws rds describe-db-clusters --db-cluster-identifier serverless-v2-cluster \
 --query 'DBClusters[*].ServerlessV2ScalingConfiguration|[0]'
{
 "MinCapacity": 12.5,
 "MaxCapacity": 80.0
}

At this point, the cluster is idle and the DB instance serverless-v2-instance-1 is consuming
12.5 ACUs. The shared_buffers parameter is already adjusted based on the current capacity of
the DB instance. The max_connections value is still 5000.

postgres=> show max_connections;
 max_connections

 5000
(1 row)

postgres=> show shared_buffers;
 shared_buffers

 2211840
(1 row)

We reboot again, but the parameter values stay the same. This is because max_connections has a
maximum value of 5000 for an Aurora Serverless v2 DB cluster running Aurora PostgreSQL.

postgres=> show max_connections;
 max_connections

Choosing the capacity range 3201

Amazon Aurora User Guide for Aurora

 5000
(1 row)

postgres=> show shared_buffers;
 shared_buffers

 2211840
(1 row)

Now we set the capacity range from 0.5 to 128 ACUs. The DB cluster scales down to 10 ACUs, then
to 2. We reboot the DB instance.

postgres=> show max_connections;
 max_connections

 2000
(1 row)

postgres=> show shared_buffers;
 shared_buffers

 16384
(1 row)

The max_connections value for Aurora Serverless v2 DB instances is based on the memory size
derived from the maximum ACUs. However, when you specify a minimum capacity of 0.5 ACUs
on PostgreSQL-compatible DB instances, the maximum value of max_connections is capped at
2,000.

Now we return the capacity to its initial range of 0.5–1 ACU and reboot the DB instance. The
max_connections parameter has returned to its original value.

postgres=> show max_connections;
 max_connections

 189
(1 row)

postgres=> show shared_buffers;
 shared_buffers

 16384

Choosing the capacity range 3202

Amazon Aurora User Guide for Aurora

(1 row)

Working with parameter groups for Aurora Serverless v2

When you create your Aurora Serverless v2 DB cluster, you choose a specific Aurora DB engine and
an associated DB cluster parameter group. If you aren't familiar with how Aurora uses parameter
groups to apply configuration settings consistently across clusters, see Working with parameter
groups. All of those procedures for creating, modifying, applying, and other actions for parameter
groups apply to Aurora Serverless v2.

The parameter group feature works generally the same between provisioned clusters and clusters
containing Aurora Serverless v2 DB instances:

• The default parameter values for all DB instances in the cluster are defined by the cluster
parameter group.

• You can override some parameters for specific DB instances by specifying a custom DB parameter
group for those DB instances. You might do so during debugging or performance tuning for
specific DB instances. For example, suppose that you have a cluster containing some Aurora
Serverless v2 DB instances and some provisioned DB instances. In this case, you might specify
some different parameters for the provisioned DB instances by using a custom DB parameter
group.

• For Aurora Serverless v2, you can use all the parameters that have the value provisioned in
the SupportedEngineModes attribute in the parameter group. In Aurora Serverless v1, you
can only use the subset of parameters that have serverless in the SupportedEngineModes
attribute.

Topics

• Default parameter values

• Maximum connections for Aurora Serverless v2

• Parameters that Aurora adjusts as Aurora Serverless v2 scales up and down

• Parameters that Aurora computes based on Aurora Serverless v2 maximum capacity

Default parameter values

The crucial difference between provisioned DB instances and Aurora Serverless v2 DB instances
is that Aurora overrides any custom parameter values for certain parameters that are related to

Working with parameter groups for Aurora Serverless v2 3203

Amazon Aurora User Guide for Aurora

DB instance capacity. The custom parameter values still apply to any provisioned DB instances
in your cluster. For more details about how Aurora Serverless v2 DB instances interpret the
parameters from Aurora parameter groups, see Configuration parameters for Aurora clusters. For
the specific parameters that Aurora Serverless v2 overrides, see Parameters that Aurora adjusts as
Aurora Serverless v2 scales up and down and Parameters that Aurora computes based on Aurora
Serverless v2 maximum capacity.

You can get a list of default values for the default parameter groups for the various Aurora DB
engines by using the describe-db-cluster-parameters CLI command and querying the AWS Region.
The following are values that you can use for the --db-parameter-group-family and -db-
parameter-group-name options for engine versions that are compatible with Aurora Serverless
v2.

Database engine and version Parameter group family Default parameter group
name

Aurora MySQL version 3 aurora-mysql8.0 default.aurora-mys
ql8.0

Aurora PostgreSQL version
13.x

aurora-postgresql13 default.aurora-pos
tgresql13

Aurora PostgreSQL version
14.x

aurora-postgresql14 default.aurora-pos
tgresql14

Aurora PostgreSQL version
15.x

aurora-postgresql15 default.aurora-pos
tgresql15

Aurora PostgreSQL version
16.x

aurora-postgresql16 default.aurora-pos
tgresql16

The following example gets a list of parameters from the default DB cluster group for Aurora
MySQL version 3 and Aurora PostgreSQL 13. Those are the Aurora MySQL and Aurora PostgreSQL
versions that you use with Aurora Serverless v2.

For Linux, macOS, or Unix:

aws rds describe-db-cluster-parameters \

Working with parameter groups for Aurora Serverless v2 3204

https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-cluster-parameters.html

Amazon Aurora User Guide for Aurora

 --db-cluster-parameter-group-name default.aurora-mysql8.0 \
 --query 'Parameters[*].
{ParameterName:ParameterName,SupportedEngineModes:SupportedEngineModes} |
 [?contains(SupportedEngineModes, `provisioned`) == `true`] | [*].[ParameterName]' \
 --output text

aws rds describe-db-cluster-parameters \
 --db-cluster-parameter-group-name default.aurora-postgresql13 \
 --query 'Parameters[*].
{ParameterName:ParameterName,SupportedEngineModes:SupportedEngineModes} |
 [?contains(SupportedEngineModes, `provisioned`) == `true`] | [*].[ParameterName]' \
 --output text

For Windows:

aws rds describe-db-cluster-parameters ^
 --db-cluster-parameter-group-name default.aurora-mysql8.0 ^
 --query 'Parameters[*].
{ParameterName:ParameterName,SupportedEngineModes:SupportedEngineModes} |
 [?contains(SupportedEngineModes, `provisioned`) == `true`] | [*].[ParameterName]' ^
 --output text

aws rds describe-db-cluster-parameters ^
 --db-cluster-parameter-group-name default.aurora-postgresql13 ^
 --query 'Parameters[*].
{ParameterName:ParameterName,SupportedEngineModes:SupportedEngineModes} |
 [?contains(SupportedEngineModes, `provisioned`) == `true`] | [*].[ParameterName]' ^
 --output text

Maximum connections for Aurora Serverless v2

For both Aurora MySQL and Aurora PostgreSQL, Aurora Serverless v2 DB instances hold the
max_connections parameter constant so that connections aren't dropped when the DB instance
scales down. The default value for this parameter is derived from a formula based on the memory
size of the DB instance. For details about the formula and the default values for provisioned
DB instance classes, see Maximum connections to an Aurora MySQL DB instance and Maximum
connections to an Aurora PostgreSQL DB instance.

When Aurora Serverless v2 evaluates the formula, it uses the memory size based on the maximum
Aurora capacity units (ACUs) for the DB instance, not the current ACU value. If you change the
default value, we recommend using a variation of the formula instead of specifying a constant

Working with parameter groups for Aurora Serverless v2 3205

Amazon Aurora User Guide for Aurora

value. That way, Aurora Serverless v2 can use an appropriate setting based on the maximum
capacity.

When you change the maximum capacity of an Aurora Serverless v2 DB cluster, you have to reboot
the Aurora Serverless v2 DB instances to update the max_connections value. This is because
max_connections is a static parameter for Aurora Serverless v2.

The following table shows the default values for max_connections for Aurora Serverless v2
based on the maximum ACU value.

Maximum ACUs Default maximum connectio
ns on Aurora MySQL

Default maximum connectio
ns on Aurora PostgreSQL

1 90 189

4 135 823

8 1,000 1,669

16 2,000 3,360

32 3,000 5,000

64 4,000 5,000

128 5,000 5,000

Note

The max_connections value for Aurora Serverless v2DB instances is based on the
memory size derived from the maximum ACUs. However, when you specify a minimum
capacity of 0.5 ACUs on PostgreSQL-compatible DB instances, the maximum value of
max_connections is capped at 2,000.

For specific examples showing how max_connections changes with the maximum ACU value, see
Example: Change the Aurora Serverless v2 capacity range of an Aurora MySQL cluster and Example:
Change the Aurora Serverless v2 capacity range of an Aurora PostgreSQL cluster.

Working with parameter groups for Aurora Serverless v2 3206

Amazon Aurora User Guide for Aurora

Parameters that Aurora adjusts as Aurora Serverless v2 scales up and down

During autoscaling, Aurora Serverless v2 needs to be able to change parameters for each DB
instance to work best for the increased or decreased capacity. Thus, you can't override some
parameters related to capacity. For some parameters that you can override, avoid hardcoding fixed
values. The following considerations apply to these settings that are related to capacity.

For Aurora MySQL, Aurora Serverless v2 resizes some parameters dynamically during scaling. For
the following parameters, Aurora Serverless v2 doesn't use any custom parameter values that you
specify:

• innodb_buffer_pool_size

• innodb_purge_threads

• table_definition_cache

• table_open_cache

For Aurora PostgreSQL, Aurora Serverless v2 resizes the following parameter dynamically during
scaling. For the following parameters, Aurora Serverless v2 doesn't use any custom parameter
values that you specify:

• shared_buffers

For all parameters other than those listed here, Aurora Serverless v2 DB instances work the same
as provisioned DB instances. The default parameter value is inherited from the cluster parameter
group. You can modify the default for the whole cluster by using a custom cluster parameter
group. Or you can modify the default for certain DB instances by using a custom DB parameter
group. Dynamic parameters are updated immediately. Changes to static parameters only take
effect after you reboot the DB instance.

Parameters that Aurora computes based on Aurora Serverless v2 maximum
capacity

For the following parameters, Aurora PostgreSQL uses default values that are derived from the
memory size based on the maximum ACU setting, the same as with max_connections:

• autovacuum_max_workers

• autovacuum_vacuum_cost_limit

Working with parameter groups for Aurora Serverless v2 3207

Amazon Aurora User Guide for Aurora

• autovacuum_work_mem

• effective_cache_size

• maintenance_work_mem

Avoiding out-of-memory errors

If one of your Aurora Serverless v2 DB instances consistently reaches the limit of its maximum
capacity, Aurora indicates this condition by setting the DB instance to a status of incompatible-
parameters. While the DB instance has the incompatible-parameters status, some
operations are blocked. For example, you can't upgrade the engine version.

Typically, your DB instance goes into this status when it restarts frequently due to out-of-memory
errors. Aurora records an event when this type of restart happens. You can view the event by
following the procedure in Viewing Amazon RDS events. Unusually high memory usage can
happen because of overhead from turning on settings such as Performance Insights and IAM
authentication. It can also come from a heavy workload on your DB instance or from managing the
metadata associated with a large number of schema objects.

If the memory pressure becomes lower so that the DB instance doesn't reach its maximum capacity
very often, Aurora automatically changes the DB instance status back to available.

To recover from this condition, you can take some or all of the following actions:

• Increase the lower limit on capacity for Aurora Serverless v2 DB instances by changing the
minimum Aurora capacity unit (ACU) value for the cluster. Doing so avoids issues where an idle
database scales down to a capacity with less memory than is needed for the features that are
turned on in your cluster. After changing the ACU settings for the cluster, reboot the Aurora
Serverless v2 DB instance. Doing so evaluates whether Aurora can reset the status back to
available.

• Increase the upper limit on capacity for Aurora Serverless v2 DB instances by changing the
maximum ACU value for the cluster. Doing so avoids issues where a busy database can't scale up
to a capacity with enough memory for the features that are turned on in your cluster and the
database workload. After changing the ACU settings for the cluster, reboot the Aurora Serverless
v2 DB instance. Doing so evaluates whether Aurora can reset the status back to available.

• Turn off configuration settings that require memory overhead. For example, suppose that you
have features such as AWS Identity and Access Management (IAM), Performance Insights, or
Aurora MySQL binary log replication turned on but don't use them. If so, you can turn them off.

Avoiding out-of-memory errors 3208

Amazon Aurora User Guide for Aurora

Or you can adjust the minimum and maximum capacity values for the cluster higher to account
for the memory used by those features. For guidelines about choosing minimum and maximum
capacity settings, see Choosing the Aurora Serverless v2 capacity range for an Aurora cluster.

• Reduce the workload on the DB instance. For example, you can add reader DB instances to the
cluster to spread the load from read-only queries across more DB instances.

• Tune the SQL code used by your application to use fewer resources. For example, you can
examine your query plans, check the slow query log, or adjust the indexes on your tables. You
can also perform other traditional kinds of SQL tuning.

Important Amazon CloudWatch metrics for Aurora Serverless v2

To get started with Amazon CloudWatch for your Aurora Serverless v2 DB instance, see Viewing
Aurora Serverless v2 logs in Amazon CloudWatch. To learn more about how to monitor Aurora DB
clusters through CloudWatch, see Monitoring log events in Amazon CloudWatch.

You can view your Aurora Serverless v2 DB instances in CloudWatch to monitor the capacity
consumed by each DB instance with the ServerlessDatabaseCapacity metric. You can also
monitor all of the standard Aurora CloudWatch metrics, such as DatabaseConnections and
Queries. For the full list of CloudWatch metrics that you can monitor for Aurora, see Amazon
CloudWatch metrics for Amazon Aurora. The metrics are divided into cluster-level and instance-
level metrics, in Cluster-level metrics for Amazon Aurora and Instance-level metrics for Amazon
Aurora.

The following CloudWatch instance-level metrics are important to monitor for you to understand
how your Aurora Serverless v2 DB instances are scaling up and down. All of these metrics are
calculated every second. That way, you can monitor the current status of your Aurora Serverless v2
DB instances. You can set alarms to notify you if any Aurora Serverless v2 DB instance approaches
a threshold for metrics related to capacity. You can determine if the minimum and maximum
capacity settings are appropriate, or if you need to adjust them. You can determine where to focus
your efforts for optimizing the efficiency of your database.

• ServerlessDatabaseCapacity. As an instance-level metric, it reports the number of ACUs
represented by the current DB instance capacity. As a cluster-level metric, it represents the
average of the ServerlessDatabaseCapacity values of all the Aurora Serverless v2 DB
instances in the cluster. This metric is only a cluster-level metric in Aurora Serverless v1. In
Aurora Serverless v2, it's available at the DB instance level and at the cluster level.

Important CloudWatch metrics 3209

Amazon Aurora User Guide for Aurora

• ACUUtilization. This metric is new in Aurora Serverless v2. This value is represented as a
percentage. It's calculated as the value of the ServerlessDatabaseCapacity metric divided
by the maximum ACU value of the DB cluster. Consider the following guidelines to interpret this
metric and take action:

• If this metric approaches a value of 100.0, the DB instance has scaled up as high as it can.
Consider increasing the maximum ACU setting for the cluster. That way, both writer and reader
DB instances can scale to a higher capacity.

• Suppose that a read-only workload causes a reader DB instance to approach an
ACUUtilization of 100.0, while the writer DB instance isn't close to its maximum capacity.
In that case, consider adding additional reader DB instances to the cluster. That way, you can
spread the read-only part of the workload spread across more DB instances, reducing the load
on each reader DB instance.

• Suppose that you are running a production application, where performance and scalability are
the primary considerations. In that case, you can set the maximum ACU value for the cluster to
a high number. Your goal is for the ACUUtilization metric to always be below 100.0. With
a high maximum ACU value, you can be confident that there's enough room in case there are
unexpected spikes in database activity. You are only charged for the database capacity that's
actually consumed.

• CPUUtilization. This metric is interpreted differently in Aurora Serverless v2 than in
provisioned DB instances. For Aurora Serverless v2, this value is a percentage that's calculated as
the amount of CPU currently being used divided by the CPU capacity that's available under the
maximum ACU value of the DB cluster. Aurora monitors this value automatically and scales up
your Aurora Serverless v2 DB instance when the DB instance consistently uses a high proportion
of its CPU capacity.

If this metric approaches a value of 100.0, the DB instance has reached its maximum CPU
capacity. Consider increasing the maximum ACU setting for the cluster. If this metric approaches
a value of 100.0 on a reader DB instance, consider adding additional reader DB instances to
the cluster. That way, you can spread the read-only part of the workload spread across more DB
instances, reducing the load on each reader DB instance.

• FreeableMemory. This value represents the amount of unused memory that is available when
the Aurora Serverless v2 DB instance is scaled to its maximum capacity. For every ACU that the
current capacity is below the maximum capacity, this value increases by approximately 2 GiB.
Thus, this metric doesn't approach zero until the DB instance is scaled up as high as it can.

Important CloudWatch metrics 3210

Amazon Aurora User Guide for Aurora

If this metric approaches a value of 0, the DB instance has scaled up as much as it can and is
nearing the limit of its available memory. Consider increasing the maximum ACU setting for the
cluster. If this metric approaches a value of 0 on a reader DB instance, consider adding additional
reader DB instances to the cluster. That way, the read-only part of the workload can be spread
across more DB instances, reducing the memory usage on each reader DB instance.

• TempStorageIops. The number of IOPS done on local storage attached to the DB instance. It
includes the IOPS for both reads and writes. This metric represents a count and is measured once
per second. This is a new metric for Aurora Serverless v2. For details, see Instance-level metrics
for Amazon Aurora.

• TempStorageThroughput. The amount of data transferred to and from local storage
associated with the DB instance. This metric represents bytes and is measured once per second.
This is a new metric for Aurora Serverless v2. For details, see Instance-level metrics for Amazon
Aurora.

Typically, most scaling up for Aurora Serverless v2 DB instances is caused by memory usage and
CPU activity. The TempStorageIops and TempStorageThroughput metrics can help you to
diagnose the rare cases where network activity for transfers between your DB instance and local
storage devices is responsible for unexpected capacity increases. To monitor other network activity,
you can use these existing metrics:

• NetworkReceiveThroughput

• NetworkThroughput

• NetworkTransmitThroughput

• StorageNetworkReceiveThroughput

• StorageNetworkThroughput

• StorageNetworkTransmitThroughput

You can have Aurora publish some or all database logs to CloudWatch. You select the logs to
publish by turning on the configuration parameters such as general_log and slow_query_log
in the DB cluster parameter group associated with the cluster that contains your Aurora Serverless
v2 DB instances. When you turn off a log configuration parameter, publishing that log to
CloudWatch stops. You can also delete the logs in CloudWatch if they are no longer needed.

Important CloudWatch metrics 3211

Amazon Aurora User Guide for Aurora

How Aurora Serverless v2 metrics apply to your AWS bill

The Aurora Serverless v2 charges on your AWS bill are calculated based on the same
ServerlessDatabaseCapacity metric that you can monitor. The billing mechanism can differ
from the computed CloudWatch average for this metric in cases where you use Aurora Serverless
v2 capacity for only part of an hour. It can also differ if system issues make the CloudWatch metric
unavailable for brief periods. Thus, you might see a slightly different value of ACU-hours on your
bill than if you compute the number yourself from the ServerlessDatabaseCapacity average
value.

Examples of CloudWatch commands for Aurora Serverless v2 metrics

The following AWS CLI examples demonstrate how you can monitor the most important
CloudWatch metrics related to Aurora Serverless v2. In each case, replace the Value= string for the
--dimensions parameter with the identifier of your own Aurora Serverless v2 DB instance.

The following Linux example displays the minimum, maximum, and average capacity values for a
DB instance, measured every 10 minutes over one hour. The Linux date command specifies the
start and end times relative to the current date and time. The sort_by function in the --query
parameter sorts the results chronologically based on the Timestamp field.

aws cloudwatch get-metric-statistics --metric-name "ServerlessDatabaseCapacity" \
 --start-time "$(date -d '1 hour ago')" --end-time "$(date -d 'now')" --period 600 \
 --namespace "AWS/RDS" --statistics Minimum Maximum Average \
 --dimensions Name=DBInstanceIdentifier,Value=my_instance \
 --query 'sort_by(Datapoints[*].
{min:Minimum,max:Maximum,avg:Average,ts:Timestamp},&ts)' --output table

The following Linux examples demonstrate monitoring the capacity of each DB instance in a
cluster. They measure the minimum, maximum, and average capacity utilization of each DB
instance. The measurements are taken once each hour over a three-hour period. These examples
use the ACUUtilization metric representing a percentage of the upper limit on ACUs, instead of
ServerlessDatabaseCapacity representing a fixed number of ACUs. That way, you don't need
to know the actual numbers for the minimum and maximum ACU values in the capacity range. You
can see percentages ranging from 0 to 100.

aws cloudwatch get-metric-statistics --metric-name "ACUUtilization" \
 --start-time "$(date -d '3 hours ago')" --end-time "$(date -d 'now')" --period 3600 \
 --namespace "AWS/RDS" --statistics Minimum Maximum Average \

Important CloudWatch metrics 3212

Amazon Aurora User Guide for Aurora

 --dimensions Name=DBInstanceIdentifier,Value=my_writer_instance \
 --query 'sort_by(Datapoints[*].
{min:Minimum,max:Maximum,avg:Average,ts:Timestamp},&ts)' --output table

aws cloudwatch get-metric-statistics --metric-name "ACUUtilization" \
 --start-time "$(date -d '3 hours ago')" --end-time "$(date -d 'now')" --period 3600 \
 --namespace "AWS/RDS" --statistics Minimum Maximum Average \
 --dimensions Name=DBInstanceIdentifier,Value=my_reader_instance \
 --query 'sort_by(Datapoints[*].
{min:Minimum,max:Maximum,avg:Average,ts:Timestamp},&ts)' --output table

The following Linux example does similar measurements as the previous ones. In this case, the
measurements are for the CPUUtilization metric. The measurements are taken every 10
minutes over a 1-hour period. The numbers represent the percentage of available CPU used, based
on the CPU resources available to the maximum capacity setting for the DB instance.

aws cloudwatch get-metric-statistics --metric-name "CPUUtilization" \
 --start-time "$(date -d '1 hour ago')" --end-time "$(date -d 'now')" --period 600 \
 --namespace "AWS/RDS" --statistics Minimum Maximum Average \
 --dimensions Name=DBInstanceIdentifier,Value=my_instance \
 --query 'sort_by(Datapoints[*].
{min:Minimum,max:Maximum,avg:Average,ts:Timestamp},&ts)' --output table

The following Linux example does similar measurements as the previous ones. In this case, the
measurements are for the FreeableMemory metric. The measurements are taken every 10
minutes over a 1-hour period.

aws cloudwatch get-metric-statistics --metric-name "FreeableMemory" \
 --start-time "$(date -d '1 hour ago')" --end-time "$(date -d 'now')" --period 600 \
 --namespace "AWS/RDS" --statistics Minimum Maximum Average \
 --dimensions Name=DBInstanceIdentifier,Value=my_instance \
 --query 'sort_by(Datapoints[*].
{min:Minimum,max:Maximum,avg:Average,ts:Timestamp},&ts)' --output table

Monitoring Aurora Serverless v2 performance with Performance
Insights

You can use Performance Insights to monitor the performance of Aurora Serverless v2 DB
instances. For Performance Insights procedures, see Monitoring DB load with Performance Insights
on Amazon Aurora.

Monitoring Aurora Serverless v2 performance with Performance Insights 3213

Amazon Aurora User Guide for Aurora

The following new Performance Insights counters apply to Aurora Serverless v2 DB instances:

• os.general.serverlessDatabaseCapacity – The current capacity of the DB instance in
ACUs. The value corresponds to the ServerlessDatabaseCapacity CloudWatch metric for
the DB instance.

• os.general.acuUtilization – The percentage of current capacity out of the maximum
configured capacity. The value corresponds to the ACUUtilization CloudWatch metric for the
DB instance.

• os.general.maxConfiguredAcu – The maximum capacity that you configured for this Aurora
Serverless v2 DB instance. It's measured in ACUs.

• os.general.minConfiguredAcu – The minimum capacity that you configured for this Aurora
Serverless v2 DB instance. It's measured in ACUs

For the full list of Performance Insights counters, see Performance Insights counter metrics.

When vCPU values are shown for an Aurora Serverless v2 DB instance in Performance Insights,
those values represent estimates based on the ACU value for the DB instance. At the default
interval of one minute, any fractional vCPU values are rounded up to the nearest whole number.
For longer intervals, the vCPU value shown is the average of the integer vCPU values for each
minute.

Troubleshooting Aurora Serverless v2 capacity issues

In some cases, Aurora Serverless v2 doesn't scale down to the minimum capacity, even with no load
on the database. This can happen for the following reasons:

• Certain features can increase resource usage and prevent the database from scaling down to
minimum capacity. These features include the following:

• Aurora global databases

• Exporting CloudWatch Logs

• Enabling pg_audit on Aurora PostgreSQL–compatible DB clusters

• Enhanced Monitoring

• Performance Insights

For more information, see Choosing the minimum Aurora Serverless v2 capacity setting for a
cluster.

Troubleshooting Aurora Serverless v2 capacity issues 3214

Amazon Aurora User Guide for Aurora

• If a reader instance isn't scaling down to the minimum and stays at the same or higher capacity
than the writer instance, then check the priority tier of the reader instance. Aurora Serverless v2
reader DB instances in tier 0 or 1 are kept at a minimum capacity at least as high as the writer
DB instance. Change the priority tier of the reader to 2 or higher so that it scales up and down
independently of the writer. For more information, see Choosing the promotion tier for an
Aurora Serverless v2 reader.

• Set any database parameters that impact the size of shared memory to their default values.
Setting a value higher than the default increases the shared memory requirement and prevents
the database from scaling down to the minimum capacity. Examples are max_connections and
max_locks_per_transaction.

Note

Updating shared memory parameters requires a database restart for the changes to take
effect.

• Heavy database workloads can increase resource usage.

• Large database volumes can increase resource usage.

Amazon Aurora uses memory and CPU resources for DB cluster management. Aurora requires
more CPU and memory to manage DB clusters with larger database volumes. If your cluster’s
minimum capacity is less than the minimum required for cluster management, your cluster won't
scale down to the minimum capacity.

• Background processes, such as purge, can also increase resource usage.

If the database still doesn't scale down to the minimum capacity configured, then stop and restart
the database to reclaim any memory fragments that might have built up over time. Stopping and
starting a database results in downtime, so we recommend doing this sparingly.

Migrating to Aurora Serverless v2

To convert an existing DB cluster to use Aurora Serverless v2, you can do the following:

• Upgrade from a provisioned Aurora DB cluster.

• Upgrade from an Aurora Serverless v1 cluster.

• Migrate from an on-premises database to an Aurora Serverless v2 cluster.

Migrating to Aurora Serverless v2 3215

Amazon Aurora User Guide for Aurora

When your upgraded cluster is running the appropriate engine version as listed in Requirements
and limitations for Aurora Serverless v2, you can begin adding Aurora Serverless v2 DB instances
to it. The first DB instance that you add to the upgraded cluster must be a provisioned DB instance.
Then you can switch over the processing for the write workload, the read workload, or both to the
Aurora Serverless v2 DB instances.

Contents

• Upgrading or switching existing clusters to use Aurora Serverless v2

• Upgrade paths for MySQL-compatible clusters to use Aurora Serverless v2

• Upgrade paths for PostgreSQL-compatible clusters to use Aurora Serverless v2

• Switching from a provisioned cluster to Aurora Serverless v2

• Comparison of Aurora Serverless v2 and Aurora Serverless v1

• Comparison of Aurora Serverless v2 and Aurora Serverless v1 requirements

• Comparison of Aurora Serverless v2 and Aurora Serverless v1 scaling and availability

• Comparison of Aurora Serverless v2 and Aurora Serverless v1 feature support

• Adapting Aurora Serverless v1 use cases to Aurora Serverless v2

• Upgrading from an Aurora Serverless v1 cluster to Aurora Serverless v2

• Aurora MySQL–compatible DB clusters

• Aurora PostgreSQL–compatible DB clusters

• Migrating from an on-premises database to Aurora Serverless v2

Note

These topics describe how to convert an existing DB cluster. For information on creating a
new Aurora Serverless v2 DB cluster, see Creating a DB cluster that uses Aurora Serverless
v2.

Upgrading or switching existing clusters to use Aurora Serverless v2

If your provisioned cluster has an engine version that supports Aurora Serverless v2, switching to
Aurora Serverless v2 doesn't require an upgrade. In that case, you can add Aurora Serverless v2
DB instances to your original cluster. You can switch the cluster to use all Aurora Serverless v2 DB
instances. You can also use a combination of Aurora Serverless v2 and provisioned DB instances

Using Aurora Serverless v2 with an existing cluster 3216

Amazon Aurora User Guide for Aurora

in the same DB cluster. For the Aurora engine versions that support Aurora Serverless v2, see
Supported Regions and Aurora DB engines for Aurora Serverless v2.

If you're running a lower engine version that doesn't support Aurora Serverless v2, you take these
general steps:

1. Upgrade the cluster.

2. Create a provisioned writer DB instance for the upgraded cluster.

3. Modify the cluster to use Aurora Serverless v2 DB instances.

Important

When you perform a major version upgrade to an Aurora Serverless v2-compatible version
by using snapshot restore or cloning, the first DB instance that you add to the new cluster
must be a provisioned DB instance. This addition starts the final stage of the upgrade
process.
Until that final stage happens, the cluster doesn't have the infrastructure that's required for
Aurora Serverless v2 support. Thus, these upgraded clusters always start with a provisioned
writer DB instance. Then you can convert or fail over the provisioned DB instance to an
Aurora Serverless v2 one.

Upgrading from Aurora Serverless v1 to Aurora Serverless v2 involves creating a provisioned
cluster as an intermediate step. Then you perform the same upgrade steps as when you start with
a provisioned cluster.

Upgrade paths for MySQL-compatible clusters to use Aurora Serverless v2

If your original cluster is running Aurora MySQL, choose the appropriate procedure depending on
the engine version and engine mode of your cluster.

If your original Aurora MySQL cluster is this Do this to switch to Aurora Serverless v2

Provisioned cluster running Aurora MySQL
version 3, compatible with MySQL 8.0

This is the final stage for all conversions from
existing Aurora MySQL clusters.

If necessary, perform a minor version upgrade
to version 3.02.0 or higher. Use a provisioned

Using Aurora Serverless v2 with an existing cluster 3217

Amazon Aurora User Guide for Aurora

If your original Aurora MySQL cluster is this Do this to switch to Aurora Serverless v2

DB instance for the writer DB instance. Add
one Aurora Serverless v2 reader DB instance.
Perform a failover to make that the writer DB
instance.

(Optional) Convert other provisioned DB
instances in the cluster to Aurora Serverles
s v2. Or add new Aurora Serverless v2 DB
instances and remove the provisioned DB
instances.

For the full procedure and examples, see
Switching from a provisioned cluster to Aurora
Serverless v2.

Provisioned cluster running Aurora MySQL
version 2, compatible with MySQL 5.7

Perform a major version upgrade to Aurora
MySQL version 3.02.0 or higher. Then follow
the procedure for Aurora MySQL version 3 to
switch the cluster to use Aurora Serverless v2
DB instances.

Aurora Serverless v1 cluster running Aurora
MySQL version 2, compatible with MySQL 5.7

To help plan your conversion from Aurora
Serverless v1, consult Comparison of Aurora
Serverless v2 and Aurora Serverless v1 first.

Then follow the procedure in Upgrading from
an Aurora Serverless v1 cluster to Aurora
Serverless v2.

Upgrade paths for PostgreSQL-compatible clusters to use Aurora Serverless v2

If your original cluster is running Aurora PostgreSQL, choose the appropriate procedure depending
on the engine version and engine mode of your cluster.

Using Aurora Serverless v2 with an existing cluster 3218

Amazon Aurora User Guide for Aurora

If your original Aurora PostgreSQL cluster is
this

Do this to switch to Aurora Serverless v2

Provisioned cluster running Aurora PostgreSQ
L version 13

This is the final stage for all conversions from
existing Aurora PostgreSQL clusters.

If necessary, perform a minor version upgrade
to version 13.6 or higher. Add one provision
ed DB instance for the writer DB instance.
Add one Aurora Serverless v2 reader DB
instance. Perform a failover to make that
Aurora Serverless v2 instance the writer DB
instance.

(Optional) Convert other provisioned DB
instances in the cluster to Aurora Serverles
s v2. Or add new Aurora Serverless v2 DB
instances and remove the provisioned DB
instances.

For the full procedure and examples, see
Switching from a provisioned cluster to Aurora
Serverless v2.

Provisioned cluster running Aurora PostgreSQ
L version 11 or 12

Perform a major version upgrade to Aurora
PostgreSQL version 13.6 or higher. Then
follow the procedure for Aurora PostgreSQL
version 13 to switch the cluster to use Aurora
Serverless v2 DB instances.

Aurora Serverless v1 cluster running Aurora
PostgreSQL version 11 or 13

To help plan your conversion from Aurora
Serverless v1, consult Comparison of Aurora
Serverless v2 and Aurora Serverless v1 first.

Then follow the procedure in Upgrading from
an Aurora Serverless v1 cluster to Aurora
Serverless v2.

Using Aurora Serverless v2 with an existing cluster 3219

Amazon Aurora User Guide for Aurora

Switching from a provisioned cluster to Aurora Serverless v2

To switch a provisioned cluster to use Aurora Serverless v2, follow these steps:

1. Check if the provisioned cluster needs to be upgraded to be used with Aurora Serverless
v2 DB instances. For the Aurora versions that are compatible with Aurora Serverless v2, see
Requirements and limitations for Aurora Serverless v2.

If the provisioned cluster is running an engine version that isn't available for Aurora Serverless
v2, upgrade the engine version of the cluster:

• If you have a MySQL 5.7–compatible provisioned cluster, follow the upgrade instructions for
Aurora MySQL version 3. Use the procedures in How to perform an in-place upgrade.

• If you have a PostgreSQL-compatible provisioned cluster running PostgreSQL version 11 or
12, follow the upgrade instructions for Aurora PostgreSQL version 13. Use the procedures in
How to perform a major version upgrade.

2. Configure any other cluster properties to match the Aurora Serverless v2 requirements from
Requirements and limitations for Aurora Serverless v2.

3. Configure the scaling configuration for the cluster. Follow the procedure in Setting the Aurora
Serverless v2 capacity range for a cluster.

4. Add one or more Aurora Serverless v2 DB instances to the cluster. Follow the general procedure
in Adding Aurora Replicas to a DB cluster. For each new DB instance, specify the special DB
instance class name Serverless in the AWS Management Console, or db.serverless in the
AWS CLI or Amazon RDS API.

In some cases, you might already have one or more provisioned reader DB instances in the
cluster. If so, you can convert one of the readers to an Aurora Serverless v2 DB instance instead
of creating a new DB instance. To do so, follow the procedure in Converting a provisioned writer
or reader to Aurora Serverless v2.

5. Perform a failover operation to make one of the Aurora Serverless v2 DB instances the writer DB
instance for the cluster.

6. (Optional) Convert any provisioned DB instances to Aurora Serverless v2, or remove them from
the cluster. Follow the general procedure in Converting a provisioned writer or reader to Aurora
Serverless v2 or Deleting a DB instance from an Aurora DB cluster.

Switching from a provisioned cluster 3220

Amazon Aurora User Guide for Aurora

Tip

Removing the provisioned DB instances isn't mandatory. You can set up a cluster
containing both Aurora Serverless v2 and provisioned DB instances. However, until you
are familiar with the performance and scaling characteristics of Aurora Serverless v2 DB
instances, we recommend that you configure your clusters with DB instances all of the
same type.

The following AWS CLI example shows the switchover process using a provisioned cluster that's
running Aurora MySQL version 3.02.0. The cluster is named mysql-80. The cluster starts with two
provisioned DB instances named provisioned-instance-1 and provisioned-instance-2, a
writer and a reader. They both use the db.r6g.large DB instance class.

$ aws rds describe-db-clusters --db-cluster-identifier mysql-80 \
 --query '*[].[DBClusterIdentifier,DBClusterMembers[*].
[DBInstanceIdentifier,IsClusterWriter]]' --output text
mysql-80
provisioned-instance-2 False
provisioned-instance-1 True

$ aws rds describe-db-instances --db-instance-identifier provisioned-instance-1 \
 --output text --query '*[].[DBInstanceIdentifier,DBInstanceClass]'
provisioned-instance-1 db.r6g.large

$ aws rds describe-db-instances --db-instance-identifier provisioned-instance-2 \
 --output text --query '*[].[DBInstanceIdentifier,DBInstanceClass]'
provisioned-instance-2 db.r6g.large

We create a table with some data. That way, we can confirm that the data and operation of the
cluster are the same before and after the switchover.

mysql> create database serverless_v2_demo;
mysql> create table serverless_v2_demo.demo (s varchar(128));
mysql> insert into serverless_v2_demo.demo values ('This cluster started with a
 provisioned writer.');
Query OK, 1 row affected (0.02 sec)

Switching from a provisioned cluster 3221

Amazon Aurora User Guide for Aurora

First, we add a capacity range to the cluster. Otherwise, we get an error when adding any Aurora
Serverless v2 DB instances to the cluster. If we use the AWS Management Console for this
procedure, that step is automatic when we add the first Aurora Serverless v2 DB instance.

$ aws rds create-db-instance --db-instance-identifier serverless-v2-instance-1 \
 --db-cluster-identifier mysql-80 --db-instance-class db.serverless --engine aurora-
mysql

An error occurred (InvalidDBClusterStateFault) when calling the CreateDBInstance
 operation:
Set the Serverless v2 scaling configuration on the parent DB cluster before creating a
 Serverless v2 DB instance.

$ # The blank ServerlessV2ScalingConfiguration attribute confirms that the cluster
 doesn't have a capacity range set yet.
$ aws rds describe-db-clusters --db-cluster-identifier mysql-80 --query
 'DBClusters[*].ServerlessV2ScalingConfiguration'
[]

$ aws rds modify-db-cluster --db-cluster-identifier mysql-80 \
 --serverless-v2-scaling-configuration MinCapacity=0.5,MaxCapacity=16
{
 "DBClusterIdentifier": "mysql-80",
 "ServerlessV2ScalingConfiguration": {
 "MinCapacity": 0.5,
 "MaxCapacity": 16
 }
}

We create two Aurora Serverless v2 readers to take the place of the original DB instances. We do so
by specifying the db.serverless DB instance class for the new DB instances.

$ aws rds create-db-instance --db-instance-identifier serverless-v2-instance-1 --db-
cluster-identifier mysql-80 --db-instance-class db.serverless --engine aurora-mysql
{
 "DBInstanceIdentifier": "serverless-v2-instance-1",
 "DBClusterIdentifier": "mysql-80",
 "DBInstanceClass": "db.serverless",
 "DBInstanceStatus": "creating"
}

$ aws rds create-db-instance --db-instance-identifier serverless-v2-instance-2 \

Switching from a provisioned cluster 3222

Amazon Aurora User Guide for Aurora

 --db-cluster-identifier mysql-80 --db-instance-class db.serverless --engine aurora-
mysql
{
 "DBInstanceIdentifier": "serverless-v2-instance-2",
 "DBClusterIdentifier": "mysql-80",
 "DBInstanceClass": "db.serverless",
 "DBInstanceStatus": "creating"
}

$ # Wait for both DB instances to finish being created before proceeding.
$ aws rds wait db-instance-available --db-instance-identifier serverless-v2-instance-1
 && \
 aws rds wait db-instance-available --db-instance-identifier serverless-v2-instance-2

We perform a failover to make one of the Aurora Serverless v2 DB instances the new writer for the
cluster.

$ aws rds failover-db-cluster --db-cluster-identifier mysql-80 \
 --target-db-instance-identifier serverless-v2-instance-1
{
 "DBClusterIdentifier": "mysql-80",
 "DBClusterMembers": [
 {
 "DBInstanceIdentifier": "serverless-v2-instance-1",
 "IsClusterWriter": false,
 "DBClusterParameterGroupStatus": "in-sync",
 "PromotionTier": 1
 },
 {
 "DBInstanceIdentifier": "serverless-v2-instance-2",
 "IsClusterWriter": false,
 "DBClusterParameterGroupStatus": "in-sync",
 "PromotionTier": 1
 },
 {
 "DBInstanceIdentifier": "provisioned-instance-2",
 "IsClusterWriter": false,
 "DBClusterParameterGroupStatus": "in-sync",
 "PromotionTier": 1
 },
 {
 "DBInstanceIdentifier": "provisioned-instance-1",
 "IsClusterWriter": true,

Switching from a provisioned cluster 3223

Amazon Aurora User Guide for Aurora

 "DBClusterParameterGroupStatus": "in-sync",
 "PromotionTier": 1
 }
],
 "Status": "available"
}

It takes a few seconds for that change to take effect. At that point, we have an Aurora Serverless v2
writer and an Aurora Serverless v2 reader. Thus, we don't need either of the original provisioned DB
instances.

$ aws rds describe-db-clusters --db-cluster-identifier mysql-80 \
 --query '*[].[DBClusterIdentifier,DBClusterMembers[*].
[DBInstanceIdentifier,IsClusterWriter]]' \
 --output text
mysql-80
serverless-v2-instance-1 True
serverless-v2-instance-2 False
provisioned-instance-2 False
provisioned-instance-1 False

The last step in the switchover procedure is to delete both of the provisioned DB instances.

$ aws rds delete-db-instance --db-instance-identifier provisioned-instance-2 --skip-
final-snapshot
{
 "DBInstanceIdentifier": "provisioned-instance-2",
 "DBInstanceStatus": "deleting",
 "Engine": "aurora-mysql",
 "EngineVersion": "8.0.mysql_aurora.3.02.0",
 "DBInstanceClass": "db.r6g.large"
}

$ aws rds delete-db-instance --db-instance-identifier provisioned-instance-1 --skip-
final-snapshot
{
 "DBInstanceIdentifier": "provisioned-instance-1",
 "DBInstanceStatus": "deleting",
 "Engine": "aurora-mysql",
 "EngineVersion": "8.0.mysql_aurora.3.02.0",
 "DBInstanceClass": "db.r6g.large"
}

Switching from a provisioned cluster 3224

Amazon Aurora User Guide for Aurora

As a final check, we confirm that the original table is accessible and writeable from the Aurora
Serverless v2 writer DB instance.

mysql> select * from serverless_v2_demo.demo;
+---+
| s |
+---+
| This cluster started with a provisioned writer. |
+---+
1 row in set (0.00 sec)

mysql> insert into serverless_v2_demo.demo values ('And it finished with a Serverless
 v2 writer.');
Query OK, 1 row affected (0.01 sec)

mysql> select * from serverless_v2_demo.demo;
+---+
| s |
+---+
| This cluster started with a provisioned writer. |
| And it finished with a Serverless v2 writer. |
+---+
2 rows in set (0.01 sec)

We also connect to the Aurora Serverless v2 reader DB instance and confirm that the newly written
data is available there too.

mysql> select * from serverless_v2_demo.demo;
+---+
| s |
+---+
| This cluster started with a provisioned writer. |
| And it finished with a Serverless v2 writer. |
+---+
2 rows in set (0.01 sec)

Comparison of Aurora Serverless v2 and Aurora Serverless v1

If you are already using Aurora Serverless v1, you can learn the major differences between Aurora
Serverless v1 and Aurora Serverless v2. The architectural differences, such as support for reader DB
instances, open up new types of use cases.

Comparison of Aurora Serverless v2 and Aurora Serverless v1 3225

Amazon Aurora User Guide for Aurora

You can use the following tables to help understand the most important differences between
Aurora Serverless v2 and Aurora Serverless v1.

Topics

• Comparison of Aurora Serverless v2 and Aurora Serverless v1 requirements

• Comparison of Aurora Serverless v2 and Aurora Serverless v1 scaling and availability

• Comparison of Aurora Serverless v2 and Aurora Serverless v1 feature support

• Adapting Aurora Serverless v1 use cases to Aurora Serverless v2

Comparison of Aurora Serverless v2 and Aurora Serverless v1 requirements

The following table summarizes the different requirements to run your database using Aurora
Serverless v2 or Aurora Serverless v1. Aurora Serverless v2 offers higher versions of the Aurora
MySQL and Aurora PostgreSQL DB engines than Aurora Serverless v1 does.

Feature Aurora Serverless v2
requirement

Aurora Serverless v1
requirement

DB engines Aurora MySQL, Aurora
PostgreSQL

Aurora MySQL, Aurora
PostgreSQL

Supported Aurora MySQL
versions

See Aurora Serverless v2 with
Aurora MySQL.

See Aurora Serverless v1 with
Aurora MySQL.

Supported Aurora PostgreSQ
L versions

See Aurora Serverless v2 with
Aurora PostgreSQL.

See Aurora Serverless v1 with
Aurora PostgreSQL.

Upgrading a DB cluster Similarly to provisioned DB
clusters, you can perform
upgrades manually without
waiting for Aurora to upgrade
the DB cluster for you.
For more information, see
Modifying an Amazon Aurora
DB cluster.

Minor version upgrades are
applied automatically as
they become available. For
more information, see Aurora
Serverless v1 and Aurora
database engine versions.

You can perform major
version upgrades manually.
For more information,

Comparison of Aurora Serverless v2 and Aurora Serverless v1 3226

Amazon Aurora User Guide for Aurora

Feature Aurora Serverless v2
requirement

Aurora Serverless v1
requirement

Note

To perform a major
version upgrade
from 13.x to 14.x or
15.x for an Aurora
PostgreSQL–compati
ble DB cluster, the
maximum capacity of
your cluster must be
at least 2 ACUs.

see Modifying an Aurora
Serverless v1 DB cluster.

Comparison of Aurora Serverless v2 and Aurora Serverless v1 3227

Amazon Aurora User Guide for Aurora

Feature Aurora Serverless v2
requirement

Aurora Serverless v1
requirement

Converting from provisioned
DB cluster

You can use the following
methods:

• Add one or more Aurora
Serverless v2 reader DB
instances to an existing
provisioned cluster. To use
Aurora Serverless v2 for the
writer, perform a failover to
one of the Aurora Serverles
s v2 DB instances. For the
entire cluster to use Aurora
Serverless v2 DB instances
, remove any provisioned
writer DB instances after
promoting the Aurora
Serverless v2 DB instance
to the writer.

• Create a new cluster with
the appropriate DB engine
and engine version. Use any
of the standard methods.
For example, restore a
cluster snapshot or create a
clone of an existing cluster.
Choose Aurora Serverless
v2 for some or all of the DB
instances in the new cluster.

If you create the new
cluster through cloning,
you can't upgrade the
engine version at the same
time. Make sure that the

Restore snapshot of provision
ed cluster to create new
Aurora Serverless v1 cluster.

Comparison of Aurora Serverless v2 and Aurora Serverless v1 3228

Amazon Aurora User Guide for Aurora

Feature Aurora Serverless v2
requirement

Aurora Serverless v1
requirement

original cluster is already
running an engine version
that's compatible with
Aurora Serverless v2.

Converting from Aurora
Serverless v1 cluster

Follow the procedure in
Upgrading from an Aurora
Serverless v1 cluster to
Aurora Serverless v2.

Not applicable

Available DB instance classes The special DB instance class
db.serverless . In the
AWS Management Console,
it's labeled as Serverless.

Not applicable. Aurora
Serverless v1 uses the
serverless engine mode.

Port Any port that's compatible
with MySQL or PostgreSQL

Default MySQL or PostgreSQL
port only

Public IP address allowed? Yes No

Virtual private cloud (VPC)
required?

Yes Yes. Each Aurora Serverless v1
cluster consumes 2 interface
and Gateway Load Balancer
endpoints allocated to your
VPC.

Comparison of Aurora Serverless v2 and Aurora Serverless v1 scaling and
availability

The following table summarizes differences between Aurora Serverless v2 and Aurora Serverless v1
for scalability and availability.

Aurora Serverless v2 scaling is more responsive, more granular, and less disruptive than the
scaling in Aurora Serverless v1. Aurora Serverless v2 can scale both by changing the size of the DB
instance and by adding more DB instances to the DB cluster. It can also scale by adding clusters

Comparison of Aurora Serverless v2 and Aurora Serverless v1 3229

Amazon Aurora User Guide for Aurora

in other AWS Regions to an Aurora global database. In contrast, Aurora Serverless v1 only scales
by increasing or decreasing the capacity of the writer. All the compute for an Aurora Serverless v1
cluster runs in a single Availability Zone and a single AWS Region.

Scaling and high availability
feature

Aurora Serverless v2
behavior

Aurora Serverless v1
behavior

Minimum Aurora capacity
units (ACUs) (Aurora MySQL)

0.5 1 when the cluster is running,
0 when the cluster is paused.

Minimum ACUs (Aurora
PostgreSQL)

0.5 2 when the cluster is running,
0 when the cluster is paused.

Maximum ACUs (Aurora
MySQL)

128 256

Maximum ACUs (Aurora
PostgreSQL)

128 384

Stopping a cluster You can manually stop and
start the cluster by using
the same cluster stop and
start feature as provisioned
clusters.

The cluster pauses automatic
ally after a timeout. It
takes some time to become
available when activity
resumes.

Scaling for DB instances Scale up and down with
minimum increment of 0.5
ACUs.

Scale up and down by
doubling or halving the ACUs.

Number of DB instances Same as a provisioned cluster:
1 writer DB instance, up to 15
reader DB instances.

1 DB instance handling both
reads and writes.

Scaling can happen while SQL
statements are running?

Yes. Aurora Serverless v2
doesn't require waiting for a
quiet point.

No. For example, scaling waits
for completion of long-runn
ing transactions, temporary
tables, and table locks.

Comparison of Aurora Serverless v2 and Aurora Serverless v1 3230

Amazon Aurora User Guide for Aurora

Scaling and high availability
feature

Aurora Serverless v2
behavior

Aurora Serverless v1
behavior

Reader DB instances scale
along with writer

Optional. Not applicable.

Maximum storage 128 TiB 128 TiB or 64 TiB, depending
on database engine and
version.

Buffer cache preserved when
scaling

Yes. Buffer cache is resized
dynamically.

No. Buffer cache is rewarmed
after scaling.

Failover Yes, same as for provisioned
clusters.

Best effort only, subject to
capacity availability. Slower
than in Aurora Serverless v2.

Multi-AZ capability Yes, same as for provisioned.
A Multi-AZ cluster requires
a reader DB instance in a
second Availability Zone (AZ).
For a Multi-AZ cluster, Aurora
performs Multi-AZ failover in
case of an AZ failure.

Aurora Serverless v1 clusters
run all their compute in a
single AZ. Recovery in case
of AZ failure is best effort
only and subject to capacity
availability.

Aurora global databases Yes No

Scaling based on memory
pressure

Yes No

Scaling based on CPU load Yes Yes

Comparison of Aurora Serverless v2 and Aurora Serverless v1 3231

Amazon Aurora User Guide for Aurora

Scaling and high availability
feature

Aurora Serverless v2
behavior

Aurora Serverless v1
behavior

Scaling based on network
traffic

Yes, based on memory and
CPU overhead of network
traffic. The max_conne
ctions parameter remains
constant to avoid dropping
connections when scaling
down.

Yes, based on number of
connections.

Timeout action for scaling
events

No Yes

Adding new DB instances to
cluster through AWS Auto
Scaling

Not applicable. You can create
Aurora Serverless v2 reader
DB instances in promotion
tiers 2–15 and leave them
scaled down to low capacity.

No. Reader DB instances
aren't available.

Comparison of Aurora Serverless v2 and Aurora Serverless v1 feature support

The following table summarizes these:

• Features that are available in Aurora Serverless v2 but not Aurora Serverless v1

• Features that work differently between Aurora Serverless v1 and Aurora Serverless v2

• Features that aren't currently available in Aurora Serverless v2

Aurora Serverless v2 includes many features from provisioned clusters that aren't available for
Aurora Serverless v1.

Feature Aurora Serverless v2 support Aurora Serverless v1 support

Cluster topology Aurora Serverless v2 is a
property of individual DB
instances. A cluster can

Aurora Serverless v1 clusters
don't use the notion of DB
instances. You can't change

Comparison of Aurora Serverless v2 and Aurora Serverless v1 3232

Amazon Aurora User Guide for Aurora

Feature Aurora Serverless v2 support Aurora Serverless v1 support

contain multiple Aurora
Serverless v2 DB instances,
or a combination of Aurora
Serverless v2 and provisioned
DB instances.

the Aurora Serverless v1
property after you create the
cluster.

Configuration parameters Almost all the same
parameters can be modified
as in provisioned clusters.
For details, see Working with
parameter groups for Aurora
Serverless v2.

Only a subset of parameters
can be modified.

Parameter groups Cluster parameter group
and DB parameter groups.
Parameters with provision
ed value in Supported
EngineModes attribute
are available. That's many
more parameters than in
Aurora Serverless v1.

Cluster parameter group only.
Parameters with serverles
s value in Supported
EngineModes attribute
are available.

Encryption for cluster volume Optional Required. The limitations in
Limitations of Amazon Aurora
encrypted DB clusters apply
to all Aurora Serverless v1
clusters.

Cross-Region snapshots Yes Snapshot must be encrypted
with your own AWS Key
Management Service (AWS
KMS) key.

Automated backups retained
after DB cluster deletion

Yes No

Comparison of Aurora Serverless v2 and Aurora Serverless v1 3233

Amazon Aurora User Guide for Aurora

Feature Aurora Serverless v2 support Aurora Serverless v1 support

TLS/SSL Yes. The support is the same
as for provisioned clusters.
For usage information, see
Using TLS/SSL with Aurora
Serverless v2.

Yes. There are some differenc
es from TLS support for
provisioned clusters. For
usage information, see
Using TLS/SSL with Aurora
Serverless v1.

Cloning Only from and to DB engine
versions that are compatibl
e with Aurora Serverless
v2. You can't use cloning
to upgrade from Aurora
Serverless v1 or from an
earlier version of a provision
ed cluster.

Only from and to DB engine
versions that are compatible
with Aurora Serverless v1.

Integration with Amazon S3 Yes Yes

Integration with AWS Secrets
Manager

No No

Exporting DB cluster
snapshots to S3

Yes No

Associating an IAM role Yes No

Uploading logs to Amazon
CloudWatch

Optional. You choose which
logs to turn on and which
logs to upload to CloudWatc
h.

All logs that are turned on
are uploaded to CloudWatch
automatically.

Data API available Yes (currently Aurora
PostgreSQL only)

Yes

Query editor available Yes (currently Aurora
PostgreSQL only)

Yes

Comparison of Aurora Serverless v2 and Aurora Serverless v1 3234

Amazon Aurora User Guide for Aurora

Feature Aurora Serverless v2 support Aurora Serverless v1 support

Performance Insights Yes No

Amazon RDS Proxy available Yes No

Babelfish for Aurora
PostgreSQL available

Yes. Supported for Aurora
PostgreSQL versions that
are compatible with both
Babelfish and Aurora
Serverless v2.

No

Adapting Aurora Serverless v1 use cases to Aurora Serverless v2

Depending on your use case for Aurora Serverless v1, you might adapt that approach to take
advantage of Aurora Serverless v2 features as follows.

Suppose that you have an Aurora Serverless v1 cluster that is lightly loaded and your priority is
maintaining continuous availability while minimizing costs. With Aurora Serverless v2, you can
configure a smaller minimum ACU setting of 0.5, compared with a minimum of 1 ACU for Aurora
Serverless v1. You can increase availability by creating a Multi-AZ configuration, with the reader DB
instance also having a minimum of 0.5 ACUs.

Suppose that you have an Aurora Serverless v1 cluster that you use in a development and test
scenario. In this case, cost is also a high priority but the cluster doesn't need to be available at all
times. Currently, Aurora Serverless v2 doesn't automatically pause when the cluster is completely
idle. Instead, you can manually stop the cluster when it's not needed, and start it when it's time for
the next test or development cycle.

Suppose that you have an Aurora Serverless v1 cluster with a heavy workload. An equivalent
cluster using Aurora Serverless v2 can scale with more granularity. For example, Aurora Serverless
v1 scales by doubling the capacity, for example from 64 to 128 ACUs. In contrast, your Aurora
Serverless v2 DB instance can scale to a value somewhere between those numbers.

Suppose that your workload requires a higher total capacity than is available in Aurora Serverless
v1. You can use multiple Aurora Serverless v2 reader DB instances to offload the read-intensive
parts of the workload from the writer DB instance. You can also divide the read-intensive workload
among multiple reader DB instances.

Comparison of Aurora Serverless v2 and Aurora Serverless v1 3235

Amazon Aurora User Guide for Aurora

For a write-intensive workload, you might configure the cluster with a large provisioned DB
instance as the writer. You might do so alongside one or more Aurora Serverless v2 reader DB
instances.

Upgrading from an Aurora Serverless v1 cluster to Aurora Serverless v2

The process of upgrading a DB cluster from Aurora Serverless v1 to Aurora Serverless v2 has
multiple steps. That's because you can't convert directly from Aurora Serverless v1 to Aurora
Serverless v2. There's always an intermediate step that involves converting the Aurora Serverless
v1 DB cluster to a provisioned cluster.

Aurora MySQL–compatible DB clusters

You can convert your Aurora Serverless v1 DB cluster to a provisioned DB cluster, then use a
blue/green deployment to upgrade it and convert it to an Aurora Serverless v2 DB cluster. We
recommend this procedure for production environments. For more information, see Using Amazon
RDS Blue/Green Deployments for database updates.

To use a blue/green deployment to upgrade an Aurora Serverless v1 cluster running Aurora
MySQL version 2 (MySQL 5.7–compatible)

1. Convert the Aurora Serverless v1 DB cluster to a provisioned Aurora MySQL version 2 cluster.
Follow the procedure in Converting from Aurora Serverless v1 to provisioned.

2. Create a blue/green deployment. Follow the procedure in Creating a blue/green deployment.

3. Choose an Aurora MySQL version for the green cluster that's compatible with Aurora
Serverless v2, for example 3.04.1.

For compatible versions, see Aurora Serverless v2 with Aurora MySQL.

4. Modify the writer DB instance of the green cluster to use the Serverless v2 (db.serverless) DB
instance class.

For details, see Converting a provisioned writer or reader to Aurora Serverless v2.

5. When your upgraded Aurora Serverless v2 DB cluster is available, switch over from the blue
cluster to the green cluster.

Upgrading from Aurora Serverless v1 to Aurora Serverless v2 3236

Amazon Aurora User Guide for Aurora

Aurora PostgreSQL–compatible DB clusters

You can convert your Aurora Serverless v1 DB cluster to a provisioned DB cluster, then use a
blue/green deployment to upgrade it and convert it to an Aurora Serverless v2 DB cluster. We
recommend this procedure for production environments. For more information, see Using Amazon
RDS Blue/Green Deployments for database updates.

To use a blue/green deployment to upgrade an Aurora Serverless v1 cluster running Aurora
PostgreSQL version 11

1. Convert the Aurora Serverless v1 DB cluster to a provisioned Aurora PostgreSQL cluster. Follow
the procedure in Converting from Aurora Serverless v1 to provisioned.

2. Create a blue/green deployment. Follow the procedure in Creating a blue/green deployment.

3. Choose an Aurora PostgreSQL version for the green cluster that's compatible with Aurora
Serverless v2, for example 15.3.

For compatible versions, see Aurora Serverless v2 with Aurora PostgreSQL.

4. Modify the writer DB instance of the green cluster to use the Serverless v2 (db.serverless) DB
instance class.

For details, see Converting a provisioned writer or reader to Aurora Serverless v2.

5. When your upgraded Aurora Serverless v2 DB cluster is available, switch over from the blue
cluster to the green cluster.

You can also upgrade your Aurora Serverless v1 DB cluster directly from Aurora PostgreSQL version
11 to version 13, convert it to a provisioned DB cluster, and then convert the provisioned cluster to
an Aurora Serverless v2 DB cluster.

To upgrade, then convert an Aurora Serverless v1 cluster running Aurora PostgreSQL version 11

1. Upgrade the Aurora Serverless v1 cluster to an Aurora PostgreSQL version 13 version that's
compatible with Aurora Serverless v2, for example, 13.12. Follow the procedure in Upgrading
the major version.

For compatible versions, see Aurora Serverless v2 with Aurora PostgreSQL.

2. Convert the Aurora Serverless v1 DB cluster to a provisioned Aurora PostgreSQL cluster. Follow
the procedure in Converting from Aurora Serverless v1 to provisioned.

Upgrading from Aurora Serverless v1 to Aurora Serverless v2 3237

Amazon Aurora User Guide for Aurora

3. Add an Aurora Serverless v2 reader DB instance to the cluster. For more information, see
Adding an Aurora Serverless v2 reader.

4. Fail over to the Aurora Serverless v2 DB instance:

a. Select the writer DB instance of the DB cluster.

b. For Actions, choose Failover.

c. On the confirmation page, choose Failover.

For Aurora Serverless v1 DB clusters running Aurora PostgreSQL version 13, you convert the Aurora
Serverless v1 cluster to a provisioned DB cluster, and then convert the provisioned cluster to an
Aurora Serverless v2 DB cluster.

To upgrade an Aurora Serverless v1 cluster running Aurora PostgreSQL version 13

1. Convert the Aurora Serverless v1 DB cluster to a provisioned Aurora PostgreSQL cluster. Follow
the procedure in Converting from Aurora Serverless v1 to provisioned.

2. Add an Aurora Serverless v2 reader DB instance to the cluster. For more information, see
Adding an Aurora Serverless v2 reader.

3. Fail over to the Aurora Serverless v2 DB instance:

a. Select the writer DB instance of the DB cluster.

b. For Actions, choose Failover.

c. On the confirmation page, choose Failover.

Migrating from an on-premises database to Aurora Serverless v2

You can migrate your on-premises databases to Aurora Serverless v2, just as with provisioned
Aurora MySQL and Aurora PostgreSQL.

• For MySQL databases, you can use the mysqldump command. For more information, see
Importing data to a MySQL or MariaDB DB instance with reduced downtime.

• For PostgreSQL databases, you can use the pg_dump and pg_restore commands. For more
information, see the blog post Best practices for migrating PostgreSQL databases to Amazon
RDS and Amazon Aurora.

Migrating from an on-premises database to Aurora Serverless v2 3238

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/MySQL.Procedural.Importing.NonRDSRepl.html
https://aws.amazon.com/blogs/database/best-practices-for-migrating-postgresql-databases-to-amazon-rds-and-amazon-aurora/
https://aws.amazon.com/blogs/database/best-practices-for-migrating-postgresql-databases-to-amazon-rds-and-amazon-aurora/

Amazon Aurora User Guide for Aurora

Using Amazon Aurora Serverless v1

Amazon Aurora Serverless v1 (Amazon Aurora Serverless version 1) is an on-demand autoscaling
configuration for Amazon Aurora. An Aurora Serverless v1 DB cluster is a DB cluster that scales
compute capacity up and down based on your application's needs. This contrasts with Aurora
provisioned DB clusters, for which you manually manage capacity. Aurora Serverless v1 provides a
relatively simple, cost-effective option for infrequent, intermittent, or unpredictable workloads.
It is cost-effective because it automatically starts up, scales compute capacity to match your
application's usage, and shuts down when it's not in use.

To learn more about pricing, see Serverless Pricing under MySQL-Compatible Edition or
PostgreSQL-Compatible Edition on the Amazon Aurora pricing page.

Aurora Serverless v1 clusters have the same kind of high-capacity, distributed, and highly available
storage volume that is used by provisioned DB clusters.

For an Aurora Serverless v2 cluster, you can choose whether to encrypt the cluster volume.

For an Aurora Serverless v1 cluster, the cluster volume is always encrypted. You can choose the
encryption key, but you can't disable encryption. That means that you can perform the same
operations on an Aurora Serverless v1 that you can on encrypted snapshots. For more information,
see Aurora Serverless v1 and snapshots.

Topics

• Region and version availability for Aurora Serverless v1

• Advantages of Aurora Serverless v1

• Use cases for Aurora Serverless v1

• Limitations of Aurora Serverless v1

• Configuration requirements for Aurora Serverless v1

• Using TLS/SSL with Aurora Serverless v1

• How Aurora Serverless v1 works

• Creating an Aurora Serverless v1 DB cluster

• Restoring an Aurora Serverless v1 DB cluster

• Modifying an Aurora Serverless v1 DB cluster

3239

https://aws.amazon.com/rds/aurora/pricing/

Amazon Aurora User Guide for Aurora

• Scaling Aurora Serverless v1 DB cluster capacity manually

• Viewing Aurora Serverless v1 DB clusters

• Deleting an Aurora Serverless v1 DB cluster

• Aurora Serverless v1 and Aurora database engine versions

Important

Aurora has two generations of serverless technology, Aurora Serverless v2 and Aurora
Serverless v1. If your application can run on MySQL 8.0 or PostgreSQL 13, we recommend
that you use Aurora Serverless v2. Aurora Serverless v2 scales more quickly and in a more
granular way. Aurora Serverless v2 also has more compatibility with other Aurora features
such as reader DB instances. Thus, if you're already familiar with Aurora, you don't have
to learn as many new procedures or limitations to use Aurora Serverless v2 as with Aurora
Serverless v1.
You can learn about Aurora Serverless v2 in Using Aurora Serverless v2.

Region and version availability for Aurora Serverless v1

Feature availability and support varies across specific versions of each Aurora database engine,
and across AWS Regions. For more information on version and Region availability with Aurora and
Aurora Serverless v1, see Supported Regions and Aurora DB engines for Aurora Serverless v1.

Advantages of Aurora Serverless v1

Aurora Serverless v1 provides the following advantages:

• Simpler than provisioned – Aurora Serverless v1 removes much of the complexity of managing
DB instances and capacity.

• Scalable – Aurora Serverless v1 seamlessly scales compute and memory capacity as needed, with
no disruption to client connections.

• Cost-effective – When you use Aurora Serverless v1, you pay only for the database resources
that you consume, on a per-second basis.

• Highly available storage – Aurora Serverless v1 uses the same fault-tolerant, distributed storage
system with six-way replication as Aurora to protect against data loss.

Region and version availability for Aurora Serverless v1 3240

Amazon Aurora User Guide for Aurora

Use cases for Aurora Serverless v1

Aurora Serverless v1 is designed for the following use cases:

• Infrequently used applications – You have an application that is only used for a few minutes
several times per day or week, such as a low-volume blog site. With Aurora Serverless v1, you pay
for only the database resources that you consume on a per-second basis.

• New applications – You're deploying a new application and you're unsure about the instance
size you need. By using Aurora Serverless v1, you can create a database endpoint and have the
database autoscale to the capacity requirements of your application.

• Variable workloads – You're running a lightly used application, with peaks of 30 minutes to
several hours a few times each day, or several times per year. Examples are applications for
human resources, budgeting, and operational reporting applications. With Aurora Serverless v1,
you no longer need to provision for peak or average capacity.

• Unpredictable workloads – You're running daily workloads that have sudden and unpredictable
increases in activity. An example is a traffic site that sees a surge of activity when it starts
raining. With Aurora Serverless v1, your database autoscales capacity to meet the needs of the
application's peak load and scales back down when the surge of activity is over.

• Development and test databases – Your developers use databases during work hours but don't
need them on nights or weekends. With Aurora Serverless v1, your database automatically shuts
down when it's not in use.

• Multi-tenant applications – With Aurora Serverless v1, you don't have to individually manage
database capacity for each application in your fleet. Aurora Serverless v1 manages individual
database capacity for you.

Limitations of Aurora Serverless v1

The following limitations apply to Aurora Serverless v1:

• Aurora Serverless v1 doesn't support the following features:

• Aurora global databases

• Aurora Replicas

• AWS Identity and Access Management (IAM) database authentication

• Backtracking in Aurora

• Database activity streams

Use cases for Aurora Serverless v1 3241

Amazon Aurora User Guide for Aurora

• Kerberos authentication

• Performance Insights

• RDS Proxy

• Viewing logs in the AWS Management Console

• Connections to an Aurora Serverless v1 DB cluster are closed automatically if held open for
longer than one day.

• All Aurora Serverless v1 DB clusters have the following limitations:

• You can't export Aurora Serverless v1 snapshots to Amazon S3 buckets.

• You can't use AWS Database Migration Service and Change Data Capture (CDC) with Aurora
Serverless v1 DB clusters. Only provisioned Aurora DB clusters support CDC with AWS DMS as
a source.

• You can't save data to text files in Amazon S3 or load text file data to Aurora Serverless v1
from S3.

• You can't attach an IAM role to an Aurora Serverless v1 DB cluster. However, you can load
data to Aurora Serverless v1 from Amazon S3 by using the aws_s3 extension with the
aws_s3.table_import_from_s3 function and the credentials parameter. For more
information, see Importing data from Amazon S3 into an Aurora PostgreSQL DB cluster.

• When using the query editor, a Secrets Manager secret is created for the DB credentials to
access the database. If you delete the credentials from the query editor, the associated secret
is also deleted from Secrets Manager. You can't recover this secret after it's deleted.

• Aurora MySQL–based DB clusters running Aurora Serverless v1 don't support the following:

• Invoking AWS Lambda functions from within your Aurora MySQL DB cluster. However, AWS
Lambda functions can make calls to your Aurora Serverless v1 DB cluster.

• Restoring a snapshot from a DB instance that isn't Aurora MySQL or RDS for MySQL.

• Replicating data using replication based on binary logs (binlogs). This limitation is true
regardless of whether your Aurora MySQL-based DB cluster Aurora Serverless v1 is the source
or the target of the replication. To replicate data into an Aurora Serverless v1 DB cluster from
a MySQL DB instance outside Aurora, such as one running on Amazon EC2, consider using AWS
Database Migration Service. For more information, see the AWS Database Migration Service
User Guide.

• Creating users with host-based access ('username'@'IP_address'). This is because Aurora
Serverless v1 uses a router fleet between the client and the database host for seamless scaling.

Limitations of Aurora Serverless v1 3242

https://docs.aws.amazon.com/dms/latest/userguide/
https://docs.aws.amazon.com/dms/latest/userguide/

Amazon Aurora User Guide for Aurora

The IP address that the Aurora Serverless DB cluster sees is that of the router host and not
your client. For more information, see Aurora Serverless v1 architecture.

Instead, use the wildcard ('username'@'%').

• Aurora PostgreSQL–based DB clusters running Aurora Serverless v1 have the following
limitations:

• Aurora PostgreSQL query plan management (apg_plan_management extension) isn't
supported.

• The logical replication feature available in Amazon RDS PostgreSQL and Aurora PostgreSQL
isn't supported.

• Outbound communications such as those enabled by Amazon RDS for PostgreSQL extensions
aren't supported. For example, you can't access external data with the postgres_fdw/
dblink extension. For more information about RDS PostgreSQL extensions, see PostgreSQL
on Amazon RDS in the RDS User Guide.

• Currently, certain SQL queries and commands aren't recommended. These include session-
level advisory locks, temporary relations, asynchronous notifications (LISTEN), and cursors
with hold (DECLARE name ... CURSOR WITH HOLD FOR query). Also, NOTIFY commands
prevent scaling and aren't recommended.

For more information, see Autoscaling for Aurora Serverless v1.

• You can't set the preferred automated backup window for an Aurora Serverless v1 DB cluster.

• You can set the maintenance window for an Aurora Serverless v1 DB cluster. For more
information, see Adjusting the preferred DB cluster maintenance window.

Configuration requirements for Aurora Serverless v1

When you create an Aurora Serverless v1 DB cluster, pay attention to the following requirements:

• Use these specific port numbers for each DB engine:

• Aurora MySQL – 3306

• Aurora PostgreSQL – 5432

• Create your Aurora Serverless v1 DB cluster in a virtual private cloud (VPC) based on the Amazon
VPC service. When you create an Aurora Serverless v1 DB cluster in your VPC, you consume
two (2) of the fifty (50) Interface and Gateway Load Balancer endpoints allotted to your VPC.

Configuration requirements for Aurora Serverless v1 3243

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_PostgreSQL.html#PostgreSQL.Concepts.General.FeatureSupport.Extensions.101x
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_PostgreSQL.html#PostgreSQL.Concepts.General.FeatureSupport.Extensions.101x

Amazon Aurora User Guide for Aurora

These endpoints are created automatically for you. To increase your quota, you can contact AWS
Support. For more information, see Amazon VPC quotas.

• You can't give an Aurora Serverless v1 DB cluster a public IP address. You can access an Aurora
Serverless v1 DB cluster only from within a VPC.

• Create subnets in different Availability Zones for the DB subnet group that you use for your
Aurora Serverless v1 DB cluster. In other words, you can't have more than one subnet in the same
Availability Zone.

• Changes to a subnet group used by an Aurora Serverless v1 DB cluster aren't applied to the
cluster.

• You can access an Aurora Serverless v1 DB cluster from AWS Lambda. To do so, you must
configure your Lambda function to run in the same VPC as your Aurora Serverless v1 DB cluster.
For more information about working with AWS Lambda, see Configuring a Lambda function to
access resources in an Amazon VPC in the AWS Lambda Developer Guide.

Using TLS/SSL with Aurora Serverless v1

By default, Aurora Serverless v1 uses the Transport Layer Security/Secure Sockets Layer (TLS/SSL)
protocol to encrypt communications between clients and your Aurora Serverless v1 DB cluster. It
supports TLS/SSL versions 1.0, 1.1, and 1.2. You don't need to configure your Aurora Serverless v1
DB cluster to use TLS/SSL.

However, the following limitations apply:

• TLS/SSL support for Aurora Serverless v1 DB clusters isn't currently available in the China
(Beijing) AWS Region.

• When you create database users for an Aurora MySQL–based Aurora Serverless v1 DB cluster,
don't use the REQUIRE clause for SSL permissions. Doing so prevents users from connecting to
the Aurora DB instance.

• For both MySQL Client and PostgreSQL Client utilities, session variables that you might use in
other environments have no effect when using TLS/SSL between client and Aurora Serverless v1.

• For the MySQL Client, when connecting with TLS/SSL's VERIFY_IDENTITY mode, currently you
need to use the MySQL 8.0-compatible mysql command. For more information, see Connecting
to a DB instance running the MySQL database engine.

Using TLS/SSL with Aurora Serverless v1 3244

https://docs.aws.amazon.com/vpc/latest/userguide/amazon-vpc-limits.html#vpc-limits-endpoints
https://docs.aws.amazon.com/lambda/latest/dg/vpc.html
https://docs.aws.amazon.com/lambda/latest/dg/vpc.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_ConnectToInstance.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_ConnectToInstance.html

Amazon Aurora User Guide for Aurora

Depending on the client that you use to connect to Aurora Serverless v1 DB cluster, you might
not need to specify TLS/SSL to get an encrypted connection. For example, to use the PostgreSQL
Client to connect to an Aurora Serverless v1 DB cluster running Aurora PostgreSQL-Compatible
Edition, connect as you normally do.

psql -h endpoint -U user

After you enter your password, the PostgreSQL Client shows you see the connection details,
including the TLS/SSL version and cipher.

psql (12.5 (Ubuntu 12.5-0ubuntu0.20.04.1), server 10.12)
SSL connection (protocol: TLSv1.2, cipher: ECDHE-RSA-AES256-GCM-SHA384, bits: 256,
 compression: off)
Type "help" for help.

Important

Aurora Serverless v1 uses the Transport Layer Security/Secure Sockets Layer (TLS/SSL)
protocol to encrypt connections by default unless SSL/TLS is disabled by the client
application. The TLS/SSL connection terminates at the router fleet. Communication
between the router fleet and your Aurora Serverless v1 DB cluster occurs within the
service's internal network boundary.
You can check the status of the client connection to examine whether the connection
to Aurora Serverless v1 is TLS/SSL encrypted. The PostgreSQL pg_stat_ssl and
pg_stat_activity tables and its ssl_is_used function don't show the TLS/SSL state
for the communication between the client application and Aurora Serverless v1. Similarly,
the TLS/SSL state can't be derived from the MySQL status statement.
The Aurora cluster parameters force_ssl for PostgreSQL and
require_secure_transport for MySQL formerly weren't supported for
Aurora Serverless v1. These parameters are available now for Aurora Serverless
v1. For a complete list of parameters supported by Aurora Serverless v1, call the
DescribeEngineDefaultClusterParameters API operation. For more information on
parameter groups and Aurora Serverless v1, see Parameter groups for Aurora Serverless v1.

To use the MySQL Client to connect to an Aurora Serverless v1 DB cluster running Aurora MySQL-
Compatible Edition, you specify TLS/SSL in your request. The following example includes the

Using TLS/SSL with Aurora Serverless v1 3245

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DescribeEngineDefaultClusterParameters.html

Amazon Aurora User Guide for Aurora

Amazon root CA 1 trust store downloaded from Amazon Trust Services, which is necessary for this
connection to succeed.

mysql -h endpoint -P 3306 -u user -p --ssl-ca=amazon-root-CA-1.pem --ssl-mode=REQUIRED

When prompted, enter your password. Soon, the MySQL monitor opens. You can confirm that the
session is encrypted by using the status command.

mysql> status

mysql Ver 14.14 Distrib 5.5.62, for Linux (x86_64) using readline 5.1
Connection id: 19
Current database:
Current user: ***@*******
SSL: Cipher in use is ECDHE-RSA-AES256-SHA
...

To learn more about connecting to Aurora MySQL database with the MySQL Client, see Connecting
to a DB instance running the MySQL database engine.

Aurora Serverless v1 supports all TLS/SSL modes available to the MySQL Client (mysql) and
PostgreSQL Client (psql), including those listed in the following table.

Description of TLS/SSL
mode

mysql psql

Connect without using TLS/
SSL.

DISABLED disable

Try the connection using TLS/
SSL first, but fall back to non-
SSL if necessary.

PREFERRED prefer (default)

Enforce using TLS/SSL. REQUIRED require

Enforce TLS/SSL and verify
the CA.

VERIFY_CA verify-ca

Using TLS/SSL with Aurora Serverless v1 3246

https://www.amazontrust.com/repository/AmazonRootCA1.pem
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_ConnectToInstance.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_ConnectToInstance.html

Amazon Aurora User Guide for Aurora

Description of TLS/SSL
mode

mysql psql

Enforce TLS/SSL, verify
the CA, and verify the CA
hostname.

VERIFY_IDENTITY verify-full

Aurora Serverless v1 uses wildcard certificates. If you specify the "verify CA" or the "verify CA and
CA hostname" option when using TLS/SSL, first download the Amazon root CA 1 trust store from
Amazon Trust Services. After doing so, you can identify this PEM-formatted file in your client
command. To do so using the PostgreSQL Client:

For Linux, macOS, or Unix:

psql 'host=endpoint user=user sslmode=require sslrootcert=amazon-root-CA-1.pem
 dbname=db-name'

To learn more about working with the Aurora PostgreSQL database using the Postgres Client, see
Connecting to a DB instance running the PostgreSQL database engine.

For more information about connecting to Aurora DB clusters in general, see Connecting to an
Amazon Aurora DB cluster.

Supported cipher suites for connections to Aurora Serverless v1 DB
clusters

By using configurable cipher suites, you can have more control over the security of your database
connections. You can specify a list of cipher suites that you want to allow to secure client TLS/
SSL connections to your database. With configurable cipher suites, you can control the connection
encryption that your database server accepts. Doing this prevents the use of ciphers that aren't
secure or that are no longer used.

Aurora Serverless v1 DB clusters that are based on Aurora MySQL support the same cipher suites as
Aurora MySQL provisioned DB clusters. For information about these cipher suites, see Configuring
cipher suites for connections to Aurora MySQL DB clusters.

Aurora Serverless v1 DB clusters that are based on Aurora PostgreSQL don't support cipher suites.

Supported cipher suites for connections to Aurora Serverless v1 DB clusters 3247

https://www.amazontrust.com/repository/AmazonRootCA1.pem
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_ConnectToPostgreSQLInstance.html

Amazon Aurora User Guide for Aurora

How Aurora Serverless v1 works

Following, you can learn how Aurora Serverless v1 works.

Topics

• Aurora Serverless v1 architecture

• Autoscaling for Aurora Serverless v1

• Timeout action for capacity changes

• Pause and resume for Aurora Serverless v1

• Determining the maximum number of database connections for Aurora Serverless v1

• Parameter groups for Aurora Serverless v1

• Logging for Aurora Serverless v1

• Aurora Serverless v1 and maintenance

• Aurora Serverless v1 and failover

• Aurora Serverless v1 and snapshots

Aurora Serverless v1 architecture

The following image shows an overview of the Aurora Serverless v1 architecture.

How Aurora Serverless v1 works 3248

Amazon Aurora User Guide for Aurora

Instead of provisioning and managing database servers, you specify Aurora capacity units (ACUs).
Each ACU is a combination of approximately 2 gigabytes (GB) of memory, corresponding CPU, and
networking. Database storage automatically scales from 10 gibibytes (GiB) to 128 tebibytes (TiB),
the same as storage in a standard Aurora DB cluster.

You can specify the minimum and maximum ACU. The minimum Aurora capacity unit is the lowest
ACU to which the DB cluster can scale down. The maximum Aurora capacity unit is the highest ACU
to which the DB cluster can scale up. Based on your settings, Aurora Serverless v1 automatically
creates scaling rules for thresholds for CPU utilization, connections, and available memory.

Aurora Serverless v1 manages the warm pool of resources in an AWS Region to minimize scaling
time. When Aurora Serverless v1 adds new resources to the Aurora DB cluster, it uses the router
fleet to switch active client connections to the new resources. At any specific time, you are charged
only for the ACUs that are being actively used in your Aurora DB cluster.

Aurora Serverless v1 architecture 3249

Amazon Aurora User Guide for Aurora

Autoscaling for Aurora Serverless v1

The capacity allocated to your Aurora Serverless v1 DB cluster seamlessly scales up and down
based on the load generated by your client application. Here, load is CPU utilization and the
number of connections. When capacity is constrained by either of these, Aurora Serverless v1
scales up. Aurora Serverless v1 also scales up when it detects performance issues that can be
resolved by doing so.

You can view scaling events for your Aurora Serverless v1 cluster in the AWS Management Console.
During autoscaling, Aurora Serverless v1 resets the EngineUptime metric. The value of the
reset metric value doesn't mean that seamless scaling had problems or that Aurora Serverless v1
dropped connections. It's simply the starting point for uptime at the new capacity. To learn more
about metrics, see Monitoring metrics in an Amazon Aurora cluster.

When your Aurora Serverless v1 DB cluster has no active connections, it can scale down to zero
capacity (0 ACUs). To learn more, see Pause and resume for Aurora Serverless v1.

When it does need to perform a scaling operation, Aurora Serverless v1 first tries to identify a
scaling point, a moment when no queries are being processed. Aurora Serverless v1 might not be
able to find a scaling point for the following reasons:

• Long-running queries

• In-progress transactions

• Temporary tables or table locks

To increase your Aurora Serverless v1 DB cluster's success rate when finding a scaling point, we
recommend that you avoid long-running queries and long-running transactions. To learn more
about operations that block scaling and how to avoid them, see Best practices for working with
Aurora Serverless v1.

By default, Aurora Serverless v1 tries to find a scaling point for 5 minutes (300 seconds). You can
specify a different timeout period when you create or modify the cluster. The timeout period can
be between 60 seconds and 10 minutes (600 seconds). If Aurora Serverless v1 can't find a scaling
point within the specified period, the autoscaling operation times out.

By default, if autoscaling doesn't find a scaling point before timing out, Aurora Serverless v1 keeps
the cluster at the current capacity. You can change this default behavior when you create or modify
your Aurora Serverless v1 DB cluster by selecting the Force the capacity change option. For more
information, see Timeout action for capacity changes.

Autoscaling 3250

https://aws.amazon.com/blogs/database/best-practices-for-working-with-amazon-aurora-serverless/
https://aws.amazon.com/blogs/database/best-practices-for-working-with-amazon-aurora-serverless/

Amazon Aurora User Guide for Aurora

Timeout action for capacity changes

If autoscaling times out without finding a scaling point, by default Aurora keeps the current
capacity. You can choose to have Aurora force the change by selecting the Force the capacity
change option. This option is available in the Autoscaling timeout and action section of the
Create database page when you create the cluster.

By default, the Force the capacity change option isn't selected. Keep this option clear to have your
Aurora Serverless v1 DB cluster's capacity remain unchanged if the scaling operation times out
without finding a scaling point.

Selecting this option causes your Aurora Serverless v1 DB cluster to enforce the capacity change,
even without a scaling point. Before selecting this option, be aware of the consequences of this
selection:

• Any in-process transactions are interrupted, and the following error message appears.

Aurora MySQL version 2 – ERROR 1105 (HY000): The last transaction was aborted due to
Seamless Scaling. Please retry.

You can resubmit the transactions as soon as your Aurora Serverless v1 DB cluster is available.

• Connections to temporary tables and locks are dropped.

We recommend that you select the Force the capacity change option only if your application
can recover from dropped connections or incomplete transactions.

The choices that you make in the AWS Management Console when you create an Aurora
Serverless v1 DB cluster are stored in the ScalingConfigurationInfo object, in the
SecondsBeforeTimeout and TimeoutAction properties. The value of the TimeoutAction
property is set to one of the following values when you create your cluster:

• RollbackCapacityChange – This value is set when you select the Roll back the capacity
change option. This is the default behavior.

• ForceApplyCapacityChange – This value is set when you select the Force the capacity
change option.

You can get the value of this property on an existing Aurora Serverless v1 DB cluster by using the
describe-db-clusters AWS CLI command, as shown following.

Timeout action 3251

https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-clusters.html

Amazon Aurora User Guide for Aurora

For Linux, macOS, or Unix:

aws rds describe-db-clusters --region region \
 --db-cluster-identifier your-cluster-name \
 --query '*[].{ScalingConfigurationInfo:ScalingConfigurationInfo}'

For Windows:

aws rds describe-db-clusters --region region ^
 --db-cluster-identifier your-cluster-name ^
 --query "*[].{ScalingConfigurationInfo:ScalingConfigurationInfo}"

As an example, the following shows the query and response for an Aurora Serverless v1 DB cluster
named west-coast-sles in the US West (N. California) Region.

$ aws rds describe-db-clusters --region us-west-1 --db-cluster-identifier west-coast-
sles
--query '*[].{ScalingConfigurationInfo:ScalingConfigurationInfo}'

[
 {
 "ScalingConfigurationInfo": {
 "MinCapacity": 1,
 "MaxCapacity": 64,
 "AutoPause": false,
 "SecondsBeforeTimeout": 300,
 "SecondsUntilAutoPause": 300,
 "TimeoutAction": "RollbackCapacityChange"
 }
 }
]

As the response shows, this Aurora Serverless v1 DB cluster uses the default setting.

For more information, see Creating an Aurora Serverless v1 DB cluster. After creating your Aurora
Serverless v1, you can modify the timeout action and other capacity settings at any time. To learn
how, see Modifying an Aurora Serverless v1 DB cluster.

Pause and resume for Aurora Serverless v1

You can choose to pause your Aurora Serverless v1 DB cluster after a given amount of time with no
activity. You specify the amount of time with no activity before the DB cluster is paused. When you

Pause and resume 3252

Amazon Aurora User Guide for Aurora

select this option, the default inactivity time is five minutes, but you can change this value. This is
an optional setting.

When the DB cluster is paused, no compute or memory activity occurs, and you are charged only
for storage. If database connections are requested when an Aurora Serverless v1 DB cluster is
paused, the DB cluster automatically resumes and services the connection requests.

When the DB cluster resumes activity, it has the same capacity as it had when Aurora paused the
cluster. The number of ACUs depends on how much Aurora scaled the cluster up or down before
pausing it.

Note

If a DB cluster is paused for more than seven days, the DB cluster might be backed up with
a snapshot. In this case, Aurora restores the DB cluster from the snapshot when there is a
request to connect to it.

Determining the maximum number of database connections for Aurora
Serverless v1

The following examples are for an Aurora Serverless v1 DB cluster that's compatible with MySQL
5.7. You can use a MySQL client or the query editor, if you've configured access to it. For more
information, see Running queries in the query editor.

To find the maximum number of database connections

1. Find the capacity range for your Aurora Serverless v1 DB cluster using the AWS CLI.

aws rds describe-db-clusters \
 --db-cluster-identifier my-serverless-57-cluster \
 --query 'DBClusters[*].ScalingConfigurationInfo|[0]'

The result shows that its capacity range is 1–4 ACUs.

{
 "MinCapacity": 1,
 "AutoPause": true,
 "MaxCapacity": 4,

Determining max_connections 3253

Amazon Aurora User Guide for Aurora

 "TimeoutAction": "RollbackCapacityChange",
 "SecondsUntilAutoPause": 3600
}

2. Run the following SQL query to find the maximum number of connections.

select @@max_connections;

The result shown is for the minimum capacity of the cluster, 1 ACU.

@@max_connections
90

3. Scale the cluster to 8–32 ACUs.

For more information on scaling, see Modifying an Aurora Serverless v1 DB cluster.

4. Confirm the capacity range.

{
 "MinCapacity": 8,
 "AutoPause": true,
 "MaxCapacity": 32,
 "TimeoutAction": "RollbackCapacityChange",
 "SecondsUntilAutoPause": 3600
}

5. Find the maximum number of connections.

select @@max_connections;

The result shown is for the minimum capacity of the cluster, 8 ACUs.

@@max_connections
1000

6. Scale the cluster to the maximum possible, 256–256 ACUs.

7. Confirm the capacity range.

{
 "MinCapacity": 256,
 "AutoPause": true,

Determining max_connections 3254

Amazon Aurora User Guide for Aurora

 "MaxCapacity": 256,
 "TimeoutAction": "RollbackCapacityChange",
 "SecondsUntilAutoPause": 3600
}

8. Find the maximum number of connections.

select @@max_connections;

The result shown is for 256 ACUs.

@@max_connections
6000

Note

The max_connections value doesn't scale linearly with the number of ACUs.

9. Scale the cluster back down to 1–4 ACUs.

{
 "MinCapacity": 1,
 "AutoPause": true,
 "MaxCapacity": 4,
 "TimeoutAction": "RollbackCapacityChange",
 "SecondsUntilAutoPause": 3600
}

This time, the max_connections value is for 4 ACUs.

@@max_connections
270

10. Let the cluster scale down to 2 ACUs.

@@max_connections
180

If you've configured the cluster to pause after a certain amount of time idle, it scales down to 0
ACUs. However, max_connections doesn't drop below the value for 1 ACU.

Determining max_connections 3255

Amazon Aurora User Guide for Aurora

@@max_connections
90

Parameter groups for Aurora Serverless v1

When you create your Aurora Serverless v1 DB cluster, you choose a specific Aurora DB engine
and an associated DB cluster parameter group. Unlike provisioned Aurora DB clusters, an Aurora
Serverless v1 DB cluster has a single read/write DB instance that's configured with a DB cluster
parameter group only—it doesn't have a separate DB parameter group. During autoscaling, Aurora
Serverless v1 needs to be able to change parameters for the cluster to work best for the increased
or decreased capacity. Thus, with an Aurora Serverless v1 DB cluster, some of the changes that you
might make to parameters for a particular DB engine type might not apply.

For example, an Aurora PostgreSQL–based Aurora Serverless v1 DB cluster can't use
apg_plan_mgmt.capture_plan_baselines and other parameters that might be used on
provisioned Aurora PostgreSQL DB clusters for query plan management.

You can get a list of default values for the default parameter groups for the various Aurora DB
engines by using the describe-engine-default-cluster-parameters CLI command and querying the
AWS Region. The following are values that you can use for the --db-parameter-group-family
option.

Aurora MySQL version 2 aurora-mysql5.7

Aurora PostgreSQL version 11 aurora-postgresql11

Aurora PostgreSQL version 13 aurora-postgresql13

We recommend that you configure your AWS CLI with your AWS access key ID and AWS secret
access key, and that you set your AWS Region before using AWS CLI commands. Providing the
Region to your CLI configuration saves you from entering the --region parameter when running
commands. To learn more about configuring AWS CLI, see Configuration basics in the AWS
Command Line Interface User Guide.

The following example gets a list of parameters from the default DB cluster group for Aurora
MySQL version 2.

Parameter groups 3256

https://docs.aws.amazon.com/cli/latest/reference/rds/describe-engine-default-cluster-parameters.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-quickstart.html#cli-configure-quickstart-config

Amazon Aurora User Guide for Aurora

For Linux, macOS, or Unix:

aws rds describe-engine-default-cluster-parameters \
 --db-parameter-group-family aurora-mysql5.7 --query \
 'EngineDefaults.Parameters[*].
{ParameterName:ParameterName,SupportedEngineModes:SupportedEngineModes} | [?
contains(SupportedEngineModes, `serverless`) == `true`] | [*].{param:ParameterName}' \
 --output text

For Windows:

aws rds describe-engine-default-cluster-parameters ^
 --db-parameter-group-family aurora-mysql5.7 --query ^
 "EngineDefaults.Parameters[*].
{ParameterName:ParameterName,SupportedEngineModes:SupportedEngineModes} | [?
contains(SupportedEngineModes, 'serverless') == `true`] | [*].{param:ParameterName}" ^
 --output text

Modifying parameter values for Aurora Serverless v1

As explained in Working with parameter groups, you can't directly change values in a default
parameter group, regardless of its type (DB cluster parameter group, DB parameter group). Instead,
you create a custom parameter group based on the default DB cluster parameter group for your
Aurora DB engine and change settings as needed on that parameter group. For example, you might
want to change some of the settings for your Aurora Serverless v1 DB cluster to log queries or to
upload DB engine specific logs to Amazon CloudWatch.

To create a custom DB cluster parameter group

1. Sign in to the AWS Management Console and then open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. Choose Parameter groups.

3. Choose Create parameter group to open the Parameter group details pane.

4. Choose the appropriate default DB cluster group for the DB engine you want to use for your
Aurora Serverless v1 DB cluster. Be sure that you choose the following options:

a. For Parameter group family, choose the appropriate family for your chosen DB engine. Be
sure that your choice has the prefix aurora- in its name.

b. For Type, choose DB Cluster Parameter Group.

Parameter groups 3257

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Aurora User Guide for Aurora

c. For Group name and Description, enter meaningful names for you or others who might
need to work with your Aurora Serverless v1 DB cluster and its parameters.

d. Choose Create.

Your custom DB cluster parameter group is added to the list of parameter groups available in your
AWS Region. You can use your custom DB cluster parameter group when you create new Aurora
Serverless v1 DB clusters. You can also modify an existing Aurora Serverless v1 DB cluster to use
your custom DB cluster parameter group. After your Aurora Serverless v1 DB cluster starts using
your custom DB cluster parameter group, you can change values for dynamic parameters using
either the AWS Management Console or the AWS CLI.

You can also use the console to view a side-by-side comparison of the values in your custom DB
cluster parameter group compared to the default DB cluster parameter group, as shown in the
following screenshot.

When you change parameter values on an active DB cluster, Aurora Serverless v1 starts a seamless
scale in order to apply the parameter changes. If your Aurora Serverless v1 DB cluster is in a paused
state, it resumes and starts scaling so that it can make the change. The scaling operation for a

Parameter groups 3258

Amazon Aurora User Guide for Aurora

parameter group change always forces a capacity change, so be aware that modifying parameters
might result in dropped connections if a scaling point can't be found during the scaling period.

Logging for Aurora Serverless v1

By default, error logs for Aurora Serverless v1 are enabled and automatically uploaded to Amazon
CloudWatch. You can also have your Aurora Serverless v1 DB cluster upload Aurora database-
engine specific logs to CloudWatch. To do this, enable configuration parameters in your custom DB
cluster parameter group. Your Aurora Serverless v1 DB cluster then uploads all available logs to
Amazon CloudWatch. At this point, you can use CloudWatch to analyze log data, create alarms, and
view metrics.

For Aurora MySQL, the following table shows the logs that you can enable. When enabled, they're
automatically uploaded from your Aurora Serverless v1 DB cluster to Amazon CloudWatch.

Aurora MySQL log Description

general_log Creates the general log. Set to 1 to turn on.
Default is off (0).

log_queries_not_using_indexes Logs any queries to the slow query log that
don't use an index. Default is off (0). Set to 1
to turn on this log.

long_query_time Prevents fast-running queries from being
logged in the slow query log. Can be set to a
float between 0 and 3,1536,000. Default is 0
(not active).

server_audit_events The list of events to capture in the logs.
Supported values are CONNECT, QUERY,
QUERY_DCL , QUERY_DDL , QUERY_DML ,
and TABLE.

server_audit_logging Set to 1 to turn on server audit logging. If you
turn this on, you can specify the audit events
to send to CloudWatch by listing them in the
server_audit_events parameter.

Logging 3259

Amazon Aurora User Guide for Aurora

Aurora MySQL log Description

slow_query_log Creates a slow query log. Set to 1 to turn on
the slow query log. Default is off (0).

For more information, see Using Advanced Auditing with an Amazon Aurora MySQL DB cluster.

For Aurora PostgreSQL, the following table shows the logs that you can enable. When enabled,
they're automatically uploaded from your Aurora Serverless v1 DB cluster to Amazon CloudWatch
along with the regular error logs.

Aurora PostgreSQL log Description

log_connections Turned on by default and can't be changed. It
logs details for all new client connections.

log_disconnections Turned on by default and can't be changed.
Logs all client disconnections.

log_hostname Turned off by default and can't be changed.
Hostnames aren't logged.

log_lock_waits Default is 0 (off). Set to 1 to log lock waits.

log_min_duration_statement The minimum duration (in milliseconds) for a
statement to run before it's logged.

log_min_messages Sets the message levels that are logged.
Supported values are debug5, debug4,
debug3, debug2, debug1, info, notice,
warning, error, log, fatal, panic.

To log performance data to the postgres log,
set the value to debug1.

log_temp_files Logs the use of temporary files that are above
the specified kilobytes (kB).

Logging 3260

Amazon Aurora User Guide for Aurora

Aurora PostgreSQL log Description

log_statement Controls the specific SQL statements that get
logged. Supported values are none, ddl, mod,
and all. Default is none.

After you turn on logs for Aurora MySQL or Aurora PostgreSQL for your Aurora Serverless v1 DB
cluster, you can view the logs in CloudWatch.

Viewing Aurora Serverless v1 logs with Amazon CloudWatch

Aurora Serverless v1 automatically uploads ("publishes") to Amazon CloudWatch all logs that are
enabled in your custom DB cluster parameter group. You don't need to choose or specify the log
types. Uploading logs starts as soon as you enable the log configuration parameter. If you later
disable the log parameter, further uploads stop. However, all the logs that have already been
published to CloudWatch remain until you delete them.

For more information on using CloudWatch with Aurora MySQL logs, see Monitoring log events in
Amazon CloudWatch.

For more information about CloudWatch and Aurora PostgreSQL, see Publishing Aurora
PostgreSQL logs to Amazon CloudWatch Logs.

To view logs for your Aurora Serverless v1 DB cluster

1. Open the CloudWatch console at https://console.aws.amazon.com/cloudwatch/.

2. Choose your AWS Region.

3. Choose Log groups.

4. Choose your Aurora Serverless v1 DB cluster log from the list. For error logs, the naming
pattern is as follows.

/aws/rds/cluster/cluster-name/error

For example, in the following screenshot you can find listings for logs published for an Aurora
PostgreSQL Aurora Serverless v1 DB cluster named western-sles. You can also find several
listings for Aurora MySQL Aurora Serverless v1 DB cluster, west-coast-sles. Choose the log that
you're interest in to start exploring its content.

Logging 3261

https://console.aws.amazon.com/cloudwatch/

Amazon Aurora User Guide for Aurora

Aurora Serverless v1 and maintenance

Maintenance for Aurora Serverless v1 DB cluster, such as applying the latest features, fixes, and
security updates, is performed automatically for you. Aurora Serverless v1 has a maintenance
window that you can view in the AWS Management Console in Maintenance & backups for
your Aurora Serverless v1 DB cluster. You can find the date and time that maintenance might be
performed and if any maintenance is pending for your Aurora Serverless v1 DB cluster, as shown in
the following figure.

You can set the maintenance window when you create the Aurora Serverless v1 DB cluster, and
you can modify the window later. For more information, see Adjusting the preferred DB cluster
maintenance window.

Maintenance windows are used for scheduled major version upgrades. Minor version upgrades
and patches are applied immediately during scaling. Scaling happens according to your setting for
TimeoutAction:

Maintenance 3262

Amazon Aurora User Guide for Aurora

• ForceApplyCapacityChange – The change is applied immediately.

• RollbackCapacityChange – Aurora forcibly updates the cluster after 3 days from the first
patch attempt.

As with any change that's forced without an appropriate scaling point, this might interrupt your
workload.

Whenever possible, Aurora Serverless v1 performs maintenance in a nondisruptive manner. When
maintenance is required, your Aurora Serverless v1 DB cluster scales its capacity to handle the
necessary operations. Before scaling, Aurora Serverless v1 looks for a scaling point. It does so for
up to three days if necessary.

At the end of each day that Aurora Serverless v1 can't find a scaling point, it creates a cluster event.
This event notifies you of the pending maintenance and the need to scale to perform maintenance.
The notification includes the date when Aurora Serverless v1 can force the DB cluster to scale.

For more information, see Timeout action for capacity changes.

Aurora Serverless v1 and failover

If the DB instance for an Aurora Serverless v1 DB cluster becomes unavailable or the Availability
Zone (AZ) it's in fails, Aurora recreates the DB instance in a different AZ. However, the Aurora
Serverless v1 cluster isn't a Multi-AZ cluster. That's because it consists of a single DB instance in a
single AZ. Thus, this failover mechanism takes longer than for an Aurora cluster with provisioned
or Aurora Serverless v2 instances. The Aurora Serverless v1 failover time is undefined because it
depends on demand and capacity availability in other AZs within the given AWS Region.

Because Aurora separates computation capacity and storage, the storage volume for the cluster is
spread across multiple AZs. Your data remains available even if outages affect the DB instance or
the associated AZ.

Aurora Serverless v1 and snapshots

The cluster volume for an Aurora Serverless v1 cluster is always encrypted. You can choose
the encryption key, but you can't disable encryption. To copy or share a snapshot of an Aurora
Serverless v1 cluster, encrypt the snapshot using your own AWS KMS key. For more information,
see Copying a DB cluster snapshot. To learn more about encryption and Amazon Aurora, see
Encrypting an Amazon Aurora DB cluster

Failover 3263

Amazon Aurora User Guide for Aurora

Creating an Aurora Serverless v1 DB cluster

The following procedure creates an Aurora Serverless v1 cluster without any of your schema
objects or data. If you want to create an Aurora Serverless v1 cluster that's a duplicate of an
existing provisioned or Aurora Serverless v1 cluster, you can perform a snapshot restore or cloning
operation instead. For those details, see Restoring from a DB cluster snapshot and Cloning a
volume for an Amazon Aurora DB cluster. You can't convert an existing provisioned cluster to
Aurora Serverless v1. You also can't convert an existing Aurora Serverless v1 cluster back to a
provisioned cluster.

When you create an Aurora Serverless v1 DB cluster, you can set the minimum and maximum
capacity for the cluster. A capacity unit is equivalent to a specific compute and memory
configuration. Aurora Serverless v1 creates scaling rules for thresholds for CPU utilization,
connections, and available memory and seamlessly scales to a range of capacity units as needed
for your applications. For more information see Aurora Serverless v1 architecture.

You can set the following specific values for your Aurora Serverless v1 DB cluster:

• Minimum Aurora capacity unit – Aurora Serverless v1 can reduce capacity down to this capacity
unit.

• Maximum Aurora capacity unit – Aurora Serverless v1 can increase capacity up to this capacity
unit.

You can also choose the following optional scaling configuration options:

• Force scaling the capacity to the specified values when the timeout is reached – You can
choose this setting if you want Aurora Serverless v1 to force Aurora Serverless v1 to scale even
if it can't find a scaling point before it times out. If you want Aurora Serverless v1 to cancel
capacity changes if it can't find a scaling point, don't choose this setting. For more information,
see Timeout action for capacity changes.

• Pause compute capacity after consecutive minutes of inactivity – You can choose this setting
if you want Aurora Serverless v1 to scale to zero when there's no activity on your DB cluster for
an amount of time you specify. With this setting enabled, your Aurora Serverless v1 DB cluster
automatically resumes processing and scales to the necessary capacity to handle the workload
when database traffic resumes. To learn more, see Pause and resume for Aurora Serverless v1.

Creating an Aurora Serverless v1 DB cluster 3264

Amazon Aurora User Guide for Aurora

Before you can create an Aurora Serverless v1 DB cluster, you need an AWS account. You also need
to have completed the setup tasks for working with Amazon Aurora. For more information, see
Setting up your environment for Amazon Aurora. You also need to complete other preliminary
steps for creating any Aurora DB cluster. To learn more, see Creating an Amazon Aurora DB cluster.

Aurora Serverless v1 is available in certain AWS Regions and for specific Aurora MySQL and Aurora
PostgreSQL versions only. For more information, see Supported Regions and Aurora DB engines for
Aurora Serverless v1.

Note

The cluster volume for an Aurora Serverless v1 cluster is always encrypted. When you
create your Aurora Serverless v1 DB cluster, you can't turn off encryption, but you can
choose to use your own encryption key. With Aurora Serverless v2, you can choose whether
to encrypt the cluster volume.

You can create an Aurora Serverless v1 DB cluster with the AWS Management Console, the AWS
CLI, or the RDS API.

Note

If you receive the following error message when trying to create your cluster, your account
needs additional permissions.
Unable to create the resource. Verify that you have permission to
create service linked role. Otherwise wait and try again later.
See Using service-linked roles for Amazon Aurora for more information.

You can't directly connect to the DB instance on your Aurora Serverless v1 DB cluster. To connect to
your Aurora Serverless v1 DB cluster, you use the database endpoint. You can find the endpoint for
your Aurora Serverless v1 DB cluster on the Connectivity & security tab for your cluster in the AWS
Management Console. For more information, see Connecting to an Amazon Aurora DB cluster.

Console

Use the following general procedure. For more information on creating an Aurora DB cluster using
the AWS Management Console, see Creating an Amazon Aurora DB cluster.

Creating an Aurora Serverless v1 DB cluster 3265

Amazon Aurora User Guide for Aurora

To create a new Aurora Serverless v1 DB cluster

1. Sign in to the AWS Management Console.

2. Choose an AWS Region that supports Aurora Serverless v1.

3. Choose Amazon RDS from the AWS Services list.

4. Choose Create database.

5. On the Create database page:

a. Choose Standard create for the database creation method.

b. Continue creating the Aurora Serverless v1 DB cluster by using the steps from the
following examples.

Note

If you choose a version of the DB engine that doesn't support Aurora Serverless v1,
the Serverless option doesn't display for DB instance class.

Example for Aurora MySQL

Use the following procedure.

To create an Aurora Serverless v1 DB cluster for Aurora MySQL

1. For Engine type, choose Aurora (MySQL Compatibile).

2. Choose the Aurora MySQL version, compatible with Aurora Serverless v1, that you want for
your DB cluster. The supported versions are shown on the right side of the page.

Creating an Aurora Serverless v1 DB cluster 3266

Amazon Aurora User Guide for Aurora

3. For DB instance class, choose Serverless.

4. Set the Capacity range for the DB cluster.

5. Adjust values as needed in the Additional scaling configuration section of the page. To learn
more about capacity settings, see Autoscaling for Aurora Serverless v1.

Creating an Aurora Serverless v1 DB cluster 3267

Amazon Aurora User Guide for Aurora

6. To enable the Data API for your Aurora Serverless v1 DB cluster, select the Data API check box
under Additional configuration in the Connectivity section.

To learn more about the Data API, see Using RDS Data API.

7. Choose other database settings as needed, then choose Create database.

Example for Aurora PostgreSQL

Use the following procedure.

To create an Aurora Serverless v1 DB cluster for Aurora PostgreSQL

1. For Engine type, choose Aurora (PostgreSQL Compatibile).

2. Choose the Aurora PostgreSQL version, compatible with Aurora Serverless v1, that you want
for your DB cluster. The supported versions are shown on the right side of the page.

Creating an Aurora Serverless v1 DB cluster 3268

Amazon Aurora User Guide for Aurora

3. For DB instance class, choose Serverless.

4. If you chose an Aurora PostgreSQL version 13 minor version, choose Serverless v1 from the
menu.

Note

Aurora PostgreSQL version 13 also supports Aurora Serverless v2.

5. Set the Capacity range for the DB cluster.

6. Adjust values as needed in the Additional scaling configuration section of the page. To learn
more about capacity settings, see Autoscaling for Aurora Serverless v1.

Creating an Aurora Serverless v1 DB cluster 3269

Amazon Aurora User Guide for Aurora

7. To use the Data API with your Aurora Serverless v1 DB cluster, select the Data API check box
under Additional configuration in the Connectivity section.

To learn more about the Data API, see Using RDS Data API.

8. Choose other database settings as needed, then choose Create database.

AWS CLI

To create a new Aurora Serverless v1 DB cluster with the AWS CLI, run the create-db-cluster
command and specify serverless for the --engine-mode option.

You can optionally specify the --scaling-configuration option to configure the minimum
capacity, maximum capacity, and automatic pause when there are no connections.

Creating an Aurora Serverless v1 DB cluster 3270

https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-cluster.html

Amazon Aurora User Guide for Aurora

The following command examples create a new Serverless DB cluster by setting the --
engine-mode option to serverless. The examples also specify values for the --scaling-
configuration option.

Example for Aurora MySQL

The following command creates a new Aurora MySQL–compatible Serverless DB cluster. Valid
capacity values for Aurora MySQL are 1, 2, 4, 8, 16, 32, 64, 128, and 256.

For Linux, macOS, or Unix:

aws rds create-db-cluster --db-cluster-identifier sample-cluster \
 --engine aurora-mysql --engine-version 5.7.mysql_aurora.2.11.4 \
 --engine-mode serverless \
 --scaling-configuration
 MinCapacity=4,MaxCapacity=32,SecondsUntilAutoPause=1000,AutoPause=true \
 --master-username username --master-user-password password

For Windows:

aws rds create-db-cluster --db-cluster-identifier sample-cluster ^
 --engine aurora-mysql --engine-version 5.7.mysql_aurora.2.11.4 ^
 --engine-mode serverless ^
 --scaling-configuration
 MinCapacity=4,MaxCapacity=32,SecondsUntilAutoPause=1000,AutoPause=true ^
 --master-username username --master-user-password password

Example for Aurora PostgreSQL

The following command creates a new PostgreSQL 13.9–compatible Serverless DB cluster. Valid
capacity values for Aurora PostgreSQL are 2, 4, 8, 16, 32, 64, 192, and 384.

For Linux, macOS, or Unix:

aws rds create-db-cluster --db-cluster-identifier sample-cluster \
 --engine aurora-postgresql --engine-version 13.9 \
 --engine-mode serverless \
 --scaling-configuration
 MinCapacity=8,MaxCapacity=64,SecondsUntilAutoPause=1000,AutoPause=true \
 --master-username username --master-user-password password

Creating an Aurora Serverless v1 DB cluster 3271

Amazon Aurora User Guide for Aurora

For Windows:

aws rds create-db-cluster --db-cluster-identifier sample-cluster ^
 --engine aurora-postgresql --engine-version 13.9 ^
 --engine-mode serverless ^
 --scaling-configuration
 MinCapacity=8,MaxCapacity=64,SecondsUntilAutoPause=1000,AutoPause=true ^
 --master-username username --master-user-password password

RDS API

To create a new Aurora Serverless v1 DB cluster with the RDS API, run the CreateDBCluster
operation and specify serverless for the EngineMode parameter.

You can optionally specify the ScalingConfiguration parameter to configure the minimum
capacity, maximum capacity, and automatic pause when there are no connections. Valid capacity
values include the following:

• Aurora MySQL: 1, 2, 4, 8, 16, 32, 64, 128, and 256.

• Aurora PostgreSQL: 2, 4, 8, 16, 32, 64, 192, and 384.

Restoring an Aurora Serverless v1 DB cluster

You can configure an Aurora Serverless v1 DB cluster when you restore a provisioned DB cluster
snapshot with the AWS Management Console, the AWS CLI, or the RDS API.

When you restore a snapshot to an Aurora Serverless v1 DB cluster, you can set the following
specific values:

• Minimum Aurora capacity unit – Aurora Serverless v1 can reduce capacity down to this capacity
unit.

• Maximum Aurora capacity unit – Aurora Serverless v1 can increase capacity up to this capacity
unit.

• Timeout action – The action to take when a capacity modification times out because it can't find
a scaling point. Aurora Serverless v1 DB cluster can force your DB cluster to the new capacity
settings if set the Force scaling the capacity to the specified values... option. Or, it can roll
back the capacity change to cancel it if you don't choose the option. For more information, see
Timeout action for capacity changes.

Restoring an Aurora Serverless v1 DB cluster 3272

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateDBCluster.html

Amazon Aurora User Guide for Aurora

• Pause after inactivity – The amount of time with no database traffic to scale to zero processing
capacity. When database traffic resumes, Aurora automatically resumes processing capacity and
scales to handle the traffic.

For general information about restoring a DB cluster from a snapshot, see Restoring from a DB
cluster snapshot.

Console

You can restore a DB cluster snapshot to an Aurora DB cluster with the AWS Management Console.

To restore a DB cluster snapshot to an Aurora DB cluster

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the upper-right corner of the AWS Management Console, choose the AWS Region that hosts
your source DB cluster.

3. In the navigation pane, choose Snapshots, and choose the DB cluster snapshot that you want
to restore.

4. For Actions, choose Restore Snapshot.

5. On the Restore DB Cluster page, choose Serverless for Capacity type.

Restoring an Aurora Serverless v1 DB cluster 3273

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Aurora User Guide for Aurora

6. In the DB cluster identifier field, type the name for your restored DB cluster, and complete the
other fields.

7. In the Capacity settings section, modify the scaling configuration.

Restoring an Aurora Serverless v1 DB cluster 3274

Amazon Aurora User Guide for Aurora

8. Choose Restore DB Cluster.

To connect to an Aurora Serverless v1 DB cluster, use the database endpoint. For details, see the
instructions in Connecting to an Amazon Aurora DB cluster.

Note

If you encounter the following error message, your account requires additional permissions:
Unable to create the resource. Verify that you have permission to
create service linked role. Otherwise wait and try again later.
For more information, see Using service-linked roles for Amazon Aurora.

AWS CLI

You can configure an Aurora Serverless DB cluster when you restore a provisioned DB cluster
snapshot with the AWS Management Console, the AWS CLI, or the RDS API.

Restoring an Aurora Serverless v1 DB cluster 3275

Amazon Aurora User Guide for Aurora

When you restore a snapshot to an Aurora Serverless DB cluster, you can set the following specific
values:

• Minimum Aurora capacity unit – Aurora Serverless can reduce capacity down to this capacity
unit.

• Maximum Aurora capacity unit – Aurora Serverless can increase capacity up to this capacity
unit.

• Timeout action – The action to take when a capacity modification times out because it can't find
a scaling point. Aurora Serverless v1 DB cluster can force your DB cluster to the new capacity
settings if set the Force scaling the capacity to the specified values... option. Or, it can roll
back the capacity change to cancel it if you don't choose the option. For more information, see
Timeout action for capacity changes.

• Pause after inactivity – The amount of time with no database traffic to scale to zero processing
capacity. When database traffic resumes, Aurora automatically resumes processing capacity and
scales to handle the traffic.

Note

The version of the DB cluster snapshot must be compatible with Aurora Serverless v1. For
the list of supported versions, see Supported Regions and Aurora DB engines for Aurora
Serverless v1.

To restore a snapshot to an Aurora Serverless v1 cluster with MySQL 5.7 compatibility, include the
following additional parameters:

• --engine aurora-mysql

• --engine-version 5.7

The --engine and --engine-version parameters let you create a MySQL 5.7-compatible
Aurora Serverless v1 cluster from a MySQL 5.6-compatible Aurora or Aurora Serverless v1
snapshot. The following example restores a snapshot from a MySQL 5.6-compatible cluster
named mydbclustersnapshot to a MySQL 5.7-compatible Aurora Serverless v1 cluster named
mynewdbcluster.

For Linux, macOS, or Unix:

Restoring an Aurora Serverless v1 DB cluster 3276

Amazon Aurora User Guide for Aurora

aws rds restore-db-cluster-from-snapshot \
 --db-cluster-identifier mynewdbcluster \
 --snapshot-identifier mydbclustersnapshot \
 --engine-mode serverless \
 --engine aurora-mysql \
 --engine-version 5.7

For Windows:

aws rds restore-db-cluster-from-snapshot ^
 --db-instance-identifier mynewdbcluster ^
 --db-snapshot-identifier mydbclustersnapshot ^
 --engine aurora-mysql ^
 --engine-version 5.7

You can optionally specify the --scaling-configuration option to configure the minimum
capacity, maximum capacity, and automatic pause when there are no connections. Valid capacity
values include the following:

• Aurora MySQL: 1, 2, 4, 8, 16, 32, 64, 128, and 256.

• Aurora PostgreSQL: 2, 4, 8, 16, 32, 64, 192, and 384.

In the following example, you restore from a previously created DB cluster snapshot named
mydbclustersnapshot to a new DB cluster named mynewdbcluster. You set the --scaling-
configuration so that the new Aurora Serverless v1 DB cluster can scale from 8 ACUs to 64
ACUs (Aurora capacity units) as needed to process the workload. After processing completes
and after 1000 seconds with no connections to support, the cluster shuts down until connection
requests prompt it to restart.

For Linux, macOS, or Unix:

aws rds restore-db-cluster-from-snapshot \
 --db-cluster-identifier mynewdbcluster \
 --snapshot-identifier mydbclustersnapshot \
 --engine-mode serverless --scaling-configuration
 MinCapacity=8,MaxCapacity=64,TimeoutAction='ForceApplyCapacityChange',SecondsUntilAutoPause=1000,AutoPause=true

For Windows:

Restoring an Aurora Serverless v1 DB cluster 3277

Amazon Aurora User Guide for Aurora

aws rds restore-db-cluster-from-snapshot ^
 --db-instance-identifier mynewdbcluster ^
 --db-snapshot-identifier mydbclustersnapshot ^
 --engine-mode serverless --scaling-configuration
 MinCapacity=8,MaxCapacity=64,TimeoutAction='ForceApplyCapacityChange',SecondsUntilAutoPause=1000,AutoPause=true

RDS API

To configure an Aurora Serverless v1 DB cluster when you restore from a DB cluster using the
RDS API, run the RestoreDBClusterFromSnapshot operation and specify serverless for the
EngineMode parameter.

You can optionally specify the ScalingConfiguration parameter to configure the minimum
capacity, maximum capacity, and automatic pause when there are no connections. Valid capacity
values include the following:

• Aurora MySQL: 1, 2, 4, 8, 16, 32, 64, 128, and 256.

• Aurora PostgreSQL: 2, 4, 8, 16, 32, 64, 192, and 384.

Modifying an Aurora Serverless v1 DB cluster

After you configure an Aurora Serverless v1 DB cluster, you can modify certain properties with the
AWS Management Console, the AWS CLI, or the RDS API. Most of the properties you can modify are
the same as for other kinds of Aurora clusters.

The most relevant changes for Aurora Serverless v1 are the following:

• Modifying the scaling configuration

• Upgrading the major version

• Converting from Aurora Serverless v1 to provisioned

Modifying the scaling configuration of an Aurora Serverless v1 DB
cluster

You can set the minimum and maximum capacity for the DB cluster. Each capacity unit is
equivalent to a specific compute and memory configuration. Aurora Serverless automatically

Modifying an Aurora Serverless v1 DB cluster 3278

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_RestoreDBClusterFromSnapshot.html

Amazon Aurora User Guide for Aurora

creates scaling rules for thresholds for CPU utilization, connections, and available memory. You can
also set whether Aurora Serverless pauses the database when there's no activity and then resumes
when activity begins again.

You can set the following specific values for the scaling configuration:

• Minimum Aurora capacity unit – Aurora Serverless can reduce capacity down to this capacity
unit.

• Maximum Aurora capacity unit – Aurora Serverless can increase capacity up to this capacity
unit.

• Autoscaling timeout and action – This section specifies how long Aurora Serverless waits to find
a scaling point before timing out. It also specifies the action to take when a capacity modification
times out because it can't find a scaling point. Aurora can force the capacity change to set the
capacity to the specified value as soon as possible. Or, it can roll back the capacity change to
cancel it. For more information, see Timeout action for capacity changes.

• Pause after inactivity – Use the optional Scale the capacity to 0 ACUs when cluster is idle
setting to scale the database to zero processing capacity while it's inactive. When database traffic
resumes, Aurora automatically resumes processing capacity and scales to handle the traffic.

Console

You can modify the scaling configuration of an Aurora DB cluster with the AWS Management
Console.

To modify an Aurora Serverless v1 DB cluster

1. Open the Amazon RDS console at https://console.aws.amazon.com/rds/.

2. In the navigation pane, choose Databases.

3. Choose the Aurora Serverless v1 DB cluster that you want to modify.

4. For Actions, choose Modify cluster.

5. In the Capacity settings section, modify the scaling configuration.

6. Choose Continue.

7. On the Modify DB cluster page, review your modifications, then choose when to apply them.

8. Choose Modify cluster.

Modifying the scaling configuration 3279

https://console.aws.amazon.com/rds/

Amazon Aurora User Guide for Aurora

AWS CLI

To modify the scaling configuration of an Aurora Serverless v1 DB cluster using the AWS CLI, run
the modify-db-cluster AWS CLI command. Specify the --scaling-configuration option to
configure the minimum capacity, maximum capacity, and automatic pause when there are no
connections. Valid capacity values include the following:

• Aurora MySQL: 1, 2, 4, 8, 16, 32, 64, 128, and 256.

• Aurora PostgreSQL: 2, 4, 8, 16, 32, 64, 192, and 384.

In this example, you modify the scaling configuration of an Aurora Serverless v1 DB cluster named
sample-cluster.

For Linux, macOS, or Unix:

aws rds modify-db-cluster \
 --db-cluster-identifier sample-cluster \
 --scaling-configuration
 MinCapacity=8,MaxCapacity=64,SecondsUntilAutoPause=500,TimeoutAction='ForceApplyCapacityChange',AutoPause=true

For Windows:

aws rds modify-db-cluster ^
 --db-cluster-identifier sample-cluster ^
 --scaling-configuration
 MinCapacity=8,MaxCapacity=64,SecondsUntilAutoPause=500,TimeoutAction='ForceApplyCapacityChange',AutoPause=true

RDS API

You can modify the scaling configuration of an Aurora DB cluster with the ModifyDBCluster API
operation. Specify the ScalingConfiguration parameter to configure the minimum capacity,
maximum capacity, and automatic pause when there are no connections. Valid capacity values
include the following:

• Aurora MySQL: 1, 2, 4, 8, 16, 32, 64, 128, and 256.

• Aurora PostgreSQL: 2, 4, 8, 16, 32, 64, 192, and 384.

Modifying the scaling configuration 3280

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/rds/modify-db-cluster.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBCluster.html

Amazon Aurora User Guide for Aurora

Upgrading the major version of an Aurora Serverless v1 DB cluster

You can upgrade the major version for an Aurora Serverless v1 DB cluster compatible with
PostgreSQL 11 to a corresponding PostgreSQL 13–compatible version.

Console

You can perform an in-place upgrade of an Aurora Serverless v1 DB cluster using the AWS
Management Console.

To upgrade an Aurora Serverless v1 DB cluster

1. Open the Amazon RDS console at https://console.aws.amazon.com/rds/.

2. In the navigation pane, choose Databases.

3. Choose the Aurora Serverless v1 DB cluster that you want to upgrade.

4. For Actions, choose Modify cluster.

5. For Version, choose an Aurora PostgreSQL version 13 version number.

The following example shows an in-place upgrade from Aurora PostgreSQL 11.16 to 13.9.

Upgrading the major version 3281

https://console.aws.amazon.com/rds/

Amazon Aurora User Guide for Aurora

If you perform a major version upgrade, leave all of the other properties the same. To change
any other properties, do another Modify operation after the upgrade finishes.

6. Choose Continue.

7. On the Modify DB cluster page, review your modifications, then choose when to apply them.

8. Choose Modify cluster.

AWS CLI

To perform an in-place upgrade from a PostgreSQL 11–compatible Aurora Serverless v1 DB cluster
to a PostgreSQL 13–compatible one, specify the --engine-version parameter with an Aurora
PostgreSQL version 13 version number that's compatible with Aurora Serverless v1. Also include
the --allow-major-version-upgrade parameter.

In this example, you modify the major version of a PostgreSQL 11–compatible Aurora Serverless v1
DB cluster named sample-cluster. Doing so performs an in-place upgrade to a PostgreSQL 13–
compatible Aurora Serverless v1 DB cluster.

Upgrading the major version 3282

Amazon Aurora User Guide for Aurora

aws rds modify-db-cluster \
 --db-cluster-identifier sample-cluster \
 --engine-version 13.9 \
 --allow-major-version-upgrade

For Windows:

aws rds modify-db-cluster ^
 --db-cluster-identifier sample-cluster ^
 --engine-version 13.9 ^
 --allow-major-version-upgrade

RDS API

To perform an in-place upgrade from a PostgreSQL 11–compatible Aurora Serverless v1 DB cluster
to a PostgreSQL 13–compatible one, specify the EngineVersion parameter with an Aurora
PostgreSQL version 13 version number that's compatible with Aurora Serverless v1. Also include
the AllowMajorVersionUpgrade parameter.

Converting an Aurora Serverless v1 DB cluster to provisioned

You can convert an Aurora Serverless v1 DB cluster to a provisioned DB cluster. To perform the
conversion, you change the DB instance class to Provisioned. You can use this conversion as
part of upgrading your DB cluster from Aurora Serverless v1 to Aurora Serverless v2. For more
information, see Upgrading from an Aurora Serverless v1 cluster to Aurora Serverless v2.

The conversion process creates a reader DB instance in the DB cluster, promotes the reader instance
to a writer instance, and then deletes the original Aurora Serverless v1 instance. When you convert
the DB cluster, you can't perform any other modifications at the same time, such as changing the
DB engine version or DB cluster parameter group. The conversion operation is applied immediately,
and can't be undone.

During the conversion, a backup DB cluster snapshot is taken of the DB cluster in case an
error occurs. The identifier for the DB cluster snapshot has the form pre-modify-engine-
mode-DB_cluster_identifier-timestamp.

Aurora uses the current default DB minor engine version for the provisioned DB cluster.

Converting from Aurora Serverless v1 to provisioned 3283

Amazon Aurora User Guide for Aurora

If you don't provide a DB instance class for your converted DB cluster, Aurora recommends one
based on the maximum capacity of the original Aurora Serverless v1 DB cluster. The recommended
capacity to instance class mappings are shown in the following table.

Serverless maximum capacity (ACUs) Provisioned DB instance class

1 db.t3.small

2 db.t3.medium

4 db.t3.large

8 db.r5.large

16 db.r5.xlarge

32 db.r5.2xlarge

64 db.r5.4xlarge

128 db.r5.8xlarge

192 db.r5.12xlarge

256 db.r5.16xlarge

384 db.r5.24xlarge

Note

Depending on the DB instance class you choose, and your database usage, you might see
different costs for a provisioned DB cluster compared to Aurora Serverless v1.
If you convert your Aurora Serverless v1 DB cluster to a burstable (db.t*) DB instance class,
you might incur additional costs for using the DB cluster. For more information, see DB
instance class types.

Converting from Aurora Serverless v1 to provisioned 3284

Amazon Aurora User Guide for Aurora

AWS CLI

To convert an Aurora Serverless v1 DB cluster to a provisioned cluster, run the modify-db-cluster
AWS CLI command.

The following parameters are required:

• --db-cluster-identifier – The Aurora Serverless v1 DB cluster that you're converting to
provisioned.

• --engine-mode – Use the value provisioned.

• --allow-engine-mode-change

• --db-cluster-instance-class – Choose the DB instance class for the provisioned DB
cluster based on the capacity of the Aurora Serverless v1 DB cluster.

In this example, you convert an Aurora Serverless v1 DB cluster named sample-cluster and use
the db.r5.xlarge DB instance class.

For Linux, macOS, or Unix:

aws rds modify-db-cluster \
 --db-cluster-identifier sample-cluster \
 --engine-mode provisioned \
 --allow-engine-mode-change \
 --db-cluster-instance-class db.r5.xlarge

For Windows:

aws rds modify-db-cluster ^
 --db-cluster-identifier sample-cluster ^
 --engine-mode provisioned ^
 --allow-engine-mode-change ^
 --db-cluster-instance-class db.r5.xlarge

RDS API

To convert an Aurora Serverless v1 DB cluster to a provisioned cluster, use the ModifyDBCluster API
operation.

The following parameters are required:

Converting from Aurora Serverless v1 to provisioned 3285

https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-cluster.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBCluster.html

Amazon Aurora User Guide for Aurora

• DBClusterIdentifier – The Aurora Serverless v1 DB cluster that you're converting to
provisioned.

• EngineMode – Use the value provisioned.

• AllowEngineModeChange

• DBClusterInstanceClass – Choose the DB instance class for the provisioned DB cluster based
on the capacity of the Aurora Serverless v1 DB cluster.

Scaling Aurora Serverless v1 DB cluster capacity manually

Typically, Aurora Serverless v1 DB clusters scale seamlessly based on the workload. However,
capacity might not always scale fast enough to meet sudden extremes, such as an exponential
increase in transactions. In such cases you can initiate the scaling operation manually by setting a
new capacity value. After you set the capacity explicitly, Aurora Serverless v1 automatically scales
the DB cluster. It does so based on the cooldown period for scaling down.

You can explicitly set the capacity of an Aurora Serverless v1 DB cluster to a specific value with the
AWS Management Console, the AWS CLI, or the RDS API.

Console

You can set the capacity of an Aurora DB cluster with the AWS Management Console.

To modify an Aurora Serverless v1 DB cluster

1. Open the Amazon RDS console at https://console.aws.amazon.com/rds/.

2. In the navigation pane, choose Databases.

3. Choose the Aurora Serverless v1 DB cluster that you want to modify.

4. For Actions, choose Set capacity.

5. In the Scale database capacity window, choose the following:

a. For the Scale DB cluster to drop-down selector, choose the new capacity that you want
for your DB cluster.

b. For the If a seamless scaling point cannot be found check box, choose the behavior that
you want for your Aurora Serverless v1 DB cluster's TimeoutAction setting, as follows:

• Clear this option if you want your capacity to remain unchanged if Aurora Serverless v1
can't find a scaling point before timing out.

Scaling Aurora Serverless v1 DB cluster capacity manually 3286

https://console.aws.amazon.com/rds/

Amazon Aurora User Guide for Aurora

• Select this option if you want to force your Aurora Serverless v1 DB cluster change its
capacity even if it can't find a scaling point before timing out. This option can result
Aurora Serverless v1 dropping connections that prevent it from finding a scaling point.

c. For seconds, enter the amount of time you want to allow your Aurora Serverless v1 DB
cluster to look for a scaling point before timing out. You can specify anywhere from 10
seconds to 600 seconds (10 minutes). The default is five minutes (300 seconds). This
following example forces the Aurora Serverless v1 DB cluster to scale down to 2 ACUs
even if it can't find a scaling point within five minutes.

6. Choose Apply.

To learn more about scaling points, TimeoutAction, and cooldown periods, see Autoscaling for
Aurora Serverless v1.

AWS CLI

To set the capacity of an Aurora Serverless v1 DB cluster using the AWS CLI, run the modify-
current-db-cluster-capacity AWS CLI command, and specify the --capacity option. Valid capacity
values include the following:

• Aurora MySQL: 1, 2, 4, 8, 16, 32, 64, 128, and 256.

Scaling Aurora Serverless v1 DB cluster capacity manually 3287

https://docs.aws.amazon.com/cli/latest/reference/rds/modify-current-db-cluster-capacity.html
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-current-db-cluster-capacity.html

Amazon Aurora User Guide for Aurora

• Aurora PostgreSQL: 2, 4, 8, 16, 32, 64, 192, and 384.

In this example, you set the capacity of an Aurora Serverless v1 DB cluster named sample-
cluster to 64.

aws rds modify-current-db-cluster-capacity --db-cluster-identifier sample-cluster --
capacity 64

RDS API

You can set the capacity of an Aurora DB cluster with the ModifyCurrentDBClusterCapacity API
operation. Specify the Capacity parameter. Valid capacity values include the following:

• Aurora MySQL: 1, 2, 4, 8, 16, 32, 64, 128, and 256.

• Aurora PostgreSQL: 2, 4, 8, 16, 32, 64, 192, and 384.

Viewing Aurora Serverless v1 DB clusters

After you create one or more Aurora Serverless v1 DB clusters, you can view which DB clusters
are type Serverless and which are type Instance. You can also view the current number of Aurora
capacity units (ACUs) each Aurora Serverless v1 DB cluster is using. Each ACU is a combination of
processing (CPU) and memory (RAM) capacity.

To view your Aurora Serverless v1 DB clusters

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the upper-right corner of the AWS Management Console, choose the AWS Region in which
you created the Aurora Serverless v1 DB clusters.

3. In the navigation pane, choose Databases.

For each DB cluster, the DB cluster type is shown under Role. The Aurora Serverless v1 DB
clusters show Serverless for the type. You can view an Aurora Serverless v1 DB cluster's
current capacity under Size.

Viewing Aurora Serverless v1 DB clusters 3288

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyCurrentDBClusterCapacity.html
https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Aurora User Guide for Aurora

4. Choose the name of an Aurora Serverless v1 DB cluster to display its details.

On the Connectivity & security tab, note the database endpoint. Use this endpoint to connect
to your Aurora Serverless v1 DB cluster.

Viewing Aurora Serverless v1 DB clusters 3289

Amazon Aurora User Guide for Aurora

Choose the Configuration tab to view the capacity settings.

A scaling event is generated when the DB cluster scales up, scales down, pauses, or resumes.
Choose the Logs & events tab to see recent events. The following image shows examples of
these events.

Viewing Aurora Serverless v1 DB clusters 3290

Amazon Aurora User Guide for Aurora

Monitoring capacity and scaling events for your Aurora Serverless v1
DB cluster

You can view your Aurora Serverless v1 DB cluster in CloudWatch to monitor the capacity allocated
to the DB cluster with the ServerlessDatabaseCapacity metric. You can also monitor all of
the standard Aurora CloudWatch metrics, such as CPUUtilization, DatabaseConnections,
Queries, and so on.

You can have Aurora publish some or all database logs to CloudWatch. You select the logs to
publish by enabling the configuration parameters such as general_log and slow_query_log in
the DB cluster parameter group associated with theAurora Serverless v1 cluster. Unlike provisioned
clusters, Aurora Serverless v1 clusters don't require you to specify in the DB cluster settings
which log types to upload to CloudWatch. Aurora Serverless v1 clusters automatically upload
all the available logs. When you disable a log configuration parameter, publishing of the log to
CloudWatch stops. You can also delete the logs in CloudWatch if they are no longer needed.

To get started with Amazon CloudWatch for your Aurora Serverless v1 DB cluster, see Viewing
Aurora Serverless v1 logs with Amazon CloudWatch. To learn more about how to monitor Aurora
DB clusters through CloudWatch, see Monitoring log events in Amazon CloudWatch.

To connect to an Aurora Serverless v1 DB cluster, use the database endpoint. For more information,
see Connecting to an Amazon Aurora DB cluster.

Note

You can't connect directly to specific DB instances in your Aurora Serverless v1 DB clusters.

Deleting an Aurora Serverless v1 DB cluster

When you create an Aurora Serverless v1 DB cluster using the AWS Management Console, the
Enable default protection option is enabled by default unless you deselect it. That means that
you can't immediately delete an Aurora Serverless v1 DB cluster that has Deletion protection
enabled. To delete Aurora Serverless v1 DB clusters that have deletion protection by using the AWS
Management Console, you first modify the cluster to remove this protection. For information about
using the AWS CLI for this task, see AWS CLI.

Monitoring Aurora Serverless v1 DB clusters with CloudWatch 3291

Amazon Aurora User Guide for Aurora

To disable deletion protection using the AWS Management Console

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose DB clusters.

3. Choose your Aurora Serverless v1 DB cluster from the list.

4. Choose Modify to open your DB cluster's configuration. The Modify DB cluster page opens the
Settings, Capacity settings, and other configuration details for your Aurora Serverless v1 DB
cluster. Deletion protection is in the Additional configuration section.

5. Clear the Enable deletion protection check box in the Additional configuration properties
card.

6. Choose Continue. The Summary of modifications appears.

7. Choose Modify cluster to accept the summary of modifications. You can also choose Back to
modify your changes or Cancel to discard your changes.

After deletion protection is no longer active, you can delete your Aurora Serverless v1 DB cluster by
using the AWS Management Console.

Console

To delete an Aurora Serverless v1 DB cluster

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the Resources section, choose DB Clusters.

3. Choose the Aurora Serverless v1 DB cluster that you want to delete.

4. For Actions, choose Delete. You're prompted to confirm that you want to delete your Aurora
Serverless v1 DB cluster.

5. We recommend that you keep the preselected options:

• Yes for Create final snapshot?

• Your Aurora Serverless v1 DB cluster name plus -final-snapshot for Final snapshot
name. However, you can change the name for your final snapshot in this field.

Deleting an Aurora Serverless v1 DB cluster 3292

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Aurora User Guide for Aurora

If you choose No for Create final snapshot? you can't restore your DB cluster using snapshots
or point-in-time recovery.

6. Choose Delete DB cluster.

Aurora Serverless v1 deletes your DB cluster. If you chose to have a final snapshot, you see your
Aurora Serverless v1 DB cluster's status change to "Backing-up" before it's deleted and no longer
appears in the list.

AWS CLI

Before you begin, configure your AWS CLI with your AWS Access Key ID, AWS Secret Access Key,
and the AWS Region where your Aurora Serverless v1 DB cluster is. For more information, see
Configuration basics in the AWS Command Line Interface User Guide.

You can't delete an Aurora Serverless v1 DB cluster until after you first disable deletion protection
for clusters configured with this option. If you try to delete a cluster that has this protection option
enabled, you see the following error message.

An error occurred (InvalidParameterCombination) when calling the DeleteDBCluster
 operation: Cannot delete protected Cluster, please disable deletion protection and
 try again.

Deleting an Aurora Serverless v1 DB cluster 3293

https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-quickstart.html#cli-configure-quickstart-config

Amazon Aurora User Guide for Aurora

You can change your Aurora Serverless v1 DB cluster's deletion-protection setting by using the
modify-db-cluster AWS CLI command as shown in the following:

aws rds modify-db-cluster --db-cluster-identifier your-cluster-name --no-deletion-
protection

This command returns the revised properties for the specified DB cluster. You can now delete your
Aurora Serverless v1 DB cluster.

We recommend that you always create a final snapshot whenever you delete an Aurora Serverless
v1 DB cluster. The following example of using the AWS CLI delete-db-cluster shows you how. You
provide the name of your DB cluster and a name for the snapshot.

For Linux, macOS, or Unix:

aws rds delete-db-cluster --db-cluster-identifier \
 your-cluster-name --no-skip-final-snapshot \
 --final-db-snapshot-identifier name-your-snapshot

For Windows:

aws rds delete-db-cluster --db-cluster-identifier ^
 your-cluster-name --no-skip-final-snapshot ^
 --final-db-snapshot-identifier name-your-snapshot

Aurora Serverless v1 and Aurora database engine versions

Aurora Serverless v1 is available in certain AWS Regions and for specific Aurora MySQL and Aurora
PostgreSQL versions only. For the current list of AWS Regions that support Aurora Serverless
v1 and the specific Aurora MySQL and Aurora PostgreSQL versions available in each Region, see
Supported Regions and Aurora DB engines for Aurora Serverless v1.

Aurora Serverless v1 uses its associated Aurora database engine to identify specific supported
releases for each database engine supported, as follows:

• Aurora MySQL Serverless

• Aurora PostgreSQL Serverless

Aurora Serverless v1 and Aurora database engine versions 3294

https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-cluster.html
https://docs.aws.amazon.com/cli/latest/reference/rds/delete-db-cluster.html

Amazon Aurora User Guide for Aurora

When minor releases of the database engines become available for Aurora Serverless v1, they are
applied automatically in the various AWS Regions where Aurora Serverless v1 is available. In other
words, you don't need to upgrade your Aurora Serverless v1 DB cluster to get a new minor release
for your cluster's DB engine when it's available for Aurora Serverless v1.

Aurora MySQL Serverless

If you want to use Aurora MySQL-Compatible Edition for your Aurora Serverless v1 DB cluster,
you can choose an Aurora MySQL version 2 that's compatible with MySQL 5.7. To learn about
enhancements and bug fixes for Aurora MySQL version 2, see Database engine updates for Amazon
Aurora MySQL version 2 in the Release Notes for Aurora MySQL.

Aurora PostgreSQL Serverless

If you want to use Aurora PostgreSQL for your Aurora Serverless v1 DB cluster, you can choose
among Aurora PostgreSQL 11-compatible and 13-compatible versions. Minor releases for Aurora
PostgreSQL-Compatible Edition include only changes that are backward-compatible. Your Aurora
Serverless v1 DB cluster is transparently upgraded when an Aurora PostgreSQL minor release
becomes available for Aurora Serverless v1 in your AWS Region.

For example, the minor version Aurora PostgreSQL 11.16 release was transparently applied to
all Aurora Serverless v1 DB clusters running the previous Aurora PostgreSQL version. For more
information about the Aurora PostgreSQL version 11.16 update, see PostgreSQL 11.16 in the
Release Notes for Aurora PostgreSQL.

Aurora MySQL Serverless 3295

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraMySQLReleaseNotes/AuroraMySQL.Updates.20Updates.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraMySQLReleaseNotes/AuroraMySQL.Updates.20Updates.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.1116X

Amazon Aurora User Guide for Aurora

Using RDS Data API

By using RDS Data API (Data API), you can work with a web-services interface to your Aurora DB
cluster. Data API doesn't require a persistent connection to the DB cluster. Instead, it provides
a secure HTTP endpoint and integration with AWS SDKs. You can use the endpoint to run SQL
statements without managing connections.

Users don't need to pass credentials with calls to Data API, because Data API uses database
credentials stored in AWS Secrets Manager. To store credentials in Secrets Manager, users must
be granted the appropriate permissions to use Secrets Manager, and also Data API. For more
information about authorizing users, see Authorizing access to RDS Data API.

You can also use Data API to integrate Amazon Aurora with other AWS applications such as
AWS Lambda, AWS AppSync, and AWS Cloud9. Data API provides a more secure way to use AWS
Lambda. It enables you to access your DB cluster without your needing to configure a Lambda
function to access resources in a virtual private cloud (VPC). For more information, see AWS
Lambda, AWS AppSync, and AWS Cloud9.

You can enable Data API when you create the Aurora DB cluster. You can also modify the
configuration later. For more information, see Enabling RDS Data API.

After you enable Data API, you can also use the query editor to run ad hoc queries without
configuring a query tool to access Aurora in a VPC. For more information, see Using the Aurora
query editor.

Topics

• Region and version availability

• Limitations with RDS Data API

• Comparison of RDS Data API with Serverless v2 and provisioned, and Aurora Serverless v1

• Authorizing access to RDS Data API

• Enabling RDS Data API

• Creating an Amazon VPC endpoint for RDS Data API (AWS PrivateLink)

• Calling RDS Data API

• Using the Java client library for RDS Data API

• Processing RDS Data API query results in JSON format

• Troubleshooting RDS Data API issues

3296

https://aws.amazon.com/lambda/
https://aws.amazon.com/lambda/
https://aws.amazon.com/appsync/
https://aws.amazon.com/cloud9/

Amazon Aurora User Guide for Aurora

• Logging RDS Data API calls with AWS CloudTrail

Region and version availability

For information about the Regions and engine versions available for Data API, see the following
sections.

Cluster type Region and version availability

Aurora PostgreSQL provisioned and
Serverless v2

Data API with Aurora PostgreSQL
Serverless v2 and provisioned

Aurora PostgreSQL Serverless v1 Data API with Aurora PostgreSQL
Serverless v1

Aurora MySQL Serverless v1 Data API with Aurora MySQL
Serverless v1

Note

Currently, Data API isn't available for provisioned or Aurora Serverless v2 DB clusters that
use the MySQL engine.

If you require cryptographic modules validated by FIPS 140-2 when accessing Data API through a
command line interface or an API, use a FIPS endpoint. For more information about the available
FIPS endpoints, see Federal Information Processing Standard (FIPS) 140-2.

Limitations with RDS Data API

RDS Data API (Data API) has the following limitations:

• You can only execute Data API queries on writer instances in a DB cluster. However, writer
instances can accept both write and read queries.

• With Aurora global databases, you can enable Data API on both primary and secondary DB
clusters. However, until a secondary cluster is promoted to be the primary, it has no writer

Region and version availability 3297

https://aws.amazon.com/compliance/fips/

Amazon Aurora User Guide for Aurora

instance. Thus, Data API queries that you send to the secondary fail. After a promoted secondary
has an available writer instance, Data API queries on that DB instance should succeed.

• Performance Insights doesn't support monitoring database queries that you make using Data
API.

• Data API isn't supported on T DB instance classes.

• For Aurora Serverless v2 and provisioned DB clusters that use the PostgreSQL engine, RDS Data
API doesn't support some data types. For the list of supported types, see the section called
“Comparison with Serverless v2 and provisioned, and Aurora Serverless v1”.

• For Aurora PostgreSQL version 14 and higher databases, Data API only supports scram-
sha-256 for password encryption.

• The response size limit is 1 MiB. If the call returns more than 1 MiB of response data, the call is
terminated.

• For Aurora Serverless v1, the maximum number of requests per second is 1,000. For all other
supported databases, there is no limit.

• The Data API size limit is 64 KB per row in the result set returned by the database. Make sure that
each row in a result set is 64 KB or less.

Comparison of RDS Data API with Serverless v2 and
provisioned, and Aurora Serverless v1

The most recent enhancements to RDS Data API make it available for clusters that use recent
versions of the PostgreSQL engine. Those clusters could be configured to use Aurora Serverless v2,
or provisioned instance classes such as db.t4g or db.r6i.

The following table describes differences between RDS Data API (Data API) with Aurora PostgreSQL
Serverless v2 and provisioned DB clusters, and RDS API for Aurora Serverless v1 DB clusters.

Difference Aurora PostgreSQL Serverles
s v2 and provisioned

Aurora Serverless v1

Maximum number of requests
per second

Unlimited 1,000

Enabling or disabling Data
API on an existing database

• RDS API – Use the
EnableHttpEndpoint

• RDS API – Use the
ModifyDBCluster

Comparison with Serverless v2 and provisioned, and Aurora Serverless v1 3298

Amazon Aurora User Guide for Aurora

Difference Aurora PostgreSQL Serverles
s v2 and provisioned

Aurora Serverless v1

by using the RDS API or AWS
CLI

 and DisableHt
tpEndpoint operations.

• AWS CLI – Use the enable-
http-endpoint and
disable-http-endpo
int operations.

operation, and specify
true or false, as
applicable, for the
EnableHttpEndpoint
parameter.

• AWS CLI – Use the modify-
db-cluster operation
with the --enable-
http-endpoint or
--no-enable-http-
endpoint option, as
applicable.

CloudTrail events Events from Data API calls
are data events. These events
are automatically excluded
in a trail by default. For more
information, see the section
called “Including Data API
events in an CloudTrail trail”.

Events from Data API calls are
management events. These
events are automatically
included in a trail by default.
For more information, see the
section called “Excluding Data
API events from a CloudTrai
l trail (Aurora Serverless v1
only)”.

Multistatement support Multistatements aren't
supported. In this
case, Data API throws
ValidationExceptio
n: Multistatements
aren't supported .

For Aurora PostgreSQL,
multistatements return only
the first query response. For
Aurora MySQL, multistat
ements aren't supported.

BatchExecuteStatement The generated fields object in
the update result is empty.

The generated fields object
in the update result includes
inserted values.

Comparison with Serverless v2 and provisioned, and Aurora Serverless v1 3299

https://docs.aws.amazon.com/rdsdataservice/latest/APIReference/API_BatchExecuteStatement.html

Amazon Aurora User Guide for Aurora

Difference Aurora PostgreSQL Serverles
s v2 and provisioned

Aurora Serverless v1

ExecuteSQL Not supported Deprecated

Comparison with Serverless v2 and provisioned, and Aurora Serverless v1 3300

https://docs.aws.amazon.com/rdsdataservice/latest/APIReference/API_ExecuteSQL.html

Amazon Aurora User Guide for Aurora

Difference Aurora PostgreSQL Serverles
s v2 and provisioned

Aurora Serverless v1

ExecuteStatement ExecuteStatement
doesn't support retrievin
g multidimentional array
columns. In this case, Data
API throws Unsupport
edResultException .

Data API doesn't support
some data types, such as
geometric and monetary
types. In this case, Data
API throws Unsupport
edResultException:
The result contains
the unsupported data
type data_type .

Only the following types are
supported:

• BOOL

• BYTEA

• DATE

• CIDR

• DECIMAL, NUMERIC

• ENUM

• FLOAT8, DOUBLE
PRECISION

• INET

• INT, INT4, SERIAL

• INT2, SMALLINT,
SMALLSERIAL

ExecuteStatement
supports retrieving multidime
ntional array columns and all
advanced data types.

Comparison with Serverless v2 and provisioned, and Aurora Serverless v1 3301

https://docs.aws.amazon.com/rdsdataservice/latest/APIReference/API_ExecuteStatement.html

Amazon Aurora User Guide for Aurora

Difference Aurora PostgreSQL Serverles
s v2 and provisioned

Aurora Serverless v1

• INT8, BIGINT, BIGSERIAL

• JSONB, JSON

• REAL, FLOAT

• TEXT, CHAR(N), VARCHAR,
NAME

• TIME

• TIMESTAMP

• UUID

• VECTOR

Only the following array
types are supported:

• BOOL[], BIT[]

• DATE[]

• DECIMAL[] , NUMERIC[]

• FLOAT8[], DOUBLE
PRECISION[]

• INT[], INT4[]

• INT2[]

• INT8[], BIGINT[]

• JSON[]

• REAL[], FLOAT[]

• TEXT[], CHAR(N)[] ,
VARCHAR[] , NAME[]

• TIME[]

• TIMESTAMP[]

• UUID[]

Comparison with Serverless v2 and provisioned, and Aurora Serverless v1 3302

Amazon Aurora User Guide for Aurora

Authorizing access to RDS Data API

Users can invoke RDS Data API (Data API) operations only if they are authorized to do so. You can
give a user permission to use Data API by attaching an AWS Identity and Access Management (IAM)
policy that defines their privileges. You can also attach the policy to a role if you're using IAM roles.
An AWS managed policy, AmazonRDSDataFullAccess, includes permissions for Data API.

The AmazonRDSDataFullAccess policy also includes permissions for the user to get the value of
a secret from AWS Secrets Manager. Users need to use Secrets Manager to store secrets that they
can use in their calls to Data API. Using secrets means that users don't need to include database
credentials for the resources that they target in their calls to Data API. Data API transparently calls
Secrets Manager, which allows (or denies) the user's request for the secret. For information about
setting up secrets to use with Data API, see Storing database credentials in AWS Secrets Manager.

The AmazonRDSDataFullAccess policy provides complete access (through Data API) to
resources. You can narrow the scope by defining your own policies that specify the Amazon
Resource Name (ARN) of a resource.

For example, the following policy shows an example of the minimum required permissions for a
user to access Data API for the DB cluster identified by its ARN. The policy includes the needed
permissions to access Secrets Manager and get authorization to the DB instance for the user.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "SecretsManagerDbCredentialsAccess",
 "Effect": "Allow",
 "Action": [
 "secretsmanager:GetSecretValue"
],
 "Resource": "arn:aws:secretsmanager:*:*:secret:rds-db-credentials/*"
 },
 {
 "Sid": "RDSDataServiceAccess",
 "Effect": "Allow",
 "Action": [
 "rds-data:BatchExecuteStatement",
 "rds-data:BeginTransaction",
 "rds-data:CommitTransaction",
 "rds-data:ExecuteStatement",

Authorizing access 3303

Amazon Aurora User Guide for Aurora

 "rds-data:RollbackTransaction"
],
 "Resource": "arn:aws:rds:us-east-2:111122223333:cluster:prod"
 }
]
}

We recommend that you use a specific ARN for the "Resources" element in your policy statements
(as shown in the example) rather than a wildcard (*).

Working with tag-based authorization

RDS Data API (Data API) and Secrets Manager both support tag-based authorization. Tags are
key-value pairs that label a resource, such as an RDS cluster, with an additional string value, for
example:

• environment:production

• environment:development

You can apply tags to your resources for cost allocation, operations support, access control,
and many other reasons. (If you don't already have tags on your resources and you want to
apply them, you can learn more at Tagging Amazon RDS resources.) You can use the tags in
your policy statements to limit access to the RDS clusters that are labeled with these tags. As an
example, an Aurora DB cluster might have tags that identify its environment as either production
or development.

The following example shows how you can use tags in your policy statements. This statement
requires that both the cluster and the secret passed in the Data API request have an
environment:production tag.

Here's how the policy is applied: When a user makes a call using Data API, the request is sent
to the service. Data API first verifies that the cluster ARN passed in the request is tagged
with environment:production. It then calls Secrets Manager to retrieve the value of the
user's secret in the request. Secrets Manager also verifies that the user's secret is tagged with
environment:production. If so, Data API then uses the retrieved value for the user's DB
password. Finally, if that's also correct, the Data API request is invoked successfully for the user.

{
 "Version": "2012-10-17",

Tag-based authorization 3304

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/USER_Tagging.html

Amazon Aurora User Guide for Aurora

 "Statement": [
 {
 "Sid": "SecretsManagerDbCredentialsAccess",
 "Effect": "Allow",
 "Action": [
 "secretsmanager:GetSecretValue"
],
 "Resource": "arn:aws:secretsmanager:*:*:secret:rds-db-credentials/*",
 "Condition": {
 "StringEquals": {
 "aws:ResourceTag/environment": [
 "production"
]
 }
 }
 },
 {
 "Sid": "RDSDataServiceAccess",
 "Effect": "Allow",
 "Action": [
 "rds-data:*"
],
 "Resource": "arn:aws:rds:us-east-2:111122223333:cluster:*",
 "Condition": {
 "StringEquals": {
 "aws:ResourceTag/environment": [
 "production"
]
 }
 }
 }
]
}

The example shows separate actions for rds-data and secretsmanager for Data API and
Secrets Manager. However, you can combine actions and define tag conditions in many different
ways to support your specific use cases. For more information, see Using identity-based policies
(IAM policies) for Secrets Manager.

In the "Condition" element of the policy, you can choose tag keys from among the following:

• aws:TagKeys

• aws:ResourceTag/${TagKey}

Tag-based authorization 3305

https://docs.aws.amazon.com/secretsmanager/latest/userguide/auth-and-access_identity-based-policies.html#permissions_grant-limited-condition
https://docs.aws.amazon.com/secretsmanager/latest/userguide/auth-and-access_identity-based-policies.html#permissions_grant-limited-condition

Amazon Aurora User Guide for Aurora

To learn more about resource tags and how to use aws:TagKeys, see Controlling access to AWS
resources using resource tags.

Note

Both Data API and AWS Secrets Manager authorize users. If you don't have permissions for
all actions defined in a policy, you get an AccessDeniedException error.

Storing database credentials in AWS Secrets Manager

When you call RDS Data API (Data API), you pass credentials for the Aurora DB cluster by using a
secret in Secrets Manager. To pass credentials in this way, you specify the name of the secret or the
Amazon Resource Name (ARN) of the secret.

To store DB cluster credentials in a secret

1. Use Secrets Manager to create a secret that contains credentials for the Aurora DB cluster.

For instructions, see Create a database secret in the AWS Secrets Manager User Guide.

2. Use the Secrets Manager console to view the details for the secret you created, or run the aws
secretsmanager describe-secret AWS CLI command.

Note the name and ARN of the secret. You can use them in calls to Data API.

For more information about using Secrets Manager, see the AWS Secrets Manager User Guide.

To understand how Amazon Aurora manages identity and access management, see How Amazon
Aurora works with IAM.

For more information about creating an IAM policy, see Creating IAM Policies in the IAM User Guide.
For information about adding an IAM policy to a user, see Adding and Removing IAM Identity
Permissions in the IAM User Guide.

Enabling RDS Data API

To use RDS Data API (Data API), enable it for your Aurora DB cluster. You can enable Data API when
you create or modify the DB cluster.

Storing credentials in a secret 3306

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_tags.html#access_tags_control-tag-keys
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_tags.html#access_tags_control-tag-keys
https://docs.aws.amazon.com/secretsmanager/latest/userguide/create_database_secret.html
https://docs.aws.amazon.com/secretsmanager/latest/userguide/intro.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/security_iam_service-with-iam.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/security_iam_service-with-iam.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_manage-attach-detach.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_manage-attach-detach.html

Amazon Aurora User Guide for Aurora

Note

For Aurora PostgreSQL, Data API is supported with Aurora Serverless v2, Aurora Serverless
v1, and provisioned databases. For Aurora MySQL, Data API is only supported with Aurora
Serverless v1 databases.

Topics

• Enabling RDS Data API when you create a database

• Enabling RDS Data API on an existing database

Enabling RDS Data API when you create a database

While you are creating a database that supports RDS Data API (Data API), you can enable this
feature. The following procedures describe how to do so when you use the AWS Management
Console, the AWS CLI, or the RDS API.

Console

To enable Data API when you create a DB cluster, select the Enable the RDS Data API checkbox in
the Connectivity section of the Create database page, as in the following screenshot.

For instructions on how to create an Aurora DB cluster that can use the RDS Data API, see the
following:

• For Aurora PostgreSQL Serverless v2 and provisioned clusters – Creating an Amazon Aurora DB
cluster

• For Aurora Serverless v1 – Creating an Aurora Serverless v1 DB cluster

Enabling RDS Data API when you create a database 3307

Amazon Aurora User Guide for Aurora

AWS CLI

To enable Data API while you're creating an Aurora DB cluster, run the create-db-cluster AWS CLI
command with the --enable-http-endpoint option.

The following example creates an Aurora PostgreSQL DB cluster with Data API enabled.

For Linux, macOS, or Unix:

aws rds create-db-cluster \
 --db-cluster-identifier my_pg_cluster \
 --engine aurora-postgresql \
 --enable-http-endpoint

For Windows:

aws rds create-db-cluster ^
 --db-cluster-identifier my_pg_cluster ^
 --engine aurora-postgresql ^
 --enable-http-endpoint

RDS API

To enable Data API while you're creating an Aurora DB cluster, use the CreateDBCluster operation
with the value of the EnableHttpEndpoint parameter set to true.

Enabling RDS Data API on an existing database

You can modify a DB cluster that supports RDS Data API (Data API) to enable or disable this
feature.

Topics

• Enabling or disabling Data API (Aurora PostgreSQL Serverless v2 and provisioned)

• Enabling or disabling Data API (Aurora Serverless v1 only)

Enabling or disabling Data API (Aurora PostgreSQL Serverless v2 and provisioned)

Use the following procedures to enable or disable Data API on Aurora PostgreSQL Serverless v2
and provisioned databases. To enable or disable Data API on Aurora Serverless v1 databases, use
the procedures in the section called “Enabling or disabling Data API (Aurora Serverless v1 only)”.

Enabling RDS Data API on an existing database 3308

https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-cluster.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateDBCluster.html

Amazon Aurora User Guide for Aurora

Console

You can enable or disable Data API by using the RDS console for a DB cluster that supports this
feature. To do so, open the cluster details page of the database on which you want to enable or
disable Data API, and on the Connectivity & security tab, go to the RDS Data API section. This
section displays the status of Data API, and allows you to enable or disable it.

The following screenshot shows that the RDS Data API isn't enabled.

AWS CLI

To enable or disable Data API on an existing database, run the enable-http-endpoint or disable-
http-endpoint AWS CLI command, and specify the ARN of your DB cluster.

The following example enables Data API.

For Linux, macOS, or Unix:

aws rds enable-http-endpoint \
 --resource-arn cluster_arn

For Windows:

aws rds enable-http-endpoint ^
 --resource-arn cluster_arn

RDS API

To enable or disable Data API on an existing database, use the EnableHttpEndpoint and
DisableHttpEndpoint operations.

Enabling or disabling Data API (Aurora Serverless v1 only)

Use the following procedures to enable or disable Data API on existing Aurora Serverless v1
databases. To enable or disable Data API on Aurora PostgreSQL Serverless v2 and provisioned
databases, use the procedures in the section called “Enabling or disabling Data API”.

Enabling RDS Data API on an existing database 3309

https://docs.aws.amazon.com/cli/latest/reference/rds/enable-http-endpoint.html
https://docs.aws.amazon.com/cli/latest/reference/rds/disable-http-endpoint.html
https://docs.aws.amazon.com/cli/latest/reference/rds/disable-http-endpoint.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_EnableHttpEndpoint.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DisableHttpEndpoint.html

Amazon Aurora User Guide for Aurora

Console

When you modify an Aurora Serverless v1 DB cluster, you enable Data API in the RDS console's
Connectivity section.

The following screenshot shows the enabled Data API when modifying an Aurora DB cluster.

For instructions on how to modify an Aurora Serverless v1 DB cluster, see Modifying an Aurora
Serverless v1 DB cluster.

AWS CLI

To enable or disable Data API, run the modify-db-cluster AWS CLI command, with the --enable-
http-endpoint or --no-enable-http-endpoint, as applicable.

The following example enables Data API on sample-cluster.

For Linux, macOS, or Unix:

aws rds modify-db-cluster \
 --db-cluster-identifier sample-cluster \
 --enable-http-endpoint

For Windows:

aws rds modify-db-cluster ^

Enabling RDS Data API on an existing database 3310

https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-cluster.html

Amazon Aurora User Guide for Aurora

 --db-cluster-identifier sample-cluster ^
 --enable-http-endpoint

RDS API

To enable Data API, use the ModifyDBCluster operation, and set the value of
EnableHttpEndpoint to true or false, as applicable.

Creating an Amazon VPC endpoint for RDS Data API (AWS
PrivateLink)

Amazon VPC enables you to launch AWS resources, such as Aurora DB clusters and applications,
into a virtual private cloud (VPC). AWS PrivateLink provides private connectivity between VPCs
and AWS services with high security on the Amazon network. Using AWS PrivateLink, you can
create Amazon VPC endpoints, which enable you to connect to services across different accounts
and VPCs based on Amazon VPC. For more information about AWS PrivateLink, see VPC Endpoint
Services (AWS PrivateLink) in the Amazon Virtual Private Cloud User Guide.

You can call RDS Data API (Data API) with Amazon VPC endpoints. Using an Amazon VPC endpoint
keeps traffic between applications in your Amazon VPC and Data API in the AWS network, without
using public IP addresses. Amazon VPC endpoints can help you meet compliance and regulatory
requirements related to limiting public internet connectivity. For example, if you use an Amazon
VPC endpoint, you can keep traffic between an application running on an Amazon EC2 instance
and Data API in the VPCs that contain them.

After you create the Amazon VPC endpoint, you can start using it without making any code or
configuration changes in your application.

To create an Amazon VPC endpoint for Data API

1. Sign in to the AWS Management Console and open the Amazon VPC console at https://
console.aws.amazon.com/vpc/.

2. Choose Endpoints, and then choose Create Endpoint.

3. On the Create Endpoint page, for Service category, choose AWS services. For Service Name,
choose rds-data.

Creating an Amazon VPC endpoint 3311

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBCluster.html
https://docs.aws.amazon.com/vpc/latest/userguide/endpoint-service.html
https://docs.aws.amazon.com/vpc/latest/userguide/endpoint-service.html
https://console.aws.amazon.com/vpc/
https://console.aws.amazon.com/vpc/

Amazon Aurora User Guide for Aurora

4. For VPC, choose the VPC to create the endpoint in.

Choose the VPC that contains the application that makes Data API calls.

5. For Subnets, choose the subnet for each Availability Zone (AZ) used by the AWS service that is
running your application.

To create an Amazon VPC endpoint, specify the private IP address range in which the endpoint
will be accessible. To do this, choose the subnet for each Availability Zone. Doing so restricts
the VPC endpoint to the private IP address range specific to each Availability Zone and also
creates an Amazon VPC endpoint in each Availability Zone.

Creating an Amazon VPC endpoint 3312

Amazon Aurora User Guide for Aurora

6. For Enable DNS name, select Enable for this endpoint.

Private DNS resolves the standard Data API DNS hostname (https://rds-
data.region.amazonaws.com) to the private IP addresses associated with the DNS
hostname specific to your Amazon VPC endpoint. As a result, you can access the Data API VPC
endpoint using the AWS CLI or AWS SDKs without making any code or configuration changes
to update Data API's endpoint URL.

7. For Security group, choose a security group to associate with the Amazon VPC endpoint.

Choose the security group that allows access to the AWS service that is running your
application. For example, if an Amazon EC2 instance is running your application, choose the
security group that allows access to the Amazon EC2 instance. The security group enables you
to control the traffic to the Amazon VPC endpoint from resources in your VPC.

8. For Policy, choose Full Access to allow anyone inside the Amazon VPC to access the Data API
through this endpoint. Or choose Custom to specify a policy that limits access.

If you choose Custom, enter the policy in the policy creation tool.

9. Choose Create endpoint.

After the endpoint is created, choose the link in the AWS Management Console to view the
endpoint details.

The endpoint Details tab shows the DNS hostnames that were generated while creating the
Amazon VPC endpoint.

Creating an Amazon VPC endpoint 3313

Amazon Aurora User Guide for Aurora

You can use the standard endpoint (rds-data.region.amazonaws.com) or one of the VPC-
specific endpoints to call the Data API within the Amazon VPC. The standard Data API endpoint
automatically routes to the Amazon VPC endpoint. This routing occurs because the Private DNS
hostname was enabled when the Amazon VPC endpoint was created.

When you use an Amazon VPC endpoint in a Data API call, all traffic between your application and
Data API remains in the Amazon VPCs that contain them. You can use an Amazon VPC endpoint for
any type of Data API call. For information about calling Data API, see Calling RDS Data API.

Calling RDS Data API

With RDS Data API (Data API) enabled on your Aurora DB cluster, you can run SQL statements
on the Aurora DB cluster by using Data API or the AWS CLI. Data API supports the programming
languages supported by the AWS SDKs. For more information, see Tools to build on AWS.

Topics

• Data API operations reference

• Calling RDS Data API with the AWS CLI

• Calling RDS Data API from a Python application

• Calling RDS Data API from a Java application

• Controlling Data API timeout behavior

Data API operations reference

Data API provides the following operations to perform SQL statements.

Calling RDS Data API 3314

https://aws.amazon.com/tools/

Amazon Aurora User Guide for Aurora

Data API
operation

AWS CLI command Description

ExecuteSt
atement

aws rds-data execute-s
tatement

Runs a SQL statement on a database.

BatchExec
uteStatem
ent

aws rds-data batch-exe
cute-statement

Runs a batch SQL statement over an array of
data for bulk update and insert operations.
You can run a data manipulation language
(DML) statement with an array of parameter
sets. A batch SQL statement can provide a
significant performance improvement over
individual insert and update statements.

You can use either operation to run individual SQL statements or to run transactions. For
transactions, Data API provides the following operations.

Data API
operation

AWS CLI command Description

BeginTran
saction

aws rds-data begin-tra
nsaction

Starts a SQL transaction.

CommitTra
nsaction

aws rds-data commit-tr
ansaction

Ends a SQL transaction and commits the
changes.

RollbackT
ransactio
n

aws rds-data rollback-
transaction

Performs a rollback of a transaction.

The operations for performing SQL statements and supporting transactions have the following
common Data API parameters and AWS CLI options. Some operations support other parameters or
options.

Data API operations reference 3315

https://docs.aws.amazon.com/rdsdataservice/latest/APIReference/API_ExecuteStatement.html
https://docs.aws.amazon.com/rdsdataservice/latest/APIReference/API_ExecuteStatement.html
https://docs.aws.amazon.com/cli/latest/reference/rds-data/execute-statement.html
https://docs.aws.amazon.com/cli/latest/reference/rds-data/execute-statement.html
https://docs.aws.amazon.com/rdsdataservice/latest/APIReference/API_BatchExecuteStatement.html
https://docs.aws.amazon.com/rdsdataservice/latest/APIReference/API_BatchExecuteStatement.html
https://docs.aws.amazon.com/rdsdataservice/latest/APIReference/API_BatchExecuteStatement.html
https://docs.aws.amazon.com/cli/latest/reference/rds-data/batch-execute-statement.html
https://docs.aws.amazon.com/cli/latest/reference/rds-data/batch-execute-statement.html
https://docs.aws.amazon.com/rdsdataservice/latest/APIReference/API_BeginTransaction.html
https://docs.aws.amazon.com/rdsdataservice/latest/APIReference/API_BeginTransaction.html
https://docs.aws.amazon.com/cli/latest/reference/rds-data/begin-transaction.html
https://docs.aws.amazon.com/cli/latest/reference/rds-data/begin-transaction.html
https://docs.aws.amazon.com/rdsdataservice/latest/APIReference/API_CommitTransaction.html
https://docs.aws.amazon.com/rdsdataservice/latest/APIReference/API_CommitTransaction.html
https://docs.aws.amazon.com/cli/latest/reference/rds-data/commit-transaction.html
https://docs.aws.amazon.com/cli/latest/reference/rds-data/commit-transaction.html
https://docs.aws.amazon.com/rdsdataservice/latest/APIReference/API_RollbackTransaction.html
https://docs.aws.amazon.com/rdsdataservice/latest/APIReference/API_RollbackTransaction.html
https://docs.aws.amazon.com/rdsdataservice/latest/APIReference/API_RollbackTransaction.html
https://docs.aws.amazon.com/cli/latest/reference/rds-data/rollback-transaction.html
https://docs.aws.amazon.com/cli/latest/reference/rds-data/rollback-transaction.html

Amazon Aurora User Guide for Aurora

Data API
operation
parameter

AWS CLI command
option

Required Description

resourceA
rn

--resource-arn Yes The Amazon Resource Name (ARN) of
the Aurora DB cluster.

secretArn --secret-arn Yes The name or ARN of the secret that
enables access to the DB cluster.

You can use parameters in Data API calls to ExecuteStatement and BatchExecuteStatement,
and when you run the AWS CLI commands execute-statement and batch-execute-
statement. To use a parameter, you specify a name-value pair in the SqlParameter data
type. You specify the value with the Field data type. The following table maps Java Database
Connectivity (JDBC) data types to the data types that you specify in Data API calls.

JDBC data type Data API data type

INTEGER, TINYINT, SMALLINT, BIGINT LONG (or STRING)

FLOAT, REAL, DOUBLE DOUBLE

DECIMAL STRING

BOOLEAN, BIT BOOLEAN

BLOB, BINARY, LONGVARBINARY,
VARBINARY

BLOB

CLOB STRING

Other types (including types related to date
and time)

STRING

Data API operations reference 3316

Amazon Aurora User Guide for Aurora

Note

You can specify the LONG or STRING data type in your Data API call for LONG values
returned by the database. We recommend that you do so to avoid losing precision for
extremely large numbers, which can happen when you work with JavaScript.

Certain types, such as DECIMAL and TIME, require a hint so that Data API passes String values to
the database as the correct type. To use a hint, include values for typeHint in the SqlParameter
data type. The possible values for typeHint are the following:

• DATE – The corresponding String parameter value is sent as an object of DATE type to the
database. The accepted format is YYYY-MM-DD.

• DECIMAL – The corresponding String parameter value is sent as an object of DECIMAL type to
the database.

• JSON – The corresponding String parameter value is sent as an object of JSON type to the
database.

• TIME – The corresponding String parameter value is sent as an object of TIME type to the
database. The accepted format is HH:MM:SS[.FFF].

• TIMESTAMP – The corresponding String parameter value is sent as an object of TIMESTAMP
type to the database. The accepted format is YYYY-MM-DD HH:MM:SS[.FFF].

• UUID – The corresponding String parameter value is sent as an object of UUID type to the
database.

Note

Currently, Data API doesn't support arrays of Universal Unique Identifiers (UUIDs).

Note

For Amazon Aurora PostgreSQL, Data API always returns the Aurora PostgreSQL data type
TIMESTAMPTZ in UTC time zone.

Data API operations reference 3317

Amazon Aurora User Guide for Aurora

Calling RDS Data API with the AWS CLI

You can call RDS Data API (Data API) using the AWS CLI.

The following examples use the AWS CLI for Data API. For more information, see AWS CLI reference
for the Data API.

In each example, replace the Amazon Resource Name (ARN) for the DB cluster with the ARN for
your Aurora DB cluster. Also, replace the secret ARN with the ARN of the secret in Secrets Manager
that allows access to the DB cluster.

Note

The AWS CLI can format responses in JSON.

Topics

• Starting a SQL transaction

• Running a SQL statement

• Running a batch SQL statement over an array of data

• Committing a SQL transaction

• Rolling back a SQL transaction

Starting a SQL transaction

You can start a SQL transaction using the aws rds-data begin-transaction CLI command.
The call returns a transaction identifier.

Important

Within Data API, a transaction times out if there are no calls that use its transaction ID
in three minutes. If a transaction times out before it's committed, Data API rolls it back
automatically.
MySQL data definition language (DDL) statements inside a transaction cause an implicit
commit. We recommend that you run each MySQL DDL statement in a separate execute-
statement command with the --continue-after-timeout option.

Calling RDS Data API with the AWS CLI 3318

https://docs.aws.amazon.com/cli/latest/reference/rds-data/index.html
https://docs.aws.amazon.com/cli/latest/reference/rds-data/index.html

Amazon Aurora User Guide for Aurora

In addition to the common options, specify the --database option, which provides the name of
the database.

For example, the following CLI command starts a SQL transaction.

For Linux, macOS, or Unix:

aws rds-data begin-transaction --resource-arn "arn:aws:rds:us-
east-1:123456789012:cluster:mydbcluster" \
--database "mydb" --secret-arn "arn:aws:secretsmanager:us-
east-1:123456789012:secret:mysecret"

For Windows:

aws rds-data begin-transaction --resource-arn "arn:aws:rds:us-
east-1:123456789012:cluster:mydbcluster" ^
--database "mydb" --secret-arn "arn:aws:secretsmanager:us-
east-1:123456789012:secret:mysecret"

The following is an example of the response.

{
 "transactionId": "ABC1234567890xyz"
}

Running a SQL statement

You can run a SQL statement using the aws rds-data execute-statement CLI command.

You can run the SQL statement in a transaction by specifying the transaction identifier with the
--transaction-id option. You can start a transaction using the aws rds-data begin-
transaction CLI command. You can end and commit a transaction using the aws rds-data
commit-transaction CLI command.

Important

If you don't specify the --transaction-id option, changes that result from the call are
committed automatically.

In addition to the common options, specify the following options:

Calling RDS Data API with the AWS CLI 3319

Amazon Aurora User Guide for Aurora

• --sql (required) – A SQL statement to run on the DB cluster.

• --transaction-id (optional) – The identifier of a transaction that was started using the
begin-transaction CLI command. Specify the transaction ID of the transaction that you want
to include the SQL statement in.

• --parameters (optional) – The parameters for the SQL statement.

• --include-result-metadata | --no-include-result-metadata (optional) – A value
that indicates whether to include metadata in the results. The default is --no-include-
result-metadata.

• --database (optional) – The name of the database.

The --database option might not work when you run a SQL statement after running --
sql "use database_name;" in the previous request. We recommend that you use the --
database option instead of running --sql "use database_name;" statements.

• --continue-after-timeout | --no-continue-after-timeout (optional) – A value that
indicates whether to continue running the statement after the call exceeds the Data API timeout
interval of 45 seconds. The default is --no-continue-after-timeout.

For data definition language (DDL) statements, we recommend continuing to run the statement
after the call times out to avoid errors and the possibility of corrupted data structures.

• --format-records-as "JSON"|"NONE" – An optional value that specifies whether to format
the result set as a JSON string. The default is "NONE". For usage information about processing
JSON result sets, see Processing RDS Data API query results in JSON format.

The DB cluster returns a response for the call.

Note

The response size limit is 1 MiB. If the call returns more than 1 MiB of response data, the
call is terminated.
For Aurora Serverless v1, the maximum number of requests per second is 1,000. For all
other supported databases, there is no limit.

For example, the following CLI command runs a single SQL statement and omits the metadata in
the results (the default).

Calling RDS Data API with the AWS CLI 3320

Amazon Aurora User Guide for Aurora

For Linux, macOS, or Unix:

aws rds-data execute-statement --resource-arn "arn:aws:rds:us-
east-1:123456789012:cluster:mydbcluster" \
--database "mydb" --secret-arn "arn:aws:secretsmanager:us-
east-1:123456789012:secret:mysecret" \
--sql "select * from mytable"

For Windows:

aws rds-data execute-statement --resource-arn "arn:aws:rds:us-
east-1:123456789012:cluster:mydbcluster" ^
--database "mydb" --secret-arn "arn:aws:secretsmanager:us-
east-1:123456789012:secret:mysecret" ^
--sql "select * from mytable"

The following is an example of the response.

{
 "numberOfRecordsUpdated": 0,
 "records": [
 [
 {
 "longValue": 1
 },
 {
 "stringValue": "ValueOne"
 }
],
 [
 {
 "longValue": 2
 },
 {
 "stringValue": "ValueTwo"
 }
],
 [
 {
 "longValue": 3
 },
 {
 "stringValue": "ValueThree"

Calling RDS Data API with the AWS CLI 3321

Amazon Aurora User Guide for Aurora

 }
]
]
}

The following CLI command runs a single SQL statement in a transaction by specifying the --
transaction-id option.

For Linux, macOS, or Unix:

aws rds-data execute-statement --resource-arn "arn:aws:rds:us-
east-1:123456789012:cluster:mydbcluster" \
--database "mydb" --secret-arn "arn:aws:secretsmanager:us-
east-1:123456789012:secret:mysecret" \
--sql "update mytable set quantity=5 where id=201" --transaction-id "ABC1234567890xyz"

For Windows:

aws rds-data execute-statement --resource-arn "arn:aws:rds:us-
east-1:123456789012:cluster:mydbcluster" ^
--database "mydb" --secret-arn "arn:aws:secretsmanager:us-
east-1:123456789012:secret:mysecret" ^
--sql "update mytable set quantity=5 where id=201" --transaction-id "ABC1234567890xyz"

The following is an example of the response.

{
 "numberOfRecordsUpdated": 1
}

The following CLI command runs a single SQL statement with parameters.

For Linux, macOS, or Unix:

aws rds-data execute-statement --resource-arn "arn:aws:rds:us-
east-1:123456789012:cluster:mydbcluster" \
--database "mydb" --secret-arn "arn:aws:secretsmanager:us-
east-1:123456789012:secret:mysecret" \
--sql "insert into mytable values (:id, :val)" --parameters "[{\"name\": \"id\",
 \"value\": {\"longValue\": 1}},{\"name\": \"val\", \"value\": {\"stringValue\":
 \"value1\"}}]"

Calling RDS Data API with the AWS CLI 3322

Amazon Aurora User Guide for Aurora

For Windows:

aws rds-data execute-statement --resource-arn "arn:aws:rds:us-
east-1:123456789012:cluster:mydbcluster" ^
--database "mydb" --secret-arn "arn:aws:secretsmanager:us-
east-1:123456789012:secret:mysecret" ^
--sql "insert into mytable values (:id, :val)" --parameters "[{\"name\": \"id\",
 \"value\": {\"longValue\": 1}},{\"name\": \"val\", \"value\": {\"stringValue\":
 \"value1\"}}]"

The following is an example of the response.

{
 "numberOfRecordsUpdated": 1
}

The following CLI command runs a data definition language (DDL) SQL statement. The DDL
statement renames column job to column role.

Important

For DDL statements, we recommend continuing to run the statement after the call times
out. When a DDL statement terminates before it is finished running, it can result in errors
and possibly corrupted data structures. To continue running a statement after a call
exceeds the RDS Data API timeout interval of 45 seconds, specify the --continue-
after-timeout option.

For Linux, macOS, or Unix:

aws rds-data execute-statement --resource-arn "arn:aws:rds:us-
east-1:123456789012:cluster:mydbcluster" \
--database "mydb" --secret-arn "arn:aws:secretsmanager:us-
east-1:123456789012:secret:mysecret" \
--sql "alter table mytable change column job role varchar(100)" --continue-after-
timeout

For Windows:

Calling RDS Data API with the AWS CLI 3323

Amazon Aurora User Guide for Aurora

aws rds-data execute-statement --resource-arn "arn:aws:rds:us-
east-1:123456789012:cluster:mydbcluster" ^
--database "mydb" --secret-arn "arn:aws:secretsmanager:us-
east-1:123456789012:secret:mysecret" ^
--sql "alter table mytable change column job role varchar(100)" --continue-after-
timeout

The following is an example of the response.

{
 "generatedFields": [],
 "numberOfRecordsUpdated": 0
}

Note

The generatedFields data isn't supported by Aurora PostgreSQL. To get the values of
generated fields, use the RETURNING clause. For more information, see Returning data
from modified rows in the PostgreSQL documentation.

Running a batch SQL statement over an array of data

You can run a batch SQL statement over an array of data by using the aws rds-data batch-
execute-statement CLI command. You can use this command to perform a bulk import or
update operation.

You can run the SQL statement in a transaction by specifying the transaction identifier with the
--transaction-id option. You can start a transaction by using the aws rds-data begin-
transaction CLI command. You can end and commit a transaction by using the aws rds-data
commit-transaction CLI command.

Important

If you don't specify the --transaction-id option, changes that result from the call are
committed automatically.

In addition to the common options, specify the following options:

Calling RDS Data API with the AWS CLI 3324

https://www.postgresql.org/docs/10/dml-returning.html
https://www.postgresql.org/docs/10/dml-returning.html

Amazon Aurora User Guide for Aurora

• --sql (required) – A SQL statement to run on the DB cluster.

Tip

For MySQL-compatible statements, don't include a semicolon at the end of the --sql
parameter. A trailing semicolon might cause a syntax error.

• --transaction-id (optional) – The identifier of a transaction that was started using the
begin-transaction CLI command. Specify the transaction ID of the transaction that you want
to include the SQL statement in.

• --parameter-set (optional) – The parameter sets for the batch operation.

• --database (optional) – The name of the database.

The DB cluster returns a response to the call.

Note

There isn't a fixed upper limit on the number of parameter sets. However, the maximum
size of the HTTP request submitted through Data API is 4 MiB. If the request exceeds this
limit, Data API returns an error and doesn't process the request. This 4 MiB limit includes
the size of the HTTP headers and the JSON notation in the request. Thus, the number of
parameter sets that you can include depends on a combination of factors, such as the size
of the SQL statement and the size of each parameter set.
The response size limit is 1 MiB. If the call returns more than 1 MiB of response data, the
call is terminated.
For Aurora Serverless v1, the maximum number of requests per second is 1,000. For all
other supported databases, there is no limit.

For example, the following CLI command runs a batch SQL statement over an array of data with a
parameter set.

For Linux, macOS, or Unix:

aws rds-data batch-execute-statement --resource-arn "arn:aws:rds:us-
east-1:123456789012:cluster:mydbcluster" \
--database "mydb" --secret-arn "arn:aws:secretsmanager:us-
east-1:123456789012:secret:mysecret" \

Calling RDS Data API with the AWS CLI 3325

Amazon Aurora User Guide for Aurora

--sql "insert into mytable values (:id, :val)" \
--parameter-sets "[[{\"name\": \"id\", \"value\": {\"longValue\": 1}},{\"name\":
 \"val\", \"value\": {\"stringValue\": \"ValueOne\"}}],
[{\"name\": \"id\", \"value\": {\"longValue\": 2}},{\"name\": \"val\", \"value\":
 {\"stringValue\": \"ValueTwo\"}}],
[{\"name\": \"id\", \"value\": {\"longValue\": 3}},{\"name\": \"val\", \"value\":
 {\"stringValue\": \"ValueThree\"}}]]"

For Windows:

aws rds-data batch-execute-statement --resource-arn "arn:aws:rds:us-
east-1:123456789012:cluster:mydbcluster" ^
--database "mydb" --secret-arn "arn:aws:secretsmanager:us-
east-1:123456789012:secret:mysecret" ^
--sql "insert into mytable values (:id, :val)" ^
--parameter-sets "[[{\"name\": \"id\", \"value\": {\"longValue\": 1}},{\"name\":
 \"val\", \"value\": {\"stringValue\": \"ValueOne\"}}],
[{\"name\": \"id\", \"value\": {\"longValue\": 2}},{\"name\": \"val\", \"value\":
 {\"stringValue\": \"ValueTwo\"}}],
[{\"name\": \"id\", \"value\": {\"longValue\": 3}},{\"name\": \"val\", \"value\":
 {\"stringValue\": \"ValueThree\"}}]]"

Note

Don't include line breaks in the --parameter-sets option.

Committing a SQL transaction

Using the aws rds-data commit-transaction CLI command, you can end a SQL transaction
that you started with aws rds-data begin-transaction and commit the changes.

In addition to the common options, specify the following option:

• --transaction-id (required) – The identifier of a transaction that was started using the
begin-transaction CLI command. Specify the transaction ID of the transaction that you want
to end and commit.

For example, the following CLI command ends a SQL transaction and commits the changes.

For Linux, macOS, or Unix:

Calling RDS Data API with the AWS CLI 3326

Amazon Aurora User Guide for Aurora

aws rds-data commit-transaction --resource-arn "arn:aws:rds:us-
east-1:123456789012:cluster:mydbcluster" \
--secret-arn "arn:aws:secretsmanager:us-east-1:123456789012:secret:mysecret" \
--transaction-id "ABC1234567890xyz"

For Windows:

aws rds-data commit-transaction --resource-arn "arn:aws:rds:us-
east-1:123456789012:cluster:mydbcluster" ^
--secret-arn "arn:aws:secretsmanager:us-east-1:123456789012:secret:mysecret" ^
--transaction-id "ABC1234567890xyz"

The following is an example of the response.

{
 "transactionStatus": "Transaction Committed"
}

Rolling back a SQL transaction

Using the aws rds-data rollback-transaction CLI command, you can roll back a SQL
transaction that you started with aws rds-data begin-transaction. Rolling back a
transaction cancels its changes.

Important

If the transaction ID has expired, the transaction was rolled back automatically. In this
case, an aws rds-data rollback-transaction command that specifies the expired
transaction ID returns an error.

In addition to the common options, specify the following option:

• --transaction-id (required) – The identifier of a transaction that was started using the
begin-transaction CLI command. Specify the transaction ID of the transaction that you want
to roll back.

For example, the following AWS CLI command rolls back a SQL transaction.

Calling RDS Data API with the AWS CLI 3327

Amazon Aurora User Guide for Aurora

For Linux, macOS, or Unix:

aws rds-data rollback-transaction --resource-arn "arn:aws:rds:us-
east-1:123456789012:cluster:mydbcluster" \
--secret-arn "arn:aws:secretsmanager:us-east-1:123456789012:secret:mysecret" \
--transaction-id "ABC1234567890xyz"

For Windows:

aws rds-data rollback-transaction --resource-arn "arn:aws:rds:us-
east-1:123456789012:cluster:mydbcluster" ^
--secret-arn "arn:aws:secretsmanager:us-east-1:123456789012:secret:mysecret" ^
--transaction-id "ABC1234567890xyz"

The following is an example of the response.

{
 "transactionStatus": "Rollback Complete"
 }

Calling RDS Data API from a Python application

You can call RDS Data API (Data API) from a Python application.

The following examples use the AWS SDK for Python (Boto). For more information about Boto, see
the AWS SDK for Python (Boto 3) documentation.

In each example, replace the DB cluster's Amazon Resource Name (ARN) with the ARN for your
Aurora DB cluster. Also, replace the secret ARN with the ARN of the secret in Secrets Manager that
allows access to the DB cluster.

Topics

• Running a SQL query

• Running a DML SQL statement

• Running a SQL transaction

Running a SQL query

You can run a SELECT statement and fetch the results with a Python application.

Calling RDS Data API from a Python application 3328

https://boto3.amazonaws.com/v1/documentation/api/latest/index.html

Amazon Aurora User Guide for Aurora

The following example runs a SQL query.

import boto3

rdsData = boto3.client('rds-data')

cluster_arn = 'arn:aws:rds:us-east-1:123456789012:cluster:mydbcluster'
secret_arn = 'arn:aws:secretsmanager:us-east-1:123456789012:secret:mysecret'

response1 = rdsData.execute_statement(
 resourceArn = cluster_arn,
 secretArn = secret_arn,
 database = 'mydb',
 sql = 'select * from employees limit 3')

print (response1['records'])
[
 [
 {
 'longValue': 1
 },
 {
 'stringValue': 'ROSALEZ'
 },
 {
 'stringValue': 'ALEJANDRO'
 },
 {
 'stringValue': '2016-02-15 04:34:33.0'
 }
],
 [
 {
 'longValue': 1
 },
 {
 'stringValue': 'DOE'
 },
 {
 'stringValue': 'JANE'
 },
 {
 'stringValue': '2014-05-09 04:34:33.0'
 }

Calling RDS Data API from a Python application 3329

Amazon Aurora User Guide for Aurora

],
 [
 {
 'longValue': 1
 },
 {
 'stringValue': 'STILES'
 },
 {
 'stringValue': 'JOHN'
 },
 {
 'stringValue': '2017-09-20 04:34:33.0'
 }
]
]

Running a DML SQL statement

You can run a data manipulation language (DML) statement to insert, update, or delete data in
your database. You can also use parameters in DML statements.

Important

If a call isn't part of a transaction because it doesn't include the transactionID
parameter, changes that result from the call are committed automatically.

The following example runs an insert SQL statement and uses parameters.

import boto3

cluster_arn = 'arn:aws:rds:us-east-1:123456789012:cluster:mydbcluster'
secret_arn = 'arn:aws:secretsmanager:us-east-1:123456789012:secret:mysecret'

rdsData = boto3.client('rds-data')

param1 = {'name':'firstname', 'value':{'stringValue': 'JACKSON'}}
param2 = {'name':'lastname', 'value':{'stringValue': 'MATEO'}}
paramSet = [param1, param2]

Calling RDS Data API from a Python application 3330

Amazon Aurora User Guide for Aurora

response2 = rdsData.execute_statement(resourceArn=cluster_arn,
 secretArn=secret_arn,
 database='mydb',
 sql='insert into employees(first_name, last_name)
 VALUES(:firstname, :lastname)',
 parameters = paramSet)

print (response2["numberOfRecordsUpdated"])

Running a SQL transaction

You can start a SQL transaction, run one or more SQL statements, and then commit the changes
with a Python application.

Important

A transaction times out if there are no calls that use its transaction ID in three minutes. If a
transaction times out before it's committed, it's rolled back automatically.
If you don't specify a transaction ID, changes that result from the call are committed
automatically.

The following example runs a SQL transaction that inserts a row in a table.

import boto3

rdsData = boto3.client('rds-data')

cluster_arn = 'arn:aws:rds:us-east-1:123456789012:cluster:mydbcluster'
secret_arn = 'arn:aws:secretsmanager:us-east-1:123456789012:secret:mysecret'

tr = rdsData.begin_transaction(
 resourceArn = cluster_arn,
 secretArn = secret_arn,
 database = 'mydb')

response3 = rdsData.execute_statement(
 resourceArn = cluster_arn,
 secretArn = secret_arn,
 database = 'mydb',
 sql = 'insert into employees(first_name, last_name) values('XIULAN', 'WANG')',

Calling RDS Data API from a Python application 3331

Amazon Aurora User Guide for Aurora

 transactionId = tr['transactionId'])

cr = rdsData.commit_transaction(
 resourceArn = cluster_arn,
 secretArn = secret_arn,
 transactionId = tr['transactionId'])

cr['transactionStatus']
'Transaction Committed'

response3['numberOfRecordsUpdated']
1

Note

If you run a data definition language (DDL) statement, we recommend continuing to run
the statement after the call times out. When a DDL statement terminates before it is
finished running, it can result in errors and possibly corrupted data structures. To continue
running a statement after a call exceeds the RDS Data API timeout interval of 45 seconds,
set the continueAfterTimeout parameter to true.

Calling RDS Data API from a Java application

You can call RDS Data API (Data API) from a Java application.

The following examples use the AWS SDK for Java. For more information, see the AWS SDK for
Java Developer Guide.

In each example, replace the DB cluster's Amazon Resource Name (ARN) with the ARN for your
Aurora DB cluster. Also, replace the secret ARN with the ARN of the secret in Secrets Manager that
allows access to the DB cluster.

Topics

• Running a SQL query

• Running a SQL transaction

• Running a batch SQL operation

Calling RDS Data API from a Java application 3332

https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/welcome.html
https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/welcome.html

Amazon Aurora User Guide for Aurora

Running a SQL query

You can run a SELECT statement and fetch the results with a Java application.

The following example runs a SQL query.

package com.amazonaws.rdsdata.examples;

import com.amazonaws.services.rdsdata.AWSRDSData;
import com.amazonaws.services.rdsdata.AWSRDSDataClient;
import com.amazonaws.services.rdsdata.model.ExecuteStatementRequest;
import com.amazonaws.services.rdsdata.model.ExecuteStatementResult;
import com.amazonaws.services.rdsdata.model.Field;

import java.util.List;

public class FetchResultsExample {
 public static final String RESOURCE_ARN = "arn:aws:rds:us-
east-1:123456789012:cluster:mydbcluster";
 public static final String SECRET_ARN = "arn:aws:secretsmanager:us-
east-1:123456789012:secret:mysecret";

 public static void main(String[] args) {
 AWSRDSData rdsData = AWSRDSDataClient.builder().build();

 ExecuteStatementRequest request = new ExecuteStatementRequest()
 .withResourceArn(RESOURCE_ARN)
 .withSecretArn(SECRET_ARN)
 .withDatabase("mydb")
 .withSql("select * from mytable");

 ExecuteStatementResult result = rdsData.executeStatement(request);

 for (List<Field> fields: result.getRecords()) {
 String stringValue = fields.get(0).getStringValue();
 long numberValue = fields.get(1).getLongValue();

 System.out.println(String.format("Fetched row: string = %s, number = %d",
 stringValue, numberValue));
 }
 }
}

Calling RDS Data API from a Java application 3333

Amazon Aurora User Guide for Aurora

Running a SQL transaction

You can start a SQL transaction, run one or more SQL statements, and then commit the changes
with a Java application.

Important

A transaction times out if there are no calls that use its transaction ID in three minutes. If a
transaction times out before it's committed, it's rolled back automatically.
If you don't specify a transaction ID, changes that result from the call are committed
automatically.

The following example runs a SQL transaction.

package com.amazonaws.rdsdata.examples;

import com.amazonaws.services.rdsdata.AWSRDSData;
import com.amazonaws.services.rdsdata.AWSRDSDataClient;
import com.amazonaws.services.rdsdata.model.BeginTransactionRequest;
import com.amazonaws.services.rdsdata.model.BeginTransactionResult;
import com.amazonaws.services.rdsdata.model.CommitTransactionRequest;
import com.amazonaws.services.rdsdata.model.ExecuteStatementRequest;

public class TransactionExample {
 public static final String RESOURCE_ARN = "arn:aws:rds:us-
east-1:123456789012:cluster:mydbcluster";
 public static final String SECRET_ARN = "arn:aws:secretsmanager:us-
east-1:123456789012:secret:mysecret";

 public static void main(String[] args) {
 AWSRDSData rdsData = AWSRDSDataClient.builder().build();

 BeginTransactionRequest beginTransactionRequest = new BeginTransactionRequest()
 .withResourceArn(RESOURCE_ARN)
 .withSecretArn(SECRET_ARN)
 .withDatabase("mydb");
 BeginTransactionResult beginTransactionResult =
 rdsData.beginTransaction(beginTransactionRequest);
 String transactionId = beginTransactionResult.getTransactionId();

 ExecuteStatementRequest executeStatementRequest = new ExecuteStatementRequest()

Calling RDS Data API from a Java application 3334

Amazon Aurora User Guide for Aurora

 .withTransactionId(transactionId)
 .withResourceArn(RESOURCE_ARN)
 .withSecretArn(SECRET_ARN)
 .withSql("INSERT INTO test_table VALUES ('hello world!')");
 rdsData.executeStatement(executeStatementRequest);

 CommitTransactionRequest commitTransactionRequest = new CommitTransactionRequest()
 .withTransactionId(transactionId)
 .withResourceArn(RESOURCE_ARN)
 .withSecretArn(SECRET_ARN);
 rdsData.commitTransaction(commitTransactionRequest);
 }
}

Note

If you run a data definition language (DDL) statement, we recommend continuing to run
the statement after the call times out. When a DDL statement terminates before it is
finished running, it can result in errors and possibly corrupted data structures. To continue
running a statement after a call exceeds the RDS Data API timeout interval of 45 seconds,
set the continueAfterTimeout parameter to true.

Running a batch SQL operation

You can run bulk insert and update operations over an array of data with a Java application. You
can run a DML statement with array of parameter sets.

Important

If you don't specify a transaction ID, changes that result from the call are committed
automatically.

The following example runs a batch insert operation.

package com.amazonaws.rdsdata.examples;

import com.amazonaws.services.rdsdata.AWSRDSData;
import com.amazonaws.services.rdsdata.AWSRDSDataClient;
import com.amazonaws.services.rdsdata.model.BatchExecuteStatementRequest;

Calling RDS Data API from a Java application 3335

Amazon Aurora User Guide for Aurora

import com.amazonaws.services.rdsdata.model.Field;
import com.amazonaws.services.rdsdata.model.SqlParameter;

import java.util.Arrays;

public class BatchExecuteExample {
 public static final String RESOURCE_ARN = "arn:aws:rds:us-
east-1:123456789012:cluster:mydbcluster";
 public static final String SECRET_ARN = "arn:aws:secretsmanager:us-
east-1:123456789012:secret:mysecret";

 public static void main(String[] args) {
 AWSRDSData rdsData = AWSRDSDataClient.builder().build();

 BatchExecuteStatementRequest request = new BatchExecuteStatementRequest()
 .withDatabase("test")
 .withResourceArn(RESOURCE_ARN)
 .withSecretArn(SECRET_ARN)
 .withSql("INSERT INTO test_table2 VALUES (:string, :number)")
 .withParameterSets(Arrays.asList(
 Arrays.asList(
 new SqlParameter().withName("string").withValue(new
 Field().withStringValue("Hello")),
 new SqlParameter().withName("number").withValue(new
 Field().withLongValue(1L))
),
 Arrays.asList(
 new SqlParameter().withName("string").withValue(new
 Field().withStringValue("World")),
 new SqlParameter().withName("number").withValue(new
 Field().withLongValue(2L))
)
));

 rdsData.batchExecuteStatement(request);
 }
}

Controlling Data API timeout behavior

All calls to Data API are synchronous. Suppose that you perform a Data API operation that runs a
SQL statement such as INSERT or CREATE TABLE. If the Data API call returns successfully, the SQL
processing is finished when the call returns.

Controlling Data API timeout behavior 3336

Amazon Aurora User Guide for Aurora

By default, Data API cancels an operation and returns a timeout error if the operation doesn't finish
processing within 45 seconds. In that case, the data isn't inserted, the table isn't created, and so on.

You can use Data API to perform long-running operations that can't complete within 45 seconds.
If you expect that an operation such as a bulk INSERT or a DDL operation on a large table
takes longer than 45 seconds, you can specify the continueAfterTimeout parameter for the
ExecuteStatement operation. Your application still receives the timeout error. However, the
operation continues running and isn't cancelled. For an example, see Running a SQL transaction.

If the AWS SDK for your programming language has its own timeout period for API calls or HTTP
socket connections, make sure that all such timeout periods are more than 45 seconds. For some
SDKs, the timeout period is less than 45 seconds by default. We recommend setting any SDK-
specific or client-specific timeout periods to at least one minute. Doing so avoids the possibility
that your application receives a timeout error while the Data API operation still completes
successfully. That way, you can be sure whether to retry the operation or not.

For example, suppose that the SDK returns a timeout error to your application, but the Data API
operation still completes within the Data API timeout interval. In that case, retrying the operation
might insert duplicate data or otherwise produce incorrect results. The SDK might retry the
operation automatically, causing incorrect data without any action from your application.

The timeout interval is especially important for the Java 2 SDK. In that SDK, the API call timeout
and the HTTP socket timeout are both 30 seconds by default. Here is an example of setting those
timeouts to a higher value:

public RdsDataClient createRdsDataClient() {
 return RdsDataClient.builder()
 .region(Region.US_EAST_1) // Change this to your desired Region
 .overrideConfiguration(createOverrideConfiguration())
 .httpClientBuilder(createHttpClientBuilder())
 .credentialsProvider(defaultCredentialsProvider()) // Change this to your
 desired credentials provider
 .build();
}

private static ClientOverrideConfiguration createOverrideConfiguration() {
 return ClientOverrideConfiguration.builder()
 .apiCallTimeout(Duration.ofSeconds(60))
 .build();
}

Controlling Data API timeout behavior 3337

Amazon Aurora User Guide for Aurora

private HttpClientBuilder createHttpClientBuilder() {
 return ApacheHttpClient.builder() // Change this to your desired HttpClient
 .socketTimeout(Duration.ofSeconds(60));
}

Here is an equivalent example using the asynchronous data client:

public static RdsDataAsyncClient createRdsDataAsyncClient() {
 return RdsDataAsyncClient.builder()
 .region(Region.US_EAST_1) // Change this to your desired Region
 .overrideConfiguration(createOverrideConfiguration())
 .credentialsProvider(defaultCredentialsProvider()) // Change this to your
 desired credentials provider
 .build();
}

private static ClientOverrideConfiguration createOverrideConfiguration() {
 return ClientOverrideConfiguration.builder()
 .apiCallAttemptTimeout(Duration.ofSeconds(60))
 .build();
}

private HttpClientBuilder createHttpClientBuilder() {
 return NettyNioAsyncHttpClient.builder() // Change this to your desired
 AsyncHttpClient
 .readTimeout(Duration.ofSeconds(60));
}

Using the Java client library for RDS Data API

You can download and use a Java client library for RDS Data API (Data API). This Java client library
provides an alternative way to use Data API. Using this library, you can map your client-side classes
to Data API requests and responses. This mapping support can ease integration with some specific
Java types, such as Date, Time, and BigDecimal.

Downloading the Java client library for Data API

The Data API Java client library is open source in GitHub at the following location:

https://github.com/awslabs/rds-data-api-client-library-java

Using the Java client library 3338

https://github.com/awslabs/rds-data-api-client-library-java

Amazon Aurora User Guide for Aurora

You can build the library manually from the source files, but the best practice is to consume the
library using Apache Maven dependency management. Add the following dependency to your
Maven POM file.

For version 2.x, which is compatible with AWS SDK 2.x, use the following:

<dependency>
 <groupId>software.amazon.rdsdata</groupId>
 <artifactId>rds-data-api-client-library-java</artifactId>
 <version>2.0.0</version>
</dependency>

For version 1.x, which is compatible with AWS SDK 1.x, use the following:

<dependency>
 <groupId>software.amazon.rdsdata</groupId>
 <artifactId>rds-data-api-client-library-java</artifactId>
 <version>1.0.8</version>
</dependency>

Java client library examples

Following, you can find some common examples of using the Data API Java client library. These
examples assume that you have a table accounts with two columns: accountId and name. You
also have the following data transfer object (DTO).

public class Account {
 int accountId;
 String name;
 // getters and setters omitted
}

The client library enables you to pass DTOs as input parameters. The following example shows how
customer DTOs are mapped to input parameters sets.

var account1 = new Account(1, "John");
var account2 = new Account(2, "Mary");
client.forSql("INSERT INTO accounts(accountId, name) VALUES(:accountId, :name)")
 .withParamSets(account1, account2)
 .execute();

Java client library examples 3339

Amazon Aurora User Guide for Aurora

In some cases, it's easier to work with simple values as input parameters. You can do so with the
following syntax.

client.forSql("INSERT INTO accounts(accountId, name) VALUES(:accountId, :name)")
 .withParameter("accountId", 3)
 .withParameter("name", "Zhang")
 .execute();

The following is another example that works with simple values as input parameters.

client.forSql("INSERT INTO accounts(accountId, name) VALUES(?, ?)", 4, "Carlos")
 .execute();

The client library provides automatic mapping to DTOs when a result is returned. The following
examples show how the result is mapped to your DTOs.

List<Account> result = client.forSql("SELECT * FROM accounts")
 .execute()
 .mapToList(Account.class);

Account result = client.forSql("SELECT * FROM accounts WHERE account_id = 1")
 .execute()
 .mapToSingle(Account.class);

In many cases, the database result set contains only a single value. In order to simplify retrieving
such results, the client library offers the following API:

int numberOfAccounts = client.forSql("SELECT COUNT(*) FROM accounts")
 .execute()
 .singleValue(Integer.class);

Note

The mapToList function converts a SQL result set into a user-defined object list. We don't
support using the .withFormatRecordsAs(RecordsFormatType.JSON) statement in
an ExecuteStatement call for the Java client library, because it serves the same purpose.
For more information, see Processing RDS Data API query results in JSON format.

Java client library examples 3340

Amazon Aurora User Guide for Aurora

Processing RDS Data API query results in JSON format

When you call the ExecuteStatement operation, you can choose to have the query results
returned as a string in JSON format. That way, you can use your programming language's JSON
parsing capabilities to interpret and reformat the result set. Doing so can help to avoid writing
extra code to loop through the result set and interpret each column value.

To request the result set in JSON format, you pass the optional formatRecordsAs parameter with
a value of JSON. The JSON-formatted result set is returned in the formattedRecords field of the
ExecuteStatementResponse structure.

The BatchExecuteStatement action doesn't return a result set. Thus, the JSON option doesn't
apply to that action.

To customize the keys in the JSON hash structure, define column aliases in the result set. You can
do so by using the AS clause in the column list of your SQL query.

You might use the JSON capability to make the result set easier to read and map its contents to
language-specific frameworks. Because the volume of the ASCII-encoded result set is larger than
the default representation, you might choose the default representation for queries that return
large numbers of rows or large column values that consume more memory than is available to your
application.

Topics

• Retrieving query results in JSON format

• Data Type Mapping

• Troubleshooting

• Examples

Retrieving query results in JSON format

To receive the result set as a JSON string, include
.withFormatRecordsAs(RecordsFormatType.JSON) in the ExecuteStatement call.
The return value comes back as a JSON string in the formattedRecords field. In this case, the
columnMetadata is null. The column labels are the keys of the object that represents each row.
These column names are repeated for each row in the result set. The column values are quoted

Processing RDS Data API query results in JSON format 3341

Amazon Aurora User Guide for Aurora

strings, numeric values, or special values representing true, false, or null. Column metadata
such as length constraints and the precise type for numbers and strings isn't preserved in the JSON
response.

If you omit the .withFormatRecordsAs() call or specify a parameter of NONE, the result set is
returned in binary format using the Records and columnMetadata fields.

Data Type Mapping

The SQL values in the result set are mapped to a smaller set of JSON types. The values are
represented in JSON as strings, numbers, and some special constants such as true, false, and
null. You can convert these values into variables in your application, using strong or weak typing
as appropriate for your programming language.

JDBC data type JSON data type

INTEGER, TINYINT, SMALLINT, BIGINT Number by default. String if the LongRetur
nType option is set to STRING.

FLOAT, REAL, DOUBLE Number

DECIMAL String by default. Number if the DecimalRe
turnType option is set to DOUBLE_OR
_LONG .

STRING String

BOOLEAN, BIT Boolean

BLOB, BINARY, VARBINARY , LONGVARBI
NARY

String in base64 encoding.

CLOB String

ARRAY Array

NULL null

Other types (including types related to date
and time)

String

Data Type Mapping 3342

Amazon Aurora User Guide for Aurora

Troubleshooting

The JSON response is limited to 10 megabytes. If the response is larger than this limit, your
program receives a BadRequestException error. In this case, you can resolve the error using one
of the following techniques:

• Reduce the number of rows in the result set. To do so, add a LIMIT clause. You might split a
large result set into multiple smaller ones by submitting several queries with LIMIT and OFFSET
clauses.

If the result set includes rows that are filtered out by application logic, you can remove those
rows from the result set by adding more conditions in the WHERE clause.

• Reduce the number of columns in the result set. To do so, remove items from the select list of
the query.

• Shorten the column labels by using column aliases in the query. Each column name is repeated
in the JSON string for each row in the result set. Thus, a query result with long column names
and many rows could exceed the size limit. In particular, use column aliases for complicated
expressions to avoid having the entire expression repeated in the JSON string.

• Although with SQL you can use column aliases to produce a result set having more than one
column with the same name, duplicate key names aren't allowed in JSON. The RDS Data API
returns an error if you request the result set in JSON format and more than one column has the
same name. Thus, make sure that all the column labels have unique names.

Examples

The following Java examples show how to call ExecuteStatement with the response as a
JSON-formatted string, then interpret the result set. Substitute the appropriate values for the
databaseName, secretStoreArn, and clusterArn parameters.

The following Java example demonstrates a query that returns a decimal numeric value in the
result set. The assertThat calls test that the fields of the response have the expected properties
based on the rules for JSON result sets.

This example works with the following schema and sample data:

create table test_simplified_json (a float);
insert into test_simplified_json values(10.0);

Troubleshooting 3343

Amazon Aurora User Guide for Aurora

public void JSON_result_set_demo() {
 var sql = "select * from test_simplified_json";
 var request = new ExecuteStatementRequest()
 .withDatabase(databaseName)
 .withSecretArn(secretStoreArn)
 .withResourceArn(clusterArn)
 .withSql(sql)
 .withFormatRecordsAs(RecordsFormatType.JSON);
 var result = rdsdataClient.executeStatement(request);
}

The value of the formattedRecords field from the preceding program is:

[{"a":10.0}]

The Records and ColumnMetadata fields in the response are both null, due to the presence of
the JSON result set.

The following Java example demonstrates a query that returns an integer numeric value in the
result set. The example calls getFormattedRecords to return only the JSON-formatted string
and ignore the other response fields that are blank or null. The example deserializes the result into
a structure representing a list of records. Each record has fields whose names correspond to the
column aliases from the result set. This technique simplifies the code that parses the result set.
Your application doesn't have to loop through the rows and columns of the result set and convert
each value to the appropriate type.

This example works with the following schema and sample data:

create table test_simplified_json (a int);
insert into test_simplified_json values(17);

public void JSON_deserialization_demo() {
 var sql = "select * from test_simplified_json";
 var request = new ExecuteStatementRequest()
 .withDatabase(databaseName)
 .withSecretArn(secretStoreArn)
 .withResourceArn(clusterArn)
 .withSql(sql)
 .withFormatRecordsAs(RecordsFormatType.JSON);
 var result = rdsdataClient.executeStatement(request)
 .getFormattedRecords();

Examples 3344

Amazon Aurora User Guide for Aurora

/* Turn the result set into a Java object, a list of records.
 Each record has a field 'a' corresponding to the column
 labelled 'a' in the result set. */
 private static class Record { public int a; }
 var recordsList = new ObjectMapper().readValue(
 response, new TypeReference<List<Record>>() {
 });
}

The value of the formattedRecords field from the preceding program is:

[{"a":17}]

To retrieve the a column of result row 0, the application would refer to recordsList.get(0).a.

In contrast, the following Java example shows the kind of code that's required to construct a
data structure holding the result set when you don't use the JSON format. In this case, each row
of the result set contains fields with information about a single user. Building a data structure
to represent the result set requires looping through the rows. For each row, the code retrieves
the value of each field, performs an appropriate type conversion, and assigns the result to the
corresponding field in the object representing the row. Then the code adds the object representing
each user to the data structure representing the entire result set. If the query was changed to
reorder, add, or remove fields in the result set, the application code would have to change also.

/* Verbose result-parsing code that doesn't use the JSON result set format */
for (var row: response.getRecords()) {
 var user = User.builder()
 .userId(row.get(0).getLongValue())
 .firstName(row.get(1).getStringValue())
 .lastName(row.get(2).getStringValue())
 .dob(Instant.parse(row.get(3).getStringValue()))
 .build();
 result.add(user);
 }

The following sample values show the values of the formattedRecords field for result sets with
different numbers of columns, column aliases, and column data types.

If the result set includes multiple rows, each row is represented as an object that is an array
element. Each column in the result set becomes a key in the object. The keys are repeated for each

Examples 3345

Amazon Aurora User Guide for Aurora

row in the result set. Thus, for result sets consisting of many rows and columns, you might need to
define short column aliases to avoid exceeding the length limit for the entire response.

This example works with the following schema and sample data:

create table sample_names (id int, name varchar(128));
insert into sample_names values (0, "Jane"), (1, "Mohan"), (2, "Maria"), (3, "Bruce"),
 (4, "Jasmine");

[{"id":0,"name":"Jane"},{"id":1,"name":"Mohan"},
{"id":2,"name":"Maria"},{"id":3,"name":"Bruce"},{"id":4,"name":"Jasmine"}]

If a column in the result set is defined as an expression, the text of the expression becomes the
JSON key. Thus, it's typically convenient to define a descriptive column alias for each expression in
the select list of the query. For example, the following query includes expressions such as function
calls and arithmetic operations in its select list.

select count(*), max(id), 4+7 from sample_names;

Those expressions are passed through to the JSON result set as keys.

[{"count(*)":5,"max(id)":4,"4+7":11}]

Adding AS columns with descriptive labels makes the keys simpler to interpret in the JSON result
set.

select count(*) as rows, max(id) as largest_id, 4+7 as addition_result from
 sample_names;

With the revised SQL query, the column labels defined by the AS clauses are used as the key
names.

[{"rows":5,"largest_id":4,"addition_result":11}]

The value for each key-value pair in the JSON string can be a quoted string. The string might
contain unicode characters. If the string contains escape sequences or the " or \ characters, those
characters are preceded by backslash escape characters. The following examples of JSON strings

Examples 3346

Amazon Aurora User Guide for Aurora

demonstrate these possibilities. For example, the string_with_escape_sequences result
contains the special characters backspace, newline, carriage return, tab, form feed, and \.

[{"quoted_string":"hello"}]
[{"unicode_string":"####"}]
[{"string_with_escape_sequences":"\b \n \r \t \f \\ '"}]

The value for each key-value pair in the JSON string can also represent a number. The number
might be an integer, a floating-point value, a negative value, or a value represented as exponential
notation. The following examples of JSON strings demonstrate these possibilities.

[{"integer_value":17}]
[{"float_value":10.0}]
[{"negative_value":-9223372036854775808,"positive_value":9223372036854775807}]
[{"very_small_floating_point_value":4.9E-324,"very_large_floating_point_value":1.7976931348623157E308}]

Boolean and null values are represented with the unquoted special keywords true, false, and
null. The following examples of JSON strings demonstrate these possibilities.

[{"boolean_value_1":true,"boolean_value_2":false}]
[{"unknown_value":null}]

If you select a value of a BLOB type, the result is represented in the JSON string as a base64-
encoded value. To convert the value back to its original representation, you can use the appropriate
decoding function in your application's language. For example, in Java you call the function
Base64.getDecoder().decode(). The following sample output shows the result of selecting a
BLOB value of hello world and returning the result set as a JSON string.

[{"blob_column":"aGVsbG8gd29ybGQ="}]

The following Python example shows how to access the values from the result of a call
to the Python execute_statement function. The result set is a string value in the field
response['formattedRecords']. The code turns the JSON string into a data structure by
calling the json.loads function. Then each row of the result set is a list element within the data
structure, and within each row you can refer to each field of the result set by name.

import json

Examples 3347

Amazon Aurora User Guide for Aurora

result = json.loads(response['formattedRecords'])
print (result[0]["id"])

The following JavaScript example shows how to access the values from the result of a call
to the JavaScript executeStatement function. The result set is a string value in the field
response.formattedRecords. The code turns the JSON string into a data structure by calling
the JSON.parse function. Then each row of the result set is an array element within the data
structure, and within each row you can refer to each field of the result set by name.

<script>
 const result = JSON.parse(response.formattedRecords);
 document.getElementById("display").innerHTML = result[0].id;
</script>

Troubleshooting RDS Data API issues

Use the following sections, titled with common error messages, to help troubleshoot problems that
you have with RDS Data API (Data API).

Topics

• Transaction <transaction_ID> is not found

• Packet for query is too large

• Database response exceeded size limit

• HttpEndpoint is not enabled for cluster <cluster_ID>

Transaction <transaction_ID> is not found

In this case, the transaction ID specified in a Data API call wasn't found. The cause for this issue is
appended to the error message, and is one of the following:

• Transaction may be expired.

Make sure that each transactional call runs within three minutes of the previous one.

It's also possible that the specified transaction ID wasn't created by a BeginTransaction call. Make
sure that your call has a valid transaction ID.

• One previous call resulted in a termination of your transaction.

Troubleshooting Data API issues 3348

https://docs.aws.amazon.com/rdsdataservice/latest/APIReference/API_BeginTransaction.html

Amazon Aurora User Guide for Aurora

The transaction was already ended by your CommitTransaction or RollbackTransaction
call.

• Transaction has been aborted due to an error from a previous call.

Check whether your previous calls have thrown any exceptions.

For information about running transactions, see Calling RDS Data API.

Packet for query is too large

In this case, the result set returned for a row was too large. The Data API size limit is 64 KB per row
in the result set returned by the database.

To solve this issue, make sure that each row in a result set is 64 KB or less.

Database response exceeded size limit

In this case, the size of the result set returned by the database was too large. The Data API limit is 1
MiB in the result set returned by the database.

To solve this issue, make sure that calls to Data API return 1 MiB of data or less. If you need to
return more than 1 MiB, you can use multiple ExecuteStatement calls with the LIMIT clause in
your query.

For more information about the LIMIT clause, see SELECT syntax in the MySQL documentation.

HttpEndpoint is not enabled for cluster <cluster_ID>

Check the following potential causes for this issue:

• The Aurora DB cluster doesn't support Data API. For example, for Aurora MySQL, you can only
use Data API with Aurora Serverless v1. For information about the types of DB clusters RDS Data
API supports, see the section called “Region and version availability”.

• Data API isn't enabled for the Aurora DB cluster. To use Data API with an Aurora DB cluster, Data
API must be enabled for the DB cluster. For information about enabling Data API, see Enabling
RDS Data API.

• The DB cluster was renamed after Data API was enabled for it. In that case, turn off Data API for
that cluster and then enable it again.

Packet for query is too large 3349

https://docs.aws.amazon.com/rdsdataservice/latest/APIReference/API_ExecuteStatement.html
https://dev.mysql.com/doc/refman/5.7/en/select.html

Amazon Aurora User Guide for Aurora

• The ARN you specified doesn't precisely match the ARN of the cluster. Check that the ARN
returned from another source or constructed by program logic matches the ARN of the
cluster exactly. For example, make sure that the ARN you use has the correct letter case for all
alphabetic characters.

Logging RDS Data API calls with AWS CloudTrail

RDS Data API (Data API) is integrated with AWS CloudTrail, a service that provides a record of
actions taken by a user, role, or an AWS service in Data API. CloudTrail captures all API calls for
Data API as events, including calls from the Amazon RDS console and from code calls to Data
API operations. If you create a trail, you can enable continuous delivery of CloudTrail events to
an Amazon S3 bucket, including events for Data API. Using the data collected by CloudTrail, you
can determine a lot of information. This information includes the request that was made to Data
API, the IP address the request was made from, who made the request, when it was made, and
additional details.

To learn more about CloudTrail, see the AWS CloudTrail User Guide.

Working with Data API information in CloudTrail

CloudTrail is enabled on your AWS account when you create the account. When supported activity
(management events) occurs in Data API, that activity is recorded in a CloudTrail event along
with other AWS service events in Event history. You can view, search, and download recent
management events in your AWS account. For more information, see Working with CloudTrail
Event history in the AWS CloudTrail User Guide.

For an ongoing record of events in your AWS account, including events for Data API, create a
trail. A trail enables CloudTrail to deliver log files to an Amazon S3 bucket. By default, when you
create a trail in the console, the trail applies to all AWS Regions. The trail logs events from all AWS
Regions in the AWS partition and delivers the log files to the Amazon S3 bucket that you specify.
Additionally, you can configure other AWS services to further analyze and act upon the event data
collected in CloudTrail logs. For more information, see the following topics in the AWS CloudTrail
User Guide:

• Overview for creating a trail

• CloudTrail supported services and integrations

• Configuring Amazon SNS notifications for CloudTrail

Logging RDS Data API calls with AWS CloudTrail 3350

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/view-cloudtrail-events.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/view-cloudtrail-events.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-create-and-update-a-trail.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-aws-service-specific-topics.html#cloudtrail-aws-service-specific-topics-integrations
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/getting_notifications_top_level.html

Amazon Aurora User Guide for Aurora

• Receiving CloudTrail log files from multiple Regions and Receiving CloudTrail log files from
multiple accounts

All Data API operations are logged by CloudTrail and documented in the Amazon RDS data
service API reference. For example, calls to the BatchExecuteStatement, BeginTransaction,
CommitTransaction, and ExecuteStatement operations generate entries in the CloudTrail log
files.

Every event or log entry contains information about who generated the request. The identity
information helps you determine the following:

• Whether the request was made with root or user credentials.

• Whether the request was made with temporary security credentials for a role or federated user.

• Whether the request was made by another AWS service.

For more information, see the CloudTrail userIdentity element.

Including and excluding Data API events from an AWS CloudTrail trail

Most Data API users rely on the events in an AWS CloudTrail trail to provide a record of Data API
operations. Event data doesn't reveal the database name, schema name, or SQL statements in
requests to the Data API. However, knowing which user made a type of call against a specific DB
cluster at a given time can help to detect anomalous access patterns.

Including Data API events in an AWS CloudTrail trail

For Aurora PostgreSQL Serverless v2 and provisioned databases, the following Data API operations
are logged to AWS CloudTrail as data events. Data events are high-volume data-plane API
operations that CloudTrail doesn't log by default. Additional charges apply for data events. For
information about CloudTrail pricing, see AWS CloudTrail Pricing.

• BatchExecuteStatement

• BeginTransaction

• CommitTransaction

• ExecuteStatement

• RollbackTransaction

Including and excluding Data API events from a CloudTrail trail 3351

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/receive-cloudtrail-log-files-from-multiple-regions.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-receive-logs-from-multiple-accounts.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-receive-logs-from-multiple-accounts.html
https://docs.aws.amazon.com/rdsdataservice/latest/APIReference/Welcome.html
https://docs.aws.amazon.com/rdsdataservice/latest/APIReference/Welcome.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-event-reference-user-identity.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/logging-data-events-with-cloudtrail.html#logging-data-events
https://aws.amazon.com/cloudtrail/pricing/
https://docs.aws.amazon.com/rdsdataservice/latest/APIReference/API_BatchExecuteStatement.html
https://docs.aws.amazon.com/rdsdataservice/latest/APIReference/API_BeginTransaction.html
https://docs.aws.amazon.com/rdsdataservice/latest/APIReference/API_CommitTransaction.html
https://docs.aws.amazon.com/rdsdataservice/latest/APIReference/API_ExecuteStatement.html
https://docs.aws.amazon.com/rdsdataservice/latest/APIReference/API_RollbackTransaction.html

Amazon Aurora User Guide for Aurora

You can use the CloudTrail console,AWS CLI, or CloudTrail API operations to log these Data API
operations. In the CloudTrail console, choose RDS Data API - DB Cluster for the Data event type.
For more information, see Logging data events with the AWS Management Console in the AWS
CloudTrail User Guide.

Using the AWS CLI, run the aws cloudtrail put-event-selectors command to log
these Data API operations for your trail. To log all Data API events on DB clusters, specify
AWS::RDS::DBCluster for the resource type. The following example logs all Data API events on
DB clusters. For more information, see Logging data events with the AWS Command Line Interface
in the AWS CloudTrail User Guide.

aws cloudtrail put-event-selectors --trail-name trail_name --advanced-event-selectors \
'{
 "Name": "RDS Data API Selector",
 "FieldSelectors": [
 {
 "Field": "eventCategory",
 "Equals": [
 "Data"
]
 },
 {
 "Field": "resources.type",
 "Equals": [
 "AWS::RDS::DBCluster"
]
 }
]
}'

You can configure advanced event selectors to additionally filter on the readOnly, eventName,
and resources.ARN fields. For more information on these fields, see AdvancedFieldSelector.

Excluding Data API events from an AWS CloudTrail trail (Aurora Serverless v1
only)

For Aurora Serverless v1, Data API events are management events. By default, all Data API events
are included in an AWS CloudTrail trail. However, because Data API can generate a large number
of events, you might want to exclude these events from your CloudTrail trail. The Exclude Amazon
RDS Data API events setting excludes all Data API events from the trail. You can't exclude specific
Data API events.

Including and excluding Data API events from a CloudTrail trail 3352

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/logging-data-events-with-cloudtrail.html#creating-data-event-selectors-with-the-AWS-CLI
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-create-and-update-a-trail-by-using-the-aws-cli.html
https://docs.aws.amazon.com/awscloudtrail/latest/APIReference/API_AdvancedFieldSelector.html

Amazon Aurora User Guide for Aurora

To exclude Data API events from a trail, do the following:

• In the CloudTrail console, choose the Exclude Amazon RDS Data API events setting when you
create a trail or update a trail.

• In the CloudTrail API, use the PutEventSelectors operation. If you're using advanced event
selectors, you can exclude Data API events by setting the eventSource field not equal
to rdsdata.amazonaws.com. If you're using basic event selectors, you can exclude Data
API events by setting the value of the ExcludeManagementEventSources attribute to
rdsdata.amazonaws.com. For more information, see Logging events with the AWS Command
Line Interface in the AWS CloudTrail User Guide.

Warning

Excluding Data API events from a CloudTrail log can obscure Data API actions. Be cautious
when giving principals the cloudtrail:PutEventSelectors permission that is required
to perform this operation.

You can turn off this exclusion at any time by changing the console setting or the event selectors
for a trail. The trail will then start recording Data API events. However, it can't recover Data API
events that occurred while the exclusion was effective.

When you exclude Data API events by using the console or API, the resulting CloudTrail
PutEventSelectors API operation is also logged in your CloudTrail logs. If Data API
events don't appear in your CloudTrail logs, look for a PutEventSelectors event with the
ExcludeManagementEventSources attribute set to rdsdata.amazonaws.com.

For more information, see Logging management events for trails in the AWS CloudTrail User Guide.

Understanding Data API log file entries

A trail is a configuration that enables delivery of events as log files to an Amazon S3 bucket that
you specify. CloudTrail log files contain one or more log entries. An event represents a single
request from any source and includes information about the requested action, the date and time of
the action, request parameters, and so on. CloudTrail log files aren't an ordered stack trace of the
public API calls, so they don't appear in any specific order.

Aurora PostgreSQL Serverless v2 and provisioned

Understanding Data API log file entries 3353

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-create-a-trail-using-the-console-first-time.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-update-a-trail-console.html
https://docs.aws.amazon.com/awscloudtrail/latest/APIReference/API_PutEventSelectors.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/logging-management-events-with-cloudtrail.html#creating-mgmt-event-selectors-with-the-AWS-CLI
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/logging-management-events-with-cloudtrail.html#creating-mgmt-event-selectors-with-the-AWS-CLI
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/logging-management-events-with-cloudtrail.html

Amazon Aurora User Guide for Aurora

The following example shows a CloudTrail log entry that demonstrates the ExecuteStatement
operation for Aurora PostgreSQL Serverless v2 and provisioned databases. For these databases,
all Data API events are data events where the event source is rdsdataapi.amazonaws.com and the
event type is Rds Data Service.

{
 "eventVersion": "1.05",
 "userIdentity": {
 "type": "IAMUser",
 "principalId": "AKIAIOSFODNN7EXAMPLE",
 "arn": "arn:aws:iam::123456789012:user/johndoe",
 "accountId": "123456789012",
 "accessKeyId": "AKIAI44QH8DHBEXAMPLE",
 "userName": "johndoe"
 },
 "eventTime": "2019-12-18T00:49:34Z",
 "eventSource": "rdsdataapi.amazonaws.com",
 "eventName": "ExecuteStatement",
 "awsRegion": "us-east-1",
 "sourceIPAddress": "192.0.2.0",
 "userAgent": "aws-cli/1.16.102 Python/3.7.2 Windows/10 botocore/1.12.92",
 "requestParameters": {
 "continueAfterTimeout": false,
 "database": "**********",
 "includeResultMetadata": false,
 "parameters": [],
 "resourceArn": "arn:aws:rds:us-east-1:123456789012:cluster:my-database-1",
 "schema": "**********",
 "secretArn": "arn:aws:secretsmanager:us-
east-1:123456789012:secret:dataapisecret-ABC123",
 "sql": "**********"
 },
 "responseElements": null,
 "requestID": "6ba9a36e-b3aa-4ca8-9a2e-15a9eada988e",
 "eventID": "a2c7a357-ee8e-4755-a0d0-aed11ed4253a",
 "eventType": "Rds Data Service",
 "recipientAccountId": "123456789012"
}

Aurora Serverless v1

Understanding Data API log file entries 3354

Amazon Aurora User Guide for Aurora

The following example shows how the preceding example CloudTrail log entry appears for Aurora
Serverless v1. For Aurora Serverless v1, all events are management events where the event source
is rdsdata.amazonaws.com and the event type is AwsApiCall.

{
 "eventVersion": "1.05",
 "userIdentity": {
 "type": "IAMUser",
 "principalId": "AKIAIOSFODNN7EXAMPLE",
 "arn": "arn:aws:iam::123456789012:user/johndoe",
 "accountId": "123456789012",
 "accessKeyId": "AKIAI44QH8DHBEXAMPLE",
 "userName": "johndoe"
 },
 "eventTime": "2019-12-18T00:49:34Z",
 "eventSource": "rdsdata.amazonaws.com",
 "eventName": "ExecuteStatement",
 "awsRegion": "us-east-1",
 "sourceIPAddress": "192.0.2.0",
 "userAgent": "aws-cli/1.16.102 Python/3.7.2 Windows/10 botocore/1.12.92",
 "requestParameters": {
 "continueAfterTimeout": false,
 "database": "**********",
 "includeResultMetadata": false,
 "parameters": [],
 "resourceArn": "arn:aws:rds:us-east-1:123456789012:cluster:my-database-1",
 "schema": "**********",
 "secretArn": "arn:aws:secretsmanager:us-
east-1:123456789012:secret:dataapisecret-ABC123",
 "sql": "**********"
 },
 "responseElements": null,
 "requestID": "6ba9a36e-b3aa-4ca8-9a2e-15a9eada988e",
 "eventID": "a2c7a357-ee8e-4755-a0d0-aed11ed4253a",
 "eventType": "AwsApiCall",
 "recipientAccountId": "123456789012"
}

Understanding Data API log file entries 3355

Amazon Aurora User Guide for Aurora

Using the Aurora query editor

The Aurora query editor lets you run SQL statements on your Aurora DB cluster through the
AWS Management Console. You can run SQL queries, data manipulation (DML) statements,
and data definition (DDL) statements. Using the console interface lets you perform database
maintenance, produce reports, and conduct SQL experiments. You can avoid setting up the
network configuration to connect to your DB cluster from a separate client system such as an EC2
instance or a laptop computer.

The query editor requires an Aurora DB cluster with RDS Data API (Data API) enabled. For
information about DB clusters that support Data API and how to enable it, see Using RDS Data
API. The SQL that you can run is subject to the Data API limitations. For more information, see the
section called “Limitations”.

Availability of the query editor

The query editor is available for Aurora DB clusters using Aurora MySQL and Aurora PostgreSQL
engine versions that support Data API, and in the AWS Regions where Data API is available. For
more information, see Supported Regions and Aurora DB engines for RDS Data API.

Authorizing access to the query editor

A user must be authorized to run queries in the query editor. You can authorize a user to run
queries in the query editor by adding the AmazonRDSDataFullAccess policy, a predefined AWS
Identity and Access Management (IAM) policy, to that user.

Note

Make sure to use the same user name and password when you create the IAM user as you
did for the database user, such as the administrative user name and password. For more
information, see Creating an IAM user in your AWS account in the AWS Identity and Access
Management User Guide.

You can also create an IAM policy that grants access to the query editor. After you create the policy,
add it to each user that requires access to the query editor.

Availability of the query editor 3356

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_create.html

Amazon Aurora User Guide for Aurora

The following policy provides the minimum required permissions for a user to access the query
editor.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "QueryEditor0",
 "Effect": "Allow",
 "Action": [
 "secretsmanager:GetSecretValue",
 "secretsmanager:PutResourcePolicy",
 "secretsmanager:PutSecretValue",
 "secretsmanager:DeleteSecret",
 "secretsmanager:DescribeSecret",
 "secretsmanager:TagResource"
],
 "Resource": "arn:aws:secretsmanager:*:*:secret:rds-db-credentials/*"
 },
 {
 "Sid": "QueryEditor1",
 "Effect": "Allow",
 "Action": [
 "secretsmanager:GetRandomPassword",
 "tag:GetResources",
 "secretsmanager:CreateSecret",
 "secretsmanager:ListSecrets",
 "dbqms:CreateFavoriteQuery",
 "dbqms:DescribeFavoriteQueries",
 "dbqms:UpdateFavoriteQuery",
 "dbqms:DeleteFavoriteQueries",
 "dbqms:GetQueryString",
 "dbqms:CreateQueryHistory",
 "dbqms:UpdateQueryHistory",
 "dbqms:DeleteQueryHistory",
 "dbqms:DescribeQueryHistory",
 "rds-data:BatchExecuteStatement",
 "rds-data:BeginTransaction",
 "rds-data:CommitTransaction",
 "rds-data:ExecuteStatement",
 "rds-data:RollbackTransaction"
],

Authorizing access 3357

Amazon Aurora User Guide for Aurora

 "Resource": "*"
 }
]
}

For information about creating an IAM policy, see Creating IAM policies in the AWS Identity and
Access Management User Guide.

For information about adding an IAM policy to a user, see Adding and removing IAM identity
permissions in the AWS Identity and Access Management User Guide.

Running queries in the query editor

You can run SQL statements on an Aurora DB cluster in the query editor. The SQL that you can run
is subject to the Data API limitations. For more information, see the section called “Limitations”.

To run a query in the query editor

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the upper-right corner of the AWS Management Console, choose the AWS Region in which
you created the Aurora DB clusters that you want to query.

3. In the navigation pane, choose Databases.

4. Choose the Aurora DB cluster that you want to run SQL queries on.

5. For Actions, choose Query. If you haven't connected to the database before, the Connect to
database page opens.

Running queries 3358

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_manage-attach-detach.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_manage-attach-detach.html
https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Aurora User Guide for Aurora

6. Enter the following information:

a. For Database instance or cluster, choose the Aurora DB cluster that you want to run SQL
queries on.

b. For Database username, choose the user name of the database user to connect with, or
choose Add new database credentials. If you choose Add new database credentials,
enter the user name for the new database credentials in Enter database username.

c. For Enter database password, enter the password for the database user that you chose.

d. In the last box, enter the name of the database or schema that you want to use for the
Aurora DB cluster.

e. Choose Connect to database.

Running queries 3359

Amazon Aurora User Guide for Aurora

Note

If your connection is successful, your connection and authentication information
are stored in AWS Secrets Manager. You don't need to enter the connection
information again.

7. In the query editor, enter the SQL query that you want to run on the database.

Each SQL statement can commit automatically, or you can run SQL statements in a script as
part of a transaction. To control this behavior, choose the gear icon above the query window.

Running queries 3360

Amazon Aurora User Guide for Aurora

The Query Editor Settings window appears.

If you choose Auto-commit, every SQL statement commits automatically. If you choose
Transaction, you can run a group of statements in a script. Statements are automatically
committed at the end of the script unless explicitly committed or rolled back before then. Also,
you can choose to stop a running script if an error occurs by enabling Stop on error.

Running queries 3361

Amazon Aurora User Guide for Aurora

Note

In a group of statements, data definition language (DDL) statements can cause
previous data manipulation language (DML) statements to commit. You can also
include COMMIT and ROLLBACK statements in a group of statements in a script.

After you make your choices in the Query Editor Settings window, choose Save.

8. Choose Run or press Ctrl+Enter, and the query editor displays the results of your query.

After running the query, save it to Saved queries by choosing Save.

Export the query results to spreadsheet format by choosing Export to csv.

You can find, edit, and rerun previous queries. To do so, choose the Recent tab or the Saved
queries tab, choose the query text, and then choose Run.

To change the database, choose Change database.

Database Query Metadata Service (DBQMS) API reference

The Database Query Metadata Service (dbqms) is an internal-only service. It provides your recent
and saved queries for the query editor on the AWS Management Console for multiple AWS services,
including Amazon RDS.

Supported DBQMS actions

• CreateFavoriteQuery

• CreateQueryHistory

• CreateTab

• DeleteFavoriteQueries

• DeleteQueryHistory

• DeleteTab

• DescribeFavoriteQueries

• DescribeQueryHistory

• DescribeTabs

DBQMS API reference 3362

Amazon Aurora User Guide for Aurora

• GetQueryString

• UpdateFavoriteQuery

• UpdateQueryHistory

• UpdateTab

CreateFavoriteQuery

Save a new favorite query. Each user can create up to 1000 saved queries. This limit is subject to
change in the future.

CreateQueryHistory

Save a new query history entry.

CreateTab

Save a new query tab. Each user can create up to 10 query tabs.

DeleteFavoriteQueries

Delete one or more saved queries.

DeleteQueryHistory

Delete query history entries.

DeleteTab

Delete query tab entries.

DescribeFavoriteQueries

List saved queries created by a user in a given account.

DescribeQueryHistory

List query history entries.

CreateFavoriteQuery 3363

Amazon Aurora User Guide for Aurora

DescribeTabs

List query tabs created by a user in a given account.

GetQueryString

Retrieve full query text from a query ID.

UpdateFavoriteQuery

Update the query string, description, name, or expiration date.

UpdateQueryHistory

Update the status of query history.

UpdateTab

Update the query tab name and query string.

DescribeTabs 3364

Amazon Aurora User Guide for Aurora

Using Amazon Aurora machine learning

By using Amazon Aurora machine learning, you can integrate your Aurora DB cluster with one of
the following AWS machine learning services, depending on your needs. They each support specific
machine learning use cases.

Amazon Bedrock

Amazon Bedrock is a fully managed service that makes leading foundation models from AI
companies available through an API, along with developer tooling to help build and scale
generative AI applications. With Amazon Bedrock, you pay to run inference on any of the
third-party foundation models. Pricing is based on the volume of input tokens and output
tokens, and on whether you have purchased provisioned throughput for the model. For more
information, see What is Amazon Bedrock? in the Amazon Bedrock User Guide.

Amazon Comprehend

Amazon Comprehend is a managed natural language processing (NLP) service that's used to
extract insights from documents. With Amazon Comprehend, you can deduce sentiment based
on the content of documents, by analyzing entities, key phrases, language, and other features.
To learn more, see What is Amazon Comprehend? in the Amazon Comprehend Developer Guide.

SageMaker

Amazon SageMaker is a fully managed machine learning service. Data scientists and developers
use Amazon SageMaker to build, train, and test machine learning models for a variety of
inference tasks, such as fraud detection and product recommendation. When a machine
learning model is ready for use in production, it can be deployed to the Amazon SageMaker
hosted environment. For more information, see What Is Amazon SageMaker? in the Amazon
SageMaker Developer Guide.

Using Amazon Comprehend with your Aurora DB cluster has less preliminary setup than using
SageMaker. If you're new to AWS machine learning, we recommend that you start by exploring
Amazon Comprehend.

Topics

• Using Amazon Aurora machine learning with Aurora MySQL

• Using Amazon Aurora machine learning with Aurora PostgreSQL

3365

https://docs.aws.amazon.com/bedrock/latest/userguide/what-is-bedrock.html
https://docs.aws.amazon.com/comprehend/latest/dg/what-is.html
https://docs.aws.amazon.com/sagemaker/latest/dg/whatis.html

Amazon Aurora User Guide for Aurora

Using Amazon Aurora machine learning with Aurora MySQL

By using Amazon Aurora machine learning with your Aurora MySQL DB cluster, you can use
Amazon Bedrock, Amazon Comprehend, or Amazon SageMaker, depending on your needs. They
each support different machine learning use cases.

Contents

• Requirements for using Aurora machine learning with Aurora MySQL

• Region and version availability

• Supported features and limitations of Aurora machine learning with Aurora MySQL

• Setting up your Aurora MySQL DB cluster to use Aurora machine learning

• Setting up your Aurora MySQL DB cluster to use Amazon Bedrock

• Setting up your Aurora MySQL DB cluster to use Amazon Comprehend

• Setting up your Aurora MySQL DB cluster to use SageMaker

• Setting up your Aurora MySQL DB cluster to use Amazon S3 for SageMaker (Optional)

• Granting database users access to Aurora machine learning

• Granting access to Amazon Bedrock functions

• Granting access to Amazon Comprehend functions

• Granting access to SageMaker functions

• Using Amazon Bedrock with your Aurora MySQL DB cluster

• Using Amazon Comprehend with your Aurora MySQL DB cluster

• Using SageMaker with your Aurora MySQL DB cluster

• Character set requirement for SageMaker functions that return strings

• Exporting data to Amazon S3 for SageMaker model training (Advanced)

• Performance considerations for using Aurora machine learning with Aurora MySQL

• Model and prompt

• Query cache

• Batch optimization for Aurora machine learning function calls

• Monitoring Aurora machine learning

Using Aurora machine learning with Aurora MySQL 3366

Amazon Aurora User Guide for Aurora

Requirements for using Aurora machine learning with Aurora MySQL

AWS machine learning services are managed services that are set up and run in their own
production environments. Aurora machine learning supports integration with Amazon Bedrock,
Amazon Comprehend, and SageMaker. Before trying to set up your Aurora MySQL DB cluster to use
Aurora machine learning, be sure you understand the following requirements and prerequisites.

• The machine learning services must be running in the same AWS Region as your Aurora MySQL
DB cluster. You can't use machine learning services from an Aurora MySQL DB cluster in a
different Region.

• If your Aurora MySQL DB cluster is in a different virtual public cloud (VPC) from your Amazon
Bedrock, Amazon Comprehend, or SageMaker service, the VPC's Security group needs to allow
outbound connections to the target Aurora machine learning service. For more information, see
Control traffic to your AWS resources using security groups in the Amazon VPC User Guide.

• You can upgrade an Aurora cluster that's running a lower version of Aurora MySQL to a
supported higher version if you want to use Aurora machine learning with that cluster. For more
information, see Database engine updates for Amazon Aurora MySQL.

• Your Aurora MySQL DB cluster must use a custom DB cluster parameter group. At the end of
the setup process for each Aurora machine learning service that you want to use, you add the
Amazon Resource Name (ARN) of the associated IAM role that was created for the service.
We recommend that you create a custom DB cluster parameter group for your Aurora MySQL
in advance and configure your Aurora MySQL DB cluster to use it so that it's ready for you to
modify at the end of the setup process.

• For SageMaker:

• The machine learning components that you want to use for inferences must be set up and
ready to use. During the configuration process for your Aurora MySQL DB cluster, make sure to
have the ARN of the SageMaker endpoint available. The data scientists on your team are likely
best able to handle working with SageMaker to prepare the models and handle the other such
tasks. To get started with Amazon SageMaker, see Get Started with Amazon SageMaker. For
more information about inferences and endpoints, see Real-time inference.

• To use SageMaker with your own training data, you must set up an Amazon S3 bucket as
part of your Aurora MySQL configuration for Aurora machine learning. To do so, you follow
the same general process as for setting up the SageMaker integration. For a summary of this
optional setup process, see Setting up your Aurora MySQL DB cluster to use Amazon S3 for
SageMaker (Optional).

Requirements for using Aurora machine learning 3367

https://docs.aws.amazon.com/vpc/latest/userguide/vpc-security-groups.html
https://docs.aws.amazon.com/sagemaker/latest/dg/gs.html
https://docs.aws.amazon.com/sagemaker/latest/dg/realtime-endpoints.html

Amazon Aurora User Guide for Aurora

• For Aurora global databases, you set up the Aurora machine learning services that you want
to use in all AWS Regions that make up your Aurora global database. For example, if you want
to use Aurora machine learning with SageMaker for your Aurora global database, you do the
following for every Aurora MySQL DB cluster in every AWS Region:

• Set up the Amazon SageMaker services with the same SageMaker training models and
endpoints. These must also use the same names.

• Create the IAM roles as detailed in Setting up your Aurora MySQL DB cluster to use Aurora
machine learning.

• Add the ARN of the IAM role to the custom DB cluster parameter group for each Aurora MySQL
DB cluster in every AWS Region.

These tasks require that Aurora machine learning is available for your version of Aurora MySQL in
all AWS Regions that make up your Aurora global database.

Region and version availability

Feature availability and support varies across specific versions of each Aurora database engine, and
across AWS Regions.

• For information on version and Region availability for Amazon Comprehend and Amazon
SageMaker with Aurora MySQL, see Aurora machine learning with Aurora MySQL.

• Amazon Bedrock is supported only on Aurora MySQL version 3.06 and higher.

For information on Region availability for Amazon Bedrock, see Supported models in Amazon
Bedrock in the Amazon Bedrock User Guide.

Supported features and limitations of Aurora machine learning with
Aurora MySQL

When using Aurora MySQL with Aurora machine learning, the following limitations apply:

• The Aurora machine learning extension doesn't support vector interfaces.

• Aurora machine learning integrations aren't supported when used in a trigger.

• Aurora machine learning functions aren't compatible with binary logging (binlog) replication.

• The setting --binlog-format=STATEMENT throws an exception for calls to Aurora machine
learning functions.

Region and version availability 3368

https://docs.aws.amazon.com/bedrock/latest/userguide/models-supported.html
https://docs.aws.amazon.com/bedrock/latest/userguide/models-supported.html

Amazon Aurora User Guide for Aurora

• Aurora machine learning functions are nondeterministic, and nondeterministic stored
functions aren't compatible with the binlog format.

For more information, see Binary Logging Formats in the MySQL documentation.

• Stored functions that call tables with generated-always columns aren't supported. This applies
to any Aurora MySQL stored function. To learn more about this column type, see CREATE TABLE
and Generated Columns in the MySQL documentation.

• Amazon Bedrock functions don't support RETURNS JSON. You can use CONVERT or CAST to
convert from TEXT to JSON if needed.

• Amazon Bedrock doesn't support batch requests.

• Aurora MySQL supports any SageMaker endpoint that reads and writes the comma-separated
value (CSV) format, through a ContentType of text/csv. This format is accepted by the
following built-in SageMaker algorithms:

• Linear Learner

• Random Cut Forest

• XGBoost

To learn more about these algorithms, see Choose an Algorithm in the Amazon SageMaker
Developer Guide.

Setting up your Aurora MySQL DB cluster to use Aurora machine
learning

In the following topics, you can find separate setup procedures for each of these Aurora machine
learning services.

Topics

• Setting up your Aurora MySQL DB cluster to use Amazon Bedrock

• Setting up your Aurora MySQL DB cluster to use Amazon Comprehend

• Setting up your Aurora MySQL DB cluster to use SageMaker

• Setting up your Aurora MySQL DB cluster to use Amazon S3 for SageMaker (Optional)

• Granting database users access to Aurora machine learning

• Granting access to Amazon Bedrock functions

• Granting access to Amazon Comprehend functions

Setting up your Aurora cluster for Aurora machine learning 3369

https://dev.mysql.com/doc/refman/5.7/en/binary-log-formats.html
https://dev.mysql.com/doc/refman/5.7/en/create-table-generated-columns.html
https://dev.mysql.com/doc/refman/5.7/en/create-table-generated-columns.html
https://docs.aws.amazon.com/sagemaker/latest/dg/algorithms-choose.html

Amazon Aurora User Guide for Aurora

• Granting access to SageMaker functions

Setting up your Aurora MySQL DB cluster to use Amazon Bedrock

Aurora machine learning relies on AWS Identity and Access Management (IAM) roles and policies to
allow your Aurora MySQL DB cluster to access and use the Amazon Bedrock services. The following
procedures create an IAM permission policy and role so that your DB cluster can integrate with
Amazon Bedrock.

To create the IAM policy

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. Choose Policies in the navigation pane.

3. Choose Create a policy.

4. On the Specify permissions page, for Select a service, choose Bedrock.

The Amazon Bedrock permissions display.

5. Expand Read, then select InvokeModel.

6. For Resources, select All.

The Specify permissions page should resemble the following figure.

Setting up your Aurora cluster for Aurora machine learning 3370

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

Amazon Aurora User Guide for Aurora

7. Choose Next.

8. On the Review and create page, enter a name for your policy, for example
BedrockInvokeModel.

Setting up your Aurora cluster for Aurora machine learning 3371

Amazon Aurora User Guide for Aurora

9. Review your policy, then choose Create policy.

Next you create the IAM role that uses the Amazon Bedrock permission policy.

To create the IAM role

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. Choose Roles in the navigation pane.

3. Choose Create role.

4. On the Select trusted entity page, for Use case, choose RDS.

5. Select RDS - Add Role to Database, then choose Next.

6. On the Add permissions page, for Permissions policies, select the IAM policy that you
created, then choose Next.

7. On the Name, review, and create page, enter a name for your role, for example ams-
bedrock-invoke-model-role.

The role should resemble the following figure.

Setting up your Aurora cluster for Aurora machine learning 3372

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

Amazon Aurora User Guide for Aurora

8. Review your role, then choose Create role.

Next you associate the Amazon Bedrock IAM role with your DB cluster.

Setting up your Aurora cluster for Aurora machine learning 3373

Amazon Aurora User Guide for Aurora

To associate the IAM role with your DB cluster

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. Choose Databases from the navigation pane.

3. Choose the Aurora MySQL DB cluster that you want to connect to Amazon Bedrock services.

4. Choose the Connectivity & security tab.

5. For Manage IAM roles section, choose Select IAM to add to this cluster.

6. Choose the IAM that you created, and then choose Add role.

The IAM role is associated with your DB cluster, first with the status Pending, then Active.
When the process completes, you can find the role in the Current IAM roles for this cluster
list.

You must add the ARN of this IAM role to the aws_default_bedrock_role parameter of the
custom DB cluster parameter group associated with your Aurora MySQL DB cluster. If your Aurora
MySQL DB cluster doesn't use a custom DB cluster parameter group, you need to create one to
use with your Aurora MySQL DB cluster to complete the integration. For more information, see
Working with DB cluster parameter groups.

To configure the DB cluster parameter

1. In the Amazon RDS Console, open the Configuration tab of your Aurora MySQL DB cluster.

2. Locate the DB cluster parameter group configured for your cluster. Choose the link to open
your custom DB cluster parameter group, then choose Edit.

Setting up your Aurora cluster for Aurora machine learning 3374

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Aurora User Guide for Aurora

3. Find the aws_default_bedrock_role parameter in your custom DB cluster parameter
group.

4. In the Value field, enter the ARN of the IAM role.

5. Choose Save changes to save the setting.

6. Reboot the primary instance of your Aurora MySQL DB cluster so that this parameter setting
takes effect.

The IAM integration for Amazon Bedrock is complete. Continue setting up your Aurora MySQL
DB cluster to work with Amazon Bedrock by Granting database users access to Aurora machine
learning.

Setting up your Aurora MySQL DB cluster to use Amazon Comprehend

Aurora machine learning relies on AWS Identity and Access Management roles and policies to allow
your Aurora MySQL DB cluster to access and use the Amazon Comprehend services. The following
procedure automatically creates an IAM role and policy for your cluster so that it can use Amazon
Comprehend.

To set up your Aurora MySQL DB cluster to use Amazon Comprehend

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. Choose Databases from the navigation pane.

3. Choose the Aurora MySQL DB cluster that you want to connect to Amazon Comprehend
services.

4. Choose the Connectivity & security tab.

5. For Manage IAM roles section, choose Select a service to connect to this cluster.

6. Choose Amazon Comprehend from the menu, and then choose Connect service.

Setting up your Aurora cluster for Aurora machine learning 3375

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Aurora User Guide for Aurora

7. The Connect cluster to Amazon Comprehend dialog doesn't require any additional
information. However, you might see a message notifying you that the integration between
Aurora and Amazon Comprehend is currently in preview. Be sure to read the message before
you continue. You can choose Cancel if you prefer not to proceed.

8. Choose Connect service to complete the integration process.

Aurora creates the IAM role. It also creates the policy that allows the Aurora MySQL DB cluster
to use Amazon Comprehend services and attaches the policy to the role. When the process
completes, you can find the role in the Current IAM roles for this cluster list as shown in the
following image.

You need to add the ARN of this IAM role to the aws_default_comprehend_role
parameter of the custom DB cluster parameter group associated with your Aurora MySQL DB
cluster. If your Aurora MySQL DB cluster doesn't use a custom DB cluster parameter group, you
need to create one to use with your Aurora MySQL DB cluster to complete the integration. For
more information, see Working with DB cluster parameter groups.

After creating your custom DB cluster parameter group and associating it with your Aurora
MySQL DB cluster, you can continue following these steps.

Setting up your Aurora cluster for Aurora machine learning 3376

Amazon Aurora User Guide for Aurora

If your cluster uses a custom DB cluster parameter group, do as follows.

a. In the Amazon RDS Console, open the Configuration tab of your Aurora MySQL DB
cluster.

b. Locate the DB cluster parameter group configured for your cluster. Choose the link to
open your custom DB cluster parameter group, then choose Edit.

c. Find the aws_default_comprehend_role parameter in your custom DB cluster
parameter group.

d. In the Value field, enter the ARN of the IAM role.

e. Choose Save changes to save the setting. In the following image, you can find an
example.

Reboot the primary instance of your Aurora MySQL DB cluster so that this parameter setting
takes effect.

The IAM integration for Amazon Comprehend is complete. Continue setting up your Aurora MySQL
DB cluster to work with Amazon Comprehend by granting access to the appropriate database
users.

Setting up your Aurora MySQL DB cluster to use SageMaker

The following procedure automatically creates the IAM role and policy for your Aurora MySQL DB
cluster so that it can use SageMaker. Before trying to follow this procedure, be sure that you have
the SageMaker endpoint available so that you can enter it when needed. Typically, data scientists
on your team would do the work to produce an endpoint that you can use from your Aurora MySQL

Setting up your Aurora cluster for Aurora machine learning 3377

Amazon Aurora User Guide for Aurora

DB cluster. You can find such endpoints in the SageMaker console. In the navigation pane, open the
Inference menu and choose Endpoints. In the following image, you can find an example.

To set up your Aurora MySQL DB cluster to use SageMaker

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. Choose Databases from the Amazon RDS navigation menu and then choose the Aurora MySQL
DB cluster that you want to connect to SageMaker services.

3. Choose the Connectivity & security tab.

4. Scroll to the Manage IAM roles section, and then choose Select a service to connect to this
cluster. Choose SageMaker from the selector.

Setting up your Aurora cluster for Aurora machine learning 3378

https://console.aws.amazon.com/sagemaker/home
https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Aurora User Guide for Aurora

5. Choose Connect service.

6. In the Connect cluster to SageMaker dialog, enter the ARN of the SageMaker endpoint.

7. Aurora creates the IAM role. It also creates the policy that allows the Aurora MySQL DB cluster
to use SageMaker services and attaches the policy to the role. When the process completes,
you can find the role in the Current IAM roles for this cluster list.

8. Open the IAM console at https://console.aws.amazon.com/iam/.

9. Choose Roles from the Access management section of the AWS Identity and Access
Management navigation menu.

10. Find the role from among those listed. Its name uses the following pattern.

rds-sagemaker-your-cluster-name-role-auto-generated-digits

11. Open the role's Summary page and locate the ARN. Note the ARN or copy it using the copy
widget.

12. Open the Amazon RDS console at https://console.aws.amazon.com/rds/.

13. Choose your Aurora MySQL DB cluster, and then choose its Configuration tab.

14. Locate the DB cluster parameter group, and choose the link to open your custom DB cluster
parameter group. Find the aws_default_sagemaker_role parameter and enter the ARN of
the IAM role in the Value field and Save the setting.

15. Reboot the primary instance of your Aurora MySQL DB cluster so that this parameter setting
takes effect.

The IAM setup is now complete. Continue setting up your Aurora MySQL DB cluster to work with
SageMaker by granting access to the appropriate database users.

Setting up your Aurora cluster for Aurora machine learning 3379

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/rds/

Amazon Aurora User Guide for Aurora

If you want to use your SageMaker models for training rather than using pre-built SageMaker
components, you also need to add the Amazon S3 bucket to your Aurora MySQL DB cluster,
as outlined in the Setting up your Aurora MySQL DB cluster to use Amazon S3 for SageMaker
(Optional) that follows.

Setting up your Aurora MySQL DB cluster to use Amazon S3 for SageMaker (Optional)

To use SageMaker with your own models rather than using the pre-built components provided
by SageMaker, you need to set up an Amazon S3 bucket for the Aurora MySQL DB cluster to use.
For more information about creating an Amazon S3 bucket, see Creating a bucket in the Amazon
Simple Storage Service User Guide.

To set up your Aurora MySQL DB cluster to use an Amazon S3 bucket for SageMaker

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. Choose Databases from the Amazon RDS navigation menu and then choose the Aurora MySQL
DB cluster that you want to connect to SageMaker services.

3. Choose the Connectivity & security tab.

4. Scroll to the Manage IAM roles section, and then choose Select a service to connect to this
cluster. Choose Amazon S3 from the selector.

5. Choose Connect service.

6. In the Connect cluster to Amazon S3 dialog, enter the ARN of the Amazon S3 bucket, as
shown in the following image.

Setting up your Aurora cluster for Aurora machine learning 3380

https://docs.aws.amazon.com/AmazonS3/latest/userguide/create-bucket-overview.html
https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Aurora User Guide for Aurora

7. Choose Connect service to complete this process.

For more information about using Amazon S3 buckets with SageMaker, see Specify an Amazon S3
Bucket to Upload Training Datasets and Store Output Data in the Amazon SageMaker Developer
Guide. To learn more about working with SageMaker, see Get Started with Amazon SageMaker
Notebook Instancesin the in the Amazon SageMaker Developer Guide.

Granting database users access to Aurora machine learning

Database users must be granted permission to invoke Aurora machine learning functions. How you
grant permission depends on the version of MySQL that you use for your Aurora MySQL DB cluster,
as outlined in the following. How you do so depends on the version of MySQL that your Aurora
MySQL DB cluster uses.

• For Aurora MySQL version 3 (MySQL 8.0 compatible), database users must be granted the
appropriate database role. For more informations, see Using Roles in the MySQL 8.0 Reference
Manual.

• For Aurora MySQL version 2 (MySQL 5.7 compatible), database users are granted privileges. For
more information, see Access Control and Account Management in the MySQL 5.7 Reference
Manual.

The following table shows the roles and privileges that database users need to work with machine
learning functions.

Setting up your Aurora cluster for Aurora machine learning 3381

https://docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning-ex-bucket.html
https://docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning-ex-bucket.html
https://docs.aws.amazon.com/sagemaker/latest/dg/gs-console.html
https://docs.aws.amazon.com/sagemaker/latest/dg/gs-console.html
https://dev.mysql.com/doc/refman/8.0/en/roles.html
https://dev.mysql.com/doc/refman/5.7/en/access-control.html

Amazon Aurora User Guide for Aurora

Aurora MySQL version 3 (role) Aurora MySQL version 2 (privilege)

AWS_BEDROCK_ACCESS –

AWS_COMPREHEND_ACCESS INVOKE COMPREHEND

AWS_SAGEMAKER_ACCESS INVOKE SAGEMAKER

Granting access to Amazon Bedrock functions

To give database users access to Amazon Bedrock functions, use the following SQL statement:

GRANT AWS_BEDROCK_ACCESS TO user@domain-or-ip-address;

Database users also need to be granted EXECUTE permissions for the functions that you create for
working with Amazon Bedrock:

GRANT EXECUTE ON FUNCTION database_name.function_name TO user@domain-or-ip-address;

Finally, database users must have their roles set to AWS_BEDROCK_ACCESS:

SET ROLE AWS_BEDROCK_ACCESS;

The Amazon Bedrock functions are now available for use.

Granting access to Amazon Comprehend functions

To give database users access to Amazon Comprehend functions, use the appropriate statement for
your Aurora MySQL version.

• Aurora MySQL version 3 (MySQL 8.0 compatible)

GRANT AWS_COMPREHEND_ACCESS TO user@domain-or-ip-address;

• Aurora MySQL version 2 (MySQL 5.7 compatible)

GRANT INVOKE COMPREHEND ON *.* TO user@domain-or-ip-address;

Setting up your Aurora cluster for Aurora machine learning 3382

Amazon Aurora User Guide for Aurora

The Amazon Comprehend functions are now available for use. For usage examples, see Using
Amazon Comprehend with your Aurora MySQL DB cluster.

Granting access to SageMaker functions

To give database users access to SageMaker functions, use the appropriate statement for your
Aurora MySQL version.

• Aurora MySQL version 3 (MySQL 8.0 compatible)

GRANT AWS_SAGEMAKER_ACCESS TO user@domain-or-ip-address;

• Aurora MySQL version 2 (MySQL 5.7 compatible)

GRANT INVOKE SAGEMAKER ON *.* TO user@domain-or-ip-address;

Database users also need to be granted EXECUTE permissions for the functions that you create
for working with SageMaker. Suppose that you created two functions, db1.anomoly_score and
db2.company_forecasts, to invoke the services of your SageMaker endpoint. You grant execute
privileges as shown in the following example.

GRANT EXECUTE ON FUNCTION db1.anomaly_score TO user1@domain-or-ip-address1;
GRANT EXECUTE ON FUNCTION db2.company_forecasts TO user2@domain-or-ip-address2;

The SageMaker functions are now available for use. For usage examples, see Using SageMaker with
your Aurora MySQL DB cluster.

Using Amazon Bedrock with your Aurora MySQL DB cluster

To use Amazon Bedrock, you create a user-defined function (UDF) in your Aurora MySQL database
that invokes a model. For more information, see Supported models in Amazon Bedrock in the
Amazon Bedrock User Guide.

A UDF uses the following syntax:

CREATE FUNCTION function_name (argument type)
 [DEFINER = user]
 RETURNS mysql_data_type
 [SQL SECURITY {DEFINER | INVOKER}]
 ALIAS AWS_BEDROCK_INVOKE_MODEL

Using Amazon Bedrock with your Aurora MySQL DB cluster 3383

https://docs.aws.amazon.com/bedrock/latest/userguide/models-supported.html

Amazon Aurora User Guide for Aurora

 MODEL ID 'model_id'
 [CONTENT_TYPE 'content_type']
 [ACCEPT 'content_type']
 [TIMEOUT_MS timeout_in_milliseconds];

• Amazon Bedrock functions don't support RETURNS JSON. You can use CONVERT or CAST to
convert from TEXT to JSON if needed.

• If you don't specify CONTENT_TYPE or ACCEPT, the default is application/json.

• If you don't specify TIMEOUT_MS, the value for aurora_ml_inference_timeout is used.

For example, the following UDF invokes the Amazon Titan Text Express model:

CREATE FUNCTION invoke_titan (request_body TEXT)
 RETURNS TEXT
 ALIAS AWS_BEDROCK_INVOKE_MODEL
 MODEL ID 'amazon.titan-text-express-v1'
 CONTENT_TYPE 'application/json'
 ACCEPT 'application/json';

To allow a DB user to use this function, use the following SQL command:

GRANT EXECUTE ON FUNCTION database_name.invoke_titan TO user@domain-or-ip-address;

Then the user can call invoke_titan like any other function, as shown in the following example.
Make sure to format the request body according to the Amazon Titan text models.

CREATE TABLE prompts (request varchar(1024));
INSERT INTO prompts VALUES (
'{
 "inputText": "Generate synthetic data for daily product sales in various categories
 - include row number, product name, category, date of sale and price. Produce output
 in JSON format. Count records and ensure there are no more than 5.",
 "textGenerationConfig": {
 "maxTokenCount": 1024,
 "stopSequences": [],
 "temperature":0,
 "topP":1
 }
}');

Using Amazon Bedrock with your Aurora MySQL DB cluster 3384

https://docs.aws.amazon.com/bedrock/latest/userguide/model-parameters-titan-text.html

Amazon Aurora User Guide for Aurora

SELECT invoke_titan(request) FROM prompts;

{"inputTextTokenCount":44,"results":[{"tokenCount":296,"outputText":"
```tabular-data-json
{ 
    "rows": [ 
        { 
            "Row Number": "1", 
            "Product Name": "T-Shirt", 
            "Category": "Clothing", 
            "Date of Sale": "2024-01-01", 
            "Price": "$20" 
        }, 
        { 
            "Row Number": "2", 
            "Product Name": "Jeans", 
            "Category": "Clothing", 
            "Date of Sale": "2024-01-02", 
            "Price": "$30" 
        }, 
        { 
            "Row Number": "3", 
            "Product Name": "Hat", 
            "Category": "Accessories", 
            "Date of Sale": "2024-01-03", 
            "Price": "$15" 
        }, 
        { 
            "Row Number": "4", 
            "Product Name": "Watch", 
            "Category": "Accessories", 
            "Date of Sale": "2024-01-04", 
            "Price": "$40" 
        }, 
        { 
            "Row Number": "5", 
            "Product Name": "Phone Case", 
            "Category": "Accessories", 
            "Date of Sale": "2024-01-05", 
            "Price": "$25" 
        } 
    ]
}

Using Amazon Bedrock with your Aurora MySQL DB cluster 3385



Amazon Aurora User Guide for Aurora

```","completionReason":"FINISH"}]}

For other models that you use, make sure to format the request body appropriately for them. For
more information, see Inference parameters for foundation models in the Amazon Bedrock User
Guide.

Using Amazon Comprehend with your Aurora MySQL DB cluster

For Aurora MySQL, Aurora machine learning provides the following two built-in functions
for working with Amazon Comprehend and your text data. You provide the text to analyze
(input_data) and specify the language (language_code).

aws_comprehend_detect_sentiment

This function identifies the text as having a positive, negative, neutral, or mixed emotional
posture. This function's reference documentation is as follows.

aws_comprehend_detect_sentiment(
 input_text,
 language_code
 [,max_batch_size]
)

To learn more, see Sentiment in the Amazon Comprehend Developer Guide.

aws_comprehend_detect_sentiment_confidence

This function measures the confidence level of the sentiment detected for a given text. It
returns a value (type, double) that indicates the confidence of the sentiment assigned by the
aws_comprehend_detect_sentiment function to the text. Confidence is a statistical metric
between 0 and 1. The higher the confidence level, the more weight you can give the result. A
summary of the function's documentation is as follows.

aws_comprehend_detect_sentiment_confidence(
 input_text,
 language_code
 [,max_batch_size]
)

Using Amazon Comprehend with your Aurora MySQL DB cluster 3386

https://docs.aws.amazon.com/bedrock/latest/userguide/model-parameters.html
https://docs.aws.amazon.com/comprehend/latest/dg/how-sentiment.html

Amazon Aurora User Guide for Aurora

In both functions (aws_comprehend_detect_sentiment_confidence,
aws_comprehend_detect_sentiment) the max_batch_size uses a default value of 25 if none
is specified. Batch size should always be greater than 0. You can use max_batch_size to tune
the performance of the Amazon Comprehend function calls. A large batch size trades off faster
performance for greater memory usage on the Aurora MySQL DB cluster. For more information, see
Performance considerations for using Aurora machine learning with Aurora MySQL.

For more information about parameters and return types for the sentiment detection functions in
Amazon Comprehend, see DetectSentiment

Example Example: A simple query using Amazon Comprehend functions

Here's an example of a simple query that invokes these two functions to see how happy your
customers are with your support team. Suppose you have a database table (support) that stores
customer feedback after each request for help. This example query applies both built-in functions
to the text in the feedback column of the table and outputs the results. The confidence values
returned by the function are doubles between 0.0 and 1.0. For more readable output, this query
rounds the results to 6 decimal points. For easier comparisons, this query also sorts the results in
descending order, from the result having the highest degree of confidence, first.

SELECT feedback AS 'Customer feedback',
 aws_comprehend_detect_sentiment(feedback, 'en') AS Sentiment,
 ROUND(aws_comprehend_detect_sentiment_confidence(feedback, 'en'), 6)
 AS Confidence FROM support
 ORDER BY Confidence DESC;
+--+-----------+------------+
| Customer feedback | Sentiment | Confidence |
+--+-----------+------------+
| Thank you for the excellent customer support! | POSITIVE | 0.999771 |
| The latest version of this product stinks! | NEGATIVE | 0.999184 |
| Your support team is just awesome! I am blown away. | POSITIVE | 0.997774 |
| Your product is too complex, but your support is great. | MIXED | 0.957958 |
| Your support tech helped me in fifteen minutes. | POSITIVE | 0.949491 |
| My problem was never resolved! | NEGATIVE | 0.920644 |
| When will the new version of this product be released? | NEUTRAL | 0.902706 |
| I cannot stand that chatbot. | NEGATIVE | 0.895219 |
| Your support tech talked down to me. | NEGATIVE | 0.868598 |
| It took me way too long to get a real person. | NEGATIVE | 0.481805 |
+--+-----------+------------+
 10 rows in set (0.1898 sec)

Using Amazon Comprehend with your Aurora MySQL DB cluster 3387

https://docs.aws.amazon.com/comprehend/latest/dg/API_DetectSentiment.html

Amazon Aurora User Guide for Aurora

Example Example: Determining the average sentiment for text above a specific confidence level

A typical Amazon Comprehend query looks for rows where the sentiment is a certain value, with a
confidence level greater than a certain number. For example, the following query shows how you
can determine the average sentiment of documents in your database. The query considers only
documents where the confidence of the assessment is at least 80%.

SELECT AVG(CASE aws_comprehend_detect_sentiment(productTable.document, 'en')
 WHEN 'POSITIVE' THEN 1.0
 WHEN 'NEGATIVE' THEN -1.0
 ELSE 0.0 END) AS avg_sentiment, COUNT(*) AS total
FROM productTable
WHERE productTable.productCode = 1302 AND
 aws_comprehend_detect_sentiment_confidence(productTable.document, 'en') >= 0.80;

Using SageMaker with your Aurora MySQL DB cluster

To use SageMaker functionality from your Aurora MySQL DB cluster, you need to create stored
functions that embed your calls to the SageMaker endpoint and its inference features. You do so
by using MySQL's CREATE FUNCTION in generally the same way that you do for other processing
tasks on your Aurora MySQL DB cluster.

To use models deployed in SageMaker for inference, you create user-defined functions using
MySQL data definition language (DDL) statements for stored functions. Each stored function
represents the SageMaker endpoint hosting the model. When you define such a function, you
specify the input parameters to the model, the specific SageMaker endpoint to invoke, and the
return type. The function returns the inference computed by the SageMaker endpoint after
applying the model to the input parameters.

All Aurora machine learning stored functions return numeric types or VARCHAR. You can use any
numeric type except BIT. Other types, such as JSON, BLOB, TEXT, and DATE aren't allowed.

The following example shows the CREATE FUNCTION syntax for working with SageMaker.

CREATE FUNCTION function_name (
 arg1 type1,
 arg2 type2, ...)
 [DEFINER = user]
 RETURNS mysql_type
 [SQL SECURITY { DEFINER | INVOKER }]
 ALIAS AWS_SAGEMAKER_INVOKE_ENDPOINT

Using SageMaker with your Aurora MySQL DB cluster 3388

Amazon Aurora User Guide for Aurora

 ENDPOINT NAME 'endpoint_name'
 [MAX_BATCH_SIZE max_batch_size];

This is an extension of the regular CREATE FUNCTION DDL statement. In the CREATE FUNCTION
statement that defines the SageMaker function, you don't specify a function body. Instead, you
specify the keyword ALIAS where the function body usually goes. Currently, Aurora machine
learning only supports aws_sagemaker_invoke_endpoint for this extended syntax. You must
specify the endpoint_name parameter. An SageMaker endpoint can have different characteristics
for each model.

Note

For more information about CREATE FUNCTION, see CREATE PROCEDURE and CREATE
FUNCTION Statements in the MySQL 8.0 Reference Manual.

The max_batch_size parameter is optional. By default, maximum batch size is 10,000. You can
use this parameter in your function to restrict the maximum number of inputs processed in a
batched request to SageMaker. The max_batch_size parameter can help to avoid an error caused
by inputs that are too large, or to make SageMaker return a response more quickly. This parameter
affects the size of an internal buffer used for SageMaker request processing. Specifying too large a
value for max_batch_size might cause substantial memory overhead on your DB instance.

We recommend that you leave the MANIFEST setting at its default value of OFF. Although you
can use the MANIFEST ON option, some SageMaker features can't directly use the CSV exported
with this option. The manifest format is not compatible with the expected manifest format from
SageMaker.

You create a separate stored function for each of your SageMaker models. This mapping of
functions to models is required because an endpoint is associated with a specific model, and each
model accepts different parameters. Using SQL types for the model inputs and the model output
type helps to avoid type conversion errors passing data back and forth between the AWS services.
You can control who can apply the model. You can also control the runtime characteristics by
specifying a parameter representing the maximum batch size.

Currently, all Aurora machine learning functions have the NOT DETERMINISTIC property. If
you don't specify that property explicitly, Aurora sets NOT DETERMINISTIC automatically. This
requirement is because the SageMaker model can be changed without any notification to the

Using SageMaker with your Aurora MySQL DB cluster 3389

https://dev.mysql.com/doc/refman/8.0/en/create-procedure.html
https://dev.mysql.com/doc/refman/8.0/en/create-procedure.html

Amazon Aurora User Guide for Aurora

database. If that happens, calls to an Aurora machine learning function might return different
results for the same input within a single transaction.

You can't use the characteristics CONTAINS SQL, NO SQL, READS SQL DATA, or MODIFIES SQL
DATA in your CREATE FUNCTION statement.

Following is an example usage of invoking an SageMaker endpoint to detect anomalies. There is an
SageMaker endpoint random-cut-forest-model. The corresponding model is already trained
by the random-cut-forest algorithm. For each input, the model returns an anomaly score. This
example shows the data points whose score is greater than 3 standard deviations (approximately
the 99.9th percentile) from the mean score.

CREATE FUNCTION anomaly_score(value real) returns real
 alias aws_sagemaker_invoke_endpoint endpoint name 'random-cut-forest-model-demo';

set @score_cutoff = (select avg(anomaly_score(value)) + 3 * std(anomaly_score(value))
 from nyc_taxi);

select *, anomaly_detection(value) score from nyc_taxi
 where anomaly_detection(value) > @score_cutoff;

Character set requirement for SageMaker functions that return strings

We recommend specifying a character set of utf8mb4 as the return type for your SageMaker
functions that return string values. If that isn't practical, use a large enough string length for the
return type to hold a value represented in the utf8mb4 character set. The following example
shows how to declare the utf8mb4 character set for your function.

CREATE FUNCTION my_ml_func(...) RETURNS VARCHAR(5) CHARSET utf8mb4 ALIAS ...

Currently, each SageMaker function that returns a string uses the character set utf8mb4 for the
return value. The return value uses this character set even if your SageMaker function declares a
different character set for its return type implicitly or explicitly. If your SageMaker function declares
a different character set for the return value, the returned data might be silently truncated if you
store it in a table column that isn't long enough. For example, a query with a DISTINCT clause
creates a temporary table. Thus, the SageMaker function result might be truncated due to the way
strings are handled internally during a query.

Using SageMaker with your Aurora MySQL DB cluster 3390

Amazon Aurora User Guide for Aurora

Exporting data to Amazon S3 for SageMaker model training (Advanced)

We recommend that you get started with Aurora machine learning and SageMaker by using
some of the provided algorithms, and that the data scientists on your team provide you with the
SageMaker endpoints that you can use with your SQL code. In the following, you can find minimal
information about using your own Amazon S3 bucket with your your own SageMaker models and
your Aurora MySQL DB cluster.

Machine learning consists of two major steps: training, and inference. To train SageMaker models,
you export data to an Amazon S3 bucket. The Amazon S3 bucket is used by a Jupyter SageMaker
notebook instance to train your model before it is deployed. You can use the SELECT INTO
OUTFILE S3 statement to query data from an Aurora MySQL DB cluster and save it directly into
text files stored in an Amazon S3 bucket. Then the notebook instance consumes the data from the
Amazon S3 bucket for training.

Aurora machine learning extends the existing SELECT INTO OUTFILE syntax in Aurora MySQL to
export data to CSV format. The generated CSV file can be directly consumed by models that need
this format for training purposes.

SELECT * INTO OUTFILE S3 's3_uri' [FORMAT {CSV|TEXT} [HEADER]] FROM table_name;

The extension supports the standard CSV format.

• Format TEXT is the same as the existing MySQL export format. This is the default format.

• Format CSV is a newly introduced format that follows the specification in RFC-4180.

• If you specify the optional keyword HEADER, the output file contains one header line. The labels
in the header line correspond to the column names from the SELECT statement.

• You can still use the keywords CSV and HEADER as identifiers.

The extended syntax and grammar of SELECT INTO is now as follows:

INTO OUTFILE S3 's3_uri'
[CHARACTER SET charset_name]
[FORMAT {CSV|TEXT} [HEADER]]
[{FIELDS | COLUMNS}
 [TERMINATED BY 'string']
 [[OPTIONALLY] ENCLOSED BY 'char']
 [ESCAPED BY 'char']

Using SageMaker with your Aurora MySQL DB cluster 3391

https://tools.ietf.org/html/rfc4180

Amazon Aurora User Guide for Aurora

]
[LINES
 [STARTING BY 'string']
 [TERMINATED BY 'string']
]

Performance considerations for using Aurora machine learning with
Aurora MySQL

The Amazon Bedrock, Amazon Comprehend, and SageMaker services do most of the work when
invoked by an Aurora machine learning function. That means that you can scale those resources
as needed, independently. For your Aurora MySQL DB cluster, you can make your function calls
as efficient as possible. Following, you can find some performance considerations to note when
working with Aurora machine learning.

Model and prompt

Performance when using Amazon Bedrock is highly dependent on the model and prompt that you
use. Choose a model and prompt that are optimal for your use case.

Query cache

The Aurora MySQL query cache doesn't work for Aurora machine learning functions. Aurora MySQL
doesn't store query results in the query cache for any SQL statements that call Aurora machine
learning functions.

Batch optimization for Aurora machine learning function calls

The main Aurora machine learning performance aspect that you can influence from your Aurora
cluster is the batch mode setting for calls to the Aurora machine learning stored functions.
Machine learning functions typically require substantial overhead, making it impractical to call an
external service separately for each row. Aurora machine learning can minimize this overhead by
combining the calls to the external Aurora machine learning service for many rows into a single
batch. Aurora machine learning receives the responses for all the input rows, and delivers the
responses, one row at a time, to the query as it runs. This optimization improves the throughput
and latency of your Aurora queries without changing the results.

When you create an Aurora stored function that's connected to an SageMaker endpoint, you define
the batch size parameter. This parameter influences how many rows are transferred for every

Performance considerations 3392

Amazon Aurora User Guide for Aurora

underlying call to SageMaker. For queries that process large numbers of rows, the overhead to
make a separate SageMaker call for each row can be substantial. The larger the data set processed
by the stored procedure, the larger you can make the batch size.

If the batch mode optimization can be applied to an SageMaker function, you can tell by checking
the query plan produced by the EXPLAIN PLAN statement. In this case, the extra column in the
execution plan includes Batched machine learning. The following example shows a call to an
SageMaker function that uses batch mode.

mysql> CREATE FUNCTION anomaly_score(val real) returns real alias
 aws_sagemaker_invoke_endpoint endpoint name 'my-rcf-model-20191126';
Query OK, 0 rows affected (0.01 sec)

mysql> explain select timestamp, value, anomaly_score(value) from nyc_taxi;
+----+-------------+----------+------------+------+---------------+------+---------
+------+------+----------+--------------------------+
| id | select_type | table | partitions | type | possible_keys | key | key_len |
 ref | rows | filtered | Extra |
+----+-------------+----------+------------+------+---------------+------+---------
+------+------+----------+--------------------------+
| 1 | SIMPLE | nyc_taxi | NULL | ALL | NULL | NULL | NULL |
 NULL | 48 | 100.00 | Batched machine learning |
+----+-------------+----------+------------+------+---------------+------+---------
+------+------+----------+--------------------------+
1 row in set, 1 warning (0.01 sec)

When you call one of the built-in Amazon Comprehend functions, you can control the batch size
by specifying the optional max_batch_size parameter. his parameter restricts the maximum
number of input_text values processed in each batch. By sending multiple items at once,
it reduces the number of round trips between Aurora and Amazon Comprehend. Limiting the
batch size is useful in situations such as a query with a LIMIT clause. By using a small value for
max_batch_size, you can avoid invoking Amazon Comprehend more times than you have input
texts.

The batch optimization for evaluating Aurora machine learning functions applies in the following
cases:

• Function calls within the select list or the WHERE clause of SELECT statements

• Function calls in the VALUES list of INSERT and REPLACE statements

• SageMaker functions in SET values in UPDATE statements:

Performance considerations 3393

Amazon Aurora User Guide for Aurora

INSERT INTO MY_TABLE (col1, col2, col3) VALUES
 (ML_FUNC(1), ML_FUNC(2), ML_FUNC(3)),
 (ML_FUNC(4), ML_FUNC(5), ML_FUNC(6));
UPDATE MY_TABLE SET col1 = ML_FUNC(col2), SET col3 = ML_FUNC(col4) WHERE ...;

Monitoring Aurora machine learning

You can monitor Aurora machine learning batch operations by querying several global variables, as
shown in the following example.

show status like 'Aurora_ml%';

You can reset the status variables by using a FLUSH STATUS statement. Thus, all of the figures
represent totals, averages, and so on, since the last time the variable was reset.

Aurora_ml_logical_request_cnt

The number of logical requests that the DB instance has evaluated to be sent to the Aurora
machine learning services since the last status reset. Depending on whether batching has been
used, this value can be higher than Aurora_ml_actual_request_cnt.

Aurora_ml_logical_response_cnt

The aggregate response count that Aurora MySQL receives from the Aurora machine learning
services across all queries run by users of the DB instance.

Aurora_ml_actual_request_cnt

The aggregate request count that Aurora MySQL makes to the Aurora machine learning services
across all queries run by users of the DB instance.

Aurora_ml_actual_response_cnt

The aggregate response count that Aurora MySQL receives from the Aurora machine learning
services across all queries run by users of the DB instance.

Aurora_ml_cache_hit_cnt

The aggregate internal cache hit count that Aurora MySQL receives from the Aurora machine
learning services across all queries run by users of the DB instance.

Monitoring 3394

Amazon Aurora User Guide for Aurora

Aurora_ml_retry_request_cnt

The number of retried requests that the DB instance has sent to the Aurora machine learning
services since the last status reset.

Aurora_ml_single_request_cnt

The aggregate count of Aurora machine learning functions that are evaluated by non-batch
mode across all queries run by users of the DB instance.

For information about monitoring the performance of the SageMaker operations called from
Aurora machine learning functions, see Monitor Amazon SageMaker.

Using Amazon Aurora machine learning with Aurora
PostgreSQL

By using Amazon Aurora machine learning with your Aurora PostgreSQL DB cluster, you can use
Amazon Comprehend or Amazon SageMaker or Amazon Bedrock, depending on your needs. These
services each support specific machine learning use cases.

Aurora machine learning is supported in certain AWS Regions and for specific versions of Aurora
PostgreSQL only. Before trying to set up Aurora machine learning, check availability for your
Aurora PostgreSQL version and your Region. For details, see Aurora machine learning with Aurora
PostgreSQL.

Topics

• Requirements for using Aurora machine learning with Aurora PostgreSQL

• Supported features and limitations of Aurora machine learning with Aurora PostgreSQL

• Setting up your Aurora PostgreSQL DB cluster to use Aurora machine learning

• Using Amazon Bedrock with your Aurora PostgreSQL DB cluster

• Using Amazon Comprehend with your Aurora PostgreSQL DB cluster

• Using SageMaker with your Aurora PostgreSQL DB cluster

• Exporting data to Amazon S3 for SageMaker model training (Advanced)

• Performance considerations for using Aurora machine learning with Aurora PostgreSQL

• Monitoring Aurora machine learning

Using Aurora machine learning with Aurora PostgreSQL 3395

https://docs.aws.amazon.com/sagemaker/latest/dg/monitoring-overview.html

Amazon Aurora User Guide for Aurora

Requirements for using Aurora machine learning with Aurora
PostgreSQL

AWS machine learning services are managed services that are set up and run in their own
production environments. Aurora machine learning supports integration with Amazon
Comprehend, SageMaker, and Amazon Bedrock. Before trying to set up your Aurora PostgreSQL
DB cluster to use Aurora machine learning, be sure you understand the following requirements and
prerequisites.

• The Amazon Comprehend, SageMaker, and Amazon Bedrock services must be running in the
same AWS Region as your Aurora PostgreSQL DB cluster. You can't use Amazon Comprehend
or SageMaker or Amazon Bedrock services from an Aurora PostgreSQL DB cluster in a different
Region.

• If your Aurora PostgreSQL DB cluster is in a different virtual public cloud (VPC) based on the
Amazon VPC service than your Amazon Comprehend and SageMaker services, the VPC's Security
group needs to allow outbound connections to the target Aurora machine learning service. For
more information, see Enabling network communication from Amazon Aurora MySQL to other
AWS services.

• For SageMaker, the machine learning components that you want to use for inferences must be
set up and ready to use. During the configuration process for your Aurora PostgreSQL DB cluster,
you need to have the Amazon Resource Name (ARN) of the SageMaker endpoint available. The
data scientists on your team are likely best able to handle working with SageMaker to prepare
the models and handle the other such tasks. To get started with Amazon SageMaker, see Get
Started with Amazon SageMaker. For more information about inferences and endpoints, see
Real-time inference.

• For Amazon Bedrock, you need to have the model ID of the Bedrock models that you want to
use for inferences available during the configuration process of your Aurora PostgreSQL DB
cluster. The data scientists on your team are likely best able to work with Bedrock to decide
which models to use, fine tune them if needed and handle other such tasks. To get started with
Amazon Bedrock, see How to setup Bedrock.

• Amazon Bedrock users need to request access to models before they are available for use. If you
want to add additional models for text, chat, and image generation, you need to request access
to models in Amazon Bedrock. For more information, see Model access.

Requirements for using Aurora machine learning 3396

https://docs.aws.amazon.com/sagemaker/latest/dg/gs.html
https://docs.aws.amazon.com/sagemaker/latest/dg/gs.html
https://docs.aws.amazon.com/sagemaker/latest/dg/realtime-endpoints.html
https://docs.aws.amazon.com/bedrock/latest/userguide/setting-up.html
https://docs.aws.amazon.com/bedrock/latest/userguide/model-access.html

Amazon Aurora User Guide for Aurora

Supported features and limitations of Aurora machine learning with
Aurora PostgreSQL

Aurora machine learning supports any SageMaker endpoint that can read and write the comma-
separated value (CSV) format through a ContentType value of text/csv. The built-in SageMaker
algorithms that currently accept this format are the following.

• Linear Learner

• Random Cut Forest

• XGBoost

To learn more about these algorithms, see Choose an Algorithm in the Amazon SageMaker
Developer Guide.

When using Amazon Bedrock with Aurora machine learning, the following limitations apply:

• The user-defined functions (UDFs) provide a native way to interact with Amazon Bedrock. The
UDFs don't have specific request or response requirements, so they can use any model.

• You can use UDFs to build any work flow desired. For example, you can combine base primitives
such as pg_cron to run a query, fetch data, generate inferences, and write to tables to serve
queries directly.

• UDFs don't support batched or parallel calls.

• The Aurora Machine Learning extension doesn't support vector interfaces. As part of the
extension, a function is available to output the embeddings of model’s response in the
float8[] format to store those embeddings in Aurora. For more information on the usage of
float8[], see Using Amazon Bedrock with your Aurora PostgreSQL DB cluster.

Setting up your Aurora PostgreSQL DB cluster to use Aurora machine
learning

For Aurora machine learning to work with your Aurora PostgreSQL DB cluster, you need to create
an AWS Identity and Access Management (IAM) role for each of the services that you want to use.
The IAM role allows your Aurora PostgreSQL DB cluster to use the Aurora machine learning service
on the cluster's behalf. You also need to install the Aurora machine learning extension. In the
following topics, you can find setup procedures for each of these Aurora machine learning services.

Supported features and limitations 3397

https://docs.aws.amazon.com/sagemaker/latest/dg/algorithms-choose.html

Amazon Aurora User Guide for Aurora

Topics

• Setting up Aurora PostgreSQL to use Amazon Bedrock

• Setting up Aurora PostgreSQL to use Amazon Comprehend

• Setting up Aurora PostgreSQL to use Amazon SageMaker

• Setting up Aurora PostgreSQL to use Amazon S3 for SageMaker (Advanced)

• Installing the Aurora machine learning extension

Setting up Aurora PostgreSQL to use Amazon Bedrock

In the procedure following, you first create the IAM role and policy that gives your Aurora
PostgreSQL permission to use Amazon Bedrock on the cluster's behalf. You then attach the policy
to an IAM role that your Aurora PostgreSQL DB cluster uses to work with Amazon Bedrock. For
simplicity's sake, this procedure uses the AWS Management Console to complete all tasks.

To set up your Aurora PostgreSQL DB cluster to use Amazon Bedrock

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. Open the IAM console at https://console.aws.amazon.com/iam/.

3. Choose Policies (under Access management) on the AWS Identity and Access Management
(IAM) Console menu.

a. Choose Create policy. In the Visual editor page, choose Service and then enter Bedrock
in the Select a service field. Expand the Read access level. Choose InvokeModel from the
Amazon Bedrock read settings.

b. Choose the Foundation/Provisioned model you want to grant read access via the policy.

Setting up your Aurora DB cluster to use Aurora machine learning 3398

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

Amazon Aurora User Guide for Aurora

4. Choose Next: Tags and define any tags (this is optional). Choose Next: Review. Enter a Name
for the policy and description, as shown in the image.

Setting up your Aurora DB cluster to use Aurora machine learning 3399

Amazon Aurora User Guide for Aurora

5. Choose Create policy. The Console displays an alert when the policy has been saved. You can
find it in the list of Policies.

6. Choose Roles (under Access management) on the IAM Console.

7. Choose Create role.

8. On the Select trusted entity page, choose the AWS service tile, and then choose RDS to open
the selector.

9. Choose RDS – Add Role to Database.

Setting up your Aurora DB cluster to use Aurora machine learning 3400

Amazon Aurora User Guide for Aurora

10. Choose Next. On the Add permissions page, find the policy that you created in the previous
step and choose it from among those listed. Choose Next.

11. Next: Review. Enter a name for the IAM role and a description.

12. Open the Amazon RDS console at https://console.aws.amazon.com/rds/.

13. Navigate to the AWS Region where your Aurora PostgreSQL DB cluster is located.

14. In the navigation pane, choose Databases, and then choose the Aurora PostgreSQL DB cluster
that you want to use with Bedrock.

15. Choose the Connectivity & security tab and scroll to find the Manage IAM roles section of the
page. From the Add IAM roles to this cluster selector, choose the role that you created in the
previous steps. In the Feature selector, choose Bedrock, and then choose Add role.

The role (with its policy) are associated with the Aurora PostgreSQL DB cluster. When the process
completes, the role is listed in the Current IAM roles for this cluster listing, as shown following.

Setting up your Aurora DB cluster to use Aurora machine learning 3401

https://console.aws.amazon.com/rds/

Amazon Aurora User Guide for Aurora

The IAM setup for Amazon Bedrock is complete. Continue setting up your Aurora PostgreSQL to
work with Aurora machine learning by installing the extension as detailed in Installing the Aurora
machine learning extension

Setting up Aurora PostgreSQL to use Amazon Comprehend

In the procedure following, you first create the IAM role and policy that gives your Aurora
PostgreSQL permission to use Amazon Comprehend on the cluster's behalf. You then attach
the policy to an IAM role that your Aurora PostgreSQL DB cluster uses to work with Amazon
Comprehend For simplicity's sake, this procedure uses the AWS Management Console to complete
all tasks.

To set up your Aurora PostgreSQL DB cluster to use Amazon Comprehend

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. Open the IAM console at https://console.aws.amazon.com/iam/.

3. Choose Policies (under Access management) on the AWS Identity and Access Management
(IAM) Console menu.

Setting up your Aurora DB cluster to use Aurora machine learning 3402

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

Amazon Aurora User Guide for Aurora

4. Choose Create policy. In the Visual editor page, choose Service and then enter Comprehend
in the Select a service field. Expand the Read access level. Choose BatchDetectSentiment and
DetectSentiment from the Amazon Comprehend read settings.

5. Choose Next: Tags and define any tags (this is optional). Choose Next: Review. Enter a Name
for the policy and description, as shown in the image.

Setting up your Aurora DB cluster to use Aurora machine learning 3403

Amazon Aurora User Guide for Aurora

6. Choose Create policy. The Console displays an alert when the policy has been saved. You can
find it in the list of Policies.

7. Choose Roles (under Access management) on the IAM Console.

8. Choose Create role.

9. On the Select trusted entity page, choose the AWS service tile, and then choose RDS to open
the selector.

10. Choose RDS – Add Role to Database.

Setting up your Aurora DB cluster to use Aurora machine learning 3404

Amazon Aurora User Guide for Aurora

11. Choose Next. On the Add permissions page, find the policy that you created in the previous
step and choose it from among those listed. Choose Next

12. Next: Review. Enter a name for the IAM role and a description.

13. Open the Amazon RDS console at https://console.aws.amazon.com/rds/.

14. Navigate to the AWS Region where your Aurora PostgreSQL DB cluster is located.

15. In the navigation pane, choose Databases, and then choose the Aurora PostgreSQL DB cluster
that you want to use with Amazon Comprehend.

Setting up your Aurora DB cluster to use Aurora machine learning 3405

https://console.aws.amazon.com/rds/

Amazon Aurora User Guide for Aurora

16. Choose the Connectivity & security tab and scroll to find the Manage IAM roles section of the
page. From the Add IAM roles to this cluster selector, choose the role that you created in the
previous steps. In the Feature selector, choose Comprehend, and then choose Add role.

The role (with its policy) are associated with the Aurora PostgreSQL DB cluster. When the process
completes, the role is listed in the Current IAM roles for this cluster listing, as shown following.

The IAM setup for Amazon Comprehend is complete. Continue setting up your Aurora PostgreSQL
to work with Aurora machine learning by installing the extension as detailed in Installing the
Aurora machine learning extension

Setting up Aurora PostgreSQL to use Amazon SageMaker

Before you can create the IAM policy and role for your Aurora PostgreSQL DB cluster, you need to
have your SageMaker model setup and your endpoint available.

To set up your Aurora PostgreSQL DB cluster to use SageMaker

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. Choose Policies (under Access management) on the AWS Identity and Access Management
(IAM) Console menu, and then choose Create policy. In the Visual editor, choose SageMaker
for the Service. For Actions, open the Read selector (under Access level) and choose
InvokeEndpoint. When you this, a warning icon displays.

Setting up your Aurora DB cluster to use Aurora machine learning 3406

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

Amazon Aurora User Guide for Aurora

3. Open the Resources selector and choose the Add ARN to restrict access link under the Specify
endpoint resource ARN for the InvokeEndpoint action.

4. Enter the AWS Region of your SageMaker resources and the name of your endpoint. Your AWS
account is prefilled.

5. Choose Add to save. Choose Next: Tags and Next: Review to get to the last page of the policy
creation process.

6. Enter a Name and Description for this policy, and then choose Create policy. The policy is
created and is added to the Policies list. You see an alert in the Console as this occurs.

7. On the IAM Console, choose Roles.

8. Choose Create role.

9. On the Select trusted entity page, choose the AWS service tile, and then choose RDS to open
the selector.

10. Choose RDS – Add Role to Database.

11. Choose Next. On the Add permissions page, find the policy that you created in the previous
step and choose it from among those listed. Choose Next

Setting up your Aurora DB cluster to use Aurora machine learning 3407

Amazon Aurora User Guide for Aurora

12. Next: Review. Enter a name for the IAM role and a description.

13. Open the Amazon RDS console at https://console.aws.amazon.com/rds/.

14. Navigate to the AWS Region where your Aurora PostgreSQL DB cluster is located.

15. In the navigation pane, choose Databases, and then choose the Aurora PostgreSQL DB cluster
that you want to use with SageMaker.

16. Choose the Connectivity & security tab and scroll to find the Manage IAM roles section of the
page. From the Add IAM roles to this cluster selector, choose the role that you created in the
previous steps. In the Feature selector, choose SageMaker, and then choose Add role.

The role (with its policy) are associated with the Aurora PostgreSQL DB cluster. When the process
completes, the role is listed in the Current IAM roles for this cluster listing.

The IAM setup for SageMaker is complete. Continue setting up your Aurora PostgreSQL to work
with Aurora machine learning by installing the extension as detailed in Installing the Aurora
machine learning extension.

Setting up Aurora PostgreSQL to use Amazon S3 for SageMaker (Advanced)

To use SageMaker with your own models rather than using the pre-built components provided by
SageMaker, you need to set up an Amazon Simple Storage Service (Amazon S3) bucket for Aurora
PostgreSQL DB cluster to use. This is an advanced topic, and isn't fully documented in this Amazon
Aurora User Guide. The general process is the same as for integrating support for SageMaker, as
follows.

1. Create the IAM policy and role for Amazon S3.

2. Add the IAM role and the Amazon S3 import or export as a feature on the Connectivity &
security tab of your Aurora PostgreSQL DB cluster.

3. Add the ARN of the role to your custom DB cluster parameter group for your Aurora DB cluster.

For basic usage information, see Exporting data to Amazon S3 for SageMaker model training
(Advanced).

Installing the Aurora machine learning extension

The Aurora machine learning extensions aws_ml 1.0 provides two functions that you can use
to invoke Amazon Comprehend, SageMaker services and aws_ml 2.0 provides two additional

Setting up your Aurora DB cluster to use Aurora machine learning 3408

https://console.aws.amazon.com/rds/

Amazon Aurora User Guide for Aurora

functions that you can use to invoke Amazon Bedrock services. Installing these extensions on your
Aurora PostgreSQL DB cluster also creates an administrative role for the feature.

Note

Using these functions depends on having the IAM setup for the Aurora machine learning
service (Amazon Comprehend, SageMaker, Amazon Bedrock) complete, as detailed in
Setting up your Aurora PostgreSQL DB cluster to use Aurora machine learning.

• aws_comprehend.detect_sentiment – You use this function to apply sentiment analysis to text
stored in in the database on your Aurora PostgreSQL DB cluster.

• aws_sagemaker.invoke_endpoint – You use this function in your SQL code to communicate with
the SageMaker endpoint from your cluster.

• aws_bedrock.invoke_model – You use this function in your SQL code to communicate with the
Bedrock Models from your cluster. The response of this function will be in the format of a TEXT,
so if a model responds in the format of a JSON body then the output of this function will be
relayed in the format of a string to the end user.

• aws_bedrock.invoke_model_get_embeddings – You use this function in your SQL code to
invoke Bedrock Models that return output embeddings within a JSON response. This can be
leveraged when you want to extract the embeddings directly associated with the json-key to
streamline the response with any self-managed workflows.

To install the Aurora machine learning extension in your Aurora PostgreSQL DB cluster

• Use psql to connect to the writer instance of your Aurora PostgreSQL DB cluster. Connect to
the specific database in which to install the aws_ml extension.

psql --host=cluster-instance-1.111122223333.aws-region.rds.amazonaws.com --
port=5432 --username=postgres --password --dbname=labdb

labdb=> CREATE EXTENSION IF NOT EXISTS aws_ml CASCADE;
NOTICE: installing required extension "aws_commons"
CREATE EXTENSION
labdb=>

Setting up your Aurora DB cluster to use Aurora machine learning 3409

Amazon Aurora User Guide for Aurora

Installing the aws_ml extensions also creates the aws_ml administrative role and two new
schemas, as follows.

• aws_comprehend – Schema for the Amazon Comprehend service and source of the
detect_sentiment function (aws_comprehend.detect_sentiment).

• aws_sagemaker – Schema for the SageMaker service and source of the invoke_endpoint
function (aws_sagemaker.invoke_endpoint).

• aws_bedrock – Schema for the Amazon Bedrock service and
source of the invoke_model(aws_bedrock.invoke_model) and
invoke_model_get_embeddings(aws_bedrock.invoke_model_get_embeddings)
functions.

The rds_superuser role is granted the aws_ml administrative role and is made the OWNER of
these two Aurora machine learning schemas. To allow other database users to access the Aurora
machine learning functions, the rds_superuser needs to grant EXECUTE privileges on the Aurora
machine learning functions. By default, EXECUTE privileges are revoked from PUBLIC on the
functions in the two Aurora machine learning schemas.

In a multi-tenant database configuration, you can prevent tenants from accessing Aurora machine
learning functions by using REVOKE USAGE on the specific Aurora machine learning schema that
you want to protect.

Using Amazon Bedrock with your Aurora PostgreSQL DB cluster

For Aurora PostgreSQL, Aurora machine learning provides the following Amazon Bedrock function
for working with your text data. This function is available only after you install the aws_ml 2.0
extension and complete all setup procedures. For more information, see Setting up your Aurora
PostgreSQL DB cluster to use Aurora machine learning.

aws_bedrock.invoke_model

This function takes text formatted in JSON as input and processes it for variety of models
hosted on Amazon Bedrock and gets back the JSON text response from the model.
This response could contain text, image, or embeddings. A summary of the function's
documentation is as follows.

aws_bedrock.invoke_model(
 IN model_id varchar,

Using Amazon Bedrock with your Aurora PostgreSQL DB cluster 3410

Amazon Aurora User Guide for Aurora

 IN content_type text,
 IN accept_type text,
 IN model_input text,
 OUT model_output varchar)

The inputs and outputs of this function are as follows.

• model_id – Identifier of the model.

• content_type – The type of the request to Bedrock’s model.

• accept_type – The type of the response to expect from Bedrock’s model. Usually application/
JSON for most of the models.

• model_input – Prompts; a specific set of inputs to the model in the format as specified by
content_type. For more information on the request format/structure the model accepts, see
Inference parameters for foundation models.

• model_output – The Bedrock model's output as text.

The following example shows how to invoke a Anthropic Claude 2 model for Bedrock using
invoke_model.

Example Example: A simple query using Amazon Bedrock functions

SELECT aws_bedrock.invoke_model (
 model_id := 'anthropic.claude-v2',
 content_type:= 'application/json',
 accept_type := 'application/json',
 model_input := '{"prompt": "\n\nHuman: You are a helpful assistant that answers
 questions directly and only using the information provided in the context below.
\nDescribe the answer
 in detail.\n\nContext: %s \n\nQuestion: %s \n
\nAssistant:","max_tokens_to_sample":4096,"temperature":0.5,"top_k":250,"top_p":0.5,"stop_sequences":
[]}'
);

aws_bedrock.invoke_model_get_embeddings

The model output can point to vector embeddings for some cases. Given the response varies
per model, another function invoke_model_get_embeddings can be leveraged which works
exactly like invoke_model but outputs the embeddings by specifying the appropriate json-key.

Using Amazon Bedrock with your Aurora PostgreSQL DB cluster 3411

https://docs.aws.amazon.com/bedrock/latest/userguide/model-parameters.html

Amazon Aurora User Guide for Aurora

aws_bedrock.invoke_model_get_embeddings(
 IN model_id varchar,
 IN content_type text,
 IN json_key text,
 IN model_input text,
 OUT model_output float8[])

The inputs and outputs of this function are as follows.

• model_id – Identifier of the model.

• content_type – The type of the request to Bedrock’s model. Here, the accept_type is set to
default value application/json.

• model_input – Prompts; a specific set of inputs to the Model in the format as specified by
content_type. For more information on the request format/structure the Model accepts, see
Inference parameters for foundation models.

• json_key – Reference to the field to extract the embedding from. This may vary if the
embedding model changes.

• model_output – The Bedrock model's output as an array of embeddings having 16 bit decimals.

The following example shows how to generate an embedding using the Titan Embeddings G1 –
Text embedding model for the phrase PostgreSQL I/O monitoring views.

Example Example: A simple query using Amazon Bedrock functions

SELECT aws_bedrock.invoke_model_get_embeddings(
 model_id := 'amazon.titan-embed-text-v1',
 content_type := 'application/json',
 json_key := 'embedding',
 model_input := '{ "inputText": "PostgreSQL I/O monitoring views"}') AS embedding;

Using Amazon Comprehend with your Aurora PostgreSQL DB cluster

For Aurora PostgreSQL, Aurora machine learning provides the following Amazon Comprehend
function for working with your text data. This function is available only after you install the
aws_ml extension and complete all setup procedures. For more information, see Setting up your
Aurora PostgreSQL DB cluster to use Aurora machine learning.

Using Amazon Comprehend with your Aurora PostgreSQL DB cluster 3412

https://docs.aws.amazon.com/bedrock/latest/userguide/model-parameters.html

Amazon Aurora User Guide for Aurora

aws_comprehend.detect_sentiment

This function takes text as input and evaluates whether the text has a a positive, negative,
neutral, or mixed emotional posture. It outputs this sentiment along with a confidence level for
its evaluation. A summary of the function's documentation is as follows.

aws_comprehend.detect_sentiment(
 IN input_text varchar,
 IN language_code varchar,
 IN max_rows_per_batch int,
 OUT sentiment varchar,
 OUT confidence real)

The inputs and outputs of this function are as follows.

• input_text – The text to evaluate and to assign sentiment (negative, positive, neutral, mixed).

• language_code – The language of the input_text identified using the 2-letter ISO 639-1
identifier with regional subtag (as needed) or the ISO 639-2 three-letter code, as appropriate. For
example, en is the code for English, zh is the code for simplified Chinese. For more information,
see Supported languages in the Amazon Comprehend Developer Guide.

• max_rows_per_batch – The maximum number of rows per batch for batch-mode processing.
For more information, see Understanding batch mode and Aurora machine learning functions.

• sentiment – The sentiment of the input text, identified as POSITIVE, NEGATIVE, NEUTRAL, or
MIXED.

• confidence – The degree of confidence in the accuracy of the specified sentiment. Values
range from 0.0 to 1.0.

In the following, you can find examples of how to use this function.

Example Example: A simple query using Amazon Comprehend functions

Here's an example of a simple query that invokes this function to assess customer
satisfaction with your support team. Suppose you have a database table (support) that
stores customer feedback after each request for help. This example query applies the
aws_comprehend.detect_sentiment function to the text in the feedback column of the table
and outputs the sentiment and the confidence level for that sentiment. This query also outputs
results in descending order.

Using Amazon Comprehend with your Aurora PostgreSQL DB cluster 3413

https://docs.aws.amazon.com/comprehend/latest/dg/supported-languages.html#supported-languages-1

Amazon Aurora User Guide for Aurora

SELECT feedback, s.sentiment,s.confidence
 FROM support,aws_comprehend.detect_sentiment(feedback, 'en') s
 ORDER BY s.confidence DESC;
 feedback | sentiment | confidence
 --+-----------+------------
 Thank you for the excellent customer support! | POSITIVE | 0.999771
 The latest version of this product stinks! | NEGATIVE | 0.999184
 Your support team is just awesome! I am blown away. | POSITIVE | 0.997774
 Your product is too complex, but your support is great. | MIXED | 0.957958
 Your support tech helped me in fifteen minutes. | POSITIVE | 0.949491
 My problem was never resolved! | NEGATIVE | 0.920644
 When will the new version of this product be released? | NEUTRAL | 0.902706
 I cannot stand that chatbot. | NEGATIVE | 0.895219
 Your support tech talked down to me. | NEGATIVE | 0.868598
 It took me way too long to get a real person. | NEGATIVE | 0.481805

 (10 rows)

To avoid being charged for sentiment detection more than once per table row, you can materialize
the results. Do this on the rows of interest. For example, the clinician's notes are being updated so
that only those in French (fr) use the sentiment detection function.

UPDATE clinician_notes
SET sentiment = (aws_comprehend.detect_sentiment (french_notes, 'fr')).sentiment,
 confidence = (aws_comprehend.detect_sentiment (french_notes, 'fr')).confidence
WHERE
 clinician_notes.french_notes IS NOT NULL AND
 LENGTH(TRIM(clinician_notes.french_notes)) > 0 AND
 clinician_notes.sentiment IS NULL;

For more information on optimizing your function calls, see Performance considerations for using
Aurora machine learning with Aurora PostgreSQL.

Using SageMaker with your Aurora PostgreSQL DB cluster

After setting up your SageMaker environment and integrating with Aurora PostgreSQL as outlined
in Setting up Aurora PostgreSQL to use Amazon SageMaker , you can invoke operations by using
the aws_sagemaker.invoke_endpoint function. The aws_sagemaker.invoke_endpoint
function connects only to a model endpoint in the same AWS Region. If your database instance

Using SageMaker with your Aurora PostgreSQL DB cluster 3414

Amazon Aurora User Guide for Aurora

has replicas in multiple AWS Regions be sure that you setup and deploy each SageMaker model to
every AWS Region.

Calls to aws_sagemaker.invoke_endpoint are authenticated using the IAM role that you set up
to associated your Aurora PostgreSQL DB cluster with the SageMaker service and the endpoint that
you provided during the setup process. SageMaker model endpoints are scoped to an individual
account and are not public. The endpoint_name URL doesn't contain the account ID. SageMaker
determines the account ID from the authentication token that is supplied by the SageMaker IAM
role of the database instance.

aws_sagemaker.invoke_endpoint

This function takes the SageMaker endpoint as input and the number of rows that should be
processed as a batch. It also takes as input the various parameters expected by the SageMaker
model endpoint. This function's reference documentation is as follows.

aws_sagemaker.invoke_endpoint(
 IN endpoint_name varchar,
 IN max_rows_per_batch int,
 VARIADIC model_input "any",
 OUT model_output varchar
)

The inputs and outputs of this function are as follows.

• endpoint_name – An endpoint URL that is AWS Region–independent.

• max_rows_per_batch – The maximum number of rows per batch for batch-mode processing.
For more information, see Understanding batch mode and Aurora machine learning functions.

• model_input – One or more input parameters for the model. These can be any data type
needed by the SageMaker model. PostgreSQL allows you to specify up to 100 input parameters
for a function. Array data types must be one-dimensional, but can contain as many elements as
are expected by the SageMaker model. The number of inputs to a SageMaker model is limited
only by the SageMaker 6 MB message size limit.

• model_output – The SageMaker model's output as text.

Using SageMaker with your Aurora PostgreSQL DB cluster 3415

Amazon Aurora User Guide for Aurora

Creating a user-defined function to invoke a SageMaker model

Create a separate user-defined function to call aws_sagemaker.invoke_endpoint for each of
your SageMaker models. Your user-defined function represents the SageMaker endpoint hosting
the model. The aws_sagemaker.invoke_endpoint function runs within the user-defined
function. User-defined functions provide many advantages:

• You can give your SageMaker model its own name instead of only calling
aws_sagemaker.invoke_endpoint for all of your SageMaker models.

• You can specify the model endpoint URL in just one place in your SQL application code.

• You can control EXECUTE privileges to each Aurora machine learning function independently.

• You can declare the model input and output types using SQL types. SQL enforces the number
and type of arguments passed to your SageMaker model and performs type conversion if
necessary. Using SQL types will also translate SQL NULL to the appropriate default value
expected by your SageMaker model.

• You can reduce the maximum batch size if you want to return the first few rows a little faster.

To specify a user-defined function, use the SQL data definition language (DDL) statement CREATE
FUNCTION. When you define the function, you specify the following:

• The input parameters to the model.

• The specific SageMaker endpoint to invoke.

• The return type.

The user-defined function returns the inference computed by the SageMaker endpoint after
running the model on the input parameters. The following example creates a user-defined function
for an SageMaker model with two input parameters.

CREATE FUNCTION classify_event (IN arg1 INT, IN arg2 DATE, OUT category INT)
AS $$
 SELECT aws_sagemaker.invoke_endpoint (
 'sagemaker_model_endpoint_name', NULL,
 arg1, arg2 -- model inputs are separate arguments
)::INT -- cast the output to INT
$$ LANGUAGE SQL PARALLEL SAFE COST 5000;

Note the following:

Using SageMaker with your Aurora PostgreSQL DB cluster 3416

Amazon Aurora User Guide for Aurora

• The aws_sagemaker.invoke_endpoint function input can be one or more parameters of any
data type.

• This example uses an INT output type. If you cast the output from a varchar type to a different
type, then it must be cast to a PostgreSQL builtin scalar type such as INTEGER, REAL, FLOAT,
or NUMERIC. For more information about these types, see Data types in the PostgreSQL
documentation.

• Specify PARALLEL SAFE to enable parallel query processing. For more information, see
Improving response times with parallel query processing.

• Specify COST 5000 to estimate the cost of running the function. Use a positive number giving
the estimated run cost for the function, in units of cpu_operator_cost.

Passing an array as input to a SageMaker model

The aws_sagemaker.invoke_endpoint function can have up to 100 input parameters, which is
the limit for PostgreSQL functions. If the SageMaker model requires more than 100 parameters of
the same type, pass the model parameters as an array.

The following example defines a function that passes an array as input to the SageMaker
regression model. The output is cast to a REAL value.

CREATE FUNCTION regression_model (params REAL[], OUT estimate REAL)
AS $$
 SELECT aws_sagemaker.invoke_endpoint (
 'sagemaker_model_endpoint_name',
 NULL,
 params
)::REAL
$$ LANGUAGE SQL PARALLEL SAFE COST 5000;

Specifying batch size when invoking a SageMaker model

The following example creates a user-defined function for a SageMaker model that sets the batch
size default to NULL. The function also allows you to provide a different batch size when you
invoke it.

CREATE FUNCTION classify_event (
 IN event_type INT, IN event_day DATE, IN amount REAL, -- model inputs
 max_rows_per_batch INT DEFAULT NULL, -- optional batch size limit

Using SageMaker with your Aurora PostgreSQL DB cluster 3417

https://www.postgresql.org/docs/current/datatype.html

Amazon Aurora User Guide for Aurora

 OUT category INT) -- model output
AS $$
 SELECT aws_sagemaker.invoke_endpoint (
 'sagemaker_model_endpoint_name', max_rows_per_batch,
 event_type, event_day, COALESCE(amount, 0.0)
)::INT -- casts output to type INT
$$ LANGUAGE SQL PARALLEL SAFE COST 5000;

Note the following:

• Use the optional max_rows_per_batch parameter to provide control of the number of rows
for a batch-mode function invocation. If you use a value of NULL, then the query optimizer
automatically chooses the maximum batch size. For more information, see Understanding batch
mode and Aurora machine learning functions.

• By default, passing NULL as a parameter's value is translated to an empty string before passing
to SageMaker. For this example the inputs have different types.

• If you have a non-text input, or text input that needs to default to some value other than an
empty string, use the COALESCE statement. Use COALESCE to translate NULL to the desired
null replacement value in the call to aws_sagemaker.invoke_endpoint. For the amount
parameter in this example, a NULL value is converted to 0.0.

Invoking a SageMaker model that has multiple outputs

The following example creates a user-defined function for a SageMaker model
that returns multiple outputs. Your function needs to cast the output of the
aws_sagemaker.invoke_endpoint function to a corresponding data type. For example, you
could use the built-in PostgreSQL point type for (x,y) pairs or a user-defined composite type.

This user-defined function returns values from a model that returns multiple outputs by using a
composite type for the outputs.

CREATE TYPE company_forecasts AS (
 six_month_estimated_return real,
 one_year_bankruptcy_probability float);
CREATE FUNCTION analyze_company (
 IN free_cash_flow NUMERIC(18, 6),
 IN debt NUMERIC(18,6),
 IN max_rows_per_batch INT DEFAULT NULL,
 OUT prediction company_forecasts)

Using SageMaker with your Aurora PostgreSQL DB cluster 3418

Amazon Aurora User Guide for Aurora

AS $$
 SELECT (aws_sagemaker.invoke_endpoint('endpt_name',
 max_rows_per_batch,free_cash_flow, debt))::company_forecasts;

$$ LANGUAGE SQL PARALLEL SAFE COST 5000;

For the composite type, use fields in the same order as they appear in the model output and cast
the output of aws_sagemaker.invoke_endpoint to your composite type. The caller can extract
the individual fields either by name or with PostgreSQL ".*" notation.

Exporting data to Amazon S3 for SageMaker model training (Advanced)

We recommend that you become familiar with Aurora machine learning and SageMaker by using
the provided algorithms and examples rather than trying to train your own models. For more
information, see Get Started with Amazon SageMaker

To train SageMaker models, you export data to an Amazon S3 bucket. The Amazon S3 bucket is
used by SageMaker to train your model before it is deployed. You can query data from an Aurora
PostgreSQL DB cluster and save it directly into text files stored in an Amazon S3 bucket. Then
SageMaker consumes the data from the Amazon S3 bucket for training. For more about SageMaker
model training, see Train a model with Amazon SageMaker.

Note

When you create an Amazon S3 bucket for SageMaker model training or batch scoring, use
sagemaker in the Amazon S3 bucket name. For more information, see Specify a Amazon
S3 Bucket to Upload Training Datasets and Store Output Data in the Amazon SageMaker
Developer Guide.

For more information about exporting your data, see Exporting data from an Aurora PostgreSQL
DB cluster to Amazon S3.

Performance considerations for using Aurora machine learning with
Aurora PostgreSQL

The Amazon Comprehend and SageMaker services do most of the work when invoked by an
Aurora machine learning function. That means that you can scale those resources as needed,

Exporting data to Amazon S3 for SageMaker model training (Advanced) 3419

https://docs.aws.amazon.com/sagemaker/latest/dg/gs.html
https://docs.aws.amazon.com/sagemaker/latest/dg/how-it-works-training.html
https://docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning-ex-bucket.html
https://docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning-ex-bucket.html

Amazon Aurora User Guide for Aurora

independently. For your Aurora PostgreSQL DB cluster, you can make your function calls as efficient
as possible. Following, you can find some performance considerations to note when working with
Aurora machine learning from Aurora PostgreSQL.

Topics

• Understanding batch mode and Aurora machine learning functions

• Improving response times with parallel query processing

• Using materialized views and materialized columns

Understanding batch mode and Aurora machine learning functions

Typically, PostgreSQL runs functions one row at a time. Aurora machine learning can reduce
this overhead by combining the calls to the external Aurora machine learning service for many
rows into batches with an approach called batch-mode execution. In batch mode, Aurora machine
learning receives the responses for a batch of input rows, and then delivers the responses back to
the running query one row at a time. This optimization improves the throughput of your Aurora
queries without limiting the PostgreSQL query optimizer.

Aurora automatically uses batch mode if the function is referenced from the SELECT list, a WHERE
clause, or a HAVING clause. Note that top-level simple CASE expressions are eligible for batch-
mode execution. Top-level searched CASE expressions are also eligible for batch-mode execution
provided that the first WHEN clause is a simple predicate with a batch-mode function call.

Your user-defined function must be a LANGUAGE SQL function and should specify PARALLEL
SAFE and COST 5000.

Function migration from the SELECT statement to the FROM clause

Usually, an aws_ml function that is eligible for batch-mode execution is automatically migrated by
Aurora to the FROM clause.

The migration of eligible batch-mode functions to the FROM clause can be examined manually
on a per-query level. To do this, you use EXPLAIN statements (and ANALYZE and VERBOSE) and
find the "Batch Processing" information below each batch-mode Function Scan. You can also
use EXPLAIN (with VERBOSE) without running the query. You then observe whether the calls to
the function appear as a Function Scan under a nested loop join that was not specified in the
original statement.

Performance considerations 3420

Amazon Aurora User Guide for Aurora

In the following example, the nested loop join operator in the plan shows that Aurora migrated
the anomaly_score function. It migrated this function from the SELECT list to the FROM clause,
where it's eligible for batch-mode execution.

EXPLAIN (VERBOSE, COSTS false)
SELECT anomaly_score(ts.R.description) from ts.R;
 QUERY PLAN

 Nested Loop
 Output: anomaly_score((r.description)::text)
 -> Seq Scan on ts.r
 Output: r.id, r.description, r.score
 -> Function Scan on public.anomaly_score
 Output: anomaly_score.anomaly_score
 Function Call: anomaly_score((r.description)::text)

To disable batch-mode execution, set the apg_enable_function_migration parameter to
false. This prevents the migration of aws_ml functions from the SELECT to the FROM clause. The
following shows how.

SET apg_enable_function_migration = false;

The apg_enable_function_migration parameter is a Grand Unified Configuration (GUC)
parameter that is recognized by the Aurora PostgreSQL apg_plan_mgmt extension for query plan
management. To disable function migration in a session, use query plan management to save the
resulting plan as an approved plan. At runtime, query plan management enforces the approved
plan with its apg_enable_function_migration setting. This enforcement occurs regardless
of the apg_enable_function_migration GUC parameter setting. For more information, see
Managing query execution plans for Aurora PostgreSQL.

Using the max_rows_per_batch parameter

Both the aws_comprehend.detect_sentiment and the aws_sagemaker.invoke_endpoint
functions have a max_rows_per_batch parameter. This parameter specifies the number of rows
that can be sent to the Aurora machine learning service. The larger the dataset processed by your
function, the larger you can make the batch size.

Batch-mode functions improve efficiency by building batches of rows that spread the cost of
the Aurora machine learning function calls over a large number of rows. However, if a SELECT

Performance considerations 3421

Amazon Aurora User Guide for Aurora

statement finishes early due to a LIMIT clause, then the batch can be constructed over more rows
than the query uses. This approach can result in additional charges to your AWS account. To gain
the benefits of batch-mode execution but avoid building batches that are too large, use a smaller
value for the max_rows_per_batch parameter in your function calls.

If you do an EXPLAIN (VERBOSE, ANALYZE) of a query that uses batch-mode execution, you
see a FunctionScan operator that is below a nested loop join. The number of loops reported
by EXPLAIN equals the number of times a row was fetched from the FunctionScan operator.
If a statement uses a LIMIT clause, the number of fetches is consistent. To optimize the size of
the batch, set the max_rows_per_batch parameter to this value. However, if the batch-mode
function is referenced in a predicate in the WHERE clause or HAVING clause, then you probably can't
know the number of fetches in advance. In this case, use the loops as a guideline and experiment
with max_rows_per_batch to find a setting that optimizes performance.

Verifying batch-mode execution

To see if a function ran in batch mode, use EXPLAIN ANALYZE. If batch-mode execution was used,
then the query plan will include the information in a "Batch Processing" section.

EXPLAIN ANALYZE SELECT user-defined-function();
 Batch Processing: num batches=1 avg/min/max batch size=3333.000/3333.000/3333.000
 avg/min/max batch call time=146.273/146.273/146.273

In this example, there was 1 batch that contained 3,333 rows, which took 146.273 ms to process.
The "Batch Processing" section shows the following:

• How many batches there were for this function scan operation

• The batch size average, minimum, and maximum

• The batch execution time average, minimum, and maximum

Typically the final batch is smaller than the rest, which often results in a minimum batch size that is
much smaller than the average.

To return the first few rows more quickly, set the max_rows_per_batch parameter to a smaller
value.

To reduce the number of batch mode calls to the ML service when you use a LIMIT in your user-
defined function, set the max_rows_per_batch parameter to a smaller value.

Performance considerations 3422

Amazon Aurora User Guide for Aurora

Improving response times with parallel query processing

To get results as fast as possible from a large number of rows, you can combine parallel query
processing with batch mode processing. You can use parallel query processing for SELECT, CREATE
TABLE AS SELECT, and CREATE MATERIALIZED VIEW statements.

Note

PostgreSQL doesn't yet support parallel query for data manipulation language (DML)
statements.

Parallel query processing occurs both within the database and within the ML service. The number
of cores in the instance class of the database limits the degree of parallelism that can be used
when running a query. The database server can construct a parallel query execution plan that
partitions the task among a set of parallel workers. Then each of these workers can build batched
requests containing tens of thousands of rows (or as many as are allowed by each service).

The batched requests from all of the parallel workers are sent to the SageMaker endpoint. The
degree of parallelism that the endpoint can support is constrained by the number and type of
instances that support it. For K degrees of parallelism, you need a database instance class that
has at least K cores. You also need to configure the SageMaker endpoint for your model to have K
initial instances of a sufficiently high-performing instance class.

To use parallel query processing, you can set the parallel_workers storage parameter of the
table that contains the data that you plan to pass. You set parallel_workers to a batch-mode
function such as aws_comprehend.detect_sentiment. If the optimizer chooses a parallel query
plan, the AWS ML services can be called both in batch and in parallel.

You can use the following parameters with the aws_comprehend.detect_sentiment function
to get a plan with four-way parallelism. If you change either of the following two parameters, you
must restart the database instance for the changes to take effect

-- SET max_worker_processes to 8; -- default value is 8
-- SET max_parallel_workers to 8; -- not greater than max_worker_processes
SET max_parallel_workers_per_gather to 4; -- not greater than max_parallel_workers

-- You can set the parallel_workers storage parameter on the table that the data

Performance considerations 3423

Amazon Aurora User Guide for Aurora

-- for the Aurora machine learning function is coming from in order to manually
 override the degree of
-- parallelism that would otherwise be chosen by the query optimizer
--
ALTER TABLE yourTable SET (parallel_workers = 4);

-- Example query to exploit both batch-mode execution and parallel query
EXPLAIN (verbose, analyze, buffers, hashes)
SELECT aws_comprehend.detect_sentiment(description, 'en')).*
FROM yourTable
WHERE id < 100;

For more information about controlling parallel query, see Parallel plans in the PostgreSQL
documentation.

Using materialized views and materialized columns

When you invoke an AWS service such as SageMaker or Amazon Comprehend from your database,
your account is charged according to the pricing policy of that service. To minimize charges to
your account, you can materialize the result of calling the AWS service into a materialized column
so that the AWS service is not called more than once per input row. If desired, you can add a
materializedAt timestamp column to record the time at which the columns were materialized.

The latency of an ordinary single-row INSERT statement is typically much less than the latency
of calling a batch-mode function. Thus, you might not be able to meet the latency requirements
of your application if you invoke the batch-mode function for every single-row INSERT that
your application performs. To materialize the result of calling an AWS service into a materialized
column, high-performance applications generally need to populate the materialized columns. To
do this, they periodically issue an UPDATE statement that operates on a large batch of rows at the
same time.

UPDATE takes a row-level lock that can impact a running application. So you might need to use
SELECT ... FOR UPDATE SKIP LOCKED, or use MATERIALIZED VIEW.

Analytic queries that operate on a large number of rows in real time can combine batch-mode
materialization with real-time processing. To do this, these queries assemble a UNION ALL of the
pre-materialized results with a query over the rows that don't yet have materialized results. In
some cases, such a UNION ALL is needed in multiple places, or the query is generated by a third-
party application. If so, you can create a VIEW to encapsulate the UNION ALL operation so this
detail isn't exposed to the rest of the SQL application.

Performance considerations 3424

https://www.postgresql.org/docs/current/parallel-plans.html

Amazon Aurora User Guide for Aurora

You can use a materialized view to materialize the results of an arbitrary SELECT statement at
a snapshot in time. You can also use it to refresh the materialized view at any time in the future.
Currently PostgreSQL doesn't support incremental refresh, so each time the materialized view is
refreshed the materialized view is fully recomputed.

You can refresh materialized views with the CONCURRENTLY option, which updates the contents of
the materialized view without taking an exclusive lock. Doing this allows a SQL application to read
from the materialized view while it's being refreshed.

Monitoring Aurora machine learning

You can monitor the aws_ml functions by setting the track_functions parameter in your
custom DB cluster parameter group to all. By default, this parameter is set to pl which means
that only procedure-language functions are tracked. By changing this to all, the aws_ml functions
are also tracked. For more information, see Run-time Statistics in the PostgreSQL documentation.

For information about monitoring the performance of the SageMaker operations called from
Aurora machine learning functions, see Monitor Amazon SageMaker in the Amazon SageMaker
Developer Guide.

With track_functions set to all, you can query the pg_stat_user_functions view to get
statistics about the functions that you define and use to invoke Aurora machine learning services.
For each function, the view provides the number of calls, total_time, and self_time.

To view the statistics for the aws_sagemaker.invoke_endpoint and the
aws_comprehend.detect_sentiment functions, you can filter results by schema name using
the following query.

SELECT * FROM pg_stat_user_functions
 WHERE schemaname
 LIKE 'aws_%';

To clear the statistics, do as follows.

SELECT pg_stat_reset();

You can get the names of your SQL functions that call the aws_sagemaker.invoke_endpoint
function by querying the PostgreSQL pg_proc system catalog. This catalog stores information
about functions, procedures, and more. For more information, see pg_proc in the PostgreSQL

Monitoring 3425

https://www.postgresql.org/docs/current/runtime-config-statistics.html
https://docs.aws.amazon.com/sagemaker/latest/dg/monitoring-overview.html
https://www.postgresql.org/docs/current/catalog-pg-proc.html

Amazon Aurora User Guide for Aurora

documentation. Following is an example of querying the table to get the names of functions
(proname) whose source (prosrc) includes the text invoke_endpoint.

SELECT proname FROM pg_proc WHERE prosrc LIKE '%invoke_endpoint%';

Monitoring 3426

Amazon Aurora User Guide for Aurora

Code examples for Aurora using AWS SDKs

The following code examples show how to use Aurora with an AWS software development kit
(SDK).

Actions are code excerpts from larger programs and must be run in context. While actions show you
how to call individual service functions, you can see actions in context in their related scenarios and
cross-service examples.

Scenarios are code examples that show you how to accomplish a specific task by calling multiple
functions within the same service.

Cross-service examples are sample applications that work across multiple AWS services.

For a complete list of AWS SDK developer guides and code examples, see Using this service with
an AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Get started

Hello Aurora

The following code examples show how to get started using Aurora.

.NET

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

using Amazon.RDS;
using Amazon.RDS.Model;
using Microsoft.Extensions.DependencyInjection;
using Microsoft.Extensions.Hosting;

3427

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Aurora#code-examples

Amazon Aurora User Guide for Aurora

namespace AuroraActions;

public static class HelloAurora
{
 static async Task Main(string[] args)
 {
 // Use the AWS .NET Core Setup package to set up dependency injection for
 the
 // Amazon Relational Database Service (Amazon RDS).
 // Use your AWS profile name, or leave it blank to use the default
 profile.
 using var host = Host.CreateDefaultBuilder(args)
 .ConfigureServices((_, services) =>
 services.AddAWSService<IAmazonRDS>()
).Build();

 // Now the client is available for injection. Fetching it directly here
 for example purposes only.
 var rdsClient = host.Services.GetRequiredService<IAmazonRDS>();

 // You can use await and any of the async methods to get a response.
 var response = await rdsClient.DescribeDBClustersAsync(new
 DescribeDBClustersRequest { IncludeShared = true });
 Console.WriteLine($"Hello Amazon RDS Aurora! Let's list some clusters in
 this account:");
 foreach (var cluster in response.DBClusters)
 {
 Console.WriteLine($"\tCluster: database: {cluster.DatabaseName}
 identifier: {cluster.DBClusterIdentifier}.");
 }
 }
}

• For API details, see DescribeDBClusters in AWS SDK for .NET API Reference.

3428

https://docs.aws.amazon.com/goto/DotNetSDKV3/rds-2014-10-31/DescribeDBClusters

Amazon Aurora User Guide for Aurora

C++

SDK for C++

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Code for the CMakeLists.txt CMake file.

Set the minimum required version of CMake for this project.
cmake_minimum_required(VERSION 3.13)

Set the AWS service components used by this project.
set(SERVICE_COMPONENTS rds)

Set this project's name.
project("hello_aurora")

Set the C++ standard to use to build this target.
At least C++ 11 is required for the AWS SDK for C++.
set(CMAKE_CXX_STANDARD 11)

Use the MSVC variable to determine if this is a Windows build.
set(WINDOWS_BUILD ${MSVC})

if (WINDOWS_BUILD) # Set the location where CMake can find the installed
 libraries for the AWS SDK.
 string(REPLACE ";" "/aws-cpp-sdk-all;" SYSTEM_MODULE_PATH
 "${CMAKE_SYSTEM_PREFIX_PATH}/aws-cpp-sdk-all")
 list(APPEND CMAKE_PREFIX_PATH ${SYSTEM_MODULE_PATH})
endif ()

Find the AWS SDK for C++ package.
find_package(AWSSDK REQUIRED COMPONENTS ${SERVICE_COMPONENTS})

if (WINDOWS_BUILD AND AWSSDK_INSTALL_AS_SHARED_LIBS)
 # Copy relevant AWS SDK for C++ libraries into the current binary directory
 for running and debugging.

3429

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/cpp/example_code/aurora/hello_aurora#code-examples

Amazon Aurora User Guide for Aurora

 # set(BIN_SUB_DIR "/Debug") # If you are building from the command line, you
 may need to uncomment this
 # and set the proper subdirectory to the
 executables' location.

 AWSSDK_CPY_DYN_LIBS(SERVICE_COMPONENTS ""
 ${CMAKE_CURRENT_BINARY_DIR}${BIN_SUB_DIR})
endif ()

add_executable(${PROJECT_NAME}
 hello_aurora.cpp)

target_link_libraries(${PROJECT_NAME}
 ${AWSSDK_LINK_LIBRARIES})

Code for the hello_aurora.cpp source file.

#include <aws/core/Aws.h>
#include <aws/rds/RDSClient.h>
#include <aws/rds/model/DescribeDBClustersRequest.h>
#include <iostream>

/*
 * A "Hello Aurora" starter application which initializes an Amazon Relational
 Database Service (Amazon RDS) client
 * and describes the Amazon Aurora (Aurora) clusters.
 *
 * main function
 *
 * Usage: 'hello_aurora'
 *
 */
int main(int argc, char **argv) {
 Aws::SDKOptions options;
 // Optionally change the log level for debugging.
// options.loggingOptions.logLevel = Utils::Logging::LogLevel::Debug;
 Aws::InitAPI(options); // Should only be called once.
 int result = 0;
 {
 Aws::Client::ClientConfiguration clientConfig;
 // Optional: Set to the AWS Region (overrides config file).
 // clientConfig.region = "us-east-1";

3430

Amazon Aurora User Guide for Aurora

 Aws::RDS::RDSClient rdsClient(clientConfig);

 Aws::String marker; // Used for pagination.
 std::vector<Aws::String> clusterIds;
 do {
 Aws::RDS::Model::DescribeDBClustersRequest request;

 Aws::RDS::Model::DescribeDBClustersOutcome outcome =
 rdsClient.DescribeDBClusters(request);

 if (outcome.IsSuccess()) {
 for (auto &cluster: outcome.GetResult().GetDBClusters()) {
 clusterIds.push_back(cluster.GetDBClusterIdentifier());
 }
 marker = outcome.GetResult().GetMarker();
 } else {
 result = 1;
 std::cerr << "Error with Aurora::GDescribeDBClusters. "
 << outcome.GetError().GetMessage()
 << std::endl;
 break;
 }
 } while (!marker.empty());

 std::cout << clusterIds.size() << " Aurora clusters found." << std::endl;
 for (auto &clusterId: clusterIds) {
 std::cout << " clusterId " << clusterId << std::endl;
 }
 }

 Aws::ShutdownAPI(options); // Should only be called once.
 return 0;
}

• For API details, see DescribeDBClusters in AWS SDK for C++ API Reference.

3431

https://docs.aws.amazon.com/goto/SdkForCpp/rds-2014-10-31/DescribeDBClusters

Amazon Aurora User Guide for Aurora

Go

SDK for Go V2

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

package main

import (
 "context"
 "fmt"

 "github.com/aws/aws-sdk-go-v2/aws"
 "github.com/aws/aws-sdk-go-v2/config"
 "github.com/aws/aws-sdk-go-v2/service/rds"
)

// main uses the AWS SDK for Go V2 to create an Amazon Aurora client and list up
 to 20
// DB clusters in your account.
// This example uses the default settings specified in your shared credentials
// and config files.
func main() {
 sdkConfig, err := config.LoadDefaultConfig(context.TODO())
 if err != nil {
 fmt.Println("Couldn't load default configuration. Have you set up your AWS
 account?")
 fmt.Println(err)
 return
 }
 auroraClient := rds.NewFromConfig(sdkConfig)
 const maxClusters = 20
 fmt.Printf("Let's list up to %v DB clusters.\n", maxClusters)
 output, err := auroraClient.DescribeDBClusters(context.TODO(),
 &rds.DescribeDBClustersInput{MaxRecords: aws.Int32(maxClusters)})
 if err != nil {
 fmt.Printf("Couldn't list DB clusters: %v\n", err)

3432

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/gov2/aurora#code-examples

Amazon Aurora User Guide for Aurora

 return
 }
 if len(output.DBClusters) == 0 {
 fmt.Println("No DB clusters found.")
 } else {
 for _, cluster := range output.DBClusters {
 fmt.Printf("DB cluster %v has database %v.\n", *cluster.DBClusterIdentifier,
 *cluster.DatabaseName)
 }
 }
}

• For API details, see DescribeDBClusters in AWS SDK for Go API Reference.

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

import software.amazon.awssdk.regions.Region;
import software.amazon.awssdk.services.rds.RdsClient;
import software.amazon.awssdk.services.rds.paginators.DescribeDBClustersIterable;

public class DescribeDbClusters {
 public static void main(String[] args) {
 Region region = Region.US_EAST_1;
 RdsClient rdsClient = RdsClient.builder()
 .region(region)
 .build();

 describeClusters(rdsClient);
 rdsClient.close();
 }

 public static void describeClusters(RdsClient rdsClient) {

3433

https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/rds#Client.DescribeDBClusters
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/rds#readme

Amazon Aurora User Guide for Aurora

 DescribeDBClustersIterable clustersIterable =
 rdsClient.describeDBClustersPaginator();
 clustersIterable.stream()
 .flatMap(r -> r.dbClusters().stream())
 .forEach(cluster -> System.out
 .println("Database name: " + cluster.databaseName() + "
 Arn = " + cluster.dbClusterArn()));
 }
}

• For API details, see DescribeDBClusters in AWS SDK for Java 2.x API Reference.

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

import boto3

Create an RDS client
rds = boto3.client("rds")

Create a paginator for the describe_db_clusters operation
paginator = rds.get_paginator("describe_db_clusters")

Use the paginator to get a list of DB clusters
response_iterator = paginator.paginate(
 PaginationConfig={
 "PageSize": 50, # Adjust PageSize as needed
 "StartingToken": None,
 }
)

Iterate through the pages of the response
clusters_found = False
for page in response_iterator:

3434

https://docs.aws.amazon.com/goto/SdkForJavaV2/rds-2014-10-31/DescribeDBClusters
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/aurora#code-examples

Amazon Aurora User Guide for Aurora

 if "DBClusters" in page and page["DBClusters"]:
 clusters_found = True
 print("Here are your RDS Aurora clusters:")
 for cluster in page["DBClusters"]:
 print(
 f"Cluster ID: {cluster['DBClusterIdentifier']}, Engine:
 {cluster['Engine']}"
)

if not clusters_found:
 print("No clusters found!")

• For API details, see DescribeDBClusters in AWS SDK for Python (Boto3) API Reference.

Ruby

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

require 'aws-sdk-rds'

Creates an Amazon RDS client for the AWS Region
rds = Aws::RDS::Client.new

puts 'Listing clusters in this AWS account...'

Calls the describe_db_clusters method to get information about clusters
resp = rds.describe_db_clusters(max_records: 20)

Checks if any clusters are found and prints the appropriate message
if resp.db_clusters.empty?
 puts 'No clusters found!'
else
 # Loops through the array of cluster objects and prints the cluster identifier
 resp.db_clusters.each do |cluster|

3435

https://docs.aws.amazon.com/goto/boto3/rds-2014-10-31/DescribeDBClusters
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/aurora#code-examples

Amazon Aurora User Guide for Aurora

 puts "Cluster identifier: #{cluster.db_cluster_identifier}"
 end
end

• For API details, see DescribeDBClusters in AWS SDK for Ruby API Reference.

Rust

SDK for Rust

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
use aws_sdk_rds::Client;

#[derive(Debug)]
struct Error(String);
impl std::fmt::Display for Error {
 fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
 write!(f, "{}", self.0)
 }
}
impl std::error::Error for Error {}

#[tokio::main]
async fn main() -> Result<(), Error> {
 tracing_subscriber::fmt::init();
 let sdk_config = aws_config::from_env().load().await;
 let client = Client::new(&sdk_config);

 let describe_db_clusters_output = client
 .describe_db_clusters()
 .send()
 .await
 .map_err(|e| Error(e.to_string()))?;

3436

https://docs.aws.amazon.com/goto/SdkForRubyV3/rds-2014-10-31/DescribeDBClusters
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/rustv1/examples/aurora#code-examples

Amazon Aurora User Guide for Aurora

 println!(
 "Found {} clusters:",
 describe_db_clusters_output.db_clusters().len()
);
 for cluster in describe_db_clusters_output.db_clusters() {
 let name = cluster.database_name().unwrap_or("Unknown");
 let engine = cluster.engine().unwrap_or("Unknown");
 let id = cluster.db_cluster_identifier().unwrap_or("Unknown");
 let class = cluster.db_cluster_instance_class().unwrap_or("Unknown");
 println!("\tDatabase: {name}",);
 println!("\t Engine: {engine}",);
 println!("\t ID: {id}",);
 println!("\tInstance: {class}",);
 }

 Ok(())
}

• For API details, see DescribeDBClusters in AWS SDK for Rust API reference.

Code examples

• Actions for Aurora using AWS SDKs

• Use CreateDBCluster with an AWS SDK or CLI

• Use CreateDBClusterParameterGroup with an AWS SDK or CLI

• Use CreateDBClusterSnapshot with an AWS SDK or CLI

• Use CreateDBInstance with an AWS SDK or CLI

• Use DeleteDBCluster with an AWS SDK or CLI

• Use DeleteDBClusterParameterGroup with an AWS SDK or CLI

• Use DeleteDBInstance with an AWS SDK or CLI

• Use DescribeDBClusterParameterGroups with an AWS SDK or CLI

• Use DescribeDBClusterParameters with an AWS SDK or CLI

• Use DescribeDBClusterSnapshots with an AWS SDK or CLI

• Use DescribeDBClusters with an AWS SDK or CLI

• Use DescribeDBEngineVersions with an AWS SDK or CLI

• Use DescribeDBInstances with an AWS SDK or CLI
3437

https://docs.rs/aws-sdk-rds/latest/aws_sdk_rds/client/struct.Client.html#method.describe_db_clusters

Amazon Aurora User Guide for Aurora

• Use DescribeOrderableDBInstanceOptions with an AWS SDK or CLI

• Use ModifyDBClusterParameterGroup with an AWS SDK or CLI

• Scenarios for Aurora using AWS SDKs

• Get started with Aurora DB clusters using an AWS SDK

• Cross-service examples for Aurora using AWS SDKs

• Create a lending library REST API

• Create an Aurora Serverless work item tracker

Actions for Aurora using AWS SDKs

The following code examples demonstrate how to perform individual Aurora actions with AWS
SDKs. These excerpts call the Aurora API and are code excerpts from larger programs that must be
run in context. Each example includes a link to GitHub, where you can find instructions for setting
up and running the code.

The following examples include only the most commonly used actions. For a complete list, see the
Amazon Aurora API Reference.

Examples

• Use CreateDBCluster with an AWS SDK or CLI

• Use CreateDBClusterParameterGroup with an AWS SDK or CLI

• Use CreateDBClusterSnapshot with an AWS SDK or CLI

• Use CreateDBInstance with an AWS SDK or CLI

• Use DeleteDBCluster with an AWS SDK or CLI

• Use DeleteDBClusterParameterGroup with an AWS SDK or CLI

• Use DeleteDBInstance with an AWS SDK or CLI

• Use DescribeDBClusterParameterGroups with an AWS SDK or CLI

• Use DescribeDBClusterParameters with an AWS SDK or CLI

• Use DescribeDBClusterSnapshots with an AWS SDK or CLI

• Use DescribeDBClusters with an AWS SDK or CLI

• Use DescribeDBEngineVersions with an AWS SDK or CLI

• Use DescribeDBInstances with an AWS SDK or CLI

• Use DescribeOrderableDBInstanceOptions with an AWS SDK or CLI

Actions 3438

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/Welcome.html

Amazon Aurora User Guide for Aurora

• Use ModifyDBClusterParameterGroup with an AWS SDK or CLI

Use CreateDBCluster with an AWS SDK or CLI

The following code examples show how to use CreateDBCluster.

Action examples are code excerpts from larger programs and must be run in context. You can see
this action in context in the following code example:

• Get started with DB clusters

.NET

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 /// <summary>
 /// Create a new cluster and database.
 /// </summary>
 /// <param name="dbName">The name of the new database.</param>
 /// <param name="clusterIdentifier">The identifier of the cluster.</param>
 /// <param name="parameterGroupName">The name of the parameter group.</param>
 /// <param name="dbEngine">The engine to use for the new cluster.</param>
 /// <param name="dbEngineVersion">The version of the engine to use.</param>
 /// <param name="adminName">The admin username.</param>
 /// <param name="adminPassword">The primary admin password.</param>
 /// <returns>The cluster object.</returns>
 public async Task<DBCluster> CreateDBClusterWithAdminAsync(
 string dbName,
 string clusterIdentifier,
 string parameterGroupName,
 string dbEngine,
 string dbEngineVersion,
 string adminName,
 string adminPassword)
 {

CreateDBCluster 3439

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Aurora#code-examples

Amazon Aurora User Guide for Aurora

 var request = new CreateDBClusterRequest
 {
 DatabaseName = dbName,
 DBClusterIdentifier = clusterIdentifier,
 DBClusterParameterGroupName = parameterGroupName,
 Engine = dbEngine,
 EngineVersion = dbEngineVersion,
 MasterUsername = adminName,
 MasterUserPassword = adminPassword,
 };

 var response = await _amazonRDS.CreateDBClusterAsync(request);
 return response.DBCluster;
 }

• For API details, see CreateDBCluster in AWS SDK for .NET API Reference.

C++

SDK for C++

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 Aws::Client::ClientConfiguration clientConfig;
 // Optional: Set to the AWS Region (overrides config file).
 // clientConfig.region = "us-east-1";

 Aws::RDS::RDSClient client(clientConfig);

 Aws::RDS::Model::CreateDBClusterRequest request;
 request.SetDBClusterIdentifier(DB_CLUSTER_IDENTIFIER);
 request.SetDBClusterParameterGroupName(CLUSTER_PARAMETER_GROUP_NAME);
 request.SetEngine(engineName);
 request.SetEngineVersion(engineVersionName);
 request.SetMasterUsername(administratorName);
 request.SetMasterUserPassword(administratorPassword);

CreateDBCluster 3440

https://docs.aws.amazon.com/goto/DotNetSDKV3/rds-2014-10-31/CreateDBCluster
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/cpp/example_code/aurora#code-examples

Amazon Aurora User Guide for Aurora

 Aws::RDS::Model::CreateDBClusterOutcome outcome =
 client.CreateDBCluster(request);

 if (outcome.IsSuccess()) {
 std::cout << "The DB cluster creation has started."
 << std::endl;
 }
 else {
 std::cerr << "Error with Aurora::CreateDBCluster. "
 << outcome.GetError().GetMessage()
 << std::endl;
 cleanUpResources(CLUSTER_PARAMETER_GROUP_NAME, "", "", client);
 return false;
 }

• For API details, see CreateDBCluster in AWS SDK for C++ API Reference.

Go

SDK for Go V2

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

type DbClusters struct {
 AuroraClient *rds.Client
}

// CreateDbCluster creates a DB cluster that is configured to use the specified
 parameter group.
// The newly created DB cluster contains a database that uses the specified
 engine and
// engine version.
func (clusters *DbClusters) CreateDbCluster(clusterName string,
 parameterGroupName string,

CreateDBCluster 3441

https://docs.aws.amazon.com/goto/SdkForCpp/rds-2014-10-31/CreateDBCluster
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/gov2/aurora#code-examples

Amazon Aurora User Guide for Aurora

 dbName string, dbEngine string, dbEngineVersion string, adminName string,
 adminPassword string) (
 *types.DBCluster, error) {

 output, err := clusters.AuroraClient.CreateDBCluster(context.TODO(),
 &rds.CreateDBClusterInput{
 DBClusterIdentifier: aws.String(clusterName),
 Engine: aws.String(dbEngine),
 DBClusterParameterGroupName: aws.String(parameterGroupName),
 DatabaseName: aws.String(dbName),
 EngineVersion: aws.String(dbEngineVersion),
 MasterUserPassword: aws.String(adminPassword),
 MasterUsername: aws.String(adminName),
 })
 if err != nil {
 log.Printf("Couldn't create DB cluster %v: %v\n", clusterName, err)
 return nil, err
 } else {
 return output.DBCluster, err
 }
}

• For API details, see CreateDBCluster in AWS SDK for Go API Reference.

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 public static String createDBCluster(RdsClient rdsClient, String
 dbParameterGroupFamily, String dbName,
 String dbClusterIdentifier, String userName, String password) {
 try {
 CreateDbClusterRequest clusterRequest =
 CreateDbClusterRequest.builder()

CreateDBCluster 3442

https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/rds#Client.CreateDBCluster
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/rds#readme

Amazon Aurora User Guide for Aurora

 .databaseName(dbName)
 .dbClusterIdentifier(dbClusterIdentifier)
 .dbClusterParameterGroupName(dbParameterGroupFamily)
 .engine("aurora-mysql")
 .masterUsername(userName)
 .masterUserPassword(password)
 .build();

 CreateDbClusterResponse response =
 rdsClient.createDBCluster(clusterRequest);
 return response.dbCluster().dbClusterArn();

 } catch (RdsException e) {
 System.out.println(e.getLocalizedMessage());
 System.exit(1);
 }
 return "";
 }

• For API details, see CreateDBCluster in AWS SDK for Java 2.x API Reference.

Kotlin

SDK for Kotlin

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

suspend fun createDBCluster(
 dbParameterGroupFamilyVal: String?,
 dbName: String?,
 dbClusterIdentifierVal: String?,
 userName: String?,
 password: String?,
): String? {
 val clusterRequest =
 CreateDbClusterRequest {
 databaseName = dbName

CreateDBCluster 3443

https://docs.aws.amazon.com/goto/SdkForJavaV2/rds-2014-10-31/CreateDBCluster
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/kotlin/services/rds#code-examples

Amazon Aurora User Guide for Aurora

 dbClusterIdentifier = dbClusterIdentifierVal
 dbClusterParameterGroupName = dbParameterGroupFamilyVal
 engine = "aurora-mysql"
 masterUsername = userName
 masterUserPassword = password
 }

 RdsClient { region = "us-west-2" }.use { rdsClient ->
 val response = rdsClient.createDbCluster(clusterRequest)
 return response.dbCluster?.dbClusterArn
 }
}

• For API details, see CreateDBCluster in AWS SDK for Kotlin API reference.

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

class AuroraWrapper:
 """Encapsulates Aurora DB cluster actions."""

 def __init__(self, rds_client):
 """
 :param rds_client: A Boto3 Amazon Relational Database Service (Amazon
 RDS) client.
 """
 self.rds_client = rds_client

 @classmethod
 def from_client(cls):
 """
 Instantiates this class from a Boto3 client.
 """
 rds_client = boto3.client("rds")

CreateDBCluster 3444

https://sdk.amazonaws.com/kotlin/api/latest/index.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/aurora#code-examples

Amazon Aurora User Guide for Aurora

 return cls(rds_client)

 def create_db_cluster(
 self,
 cluster_name,
 parameter_group_name,
 db_name,
 db_engine,
 db_engine_version,
 admin_name,
 admin_password,
):
 """
 Creates a DB cluster that is configured to use the specified parameter
 group.
 The newly created DB cluster contains a database that uses the specified
 engine and
 engine version.

 :param cluster_name: The name of the DB cluster to create.
 :param parameter_group_name: The name of the parameter group to associate
 with
 the DB cluster.
 :param db_name: The name of the database to create.
 :param db_engine: The database engine of the database that is created,
 such as MySql.
 :param db_engine_version: The version of the database engine.
 :param admin_name: The user name of the database administrator.
 :param admin_password: The password of the database administrator.
 :return: The newly created DB cluster.
 """
 try:
 response = self.rds_client.create_db_cluster(
 DatabaseName=db_name,
 DBClusterIdentifier=cluster_name,
 DBClusterParameterGroupName=parameter_group_name,
 Engine=db_engine,
 EngineVersion=db_engine_version,
 MasterUsername=admin_name,
 MasterUserPassword=admin_password,
)
 cluster = response["DBCluster"]
 except ClientError as err:

CreateDBCluster 3445

Amazon Aurora User Guide for Aurora

 logger.error(
 "Couldn't create database %s. Here's why: %s: %s",
 db_name,
 err.response["Error"]["Code"],
 err.response["Error"]["Message"],
)
 raise
 else:
 return cluster

• For API details, see CreateDBCluster in AWS SDK for Python (Boto3) API Reference.

Rust

SDK for Rust

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 // Get a list of allowed engine versions.
 rds.DescribeDbEngineVersions(Engine='aurora-mysql', DBParameterGroupFamily=<the
 family used to create your parameter group in step 2>)
 // Create an Aurora DB cluster database cluster that contains a MySql
 database and uses the parameter group you created.
 // Wait for DB cluster to be ready. Call rds.DescribeDBClusters and check for
 Status == 'available'.
 // Get a list of instance classes available for the selected engine
 and engine version. rds.DescribeOrderableDbInstanceOptions(Engine='mysql',
 EngineVersion=).

 // Create a database instance in the cluster.
 // Wait for DB instance to be ready. Call rds.DescribeDbInstances and check
 for DBInstanceStatus == 'available'.
 pub async fn start_cluster_and_instance(&mut self) -> Result<(),
 ScenarioError> {
 if self.password.is_none() {
 return Err(ScenarioError::with(

CreateDBCluster 3446

https://docs.aws.amazon.com/goto/boto3/rds-2014-10-31/CreateDBCluster
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/rustv1/examples/aurora#code-examples

Amazon Aurora User Guide for Aurora

 "Must set Secret Password before starting a cluster",
));
 }
 let create_db_cluster = self
 .rds
 .create_db_cluster(
 DB_CLUSTER_IDENTIFIER,
 DB_CLUSTER_PARAMETER_GROUP_NAME,
 DB_ENGINE,
 self.engine_version.as_deref().expect("engine version"),
 self.username.as_deref().expect("username"),
 self.password
 .replace(SecretString::new("".to_string()))
 .expect("password"),
)
 .await;
 if let Err(err) = create_db_cluster {
 return Err(ScenarioError::new(
 "Failed to create DB Cluster with cluster group",
 &err,
));
 }

 self.db_cluster_identifier = create_db_cluster
 .unwrap()
 .db_cluster
 .and_then(|c| c.db_cluster_identifier);

 if self.db_cluster_identifier.is_none() {
 return Err(ScenarioError::with("Created DB Cluster missing
 Identifier"));
 }

 info!(
 "Started a db cluster: {}",
 self.db_cluster_identifier
 .as_deref()
 .unwrap_or("Missing ARN")
);

 let create_db_instance = self
 .rds
 .create_db_instance(
 self.db_cluster_identifier.as_deref().expect("cluster name"),

CreateDBCluster 3447

Amazon Aurora User Guide for Aurora

 DB_INSTANCE_IDENTIFIER,
 self.instance_class.as_deref().expect("instance class"),
 DB_ENGINE,
)
 .await;
 if let Err(err) = create_db_instance {
 return Err(ScenarioError::new(
 "Failed to create Instance in DB Cluster",
 &err,
));
 }

 self.db_instance_identifier = create_db_instance
 .unwrap()
 .db_instance
 .and_then(|i| i.db_instance_identifier);

 // Cluster creation can take up to 20 minutes to become available
 let cluster_max_wait = Duration::from_secs(20 * 60);
 let waiter = Waiter::builder().max(cluster_max_wait).build();
 while waiter.sleep().await.is_ok() {
 let cluster = self
 .rds
 .describe_db_clusters(
 self.db_cluster_identifier
 .as_deref()
 .expect("cluster identifier"),
)
 .await;

 if let Err(err) = cluster {
 warn!(?err, "Failed to describe cluster while waiting for
 ready");
 continue;
 }

 let instance = self
 .rds
 .describe_db_instance(
 self.db_instance_identifier
 .as_deref()
 .expect("instance identifier"),
)
 .await;

CreateDBCluster 3448

Amazon Aurora User Guide for Aurora

 if let Err(err) = instance {
 return Err(ScenarioError::new(
 "Failed to find instance for cluster",
 &err,
));
 }

 let instances_available = instance
 .unwrap()
 .db_instances()
 .iter()
 .all(|instance| instance.db_instance_status() ==
 Some("Available"));

 let endpoints = self
 .rds
 .describe_db_cluster_endpoints(
 self.db_cluster_identifier
 .as_deref()
 .expect("cluster identifier"),
)
 .await;

 if let Err(err) = endpoints {
 return Err(ScenarioError::new(
 "Failed to find endpoint for cluster",
 &err,
));
 }

 let endpoints_available = endpoints
 .unwrap()
 .db_cluster_endpoints()
 .iter()
 .all(|endpoint| endpoint.status() == Some("available"));

 if instances_available && endpoints_available {
 return Ok(());
 }
 }

 Err(ScenarioError::with("timed out waiting for cluster"))
 }

CreateDBCluster 3449

Amazon Aurora User Guide for Aurora

 pub async fn create_db_cluster(
 &self,
 name: &str,
 parameter_group: &str,
 engine: &str,
 version: &str,
 username: &str,
 password: SecretString,
) -> Result<CreateDbClusterOutput, SdkError<CreateDBClusterError>> {
 self.inner
 .create_db_cluster()
 .db_cluster_identifier(name)
 .db_cluster_parameter_group_name(parameter_group)
 .engine(engine)
 .engine_version(version)
 .master_username(username)
 .master_user_password(password.expose_secret())
 .send()
 .await
 }

#[tokio::test]
async fn test_start_cluster_and_instance() {
 let mut mock_rds = MockRdsImpl::default();

 mock_rds
 .expect_create_db_cluster()
 .withf(|id, params, engine, version, username, password| {
 assert_eq!(id, "RustSDKCodeExamplesDBCluster");
 assert_eq!(params, "RustSDKCodeExamplesDBParameterGroup");
 assert_eq!(engine, "aurora-mysql");
 assert_eq!(version, "aurora-mysql8.0");
 assert_eq!(username, "test username");
 assert_eq!(password.expose_secret(), "test password");
 true
 })
 .return_once(|id, _, _, _, _, _| {
 Ok(CreateDbClusterOutput::builder()

 .db_cluster(DbCluster::builder().db_cluster_identifier(id).build())
 .build())
 });

 mock_rds

CreateDBCluster 3450

Amazon Aurora User Guide for Aurora

 .expect_create_db_instance()
 .withf(|cluster, name, class, engine| {
 assert_eq!(cluster, "RustSDKCodeExamplesDBCluster");
 assert_eq!(name, "RustSDKCodeExamplesDBInstance");
 assert_eq!(class, "m5.large");
 assert_eq!(engine, "aurora-mysql");
 true
 })
 .return_once(|cluster, name, class, _| {
 Ok(CreateDbInstanceOutput::builder()
 .db_instance(
 DbInstance::builder()
 .db_cluster_identifier(cluster)
 .db_instance_identifier(name)
 .db_instance_class(class)
 .build(),
)
 .build())
 });

 mock_rds
 .expect_describe_db_clusters()
 .with(eq("RustSDKCodeExamplesDBCluster"))
 .return_once(|id| {
 Ok(DescribeDbClustersOutput::builder()

 .db_clusters(DbCluster::builder().db_cluster_identifier(id).build())
 .build())
 });

 mock_rds
 .expect_describe_db_instance()
 .with(eq("RustSDKCodeExamplesDBInstance"))
 .return_once(|name| {
 Ok(DescribeDbInstancesOutput::builder()
 .db_instances(
 DbInstance::builder()
 .db_instance_identifier(name)
 .db_instance_status("Available")
 .build(),
)
 .build())
 });

CreateDBCluster 3451

Amazon Aurora User Guide for Aurora

 mock_rds
 .expect_describe_db_cluster_endpoints()
 .with(eq("RustSDKCodeExamplesDBCluster"))
 .return_once(|_| {
 Ok(DescribeDbClusterEndpointsOutput::builder()

 .db_cluster_endpoints(DbClusterEndpoint::builder().status("available").build())
 .build())
 });

 let mut scenario = AuroraScenario::new(mock_rds);
 scenario.engine_version = Some("aurora-mysql8.0".into());
 scenario.instance_class = Some("m5.large".into());
 scenario.username = Some("test username".into());
 scenario.password = Some(SecretString::new("test password".into()));

 tokio::time::pause();
 let assertions = tokio::spawn(async move {
 let create = scenario.start_cluster_and_instance().await;
 assert!(create.is_ok());
 assert!(scenario
 .password
 .replace(SecretString::new("BAD SECRET".into()))
 .unwrap()
 .expose_secret()
 .is_empty());
 assert_eq!(
 scenario.db_cluster_identifier,
 Some("RustSDKCodeExamplesDBCluster".into())
);
 });
 tokio::time::advance(Duration::from_secs(1)).await;
 tokio::time::resume();
 let _ = assertions.await;
}

#[tokio::test]
async fn test_start_cluster_and_instance_cluster_create_error() {
 let mut mock_rds = MockRdsImpl::default();

 mock_rds
 .expect_create_db_cluster()
 .return_once(|_, _, _, _, _, _| {
 Err(SdkError::service_error(

CreateDBCluster 3452

Amazon Aurora User Guide for Aurora

 CreateDBClusterError::unhandled(Box::new(Error::new(
 ErrorKind::Other,
 "create db cluster error",
))),
 Response::new(StatusCode::try_from(400).unwrap(),
 SdkBody::empty()),
))
 });

 let mut scenario = AuroraScenario::new(mock_rds);
 scenario.engine_version = Some("aurora-mysql8.0".into());
 scenario.instance_class = Some("m5.large".into());
 scenario.username = Some("test username".into());
 scenario.password = Some(SecretString::new("test password".into()));

 let create = scenario.start_cluster_and_instance().await;
 assert_matches!(create, Err(ScenarioError { message, context: _}) if message
 == "Failed to create DB Cluster with cluster group")
}

#[tokio::test]
async fn test_start_cluster_and_instance_cluster_create_missing_id() {
 let mut mock_rds = MockRdsImpl::default();

 mock_rds
 .expect_create_db_cluster()
 .return_once(|_, _, _, _, _, _| {
 Ok(CreateDbClusterOutput::builder()
 .db_cluster(DbCluster::builder().build())
 .build())
 });

 let mut scenario = AuroraScenario::new(mock_rds);
 scenario.engine_version = Some("aurora-mysql8.0".into());
 scenario.instance_class = Some("m5.large".into());
 scenario.username = Some("test username".into());
 scenario.password = Some(SecretString::new("test password".into()));

 let create = scenario.start_cluster_and_instance().await;
 assert_matches!(create, Err(ScenarioError { message, context:_ }) if message
 == "Created DB Cluster missing Identifier");
}

#[tokio::test]

CreateDBCluster 3453

Amazon Aurora User Guide for Aurora

async fn test_start_cluster_and_instance_instance_create_error() {
 let mut mock_rds = MockRdsImpl::default();

 mock_rds
 .expect_create_db_cluster()
 .withf(|id, params, engine, version, username, password| {
 assert_eq!(id, "RustSDKCodeExamplesDBCluster");
 assert_eq!(params, "RustSDKCodeExamplesDBParameterGroup");
 assert_eq!(engine, "aurora-mysql");
 assert_eq!(version, "aurora-mysql8.0");
 assert_eq!(username, "test username");
 assert_eq!(password.expose_secret(), "test password");
 true
 })
 .return_once(|id, _, _, _, _, _| {
 Ok(CreateDbClusterOutput::builder()

 .db_cluster(DbCluster::builder().db_cluster_identifier(id).build())
 .build())
 });

 mock_rds
 .expect_create_db_instance()
 .return_once(|_, _, _, _| {
 Err(SdkError::service_error(
 CreateDBInstanceError::unhandled(Box::new(Error::new(
 ErrorKind::Other,
 "create db instance error",
))),
 Response::new(StatusCode::try_from(400).unwrap(),
 SdkBody::empty()),
))
 });

 let mut scenario = AuroraScenario::new(mock_rds);
 scenario.engine_version = Some("aurora-mysql8.0".into());
 scenario.instance_class = Some("m5.large".into());
 scenario.username = Some("test username".into());
 scenario.password = Some(SecretString::new("test password".into()));

 let create = scenario.start_cluster_and_instance().await;
 assert_matches!(create, Err(ScenarioError { message, context: _ }) if message
 == "Failed to create Instance in DB Cluster")
}

CreateDBCluster 3454

Amazon Aurora User Guide for Aurora

#[tokio::test]
async fn test_start_cluster_and_instance_wait_hiccup() {
 let mut mock_rds = MockRdsImpl::default();

 mock_rds
 .expect_create_db_cluster()
 .withf(|id, params, engine, version, username, password| {
 assert_eq!(id, "RustSDKCodeExamplesDBCluster");
 assert_eq!(params, "RustSDKCodeExamplesDBParameterGroup");
 assert_eq!(engine, "aurora-mysql");
 assert_eq!(version, "aurora-mysql8.0");
 assert_eq!(username, "test username");
 assert_eq!(password.expose_secret(), "test password");
 true
 })
 .return_once(|id, _, _, _, _, _| {
 Ok(CreateDbClusterOutput::builder()

 .db_cluster(DbCluster::builder().db_cluster_identifier(id).build())
 .build())
 });

 mock_rds
 .expect_create_db_instance()
 .withf(|cluster, name, class, engine| {
 assert_eq!(cluster, "RustSDKCodeExamplesDBCluster");
 assert_eq!(name, "RustSDKCodeExamplesDBInstance");
 assert_eq!(class, "m5.large");
 assert_eq!(engine, "aurora-mysql");
 true
 })
 .return_once(|cluster, name, class, _| {
 Ok(CreateDbInstanceOutput::builder()
 .db_instance(
 DbInstance::builder()
 .db_cluster_identifier(cluster)
 .db_instance_identifier(name)
 .db_instance_class(class)
 .build(),
)
 .build())
 });

CreateDBCluster 3455

Amazon Aurora User Guide for Aurora

 mock_rds
 .expect_describe_db_clusters()
 .with(eq("RustSDKCodeExamplesDBCluster"))
 .times(1)
 .returning(|_| {
 Err(SdkError::service_error(
 DescribeDBClustersError::unhandled(Box::new(Error::new(
 ErrorKind::Other,
 "describe cluster error",
))),
 Response::new(StatusCode::try_from(400).unwrap(),
 SdkBody::empty()),
))
 })
 .with(eq("RustSDKCodeExamplesDBCluster"))
 .times(1)
 .returning(|id| {
 Ok(DescribeDbClustersOutput::builder()

 .db_clusters(DbCluster::builder().db_cluster_identifier(id).build())
 .build())
 });

 mock_rds.expect_describe_db_instance().return_once(|name| {
 Ok(DescribeDbInstancesOutput::builder()
 .db_instances(
 DbInstance::builder()
 .db_instance_identifier(name)
 .db_instance_status("Available")
 .build(),
)
 .build())
 });

 mock_rds
 .expect_describe_db_cluster_endpoints()
 .return_once(|_| {
 Ok(DescribeDbClusterEndpointsOutput::builder()

 .db_cluster_endpoints(DbClusterEndpoint::builder().status("available").build())
 .build())
 });

 let mut scenario = AuroraScenario::new(mock_rds);

CreateDBCluster 3456

Amazon Aurora User Guide for Aurora

 scenario.engine_version = Some("aurora-mysql8.0".into());
 scenario.instance_class = Some("m5.large".into());
 scenario.username = Some("test username".into());
 scenario.password = Some(SecretString::new("test password".into()));

 tokio::time::pause();
 let assertions = tokio::spawn(async move {
 let create = scenario.start_cluster_and_instance().await;
 assert!(create.is_ok());
 });

 tokio::time::advance(Duration::from_secs(1)).await;
 tokio::time::advance(Duration::from_secs(1)).await;
 tokio::time::resume();
 let _ = assertions.await;
}

• For API details, see CreateDBCluster in AWS SDK for Rust API reference.

For a complete list of AWS SDK developer guides and code examples, see Using this service with
an AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Use CreateDBClusterParameterGroup with an AWS SDK or CLI

The following code examples show how to use CreateDBClusterParameterGroup.

Action examples are code excerpts from larger programs and must be run in context. You can see
this action in context in the following code example:

• Get started with DB clusters

CreateDBClusterParameterGroup 3457

https://docs.rs/aws-sdk-rds/latest/aws_sdk_rds/client/struct.Client.html#method.create_db_cluster

Amazon Aurora User Guide for Aurora

.NET

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 /// <summary>
 /// Create a custom cluster parameter group.
 /// </summary>
 /// <param name="parameterGroupFamily">The family of the parameter group.</
param>
 /// <param name="groupName">The name for the new parameter group.</param>
 /// <param name="description">A description for the new parameter group.</
param>
 /// <returns>The new parameter group object.</returns>
 public async Task<DBClusterParameterGroup>
 CreateCustomClusterParameterGroupAsync(
 string parameterGroupFamily,
 string groupName,
 string description)
 {
 var request = new CreateDBClusterParameterGroupRequest
 {
 DBParameterGroupFamily = parameterGroupFamily,
 DBClusterParameterGroupName = groupName,
 Description = description,
 };

 var response = await
 _amazonRDS.CreateDBClusterParameterGroupAsync(request);
 return response.DBClusterParameterGroup;
 }

• For API details, see CreateDBClusterParameterGroup in AWS SDK for .NET API Reference.

CreateDBClusterParameterGroup 3458

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Aurora#code-examples
https://docs.aws.amazon.com/goto/DotNetSDKV3/rds-2014-10-31/CreateDBClusterParameterGroup

Amazon Aurora User Guide for Aurora

C++

SDK for C++

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 Aws::Client::ClientConfiguration clientConfig;
 // Optional: Set to the AWS Region (overrides config file).
 // clientConfig.region = "us-east-1";

 Aws::RDS::RDSClient client(clientConfig);

 Aws::RDS::Model::CreateDBClusterParameterGroupRequest request;
 request.SetDBClusterParameterGroupName(CLUSTER_PARAMETER_GROUP_NAME);
 request.SetDBParameterGroupFamily(dbParameterGroupFamily);
 request.SetDescription("Example cluster parameter group.");

 Aws::RDS::Model::CreateDBClusterParameterGroupOutcome outcome =
 client.CreateDBClusterParameterGroup(request);

 if (outcome.IsSuccess()) {
 std::cout << "The DB cluster parameter group was successfully
 created."
 << std::endl;
 }
 else {
 std::cerr << "Error with Aurora::CreateDBClusterParameterGroup. "
 << outcome.GetError().GetMessage()
 << std::endl;
 return false;
 }

• For API details, see CreateDBClusterParameterGroup in AWS SDK for C++ API Reference.

CreateDBClusterParameterGroup 3459

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/cpp/example_code/aurora#code-examples
https://docs.aws.amazon.com/goto/SdkForCpp/rds-2014-10-31/CreateDBClusterParameterGroup

Amazon Aurora User Guide for Aurora

Go

SDK for Go V2

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

type DbClusters struct {
 AuroraClient *rds.Client
}

// CreateParameterGroup creates a DB cluster parameter group that is based on the
 specified
// parameter group family.
func (clusters *DbClusters) CreateParameterGroup(
 parameterGroupName string, parameterGroupFamily string, description string) (
 *types.DBClusterParameterGroup, error) {

 output, err :=
 clusters.AuroraClient.CreateDBClusterParameterGroup(context.TODO(),
 &rds.CreateDBClusterParameterGroupInput{
 DBClusterParameterGroupName: aws.String(parameterGroupName),
 DBParameterGroupFamily: aws.String(parameterGroupFamily),
 Description: aws.String(description),
 })
 if err != nil {
 log.Printf("Couldn't create parameter group %v: %v\n", parameterGroupName, err)
 return nil, err
 } else {
 return output.DBClusterParameterGroup, err
 }
}

• For API details, see CreateDBClusterParameterGroup in AWS SDK for Go API Reference.

CreateDBClusterParameterGroup 3460

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/gov2/aurora#code-examples
https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/rds#Client.CreateDBClusterParameterGroup

Amazon Aurora User Guide for Aurora

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 public static void createDBClusterParameterGroup(RdsClient rdsClient, String
 dbClusterGroupName,
 String dbParameterGroupFamily) {
 try {
 CreateDbClusterParameterGroupRequest groupRequest =
 CreateDbClusterParameterGroupRequest.builder()
 .dbClusterParameterGroupName(dbClusterGroupName)
 .dbParameterGroupFamily(dbParameterGroupFamily)
 .description("Created by using the AWS SDK for Java")
 .build();

 CreateDbClusterParameterGroupResponse response =
 rdsClient.createDBClusterParameterGroup(groupRequest);
 System.out.println("The group name is " +
 response.dbClusterParameterGroup().dbClusterParameterGroupName());

 } catch (RdsException e) {
 System.out.println(e.getLocalizedMessage());
 System.exit(1);
 }
 }

• For API details, see CreateDBClusterParameterGroup in AWS SDK for Java 2.x API
Reference.

CreateDBClusterParameterGroup 3461

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/rds#readme
https://docs.aws.amazon.com/goto/SdkForJavaV2/rds-2014-10-31/CreateDBClusterParameterGroup

Amazon Aurora User Guide for Aurora

Kotlin

SDK for Kotlin

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

suspend fun createDBClusterParameterGroup(
 dbClusterGroupNameVal: String?,
 dbParameterGroupFamilyVal: String?,
) {
 val groupRequest =
 CreateDbClusterParameterGroupRequest {
 dbClusterParameterGroupName = dbClusterGroupNameVal
 dbParameterGroupFamily = dbParameterGroupFamilyVal
 description = "Created by using the AWS SDK for Kotlin"
 }

 RdsClient { region = "us-west-2" }.use { rdsClient ->
 val response = rdsClient.createDbClusterParameterGroup(groupRequest)
 println("The group name is
 ${response.dbClusterParameterGroup?.dbClusterParameterGroupName}")
 }
}

• For API details, see CreateDBClusterParameterGroup in AWS SDK for Kotlin API reference.

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

CreateDBClusterParameterGroup 3462

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/kotlin/services/rds#code-examples
https://sdk.amazonaws.com/kotlin/api/latest/index.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/aurora#code-examples

Amazon Aurora User Guide for Aurora

class AuroraWrapper:
 """Encapsulates Aurora DB cluster actions."""

 def __init__(self, rds_client):
 """
 :param rds_client: A Boto3 Amazon Relational Database Service (Amazon
 RDS) client.
 """
 self.rds_client = rds_client

 @classmethod
 def from_client(cls):
 """
 Instantiates this class from a Boto3 client.
 """
 rds_client = boto3.client("rds")
 return cls(rds_client)

 def create_parameter_group(
 self, parameter_group_name, parameter_group_family, description
):
 """
 Creates a DB cluster parameter group that is based on the specified
 parameter group
 family.

 :param parameter_group_name: The name of the newly created parameter
 group.
 :param parameter_group_family: The family that is used as the basis of
 the new
 parameter group.
 :param description: A description given to the parameter group.
 :return: Data about the newly created parameter group.
 """
 try:
 response = self.rds_client.create_db_cluster_parameter_group(
 DBClusterParameterGroupName=parameter_group_name,
 DBParameterGroupFamily=parameter_group_family,
 Description=description,
)
 except ClientError as err:
 logger.error(

CreateDBClusterParameterGroup 3463

Amazon Aurora User Guide for Aurora

 "Couldn't create parameter group %s. Here's why: %s: %s",
 parameter_group_name,
 err.response["Error"]["Code"],
 err.response["Error"]["Message"],
)
 raise
 else:
 return response

• For API details, see CreateDBClusterParameterGroup in AWS SDK for Python (Boto3) API
Reference.

Rust

SDK for Rust

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 // Select an engine family and create a custom DB cluster parameter group.
 rds.CreateDbClusterParameterGroup(DBParameterGroupFamily='aurora-mysql8.0')
 pub async fn set_engine(&mut self, engine: &str, version: &str) -> Result<(),
 ScenarioError> {
 self.engine_family = Some(engine.to_string());
 self.engine_version = Some(version.to_string());
 let create_db_cluster_parameter_group = self
 .rds
 .create_db_cluster_parameter_group(
 DB_CLUSTER_PARAMETER_GROUP_NAME,
 DB_CLUSTER_PARAMETER_GROUP_DESCRIPTION,
 engine,
)
 .await;

 match create_db_cluster_parameter_group {
 Ok(CreateDbClusterParameterGroupOutput {

CreateDBClusterParameterGroup 3464

https://docs.aws.amazon.com/goto/boto3/rds-2014-10-31/CreateDBClusterParameterGroup
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/rustv1/examples/aurora#code-examples

Amazon Aurora User Guide for Aurora

 db_cluster_parameter_group: None,
 ..
 }) => {
 return Err(ScenarioError::with(
 "CreateDBClusterParameterGroup had empty response",
));
 }
 Err(error) => {
 if error.code() == Some("DBParameterGroupAlreadyExists") {
 info!("Cluster Parameter Group already exists, nothing to
 do");
 } else {
 return Err(ScenarioError::new(
 "Could not create Cluster Parameter Group",
 &error,
));
 }
 }
 _ => {
 info!("Created Cluster Parameter Group");
 }
 }

 Ok(())
 }

 pub async fn create_db_cluster_parameter_group(
 &self,
 name: &str,
 description: &str,
 family: &str,
) -> Result<CreateDbClusterParameterGroupOutput,
 SdkError<CreateDBClusterParameterGroupError>>
 {
 self.inner
 .create_db_cluster_parameter_group()
 .db_cluster_parameter_group_name(name)
 .description(description)
 .db_parameter_group_family(family)
 .send()
 .await
 }

#[tokio::test]

CreateDBClusterParameterGroup 3465

Amazon Aurora User Guide for Aurora

async fn test_scenario_set_engine() {
 let mut mock_rds = MockRdsImpl::default();

 mock_rds
 .expect_create_db_cluster_parameter_group()
 .with(
 eq("RustSDKCodeExamplesDBParameterGroup"),
 eq("Parameter Group created by Rust SDK Code Example"),
 eq("aurora-mysql"),
)
 .return_once(|_, _, _| {
 Ok(CreateDbClusterParameterGroupOutput::builder()

 .db_cluster_parameter_group(DbClusterParameterGroup::builder().build())
 .build())
 });

 let mut scenario = AuroraScenario::new(mock_rds);

 let set_engine = scenario.set_engine("aurora-mysql", "aurora-
mysql8.0").await;

 assert_eq!(set_engine, Ok(()));
 assert_eq!(Some("aurora-mysql"), scenario.engine_family.as_deref());
 assert_eq!(Some("aurora-mysql8.0"), scenario.engine_version.as_deref());
}

#[tokio::test]
async fn test_scenario_set_engine_not_create() {
 let mut mock_rds = MockRdsImpl::default();

 mock_rds
 .expect_create_db_cluster_parameter_group()
 .with(
 eq("RustSDKCodeExamplesDBParameterGroup"),
 eq("Parameter Group created by Rust SDK Code Example"),
 eq("aurora-mysql"),
)
 .return_once(|_, _, _|
 Ok(CreateDbClusterParameterGroupOutput::builder().build()));

 let mut scenario = AuroraScenario::new(mock_rds);

CreateDBClusterParameterGroup 3466

Amazon Aurora User Guide for Aurora

 let set_engine = scenario.set_engine("aurora-mysql", "aurora-
mysql8.0").await;

 assert!(set_engine.is_err());
}

#[tokio::test]
async fn test_scenario_set_engine_param_group_exists() {
 let mut mock_rds = MockRdsImpl::default();

 mock_rds
 .expect_create_db_cluster_parameter_group()
 .withf(|_, _, _| true)
 .return_once(|_, _, _| {
 Err(SdkError::service_error(

 CreateDBClusterParameterGroupError::DbParameterGroupAlreadyExistsFault(
 DbParameterGroupAlreadyExistsFault::builder().build(),
),
 Response::new(StatusCode::try_from(400).unwrap(),
 SdkBody::empty()),
))
 });

 let mut scenario = AuroraScenario::new(mock_rds);

 let set_engine = scenario.set_engine("aurora-mysql", "aurora-
mysql8.0").await;

 assert!(set_engine.is_err());
}

• For API details, see CreateDBClusterParameterGroup in AWS SDK for Rust API reference.

For a complete list of AWS SDK developer guides and code examples, see Using this service with
an AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Use CreateDBClusterSnapshot with an AWS SDK or CLI

The following code examples show how to use CreateDBClusterSnapshot.

CreateDBClusterSnapshot 3467

https://docs.rs/aws-sdk-rds/latest/aws_sdk_rds/client/struct.Client.html#method.create_db_cluster_parameter_group

Amazon Aurora User Guide for Aurora

Action examples are code excerpts from larger programs and must be run in context. You can see
this action in context in the following code example:

• Get started with DB clusters

.NET

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 /// <summary>
 /// Create a snapshot of a cluster.
 /// </summary>
 /// <param name="dbClusterIdentifier">DB cluster identifier.</param>
 /// <param name="snapshotIdentifier">Identifier for the snapshot.</param>
 /// <returns>DB snapshot object.</returns>
 public async Task<DBClusterSnapshot>
 CreateClusterSnapshotByIdentifierAsync(string dbClusterIdentifier, string
 snapshotIdentifier)
 {
 var response = await _amazonRDS.CreateDBClusterSnapshotAsync(
 new CreateDBClusterSnapshotRequest()
 {
 DBClusterIdentifier = dbClusterIdentifier,
 DBClusterSnapshotIdentifier = snapshotIdentifier,
 });

 return response.DBClusterSnapshot;
 }

• For API details, see CreateDBClusterSnapshot in AWS SDK for .NET API Reference.

CreateDBClusterSnapshot 3468

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Aurora#code-examples
https://docs.aws.amazon.com/goto/DotNetSDKV3/rds-2014-10-31/CreateDBClusterSnapshot

Amazon Aurora User Guide for Aurora

C++

SDK for C++

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 Aws::Client::ClientConfiguration clientConfig;
 // Optional: Set to the AWS Region (overrides config file).
 // clientConfig.region = "us-east-1";

 Aws::RDS::RDSClient client(clientConfig);

 Aws::RDS::Model::CreateDBClusterSnapshotRequest request;
 request.SetDBClusterIdentifier(DB_CLUSTER_IDENTIFIER);
 request.SetDBClusterSnapshotIdentifier(snapshotID);

 Aws::RDS::Model::CreateDBClusterSnapshotOutcome outcome =
 client.CreateDBClusterSnapshot(request);

 if (outcome.IsSuccess()) {
 std::cout << "Snapshot creation has started."
 << std::endl;
 }
 else {
 std::cerr << "Error with Aurora::CreateDBClusterSnapshot. "
 << outcome.GetError().GetMessage()
 << std::endl;
 cleanUpResources(CLUSTER_PARAMETER_GROUP_NAME,
 DB_CLUSTER_IDENTIFIER, DB_INSTANCE_IDENTIFIER,
 client);
 return false;
 }

• For API details, see CreateDBClusterSnapshot in AWS SDK for C++ API Reference.

CreateDBClusterSnapshot 3469

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/cpp/example_code/aurora#code-examples
https://docs.aws.amazon.com/goto/SdkForCpp/rds-2014-10-31/CreateDBClusterSnapshot

Amazon Aurora User Guide for Aurora

Go

SDK for Go V2

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

type DbClusters struct {
 AuroraClient *rds.Client
}

// CreateClusterSnapshot creates a snapshot of a DB cluster.
func (clusters *DbClusters) CreateClusterSnapshot(clusterName string,
 snapshotName string) (
 *types.DBClusterSnapshot, error) {
 output, err := clusters.AuroraClient.CreateDBClusterSnapshot(context.TODO(),
 &rds.CreateDBClusterSnapshotInput{
 DBClusterIdentifier: aws.String(clusterName),
 DBClusterSnapshotIdentifier: aws.String(snapshotName),
 })
 if err != nil {
 log.Printf("Couldn't create snapshot %v: %v\n", snapshotName, err)
 return nil, err
 } else {
 return output.DBClusterSnapshot, nil
 }
}

• For API details, see CreateDBClusterSnapshot in AWS SDK for Go API Reference.

CreateDBClusterSnapshot 3470

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/gov2/aurora#code-examples
https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/rds#Client.CreateDBClusterSnapshot

Amazon Aurora User Guide for Aurora

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 public static void createDBClusterSnapshot(RdsClient rdsClient, String
 dbInstanceClusterIdentifier,
 String dbSnapshotIdentifier) {
 try {
 CreateDbClusterSnapshotRequest snapshotRequest =
 CreateDbClusterSnapshotRequest.builder()
 .dbClusterIdentifier(dbInstanceClusterIdentifier)
 .dbClusterSnapshotIdentifier(dbSnapshotIdentifier)
 .build();

 CreateDbClusterSnapshotResponse response =
 rdsClient.createDBClusterSnapshot(snapshotRequest);
 System.out.println("The Snapshot ARN is " +
 response.dbClusterSnapshot().dbClusterSnapshotArn());

 } catch (RdsException e) {
 System.out.println(e.getLocalizedMessage());
 System.exit(1);
 }
 }

• For API details, see CreateDBClusterSnapshot in AWS SDK for Java 2.x API Reference.

CreateDBClusterSnapshot 3471

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/rds#readme
https://docs.aws.amazon.com/goto/SdkForJavaV2/rds-2014-10-31/CreateDBClusterSnapshot

Amazon Aurora User Guide for Aurora

Kotlin

SDK for Kotlin

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

suspend fun createDBClusterSnapshot(
 dbInstanceClusterIdentifier: String?,
 dbSnapshotIdentifier: String?,
) {
 val snapshotRequest =
 CreateDbClusterSnapshotRequest {
 dbClusterIdentifier = dbInstanceClusterIdentifier
 dbClusterSnapshotIdentifier = dbSnapshotIdentifier
 }

 RdsClient { region = "us-west-2" }.use { rdsClient ->
 val response = rdsClient.createDbClusterSnapshot(snapshotRequest)
 println("The Snapshot ARN is
 ${response.dbClusterSnapshot?.dbClusterSnapshotArn}")
 }
}

• For API details, see CreateDBClusterSnapshot in AWS SDK for Kotlin API reference.

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

CreateDBClusterSnapshot 3472

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/kotlin/services/rds#code-examples
https://sdk.amazonaws.com/kotlin/api/latest/index.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/aurora#code-examples

Amazon Aurora User Guide for Aurora

class AuroraWrapper:
 """Encapsulates Aurora DB cluster actions."""

 def __init__(self, rds_client):
 """
 :param rds_client: A Boto3 Amazon Relational Database Service (Amazon
 RDS) client.
 """
 self.rds_client = rds_client

 @classmethod
 def from_client(cls):
 """
 Instantiates this class from a Boto3 client.
 """
 rds_client = boto3.client("rds")
 return cls(rds_client)

 def create_cluster_snapshot(self, snapshot_id, cluster_id):
 """
 Creates a snapshot of a DB cluster.

 :param snapshot_id: The ID to give the created snapshot.
 :param cluster_id: The DB cluster to snapshot.
 :return: Data about the newly created snapshot.
 """
 try:
 response = self.rds_client.create_db_cluster_snapshot(
 DBClusterSnapshotIdentifier=snapshot_id,
 DBClusterIdentifier=cluster_id
)
 snapshot = response["DBClusterSnapshot"]
 except ClientError as err:
 logger.error(
 "Couldn't create snapshot of %s. Here's why: %s: %s",
 cluster_id,
 err.response["Error"]["Code"],
 err.response["Error"]["Message"],
)
 raise
 else:
 return snapshot

CreateDBClusterSnapshot 3473

Amazon Aurora User Guide for Aurora

• For API details, see CreateDBClusterSnapshot in AWS SDK for Python (Boto3) API
Reference.

Rust

SDK for Rust

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 // Get a list of allowed engine versions.
 rds.DescribeDbEngineVersions(Engine='aurora-mysql', DBParameterGroupFamily=<the
 family used to create your parameter group in step 2>)
 // Create an Aurora DB cluster database cluster that contains a MySql
 database and uses the parameter group you created.
 // Wait for DB cluster to be ready. Call rds.DescribeDBClusters and check for
 Status == 'available'.
 // Get a list of instance classes available for the selected engine
 and engine version. rds.DescribeOrderableDbInstanceOptions(Engine='mysql',
 EngineVersion=).

 // Create a database instance in the cluster.
 // Wait for DB instance to be ready. Call rds.DescribeDbInstances and check
 for DBInstanceStatus == 'available'.
 pub async fn start_cluster_and_instance(&mut self) -> Result<(),
 ScenarioError> {
 if self.password.is_none() {
 return Err(ScenarioError::with(
 "Must set Secret Password before starting a cluster",
));
 }
 let create_db_cluster = self
 .rds
 .create_db_cluster(
 DB_CLUSTER_IDENTIFIER,

CreateDBClusterSnapshot 3474

https://docs.aws.amazon.com/goto/boto3/rds-2014-10-31/CreateDBClusterSnapshot
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/rustv1/examples/aurora#code-examples

Amazon Aurora User Guide for Aurora

 DB_CLUSTER_PARAMETER_GROUP_NAME,
 DB_ENGINE,
 self.engine_version.as_deref().expect("engine version"),
 self.username.as_deref().expect("username"),
 self.password
 .replace(SecretString::new("".to_string()))
 .expect("password"),
)
 .await;
 if let Err(err) = create_db_cluster {
 return Err(ScenarioError::new(
 "Failed to create DB Cluster with cluster group",
 &err,
));
 }

 self.db_cluster_identifier = create_db_cluster
 .unwrap()
 .db_cluster
 .and_then(|c| c.db_cluster_identifier);

 if self.db_cluster_identifier.is_none() {
 return Err(ScenarioError::with("Created DB Cluster missing
 Identifier"));
 }

 info!(
 "Started a db cluster: {}",
 self.db_cluster_identifier
 .as_deref()
 .unwrap_or("Missing ARN")
);

 let create_db_instance = self
 .rds
 .create_db_instance(
 self.db_cluster_identifier.as_deref().expect("cluster name"),
 DB_INSTANCE_IDENTIFIER,
 self.instance_class.as_deref().expect("instance class"),
 DB_ENGINE,
)
 .await;
 if let Err(err) = create_db_instance {
 return Err(ScenarioError::new(

CreateDBClusterSnapshot 3475

Amazon Aurora User Guide for Aurora

 "Failed to create Instance in DB Cluster",
 &err,
));
 }

 self.db_instance_identifier = create_db_instance
 .unwrap()
 .db_instance
 .and_then(|i| i.db_instance_identifier);

 // Cluster creation can take up to 20 minutes to become available
 let cluster_max_wait = Duration::from_secs(20 * 60);
 let waiter = Waiter::builder().max(cluster_max_wait).build();
 while waiter.sleep().await.is_ok() {
 let cluster = self
 .rds
 .describe_db_clusters(
 self.db_cluster_identifier
 .as_deref()
 .expect("cluster identifier"),
)
 .await;

 if let Err(err) = cluster {
 warn!(?err, "Failed to describe cluster while waiting for
 ready");
 continue;
 }

 let instance = self
 .rds
 .describe_db_instance(
 self.db_instance_identifier
 .as_deref()
 .expect("instance identifier"),
)
 .await;
 if let Err(err) = instance {
 return Err(ScenarioError::new(
 "Failed to find instance for cluster",
 &err,
));
 }

CreateDBClusterSnapshot 3476

Amazon Aurora User Guide for Aurora

 let instances_available = instance
 .unwrap()
 .db_instances()
 .iter()
 .all(|instance| instance.db_instance_status() ==
 Some("Available"));

 let endpoints = self
 .rds
 .describe_db_cluster_endpoints(
 self.db_cluster_identifier
 .as_deref()
 .expect("cluster identifier"),
)
 .await;

 if let Err(err) = endpoints {
 return Err(ScenarioError::new(
 "Failed to find endpoint for cluster",
 &err,
));
 }

 let endpoints_available = endpoints
 .unwrap()
 .db_cluster_endpoints()
 .iter()
 .all(|endpoint| endpoint.status() == Some("available"));

 if instances_available && endpoints_available {
 return Ok(());
 }
 }

 Err(ScenarioError::with("timed out waiting for cluster"))
 }

 pub async fn snapshot_cluster(
 &self,
 db_cluster_identifier: &str,
 snapshot_name: &str,
) -> Result<CreateDbClusterSnapshotOutput,
 SdkError<CreateDBClusterSnapshotError>> {
 self.inner

CreateDBClusterSnapshot 3477

Amazon Aurora User Guide for Aurora

 .create_db_cluster_snapshot()
 .db_cluster_identifier(db_cluster_identifier)
 .db_cluster_snapshot_identifier(snapshot_name)
 .send()
 .await
 }

#[tokio::test]
async fn test_start_cluster_and_instance() {
 let mut mock_rds = MockRdsImpl::default();

 mock_rds
 .expect_create_db_cluster()
 .withf(|id, params, engine, version, username, password| {
 assert_eq!(id, "RustSDKCodeExamplesDBCluster");
 assert_eq!(params, "RustSDKCodeExamplesDBParameterGroup");
 assert_eq!(engine, "aurora-mysql");
 assert_eq!(version, "aurora-mysql8.0");
 assert_eq!(username, "test username");
 assert_eq!(password.expose_secret(), "test password");
 true
 })
 .return_once(|id, _, _, _, _, _| {
 Ok(CreateDbClusterOutput::builder()

 .db_cluster(DbCluster::builder().db_cluster_identifier(id).build())
 .build())
 });

 mock_rds
 .expect_create_db_instance()
 .withf(|cluster, name, class, engine| {
 assert_eq!(cluster, "RustSDKCodeExamplesDBCluster");
 assert_eq!(name, "RustSDKCodeExamplesDBInstance");
 assert_eq!(class, "m5.large");
 assert_eq!(engine, "aurora-mysql");
 true
 })
 .return_once(|cluster, name, class, _| {
 Ok(CreateDbInstanceOutput::builder()
 .db_instance(
 DbInstance::builder()
 .db_cluster_identifier(cluster)
 .db_instance_identifier(name)

CreateDBClusterSnapshot 3478

Amazon Aurora User Guide for Aurora

 .db_instance_class(class)
 .build(),
)
 .build())
 });

 mock_rds
 .expect_describe_db_clusters()
 .with(eq("RustSDKCodeExamplesDBCluster"))
 .return_once(|id| {
 Ok(DescribeDbClustersOutput::builder()

 .db_clusters(DbCluster::builder().db_cluster_identifier(id).build())
 .build())
 });

 mock_rds
 .expect_describe_db_instance()
 .with(eq("RustSDKCodeExamplesDBInstance"))
 .return_once(|name| {
 Ok(DescribeDbInstancesOutput::builder()
 .db_instances(
 DbInstance::builder()
 .db_instance_identifier(name)
 .db_instance_status("Available")
 .build(),
)
 .build())
 });

 mock_rds
 .expect_describe_db_cluster_endpoints()
 .with(eq("RustSDKCodeExamplesDBCluster"))
 .return_once(|_| {
 Ok(DescribeDbClusterEndpointsOutput::builder()

 .db_cluster_endpoints(DbClusterEndpoint::builder().status("available").build())
 .build())
 });

 let mut scenario = AuroraScenario::new(mock_rds);
 scenario.engine_version = Some("aurora-mysql8.0".into());
 scenario.instance_class = Some("m5.large".into());
 scenario.username = Some("test username".into());

CreateDBClusterSnapshot 3479

Amazon Aurora User Guide for Aurora

 scenario.password = Some(SecretString::new("test password".into()));

 tokio::time::pause();
 let assertions = tokio::spawn(async move {
 let create = scenario.start_cluster_and_instance().await;
 assert!(create.is_ok());
 assert!(scenario
 .password
 .replace(SecretString::new("BAD SECRET".into()))
 .unwrap()
 .expose_secret()
 .is_empty());
 assert_eq!(
 scenario.db_cluster_identifier,
 Some("RustSDKCodeExamplesDBCluster".into())
);
 });
 tokio::time::advance(Duration::from_secs(1)).await;
 tokio::time::resume();
 let _ = assertions.await;
}

#[tokio::test]
async fn test_start_cluster_and_instance_cluster_create_error() {
 let mut mock_rds = MockRdsImpl::default();

 mock_rds
 .expect_create_db_cluster()
 .return_once(|_, _, _, _, _, _| {
 Err(SdkError::service_error(
 CreateDBClusterError::unhandled(Box::new(Error::new(
 ErrorKind::Other,
 "create db cluster error",
))),
 Response::new(StatusCode::try_from(400).unwrap(),
 SdkBody::empty()),
))
 });

 let mut scenario = AuroraScenario::new(mock_rds);
 scenario.engine_version = Some("aurora-mysql8.0".into());
 scenario.instance_class = Some("m5.large".into());
 scenario.username = Some("test username".into());
 scenario.password = Some(SecretString::new("test password".into()));

CreateDBClusterSnapshot 3480

Amazon Aurora User Guide for Aurora

 let create = scenario.start_cluster_and_instance().await;
 assert_matches!(create, Err(ScenarioError { message, context: _}) if message
 == "Failed to create DB Cluster with cluster group")
}

#[tokio::test]
async fn test_start_cluster_and_instance_cluster_create_missing_id() {
 let mut mock_rds = MockRdsImpl::default();

 mock_rds
 .expect_create_db_cluster()
 .return_once(|_, _, _, _, _, _| {
 Ok(CreateDbClusterOutput::builder()
 .db_cluster(DbCluster::builder().build())
 .build())
 });

 let mut scenario = AuroraScenario::new(mock_rds);
 scenario.engine_version = Some("aurora-mysql8.0".into());
 scenario.instance_class = Some("m5.large".into());
 scenario.username = Some("test username".into());
 scenario.password = Some(SecretString::new("test password".into()));

 let create = scenario.start_cluster_and_instance().await;
 assert_matches!(create, Err(ScenarioError { message, context:_ }) if message
 == "Created DB Cluster missing Identifier");
}

#[tokio::test]
async fn test_start_cluster_and_instance_instance_create_error() {
 let mut mock_rds = MockRdsImpl::default();

 mock_rds
 .expect_create_db_cluster()
 .withf(|id, params, engine, version, username, password| {
 assert_eq!(id, "RustSDKCodeExamplesDBCluster");
 assert_eq!(params, "RustSDKCodeExamplesDBParameterGroup");
 assert_eq!(engine, "aurora-mysql");
 assert_eq!(version, "aurora-mysql8.0");
 assert_eq!(username, "test username");
 assert_eq!(password.expose_secret(), "test password");
 true
 })

CreateDBClusterSnapshot 3481

Amazon Aurora User Guide for Aurora

 .return_once(|id, _, _, _, _, _| {
 Ok(CreateDbClusterOutput::builder()

 .db_cluster(DbCluster::builder().db_cluster_identifier(id).build())
 .build())
 });

 mock_rds
 .expect_create_db_instance()
 .return_once(|_, _, _, _| {
 Err(SdkError::service_error(
 CreateDBInstanceError::unhandled(Box::new(Error::new(
 ErrorKind::Other,
 "create db instance error",
))),
 Response::new(StatusCode::try_from(400).unwrap(),
 SdkBody::empty()),
))
 });

 let mut scenario = AuroraScenario::new(mock_rds);
 scenario.engine_version = Some("aurora-mysql8.0".into());
 scenario.instance_class = Some("m5.large".into());
 scenario.username = Some("test username".into());
 scenario.password = Some(SecretString::new("test password".into()));

 let create = scenario.start_cluster_and_instance().await;
 assert_matches!(create, Err(ScenarioError { message, context: _ }) if message
 == "Failed to create Instance in DB Cluster")
}

#[tokio::test]
async fn test_start_cluster_and_instance_wait_hiccup() {
 let mut mock_rds = MockRdsImpl::default();

 mock_rds
 .expect_create_db_cluster()
 .withf(|id, params, engine, version, username, password| {
 assert_eq!(id, "RustSDKCodeExamplesDBCluster");
 assert_eq!(params, "RustSDKCodeExamplesDBParameterGroup");
 assert_eq!(engine, "aurora-mysql");
 assert_eq!(version, "aurora-mysql8.0");
 assert_eq!(username, "test username");
 assert_eq!(password.expose_secret(), "test password");

CreateDBClusterSnapshot 3482

Amazon Aurora User Guide for Aurora

 true
 })
 .return_once(|id, _, _, _, _, _| {
 Ok(CreateDbClusterOutput::builder()

 .db_cluster(DbCluster::builder().db_cluster_identifier(id).build())
 .build())
 });

 mock_rds
 .expect_create_db_instance()
 .withf(|cluster, name, class, engine| {
 assert_eq!(cluster, "RustSDKCodeExamplesDBCluster");
 assert_eq!(name, "RustSDKCodeExamplesDBInstance");
 assert_eq!(class, "m5.large");
 assert_eq!(engine, "aurora-mysql");
 true
 })
 .return_once(|cluster, name, class, _| {
 Ok(CreateDbInstanceOutput::builder()
 .db_instance(
 DbInstance::builder()
 .db_cluster_identifier(cluster)
 .db_instance_identifier(name)
 .db_instance_class(class)
 .build(),
)
 .build())
 });

 mock_rds
 .expect_describe_db_clusters()
 .with(eq("RustSDKCodeExamplesDBCluster"))
 .times(1)
 .returning(|_| {
 Err(SdkError::service_error(
 DescribeDBClustersError::unhandled(Box::new(Error::new(
 ErrorKind::Other,
 "describe cluster error",
))),
 Response::new(StatusCode::try_from(400).unwrap(),
 SdkBody::empty()),
))
 })

CreateDBClusterSnapshot 3483

Amazon Aurora User Guide for Aurora

 .with(eq("RustSDKCodeExamplesDBCluster"))
 .times(1)
 .returning(|id| {
 Ok(DescribeDbClustersOutput::builder()

 .db_clusters(DbCluster::builder().db_cluster_identifier(id).build())
 .build())
 });

 mock_rds.expect_describe_db_instance().return_once(|name| {
 Ok(DescribeDbInstancesOutput::builder()
 .db_instances(
 DbInstance::builder()
 .db_instance_identifier(name)
 .db_instance_status("Available")
 .build(),
)
 .build())
 });

 mock_rds
 .expect_describe_db_cluster_endpoints()
 .return_once(|_| {
 Ok(DescribeDbClusterEndpointsOutput::builder()

 .db_cluster_endpoints(DbClusterEndpoint::builder().status("available").build())
 .build())
 });

 let mut scenario = AuroraScenario::new(mock_rds);
 scenario.engine_version = Some("aurora-mysql8.0".into());
 scenario.instance_class = Some("m5.large".into());
 scenario.username = Some("test username".into());
 scenario.password = Some(SecretString::new("test password".into()));

 tokio::time::pause();
 let assertions = tokio::spawn(async move {
 let create = scenario.start_cluster_and_instance().await;
 assert!(create.is_ok());
 });

 tokio::time::advance(Duration::from_secs(1)).await;
 tokio::time::advance(Duration::from_secs(1)).await;
 tokio::time::resume();

CreateDBClusterSnapshot 3484

Amazon Aurora User Guide for Aurora

 let _ = assertions.await;
}

• For API details, see CreateDBClusterSnapshot in AWS SDK for Rust API reference.

For a complete list of AWS SDK developer guides and code examples, see Using this service with
an AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Use CreateDBInstance with an AWS SDK or CLI

The following code examples show how to use CreateDBInstance.

Action examples are code excerpts from larger programs and must be run in context. You can see
this action in context in the following code example:

• Get started with DB clusters

.NET

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 /// <summary>
 /// Create an Amazon Relational Database Service (Amazon RDS) DB instance
 /// with a particular set of properties. Use the action
 DescribeDBInstancesAsync
 /// to determine when the DB instance is ready to use.
 /// </summary>
 /// <param name="dbInstanceIdentifier">DB instance identifier.</param>
 /// <param name="dbClusterIdentifier">DB cluster identifier.</param>
 /// <param name="dbEngine">The engine for the DB instance.</param>
 /// <param name="dbEngineVersion">Version for the DB instance.</param>

CreateDBInstance 3485

https://docs.rs/aws-sdk-rds/latest/aws_sdk_rds/client/struct.Client.html#method.create_db_cluster_snapshot
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Aurora#code-examples

Amazon Aurora User Guide for Aurora

 /// <param name="instanceClass">Class for the DB instance.</param>
 /// <returns>DB instance object.</returns>
 public async Task<DBInstance> CreateDBInstanceInClusterAsync(
 string dbClusterIdentifier,
 string dbInstanceIdentifier,
 string dbEngine,
 string dbEngineVersion,
 string instanceClass)
 {
 // When creating the instance within a cluster, do not specify the name
 or size.
 var response = await _amazonRDS.CreateDBInstanceAsync(
 new CreateDBInstanceRequest()
 {
 DBClusterIdentifier = dbClusterIdentifier,
 DBInstanceIdentifier = dbInstanceIdentifier,
 Engine = dbEngine,
 EngineVersion = dbEngineVersion,
 DBInstanceClass = instanceClass
 });

 return response.DBInstance;
 }

• For API details, see CreateDBInstance in AWS SDK for .NET API Reference.

C++

SDK for C++

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 Aws::Client::ClientConfiguration clientConfig;
 // Optional: Set to the AWS Region (overrides config file).
 // clientConfig.region = "us-east-1";

 Aws::RDS::RDSClient client(clientConfig);

CreateDBInstance 3486

https://docs.aws.amazon.com/goto/DotNetSDKV3/rds-2014-10-31/CreateDBInstance
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/cpp/example_code/aurora#code-examples

Amazon Aurora User Guide for Aurora

 Aws::RDS::Model::CreateDBInstanceRequest request;
 request.SetDBInstanceIdentifier(DB_INSTANCE_IDENTIFIER);
 request.SetDBClusterIdentifier(DB_CLUSTER_IDENTIFIER);
 request.SetEngine(engineName);
 request.SetDBInstanceClass(dbInstanceClass);

 Aws::RDS::Model::CreateDBInstanceOutcome outcome =
 client.CreateDBInstance(request);

 if (outcome.IsSuccess()) {
 std::cout << "The DB instance creation has started."
 << std::endl;
 }
 else {
 std::cerr << "Error with RDS::CreateDBInstance. "
 << outcome.GetError().GetMessage()
 << std::endl;
 cleanUpResources(CLUSTER_PARAMETER_GROUP_NAME, DB_CLUSTER_IDENTIFIER,
 "",
 client);
 return false;
 }

• For API details, see CreateDBInstance in AWS SDK for C++ API Reference.

Go

SDK for Go V2

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

type DbClusters struct {
 AuroraClient *rds.Client
}

CreateDBInstance 3487

https://docs.aws.amazon.com/goto/SdkForCpp/rds-2014-10-31/CreateDBInstance
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/gov2/aurora#code-examples

Amazon Aurora User Guide for Aurora

// CreateInstanceInCluster creates a database instance in an existing DB cluster.
 The first database that is
// created defaults to a read-write DB instance.
func (clusters *DbClusters) CreateInstanceInCluster(clusterName string,
 instanceName string,
 dbEngine string, dbInstanceClass string) (*types.DBInstance, error) {
 output, err := clusters.AuroraClient.CreateDBInstance(context.TODO(),
 &rds.CreateDBInstanceInput{
 DBInstanceIdentifier: aws.String(instanceName),
 DBClusterIdentifier: aws.String(clusterName),
 Engine: aws.String(dbEngine),
 DBInstanceClass: aws.String(dbInstanceClass),
 })
 if err != nil {
 log.Printf("Couldn't create instance %v: %v\n", instanceName, err)
 return nil, err
 } else {
 return output.DBInstance, nil
 }
}

• For API details, see CreateDBInstance in AWS SDK for Go API Reference.

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 public static String createDBInstanceCluster(RdsClient rdsClient,
 String dbInstanceIdentifier,
 String dbInstanceClusterIdentifier,
 String instanceClass) {
 try {

CreateDBInstance 3488

https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/rds#Client.CreateDBInstance
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/rds#readme

Amazon Aurora User Guide for Aurora

 CreateDbInstanceRequest instanceRequest =
 CreateDbInstanceRequest.builder()
 .dbInstanceIdentifier(dbInstanceIdentifier)
 .dbClusterIdentifier(dbInstanceClusterIdentifier)
 .engine("aurora-mysql")
 .dbInstanceClass(instanceClass)
 .build();

 CreateDbInstanceResponse response =
 rdsClient.createDBInstance(instanceRequest);
 System.out.print("The status is " +
 response.dbInstance().dbInstanceStatus());
 return response.dbInstance().dbInstanceArn();

 } catch (RdsException e) {
 System.err.println(e.getMessage());
 System.exit(1);
 }
 return "";
 }

• For API details, see CreateDBInstance in AWS SDK for Java 2.x API Reference.

Kotlin

SDK for Kotlin

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

suspend fun createDBInstanceCluster(
 dbInstanceIdentifierVal: String?,
 dbInstanceClusterIdentifierVal: String?,
 instanceClassVal: String?,
): String? {
 val instanceRequest =
 CreateDbInstanceRequest {
 dbInstanceIdentifier = dbInstanceIdentifierVal

CreateDBInstance 3489

https://docs.aws.amazon.com/goto/SdkForJavaV2/rds-2014-10-31/CreateDBInstance
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/kotlin/services/rds#code-examples

Amazon Aurora User Guide for Aurora

 dbClusterIdentifier = dbInstanceClusterIdentifierVal
 engine = "aurora-mysql"
 dbInstanceClass = instanceClassVal
 }

 RdsClient { region = "us-west-2" }.use { rdsClient ->
 val response = rdsClient.createDbInstance(instanceRequest)
 print("The status is ${response.dbInstance?.dbInstanceStatus}")
 return response.dbInstance?.dbInstanceArn
 }
}

• For API details, see CreateDBInstance in AWS SDK for Kotlin API reference.

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

class AuroraWrapper:
 """Encapsulates Aurora DB cluster actions."""

 def __init__(self, rds_client):
 """
 :param rds_client: A Boto3 Amazon Relational Database Service (Amazon
 RDS) client.
 """
 self.rds_client = rds_client

 @classmethod
 def from_client(cls):
 """
 Instantiates this class from a Boto3 client.
 """
 rds_client = boto3.client("rds")
 return cls(rds_client)

CreateDBInstance 3490

https://sdk.amazonaws.com/kotlin/api/latest/index.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/aurora#code-examples

Amazon Aurora User Guide for Aurora

 def create_instance_in_cluster(
 self, instance_id, cluster_id, db_engine, instance_class
):
 """
 Creates a database instance in an existing DB cluster. The first database
 that is
 created defaults to a read-write DB instance.

 :param instance_id: The ID to give the newly created DB instance.
 :param cluster_id: The ID of the DB cluster where the DB instance is
 created.
 :param db_engine: The database engine of a database to create in the DB
 instance.
 This must be compatible with the configured parameter
 group
 of the DB cluster.
 :param instance_class: The DB instance class for the newly created DB
 instance.
 :return: Data about the newly created DB instance.
 """
 try:
 response = self.rds_client.create_db_instance(
 DBInstanceIdentifier=instance_id,
 DBClusterIdentifier=cluster_id,
 Engine=db_engine,
 DBInstanceClass=instance_class,
)
 db_inst = response["DBInstance"]
 except ClientError as err:
 logger.error(
 "Couldn't create DB instance %s. Here's why: %s: %s",
 instance_id,
 err.response["Error"]["Code"],
 err.response["Error"]["Message"],
)
 raise
 else:
 return db_inst

• For API details, see CreateDBInstance in AWS SDK for Python (Boto3) API Reference.

CreateDBInstance 3491

https://docs.aws.amazon.com/goto/boto3/rds-2014-10-31/CreateDBInstance

Amazon Aurora User Guide for Aurora

Rust

SDK for Rust

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 // Get a list of allowed engine versions.
 rds.DescribeDbEngineVersions(Engine='aurora-mysql', DBParameterGroupFamily=<the
 family used to create your parameter group in step 2>)
 // Create an Aurora DB cluster database cluster that contains a MySql
 database and uses the parameter group you created.
 // Wait for DB cluster to be ready. Call rds.DescribeDBClusters and check for
 Status == 'available'.
 // Get a list of instance classes available for the selected engine
 and engine version. rds.DescribeOrderableDbInstanceOptions(Engine='mysql',
 EngineVersion=).

 // Create a database instance in the cluster.
 // Wait for DB instance to be ready. Call rds.DescribeDbInstances and check
 for DBInstanceStatus == 'available'.
 pub async fn start_cluster_and_instance(&mut self) -> Result<(),
 ScenarioError> {
 if self.password.is_none() {
 return Err(ScenarioError::with(
 "Must set Secret Password before starting a cluster",
));
 }
 let create_db_cluster = self
 .rds
 .create_db_cluster(
 DB_CLUSTER_IDENTIFIER,
 DB_CLUSTER_PARAMETER_GROUP_NAME,
 DB_ENGINE,
 self.engine_version.as_deref().expect("engine version"),
 self.username.as_deref().expect("username"),
 self.password
 .replace(SecretString::new("".to_string()))
 .expect("password"),

CreateDBInstance 3492

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/rustv1/examples/aurora#code-examples

Amazon Aurora User Guide for Aurora

)
 .await;
 if let Err(err) = create_db_cluster {
 return Err(ScenarioError::new(
 "Failed to create DB Cluster with cluster group",
 &err,
));
 }

 self.db_cluster_identifier = create_db_cluster
 .unwrap()
 .db_cluster
 .and_then(|c| c.db_cluster_identifier);

 if self.db_cluster_identifier.is_none() {
 return Err(ScenarioError::with("Created DB Cluster missing
 Identifier"));
 }

 info!(
 "Started a db cluster: {}",
 self.db_cluster_identifier
 .as_deref()
 .unwrap_or("Missing ARN")
);

 let create_db_instance = self
 .rds
 .create_db_instance(
 self.db_cluster_identifier.as_deref().expect("cluster name"),
 DB_INSTANCE_IDENTIFIER,
 self.instance_class.as_deref().expect("instance class"),
 DB_ENGINE,
)
 .await;
 if let Err(err) = create_db_instance {
 return Err(ScenarioError::new(
 "Failed to create Instance in DB Cluster",
 &err,
));
 }

 self.db_instance_identifier = create_db_instance
 .unwrap()

CreateDBInstance 3493

Amazon Aurora User Guide for Aurora

 .db_instance
 .and_then(|i| i.db_instance_identifier);

 // Cluster creation can take up to 20 minutes to become available
 let cluster_max_wait = Duration::from_secs(20 * 60);
 let waiter = Waiter::builder().max(cluster_max_wait).build();
 while waiter.sleep().await.is_ok() {
 let cluster = self
 .rds
 .describe_db_clusters(
 self.db_cluster_identifier
 .as_deref()
 .expect("cluster identifier"),
)
 .await;

 if let Err(err) = cluster {
 warn!(?err, "Failed to describe cluster while waiting for
 ready");
 continue;
 }

 let instance = self
 .rds
 .describe_db_instance(
 self.db_instance_identifier
 .as_deref()
 .expect("instance identifier"),
)
 .await;
 if let Err(err) = instance {
 return Err(ScenarioError::new(
 "Failed to find instance for cluster",
 &err,
));
 }

 let instances_available = instance
 .unwrap()
 .db_instances()
 .iter()
 .all(|instance| instance.db_instance_status() ==
 Some("Available"));

CreateDBInstance 3494

Amazon Aurora User Guide for Aurora

 let endpoints = self
 .rds
 .describe_db_cluster_endpoints(
 self.db_cluster_identifier
 .as_deref()
 .expect("cluster identifier"),
)
 .await;

 if let Err(err) = endpoints {
 return Err(ScenarioError::new(
 "Failed to find endpoint for cluster",
 &err,
));
 }

 let endpoints_available = endpoints
 .unwrap()
 .db_cluster_endpoints()
 .iter()
 .all(|endpoint| endpoint.status() == Some("available"));

 if instances_available && endpoints_available {
 return Ok(());
 }
 }

 Err(ScenarioError::with("timed out waiting for cluster"))
 }

 pub async fn create_db_instance(
 &self,
 cluster_name: &str,
 instance_name: &str,
 instance_class: &str,
 engine: &str,
) -> Result<CreateDbInstanceOutput, SdkError<CreateDBInstanceError>> {
 self.inner
 .create_db_instance()
 .db_cluster_identifier(cluster_name)
 .db_instance_identifier(instance_name)
 .db_instance_class(instance_class)
 .engine(engine)
 .send()

CreateDBInstance 3495

Amazon Aurora User Guide for Aurora

 .await
 }

#[tokio::test]
async fn test_start_cluster_and_instance() {
 let mut mock_rds = MockRdsImpl::default();

 mock_rds
 .expect_create_db_cluster()
 .withf(|id, params, engine, version, username, password| {
 assert_eq!(id, "RustSDKCodeExamplesDBCluster");
 assert_eq!(params, "RustSDKCodeExamplesDBParameterGroup");
 assert_eq!(engine, "aurora-mysql");
 assert_eq!(version, "aurora-mysql8.0");
 assert_eq!(username, "test username");
 assert_eq!(password.expose_secret(), "test password");
 true
 })
 .return_once(|id, _, _, _, _, _| {
 Ok(CreateDbClusterOutput::builder()

 .db_cluster(DbCluster::builder().db_cluster_identifier(id).build())
 .build())
 });

 mock_rds
 .expect_create_db_instance()
 .withf(|cluster, name, class, engine| {
 assert_eq!(cluster, "RustSDKCodeExamplesDBCluster");
 assert_eq!(name, "RustSDKCodeExamplesDBInstance");
 assert_eq!(class, "m5.large");
 assert_eq!(engine, "aurora-mysql");
 true
 })
 .return_once(|cluster, name, class, _| {
 Ok(CreateDbInstanceOutput::builder()
 .db_instance(
 DbInstance::builder()
 .db_cluster_identifier(cluster)
 .db_instance_identifier(name)
 .db_instance_class(class)
 .build(),
)
 .build())

CreateDBInstance 3496

Amazon Aurora User Guide for Aurora

 });

 mock_rds
 .expect_describe_db_clusters()
 .with(eq("RustSDKCodeExamplesDBCluster"))
 .return_once(|id| {
 Ok(DescribeDbClustersOutput::builder()

 .db_clusters(DbCluster::builder().db_cluster_identifier(id).build())
 .build())
 });

 mock_rds
 .expect_describe_db_instance()
 .with(eq("RustSDKCodeExamplesDBInstance"))
 .return_once(|name| {
 Ok(DescribeDbInstancesOutput::builder()
 .db_instances(
 DbInstance::builder()
 .db_instance_identifier(name)
 .db_instance_status("Available")
 .build(),
)
 .build())
 });

 mock_rds
 .expect_describe_db_cluster_endpoints()
 .with(eq("RustSDKCodeExamplesDBCluster"))
 .return_once(|_| {
 Ok(DescribeDbClusterEndpointsOutput::builder()

 .db_cluster_endpoints(DbClusterEndpoint::builder().status("available").build())
 .build())
 });

 let mut scenario = AuroraScenario::new(mock_rds);
 scenario.engine_version = Some("aurora-mysql8.0".into());
 scenario.instance_class = Some("m5.large".into());
 scenario.username = Some("test username".into());
 scenario.password = Some(SecretString::new("test password".into()));

 tokio::time::pause();
 let assertions = tokio::spawn(async move {

CreateDBInstance 3497

Amazon Aurora User Guide for Aurora

 let create = scenario.start_cluster_and_instance().await;
 assert!(create.is_ok());
 assert!(scenario
 .password
 .replace(SecretString::new("BAD SECRET".into()))
 .unwrap()
 .expose_secret()
 .is_empty());
 assert_eq!(
 scenario.db_cluster_identifier,
 Some("RustSDKCodeExamplesDBCluster".into())
);
 });
 tokio::time::advance(Duration::from_secs(1)).await;
 tokio::time::resume();
 let _ = assertions.await;
}

#[tokio::test]
async fn test_start_cluster_and_instance_cluster_create_error() {
 let mut mock_rds = MockRdsImpl::default();

 mock_rds
 .expect_create_db_cluster()
 .return_once(|_, _, _, _, _, _| {
 Err(SdkError::service_error(
 CreateDBClusterError::unhandled(Box::new(Error::new(
 ErrorKind::Other,
 "create db cluster error",
))),
 Response::new(StatusCode::try_from(400).unwrap(),
 SdkBody::empty()),
))
 });

 let mut scenario = AuroraScenario::new(mock_rds);
 scenario.engine_version = Some("aurora-mysql8.0".into());
 scenario.instance_class = Some("m5.large".into());
 scenario.username = Some("test username".into());
 scenario.password = Some(SecretString::new("test password".into()));

 let create = scenario.start_cluster_and_instance().await;
 assert_matches!(create, Err(ScenarioError { message, context: _}) if message
 == "Failed to create DB Cluster with cluster group")

CreateDBInstance 3498

Amazon Aurora User Guide for Aurora

}

#[tokio::test]
async fn test_start_cluster_and_instance_cluster_create_missing_id() {
 let mut mock_rds = MockRdsImpl::default();

 mock_rds
 .expect_create_db_cluster()
 .return_once(|_, _, _, _, _, _| {
 Ok(CreateDbClusterOutput::builder()
 .db_cluster(DbCluster::builder().build())
 .build())
 });

 let mut scenario = AuroraScenario::new(mock_rds);
 scenario.engine_version = Some("aurora-mysql8.0".into());
 scenario.instance_class = Some("m5.large".into());
 scenario.username = Some("test username".into());
 scenario.password = Some(SecretString::new("test password".into()));

 let create = scenario.start_cluster_and_instance().await;
 assert_matches!(create, Err(ScenarioError { message, context:_ }) if message
 == "Created DB Cluster missing Identifier");
}

#[tokio::test]
async fn test_start_cluster_and_instance_instance_create_error() {
 let mut mock_rds = MockRdsImpl::default();

 mock_rds
 .expect_create_db_cluster()
 .withf(|id, params, engine, version, username, password| {
 assert_eq!(id, "RustSDKCodeExamplesDBCluster");
 assert_eq!(params, "RustSDKCodeExamplesDBParameterGroup");
 assert_eq!(engine, "aurora-mysql");
 assert_eq!(version, "aurora-mysql8.0");
 assert_eq!(username, "test username");
 assert_eq!(password.expose_secret(), "test password");
 true
 })
 .return_once(|id, _, _, _, _, _| {
 Ok(CreateDbClusterOutput::builder()

 .db_cluster(DbCluster::builder().db_cluster_identifier(id).build())

CreateDBInstance 3499

Amazon Aurora User Guide for Aurora

 .build())
 });

 mock_rds
 .expect_create_db_instance()
 .return_once(|_, _, _, _| {
 Err(SdkError::service_error(
 CreateDBInstanceError::unhandled(Box::new(Error::new(
 ErrorKind::Other,
 "create db instance error",
))),
 Response::new(StatusCode::try_from(400).unwrap(),
 SdkBody::empty()),
))
 });

 let mut scenario = AuroraScenario::new(mock_rds);
 scenario.engine_version = Some("aurora-mysql8.0".into());
 scenario.instance_class = Some("m5.large".into());
 scenario.username = Some("test username".into());
 scenario.password = Some(SecretString::new("test password".into()));

 let create = scenario.start_cluster_and_instance().await;
 assert_matches!(create, Err(ScenarioError { message, context: _ }) if message
 == "Failed to create Instance in DB Cluster")
}

#[tokio::test]
async fn test_start_cluster_and_instance_wait_hiccup() {
 let mut mock_rds = MockRdsImpl::default();

 mock_rds
 .expect_create_db_cluster()
 .withf(|id, params, engine, version, username, password| {
 assert_eq!(id, "RustSDKCodeExamplesDBCluster");
 assert_eq!(params, "RustSDKCodeExamplesDBParameterGroup");
 assert_eq!(engine, "aurora-mysql");
 assert_eq!(version, "aurora-mysql8.0");
 assert_eq!(username, "test username");
 assert_eq!(password.expose_secret(), "test password");
 true
 })
 .return_once(|id, _, _, _, _, _| {
 Ok(CreateDbClusterOutput::builder()

CreateDBInstance 3500

Amazon Aurora User Guide for Aurora

 .db_cluster(DbCluster::builder().db_cluster_identifier(id).build())
 .build())
 });

 mock_rds
 .expect_create_db_instance()
 .withf(|cluster, name, class, engine| {
 assert_eq!(cluster, "RustSDKCodeExamplesDBCluster");
 assert_eq!(name, "RustSDKCodeExamplesDBInstance");
 assert_eq!(class, "m5.large");
 assert_eq!(engine, "aurora-mysql");
 true
 })
 .return_once(|cluster, name, class, _| {
 Ok(CreateDbInstanceOutput::builder()
 .db_instance(
 DbInstance::builder()
 .db_cluster_identifier(cluster)
 .db_instance_identifier(name)
 .db_instance_class(class)
 .build(),
)
 .build())
 });

 mock_rds
 .expect_describe_db_clusters()
 .with(eq("RustSDKCodeExamplesDBCluster"))
 .times(1)
 .returning(|_| {
 Err(SdkError::service_error(
 DescribeDBClustersError::unhandled(Box::new(Error::new(
 ErrorKind::Other,
 "describe cluster error",
))),
 Response::new(StatusCode::try_from(400).unwrap(),
 SdkBody::empty()),
))
 })
 .with(eq("RustSDKCodeExamplesDBCluster"))
 .times(1)
 .returning(|id| {
 Ok(DescribeDbClustersOutput::builder()

CreateDBInstance 3501

Amazon Aurora User Guide for Aurora

 .db_clusters(DbCluster::builder().db_cluster_identifier(id).build())
 .build())
 });

 mock_rds.expect_describe_db_instance().return_once(|name| {
 Ok(DescribeDbInstancesOutput::builder()
 .db_instances(
 DbInstance::builder()
 .db_instance_identifier(name)
 .db_instance_status("Available")
 .build(),
)
 .build())
 });

 mock_rds
 .expect_describe_db_cluster_endpoints()
 .return_once(|_| {
 Ok(DescribeDbClusterEndpointsOutput::builder()

 .db_cluster_endpoints(DbClusterEndpoint::builder().status("available").build())
 .build())
 });

 let mut scenario = AuroraScenario::new(mock_rds);
 scenario.engine_version = Some("aurora-mysql8.0".into());
 scenario.instance_class = Some("m5.large".into());
 scenario.username = Some("test username".into());
 scenario.password = Some(SecretString::new("test password".into()));

 tokio::time::pause();
 let assertions = tokio::spawn(async move {
 let create = scenario.start_cluster_and_instance().await;
 assert!(create.is_ok());
 });

 tokio::time::advance(Duration::from_secs(1)).await;
 tokio::time::advance(Duration::from_secs(1)).await;
 tokio::time::resume();
 let _ = assertions.await;
}

CreateDBInstance 3502

Amazon Aurora User Guide for Aurora

• For API details, see CreateDBInstance in AWS SDK for Rust API reference.

For a complete list of AWS SDK developer guides and code examples, see Using this service with
an AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Use DeleteDBCluster with an AWS SDK or CLI

The following code examples show how to use DeleteDBCluster.

Action examples are code excerpts from larger programs and must be run in context. You can see
this action in context in the following code example:

• Get started with DB clusters

.NET

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 /// <summary>
 /// Delete a particular DB cluster.
 /// </summary>
 /// <param name="dbClusterIdentifier">DB cluster identifier.</param>
 /// <returns>DB cluster object.</returns>
 public async Task<DBCluster> DeleteDBClusterByIdentifierAsync(string
 dbClusterIdentifier)
 {
 var response = await _amazonRDS.DeleteDBClusterAsync(
 new DeleteDBClusterRequest()
 {
 DBClusterIdentifier = dbClusterIdentifier,
 SkipFinalSnapshot = true
 });

DeleteDBCluster 3503

https://docs.rs/aws-sdk-rds/latest/aws_sdk_rds/client/struct.Client.html#method.create_db_instance
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Aurora#code-examples

Amazon Aurora User Guide for Aurora

 return response.DBCluster;
 }

• For API details, see DeleteDBCluster in AWS SDK for .NET API Reference.

C++

SDK for C++

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 Aws::Client::ClientConfiguration clientConfig;
 // Optional: Set to the AWS Region (overrides config file).
 // clientConfig.region = "us-east-1";

 Aws::RDS::RDSClient client(clientConfig);

 Aws::RDS::Model::DeleteDBClusterRequest request;
 request.SetDBClusterIdentifier(dbClusterIdentifier);
 request.SetSkipFinalSnapshot(true);

 Aws::RDS::Model::DeleteDBClusterOutcome outcome =
 client.DeleteDBCluster(request);

 if (outcome.IsSuccess()) {
 std::cout << "DB cluster deletion has started."
 << std::endl;
 clusterDeleting = true;
 std::cout
 << "Waiting for DB cluster to delete before deleting the
 parameter group."
 << std::endl;
 std::cout << "This may take a while." << std::endl;
 }
 else {
 std::cerr << "Error with Aurora::DeleteDBCluster. "
 << outcome.GetError().GetMessage()

DeleteDBCluster 3504

https://docs.aws.amazon.com/goto/DotNetSDKV3/rds-2014-10-31/DeleteDBCluster
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/cpp/example_code/aurora#code-examples

Amazon Aurora User Guide for Aurora

 << std::endl;
 result = false;
 }

• For API details, see DeleteDBCluster in AWS SDK for C++ API Reference.

Go

SDK for Go V2

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

type DbClusters struct {
 AuroraClient *rds.Client
}

// DeleteDbCluster deletes a DB cluster without keeping a final snapshot.
func (clusters *DbClusters) DeleteDbCluster(clusterName string) error {
 _, err := clusters.AuroraClient.DeleteDBCluster(context.TODO(),
 &rds.DeleteDBClusterInput{
 DBClusterIdentifier: aws.String(clusterName),
 SkipFinalSnapshot: true,
 })
 if err != nil {
 log.Printf("Couldn't delete DB cluster %v: %v\n", clusterName, err)
 return err
 } else {
 return nil
 }
}

DeleteDBCluster 3505

https://docs.aws.amazon.com/goto/SdkForCpp/rds-2014-10-31/DeleteDBCluster
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/gov2/aurora#code-examples

Amazon Aurora User Guide for Aurora

• For API details, see DeleteDBCluster in AWS SDK for Go API Reference.

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 public static void deleteCluster(RdsClient rdsClient, String
 dbInstanceClusterIdentifier) {
 try {
 DeleteDbClusterRequest deleteDbClusterRequest =
 DeleteDbClusterRequest.builder()
 .dbClusterIdentifier(dbInstanceClusterIdentifier)
 .skipFinalSnapshot(true)
 .build();

 rdsClient.deleteDBCluster(deleteDbClusterRequest);
 System.out.println(dbInstanceClusterIdentifier + " was deleted!");

 } catch (RdsException e) {
 System.out.println(e.getLocalizedMessage());
 System.exit(1);
 }
 }

• For API details, see DeleteDBCluster in AWS SDK for Java 2.x API Reference.

DeleteDBCluster 3506

https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/rds#Client.DeleteDBCluster
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/rds#readme
https://docs.aws.amazon.com/goto/SdkForJavaV2/rds-2014-10-31/DeleteDBCluster

Amazon Aurora User Guide for Aurora

Kotlin

SDK for Kotlin

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

suspend fun deleteCluster(dbInstanceClusterIdentifier: String) {
 val deleteDbClusterRequest =
 DeleteDbClusterRequest {
 dbClusterIdentifier = dbInstanceClusterIdentifier
 skipFinalSnapshot = true
 }

 RdsClient { region = "us-west-2" }.use { rdsClient ->
 rdsClient.deleteDbCluster(deleteDbClusterRequest)
 println("$dbInstanceClusterIdentifier was deleted!")
 }
}

• For API details, see DeleteDBCluster in AWS SDK for Kotlin API reference.

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

class AuroraWrapper:
 """Encapsulates Aurora DB cluster actions."""

 def __init__(self, rds_client):

DeleteDBCluster 3507

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/kotlin/services/rds#code-examples
https://sdk.amazonaws.com/kotlin/api/latest/index.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/aurora#code-examples

Amazon Aurora User Guide for Aurora

 """
 :param rds_client: A Boto3 Amazon Relational Database Service (Amazon
 RDS) client.
 """
 self.rds_client = rds_client

 @classmethod
 def from_client(cls):
 """
 Instantiates this class from a Boto3 client.
 """
 rds_client = boto3.client("rds")
 return cls(rds_client)

 def delete_db_cluster(self, cluster_name):
 """
 Deletes a DB cluster.

 :param cluster_name: The name of the DB cluster to delete.
 """
 try:
 self.rds_client.delete_db_cluster(
 DBClusterIdentifier=cluster_name, SkipFinalSnapshot=True
)
 logger.info("Deleted DB cluster %s.", cluster_name)
 except ClientError:
 logger.exception("Couldn't delete DB cluster %s.", cluster_name)
 raise

• For API details, see DeleteDBCluster in AWS SDK for Python (Boto3) API Reference.

Rust

SDK for Rust

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

DeleteDBCluster 3508

https://docs.aws.amazon.com/goto/boto3/rds-2014-10-31/DeleteDBCluster
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/rustv1/examples/aurora#code-examples

Amazon Aurora User Guide for Aurora

 pub async fn clean_up(self) -> Result<(), Vec<ScenarioError>> {
 let mut clean_up_errors: Vec<ScenarioError> = vec![];

 // Delete the instance. rds.DeleteDbInstance.
 let delete_db_instance = self
 .rds
 .delete_db_instance(
 self.db_instance_identifier
 .as_deref()
 .expect("instance identifier"),
)
 .await;
 if let Err(err) = delete_db_instance {
 let identifier = self
 .db_instance_identifier
 .as_deref()
 .unwrap_or("Missing Instance Identifier");
 let message = format!("failed to delete db instance {identifier}");
 clean_up_errors.push(ScenarioError::new(message, &err));
 } else {
 // Wait for the instance to delete
 let waiter = Waiter::default();
 while waiter.sleep().await.is_ok() {
 let describe_db_instances =
 self.rds.describe_db_instances().await;
 if let Err(err) = describe_db_instances {
 clean_up_errors.push(ScenarioError::new(
 "Failed to check instance state during deletion",
 &err,
));
 break;
 }
 let db_instances = describe_db_instances
 .unwrap()
 .db_instances()
 .iter()
 .filter(|instance| instance.db_cluster_identifier ==
 self.db_cluster_identifier)
 .cloned()
 .collect::<Vec<DbInstance>>();

 if db_instances.is_empty() {
 trace!("Delete Instance waited and no instances were found");

DeleteDBCluster 3509

Amazon Aurora User Guide for Aurora

 break;
 }
 match db_instances.first().unwrap().db_instance_status() {
 Some("Deleting") => continue,
 Some(status) => {
 info!("Attempting to delete but instances is in
 {status}");
 continue;
 }
 None => {
 warn!("No status for DB instance");
 break;
 }
 }
 }
 }

 // Delete the DB cluster. rds.DeleteDbCluster.
 let delete_db_cluster = self
 .rds
 .delete_db_cluster(
 self.db_cluster_identifier
 .as_deref()
 .expect("cluster identifier"),
)
 .await;

 if let Err(err) = delete_db_cluster {
 let identifier = self
 .db_cluster_identifier
 .as_deref()
 .unwrap_or("Missing DB Cluster Identifier");
 let message = format!("failed to delete db cluster {identifier}");
 clean_up_errors.push(ScenarioError::new(message, &err));
 } else {
 // Wait for the instance and cluster to fully delete.
 rds.DescribeDbInstances and rds.DescribeDbClusters until both are not found.
 let waiter = Waiter::default();
 while waiter.sleep().await.is_ok() {
 let describe_db_clusters = self
 .rds
 .describe_db_clusters(
 self.db_cluster_identifier
 .as_deref()

DeleteDBCluster 3510

Amazon Aurora User Guide for Aurora

 .expect("cluster identifier"),
)
 .await;
 if let Err(err) = describe_db_clusters {
 clean_up_errors.push(ScenarioError::new(
 "Failed to check cluster state during deletion",
 &err,
));
 break;
 }
 let describe_db_clusters = describe_db_clusters.unwrap();
 let db_clusters = describe_db_clusters.db_clusters();
 if db_clusters.is_empty() {
 trace!("Delete cluster waited and no clusters were found");
 break;
 }
 match db_clusters.first().unwrap().status() {
 Some("Deleting") => continue,
 Some(status) => {
 info!("Attempting to delete but clusters is in
 {status}");
 continue;
 }
 None => {
 warn!("No status for DB cluster");
 break;
 }
 }
 }
 }

 // Delete the DB cluster parameter group.
 rds.DeleteDbClusterParameterGroup.
 let delete_db_cluster_parameter_group = self
 .rds
 .delete_db_cluster_parameter_group(
 self.db_cluster_parameter_group
 .map(|g| {
 g.db_cluster_parameter_group_name
 .unwrap_or_else(||
 DB_CLUSTER_PARAMETER_GROUP_NAME.to_string())
 })
 .as_deref()
 .expect("cluster parameter group name"),

DeleteDBCluster 3511

Amazon Aurora User Guide for Aurora

)
 .await;
 if let Err(error) = delete_db_cluster_parameter_group {
 clean_up_errors.push(ScenarioError::new(
 "Failed to delete the db cluster parameter group",
 &error,
))
 }

 if clean_up_errors.is_empty() {
 Ok(())
 } else {
 Err(clean_up_errors)
 }
 }

 pub async fn delete_db_cluster(
 &self,
 cluster_identifier: &str,
) -> Result<DeleteDbClusterOutput, SdkError<DeleteDBClusterError>> {
 self.inner
 .delete_db_cluster()
 .db_cluster_identifier(cluster_identifier)
 .skip_final_snapshot(true)
 .send()
 .await
 }

#[tokio::test]
async fn test_scenario_clean_up() {
 let mut mock_rds = MockRdsImpl::default();

 mock_rds
 .expect_delete_db_instance()
 .with(eq("MockInstance"))
 .return_once(|_| Ok(DeleteDbInstanceOutput::builder().build()));

 mock_rds
 .expect_describe_db_instances()
 .with()
 .times(1)
 .returning(|| {
 Ok(DescribeDbInstancesOutput::builder()
 .db_instances(

DeleteDBCluster 3512

Amazon Aurora User Guide for Aurora

 DbInstance::builder()
 .db_cluster_identifier("MockCluster")
 .db_instance_status("Deleting")
 .build(),
)
 .build())
 })
 .with()
 .times(1)
 .returning(|| Ok(DescribeDbInstancesOutput::builder().build()));

 mock_rds
 .expect_delete_db_cluster()
 .with(eq("MockCluster"))
 .return_once(|_| Ok(DeleteDbClusterOutput::builder().build()));

 mock_rds
 .expect_describe_db_clusters()
 .with(eq("MockCluster"))
 .times(1)
 .returning(|id| {
 Ok(DescribeDbClustersOutput::builder()
 .db_clusters(
 DbCluster::builder()
 .db_cluster_identifier(id)
 .status("Deleting")
 .build(),
)
 .build())
 })
 .with(eq("MockCluster"))
 .times(1)
 .returning(|_| Ok(DescribeDbClustersOutput::builder().build()));

 mock_rds
 .expect_delete_db_cluster_parameter_group()
 .with(eq("MockParamGroup"))
 .return_once(|_|
 Ok(DeleteDbClusterParameterGroupOutput::builder().build()));

 let mut scenario = AuroraScenario::new(mock_rds);
 scenario.db_cluster_identifier = Some(String::from("MockCluster"));
 scenario.db_instance_identifier = Some(String::from("MockInstance"));
 scenario.db_cluster_parameter_group = Some(

DeleteDBCluster 3513

Amazon Aurora User Guide for Aurora

 DbClusterParameterGroup::builder()
 .db_cluster_parameter_group_name("MockParamGroup")
 .build(),
);

 tokio::time::pause();
 let assertions = tokio::spawn(async move {
 let clean_up = scenario.clean_up().await;
 assert!(clean_up.is_ok());
 });

 tokio::time::advance(Duration::from_secs(1)).await; // Wait for first
 Describe Instances
 tokio::time::advance(Duration::from_secs(1)).await; // Wait for second
 Describe Instances
 tokio::time::advance(Duration::from_secs(1)).await; // Wait for first
 Describe Cluster
 tokio::time::advance(Duration::from_secs(1)).await; // Wait for second
 Describe Cluster
 tokio::time::resume();
 let _ = assertions.await;
}

#[tokio::test]
async fn test_scenario_clean_up_errors() {
 let mut mock_rds = MockRdsImpl::default();

 mock_rds
 .expect_delete_db_instance()
 .with(eq("MockInstance"))
 .return_once(|_| Ok(DeleteDbInstanceOutput::builder().build()));

 mock_rds
 .expect_describe_db_instances()
 .with()
 .times(1)
 .returning(|| {
 Ok(DescribeDbInstancesOutput::builder()
 .db_instances(
 DbInstance::builder()
 .db_cluster_identifier("MockCluster")
 .db_instance_status("Deleting")
 .build(),
)

DeleteDBCluster 3514

Amazon Aurora User Guide for Aurora

 .build())
 })
 .with()
 .times(1)
 .returning(|| {
 Err(SdkError::service_error(
 DescribeDBInstancesError::unhandled(Box::new(Error::new(
 ErrorKind::Other,
 "describe db instances error",
))),
 Response::new(StatusCode::try_from(400).unwrap(),
 SdkBody::empty()),
))
 });

 mock_rds
 .expect_delete_db_cluster()
 .with(eq("MockCluster"))
 .return_once(|_| Ok(DeleteDbClusterOutput::builder().build()));

 mock_rds
 .expect_describe_db_clusters()
 .with(eq("MockCluster"))
 .times(1)
 .returning(|id| {
 Ok(DescribeDbClustersOutput::builder()
 .db_clusters(
 DbCluster::builder()
 .db_cluster_identifier(id)
 .status("Deleting")
 .build(),
)
 .build())
 })
 .with(eq("MockCluster"))
 .times(1)
 .returning(|_| {
 Err(SdkError::service_error(
 DescribeDBClustersError::unhandled(Box::new(Error::new(
 ErrorKind::Other,
 "describe db clusters error",
))),
 Response::new(StatusCode::try_from(400).unwrap(),
 SdkBody::empty()),

DeleteDBCluster 3515

Amazon Aurora User Guide for Aurora

))
 });

 mock_rds
 .expect_delete_db_cluster_parameter_group()
 .with(eq("MockParamGroup"))
 .return_once(|_|
 Ok(DeleteDbClusterParameterGroupOutput::builder().build()));

 let mut scenario = AuroraScenario::new(mock_rds);
 scenario.db_cluster_identifier = Some(String::from("MockCluster"));
 scenario.db_instance_identifier = Some(String::from("MockInstance"));
 scenario.db_cluster_parameter_group = Some(
 DbClusterParameterGroup::builder()
 .db_cluster_parameter_group_name("MockParamGroup")
 .build(),
);

 tokio::time::pause();
 let assertions = tokio::spawn(async move {
 let clean_up = scenario.clean_up().await;
 assert!(clean_up.is_err());
 let errs = clean_up.unwrap_err();
 assert_eq!(errs.len(), 2);
 assert_matches!(errs.get(0), Some(ScenarioError {message, context: _}) if
 message == "Failed to check instance state during deletion");
 assert_matches!(errs.get(1), Some(ScenarioError {message, context: _}) if
 message == "Failed to check cluster state during deletion");
 });

 tokio::time::advance(Duration::from_secs(1)).await; // Wait for first
 Describe Instances
 tokio::time::advance(Duration::from_secs(1)).await; // Wait for second
 Describe Instances
 tokio::time::advance(Duration::from_secs(1)).await; // Wait for first
 Describe Cluster
 tokio::time::advance(Duration::from_secs(1)).await; // Wait for second
 Describe Cluster
 tokio::time::resume();
 let _ = assertions.await;
}

• For API details, see DeleteDBCluster in AWS SDK for Rust API reference.

DeleteDBCluster 3516

https://docs.rs/aws-sdk-rds/latest/aws_sdk_rds/client/struct.Client.html#method.delete_db_cluster

Amazon Aurora User Guide for Aurora

For a complete list of AWS SDK developer guides and code examples, see Using this service with
an AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Use DeleteDBClusterParameterGroup with an AWS SDK or CLI

The following code examples show how to use DeleteDBClusterParameterGroup.

Action examples are code excerpts from larger programs and must be run in context. You can see
this action in context in the following code example:

• Get started with DB clusters

.NET

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 /// <summary>
 /// Delete a particular parameter group by name.
 /// </summary>
 /// <param name="groupName">The name of the parameter group.</param>
 /// <returns>True if successful.</returns>
 public async Task<bool> DeleteClusterParameterGroupByNameAsync(string
 groupName)
 {
 var request = new DeleteDBClusterParameterGroupRequest
 {
 DBClusterParameterGroupName = groupName,
 };

 var response = await
 _amazonRDS.DeleteDBClusterParameterGroupAsync(request);
 return response.HttpStatusCode == System.Net.HttpStatusCode.OK;
 }

DeleteDBClusterParameterGroup 3517

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Aurora#code-examples

Amazon Aurora User Guide for Aurora

• For API details, see DeleteDBClusterParameterGroup in AWS SDK for .NET API Reference.

C++

SDK for C++

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 Aws::Client::ClientConfiguration clientConfig;
 // Optional: Set to the AWS Region (overrides config file).
 // clientConfig.region = "us-east-1";

 Aws::RDS::RDSClient client(clientConfig);

 Aws::RDS::Model::DeleteDBClusterParameterGroupRequest request;
 request.SetDBClusterParameterGroupName(parameterGroupName);

 Aws::RDS::Model::DeleteDBClusterParameterGroupOutcome outcome =
 client.DeleteDBClusterParameterGroup(request);

 if (outcome.IsSuccess()) {
 std::cout << "The DB parameter group was successfully deleted."
 << std::endl;
 }
 else {
 std::cerr << "Error with Aurora::DeleteDBClusterParameterGroup. "
 << outcome.GetError().GetMessage()
 << std::endl;
 result = false;
 }

• For API details, see DeleteDBClusterParameterGroup in AWS SDK for C++ API Reference.

DeleteDBClusterParameterGroup 3518

https://docs.aws.amazon.com/goto/DotNetSDKV3/rds-2014-10-31/DeleteDBClusterParameterGroup
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/cpp/example_code/aurora#code-examples
https://docs.aws.amazon.com/goto/SdkForCpp/rds-2014-10-31/DeleteDBClusterParameterGroup

Amazon Aurora User Guide for Aurora

Go

SDK for Go V2

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

type DbClusters struct {
 AuroraClient *rds.Client
}

// DeleteParameterGroup deletes the named DB cluster parameter group.
func (clusters *DbClusters) DeleteParameterGroup(parameterGroupName string) error
 {
 _, err := clusters.AuroraClient.DeleteDBClusterParameterGroup(context.TODO(),
 &rds.DeleteDBClusterParameterGroupInput{
 DBClusterParameterGroupName: aws.String(parameterGroupName),
 })
 if err != nil {
 log.Printf("Couldn't delete parameter group %v: %v\n", parameterGroupName, err)
 return err
 } else {
 return nil
 }
}

• For API details, see DeleteDBClusterParameterGroup in AWS SDK for Go API Reference.

DeleteDBClusterParameterGroup 3519

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/gov2/aurora#code-examples
https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/rds#Client.DeleteDBClusterParameterGroup

Amazon Aurora User Guide for Aurora

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 public static void deleteDBClusterGroup(RdsClient rdsClient, String
 dbClusterGroupName, String clusterDBARN)
 throws InterruptedException {
 try {
 boolean isDataDel = false;
 boolean didFind;
 String instanceARN;

 // Make sure that the database has been deleted.
 while (!isDataDel) {
 DescribeDbInstancesResponse response =
 rdsClient.describeDBInstances();
 List<DBInstance> instanceList = response.dbInstances();
 int listSize = instanceList.size();
 didFind = false;
 int index = 1;
 for (DBInstance instance : instanceList) {
 instanceARN = instance.dbInstanceArn();
 if (instanceARN.compareTo(clusterDBARN) == 0) {
 System.out.println(clusterDBARN + " still exists");
 didFind = true;
 }
 if ((index == listSize) && (!didFind)) {
 // Went through the entire list and did not find the
 database ARN.
 isDataDel = true;
 }
 Thread.sleep(sleepTime * 1000);
 index++;
 }
 }

DeleteDBClusterParameterGroup 3520

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/rds#readme

Amazon Aurora User Guide for Aurora

 DeleteDbClusterParameterGroupRequest clusterParameterGroupRequest =
 DeleteDbClusterParameterGroupRequest
 .builder()
 .dbClusterParameterGroupName(dbClusterGroupName)
 .build();

 rdsClient.deleteDBClusterParameterGroup(clusterParameterGroupRequest);
 System.out.println(dbClusterGroupName + " was deleted.");

 } catch (RdsException e) {
 System.out.println(e.getLocalizedMessage());
 System.exit(1);
 }
 }

• For API details, see DeleteDBClusterParameterGroup in AWS SDK for Java 2.x API
Reference.

Kotlin

SDK for Kotlin

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

@Throws(InterruptedException::class)
suspend fun deleteDBClusterGroup(
 dbClusterGroupName: String,
 clusterDBARN: String,
) {
 var isDataDel = false
 var didFind: Boolean
 var instanceARN: String

 RdsClient { region = "us-west-2" }.use { rdsClient ->
 // Make sure that the database has been deleted.

DeleteDBClusterParameterGroup 3521

https://docs.aws.amazon.com/goto/SdkForJavaV2/rds-2014-10-31/DeleteDBClusterParameterGroup
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/kotlin/services/rds#code-examples

Amazon Aurora User Guide for Aurora

 while (!isDataDel) {
 val response = rdsClient.describeDbInstances()
 val instanceList = response.dbInstances
 val listSize = instanceList?.size
 isDataDel = false
 didFind = false
 var index = 1
 if (instanceList != null) {
 for (instance in instanceList) {
 instanceARN = instance.dbInstanceArn.toString()
 if (instanceARN.compareTo(clusterDBARN) == 0) {
 println("$clusterDBARN still exists")
 didFind = true
 }
 if (index == listSize && !didFind) {
 // Went through the entire list and did not find the
 database ARN.
 isDataDel = true
 }
 delay(slTime * 1000)
 index++
 }
 }
 }
 val clusterParameterGroupRequest =
 DeleteDbClusterParameterGroupRequest {
 dbClusterParameterGroupName = dbClusterGroupName
 }

 rdsClient.deleteDbClusterParameterGroup(clusterParameterGroupRequest)
 println("$dbClusterGroupName was deleted.")
 }
}

• For API details, see DeleteDBClusterParameterGroup in AWS SDK for Kotlin API reference.

DeleteDBClusterParameterGroup 3522

https://sdk.amazonaws.com/kotlin/api/latest/index.html

Amazon Aurora User Guide for Aurora

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

class AuroraWrapper:
 """Encapsulates Aurora DB cluster actions."""

 def __init__(self, rds_client):
 """
 :param rds_client: A Boto3 Amazon Relational Database Service (Amazon
 RDS) client.
 """
 self.rds_client = rds_client

 @classmethod
 def from_client(cls):
 """
 Instantiates this class from a Boto3 client.
 """
 rds_client = boto3.client("rds")
 return cls(rds_client)

 def delete_parameter_group(self, parameter_group_name):
 """
 Deletes a DB cluster parameter group.

 :param parameter_group_name: The name of the parameter group to delete.
 :return: Data about the parameter group.
 """
 try:
 response = self.rds_client.delete_db_cluster_parameter_group(
 DBClusterParameterGroupName=parameter_group_name
)
 except ClientError as err:
 logger.error(

DeleteDBClusterParameterGroup 3523

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/aurora#code-examples

Amazon Aurora User Guide for Aurora

 "Couldn't delete parameter group %s. Here's why: %s: %s",
 parameter_group_name,
 err.response["Error"]["Code"],
 err.response["Error"]["Message"],
)
 raise
 else:
 return response

• For API details, see DeleteDBClusterParameterGroup in AWS SDK for Python (Boto3) API
Reference.

Rust

SDK for Rust

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 pub async fn clean_up(self) -> Result<(), Vec<ScenarioError>> {
 let mut clean_up_errors: Vec<ScenarioError> = vec![];

 // Delete the instance. rds.DeleteDbInstance.
 let delete_db_instance = self
 .rds
 .delete_db_instance(
 self.db_instance_identifier
 .as_deref()
 .expect("instance identifier"),
)
 .await;
 if let Err(err) = delete_db_instance {
 let identifier = self
 .db_instance_identifier
 .as_deref()
 .unwrap_or("Missing Instance Identifier");

DeleteDBClusterParameterGroup 3524

https://docs.aws.amazon.com/goto/boto3/rds-2014-10-31/DeleteDBClusterParameterGroup
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/rustv1/examples/aurora#code-examples

Amazon Aurora User Guide for Aurora

 let message = format!("failed to delete db instance {identifier}");
 clean_up_errors.push(ScenarioError::new(message, &err));
 } else {
 // Wait for the instance to delete
 let waiter = Waiter::default();
 while waiter.sleep().await.is_ok() {
 let describe_db_instances =
 self.rds.describe_db_instances().await;
 if let Err(err) = describe_db_instances {
 clean_up_errors.push(ScenarioError::new(
 "Failed to check instance state during deletion",
 &err,
));
 break;
 }
 let db_instances = describe_db_instances
 .unwrap()
 .db_instances()
 .iter()
 .filter(|instance| instance.db_cluster_identifier ==
 self.db_cluster_identifier)
 .cloned()
 .collect::<Vec<DbInstance>>();

 if db_instances.is_empty() {
 trace!("Delete Instance waited and no instances were found");
 break;
 }
 match db_instances.first().unwrap().db_instance_status() {
 Some("Deleting") => continue,
 Some(status) => {
 info!("Attempting to delete but instances is in
 {status}");
 continue;
 }
 None => {
 warn!("No status for DB instance");
 break;
 }
 }
 }
 }

 // Delete the DB cluster. rds.DeleteDbCluster.

DeleteDBClusterParameterGroup 3525

Amazon Aurora User Guide for Aurora

 let delete_db_cluster = self
 .rds
 .delete_db_cluster(
 self.db_cluster_identifier
 .as_deref()
 .expect("cluster identifier"),
)
 .await;

 if let Err(err) = delete_db_cluster {
 let identifier = self
 .db_cluster_identifier
 .as_deref()
 .unwrap_or("Missing DB Cluster Identifier");
 let message = format!("failed to delete db cluster {identifier}");
 clean_up_errors.push(ScenarioError::new(message, &err));
 } else {
 // Wait for the instance and cluster to fully delete.
 rds.DescribeDbInstances and rds.DescribeDbClusters until both are not found.
 let waiter = Waiter::default();
 while waiter.sleep().await.is_ok() {
 let describe_db_clusters = self
 .rds
 .describe_db_clusters(
 self.db_cluster_identifier
 .as_deref()
 .expect("cluster identifier"),
)
 .await;
 if let Err(err) = describe_db_clusters {
 clean_up_errors.push(ScenarioError::new(
 "Failed to check cluster state during deletion",
 &err,
));
 break;
 }
 let describe_db_clusters = describe_db_clusters.unwrap();
 let db_clusters = describe_db_clusters.db_clusters();
 if db_clusters.is_empty() {
 trace!("Delete cluster waited and no clusters were found");
 break;
 }
 match db_clusters.first().unwrap().status() {
 Some("Deleting") => continue,

DeleteDBClusterParameterGroup 3526

Amazon Aurora User Guide for Aurora

 Some(status) => {
 info!("Attempting to delete but clusters is in
 {status}");
 continue;
 }
 None => {
 warn!("No status for DB cluster");
 break;
 }
 }
 }
 }

 // Delete the DB cluster parameter group.
 rds.DeleteDbClusterParameterGroup.
 let delete_db_cluster_parameter_group = self
 .rds
 .delete_db_cluster_parameter_group(
 self.db_cluster_parameter_group
 .map(|g| {
 g.db_cluster_parameter_group_name
 .unwrap_or_else(||
 DB_CLUSTER_PARAMETER_GROUP_NAME.to_string())
 })
 .as_deref()
 .expect("cluster parameter group name"),
)
 .await;
 if let Err(error) = delete_db_cluster_parameter_group {
 clean_up_errors.push(ScenarioError::new(
 "Failed to delete the db cluster parameter group",
 &error,
))
 }

 if clean_up_errors.is_empty() {
 Ok(())
 } else {
 Err(clean_up_errors)
 }
 }

 pub async fn delete_db_cluster_parameter_group(
 &self,

DeleteDBClusterParameterGroup 3527

Amazon Aurora User Guide for Aurora

 name: &str,
) -> Result<DeleteDbClusterParameterGroupOutput,
 SdkError<DeleteDBClusterParameterGroupError>>
 {
 self.inner
 .delete_db_cluster_parameter_group()
 .db_cluster_parameter_group_name(name)
 .send()
 .await
 }

#[tokio::test]
async fn test_scenario_clean_up() {
 let mut mock_rds = MockRdsImpl::default();

 mock_rds
 .expect_delete_db_instance()
 .with(eq("MockInstance"))
 .return_once(|_| Ok(DeleteDbInstanceOutput::builder().build()));

 mock_rds
 .expect_describe_db_instances()
 .with()
 .times(1)
 .returning(|| {
 Ok(DescribeDbInstancesOutput::builder()
 .db_instances(
 DbInstance::builder()
 .db_cluster_identifier("MockCluster")
 .db_instance_status("Deleting")
 .build(),
)
 .build())
 })
 .with()
 .times(1)
 .returning(|| Ok(DescribeDbInstancesOutput::builder().build()));

 mock_rds
 .expect_delete_db_cluster()
 .with(eq("MockCluster"))
 .return_once(|_| Ok(DeleteDbClusterOutput::builder().build()));

 mock_rds

DeleteDBClusterParameterGroup 3528

Amazon Aurora User Guide for Aurora

 .expect_describe_db_clusters()
 .with(eq("MockCluster"))
 .times(1)
 .returning(|id| {
 Ok(DescribeDbClustersOutput::builder()
 .db_clusters(
 DbCluster::builder()
 .db_cluster_identifier(id)
 .status("Deleting")
 .build(),
)
 .build())
 })
 .with(eq("MockCluster"))
 .times(1)
 .returning(|_| Ok(DescribeDbClustersOutput::builder().build()));

 mock_rds
 .expect_delete_db_cluster_parameter_group()
 .with(eq("MockParamGroup"))
 .return_once(|_|
 Ok(DeleteDbClusterParameterGroupOutput::builder().build()));

 let mut scenario = AuroraScenario::new(mock_rds);
 scenario.db_cluster_identifier = Some(String::from("MockCluster"));
 scenario.db_instance_identifier = Some(String::from("MockInstance"));
 scenario.db_cluster_parameter_group = Some(
 DbClusterParameterGroup::builder()
 .db_cluster_parameter_group_name("MockParamGroup")
 .build(),
);

 tokio::time::pause();
 let assertions = tokio::spawn(async move {
 let clean_up = scenario.clean_up().await;
 assert!(clean_up.is_ok());
 });

 tokio::time::advance(Duration::from_secs(1)).await; // Wait for first
 Describe Instances
 tokio::time::advance(Duration::from_secs(1)).await; // Wait for second
 Describe Instances
 tokio::time::advance(Duration::from_secs(1)).await; // Wait for first
 Describe Cluster

DeleteDBClusterParameterGroup 3529

Amazon Aurora User Guide for Aurora

 tokio::time::advance(Duration::from_secs(1)).await; // Wait for second
 Describe Cluster
 tokio::time::resume();
 let _ = assertions.await;
}

#[tokio::test]
async fn test_scenario_clean_up_errors() {
 let mut mock_rds = MockRdsImpl::default();

 mock_rds
 .expect_delete_db_instance()
 .with(eq("MockInstance"))
 .return_once(|_| Ok(DeleteDbInstanceOutput::builder().build()));

 mock_rds
 .expect_describe_db_instances()
 .with()
 .times(1)
 .returning(|| {
 Ok(DescribeDbInstancesOutput::builder()
 .db_instances(
 DbInstance::builder()
 .db_cluster_identifier("MockCluster")
 .db_instance_status("Deleting")
 .build(),
)
 .build())
 })
 .with()
 .times(1)
 .returning(|| {
 Err(SdkError::service_error(
 DescribeDBInstancesError::unhandled(Box::new(Error::new(
 ErrorKind::Other,
 "describe db instances error",
))),
 Response::new(StatusCode::try_from(400).unwrap(),
 SdkBody::empty()),
))
 });

 mock_rds
 .expect_delete_db_cluster()

DeleteDBClusterParameterGroup 3530

Amazon Aurora User Guide for Aurora

 .with(eq("MockCluster"))
 .return_once(|_| Ok(DeleteDbClusterOutput::builder().build()));

 mock_rds
 .expect_describe_db_clusters()
 .with(eq("MockCluster"))
 .times(1)
 .returning(|id| {
 Ok(DescribeDbClustersOutput::builder()
 .db_clusters(
 DbCluster::builder()
 .db_cluster_identifier(id)
 .status("Deleting")
 .build(),
)
 .build())
 })
 .with(eq("MockCluster"))
 .times(1)
 .returning(|_| {
 Err(SdkError::service_error(
 DescribeDBClustersError::unhandled(Box::new(Error::new(
 ErrorKind::Other,
 "describe db clusters error",
))),
 Response::new(StatusCode::try_from(400).unwrap(),
 SdkBody::empty()),
))
 });

 mock_rds
 .expect_delete_db_cluster_parameter_group()
 .with(eq("MockParamGroup"))
 .return_once(|_|
 Ok(DeleteDbClusterParameterGroupOutput::builder().build()));

 let mut scenario = AuroraScenario::new(mock_rds);
 scenario.db_cluster_identifier = Some(String::from("MockCluster"));
 scenario.db_instance_identifier = Some(String::from("MockInstance"));
 scenario.db_cluster_parameter_group = Some(
 DbClusterParameterGroup::builder()
 .db_cluster_parameter_group_name("MockParamGroup")
 .build(),
);

DeleteDBClusterParameterGroup 3531

Amazon Aurora User Guide for Aurora

 tokio::time::pause();
 let assertions = tokio::spawn(async move {
 let clean_up = scenario.clean_up().await;
 assert!(clean_up.is_err());
 let errs = clean_up.unwrap_err();
 assert_eq!(errs.len(), 2);
 assert_matches!(errs.get(0), Some(ScenarioError {message, context: _}) if
 message == "Failed to check instance state during deletion");
 assert_matches!(errs.get(1), Some(ScenarioError {message, context: _}) if
 message == "Failed to check cluster state during deletion");
 });

 tokio::time::advance(Duration::from_secs(1)).await; // Wait for first
 Describe Instances
 tokio::time::advance(Duration::from_secs(1)).await; // Wait for second
 Describe Instances
 tokio::time::advance(Duration::from_secs(1)).await; // Wait for first
 Describe Cluster
 tokio::time::advance(Duration::from_secs(1)).await; // Wait for second
 Describe Cluster
 tokio::time::resume();
 let _ = assertions.await;
}

• For API details, see DeleteDBClusterParameterGroup in AWS SDK for Rust API reference.

For a complete list of AWS SDK developer guides and code examples, see Using this service with
an AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Use DeleteDBInstance with an AWS SDK or CLI

The following code examples show how to use DeleteDBInstance.

Action examples are code excerpts from larger programs and must be run in context. You can see
this action in context in the following code example:

• Get started with DB clusters

DeleteDBInstance 3532

https://docs.rs/aws-sdk-rds/latest/aws_sdk_rds/client/struct.Client.html#method.delete_db_cluster_parameter_group

Amazon Aurora User Guide for Aurora

.NET

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 /// <summary>
 /// Delete a particular DB instance.
 /// </summary>
 /// <param name="dbInstanceIdentifier">DB instance identifier.</param>
 /// <returns>DB instance object.</returns>
 public async Task<DBInstance> DeleteDBInstanceByIdentifierAsync(string
 dbInstanceIdentifier)
 {
 var response = await _amazonRDS.DeleteDBInstanceAsync(
 new DeleteDBInstanceRequest()
 {
 DBInstanceIdentifier = dbInstanceIdentifier,
 SkipFinalSnapshot = true,
 DeleteAutomatedBackups = true
 });

 return response.DBInstance;
 }

• For API details, see DeleteDBInstance in AWS SDK for .NET API Reference.

C++

SDK for C++

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

DeleteDBInstance 3533

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Aurora#code-examples
https://docs.aws.amazon.com/goto/DotNetSDKV3/rds-2014-10-31/DeleteDBInstance
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/cpp/example_code/aurora#code-examples

Amazon Aurora User Guide for Aurora

 Aws::Client::ClientConfiguration clientConfig;
 // Optional: Set to the AWS Region (overrides config file).
 // clientConfig.region = "us-east-1";

 Aws::RDS::RDSClient client(clientConfig);

 Aws::RDS::Model::DeleteDBInstanceRequest request;
 request.SetDBInstanceIdentifier(dbInstanceIdentifier);
 request.SetSkipFinalSnapshot(true);
 request.SetDeleteAutomatedBackups(true);

 Aws::RDS::Model::DeleteDBInstanceOutcome outcome =
 client.DeleteDBInstance(request);

 if (outcome.IsSuccess()) {
 std::cout << "DB instance deletion has started."
 << std::endl;
 instanceDeleting = true;
 std::cout
 << "Waiting for DB instance to delete before deleting the
 parameter group."
 << std::endl;
 }
 else {
 std::cerr << "Error with Aurora::DeleteDBInstance. "
 << outcome.GetError().GetMessage()
 << std::endl;
 result = false;
 }

• For API details, see DeleteDBInstance in AWS SDK for C++ API Reference.

Go

SDK for Go V2

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

DeleteDBInstance 3534

https://docs.aws.amazon.com/goto/SdkForCpp/rds-2014-10-31/DeleteDBInstance
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/gov2/aurora#code-examples

Amazon Aurora User Guide for Aurora

type DbClusters struct {
 AuroraClient *rds.Client
}

// DeleteInstance deletes a DB instance.
func (clusters *DbClusters) DeleteInstance(instanceName string) error {
 _, err := clusters.AuroraClient.DeleteDBInstance(context.TODO(),
 &rds.DeleteDBInstanceInput{
 DBInstanceIdentifier: aws.String(instanceName),
 SkipFinalSnapshot: true,
 DeleteAutomatedBackups: aws.Bool(true),
 })
 if err != nil {
 log.Printf("Couldn't delete instance %v: %v\n", instanceName, err)
 return err
 } else {
 return nil
 }
}

• For API details, see DeleteDBInstance in AWS SDK for Go API Reference.

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 public static void deleteDatabaseInstance(RdsClient rdsClient, String
 dbInstanceIdentifier) {
 try {

DeleteDBInstance 3535

https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/rds#Client.DeleteDBInstance
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/rds#readme

Amazon Aurora User Guide for Aurora

 DeleteDbInstanceRequest deleteDbInstanceRequest =
 DeleteDbInstanceRequest.builder()
 .dbInstanceIdentifier(dbInstanceIdentifier)
 .deleteAutomatedBackups(true)
 .skipFinalSnapshot(true)
 .build();

 DeleteDbInstanceResponse response =
 rdsClient.deleteDBInstance(deleteDbInstanceRequest);
 System.out.println("The status of the database is " +
 response.dbInstance().dbInstanceStatus());

 } catch (RdsException e) {
 System.out.println(e.getLocalizedMessage());
 System.exit(1);
 }
 }

• For API details, see DeleteDBInstance in AWS SDK for Java 2.x API Reference.

Kotlin

SDK for Kotlin

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

suspend fun deleteDBInstance(dbInstanceIdentifierVal: String) {
 val deleteDbInstanceRequest =
 DeleteDbInstanceRequest {
 dbInstanceIdentifier = dbInstanceIdentifierVal
 deleteAutomatedBackups = true
 skipFinalSnapshot = true
 }

 RdsClient { region = "us-west-2" }.use { rdsClient ->
 val response = rdsClient.deleteDbInstance(deleteDbInstanceRequest)

DeleteDBInstance 3536

https://docs.aws.amazon.com/goto/SdkForJavaV2/rds-2014-10-31/DeleteDBInstance
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/kotlin/services/rds#code-examples

Amazon Aurora User Guide for Aurora

 print("The status of the database is
 ${response.dbInstance?.dbInstanceStatus}")
 }
}

• For API details, see DeleteDBInstance in AWS SDK for Kotlin API reference.

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

class AuroraWrapper:
 """Encapsulates Aurora DB cluster actions."""

 def __init__(self, rds_client):
 """
 :param rds_client: A Boto3 Amazon Relational Database Service (Amazon
 RDS) client.
 """
 self.rds_client = rds_client

 @classmethod
 def from_client(cls):
 """
 Instantiates this class from a Boto3 client.
 """
 rds_client = boto3.client("rds")
 return cls(rds_client)

 def delete_db_instance(self, instance_id):
 """
 Deletes a DB instance.

 :param instance_id: The ID of the DB instance to delete.

DeleteDBInstance 3537

https://sdk.amazonaws.com/kotlin/api/latest/index.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/aurora#code-examples

Amazon Aurora User Guide for Aurora

 :return: Data about the deleted DB instance.
 """
 try:
 response = self.rds_client.delete_db_instance(
 DBInstanceIdentifier=instance_id,
 SkipFinalSnapshot=True,
 DeleteAutomatedBackups=True,
)
 db_inst = response["DBInstance"]
 except ClientError as err:
 logger.error(
 "Couldn't delete DB instance %s. Here's why: %s: %s",
 instance_id,
 err.response["Error"]["Code"],
 err.response["Error"]["Message"],
)
 raise
 else:
 return db_inst

• For API details, see DeleteDBInstance in AWS SDK for Python (Boto3) API Reference.

Rust

SDK for Rust

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 pub async fn clean_up(self) -> Result<(), Vec<ScenarioError>> {
 let mut clean_up_errors: Vec<ScenarioError> = vec![];

 // Delete the instance. rds.DeleteDbInstance.
 let delete_db_instance = self
 .rds
 .delete_db_instance(
 self.db_instance_identifier

DeleteDBInstance 3538

https://docs.aws.amazon.com/goto/boto3/rds-2014-10-31/DeleteDBInstance
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/rustv1/examples/aurora#code-examples

Amazon Aurora User Guide for Aurora

 .as_deref()
 .expect("instance identifier"),
)
 .await;
 if let Err(err) = delete_db_instance {
 let identifier = self
 .db_instance_identifier
 .as_deref()
 .unwrap_or("Missing Instance Identifier");
 let message = format!("failed to delete db instance {identifier}");
 clean_up_errors.push(ScenarioError::new(message, &err));
 } else {
 // Wait for the instance to delete
 let waiter = Waiter::default();
 while waiter.sleep().await.is_ok() {
 let describe_db_instances =
 self.rds.describe_db_instances().await;
 if let Err(err) = describe_db_instances {
 clean_up_errors.push(ScenarioError::new(
 "Failed to check instance state during deletion",
 &err,
));
 break;
 }
 let db_instances = describe_db_instances
 .unwrap()
 .db_instances()
 .iter()
 .filter(|instance| instance.db_cluster_identifier ==
 self.db_cluster_identifier)
 .cloned()
 .collect::<Vec<DbInstance>>();

 if db_instances.is_empty() {
 trace!("Delete Instance waited and no instances were found");
 break;
 }
 match db_instances.first().unwrap().db_instance_status() {
 Some("Deleting") => continue,
 Some(status) => {
 info!("Attempting to delete but instances is in
 {status}");
 continue;
 }

DeleteDBInstance 3539

Amazon Aurora User Guide for Aurora

 None => {
 warn!("No status for DB instance");
 break;
 }
 }
 }
 }

 // Delete the DB cluster. rds.DeleteDbCluster.
 let delete_db_cluster = self
 .rds
 .delete_db_cluster(
 self.db_cluster_identifier
 .as_deref()
 .expect("cluster identifier"),
)
 .await;

 if let Err(err) = delete_db_cluster {
 let identifier = self
 .db_cluster_identifier
 .as_deref()
 .unwrap_or("Missing DB Cluster Identifier");
 let message = format!("failed to delete db cluster {identifier}");
 clean_up_errors.push(ScenarioError::new(message, &err));
 } else {
 // Wait for the instance and cluster to fully delete.
 rds.DescribeDbInstances and rds.DescribeDbClusters until both are not found.
 let waiter = Waiter::default();
 while waiter.sleep().await.is_ok() {
 let describe_db_clusters = self
 .rds
 .describe_db_clusters(
 self.db_cluster_identifier
 .as_deref()
 .expect("cluster identifier"),
)
 .await;
 if let Err(err) = describe_db_clusters {
 clean_up_errors.push(ScenarioError::new(
 "Failed to check cluster state during deletion",
 &err,
));
 break;

DeleteDBInstance 3540

Amazon Aurora User Guide for Aurora

 }
 let describe_db_clusters = describe_db_clusters.unwrap();
 let db_clusters = describe_db_clusters.db_clusters();
 if db_clusters.is_empty() {
 trace!("Delete cluster waited and no clusters were found");
 break;
 }
 match db_clusters.first().unwrap().status() {
 Some("Deleting") => continue,
 Some(status) => {
 info!("Attempting to delete but clusters is in
 {status}");
 continue;
 }
 None => {
 warn!("No status for DB cluster");
 break;
 }
 }
 }
 }

 // Delete the DB cluster parameter group.
 rds.DeleteDbClusterParameterGroup.
 let delete_db_cluster_parameter_group = self
 .rds
 .delete_db_cluster_parameter_group(
 self.db_cluster_parameter_group
 .map(|g| {
 g.db_cluster_parameter_group_name
 .unwrap_or_else(||
 DB_CLUSTER_PARAMETER_GROUP_NAME.to_string())
 })
 .as_deref()
 .expect("cluster parameter group name"),
)
 .await;
 if let Err(error) = delete_db_cluster_parameter_group {
 clean_up_errors.push(ScenarioError::new(
 "Failed to delete the db cluster parameter group",
 &error,
))
 }

DeleteDBInstance 3541

Amazon Aurora User Guide for Aurora

 if clean_up_errors.is_empty() {
 Ok(())
 } else {
 Err(clean_up_errors)
 }
 }

 pub async fn delete_db_instance(
 &self,
 instance_identifier: &str,
) -> Result<DeleteDbInstanceOutput, SdkError<DeleteDBInstanceError>> {
 self.inner
 .delete_db_instance()
 .db_instance_identifier(instance_identifier)
 .skip_final_snapshot(true)
 .send()
 .await
 }

#[tokio::test]
async fn test_scenario_clean_up() {
 let mut mock_rds = MockRdsImpl::default();

 mock_rds
 .expect_delete_db_instance()
 .with(eq("MockInstance"))
 .return_once(|_| Ok(DeleteDbInstanceOutput::builder().build()));

 mock_rds
 .expect_describe_db_instances()
 .with()
 .times(1)
 .returning(|| {
 Ok(DescribeDbInstancesOutput::builder()
 .db_instances(
 DbInstance::builder()
 .db_cluster_identifier("MockCluster")
 .db_instance_status("Deleting")
 .build(),
)
 .build())
 })
 .with()
 .times(1)

DeleteDBInstance 3542

Amazon Aurora User Guide for Aurora

 .returning(|| Ok(DescribeDbInstancesOutput::builder().build()));

 mock_rds
 .expect_delete_db_cluster()
 .with(eq("MockCluster"))
 .return_once(|_| Ok(DeleteDbClusterOutput::builder().build()));

 mock_rds
 .expect_describe_db_clusters()
 .with(eq("MockCluster"))
 .times(1)
 .returning(|id| {
 Ok(DescribeDbClustersOutput::builder()
 .db_clusters(
 DbCluster::builder()
 .db_cluster_identifier(id)
 .status("Deleting")
 .build(),
)
 .build())
 })
 .with(eq("MockCluster"))
 .times(1)
 .returning(|_| Ok(DescribeDbClustersOutput::builder().build()));

 mock_rds
 .expect_delete_db_cluster_parameter_group()
 .with(eq("MockParamGroup"))
 .return_once(|_|
 Ok(DeleteDbClusterParameterGroupOutput::builder().build()));

 let mut scenario = AuroraScenario::new(mock_rds);
 scenario.db_cluster_identifier = Some(String::from("MockCluster"));
 scenario.db_instance_identifier = Some(String::from("MockInstance"));
 scenario.db_cluster_parameter_group = Some(
 DbClusterParameterGroup::builder()
 .db_cluster_parameter_group_name("MockParamGroup")
 .build(),
);

 tokio::time::pause();
 let assertions = tokio::spawn(async move {
 let clean_up = scenario.clean_up().await;
 assert!(clean_up.is_ok());

DeleteDBInstance 3543

Amazon Aurora User Guide for Aurora

 });

 tokio::time::advance(Duration::from_secs(1)).await; // Wait for first
 Describe Instances
 tokio::time::advance(Duration::from_secs(1)).await; // Wait for second
 Describe Instances
 tokio::time::advance(Duration::from_secs(1)).await; // Wait for first
 Describe Cluster
 tokio::time::advance(Duration::from_secs(1)).await; // Wait for second
 Describe Cluster
 tokio::time::resume();
 let _ = assertions.await;
}

#[tokio::test]
async fn test_scenario_clean_up_errors() {
 let mut mock_rds = MockRdsImpl::default();

 mock_rds
 .expect_delete_db_instance()
 .with(eq("MockInstance"))
 .return_once(|_| Ok(DeleteDbInstanceOutput::builder().build()));

 mock_rds
 .expect_describe_db_instances()
 .with()
 .times(1)
 .returning(|| {
 Ok(DescribeDbInstancesOutput::builder()
 .db_instances(
 DbInstance::builder()
 .db_cluster_identifier("MockCluster")
 .db_instance_status("Deleting")
 .build(),
)
 .build())
 })
 .with()
 .times(1)
 .returning(|| {
 Err(SdkError::service_error(
 DescribeDBInstancesError::unhandled(Box::new(Error::new(
 ErrorKind::Other,
 "describe db instances error",

DeleteDBInstance 3544

Amazon Aurora User Guide for Aurora

))),
 Response::new(StatusCode::try_from(400).unwrap(),
 SdkBody::empty()),
))
 });

 mock_rds
 .expect_delete_db_cluster()
 .with(eq("MockCluster"))
 .return_once(|_| Ok(DeleteDbClusterOutput::builder().build()));

 mock_rds
 .expect_describe_db_clusters()
 .with(eq("MockCluster"))
 .times(1)
 .returning(|id| {
 Ok(DescribeDbClustersOutput::builder()
 .db_clusters(
 DbCluster::builder()
 .db_cluster_identifier(id)
 .status("Deleting")
 .build(),
)
 .build())
 })
 .with(eq("MockCluster"))
 .times(1)
 .returning(|_| {
 Err(SdkError::service_error(
 DescribeDBClustersError::unhandled(Box::new(Error::new(
 ErrorKind::Other,
 "describe db clusters error",
))),
 Response::new(StatusCode::try_from(400).unwrap(),
 SdkBody::empty()),
))
 });

 mock_rds
 .expect_delete_db_cluster_parameter_group()
 .with(eq("MockParamGroup"))
 .return_once(|_|
 Ok(DeleteDbClusterParameterGroupOutput::builder().build()));

DeleteDBInstance 3545

Amazon Aurora User Guide for Aurora

 let mut scenario = AuroraScenario::new(mock_rds);
 scenario.db_cluster_identifier = Some(String::from("MockCluster"));
 scenario.db_instance_identifier = Some(String::from("MockInstance"));
 scenario.db_cluster_parameter_group = Some(
 DbClusterParameterGroup::builder()
 .db_cluster_parameter_group_name("MockParamGroup")
 .build(),
);

 tokio::time::pause();
 let assertions = tokio::spawn(async move {
 let clean_up = scenario.clean_up().await;
 assert!(clean_up.is_err());
 let errs = clean_up.unwrap_err();
 assert_eq!(errs.len(), 2);
 assert_matches!(errs.get(0), Some(ScenarioError {message, context: _}) if
 message == "Failed to check instance state during deletion");
 assert_matches!(errs.get(1), Some(ScenarioError {message, context: _}) if
 message == "Failed to check cluster state during deletion");
 });

 tokio::time::advance(Duration::from_secs(1)).await; // Wait for first
 Describe Instances
 tokio::time::advance(Duration::from_secs(1)).await; // Wait for second
 Describe Instances
 tokio::time::advance(Duration::from_secs(1)).await; // Wait for first
 Describe Cluster
 tokio::time::advance(Duration::from_secs(1)).await; // Wait for second
 Describe Cluster
 tokio::time::resume();
 let _ = assertions.await;
}

• For API details, see DeleteDBInstance in AWS SDK for Rust API reference.

For a complete list of AWS SDK developer guides and code examples, see Using this service with
an AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

DeleteDBInstance 3546

https://docs.rs/aws-sdk-rds/latest/aws_sdk_rds/client/struct.Client.html#method.delete_db_instance

Amazon Aurora User Guide for Aurora

Use DescribeDBClusterParameterGroups with an AWS SDK or CLI

The following code examples show how to use DescribeDBClusterParameterGroups.

Action examples are code excerpts from larger programs and must be run in context. You can see
this action in context in the following code example:

• Get started with DB clusters

.NET

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 /// <summary>
 /// Get the description of a DB cluster parameter group by name.
 /// </summary>
 /// <param name="name">The name of the DB parameter group to describe.</
param>
 /// <returns>The parameter group description.</returns>
 public async Task<DBClusterParameterGroup?>
 DescribeCustomDBClusterParameterGroupAsync(string name)
 {
 var response = await _amazonRDS.DescribeDBClusterParameterGroupsAsync(
 new DescribeDBClusterParameterGroupsRequest()
 {
 DBClusterParameterGroupName = name
 });
 return response.DBClusterParameterGroups.FirstOrDefault();
 }

• For API details, see DescribeDBClusterParameterGroups in AWS SDK for .NET API
Reference.

DescribeDBClusterParameterGroups 3547

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Aurora#code-examples
https://docs.aws.amazon.com/goto/DotNetSDKV3/rds-2014-10-31/DescribeDBClusterParameterGroups

Amazon Aurora User Guide for Aurora

C++

SDK for C++

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 Aws::Client::ClientConfiguration clientConfig;
 // Optional: Set to the AWS Region (overrides config file).
 // clientConfig.region = "us-east-1";

 Aws::RDS::RDSClient client(clientConfig);

 Aws::RDS::Model::DescribeDBClusterParameterGroupsRequest request;
 request.SetDBClusterParameterGroupName(CLUSTER_PARAMETER_GROUP_NAME);

 Aws::RDS::Model::DescribeDBClusterParameterGroupsOutcome outcome =
 client.DescribeDBClusterParameterGroups(request);

 if (outcome.IsSuccess()) {
 std::cout << "DB cluster parameter group named '" <<
 CLUSTER_PARAMETER_GROUP_NAME << "' already exists." <<
 std::endl;
 dbParameterGroupFamily =
 outcome.GetResult().GetDBClusterParameterGroups()
[0].GetDBParameterGroupFamily();
 }

 else {
 std::cerr << "Error with Aurora::DescribeDBClusterParameterGroups. "
 << outcome.GetError().GetMessage()
 << std::endl;
 return false;
 }

• For API details, see DescribeDBClusterParameterGroups in AWS SDK for C++ API Reference.

DescribeDBClusterParameterGroups 3548

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/cpp/example_code/aurora#code-examples
https://docs.aws.amazon.com/goto/SdkForCpp/rds-2014-10-31/DescribeDBClusterParameterGroups

Amazon Aurora User Guide for Aurora

Go

SDK for Go V2

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

type DbClusters struct {
 AuroraClient *rds.Client
}

// GetParameterGroup gets a DB cluster parameter group by name.
func (clusters *DbClusters) GetParameterGroup(parameterGroupName string) (
 *types.DBClusterParameterGroup, error) {
 output, err := clusters.AuroraClient.DescribeDBClusterParameterGroups(
 context.TODO(), &rds.DescribeDBClusterParameterGroupsInput{
 DBClusterParameterGroupName: aws.String(parameterGroupName),
 })
 if err != nil {
 var notFoundError *types.DBParameterGroupNotFoundFault
 if errors.As(err, ¬FoundError) {
 log.Printf("Parameter group %v does not exist.\n", parameterGroupName)
 err = nil
 } else {
 log.Printf("Error getting parameter group %v: %v\n", parameterGroupName, err)
 }
 return nil, err
 } else {
 return &output.DBClusterParameterGroups[0], err
 }
}

• For API details, see DescribeDBClusterParameterGroups in AWS SDK for Go API Reference.

DescribeDBClusterParameterGroups 3549

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/gov2/aurora#code-examples
https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/rds#Client.DescribeDBClusterParameterGroups

Amazon Aurora User Guide for Aurora

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 public static void describeDbClusterParameterGroups(RdsClient rdsClient,
 String dbClusterGroupName) {
 try {
 DescribeDbClusterParameterGroupsRequest groupsRequest =
 DescribeDbClusterParameterGroupsRequest.builder()
 .dbClusterParameterGroupName(dbClusterGroupName)
 .maxRecords(20)
 .build();

 List<DBClusterParameterGroup> groups =
 rdsClient.describeDBClusterParameterGroups(groupsRequest)
 .dbClusterParameterGroups();
 for (DBClusterParameterGroup group : groups) {
 System.out.println("The group name is " +
 group.dbClusterParameterGroupName());
 System.out.println("The group ARN is " +
 group.dbClusterParameterGroupArn());
 }

 } catch (RdsException e) {
 System.out.println(e.getLocalizedMessage());
 System.exit(1);
 }
 }

• For API details, see DescribeDBClusterParameterGroups in AWS SDK for Java 2.x API
Reference.

DescribeDBClusterParameterGroups 3550

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/rds#readme
https://docs.aws.amazon.com/goto/SdkForJavaV2/rds-2014-10-31/DescribeDBClusterParameterGroups

Amazon Aurora User Guide for Aurora

Kotlin

SDK for Kotlin

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

suspend fun describeDbClusterParameterGroups(dbClusterGroupName: String?) {
 val groupsRequest =
 DescribeDbClusterParameterGroupsRequest {
 dbClusterParameterGroupName = dbClusterGroupName
 maxRecords = 20
 }

 RdsClient { region = "us-west-2" }.use { rdsClient ->
 val response = rdsClient.describeDbClusterParameterGroups(groupsRequest)
 response.dbClusterParameterGroups?.forEach { group ->
 println("The group name is ${group.dbClusterParameterGroupName}")
 println("The group ARN is ${group.dbClusterParameterGroupArn}")
 }
 }
}

• For API details, see DescribeDBClusterParameterGroups in AWS SDK for Kotlin API
reference.

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

DescribeDBClusterParameterGroups 3551

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/kotlin/services/rds#code-examples
https://sdk.amazonaws.com/kotlin/api/latest/index.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/aurora#code-examples

Amazon Aurora User Guide for Aurora

class AuroraWrapper:
 """Encapsulates Aurora DB cluster actions."""

 def __init__(self, rds_client):
 """
 :param rds_client: A Boto3 Amazon Relational Database Service (Amazon
 RDS) client.
 """
 self.rds_client = rds_client

 @classmethod
 def from_client(cls):
 """
 Instantiates this class from a Boto3 client.
 """
 rds_client = boto3.client("rds")
 return cls(rds_client)

 def get_parameter_group(self, parameter_group_name):
 """
 Gets a DB cluster parameter group.

 :param parameter_group_name: The name of the parameter group to retrieve.
 :return: The requested parameter group.
 """
 try:
 response = self.rds_client.describe_db_cluster_parameter_groups(
 DBClusterParameterGroupName=parameter_group_name
)
 parameter_group = response["DBClusterParameterGroups"][0]
 except ClientError as err:
 if err.response["Error"]["Code"] == "DBParameterGroupNotFound":
 logger.info("Parameter group %s does not exist.",
 parameter_group_name)
 else:
 logger.error(
 "Couldn't get parameter group %s. Here's why: %s: %s",
 parameter_group_name,
 err.response["Error"]["Code"],
 err.response["Error"]["Message"],
)
 raise

DescribeDBClusterParameterGroups 3552

Amazon Aurora User Guide for Aurora

 else:
 return parameter_group

• For API details, see DescribeDBClusterParameterGroups in AWS SDK for Python (Boto3) API
Reference.

For a complete list of AWS SDK developer guides and code examples, see Using this service with
an AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Use DescribeDBClusterParameters with an AWS SDK or CLI

The following code examples show how to use DescribeDBClusterParameters.

Action examples are code excerpts from larger programs and must be run in context. You can see
this action in context in the following code example:

• Get started with DB clusters

.NET

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 /// <summary>
 /// Describe the cluster parameters in a parameter group.
 /// </summary>
 /// <param name="groupName">The name of the parameter group.</param>
 /// <param name="source">The optional name of the source filter.</param>
 /// <returns>The collection of parameters.</returns>
 public async Task<List<Parameter>>
 DescribeDBClusterParametersInGroupAsync(string groupName, string? source = null)
 {

DescribeDBClusterParameters 3553

https://docs.aws.amazon.com/goto/boto3/rds-2014-10-31/DescribeDBClusterParameterGroups
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Aurora#code-examples

Amazon Aurora User Guide for Aurora

 var paramList = new List<Parameter>();

 DescribeDBClusterParametersResponse response;
 var request = new DescribeDBClusterParametersRequest
 {
 DBClusterParameterGroupName = groupName,
 Source = source,
 };

 // Get the full list if there are multiple pages.
 do
 {
 response = await
 _amazonRDS.DescribeDBClusterParametersAsync(request);
 paramList.AddRange(response.Parameters);

 request.Marker = response.Marker;
 }
 while (response.Marker is not null);

 return paramList;
 }

• For API details, see DescribeDBClusterParameters in AWS SDK for .NET API Reference.

C++

SDK for C++

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 Aws::Client::ClientConfiguration clientConfig;
 // Optional: Set to the AWS Region (overrides config file).
 // clientConfig.region = "us-east-1";

 Aws::RDS::RDSClient client(clientConfig);

DescribeDBClusterParameters 3554

https://docs.aws.amazon.com/goto/DotNetSDKV3/rds-2014-10-31/DescribeDBClusterParameters
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/cpp/example_code/aurora#code-examples

Amazon Aurora User Guide for Aurora

//! Routine which gets DB parameters using the 'DescribeDBClusterParameters' api.
/*!
 \sa getDBCLusterParameters()
 \param parameterGroupName: The name of the cluster parameter group.
 \param namePrefix: Prefix string to filter results by parameter name.
 \param source: A source such as 'user', ignored if empty.
 \param parametersResult: Vector of 'Parameter' objects returned by the routine.
 \param client: 'RDSClient' instance.
 \return bool: Successful completion.
 */
bool AwsDoc::Aurora::getDBCLusterParameters(const Aws::String
 ¶meterGroupName,
 const Aws::String &namePrefix,
 const Aws::String &source,

 Aws::Vector<Aws::RDS::Model::Parameter> ¶metersResult,
 const Aws::RDS::RDSClient &client) {
 Aws::String marker; // The marker is used for pagination.
 do {
 Aws::RDS::Model::DescribeDBClusterParametersRequest request;
 request.SetDBClusterParameterGroupName(CLUSTER_PARAMETER_GROUP_NAME);
 if (!marker.empty()) {
 request.SetMarker(marker);
 }
 if (!source.empty()) {
 request.SetSource(source);
 }

 Aws::RDS::Model::DescribeDBClusterParametersOutcome outcome =
 client.DescribeDBClusterParameters(request);

 if (outcome.IsSuccess()) {
 const Aws::Vector<Aws::RDS::Model::Parameter> ¶meters =
 outcome.GetResult().GetParameters();
 for (const Aws::RDS::Model::Parameter ¶meter: parameters) {
 if (!namePrefix.empty()) {
 if (parameter.GetParameterName().find(namePrefix) == 0) {
 parametersResult.push_back(parameter);
 }
 }
 else {
 parametersResult.push_back(parameter);
 }

DescribeDBClusterParameters 3555

Amazon Aurora User Guide for Aurora

 }

 marker = outcome.GetResult().GetMarker();
 }
 else {
 std::cerr << "Error with Aurora::DescribeDBClusterParameters. "
 << outcome.GetError().GetMessage()
 << std::endl;
 return false;
 }
 } while (!marker.empty());

 return true;
}

• For API details, see DescribeDBClusterParameters in AWS SDK for C++ API Reference.

Go

SDK for Go V2

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

type DbClusters struct {
 AuroraClient *rds.Client
}

// GetParameters gets the parameters that are contained in a DB cluster parameter
 group.
func (clusters *DbClusters) GetParameters(parameterGroupName string, source
 string) (
 []types.Parameter, error) {

 var output *rds.DescribeDBClusterParametersOutput

DescribeDBClusterParameters 3556

https://docs.aws.amazon.com/goto/SdkForCpp/rds-2014-10-31/DescribeDBClusterParameters
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/gov2/aurora#code-examples

Amazon Aurora User Guide for Aurora

 var params []types.Parameter
 var err error
 parameterPaginator :=
 rds.NewDescribeDBClusterParametersPaginator(clusters.AuroraClient,
 &rds.DescribeDBClusterParametersInput{
 DBClusterParameterGroupName: aws.String(parameterGroupName),
 Source: aws.String(source),
 })
 for parameterPaginator.HasMorePages() {
 output, err = parameterPaginator.NextPage(context.TODO())
 if err != nil {
 log.Printf("Couldn't get paramaeters for %v: %v\n", parameterGroupName, err)
 break
 } else {
 params = append(params, output.Parameters...)
 }
 }
 return params, err
}

• For API details, see DescribeDBClusterParameters in AWS SDK for Go API Reference.

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 public static void describeDbClusterParameters(RdsClient rdsClient, String
 dbCLusterGroupName, int flag) {
 try {
 DescribeDbClusterParametersRequest dbParameterGroupsRequest;
 if (flag == 0) {
 dbParameterGroupsRequest =
 DescribeDbClusterParametersRequest.builder()
 .dbClusterParameterGroupName(dbCLusterGroupName)

DescribeDBClusterParameters 3557

https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/rds#Client.DescribeDBClusterParameters
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/rds#readme

Amazon Aurora User Guide for Aurora

 .build();
 } else {
 dbParameterGroupsRequest =
 DescribeDbClusterParametersRequest.builder()
 .dbClusterParameterGroupName(dbCLusterGroupName)
 .source("user")
 .build();
 }

 DescribeDbClusterParametersResponse response = rdsClient
 .describeDBClusterParameters(dbParameterGroupsRequest);
 List<Parameter> dbParameters = response.parameters();
 String paraName;
 for (Parameter para : dbParameters) {
 // Only print out information about either auto_increment_offset
 or
 // auto_increment_increment.
 paraName = para.parameterName();
 if ((paraName.compareTo("auto_increment_offset") == 0)
 || (paraName.compareTo("auto_increment_increment ") ==
 0)) {
 System.out.println("*** The parameter name is " + paraName);
 System.out.println("*** The parameter value is " +
 para.parameterValue());
 System.out.println("*** The parameter data type is " +
 para.dataType());
 System.out.println("*** The parameter description is " +
 para.description());
 System.out.println("*** The parameter allowed values is " +
 para.allowedValues());
 }
 }

 } catch (RdsException e) {
 System.out.println(e.getLocalizedMessage());
 System.exit(1);
 }
 }

• For API details, see DescribeDBClusterParameters in AWS SDK for Java 2.x API Reference.

DescribeDBClusterParameters 3558

https://docs.aws.amazon.com/goto/SdkForJavaV2/rds-2014-10-31/DescribeDBClusterParameters

Amazon Aurora User Guide for Aurora

Kotlin

SDK for Kotlin

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

suspend fun describeDbClusterParameters(
 dbCLusterGroupName: String?,
 flag: Int,
) {
 val dbParameterGroupsRequest: DescribeDbClusterParametersRequest
 dbParameterGroupsRequest =
 if (flag == 0) {
 DescribeDbClusterParametersRequest {
 dbClusterParameterGroupName = dbCLusterGroupName
 }
 } else {
 DescribeDbClusterParametersRequest {
 dbClusterParameterGroupName = dbCLusterGroupName
 source = "user"
 }
 }

 RdsClient { region = "us-west-2" }.use { rdsClient ->
 val response =
 rdsClient.describeDbClusterParameters(dbParameterGroupsRequest)
 response.parameters?.forEach { para ->
 // Only print out information about either auto_increment_offset or
 auto_increment_increment.
 val paraName = para.parameterName
 if (paraName != null) {
 if (paraName.compareTo("auto_increment_offset") == 0 ||
 paraName.compareTo("auto_increment_increment ") == 0) {
 println("*** The parameter name is $paraName")
 println("*** The parameter value is ${para.parameterValue}")
 println("*** The parameter data type is ${para.dataType}")
 println("*** The parameter description is
 ${para.description}")

DescribeDBClusterParameters 3559

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/kotlin/services/rds#code-examples

Amazon Aurora User Guide for Aurora

 println("*** The parameter allowed values is
 ${para.allowedValues}")
 }
 }
 }
 }
}

• For API details, see DescribeDBClusterParameters in AWS SDK for Kotlin API reference.

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

class AuroraWrapper:
 """Encapsulates Aurora DB cluster actions."""

 def __init__(self, rds_client):
 """
 :param rds_client: A Boto3 Amazon Relational Database Service (Amazon
 RDS) client.
 """
 self.rds_client = rds_client

 @classmethod
 def from_client(cls):
 """
 Instantiates this class from a Boto3 client.
 """
 rds_client = boto3.client("rds")
 return cls(rds_client)

 def get_parameters(self, parameter_group_name, name_prefix="", source=None):
 """

DescribeDBClusterParameters 3560

https://sdk.amazonaws.com/kotlin/api/latest/index.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/aurora#code-examples

Amazon Aurora User Guide for Aurora

 Gets the parameters that are contained in a DB cluster parameter group.

 :param parameter_group_name: The name of the parameter group to query.
 :param name_prefix: When specified, the retrieved list of parameters is
 filtered
 to contain only parameters that start with this
 prefix.
 :param source: When specified, only parameters from this source are
 retrieved.
 For example, a source of 'user' retrieves only parameters
 that
 were set by a user.
 :return: The list of requested parameters.
 """
 try:
 kwargs = {"DBClusterParameterGroupName": parameter_group_name}
 if source is not None:
 kwargs["Source"] = source
 parameters = []
 paginator =
 self.rds_client.get_paginator("describe_db_cluster_parameters")
 for page in paginator.paginate(**kwargs):
 parameters += [
 p
 for p in page["Parameters"]
 if p["ParameterName"].startswith(name_prefix)
]
 except ClientError as err:
 logger.error(
 "Couldn't get parameters for %s. Here's why: %s: %s",
 parameter_group_name,
 err.response["Error"]["Code"],
 err.response["Error"]["Message"],
)
 raise
 else:
 return parameters

• For API details, see DescribeDBClusterParameters in AWS SDK for Python (Boto3) API
Reference.

DescribeDBClusterParameters 3561

https://docs.aws.amazon.com/goto/boto3/rds-2014-10-31/DescribeDBClusterParameters

Amazon Aurora User Guide for Aurora

Rust

SDK for Rust

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 // Get the parameter group. rds.DescribeDbClusterParameterGroups
 // Get parameters in the group. This is a long list so you will have to
 paginate. Find the auto_increment_offset and auto_increment_increment parameters
 (by ParameterName). rds.DescribeDbClusterParameters
 // Parse the ParameterName, Description, and AllowedValues values and display
 them.
 pub async fn cluster_parameters(&self) ->
 Result<Vec<AuroraScenarioParameter>, ScenarioError> {
 let parameters_output = self
 .rds
 .describe_db_cluster_parameters(DB_CLUSTER_PARAMETER_GROUP_NAME)
 .await;

 if let Err(err) = parameters_output {
 return Err(ScenarioError::new(
 format!("Failed to retrieve parameters for
 {DB_CLUSTER_PARAMETER_GROUP_NAME}"),
 &err,
));
 }

 let parameters = parameters_output
 .unwrap()
 .into_iter()
 .flat_map(|p| p.parameters.unwrap_or_default().into_iter())
 .filter(|p|
 FILTER_PARAMETER_NAMES.contains(p.parameter_name().unwrap_or_default()))
 .map(AuroraScenarioParameter::from)
 .collect::<Vec<_>>();

 Ok(parameters)
 }

DescribeDBClusterParameters 3562

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/rustv1/examples/aurora#code-examples

Amazon Aurora User Guide for Aurora

 pub async fn describe_db_cluster_parameters(
 &self,
 name: &str,
) -> Result<Vec<DescribeDbClusterParametersOutput>,
 SdkError<DescribeDBClusterParametersError>>
 {
 self.inner
 .describe_db_cluster_parameters()
 .db_cluster_parameter_group_name(name)
 .into_paginator()
 .send()
 .try_collect()
 .await
 }

#[tokio::test]
async fn test_scenario_cluster_parameters() {
 let mut mock_rds = MockRdsImpl::default();

 mock_rds
 .expect_describe_db_cluster_parameters()
 .with(eq("RustSDKCodeExamplesDBParameterGroup"))
 .return_once(|_| {
 Ok(vec![DescribeDbClusterParametersOutput::builder()
 .parameters(Parameter::builder().parameter_name("a").build())
 .parameters(Parameter::builder().parameter_name("b").build())
 .parameters(
 Parameter::builder()
 .parameter_name("auto_increment_offset")
 .build(),
)
 .parameters(Parameter::builder().parameter_name("c").build())
 .parameters(
 Parameter::builder()
 .parameter_name("auto_increment_increment")
 .build(),
)
 .parameters(Parameter::builder().parameter_name("d").build())
 .build()])
 });

 let mut scenario = AuroraScenario::new(mock_rds);
 scenario.db_cluster_identifier = Some("RustSDKCodeExamplesDBCluster".into());

DescribeDBClusterParameters 3563

Amazon Aurora User Guide for Aurora

 let params = scenario.cluster_parameters().await.expect("cluster params");
 let names: Vec<String> = params.into_iter().map(|p| p.name).collect();
 assert_eq!(
 names,
 vec!["auto_increment_offset", "auto_increment_increment"]
);
}

#[tokio::test]
async fn test_scenario_cluster_parameters_error() {
 let mut mock_rds = MockRdsImpl::default();

 mock_rds
 .expect_describe_db_cluster_parameters()
 .with(eq("RustSDKCodeExamplesDBParameterGroup"))
 .return_once(|_| {
 Err(SdkError::service_error(
 DescribeDBClusterParametersError::unhandled(Box::new(Error::new(
 ErrorKind::Other,
 "describe_db_cluster_parameters_error",
))),
 Response::new(StatusCode::try_from(400).unwrap(),
 SdkBody::empty()),
))
 });

 let mut scenario = AuroraScenario::new(mock_rds);
 scenario.db_cluster_identifier = Some("RustSDKCodeExamplesDBCluster".into());
 let params = scenario.cluster_parameters().await;
 assert_matches!(params, Err(ScenarioError { message, context: _ }) if message
 == "Failed to retrieve parameters for RustSDKCodeExamplesDBParameterGroup");
}

• For API details, see DescribeDBClusterParameters in AWS SDK for Rust API reference.

For a complete list of AWS SDK developer guides and code examples, see Using this service with
an AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

DescribeDBClusterParameters 3564

https://docs.rs/aws-sdk-rds/latest/aws_sdk_rds/client/struct.Client.html#method.describe_db_cluster_parameters

Amazon Aurora User Guide for Aurora

Use DescribeDBClusterSnapshots with an AWS SDK or CLI

The following code examples show how to use DescribeDBClusterSnapshots.

Action examples are code excerpts from larger programs and must be run in context. You can see
this action in context in the following code example:

• Get started with DB clusters

.NET

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 /// <summary>
 /// Return a list of DB snapshots for a particular DB cluster.
 /// </summary>
 /// <param name="dbClusterIdentifier">DB cluster identifier.</param>
 /// <returns>List of DB snapshots.</returns>
 public async Task<List<DBClusterSnapshot>>
 DescribeDBClusterSnapshotsByIdentifierAsync(string dbClusterIdentifier)
 {
 var results = new List<DBClusterSnapshot>();

 DescribeDBClusterSnapshotsResponse response;
 DescribeDBClusterSnapshotsRequest request = new
 DescribeDBClusterSnapshotsRequest
 {
 DBClusterIdentifier = dbClusterIdentifier
 };
 // Get the full list if there are multiple pages.
 do
 {
 response = await _amazonRDS.DescribeDBClusterSnapshotsAsync(request);
 results.AddRange(response.DBClusterSnapshots);
 request.Marker = response.Marker;

DescribeDBClusterSnapshots 3565

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Aurora#code-examples

Amazon Aurora User Guide for Aurora

 }
 while (response.Marker is not null);
 return results;
 }

• For API details, see DescribeDBClusterSnapshots in AWS SDK for .NET API Reference.

C++

SDK for C++

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 Aws::Client::ClientConfiguration clientConfig;
 // Optional: Set to the AWS Region (overrides config file).
 // clientConfig.region = "us-east-1";

 Aws::RDS::RDSClient client(clientConfig);

 Aws::RDS::Model::DescribeDBClusterSnapshotsRequest request;
 request.SetDBClusterSnapshotIdentifier(snapshotID);

 Aws::RDS::Model::DescribeDBClusterSnapshotsOutcome outcome =
 client.DescribeDBClusterSnapshots(request);

 if (outcome.IsSuccess()) {
 snapshot = outcome.GetResult().GetDBClusterSnapshots()[0];
 }
 else {
 std::cerr << "Error with Aurora::DescribeDBClusterSnapshots. "
 << outcome.GetError().GetMessage()
 << std::endl;
 cleanUpResources(CLUSTER_PARAMETER_GROUP_NAME,
 DB_CLUSTER_IDENTIFIER, DB_INSTANCE_IDENTIFIER,
 client);
 return false;
 }

DescribeDBClusterSnapshots 3566

https://docs.aws.amazon.com/goto/DotNetSDKV3/rds-2014-10-31/DescribeDBClusterSnapshots
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/cpp/example_code/aurora#code-examples

Amazon Aurora User Guide for Aurora

• For API details, see DescribeDBClusterSnapshots in AWS SDK for C++ API Reference.

Go

SDK for Go V2

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

type DbClusters struct {
 AuroraClient *rds.Client
}

// GetClusterSnapshot gets a DB cluster snapshot.
func (clusters *DbClusters) GetClusterSnapshot(snapshotName string)
 (*types.DBClusterSnapshot, error) {
 output, err := clusters.AuroraClient.DescribeDBClusterSnapshots(context.TODO(),
 &rds.DescribeDBClusterSnapshotsInput{
 DBClusterSnapshotIdentifier: aws.String(snapshotName),
 })
 if err != nil {
 log.Printf("Couldn't get snapshot %v: %v\n", snapshotName, err)
 return nil, err
 } else {
 return &output.DBClusterSnapshots[0], nil
 }
}

• For API details, see DescribeDBClusterSnapshots in AWS SDK for Go API Reference.

DescribeDBClusterSnapshots 3567

https://docs.aws.amazon.com/goto/SdkForCpp/rds-2014-10-31/DescribeDBClusterSnapshots
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/gov2/aurora#code-examples
https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/rds#Client.DescribeDBClusterSnapshots

Amazon Aurora User Guide for Aurora

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 public static void waitForSnapshotReady(RdsClient rdsClient, String
 dbSnapshotIdentifier,
 String dbInstanceClusterIdentifier) {
 try {
 boolean snapshotReady = false;
 String snapshotReadyStr;
 System.out.println("Waiting for the snapshot to become available.");

 DescribeDbClusterSnapshotsRequest snapshotsRequest =
 DescribeDbClusterSnapshotsRequest.builder()
 .dbClusterSnapshotIdentifier(dbSnapshotIdentifier)
 .dbClusterIdentifier(dbInstanceClusterIdentifier)
 .build();

 while (!snapshotReady) {
 DescribeDbClusterSnapshotsResponse response =
 rdsClient.describeDBClusterSnapshots(snapshotsRequest);
 List<DBClusterSnapshot> snapshotList =
 response.dbClusterSnapshots();
 for (DBClusterSnapshot snapshot : snapshotList) {
 snapshotReadyStr = snapshot.status();
 if (snapshotReadyStr.contains("available")) {
 snapshotReady = true;
 } else {
 System.out.println(".");
 Thread.sleep(sleepTime * 5000);
 }
 }
 }

 System.out.println("The Snapshot is available!");

DescribeDBClusterSnapshots 3568

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/rds#readme

Amazon Aurora User Guide for Aurora

 } catch (RdsException | InterruptedException e) {
 System.out.println(e.getLocalizedMessage());
 System.exit(1);
 }
 }

• For API details, see DescribeDBClusterSnapshots in AWS SDK for Java 2.x API Reference.

Kotlin

SDK for Kotlin

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

suspend fun waitSnapshotReady(
 dbSnapshotIdentifier: String?,
 dbInstanceClusterIdentifier: String?,
) {
 var snapshotReady = false
 var snapshotReadyStr: String
 println("Waiting for the snapshot to become available.")

 val snapshotsRequest =
 DescribeDbClusterSnapshotsRequest {
 dbClusterSnapshotIdentifier = dbSnapshotIdentifier
 dbClusterIdentifier = dbInstanceClusterIdentifier
 }

 RdsClient { region = "us-west-2" }.use { rdsClient ->
 while (!snapshotReady) {
 val response = rdsClient.describeDbClusterSnapshots(snapshotsRequest)
 val snapshotList = response.dbClusterSnapshots
 if (snapshotList != null) {
 for (snapshot in snapshotList) {
 snapshotReadyStr = snapshot.status.toString()
 if (snapshotReadyStr.contains("available")) {
 snapshotReady = true

DescribeDBClusterSnapshots 3569

https://docs.aws.amazon.com/goto/SdkForJavaV2/rds-2014-10-31/DescribeDBClusterSnapshots
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/kotlin/services/rds#code-examples

Amazon Aurora User Guide for Aurora

 } else {
 println(".")
 delay(slTime * 5000)
 }
 }
 }
 }
 }
 println("The Snapshot is available!")
}

• For API details, see DescribeDBClusterSnapshots in AWS SDK for Kotlin API reference.

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

class AuroraWrapper:
 """Encapsulates Aurora DB cluster actions."""

 def __init__(self, rds_client):
 """
 :param rds_client: A Boto3 Amazon Relational Database Service (Amazon
 RDS) client.
 """
 self.rds_client = rds_client

 @classmethod
 def from_client(cls):
 """
 Instantiates this class from a Boto3 client.
 """
 rds_client = boto3.client("rds")
 return cls(rds_client)

DescribeDBClusterSnapshots 3570

https://sdk.amazonaws.com/kotlin/api/latest/index.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/aurora#code-examples

Amazon Aurora User Guide for Aurora

 def get_cluster_snapshot(self, snapshot_id):
 """
 Gets a DB cluster snapshot.

 :param snapshot_id: The ID of the snapshot to retrieve.
 :return: The retrieved snapshot.
 """
 try:
 response = self.rds_client.describe_db_cluster_snapshots(
 DBClusterSnapshotIdentifier=snapshot_id
)
 snapshot = response["DBClusterSnapshots"][0]
 except ClientError as err:
 logger.error(
 "Couldn't get DB cluster snapshot %s. Here's why: %s: %s",
 snapshot_id,
 err.response["Error"]["Code"],
 err.response["Error"]["Message"],
)
 raise
 else:
 return snapshot

• For API details, see DescribeDBClusterSnapshots in AWS SDK for Python (Boto3) API
Reference.

For a complete list of AWS SDK developer guides and code examples, see Using this service with
an AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Use DescribeDBClusters with an AWS SDK or CLI

The following code examples show how to use DescribeDBClusters.

Action examples are code excerpts from larger programs and must be run in context. You can see
this action in context in the following code example:

• Get started with DB clusters

DescribeDBClusters 3571

https://docs.aws.amazon.com/goto/boto3/rds-2014-10-31/DescribeDBClusterSnapshots

Amazon Aurora User Guide for Aurora

.NET

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 /// <summary>
 /// Returns a list of DB clusters.
 /// </summary>
 /// <param name="dbInstanceIdentifier">Optional name of a specific DB
 cluster.</param>
 /// <returns>List of DB clusters.</returns>
 public async Task<List<DBCluster>> DescribeDBClustersPagedAsync(string?
 dbClusterIdentifier = null)
 {
 var results = new List<DBCluster>();

 DescribeDBClustersResponse response;
 DescribeDBClustersRequest request = new DescribeDBClustersRequest
 {
 DBClusterIdentifier = dbClusterIdentifier
 };
 // Get the full list if there are multiple pages.
 do
 {
 response = await _amazonRDS.DescribeDBClustersAsync(request);
 results.AddRange(response.DBClusters);
 request.Marker = response.Marker;
 }
 while (response.Marker is not null);
 return results;
 }

• For API details, see DescribeDBClusters in AWS SDK for .NET API Reference.

DescribeDBClusters 3572

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Aurora#code-examples
https://docs.aws.amazon.com/goto/DotNetSDKV3/rds-2014-10-31/DescribeDBClusters

Amazon Aurora User Guide for Aurora

C++

SDK for C++

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 Aws::Client::ClientConfiguration clientConfig;
 // Optional: Set to the AWS Region (overrides config file).
 // clientConfig.region = "us-east-1";

 Aws::RDS::RDSClient client(clientConfig);

//! Routine which gets a DB cluster description.
/*!
 \sa describeDBCluster()
 \param dbClusterIdentifier: A DB cluster identifier.
 \param clusterResult: The 'DBCluster' object containing the description.
 \param client: 'RDSClient' instance.
 \return bool: Successful completion.
 */
bool AwsDoc::Aurora::describeDBCluster(const Aws::String &dbClusterIdentifier,
 Aws::RDS::Model::DBCluster &clusterResult,
 const Aws::RDS::RDSClient &client) {
 Aws::RDS::Model::DescribeDBClustersRequest request;
 request.SetDBClusterIdentifier(dbClusterIdentifier);

 Aws::RDS::Model::DescribeDBClustersOutcome outcome =
 client.DescribeDBClusters(request);

 bool result = true;
 if (outcome.IsSuccess()) {
 clusterResult = outcome.GetResult().GetDBClusters()[0];
 }
 else if (outcome.GetError().GetErrorType() !=
 Aws::RDS::RDSErrors::D_B_CLUSTER_NOT_FOUND_FAULT) {
 result = false;
 std::cerr << "Error with Aurora::GDescribeDBClusters. "
 << outcome.GetError().GetMessage()

DescribeDBClusters 3573

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/cpp/example_code/aurora#code-examples

Amazon Aurora User Guide for Aurora

 << std::endl;
 }
 // This example does not log an error if the DB cluster does not exist.
 // Instead, clusterResult is set to empty.
 else {
 clusterResult = Aws::RDS::Model::DBCluster();
 }

 return result;

}

• For API details, see DescribeDBClusters in AWS SDK for C++ API Reference.

Go

SDK for Go V2

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

type DbClusters struct {
 AuroraClient *rds.Client
}

// GetDbCluster gets data about an Aurora DB cluster.
func (clusters *DbClusters) GetDbCluster(clusterName string) (*types.DBCluster,
 error) {
 output, err := clusters.AuroraClient.DescribeDBClusters(context.TODO(),
 &rds.DescribeDBClustersInput{
 DBClusterIdentifier: aws.String(clusterName),
 })
 if err != nil {
 var notFoundError *types.DBClusterNotFoundFault
 if errors.As(err, ¬FoundError) {

DescribeDBClusters 3574

https://docs.aws.amazon.com/goto/SdkForCpp/rds-2014-10-31/DescribeDBClusters
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/gov2/aurora#code-examples

Amazon Aurora User Guide for Aurora

 log.Printf("DB cluster %v does not exist.\n", clusterName)
 err = nil
 } else {
 log.Printf("Couldn't get DB cluster %v: %v\n", clusterName, err)
 }
 return nil, err
 } else {
 return &output.DBClusters[0], err
 }
}

• For API details, see DescribeDBClusters in AWS SDK for Go API Reference.

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 public static void describeDbClusterParameters(RdsClient rdsClient, String
 dbCLusterGroupName, int flag) {
 try {
 DescribeDbClusterParametersRequest dbParameterGroupsRequest;
 if (flag == 0) {
 dbParameterGroupsRequest =
 DescribeDbClusterParametersRequest.builder()
 .dbClusterParameterGroupName(dbCLusterGroupName)
 .build();
 } else {
 dbParameterGroupsRequest =
 DescribeDbClusterParametersRequest.builder()
 .dbClusterParameterGroupName(dbCLusterGroupName)
 .source("user")
 .build();
 }

DescribeDBClusters 3575

https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/rds#Client.DescribeDBClusters
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/rds#readme

Amazon Aurora User Guide for Aurora

 DescribeDbClusterParametersResponse response = rdsClient
 .describeDBClusterParameters(dbParameterGroupsRequest);
 List<Parameter> dbParameters = response.parameters();
 String paraName;
 for (Parameter para : dbParameters) {
 // Only print out information about either auto_increment_offset
 or
 // auto_increment_increment.
 paraName = para.parameterName();
 if ((paraName.compareTo("auto_increment_offset") == 0)
 || (paraName.compareTo("auto_increment_increment ") ==
 0)) {
 System.out.println("*** The parameter name is " + paraName);
 System.out.println("*** The parameter value is " +
 para.parameterValue());
 System.out.println("*** The parameter data type is " +
 para.dataType());
 System.out.println("*** The parameter description is " +
 para.description());
 System.out.println("*** The parameter allowed values is " +
 para.allowedValues());
 }
 }

 } catch (RdsException e) {
 System.out.println(e.getLocalizedMessage());
 System.exit(1);
 }
 }

• For API details, see DescribeDBClusters in AWS SDK for Java 2.x API Reference.

Kotlin

SDK for Kotlin

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

DescribeDBClusters 3576

https://docs.aws.amazon.com/goto/SdkForJavaV2/rds-2014-10-31/DescribeDBClusters
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/kotlin/services/rds#code-examples

Amazon Aurora User Guide for Aurora

suspend fun describeDbClusterParameters(
 dbCLusterGroupName: String?,
 flag: Int,
) {
 val dbParameterGroupsRequest: DescribeDbClusterParametersRequest
 dbParameterGroupsRequest =
 if (flag == 0) {
 DescribeDbClusterParametersRequest {
 dbClusterParameterGroupName = dbCLusterGroupName
 }
 } else {
 DescribeDbClusterParametersRequest {
 dbClusterParameterGroupName = dbCLusterGroupName
 source = "user"
 }
 }

 RdsClient { region = "us-west-2" }.use { rdsClient ->
 val response =
 rdsClient.describeDbClusterParameters(dbParameterGroupsRequest)
 response.parameters?.forEach { para ->
 // Only print out information about either auto_increment_offset or
 auto_increment_increment.
 val paraName = para.parameterName
 if (paraName != null) {
 if (paraName.compareTo("auto_increment_offset") == 0 ||
 paraName.compareTo("auto_increment_increment ") == 0) {
 println("*** The parameter name is $paraName")
 println("*** The parameter value is ${para.parameterValue}")
 println("*** The parameter data type is ${para.dataType}")
 println("*** The parameter description is
 ${para.description}")
 println("*** The parameter allowed values is
 ${para.allowedValues}")
 }
 }
 }
 }
}

• For API details, see DescribeDBClusters in AWS SDK for Kotlin API reference.

DescribeDBClusters 3577

https://sdk.amazonaws.com/kotlin/api/latest/index.html

Amazon Aurora User Guide for Aurora

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

class AuroraWrapper:
 """Encapsulates Aurora DB cluster actions."""

 def __init__(self, rds_client):
 """
 :param rds_client: A Boto3 Amazon Relational Database Service (Amazon
 RDS) client.
 """
 self.rds_client = rds_client

 @classmethod
 def from_client(cls):
 """
 Instantiates this class from a Boto3 client.
 """
 rds_client = boto3.client("rds")
 return cls(rds_client)

 def get_db_cluster(self, cluster_name):
 """
 Gets data about an Aurora DB cluster.

 :param cluster_name: The name of the DB cluster to retrieve.
 :return: The retrieved DB cluster.
 """
 try:
 response = self.rds_client.describe_db_clusters(
 DBClusterIdentifier=cluster_name
)
 cluster = response["DBClusters"][0]
 except ClientError as err:

DescribeDBClusters 3578

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/aurora#code-examples

Amazon Aurora User Guide for Aurora

 if err.response["Error"]["Code"] == "DBClusterNotFoundFault":
 logger.info("Cluster %s does not exist.", cluster_name)
 else:
 logger.error(
 "Couldn't verify the existence of DB cluster %s. Here's why:
 %s: %s",
 cluster_name,
 err.response["Error"]["Code"],
 err.response["Error"]["Message"],
)
 raise
 else:
 return cluster

• For API details, see DescribeDBClusters in AWS SDK for Python (Boto3) API Reference.

Rust

SDK for Rust

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 // Get a list of allowed engine versions.
 rds.DescribeDbEngineVersions(Engine='aurora-mysql', DBParameterGroupFamily=<the
 family used to create your parameter group in step 2>)
 // Create an Aurora DB cluster database cluster that contains a MySql
 database and uses the parameter group you created.
 // Wait for DB cluster to be ready. Call rds.DescribeDBClusters and check for
 Status == 'available'.
 // Get a list of instance classes available for the selected engine
 and engine version. rds.DescribeOrderableDbInstanceOptions(Engine='mysql',
 EngineVersion=).

 // Create a database instance in the cluster.
 // Wait for DB instance to be ready. Call rds.DescribeDbInstances and check
 for DBInstanceStatus == 'available'.

DescribeDBClusters 3579

https://docs.aws.amazon.com/goto/boto3/rds-2014-10-31/DescribeDBClusters
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/rustv1/examples/aurora#code-examples

Amazon Aurora User Guide for Aurora

 pub async fn start_cluster_and_instance(&mut self) -> Result<(),
 ScenarioError> {
 if self.password.is_none() {
 return Err(ScenarioError::with(
 "Must set Secret Password before starting a cluster",
));
 }
 let create_db_cluster = self
 .rds
 .create_db_cluster(
 DB_CLUSTER_IDENTIFIER,
 DB_CLUSTER_PARAMETER_GROUP_NAME,
 DB_ENGINE,
 self.engine_version.as_deref().expect("engine version"),
 self.username.as_deref().expect("username"),
 self.password
 .replace(SecretString::new("".to_string()))
 .expect("password"),
)
 .await;
 if let Err(err) = create_db_cluster {
 return Err(ScenarioError::new(
 "Failed to create DB Cluster with cluster group",
 &err,
));
 }

 self.db_cluster_identifier = create_db_cluster
 .unwrap()
 .db_cluster
 .and_then(|c| c.db_cluster_identifier);

 if self.db_cluster_identifier.is_none() {
 return Err(ScenarioError::with("Created DB Cluster missing
 Identifier"));
 }

 info!(
 "Started a db cluster: {}",
 self.db_cluster_identifier
 .as_deref()
 .unwrap_or("Missing ARN")
);

DescribeDBClusters 3580

Amazon Aurora User Guide for Aurora

 let create_db_instance = self
 .rds
 .create_db_instance(
 self.db_cluster_identifier.as_deref().expect("cluster name"),
 DB_INSTANCE_IDENTIFIER,
 self.instance_class.as_deref().expect("instance class"),
 DB_ENGINE,
)
 .await;
 if let Err(err) = create_db_instance {
 return Err(ScenarioError::new(
 "Failed to create Instance in DB Cluster",
 &err,
));
 }

 self.db_instance_identifier = create_db_instance
 .unwrap()
 .db_instance
 .and_then(|i| i.db_instance_identifier);

 // Cluster creation can take up to 20 minutes to become available
 let cluster_max_wait = Duration::from_secs(20 * 60);
 let waiter = Waiter::builder().max(cluster_max_wait).build();
 while waiter.sleep().await.is_ok() {
 let cluster = self
 .rds
 .describe_db_clusters(
 self.db_cluster_identifier
 .as_deref()
 .expect("cluster identifier"),
)
 .await;

 if let Err(err) = cluster {
 warn!(?err, "Failed to describe cluster while waiting for
 ready");
 continue;
 }

 let instance = self
 .rds
 .describe_db_instance(
 self.db_instance_identifier

DescribeDBClusters 3581

Amazon Aurora User Guide for Aurora

 .as_deref()
 .expect("instance identifier"),
)
 .await;
 if let Err(err) = instance {
 return Err(ScenarioError::new(
 "Failed to find instance for cluster",
 &err,
));
 }

 let instances_available = instance
 .unwrap()
 .db_instances()
 .iter()
 .all(|instance| instance.db_instance_status() ==
 Some("Available"));

 let endpoints = self
 .rds
 .describe_db_cluster_endpoints(
 self.db_cluster_identifier
 .as_deref()
 .expect("cluster identifier"),
)
 .await;

 if let Err(err) = endpoints {
 return Err(ScenarioError::new(
 "Failed to find endpoint for cluster",
 &err,
));
 }

 let endpoints_available = endpoints
 .unwrap()
 .db_cluster_endpoints()
 .iter()
 .all(|endpoint| endpoint.status() == Some("available"));

 if instances_available && endpoints_available {
 return Ok(());
 }
 }

DescribeDBClusters 3582

Amazon Aurora User Guide for Aurora

 Err(ScenarioError::with("timed out waiting for cluster"))
 }

 pub async fn describe_db_clusters(
 &self,
 id: &str,
) -> Result<DescribeDbClustersOutput, SdkError<DescribeDBClustersError>> {
 self.inner
 .describe_db_clusters()
 .db_cluster_identifier(id)
 .send()
 .await
 }

#[tokio::test]
async fn test_start_cluster_and_instance() {
 let mut mock_rds = MockRdsImpl::default();

 mock_rds
 .expect_create_db_cluster()
 .withf(|id, params, engine, version, username, password| {
 assert_eq!(id, "RustSDKCodeExamplesDBCluster");
 assert_eq!(params, "RustSDKCodeExamplesDBParameterGroup");
 assert_eq!(engine, "aurora-mysql");
 assert_eq!(version, "aurora-mysql8.0");
 assert_eq!(username, "test username");
 assert_eq!(password.expose_secret(), "test password");
 true
 })
 .return_once(|id, _, _, _, _, _| {
 Ok(CreateDbClusterOutput::builder()

 .db_cluster(DbCluster::builder().db_cluster_identifier(id).build())
 .build())
 });

 mock_rds
 .expect_create_db_instance()
 .withf(|cluster, name, class, engine| {
 assert_eq!(cluster, "RustSDKCodeExamplesDBCluster");
 assert_eq!(name, "RustSDKCodeExamplesDBInstance");
 assert_eq!(class, "m5.large");
 assert_eq!(engine, "aurora-mysql");

DescribeDBClusters 3583

Amazon Aurora User Guide for Aurora

 true
 })
 .return_once(|cluster, name, class, _| {
 Ok(CreateDbInstanceOutput::builder()
 .db_instance(
 DbInstance::builder()
 .db_cluster_identifier(cluster)
 .db_instance_identifier(name)
 .db_instance_class(class)
 .build(),
)
 .build())
 });

 mock_rds
 .expect_describe_db_clusters()
 .with(eq("RustSDKCodeExamplesDBCluster"))
 .return_once(|id| {
 Ok(DescribeDbClustersOutput::builder()

 .db_clusters(DbCluster::builder().db_cluster_identifier(id).build())
 .build())
 });

 mock_rds
 .expect_describe_db_instance()
 .with(eq("RustSDKCodeExamplesDBInstance"))
 .return_once(|name| {
 Ok(DescribeDbInstancesOutput::builder()
 .db_instances(
 DbInstance::builder()
 .db_instance_identifier(name)
 .db_instance_status("Available")
 .build(),
)
 .build())
 });

 mock_rds
 .expect_describe_db_cluster_endpoints()
 .with(eq("RustSDKCodeExamplesDBCluster"))
 .return_once(|_| {
 Ok(DescribeDbClusterEndpointsOutput::builder()

DescribeDBClusters 3584

Amazon Aurora User Guide for Aurora

 .db_cluster_endpoints(DbClusterEndpoint::builder().status("available").build())
 .build())
 });

 let mut scenario = AuroraScenario::new(mock_rds);
 scenario.engine_version = Some("aurora-mysql8.0".into());
 scenario.instance_class = Some("m5.large".into());
 scenario.username = Some("test username".into());
 scenario.password = Some(SecretString::new("test password".into()));

 tokio::time::pause();
 let assertions = tokio::spawn(async move {
 let create = scenario.start_cluster_and_instance().await;
 assert!(create.is_ok());
 assert!(scenario
 .password
 .replace(SecretString::new("BAD SECRET".into()))
 .unwrap()
 .expose_secret()
 .is_empty());
 assert_eq!(
 scenario.db_cluster_identifier,
 Some("RustSDKCodeExamplesDBCluster".into())
);
 });
 tokio::time::advance(Duration::from_secs(1)).await;
 tokio::time::resume();
 let _ = assertions.await;
}

#[tokio::test]
async fn test_start_cluster_and_instance_cluster_create_error() {
 let mut mock_rds = MockRdsImpl::default();

 mock_rds
 .expect_create_db_cluster()
 .return_once(|_, _, _, _, _, _| {
 Err(SdkError::service_error(
 CreateDBClusterError::unhandled(Box::new(Error::new(
 ErrorKind::Other,
 "create db cluster error",
))),

DescribeDBClusters 3585

Amazon Aurora User Guide for Aurora

 Response::new(StatusCode::try_from(400).unwrap(),
 SdkBody::empty()),
))
 });

 let mut scenario = AuroraScenario::new(mock_rds);
 scenario.engine_version = Some("aurora-mysql8.0".into());
 scenario.instance_class = Some("m5.large".into());
 scenario.username = Some("test username".into());
 scenario.password = Some(SecretString::new("test password".into()));

 let create = scenario.start_cluster_and_instance().await;
 assert_matches!(create, Err(ScenarioError { message, context: _}) if message
 == "Failed to create DB Cluster with cluster group")
}

#[tokio::test]
async fn test_start_cluster_and_instance_cluster_create_missing_id() {
 let mut mock_rds = MockRdsImpl::default();

 mock_rds
 .expect_create_db_cluster()
 .return_once(|_, _, _, _, _, _| {
 Ok(CreateDbClusterOutput::builder()
 .db_cluster(DbCluster::builder().build())
 .build())
 });

 let mut scenario = AuroraScenario::new(mock_rds);
 scenario.engine_version = Some("aurora-mysql8.0".into());
 scenario.instance_class = Some("m5.large".into());
 scenario.username = Some("test username".into());
 scenario.password = Some(SecretString::new("test password".into()));

 let create = scenario.start_cluster_and_instance().await;
 assert_matches!(create, Err(ScenarioError { message, context:_ }) if message
 == "Created DB Cluster missing Identifier");
}

#[tokio::test]
async fn test_start_cluster_and_instance_instance_create_error() {
 let mut mock_rds = MockRdsImpl::default();

 mock_rds

DescribeDBClusters 3586

Amazon Aurora User Guide for Aurora

 .expect_create_db_cluster()
 .withf(|id, params, engine, version, username, password| {
 assert_eq!(id, "RustSDKCodeExamplesDBCluster");
 assert_eq!(params, "RustSDKCodeExamplesDBParameterGroup");
 assert_eq!(engine, "aurora-mysql");
 assert_eq!(version, "aurora-mysql8.0");
 assert_eq!(username, "test username");
 assert_eq!(password.expose_secret(), "test password");
 true
 })
 .return_once(|id, _, _, _, _, _| {
 Ok(CreateDbClusterOutput::builder()

 .db_cluster(DbCluster::builder().db_cluster_identifier(id).build())
 .build())
 });

 mock_rds
 .expect_create_db_instance()
 .return_once(|_, _, _, _| {
 Err(SdkError::service_error(
 CreateDBInstanceError::unhandled(Box::new(Error::new(
 ErrorKind::Other,
 "create db instance error",
))),
 Response::new(StatusCode::try_from(400).unwrap(),
 SdkBody::empty()),
))
 });

 let mut scenario = AuroraScenario::new(mock_rds);
 scenario.engine_version = Some("aurora-mysql8.0".into());
 scenario.instance_class = Some("m5.large".into());
 scenario.username = Some("test username".into());
 scenario.password = Some(SecretString::new("test password".into()));

 let create = scenario.start_cluster_and_instance().await;
 assert_matches!(create, Err(ScenarioError { message, context: _ }) if message
 == "Failed to create Instance in DB Cluster")
}

#[tokio::test]
async fn test_start_cluster_and_instance_wait_hiccup() {
 let mut mock_rds = MockRdsImpl::default();

DescribeDBClusters 3587

Amazon Aurora User Guide for Aurora

 mock_rds
 .expect_create_db_cluster()
 .withf(|id, params, engine, version, username, password| {
 assert_eq!(id, "RustSDKCodeExamplesDBCluster");
 assert_eq!(params, "RustSDKCodeExamplesDBParameterGroup");
 assert_eq!(engine, "aurora-mysql");
 assert_eq!(version, "aurora-mysql8.0");
 assert_eq!(username, "test username");
 assert_eq!(password.expose_secret(), "test password");
 true
 })
 .return_once(|id, _, _, _, _, _| {
 Ok(CreateDbClusterOutput::builder()

 .db_cluster(DbCluster::builder().db_cluster_identifier(id).build())
 .build())
 });

 mock_rds
 .expect_create_db_instance()
 .withf(|cluster, name, class, engine| {
 assert_eq!(cluster, "RustSDKCodeExamplesDBCluster");
 assert_eq!(name, "RustSDKCodeExamplesDBInstance");
 assert_eq!(class, "m5.large");
 assert_eq!(engine, "aurora-mysql");
 true
 })
 .return_once(|cluster, name, class, _| {
 Ok(CreateDbInstanceOutput::builder()
 .db_instance(
 DbInstance::builder()
 .db_cluster_identifier(cluster)
 .db_instance_identifier(name)
 .db_instance_class(class)
 .build(),
)
 .build())
 });

 mock_rds
 .expect_describe_db_clusters()
 .with(eq("RustSDKCodeExamplesDBCluster"))
 .times(1)

DescribeDBClusters 3588

Amazon Aurora User Guide for Aurora

 .returning(|_| {
 Err(SdkError::service_error(
 DescribeDBClustersError::unhandled(Box::new(Error::new(
 ErrorKind::Other,
 "describe cluster error",
))),
 Response::new(StatusCode::try_from(400).unwrap(),
 SdkBody::empty()),
))
 })
 .with(eq("RustSDKCodeExamplesDBCluster"))
 .times(1)
 .returning(|id| {
 Ok(DescribeDbClustersOutput::builder()

 .db_clusters(DbCluster::builder().db_cluster_identifier(id).build())
 .build())
 });

 mock_rds.expect_describe_db_instance().return_once(|name| {
 Ok(DescribeDbInstancesOutput::builder()
 .db_instances(
 DbInstance::builder()
 .db_instance_identifier(name)
 .db_instance_status("Available")
 .build(),
)
 .build())
 });

 mock_rds
 .expect_describe_db_cluster_endpoints()
 .return_once(|_| {
 Ok(DescribeDbClusterEndpointsOutput::builder()

 .db_cluster_endpoints(DbClusterEndpoint::builder().status("available").build())
 .build())
 });

 let mut scenario = AuroraScenario::new(mock_rds);
 scenario.engine_version = Some("aurora-mysql8.0".into());
 scenario.instance_class = Some("m5.large".into());
 scenario.username = Some("test username".into());
 scenario.password = Some(SecretString::new("test password".into()));

DescribeDBClusters 3589

Amazon Aurora User Guide for Aurora

 tokio::time::pause();
 let assertions = tokio::spawn(async move {
 let create = scenario.start_cluster_and_instance().await;
 assert!(create.is_ok());
 });

 tokio::time::advance(Duration::from_secs(1)).await;
 tokio::time::advance(Duration::from_secs(1)).await;
 tokio::time::resume();
 let _ = assertions.await;
}

• For API details, see DescribeDBClusters in AWS SDK for Rust API reference.

For a complete list of AWS SDK developer guides and code examples, see Using this service with
an AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Use DescribeDBEngineVersions with an AWS SDK or CLI

The following code examples show how to use DescribeDBEngineVersions.

Action examples are code excerpts from larger programs and must be run in context. You can see
this action in context in the following code example:

• Get started with DB clusters

.NET

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 /// <summary>

DescribeDBEngineVersions 3590

https://docs.rs/aws-sdk-rds/latest/aws_sdk_rds/client/struct.Client.html#method.describe_db_clusters
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Aurora#code-examples

Amazon Aurora User Guide for Aurora

 /// Get a list of DB engine versions for a particular DB engine.
 /// </summary>
 /// <param name="engine">The name of the engine.</param>
 /// <param name="parameterGroupFamily">Optional parameter group family
 name.</param>
 /// <returns>A list of DBEngineVersions.</returns>
 public async Task<List<DBEngineVersion>>
 DescribeDBEngineVersionsForEngineAsync(string engine,
 string? parameterGroupFamily = null)
 {
 var response = await _amazonRDS.DescribeDBEngineVersionsAsync(
 new DescribeDBEngineVersionsRequest()
 {
 Engine = engine,
 DBParameterGroupFamily = parameterGroupFamily
 });
 return response.DBEngineVersions;
 }

• For API details, see DescribeDBEngineVersions in AWS SDK for .NET API Reference.

C++

SDK for C++

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 Aws::Client::ClientConfiguration clientConfig;
 // Optional: Set to the AWS Region (overrides config file).
 // clientConfig.region = "us-east-1";

 Aws::RDS::RDSClient client(clientConfig);

//! Routine which gets available DB engine versions for an engine name and
//! an optional parameter group family.
/*!

DescribeDBEngineVersions 3591

https://docs.aws.amazon.com/goto/DotNetSDKV3/rds-2014-10-31/DescribeDBEngineVersions
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/cpp/example_code/aurora#code-examples

Amazon Aurora User Guide for Aurora

 \sa getDBEngineVersions()
 \param engineName: A DB engine name.
 \param parameterGroupFamily: A parameter group family name, ignored if empty.
 \param engineVersionsResult: Vector of 'DBEngineVersion' objects returned by the
 routine.
 \param client: 'RDSClient' instance.
 \return bool: Successful completion.
 */
bool AwsDoc::Aurora::getDBEngineVersions(const Aws::String &engineName,
 const Aws::String ¶meterGroupFamily,

 Aws::Vector<Aws::RDS::Model::DBEngineVersion> &engineVersionsResult,
 const Aws::RDS::RDSClient &client) {
 Aws::RDS::Model::DescribeDBEngineVersionsRequest request;
 request.SetEngine(engineName);
 if (!parameterGroupFamily.empty()) {
 request.SetDBParameterGroupFamily(parameterGroupFamily);
 }

 engineVersionsResult.clear();
 Aws::String marker; // The marker is used for pagination.
 do {
 if (!marker.empty()) {
 request.SetMarker(marker);
 }

 Aws::RDS::Model::DescribeDBEngineVersionsOutcome outcome =
 client.DescribeDBEngineVersions(request);

 if (outcome.IsSuccess()) {
 const Aws::Vector<Aws::RDS::Model::DBEngineVersion> &engineVersions =
 outcome.GetResult().GetDBEngineVersions();

 engineVersionsResult.insert(engineVersionsResult.end(),
 engineVersions.begin(),
 engineVersions.end());
 marker = outcome.GetResult().GetMarker();
 }
 else {
 std::cerr << "Error with Aurora::DescribeDBEngineVersionsRequest. "
 << outcome.GetError().GetMessage()
 << std::endl;
 }
 } while (!marker.empty());

DescribeDBEngineVersions 3592

Amazon Aurora User Guide for Aurora

 return true;
}

• For API details, see DescribeDBEngineVersions in AWS SDK for C++ API Reference.

Go

SDK for Go V2

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

type DbClusters struct {
 AuroraClient *rds.Client
}

// GetEngineVersions gets database engine versions that are available for the
 specified engine
// and parameter group family.
func (clusters *DbClusters) GetEngineVersions(engine string, parameterGroupFamily
 string) (
 []types.DBEngineVersion, error) {
 output, err := clusters.AuroraClient.DescribeDBEngineVersions(context.TODO(),
 &rds.DescribeDBEngineVersionsInput{
 Engine: aws.String(engine),
 DBParameterGroupFamily: aws.String(parameterGroupFamily),
 })
 if err != nil {
 log.Printf("Couldn't get engine versions for %v: %v\n", engine, err)
 return nil, err
 } else {
 return output.DBEngineVersions, nil
 }
}

DescribeDBEngineVersions 3593

https://docs.aws.amazon.com/goto/SdkForCpp/rds-2014-10-31/DescribeDBEngineVersions
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/gov2/aurora#code-examples

Amazon Aurora User Guide for Aurora

• For API details, see DescribeDBEngineVersions in AWS SDK for Go API Reference.

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 public static void describeDBEngines(RdsClient rdsClient) {
 try {
 DescribeDbEngineVersionsRequest engineVersionsRequest =
 DescribeDbEngineVersionsRequest.builder()
 .engine("aurora-mysql")
 .defaultOnly(true)
 .maxRecords(20)
 .build();

 DescribeDbEngineVersionsResponse response =
 rdsClient.describeDBEngineVersions(engineVersionsRequest);
 List<DBEngineVersion> engines = response.dbEngineVersions();

 // Get all DBEngineVersion objects.
 for (DBEngineVersion engineOb : engines) {
 System.out.println("The name of the DB parameter group family for
 the database engine is "
 + engineOb.dbParameterGroupFamily());
 System.out.println("The name of the database engine " +
 engineOb.engine());
 System.out.println("The version number of the database engine " +
 engineOb.engineVersion());
 }

 } catch (RdsException e) {
 System.out.println(e.getLocalizedMessage());
 System.exit(1);

DescribeDBEngineVersions 3594

https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/rds#Client.DescribeDBEngineVersions
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/rds#readme

Amazon Aurora User Guide for Aurora

 }
 }

• For API details, see DescribeDBEngineVersions in AWS SDK for Java 2.x API Reference.

Kotlin

SDK for Kotlin

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

// Get a list of allowed engine versions.
suspend fun getAllowedClusterEngines(dbParameterGroupFamilyVal: String?) {
 val versionsRequest =
 DescribeDbEngineVersionsRequest {
 dbParameterGroupFamily = dbParameterGroupFamilyVal
 engine = "aurora-mysql"
 }

 RdsClient { region = "us-west-2" }.use { rdsClient ->
 val response = rdsClient.describeDbEngineVersions(versionsRequest)
 response.dbEngineVersions?.forEach { dbEngine ->
 println("The engine version is ${dbEngine.engineVersion}")
 println("The engine description is ${dbEngine.dbEngineDescription}")
 }
 }
}

• For API details, see DescribeDBEngineVersions in AWS SDK for Kotlin API reference.

DescribeDBEngineVersions 3595

https://docs.aws.amazon.com/goto/SdkForJavaV2/rds-2014-10-31/DescribeDBEngineVersions
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/kotlin/services/rds#code-examples
https://sdk.amazonaws.com/kotlin/api/latest/index.html

Amazon Aurora User Guide for Aurora

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

class AuroraWrapper:
 """Encapsulates Aurora DB cluster actions."""

 def __init__(self, rds_client):
 """
 :param rds_client: A Boto3 Amazon Relational Database Service (Amazon
 RDS) client.
 """
 self.rds_client = rds_client

 @classmethod
 def from_client(cls):
 """
 Instantiates this class from a Boto3 client.
 """
 rds_client = boto3.client("rds")
 return cls(rds_client)

 def get_engine_versions(self, engine, parameter_group_family=None):
 """
 Gets database engine versions that are available for the specified engine
 and parameter group family.

 :param engine: The database engine to look up.
 :param parameter_group_family: When specified, restricts the returned
 list of
 engine versions to those that are
 compatible with
 this parameter group family.
 :return: The list of database engine versions.
 """

DescribeDBEngineVersions 3596

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/aurora#code-examples

Amazon Aurora User Guide for Aurora

 try:
 kwargs = {"Engine": engine}
 if parameter_group_family is not None:
 kwargs["DBParameterGroupFamily"] = parameter_group_family
 response = self.rds_client.describe_db_engine_versions(**kwargs)
 versions = response["DBEngineVersions"]
 except ClientError as err:
 logger.error(
 "Couldn't get engine versions for %s. Here's why: %s: %s",
 engine,
 err.response["Error"]["Code"],
 err.response["Error"]["Message"],
)
 raise
 else:
 return versions

• For API details, see DescribeDBEngineVersions in AWS SDK for Python (Boto3) API
Reference.

Rust

SDK for Rust

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 // Get available engine families for Aurora MySql.
 rds.DescribeDbEngineVersions(Engine='aurora-mysql') and build a set of the
 'DBParameterGroupFamily' field values. I get {aurora-mysql8.0, aurora-mysql5.7}.
 pub async fn get_engines(&self) -> Result<HashMap<String, Vec<String>>,
 ScenarioError> {
 let describe_db_engine_versions =
 self.rds.describe_db_engine_versions(DB_ENGINE).await;
 trace!(versions=?describe_db_engine_versions, "full list of versions");

DescribeDBEngineVersions 3597

https://docs.aws.amazon.com/goto/boto3/rds-2014-10-31/DescribeDBEngineVersions
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/rustv1/examples/aurora#code-examples

Amazon Aurora User Guide for Aurora

 if let Err(err) = describe_db_engine_versions {
 return Err(ScenarioError::new(
 "Failed to retrieve DB Engine Versions",
 &err,
));
 };

 let version_count = describe_db_engine_versions
 .as_ref()
 .map(|o| o.db_engine_versions().len())
 .unwrap_or_default();
 info!(version_count, "got list of versions");

 // Create a map of engine families to their available versions.
 let mut versions = HashMap::<String, Vec<String>>::new();
 describe_db_engine_versions
 .unwrap()
 .db_engine_versions()
 .iter()
 .filter_map(
 |v| match (&v.db_parameter_group_family, &v.engine_version) {
 (Some(family), Some(version)) => Some((family.clone(),
 version.clone())),
 _ => None,
 },
)
 .for_each(|(family, version)|
 versions.entry(family).or_default().push(version));

 Ok(versions)
 }

 pub async fn describe_db_engine_versions(
 &self,
 engine: &str,
) -> Result<DescribeDbEngineVersionsOutput,
 SdkError<DescribeDBEngineVersionsError>> {
 self.inner
 .describe_db_engine_versions()
 .engine(engine)
 .send()
 .await
 }

DescribeDBEngineVersions 3598

Amazon Aurora User Guide for Aurora

#[tokio::test]
async fn test_scenario_get_engines() {
 let mut mock_rds = MockRdsImpl::default();

 mock_rds
 .expect_describe_db_engine_versions()
 .with(eq("aurora-mysql"))
 .return_once(|_| {
 Ok(DescribeDbEngineVersionsOutput::builder()
 .db_engine_versions(
 DbEngineVersion::builder()
 .db_parameter_group_family("f1")
 .engine_version("f1a")
 .build(),
)
 .db_engine_versions(
 DbEngineVersion::builder()
 .db_parameter_group_family("f1")
 .engine_version("f1b")
 .build(),
)
 .db_engine_versions(
 DbEngineVersion::builder()
 .db_parameter_group_family("f2")
 .engine_version("f2a")
 .build(),
)
 .db_engine_versions(DbEngineVersion::builder().build())
 .build())
 });

 let scenario = AuroraScenario::new(mock_rds);

 let versions_map = scenario.get_engines().await;

 assert_eq!(
 versions_map,
 Ok(HashMap::from([
 ("f1".into(), vec!["f1a".into(), "f1b".into()]),
 ("f2".into(), vec!["f2a".into()])
]))
);
}

DescribeDBEngineVersions 3599

Amazon Aurora User Guide for Aurora

#[tokio::test]
async fn test_scenario_get_engines_failed() {
 let mut mock_rds = MockRdsImpl::default();

 mock_rds
 .expect_describe_db_engine_versions()
 .with(eq("aurora-mysql"))
 .return_once(|_| {
 Err(SdkError::service_error(
 DescribeDBEngineVersionsError::unhandled(Box::new(Error::new(
 ErrorKind::Other,
 "describe_db_engine_versions error",
))),
 Response::new(StatusCode::try_from(400).unwrap(),
 SdkBody::empty()),
))
 });

 let scenario = AuroraScenario::new(mock_rds);

 let versions_map = scenario.get_engines().await;
 assert_matches!(
 versions_map,
 Err(ScenarioError { message, context: _ }) if message == "Failed to
 retrieve DB Engine Versions"
);
}

• For API details, see DescribeDBEngineVersions in AWS SDK for Rust API reference.

For a complete list of AWS SDK developer guides and code examples, see Using this service with
an AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Use DescribeDBInstances with an AWS SDK or CLI

The following code examples show how to use DescribeDBInstances.

Action examples are code excerpts from larger programs and must be run in context. You can see
this action in context in the following code example:

DescribeDBInstances 3600

https://docs.rs/aws-sdk-rds/latest/aws_sdk_rds/client/struct.Client.html#method.describe_db_engine_versions

Amazon Aurora User Guide for Aurora

• Get started with DB clusters

.NET

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 /// <summary>
 /// Returns a list of DB instances.
 /// </summary>
 /// <param name="dbInstanceIdentifier">Optional name of a specific DB
 instance.</param>
 /// <returns>List of DB instances.</returns>
 public async Task<List<DBInstance>> DescribeDBInstancesPagedAsync(string?
 dbInstanceIdentifier = null)
 {
 var results = new List<DBInstance>();
 var instancesPaginator = _amazonRDS.Paginators.DescribeDBInstances(
 new DescribeDBInstancesRequest
 {
 DBInstanceIdentifier = dbInstanceIdentifier
 });
 // Get the entire list using the paginator.
 await foreach (var instances in instancesPaginator.DBInstances)
 {
 results.Add(instances);
 }
 return results;
 }

• For API details, see DescribeDBInstances in AWS SDK for .NET API Reference.

DescribeDBInstances 3601

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Aurora#code-examples
https://docs.aws.amazon.com/goto/DotNetSDKV3/rds-2014-10-31/DescribeDBInstances

Amazon Aurora User Guide for Aurora

C++

SDK for C++

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 Aws::Client::ClientConfiguration clientConfig;
 // Optional: Set to the AWS Region (overrides config file).
 // clientConfig.region = "us-east-1";

 Aws::RDS::RDSClient client(clientConfig);

//! Routine which gets a DB instance description.
/*!
 \sa describeDBCluster()
 \param dbInstanceIdentifier: A DB instance identifier.
 \param instanceResult: The 'DBInstance' object containing the description.
 \param client: 'RDSClient' instance.
 \return bool: Successful completion.
 */
bool AwsDoc::Aurora::describeDBInstance(const Aws::String &dbInstanceIdentifier,
 Aws::RDS::Model::DBInstance
 &instanceResult,
 const Aws::RDS::RDSClient &client) {
 Aws::RDS::Model::DescribeDBInstancesRequest request;
 request.SetDBInstanceIdentifier(dbInstanceIdentifier);

 Aws::RDS::Model::DescribeDBInstancesOutcome outcome =
 client.DescribeDBInstances(request);

 bool result = true;
 if (outcome.IsSuccess()) {
 instanceResult = outcome.GetResult().GetDBInstances()[0];
 }
 else if (outcome.GetError().GetErrorType() !=
 Aws::RDS::RDSErrors::D_B_INSTANCE_NOT_FOUND_FAULT) {
 result = false;

DescribeDBInstances 3602

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/cpp/example_code/aurora#code-examples

Amazon Aurora User Guide for Aurora

 std::cerr << "Error with Aurora::DescribeDBInstances. "
 << outcome.GetError().GetMessage()
 << std::endl;
 }
 // This example does not log an error if the DB instance does not exist.
 // Instead, instanceResult is set to empty.
 else {
 instanceResult = Aws::RDS::Model::DBInstance();
 }

 return result;
}

• For API details, see DescribeDBInstances in AWS SDK for C++ API Reference.

Go

SDK for Go V2

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

type DbClusters struct {
 AuroraClient *rds.Client
}

// GetInstance gets data about a DB instance.
func (clusters *DbClusters) GetInstance(instanceName string) (
 *types.DBInstance, error) {
 output, err := clusters.AuroraClient.DescribeDBInstances(context.TODO(),
 &rds.DescribeDBInstancesInput{
 DBInstanceIdentifier: aws.String(instanceName),
 })
 if err != nil {
 var notFoundError *types.DBInstanceNotFoundFault

DescribeDBInstances 3603

https://docs.aws.amazon.com/goto/SdkForCpp/rds-2014-10-31/DescribeDBInstances
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/gov2/aurora#code-examples

Amazon Aurora User Guide for Aurora

 if errors.As(err, ¬FoundError) {
 log.Printf("DB instance %v does not exist.\n", instanceName)
 err = nil
 } else {
 log.Printf("Couldn't get instance %v: %v\n", instanceName, err)
 }
 return nil, err
 } else {
 return &output.DBInstances[0], nil
 }
}

• For API details, see DescribeDBInstances in AWS SDK for Go API Reference.

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 // Waits until the database instance is available.
 public static void waitForInstanceReady(RdsClient rdsClient, String
 dbClusterIdentifier) {
 boolean instanceReady = false;
 String instanceReadyStr;
 System.out.println("Waiting for instance to become available.");
 try {
 DescribeDbClustersRequest instanceRequest =
 DescribeDbClustersRequest.builder()
 .dbClusterIdentifier(dbClusterIdentifier)
 .build();

 while (!instanceReady) {
 DescribeDbClustersResponse response =
 rdsClient.describeDBClusters(instanceRequest);
 List<DBCluster> clusterList = response.dbClusters();

DescribeDBInstances 3604

https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/rds#Client.DescribeDBInstances
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/rds#readme

Amazon Aurora User Guide for Aurora

 for (DBCluster cluster : clusterList) {
 instanceReadyStr = cluster.status();
 if (instanceReadyStr.contains("available")) {
 instanceReady = true;
 } else {
 System.out.print(".");
 Thread.sleep(sleepTime * 1000);
 }
 }
 }
 System.out.println("Database cluster is available!");

 } catch (RdsException | InterruptedException e) {
 System.err.println(e.getMessage());
 System.exit(1);
 }
 }

• For API details, see DescribeDBInstances in AWS SDK for Java 2.x API Reference.

Kotlin

SDK for Kotlin

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

suspend fun waitDBAuroraInstanceReady(dbInstanceIdentifierVal: String?) {
 var instanceReady = false
 var instanceReadyStr: String
 println("Waiting for instance to become available.")
 val instanceRequest =
 DescribeDbInstancesRequest {
 dbInstanceIdentifier = dbInstanceIdentifierVal
 }

 var endpoint = ""
 RdsClient { region = "us-west-2" }.use { rdsClient ->

DescribeDBInstances 3605

https://docs.aws.amazon.com/goto/SdkForJavaV2/rds-2014-10-31/DescribeDBInstances
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/kotlin/services/rds#code-examples

Amazon Aurora User Guide for Aurora

 while (!instanceReady) {
 val response = rdsClient.describeDbInstances(instanceRequest)
 response.dbInstances?.forEach { instance ->
 instanceReadyStr = instance.dbInstanceStatus.toString()
 if (instanceReadyStr.contains("available")) {
 endpoint = instance.endpoint?.address.toString()
 instanceReady = true
 } else {
 print(".")
 delay(sleepTime * 1000)
 }
 }
 }
 }
 println("Database instance is available! The connection endpoint is
 $endpoint")
}

• For API details, see DescribeDBInstances in AWS SDK for Kotlin API reference.

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

class AuroraWrapper:
 """Encapsulates Aurora DB cluster actions."""

 def __init__(self, rds_client):
 """
 :param rds_client: A Boto3 Amazon Relational Database Service (Amazon
 RDS) client.
 """
 self.rds_client = rds_client

 @classmethod

DescribeDBInstances 3606

https://sdk.amazonaws.com/kotlin/api/latest/index.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/aurora#code-examples

Amazon Aurora User Guide for Aurora

 def from_client(cls):
 """
 Instantiates this class from a Boto3 client.
 """
 rds_client = boto3.client("rds")
 return cls(rds_client)

 def get_db_instance(self, instance_id):
 """
 Gets data about a DB instance.

 :param instance_id: The ID of the DB instance to retrieve.
 :return: The retrieved DB instance.
 """
 try:
 response = self.rds_client.describe_db_instances(
 DBInstanceIdentifier=instance_id
)
 db_inst = response["DBInstances"][0]
 except ClientError as err:
 if err.response["Error"]["Code"] == "DBInstanceNotFound":
 logger.info("Instance %s does not exist.", instance_id)
 else:
 logger.error(
 "Couldn't get DB instance %s. Here's why: %s: %s",
 instance_id,
 err.response["Error"]["Code"],
 err.response["Error"]["Message"],
)
 raise
 else:
 return db_inst

• For API details, see DescribeDBInstances in AWS SDK for Python (Boto3) API Reference.

DescribeDBInstances 3607

https://docs.aws.amazon.com/goto/boto3/rds-2014-10-31/DescribeDBInstances

Amazon Aurora User Guide for Aurora

Rust

SDK for Rust

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 pub async fn clean_up(self) -> Result<(), Vec<ScenarioError>> {
 let mut clean_up_errors: Vec<ScenarioError> = vec![];

 // Delete the instance. rds.DeleteDbInstance.
 let delete_db_instance = self
 .rds
 .delete_db_instance(
 self.db_instance_identifier
 .as_deref()
 .expect("instance identifier"),
)
 .await;
 if let Err(err) = delete_db_instance {
 let identifier = self
 .db_instance_identifier
 .as_deref()
 .unwrap_or("Missing Instance Identifier");
 let message = format!("failed to delete db instance {identifier}");
 clean_up_errors.push(ScenarioError::new(message, &err));
 } else {
 // Wait for the instance to delete
 let waiter = Waiter::default();
 while waiter.sleep().await.is_ok() {
 let describe_db_instances =
 self.rds.describe_db_instances().await;
 if let Err(err) = describe_db_instances {
 clean_up_errors.push(ScenarioError::new(
 "Failed to check instance state during deletion",
 &err,
));
 break;
 }

DescribeDBInstances 3608

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/rustv1/examples/aurora#code-examples

Amazon Aurora User Guide for Aurora

 let db_instances = describe_db_instances
 .unwrap()
 .db_instances()
 .iter()
 .filter(|instance| instance.db_cluster_identifier ==
 self.db_cluster_identifier)
 .cloned()
 .collect::<Vec<DbInstance>>();

 if db_instances.is_empty() {
 trace!("Delete Instance waited and no instances were found");
 break;
 }
 match db_instances.first().unwrap().db_instance_status() {
 Some("Deleting") => continue,
 Some(status) => {
 info!("Attempting to delete but instances is in
 {status}");
 continue;
 }
 None => {
 warn!("No status for DB instance");
 break;
 }
 }
 }
 }

 // Delete the DB cluster. rds.DeleteDbCluster.
 let delete_db_cluster = self
 .rds
 .delete_db_cluster(
 self.db_cluster_identifier
 .as_deref()
 .expect("cluster identifier"),
)
 .await;

 if let Err(err) = delete_db_cluster {
 let identifier = self
 .db_cluster_identifier
 .as_deref()
 .unwrap_or("Missing DB Cluster Identifier");
 let message = format!("failed to delete db cluster {identifier}");

DescribeDBInstances 3609

Amazon Aurora User Guide for Aurora

 clean_up_errors.push(ScenarioError::new(message, &err));
 } else {
 // Wait for the instance and cluster to fully delete.
 rds.DescribeDbInstances and rds.DescribeDbClusters until both are not found.
 let waiter = Waiter::default();
 while waiter.sleep().await.is_ok() {
 let describe_db_clusters = self
 .rds
 .describe_db_clusters(
 self.db_cluster_identifier
 .as_deref()
 .expect("cluster identifier"),
)
 .await;
 if let Err(err) = describe_db_clusters {
 clean_up_errors.push(ScenarioError::new(
 "Failed to check cluster state during deletion",
 &err,
));
 break;
 }
 let describe_db_clusters = describe_db_clusters.unwrap();
 let db_clusters = describe_db_clusters.db_clusters();
 if db_clusters.is_empty() {
 trace!("Delete cluster waited and no clusters were found");
 break;
 }
 match db_clusters.first().unwrap().status() {
 Some("Deleting") => continue,
 Some(status) => {
 info!("Attempting to delete but clusters is in
 {status}");
 continue;
 }
 None => {
 warn!("No status for DB cluster");
 break;
 }
 }
 }
 }

 // Delete the DB cluster parameter group.
 rds.DeleteDbClusterParameterGroup.

DescribeDBInstances 3610

Amazon Aurora User Guide for Aurora

 let delete_db_cluster_parameter_group = self
 .rds
 .delete_db_cluster_parameter_group(
 self.db_cluster_parameter_group
 .map(|g| {
 g.db_cluster_parameter_group_name
 .unwrap_or_else(||
 DB_CLUSTER_PARAMETER_GROUP_NAME.to_string())
 })
 .as_deref()
 .expect("cluster parameter group name"),
)
 .await;
 if let Err(error) = delete_db_cluster_parameter_group {
 clean_up_errors.push(ScenarioError::new(
 "Failed to delete the db cluster parameter group",
 &error,
))
 }

 if clean_up_errors.is_empty() {
 Ok(())
 } else {
 Err(clean_up_errors)
 }
 }

 pub async fn describe_db_instances(
 &self,
) -> Result<DescribeDbInstancesOutput, SdkError<DescribeDBInstancesError>> {
 self.inner.describe_db_instances().send().await
 }

#[tokio::test]
async fn test_scenario_clean_up() {
 let mut mock_rds = MockRdsImpl::default();

 mock_rds
 .expect_delete_db_instance()
 .with(eq("MockInstance"))
 .return_once(|_| Ok(DeleteDbInstanceOutput::builder().build()));

 mock_rds
 .expect_describe_db_instances()

DescribeDBInstances 3611

Amazon Aurora User Guide for Aurora

 .with()
 .times(1)
 .returning(|| {
 Ok(DescribeDbInstancesOutput::builder()
 .db_instances(
 DbInstance::builder()
 .db_cluster_identifier("MockCluster")
 .db_instance_status("Deleting")
 .build(),
)
 .build())
 })
 .with()
 .times(1)
 .returning(|| Ok(DescribeDbInstancesOutput::builder().build()));

 mock_rds
 .expect_delete_db_cluster()
 .with(eq("MockCluster"))
 .return_once(|_| Ok(DeleteDbClusterOutput::builder().build()));

 mock_rds
 .expect_describe_db_clusters()
 .with(eq("MockCluster"))
 .times(1)
 .returning(|id| {
 Ok(DescribeDbClustersOutput::builder()
 .db_clusters(
 DbCluster::builder()
 .db_cluster_identifier(id)
 .status("Deleting")
 .build(),
)
 .build())
 })
 .with(eq("MockCluster"))
 .times(1)
 .returning(|_| Ok(DescribeDbClustersOutput::builder().build()));

 mock_rds
 .expect_delete_db_cluster_parameter_group()
 .with(eq("MockParamGroup"))
 .return_once(|_|
 Ok(DeleteDbClusterParameterGroupOutput::builder().build()));

DescribeDBInstances 3612

Amazon Aurora User Guide for Aurora

 let mut scenario = AuroraScenario::new(mock_rds);
 scenario.db_cluster_identifier = Some(String::from("MockCluster"));
 scenario.db_instance_identifier = Some(String::from("MockInstance"));
 scenario.db_cluster_parameter_group = Some(
 DbClusterParameterGroup::builder()
 .db_cluster_parameter_group_name("MockParamGroup")
 .build(),
);

 tokio::time::pause();
 let assertions = tokio::spawn(async move {
 let clean_up = scenario.clean_up().await;
 assert!(clean_up.is_ok());
 });

 tokio::time::advance(Duration::from_secs(1)).await; // Wait for first
 Describe Instances
 tokio::time::advance(Duration::from_secs(1)).await; // Wait for second
 Describe Instances
 tokio::time::advance(Duration::from_secs(1)).await; // Wait for first
 Describe Cluster
 tokio::time::advance(Duration::from_secs(1)).await; // Wait for second
 Describe Cluster
 tokio::time::resume();
 let _ = assertions.await;
}

#[tokio::test]
async fn test_scenario_clean_up_errors() {
 let mut mock_rds = MockRdsImpl::default();

 mock_rds
 .expect_delete_db_instance()
 .with(eq("MockInstance"))
 .return_once(|_| Ok(DeleteDbInstanceOutput::builder().build()));

 mock_rds
 .expect_describe_db_instances()
 .with()
 .times(1)
 .returning(|| {
 Ok(DescribeDbInstancesOutput::builder()
 .db_instances(

DescribeDBInstances 3613

Amazon Aurora User Guide for Aurora

 DbInstance::builder()
 .db_cluster_identifier("MockCluster")
 .db_instance_status("Deleting")
 .build(),
)
 .build())
 })
 .with()
 .times(1)
 .returning(|| {
 Err(SdkError::service_error(
 DescribeDBInstancesError::unhandled(Box::new(Error::new(
 ErrorKind::Other,
 "describe db instances error",
))),
 Response::new(StatusCode::try_from(400).unwrap(),
 SdkBody::empty()),
))
 });

 mock_rds
 .expect_delete_db_cluster()
 .with(eq("MockCluster"))
 .return_once(|_| Ok(DeleteDbClusterOutput::builder().build()));

 mock_rds
 .expect_describe_db_clusters()
 .with(eq("MockCluster"))
 .times(1)
 .returning(|id| {
 Ok(DescribeDbClustersOutput::builder()
 .db_clusters(
 DbCluster::builder()
 .db_cluster_identifier(id)
 .status("Deleting")
 .build(),
)
 .build())
 })
 .with(eq("MockCluster"))
 .times(1)
 .returning(|_| {
 Err(SdkError::service_error(
 DescribeDBClustersError::unhandled(Box::new(Error::new(

DescribeDBInstances 3614

Amazon Aurora User Guide for Aurora

 ErrorKind::Other,
 "describe db clusters error",
))),
 Response::new(StatusCode::try_from(400).unwrap(),
 SdkBody::empty()),
))
 });

 mock_rds
 .expect_delete_db_cluster_parameter_group()
 .with(eq("MockParamGroup"))
 .return_once(|_|
 Ok(DeleteDbClusterParameterGroupOutput::builder().build()));

 let mut scenario = AuroraScenario::new(mock_rds);
 scenario.db_cluster_identifier = Some(String::from("MockCluster"));
 scenario.db_instance_identifier = Some(String::from("MockInstance"));
 scenario.db_cluster_parameter_group = Some(
 DbClusterParameterGroup::builder()
 .db_cluster_parameter_group_name("MockParamGroup")
 .build(),
);

 tokio::time::pause();
 let assertions = tokio::spawn(async move {
 let clean_up = scenario.clean_up().await;
 assert!(clean_up.is_err());
 let errs = clean_up.unwrap_err();
 assert_eq!(errs.len(), 2);
 assert_matches!(errs.get(0), Some(ScenarioError {message, context: _}) if
 message == "Failed to check instance state during deletion");
 assert_matches!(errs.get(1), Some(ScenarioError {message, context: _}) if
 message == "Failed to check cluster state during deletion");
 });

 tokio::time::advance(Duration::from_secs(1)).await; // Wait for first
 Describe Instances
 tokio::time::advance(Duration::from_secs(1)).await; // Wait for second
 Describe Instances
 tokio::time::advance(Duration::from_secs(1)).await; // Wait for first
 Describe Cluster
 tokio::time::advance(Duration::from_secs(1)).await; // Wait for second
 Describe Cluster
 tokio::time::resume();

DescribeDBInstances 3615

Amazon Aurora User Guide for Aurora

 let _ = assertions.await;
}

• For API details, see DescribeDBInstances in AWS SDK for Rust API reference.

For a complete list of AWS SDK developer guides and code examples, see Using this service with
an AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Use DescribeOrderableDBInstanceOptions with an AWS SDK or
CLI

The following code examples show how to use DescribeOrderableDBInstanceOptions.

Action examples are code excerpts from larger programs and must be run in context. You can see
this action in context in the following code example:

• Get started with DB clusters

.NET

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 /// <summary>
 /// Get a list of orderable DB instance options for a specific
 /// engine and engine version.
 /// </summary>
 /// <param name="engine">Name of the engine.</param>
 /// <param name="engineVersion">Version of the engine.</param>
 /// <returns>List of OrderableDBInstanceOptions.</returns>
 public async Task<List<OrderableDBInstanceOption>>
 DescribeOrderableDBInstanceOptionsPagedAsync(string engine, string
 engineVersion)

DescribeOrderableDBInstanceOptions 3616

https://docs.rs/aws-sdk-rds/latest/aws_sdk_rds/client/struct.Client.html#method.describe_db_instances
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Aurora#code-examples

Amazon Aurora User Guide for Aurora

 {
 // Use a paginator to get a list of DB instance options.
 var results = new List<OrderableDBInstanceOption>();
 var paginateInstanceOptions =
 _amazonRDS.Paginators.DescribeOrderableDBInstanceOptions(
 new DescribeOrderableDBInstanceOptionsRequest()
 {
 Engine = engine,
 EngineVersion = engineVersion,
 });
 // Get the entire list using the paginator.
 await foreach (var instanceOptions in
 paginateInstanceOptions.OrderableDBInstanceOptions)
 {
 results.Add(instanceOptions);
 }
 return results;
 }

• For API details, see DescribeOrderableDBInstanceOptions in AWS SDK for .NET API
Reference.

C++

SDK for C++

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 Aws::Client::ClientConfiguration clientConfig;
 // Optional: Set to the AWS Region (overrides config file).
 // clientConfig.region = "us-east-1";

 Aws::RDS::RDSClient client(clientConfig);

//! Routine which gets available DB instance classes, displays the list

DescribeOrderableDBInstanceOptions 3617

https://docs.aws.amazon.com/goto/DotNetSDKV3/rds-2014-10-31/DescribeOrderableDBInstanceOptions
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/cpp/example_code/aurora#code-examples

Amazon Aurora User Guide for Aurora

//! to the user, and returns the user selection.
/*!
 \sa chooseDBInstanceClass()
 \param engineName: The DB engine name.
 \param engineVersion: The DB engine version.
 \param dbInstanceClass: String for DB instance class chosen by the user.
 \param client: 'RDSClient' instance.
 \return bool: Successful completion.
 */
bool AwsDoc::Aurora::chooseDBInstanceClass(const Aws::String &engine,
 const Aws::String &engineVersion,
 Aws::String &dbInstanceClass,
 const Aws::RDS::RDSClient &client) {
 std::vector<Aws::String> instanceClasses;
 Aws::String marker; // The marker is used for pagination.
 do {
 Aws::RDS::Model::DescribeOrderableDBInstanceOptionsRequest request;
 request.SetEngine(engine);
 request.SetEngineVersion(engineVersion);
 if (!marker.empty()) {
 request.SetMarker(marker);
 }

 Aws::RDS::Model::DescribeOrderableDBInstanceOptionsOutcome outcome =
 client.DescribeOrderableDBInstanceOptions(request);

 if (outcome.IsSuccess()) {
 const Aws::Vector<Aws::RDS::Model::OrderableDBInstanceOption>
 &options =
 outcome.GetResult().GetOrderableDBInstanceOptions();
 for (const Aws::RDS::Model::OrderableDBInstanceOption &option:
 options) {
 const Aws::String &instanceClass = option.GetDBInstanceClass();
 if (std::find(instanceClasses.begin(), instanceClasses.end(),
 instanceClass) == instanceClasses.end()) {
 instanceClasses.push_back(instanceClass);
 }
 }
 marker = outcome.GetResult().GetMarker();
 }
 else {
 std::cerr << "Error with Aurora::DescribeOrderableDBInstanceOptions.
 "
 << outcome.GetError().GetMessage()

DescribeOrderableDBInstanceOptions 3618

Amazon Aurora User Guide for Aurora

 << std::endl;
 return false;
 }
 } while (!marker.empty());

 std::cout << "The available DB instance classes for your database engine
 are:"
 << std::endl;
 for (int i = 0; i < instanceClasses.size(); ++i) {
 std::cout << " " << i + 1 << ": " << instanceClasses[i] << std::endl;
 }

 int choice = askQuestionForIntRange(
 "Which DB instance class do you want to use? ",
 1, static_cast<int>(instanceClasses.size()));
 dbInstanceClass = instanceClasses[choice - 1];
 return true;
}

• For API details, see DescribeOrderableDBInstanceOptions in AWS SDK for C++ API
Reference.

Go

SDK for Go V2

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

type DbClusters struct {
 AuroraClient *rds.Client
}

DescribeOrderableDBInstanceOptions 3619

https://docs.aws.amazon.com/goto/SdkForCpp/rds-2014-10-31/DescribeOrderableDBInstanceOptions
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/gov2/aurora#code-examples

Amazon Aurora User Guide for Aurora

// GetOrderableInstances uses a paginator to get DB instance options that can be
 used to create DB instances that are
// compatible with a set of specifications.
func (clusters *DbClusters) GetOrderableInstances(engine string, engineVersion
 string) (
 []types.OrderableDBInstanceOption, error) {

 var output *rds.DescribeOrderableDBInstanceOptionsOutput
 var instances []types.OrderableDBInstanceOption
 var err error
 orderablePaginator :=
 rds.NewDescribeOrderableDBInstanceOptionsPaginator(clusters.AuroraClient,
 &rds.DescribeOrderableDBInstanceOptionsInput{
 Engine: aws.String(engine),
 EngineVersion: aws.String(engineVersion),
 })
 for orderablePaginator.HasMorePages() {
 output, err = orderablePaginator.NextPage(context.TODO())
 if err != nil {
 log.Printf("Couldn't get orderable DB instances: %v\n", err)
 break
 } else {
 instances = append(instances, output.OrderableDBInstanceOptions...)
 }
 }
 return instances, err
}

• For API details, see DescribeOrderableDBInstanceOptions in AWS SDK for Go API Reference.

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

DescribeOrderableDBInstanceOptions 3620

https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/rds#Client.DescribeOrderableDBInstanceOptions
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/rds#readme

Amazon Aurora User Guide for Aurora

 public static void describeDBEngines(RdsClient rdsClient) {
 try {
 DescribeDbEngineVersionsRequest engineVersionsRequest =
 DescribeDbEngineVersionsRequest.builder()
 .engine("aurora-mysql")
 .defaultOnly(true)
 .maxRecords(20)
 .build();

 DescribeDbEngineVersionsResponse response =
 rdsClient.describeDBEngineVersions(engineVersionsRequest);
 List<DBEngineVersion> engines = response.dbEngineVersions();

 // Get all DBEngineVersion objects.
 for (DBEngineVersion engineOb : engines) {
 System.out.println("The name of the DB parameter group family for
 the database engine is "
 + engineOb.dbParameterGroupFamily());
 System.out.println("The name of the database engine " +
 engineOb.engine());
 System.out.println("The version number of the database engine " +
 engineOb.engineVersion());
 }

 } catch (RdsException e) {
 System.out.println(e.getLocalizedMessage());
 System.exit(1);
 }
 }

• For API details, see DescribeOrderableDBInstanceOptions in AWS SDK for Java 2.x API
Reference.

PowerShell

Tools for PowerShell

Example 1: This example lists the DB engine versions that support a specific DB instance
class in an AWS Region.

$params = @{

DescribeOrderableDBInstanceOptions 3621

https://docs.aws.amazon.com/goto/SdkForJavaV2/rds-2014-10-31/DescribeOrderableDBInstanceOptions

Amazon Aurora User Guide for Aurora

 Engine = 'aurora-postgresql'
 DBInstanceClass = 'db.r5.large'
 Region = 'us-east-1'
}
Get-RDSOrderableDBInstanceOption @params

Example 2: This example lists the DB instance classes that are supported for a specific DB
engine version in an AWS Region.

$params = @{
 Engine = 'aurora-postgresql'
 EngineVersion = '13.6'
 Region = 'us-east-1'
}
Get-RDSOrderableDBInstanceOption @params

• For API details, see DescribeOrderableDBInstanceOptions in AWS Tools for PowerShell
Cmdlet Reference.

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

class AuroraWrapper:
 """Encapsulates Aurora DB cluster actions."""

 def __init__(self, rds_client):
 """
 :param rds_client: A Boto3 Amazon Relational Database Service (Amazon
 RDS) client.
 """
 self.rds_client = rds_client

 @classmethod

DescribeOrderableDBInstanceOptions 3622

https://docs.aws.amazon.com/powershell/latest/reference
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/aurora#code-examples

Amazon Aurora User Guide for Aurora

 def from_client(cls):
 """
 Instantiates this class from a Boto3 client.
 """
 rds_client = boto3.client("rds")
 return cls(rds_client)

 def get_orderable_instances(self, db_engine, db_engine_version):
 """
 Gets DB instance options that can be used to create DB instances that are
 compatible with a set of specifications.

 :param db_engine: The database engine that must be supported by the DB
 instance.
 :param db_engine_version: The engine version that must be supported by
 the DB instance.
 :return: The list of DB instance options that can be used to create a
 compatible DB instance.
 """
 try:
 inst_opts = []
 paginator = self.rds_client.get_paginator(
 "describe_orderable_db_instance_options"
)
 for page in paginator.paginate(
 Engine=db_engine, EngineVersion=db_engine_version
):
 inst_opts += page["OrderableDBInstanceOptions"]
 except ClientError as err:
 logger.error(
 "Couldn't get orderable DB instances. Here's why: %s: %s",
 err.response["Error"]["Code"],
 err.response["Error"]["Message"],
)
 raise
 else:
 return inst_opts

• For API details, see DescribeOrderableDBInstanceOptions in AWS SDK for Python (Boto3)
API Reference.

DescribeOrderableDBInstanceOptions 3623

https://docs.aws.amazon.com/goto/boto3/rds-2014-10-31/DescribeOrderableDBInstanceOptions

Amazon Aurora User Guide for Aurora

Rust

SDK for Rust

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 pub async fn get_instance_classes(&self) -> Result<Vec<String>,
 ScenarioError> {
 let describe_orderable_db_instance_options_items = self
 .rds
 .describe_orderable_db_instance_options(
 DB_ENGINE,
 self.engine_version
 .as_ref()
 .expect("engine version for db instance options")
 .as_str(),
)
 .await;

 describe_orderable_db_instance_options_items
 .map(|options| {
 options
 .iter()
 .filter(|o| o.storage_type() == Some("aurora"))
 .map(|o|
 o.db_instance_class().unwrap_or_default().to_string())
 .collect::<Vec<String>>()
 })
 .map_err(|err| ScenarioError::new("Could not get available instance
 classes", &err))
 }

 pub async fn describe_orderable_db_instance_options(
 &self,
 engine: &str,
 engine_version: &str,
) -> Result<Vec<OrderableDbInstanceOption>,
 SdkError<DescribeOrderableDBInstanceOptionsError>>

DescribeOrderableDBInstanceOptions 3624

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/rustv1/examples/aurora#code-examples

Amazon Aurora User Guide for Aurora

 {
 self.inner
 .describe_orderable_db_instance_options()
 .engine(engine)
 .engine_version(engine_version)
 .into_paginator()
 .items()
 .send()
 .try_collect()
 .await
 }

#[tokio::test]
async fn test_scenario_get_instance_classes() {
 let mut mock_rds = MockRdsImpl::default();

 mock_rds
 .expect_create_db_cluster_parameter_group()
 .return_once(|_, _, _| {
 Ok(CreateDbClusterParameterGroupOutput::builder()

 .db_cluster_parameter_group(DbClusterParameterGroup::builder().build())
 .build())
 });

 mock_rds
 .expect_describe_orderable_db_instance_options()
 .with(eq("aurora-mysql"), eq("aurora-mysql8.0"))
 .return_once(|_, _| {
 Ok(vec![
 OrderableDbInstanceOption::builder()
 .db_instance_class("t1")
 .storage_type("aurora")
 .build(),
 OrderableDbInstanceOption::builder()
 .db_instance_class("t1")
 .storage_type("aurora-iopt1")
 .build(),
 OrderableDbInstanceOption::builder()
 .db_instance_class("t2")
 .storage_type("aurora")
 .build(),
 OrderableDbInstanceOption::builder()
 .db_instance_class("t3")

DescribeOrderableDBInstanceOptions 3625

Amazon Aurora User Guide for Aurora

 .storage_type("aurora")
 .build(),
])
 });

 let mut scenario = AuroraScenario::new(mock_rds);
 scenario
 .set_engine("aurora-mysql", "aurora-mysql8.0")
 .await
 .expect("set engine");

 let instance_classes = scenario.get_instance_classes().await;

 assert_eq!(
 instance_classes,
 Ok(vec!["t1".into(), "t2".into(), "t3".into()])
);
}

#[tokio::test]
async fn test_scenario_get_instance_classes_error() {
 let mut mock_rds = MockRdsImpl::default();

 mock_rds
 .expect_describe_orderable_db_instance_options()
 .with(eq("aurora-mysql"), eq("aurora-mysql8.0"))
 .return_once(|_, _| {
 Err(SdkError::service_error(

 DescribeOrderableDBInstanceOptionsError::unhandled(Box::new(Error::new(
 ErrorKind::Other,
 "describe_orderable_db_instance_options_error",
))),
 Response::new(StatusCode::try_from(400).unwrap(),
 SdkBody::empty()),
))
 });

 let mut scenario = AuroraScenario::new(mock_rds);
 scenario.engine_family = Some("aurora-mysql".into());
 scenario.engine_version = Some("aurora-mysql8.0".into());

 let instance_classes = scenario.get_instance_classes().await;

DescribeOrderableDBInstanceOptions 3626

Amazon Aurora User Guide for Aurora

 assert_matches!(
 instance_classes,
 Err(ScenarioError {message, context: _}) if message == "Could not get
 available instance classes"
);
}

• For API details, see DescribeOrderableDBInstanceOptions in AWS SDK for Rust API
reference.

For a complete list of AWS SDK developer guides and code examples, see Using this service with
an AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Use ModifyDBClusterParameterGroup with an AWS SDK or CLI

The following code examples show how to use ModifyDBClusterParameterGroup.

Action examples are code excerpts from larger programs and must be run in context. You can see
this action in context in the following code example:

• Get started with DB clusters

.NET

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 /// <summary>
 /// Modify the specified integer parameters with new values from user input.
 /// </summary>
 /// <param name="groupName">The group name for the parameters.</param>
 /// <param name="parameters">The list of integer parameters to modify.</
param>

ModifyDBClusterParameterGroup 3627

https://docs.rs/aws-sdk-rds/latest/aws_sdk_rds/client/struct.Client.html#method.describe_orderable_db_instance_options
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Aurora#code-examples

Amazon Aurora User Guide for Aurora

 /// <param name="newValue">Optional int value to set for parameters.</param>
 /// <returns>The name of the group that was modified.</returns>
 public async Task<string> ModifyIntegerParametersInGroupAsync(string
 groupName, List<Parameter> parameters, int newValue = 0)
 {
 foreach (var p in parameters)
 {
 if (p.IsModifiable && p.DataType == "integer")
 {
 while (newValue == 0)
 {
 Console.WriteLine(
 $"Enter a new value for {p.ParameterName} from the
 allowed values {p.AllowedValues} ");

 var choice = Console.ReadLine();
 int.TryParse(choice, out newValue);
 }

 p.ParameterValue = newValue.ToString();
 }
 }

 var request = new ModifyDBClusterParameterGroupRequest
 {
 Parameters = parameters,
 DBClusterParameterGroupName = groupName,
 };

 var result = await
 _amazonRDS.ModifyDBClusterParameterGroupAsync(request);
 return result.DBClusterParameterGroupName;
 }

• For API details, see ModifyDBClusterParameterGroup in AWS SDK for .NET API Reference.

ModifyDBClusterParameterGroup 3628

https://docs.aws.amazon.com/goto/DotNetSDKV3/rds-2014-10-31/ModifyDBClusterParameterGroup

Amazon Aurora User Guide for Aurora

C++

SDK for C++

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 Aws::Client::ClientConfiguration clientConfig;
 // Optional: Set to the AWS Region (overrides config file).
 // clientConfig.region = "us-east-1";

 Aws::RDS::RDSClient client(clientConfig);

 Aws::RDS::Model::ModifyDBClusterParameterGroupRequest request;
 request.SetDBClusterParameterGroupName(CLUSTER_PARAMETER_GROUP_NAME);
 request.SetParameters(updateParameters);

 Aws::RDS::Model::ModifyDBClusterParameterGroupOutcome outcome =
 client.ModifyDBClusterParameterGroup(request);

 if (outcome.IsSuccess()) {
 std::cout << "The DB cluster parameter group was successfully
 modified."
 << std::endl;
 }
 else {
 std::cerr << "Error with Aurora::ModifyDBClusterParameterGroup. "
 << outcome.GetError().GetMessage()
 << std::endl;
 }

• For API details, see ModifyDBClusterParameterGroup in AWS SDK for C++ API Reference.

ModifyDBClusterParameterGroup 3629

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/cpp/example_code/aurora#code-examples
https://docs.aws.amazon.com/goto/SdkForCpp/rds-2014-10-31/ModifyDBClusterParameterGroup

Amazon Aurora User Guide for Aurora

Go

SDK for Go V2

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

type DbClusters struct {
 AuroraClient *rds.Client
}

// UpdateParameters updates parameters in a named DB cluster parameter group.
func (clusters *DbClusters) UpdateParameters(parameterGroupName string, params
 []types.Parameter) error {
 _, err := clusters.AuroraClient.ModifyDBClusterParameterGroup(context.TODO(),
 &rds.ModifyDBClusterParameterGroupInput{
 DBClusterParameterGroupName: aws.String(parameterGroupName),
 Parameters: params,
 })
 if err != nil {
 log.Printf("Couldn't update parameters in %v: %v\n", parameterGroupName, err)
 return err
 } else {
 return nil
 }
}

• For API details, see ModifyDBClusterParameterGroup in AWS SDK for Go API Reference.

ModifyDBClusterParameterGroup 3630

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/gov2/aurora#code-examples
https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/rds#Client.ModifyDBClusterParameterGroup

Amazon Aurora User Guide for Aurora

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 public static void describeDbClusterParameterGroups(RdsClient rdsClient,
 String dbClusterGroupName) {
 try {
 DescribeDbClusterParameterGroupsRequest groupsRequest =
 DescribeDbClusterParameterGroupsRequest.builder()
 .dbClusterParameterGroupName(dbClusterGroupName)
 .maxRecords(20)
 .build();

 List<DBClusterParameterGroup> groups =
 rdsClient.describeDBClusterParameterGroups(groupsRequest)
 .dbClusterParameterGroups();
 for (DBClusterParameterGroup group : groups) {
 System.out.println("The group name is " +
 group.dbClusterParameterGroupName());
 System.out.println("The group ARN is " +
 group.dbClusterParameterGroupArn());
 }

 } catch (RdsException e) {
 System.out.println(e.getLocalizedMessage());
 System.exit(1);
 }
 }

• For API details, see ModifyDBClusterParameterGroup in AWS SDK for Java 2.x API
Reference.

ModifyDBClusterParameterGroup 3631

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/rds#readme
https://docs.aws.amazon.com/goto/SdkForJavaV2/rds-2014-10-31/ModifyDBClusterParameterGroup

Amazon Aurora User Guide for Aurora

Kotlin

SDK for Kotlin

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

// Modify the auto_increment_offset parameter.
suspend fun modifyDBClusterParas(dClusterGroupName: String?) {
 val parameter1 =
 Parameter {
 parameterName = "auto_increment_offset"
 applyMethod = ApplyMethod.fromValue("immediate")
 parameterValue = "5"
 }

 val paraList = ArrayList<Parameter>()
 paraList.add(parameter1)
 val groupRequest =
 ModifyDbClusterParameterGroupRequest {
 dbClusterParameterGroupName = dClusterGroupName
 parameters = paraList
 }

 RdsClient { region = "us-west-2" }.use { rdsClient ->
 val response = rdsClient.modifyDbClusterParameterGroup(groupRequest)
 println("The parameter group ${response.dbClusterParameterGroupName} was
 successfully modified")
 }
}

• For API details, see ModifyDBClusterParameterGroup in AWS SDK for Kotlin API reference.

ModifyDBClusterParameterGroup 3632

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/kotlin/services/rds#code-examples
https://sdk.amazonaws.com/kotlin/api/latest/index.html

Amazon Aurora User Guide for Aurora

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

class AuroraWrapper:
 """Encapsulates Aurora DB cluster actions."""

 def __init__(self, rds_client):
 """
 :param rds_client: A Boto3 Amazon Relational Database Service (Amazon
 RDS) client.
 """
 self.rds_client = rds_client

 @classmethod
 def from_client(cls):
 """
 Instantiates this class from a Boto3 client.
 """
 rds_client = boto3.client("rds")
 return cls(rds_client)

 def update_parameters(self, parameter_group_name, update_parameters):
 """
 Updates parameters in a custom DB cluster parameter group.

 :param parameter_group_name: The name of the parameter group to update.
 :param update_parameters: The parameters to update in the group.
 :return: Data about the modified parameter group.
 """
 try:
 response = self.rds_client.modify_db_cluster_parameter_group(
 DBClusterParameterGroupName=parameter_group_name,
 Parameters=update_parameters,
)

ModifyDBClusterParameterGroup 3633

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/aurora#code-examples

Amazon Aurora User Guide for Aurora

 except ClientError as err:
 logger.error(
 "Couldn't update parameters in %s. Here's why: %s: %s",
 parameter_group_name,
 err.response["Error"]["Code"],
 err.response["Error"]["Message"],
)
 raise
 else:
 return response

• For API details, see ModifyDBClusterParameterGroup in AWS SDK for Python (Boto3) API
Reference.

Rust

SDK for Rust

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 // Modify both the auto_increment_offset and auto_increment_increment
 parameters in one call in the custom parameter group. Set their ParameterValue
 fields to a new allowable value. rds.ModifyDbClusterParameterGroup.
 pub async fn update_auto_increment(
 &self,
 offset: u8,
 increment: u8,
) -> Result<(), ScenarioError> {
 let modify_db_cluster_parameter_group = self
 .rds
 .modify_db_cluster_parameter_group(
 DB_CLUSTER_PARAMETER_GROUP_NAME,
 vec![
 Parameter::builder()
 .parameter_name("auto_increment_offset")

ModifyDBClusterParameterGroup 3634

https://docs.aws.amazon.com/goto/boto3/rds-2014-10-31/ModifyDBClusterParameterGroup
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/rustv1/examples/aurora#code-examples

Amazon Aurora User Guide for Aurora

 .parameter_value(format!("{offset}"))
 .apply_method(aws_sdk_rds::types::ApplyMethod::Immediate)
 .build(),
 Parameter::builder()
 .parameter_name("auto_increment_increment")
 .parameter_value(format!("{increment}"))
 .apply_method(aws_sdk_rds::types::ApplyMethod::Immediate)
 .build(),
],
)
 .await;

 if let Err(error) = modify_db_cluster_parameter_group {
 return Err(ScenarioError::new(
 "Failed to modify cluster parameter group",
 &error,
));
 }

 Ok(())
 }

 pub async fn modify_db_cluster_parameter_group(
 &self,
 name: &str,
 parameters: Vec<Parameter>,
) -> Result<ModifyDbClusterParameterGroupOutput,
 SdkError<ModifyDBClusterParameterGroupError>>
 {
 self.inner
 .modify_db_cluster_parameter_group()
 .db_cluster_parameter_group_name(name)
 .set_parameters(Some(parameters))
 .send()
 .await
 }

#[tokio::test]
async fn test_scenario_update_auto_increment() {
 let mut mock_rds = MockRdsImpl::default();

 mock_rds
 .expect_modify_db_cluster_parameter_group()
 .withf(|name, params| {

ModifyDBClusterParameterGroup 3635

Amazon Aurora User Guide for Aurora

 assert_eq!(name, "RustSDKCodeExamplesDBParameterGroup");
 assert_eq!(
 params,
 &vec![
 Parameter::builder()
 .parameter_name("auto_increment_offset")
 .parameter_value("10")
 .apply_method(aws_sdk_rds::types::ApplyMethod::Immediate)
 .build(),
 Parameter::builder()
 .parameter_name("auto_increment_increment")
 .parameter_value("20")
 .apply_method(aws_sdk_rds::types::ApplyMethod::Immediate)
 .build(),
]
);
 true
 })
 .return_once(|_, _|
 Ok(ModifyDbClusterParameterGroupOutput::builder().build()));

 let scenario = AuroraScenario::new(mock_rds);

 scenario
 .update_auto_increment(10, 20)
 .await
 .expect("update auto increment");
}

#[tokio::test]
async fn test_scenario_update_auto_increment_error() {
 let mut mock_rds = MockRdsImpl::default();

 mock_rds
 .expect_modify_db_cluster_parameter_group()
 .return_once(|_, _| {
 Err(SdkError::service_error(

 ModifyDBClusterParameterGroupError::unhandled(Box::new(Error::new(
 ErrorKind::Other,
 "modify_db_cluster_parameter_group_error",
))),
 Response::new(StatusCode::try_from(400).unwrap(),
 SdkBody::empty()),

ModifyDBClusterParameterGroup 3636

Amazon Aurora User Guide for Aurora

))
 });

 let scenario = AuroraScenario::new(mock_rds);

 let update = scenario.update_auto_increment(10, 20).await;
 assert_matches!(update, Err(ScenarioError { message, context: _}) if message
 == "Failed to modify cluster parameter group");
}

• For API details, see ModifyDBClusterParameterGroup in AWS SDK for Rust API reference.

For a complete list of AWS SDK developer guides and code examples, see Using this service with
an AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Scenarios for Aurora using AWS SDKs

The following code examples show you how to implement common scenarios in Aurora with AWS
SDKs. These scenarios show you how to accomplish specific tasks by calling multiple functions
within Aurora. Each scenario includes a link to GitHub, where you can find instructions on how to
set up and run the code.

Examples

• Get started with Aurora DB clusters using an AWS SDK

Get started with Aurora DB clusters using an AWS SDK

The following code examples show how to:

• Create a custom Aurora DB cluster parameter group and set parameter values.

• Create a DB cluster that uses the parameter group.

• Create a DB instance that contains a database.

• Take a snapshot of the DB cluster, then clean up resources.

Scenarios 3637

https://docs.rs/aws-sdk-rds/latest/aws_sdk_rds/client/struct.Client.html#method.modify_db_cluster_parameter_group

Amazon Aurora User Guide for Aurora

.NET

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Run an interactive scenario at a command prompt.

using Amazon.RDS;
using Amazon.RDS.Model;
using AuroraActions;
using Microsoft.Extensions.DependencyInjection;
using Microsoft.Extensions.Hosting;
using Microsoft.Extensions.Logging;
using Microsoft.Extensions.Logging.Console;
using Microsoft.Extensions.Logging.Debug;

namespace AuroraScenario;

/// <summary>
/// Scenario for Amazon Aurora examples.
/// </summary>
public class AuroraScenario
{
 /*
 Before running this .NET code example, set up your development environment,
 including your credentials.

 This .NET example performs the following tasks:
 1. Return a list of the available DB engine families for Aurora MySql using
 the DescribeDBEngineVersionsAsync method.
 2. Select an engine family and create a custom DB cluster parameter group
 using the CreateDBClusterParameterGroupAsync method.
 3. Get the parameter group using the DescribeDBClusterParameterGroupsAsync
 method.
 4. Get some parameters in the group using the
 DescribeDBClusterParametersAsync method.
 5. Parse and display some parameters in the group.

Get started with DB clusters 3638

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Aurora#code-examples

Amazon Aurora User Guide for Aurora

 6. Modify the auto_increment_offset and auto_increment_increment parameters
 using the ModifyDBClusterParameterGroupAsync method.
 7. Get and display the updated parameters using the
 DescribeDBClusterParametersAsync method with a source of "user".
 8. Get a list of allowed engine versions using the
 DescribeDBEngineVersionsAsync method.
 9. Create an Aurora DB cluster that contains a MySql database and uses the
 parameter group.
 using the CreateDBClusterAsync method.
 10. Wait for the DB cluster to be ready using the DescribeDBClustersAsync
 method.
 11. Display and select from a list of instance classes available for the
 selected engine and version
 using the paginated DescribeOrderableDBInstanceOptions method.
 12. Create a database instance in the cluster using the CreateDBInstanceAsync
 method.
 13. Wait for the DB instance to be ready using the DescribeDBInstances
 method.
 14. Display the connection endpoint string for the new DB cluster.
 15. Create a snapshot of the DB cluster using the
 CreateDBClusterSnapshotAsync method.
 16. Wait for DB snapshot to be ready using the
 DescribeDBClusterSnapshotsAsync method.
 17. Delete the DB instance using the DeleteDBInstanceAsync method.
 18. Delete the DB cluster using the DeleteDBClusterAsync method.
 19. Wait for DB cluster to be deleted using the DescribeDBClustersAsync
 methods.
 20. Delete the cluster parameter group using the
 DeleteDBClusterParameterGroupAsync.
 */

 private static readonly string sepBar = new('-', 80);
 private static AuroraWrapper auroraWrapper = null!;
 private static ILogger logger = null!;
 private static readonly string engine = "aurora-mysql";
 static async Task Main(string[] args)
 {
 // Set up dependency injection for the Amazon Relational Database Service
 (Amazon RDS).
 using var host = Host.CreateDefaultBuilder(args)
 .ConfigureLogging(logging =>
 logging.AddFilter("System", LogLevel.Debug)
 .AddFilter<DebugLoggerProvider>("Microsoft",
 LogLevel.Information)

Get started with DB clusters 3639

Amazon Aurora User Guide for Aurora

 .AddFilter<ConsoleLoggerProvider>("Microsoft",
 LogLevel.Trace))
 .ConfigureServices((_, services) =>
 services.AddAWSService<IAmazonRDS>()
 .AddTransient<AuroraWrapper>()
)
 .Build();

 logger = LoggerFactory.Create(builder =>
 {
 builder.AddConsole();
 }).CreateLogger<AuroraScenario>();

 auroraWrapper = host.Services.GetRequiredService<AuroraWrapper>();

 Console.WriteLine(sepBar);
 Console.WriteLine(
 "Welcome to the Amazon Aurora: get started with DB clusters
 example.");
 Console.WriteLine(sepBar);

 DBClusterParameterGroup parameterGroup = null!;
 DBCluster? newCluster = null;
 DBInstance? newInstance = null;

 try
 {
 var parameterGroupFamily = await ChooseParameterGroupFamilyAsync();

 parameterGroup = await
 CreateDBParameterGroupAsync(parameterGroupFamily);

 var parameters = await
 DescribeParametersInGroupAsync(parameterGroup.DBClusterParameterGroupName,
 new List<string> { "auto_increment_offset",
 "auto_increment_increment" });

 await
 ModifyParametersAsync(parameterGroup.DBClusterParameterGroupName, parameters);

 await
 DescribeUserSourceParameters(parameterGroup.DBClusterParameterGroupName);

Get started with DB clusters 3640

Amazon Aurora User Guide for Aurora

 var engineVersionChoice = await
 ChooseDBEngineVersionAsync(parameterGroupFamily);

 var newClusterIdentifier = "Example-Cluster-" + DateTime.Now.Ticks;

 newCluster = await CreateNewCluster
 (
 parameterGroup,
 engine,
 engineVersionChoice.EngineVersion,
 newClusterIdentifier
);

 var instanceClassChoice = await ChooseDBInstanceClass(engine,
 engineVersionChoice.EngineVersion);

 var newInstanceIdentifier = "Example-Instance-" + DateTime.Now.Ticks;

 newInstance = await CreateNewInstance(
 newClusterIdentifier,
 engine,
 engineVersionChoice.EngineVersion,
 instanceClassChoice.DBInstanceClass,
 newInstanceIdentifier
);

 DisplayConnectionString(newCluster!);
 await CreateSnapshot(newCluster!);
 await CleanupResources(newInstance, newCluster, parameterGroup);

 Console.WriteLine("Scenario complete.");
 Console.WriteLine(sepBar);
 }
 catch (Exception ex)

 {
 await CleanupResources(newInstance, newCluster, parameterGroup);
 logger.LogError(ex, "There was a problem executing the scenario.");
 }
 }

 /// <summary>
 /// Choose the Aurora DB parameter group family from a list of available
 options.

Get started with DB clusters 3641

Amazon Aurora User Guide for Aurora

 /// </summary>
 /// <returns>The selected parameter group family.</returns>
 public static async Task<string> ChooseParameterGroupFamilyAsync()
 {
 Console.WriteLine(sepBar);
 // 1. Get a list of available engines.
 var engines = await
 auroraWrapper.DescribeDBEngineVersionsForEngineAsync(engine);

 Console.WriteLine($"1. The following is a list of available DB parameter
 group families for engine {engine}:");

 var parameterGroupFamilies =
 engines.GroupBy(e => e.DBParameterGroupFamily).ToList();
 for (var i = 1; i <= parameterGroupFamilies.Count; i++)
 {
 var parameterGroupFamily = parameterGroupFamilies[i - 1];
 // List the available parameter group families.
 Console.WriteLine(
 $"\t{i}. Family: {parameterGroupFamily.Key}");
 }

 var choiceNumber = 0;
 while (choiceNumber < 1 || choiceNumber > parameterGroupFamilies.Count)
 {
 Console.WriteLine("2. Select an available DB parameter group family
 by entering a number from the preceding list:");
 var choice = Console.ReadLine();
 Int32.TryParse(choice, out choiceNumber);
 }
 var parameterGroupFamilyChoice = parameterGroupFamilies[choiceNumber -
 1];
 Console.WriteLine(sepBar);
 return parameterGroupFamilyChoice.Key;
 }

 /// <summary>
 /// Create and get information on a DB parameter group.
 /// </summary>
 /// <param name="dbParameterGroupFamily">The DBParameterGroupFamily for the
 new DB parameter group.</param>
 /// <returns>The new DBParameterGroup.</returns>
 public static async Task<DBClusterParameterGroup>
 CreateDBParameterGroupAsync(string dbParameterGroupFamily)

Get started with DB clusters 3642

Amazon Aurora User Guide for Aurora

 {
 Console.WriteLine(sepBar);
 Console.WriteLine($"2. Create new DB parameter group with family
 {dbParameterGroupFamily}:");

 var parameterGroup = await
 auroraWrapper.CreateCustomClusterParameterGroupAsync(
 dbParameterGroupFamily,
 "ExampleParameterGroup-" + DateTime.Now.Ticks,
 "New example parameter group");

 var groupInfo =
 await
 auroraWrapper.DescribeCustomDBClusterParameterGroupAsync(parameterGroup.DBClusterParameterGroupName);

 Console.WriteLine(
 $"3. New DB parameter group created: \n\t{groupInfo?.Description}, \n
\tARN {groupInfo?.DBClusterParameterGroupName}");
 Console.WriteLine(sepBar);
 return parameterGroup;
 }

 /// <summary>
 /// Get and describe parameters from a DBParameterGroup.
 /// </summary>
 /// <param name="parameterGroupName">The name of the DBParameterGroup.</
param>
 /// <param name="parameterNames">Optional specific names of parameters to
 describe.</param>
 /// <returns>The list of requested parameters.</returns>
 public static async Task<List<Parameter>>
 DescribeParametersInGroupAsync(string parameterGroupName, List<string>?
 parameterNames = null)
 {
 Console.WriteLine(sepBar);
 Console.WriteLine("4. Get some parameters from the group.");
 Console.WriteLine(sepBar);

 var parameters =
 await
 auroraWrapper.DescribeDBClusterParametersInGroupAsync(parameterGroupName);

 var matchingParameters =

Get started with DB clusters 3643

Amazon Aurora User Guide for Aurora

 parameters.Where(p => parameterNames == null ||
 parameterNames.Contains(p.ParameterName)).ToList();

 Console.WriteLine("5. Parameter information:");
 matchingParameters.ForEach(p =>
 Console.WriteLine(
 $"\n\tParameter: {p.ParameterName}." +
 $"\n\tDescription: {p.Description}." +
 $"\n\tAllowed Values: {p.AllowedValues}." +
 $"\n\tValue: {p.ParameterValue}."));

 Console.WriteLine(sepBar);

 return matchingParameters;
 }

 /// <summary>
 /// Modify a parameter from a DBParameterGroup.
 /// </summary>
 /// <param name="parameterGroupName">Name of the DBParameterGroup.</param>
 /// <param name="parameters">The parameters to modify.</param>
 /// <returns>Async task.</returns>
 public static async Task ModifyParametersAsync(string parameterGroupName,
 List<Parameter> parameters)
 {
 Console.WriteLine(sepBar);
 Console.WriteLine("6. Modify some parameters in the group.");

 await
 auroraWrapper.ModifyIntegerParametersInGroupAsync(parameterGroupName,
 parameters);

 Console.WriteLine(sepBar);
 }

 /// <summary>
 /// Describe the user source parameters in the group.
 /// </summary>
 /// <param name="parameterGroupName">The name of the DBParameterGroup.</
param>
 /// <returns>Async task.</returns>
 public static async Task DescribeUserSourceParameters(string
 parameterGroupName)
 {

Get started with DB clusters 3644

Amazon Aurora User Guide for Aurora

 Console.WriteLine(sepBar);
 Console.WriteLine("7. Describe updated user source parameters in the
 group.");

 var parameters =
 await
 auroraWrapper.DescribeDBClusterParametersInGroupAsync(parameterGroupName,
 "user");

 parameters.ForEach(p =>
 Console.WriteLine(
 $"\n\tParameter: {p.ParameterName}." +
 $"\n\tDescription: {p.Description}." +
 $"\n\tAllowed Values: {p.AllowedValues}." +
 $"\n\tValue: {p.ParameterValue}."));

 Console.WriteLine(sepBar);
 }

 /// <summary>
 /// Choose a DB engine version.
 /// </summary>
 /// <param name="dbParameterGroupFamily">DB parameter group family for engine
 choice.</param>
 /// <returns>The selected engine version.</returns>
 public static async Task<DBEngineVersion> ChooseDBEngineVersionAsync(string
 dbParameterGroupFamily)
 {
 Console.WriteLine(sepBar);
 // Get a list of allowed engines.
 var allowedEngines =
 await auroraWrapper.DescribeDBEngineVersionsForEngineAsync(engine,
 dbParameterGroupFamily);

 Console.WriteLine($"Available DB engine versions for parameter group
 family {dbParameterGroupFamily}:");
 int i = 1;
 foreach (var version in allowedEngines)
 {
 Console.WriteLine(
 $"\t{i}. {version.DBEngineVersionDescription}.");
 i++;
 }

Get started with DB clusters 3645

Amazon Aurora User Guide for Aurora

 var choiceNumber = 0;
 while (choiceNumber < 1 || choiceNumber > allowedEngines.Count)
 {
 Console.WriteLine("8. Select an available DB engine version by
 entering a number from the list above:");
 var choice = Console.ReadLine();
 Int32.TryParse(choice, out choiceNumber);
 }

 var engineChoice = allowedEngines[choiceNumber - 1];
 Console.WriteLine(sepBar);
 return engineChoice;
 }

 /// <summary>
 /// Create a new RDS DB cluster.
 /// </summary>
 /// <param name="parameterGroup">Parameter group to use for the DB cluster.</
param>
 /// <param name="engineName">Engine to use for the DB cluster.</param>
 /// <param name="engineVersion">Engine version to use for the DB cluster.</
param>
 /// <param name="clusterIdentifier">Cluster identifier to use for the DB
 cluster.</param>
 /// <returns>The new DB cluster.</returns>
 public static async Task<DBCluster?> CreateNewCluster(DBClusterParameterGroup
 parameterGroup,
 string engineName, string engineVersion, string clusterIdentifier)
 {
 Console.WriteLine(sepBar);
 Console.WriteLine($"9. Create a new DB cluster with identifier
 {clusterIdentifier}.");

 DBCluster newCluster;
 var clusters = await auroraWrapper.DescribeDBClustersPagedAsync();
 var isClusterCreated = clusters.Any(i => i.DBClusterIdentifier ==
 clusterIdentifier);

 if (isClusterCreated)
 {
 Console.WriteLine("Cluster already created.");
 newCluster = clusters.First(i => i.DBClusterIdentifier ==
 clusterIdentifier);
 }

Get started with DB clusters 3646

Amazon Aurora User Guide for Aurora

 else
 {
 Console.WriteLine("Enter an admin username:");
 var username = Console.ReadLine();

 Console.WriteLine("Enter an admin password:");
 var password = Console.ReadLine();

 newCluster = await auroraWrapper.CreateDBClusterWithAdminAsync(
 "ExampleDatabase",
 clusterIdentifier,
 parameterGroup.DBClusterParameterGroupName,
 engineName,
 engineVersion,
 username!,
 password!
);

 Console.WriteLine("10. Waiting for DB cluster to be ready...");
 while (newCluster.Status != "available")
 {
 Console.Write(".");
 Thread.Sleep(5000);
 clusters = await
 auroraWrapper.DescribeDBClustersPagedAsync(clusterIdentifier);
 newCluster = clusters.First();
 }
 }

 Console.WriteLine(sepBar);
 return newCluster;
 }

 /// <summary>
 /// Choose a DB instance class for a particular engine and engine version.
 /// </summary>
 /// <param name="engine">DB engine for DB instance choice.</param>
 /// <param name="engineVersion">DB engine version for DB instance choice.</
param>
 /// <returns>The selected orderable DB instance option.</returns>
 public static async Task<OrderableDBInstanceOption>
 ChooseDBInstanceClass(string engine, string engineVersion)
 {
 Console.WriteLine(sepBar);

Get started with DB clusters 3647

Amazon Aurora User Guide for Aurora

 // Get a list of allowed DB instance classes.
 var allowedInstances =
 await
 auroraWrapper.DescribeOrderableDBInstanceOptionsPagedAsync(engine,
 engineVersion);

 Console.WriteLine($"Available DB instance classes for engine {engine} and
 version {engineVersion}:");
 int i = 1;

 foreach (var instance in allowedInstances)
 {
 Console.WriteLine(
 $"\t{i}. Instance class: {instance.DBInstanceClass} (storage type
 {instance.StorageType})");
 i++;
 }

 var choiceNumber = 0;
 while (choiceNumber < 1 || choiceNumber > allowedInstances.Count)
 {
 Console.WriteLine("11. Select an available DB instance class by
 entering a number from the preceding list:");
 var choice = Console.ReadLine();
 Int32.TryParse(choice, out choiceNumber);
 }

 var instanceChoice = allowedInstances[choiceNumber - 1];
 Console.WriteLine(sepBar);
 return instanceChoice;
 }

 /// <summary>
 /// Create a new DB instance.
 /// </summary>
 /// <param name="engineName">Engine to use for the DB instance.</param>
 /// <param name="engineVersion">Engine version to use for the DB instance.</
param>
 /// <param name="instanceClass">Instance class to use for the DB instance.</
param>
 /// <param name="instanceIdentifier">Instance identifier to use for the DB
 instance.</param>
 /// <returns>The new DB instance.</returns>

Get started with DB clusters 3648

Amazon Aurora User Guide for Aurora

 public static async Task<DBInstance?> CreateNewInstance(
 string clusterIdentifier,
 string engineName,
 string engineVersion,
 string instanceClass,
 string instanceIdentifier)
 {
 Console.WriteLine(sepBar);
 Console.WriteLine($"12. Create a new DB instance with identifier
 {instanceIdentifier}.");
 bool isInstanceReady = false;
 DBInstance newInstance;
 var instances = await auroraWrapper.DescribeDBInstancesPagedAsync();
 isInstanceReady = instances.FirstOrDefault(i =>
 i.DBInstanceIdentifier == instanceIdentifier)?.DBInstanceStatus ==
 "available";

 if (isInstanceReady)
 {
 Console.WriteLine("Instance already created.");
 newInstance = instances.First(i => i.DBInstanceIdentifier ==
 instanceIdentifier);
 }
 else
 {

 newInstance = await auroraWrapper.CreateDBInstanceInClusterAsync(
 clusterIdentifier,
 instanceIdentifier,
 engineName,
 engineVersion,
 instanceClass
);

 Console.WriteLine("13. Waiting for DB instance to be ready...");
 while (!isInstanceReady)
 {
 Console.Write(".");
 Thread.Sleep(5000);
 instances = await
 auroraWrapper.DescribeDBInstancesPagedAsync(instanceIdentifier);
 isInstanceReady = instances.FirstOrDefault()?.DBInstanceStatus ==
 "available";
 newInstance = instances.First();

Get started with DB clusters 3649

Amazon Aurora User Guide for Aurora

 }
 }

 Console.WriteLine(sepBar);
 return newInstance;
 }

 /// <summary>
 /// Display a connection string for an Amazon RDS DB cluster.
 /// </summary>
 /// <param name="cluster">The DB cluster to use to get a connection string.</
param>
 public static void DisplayConnectionString(DBCluster cluster)
 {
 Console.WriteLine(sepBar);
 // Display the connection string.
 Console.WriteLine("14. New DB cluster connection string: ");
 Console.WriteLine(
 $"\n{engine} -h {cluster.Endpoint} -P {cluster.Port} "
 + $"-u {cluster.MasterUsername} -p [YOUR PASSWORD]\n");

 Console.WriteLine(sepBar);
 }

 /// <summary>
 /// Create a snapshot from an Amazon RDS DB cluster.
 /// </summary>
 /// <param name="cluster">DB cluster to use when creating a snapshot.</param>
 /// <returns>The snapshot object.</returns>
 public static async Task<DBClusterSnapshot> CreateSnapshot(DBCluster cluster)
 {
 Console.WriteLine(sepBar);
 // Create a snapshot.
 Console.WriteLine($"15. Creating snapshot from DB cluster
 {cluster.DBClusterIdentifier}.");
 var snapshot = await
 auroraWrapper.CreateClusterSnapshotByIdentifierAsync(
 cluster.DBClusterIdentifier,
 "ExampleSnapshot-" + DateTime.Now.Ticks);

 // Wait for the snapshot to be available.
 bool isSnapshotReady = false;

 Console.WriteLine($"16. Waiting for snapshot to be ready...");

Get started with DB clusters 3650

Amazon Aurora User Guide for Aurora

 while (!isSnapshotReady)
 {
 Console.Write(".");
 Thread.Sleep(5000);
 var snapshots =
 await
 auroraWrapper.DescribeDBClusterSnapshotsByIdentifierAsync(cluster.DBClusterIdentifier);
 isSnapshotReady = snapshots.FirstOrDefault()?.Status == "available";
 snapshot = snapshots.First();
 }

 Console.WriteLine(
 $"Snapshot {snapshot.DBClusterSnapshotIdentifier} status is
 {snapshot.Status}.");
 Console.WriteLine(sepBar);
 return snapshot;
 }

 /// <summary>
 /// Clean up resources from the scenario.
 /// </summary>
 /// <param name="newInstance">The instance to clean up.</param>
 /// <param name="newCluster">The cluster to clean up.</param>
 /// <param name="parameterGroup">The parameter group to clean up.</param>
 /// <returns>Async Task.</returns>
 private static async Task CleanupResources(
 DBInstance? newInstance,
 DBCluster? newCluster,
 DBClusterParameterGroup? parameterGroup)
 {
 Console.WriteLine(new string('-', 80));
 Console.WriteLine($"Clean up resources.");

 if (newInstance is not null && GetYesNoResponse($"\tClean up instance
 {newInstance.DBInstanceIdentifier}? (y/n)"))
 {
 // Delete the DB instance.
 Console.WriteLine($"17. Deleting the DB instance
 {newInstance.DBInstanceIdentifier}.");
 await
 auroraWrapper.DeleteDBInstanceByIdentifierAsync(newInstance.DBInstanceIdentifier);
 }

Get started with DB clusters 3651

Amazon Aurora User Guide for Aurora

 if (newCluster is not null && GetYesNoResponse($"\tClean up cluster
 {newCluster.DBClusterIdentifier}? (y/n)"))
 {
 // Delete the DB cluster.
 Console.WriteLine($"18. Deleting the DB cluster
 {newCluster.DBClusterIdentifier}.");
 await
 auroraWrapper.DeleteDBClusterByIdentifierAsync(newCluster.DBClusterIdentifier);

 // Wait for the DB cluster to delete.
 Console.WriteLine($"19. Waiting for the DB cluster to delete...");
 bool isClusterDeleted = false;

 while (!isClusterDeleted)
 {
 Console.Write(".");
 Thread.Sleep(5000);
 var cluster = await auroraWrapper.DescribeDBClustersPagedAsync();
 isClusterDeleted = cluster.All(i => i.DBClusterIdentifier !=
 newCluster.DBClusterIdentifier);
 }

 Console.WriteLine("DB cluster deleted.");
 }

 if (parameterGroup is not null && GetYesNoResponse($"\tClean up parameter
 group? (y/n)"))
 {
 Console.WriteLine($"20. Deleting the DB parameter group
 {parameterGroup.DBClusterParameterGroupName}.");
 await
 auroraWrapper.DeleteClusterParameterGroupByNameAsync(parameterGroup.DBClusterParameterGroupName);
 Console.WriteLine("Parameter group deleted.");
 }

 Console.WriteLine(new string('-', 80));
 }

 /// <summary>
 /// Get a yes or no response from the user.
 /// </summary>
 /// <param name="question">The question string to print on the console.</
param>
 /// <returns>True if the user responds with a yes.</returns>

Get started with DB clusters 3652

Amazon Aurora User Guide for Aurora

 private static bool GetYesNoResponse(string question)
 {
 Console.WriteLine(question);
 var ynResponse = Console.ReadLine();
 var response = ynResponse != null &&
 ynResponse.Equals("y",
 StringComparison.InvariantCultureIgnoreCase);
 return response;
 }

Wrapper methods that are called by the scenario to manage Aurora actions.

using Amazon.RDS;
using Amazon.RDS.Model;

namespace AuroraActions;

/// <summary>
/// Wrapper for the Amazon Aurora cluster client operations.
/// </summary>
public class AuroraWrapper
{
 private readonly IAmazonRDS _amazonRDS;
 public AuroraWrapper(IAmazonRDS amazonRDS)
 {
 _amazonRDS = amazonRDS;
 }

 /// <summary>
 /// Get a list of DB engine versions for a particular DB engine.
 /// </summary>
 /// <param name="engine">The name of the engine.</param>
 /// <param name="parameterGroupFamily">Optional parameter group family
 name.</param>
 /// <returns>A list of DBEngineVersions.</returns>
 public async Task<List<DBEngineVersion>>
 DescribeDBEngineVersionsForEngineAsync(string engine,
 string? parameterGroupFamily = null)
 {
 var response = await _amazonRDS.DescribeDBEngineVersionsAsync(
 new DescribeDBEngineVersionsRequest()

Get started with DB clusters 3653

Amazon Aurora User Guide for Aurora

 {
 Engine = engine,
 DBParameterGroupFamily = parameterGroupFamily
 });
 return response.DBEngineVersions;
 }

 /// <summary>
 /// Create a custom cluster parameter group.
 /// </summary>
 /// <param name="parameterGroupFamily">The family of the parameter group.</
param>
 /// <param name="groupName">The name for the new parameter group.</param>
 /// <param name="description">A description for the new parameter group.</
param>
 /// <returns>The new parameter group object.</returns>
 public async Task<DBClusterParameterGroup>
 CreateCustomClusterParameterGroupAsync(
 string parameterGroupFamily,
 string groupName,
 string description)
 {
 var request = new CreateDBClusterParameterGroupRequest
 {
 DBParameterGroupFamily = parameterGroupFamily,
 DBClusterParameterGroupName = groupName,
 Description = description,
 };

 var response = await
 _amazonRDS.CreateDBClusterParameterGroupAsync(request);
 return response.DBClusterParameterGroup;
 }

 /// <summary>
 /// Describe the cluster parameters in a parameter group.
 /// </summary>
 /// <param name="groupName">The name of the parameter group.</param>
 /// <param name="source">The optional name of the source filter.</param>
 /// <returns>The collection of parameters.</returns>
 public async Task<List<Parameter>>
 DescribeDBClusterParametersInGroupAsync(string groupName, string? source = null)
 {
 var paramList = new List<Parameter>();

Get started with DB clusters 3654

Amazon Aurora User Guide for Aurora

 DescribeDBClusterParametersResponse response;
 var request = new DescribeDBClusterParametersRequest
 {
 DBClusterParameterGroupName = groupName,
 Source = source,
 };

 // Get the full list if there are multiple pages.
 do
 {
 response = await
 _amazonRDS.DescribeDBClusterParametersAsync(request);
 paramList.AddRange(response.Parameters);

 request.Marker = response.Marker;
 }
 while (response.Marker is not null);

 return paramList;
 }

 /// <summary>
 /// Get the description of a DB cluster parameter group by name.
 /// </summary>
 /// <param name="name">The name of the DB parameter group to describe.</
param>
 /// <returns>The parameter group description.</returns>
 public async Task<DBClusterParameterGroup?>
 DescribeCustomDBClusterParameterGroupAsync(string name)
 {
 var response = await _amazonRDS.DescribeDBClusterParameterGroupsAsync(
 new DescribeDBClusterParameterGroupsRequest()
 {
 DBClusterParameterGroupName = name
 });
 return response.DBClusterParameterGroups.FirstOrDefault();
 }

 /// <summary>
 /// Modify the specified integer parameters with new values from user input.
 /// </summary>
 /// <param name="groupName">The group name for the parameters.</param>

Get started with DB clusters 3655

Amazon Aurora User Guide for Aurora

 /// <param name="parameters">The list of integer parameters to modify.</
param>
 /// <param name="newValue">Optional int value to set for parameters.</param>
 /// <returns>The name of the group that was modified.</returns>
 public async Task<string> ModifyIntegerParametersInGroupAsync(string
 groupName, List<Parameter> parameters, int newValue = 0)
 {
 foreach (var p in parameters)
 {
 if (p.IsModifiable && p.DataType == "integer")
 {
 while (newValue == 0)
 {
 Console.WriteLine(
 $"Enter a new value for {p.ParameterName} from the
 allowed values {p.AllowedValues} ");

 var choice = Console.ReadLine();
 int.TryParse(choice, out newValue);
 }

 p.ParameterValue = newValue.ToString();
 }
 }

 var request = new ModifyDBClusterParameterGroupRequest
 {
 Parameters = parameters,
 DBClusterParameterGroupName = groupName,
 };

 var result = await
 _amazonRDS.ModifyDBClusterParameterGroupAsync(request);
 return result.DBClusterParameterGroupName;
 }

 /// <summary>
 /// Get a list of orderable DB instance options for a specific
 /// engine and engine version.
 /// </summary>
 /// <param name="engine">Name of the engine.</param>
 /// <param name="engineVersion">Version of the engine.</param>
 /// <returns>List of OrderableDBInstanceOptions.</returns>

Get started with DB clusters 3656

Amazon Aurora User Guide for Aurora

 public async Task<List<OrderableDBInstanceOption>>
 DescribeOrderableDBInstanceOptionsPagedAsync(string engine, string
 engineVersion)
 {
 // Use a paginator to get a list of DB instance options.
 var results = new List<OrderableDBInstanceOption>();
 var paginateInstanceOptions =
 _amazonRDS.Paginators.DescribeOrderableDBInstanceOptions(
 new DescribeOrderableDBInstanceOptionsRequest()
 {
 Engine = engine,
 EngineVersion = engineVersion,
 });
 // Get the entire list using the paginator.
 await foreach (var instanceOptions in
 paginateInstanceOptions.OrderableDBInstanceOptions)
 {
 results.Add(instanceOptions);
 }
 return results;
 }

 /// <summary>
 /// Delete a particular parameter group by name.
 /// </summary>
 /// <param name="groupName">The name of the parameter group.</param>
 /// <returns>True if successful.</returns>
 public async Task<bool> DeleteClusterParameterGroupByNameAsync(string
 groupName)
 {
 var request = new DeleteDBClusterParameterGroupRequest
 {
 DBClusterParameterGroupName = groupName,
 };

 var response = await
 _amazonRDS.DeleteDBClusterParameterGroupAsync(request);
 return response.HttpStatusCode == System.Net.HttpStatusCode.OK;
 }

 /// <summary>
 /// Create a new cluster and database.
 /// </summary>
 /// <param name="dbName">The name of the new database.</param>

Get started with DB clusters 3657

Amazon Aurora User Guide for Aurora

 /// <param name="clusterIdentifier">The identifier of the cluster.</param>
 /// <param name="parameterGroupName">The name of the parameter group.</param>
 /// <param name="dbEngine">The engine to use for the new cluster.</param>
 /// <param name="dbEngineVersion">The version of the engine to use.</param>
 /// <param name="adminName">The admin username.</param>
 /// <param name="adminPassword">The primary admin password.</param>
 /// <returns>The cluster object.</returns>
 public async Task<DBCluster> CreateDBClusterWithAdminAsync(
 string dbName,
 string clusterIdentifier,
 string parameterGroupName,
 string dbEngine,
 string dbEngineVersion,
 string adminName,
 string adminPassword)
 {
 var request = new CreateDBClusterRequest
 {
 DatabaseName = dbName,
 DBClusterIdentifier = clusterIdentifier,
 DBClusterParameterGroupName = parameterGroupName,
 Engine = dbEngine,
 EngineVersion = dbEngineVersion,
 MasterUsername = adminName,
 MasterUserPassword = adminPassword,
 };

 var response = await _amazonRDS.CreateDBClusterAsync(request);
 return response.DBCluster;
 }

 /// <summary>
 /// Returns a list of DB instances.
 /// </summary>
 /// <param name="dbInstanceIdentifier">Optional name of a specific DB
 instance.</param>
 /// <returns>List of DB instances.</returns>
 public async Task<List<DBInstance>> DescribeDBInstancesPagedAsync(string?
 dbInstanceIdentifier = null)
 {
 var results = new List<DBInstance>();
 var instancesPaginator = _amazonRDS.Paginators.DescribeDBInstances(
 new DescribeDBInstancesRequest
 {

Get started with DB clusters 3658

Amazon Aurora User Guide for Aurora

 DBInstanceIdentifier = dbInstanceIdentifier
 });
 // Get the entire list using the paginator.
 await foreach (var instances in instancesPaginator.DBInstances)
 {
 results.Add(instances);
 }
 return results;
 }

 /// <summary>
 /// Returns a list of DB clusters.
 /// </summary>
 /// <param name="dbInstanceIdentifier">Optional name of a specific DB
 cluster.</param>
 /// <returns>List of DB clusters.</returns>
 public async Task<List<DBCluster>> DescribeDBClustersPagedAsync(string?
 dbClusterIdentifier = null)
 {
 var results = new List<DBCluster>();

 DescribeDBClustersResponse response;
 DescribeDBClustersRequest request = new DescribeDBClustersRequest
 {
 DBClusterIdentifier = dbClusterIdentifier
 };
 // Get the full list if there are multiple pages.
 do
 {
 response = await _amazonRDS.DescribeDBClustersAsync(request);
 results.AddRange(response.DBClusters);
 request.Marker = response.Marker;
 }
 while (response.Marker is not null);
 return results;
 }

 /// <summary>
 /// Create an Amazon Relational Database Service (Amazon RDS) DB instance
 /// with a particular set of properties. Use the action
 DescribeDBInstancesAsync
 /// to determine when the DB instance is ready to use.
 /// </summary>
 /// <param name="dbInstanceIdentifier">DB instance identifier.</param>

Get started with DB clusters 3659

Amazon Aurora User Guide for Aurora

 /// <param name="dbClusterIdentifier">DB cluster identifier.</param>
 /// <param name="dbEngine">The engine for the DB instance.</param>
 /// <param name="dbEngineVersion">Version for the DB instance.</param>
 /// <param name="instanceClass">Class for the DB instance.</param>
 /// <returns>DB instance object.</returns>
 public async Task<DBInstance> CreateDBInstanceInClusterAsync(
 string dbClusterIdentifier,
 string dbInstanceIdentifier,
 string dbEngine,
 string dbEngineVersion,
 string instanceClass)
 {
 // When creating the instance within a cluster, do not specify the name
 or size.
 var response = await _amazonRDS.CreateDBInstanceAsync(
 new CreateDBInstanceRequest()
 {
 DBClusterIdentifier = dbClusterIdentifier,
 DBInstanceIdentifier = dbInstanceIdentifier,
 Engine = dbEngine,
 EngineVersion = dbEngineVersion,
 DBInstanceClass = instanceClass
 });

 return response.DBInstance;
 }

 /// <summary>
 /// Create a snapshot of a cluster.
 /// </summary>
 /// <param name="dbClusterIdentifier">DB cluster identifier.</param>
 /// <param name="snapshotIdentifier">Identifier for the snapshot.</param>
 /// <returns>DB snapshot object.</returns>
 public async Task<DBClusterSnapshot>
 CreateClusterSnapshotByIdentifierAsync(string dbClusterIdentifier, string
 snapshotIdentifier)
 {
 var response = await _amazonRDS.CreateDBClusterSnapshotAsync(
 new CreateDBClusterSnapshotRequest()
 {
 DBClusterIdentifier = dbClusterIdentifier,
 DBClusterSnapshotIdentifier = snapshotIdentifier,
 });

Get started with DB clusters 3660

Amazon Aurora User Guide for Aurora

 return response.DBClusterSnapshot;
 }

 /// <summary>
 /// Return a list of DB snapshots for a particular DB cluster.
 /// </summary>
 /// <param name="dbClusterIdentifier">DB cluster identifier.</param>
 /// <returns>List of DB snapshots.</returns>
 public async Task<List<DBClusterSnapshot>>
 DescribeDBClusterSnapshotsByIdentifierAsync(string dbClusterIdentifier)
 {
 var results = new List<DBClusterSnapshot>();

 DescribeDBClusterSnapshotsResponse response;
 DescribeDBClusterSnapshotsRequest request = new
 DescribeDBClusterSnapshotsRequest
 {
 DBClusterIdentifier = dbClusterIdentifier
 };
 // Get the full list if there are multiple pages.
 do
 {
 response = await _amazonRDS.DescribeDBClusterSnapshotsAsync(request);
 results.AddRange(response.DBClusterSnapshots);
 request.Marker = response.Marker;
 }
 while (response.Marker is not null);
 return results;
 }

 /// <summary>
 /// Delete a particular DB cluster.
 /// </summary>
 /// <param name="dbClusterIdentifier">DB cluster identifier.</param>
 /// <returns>DB cluster object.</returns>
 public async Task<DBCluster> DeleteDBClusterByIdentifierAsync(string
 dbClusterIdentifier)
 {
 var response = await _amazonRDS.DeleteDBClusterAsync(
 new DeleteDBClusterRequest()
 {
 DBClusterIdentifier = dbClusterIdentifier,
 SkipFinalSnapshot = true
 });

Get started with DB clusters 3661

Amazon Aurora User Guide for Aurora

 return response.DBCluster;
 }

 /// <summary>
 /// Delete a particular DB instance.
 /// </summary>
 /// <param name="dbInstanceIdentifier">DB instance identifier.</param>
 /// <returns>DB instance object.</returns>
 public async Task<DBInstance> DeleteDBInstanceByIdentifierAsync(string
 dbInstanceIdentifier)
 {
 var response = await _amazonRDS.DeleteDBInstanceAsync(
 new DeleteDBInstanceRequest()
 {
 DBInstanceIdentifier = dbInstanceIdentifier,
 SkipFinalSnapshot = true,
 DeleteAutomatedBackups = true
 });

 return response.DBInstance;
 }
}

• For API details, see the following topics in AWS SDK for .NET API Reference.

• CreateDBCluster

• CreateDBClusterParameterGroup

• CreateDBClusterSnapshot

• CreateDBInstance

• DeleteDBCluster

• DeleteDBClusterParameterGroup

• DeleteDBInstance

• DescribeDBClusterParameterGroups

• DescribeDBClusterParameters

• DescribeDBClusterSnapshots

• DescribeDBClusters

• DescribeDBEngineVersions
Get started with DB clusters 3662

https://docs.aws.amazon.com/goto/DotNetSDKV3/rds-2014-10-31/CreateDBCluster
https://docs.aws.amazon.com/goto/DotNetSDKV3/rds-2014-10-31/CreateDBClusterParameterGroup
https://docs.aws.amazon.com/goto/DotNetSDKV3/rds-2014-10-31/CreateDBClusterSnapshot
https://docs.aws.amazon.com/goto/DotNetSDKV3/rds-2014-10-31/CreateDBInstance
https://docs.aws.amazon.com/goto/DotNetSDKV3/rds-2014-10-31/DeleteDBCluster
https://docs.aws.amazon.com/goto/DotNetSDKV3/rds-2014-10-31/DeleteDBClusterParameterGroup
https://docs.aws.amazon.com/goto/DotNetSDKV3/rds-2014-10-31/DeleteDBInstance
https://docs.aws.amazon.com/goto/DotNetSDKV3/rds-2014-10-31/DescribeDBClusterParameterGroups
https://docs.aws.amazon.com/goto/DotNetSDKV3/rds-2014-10-31/DescribeDBClusterParameters
https://docs.aws.amazon.com/goto/DotNetSDKV3/rds-2014-10-31/DescribeDBClusterSnapshots
https://docs.aws.amazon.com/goto/DotNetSDKV3/rds-2014-10-31/DescribeDBClusters
https://docs.aws.amazon.com/goto/DotNetSDKV3/rds-2014-10-31/DescribeDBEngineVersions

Amazon Aurora User Guide for Aurora

• DescribeDBInstances

• DescribeOrderableDBInstanceOptions

• ModifyDBClusterParameterGroup

C++

SDK for C++

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 Aws::Client::ClientConfiguration clientConfig;
 // Optional: Set to the AWS Region (overrides config file).
 // clientConfig.region = "us-east-1";

//! Routine which creates an Amazon Aurora DB cluster and demonstrates several
 operations
//! on that cluster.
/*!
 \sa gettingStartedWithDBClusters()
 \param clientConfiguration: AWS client configuration.
 \return bool: Successful completion.
 */
bool AwsDoc::Aurora::gettingStartedWithDBClusters(
 const Aws::Client::ClientConfiguration &clientConfig) {
 Aws::RDS::RDSClient client(clientConfig);

 printAsterisksLine();
 std::cout << "Welcome to the Amazon Relational Database Service (Amazon
 Aurora)"
 << std::endl;
 std::cout << "get started with DB clusters demo." << std::endl;
 printAsterisksLine();

 std::cout << "Checking for an existing DB cluster parameter group named '" <<
 CLUSTER_PARAMETER_GROUP_NAME << "'." << std::endl;
 Aws::String dbParameterGroupFamily("Undefined");
 bool parameterGroupFound = true;

Get started with DB clusters 3663

https://docs.aws.amazon.com/goto/DotNetSDKV3/rds-2014-10-31/DescribeDBInstances
https://docs.aws.amazon.com/goto/DotNetSDKV3/rds-2014-10-31/DescribeOrderableDBInstanceOptions
https://docs.aws.amazon.com/goto/DotNetSDKV3/rds-2014-10-31/ModifyDBClusterParameterGroup
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/cpp/example_code/aurora#code-examples

Amazon Aurora User Guide for Aurora

 {
 // 1. Check if the DB cluster parameter group already exists.
 Aws::RDS::Model::DescribeDBClusterParameterGroupsRequest request;
 request.SetDBClusterParameterGroupName(CLUSTER_PARAMETER_GROUP_NAME);

 Aws::RDS::Model::DescribeDBClusterParameterGroupsOutcome outcome =
 client.DescribeDBClusterParameterGroups(request);

 if (outcome.IsSuccess()) {
 std::cout << "DB cluster parameter group named '" <<
 CLUSTER_PARAMETER_GROUP_NAME << "' already exists." <<
 std::endl;
 dbParameterGroupFamily =
 outcome.GetResult().GetDBClusterParameterGroups()
[0].GetDBParameterGroupFamily();
 }
 else if (outcome.GetError().GetErrorType() ==
 Aws::RDS::RDSErrors::D_B_PARAMETER_GROUP_NOT_FOUND_FAULT) {
 std::cout << "DB cluster parameter group named '" <<
 CLUSTER_PARAMETER_GROUP_NAME << "' does not exist." <<
 std::endl;
 parameterGroupFound = false;
 }
 else {
 std::cerr << "Error with Aurora::DescribeDBClusterParameterGroups. "
 << outcome.GetError().GetMessage()
 << std::endl;
 return false;
 }
 }

 if (!parameterGroupFound) {
 Aws::Vector<Aws::RDS::Model::DBEngineVersion> engineVersions;

 // 2. Get available parameter group families for the specified engine.
 if (!getDBEngineVersions(DB_ENGINE, NO_PARAMETER_GROUP_FAMILY,
 engineVersions, client)) {
 return false;
 }

 std::cout << "Getting available parameter group families for " <<
 DB_ENGINE
 << "."
 << std::endl;

Get started with DB clusters 3664

Amazon Aurora User Guide for Aurora

 std::vector<Aws::String> families;
 for (const Aws::RDS::Model::DBEngineVersion &version: engineVersions) {
 Aws::String family = version.GetDBParameterGroupFamily();
 if (std::find(families.begin(), families.end(), family) ==
 families.end()) {
 families.push_back(family);
 std::cout << " " << families.size() << ": " << family <<
 std::endl;
 }
 }

 int choice = askQuestionForIntRange("Which family do you want to use? ",
 1,
 static_cast<int>(families.size()));
 dbParameterGroupFamily = families[choice - 1];
 }
 if (!parameterGroupFound) {
 // 3. Create a DB cluster parameter group.
 Aws::RDS::Model::CreateDBClusterParameterGroupRequest request;
 request.SetDBClusterParameterGroupName(CLUSTER_PARAMETER_GROUP_NAME);
 request.SetDBParameterGroupFamily(dbParameterGroupFamily);
 request.SetDescription("Example cluster parameter group.");

 Aws::RDS::Model::CreateDBClusterParameterGroupOutcome outcome =
 client.CreateDBClusterParameterGroup(request);

 if (outcome.IsSuccess()) {
 std::cout << "The DB cluster parameter group was successfully
 created."
 << std::endl;
 }
 else {
 std::cerr << "Error with Aurora::CreateDBClusterParameterGroup. "
 << outcome.GetError().GetMessage()
 << std::endl;
 return false;
 }
 }

 printAsterisksLine();
 std::cout << "Let's set some parameter values in your cluster parameter
 group."
 << std::endl;

Get started with DB clusters 3665

Amazon Aurora User Guide for Aurora

 Aws::Vector<Aws::RDS::Model::Parameter> autoIncrementParameters;
 // 4. Get the parameters in the DB cluster parameter group.
 if (!getDBCLusterParameters(CLUSTER_PARAMETER_GROUP_NAME,
 AUTO_INCREMENT_PREFIX,
 NO_SOURCE,
 autoIncrementParameters,
 client)) {
 cleanUpResources(CLUSTER_PARAMETER_GROUP_NAME, "", "", client);
 return false;
 }

 Aws::Vector<Aws::RDS::Model::Parameter> updateParameters;

 for (Aws::RDS::Model::Parameter &autoIncParameter: autoIncrementParameters) {
 if (autoIncParameter.GetIsModifiable() &&
 (autoIncParameter.GetDataType() == "integer")) {
 std::cout << "The " << autoIncParameter.GetParameterName()
 << " is described as: " <<
 autoIncParameter.GetDescription() << "." << std::endl;
 if (autoIncParameter.ParameterValueHasBeenSet()) {
 std::cout << "The current value is "
 << autoIncParameter.GetParameterValue()
 << "." << std::endl;
 }
 std::vector<int> splitValues = splitToInts(
 autoIncParameter.GetAllowedValues(), '-');
 if (splitValues.size() == 2) {
 int newValue = askQuestionForIntRange(
 Aws::String("Enter a new value between ") +
 autoIncParameter.GetAllowedValues() + ": ",
 splitValues[0], splitValues[1]);
 autoIncParameter.SetParameterValue(std::to_string(newValue));
 updateParameters.push_back(autoIncParameter);

 }
 else {
 std::cerr << "Error parsing " <<
 autoIncParameter.GetAllowedValues()
 << std::endl;
 }
 }
 }

 {

Get started with DB clusters 3666

Amazon Aurora User Guide for Aurora

 // 5. Modify the auto increment parameters in the DB cluster parameter
 group.
 Aws::RDS::Model::ModifyDBClusterParameterGroupRequest request;
 request.SetDBClusterParameterGroupName(CLUSTER_PARAMETER_GROUP_NAME);
 request.SetParameters(updateParameters);

 Aws::RDS::Model::ModifyDBClusterParameterGroupOutcome outcome =
 client.ModifyDBClusterParameterGroup(request);

 if (outcome.IsSuccess()) {
 std::cout << "The DB cluster parameter group was successfully
 modified."
 << std::endl;
 }
 else {
 std::cerr << "Error with Aurora::ModifyDBClusterParameterGroup. "
 << outcome.GetError().GetMessage()
 << std::endl;
 }
 }

 std::cout
 << "You can get a list of parameters you've set by specifying a
 source of 'user'."
 << std::endl;

 Aws::Vector<Aws::RDS::Model::Parameter> userParameters;
 // 6. Display the modified parameters in the DB cluster parameter group.
 if (!getDBCLusterParameters(CLUSTER_PARAMETER_GROUP_NAME, NO_NAME_PREFIX,
 "user",
 userParameters,
 client)) {
 cleanUpResources(CLUSTER_PARAMETER_GROUP_NAME, "", "", client);
 return false;
 }

 for (const auto &userParameter: userParameters) {
 std::cout << " " << userParameter.GetParameterName() << ", " <<
 userParameter.GetDescription() << ", parameter value - "
 << userParameter.GetParameterValue() << std::endl;
 }

 printAsterisksLine();
 std::cout << "Checking for an existing DB Cluster." << std::endl;

Get started with DB clusters 3667

Amazon Aurora User Guide for Aurora

 Aws::RDS::Model::DBCluster dbCluster;
 // 7. Check if the DB cluster already exists.
 if (!describeDBCluster(DB_CLUSTER_IDENTIFIER, dbCluster, client)) {
 cleanUpResources(CLUSTER_PARAMETER_GROUP_NAME, "", "", client);
 return false;
 }

 Aws::String engineVersionName;
 Aws::String engineName;
 if (dbCluster.DBClusterIdentifierHasBeenSet()) {
 std::cout << "The DB cluster already exists." << std::endl;
 engineVersionName = dbCluster.GetEngineVersion();
 engineName = dbCluster.GetEngine();

 }
 else {
 std::cout << "Let's create a DB cluster." << std::endl;
 const Aws::String administratorName = askQuestion(
 "Enter an administrator username for the database: ");
 const Aws::String administratorPassword = askQuestion(
 "Enter a password for the administrator (at least 8 characters):
 ");
 Aws::Vector<Aws::RDS::Model::DBEngineVersion> engineVersions;

 // 8. Get a list of engine versions for the parameter group family.
 if (!getDBEngineVersions(DB_ENGINE, dbParameterGroupFamily,
 engineVersions,
 client)) {
 cleanUpResources(CLUSTER_PARAMETER_GROUP_NAME, "", "", client);
 return false;
 }

 std::cout << "The available engines for your parameter group family are:"
 << std::endl;

 int index = 1;
 for (const Aws::RDS::Model::DBEngineVersion &engineVersion:
 engineVersions) {
 std::cout << " " << index << ": " <<
 engineVersion.GetEngineVersion()
 << std::endl;
 ++index;
 }

Get started with DB clusters 3668

Amazon Aurora User Guide for Aurora

 int choice = askQuestionForIntRange("Which engine do you want to use? ",
 1,

 static_cast<int>(engineVersions.size()));
 const Aws::RDS::Model::DBEngineVersion engineVersion =
 engineVersions[choice -
 1];

 engineName = engineVersion.GetEngine();
 engineVersionName = engineVersion.GetEngineVersion();
 std::cout << "Creating a DB cluster named '" << DB_CLUSTER_IDENTIFIER
 << "' and database '" << DB_NAME << "'.\n"
 << "The DB cluster is configured to use your custom cluster
 parameter group '"
 << CLUSTER_PARAMETER_GROUP_NAME << "', and \n"
 << "selected engine version " <<
 engineVersion.GetEngineVersion()
 << ".\nThis typically takes several minutes." << std::endl;

 Aws::RDS::Model::CreateDBClusterRequest request;
 request.SetDBClusterIdentifier(DB_CLUSTER_IDENTIFIER);
 request.SetDBClusterParameterGroupName(CLUSTER_PARAMETER_GROUP_NAME);
 request.SetEngine(engineName);
 request.SetEngineVersion(engineVersionName);
 request.SetMasterUsername(administratorName);
 request.SetMasterUserPassword(administratorPassword);

 Aws::RDS::Model::CreateDBClusterOutcome outcome =
 client.CreateDBCluster(request);

 if (outcome.IsSuccess()) {
 std::cout << "The DB cluster creation has started."
 << std::endl;
 }
 else {
 std::cerr << "Error with Aurora::CreateDBCluster. "
 << outcome.GetError().GetMessage()
 << std::endl;
 cleanUpResources(CLUSTER_PARAMETER_GROUP_NAME, "", "", client);
 return false;
 }
 }

 std::cout << "Waiting for the DB cluster to become available." << std::endl;

Get started with DB clusters 3669

Amazon Aurora User Guide for Aurora

 int counter = 0;
 // 11. Wait for the DB cluster to become available.
 do {
 std::this_thread::sleep_for(std::chrono::seconds(1));
 ++counter;
 if (counter > 900) {
 std::cerr << "Wait for cluster to become available timed out ofter "
 << counter
 << " seconds." << std::endl;
 cleanUpResources(CLUSTER_PARAMETER_GROUP_NAME,
 DB_CLUSTER_IDENTIFIER, "", client);
 return false;
 }

 dbCluster = Aws::RDS::Model::DBCluster();
 if (!describeDBCluster(DB_CLUSTER_IDENTIFIER, dbCluster, client)) {
 cleanUpResources(CLUSTER_PARAMETER_GROUP_NAME,
 DB_CLUSTER_IDENTIFIER, "", client);
 return false;
 }

 if ((counter % 20) == 0) {
 std::cout << "Current DB cluster status is '"
 << dbCluster.GetStatus()
 << "' after " << counter << " seconds." << std::endl;
 }
 } while (dbCluster.GetStatus() != "available");

 if (dbCluster.GetStatus() == "available") {
 std::cout << "The DB cluster has been created." << std::endl;
 }

 printAsterisksLine();
 Aws::RDS::Model::DBInstance dbInstance;
 // 11. Check if the DB instance already exists.
 if (!describeDBInstance(DB_INSTANCE_IDENTIFIER, dbInstance, client)) {
 cleanUpResources(CLUSTER_PARAMETER_GROUP_NAME, DB_CLUSTER_IDENTIFIER, "",
 client);
 return false;
 }

 if (dbInstance.DbInstancePortHasBeenSet()) {
 std::cout << "The DB instance already exists." << std::endl;

Get started with DB clusters 3670

Amazon Aurora User Guide for Aurora

 }
 else {
 std::cout << "Let's create a DB instance." << std::endl;

 Aws::String dbInstanceClass;
 // 12. Get a list of instance classes.
 if (!chooseDBInstanceClass(engineName,
 engineVersionName,
 dbInstanceClass,
 client)) {
 cleanUpResources(CLUSTER_PARAMETER_GROUP_NAME, DB_CLUSTER_IDENTIFIER,
 "",
 client);
 return false;
 }

 std::cout << "Creating a DB instance named '" << DB_INSTANCE_IDENTIFIER
 << "' with selected DB instance class '" << dbInstanceClass
 << "'.\nThis typically takes several minutes." << std::endl;

 // 13. Create a DB instance.
 Aws::RDS::Model::CreateDBInstanceRequest request;
 request.SetDBInstanceIdentifier(DB_INSTANCE_IDENTIFIER);
 request.SetDBClusterIdentifier(DB_CLUSTER_IDENTIFIER);
 request.SetEngine(engineName);
 request.SetDBInstanceClass(dbInstanceClass);

 Aws::RDS::Model::CreateDBInstanceOutcome outcome =
 client.CreateDBInstance(request);

 if (outcome.IsSuccess()) {
 std::cout << "The DB instance creation has started."
 << std::endl;
 }
 else {
 std::cerr << "Error with RDS::CreateDBInstance. "
 << outcome.GetError().GetMessage()
 << std::endl;
 cleanUpResources(CLUSTER_PARAMETER_GROUP_NAME, DB_CLUSTER_IDENTIFIER,
 "",
 client);
 return false;
 }
 }

Get started with DB clusters 3671

Amazon Aurora User Guide for Aurora

 std::cout << "Waiting for the DB instance to become available." << std::endl;

 counter = 0;
 // 14. Wait for the DB instance to become available.
 do {
 std::this_thread::sleep_for(std::chrono::seconds(1));
 ++counter;
 if (counter > 900) {
 std::cerr << "Wait for instance to become available timed out ofter "
 << counter
 << " seconds." << std::endl;
 cleanUpResources(CLUSTER_PARAMETER_GROUP_NAME,
 DB_CLUSTER_IDENTIFIER, DB_INSTANCE_IDENTIFIER,
 client);
 return false;
 }

 dbInstance = Aws::RDS::Model::DBInstance();
 if (!describeDBInstance(DB_INSTANCE_IDENTIFIER, dbInstance, client)) {
 cleanUpResources(CLUSTER_PARAMETER_GROUP_NAME,
 DB_CLUSTER_IDENTIFIER, DB_INSTANCE_IDENTIFIER,
 client);
 return false;
 }

 if ((counter % 20) == 0) {
 std::cout << "Current DB instance status is '"
 << dbInstance.GetDBInstanceStatus()
 << "' after " << counter << " seconds." << std::endl;
 }
 } while (dbInstance.GetDBInstanceStatus() != "available");

 if (dbInstance.GetDBInstanceStatus() == "available") {
 std::cout << "The DB instance has been created." << std::endl;
 }

 // 15. Display the connection string that can be used to connect a 'mysql'
 shell to the database.
 displayConnection(dbCluster);

 printAsterisksLine();

 if (askYesNoQuestion(

Get started with DB clusters 3672

Amazon Aurora User Guide for Aurora

 "Do you want to create a snapshot of your DB cluster (y/n)? ")) {
 Aws::String snapshotID(DB_CLUSTER_IDENTIFIER + "-" +
 Aws::String(Aws::Utils::UUID::RandomUUID()));
 {
 std::cout << "Creating a snapshot named " << snapshotID << "." <<
 std::endl;
 std::cout << "This typically takes a few minutes." << std::endl;

 // 16. Create a snapshot of the DB cluster. (CreateDBClusterSnapshot)
 Aws::RDS::Model::CreateDBClusterSnapshotRequest request;
 request.SetDBClusterIdentifier(DB_CLUSTER_IDENTIFIER);
 request.SetDBClusterSnapshotIdentifier(snapshotID);

 Aws::RDS::Model::CreateDBClusterSnapshotOutcome outcome =
 client.CreateDBClusterSnapshot(request);

 if (outcome.IsSuccess()) {
 std::cout << "Snapshot creation has started."
 << std::endl;
 }
 else {
 std::cerr << "Error with Aurora::CreateDBClusterSnapshot. "
 << outcome.GetError().GetMessage()
 << std::endl;
 cleanUpResources(CLUSTER_PARAMETER_GROUP_NAME,
 DB_CLUSTER_IDENTIFIER, DB_INSTANCE_IDENTIFIER,
 client);
 return false;
 }
 }

 std::cout << "Waiting for the snapshot to become available." <<
 std::endl;

 Aws::RDS::Model::DBClusterSnapshot snapshot;
 counter = 0;
 do {
 std::this_thread::sleep_for(std::chrono::seconds(1));
 ++counter;
 if (counter > 600) {
 std::cerr << "Wait for snapshot to be available timed out ofter "
 << counter
 << " seconds." << std::endl;
 cleanUpResources(CLUSTER_PARAMETER_GROUP_NAME,

Get started with DB clusters 3673

Amazon Aurora User Guide for Aurora

 DB_CLUSTER_IDENTIFIER, DB_INSTANCE_IDENTIFIER,
 client);
 return false;
 }

 // 17. Wait for the snapshot to become available.
 Aws::RDS::Model::DescribeDBClusterSnapshotsRequest request;
 request.SetDBClusterSnapshotIdentifier(snapshotID);

 Aws::RDS::Model::DescribeDBClusterSnapshotsOutcome outcome =
 client.DescribeDBClusterSnapshots(request);

 if (outcome.IsSuccess()) {
 snapshot = outcome.GetResult().GetDBClusterSnapshots()[0];
 }
 else {
 std::cerr << "Error with Aurora::DescribeDBClusterSnapshots. "
 << outcome.GetError().GetMessage()
 << std::endl;
 cleanUpResources(CLUSTER_PARAMETER_GROUP_NAME,
 DB_CLUSTER_IDENTIFIER, DB_INSTANCE_IDENTIFIER,
 client);
 return false;
 }

 if ((counter % 20) == 0) {
 std::cout << "Current snapshot status is '"
 << snapshot.GetStatus()
 << "' after " << counter << " seconds." << std::endl;
 }
 } while (snapshot.GetStatus() != "available");

 if (snapshot.GetStatus() != "available") {
 std::cout << "A snapshot has been created." << std::endl;
 }
 }

 printAsterisksLine();

 bool result = true;
 if (askYesNoQuestion(
 "Do you want to delete the DB cluster, DB instance, and parameter
 group (y/n)? ")) {
 result = cleanUpResources(CLUSTER_PARAMETER_GROUP_NAME,

Get started with DB clusters 3674

Amazon Aurora User Guide for Aurora

 DB_CLUSTER_IDENTIFIER, DB_INSTANCE_IDENTIFIER,
 client);
 }

 return result;
}

//! Routine which gets a DB cluster description.
/*!
 \sa describeDBCluster()
 \param dbClusterIdentifier: A DB cluster identifier.
 \param clusterResult: The 'DBCluster' object containing the description.
 \param client: 'RDSClient' instance.
 \return bool: Successful completion.
 */
bool AwsDoc::Aurora::describeDBCluster(const Aws::String &dbClusterIdentifier,
 Aws::RDS::Model::DBCluster &clusterResult,
 const Aws::RDS::RDSClient &client) {
 Aws::RDS::Model::DescribeDBClustersRequest request;
 request.SetDBClusterIdentifier(dbClusterIdentifier);

 Aws::RDS::Model::DescribeDBClustersOutcome outcome =
 client.DescribeDBClusters(request);

 bool result = true;
 if (outcome.IsSuccess()) {
 clusterResult = outcome.GetResult().GetDBClusters()[0];
 }
 else if (outcome.GetError().GetErrorType() !=
 Aws::RDS::RDSErrors::D_B_CLUSTER_NOT_FOUND_FAULT) {
 result = false;
 std::cerr << "Error with Aurora::GDescribeDBClusters. "
 << outcome.GetError().GetMessage()
 << std::endl;
 }
 // This example does not log an error if the DB cluster does not exist.
 // Instead, clusterResult is set to empty.
 else {
 clusterResult = Aws::RDS::Model::DBCluster();
 }

 return result;

}

Get started with DB clusters 3675

Amazon Aurora User Guide for Aurora

//! Routine which gets DB parameters using the 'DescribeDBClusterParameters' api.
/*!
 \sa getDBCLusterParameters()
 \param parameterGroupName: The name of the cluster parameter group.
 \param namePrefix: Prefix string to filter results by parameter name.
 \param source: A source such as 'user', ignored if empty.
 \param parametersResult: Vector of 'Parameter' objects returned by the routine.
 \param client: 'RDSClient' instance.
 \return bool: Successful completion.
 */
bool AwsDoc::Aurora::getDBCLusterParameters(const Aws::String
 ¶meterGroupName,
 const Aws::String &namePrefix,
 const Aws::String &source,

 Aws::Vector<Aws::RDS::Model::Parameter> ¶metersResult,
 const Aws::RDS::RDSClient &client) {
 Aws::String marker; // The marker is used for pagination.
 do {
 Aws::RDS::Model::DescribeDBClusterParametersRequest request;
 request.SetDBClusterParameterGroupName(CLUSTER_PARAMETER_GROUP_NAME);
 if (!marker.empty()) {
 request.SetMarker(marker);
 }
 if (!source.empty()) {
 request.SetSource(source);
 }

 Aws::RDS::Model::DescribeDBClusterParametersOutcome outcome =
 client.DescribeDBClusterParameters(request);

 if (outcome.IsSuccess()) {
 const Aws::Vector<Aws::RDS::Model::Parameter> ¶meters =
 outcome.GetResult().GetParameters();
 for (const Aws::RDS::Model::Parameter ¶meter: parameters) {
 if (!namePrefix.empty()) {
 if (parameter.GetParameterName().find(namePrefix) == 0) {
 parametersResult.push_back(parameter);
 }
 }
 else {
 parametersResult.push_back(parameter);

Get started with DB clusters 3676

Amazon Aurora User Guide for Aurora

 }
 }

 marker = outcome.GetResult().GetMarker();
 }
 else {
 std::cerr << "Error with Aurora::DescribeDBClusterParameters. "
 << outcome.GetError().GetMessage()
 << std::endl;
 return false;
 }
 } while (!marker.empty());

 return true;
}

//! Routine which gets available DB engine versions for an engine name and
//! an optional parameter group family.
/*!
 \sa getDBEngineVersions()
 \param engineName: A DB engine name.
 \param parameterGroupFamily: A parameter group family name, ignored if empty.
 \param engineVersionsResult: Vector of 'DBEngineVersion' objects returned by the
 routine.
 \param client: 'RDSClient' instance.
 \return bool: Successful completion.
 */
bool AwsDoc::Aurora::getDBEngineVersions(const Aws::String &engineName,
 const Aws::String ¶meterGroupFamily,

 Aws::Vector<Aws::RDS::Model::DBEngineVersion> &engineVersionsResult,
 const Aws::RDS::RDSClient &client) {
 Aws::RDS::Model::DescribeDBEngineVersionsRequest request;
 request.SetEngine(engineName);
 if (!parameterGroupFamily.empty()) {
 request.SetDBParameterGroupFamily(parameterGroupFamily);
 }

 engineVersionsResult.clear();
 Aws::String marker; // The marker is used for pagination.
 do {
 if (!marker.empty()) {
 request.SetMarker(marker);

Get started with DB clusters 3677

Amazon Aurora User Guide for Aurora

 }

 Aws::RDS::Model::DescribeDBEngineVersionsOutcome outcome =
 client.DescribeDBEngineVersions(request);

 if (outcome.IsSuccess()) {
 const Aws::Vector<Aws::RDS::Model::DBEngineVersion> &engineVersions =
 outcome.GetResult().GetDBEngineVersions();

 engineVersionsResult.insert(engineVersionsResult.end(),
 engineVersions.begin(),
 engineVersions.end());
 marker = outcome.GetResult().GetMarker();
 }
 else {
 std::cerr << "Error with Aurora::DescribeDBEngineVersionsRequest. "
 << outcome.GetError().GetMessage()
 << std::endl;
 }
 } while (!marker.empty());

 return true;
}

//! Routine which gets a DB instance description.
/*!
 \sa describeDBCluster()
 \param dbInstanceIdentifier: A DB instance identifier.
 \param instanceResult: The 'DBInstance' object containing the description.
 \param client: 'RDSClient' instance.
 \return bool: Successful completion.
 */
bool AwsDoc::Aurora::describeDBInstance(const Aws::String &dbInstanceIdentifier,
 Aws::RDS::Model::DBInstance
 &instanceResult,
 const Aws::RDS::RDSClient &client) {
 Aws::RDS::Model::DescribeDBInstancesRequest request;
 request.SetDBInstanceIdentifier(dbInstanceIdentifier);

 Aws::RDS::Model::DescribeDBInstancesOutcome outcome =
 client.DescribeDBInstances(request);

 bool result = true;

Get started with DB clusters 3678

Amazon Aurora User Guide for Aurora

 if (outcome.IsSuccess()) {
 instanceResult = outcome.GetResult().GetDBInstances()[0];
 }
 else if (outcome.GetError().GetErrorType() !=
 Aws::RDS::RDSErrors::D_B_INSTANCE_NOT_FOUND_FAULT) {
 result = false;
 std::cerr << "Error with Aurora::DescribeDBInstances. "
 << outcome.GetError().GetMessage()
 << std::endl;
 }
 // This example does not log an error if the DB instance does not exist.
 // Instead, instanceResult is set to empty.
 else {
 instanceResult = Aws::RDS::Model::DBInstance();
 }

 return result;
}

//! Routine which gets available DB instance classes, displays the list
//! to the user, and returns the user selection.
/*!
 \sa chooseDBInstanceClass()
 \param engineName: The DB engine name.
 \param engineVersion: The DB engine version.
 \param dbInstanceClass: String for DB instance class chosen by the user.
 \param client: 'RDSClient' instance.
 \return bool: Successful completion.
 */
bool AwsDoc::Aurora::chooseDBInstanceClass(const Aws::String &engine,
 const Aws::String &engineVersion,
 Aws::String &dbInstanceClass,
 const Aws::RDS::RDSClient &client) {
 std::vector<Aws::String> instanceClasses;
 Aws::String marker; // The marker is used for pagination.
 do {
 Aws::RDS::Model::DescribeOrderableDBInstanceOptionsRequest request;
 request.SetEngine(engine);
 request.SetEngineVersion(engineVersion);
 if (!marker.empty()) {
 request.SetMarker(marker);
 }

Get started with DB clusters 3679

Amazon Aurora User Guide for Aurora

 Aws::RDS::Model::DescribeOrderableDBInstanceOptionsOutcome outcome =
 client.DescribeOrderableDBInstanceOptions(request);

 if (outcome.IsSuccess()) {
 const Aws::Vector<Aws::RDS::Model::OrderableDBInstanceOption>
 &options =
 outcome.GetResult().GetOrderableDBInstanceOptions();
 for (const Aws::RDS::Model::OrderableDBInstanceOption &option:
 options) {
 const Aws::String &instanceClass = option.GetDBInstanceClass();
 if (std::find(instanceClasses.begin(), instanceClasses.end(),
 instanceClass) == instanceClasses.end()) {
 instanceClasses.push_back(instanceClass);
 }
 }
 marker = outcome.GetResult().GetMarker();
 }
 else {
 std::cerr << "Error with Aurora::DescribeOrderableDBInstanceOptions.
 "
 << outcome.GetError().GetMessage()
 << std::endl;
 return false;
 }
 } while (!marker.empty());

 std::cout << "The available DB instance classes for your database engine
 are:"
 << std::endl;
 for (int i = 0; i < instanceClasses.size(); ++i) {
 std::cout << " " << i + 1 << ": " << instanceClasses[i] << std::endl;
 }

 int choice = askQuestionForIntRange(
 "Which DB instance class do you want to use? ",
 1, static_cast<int>(instanceClasses.size()));
 dbInstanceClass = instanceClasses[choice - 1];
 return true;
}

//! Routine which deletes resources created by the scenario.
/*!
\sa cleanUpResources()
\param parameterGroupName: A parameter group name, this may be empty.

Get started with DB clusters 3680

Amazon Aurora User Guide for Aurora

\param dbInstanceIdentifier: A DB instance identifier, this may be empty.
\param client: 'RDSClient' instance.
\return bool: Successful completion.
*/
bool AwsDoc::Aurora::cleanUpResources(const Aws::String ¶meterGroupName,
 const Aws::String &dbClusterIdentifier,
 const Aws::String &dbInstanceIdentifier,
 const Aws::RDS::RDSClient &client) {
 bool result = true;
 bool instanceDeleting = false;
 bool clusterDeleting = false;
 if (!dbInstanceIdentifier.empty()) {
 {
 // 18. Delete the DB instance.
 Aws::RDS::Model::DeleteDBInstanceRequest request;
 request.SetDBInstanceIdentifier(dbInstanceIdentifier);
 request.SetSkipFinalSnapshot(true);
 request.SetDeleteAutomatedBackups(true);

 Aws::RDS::Model::DeleteDBInstanceOutcome outcome =
 client.DeleteDBInstance(request);

 if (outcome.IsSuccess()) {
 std::cout << "DB instance deletion has started."
 << std::endl;
 instanceDeleting = true;
 std::cout
 << "Waiting for DB instance to delete before deleting the
 parameter group."
 << std::endl;
 }
 else {
 std::cerr << "Error with Aurora::DeleteDBInstance. "
 << outcome.GetError().GetMessage()
 << std::endl;
 result = false;
 }
 }
 }

 if (!dbClusterIdentifier.empty()) {
 {
 // 19. Delete the DB cluster.
 Aws::RDS::Model::DeleteDBClusterRequest request;

Get started with DB clusters 3681

Amazon Aurora User Guide for Aurora

 request.SetDBClusterIdentifier(dbClusterIdentifier);
 request.SetSkipFinalSnapshot(true);

 Aws::RDS::Model::DeleteDBClusterOutcome outcome =
 client.DeleteDBCluster(request);

 if (outcome.IsSuccess()) {
 std::cout << "DB cluster deletion has started."
 << std::endl;
 clusterDeleting = true;
 std::cout
 << "Waiting for DB cluster to delete before deleting the
 parameter group."
 << std::endl;
 std::cout << "This may take a while." << std::endl;
 }
 else {
 std::cerr << "Error with Aurora::DeleteDBCluster. "
 << outcome.GetError().GetMessage()
 << std::endl;
 result = false;
 }
 }
 }
 int counter = 0;

 while (clusterDeleting || instanceDeleting) {
 // 20. Wait for the DB cluster and instance to be deleted.
 std::this_thread::sleep_for(std::chrono::seconds(1));
 ++counter;
 if (counter > 800) {
 std::cerr << "Wait for instance to delete timed out ofter " <<
 counter
 << " seconds." << std::endl;
 return false;
 }

 Aws::RDS::Model::DBInstance dbInstance = Aws::RDS::Model::DBInstance();
 if (instanceDeleting) {
 if (!describeDBInstance(dbInstanceIdentifier, dbInstance, client)) {
 return false;
 }
 instanceDeleting = dbInstance.DBInstanceIdentifierHasBeenSet();
 }

Get started with DB clusters 3682

Amazon Aurora User Guide for Aurora

 Aws::RDS::Model::DBCluster dbCluster = Aws::RDS::Model::DBCluster();
 if (clusterDeleting) {
 if (!describeDBCluster(dbClusterIdentifier, dbCluster, client)) {
 return false;
 }

 clusterDeleting = dbCluster.DBClusterIdentifierHasBeenSet();
 }

 if ((counter % 20) == 0) {
 if (instanceDeleting) {
 std::cout << "Current DB instance status is '"
 << dbInstance.GetDBInstanceStatus() << "." <<
 std::endl;
 }

 if (clusterDeleting) {
 std::cout << "Current DB cluster status is '"
 << dbCluster.GetStatus() << "." << std::endl;
 }
 }
 }

 if (!parameterGroupName.empty()) {
 // 21. Delete the DB cluster parameter group.
 Aws::RDS::Model::DeleteDBClusterParameterGroupRequest request;
 request.SetDBClusterParameterGroupName(parameterGroupName);

 Aws::RDS::Model::DeleteDBClusterParameterGroupOutcome outcome =
 client.DeleteDBClusterParameterGroup(request);

 if (outcome.IsSuccess()) {
 std::cout << "The DB parameter group was successfully deleted."
 << std::endl;
 }
 else {
 std::cerr << "Error with Aurora::DeleteDBClusterParameterGroup. "
 << outcome.GetError().GetMessage()
 << std::endl;
 result = false;
 }
 }

Get started with DB clusters 3683

Amazon Aurora User Guide for Aurora

 return result;
}

• For API details, see the following topics in AWS SDK for C++ API Reference.

• CreateDBCluster

• CreateDBClusterParameterGroup

• CreateDBClusterSnapshot

• CreateDBInstance

• DeleteDBCluster

• DeleteDBClusterParameterGroup

• DeleteDBInstance

• DescribeDBClusterParameterGroups

• DescribeDBClusterParameters

• DescribeDBClusterSnapshots

• DescribeDBClusters

• DescribeDBEngineVersions

• DescribeDBInstances

• DescribeOrderableDBInstanceOptions

• ModifyDBClusterParameterGroup

Go

SDK for Go V2

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Run an interactive scenario at a command prompt.

Get started with DB clusters 3684

https://docs.aws.amazon.com/goto/SdkForCpp/rds-2014-10-31/CreateDBCluster
https://docs.aws.amazon.com/goto/SdkForCpp/rds-2014-10-31/CreateDBClusterParameterGroup
https://docs.aws.amazon.com/goto/SdkForCpp/rds-2014-10-31/CreateDBClusterSnapshot
https://docs.aws.amazon.com/goto/SdkForCpp/rds-2014-10-31/CreateDBInstance
https://docs.aws.amazon.com/goto/SdkForCpp/rds-2014-10-31/DeleteDBCluster
https://docs.aws.amazon.com/goto/SdkForCpp/rds-2014-10-31/DeleteDBClusterParameterGroup
https://docs.aws.amazon.com/goto/SdkForCpp/rds-2014-10-31/DeleteDBInstance
https://docs.aws.amazon.com/goto/SdkForCpp/rds-2014-10-31/DescribeDBClusterParameterGroups
https://docs.aws.amazon.com/goto/SdkForCpp/rds-2014-10-31/DescribeDBClusterParameters
https://docs.aws.amazon.com/goto/SdkForCpp/rds-2014-10-31/DescribeDBClusterSnapshots
https://docs.aws.amazon.com/goto/SdkForCpp/rds-2014-10-31/DescribeDBClusters
https://docs.aws.amazon.com/goto/SdkForCpp/rds-2014-10-31/DescribeDBEngineVersions
https://docs.aws.amazon.com/goto/SdkForCpp/rds-2014-10-31/DescribeDBInstances
https://docs.aws.amazon.com/goto/SdkForCpp/rds-2014-10-31/DescribeOrderableDBInstanceOptions
https://docs.aws.amazon.com/goto/SdkForCpp/rds-2014-10-31/ModifyDBClusterParameterGroup
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/gov2/aurora#code-examples

Amazon Aurora User Guide for Aurora

// GetStartedClusters is an interactive example that shows you how to use the AWS
 SDK for Go
// with Amazon Aurora to do the following:
//
// 1. Create a custom DB cluster parameter group and set parameter values.
// 2. Create an Aurora DB cluster that is configured to use the parameter group.
// 3. Create a DB instance in the DB cluster that contains a database.
// 4. Take a snapshot of the DB cluster.
// 5. Delete the DB instance, DB cluster, and parameter group.
type GetStartedClusters struct {
 sdkConfig aws.Config
 dbClusters actions.DbClusters
 questioner demotools.IQuestioner
 helper IScenarioHelper
 isTestRun bool
}

// NewGetStartedClusters constructs a GetStartedClusters instance from a
 configuration.
// It uses the specified config to get an Amazon Relational Database Service
 (Amazon RDS)
// client and create wrappers for the actions used in the scenario.
func NewGetStartedClusters(sdkConfig aws.Config, questioner
 demotools.IQuestioner,
 helper IScenarioHelper) GetStartedClusters {
 auroraClient := rds.NewFromConfig(sdkConfig)
 return GetStartedClusters{
 sdkConfig: sdkConfig,
 dbClusters: actions.DbClusters{AuroraClient: auroraClient},
 questioner: questioner,
 helper: helper,
 }
}

// Run runs the interactive scenario.
func (scenario GetStartedClusters) Run(dbEngine string, parameterGroupName
 string,
 clusterName string, dbName string) {
 defer func() {
 if r := recover(); r != nil {
 log.Println("Something went wrong with the demo.")
 }
 }()

Get started with DB clusters 3685

Amazon Aurora User Guide for Aurora

 log.Println(strings.Repeat("-", 88))
 log.Println("Welcome to the Amazon Aurora DB Cluster demo.")
 log.Println(strings.Repeat("-", 88))

 parameterGroup := scenario.CreateParameterGroup(dbEngine, parameterGroupName)
 scenario.SetUserParameters(parameterGroupName)
 cluster := scenario.CreateCluster(clusterName, dbEngine, dbName, parameterGroup)
 scenario.helper.Pause(5)
 dbInstance := scenario.CreateInstance(cluster)
 scenario.DisplayConnection(cluster)
 scenario.CreateSnapshot(clusterName)
 scenario.Cleanup(dbInstance, cluster, parameterGroup)

 log.Println(strings.Repeat("-", 88))
 log.Println("Thanks for watching!")
 log.Println(strings.Repeat("-", 88))
}

// CreateParameterGroup shows how to get available engine versions for a
 specified
// database engine and create a DB cluster parameter group that is compatible
 with a
// selected engine family.
func (scenario GetStartedClusters) CreateParameterGroup(dbEngine string,
 parameterGroupName string) *types.DBClusterParameterGroup {

 log.Printf("Checking for an existing DB cluster parameter group named %v.\n",
 parameterGroupName)
 parameterGroup, err := scenario.dbClusters.GetParameterGroup(parameterGroupName)
 if err != nil {
 panic(err)
 }
 if parameterGroup == nil {
 log.Printf("Getting available database engine versions for %v.\n", dbEngine)
 engineVersions, err := scenario.dbClusters.GetEngineVersions(dbEngine, "")
 if err != nil {
 panic(err)
 }

 familySet := map[string]struct{}{}
 for _, family := range engineVersions {
 familySet[*family.DBParameterGroupFamily] = struct{}{}
 }
 var families []string

Get started with DB clusters 3686

Amazon Aurora User Guide for Aurora

 for family := range familySet {
 families = append(families, family)
 }
 sort.Strings(families)
 familyIndex := scenario.questioner.AskChoice("Which family do you want to use?
\n", families)
 log.Println("Creating a DB cluster parameter group.")
 _, err = scenario.dbClusters.CreateParameterGroup(
 parameterGroupName, families[familyIndex], "Example parameter group.")
 if err != nil {
 panic(err)
 }
 parameterGroup, err = scenario.dbClusters.GetParameterGroup(parameterGroupName)
 if err != nil {
 panic(err)
 }
 }
 log.Printf("Parameter group %v:\n", *parameterGroup.DBParameterGroupFamily)
 log.Printf("\tName: %v\n", *parameterGroup.DBClusterParameterGroupName)
 log.Printf("\tARN: %v\n", *parameterGroup.DBClusterParameterGroupArn)
 log.Printf("\tFamily: %v\n", *parameterGroup.DBParameterGroupFamily)
 log.Printf("\tDescription: %v\n", *parameterGroup.Description)
 log.Println(strings.Repeat("-", 88))
 return parameterGroup

}

// SetUserParameters shows how to get the parameters contained in a custom
 parameter
// group and update some of the parameter values in the group.
func (scenario GetStartedClusters) SetUserParameters(parameterGroupName string) {
 log.Println("Let's set some parameter values in your parameter group.")
 dbParameters, err := scenario.dbClusters.GetParameters(parameterGroupName, "")
 if err != nil {
 panic(err)
 }
 var updateParams []types.Parameter
 for _, dbParam := range dbParameters {
 if strings.HasPrefix(*dbParam.ParameterName, "auto_increment") &&
 dbParam.IsModifiable && *dbParam.DataType == "integer" {
 log.Printf("The %v parameter is described as:\n\t%v",
 *dbParam.ParameterName, *dbParam.Description)
 rangeSplit := strings.Split(*dbParam.AllowedValues, "-")
 lower, _ := strconv.Atoi(rangeSplit[0])

Get started with DB clusters 3687

Amazon Aurora User Guide for Aurora

 upper, _ := strconv.Atoi(rangeSplit[1])
 newValue := scenario.questioner.AskInt(
 fmt.Sprintf("Enter a value between %v and %v:", lower, upper),
 demotools.InIntRange{Lower: lower, Upper: upper})
 dbParam.ParameterValue = aws.String(strconv.Itoa(newValue))
 updateParams = append(updateParams, dbParam)
 }
 }
 err = scenario.dbClusters.UpdateParameters(parameterGroupName, updateParams)
 if err != nil {
 panic(err)
 }
 log.Println("You can get a list of parameters you've set by specifying a source
 of 'user'.")
 userParameters, err := scenario.dbClusters.GetParameters(parameterGroupName,
 "user")
 if err != nil {
 panic(err)
 }
 log.Println("Here are the parameters you've set:")
 for _, param := range userParameters {
 log.Printf("\t%v: %v\n", *param.ParameterName, *param.ParameterValue)
 }
 log.Println(strings.Repeat("-", 88))
}

// CreateCluster shows how to create an Aurora DB cluster that contains a
 database
// of a specified type. The database is also configured to use a custom DB
 cluster
// parameter group.
func (scenario GetStartedClusters) CreateCluster(clusterName string, dbEngine
 string,
 dbName string, parameterGroup *types.DBClusterParameterGroup) *types.DBCluster {

 log.Println("Checking for an existing DB cluster.")
 cluster, err := scenario.dbClusters.GetDbCluster(clusterName)
 if err != nil {
 panic(err)
 }
 if cluster == nil {
 adminUsername := scenario.questioner.Ask(
 "Enter an administrator user name for the database: ", demotools.NotEmpty{})
 adminPassword := scenario.questioner.Ask(

Get started with DB clusters 3688

Amazon Aurora User Guide for Aurora

 "Enter a password for the administrator (at least 8 characters): ",
 demotools.NotEmpty{})
 engineVersions, err := scenario.dbClusters.GetEngineVersions(dbEngine,
 *parameterGroup.DBParameterGroupFamily)
 if err != nil {
 panic(err)
 }
 var engineChoices []string
 for _, engine := range engineVersions {
 engineChoices = append(engineChoices, *engine.EngineVersion)
 }
 log.Println("The available engines for your parameter group are:")
 engineIndex := scenario.questioner.AskChoice("Which engine do you want to use?
\n", engineChoices)
 log.Printf("Creating DB cluster %v and database %v.\n", clusterName, dbName)
 log.Printf("The DB cluster is configured to use\nyour custom parameter group %v
\n",
 *parameterGroup.DBClusterParameterGroupName)
 log.Printf("and selected engine %v.\n", engineChoices[engineIndex])
 log.Println("This typically takes several minutes.")
 cluster, err = scenario.dbClusters.CreateDbCluster(
 clusterName, *parameterGroup.DBClusterParameterGroupName, dbName, dbEngine,
 engineChoices[engineIndex], adminUsername, adminPassword)
 if err != nil {
 panic(err)
 }
 for *cluster.Status != "available" {
 scenario.helper.Pause(30)
 cluster, err = scenario.dbClusters.GetDbCluster(clusterName)
 if err != nil {
 panic(err)
 }
 log.Println("Cluster created and available.")
 }
 }
 log.Println("Cluster data:")
 log.Printf("\tDBClusterIdentifier: %v\n", *cluster.DBClusterIdentifier)
 log.Printf("\tARN: %v\n", *cluster.DBClusterArn)
 log.Printf("\tStatus: %v\n", *cluster.Status)
 log.Printf("\tEngine: %v\n", *cluster.Engine)
 log.Printf("\tEngine version: %v\n", *cluster.EngineVersion)
 log.Printf("\tDBClusterParameterGroup: %v\n", *cluster.DBClusterParameterGroup)
 log.Printf("\tEngineMode: %v\n", *cluster.EngineMode)
 log.Println(strings.Repeat("-", 88))

Get started with DB clusters 3689

Amazon Aurora User Guide for Aurora

 return cluster
}

// CreateInstance shows how to create a DB instance in an existing Aurora DB
 cluster.
// A new DB cluster contains no DB instances, so you must add one. The first DB
 instance
// that is added to a DB cluster defaults to a read-write DB instance.
func (scenario GetStartedClusters) CreateInstance(cluster *types.DBCluster)
 *types.DBInstance {
 log.Println("Checking for an existing database instance.")
 dbInstance, err := scenario.dbClusters.GetInstance(*cluster.DBClusterIdentifier)
 if err != nil {
 panic(err)
 }
 if dbInstance == nil {
 log.Println("Let's create a database instance in your DB cluster.")
 log.Println("First, choose a DB instance type:")
 instOpts, err := scenario.dbClusters.GetOrderableInstances(
 *cluster.Engine, *cluster.EngineVersion)
 if err != nil {
 panic(err)
 }
 var instChoices []string
 for _, opt := range instOpts {
 instChoices = append(instChoices, *opt.DBInstanceClass)
 }
 instIndex := scenario.questioner.AskChoice(
 "Which DB instance class do you want to use?\n", instChoices)
 log.Println("Creating a database instance. This typically takes several
 minutes.")
 dbInstance, err = scenario.dbClusters.CreateInstanceInCluster(
 *cluster.DBClusterIdentifier, *cluster.DBClusterIdentifier, *cluster.Engine,
 instChoices[instIndex])
 if err != nil {
 panic(err)
 }
 for *dbInstance.DBInstanceStatus != "available" {
 scenario.helper.Pause(30)
 dbInstance, err =
 scenario.dbClusters.GetInstance(*cluster.DBClusterIdentifier)
 if err != nil {
 panic(err)
 }

Get started with DB clusters 3690

Amazon Aurora User Guide for Aurora

 }
 }
 log.Println("Instance data:")
 log.Printf("\tDBInstanceIdentifier: %v\n", *dbInstance.DBInstanceIdentifier)
 log.Printf("\tARN: %v\n", *dbInstance.DBInstanceArn)
 log.Printf("\tStatus: %v\n", *dbInstance.DBInstanceStatus)
 log.Printf("\tEngine: %v\n", *dbInstance.Engine)
 log.Printf("\tEngine version: %v\n", *dbInstance.EngineVersion)
 log.Println(strings.Repeat("-", 88))
 return dbInstance
}

// DisplayConnection displays connection information about an Aurora DB cluster
 and tips
// on how to connect to it.
func (scenario GetStartedClusters) DisplayConnection(cluster *types.DBCluster) {
 log.Println(
 "You can now connect to your database using your favorite MySql client.\n" +
 "One way to connect is by using the 'mysql' shell on an Amazon EC2 instance\n"
 +
 "that is running in the same VPC as your database cluster. Pass the endpoint,
\n" +
 "port, and administrator user name to 'mysql' and enter your password\n" +
 "when prompted:")
 log.Printf("\n\tmysql -h %v -P %v -u %v -p\n",
 *cluster.Endpoint, *cluster.Port, *cluster.MasterUsername)
 log.Println("For more information, see the User Guide for Aurora:\n" +
 "\thttps://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/
CHAP_GettingStartedAurora.CreatingConnecting.Aurora.html#CHAP_GettingStartedAurora.Aurora.Connect")
 log.Println(strings.Repeat("-", 88))
}

// CreateSnapshot shows how to create a DB cluster snapshot and wait until it's
 available.
func (scenario GetStartedClusters) CreateSnapshot(clusterName string) {
 if scenario.questioner.AskBool(
 "Do you want to create a snapshot of your DB cluster (y/n)? ", "y") {
 snapshotId := fmt.Sprintf("%v-%v", clusterName, scenario.helper.UniqueId())
 log.Printf("Creating a snapshot named %v. This typically takes a few minutes.
\n", snapshotId)
 snapshot, err := scenario.dbClusters.CreateClusterSnapshot(clusterName,
 snapshotId)
 if err != nil {
 panic(err)

Get started with DB clusters 3691

Amazon Aurora User Guide for Aurora

 }
 for *snapshot.Status != "available" {
 scenario.helper.Pause(30)
 snapshot, err = scenario.dbClusters.GetClusterSnapshot(snapshotId)
 if err != nil {
 panic(err)
 }
 }
 log.Println("Snapshot data:")
 log.Printf("\tDBClusterSnapshotIdentifier: %v\n",
 *snapshot.DBClusterSnapshotIdentifier)
 log.Printf("\tARN: %v\n", *snapshot.DBClusterSnapshotArn)
 log.Printf("\tStatus: %v\n", *snapshot.Status)
 log.Printf("\tEngine: %v\n", *snapshot.Engine)
 log.Printf("\tEngine version: %v\n", *snapshot.EngineVersion)
 log.Printf("\tDBClusterIdentifier: %v\n", *snapshot.DBClusterIdentifier)
 log.Printf("\tSnapshotCreateTime: %v\n", *snapshot.SnapshotCreateTime)
 log.Println(strings.Repeat("-", 88))
 }
}

// Cleanup shows how to clean up a DB instance, DB cluster, and DB cluster
 parameter group.
// Before the DB cluster parameter group can be deleted, all associated DB
 instances and
// DB clusters must first be deleted.
func (scenario GetStartedClusters) Cleanup(dbInstance *types.DBInstance, cluster
 *types.DBCluster,
 parameterGroup *types.DBClusterParameterGroup) {

 if scenario.questioner.AskBool(
 "\nDo you want to delete the database instance, DB cluster, and parameter group
 (y/n)? ", "y") {
 log.Printf("Deleting database instance %v.\n",
 *dbInstance.DBInstanceIdentifier)
 err := scenario.dbClusters.DeleteInstance(*dbInstance.DBInstanceIdentifier)
 if err != nil {
 panic(err)
 }
 log.Printf("Deleting database cluster %v.\n", *cluster.DBClusterIdentifier)
 err = scenario.dbClusters.DeleteDbCluster(*cluster.DBClusterIdentifier)
 if err != nil {
 panic(err)
 }

Get started with DB clusters 3692

Amazon Aurora User Guide for Aurora

 log.Println(
 "Waiting for the DB instance and DB cluster to delete. This typically takes
 several minutes.")
 for dbInstance != nil || cluster != nil {
 scenario.helper.Pause(30)
 if dbInstance != nil {
 dbInstance, err =
 scenario.dbClusters.GetInstance(*dbInstance.DBInstanceIdentifier)
 if err != nil {
 panic(err)
 }
 }
 if cluster != nil {
 cluster, err = scenario.dbClusters.GetDbCluster(*cluster.DBClusterIdentifier)
 if err != nil {
 panic(err)
 }
 }
 }
 log.Printf("Deleting parameter group %v.",
 *parameterGroup.DBClusterParameterGroupName)
 err =
 scenario.dbClusters.DeleteParameterGroup(*parameterGroup.DBClusterParameterGroupName)
 if err != nil {
 panic(err)
 }
 }
}

Define functions that are called by the scenario to manage Aurora actions.

type DbClusters struct {
 AuroraClient *rds.Client
}

// GetParameterGroup gets a DB cluster parameter group by name.
func (clusters *DbClusters) GetParameterGroup(parameterGroupName string) (
 *types.DBClusterParameterGroup, error) {
 output, err := clusters.AuroraClient.DescribeDBClusterParameterGroups(

Get started with DB clusters 3693

Amazon Aurora User Guide for Aurora

 context.TODO(), &rds.DescribeDBClusterParameterGroupsInput{
 DBClusterParameterGroupName: aws.String(parameterGroupName),
 })
 if err != nil {
 var notFoundError *types.DBParameterGroupNotFoundFault
 if errors.As(err, ¬FoundError) {
 log.Printf("Parameter group %v does not exist.\n", parameterGroupName)
 err = nil
 } else {
 log.Printf("Error getting parameter group %v: %v\n", parameterGroupName, err)
 }
 return nil, err
 } else {
 return &output.DBClusterParameterGroups[0], err
 }
}

// CreateParameterGroup creates a DB cluster parameter group that is based on the
 specified
// parameter group family.
func (clusters *DbClusters) CreateParameterGroup(
 parameterGroupName string, parameterGroupFamily string, description string) (
 *types.DBClusterParameterGroup, error) {

 output, err :=
 clusters.AuroraClient.CreateDBClusterParameterGroup(context.TODO(),
 &rds.CreateDBClusterParameterGroupInput{
 DBClusterParameterGroupName: aws.String(parameterGroupName),
 DBParameterGroupFamily: aws.String(parameterGroupFamily),
 Description: aws.String(description),
 })
 if err != nil {
 log.Printf("Couldn't create parameter group %v: %v\n", parameterGroupName, err)
 return nil, err
 } else {
 return output.DBClusterParameterGroup, err
 }
}

// DeleteParameterGroup deletes the named DB cluster parameter group.

Get started with DB clusters 3694

Amazon Aurora User Guide for Aurora

func (clusters *DbClusters) DeleteParameterGroup(parameterGroupName string) error
 {
 _, err := clusters.AuroraClient.DeleteDBClusterParameterGroup(context.TODO(),
 &rds.DeleteDBClusterParameterGroupInput{
 DBClusterParameterGroupName: aws.String(parameterGroupName),
 })
 if err != nil {
 log.Printf("Couldn't delete parameter group %v: %v\n", parameterGroupName, err)
 return err
 } else {
 return nil
 }
}

// GetParameters gets the parameters that are contained in a DB cluster parameter
 group.
func (clusters *DbClusters) GetParameters(parameterGroupName string, source
 string) (
 []types.Parameter, error) {

 var output *rds.DescribeDBClusterParametersOutput
 var params []types.Parameter
 var err error
 parameterPaginator :=
 rds.NewDescribeDBClusterParametersPaginator(clusters.AuroraClient,
 &rds.DescribeDBClusterParametersInput{
 DBClusterParameterGroupName: aws.String(parameterGroupName),
 Source: aws.String(source),
 })
 for parameterPaginator.HasMorePages() {
 output, err = parameterPaginator.NextPage(context.TODO())
 if err != nil {
 log.Printf("Couldn't get paramaeters for %v: %v\n", parameterGroupName, err)
 break
 } else {
 params = append(params, output.Parameters...)
 }
 }
 return params, err
}

Get started with DB clusters 3695

Amazon Aurora User Guide for Aurora

// UpdateParameters updates parameters in a named DB cluster parameter group.
func (clusters *DbClusters) UpdateParameters(parameterGroupName string, params
 []types.Parameter) error {
 _, err := clusters.AuroraClient.ModifyDBClusterParameterGroup(context.TODO(),
 &rds.ModifyDBClusterParameterGroupInput{
 DBClusterParameterGroupName: aws.String(parameterGroupName),
 Parameters: params,
 })
 if err != nil {
 log.Printf("Couldn't update parameters in %v: %v\n", parameterGroupName, err)
 return err
 } else {
 return nil
 }
}

// GetDbCluster gets data about an Aurora DB cluster.
func (clusters *DbClusters) GetDbCluster(clusterName string) (*types.DBCluster,
 error) {
 output, err := clusters.AuroraClient.DescribeDBClusters(context.TODO(),
 &rds.DescribeDBClustersInput{
 DBClusterIdentifier: aws.String(clusterName),
 })
 if err != nil {
 var notFoundError *types.DBClusterNotFoundFault
 if errors.As(err, ¬FoundError) {
 log.Printf("DB cluster %v does not exist.\n", clusterName)
 err = nil
 } else {
 log.Printf("Couldn't get DB cluster %v: %v\n", clusterName, err)
 }
 return nil, err
 } else {
 return &output.DBClusters[0], err
 }
}

// CreateDbCluster creates a DB cluster that is configured to use the specified
 parameter group.

Get started with DB clusters 3696

Amazon Aurora User Guide for Aurora

// The newly created DB cluster contains a database that uses the specified
 engine and
// engine version.
func (clusters *DbClusters) CreateDbCluster(clusterName string,
 parameterGroupName string,
 dbName string, dbEngine string, dbEngineVersion string, adminName string,
 adminPassword string) (
 *types.DBCluster, error) {

 output, err := clusters.AuroraClient.CreateDBCluster(context.TODO(),
 &rds.CreateDBClusterInput{
 DBClusterIdentifier: aws.String(clusterName),
 Engine: aws.String(dbEngine),
 DBClusterParameterGroupName: aws.String(parameterGroupName),
 DatabaseName: aws.String(dbName),
 EngineVersion: aws.String(dbEngineVersion),
 MasterUserPassword: aws.String(adminPassword),
 MasterUsername: aws.String(adminName),
 })
 if err != nil {
 log.Printf("Couldn't create DB cluster %v: %v\n", clusterName, err)
 return nil, err
 } else {
 return output.DBCluster, err
 }
}

// DeleteDbCluster deletes a DB cluster without keeping a final snapshot.
func (clusters *DbClusters) DeleteDbCluster(clusterName string) error {
 _, err := clusters.AuroraClient.DeleteDBCluster(context.TODO(),
 &rds.DeleteDBClusterInput{
 DBClusterIdentifier: aws.String(clusterName),
 SkipFinalSnapshot: true,
 })
 if err != nil {
 log.Printf("Couldn't delete DB cluster %v: %v\n", clusterName, err)
 return err
 } else {
 return nil
 }
}

Get started with DB clusters 3697

Amazon Aurora User Guide for Aurora

// CreateClusterSnapshot creates a snapshot of a DB cluster.
func (clusters *DbClusters) CreateClusterSnapshot(clusterName string,
 snapshotName string) (
 *types.DBClusterSnapshot, error) {
 output, err := clusters.AuroraClient.CreateDBClusterSnapshot(context.TODO(),
 &rds.CreateDBClusterSnapshotInput{
 DBClusterIdentifier: aws.String(clusterName),
 DBClusterSnapshotIdentifier: aws.String(snapshotName),
 })
 if err != nil {
 log.Printf("Couldn't create snapshot %v: %v\n", snapshotName, err)
 return nil, err
 } else {
 return output.DBClusterSnapshot, nil
 }
}

// GetClusterSnapshot gets a DB cluster snapshot.
func (clusters *DbClusters) GetClusterSnapshot(snapshotName string)
 (*types.DBClusterSnapshot, error) {
 output, err := clusters.AuroraClient.DescribeDBClusterSnapshots(context.TODO(),
 &rds.DescribeDBClusterSnapshotsInput{
 DBClusterSnapshotIdentifier: aws.String(snapshotName),
 })
 if err != nil {
 log.Printf("Couldn't get snapshot %v: %v\n", snapshotName, err)
 return nil, err
 } else {
 return &output.DBClusterSnapshots[0], nil
 }
}

// CreateInstanceInCluster creates a database instance in an existing DB cluster.
 The first database that is
// created defaults to a read-write DB instance.
func (clusters *DbClusters) CreateInstanceInCluster(clusterName string,
 instanceName string,
 dbEngine string, dbInstanceClass string) (*types.DBInstance, error) {

Get started with DB clusters 3698

Amazon Aurora User Guide for Aurora

 output, err := clusters.AuroraClient.CreateDBInstance(context.TODO(),
 &rds.CreateDBInstanceInput{
 DBInstanceIdentifier: aws.String(instanceName),
 DBClusterIdentifier: aws.String(clusterName),
 Engine: aws.String(dbEngine),
 DBInstanceClass: aws.String(dbInstanceClass),
 })
 if err != nil {
 log.Printf("Couldn't create instance %v: %v\n", instanceName, err)
 return nil, err
 } else {
 return output.DBInstance, nil
 }
}

// GetInstance gets data about a DB instance.
func (clusters *DbClusters) GetInstance(instanceName string) (
 *types.DBInstance, error) {
 output, err := clusters.AuroraClient.DescribeDBInstances(context.TODO(),
 &rds.DescribeDBInstancesInput{
 DBInstanceIdentifier: aws.String(instanceName),
 })
 if err != nil {
 var notFoundError *types.DBInstanceNotFoundFault
 if errors.As(err, ¬FoundError) {
 log.Printf("DB instance %v does not exist.\n", instanceName)
 err = nil
 } else {
 log.Printf("Couldn't get instance %v: %v\n", instanceName, err)
 }
 return nil, err
 } else {
 return &output.DBInstances[0], nil
 }
}

// DeleteInstance deletes a DB instance.
func (clusters *DbClusters) DeleteInstance(instanceName string) error {
 _, err := clusters.AuroraClient.DeleteDBInstance(context.TODO(),
 &rds.DeleteDBInstanceInput{

Get started with DB clusters 3699

Amazon Aurora User Guide for Aurora

 DBInstanceIdentifier: aws.String(instanceName),
 SkipFinalSnapshot: true,
 DeleteAutomatedBackups: aws.Bool(true),
 })
 if err != nil {
 log.Printf("Couldn't delete instance %v: %v\n", instanceName, err)
 return err
 } else {
 return nil
 }
}

// GetEngineVersions gets database engine versions that are available for the
 specified engine
// and parameter group family.
func (clusters *DbClusters) GetEngineVersions(engine string, parameterGroupFamily
 string) (
 []types.DBEngineVersion, error) {
 output, err := clusters.AuroraClient.DescribeDBEngineVersions(context.TODO(),
 &rds.DescribeDBEngineVersionsInput{
 Engine: aws.String(engine),
 DBParameterGroupFamily: aws.String(parameterGroupFamily),
 })
 if err != nil {
 log.Printf("Couldn't get engine versions for %v: %v\n", engine, err)
 return nil, err
 } else {
 return output.DBEngineVersions, nil
 }
}

// GetOrderableInstances uses a paginator to get DB instance options that can be
 used to create DB instances that are
// compatible with a set of specifications.
func (clusters *DbClusters) GetOrderableInstances(engine string, engineVersion
 string) (
 []types.OrderableDBInstanceOption, error) {

 var output *rds.DescribeOrderableDBInstanceOptionsOutput
 var instances []types.OrderableDBInstanceOption

Get started with DB clusters 3700

Amazon Aurora User Guide for Aurora

 var err error
 orderablePaginator :=
 rds.NewDescribeOrderableDBInstanceOptionsPaginator(clusters.AuroraClient,
 &rds.DescribeOrderableDBInstanceOptionsInput{
 Engine: aws.String(engine),
 EngineVersion: aws.String(engineVersion),
 })
 for orderablePaginator.HasMorePages() {
 output, err = orderablePaginator.NextPage(context.TODO())
 if err != nil {
 log.Printf("Couldn't get orderable DB instances: %v\n", err)
 break
 } else {
 instances = append(instances, output.OrderableDBInstanceOptions...)
 }
 }
 return instances, err
}

• For API details, see the following topics in AWS SDK for Go API Reference.

• CreateDBCluster

• CreateDBClusterParameterGroup

• CreateDBClusterSnapshot

• CreateDBInstance

• DeleteDBCluster

• DeleteDBClusterParameterGroup

• DeleteDBInstance

• DescribeDBClusterParameterGroups

• DescribeDBClusterParameters

• DescribeDBClusterSnapshots

• DescribeDBClusters

• DescribeDBEngineVersions

• DescribeDBInstances

• DescribeOrderableDBInstanceOptions

• ModifyDBClusterParameterGroupGet started with DB clusters 3701

https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/rds#Client.CreateDBCluster
https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/rds#Client.CreateDBClusterParameterGroup
https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/rds#Client.CreateDBClusterSnapshot
https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/rds#Client.CreateDBInstance
https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/rds#Client.DeleteDBCluster
https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/rds#Client.DeleteDBClusterParameterGroup
https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/rds#Client.DeleteDBInstance
https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/rds#Client.DescribeDBClusterParameterGroups
https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/rds#Client.DescribeDBClusterParameters
https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/rds#Client.DescribeDBClusterSnapshots
https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/rds#Client.DescribeDBClusters
https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/rds#Client.DescribeDBEngineVersions
https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/rds#Client.DescribeDBInstances
https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/rds#Client.DescribeOrderableDBInstanceOptions
https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/rds#Client.ModifyDBClusterParameterGroup

Amazon Aurora User Guide for Aurora

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

/**
 * Before running this Java (v2) code example, set up your development
 * environment, including your credentials.
 *
 * For more information, see the following documentation topic:
 *
 * https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-
started.html
 *
 * This example requires an AWS Secrets Manager secret that contains the
 * database credentials. If you do not create a
 * secret, this example will not work. For details, see:
 *
 * https://docs.aws.amazon.com/secretsmanager/latest/userguide/integrating_how-
services-use-secrets_RS.html
 *
 * This Java example performs the following tasks:
 *
 * 1. Gets available engine families for Amazon Aurora MySQL-Compatible Edition
 * by calling the DescribeDbEngineVersions(Engine='aurora-mysql') method.
 * 2. Selects an engine family and creates a custom DB cluster parameter group
 * by invoking the describeDBClusterParameters method.
 * 3. Gets the parameter groups by invoking the describeDBClusterParameterGroups
 * method.
 * 4. Gets parameters in the group by invoking the describeDBClusterParameters
 * method.
 * 5. Modifies the auto_increment_offset parameter by invoking the
 * modifyDbClusterParameterGroupRequest method.
 * 6. Gets and displays the updated parameters.
 * 7. Gets a list of allowed engine versions by invoking the
 * describeDbEngineVersions method.
 * 8. Creates an Aurora DB cluster database cluster that contains a MySQL

Get started with DB clusters 3702

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/rds#readme

Amazon Aurora User Guide for Aurora

 * database.
 * 9. Waits for DB instance to be ready.
 * 10. Gets a list of instance classes available for the selected engine.
 * 11. Creates a database instance in the cluster.
 * 12. Waits for DB instance to be ready.
 * 13. Creates a snapshot.
 * 14. Waits for DB snapshot to be ready.
 * 15. Deletes the DB cluster.
 * 16. Deletes the DB cluster group.
 */
public class AuroraScenario {
 public static long sleepTime = 20;
 public static final String DASHES = new String(new char[80]).replace("\0",
 "-");

 public static void main(String[] args) throws InterruptedException {
 final String usage = "\n" +
 "Usage:\n" +
 " <dbClusterGroupName> <dbParameterGroupFamily>
 <dbInstanceClusterIdentifier> <dbInstanceIdentifier> <dbName>
 <dbSnapshotIdentifier><secretName>"
 +
 "Where:\n" +
 " dbClusterGroupName - The name of the DB cluster parameter
 group. \n" +
 " dbParameterGroupFamily - The DB cluster parameter group
 family name (for example, aurora-mysql5.7). \n"
 +
 " dbInstanceClusterIdentifier - The instance cluster
 identifier value.\n" +
 " dbInstanceIdentifier - The database instance identifier.\n"
 +
 " dbName - The database name.\n" +
 " dbSnapshotIdentifier - The snapshot identifier.\n" +
 " secretName - The name of the AWS Secrets Manager secret that
 contains the database credentials\"\n";
 ;

 if (args.length != 7) {
 System.out.println(usage);
 System.exit(1);
 }

 String dbClusterGroupName = args[0];

Get started with DB clusters 3703

Amazon Aurora User Guide for Aurora

 String dbParameterGroupFamily = args[1];
 String dbInstanceClusterIdentifier = args[2];
 String dbInstanceIdentifier = args[3];
 String dbName = args[4];
 String dbSnapshotIdentifier = args[5];
 String secretName = args[6];

 // Retrieve the database credentials using AWS Secrets Manager.
 Gson gson = new Gson();
 User user = gson.fromJson(String.valueOf(getSecretValues(secretName)),
 User.class);
 String username = user.getUsername();
 String userPassword = user.getPassword();

 Region region = Region.US_WEST_2;
 RdsClient rdsClient = RdsClient.builder()
 .region(region)
 .build();

 System.out.println(DASHES);
 System.out.println("Welcome to the Amazon Aurora example scenario.");
 System.out.println(DASHES);

 System.out.println(DASHES);
 System.out.println("1. Return a list of the available DB engines");
 describeDBEngines(rdsClient);
 System.out.println(DASHES);

 System.out.println(DASHES);
 System.out.println("2. Create a custom parameter group");
 createDBClusterParameterGroup(rdsClient, dbClusterGroupName,
 dbParameterGroupFamily);
 System.out.println(DASHES);

 System.out.println(DASHES);
 System.out.println("3. Get the parameter group");
 describeDbClusterParameterGroups(rdsClient, dbClusterGroupName);
 System.out.println(DASHES);

 System.out.println(DASHES);
 System.out.println("4. Get the parameters in the group");
 describeDbClusterParameters(rdsClient, dbClusterGroupName, 0);
 System.out.println(DASHES);

Get started with DB clusters 3704

Amazon Aurora User Guide for Aurora

 System.out.println(DASHES);
 System.out.println("5. Modify the auto_increment_offset parameter");
 modifyDBClusterParas(rdsClient, dbClusterGroupName);
 System.out.println(DASHES);

 System.out.println(DASHES);
 System.out.println("6. Display the updated parameter value");
 describeDbClusterParameters(rdsClient, dbClusterGroupName, -1);
 System.out.println(DASHES);

 System.out.println(DASHES);
 System.out.println("7. Get a list of allowed engine versions");
 getAllowedEngines(rdsClient, dbParameterGroupFamily);
 System.out.println(DASHES);

 System.out.println(DASHES);
 System.out.println("8. Create an Aurora DB cluster database");
 String arnClusterVal = createDBCluster(rdsClient, dbClusterGroupName,
 dbName, dbInstanceClusterIdentifier,
 username, userPassword);
 System.out.println("The ARN of the cluster is " + arnClusterVal);
 System.out.println(DASHES);

 System.out.println(DASHES);
 System.out.println("9. Wait for DB instance to be ready");
 waitForInstanceReady(rdsClient, dbInstanceClusterIdentifier);
 System.out.println(DASHES);

 System.out.println(DASHES);
 System.out.println("10. Get a list of instance classes available for the
 selected engine");
 String instanceClass = getListInstanceClasses(rdsClient);
 System.out.println(DASHES);

 System.out.println(DASHES);
 System.out.println("11. Create a database instance in the cluster.");
 String clusterDBARN = createDBInstanceCluster(rdsClient,
 dbInstanceIdentifier, dbInstanceClusterIdentifier,
 instanceClass);
 System.out.println("The ARN of the database is " + clusterDBARN);
 System.out.println(DASHES);

 System.out.println(DASHES);
 System.out.println("12. Wait for DB instance to be ready");

Get started with DB clusters 3705

Amazon Aurora User Guide for Aurora

 waitDBInstanceReady(rdsClient, dbInstanceIdentifier);
 System.out.println(DASHES);

 System.out.println(DASHES);
 System.out.println("13. Create a snapshot");
 createDBClusterSnapshot(rdsClient, dbInstanceClusterIdentifier,
 dbSnapshotIdentifier);
 System.out.println(DASHES);

 System.out.println(DASHES);
 System.out.println("14. Wait for DB snapshot to be ready");
 waitForSnapshotReady(rdsClient, dbSnapshotIdentifier,
 dbInstanceClusterIdentifier);
 System.out.println(DASHES);

 System.out.println(DASHES);
 System.out.println("14. Delete the DB instance");
 deleteDatabaseInstance(rdsClient, dbInstanceIdentifier);
 System.out.println(DASHES);

 System.out.println(DASHES);
 System.out.println("15. Delete the DB cluster");
 deleteCluster(rdsClient, dbInstanceClusterIdentifier);
 System.out.println(DASHES);

 System.out.println(DASHES);
 System.out.println("16. Delete the DB cluster group");
 deleteDBClusterGroup(rdsClient, dbClusterGroupName, clusterDBARN);
 System.out.println(DASHES);

 System.out.println(DASHES);
 System.out.println("The Scenario has successfully completed.");
 System.out.println(DASHES);
 rdsClient.close();
 }

 private static SecretsManagerClient getSecretClient() {
 Region region = Region.US_WEST_2;
 return SecretsManagerClient.builder()
 .region(region)

 .credentialsProvider(EnvironmentVariableCredentialsProvider.create())
 .build();
 }

Get started with DB clusters 3706

Amazon Aurora User Guide for Aurora

 private static String getSecretValues(String secretName) {
 SecretsManagerClient secretClient = getSecretClient();
 GetSecretValueRequest valueRequest = GetSecretValueRequest.builder()
 .secretId(secretName)
 .build();

 GetSecretValueResponse valueResponse =
 secretClient.getSecretValue(valueRequest);
 return valueResponse.secretString();
 }

 public static void deleteDBClusterGroup(RdsClient rdsClient, String
 dbClusterGroupName, String clusterDBARN)
 throws InterruptedException {
 try {
 boolean isDataDel = false;
 boolean didFind;
 String instanceARN;

 // Make sure that the database has been deleted.
 while (!isDataDel) {
 DescribeDbInstancesResponse response =
 rdsClient.describeDBInstances();
 List<DBInstance> instanceList = response.dbInstances();
 int listSize = instanceList.size();
 didFind = false;
 int index = 1;
 for (DBInstance instance : instanceList) {
 instanceARN = instance.dbInstanceArn();
 if (instanceARN.compareTo(clusterDBARN) == 0) {
 System.out.println(clusterDBARN + " still exists");
 didFind = true;
 }
 if ((index == listSize) && (!didFind)) {
 // Went through the entire list and did not find the
 database ARN.
 isDataDel = true;
 }
 Thread.sleep(sleepTime * 1000);
 index++;
 }
 }

Get started with DB clusters 3707

Amazon Aurora User Guide for Aurora

 DeleteDbClusterParameterGroupRequest clusterParameterGroupRequest =
 DeleteDbClusterParameterGroupRequest
 .builder()
 .dbClusterParameterGroupName(dbClusterGroupName)
 .build();

 rdsClient.deleteDBClusterParameterGroup(clusterParameterGroupRequest);
 System.out.println(dbClusterGroupName + " was deleted.");

 } catch (RdsException e) {
 System.out.println(e.getLocalizedMessage());
 System.exit(1);
 }
 }

 public static void deleteCluster(RdsClient rdsClient, String
 dbInstanceClusterIdentifier) {
 try {
 DeleteDbClusterRequest deleteDbClusterRequest =
 DeleteDbClusterRequest.builder()
 .dbClusterIdentifier(dbInstanceClusterIdentifier)
 .skipFinalSnapshot(true)
 .build();

 rdsClient.deleteDBCluster(deleteDbClusterRequest);
 System.out.println(dbInstanceClusterIdentifier + " was deleted!");

 } catch (RdsException e) {
 System.out.println(e.getLocalizedMessage());
 System.exit(1);
 }
 }

 public static void deleteDatabaseInstance(RdsClient rdsClient, String
 dbInstanceIdentifier) {
 try {
 DeleteDbInstanceRequest deleteDbInstanceRequest =
 DeleteDbInstanceRequest.builder()
 .dbInstanceIdentifier(dbInstanceIdentifier)
 .deleteAutomatedBackups(true)
 .skipFinalSnapshot(true)
 .build();

Get started with DB clusters 3708

Amazon Aurora User Guide for Aurora

 DeleteDbInstanceResponse response =
 rdsClient.deleteDBInstance(deleteDbInstanceRequest);
 System.out.println("The status of the database is " +
 response.dbInstance().dbInstanceStatus());

 } catch (RdsException e) {
 System.out.println(e.getLocalizedMessage());
 System.exit(1);
 }
 }

 public static void waitForSnapshotReady(RdsClient rdsClient, String
 dbSnapshotIdentifier,
 String dbInstanceClusterIdentifier) {
 try {
 boolean snapshotReady = false;
 String snapshotReadyStr;
 System.out.println("Waiting for the snapshot to become available.");

 DescribeDbClusterSnapshotsRequest snapshotsRequest =
 DescribeDbClusterSnapshotsRequest.builder()
 .dbClusterSnapshotIdentifier(dbSnapshotIdentifier)
 .dbClusterIdentifier(dbInstanceClusterIdentifier)
 .build();

 while (!snapshotReady) {
 DescribeDbClusterSnapshotsResponse response =
 rdsClient.describeDBClusterSnapshots(snapshotsRequest);
 List<DBClusterSnapshot> snapshotList =
 response.dbClusterSnapshots();
 for (DBClusterSnapshot snapshot : snapshotList) {
 snapshotReadyStr = snapshot.status();
 if (snapshotReadyStr.contains("available")) {
 snapshotReady = true;
 } else {
 System.out.println(".");
 Thread.sleep(sleepTime * 5000);
 }
 }
 }

 System.out.println("The Snapshot is available!");

 } catch (RdsException | InterruptedException e) {

Get started with DB clusters 3709

Amazon Aurora User Guide for Aurora

 System.out.println(e.getLocalizedMessage());
 System.exit(1);
 }
 }

 public static void createDBClusterSnapshot(RdsClient rdsClient, String
 dbInstanceClusterIdentifier,
 String dbSnapshotIdentifier) {
 try {
 CreateDbClusterSnapshotRequest snapshotRequest =
 CreateDbClusterSnapshotRequest.builder()
 .dbClusterIdentifier(dbInstanceClusterIdentifier)
 .dbClusterSnapshotIdentifier(dbSnapshotIdentifier)
 .build();

 CreateDbClusterSnapshotResponse response =
 rdsClient.createDBClusterSnapshot(snapshotRequest);
 System.out.println("The Snapshot ARN is " +
 response.dbClusterSnapshot().dbClusterSnapshotArn());

 } catch (RdsException e) {
 System.out.println(e.getLocalizedMessage());
 System.exit(1);
 }
 }

 public static void waitDBInstanceReady(RdsClient rdsClient, String
 dbInstanceIdentifier) {
 boolean instanceReady = false;
 String instanceReadyStr;
 System.out.println("Waiting for instance to become available.");
 try {
 DescribeDbInstancesRequest instanceRequest =
 DescribeDbInstancesRequest.builder()
 .dbInstanceIdentifier(dbInstanceIdentifier)
 .build();

 String endpoint = "";
 while (!instanceReady) {
 DescribeDbInstancesResponse response =
 rdsClient.describeDBInstances(instanceRequest);
 List<DBInstance> instanceList = response.dbInstances();
 for (DBInstance instance : instanceList) {
 instanceReadyStr = instance.dbInstanceStatus();

Get started with DB clusters 3710

Amazon Aurora User Guide for Aurora

 if (instanceReadyStr.contains("available")) {
 endpoint = instance.endpoint().address();
 instanceReady = true;
 } else {
 System.out.print(".");
 Thread.sleep(sleepTime * 1000);
 }
 }
 }
 System.out.println("Database instance is available! The connection
 endpoint is " + endpoint);

 } catch (RdsException | InterruptedException e) {
 System.err.println(e.getMessage());
 System.exit(1);
 }
 }

 public static String createDBInstanceCluster(RdsClient rdsClient,
 String dbInstanceIdentifier,
 String dbInstanceClusterIdentifier,
 String instanceClass) {
 try {
 CreateDbInstanceRequest instanceRequest =
 CreateDbInstanceRequest.builder()
 .dbInstanceIdentifier(dbInstanceIdentifier)
 .dbClusterIdentifier(dbInstanceClusterIdentifier)
 .engine("aurora-mysql")
 .dbInstanceClass(instanceClass)
 .build();

 CreateDbInstanceResponse response =
 rdsClient.createDBInstance(instanceRequest);
 System.out.print("The status is " +
 response.dbInstance().dbInstanceStatus());
 return response.dbInstance().dbInstanceArn();

 } catch (RdsException e) {
 System.err.println(e.getMessage());
 System.exit(1);
 }
 return "";
 }

Get started with DB clusters 3711

Amazon Aurora User Guide for Aurora

 public static String getListInstanceClasses(RdsClient rdsClient) {
 try {
 DescribeOrderableDbInstanceOptionsRequest optionsRequest =
 DescribeOrderableDbInstanceOptionsRequest
 .builder()
 .engine("aurora-mysql")
 .maxRecords(20)
 .build();

 DescribeOrderableDbInstanceOptionsResponse response = rdsClient
 .describeOrderableDBInstanceOptions(optionsRequest);
 List<OrderableDBInstanceOption> instanceOptions =
 response.orderableDBInstanceOptions();
 String instanceClass = "";
 for (OrderableDBInstanceOption instanceOption : instanceOptions) {
 instanceClass = instanceOption.dbInstanceClass();
 System.out.println("The instance class is " +
 instanceOption.dbInstanceClass());
 System.out.println("The engine version is " +
 instanceOption.engineVersion());
 }
 return instanceClass;

 } catch (RdsException e) {
 System.err.println(e.getMessage());
 System.exit(1);
 }
 return "";
 }

 // Waits until the database instance is available.
 public static void waitForInstanceReady(RdsClient rdsClient, String
 dbClusterIdentifier) {
 boolean instanceReady = false;
 String instanceReadyStr;
 System.out.println("Waiting for instance to become available.");
 try {
 DescribeDbClustersRequest instanceRequest =
 DescribeDbClustersRequest.builder()
 .dbClusterIdentifier(dbClusterIdentifier)
 .build();

 while (!instanceReady) {

Get started with DB clusters 3712

Amazon Aurora User Guide for Aurora

 DescribeDbClustersResponse response =
 rdsClient.describeDBClusters(instanceRequest);
 List<DBCluster> clusterList = response.dbClusters();
 for (DBCluster cluster : clusterList) {
 instanceReadyStr = cluster.status();
 if (instanceReadyStr.contains("available")) {
 instanceReady = true;
 } else {
 System.out.print(".");
 Thread.sleep(sleepTime * 1000);
 }
 }
 }
 System.out.println("Database cluster is available!");

 } catch (RdsException | InterruptedException e) {
 System.err.println(e.getMessage());
 System.exit(1);
 }
 }

 public static String createDBCluster(RdsClient rdsClient, String
 dbParameterGroupFamily, String dbName,
 String dbClusterIdentifier, String userName, String password) {
 try {
 CreateDbClusterRequest clusterRequest =
 CreateDbClusterRequest.builder()
 .databaseName(dbName)
 .dbClusterIdentifier(dbClusterIdentifier)
 .dbClusterParameterGroupName(dbParameterGroupFamily)
 .engine("aurora-mysql")
 .masterUsername(userName)
 .masterUserPassword(password)
 .build();

 CreateDbClusterResponse response =
 rdsClient.createDBCluster(clusterRequest);
 return response.dbCluster().dbClusterArn();

 } catch (RdsException e) {
 System.out.println(e.getLocalizedMessage());
 System.exit(1);
 }
 return "";

Get started with DB clusters 3713

Amazon Aurora User Guide for Aurora

 }

 // Get a list of allowed engine versions.
 public static void getAllowedEngines(RdsClient rdsClient, String
 dbParameterGroupFamily) {
 try {
 DescribeDbEngineVersionsRequest versionsRequest =
 DescribeDbEngineVersionsRequest.builder()
 .dbParameterGroupFamily(dbParameterGroupFamily)
 .engine("aurora-mysql")
 .build();

 DescribeDbEngineVersionsResponse response =
 rdsClient.describeDBEngineVersions(versionsRequest);
 List<DBEngineVersion> dbEngines = response.dbEngineVersions();
 for (DBEngineVersion dbEngine : dbEngines) {
 System.out.println("The engine version is " +
 dbEngine.engineVersion());
 System.out.println("The engine description is " +
 dbEngine.dbEngineDescription());
 }

 } catch (RdsException e) {
 System.out.println(e.getLocalizedMessage());
 System.exit(1);
 }
 }

 // Modify the auto_increment_offset parameter.
 public static void modifyDBClusterParas(RdsClient rdsClient, String
 dClusterGroupName) {
 try {
 Parameter parameter1 = Parameter.builder()
 .parameterName("auto_increment_offset")
 .applyMethod("immediate")
 .parameterValue("5")
 .build();

 List<Parameter> paraList = new ArrayList<>();
 paraList.add(parameter1);
 ModifyDbClusterParameterGroupRequest groupRequest =
 ModifyDbClusterParameterGroupRequest.builder()
 .dbClusterParameterGroupName(dClusterGroupName)
 .parameters(paraList)

Get started with DB clusters 3714

Amazon Aurora User Guide for Aurora

 .build();

 ModifyDbClusterParameterGroupResponse response =
 rdsClient.modifyDBClusterParameterGroup(groupRequest);
 System.out.println(
 "The parameter group " +
 response.dbClusterParameterGroupName() + " was successfully modified");

 } catch (RdsException e) {
 System.out.println(e.getLocalizedMessage());
 System.exit(1);
 }
 }

 public static void describeDbClusterParameters(RdsClient rdsClient, String
 dbCLusterGroupName, int flag) {
 try {
 DescribeDbClusterParametersRequest dbParameterGroupsRequest;
 if (flag == 0) {
 dbParameterGroupsRequest =
 DescribeDbClusterParametersRequest.builder()
 .dbClusterParameterGroupName(dbCLusterGroupName)
 .build();
 } else {
 dbParameterGroupsRequest =
 DescribeDbClusterParametersRequest.builder()
 .dbClusterParameterGroupName(dbCLusterGroupName)
 .source("user")
 .build();
 }

 DescribeDbClusterParametersResponse response = rdsClient
 .describeDBClusterParameters(dbParameterGroupsRequest);
 List<Parameter> dbParameters = response.parameters();
 String paraName;
 for (Parameter para : dbParameters) {
 // Only print out information about either auto_increment_offset
 or
 // auto_increment_increment.
 paraName = para.parameterName();
 if ((paraName.compareTo("auto_increment_offset") == 0)
 || (paraName.compareTo("auto_increment_increment ") ==
 0)) {
 System.out.println("*** The parameter name is " + paraName);

Get started with DB clusters 3715

Amazon Aurora User Guide for Aurora

 System.out.println("*** The parameter value is " +
 para.parameterValue());
 System.out.println("*** The parameter data type is " +
 para.dataType());
 System.out.println("*** The parameter description is " +
 para.description());
 System.out.println("*** The parameter allowed values is " +
 para.allowedValues());
 }
 }

 } catch (RdsException e) {
 System.out.println(e.getLocalizedMessage());
 System.exit(1);
 }
 }

 public static void describeDbClusterParameterGroups(RdsClient rdsClient,
 String dbClusterGroupName) {
 try {
 DescribeDbClusterParameterGroupsRequest groupsRequest =
 DescribeDbClusterParameterGroupsRequest.builder()
 .dbClusterParameterGroupName(dbClusterGroupName)
 .maxRecords(20)
 .build();

 List<DBClusterParameterGroup> groups =
 rdsClient.describeDBClusterParameterGroups(groupsRequest)
 .dbClusterParameterGroups();
 for (DBClusterParameterGroup group : groups) {
 System.out.println("The group name is " +
 group.dbClusterParameterGroupName());
 System.out.println("The group ARN is " +
 group.dbClusterParameterGroupArn());
 }

 } catch (RdsException e) {
 System.out.println(e.getLocalizedMessage());
 System.exit(1);
 }
 }

 public static void createDBClusterParameterGroup(RdsClient rdsClient, String
 dbClusterGroupName,

Get started with DB clusters 3716

Amazon Aurora User Guide for Aurora

 String dbParameterGroupFamily) {
 try {
 CreateDbClusterParameterGroupRequest groupRequest =
 CreateDbClusterParameterGroupRequest.builder()
 .dbClusterParameterGroupName(dbClusterGroupName)
 .dbParameterGroupFamily(dbParameterGroupFamily)
 .description("Created by using the AWS SDK for Java")
 .build();

 CreateDbClusterParameterGroupResponse response =
 rdsClient.createDBClusterParameterGroup(groupRequest);
 System.out.println("The group name is " +
 response.dbClusterParameterGroup().dbClusterParameterGroupName());

 } catch (RdsException e) {
 System.out.println(e.getLocalizedMessage());
 System.exit(1);
 }
 }

 public static void describeDBEngines(RdsClient rdsClient) {
 try {
 DescribeDbEngineVersionsRequest engineVersionsRequest =
 DescribeDbEngineVersionsRequest.builder()
 .engine("aurora-mysql")
 .defaultOnly(true)
 .maxRecords(20)
 .build();

 DescribeDbEngineVersionsResponse response =
 rdsClient.describeDBEngineVersions(engineVersionsRequest);
 List<DBEngineVersion> engines = response.dbEngineVersions();

 // Get all DBEngineVersion objects.
 for (DBEngineVersion engineOb : engines) {
 System.out.println("The name of the DB parameter group family for
 the database engine is "
 + engineOb.dbParameterGroupFamily());
 System.out.println("The name of the database engine " +
 engineOb.engine());
 System.out.println("The version number of the database engine " +
 engineOb.engineVersion());
 }

Get started with DB clusters 3717

Amazon Aurora User Guide for Aurora

 } catch (RdsException e) {
 System.out.println(e.getLocalizedMessage());
 System.exit(1);
 }
 }
}

• For API details, see the following topics in AWS SDK for Java 2.x API Reference.

• CreateDBCluster

• CreateDBClusterParameterGroup

• CreateDBClusterSnapshot

• CreateDBInstance

• DeleteDBCluster

• DeleteDBClusterParameterGroup

• DeleteDBInstance

• DescribeDBClusterParameterGroups

• DescribeDBClusterParameters

• DescribeDBClusterSnapshots

• DescribeDBClusters

• DescribeDBEngineVersions

• DescribeDBInstances

• DescribeOrderableDBInstanceOptions

• ModifyDBClusterParameterGroup

Kotlin

SDK for Kotlin

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Get started with DB clusters 3718

https://docs.aws.amazon.com/goto/SdkForJavaV2/rds-2014-10-31/CreateDBCluster
https://docs.aws.amazon.com/goto/SdkForJavaV2/rds-2014-10-31/CreateDBClusterParameterGroup
https://docs.aws.amazon.com/goto/SdkForJavaV2/rds-2014-10-31/CreateDBClusterSnapshot
https://docs.aws.amazon.com/goto/SdkForJavaV2/rds-2014-10-31/CreateDBInstance
https://docs.aws.amazon.com/goto/SdkForJavaV2/rds-2014-10-31/DeleteDBCluster
https://docs.aws.amazon.com/goto/SdkForJavaV2/rds-2014-10-31/DeleteDBClusterParameterGroup
https://docs.aws.amazon.com/goto/SdkForJavaV2/rds-2014-10-31/DeleteDBInstance
https://docs.aws.amazon.com/goto/SdkForJavaV2/rds-2014-10-31/DescribeDBClusterParameterGroups
https://docs.aws.amazon.com/goto/SdkForJavaV2/rds-2014-10-31/DescribeDBClusterParameters
https://docs.aws.amazon.com/goto/SdkForJavaV2/rds-2014-10-31/DescribeDBClusterSnapshots
https://docs.aws.amazon.com/goto/SdkForJavaV2/rds-2014-10-31/DescribeDBClusters
https://docs.aws.amazon.com/goto/SdkForJavaV2/rds-2014-10-31/DescribeDBEngineVersions
https://docs.aws.amazon.com/goto/SdkForJavaV2/rds-2014-10-31/DescribeDBInstances
https://docs.aws.amazon.com/goto/SdkForJavaV2/rds-2014-10-31/DescribeOrderableDBInstanceOptions
https://docs.aws.amazon.com/goto/SdkForJavaV2/rds-2014-10-31/ModifyDBClusterParameterGroup
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/kotlin/services/rds#code-examples

Amazon Aurora User Guide for Aurora

/**
Before running this Kotlin code example, set up your development environment,
 including your credentials.

For more information, see the following documentation topic:

https://docs.aws.amazon.com/sdk-for-kotlin/latest/developer-guide/setup.html

This example requires an AWS Secrets Manager secret that contains the database
 credentials. If you do not create a
secret, this example will not work. For more details, see:

https://docs.aws.amazon.com/secretsmanager/latest/userguide/integrating_how-
services-use-secrets_RS.html

This Kotlin example performs the following tasks:

1. Returns a list of the available DB engines.
2. Creates a custom DB parameter group.
3. Gets the parameter groups.
4. Gets the parameters in the group.
5. Modifies the auto_increment_increment parameter.
6. Displays the updated parameter value.
7. Gets a list of allowed engine versions.
8. Creates an Aurora DB cluster database.
9. Waits for DB instance to be ready.
10. Gets a list of instance classes available for the selected engine.
11. Creates a database instance in the cluster.
12. Waits for the database instance in the cluster to be ready.
13. Creates a snapshot.
14. Waits for DB snapshot to be ready.
15. Deletes the DB instance.
16. Deletes the DB cluster.
17. Deletes the DB cluster group.
 */

var slTime: Long = 20

suspend fun main(args: Array<String>) {
 val usage = """
 Usage:

Get started with DB clusters 3719

Amazon Aurora User Guide for Aurora

 <dbClusterGroupName> <dbParameterGroupFamily>
 <dbInstanceClusterIdentifier> <dbName> <dbSnapshotIdentifier> <secretName>
 Where:
 dbClusterGroupName - The database group name.
 dbParameterGroupFamily - The database parameter group name.
 dbInstanceClusterIdentifier - The database instance identifier.
 dbName - The database name.
 dbSnapshotIdentifier - The snapshot identifier.
 secretName - The name of the AWS Secrets Manager secret that contains
 the database credentials.
 """

 if (args.size != 7) {
 println(usage)
 exitProcess(1)
 }

 val dbClusterGroupName = args[0]
 val dbParameterGroupFamily = args[1]
 val dbInstanceClusterIdentifier = args[2]
 val dbInstanceIdentifier = args[3]
 val dbName = args[4]
 val dbSnapshotIdentifier = args[5]
 val secretName = args[6]

 val gson = Gson()
 val user = gson.fromJson(getSecretValues(secretName).toString(),
 User::class.java)
 val username = user.username
 val userPassword = user.password

 println("1. Return a list of the available DB engines")
 describeAuroraDBEngines()

 println("2. Create a custom parameter group")
 createDBClusterParameterGroup(dbClusterGroupName, dbParameterGroupFamily)

 println("3. Get the parameter group")
 describeDbClusterParameterGroups(dbClusterGroupName)

 println("4. Get the parameters in the group")
 describeDbClusterParameters(dbClusterGroupName, 0)

 println("5. Modify the auto_increment_offset parameter")

Get started with DB clusters 3720

Amazon Aurora User Guide for Aurora

 modifyDBClusterParas(dbClusterGroupName)

 println("6. Display the updated parameter value")
 describeDbClusterParameters(dbClusterGroupName, -1)

 println("7. Get a list of allowed engine versions")
 getAllowedClusterEngines(dbParameterGroupFamily)

 println("8. Create an Aurora DB cluster database")
 val arnClusterVal = createDBCluster(dbClusterGroupName, dbName,
 dbInstanceClusterIdentifier, username, userPassword)
 println("The ARN of the cluster is $arnClusterVal")

 println("9. Wait for DB instance to be ready")
 waitForClusterInstanceReady(dbInstanceClusterIdentifier)

 println("10. Get a list of instance classes available for the selected
 engine")
 val instanceClass = getListInstanceClasses()

 println("11. Create a database instance in the cluster.")
 val clusterDBARN = createDBInstanceCluster(dbInstanceIdentifier,
 dbInstanceClusterIdentifier, instanceClass)
 println("The ARN of the database is $clusterDBARN")

 println("12. Wait for DB instance to be ready")
 waitDBAuroraInstanceReady(dbInstanceIdentifier)

 println("13. Create a snapshot")
 createDBClusterSnapshot(dbInstanceClusterIdentifier, dbSnapshotIdentifier)

 println("14. Wait for DB snapshot to be ready")
 waitSnapshotReady(dbSnapshotIdentifier, dbInstanceClusterIdentifier)

 println("15. Delete the DB instance")
 deleteDBInstance(dbInstanceIdentifier)

 println("16. Delete the DB cluster")
 deleteCluster(dbInstanceClusterIdentifier)

 println("17. Delete the DB cluster group")
 if (clusterDBARN != null) {
 deleteDBClusterGroup(dbClusterGroupName, clusterDBARN)
 }

Get started with DB clusters 3721

Amazon Aurora User Guide for Aurora

 println("The Scenario has successfully completed.")
}

@Throws(InterruptedException::class)
suspend fun deleteDBClusterGroup(
 dbClusterGroupName: String,
 clusterDBARN: String,
) {
 var isDataDel = false
 var didFind: Boolean
 var instanceARN: String

 RdsClient { region = "us-west-2" }.use { rdsClient ->
 // Make sure that the database has been deleted.
 while (!isDataDel) {
 val response = rdsClient.describeDbInstances()
 val instanceList = response.dbInstances
 val listSize = instanceList?.size
 isDataDel = false
 didFind = false
 var index = 1
 if (instanceList != null) {
 for (instance in instanceList) {
 instanceARN = instance.dbInstanceArn.toString()
 if (instanceARN.compareTo(clusterDBARN) == 0) {
 println("$clusterDBARN still exists")
 didFind = true
 }
 if (index == listSize && !didFind) {
 // Went through the entire list and did not find the
 database ARN.
 isDataDel = true
 }
 delay(slTime * 1000)
 index++
 }
 }
 }
 val clusterParameterGroupRequest =
 DeleteDbClusterParameterGroupRequest {
 dbClusterParameterGroupName = dbClusterGroupName
 }

 rdsClient.deleteDbClusterParameterGroup(clusterParameterGroupRequest)

Get started with DB clusters 3722

Amazon Aurora User Guide for Aurora

 println("$dbClusterGroupName was deleted.")
 }
}

suspend fun deleteCluster(dbInstanceClusterIdentifier: String) {
 val deleteDbClusterRequest =
 DeleteDbClusterRequest {
 dbClusterIdentifier = dbInstanceClusterIdentifier
 skipFinalSnapshot = true
 }

 RdsClient { region = "us-west-2" }.use { rdsClient ->
 rdsClient.deleteDbCluster(deleteDbClusterRequest)
 println("$dbInstanceClusterIdentifier was deleted!")
 }
}

suspend fun deleteDBInstance(dbInstanceIdentifierVal: String) {
 val deleteDbInstanceRequest =
 DeleteDbInstanceRequest {
 dbInstanceIdentifier = dbInstanceIdentifierVal
 deleteAutomatedBackups = true
 skipFinalSnapshot = true
 }

 RdsClient { region = "us-west-2" }.use { rdsClient ->
 val response = rdsClient.deleteDbInstance(deleteDbInstanceRequest)
 print("The status of the database is
 ${response.dbInstance?.dbInstanceStatus}")
 }
}

suspend fun waitSnapshotReady(
 dbSnapshotIdentifier: String?,
 dbInstanceClusterIdentifier: String?,
) {
 var snapshotReady = false
 var snapshotReadyStr: String
 println("Waiting for the snapshot to become available.")

 val snapshotsRequest =
 DescribeDbClusterSnapshotsRequest {
 dbClusterSnapshotIdentifier = dbSnapshotIdentifier
 dbClusterIdentifier = dbInstanceClusterIdentifier

Get started with DB clusters 3723

Amazon Aurora User Guide for Aurora

 }

 RdsClient { region = "us-west-2" }.use { rdsClient ->
 while (!snapshotReady) {
 val response = rdsClient.describeDbClusterSnapshots(snapshotsRequest)
 val snapshotList = response.dbClusterSnapshots
 if (snapshotList != null) {
 for (snapshot in snapshotList) {
 snapshotReadyStr = snapshot.status.toString()
 if (snapshotReadyStr.contains("available")) {
 snapshotReady = true
 } else {
 println(".")
 delay(slTime * 5000)
 }
 }
 }
 }
 }
 println("The Snapshot is available!")
}

suspend fun createDBClusterSnapshot(
 dbInstanceClusterIdentifier: String?,
 dbSnapshotIdentifier: String?,
) {
 val snapshotRequest =
 CreateDbClusterSnapshotRequest {
 dbClusterIdentifier = dbInstanceClusterIdentifier
 dbClusterSnapshotIdentifier = dbSnapshotIdentifier
 }

 RdsClient { region = "us-west-2" }.use { rdsClient ->
 val response = rdsClient.createDbClusterSnapshot(snapshotRequest)
 println("The Snapshot ARN is
 ${response.dbClusterSnapshot?.dbClusterSnapshotArn}")
 }
}

suspend fun waitDBAuroraInstanceReady(dbInstanceIdentifierVal: String?) {
 var instanceReady = false
 var instanceReadyStr: String
 println("Waiting for instance to become available.")
 val instanceRequest =

Get started with DB clusters 3724

Amazon Aurora User Guide for Aurora

 DescribeDbInstancesRequest {
 dbInstanceIdentifier = dbInstanceIdentifierVal
 }

 var endpoint = ""
 RdsClient { region = "us-west-2" }.use { rdsClient ->
 while (!instanceReady) {
 val response = rdsClient.describeDbInstances(instanceRequest)
 response.dbInstances?.forEach { instance ->
 instanceReadyStr = instance.dbInstanceStatus.toString()
 if (instanceReadyStr.contains("available")) {
 endpoint = instance.endpoint?.address.toString()
 instanceReady = true
 } else {
 print(".")
 delay(sleepTime * 1000)
 }
 }
 }
 }
 println("Database instance is available! The connection endpoint is
 $endpoint")
}

suspend fun createDBInstanceCluster(
 dbInstanceIdentifierVal: String?,
 dbInstanceClusterIdentifierVal: String?,
 instanceClassVal: String?,
): String? {
 val instanceRequest =
 CreateDbInstanceRequest {
 dbInstanceIdentifier = dbInstanceIdentifierVal
 dbClusterIdentifier = dbInstanceClusterIdentifierVal
 engine = "aurora-mysql"
 dbInstanceClass = instanceClassVal
 }

 RdsClient { region = "us-west-2" }.use { rdsClient ->
 val response = rdsClient.createDbInstance(instanceRequest)
 print("The status is ${response.dbInstance?.dbInstanceStatus}")
 return response.dbInstance?.dbInstanceArn
 }
}

Get started with DB clusters 3725

Amazon Aurora User Guide for Aurora

suspend fun getListInstanceClasses(): String {
 val optionsRequest =
 DescribeOrderableDbInstanceOptionsRequest {
 engine = "aurora-mysql"
 maxRecords = 20
 }
 var instanceClass = ""
 RdsClient { region = "us-west-2" }.use { rdsClient ->
 val response =
 rdsClient.describeOrderableDbInstanceOptions(optionsRequest)
 response.orderableDbInstanceOptions?.forEach { instanceOption ->
 instanceClass = instanceOption.dbInstanceClass.toString()
 println("The instance class is ${instanceOption.dbInstanceClass}")
 println("The engine version is ${instanceOption.engineVersion}")
 }
 }
 return instanceClass
}

// Waits until the database instance is available.
suspend fun waitForClusterInstanceReady(dbClusterIdentifierVal: String?) {
 var instanceReady = false
 var instanceReadyStr: String
 println("Waiting for instance to become available.")

 val instanceRequest =
 DescribeDbClustersRequest {
 dbClusterIdentifier = dbClusterIdentifierVal
 }

 RdsClient { region = "us-west-2" }.use { rdsClient ->
 while (!instanceReady) {
 val response = rdsClient.describeDbClusters(instanceRequest)
 response.dbClusters?.forEach { cluster ->
 instanceReadyStr = cluster.status.toString()
 if (instanceReadyStr.contains("available")) {
 instanceReady = true
 } else {
 print(".")
 delay(sleepTime * 1000)
 }
 }
 }
 }

Get started with DB clusters 3726

Amazon Aurora User Guide for Aurora

 println("Database cluster is available!")
}

suspend fun createDBCluster(
 dbParameterGroupFamilyVal: String?,
 dbName: String?,
 dbClusterIdentifierVal: String?,
 userName: String?,
 password: String?,
): String? {
 val clusterRequest =
 CreateDbClusterRequest {
 databaseName = dbName
 dbClusterIdentifier = dbClusterIdentifierVal
 dbClusterParameterGroupName = dbParameterGroupFamilyVal
 engine = "aurora-mysql"
 masterUsername = userName
 masterUserPassword = password
 }

 RdsClient { region = "us-west-2" }.use { rdsClient ->
 val response = rdsClient.createDbCluster(clusterRequest)
 return response.dbCluster?.dbClusterArn
 }
}

// Get a list of allowed engine versions.
suspend fun getAllowedClusterEngines(dbParameterGroupFamilyVal: String?) {
 val versionsRequest =
 DescribeDbEngineVersionsRequest {
 dbParameterGroupFamily = dbParameterGroupFamilyVal
 engine = "aurora-mysql"
 }

 RdsClient { region = "us-west-2" }.use { rdsClient ->
 val response = rdsClient.describeDbEngineVersions(versionsRequest)
 response.dbEngineVersions?.forEach { dbEngine ->
 println("The engine version is ${dbEngine.engineVersion}")
 println("The engine description is ${dbEngine.dbEngineDescription}")
 }
 }
}

// Modify the auto_increment_offset parameter.

Get started with DB clusters 3727

Amazon Aurora User Guide for Aurora

suspend fun modifyDBClusterParas(dClusterGroupName: String?) {
 val parameter1 =
 Parameter {
 parameterName = "auto_increment_offset"
 applyMethod = ApplyMethod.fromValue("immediate")
 parameterValue = "5"
 }

 val paraList = ArrayList<Parameter>()
 paraList.add(parameter1)
 val groupRequest =
 ModifyDbClusterParameterGroupRequest {
 dbClusterParameterGroupName = dClusterGroupName
 parameters = paraList
 }

 RdsClient { region = "us-west-2" }.use { rdsClient ->
 val response = rdsClient.modifyDbClusterParameterGroup(groupRequest)
 println("The parameter group ${response.dbClusterParameterGroupName} was
 successfully modified")
 }
}

suspend fun describeDbClusterParameters(
 dbCLusterGroupName: String?,
 flag: Int,
) {
 val dbParameterGroupsRequest: DescribeDbClusterParametersRequest
 dbParameterGroupsRequest =
 if (flag == 0) {
 DescribeDbClusterParametersRequest {
 dbClusterParameterGroupName = dbCLusterGroupName
 }
 } else {
 DescribeDbClusterParametersRequest {
 dbClusterParameterGroupName = dbCLusterGroupName
 source = "user"
 }
 }

 RdsClient { region = "us-west-2" }.use { rdsClient ->
 val response =
 rdsClient.describeDbClusterParameters(dbParameterGroupsRequest)
 response.parameters?.forEach { para ->

Get started with DB clusters 3728

Amazon Aurora User Guide for Aurora

 // Only print out information about either auto_increment_offset or
 auto_increment_increment.
 val paraName = para.parameterName
 if (paraName != null) {
 if (paraName.compareTo("auto_increment_offset") == 0 ||
 paraName.compareTo("auto_increment_increment ") == 0) {
 println("*** The parameter name is $paraName")
 println("*** The parameter value is ${para.parameterValue}")
 println("*** The parameter data type is ${para.dataType}")
 println("*** The parameter description is
 ${para.description}")
 println("*** The parameter allowed values is
 ${para.allowedValues}")
 }
 }
 }
 }
}

suspend fun describeDbClusterParameterGroups(dbClusterGroupName: String?) {
 val groupsRequest =
 DescribeDbClusterParameterGroupsRequest {
 dbClusterParameterGroupName = dbClusterGroupName
 maxRecords = 20
 }

 RdsClient { region = "us-west-2" }.use { rdsClient ->
 val response = rdsClient.describeDbClusterParameterGroups(groupsRequest)
 response.dbClusterParameterGroups?.forEach { group ->
 println("The group name is ${group.dbClusterParameterGroupName}")
 println("The group ARN is ${group.dbClusterParameterGroupArn}")
 }
 }
}

suspend fun createDBClusterParameterGroup(
 dbClusterGroupNameVal: String?,
 dbParameterGroupFamilyVal: String?,
) {
 val groupRequest =
 CreateDbClusterParameterGroupRequest {
 dbClusterParameterGroupName = dbClusterGroupNameVal
 dbParameterGroupFamily = dbParameterGroupFamilyVal
 description = "Created by using the AWS SDK for Kotlin"

Get started with DB clusters 3729

Amazon Aurora User Guide for Aurora

 }

 RdsClient { region = "us-west-2" }.use { rdsClient ->
 val response = rdsClient.createDbClusterParameterGroup(groupRequest)
 println("The group name is
 ${response.dbClusterParameterGroup?.dbClusterParameterGroupName}")
 }
}

suspend fun describeAuroraDBEngines() {
 val engineVersionsRequest =
 DescribeDbEngineVersionsRequest {
 engine = "aurora-mysql"
 defaultOnly = true
 maxRecords = 20
 }

 RdsClient { region = "us-west-2" }.use { rdsClient ->
 val response = rdsClient.describeDbEngineVersions(engineVersionsRequest)
 response.dbEngineVersions?.forEach { engineOb ->
 println("The name of the DB parameter group family for the database
 engine is ${engineOb.dbParameterGroupFamily}")
 println("The name of the database engine ${engineOb.engine}")
 println("The version number of the database engine
 ${engineOb.engineVersion}")
 }
 }
}

• For API details, see the following topics in AWS SDK for Kotlin API reference.

• CreateDBCluster

• CreateDBClusterParameterGroup

• CreateDBClusterSnapshot

• CreateDBInstance

• DeleteDBCluster

• DeleteDBClusterParameterGroup

• DeleteDBInstance

• DescribeDBClusterParameterGroups
Get started with DB clusters 3730

https://sdk.amazonaws.com/kotlin/api/latest/index.html
https://sdk.amazonaws.com/kotlin/api/latest/index.html
https://sdk.amazonaws.com/kotlin/api/latest/index.html
https://sdk.amazonaws.com/kotlin/api/latest/index.html
https://sdk.amazonaws.com/kotlin/api/latest/index.html
https://sdk.amazonaws.com/kotlin/api/latest/index.html
https://sdk.amazonaws.com/kotlin/api/latest/index.html
https://sdk.amazonaws.com/kotlin/api/latest/index.html

Amazon Aurora User Guide for Aurora

• DescribeDBClusterParameters

• DescribeDBClusterSnapshots

• DescribeDBClusters

• DescribeDBEngineVersions

• DescribeDBInstances

• DescribeOrderableDBInstanceOptions

• ModifyDBClusterParameterGroup

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Run an interactive scenario at a command prompt.

class AuroraClusterScenario:
 """Runs a scenario that shows how to get started using Aurora DB clusters."""

 def __init__(self, aurora_wrapper):
 """
 :param aurora_wrapper: An object that wraps Aurora DB cluster actions.
 """
 self.aurora_wrapper = aurora_wrapper

 def create_parameter_group(self, db_engine, parameter_group_name):
 """
 Shows how to get available engine versions for a specified database
 engine and
 create a DB cluster parameter group that is compatible with a selected
 engine family.

 :param db_engine: The database engine to use as a basis.
 :param parameter_group_name: The name given to the newly created
 parameter group.

Get started with DB clusters 3731

https://sdk.amazonaws.com/kotlin/api/latest/index.html
https://sdk.amazonaws.com/kotlin/api/latest/index.html
https://sdk.amazonaws.com/kotlin/api/latest/index.html
https://sdk.amazonaws.com/kotlin/api/latest/index.html
https://sdk.amazonaws.com/kotlin/api/latest/index.html
https://sdk.amazonaws.com/kotlin/api/latest/index.html
https://sdk.amazonaws.com/kotlin/api/latest/index.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/aurora#code-examples

Amazon Aurora User Guide for Aurora

 :return: The newly created parameter group.
 """
 print(
 f"Checking for an existing DB cluster parameter group named
 {parameter_group_name}."
)
 parameter_group =
 self.aurora_wrapper.get_parameter_group(parameter_group_name)
 if parameter_group is None:
 print(f"Getting available database engine versions for {db_engine}.")
 engine_versions = self.aurora_wrapper.get_engine_versions(db_engine)
 families = list({ver["DBParameterGroupFamily"] for ver in
 engine_versions})
 family_index = q.choose("Which family do you want to use? ",
 families)
 print(f"Creating a DB cluster parameter group.")
 self.aurora_wrapper.create_parameter_group(
 parameter_group_name, families[family_index], "Example parameter
 group."
)
 parameter_group = self.aurora_wrapper.get_parameter_group(
 parameter_group_name
)
 print(f"Parameter group
 {parameter_group['DBClusterParameterGroupName']}:")
 pp(parameter_group)
 print("-" * 88)
 return parameter_group

 def set_user_parameters(self, parameter_group_name):
 """
 Shows how to get the parameters contained in a custom parameter group and
 update some of the parameter values in the group.

 :param parameter_group_name: The name of the parameter group to query and
 modify.
 """
 print("Let's set some parameter values in your parameter group.")
 auto_inc_parameters = self.aurora_wrapper.get_parameters(
 parameter_group_name, name_prefix="auto_increment"
)
 update_params = []
 for auto_inc in auto_inc_parameters:
 if auto_inc["IsModifiable"] and auto_inc["DataType"] == "integer":

Get started with DB clusters 3732

Amazon Aurora User Guide for Aurora

 print(f"The {auto_inc['ParameterName']} parameter is described
 as:")
 print(f"\t{auto_inc['Description']}")
 param_range = auto_inc["AllowedValues"].split("-")
 auto_inc["ParameterValue"] = str(
 q.ask(
 f"Enter a value between {param_range[0]} and
 {param_range[1]}: ",
 q.is_int,
 q.in_range(int(param_range[0]), int(param_range[1])),
)
)
 update_params.append(auto_inc)
 self.aurora_wrapper.update_parameters(parameter_group_name,
 update_params)
 print(
 "You can get a list of parameters you've set by specifying a source
 of 'user'."
)
 user_parameters = self.aurora_wrapper.get_parameters(
 parameter_group_name, source="user"
)
 pp(user_parameters)
 print("-" * 88)

 def create_cluster(self, cluster_name, db_engine, db_name, parameter_group):
 """
 Shows how to create an Aurora DB cluster that contains a database of a
 specified
 type. The database is also configured to use a custom DB cluster
 parameter group.

 :param cluster_name: The name given to the newly created DB cluster.
 :param db_engine: The engine of the created database.
 :param db_name: The name given to the created database.
 :param parameter_group: The parameter group that is associated with the
 DB cluster.
 :return: The newly created DB cluster.
 """
 print("Checking for an existing DB cluster.")
 cluster = self.aurora_wrapper.get_db_cluster(cluster_name)
 if cluster is None:
 admin_username = q.ask(

Get started with DB clusters 3733

Amazon Aurora User Guide for Aurora

 "Enter an administrator user name for the database: ",
 q.non_empty
)
 admin_password = q.ask(
 "Enter a password for the administrator (at least 8 characters):
 ",
 q.non_empty,
)
 engine_versions = self.aurora_wrapper.get_engine_versions(
 db_engine, parameter_group["DBParameterGroupFamily"]
)
 engine_choices = [
 ver["EngineVersionDescription"] for ver in engine_versions
]
 print("The available engines for your parameter group are:")
 engine_index = q.choose("Which engine do you want to use? ",
 engine_choices)
 print(
 f"Creating DB cluster {cluster_name} and database {db_name}.\n"
 f"The DB cluster is configured to use\n"
 f"your custom parameter group
 {parameter_group['DBClusterParameterGroupName']}\n"
 f"and selected engine {engine_choices[engine_index]}.\n"
 f"This typically takes several minutes."
)
 cluster = self.aurora_wrapper.create_db_cluster(
 cluster_name,
 parameter_group["DBClusterParameterGroupName"],
 db_name,
 db_engine,
 engine_versions[engine_index]["EngineVersion"],
 admin_username,
 admin_password,
)
 while cluster.get("Status") != "available":
 wait(30)
 cluster = self.aurora_wrapper.get_db_cluster(cluster_name)
 print("Cluster created and available.\n")
 print("Cluster data:")
 pp(cluster)
 print("-" * 88)
 return cluster

 def create_instance(self, cluster):

Get started with DB clusters 3734

Amazon Aurora User Guide for Aurora

 """
 Shows how to create a DB instance in an existing Aurora DB cluster. A new
 DB cluster
 contains no DB instances, so you must add one. The first DB instance that
 is added
 to a DB cluster defaults to a read-write DB instance.

 :param cluster: The DB cluster where the DB instance is added.
 :return: The newly created DB instance.
 """
 print("Checking for an existing database instance.")
 cluster_name = cluster["DBClusterIdentifier"]
 db_inst = self.aurora_wrapper.get_db_instance(cluster_name)
 if db_inst is None:
 print("Let's create a database instance in your DB cluster.")
 print("First, choose a DB instance type:")
 inst_opts = self.aurora_wrapper.get_orderable_instances(
 cluster["Engine"], cluster["EngineVersion"]
)
 inst_choices = list(
 {
 opt["DBInstanceClass"] + ", storage type: " +
 opt["StorageType"]
 for opt in inst_opts
 }
)
 inst_index = q.choose(
 "Which DB instance class do you want to use? ", inst_choices
)
 print(
 f"Creating a database instance. This typically takes several
 minutes."
)
 db_inst = self.aurora_wrapper.create_instance_in_cluster(
 cluster_name,
 cluster_name,
 cluster["Engine"],
 inst_opts[inst_index]["DBInstanceClass"],
)
 while db_inst.get("DBInstanceStatus") != "available":
 wait(30)
 db_inst = self.aurora_wrapper.get_db_instance(cluster_name)
 print("Instance data:")
 pp(db_inst)

Get started with DB clusters 3735

Amazon Aurora User Guide for Aurora

 print("-" * 88)
 return db_inst

 @staticmethod
 def display_connection(cluster):
 """
 Displays connection information about an Aurora DB cluster and tips on
 how to
 connect to it.

 :param cluster: The DB cluster to display.
 """
 print(
 "You can now connect to your database using your favorite MySql
 client.\n"
 "One way to connect is by using the 'mysql' shell on an Amazon EC2
 instance\n"
 "that is running in the same VPC as your database cluster. Pass the
 endpoint,\n"
 "port, and administrator user name to 'mysql' and enter your password
\n"
 "when prompted:\n"
)
 print(
 f"\n\tmysql -h {cluster['Endpoint']} -P {cluster['Port']} -u
 {cluster['MasterUsername']} -p\n"
)
 print(
 "For more information, see the User Guide for Aurora:\n"
 "\thttps://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/
CHAP_GettingStartedAurora.CreatingConnecting.Aurora.html#CHAP_GettingStartedAurora.Aurora.Connect"
)
 print("-" * 88)

 def create_snapshot(self, cluster_name):
 """
 Shows how to create a DB cluster snapshot and wait until it's available.

 :param cluster_name: The name of a DB cluster to snapshot.
 """
 if q.ask(
 "Do you want to create a snapshot of your DB cluster (y/n)? ",
 q.is_yesno
):

Get started with DB clusters 3736

Amazon Aurora User Guide for Aurora

 snapshot_id = f"{cluster_name}-{uuid.uuid4()}"
 print(
 f"Creating a snapshot named {snapshot_id}. This typically takes a
 few minutes."
)
 snapshot = self.aurora_wrapper.create_cluster_snapshot(
 snapshot_id, cluster_name
)
 while snapshot.get("Status") != "available":
 wait(30)
 snapshot = self.aurora_wrapper.get_cluster_snapshot(snapshot_id)
 pp(snapshot)
 print("-" * 88)

 def cleanup(self, db_inst, cluster, parameter_group):
 """
 Shows how to clean up a DB instance, DB cluster, and DB cluster parameter
 group.
 Before the DB cluster parameter group can be deleted, all associated DB
 instances and
 DB clusters must first be deleted.

 :param db_inst: The DB instance to delete.
 :param cluster: The DB cluster to delete.
 :param parameter_group: The DB cluster parameter group to delete.
 """
 cluster_name = cluster["DBClusterIdentifier"]
 parameter_group_name = parameter_group["DBClusterParameterGroupName"]
 if q.ask(
 "\nDo you want to delete the database instance, DB cluster, and
 parameter "
 "group (y/n)? ",
 q.is_yesno,
):
 print(f"Deleting database instance
 {db_inst['DBInstanceIdentifier']}.")

 self.aurora_wrapper.delete_db_instance(db_inst["DBInstanceIdentifier"])
 print(f"Deleting database cluster {cluster_name}.")
 self.aurora_wrapper.delete_db_cluster(cluster_name)
 print(
 "Waiting for the DB instance and DB cluster to delete.\n"
 "This typically takes several minutes."
)

Get started with DB clusters 3737

Amazon Aurora User Guide for Aurora

 while db_inst is not None or cluster is not None:
 wait(30)
 if db_inst is not None:
 db_inst = self.aurora_wrapper.get_db_instance(
 db_inst["DBInstanceIdentifier"]
)
 if cluster is not None:
 cluster = self.aurora_wrapper.get_db_cluster(
 cluster["DBClusterIdentifier"]
)
 print(f"Deleting parameter group {parameter_group_name}.")
 self.aurora_wrapper.delete_parameter_group(parameter_group_name)

 def run_scenario(self, db_engine, parameter_group_name, cluster_name,
 db_name):
 print("-" * 88)
 print(
 "Welcome to the Amazon Relational Database Service (Amazon RDS) get
 started\n"
 "with Aurora DB clusters demo."
)
 print("-" * 88)

 parameter_group = self.create_parameter_group(db_engine,
 parameter_group_name)
 self.set_user_parameters(parameter_group_name)
 cluster = self.create_cluster(cluster_name, db_engine, db_name,
 parameter_group)
 wait(5)
 db_inst = self.create_instance(cluster)
 self.display_connection(cluster)
 self.create_snapshot(cluster_name)
 self.cleanup(db_inst, cluster, parameter_group)

 print("\nThanks for watching!")
 print("-" * 88)

if __name__ == "__main__":
 logging.basicConfig(level=logging.INFO, format="%(levelname)s: %(message)s")
 try:
 scenario = AuroraClusterScenario(AuroraWrapper.from_client())
 scenario.run_scenario(
 "aurora-mysql",

Get started with DB clusters 3738

Amazon Aurora User Guide for Aurora

 "doc-example-cluster-parameter-group",
 "doc-example-aurora",
 "docexampledb",
)
 except Exception:
 logging.exception("Something went wrong with the demo.")

Define functions that are called by the scenario to manage Aurora actions.

class AuroraWrapper:
 """Encapsulates Aurora DB cluster actions."""

 def __init__(self, rds_client):
 """
 :param rds_client: A Boto3 Amazon Relational Database Service (Amazon
 RDS) client.
 """
 self.rds_client = rds_client

 @classmethod
 def from_client(cls):
 """
 Instantiates this class from a Boto3 client.
 """
 rds_client = boto3.client("rds")
 return cls(rds_client)

 def get_parameter_group(self, parameter_group_name):
 """
 Gets a DB cluster parameter group.

 :param parameter_group_name: The name of the parameter group to retrieve.
 :return: The requested parameter group.
 """
 try:
 response = self.rds_client.describe_db_cluster_parameter_groups(
 DBClusterParameterGroupName=parameter_group_name
)
 parameter_group = response["DBClusterParameterGroups"][0]
 except ClientError as err:
 if err.response["Error"]["Code"] == "DBParameterGroupNotFound":

Get started with DB clusters 3739

Amazon Aurora User Guide for Aurora

 logger.info("Parameter group %s does not exist.",
 parameter_group_name)
 else:
 logger.error(
 "Couldn't get parameter group %s. Here's why: %s: %s",
 parameter_group_name,
 err.response["Error"]["Code"],
 err.response["Error"]["Message"],
)
 raise
 else:
 return parameter_group

 def create_parameter_group(
 self, parameter_group_name, parameter_group_family, description
):
 """
 Creates a DB cluster parameter group that is based on the specified
 parameter group
 family.

 :param parameter_group_name: The name of the newly created parameter
 group.
 :param parameter_group_family: The family that is used as the basis of
 the new
 parameter group.
 :param description: A description given to the parameter group.
 :return: Data about the newly created parameter group.
 """
 try:
 response = self.rds_client.create_db_cluster_parameter_group(
 DBClusterParameterGroupName=parameter_group_name,
 DBParameterGroupFamily=parameter_group_family,
 Description=description,
)
 except ClientError as err:
 logger.error(
 "Couldn't create parameter group %s. Here's why: %s: %s",
 parameter_group_name,
 err.response["Error"]["Code"],
 err.response["Error"]["Message"],
)
 raise

Get started with DB clusters 3740

Amazon Aurora User Guide for Aurora

 else:
 return response

 def delete_parameter_group(self, parameter_group_name):
 """
 Deletes a DB cluster parameter group.

 :param parameter_group_name: The name of the parameter group to delete.
 :return: Data about the parameter group.
 """
 try:
 response = self.rds_client.delete_db_cluster_parameter_group(
 DBClusterParameterGroupName=parameter_group_name
)
 except ClientError as err:
 logger.error(
 "Couldn't delete parameter group %s. Here's why: %s: %s",
 parameter_group_name,
 err.response["Error"]["Code"],
 err.response["Error"]["Message"],
)
 raise
 else:
 return response

 def get_parameters(self, parameter_group_name, name_prefix="", source=None):
 """
 Gets the parameters that are contained in a DB cluster parameter group.

 :param parameter_group_name: The name of the parameter group to query.
 :param name_prefix: When specified, the retrieved list of parameters is
 filtered
 to contain only parameters that start with this
 prefix.
 :param source: When specified, only parameters from this source are
 retrieved.
 For example, a source of 'user' retrieves only parameters
 that
 were set by a user.
 :return: The list of requested parameters.
 """
 try:

Get started with DB clusters 3741

Amazon Aurora User Guide for Aurora

 kwargs = {"DBClusterParameterGroupName": parameter_group_name}
 if source is not None:
 kwargs["Source"] = source
 parameters = []
 paginator =
 self.rds_client.get_paginator("describe_db_cluster_parameters")
 for page in paginator.paginate(**kwargs):
 parameters += [
 p
 for p in page["Parameters"]
 if p["ParameterName"].startswith(name_prefix)
]
 except ClientError as err:
 logger.error(
 "Couldn't get parameters for %s. Here's why: %s: %s",
 parameter_group_name,
 err.response["Error"]["Code"],
 err.response["Error"]["Message"],
)
 raise
 else:
 return parameters

 def update_parameters(self, parameter_group_name, update_parameters):
 """
 Updates parameters in a custom DB cluster parameter group.

 :param parameter_group_name: The name of the parameter group to update.
 :param update_parameters: The parameters to update in the group.
 :return: Data about the modified parameter group.
 """
 try:
 response = self.rds_client.modify_db_cluster_parameter_group(
 DBClusterParameterGroupName=parameter_group_name,
 Parameters=update_parameters,
)
 except ClientError as err:
 logger.error(
 "Couldn't update parameters in %s. Here's why: %s: %s",
 parameter_group_name,
 err.response["Error"]["Code"],
 err.response["Error"]["Message"],
)

Get started with DB clusters 3742

Amazon Aurora User Guide for Aurora

 raise
 else:
 return response

 def get_db_cluster(self, cluster_name):
 """
 Gets data about an Aurora DB cluster.

 :param cluster_name: The name of the DB cluster to retrieve.
 :return: The retrieved DB cluster.
 """
 try:
 response = self.rds_client.describe_db_clusters(
 DBClusterIdentifier=cluster_name
)
 cluster = response["DBClusters"][0]
 except ClientError as err:
 if err.response["Error"]["Code"] == "DBClusterNotFoundFault":
 logger.info("Cluster %s does not exist.", cluster_name)
 else:
 logger.error(
 "Couldn't verify the existence of DB cluster %s. Here's why:
 %s: %s",
 cluster_name,
 err.response["Error"]["Code"],
 err.response["Error"]["Message"],
)
 raise
 else:
 return cluster

 def create_db_cluster(
 self,
 cluster_name,
 parameter_group_name,
 db_name,
 db_engine,
 db_engine_version,
 admin_name,
 admin_password,
):
 """

Get started with DB clusters 3743

Amazon Aurora User Guide for Aurora

 Creates a DB cluster that is configured to use the specified parameter
 group.
 The newly created DB cluster contains a database that uses the specified
 engine and
 engine version.

 :param cluster_name: The name of the DB cluster to create.
 :param parameter_group_name: The name of the parameter group to associate
 with
 the DB cluster.
 :param db_name: The name of the database to create.
 :param db_engine: The database engine of the database that is created,
 such as MySql.
 :param db_engine_version: The version of the database engine.
 :param admin_name: The user name of the database administrator.
 :param admin_password: The password of the database administrator.
 :return: The newly created DB cluster.
 """
 try:
 response = self.rds_client.create_db_cluster(
 DatabaseName=db_name,
 DBClusterIdentifier=cluster_name,
 DBClusterParameterGroupName=parameter_group_name,
 Engine=db_engine,
 EngineVersion=db_engine_version,
 MasterUsername=admin_name,
 MasterUserPassword=admin_password,
)
 cluster = response["DBCluster"]
 except ClientError as err:
 logger.error(
 "Couldn't create database %s. Here's why: %s: %s",
 db_name,
 err.response["Error"]["Code"],
 err.response["Error"]["Message"],
)
 raise
 else:
 return cluster

 def delete_db_cluster(self, cluster_name):
 """
 Deletes a DB cluster.

Get started with DB clusters 3744

Amazon Aurora User Guide for Aurora

 :param cluster_name: The name of the DB cluster to delete.
 """
 try:
 self.rds_client.delete_db_cluster(
 DBClusterIdentifier=cluster_name, SkipFinalSnapshot=True
)
 logger.info("Deleted DB cluster %s.", cluster_name)
 except ClientError:
 logger.exception("Couldn't delete DB cluster %s.", cluster_name)
 raise

 def create_cluster_snapshot(self, snapshot_id, cluster_id):
 """
 Creates a snapshot of a DB cluster.

 :param snapshot_id: The ID to give the created snapshot.
 :param cluster_id: The DB cluster to snapshot.
 :return: Data about the newly created snapshot.
 """
 try:
 response = self.rds_client.create_db_cluster_snapshot(
 DBClusterSnapshotIdentifier=snapshot_id,
 DBClusterIdentifier=cluster_id
)
 snapshot = response["DBClusterSnapshot"]
 except ClientError as err:
 logger.error(
 "Couldn't create snapshot of %s. Here's why: %s: %s",
 cluster_id,
 err.response["Error"]["Code"],
 err.response["Error"]["Message"],
)
 raise
 else:
 return snapshot

 def get_cluster_snapshot(self, snapshot_id):
 """
 Gets a DB cluster snapshot.

 :param snapshot_id: The ID of the snapshot to retrieve.

Get started with DB clusters 3745

Amazon Aurora User Guide for Aurora

 :return: The retrieved snapshot.
 """
 try:
 response = self.rds_client.describe_db_cluster_snapshots(
 DBClusterSnapshotIdentifier=snapshot_id
)
 snapshot = response["DBClusterSnapshots"][0]
 except ClientError as err:
 logger.error(
 "Couldn't get DB cluster snapshot %s. Here's why: %s: %s",
 snapshot_id,
 err.response["Error"]["Code"],
 err.response["Error"]["Message"],
)
 raise
 else:
 return snapshot

 def create_instance_in_cluster(
 self, instance_id, cluster_id, db_engine, instance_class
):
 """
 Creates a database instance in an existing DB cluster. The first database
 that is
 created defaults to a read-write DB instance.

 :param instance_id: The ID to give the newly created DB instance.
 :param cluster_id: The ID of the DB cluster where the DB instance is
 created.
 :param db_engine: The database engine of a database to create in the DB
 instance.
 This must be compatible with the configured parameter
 group
 of the DB cluster.
 :param instance_class: The DB instance class for the newly created DB
 instance.
 :return: Data about the newly created DB instance.
 """
 try:
 response = self.rds_client.create_db_instance(
 DBInstanceIdentifier=instance_id,
 DBClusterIdentifier=cluster_id,
 Engine=db_engine,

Get started with DB clusters 3746

Amazon Aurora User Guide for Aurora

 DBInstanceClass=instance_class,
)
 db_inst = response["DBInstance"]
 except ClientError as err:
 logger.error(
 "Couldn't create DB instance %s. Here's why: %s: %s",
 instance_id,
 err.response["Error"]["Code"],
 err.response["Error"]["Message"],
)
 raise
 else:
 return db_inst

 def get_engine_versions(self, engine, parameter_group_family=None):
 """
 Gets database engine versions that are available for the specified engine
 and parameter group family.

 :param engine: The database engine to look up.
 :param parameter_group_family: When specified, restricts the returned
 list of
 engine versions to those that are
 compatible with
 this parameter group family.
 :return: The list of database engine versions.
 """
 try:
 kwargs = {"Engine": engine}
 if parameter_group_family is not None:
 kwargs["DBParameterGroupFamily"] = parameter_group_family
 response = self.rds_client.describe_db_engine_versions(**kwargs)
 versions = response["DBEngineVersions"]
 except ClientError as err:
 logger.error(
 "Couldn't get engine versions for %s. Here's why: %s: %s",
 engine,
 err.response["Error"]["Code"],
 err.response["Error"]["Message"],
)
 raise
 else:
 return versions

Get started with DB clusters 3747

Amazon Aurora User Guide for Aurora

 def get_orderable_instances(self, db_engine, db_engine_version):
 """
 Gets DB instance options that can be used to create DB instances that are
 compatible with a set of specifications.

 :param db_engine: The database engine that must be supported by the DB
 instance.
 :param db_engine_version: The engine version that must be supported by
 the DB instance.
 :return: The list of DB instance options that can be used to create a
 compatible DB instance.
 """
 try:
 inst_opts = []
 paginator = self.rds_client.get_paginator(
 "describe_orderable_db_instance_options"
)
 for page in paginator.paginate(
 Engine=db_engine, EngineVersion=db_engine_version
):
 inst_opts += page["OrderableDBInstanceOptions"]
 except ClientError as err:
 logger.error(
 "Couldn't get orderable DB instances. Here's why: %s: %s",
 err.response["Error"]["Code"],
 err.response["Error"]["Message"],
)
 raise
 else:
 return inst_opts

 def get_db_instance(self, instance_id):
 """
 Gets data about a DB instance.

 :param instance_id: The ID of the DB instance to retrieve.
 :return: The retrieved DB instance.
 """
 try:
 response = self.rds_client.describe_db_instances(
 DBInstanceIdentifier=instance_id

Get started with DB clusters 3748

Amazon Aurora User Guide for Aurora

)
 db_inst = response["DBInstances"][0]
 except ClientError as err:
 if err.response["Error"]["Code"] == "DBInstanceNotFound":
 logger.info("Instance %s does not exist.", instance_id)
 else:
 logger.error(
 "Couldn't get DB instance %s. Here's why: %s: %s",
 instance_id,
 err.response["Error"]["Code"],
 err.response["Error"]["Message"],
)
 raise
 else:
 return db_inst

 def delete_db_instance(self, instance_id):
 """
 Deletes a DB instance.

 :param instance_id: The ID of the DB instance to delete.
 :return: Data about the deleted DB instance.
 """
 try:
 response = self.rds_client.delete_db_instance(
 DBInstanceIdentifier=instance_id,
 SkipFinalSnapshot=True,
 DeleteAutomatedBackups=True,
)
 db_inst = response["DBInstance"]
 except ClientError as err:
 logger.error(
 "Couldn't delete DB instance %s. Here's why: %s: %s",
 instance_id,
 err.response["Error"]["Code"],
 err.response["Error"]["Message"],
)
 raise
 else:
 return db_inst

Get started with DB clusters 3749

Amazon Aurora User Guide for Aurora

• For API details, see the following topics in AWS SDK for Python (Boto3) API Reference.

• CreateDBCluster

• CreateDBClusterParameterGroup

• CreateDBClusterSnapshot

• CreateDBInstance

• DeleteDBCluster

• DeleteDBClusterParameterGroup

• DeleteDBInstance

• DescribeDBClusterParameterGroups

• DescribeDBClusterParameters

• DescribeDBClusterSnapshots

• DescribeDBClusters

• DescribeDBEngineVersions

• DescribeDBInstances

• DescribeOrderableDBInstanceOptions

• ModifyDBClusterParameterGroup

Rust

SDK for Rust

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

A library containing the scenario-specific functions for the Aurora scenario.

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0

use phf::{phf_set, Set};

Get started with DB clusters 3750

https://docs.aws.amazon.com/goto/boto3/rds-2014-10-31/CreateDBCluster
https://docs.aws.amazon.com/goto/boto3/rds-2014-10-31/CreateDBClusterParameterGroup
https://docs.aws.amazon.com/goto/boto3/rds-2014-10-31/CreateDBClusterSnapshot
https://docs.aws.amazon.com/goto/boto3/rds-2014-10-31/CreateDBInstance
https://docs.aws.amazon.com/goto/boto3/rds-2014-10-31/DeleteDBCluster
https://docs.aws.amazon.com/goto/boto3/rds-2014-10-31/DeleteDBClusterParameterGroup
https://docs.aws.amazon.com/goto/boto3/rds-2014-10-31/DeleteDBInstance
https://docs.aws.amazon.com/goto/boto3/rds-2014-10-31/DescribeDBClusterParameterGroups
https://docs.aws.amazon.com/goto/boto3/rds-2014-10-31/DescribeDBClusterParameters
https://docs.aws.amazon.com/goto/boto3/rds-2014-10-31/DescribeDBClusterSnapshots
https://docs.aws.amazon.com/goto/boto3/rds-2014-10-31/DescribeDBClusters
https://docs.aws.amazon.com/goto/boto3/rds-2014-10-31/DescribeDBEngineVersions
https://docs.aws.amazon.com/goto/boto3/rds-2014-10-31/DescribeDBInstances
https://docs.aws.amazon.com/goto/boto3/rds-2014-10-31/DescribeOrderableDBInstanceOptions
https://docs.aws.amazon.com/goto/boto3/rds-2014-10-31/ModifyDBClusterParameterGroup
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/rustv1/examples/aurora#code-examples

Amazon Aurora User Guide for Aurora

use secrecy::SecretString;
use std::{collections::HashMap, fmt::Display, time::Duration};

use aws_sdk_rds::{
 error::ProvideErrorMetadata,

 operation::create_db_cluster_parameter_group::CreateDbClusterParameterGroupOutput,
 types::{DbCluster, DbClusterParameterGroup, DbClusterSnapshot, DbInstance,
 Parameter},
};
use sdk_examples_test_utils::waiter::Waiter;
use tracing::{info, trace, warn};

const DB_ENGINE: &str = "aurora-mysql";
const DB_CLUSTER_PARAMETER_GROUP_NAME: &str =
 "RustSDKCodeExamplesDBParameterGroup";
const DB_CLUSTER_PARAMETER_GROUP_DESCRIPTION: &str =
 "Parameter Group created by Rust SDK Code Example";
const DB_CLUSTER_IDENTIFIER: &str = "RustSDKCodeExamplesDBCluster";
const DB_INSTANCE_IDENTIFIER: &str = "RustSDKCodeExamplesDBInstance";

static FILTER_PARAMETER_NAMES: Set<&'static str> = phf_set! {
 "auto_increment_offset",
 "auto_increment_increment",
};

#[derive(Debug, PartialEq, Eq)]
struct MetadataError {
 message: Option<String>,
 code: Option<String>,
}

impl MetadataError {
 fn from(err: &dyn ProvideErrorMetadata) -> Self {
 MetadataError {
 message: err.message().map(String::from),
 code: err.code().map(String::from),
 }
 }
}

impl Display for MetadataError {
 fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
 let display = match (&self.message, &self.code) {

Get started with DB clusters 3751

Amazon Aurora User Guide for Aurora

 (None, None) => "Unknown".to_string(),
 (None, Some(code)) => format!("({code})"),
 (Some(message), None) => message.to_string(),
 (Some(message), Some(code)) => format!("{message} ({code})"),
 };
 write!(f, "{display}")
 }
}

#[derive(Debug, PartialEq, Eq)]
pub struct ScenarioError {
 message: String,
 context: Option<MetadataError>,
}

impl ScenarioError {
 pub fn with(message: impl Into<String>) -> Self {
 ScenarioError {
 message: message.into(),
 context: None,
 }
 }

 pub fn new(message: impl Into<String>, err: &dyn ProvideErrorMetadata) ->
 Self {
 ScenarioError {
 message: message.into(),
 context: Some(MetadataError::from(err)),
 }
 }
}

impl std::error::Error for ScenarioError {}
impl Display for ScenarioError {
 fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
 match &self.context {
 Some(c) => write!(f, "{}: {}", self.message, c),
 None => write!(f, "{}", self.message),
 }
 }
}

// Parse the ParameterName, Description, and AllowedValues values and display
 them.

Get started with DB clusters 3752

Amazon Aurora User Guide for Aurora

#[derive(Debug)]
pub struct AuroraScenarioParameter {
 name: String,
 allowed_values: String,
 current_value: String,
}

impl Display for AuroraScenarioParameter {
 fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
 write!(
 f,
 "{}: {} (allowed: {})",
 self.name, self.current_value, self.allowed_values
)
 }
}

impl From<aws_sdk_rds::types::Parameter> for AuroraScenarioParameter {
 fn from(value: aws_sdk_rds::types::Parameter) -> Self {
 AuroraScenarioParameter {
 name: value.parameter_name.unwrap_or_default(),
 allowed_values: value.allowed_values.unwrap_or_default(),
 current_value: value.parameter_value.unwrap_or_default(),
 }
 }
}

pub struct AuroraScenario {
 rds: crate::rds::Rds,
 engine_family: Option<String>,
 engine_version: Option<String>,
 instance_class: Option<String>,
 db_cluster_parameter_group: Option<DbClusterParameterGroup>,
 db_cluster_identifier: Option<String>,
 db_instance_identifier: Option<String>,
 username: Option<String>,
 password: Option<SecretString>,
}

impl AuroraScenario {
 pub fn new(client: crate::rds::Rds) -> Self {
 AuroraScenario {
 rds: client,
 engine_family: None,

Get started with DB clusters 3753

Amazon Aurora User Guide for Aurora

 engine_version: None,
 instance_class: None,
 db_cluster_parameter_group: None,
 db_cluster_identifier: None,
 db_instance_identifier: None,
 username: None,
 password: None,
 }
 }

 // snippet-start:[rust.aurora.get_engines.usage]
 // Get available engine families for Aurora MySql.
 rds.DescribeDbEngineVersions(Engine='aurora-mysql') and build a set of the
 'DBParameterGroupFamily' field values. I get {aurora-mysql8.0, aurora-mysql5.7}.
 pub async fn get_engines(&self) -> Result<HashMap<String, Vec<String>>,
 ScenarioError> {
 let describe_db_engine_versions =
 self.rds.describe_db_engine_versions(DB_ENGINE).await;
 trace!(versions=?describe_db_engine_versions, "full list of versions");

 if let Err(err) = describe_db_engine_versions {
 return Err(ScenarioError::new(
 "Failed to retrieve DB Engine Versions",
 &err,
));
 };

 let version_count = describe_db_engine_versions
 .as_ref()
 .map(|o| o.db_engine_versions().len())
 .unwrap_or_default();
 info!(version_count, "got list of versions");

 // Create a map of engine families to their available versions.
 let mut versions = HashMap::<String, Vec<String>>::new();
 describe_db_engine_versions
 .unwrap()
 .db_engine_versions()
 .iter()
 .filter_map(
 |v| match (&v.db_parameter_group_family, &v.engine_version) {
 (Some(family), Some(version)) => Some((family.clone(),
 version.clone())),
 _ => None,

Get started with DB clusters 3754

Amazon Aurora User Guide for Aurora

 },
)
 .for_each(|(family, version)|
 versions.entry(family).or_default().push(version));

 Ok(versions)
 }
 // snippet-end:[rust.aurora.get_engines.usage]

 // snippet-start:[rust.aurora.get_instance_classes.usage]
 pub async fn get_instance_classes(&self) -> Result<Vec<String>,
 ScenarioError> {
 let describe_orderable_db_instance_options_items = self
 .rds
 .describe_orderable_db_instance_options(
 DB_ENGINE,
 self.engine_version
 .as_ref()
 .expect("engine version for db instance options")
 .as_str(),
)
 .await;

 describe_orderable_db_instance_options_items
 .map(|options| {
 options
 .iter()
 .filter(|o| o.storage_type() == Some("aurora"))
 .map(|o|
 o.db_instance_class().unwrap_or_default().to_string())
 .collect::<Vec<String>>()
 })
 .map_err(|err| ScenarioError::new("Could not get available instance
 classes", &err))
 }
 // snippet-end:[rust.aurora.get_instance_classes.usage]

 // snippet-start:[rust.aurora.set_engine.usage]
 // Select an engine family and create a custom DB cluster parameter group.
 rds.CreateDbClusterParameterGroup(DBParameterGroupFamily='aurora-mysql8.0')
 pub async fn set_engine(&mut self, engine: &str, version: &str) -> Result<(),
 ScenarioError> {
 self.engine_family = Some(engine.to_string());
 self.engine_version = Some(version.to_string());

Get started with DB clusters 3755

Amazon Aurora User Guide for Aurora

 let create_db_cluster_parameter_group = self
 .rds
 .create_db_cluster_parameter_group(
 DB_CLUSTER_PARAMETER_GROUP_NAME,
 DB_CLUSTER_PARAMETER_GROUP_DESCRIPTION,
 engine,
)
 .await;

 match create_db_cluster_parameter_group {
 Ok(CreateDbClusterParameterGroupOutput {
 db_cluster_parameter_group: None,
 ..
 }) => {
 return Err(ScenarioError::with(
 "CreateDBClusterParameterGroup had empty response",
));
 }
 Err(error) => {
 if error.code() == Some("DBParameterGroupAlreadyExists") {
 info!("Cluster Parameter Group already exists, nothing to
 do");
 } else {
 return Err(ScenarioError::new(
 "Could not create Cluster Parameter Group",
 &error,
));
 }
 }
 _ => {
 info!("Created Cluster Parameter Group");
 }
 }

 Ok(())
 }
 // snippet-end:[rust.aurora.set_engine.usage]

 pub fn set_instance_class(&mut self, instance_class: Option<String>) {
 self.instance_class = instance_class;
 }

 pub fn set_login(&mut self, username: Option<String>, password:
 Option<SecretString>) {

Get started with DB clusters 3756

Amazon Aurora User Guide for Aurora

 self.username = username;
 self.password = password;
 }

 pub async fn connection_string(&self) -> Result<String, ScenarioError> {
 let cluster = self.get_cluster().await?;
 let endpoint = cluster.endpoint().unwrap_or_default();
 let port = cluster.port().unwrap_or_default();
 let username = cluster.master_username().unwrap_or_default();
 Ok(format!("mysql -h {endpoint} -P {port} -u {username} -p"))
 }

 // snippet-start:[rust.aurora.get_cluster.usage]
 pub async fn get_cluster(&self) -> Result<DbCluster, ScenarioError> {
 let describe_db_clusters_output = self
 .rds
 .describe_db_clusters(
 self.db_cluster_identifier
 .as_ref()
 .expect("cluster identifier")
 .as_str(),
)
 .await;
 if let Err(err) = describe_db_clusters_output {
 return Err(ScenarioError::new("Failed to get cluster", &err));
 }

 let db_cluster = describe_db_clusters_output
 .unwrap()
 .db_clusters
 .and_then(|output| output.first().cloned());

 db_cluster.ok_or_else(|| ScenarioError::with("Did not find the cluster"))
 }
 // snippet-end:[rust.aurora.get_cluster.usage]

 // snippet-start:[rust.aurora.cluster_parameters.usage]
 // Get the parameter group. rds.DescribeDbClusterParameterGroups
 // Get parameters in the group. This is a long list so you will have to
 paginate. Find the auto_increment_offset and auto_increment_increment parameters
 (by ParameterName). rds.DescribeDbClusterParameters
 // Parse the ParameterName, Description, and AllowedValues values and display
 them.

Get started with DB clusters 3757

Amazon Aurora User Guide for Aurora

 pub async fn cluster_parameters(&self) ->
 Result<Vec<AuroraScenarioParameter>, ScenarioError> {
 let parameters_output = self
 .rds
 .describe_db_cluster_parameters(DB_CLUSTER_PARAMETER_GROUP_NAME)
 .await;

 if let Err(err) = parameters_output {
 return Err(ScenarioError::new(
 format!("Failed to retrieve parameters for
 {DB_CLUSTER_PARAMETER_GROUP_NAME}"),
 &err,
));
 }

 let parameters = parameters_output
 .unwrap()
 .into_iter()
 .flat_map(|p| p.parameters.unwrap_or_default().into_iter())
 .filter(|p|
 FILTER_PARAMETER_NAMES.contains(p.parameter_name().unwrap_or_default()))
 .map(AuroraScenarioParameter::from)
 .collect::<Vec<_>>();

 Ok(parameters)
 }
 // snippet-end:[rust.aurora.cluster_parameters.usage]

 // snippet-start:[rust.aurora.update_auto_increment.usage]
 // Modify both the auto_increment_offset and auto_increment_increment
 parameters in one call in the custom parameter group. Set their ParameterValue
 fields to a new allowable value. rds.ModifyDbClusterParameterGroup.
 pub async fn update_auto_increment(
 &self,
 offset: u8,
 increment: u8,
) -> Result<(), ScenarioError> {
 let modify_db_cluster_parameter_group = self
 .rds
 .modify_db_cluster_parameter_group(
 DB_CLUSTER_PARAMETER_GROUP_NAME,
 vec![
 Parameter::builder()
 .parameter_name("auto_increment_offset")

Get started with DB clusters 3758

Amazon Aurora User Guide for Aurora

 .parameter_value(format!("{offset}"))
 .apply_method(aws_sdk_rds::types::ApplyMethod::Immediate)
 .build(),
 Parameter::builder()
 .parameter_name("auto_increment_increment")
 .parameter_value(format!("{increment}"))
 .apply_method(aws_sdk_rds::types::ApplyMethod::Immediate)
 .build(),
],
)
 .await;

 if let Err(error) = modify_db_cluster_parameter_group {
 return Err(ScenarioError::new(
 "Failed to modify cluster parameter group",
 &error,
));
 }

 Ok(())
 }
 // snippet-end:[rust.aurora.update_auto_increment.usage]

 // snippet-start:[rust.aurora.start_cluster_and_instance.usage]
 // Get a list of allowed engine versions.
 rds.DescribeDbEngineVersions(Engine='aurora-mysql', DBParameterGroupFamily=<the
 family used to create your parameter group in step 2>)
 // Create an Aurora DB cluster database cluster that contains a MySql
 database and uses the parameter group you created.
 // Wait for DB cluster to be ready. Call rds.DescribeDBClusters and check for
 Status == 'available'.
 // Get a list of instance classes available for the selected engine
 and engine version. rds.DescribeOrderableDbInstanceOptions(Engine='mysql',
 EngineVersion=).

 // Create a database instance in the cluster.
 // Wait for DB instance to be ready. Call rds.DescribeDbInstances and check
 for DBInstanceStatus == 'available'.
 pub async fn start_cluster_and_instance(&mut self) -> Result<(),
 ScenarioError> {
 if self.password.is_none() {
 return Err(ScenarioError::with(
 "Must set Secret Password before starting a cluster",
));

Get started with DB clusters 3759

Amazon Aurora User Guide for Aurora

 }
 let create_db_cluster = self
 .rds
 .create_db_cluster(
 DB_CLUSTER_IDENTIFIER,
 DB_CLUSTER_PARAMETER_GROUP_NAME,
 DB_ENGINE,
 self.engine_version.as_deref().expect("engine version"),
 self.username.as_deref().expect("username"),
 self.password
 .replace(SecretString::new("".to_string()))
 .expect("password"),
)
 .await;
 if let Err(err) = create_db_cluster {
 return Err(ScenarioError::new(
 "Failed to create DB Cluster with cluster group",
 &err,
));
 }

 self.db_cluster_identifier = create_db_cluster
 .unwrap()
 .db_cluster
 .and_then(|c| c.db_cluster_identifier);

 if self.db_cluster_identifier.is_none() {
 return Err(ScenarioError::with("Created DB Cluster missing
 Identifier"));
 }

 info!(
 "Started a db cluster: {}",
 self.db_cluster_identifier
 .as_deref()
 .unwrap_or("Missing ARN")
);

 let create_db_instance = self
 .rds
 .create_db_instance(
 self.db_cluster_identifier.as_deref().expect("cluster name"),
 DB_INSTANCE_IDENTIFIER,
 self.instance_class.as_deref().expect("instance class"),

Get started with DB clusters 3760

Amazon Aurora User Guide for Aurora

 DB_ENGINE,
)
 .await;
 if let Err(err) = create_db_instance {
 return Err(ScenarioError::new(
 "Failed to create Instance in DB Cluster",
 &err,
));
 }

 self.db_instance_identifier = create_db_instance
 .unwrap()
 .db_instance
 .and_then(|i| i.db_instance_identifier);

 // Cluster creation can take up to 20 minutes to become available
 let cluster_max_wait = Duration::from_secs(20 * 60);
 let waiter = Waiter::builder().max(cluster_max_wait).build();
 while waiter.sleep().await.is_ok() {
 let cluster = self
 .rds
 .describe_db_clusters(
 self.db_cluster_identifier
 .as_deref()
 .expect("cluster identifier"),
)
 .await;

 if let Err(err) = cluster {
 warn!(?err, "Failed to describe cluster while waiting for
 ready");
 continue;
 }

 let instance = self
 .rds
 .describe_db_instance(
 self.db_instance_identifier
 .as_deref()
 .expect("instance identifier"),
)
 .await;
 if let Err(err) = instance {
 return Err(ScenarioError::new(

Get started with DB clusters 3761

Amazon Aurora User Guide for Aurora

 "Failed to find instance for cluster",
 &err,
));
 }

 let instances_available = instance
 .unwrap()
 .db_instances()
 .iter()
 .all(|instance| instance.db_instance_status() ==
 Some("Available"));

 let endpoints = self
 .rds
 .describe_db_cluster_endpoints(
 self.db_cluster_identifier
 .as_deref()
 .expect("cluster identifier"),
)
 .await;

 if let Err(err) = endpoints {
 return Err(ScenarioError::new(
 "Failed to find endpoint for cluster",
 &err,
));
 }

 let endpoints_available = endpoints
 .unwrap()
 .db_cluster_endpoints()
 .iter()
 .all(|endpoint| endpoint.status() == Some("available"));

 if instances_available && endpoints_available {
 return Ok(());
 }
 }

 Err(ScenarioError::with("timed out waiting for cluster"))
 }
 // snippet-end:[rust.aurora.start_cluster_and_instance.usage]

 // snippet-start:[rust.aurora.snapshot.usage]

Get started with DB clusters 3762

Amazon Aurora User Guide for Aurora

 // Create a snapshot of the DB cluster. rds.CreateDbClusterSnapshot.
 // Wait for the snapshot to create. rds.DescribeDbClusterSnapshots until
 Status == 'available'.
 pub async fn snapshot(&self, name: &str) -> Result<DbClusterSnapshot,
 ScenarioError> {
 let id = self.db_cluster_identifier.as_deref().unwrap_or_default();
 let snapshot = self
 .rds
 .snapshot_cluster(id, format!("{id}_{name}").as_str())
 .await;
 match snapshot {
 Ok(output) => match output.db_cluster_snapshot {
 Some(snapshot) => Ok(snapshot),
 None => Err(ScenarioError::with("Missing Snapshot")),
 },
 Err(err) => Err(ScenarioError::new("Failed to create snapshot",
 &err)),
 }
 }
 // snippet-end:[rust.aurora.snapshot.usage]

 // snippet-start:[rust.aurora.clean_up.usage]
 pub async fn clean_up(self) -> Result<(), Vec<ScenarioError>> {
 let mut clean_up_errors: Vec<ScenarioError> = vec![];

 // Delete the instance. rds.DeleteDbInstance.
 let delete_db_instance = self
 .rds
 .delete_db_instance(
 self.db_instance_identifier
 .as_deref()
 .expect("instance identifier"),
)
 .await;
 if let Err(err) = delete_db_instance {
 let identifier = self
 .db_instance_identifier
 .as_deref()
 .unwrap_or("Missing Instance Identifier");
 let message = format!("failed to delete db instance {identifier}");
 clean_up_errors.push(ScenarioError::new(message, &err));
 } else {
 // Wait for the instance to delete
 let waiter = Waiter::default();

Get started with DB clusters 3763

Amazon Aurora User Guide for Aurora

 while waiter.sleep().await.is_ok() {
 let describe_db_instances =
 self.rds.describe_db_instances().await;
 if let Err(err) = describe_db_instances {
 clean_up_errors.push(ScenarioError::new(
 "Failed to check instance state during deletion",
 &err,
));
 break;
 }
 let db_instances = describe_db_instances
 .unwrap()
 .db_instances()
 .iter()
 .filter(|instance| instance.db_cluster_identifier ==
 self.db_cluster_identifier)
 .cloned()
 .collect::<Vec<DbInstance>>();

 if db_instances.is_empty() {
 trace!("Delete Instance waited and no instances were found");
 break;
 }
 match db_instances.first().unwrap().db_instance_status() {
 Some("Deleting") => continue,
 Some(status) => {
 info!("Attempting to delete but instances is in
 {status}");
 continue;
 }
 None => {
 warn!("No status for DB instance");
 break;
 }
 }
 }
 }

 // Delete the DB cluster. rds.DeleteDbCluster.
 let delete_db_cluster = self
 .rds
 .delete_db_cluster(
 self.db_cluster_identifier
 .as_deref()

Get started with DB clusters 3764

Amazon Aurora User Guide for Aurora

 .expect("cluster identifier"),
)
 .await;

 if let Err(err) = delete_db_cluster {
 let identifier = self
 .db_cluster_identifier
 .as_deref()
 .unwrap_or("Missing DB Cluster Identifier");
 let message = format!("failed to delete db cluster {identifier}");
 clean_up_errors.push(ScenarioError::new(message, &err));
 } else {
 // Wait for the instance and cluster to fully delete.
 rds.DescribeDbInstances and rds.DescribeDbClusters until both are not found.
 let waiter = Waiter::default();
 while waiter.sleep().await.is_ok() {
 let describe_db_clusters = self
 .rds
 .describe_db_clusters(
 self.db_cluster_identifier
 .as_deref()
 .expect("cluster identifier"),
)
 .await;
 if let Err(err) = describe_db_clusters {
 clean_up_errors.push(ScenarioError::new(
 "Failed to check cluster state during deletion",
 &err,
));
 break;
 }
 let describe_db_clusters = describe_db_clusters.unwrap();
 let db_clusters = describe_db_clusters.db_clusters();
 if db_clusters.is_empty() {
 trace!("Delete cluster waited and no clusters were found");
 break;
 }
 match db_clusters.first().unwrap().status() {
 Some("Deleting") => continue,
 Some(status) => {
 info!("Attempting to delete but clusters is in
 {status}");
 continue;
 }

Get started with DB clusters 3765

Amazon Aurora User Guide for Aurora

 None => {
 warn!("No status for DB cluster");
 break;
 }
 }
 }
 }

 // Delete the DB cluster parameter group.
 rds.DeleteDbClusterParameterGroup.
 let delete_db_cluster_parameter_group = self
 .rds
 .delete_db_cluster_parameter_group(
 self.db_cluster_parameter_group
 .map(|g| {
 g.db_cluster_parameter_group_name
 .unwrap_or_else(||
 DB_CLUSTER_PARAMETER_GROUP_NAME.to_string())
 })
 .as_deref()
 .expect("cluster parameter group name"),
)
 .await;
 if let Err(error) = delete_db_cluster_parameter_group {
 clean_up_errors.push(ScenarioError::new(
 "Failed to delete the db cluster parameter group",
 &error,
))
 }

 if clean_up_errors.is_empty() {
 Ok(())
 } else {
 Err(clean_up_errors)
 }
 }
 // snippet-end:[rust.aurora.clean_up.usage]
}

#[cfg(test)]
pub mod tests;

Get started with DB clusters 3766

Amazon Aurora User Guide for Aurora

Tests for the library using automocks around the RDS Client wrapper.

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0

use crate::rds::MockRdsImpl;

use super::*;

use std::io::{Error, ErrorKind};

use assert_matches::assert_matches;
use aws_sdk_rds::{
 error::SdkError,
 operation::{
 create_db_cluster::{CreateDBClusterError, CreateDbClusterOutput},
 create_db_cluster_parameter_group::CreateDBClusterParameterGroupError,
 create_db_cluster_snapshot::{CreateDBClusterSnapshotError,
 CreateDbClusterSnapshotOutput},
 create_db_instance::{CreateDBInstanceError, CreateDbInstanceOutput},
 delete_db_cluster::DeleteDbClusterOutput,
 delete_db_cluster_parameter_group::DeleteDbClusterParameterGroupOutput,
 delete_db_instance::DeleteDbInstanceOutput,
 describe_db_cluster_endpoints::DescribeDbClusterEndpointsOutput,
 describe_db_cluster_parameters::{
 DescribeDBClusterParametersError, DescribeDbClusterParametersOutput,
 },
 describe_db_clusters::{DescribeDBClustersError,
 DescribeDbClustersOutput},
 describe_db_engine_versions::{
 DescribeDBEngineVersionsError, DescribeDbEngineVersionsOutput,
 },
 describe_db_instances::{DescribeDBInstancesError,
 DescribeDbInstancesOutput},

 describe_orderable_db_instance_options::DescribeOrderableDBInstanceOptionsError,
 modify_db_cluster_parameter_group::{
 ModifyDBClusterParameterGroupError,
 ModifyDbClusterParameterGroupOutput,
 },
 },
 types::{
 error::DbParameterGroupAlreadyExistsFault, DbClusterEndpoint,
 DbEngineVersion,

Get started with DB clusters 3767

Amazon Aurora User Guide for Aurora

 OrderableDbInstanceOption,
 },
};
use aws_smithy_runtime_api::http::{Response, StatusCode};
use aws_smithy_types::body::SdkBody;
use mockall::predicate::eq;
use secrecy::ExposeSecret;

// snippet-start:[rust.aurora.set_engine.test]
#[tokio::test]
async fn test_scenario_set_engine() {
 let mut mock_rds = MockRdsImpl::default();

 mock_rds
 .expect_create_db_cluster_parameter_group()
 .with(
 eq("RustSDKCodeExamplesDBParameterGroup"),
 eq("Parameter Group created by Rust SDK Code Example"),
 eq("aurora-mysql"),
)
 .return_once(|_, _, _| {
 Ok(CreateDbClusterParameterGroupOutput::builder()

 .db_cluster_parameter_group(DbClusterParameterGroup::builder().build())
 .build())
 });

 let mut scenario = AuroraScenario::new(mock_rds);

 let set_engine = scenario.set_engine("aurora-mysql", "aurora-
mysql8.0").await;

 assert_eq!(set_engine, Ok(()));
 assert_eq!(Some("aurora-mysql"), scenario.engine_family.as_deref());
 assert_eq!(Some("aurora-mysql8.0"), scenario.engine_version.as_deref());
}

#[tokio::test]
async fn test_scenario_set_engine_not_create() {
 let mut mock_rds = MockRdsImpl::default();

 mock_rds
 .expect_create_db_cluster_parameter_group()
 .with(

Get started with DB clusters 3768

Amazon Aurora User Guide for Aurora

 eq("RustSDKCodeExamplesDBParameterGroup"),
 eq("Parameter Group created by Rust SDK Code Example"),
 eq("aurora-mysql"),
)
 .return_once(|_, _, _|
 Ok(CreateDbClusterParameterGroupOutput::builder().build()));

 let mut scenario = AuroraScenario::new(mock_rds);

 let set_engine = scenario.set_engine("aurora-mysql", "aurora-
mysql8.0").await;

 assert!(set_engine.is_err());
}

#[tokio::test]
async fn test_scenario_set_engine_param_group_exists() {
 let mut mock_rds = MockRdsImpl::default();

 mock_rds
 .expect_create_db_cluster_parameter_group()
 .withf(|_, _, _| true)
 .return_once(|_, _, _| {
 Err(SdkError::service_error(

 CreateDBClusterParameterGroupError::DbParameterGroupAlreadyExistsFault(
 DbParameterGroupAlreadyExistsFault::builder().build(),
),
 Response::new(StatusCode::try_from(400).unwrap(),
 SdkBody::empty()),
))
 });

 let mut scenario = AuroraScenario::new(mock_rds);

 let set_engine = scenario.set_engine("aurora-mysql", "aurora-
mysql8.0").await;

 assert!(set_engine.is_err());
}
// snippet-end:[rust.aurora.set_engine.test]

// snippet-start:[rust.aurora.get_engines.test]
#[tokio::test]

Get started with DB clusters 3769

Amazon Aurora User Guide for Aurora

async fn test_scenario_get_engines() {
 let mut mock_rds = MockRdsImpl::default();

 mock_rds
 .expect_describe_db_engine_versions()
 .with(eq("aurora-mysql"))
 .return_once(|_| {
 Ok(DescribeDbEngineVersionsOutput::builder()
 .db_engine_versions(
 DbEngineVersion::builder()
 .db_parameter_group_family("f1")
 .engine_version("f1a")
 .build(),
)
 .db_engine_versions(
 DbEngineVersion::builder()
 .db_parameter_group_family("f1")
 .engine_version("f1b")
 .build(),
)
 .db_engine_versions(
 DbEngineVersion::builder()
 .db_parameter_group_family("f2")
 .engine_version("f2a")
 .build(),
)
 .db_engine_versions(DbEngineVersion::builder().build())
 .build())
 });

 let scenario = AuroraScenario::new(mock_rds);

 let versions_map = scenario.get_engines().await;

 assert_eq!(
 versions_map,
 Ok(HashMap::from([
 ("f1".into(), vec!["f1a".into(), "f1b".into()]),
 ("f2".into(), vec!["f2a".into()])
]))
);
}

#[tokio::test]

Get started with DB clusters 3770

Amazon Aurora User Guide for Aurora

async fn test_scenario_get_engines_failed() {
 let mut mock_rds = MockRdsImpl::default();

 mock_rds
 .expect_describe_db_engine_versions()
 .with(eq("aurora-mysql"))
 .return_once(|_| {
 Err(SdkError::service_error(
 DescribeDBEngineVersionsError::unhandled(Box::new(Error::new(
 ErrorKind::Other,
 "describe_db_engine_versions error",
))),
 Response::new(StatusCode::try_from(400).unwrap(),
 SdkBody::empty()),
))
 });

 let scenario = AuroraScenario::new(mock_rds);

 let versions_map = scenario.get_engines().await;
 assert_matches!(
 versions_map,
 Err(ScenarioError { message, context: _ }) if message == "Failed to
 retrieve DB Engine Versions"
);
}
// snippet-end:[rust.aurora.get_engines.test]

// snippet-start:[rust.aurora.get_instance_classes.test]
#[tokio::test]
async fn test_scenario_get_instance_classes() {
 let mut mock_rds = MockRdsImpl::default();

 mock_rds
 .expect_create_db_cluster_parameter_group()
 .return_once(|_, _, _| {
 Ok(CreateDbClusterParameterGroupOutput::builder()

 .db_cluster_parameter_group(DbClusterParameterGroup::builder().build())
 .build())
 });

 mock_rds
 .expect_describe_orderable_db_instance_options()

Get started with DB clusters 3771

Amazon Aurora User Guide for Aurora

 .with(eq("aurora-mysql"), eq("aurora-mysql8.0"))
 .return_once(|_, _| {
 Ok(vec![
 OrderableDbInstanceOption::builder()
 .db_instance_class("t1")
 .storage_type("aurora")
 .build(),
 OrderableDbInstanceOption::builder()
 .db_instance_class("t1")
 .storage_type("aurora-iopt1")
 .build(),
 OrderableDbInstanceOption::builder()
 .db_instance_class("t2")
 .storage_type("aurora")
 .build(),
 OrderableDbInstanceOption::builder()
 .db_instance_class("t3")
 .storage_type("aurora")
 .build(),
])
 });

 let mut scenario = AuroraScenario::new(mock_rds);
 scenario
 .set_engine("aurora-mysql", "aurora-mysql8.0")
 .await
 .expect("set engine");

 let instance_classes = scenario.get_instance_classes().await;

 assert_eq!(
 instance_classes,
 Ok(vec!["t1".into(), "t2".into(), "t3".into()])
);
}

#[tokio::test]
async fn test_scenario_get_instance_classes_error() {
 let mut mock_rds = MockRdsImpl::default();

 mock_rds
 .expect_describe_orderable_db_instance_options()
 .with(eq("aurora-mysql"), eq("aurora-mysql8.0"))
 .return_once(|_, _| {

Get started with DB clusters 3772

Amazon Aurora User Guide for Aurora

 Err(SdkError::service_error(

 DescribeOrderableDBInstanceOptionsError::unhandled(Box::new(Error::new(
 ErrorKind::Other,
 "describe_orderable_db_instance_options_error",
))),
 Response::new(StatusCode::try_from(400).unwrap(),
 SdkBody::empty()),
))
 });

 let mut scenario = AuroraScenario::new(mock_rds);
 scenario.engine_family = Some("aurora-mysql".into());
 scenario.engine_version = Some("aurora-mysql8.0".into());

 let instance_classes = scenario.get_instance_classes().await;

 assert_matches!(
 instance_classes,
 Err(ScenarioError {message, context: _}) if message == "Could not get
 available instance classes"
);
}
// snippet-end:[rust.aurora.get_instance_classes.test]

// snippet-start:[rust.aurora.get_cluster.test]
#[tokio::test]
async fn test_scenario_get_cluster() {
 let mut mock_rds = MockRdsImpl::default();

 mock_rds
 .expect_describe_db_clusters()
 .with(eq("RustSDKCodeExamplesDBCluster"))
 .return_once(|_| {
 Ok(DescribeDbClustersOutput::builder()
 .db_clusters(DbCluster::builder().build())
 .build())
 });

 let mut scenario = AuroraScenario::new(mock_rds);
 scenario.db_cluster_identifier = Some("RustSDKCodeExamplesDBCluster".into());
 let cluster = scenario.get_cluster().await;

 assert!(cluster.is_ok());

Get started with DB clusters 3773

Amazon Aurora User Guide for Aurora

}

#[tokio::test]
async fn test_scenario_get_cluster_missing_cluster() {
 let mut mock_rds = MockRdsImpl::default();

 mock_rds
 .expect_create_db_cluster_parameter_group()
 .return_once(|_, _, _| {
 Ok(CreateDbClusterParameterGroupOutput::builder()

 .db_cluster_parameter_group(DbClusterParameterGroup::builder().build())
 .build())
 });

 mock_rds
 .expect_describe_db_clusters()
 .with(eq("RustSDKCodeExamplesDBCluster"))
 .return_once(|_| Ok(DescribeDbClustersOutput::builder().build()));

 let mut scenario = AuroraScenario::new(mock_rds);
 scenario.db_cluster_identifier = Some("RustSDKCodeExamplesDBCluster".into());
 let cluster = scenario.get_cluster().await;

 assert_matches!(cluster, Err(ScenarioError { message, context: _ }) if
 message == "Did not find the cluster");
}

#[tokio::test]
async fn test_scenario_get_cluster_error() {
 let mut mock_rds = MockRdsImpl::default();

 mock_rds
 .expect_create_db_cluster_parameter_group()
 .return_once(|_, _, _| {
 Ok(CreateDbClusterParameterGroupOutput::builder()

 .db_cluster_parameter_group(DbClusterParameterGroup::builder().build())
 .build())
 });

 mock_rds
 .expect_describe_db_clusters()
 .with(eq("RustSDKCodeExamplesDBCluster"))

Get started with DB clusters 3774

Amazon Aurora User Guide for Aurora

 .return_once(|_| {
 Err(SdkError::service_error(
 DescribeDBClustersError::unhandled(Box::new(Error::new(
 ErrorKind::Other,
 "describe_db_clusters_error",
))),
 Response::new(StatusCode::try_from(400).unwrap(),
 SdkBody::empty()),
))
 });

 let mut scenario = AuroraScenario::new(mock_rds);
 scenario.db_cluster_identifier = Some("RustSDKCodeExamplesDBCluster".into());
 let cluster = scenario.get_cluster().await;

 assert_matches!(cluster, Err(ScenarioError { message, context: _ }) if
 message == "Failed to get cluster");
}
// snippet-end:[rust.aurora.get_cluster.test]

#[tokio::test]
async fn test_scenario_connection_string() {
 let mut mock_rds = MockRdsImpl::default();

 mock_rds
 .expect_describe_db_clusters()
 .with(eq("RustSDKCodeExamplesDBCluster"))
 .return_once(|_| {
 Ok(DescribeDbClustersOutput::builder()
 .db_clusters(
 DbCluster::builder()
 .endpoint("test_endpoint")
 .port(3306)
 .master_username("test_username")
 .build(),
)
 .build())
 });

 let mut scenario = AuroraScenario::new(mock_rds);
 scenario.db_cluster_identifier = Some("RustSDKCodeExamplesDBCluster".into());
 let connection_string = scenario.connection_string().await;

 assert_eq!(

Get started with DB clusters 3775

Amazon Aurora User Guide for Aurora

 connection_string,
 Ok("mysql -h test_endpoint -P 3306 -u test_username -p".into())
);
}

// snippet-start:[rust.aurora.cluster_parameters.test]
#[tokio::test]
async fn test_scenario_cluster_parameters() {
 let mut mock_rds = MockRdsImpl::default();

 mock_rds
 .expect_describe_db_cluster_parameters()
 .with(eq("RustSDKCodeExamplesDBParameterGroup"))
 .return_once(|_| {
 Ok(vec![DescribeDbClusterParametersOutput::builder()
 .parameters(Parameter::builder().parameter_name("a").build())
 .parameters(Parameter::builder().parameter_name("b").build())
 .parameters(
 Parameter::builder()
 .parameter_name("auto_increment_offset")
 .build(),
)
 .parameters(Parameter::builder().parameter_name("c").build())
 .parameters(
 Parameter::builder()
 .parameter_name("auto_increment_increment")
 .build(),
)
 .parameters(Parameter::builder().parameter_name("d").build())
 .build()])
 });

 let mut scenario = AuroraScenario::new(mock_rds);
 scenario.db_cluster_identifier = Some("RustSDKCodeExamplesDBCluster".into());

 let params = scenario.cluster_parameters().await.expect("cluster params");
 let names: Vec<String> = params.into_iter().map(|p| p.name).collect();
 assert_eq!(
 names,
 vec!["auto_increment_offset", "auto_increment_increment"]
);
}

#[tokio::test]

Get started with DB clusters 3776

Amazon Aurora User Guide for Aurora

async fn test_scenario_cluster_parameters_error() {
 let mut mock_rds = MockRdsImpl::default();

 mock_rds
 .expect_describe_db_cluster_parameters()
 .with(eq("RustSDKCodeExamplesDBParameterGroup"))
 .return_once(|_| {
 Err(SdkError::service_error(
 DescribeDBClusterParametersError::unhandled(Box::new(Error::new(
 ErrorKind::Other,
 "describe_db_cluster_parameters_error",
))),
 Response::new(StatusCode::try_from(400).unwrap(),
 SdkBody::empty()),
))
 });

 let mut scenario = AuroraScenario::new(mock_rds);
 scenario.db_cluster_identifier = Some("RustSDKCodeExamplesDBCluster".into());
 let params = scenario.cluster_parameters().await;
 assert_matches!(params, Err(ScenarioError { message, context: _ }) if message
 == "Failed to retrieve parameters for RustSDKCodeExamplesDBParameterGroup");
}
// snippet-end:[rust.aurora.cluster_parameters.test]

// snippet-start:[rust.aurora.update_auto_increment.test]
#[tokio::test]
async fn test_scenario_update_auto_increment() {
 let mut mock_rds = MockRdsImpl::default();

 mock_rds
 .expect_modify_db_cluster_parameter_group()
 .withf(|name, params| {
 assert_eq!(name, "RustSDKCodeExamplesDBParameterGroup");
 assert_eq!(
 params,
 &vec![
 Parameter::builder()
 .parameter_name("auto_increment_offset")
 .parameter_value("10")
 .apply_method(aws_sdk_rds::types::ApplyMethod::Immediate)
 .build(),
 Parameter::builder()
 .parameter_name("auto_increment_increment")

Get started with DB clusters 3777

Amazon Aurora User Guide for Aurora

 .parameter_value("20")
 .apply_method(aws_sdk_rds::types::ApplyMethod::Immediate)
 .build(),
]
);
 true
 })
 .return_once(|_, _|
 Ok(ModifyDbClusterParameterGroupOutput::builder().build()));

 let scenario = AuroraScenario::new(mock_rds);

 scenario
 .update_auto_increment(10, 20)
 .await
 .expect("update auto increment");
}

#[tokio::test]
async fn test_scenario_update_auto_increment_error() {
 let mut mock_rds = MockRdsImpl::default();

 mock_rds
 .expect_modify_db_cluster_parameter_group()
 .return_once(|_, _| {
 Err(SdkError::service_error(

 ModifyDBClusterParameterGroupError::unhandled(Box::new(Error::new(
 ErrorKind::Other,
 "modify_db_cluster_parameter_group_error",
))),
 Response::new(StatusCode::try_from(400).unwrap(),
 SdkBody::empty()),
))
 });

 let scenario = AuroraScenario::new(mock_rds);

 let update = scenario.update_auto_increment(10, 20).await;
 assert_matches!(update, Err(ScenarioError { message, context: _}) if message
 == "Failed to modify cluster parameter group");
}
// snippet-end:[rust.aurora.update_auto_increment.test]

Get started with DB clusters 3778

Amazon Aurora User Guide for Aurora

// snippet-start:[rust.aurora.start_cluster_and_instance.test]
#[tokio::test]
async fn test_start_cluster_and_instance() {
 let mut mock_rds = MockRdsImpl::default();

 mock_rds
 .expect_create_db_cluster()
 .withf(|id, params, engine, version, username, password| {
 assert_eq!(id, "RustSDKCodeExamplesDBCluster");
 assert_eq!(params, "RustSDKCodeExamplesDBParameterGroup");
 assert_eq!(engine, "aurora-mysql");
 assert_eq!(version, "aurora-mysql8.0");
 assert_eq!(username, "test username");
 assert_eq!(password.expose_secret(), "test password");
 true
 })
 .return_once(|id, _, _, _, _, _| {
 Ok(CreateDbClusterOutput::builder()

 .db_cluster(DbCluster::builder().db_cluster_identifier(id).build())
 .build())
 });

 mock_rds
 .expect_create_db_instance()
 .withf(|cluster, name, class, engine| {
 assert_eq!(cluster, "RustSDKCodeExamplesDBCluster");
 assert_eq!(name, "RustSDKCodeExamplesDBInstance");
 assert_eq!(class, "m5.large");
 assert_eq!(engine, "aurora-mysql");
 true
 })
 .return_once(|cluster, name, class, _| {
 Ok(CreateDbInstanceOutput::builder()
 .db_instance(
 DbInstance::builder()
 .db_cluster_identifier(cluster)
 .db_instance_identifier(name)
 .db_instance_class(class)
 .build(),
)
 .build())
 });

Get started with DB clusters 3779

Amazon Aurora User Guide for Aurora

 mock_rds
 .expect_describe_db_clusters()
 .with(eq("RustSDKCodeExamplesDBCluster"))
 .return_once(|id| {
 Ok(DescribeDbClustersOutput::builder()

 .db_clusters(DbCluster::builder().db_cluster_identifier(id).build())
 .build())
 });

 mock_rds
 .expect_describe_db_instance()
 .with(eq("RustSDKCodeExamplesDBInstance"))
 .return_once(|name| {
 Ok(DescribeDbInstancesOutput::builder()
 .db_instances(
 DbInstance::builder()
 .db_instance_identifier(name)
 .db_instance_status("Available")
 .build(),
)
 .build())
 });

 mock_rds
 .expect_describe_db_cluster_endpoints()
 .with(eq("RustSDKCodeExamplesDBCluster"))
 .return_once(|_| {
 Ok(DescribeDbClusterEndpointsOutput::builder()

 .db_cluster_endpoints(DbClusterEndpoint::builder().status("available").build())
 .build())
 });

 let mut scenario = AuroraScenario::new(mock_rds);
 scenario.engine_version = Some("aurora-mysql8.0".into());
 scenario.instance_class = Some("m5.large".into());
 scenario.username = Some("test username".into());
 scenario.password = Some(SecretString::new("test password".into()));

 tokio::time::pause();
 let assertions = tokio::spawn(async move {
 let create = scenario.start_cluster_and_instance().await;
 assert!(create.is_ok());

Get started with DB clusters 3780

Amazon Aurora User Guide for Aurora

 assert!(scenario
 .password
 .replace(SecretString::new("BAD SECRET".into()))
 .unwrap()
 .expose_secret()
 .is_empty());
 assert_eq!(
 scenario.db_cluster_identifier,
 Some("RustSDKCodeExamplesDBCluster".into())
);
 });
 tokio::time::advance(Duration::from_secs(1)).await;
 tokio::time::resume();
 let _ = assertions.await;
}

#[tokio::test]
async fn test_start_cluster_and_instance_cluster_create_error() {
 let mut mock_rds = MockRdsImpl::default();

 mock_rds
 .expect_create_db_cluster()
 .return_once(|_, _, _, _, _, _| {
 Err(SdkError::service_error(
 CreateDBClusterError::unhandled(Box::new(Error::new(
 ErrorKind::Other,
 "create db cluster error",
))),
 Response::new(StatusCode::try_from(400).unwrap(),
 SdkBody::empty()),
))
 });

 let mut scenario = AuroraScenario::new(mock_rds);
 scenario.engine_version = Some("aurora-mysql8.0".into());
 scenario.instance_class = Some("m5.large".into());
 scenario.username = Some("test username".into());
 scenario.password = Some(SecretString::new("test password".into()));

 let create = scenario.start_cluster_and_instance().await;
 assert_matches!(create, Err(ScenarioError { message, context: _}) if message
 == "Failed to create DB Cluster with cluster group")
}

Get started with DB clusters 3781

Amazon Aurora User Guide for Aurora

#[tokio::test]
async fn test_start_cluster_and_instance_cluster_create_missing_id() {
 let mut mock_rds = MockRdsImpl::default();

 mock_rds
 .expect_create_db_cluster()
 .return_once(|_, _, _, _, _, _| {
 Ok(CreateDbClusterOutput::builder()
 .db_cluster(DbCluster::builder().build())
 .build())
 });

 let mut scenario = AuroraScenario::new(mock_rds);
 scenario.engine_version = Some("aurora-mysql8.0".into());
 scenario.instance_class = Some("m5.large".into());
 scenario.username = Some("test username".into());
 scenario.password = Some(SecretString::new("test password".into()));

 let create = scenario.start_cluster_and_instance().await;
 assert_matches!(create, Err(ScenarioError { message, context:_ }) if message
 == "Created DB Cluster missing Identifier");
}

#[tokio::test]
async fn test_start_cluster_and_instance_instance_create_error() {
 let mut mock_rds = MockRdsImpl::default();

 mock_rds
 .expect_create_db_cluster()
 .withf(|id, params, engine, version, username, password| {
 assert_eq!(id, "RustSDKCodeExamplesDBCluster");
 assert_eq!(params, "RustSDKCodeExamplesDBParameterGroup");
 assert_eq!(engine, "aurora-mysql");
 assert_eq!(version, "aurora-mysql8.0");
 assert_eq!(username, "test username");
 assert_eq!(password.expose_secret(), "test password");
 true
 })
 .return_once(|id, _, _, _, _, _| {
 Ok(CreateDbClusterOutput::builder()

 .db_cluster(DbCluster::builder().db_cluster_identifier(id).build())
 .build())
 });

Get started with DB clusters 3782

Amazon Aurora User Guide for Aurora

 mock_rds
 .expect_create_db_instance()
 .return_once(|_, _, _, _| {
 Err(SdkError::service_error(
 CreateDBInstanceError::unhandled(Box::new(Error::new(
 ErrorKind::Other,
 "create db instance error",
))),
 Response::new(StatusCode::try_from(400).unwrap(),
 SdkBody::empty()),
))
 });

 let mut scenario = AuroraScenario::new(mock_rds);
 scenario.engine_version = Some("aurora-mysql8.0".into());
 scenario.instance_class = Some("m5.large".into());
 scenario.username = Some("test username".into());
 scenario.password = Some(SecretString::new("test password".into()));

 let create = scenario.start_cluster_and_instance().await;
 assert_matches!(create, Err(ScenarioError { message, context: _ }) if message
 == "Failed to create Instance in DB Cluster")
}

#[tokio::test]
async fn test_start_cluster_and_instance_wait_hiccup() {
 let mut mock_rds = MockRdsImpl::default();

 mock_rds
 .expect_create_db_cluster()
 .withf(|id, params, engine, version, username, password| {
 assert_eq!(id, "RustSDKCodeExamplesDBCluster");
 assert_eq!(params, "RustSDKCodeExamplesDBParameterGroup");
 assert_eq!(engine, "aurora-mysql");
 assert_eq!(version, "aurora-mysql8.0");
 assert_eq!(username, "test username");
 assert_eq!(password.expose_secret(), "test password");
 true
 })
 .return_once(|id, _, _, _, _, _| {
 Ok(CreateDbClusterOutput::builder()

 .db_cluster(DbCluster::builder().db_cluster_identifier(id).build())

Get started with DB clusters 3783

Amazon Aurora User Guide for Aurora

 .build())
 });

 mock_rds
 .expect_create_db_instance()
 .withf(|cluster, name, class, engine| {
 assert_eq!(cluster, "RustSDKCodeExamplesDBCluster");
 assert_eq!(name, "RustSDKCodeExamplesDBInstance");
 assert_eq!(class, "m5.large");
 assert_eq!(engine, "aurora-mysql");
 true
 })
 .return_once(|cluster, name, class, _| {
 Ok(CreateDbInstanceOutput::builder()
 .db_instance(
 DbInstance::builder()
 .db_cluster_identifier(cluster)
 .db_instance_identifier(name)
 .db_instance_class(class)
 .build(),
)
 .build())
 });

 mock_rds
 .expect_describe_db_clusters()
 .with(eq("RustSDKCodeExamplesDBCluster"))
 .times(1)
 .returning(|_| {
 Err(SdkError::service_error(
 DescribeDBClustersError::unhandled(Box::new(Error::new(
 ErrorKind::Other,
 "describe cluster error",
))),
 Response::new(StatusCode::try_from(400).unwrap(),
 SdkBody::empty()),
))
 })
 .with(eq("RustSDKCodeExamplesDBCluster"))
 .times(1)
 .returning(|id| {
 Ok(DescribeDbClustersOutput::builder()

 .db_clusters(DbCluster::builder().db_cluster_identifier(id).build())

Get started with DB clusters 3784

Amazon Aurora User Guide for Aurora

 .build())
 });

 mock_rds.expect_describe_db_instance().return_once(|name| {
 Ok(DescribeDbInstancesOutput::builder()
 .db_instances(
 DbInstance::builder()
 .db_instance_identifier(name)
 .db_instance_status("Available")
 .build(),
)
 .build())
 });

 mock_rds
 .expect_describe_db_cluster_endpoints()
 .return_once(|_| {
 Ok(DescribeDbClusterEndpointsOutput::builder()

 .db_cluster_endpoints(DbClusterEndpoint::builder().status("available").build())
 .build())
 });

 let mut scenario = AuroraScenario::new(mock_rds);
 scenario.engine_version = Some("aurora-mysql8.0".into());
 scenario.instance_class = Some("m5.large".into());
 scenario.username = Some("test username".into());
 scenario.password = Some(SecretString::new("test password".into()));

 tokio::time::pause();
 let assertions = tokio::spawn(async move {
 let create = scenario.start_cluster_and_instance().await;
 assert!(create.is_ok());
 });

 tokio::time::advance(Duration::from_secs(1)).await;
 tokio::time::advance(Duration::from_secs(1)).await;
 tokio::time::resume();
 let _ = assertions.await;
}
// snippet-end:[rust.aurora.start_cluster_and_instance.test]

// snippet-start:[rust.aurora.clean_up.test]
#[tokio::test]

Get started with DB clusters 3785

Amazon Aurora User Guide for Aurora

async fn test_scenario_clean_up() {
 let mut mock_rds = MockRdsImpl::default();

 mock_rds
 .expect_delete_db_instance()
 .with(eq("MockInstance"))
 .return_once(|_| Ok(DeleteDbInstanceOutput::builder().build()));

 mock_rds
 .expect_describe_db_instances()
 .with()
 .times(1)
 .returning(|| {
 Ok(DescribeDbInstancesOutput::builder()
 .db_instances(
 DbInstance::builder()
 .db_cluster_identifier("MockCluster")
 .db_instance_status("Deleting")
 .build(),
)
 .build())
 })
 .with()
 .times(1)
 .returning(|| Ok(DescribeDbInstancesOutput::builder().build()));

 mock_rds
 .expect_delete_db_cluster()
 .with(eq("MockCluster"))
 .return_once(|_| Ok(DeleteDbClusterOutput::builder().build()));

 mock_rds
 .expect_describe_db_clusters()
 .with(eq("MockCluster"))
 .times(1)
 .returning(|id| {
 Ok(DescribeDbClustersOutput::builder()
 .db_clusters(
 DbCluster::builder()
 .db_cluster_identifier(id)
 .status("Deleting")
 .build(),
)
 .build())

Get started with DB clusters 3786

Amazon Aurora User Guide for Aurora

 })
 .with(eq("MockCluster"))
 .times(1)
 .returning(|_| Ok(DescribeDbClustersOutput::builder().build()));

 mock_rds
 .expect_delete_db_cluster_parameter_group()
 .with(eq("MockParamGroup"))
 .return_once(|_|
 Ok(DeleteDbClusterParameterGroupOutput::builder().build()));

 let mut scenario = AuroraScenario::new(mock_rds);
 scenario.db_cluster_identifier = Some(String::from("MockCluster"));
 scenario.db_instance_identifier = Some(String::from("MockInstance"));
 scenario.db_cluster_parameter_group = Some(
 DbClusterParameterGroup::builder()
 .db_cluster_parameter_group_name("MockParamGroup")
 .build(),
);

 tokio::time::pause();
 let assertions = tokio::spawn(async move {
 let clean_up = scenario.clean_up().await;
 assert!(clean_up.is_ok());
 });

 tokio::time::advance(Duration::from_secs(1)).await; // Wait for first
 Describe Instances
 tokio::time::advance(Duration::from_secs(1)).await; // Wait for second
 Describe Instances
 tokio::time::advance(Duration::from_secs(1)).await; // Wait for first
 Describe Cluster
 tokio::time::advance(Duration::from_secs(1)).await; // Wait for second
 Describe Cluster
 tokio::time::resume();
 let _ = assertions.await;
}

#[tokio::test]
async fn test_scenario_clean_up_errors() {
 let mut mock_rds = MockRdsImpl::default();

 mock_rds
 .expect_delete_db_instance()

Get started with DB clusters 3787

Amazon Aurora User Guide for Aurora

 .with(eq("MockInstance"))
 .return_once(|_| Ok(DeleteDbInstanceOutput::builder().build()));

 mock_rds
 .expect_describe_db_instances()
 .with()
 .times(1)
 .returning(|| {
 Ok(DescribeDbInstancesOutput::builder()
 .db_instances(
 DbInstance::builder()
 .db_cluster_identifier("MockCluster")
 .db_instance_status("Deleting")
 .build(),
)
 .build())
 })
 .with()
 .times(1)
 .returning(|| {
 Err(SdkError::service_error(
 DescribeDBInstancesError::unhandled(Box::new(Error::new(
 ErrorKind::Other,
 "describe db instances error",
))),
 Response::new(StatusCode::try_from(400).unwrap(),
 SdkBody::empty()),
))
 });

 mock_rds
 .expect_delete_db_cluster()
 .with(eq("MockCluster"))
 .return_once(|_| Ok(DeleteDbClusterOutput::builder().build()));

 mock_rds
 .expect_describe_db_clusters()
 .with(eq("MockCluster"))
 .times(1)
 .returning(|id| {
 Ok(DescribeDbClustersOutput::builder()
 .db_clusters(
 DbCluster::builder()
 .db_cluster_identifier(id)

Get started with DB clusters 3788

Amazon Aurora User Guide for Aurora

 .status("Deleting")
 .build(),
)
 .build())
 })
 .with(eq("MockCluster"))
 .times(1)
 .returning(|_| {
 Err(SdkError::service_error(
 DescribeDBClustersError::unhandled(Box::new(Error::new(
 ErrorKind::Other,
 "describe db clusters error",
))),
 Response::new(StatusCode::try_from(400).unwrap(),
 SdkBody::empty()),
))
 });

 mock_rds
 .expect_delete_db_cluster_parameter_group()
 .with(eq("MockParamGroup"))
 .return_once(|_|
 Ok(DeleteDbClusterParameterGroupOutput::builder().build()));

 let mut scenario = AuroraScenario::new(mock_rds);
 scenario.db_cluster_identifier = Some(String::from("MockCluster"));
 scenario.db_instance_identifier = Some(String::from("MockInstance"));
 scenario.db_cluster_parameter_group = Some(
 DbClusterParameterGroup::builder()
 .db_cluster_parameter_group_name("MockParamGroup")
 .build(),
);

 tokio::time::pause();
 let assertions = tokio::spawn(async move {
 let clean_up = scenario.clean_up().await;
 assert!(clean_up.is_err());
 let errs = clean_up.unwrap_err();
 assert_eq!(errs.len(), 2);
 assert_matches!(errs.get(0), Some(ScenarioError {message, context: _}) if
 message == "Failed to check instance state during deletion");
 assert_matches!(errs.get(1), Some(ScenarioError {message, context: _}) if
 message == "Failed to check cluster state during deletion");
 });

Get started with DB clusters 3789

Amazon Aurora User Guide for Aurora

 tokio::time::advance(Duration::from_secs(1)).await; // Wait for first
 Describe Instances
 tokio::time::advance(Duration::from_secs(1)).await; // Wait for second
 Describe Instances
 tokio::time::advance(Duration::from_secs(1)).await; // Wait for first
 Describe Cluster
 tokio::time::advance(Duration::from_secs(1)).await; // Wait for second
 Describe Cluster
 tokio::time::resume();
 let _ = assertions.await;
}
// snippet-end:[rust.aurora.clean_up.test]

// snippet-start:[rust.aurora.snapshot.test]
#[tokio::test]
async fn test_scenario_snapshot() {
 let mut mock_rds = MockRdsImpl::default();

 mock_rds
 .expect_snapshot_cluster()
 .with(eq("MockCluster"), eq("MockCluster_MockSnapshot"))
 .times(1)
 .return_once(|_, _| {
 Ok(CreateDbClusterSnapshotOutput::builder()
 .db_cluster_snapshot(
 DbClusterSnapshot::builder()
 .db_cluster_identifier("MockCluster")

 .db_cluster_snapshot_identifier("MockCluster_MockSnapshot")
 .build(),
)
 .build())
 });

 let mut scenario = AuroraScenario::new(mock_rds);
 scenario.db_cluster_identifier = Some("MockCluster".into());
 let create_snapshot = scenario.snapshot("MockSnapshot").await;
 assert!(create_snapshot.is_ok());
}

#[tokio::test]
async fn test_scenario_snapshot_error() {
 let mut mock_rds = MockRdsImpl::default();

Get started with DB clusters 3790

Amazon Aurora User Guide for Aurora

 mock_rds
 .expect_snapshot_cluster()
 .with(eq("MockCluster"), eq("MockCluster_MockSnapshot"))
 .times(1)
 .return_once(|_, _| {
 Err(SdkError::service_error(
 CreateDBClusterSnapshotError::unhandled(Box::new(Error::new(
 ErrorKind::Other,
 "create snapshot error",
))),
 Response::new(StatusCode::try_from(400).unwrap(),
 SdkBody::empty()),
))
 });

 let mut scenario = AuroraScenario::new(mock_rds);
 scenario.db_cluster_identifier = Some("MockCluster".into());
 let create_snapshot = scenario.snapshot("MockSnapshot").await;
 assert_matches!(create_snapshot, Err(ScenarioError { message, context: _}) if
 message == "Failed to create snapshot");
}

#[tokio::test]
async fn test_scenario_snapshot_invalid() {
 let mut mock_rds = MockRdsImpl::default();

 mock_rds
 .expect_snapshot_cluster()
 .with(eq("MockCluster"), eq("MockCluster_MockSnapshot"))
 .times(1)
 .return_once(|_, _|
 Ok(CreateDbClusterSnapshotOutput::builder().build()));

 let mut scenario = AuroraScenario::new(mock_rds);
 scenario.db_cluster_identifier = Some("MockCluster".into());
 let create_snapshot = scenario.snapshot("MockSnapshot").await;
 assert_matches!(create_snapshot, Err(ScenarioError { message, context: _}) if
 message == "Missing Snapshot");
}
// snippet-end:[rust.aurora.snapshot.test]

Get started with DB clusters 3791

Amazon Aurora User Guide for Aurora

A binary to run the scenario from front to end, using inquirer so that the user can make
some decisions.

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0

use std::fmt::Display;

use anyhow::anyhow;
use aurora_code_examples::{
 aurora_scenario::{AuroraScenario, ScenarioError},
 rds::Rds as RdsClient,
};
use aws_sdk_rds::Client;
use inquire::{validator::StringValidator, CustomUserError};
use secrecy::SecretString;
use tracing::warn;

#[derive(Default, Debug)]
struct Warnings(Vec<String>);

impl Warnings {
 fn new() -> Self {
 Warnings(Vec::with_capacity(5))
 }

 fn push(&mut self, warning: &str, error: ScenarioError) {
 let formatted = format!("{warning}: {error}");
 warn!("{formatted}");
 self.0.push(formatted);
 }

 fn is_empty(&self) -> bool {
 self.0.is_empty()
 }
}

impl Display for Warnings {
 fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
 writeln!(f, "Warnings:")?;
 for warning in &self.0 {
 writeln!(f, "{: >4}- {warning}", "")?;
 }

Get started with DB clusters 3792

Amazon Aurora User Guide for Aurora

 Ok(())
 }
}

fn select(
 prompt: &str,
 choices: Vec<String>,
 error_message: &str,
) -> Result<String, anyhow::Error> {
 inquire::Select::new(prompt, choices)
 .prompt()
 .map_err(|error| anyhow!("{error_message}: {error}"))
}

// Prepare the Aurora Scenario. Prompt for several settings that are optional to
 the Scenario, but that the user should choose for the demo.
// This includes the engine, engine version, and instance class.
async fn prepare_scenario(rds: RdsClient) -> Result<AuroraScenario,
 anyhow::Error> {
 let mut scenario = AuroraScenario::new(rds);

 // Get available engine families for Aurora MySql.
 rds.DescribeDbEngineVersions(Engine='aurora-mysql') and build a set of the
 'DBParameterGroupFamily' field values. I get {aurora-mysql8.0, aurora-mysql5.7}.
 let available_engines = scenario.get_engines().await;
 if let Err(error) = available_engines {
 return Err(anyhow!("Failed to get available engines: {}", error));
 }
 let available_engines = available_engines.unwrap();

 // Select an engine family and create a custom DB cluster parameter group.
 rds.CreateDbClusterParameterGroup(DBParameterGroupFamily='aurora-mysql8.0')
 let engine = select(
 "Select an Aurora engine family",
 available_engines.keys().cloned().collect::<Vec<String>>(),
 "Invalid engine selection",
)?;

 let version = select(
 format!("Select an Aurora engine version for {engine}").as_str(),
 available_engines.get(&engine).cloned().unwrap_or_default(),
 "Invalid engine version selection",
)?;

Get started with DB clusters 3793

Amazon Aurora User Guide for Aurora

 let set_engine = scenario.set_engine(engine.as_str(),
 version.as_str()).await;
 if let Err(error) = set_engine {
 return Err(anyhow!("Could not set engine: {}", error));
 }

 let instance_classes = scenario.get_instance_classes().await;
 match instance_classes {
 Ok(classes) => {
 let instance_class = select(
 format!("Select an Aurora instance class for {engine}").as_str(),
 classes,
 "Invalid instance class selection",
)?;
 scenario.set_instance_class(Some(instance_class))
 }
 Err(err) => return Err(anyhow!("Failed to get instance classes for
 engine: {err}")),
 }

 Ok(scenario)
}

// Prepare the cluster, creating a custom parameter group overriding some group
 parameters based on user input.
async fn prepare_cluster(scenario: &mut AuroraScenario, warnings: &mut Warnings)
 -> Result<(), ()> {
 show_parameters(scenario, warnings).await;

 let offset = prompt_number_or_default(warnings, "auto_increment_offset", 5);
 let increment = prompt_number_or_default(warnings,
 "auto_increment_increment", 3);

 // Modify both the auto_increment_offset and auto_increment_increment
 parameters in one call in the custom parameter group. Set their ParameterValue
 fields to a new allowable value. rds.ModifyDbClusterParameterGroup.
 let update_auto_increment = scenario.update_auto_increment(offset,
 increment).await;

 if let Err(error) = update_auto_increment {
 warnings.push("Failed to update auto increment", error);
 return Err(());
 }

Get started with DB clusters 3794

Amazon Aurora User Guide for Aurora

 // Get and display the updated parameters. Specify Source of 'user' to get
 just the modified parameters. rds.DescribeDbClusterParameters(Source='user')
 show_parameters(scenario, warnings).await;

 let username = inquire::Text::new("Username for the database (default
 'testuser')")
 .with_default("testuser")
 .with_initial_value("testuser")
 .prompt();

 if let Err(error) = username {
 warnings.push(
 "Failed to get username, using default",
 ScenarioError::with(format!("Error from inquirer: {error}")),
);
 return Err(());
 }
 let username = username.unwrap();

 let password = inquire::Text::new("Password for the database (minimum 8
 characters)")
 .with_validator(|i: &str| {
 if i.len() >= 8 {
 Ok(inquire::validator::Validation::Valid)
 } else {
 Ok(inquire::validator::Validation::Invalid(
 "Password must be at least 8 characters".into(),
))
 }
 })
 .prompt();

 let password: Option<SecretString> = match password {
 Ok(password) => Some(SecretString::from(password)),
 Err(error) => {
 warnings.push(
 "Failed to get password, using none (and not starting a DB)",
 ScenarioError::with(format!("Error from inquirer: {error}")),
);
 return Err(());
 }
 };

 scenario.set_login(Some(username), password);

Get started with DB clusters 3795

Amazon Aurora User Guide for Aurora

 Ok(())
}

// Start a single instance in the cluster,
async fn run_instance(scenario: &mut AuroraScenario) -> Result<(), ScenarioError>
 {
 // Create an Aurora DB cluster database cluster that contains a MySql
 database and uses the parameter group you created.
 // Create a database instance in the cluster.
 // Wait for DB instance to be ready. Call rds.DescribeDbInstances and check
 for DBInstanceStatus == 'available'.
 scenario.start_cluster_and_instance().await?;

 let connection_string = scenario.connection_string().await?;

 println!("Database ready: {connection_string}",);

 let _ = inquire::Text::new("Use the database with the connection string. When
 you're finished, press enter key to continue.").prompt();

 // Create a snapshot of the DB cluster. rds.CreateDbClusterSnapshot.
 // Wait for the snapshot to create. rds.DescribeDbClusterSnapshots until
 Status == 'available'.
 let snapshot_name = inquire::Text::new("Provide a name for the snapshot")
 .prompt()
 .unwrap_or(String::from("ScenarioRun"));
 let snapshot = scenario.snapshot(snapshot_name.as_str()).await?;
 println!(
 "Snapshot is available: {}",
 snapshot.db_cluster_snapshot_arn().unwrap_or("Missing ARN")
);

 Ok(())
}

#[tokio::main]
async fn main() -> Result<(), anyhow::Error> {
 tracing_subscriber::fmt::init();
 let sdk_config = aws_config::from_env().load().await;
 let client = Client::new(&sdk_config);
 let rds = RdsClient::new(client);
 let mut scenario = prepare_scenario(rds).await?;

Get started with DB clusters 3796

Amazon Aurora User Guide for Aurora

 // At this point, the scenario has things in AWS and needs to get cleaned up.
 let mut warnings = Warnings::new();

 if prepare_cluster(&mut scenario, &mut warnings).await.is_ok() {
 println!("Configured database cluster, starting an instance.");
 if let Err(err) = run_instance(&mut scenario).await {
 warnings.push("Problem running instance", err);
 }
 }

 // Clean up the instance, cluster, and parameter group, waiting for the
 instance and cluster to delete before moving on.
 let clean_up = scenario.clean_up().await;
 if let Err(errors) = clean_up {
 for error in errors {
 warnings.push("Problem cleaning up scenario", error);
 }
 }

 if warnings.is_empty() {
 Ok(())
 } else {
 println!("There were problems running the scenario:");
 println!("{warnings}");
 Err(anyhow!("There were problems running the scenario"))
 }
}

#[derive(Clone)]
struct U8Validator {}
impl StringValidator for U8Validator {
 fn validate(&self, input: &str) -> Result<inquire::validator::Validation,
 CustomUserError> {
 if input.parse::<u8>().is_err() {
 Ok(inquire::validator::Validation::Invalid(
 "Can't parse input as number".into(),
))
 } else {
 Ok(inquire::validator::Validation::Valid)
 }
 }
}

async fn show_parameters(scenario: &AuroraScenario, warnings: &mut Warnings) {

Get started with DB clusters 3797

Amazon Aurora User Guide for Aurora

 let parameters = scenario.cluster_parameters().await;

 match parameters {
 Ok(parameters) => {
 println!("Current parameters");
 for parameter in parameters {
 println!("\t{parameter}");
 }
 }
 Err(error) => warnings.push("Could not find cluster parameters", error),
 }
}

fn prompt_number_or_default(warnings: &mut Warnings, name: &str, default: u8) ->
 u8 {
 let input = inquire::Text::new(format!("Updated {name}:").as_str())
 .with_validator(U8Validator {})
 .prompt();

 match input {
 Ok(increment) => match increment.parse::<u8>() {
 Ok(increment) => increment,
 Err(error) => {
 warnings.push(
 format!("Invalid updated {name} (using {default}
 instead)").as_str(),
 ScenarioError::with(format!("{error}")),
);
 default
 }
 },
 Err(error) => {
 warnings.push(
 format!("Invalid updated {name} (using {default}
 instead)").as_str(),
 ScenarioError::with(format!("{error}")),
);
 default
 }
 }
}

Get started with DB clusters 3798

Amazon Aurora User Guide for Aurora

A wrapper around the Amazon RDS service that allows automocking for tests.

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0

use aws_sdk_rds::{
 error::SdkError,
 operation::{
 create_db_cluster::{CreateDBClusterError, CreateDbClusterOutput},
 create_db_cluster_parameter_group::CreateDBClusterParameterGroupError,
 create_db_cluster_parameter_group::CreateDbClusterParameterGroupOutput,
 create_db_cluster_snapshot::{CreateDBClusterSnapshotError,
 CreateDbClusterSnapshotOutput},
 create_db_instance::{CreateDBInstanceError, CreateDbInstanceOutput},
 delete_db_cluster::{DeleteDBClusterError, DeleteDbClusterOutput},
 delete_db_cluster_parameter_group::{
 DeleteDBClusterParameterGroupError,
 DeleteDbClusterParameterGroupOutput,
 },
 delete_db_instance::{DeleteDBInstanceError, DeleteDbInstanceOutput},
 describe_db_cluster_endpoints::{
 DescribeDBClusterEndpointsError, DescribeDbClusterEndpointsOutput,
 },
 describe_db_cluster_parameters::{
 DescribeDBClusterParametersError, DescribeDbClusterParametersOutput,
 },
 describe_db_clusters::{DescribeDBClustersError,
 DescribeDbClustersOutput},
 describe_db_engine_versions::{
 DescribeDBEngineVersionsError, DescribeDbEngineVersionsOutput,
 },
 describe_db_instances::{DescribeDBInstancesError,
 DescribeDbInstancesOutput},

 describe_orderable_db_instance_options::DescribeOrderableDBInstanceOptionsError,
 modify_db_cluster_parameter_group::{
 ModifyDBClusterParameterGroupError,
 ModifyDbClusterParameterGroupOutput,
 },
 },
 types::{OrderableDbInstanceOption, Parameter},
 Client as RdsClient,
};
use secrecy::{ExposeSecret, SecretString};

Get started with DB clusters 3799

Amazon Aurora User Guide for Aurora

#[cfg(test)]
use mockall::automock;

#[cfg(test)]
pub use MockRdsImpl as Rds;
#[cfg(not(test))]
pub use RdsImpl as Rds;

pub struct RdsImpl {
 pub inner: RdsClient,
}

#[cfg_attr(test, automock)]
impl RdsImpl {
 pub fn new(inner: RdsClient) -> Self {
 RdsImpl { inner }
 }

 // snippet-start:[rust.aurora.describe_db_engine_versions.wrapper]
 pub async fn describe_db_engine_versions(
 &self,
 engine: &str,
) -> Result<DescribeDbEngineVersionsOutput,
 SdkError<DescribeDBEngineVersionsError>> {
 self.inner
 .describe_db_engine_versions()
 .engine(engine)
 .send()
 .await
 }
 // snippet-end:[rust.aurora.describe_db_engine_versions.wrapper]

 // snippet-start:[rust.aurora.describe_orderable_db_instance_options.wrapper]
 pub async fn describe_orderable_db_instance_options(
 &self,
 engine: &str,
 engine_version: &str,
) -> Result<Vec<OrderableDbInstanceOption>,
 SdkError<DescribeOrderableDBInstanceOptionsError>>
 {
 self.inner
 .describe_orderable_db_instance_options()
 .engine(engine)

Get started with DB clusters 3800

Amazon Aurora User Guide for Aurora

 .engine_version(engine_version)
 .into_paginator()
 .items()
 .send()
 .try_collect()
 .await
 }
 // snippet-end:[rust.aurora.describe_orderable_db_instance_options.wrapper]

 // snippet-start:[rust.aurora.create_db_cluster_parameter_group.wrapper]
 pub async fn create_db_cluster_parameter_group(
 &self,
 name: &str,
 description: &str,
 family: &str,
) -> Result<CreateDbClusterParameterGroupOutput,
 SdkError<CreateDBClusterParameterGroupError>>
 {
 self.inner
 .create_db_cluster_parameter_group()
 .db_cluster_parameter_group_name(name)
 .description(description)
 .db_parameter_group_family(family)
 .send()
 .await
 }
 // snippet-end:[rust.aurora.create_db_cluster_parameter_group.wrapper]

 // snippet-start:[rust.aurora.describe_db_clusters.wrapper]
 pub async fn describe_db_clusters(
 &self,
 id: &str,
) -> Result<DescribeDbClustersOutput, SdkError<DescribeDBClustersError>> {
 self.inner
 .describe_db_clusters()
 .db_cluster_identifier(id)
 .send()
 .await
 }
 // snippet-end:[rust.aurora.describe_db_clusters.wrapper]

 // snippet-start:[rust.aurora.describe_db_cluster_parameters.wrapper]
 pub async fn describe_db_cluster_parameters(
 &self,

Get started with DB clusters 3801

Amazon Aurora User Guide for Aurora

 name: &str,
) -> Result<Vec<DescribeDbClusterParametersOutput>,
 SdkError<DescribeDBClusterParametersError>>
 {
 self.inner
 .describe_db_cluster_parameters()
 .db_cluster_parameter_group_name(name)
 .into_paginator()
 .send()
 .try_collect()
 .await
 }
 // snippet-end:[rust.aurora.describe_db_cluster_parameters.wrapper]

 // snippet-start:[rust.aurora.modify_db_cluster_parameter_group.wrapper]
 pub async fn modify_db_cluster_parameter_group(
 &self,
 name: &str,
 parameters: Vec<Parameter>,
) -> Result<ModifyDbClusterParameterGroupOutput,
 SdkError<ModifyDBClusterParameterGroupError>>
 {
 self.inner
 .modify_db_cluster_parameter_group()
 .db_cluster_parameter_group_name(name)
 .set_parameters(Some(parameters))
 .send()
 .await
 }
 // snippet-end:[rust.aurora.modify_db_cluster_parameter_group.wrapper]

 // snippet-start:[rust.aurora.create_db_cluster.wrapper]
 pub async fn create_db_cluster(
 &self,
 name: &str,
 parameter_group: &str,
 engine: &str,
 version: &str,
 username: &str,
 password: SecretString,
) -> Result<CreateDbClusterOutput, SdkError<CreateDBClusterError>> {
 self.inner
 .create_db_cluster()
 .db_cluster_identifier(name)

Get started with DB clusters 3802

Amazon Aurora User Guide for Aurora

 .db_cluster_parameter_group_name(parameter_group)
 .engine(engine)
 .engine_version(version)
 .master_username(username)
 .master_user_password(password.expose_secret())
 .send()
 .await
 }
 // snippet-end:[rust.aurora.create_db_cluster.wrapper]

 // snippet-start:[rust.aurora.create_db_instance.wrapper]
 pub async fn create_db_instance(
 &self,
 cluster_name: &str,
 instance_name: &str,
 instance_class: &str,
 engine: &str,
) -> Result<CreateDbInstanceOutput, SdkError<CreateDBInstanceError>> {
 self.inner
 .create_db_instance()
 .db_cluster_identifier(cluster_name)
 .db_instance_identifier(instance_name)
 .db_instance_class(instance_class)
 .engine(engine)
 .send()
 .await
 }
 // snippet-end:[rust.aurora.create_db_instance.wrapper]

 // snippet-start:[rust.aurora.describe_db_instance.wrapper]
 pub async fn describe_db_instance(
 &self,
 instance_identifier: &str,
) -> Result<DescribeDbInstancesOutput, SdkError<DescribeDBInstancesError>> {
 self.inner
 .describe_db_instances()
 .db_instance_identifier(instance_identifier)
 .send()
 .await
 }
 // snippet-end:[rust.aurora.describe_db_instance.wrapper]

 // snippet-start:[rust.aurora.create_db_cluster_snapshot.wrapper]
 pub async fn snapshot_cluster(

Get started with DB clusters 3803

Amazon Aurora User Guide for Aurora

 &self,
 db_cluster_identifier: &str,
 snapshot_name: &str,
) -> Result<CreateDbClusterSnapshotOutput,
 SdkError<CreateDBClusterSnapshotError>> {
 self.inner
 .create_db_cluster_snapshot()
 .db_cluster_identifier(db_cluster_identifier)
 .db_cluster_snapshot_identifier(snapshot_name)
 .send()
 .await
 }
 // snippet-end:[rust.aurora.create_db_cluster_snapshot.wrapper]

 // snippet-start:[rust.aurora.describe_db_instances.wrapper]
 pub async fn describe_db_instances(
 &self,
) -> Result<DescribeDbInstancesOutput, SdkError<DescribeDBInstancesError>> {
 self.inner.describe_db_instances().send().await
 }
 // snippet-end:[rust.aurora.describe_db_instances.wrapper]

 // snippet-start:[rust.aurora.describe_db_cluster_endpoints.wrapper]
 pub async fn describe_db_cluster_endpoints(
 &self,
 cluster_identifier: &str,
) -> Result<DescribeDbClusterEndpointsOutput,
 SdkError<DescribeDBClusterEndpointsError>> {
 self.inner
 .describe_db_cluster_endpoints()
 .db_cluster_identifier(cluster_identifier)
 .send()
 .await
 }
 // snippet-end:[rust.aurora.describe_db_cluster_endpoints.wrapper]

 // snippet-start:[rust.aurora.delete_db_instance.wrapper]
 pub async fn delete_db_instance(
 &self,
 instance_identifier: &str,
) -> Result<DeleteDbInstanceOutput, SdkError<DeleteDBInstanceError>> {
 self.inner
 .delete_db_instance()
 .db_instance_identifier(instance_identifier)

Get started with DB clusters 3804

Amazon Aurora User Guide for Aurora

 .skip_final_snapshot(true)
 .send()
 .await
 }
 // snippet-end:[rust.aurora.delete_db_instance.wrapper]

 // snippet-start:[rust.aurora.delete_db_cluster.wrapper]
 pub async fn delete_db_cluster(
 &self,
 cluster_identifier: &str,
) -> Result<DeleteDbClusterOutput, SdkError<DeleteDBClusterError>> {
 self.inner
 .delete_db_cluster()
 .db_cluster_identifier(cluster_identifier)
 .skip_final_snapshot(true)
 .send()
 .await
 }
 // snippet-end:[rust.aurora.delete_db_cluster.wrapper]

 // snippet-start:[rust.aurora.delete_db_cluster_parameter_group.wrapper]
 pub async fn delete_db_cluster_parameter_group(
 &self,
 name: &str,
) -> Result<DeleteDbClusterParameterGroupOutput,
 SdkError<DeleteDBClusterParameterGroupError>>
 {
 self.inner
 .delete_db_cluster_parameter_group()
 .db_cluster_parameter_group_name(name)
 .send()
 .await
 }
 // snippet-end:[rust.aurora.delete_db_cluster_parameter_group.wrapper]
}

The Cargo.toml with dependencies used in this scenario.

[package]
name = "aurora-code-examples"
authors = [
 "David Souther <dpsouth@amazon.com>",

Get started with DB clusters 3805

Amazon Aurora User Guide for Aurora

]
edition = "2021"
version = "0.1.0"

See more keys and their definitions at https://doc.rust-lang.org/cargo/
reference/manifest.html

[dependencies]
anyhow = "1.0.75"
assert_matches = "1.5.0"
aws-config = { version = "1.0.1", features = ["behavior-version-latest"] }
aws-smithy-types = { version = "1.0.1" }
aws-smithy-runtime-api = { version = "1.0.1" }
aws-sdk-rds = { version = "1.3.0" }
inquire = "0.6.2"
mockall = "0.11.4"
phf = { version = "0.11.2", features = ["std", "macros"] }
sdk-examples-test-utils = { path = "../../test-utils" }
secrecy = "0.8.0"
tokio = { version = "1.20.1", features = ["full", "test-util"] }
tracing = "0.1.37"
tracing-subscriber = { version = "0.3.15", features = ["env-filter"] }

• For API details, see the following topics in AWS SDK for Rust API reference.

• CreateDBCluster

• CreateDBClusterParameterGroup

• CreateDBClusterSnapshot

• CreateDBInstance

• DeleteDBCluster

• DeleteDBClusterParameterGroup

• DeleteDBInstance

• DescribeDBClusterParameterGroups

• DescribeDBClusterParameters

• DescribeDBClusterSnapshots

• DescribeDBClusters

• DescribeDBEngineVersions

• DescribeDBInstancesGet started with DB clusters 3806

https://docs.rs/aws-sdk-rds/latest/aws_sdk_rds/client/struct.Client.html#method.create_db_cluster
https://docs.rs/aws-sdk-rds/latest/aws_sdk_rds/client/struct.Client.html#method.create_db_cluster_parameter_group
https://docs.rs/aws-sdk-rds/latest/aws_sdk_rds/client/struct.Client.html#method.create_db_cluster_snapshot
https://docs.rs/aws-sdk-rds/latest/aws_sdk_rds/client/struct.Client.html#method.create_db_instance
https://docs.rs/aws-sdk-rds/latest/aws_sdk_rds/client/struct.Client.html#method.delete_db_cluster
https://docs.rs/aws-sdk-rds/latest/aws_sdk_rds/client/struct.Client.html#method.delete_db_cluster_parameter_group
https://docs.rs/aws-sdk-rds/latest/aws_sdk_rds/client/struct.Client.html#method.delete_db_instance
https://docs.rs/aws-sdk-rds/latest/aws_sdk_rds/client/struct.Client.html#method.describe_db_cluster_parameter_groups
https://docs.rs/aws-sdk-rds/latest/aws_sdk_rds/client/struct.Client.html#method.describe_db_cluster_parameters
https://docs.rs/aws-sdk-rds/latest/aws_sdk_rds/client/struct.Client.html#method.describe_db_cluster_snapshots
https://docs.rs/aws-sdk-rds/latest/aws_sdk_rds/client/struct.Client.html#method.describe_db_clusters
https://docs.rs/aws-sdk-rds/latest/aws_sdk_rds/client/struct.Client.html#method.describe_db_engine_versions
https://docs.rs/aws-sdk-rds/latest/aws_sdk_rds/client/struct.Client.html#method.describe_db_instances

Amazon Aurora User Guide for Aurora

• DescribeOrderableDBInstanceOptions

• ModifyDBClusterParameterGroup

For a complete list of AWS SDK developer guides and code examples, see Using this service with
an AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Cross-service examples for Aurora using AWS SDKs

The following sample applications use AWS SDKs to combine Aurora with other AWS services. Each
example includes a link to GitHub, where you can find instructions on how to set up and run the
application.

Examples

• Create a lending library REST API

• Create an Aurora Serverless work item tracker

Create a lending library REST API

The following code example shows how to create a lending library where patrons can borrow and
return books by using a REST API backed by an Amazon Aurora database.

Python

SDK for Python (Boto3)

Shows how to use the AWS SDK for Python (Boto3) with the Amazon Relational Database
Service (Amazon RDS) API and AWS Chalice to create a REST API backed by an Amazon
Aurora database. The web service is fully serverless and represents a simple lending library
where patrons can borrow and return books. Learn how to:

• Create and manage a serverless Aurora database cluster.

• Use AWS Secrets Manager to manage database credentials.

• Implement a data storage layer that uses Amazon RDS to move data into and out of the
database.

• Use AWS Chalice to deploy a serverless REST API to Amazon API Gateway and AWS
Lambda.

Cross-service examples 3807

https://docs.rs/aws-sdk-rds/latest/aws_sdk_rds/client/struct.Client.html#method.describe_orderable_db_instance_options
https://docs.rs/aws-sdk-rds/latest/aws_sdk_rds/client/struct.Client.html#method.modify_db_cluster_parameter_group

Amazon Aurora User Guide for Aurora

• Use the Requests package to send requests to the web service.

For complete source code and instructions on how to set up and run, see the full example on
GitHub.

Services used in this example

• API Gateway

• Aurora

• Lambda

• Secrets Manager

For a complete list of AWS SDK developer guides and code examples, see Using this service with
an AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Create an Aurora Serverless work item tracker

The following code examples show how to create a web application that tracks work items in an
Amazon Aurora Serverless database and uses Amazon Simple Email Service (Amazon SES) to send
reports.

.NET

AWS SDK for .NET

Shows how to use the AWS SDK for .NET to create a web application that tracks work
items in an Amazon Aurora database and emails reports by using Amazon Simple Email
Service (Amazon SES). This example uses a front end built with React.js to interact with a
RESTful .NET backend.

• Integrate a React web application with AWS services.

• List, add, update, and delete items in an Aurora table.

• Send an email report of filtered work items using Amazon SES.

• Deploy and manage example resources with the included AWS CloudFormation script.

For complete source code and instructions on how to set up and run, see the full example on
GitHub.

Create an Aurora Serverless work item tracker 3808

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/cross_service/aurora_rest_lending_library
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/cross-service/AuroraItemTracker

Amazon Aurora User Guide for Aurora

Services used in this example

• Aurora

• Amazon RDS

• Amazon RDS Data Service

• Amazon SES

C++

SDK for C++

Shows how to create a web application that tracks and reports on work items stored in an
Amazon Aurora Serverless database.

For complete source code and instructions on how to set up a C++ REST API that queries
Amazon Aurora Serverless data and for use by a React application, see the full example on
GitHub.

Services used in this example

• Aurora

• Amazon RDS

• Amazon RDS Data Service

• Amazon SES

Java

SDK for Java 2.x

Shows how to create a web application that tracks and reports on work items stored in an
Amazon RDS database.

For complete source code and instructions on how to set up a Spring REST API that queries
Amazon Aurora Serverless data and for use by a React application, see the full example on
GitHub.

For complete source code and instructions on how to set up and run an example that uses
the JDBC API, see the full example on GitHub.

Create an Aurora Serverless work item tracker 3809

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/cpp/example_code/cross-service/serverless-aurora
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/usecases/Creating_Spring_RDS_Rest
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/usecases/Creating_rds_item_tracker

Amazon Aurora User Guide for Aurora

Services used in this example

• Aurora

• Amazon RDS

• Amazon RDS Data Service

• Amazon SES

JavaScript

SDK for JavaScript (v3)

Shows how to use the AWS SDK for JavaScript (v3) to create a web application that tracks
work items in an Amazon Aurora database and emails reports by using Amazon Simple Email
Service (Amazon SES). This example uses a front end built with React.js to interact with an
Express Node.js backend.

• Integrate a React.js web application with AWS services.

• List, add, and update items in an Aurora table.

• Send an email report of filtered work items by using Amazon SES.

• Deploy and manage example resources with the included AWS CloudFormation script.

For complete source code and instructions on how to set up and run, see the full example on
GitHub.

Services used in this example

• Aurora

• Amazon RDS

• Amazon RDS Data Service

• Amazon SES

Kotlin

SDK for Kotlin

Shows how to create a web application that tracks and reports on work items stored in an
Amazon RDS database.

Create an Aurora Serverless work item tracker 3810

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/cross-services/aurora-serverless-app

Amazon Aurora User Guide for Aurora

For complete source code and instructions on how to set up a Spring REST API that queries
Amazon Aurora Serverless data and for use by a React application, see the full example on
GitHub.

Services used in this example

• Aurora

• Amazon RDS

• Amazon RDS Data Service

• Amazon SES

PHP

SDK for PHP

Shows how to use the AWS SDK for PHP to create a web application that tracks work items
in an Amazon RDS database and emails reports by using Amazon Simple Email Service
(Amazon SES). This example uses a front end built with React.js to interact with a RESTful
PHP backend.

• Integrate a React.js web application with AWS services.

• List, add, update, and delete items in an Amazon RDS table.

• Send an email report of filtered work items using Amazon SES.

• Deploy and manage example resources with the included AWS CloudFormation script.

For complete source code and instructions on how to set up and run, see the full example on
GitHub.

Services used in this example

• Aurora

• Amazon RDS

• Amazon RDS Data Service

• Amazon SES

Create an Aurora Serverless work item tracker 3811

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/kotlin/usecases/serverless_rds
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/php/cross_service/aurora_item_tracker

Amazon Aurora User Guide for Aurora

Python

SDK for Python (Boto3)

Shows how to use the AWS SDK for Python (Boto3) to create a REST service that tracks work
items in an Amazon Aurora Serverless database and emails reports by using Amazon Simple
Email Service (Amazon SES). This example uses the Flask web framework to handle HTTP
routing and integrates with a React webpage to present a fully functional web application.

• Build a Flask REST service that integrates with AWS services.

• Read, write, and update work items that are stored in an Aurora Serverless database.

• Create an AWS Secrets Manager secret that contains database credentials and use it to
authenticate calls to the database.

• Use Amazon SES to send email reports of work items.

For complete source code and instructions on how to set up and run, see the full example on
GitHub.

Services used in this example

• Aurora

• Amazon RDS

• Amazon RDS Data Service

• Amazon SES

For a complete list of AWS SDK developer guides and code examples, see Using this service with
an AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Create an Aurora Serverless work item tracker 3812

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/cross_service/aurora_item_tracker

Amazon Aurora User Guide for Aurora

Best practices with Amazon Aurora

Following, you can find information on general best practices and options for using or migrating
data to an Amazon Aurora DB cluster.

Some of the best practices for Amazon Aurora are specific to a particular database engine. For
more information about Aurora best practices specific to a database engine, see the following.

Database engine Best practices

Amazon Aurora MySQL See Best practices with Amazon Aurora MySQL

Amazon Aurora PostgreSQL See Best practices with Amazon Aurora PostgreSQL

Note

For common recommendations for Aurora, see Viewing and responding to Amazon Aurora
recommendations.

Topics

• Basic operational guidelines for Amazon Aurora

• DB instance RAM recommendations

• AWS database drivers

• Monitoring Amazon Aurora

• Working with DB parameter groups and DB cluster parameter groups

• Amazon Aurora best practices video

Basic operational guidelines for Amazon Aurora

The following are basic operational guidelines that everyone should follow when working with
Amazon Aurora. The Amazon RDS Service Level Agreement requires that you follow these
guidelines:

Basic operational guidelines for Amazon Aurora 3813

Amazon Aurora User Guide for Aurora

• Monitor your memory, CPU, and storage usage. You can set up Amazon CloudWatch to notify
you when usage patterns change or when you approach the capacity of your deployment. This
way, you can maintain system performance and availability.

• If your client application is caching the Domain Name Service (DNS) data of your DB instances,
set a time-to-live (TTL) value of less than 30 seconds. The underlying IP address of a DB instance
can change after a failover. Thus, caching the DNS data for an extended time can lead to
connection failures if your application tries to connect to an IP address that no longer is in
service. Aurora DB clusters with multiple read replicas can experience connection failures
also when connections use the reader endpoint and one of the read replica instances is in
maintenance or is deleted.

• Test failover for your DB cluster to understand how long the process takes for your use case.
Testing failover can help you ensure that the application that accesses your DB cluster can
automatically connect to the new DB cluster after failover.

DB instance RAM recommendations

To optimize performance, allocate enough RAM so that your working set resides almost completely
in memory. To determine whether your working set is almost all in memory, examine the following
metrics in Amazon CloudWatch:

• VolumeReadIOPS – This metric measures the average number of read I/O operations from
a cluster volume, reported at 5-minute intervals. The value of VolumeReadIOPS should be
small and stable. In some cases, you might find your read I/O is spiking or is higher than usual.
If so, investigate the DB instances in your DB cluster to see which DB instances are causing the
increased I/O.

Tip

If your Aurora MySQL cluster uses parallel query, you might see an increase in
VolumeReadIOPS values. Parallel queries don't use the buffer pool. Thus, although the
queries are fast, this optimized processing can result in an increase in read operations
and associated charges.

• BufferCacheHitRatio – This metric measures the percentage of requests that are served by
the buffer cache of a DB instance in your DB cluster. This metric gives you an insight into the
amount of data that is being served from memory.

DB instance RAM recommendations 3814

Amazon Aurora User Guide for Aurora

A high hit ratio indicates that your DB instance has enough memory available. A low hit ratio
indicates that your queries on this DB instance are frequently going to disk. Investigate your
workload to see which queries are causing this behavior.

If, after investigating your workload, you find that you need more memory, consider scaling up
the DB instance class to a class with more RAM. After doing so, you can investigate the metrics
discussed preceding and continue to scale up as necessary. If your Aurora cluster is larger than 40
TB, don't use db.t2, db.t3, or db.t4g instance classes.

For more information, see Amazon CloudWatch metrics for Amazon Aurora.

AWS database drivers

We recommend the AWS suite of drivers for application connectivity. The drivers have been
designed to provide support for faster switchover and failover times, and authentication with AWS
Secrets Manager, AWS Identity and Access Management (IAM), and Federated Identity. The AWS
drivers rely on monitoring DB cluster status and being aware of the cluster topology to determine
the new writer. This approach reduces switchover and failover times to single-digit seconds,
compared to tens of seconds for open-source drivers.

As new service features are introduced, the goal of the AWS suite of drivers is to have built-in
support for these service features.

For more information, see Connecting to Aurora DB clusters with the AWS drivers.

Monitoring Amazon Aurora

Amazon Aurora provides various metrics and insights that you can monitor to determine the
health and performance of your Aurora DB cluster. You can use various tools, such as the AWS
Management Console, AWS CLI, and CloudWatch API, to view Aurora metrics. You can view the
combined Performance Insights and CloudWatch metrics in the Performance Insights dashboard
and monitor your DB instance. To use this monitoring view, Performance Insights must be turned
on for your DB instance. For information about this monitoring view, see Viewing combined metrics
in the Amazon RDS console.

You can create a performance analysis report for a specific time period and view the insights
identified and the recommendations to resolve the issues. For more information see, Creating a
performance analysis report.

AWS database drivers 3815

Amazon Aurora User Guide for Aurora

Working with DB parameter groups and DB cluster parameter
groups

We recommend that you try out DB parameter group and DB cluster parameter group changes
on a test DB cluster before applying parameter group changes to your production DB cluster.
Improperly setting DB engine parameters can have unintended adverse effects, including degraded
performance and system instability.

Always use caution when modifying DB engine parameters, and back up your DB cluster before
modifying a DB parameter group. For information about backing up your DB cluster, see Backing
up and restoring an Amazon Aurora DB cluster.

Amazon Aurora best practices video

The AWS Online Tech Talks channel on YouTube includes a video presentation on best practices for
creating and configuring an Amazon Aurora DB cluster to be more secure and highly available. See
Amazon Aurora best practices for high availability.

Working with DB parameter groups and DB cluster parameter groups 3816

https://www.youtube.com/watch?v=ydzd95r4_VQ

Amazon Aurora User Guide for Aurora

Performing a proof of concept with Amazon Aurora

Following, you can find an explanation of how to set up and run a proof of concept for Aurora. A
proof of concept is an investigation that you do to see if Aurora is a good fit with your application.
The proof of concept can help you understand Aurora features in the context of your own database
applications and how Aurora compares with your current database environment. It can also show
what level of effort you need to move data, port SQL code, tune performance, and adapt your
current management procedures.

In this topic, you can find an overview and a step-by-step outline of the high-level procedures and
decisions involved in running a proof of concept, listed following. For detailed instructions, you can
follow links to the full documentation for specific subjects.

Overview of an Aurora proof of concept

When you conduct a proof of concept for Amazon Aurora, you learn what it takes to port your
existing data and SQL applications to Aurora. You exercise the important aspects of Aurora at scale,
using a volume of data and activity that's representative of your production environment. The
objective is to feel confident that the strengths of Aurora match up well with the challenges that
cause you to outgrow your previous database infrastructure. At the end of a proof of concept, you
have a solid plan to do larger-scale performance benchmarking and application testing. At this
point, you understand the biggest work items on your way to a production deployment.

The following advice about best practices can help you avoid common mistakes that cause
problems during benchmarking. However, this topic doesn't cover the step-by-step process of
performing benchmarks and doing performance tuning. Those procedures vary depending on your
workload and the Aurora features that you use. For detailed information, consult performance-
related documentation such as Managing performance and scaling for Aurora DB clusters, Amazon
Aurora MySQL performance enhancements, Managing Amazon Aurora PostgreSQL, and Monitoring
DB load with Performance Insights on Amazon Aurora.

The information in this topic applies mainly to applications where your organization writes the
code and designs the schema and that support the MySQL and PostgreSQL open-source database
engines. If you're testing a commercial application or code generated by an application framework,
you might not have the flexibility to apply all of the guidelines. In such cases, check with your AWS
representative to see if there are Aurora best practices or case studies for your type of application.

Overview of an Aurora proof of concept 3817

Amazon Aurora User Guide for Aurora

1. Identify your objectives

When you evaluate Aurora as part of a proof of concept, you choose what measurements to make
and how to evaluate the success of the exercise.

You must ensure that all of the functionality of your application is compatible with Aurora. Because
Aurora major versions are wire-compatible with corresponding major versions of MySQL and
PostgreSQL, most applications developed for those engines are also compatible with Aurora.
However, you must still validate compatibility on a per-application basis.

For example, some of the configuration choices that you make when you set up an Aurora cluster
influence whether you can or should use particular database features. You might start with the
most general-purpose kind of Aurora cluster, known as provisioned. You might then decide if a
specialized configuration such as serverless or parallel query offers benefits for your workload.

Use the following questions to help identify and quantify your objectives:

• Does Aurora support all functional use cases of your workload?

• What dataset size or load level do you want? Can you scale to that level?

• What are your specific query throughput or latency requirements? Can you reach them?

• What is the minimum acceptable amount of planned or unplanned downtime for your workload?
Can you achieve it?

• What are the necessary metrics for operational efficiency? Can you accurately monitor them?

• Does Aurora support your specific business goals, such as cost reduction, increase in deployment,
or provisioning speed? Do you have a way to quantify these goals?

• Can you meet all security and compliance requirements for your workload?

Take some time to build knowledge about Aurora database engines and platform capabilities, and
review the service documentation. Take note of all the features that can help you achieve your
desired outcomes. One of these might be workload consolidation, described in the AWS Database
Blog post How to plan and optimize Amazon Aurora with MySQL compatibility for consolidated
workloads. Another might be demand-based scaling, described in Using Amazon Aurora Auto
Scaling with Aurora Replicas in the Amazon Aurora User Guide. Others might be performance gains
or simplified database operations.

1. Identify your objectives 3818

https://aws.amazon.com/blogs/database/planning-and-optimizing-amazon-aurora-with-mysql-compatibility-for-consolidated-workloads/
https://aws.amazon.com/blogs/database/planning-and-optimizing-amazon-aurora-with-mysql-compatibility-for-consolidated-workloads/

Amazon Aurora User Guide for Aurora

2. Understand your workload characteristics

Evaluate Aurora in the context of your intended use case. Aurora is a good choice for online
transaction processing (OLTP) workloads. You can also run reports on the cluster that holds the
real-time OLTP data without provisioning a separate data warehouse cluster. You can recognize if
your use case falls into these categories by checking for the following characteristics:

• High concurrency, with dozens, hundreds, or thousands of simultaneous clients.

• Large volume of low-latency queries (milliseconds to seconds).

• Short, real-time transactions.

• Highly selective query patterns, with index-based lookups.

• For HTAP, analytical queries that can take advantage of Aurora parallel query.

One of the key factors affecting your database choices is the velocity of the data. High velocity
involves data being inserted and updated very frequently. Such a system might have thousands
of connections and hundreds of thousands of simultaneous queries reading from and writing to
a database. Queries in high-velocity systems usually affect a relatively small number of rows, and
typically access multiple columns in the same row.

Aurora is designed to handle high-velocity data. Depending on the workload, an Aurora cluster
with a single r4.16xlarge DB instance can process more than 600,000 SELECT statements per
second. Again depending on workload, such a cluster can process 200,000 INSERT, UPDATE, and
DELETE statements per second. Aurora is a row store database and is ideally suited for high-
volume, high-throughput, and highly parallelized OLTP workloads.

Aurora can also run reporting queries on the same cluster that handles the OLTP workload. Aurora
supports up to 15 replicas, each of which is on average within 10–20 milliseconds of the primary
instance. Analysts can query OLTP data in real time without copying the data to a separate data
warehouse cluster. With Aurora clusters using the parallel query feature, you can offload much
of the processing, filtering, and aggregation work to the massively distributed Aurora storage
subsystem.

Use this planning phase to familiarize yourself with the capabilities of Aurora, other AWS services,
the AWS Management Console, and the AWS CLI. Also, check how these work with the other
tooling that you plan to use in the proof of concept.

2. Understand your workload characteristics 3819

Amazon Aurora User Guide for Aurora

3. Practice with the AWS Management Console or AWS CLI

As a next step, practice with the AWS Management Console or the AWS CLI, to become familiar
with these tools and with Aurora.

Practice with the AWS Management Console

The following initial activities with Aurora database clusters are mainly so you can familiarize
yourself with the AWS Management Console environment and practice setting up and modifying
Aurora clusters. If you use the MySQL-compatible and PostgreSQL-compatible database engines
with Amazon RDS, you can build on that knowledge when you use Aurora.

By taking advantage of the Aurora shared storage model and features such as replication and
snapshots, you can treat entire database clusters as another kind of object that you freely
manipulate. You can set up, tear down, and change the capacity of Aurora clusters frequently
during the proof of concept. You aren't locked into early choices about capacity, database settings,
and physical data layout.

To get started, set up an empty Aurora cluster. Choose the provisioned capacity type and regional
location for your initial experiments.

Connect to that cluster using a client program such as a SQL command-line application. Initially,
you connect using the cluster endpoint. You connect to that endpoint to perform any write
operations, such as data definition language (DDL) statements and extract, transform, load (ETL)
processes. Later in the proof of concept, you connect query-intensive sessions using the reader
endpoint, which distributes the query workload among multiple DB instances in the cluster.

Scale the cluster out by adding more Aurora Replicas. For those procedures, see Replication
with Amazon Aurora. Scale the DB instances up or down by changing the AWS instance class.
Understand how Aurora simplifies these kinds of operations, so that if your initial estimates for
system capacity are inaccurate, you can adjust later without starting over.

Create a snapshot and restore it to a different cluster.

Examine cluster metrics to see activity over time, and how the metrics apply to the DB instances in
the cluster.

It's useful to become familiar with how to do these things through the AWS Management
Console in the beginning. After you understand what you can do with Aurora, you can progress
to automating those operations using the AWS CLI. In the following sections, you can find more

3. Practice with the console or CLI 3820

Amazon Aurora User Guide for Aurora

details about the procedures and best practices for these activities during the proof-of-concept
period.

Practice with the AWS CLI

We recommend automating deployment and management procedures, even in a proof-of-concept
setting. To do so, become familiar with the AWS CLI if you're not already. If you use the MySQL-
compatible and PostgreSQL-compatible database engines with Amazon RDS, you can build on that
knowledge when you use Aurora.

Aurora typically involves groups of DB instances arranged in clusters. Thus, many operations
involve determining which DB instances are associated with a cluster and then performing
administrative operations in a loop for all the instances.

For example, you might automate steps such as creating Aurora clusters, then scaling them up
with larger instance classes or scaling them out with additional DB instances. Doing so helps you
to repeat any stages in your proof of concept and explore what-if scenarios with different kinds or
configurations of Aurora clusters.

Learn the capabilities and limitations of infrastructure deployment tools such as AWS
CloudFormation. You might find activities that you do in a proof-of-concept context aren't suitable
for production use. For example, the AWS CloudFormation behavior for modification is to create a
new instance and delete the current one, including its data. For more details on this behavior, see
Update behaviors of stack resources in the AWS CloudFormation User Guide.

4. Create your Aurora cluster

With Aurora, you can explore what-if scenarios by adding DB instances to the cluster and scaling
up the DB instances to more powerful instance classes. You can also create clusters with different
configuration settings to run the same workload side by side. With Aurora, you have a lot of
flexibility to set up, tear down, and reconfigure DB clusters. Given this, it's helpful to practice these
techniques in the early stages of the proof-of-concept process. For the general procedures to create
Aurora clusters, see Creating an Amazon Aurora DB cluster.

Where practical, start with a cluster using the following settings. Skip this step only if you have
certain specific use cases in mind. For example, you might skip this step if your use case requires
a specialized kind of Aurora cluster. Or you might skip it if you need a particular combination of
database engine and version.

Practice with the AWS CLI 3821

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/using-cfn-updating-stacks-update-behaviors.html

Amazon Aurora User Guide for Aurora

• Turn off Easy create. For the proof of concept, we recommend that you be aware of all the
settings you choose so that you can create identical or slightly different clusters later.

• Use a recent DB engine version. These combinations of database engine and version have
wide compatibility with other Aurora features and substantial customer usage for production
applications.

• Aurora MySQL version 3.x (MySQL 8.0 compatibility)

• Aurora PostgreSQL version 15.x or 16.x

• Choose the Dev/Test template. This choice isn't significant for your proof-of-concept activities.

• For DB instance class, choose Memory optimized classes and one of the xlarge instance classes.
You can adjust the instance class up or down later.

• Under Multi-AZ Deployment, choose Create an Aurora Replica or Reader node in a different
AZ. Many of the most useful aspects of Aurora involve clusters of multiple DB instances. It
makes sense to always start with at least two DB instances in any new cluster. Using a different
Availability Zone for the second DB instance helps to test different high availability scenarios.

• When you pick names for the DB instances, use a generic naming convention. Don't refer to
any cluster DB instance as the "writer," because different DB instances assume those roles as
needed. We recommend using something like clustername-az-serialnumber, for example
myprodappdb-a-01. These pieces uniquely identify the DB instance and its placement.

• Set the backup retention high for the Aurora cluster. With a long retention period, you can do
point-in-time recovery (PITR) for a period up to 35 days. You can reset your database to a known
state after running tests involving DDL and data manipulation language (DML) statements. You
can also recover if you delete or change data by mistake.

• Turn on additional recovery, logging, and monitoring features at cluster creation. Turn on all the
choices that are available under Backtrack, Performance Insights, Monitoring, and Log exports.
With these features enabled, you can test the suitability of features such as backtracking,
Enhanced Monitoring, or Performance Insights for your workload. You can also easily investigate
performance and perform troubleshooting during the proof of concept.

5. Set up your schema

On the Aurora cluster, set up databases, tables, indexes, foreign keys, and other schema objects
for your application. If you're moving from another MySQL-compatible or PostgreSQL-compatible
database system, expect this stage to be simple and straightforward. You use the same SQL syntax
and command line or other client applications that you're familiar with for your database engine.

5. Set up your schema 3822

Amazon Aurora User Guide for Aurora

To issue SQL statements on your cluster, find its cluster endpoint and supply that value as
the connection parameter to your client application. You can find the cluster endpoint on the
Connectivity tab of the detail page of your cluster. The cluster endpoint is the one labeled Writer.
The other endpoint, labeled Reader, represents a read-only connection that you can supply to end
users who run reports or other read-only queries. For help with any issues around connecting to
your cluster, see Connecting to an Amazon Aurora DB cluster.

If you're porting your schema and data from a different database system, expect to make some
schema changes at this point. These schema changes are to match the SQL syntax and capabilities
available in Aurora. You might leave out certain columns, constraints, triggers, or other schema
objects at this point. Doing so can be useful particularly if these objects require rework for Aurora
compatibility and aren't significant for your objectives with the proof of concept.

If you're migrating from a database system with a different underlying engine than Aurora's,
consider using the AWS Schema Conversion Tool (AWS SCT) to simplify the process. For details,
see the AWS Schema Conversion Tool User Guide. For general details about migration and porting
activities, see the Migrating Your Databases to Amazon Aurora AWS whitepaper.

During this stage, you can evaluate whether there are inefficiencies in your schema setup, for
example in your indexing strategy or other table structures such as partitioned tables. Such
inefficiencies can be amplified when you deploy your application on a cluster with multiple DB
instances and a heavy workload. Consider whether you can fine-tune such performance aspects
now, or during later activities such as a full benchmark test.

6. Import your data

During the proof of concept, you bring across the data, or a representative sample, from your
former database system. If practical, set up at least some data in each of your tables. Doing so
helps to test compatibility of all data types and schema features. After you have exercised the
basic Aurora features, scale up the amount of data. By the time you finish the proof of concept, you
should test your ETL tools, queries, and overall workload with a dataset that's big enough to draw
accurate conclusions.

You can use several techniques to import either physical or logical backup data to Aurora. For
details, see Migrating data to an Amazon Aurora MySQL DB cluster or Migrating data to Amazon
Aurora with PostgreSQL compatibility depending on the database engine you're using in the proof
of concept.

6. Import your data 3823

https://docs.aws.amazon.com/SchemaConversionTool/latest/userguide/CHAP_Welcome.html
https://d1.awsstatic.com/whitepapers/RDS/Migrating%20your%20databases%20to%20Amazon%20Aurora.pdf

Amazon Aurora User Guide for Aurora

Experiment with the ETL tools and technologies that you're considering. See which one best meets
your needs. Consider both throughput and flexibility. For example, some ETL tools perform a one-
time transfer, and others involve ongoing replication from the old system to Aurora.

If you're migrating from a MySQL-compatible system to Aurora MySQL, you can use the native
data transfer tools. The same applies if you're migrating from a PostgreSQL-compatible system to
Aurora PostgreSQL. If you're migrating from a database system that uses a different underlying
engine than Aurora does, you can experiment with the AWS Database Migration Service (AWS
DMS). For details about AWS DMS, see the AWS Database Migration Service User Guide.

For details about migration and porting activities, see the AWS whitepaper Aurora migration
handbook.

7. Port your SQL code

Trying out SQL and associated applications requires different levels of effort depending on
different cases. In particular, the level of effort depends on whether you move from a MySQL-
compatible or PostgreSQL-compatible system or another kind.

• If you're moving from RDS for MySQL or RDS for PostgreSQL, the SQL changes are small enough
that you can try the original SQL code with Aurora and manually incorporate needed changes.

• Similarly, if you move from an on-premises database compatible with MySQL or PostgreSQL, you
can try the original SQL code and manually incorporate changes.

• If you're coming from a different commercial database, the required SQL changes are more
extensive. In this case, consider using the AWS SCT.

During this stage, you can evaluate whether there are inefficiencies in your schema setup, for
example in your indexing strategy or other table structures such as partitioned tables. Consider
whether you can fine-tune such performance aspects now, or during later activities such as a full
benchmark test.

You can verify the database connection logic in your application. To take advantage of Aurora
distributed processing, you might need to use separate connections for read and write operations,
and use relatively short sessions for query operations. For information about connections, see 9.
Connect to Aurora.

Consider if you had to make compromises and tradeoffs to work around issues in your production
database. Build time into the proof-of-concept schedule to make improvements to your schema

7. Port your SQL code 3824

https://docs.aws.amazon.com/dms/latest/userguide/
https://d1.awsstatic.com/whitepapers/Migration/amazon-aurora-migration-handbook.pdf
https://d1.awsstatic.com/whitepapers/Migration/amazon-aurora-migration-handbook.pdf

Amazon Aurora User Guide for Aurora

design and queries. To judge if you can achieve easy wins in performance, operating cost, and
scalability, try the original and modified applications side by side on different Aurora clusters.

For details about migration and porting activities, see the AWS whitepaper Aurora migration
handbook.

8. Specify configuration settings

You can also review your database configuration parameters as part of the Aurora proof-of-
concept exercise. You might already have MySQL or PostgreSQL configuration settings tuned for
performance and scalability in your current environment. The Aurora storage subsystem is adapted
and tuned for a distributed cloud-based environment with a high-speed storage subsystem. As a
result, many former database engine settings don't apply. We recommend conducting your initial
experiments with the default Aurora configuration settings. Reapply settings from your current
environment only if you encounter performance and scalability bottlenecks. If you're interested,
you can look more deeply into this subject in Introducing the Aurora storage engine on the AWS
Database Blog.

Aurora makes it easy to reuse the optimal configuration settings for a particular application or
use case. Instead of editing a separate configuration file for each DB instance, you manage sets of
parameters that you assign to entire clusters or specific DB instances. For example, the time zone
setting applies to all DB instances in the cluster, and you can adjust the page cache size setting for
each DB instance.

You start with one of the default parameter sets, and apply changes to only the parameters that
you need to fine-tune. For details about working with parameter groups, see Amazon Aurora DB
cluster and DB instance parameters. For the configuration settings that are or aren't applicable
to Aurora clusters, see Aurora MySQL configuration parameters or Amazon Aurora PostgreSQL
parameters depending on your database engine.

9. Connect to Aurora

As you find when doing your initial schema and data setup and running sample queries, you can
connect to different endpoints in an Aurora cluster. The endpoint to use depends on whether the
operation is a read such as SELECT statement, or a write such as a CREATE or INSERT statement.
As you increase the workload on an Aurora cluster and experiment with Aurora features, it's
important for your application to assign each operation to the appropriate endpoint.

8. Specify configuration settings 3825

https://d1.awsstatic.com/whitepapers/Migration/amazon-aurora-migration-handbook.pdf
https://d1.awsstatic.com/whitepapers/Migration/amazon-aurora-migration-handbook.pdf
https://aws.amazon.com/blogs/database/introducing-the-aurora-storage-engine/

Amazon Aurora User Guide for Aurora

By using the cluster endpoint for write operations, you always connect to a DB instance in the
cluster that has read/write capability. By default, only one DB instance in an Aurora cluster has
read/write capability. This DB instance is called the primary instance. If the original primary
instance becomes unavailable, Aurora activates a failover mechanism and a different DB instance
takes over as the primary.

Similarly, by directing SELECT statements to the reader endpoint, you spread the work of
processing queries among the DB instances in the cluster. Each reader connection is assigned to a
different DB instance using round-robin DNS resolution. Doing most of the query work on the read-
only DB Aurora Replicas reduces the load on the primary instance, freeing it to handle DDL and
DML statements.

Using these endpoints reduces the dependency on hard-coded hostnames, and helps your
application to recover more quickly from DB instance failures.

Note

Aurora also has custom endpoints that you create. Those endpoints usually aren't needed
during a proof of concept.

The Aurora Replicas are subject to a replica lag, even though that lag is usually 10 to 20
milliseconds. You can monitor the replication lag and decide whether it is within the range of
your data consistency requirements. In some cases, your read queries might require strong read
consistency (read-after-write consistency). In these cases, you can continue using the cluster
endpoint for them and not the reader endpoint.

To take full advantage of Aurora capabilities for distributed parallel execution, you might need to
change the connection logic. Your objective is to avoid sending all read requests to the primary
instance. The read-only Aurora Replicas are standing by, with all the same data, ready to handle
SELECT statements. Code your application logic to use the appropriate endpoint for each kind of
operation. Follow these general guidelines:

• Avoid using a single hard-coded connection string for all database sessions.

• If practical, enclose write operations such as DDL and DML statements in functions in your client
application code. That way, you can make different kinds of operations use specific connections.

• Make separate functions for query operations. Aurora assigns each new connection to the reader
endpoint to a different Aurora Replica to balance the load for read-intensive applications.

9. Connect to Aurora 3826

Amazon Aurora User Guide for Aurora

• For operations involving sets of queries, close and reopen the connection to the reader endpoint
when each set of related queries is finished. Use connection pooling if that feature is available
in your software stack. Directing queries to different connections helps Aurora to distribute the
read workload among the DB instances in the cluster.

For general information about connection management and endpoints for Aurora, see Connecting
to an Amazon Aurora DB cluster. For a deep dive on this subject, see Aurora MySQL database
administrator's handbook – Connection management.

10. Run your workload

After the schema, data, and configuration settings are in place, you can begin exercising the cluster
by running your workload. Use a workload in the proof of concept that mirrors the main aspects of
your production workload. We recommend always making decisions about performance using real-
world tests and workloads rather than synthetic benchmarks such as sysbench or TPC-C. Wherever
practical, gather measurements based on your own schema, query patterns, and usage volume.

As much as practical, replicate the actual conditions under which the application will run. For
example, you typically run your application code on Amazon EC2 instances in the same AWS Region
and the same virtual private cloud (VPC) as the Aurora cluster. If your production application runs
on multiple EC2 instances spanning multiple Availability Zones, set up your proof-of-concept
environment in the same way. For more information on AWS Regions, see Regions and Availability
Zones in the Amazon RDS User Guide. To learn more about the Amazon VPC service, see What is
Amazon VPC? in the Amazon VPC User Guide.

After you've verified that the basic features of your application work and you can access the data
through Aurora, you can exercise aspects of the Aurora cluster. Some features you might want
to try are concurrent connections with load balancing, concurrent transactions, and automatic
replication.

By this point, the data transfer mechanisms should be familiar, and so you can run tests with a
larger proportion of sample data.

This stage is when you can see the effects of changing configuration settings such as memory
limits and connection limits. Revisit the procedures that you explored in 8. Specify configuration
settings.

You can also experiment with mechanisms such as creating and restoring snapshots. For example,
you can create clusters with different AWS instance classes, numbers of AWS Replicas, and so on.

10. Run your workload 3827

https://d1.awsstatic.com/whitepapers/RDS/amazon-aurora-mysql-database-administrator-handbook.pdf
https://d1.awsstatic.com/whitepapers/RDS/amazon-aurora-mysql-database-administrator-handbook.pdf
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Concepts.RegionsAndAvailabilityZones.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Concepts.RegionsAndAvailabilityZones.html
https://docs.aws.amazon.com/vpc/latest/userguide/what-is-amazon-vpc.html
https://docs.aws.amazon.com/vpc/latest/userguide/what-is-amazon-vpc.html

Amazon Aurora User Guide for Aurora

Then on each cluster, you can restore the same snapshot containing your schema and all your data.
For the details of that cycle, see Creating a DB cluster snapshot and Restoring from a DB cluster
snapshot.

11. Measure performance

Best practices in this area are designed to ensure that all the right tools and processes are set up to
quickly isolate abnormal behaviors during workload operations. They're also set up to see that you
can reliably identify any applicable causes.

You can always see the current state of your cluster, or examine trends over time, by examining the
Monitoring tab. This tab is available from the console detail page for each Aurora cluster or DB
instance. It displays metrics from the Amazon CloudWatch monitoring service in the form of charts.
You can filter the metrics by name, by DB instance, and by time period.

To have more choices on the Monitoring tab, enable Enhanced Monitoring and Performance
Insights in the cluster settings. You can also enable those choices later if you didn't choose them
when setting up the cluster.

To measure performance, you rely mostly on the charts showing activity for the whole Aurora
cluster. You can verify whether the Aurora Replicas have similar load and response times. You
can also see how the work is split up between the read/write primary instance and the read-only
Aurora Replicas. If there is some imbalance between the DB instances or an issue affecting only one
DB instance, you can examine the Monitoring tab for that specific instance.

After the environment and the actual workload are set up to emulate your production application,
you can measure how well Aurora performs. The most important questions to answer are as
follows:

• How many queries per second is Aurora processing? You can examine the Throughput metrics to
see the figures for various kinds of operations.

• How long does it take, on average for Aurora to process a given query? You can examine the
Latency metrics to see the figures for various kinds of operations.

To view the throughput and latency metrics, check the Monitoring tab for a given Aurora cluster in
the Amazon RDS console. The following screenshot shows an example of the Select Latency, DML
Latency, Select Throughput, and DML Throughput metrics on the Monitoring tab.

11. Measure performance 3828

https://console.aws.amazon.com/rds/

Amazon Aurora User Guide for Aurora

If you can, establish baseline values for these metrics in your current environment. If that's
not practical, construct a baseline on the Aurora cluster by executing a workload equivalent to
your production application. For example, run your Aurora workload with a similar number of
simultaneous users and queries. Then observe how the values change as you experiment with
different instance classes, cluster size, configuration settings, and so on.

If the throughput numbers are lower than you expect, investigate further the factors affecting
database performance for your workload. Similarly, if the latency numbers are higher than you
expect, further investigate. To do so, monitor the secondary metrics for the DB server (CPU,
memory, and so on). You can see whether the DB instances are close to their limits. You can also
see how much extra capacity your DB instances have to handle more concurrent queries, queries
against larger tables, and so on.

11. Measure performance 3829

Amazon Aurora User Guide for Aurora

Tip

To detect metric values that fall outside the expected ranges, set up CloudWatch alarms.

When evaluating the ideal Aurora cluster size and capacity, you can find the configuration that
achieves peak application performance without over-provisioning resources. One important factor
is finding the appropriate size for the DB instances in the Aurora cluster. Start by selecting an
instance size that has similar CPU and memory capacity to your current production environment.
Collect throughput and latency numbers for the workload at that instance size. Then, scale the
instance up to the next larger size. See if the throughput and latency numbers improve. Also scale
the instance size down, and see if the latency and throughput numbers remain the same. Your goal
is to get the highest throughput, with the lowest latency, on the smallest instance possible.

Tip

Size your Aurora clusters and associated DB instances with enough existing capacity to
handle sudden, unpredictable traffic spikes. For mission-critical databases, leave at least 20
percent spare CPU and memory capacity.

Run performance tests long enough to measure database performance in a warm, steady state.
You might need to run the workload for many minutes or even a few hours before reaching this
steady state. It's normal at the beginning of a run to have some variance. This variance happens
because each Aurora Replica warms up its caches based on the SELECT queries that it handles.

Aurora performs best with transactional workloads involving multiple concurrent users and
queries. To ensure that you're driving enough load for optimal performance, run benchmarks that
use multithreading, or run multiple instances of the performance tests concurrently. Measure
performance with hundreds or even thousands of concurrent client threads. Simulate the number
of concurrent threads that you expect in your production environment. You might also perform
additional stress tests with more threads to measure Aurora scalability.

12. Exercise Aurora high availability

Many of the main Aurora features involve high availability. These features include automatic
replication, automatic failover, automatic backups with point-in-time restore, and ability to add

12. Exercise Aurora high availability 3830

Amazon Aurora User Guide for Aurora

DB instances to the cluster. The safety and reliability from features like these are important for
mission-critical applications.

To evaluate these features requires a certain mindset. In earlier activities, such as performance
measurement, you observe how the system performs when everything works correctly. Testing
high availability requires you to think through worst-case behavior. You must consider various kinds
of failures, even if such conditions are rare. You might intentionally introduce problems to make
sure that the system recovers correctly and quickly.

Tip

For a proof of concept, set up all the DB instances in an Aurora cluster with the same AWS
instance class. Doing so makes it possible to try out Aurora availability features without
major changes to performance and scalability as you take DB instances offline to simulate
failures.

We recommend using at least two instances in each Aurora cluster. The DB instances in an Aurora
cluster can span up to three Availability Zones (AZs). Locate each of the first two or three DB
instances in a different AZ. When you begin using larger clusters, spread your DB instances across
all of the AZs in your AWS Region. Doing so increases fault tolerance capability. Even if a problem
affects an entire AZ, Aurora can fail over to a DB instance in a different AZ. If you run a cluster with
more than three instances, distribute the DB instances as evenly as you can over all three AZs.

Tip

The storage for an Aurora cluster is independent from the DB instances. The storage for
each Aurora cluster always spans three AZs.
When you test high availability features, always use DB instances with identical capacity in
your test cluster. Doing so avoids unpredictable changes in performance, latency, and so on
whenever one DB instance takes over for another.

To learn how to simulate failure conditions to test high availability features, see Testing Amazon
Aurora MySQL using fault injection queries.

As part of your proof-of-concept exercise, one objective is to find the ideal number of DB
instances and the optimal instance class for those DB instances. Doing so requires balancing the
requirements of high availability and performance.

12. Exercise Aurora high availability 3831

Amazon Aurora User Guide for Aurora

For Aurora, the more DB instances that you have in a cluster, the greater the benefits for high
availability. Having more DB instances also improves scalability of read-intensive applications.
Aurora can distribute multiple connections for SELECT queries among the read-only Aurora
Replicas.

On the other hand, limiting the number of DB instances reduces the replication traffic from the
primary node. The replication traffic consumes network bandwidth, which is another aspect of
overall performance and scalability. Thus, for write-intensive OLTP applications, prefer to have a
smaller number of large DB instances rather than many small DB instances.

In a typical Aurora cluster, one DB instance (the primary instance) handles all the DDL and DML
statements. The other DB instances (the Aurora Replicas) handle only SELECT statements.
Although the DB instances don't do exactly the same amount of work, we recommend using the
same instance class for all the DB instances in the cluster. That way, if a failure happens and Aurora
promotes one of the read-only DB instances to be the new primary instance, the primary instance
has the same capacity as before.

If you need to use DB instances of different capacities in the same cluster, set up failover tiers for
the DB instances. These tiers determine the order in which Aurora Replicas are promoted by the
failover mechanism. Put DB instances that are a lot larger or smaller than the others into a lower
failover tier. Doing so ensures that they are chosen last for promotion.

Exercise the data recovery features of Aurora, such as automatic point-in-time restore, manual
snapshots and restore, and cluster backtracking. If appropriate, copy snapshots to other AWS
Regions and restore into other AWS Regions to mimic DR scenarios.

Investigate your organization's requirements for restore time objective (RTO), restore point
objective (RPO), and geographic redundancy. Most organizations group these items under the
broad category of disaster recovery. Evaluate the Aurora high availability features described in
this section in the context of your disaster recovery process to ensure that your RTO and RPO
requirements are met.

13. What to do next

At the end of a successful proof-of-concept process, you confirm that Aurora is a suitable solution
for you based on the anticipated workload. Throughout the preceding process, you've checked how
Aurora works in a realistic operational environment and measured it against your success criteria.

13. What to do next 3832

Amazon Aurora User Guide for Aurora

After you get your database environment up and running with Aurora, you can move on to
more detailed evaluation steps, leading to your final migration and production deployment.
Depending on your situation, these other steps might or might not be included in the proof-of-
concept process. For details about migration and porting activities, see the AWS whitepaper Aurora
migration handbook.

In another next step, consider the security configurations relevant for your workload and designed
to meet your security requirements in a production environment. Plan what controls to put in place
to protect access to the Aurora cluster master user credentials. Define the roles and responsibilities
of database users to control access to data stored in the Aurora cluster. Take into account database
access requirements for applications, scripts, and third-party tools or services. Explore AWS services
and features such as AWS Secrets Manager and AWS Identity and Access Management (IAM)
authentication.

At this point, you should understand the procedures and best practices for running benchmark
tests with Aurora. You might find you need to do additional performance tuning. For details, see
Managing performance and scaling for Aurora DB clusters, Amazon Aurora MySQL performance
enhancements, Managing Amazon Aurora PostgreSQL, and Monitoring DB load with Performance
Insights on Amazon Aurora. If you do additional tuning, make sure that you're familiar with the
metrics that you gathered during the proof of concept. For a next step, you might create new
clusters with different choices for configuration settings, database engine, and database version. Or
you might create specialized kinds of Aurora clusters to match the needs of specific use cases.

For example, you can explore Aurora parallel query clusters for hybrid transaction/analytical
processing (HTAP) applications. If wide geographic distribution is crucial for disaster recovery or
to minimize latency, you can explore Aurora global databases. If your workload is intermittent or
you're using Aurora in a development/test scenario, you can explore Aurora Serverless clusters.

Your production clusters might also need to handle high volumes of incoming connections. To
learn those techniques, see the AWS whitepaper Aurora MySQL database administrator's handbook
– Connection management.

If, after the proof of concept, you decide that your use case is not suited for Aurora, consider these
other AWS services:

• For purely analytic use cases, workloads benefit from a columnar storage format and other
features more suitable to OLAP workloads. AWS services that address such use cases include the
following:

• Amazon Redshift

13. What to do next 3833

https://d1.awsstatic.com/whitepapers/Migration/amazon-aurora-migration-handbook.pdf
https://d1.awsstatic.com/whitepapers/Migration/amazon-aurora-migration-handbook.pdf
https://d1.awsstatic.com/whitepapers/RDS/amazon-aurora-mysql-database-administrator-handbook.pdf
https://d1.awsstatic.com/whitepapers/RDS/amazon-aurora-mysql-database-administrator-handbook.pdf
https://docs.aws.amazon.com/redshift/

Amazon Aurora User Guide for Aurora

• Amazon EMR

• Amazon Athena

• Many workloads benefit from a combination of Aurora with one or more of these services. You
can move data between these services by using these:

• AWS Glue

• AWS DMS

• Importing from Amazon S3, as described in the Amazon Aurora User Guide

• Exporting to Amazon S3, as described in the Amazon Aurora User Guide

• Many other popular ETL tools

13. What to do next 3834

https://docs.aws.amazon.com/emr/
https://docs.aws.amazon.com/athena/
https://docs.aws.amazon.com/glue/
https://docs.aws.amazon.com/dms/
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraMySQL.Integrating.LoadFromS3.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraMySQL.Integrating.SaveIntoS3.html

Amazon Aurora User Guide for Aurora

Security in Amazon Aurora

Cloud security at AWS is the highest priority. As an AWS customer, you benefit from a data center
and network architecture that are built to meet the requirements of the most security-sensitive
organizations.

Security is a shared responsibility between AWS and you. The shared responsibility model describes
this as security of the cloud and security in the cloud:

• Security of the cloud – AWS is responsible for protecting the infrastructure that runs AWS
services in the AWS Cloud. AWS also provides you with services that you can use securely. Third-
party auditors regularly test and verify the effectiveness of our security as part of the AWS
compliance programs. To learn about the compliance programs that apply to Amazon Aurora
(Aurora), see AWS services in scope by compliance program.

• Security in the cloud – Your responsibility is determined by the AWS service that you use. You
are also responsible for other factors including the sensitivity of your data, your organization's
requirements, and applicable laws and regulations.

This documentation helps you understand how to apply the shared responsibility model when
using Amazon Aurora. The following topics show you how to configure Amazon Aurora to meet
your security and compliance objectives. You also learn how to use other AWS services that help
you monitor and secure your Amazon Aurora resources.

You can manage access to your Amazon Aurora resources and your databases on a DB cluster. The
method you use to manage access depends on what type of task the user needs to perform with
Amazon Aurora:

• Run your DB cluster in a virtual private cloud (VPC) based on the Amazon VPC service for the
greatest possible network access control. For more information about creating a DB cluster in a
VPC, see Amazon VPC and Amazon Aurora.

• Use AWS Identity and Access Management (IAM) policies to assign permissions that determine
who is allowed to manage Amazon Aurora resources. For example, you can use IAM to determine
who is allowed to create, describe, modify, and delete DB clusters, tag resources, or modify
security groups.

To review IAM policy examples, see Identity-based policy examples for Amazon Aurora.

3835

https://aws.amazon.com/compliance/shared-responsibility-model/
https://aws.amazon.com/compliance/programs/
https://aws.amazon.com/compliance/programs/
https://aws.amazon.com/compliance/services-in-scope/

Amazon Aurora User Guide for Aurora

• Use security groups to control what IP addresses or Amazon EC2 instances can connect to your
databases on a DB cluster. When you first create a DB cluster, its firewall prevents any database
access except through rules specified by an associated security group.

• Use Secure Socket Layer (SSL) or Transport Layer Security (TLS) connections with DB clusters
running the Aurora MySQL or Aurora PostgreSQL. For more information on using SSL/TLS with a
DB cluster, see Using SSL/TLS to encrypt a connection to a DB cluster.

• Use Amazon Aurora encryption to secure your DB clusters and snapshots at rest. Amazon Aurora
encryption uses the industry standard AES-256 encryption algorithm to encrypt your data on
the server that hosts your DB cluster. For more information, see Encrypting Amazon Aurora
resources.

• Use the security features of your DB engine to control who can log in to the databases on a DB
cluster. These features work just as if the database was on your local network.

For information about security with Aurora MySQL, see Security with Amazon Aurora MySQL.
For information about security with Aurora PostgreSQL, see Security with Amazon Aurora
PostgreSQL.

Aurora is part of the managed database service Amazon Relational Database Service (Amazon
RDS). Amazon RDS is a web service that makes it easier to set up, operate, and scale a relational
database in the cloud. If you are not already familiar with Amazon RDS, see the Amazon RDS user
guide.

Aurora includes a high-performance storage subsystem. Its MySQL- and PostgreSQL-compatible
database engines are customized to take advantage of that fast distributed storage. Aurora also
automates and standardizes database clustering and replication, which are typically among the
most challenging aspects of database configuration and administration.

For both Amazon RDS and Aurora, you can access the RDS API programmatically, and you can use
the AWS CLI to access the RDS API interactively. Some RDS API operations and AWS CLI commands
apply to both Amazon RDS and Aurora, while others apply to either Amazon RDS or Aurora. For
information about RDS API operations, see Amazon RDS API reference. For more information about
the AWS CLI, see AWS Command Line Interface reference for Amazon RDS.

3836

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Welcome.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Welcome.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/Welcome.html
https://docs.aws.amazon.com/cli/latest/reference/rds/index.html

Amazon Aurora User Guide for Aurora

Note

You have to configure security only for your use cases. You don't have to configure security
access for processes that Amazon Aurora manages. These include creating backups,
automatic failover, and other processes.

For more information on managing access to Amazon Aurora resources and your databases on a DB
cluster, see the following topics.

Topics

• Database authentication with Amazon Aurora

• Password management with Amazon Aurora and AWS Secrets Manager

• Data protection in Amazon RDS

• Identity and access management for Amazon Aurora

• Logging and monitoring in Amazon Aurora

• Compliance validation for Amazon Aurora

• Resilience in Amazon Aurora

• Infrastructure security in Amazon Aurora

• Amazon RDS API and interface VPC endpoints (AWS PrivateLink)

• Security best practices for Amazon Aurora

• Controlling access with security groups

• Master user account privileges

• Using service-linked roles for Amazon Aurora

• Amazon VPC and Amazon Aurora

Database authentication with Amazon Aurora

Amazon Aurora supports several ways to authenticate database users.

Password authentication is available by default for all DB clusters. For Aurora MySQL and
Aurora PostgreSQL, you can also add either or both IAM database authentication and Kerberos
authentication for the same DB cluster.

Database authentication 3837

Amazon Aurora User Guide for Aurora

Password, Kerberos, and IAM database authentication use different methods of authenticating
to the database. Therefore, a specific user can log in to a database using only one authentication
method.

For PostgreSQL, use only one of the following role settings for a user of a specific database:

• To use IAM database authentication, assign the rds_iam role to the user.

• To use Kerberos authentication, assign the rds_ad role to the user.

• To use password authentication, don't assign either the rds_iam or rds_ad roles to the user.

Don't assign both the rds_iam and rds_ad roles to a user of a PostgreSQL database either
directly or indirectly by nested grant access. If the rds_iam role is added to the master user, IAM
authentication takes precedence over password authentication so the master user has to log in as
an IAM user.

Important

We strongly recommend that you do not use the master user directly in your applications.
Instead, adhere to the best practice of using a database user created with the minimal
privileges required for your application.

Topics

• Password authentication

• IAM database authentication

• Kerberos authentication

Password authentication

With password authentication, your database performs all administration of user accounts. You
create users with SQL statements such as CREATE USER, with the appropriate clause required by
the DB engine for specifying passwords. For example, in MySQL the statement is CREATE USER
name IDENTIFIED BY password, while in PostgreSQL, the statement is CREATE USER name
WITH PASSWORD password.

With password authentication, your database controls and authenticates user accounts. If a
DB engine has strong password management features, they can enhance security. Database

Password authentication 3838

Amazon Aurora User Guide for Aurora

authentication might be easier to administer using password authentication when you have small
user communities. Because clear text passwords are generated in this case, integrating with AWS
Secrets Manager can enhance security.

For information about using Secrets Manager with Amazon Aurora, see Creating a basic secret and
Rotating secrets for supported Amazon RDS databases in the AWS Secrets Manager User Guide.
For information about programmatically retrieving your secrets in your custom applications, see
Retrieving the secret value in the AWS Secrets Manager User Guide.

IAM database authentication

You can authenticate to your DB cluster using AWS Identity and Access Management (IAM)
database authentication. With this authentication method, you don't need to use a password when
you connect to a DB cluster. Instead, you use an authentication token.

For more information about IAM database authentication, including information about availability
for specific DB engines, see IAM database authentication.

Kerberos authentication

Amazon Aurora supports external authentication of database users using Kerberos and Microsoft
Active Directory. Kerberos is a network authentication protocol that uses tickets and symmetric-
key cryptography to eliminate the need to transmit passwords over the network. Kerberos has
been built into Active Directory and is designed to authenticate users to network resources, such as
databases.

Amazon Aurora support for Kerberos and Active Directory provides the benefits of single sign-
on and centralized authentication of database users. You can keep your user credentials in Active
Directory. Active Directory provides a centralized place for storing and managing credentials for
multiple DB clusters.

You can make it possible for your database users to authenticate against DB clusters in two ways.
They can use credentials stored either in AWS Directory Service for Microsoft Active Directory or in
your on-premises Active Directory.

Aurora PostgreSQL doesn't support selective authentication type in forest trust, only forest wide
authentication.

IAM database authentication 3839

https://docs.aws.amazon.com/secretsmanager/latest/userguide/manage_create-basic-secret.html
https://docs.aws.amazon.com/secretsmanager/latest/userguide/rotating-secrets-rds.html
https://docs.aws.amazon.com/secretsmanager/latest/userguide/manage_retrieve-secret.html

Amazon Aurora User Guide for Aurora

Aurora supports Kerberos authentication for Aurora MySQL and Aurora PostgreSQL DB clusters.
For more information about Kerberos authentication for Aurora MySQL, see Using Kerberos
authentication for Aurora MySQL.

With Kerberos authentication, Aurora PostgreSQL DB clusters support one- and two-way
forest trust relationships. For more information, see Using Kerberos authentication with Aurora
PostgreSQL.

Kerberos authentication 3840

Amazon Aurora User Guide for Aurora

Password management with Amazon Aurora and AWS Secrets
Manager

Amazon Aurora integrates with Secrets Manager to manage master user passwords for your DB
clusters.

Topics

• Region and version availability

• Limitations for Secrets Manager integration with Amazon Aurora

• Overview of managing master user passwords with AWS Secrets Manager

• Benefits of managing master user passwords with Secrets Manager

• Permissions required for Secrets Manager integration

• Enforcing Aurora management of the master user password in AWS Secrets Manager

• Managing the master user password for a DB cluster with Secrets Manager

• Rotating the master user password secret for a DB cluster

• Viewing the details about a secret for a DB cluster

Region and version availability

Feature availability and support varies across specific versions of each database engine and across
AWS Regions. For more information about version and Region availability with Secrets Manager
integration with Amazon Aurora, see Supported Regions and Aurora DB engines for Secrets
Manager integration.

Limitations for Secrets Manager integration with Amazon Aurora

Managing master user passwords with Secrets Manager isn't supported for the following features:

• Amazon RDS Blue/Green Deployments

• DB clusters that are part of an Aurora global database

• Aurora Serverless v1 DB clusters

• Aurora MySQL cross-Region read replicas

Password management with Aurora and Secrets Manager 3841

Amazon Aurora User Guide for Aurora

Overview of managing master user passwords with AWS Secrets
Manager

With AWS Secrets Manager, you can replace hard-coded credentials in your code, including
database passwords, with an API call to Secrets Manager to retrieve the secret programmatically.
For more information about Secrets Manager, see the AWS Secrets Manager User Guide.

When you store database secrets in Secrets Manager, your AWS account incurs charges. For
information about pricing, see AWS Secrets Manager Pricing.

You can specify that Aurora manages the master user password in Secrets Manager for an Amazon
Aurora DB cluster when you perform one of the following operations:

• Create the DB cluster

• Modify the DB cluster

• Restore the DB cluster from Amazon S3 (Aurora MySQL only)

When you specify that Aurora manages the master user password in Secrets Manager, Aurora
generates the password and stores it in Secrets Manager. You can interact directly with the secret
to retrieve the credentials for the master user. You can also specify a customer managed key to
encrypt the secret, or use the KMS key that is provided by Secrets Manager.

Aurora manages the settings for the secret and rotates the secret every seven days by default.
You can modify some of the settings, such as the rotation schedule. If you delete a DB cluster that
manages a secret in Secrets Manager, the secret and its associated metadata are also deleted.

To connect to a DB cluster with the credentials in a secret, you can retrieve the secret from Secrets
Manager. For more information, see Retrieve secrets from AWS Secrets Manager and Connect to a
SQL database with credentials in an AWS Secrets Manager secret in the AWS Secrets Manager User
Guide.

Benefits of managing master user passwords with Secrets Manager

Managing Aurora master user passwords with Secrets Manager provides the following benefits:

• Aurora automatically generates database credentials.

• Aurora automatically stores and manages database credentials in AWS Secrets Manager.

Overview 3842

https://docs.aws.amazon.com/secretsmanager/latest/userguide/
https://aws.amazon.com/secrets-manager/pricing
https://docs.aws.amazon.com/secretsmanager/latest/userguide/retrieving-secrets.html
https://docs.aws.amazon.com/secretsmanager/latest/userguide/retrieving-secrets_jdbc.html
https://docs.aws.amazon.com/secretsmanager/latest/userguide/retrieving-secrets_jdbc.html

Amazon Aurora User Guide for Aurora

• Aurora rotates database credentials regularly, without requiring application changes.

• Secrets Manager secures database credentials from human access and plain text view.

• Secrets Manager allows retrieval of database credentials in secrets for database connections.

• Secrets Manager allows fine-grained control of access to database credentials in secrets using
IAM.

• You can optionally separate database encryption from credentials encryption with different KMS
keys.

• You can eliminate manual management and rotation of database credentials.

• You can monitor database credentials easily with AWS CloudTrail and Amazon CloudWatch.

For more information about the benefits of Secrets Manager, see the AWS Secrets Manager User
Guide.

Permissions required for Secrets Manager integration

Users must have the required permissions to perform operations related to Secrets Manager
integration. You can create IAM policies that grant permissions to perform specific API operations
on the specified resources they need. You can then attach those policies to the IAM permission sets
or roles that require those permissions. For more information, see Identity and access management
for Amazon Aurora.

For create, modify, or restore operations, the user who specifies that Aurora manages the master
user password in Secrets Manager must have permissions to perform the following operations:

• kms:DescribeKey

• secretsmanager:CreateSecret

• secretsmanager:TagResource

For create, modify, or restore operations, the user who specifies the customer managed key to
encrypt the secret in Secrets Manager must have permissions to perform the following operations:

• kms:Decrypt

• kms:GenerateDataKey

• kms:CreateGrant

Permissions required for Secrets Manager integration 3843

https://docs.aws.amazon.com/secretsmanager/latest/userguide/
https://docs.aws.amazon.com/secretsmanager/latest/userguide/

Amazon Aurora User Guide for Aurora

For modify operations, the user who rotates the master user password in Secrets Manager must
have permissions to perform the following operation:

• secretsmanager:RotateSecret

Enforcing Aurora management of the master user password in AWS
Secrets Manager

You can use IAM condition keys to enforce Aurora management of the master user password in
AWS Secrets Manager. The following policy doesn't allow users to create or restore DB instances or
DB clusters unless the master user password is managed by Aurora in Secrets Manager.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Deny",
 "Action": ["rds:CreateDBInstance", "rds:CreateDBCluster",
 "rds:RestoreDBInstanceFromS3", "rds:RestoreDBClusterFromS3"],
 "Resource": "*",
 "Condition": {
 "Bool": {
 "rds:ManageMasterUserPassword": false
 }
 }
 }
]
}

Note

This policy enforces password management in AWS Secrets Manager at creation. However,
you can still disable Secrets Manager integration and manually set a master password by
modifying the cluster.
To prevent this, include rds:ModifyDBInstance, rds:ModifyDBCluster in the
action block of the policy. Be aware, this prevents the user from applying any further
modifications to existing clusters that don't have Secrets Manager integration enabled.

Enforcing Aurora management 3844

Amazon Aurora User Guide for Aurora

For more information about using condition keys in IAM policies, see Policy condition keys for
Aurora and Example policies: Using condition keys.

Managing the master user password for a DB cluster with Secrets
Manager

You can configure Aurora management of the master user password in Secrets Manager when you
perform the following actions:

• Creating an Amazon Aurora DB cluster

• Modifying an Amazon Aurora DB cluster

• Migrating data from an external MySQL database to an Amazon Aurora MySQL DB cluster

You can use the RDS console, the AWS CLI, or the RDS API to perform these actions.

Console

Follow the instructions for creating or modifying a DB cluster with the RDS console:

• Creating a DB cluster

• Modifying a DB instance in a DB cluster

In the RDS console, you can modify any DB instance to specify the master user password
management settings for the entire DB cluster.

• Restoring an Amazon Aurora MySQL DB cluster from an Amazon S3 bucket

When you use the RDS console to perform one of these operations, you can specify that the
master user password is managed by Aurora in Secrets Manager. To do so when you are creating or
restoring a DB cluster, select Manage master credentials in AWS Secrets Manager in Credential
settings. When you are modifying a DB cluster, select Manage master credentials in AWS Secrets
Manager in Settings.

The following image is an example of the Manage master credentials in AWS Secrets Manager
setting when you are creating or restoring a DB cluster.

Managing the master user password for a DB cluster 3845

Amazon Aurora User Guide for Aurora

When you select this option, Aurora generates the master user password and manages it
throughout its lifecycle in Secrets Manager.

Managing the master user password for a DB cluster 3846

Amazon Aurora User Guide for Aurora

You can choose to encrypt the secret with a KMS key that Secrets Manager provides or with a
customer managed key that you create. After Aurora is managing the database credentials for a DB
cluster, you can't change the KMS key that is used to encrypt the secret.

You can choose other settings to meet your requirements.

For more information about the available settings when you are creating a DB cluster, see Settings
for Aurora DB clusters. For more information about the available settings when you are modifying
a DB cluster, see Settings for Amazon Aurora.

AWS CLI

To specify that Aurora manages the master user password in Secrets Manager, specify the --
manage-master-user-password option in one of the following commands:

• create-db-cluster

• modify-db-cluster

• restore-db-cluster-from-s3

When you specify the --manage-master-user-password option in these commands, Aurora
generates the master user password and manages it throughout its lifecycle in Secrets Manager.

To encrypt the secret, you can specify a customer managed key or use the default KMS key that is
provided by Secrets Manager. Use the --master-user-secret-kms-key-id option to specify a
customer managed key. The AWS KMS key identifier is the key ARN, key ID, alias ARN, or alias name
for the KMS key. To use a KMS key in a different AWS account, specify the key ARN or alias ARN.
After Aurora is managing the database credentials for a DB cluster, you can't change the KMS key
that is used to encrypt the secret.

You can choose other settings to meet your requirements.

For more information about the available settings when you are creating a DB cluster, see Settings
for Aurora DB clusters. For more information about the available settings when you are modifying
a DB cluster, see Settings for Amazon Aurora.

This example creates a DB cluster and specifies that Aurora manages the password in Secrets
Manager. The secret is encrypted using the KMS key that is provided by Secrets Manager.

Example

For Linux, macOS, or Unix:

Managing the master user password for a DB cluster 3847

https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-cluster.html
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-cluster.html
https://docs.aws.amazon.com/cli/latest/reference/rds/restore-db-cluster-from-s3.html

Amazon Aurora User Guide for Aurora

aws rds create-db-cluster \
 --db-cluster-identifier sample-cluster \
 --engine aurora-mysql \
 --engine-version 8.0 \
 --master-username admin \
 --manage-master-user-password

For Windows:

aws rds create-db-cluster ^
 --db-cluster-identifier sample-cluster ^
 --engine aurora-mysql ^
 --engine-version 8.0 ^
 --master-username admin ^
 --manage-master-user-password

RDS API

To specify that Aurora manages the master user password in Secrets Manager, set the
ManageMasterUserPassword parameter to true in one of the following operations:

• CreateDBCluster

• ModifyDBCluster

• RestoreDBClusterFromS3

When you set the ManageMasterUserPassword parameter to true in one of these operations,
Aurora generates the master user password and manages it throughout its lifecycle in Secrets
Manager.

To encrypt the secret, you can specify a customer managed key or use the default KMS key that
is provided by Secrets Manager. Use the MasterUserSecretKmsKeyId parameter to specify a
customer managed key. The AWS KMS key identifier is the key ARN, key ID, alias ARN, or alias name
for the KMS key. To use a KMS key in a different AWS account, specify the key ARN or alias ARN.
After Aurora is managing the database credentials for a DB cluster, you can't change the KMS key
that is used to encrypt the secret.

Managing the master user password for a DB cluster 3848

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateDBCluster.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBCluster.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_RestoreDBClusterFromS3.html

Amazon Aurora User Guide for Aurora

Rotating the master user password secret for a DB cluster

When Aurora rotates a master user password secret, Secrets Manager generates a new secret
version for the existing secret. The new version of the secret contains the new master user
password. Aurora changes the master user password for the DB cluster to match the password for
the new secret version.

You can rotate a secret immediately instead of waiting for a scheduled rotation. To rotate a master
user password secret in Secrets Manager, modify the DB cluster. For information about modifying a
DB cluster, see Modifying an Amazon Aurora DB cluster.

You can rotate a master user password secret immediately with the RDS console, the AWS CLI, or
the RDS API. The new password is always 28 characters long and contains atleast one upper and
lowercase character, one number, and one punctuation.

Console

To rotate a master user password secret using the RDS console, modify the DB cluster and select
Rotate secret immediately in Settings.

Rotating the master user password secret for a DB cluster 3849

Amazon Aurora User Guide for Aurora

Follow the instructions for modifying a DB cluster with the RDS console in Modifying the DB cluster
by using the console, CLI, and API. You must choose Apply immediately on the confirmation page.

AWS CLI

To rotate a master user password secret using the AWS CLI, use the modify-db-cluster command
and specify the --rotate-master-user-password option. You must specify the --apply-
immediately option when you rotate the master password.

This example rotates a master user password secret.

Example

For Linux, macOS, or Unix:

aws rds modify-db-cluster \

Rotating the master user password secret for a DB cluster 3850

https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-cluster.html

Amazon Aurora User Guide for Aurora

 --db-cluster-identifier mydbcluster \
 --rotate-master-user-password \
 --apply-immediately

For Windows:

aws rds modify-db-cluster ^
 --db-cluster-identifier mydbcluster ^
 --rotate-master-user-password ^
 --apply-immediately

RDS API

You can rotate a master user password secret using the ModifyDBCluster operation and setting
the RotateMasterUserPassword parameter to true. You must set the ApplyImmediately
parameter to true when you rotate the master password.

Viewing the details about a secret for a DB cluster

You can retrieve your secrets using the console (https://console.aws.amazon.com/
secretsmanager/) or the AWS CLI (get-secret-value Secrets Manager command).

You can find the Amazon Resource Name (ARN) of a secret managed by Aurora in Secrets Manager
with the RDS console, the AWS CLI, or the RDS API.

Console

To view the details about a secret managed by Aurora in Secrets Manager

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Databases.

3. Choose the name of the DB cluster to show its details.

4. Choose the Configuration tab.

In Master Credentials ARN, you can view the secret ARN.

Viewing the details about a secret for a DB cluster 3851

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBCluster.html
https://console.aws.amazon.com/secretsmanager/
https://console.aws.amazon.com/secretsmanager/
https://docs.aws.amazon.com/cli/latest/reference/secretsmanager/get-secret-value.html
https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Aurora User Guide for Aurora

You can follow the Manage in Secrets Manager link to view and manage the secret in the
Secrets Manager console.

AWS CLI

You can use the RDS AWS CLI describe-db-clusters command to find the following information
about a secret managed by Aurora in Secrets Manager:

• SecretArn – The ARN of the secret

• SecretStatus – The status of the secret

The possible status values include the following:

• creating – The secret is being created.

• active – The secret is available for normal use and rotation.

• rotating – The secret is being rotated.

• impaired – The secret can be used to access database credentials, but it can't be rotated.
A secret might have this status if, for example, permissions are changed so that RDS can no
longer access the secret or the KMS key for the secret.

When a secret has this status, you can correct the condition that caused the status. If you
correct the condition that caused status, the status remains impaired until the next rotation.
Alternatively, you can modify the DB cluster to turn off automatic management of database

Viewing the details about a secret for a DB cluster 3852

https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-clusters.html

Amazon Aurora User Guide for Aurora

credentials, and then modify the DB cluster again to turn on automatic management of
database credentials. To modify the DB cluster, use the --manage-master-user-password
option in the modify-db-cluster command.

• KmsKeyId – The ARN of the KMS key that is used to encrypt the secret

Specify the --db-cluster-identifier option to show output for a specific DB cluster. This
example shows the output for a secret that is used by a DB cluster.

Example

aws rds describe-db-clusters --db-cluster-identifier mydbcluster

The following sample shows the output for a secret:

"MasterUserSecret": {
 "SecretArn": "arn:aws:secretsmanager:eu-west-1:123456789012:secret:rds!
cluster-033d7456-2c96-450d-9d48-f5de3025e51c-xmJRDx",
 "SecretStatus": "active",
 "KmsKeyId": "arn:aws:kms:eu-
west-1:123456789012:key/0987dcba-09fe-87dc-65ba-ab0987654321"
 }

When you have the secret ARN, you can view details about the secret using the get-secret-value
Secrets Manager CLI command.

This example shows the details for the secret in the previous sample output.

Example

For Linux, macOS, or Unix:

aws secretsmanager get-secret-value \
 --secret-id 'arn:aws:secretsmanager:eu-west-1:123456789012:secret:rds!
cluster-033d7456-2c96-450d-9d48-f5de3025e51c-xmJRDx'

For Windows:

aws secretsmanager get-secret-value ^
 --secret-id 'arn:aws:secretsmanager:eu-west-1:123456789012:secret:rds!
cluster-033d7456-2c96-450d-9d48-f5de3025e51c-xmJRDx'

Viewing the details about a secret for a DB cluster 3853

https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-cluster.html
https://docs.aws.amazon.com/cli/latest/reference/secretsmanager/get-secret-value.html

Amazon Aurora User Guide for Aurora

RDS API

You can view the ARN, status, and KMS key for a secret managed by Aurora in Secrets Manager
using the DescribeDBClusters RDS operation and setting the DBClusterIdentifier parameter
to a DB cluster identifier. Details about the secret are included in the output.

When you have the secret ARN, you can view details about the secret using the GetSecretValue
Secrets Manager operation.

Data protection in Amazon RDS

The AWS shared responsibility model applies to data protection in Amazon Relational Database
Service. As described in this model, AWS is responsible for protecting the global infrastructure
that runs all of the AWS Cloud. You are responsible for maintaining control over your content
that is hosted on this infrastructure. You are also responsible for the security configuration and
management tasks for the AWS services that you use. For more information about data privacy,
see the Data Privacy FAQ. For information about data protection in Europe, see the AWS Shared
Responsibility Model and GDPR blog post on the AWS Security Blog.

For data protection purposes, we recommend that you protect AWS account credentials and set
up individual users with AWS IAM Identity Center or AWS Identity and Access Management (IAM).
That way, each user is given only the permissions necessary to fulfill their job duties. We also
recommend that you secure your data in the following ways:

• Use multi-factor authentication (MFA) with each account.

• Use SSL/TLS to communicate with AWS resources. We require TLS 1.2 and recommend TLS 1.3.

• Set up API and user activity logging with AWS CloudTrail.

• Use AWS encryption solutions, along with all default security controls within AWS services.

• Use advanced managed security services such as Amazon Macie, which assists in discovering and
securing sensitive data that is stored in Amazon S3.

• If you require FIPS 140-2 validated cryptographic modules when accessing AWS through a
command line interface or an API, use a FIPS endpoint. For more information about the available
FIPS endpoints, see Federal Information Processing Standard (FIPS) 140-2.

We strongly recommend that you never put confidential or sensitive information, such as your
customers' email addresses, into tags or free-form text fields such as a Name field. This includes
when you work with Amazon RDS or other AWS services using the console, API, AWS CLI, or AWS

Data protection 3854

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DescribeDBClusters.html
https://docs.aws.amazon.com/secretsmanager/latest/apireference/API_GetSecretValue.html
https://aws.amazon.com/compliance/shared-responsibility-model/
https://aws.amazon.com/compliance/data-privacy-faq/
https://aws.amazon.com/blogs/security/the-aws-shared-responsibility-model-and-gdpr/
https://aws.amazon.com/blogs/security/the-aws-shared-responsibility-model-and-gdpr/
https://aws.amazon.com/compliance/fips/

Amazon Aurora User Guide for Aurora

SDKs. Any data that you enter into tags or free-form text fields used for names may be used for
billing or diagnostic logs. If you provide a URL to an external server, we strongly recommend that
you do not include credentials information in the URL to validate your request to that server.

Topics

• Protecting data using encryption

• Internetwork traffic privacy

Protecting data using encryption

You can enable encryption for database resources. You can also encrypt connections to DB clusters.

Topics

• Encrypting Amazon Aurora resources

• AWS KMS key management

• Using SSL/TLS to encrypt a connection to a DB cluster

• Rotating your SSL/TLS certificate

Encrypting Amazon Aurora resources

Amazon Aurora can encrypt your Amazon Aurora DB clusters. Data that is encrypted at rest
includes the underlying storage for DB clusters, its automated backups, read replicas, and
snapshots.

Amazon Aurora encrypted DB clusters use the industry standard AES-256 encryption algorithm
to encrypt your data on the server that hosts your Amazon Aurora DB clusters. After your data
is encrypted, Amazon Aurora handles authentication of access and decryption of your data
transparently with a minimal impact on performance. You don't need to modify your database
client applications to use encryption.

Note

For encrypted and unencrypted DB clusters, data that is in transit between the source and
the read replicas is encrypted, even when replicating across AWS Regions.

Topics

Data encryption 3855

Amazon Aurora User Guide for Aurora

• Overview of encrypting Amazon Aurora resources

• Encrypting an Amazon Aurora DB cluster

• Determining whether encryption is turned on for a DB cluster

• Availability of Amazon Aurora encryption

• Encryption in transit

• Limitations of Amazon Aurora encrypted DB clusters

Overview of encrypting Amazon Aurora resources

Amazon Aurora encrypted DB clusters provide an additional layer of data protection by securing
your data from unauthorized access to the underlying storage. You can use Amazon Aurora
encryption to increase data protection of your applications deployed in the cloud, and to fulfill
compliance requirements for encryption at rest.

For an Amazon Aurora encrypted DB cluster, all DB instances, logs, backups, and snapshots are
encrypted. You can also encrypt a read replica of an Amazon Aurora encrypted cluster. Amazon
Aurora uses an AWS Key Management Service key to encrypt these resources. For more information
about KMS keys, see AWS KMS keys in the AWS Key Management Service Developer Guide and AWS
KMS key management. Each DB instance in the DB cluster is encrypted using the same KMS key as
the DB cluster. If you copy an encrypted snapshot, you can use a different KMS key to encrypt the
target snapshot than the one that was used to encrypt the source snapshot.

You can use an AWS managed key, or you can create customer managed keys. To manage the
customer managed keys used for encrypting and decrypting your Amazon Aurora resources, you
use the AWS Key Management Service (AWS KMS). AWS KMS combines secure, highly available
hardware and software to provide a key management system scaled for the cloud. Using AWS KMS,
you can create customer managed keys and define the policies that control how these customer
managed keys can be used. AWS KMS supports CloudTrail, so you can audit KMS key usage to
verify that customer managed keys are being used appropriately. You can use your customer
managed keys with Amazon Aurora and supported AWS services such as Amazon S3, Amazon EBS,
and Amazon Redshift. For a list of services that are integrated with AWS KMS, see AWS Service
Integration.

Encrypting an Amazon Aurora DB cluster

To encrypt a new DB cluster, choose Enable encryption on the console. For information on
creating a DB cluster, see Creating an Amazon Aurora DB cluster.

Data encryption 3856

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#kms_keys
https://docs.aws.amazon.com/kms/latest/developerguide/
https://aws.amazon.com/kms/features/#AWS_Service_Integration
https://aws.amazon.com/kms/features/#AWS_Service_Integration

Amazon Aurora User Guide for Aurora

If you use the create-db-cluster AWS CLI command to create an encrypted DB cluster, set the
--storage-encrypted parameter. If you use the CreateDBCluster API operation, set the
StorageEncrypted parameter to true.

When you create an encrypted DB cluster, you can choose a customer managed key or the AWS
managed key for Amazon Aurora to encrypt your DB cluster. If you don't specify the key identifier
for a customer managed key, Amazon Aurora uses the AWS managed key for your new DB cluster.
Amazon Aurora creates an AWS managed key for Amazon Aurora for your AWS account. Your AWS
account has a different AWS managed key for Amazon Aurora for each AWS Region.

For more information about KMS keys, see AWS KMS keys in the AWS Key Management Service
Developer Guide.

Once you have created an encrypted DB cluster, you can't change the KMS key used by that
DB cluster. Therefore, be sure to determine your KMS key requirements before you create your
encrypted DB cluster.

If you use the AWS CLI create-db-cluster command to create an encrypted DB cluster with a
customer managed key, set the --kms-key-id parameter to any key identifier for the KMS key. If
you use the Amazon RDS API CreateDBInstance operation, set the KmsKeyId parameter to any
key identifier for the KMS key. To use a customer managed key in a different AWS account, specify
the key ARN or alias ARN.

Important

Amazon Aurora can lose access to the KMS key for a DB cluster when you disable the
KMS key. In these cases, the encrypted DB cluster shortly goes into inaccessible-
encryption-credentials-recoverable state. The DB cluster remains in this state for
seven days, during which the instance is stopped. API calls made to the DB cluster during
this time might not succeed. To recover the DB cluster, enable the KMS key and restart this
DB cluster. Enable the KMS key from the AWS Management Console. Restart the DB cluster
using the AWS CLI command start-db-cluster or AWS Management Console.
If the DB cluster isn't recovered within seven days, it goes into the terminal
inaccessible-encryption-credentials state. In this state, the DB cluster is not
usable anymore and you can only restore the DB cluster from a backup. We strongly
recommend that you always turn on backups for encrypted DB clusters to guard against
the loss of encrypted data in your databases.
During the creation of a DB cluster, Aurora checks if the calling principal has access to the
KMS key and generates a grant from the KMS key that it uses for the entire lifetime of the

Data encryption 3857

https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-cluster.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateDBCluster.html
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#kms_keys
https://docs.aws.amazon.com/cli/latest/reference/rds/start-db-cluster.html

Amazon Aurora User Guide for Aurora

DB cluster. Revoking the calling principals access to the KMS key does not affect a running
database. When using KMS keys in cross-account scenarios, such as copying a snapshot
to another account, the KMS key needs to be shared with the other account. If you create
a DB cluster from the snapshot without specifying a different KMS key, the new cluster
uses the KMS key from the source account. Revoking access to the key after you create the
DB cluster does not affect the cluster. However, disabling the key impacts all DB clusters
encrypted with that key. To prevent this, specify a different key during the snapshot copy
operation.

Determining whether encryption is turned on for a DB cluster

You can use the AWS Management Console, AWS CLI, or RDS API to determine whether encryption
at rest is turned on for a DB cluster.

Console

To determine whether encryption at rest is turned on for a DB cluster

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Databases.

3. Choose the name of the DB cluster that you want to check to view its details.

4. Choose the Configuration tab and check the Encryption value.

It shows either Enabled or Not enabled.

Data encryption 3858

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Aurora User Guide for Aurora

AWS CLI

To determine whether encryption at rest is turned on for a DB cluster by using the AWS CLI, call the
describe-db-clusters command with the following option:

• --db-cluster-identifier – The name of the DB cluster.

The following example uses a query to return either TRUE or FALSE regarding encryption at rest
for the mydb DB cluster.

Example

aws rds describe-db-clusters --db-cluster-identifier mydb --query "*[].
{StorageEncrypted:StorageEncrypted}" --output text

RDS API

To determine whether encryption at rest is turned on for a DB cluster by using the Amazon RDS
API, call the DescribeDBClusters operation with the following parameter:

Data encryption 3859

https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-clusters.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DescribeDBClusters.html

Amazon Aurora User Guide for Aurora

• DBClusterIdentifier – The name of the DB cluster.

Availability of Amazon Aurora encryption

Amazon Aurora encryption is currently available for all database engines and storage types.

Note

Amazon Aurora encryption is not available for the db.t2.micro DB instance class.

Encryption in transit

AWS provides secure and private connectivity between DB instances of all types. In addition,
some instance types use the offload capabilities of the underlying Nitro System hardware to
automatically encrypt in-transit traffic between instances. This encryption uses Authenticated
Encryption with Associated Data (AEAD) algorithms, with 256-bit encryption. There is no impact on
network performance. To support this additional in-transit traffic encryption between instances,
the following requirements must be met:

• The instances use the following instance types:

• General purpose: M6i, M6id, M6in, M6idn, M7g

• Memory optimized: R6i, R6id, R6in, R6idn, R7g, X2idn, X2iedn, X2iezn

• The instances are in the same AWS Region.

• The instances are in the same VPC or peered VPCs, and the traffic does not pass through a virtual
network device or service, such as a load balancer or a transit gateway.

Limitations of Amazon Aurora encrypted DB clusters

The following limitations exist for Amazon Aurora encrypted DB clusters:

• You can't turn off encryption on an encrypted DB cluster.

• You can't create an encrypted snapshot of an unencrypted DB cluster.

• A snapshot of an encrypted DB cluster must be encrypted using the same KMS key as the DB
cluster.

Data encryption 3860

Amazon Aurora User Guide for Aurora

• You can't convert an unencrypted DB cluster to an encrypted one. However, you can restore an
unencrypted snapshot to an encrypted Aurora DB cluster. To do this, specify a KMS key when you
restore from the unencrypted snapshot.

• You can't create an encrypted Aurora Replica from an unencrypted Aurora DB cluster. You can't
create an unencrypted Aurora Replica from an encrypted Aurora DB cluster.

• To copy an encrypted snapshot from one AWS Region to another, you must specify the KMS key
in the destination AWS Region. This is because KMS keys are specific to the AWS Region that they
are created in.

The source snapshot remains encrypted throughout the copy process. Amazon Aurora uses
envelope encryption to protect data during the copy process. For more information about
envelope encryption, see Envelope encryption in the AWS Key Management Service Developer
Guide.

• You can't unencrypt an encrypted DB cluster. However, you can export data from an encrypted
DB cluster and import the data into an unencrypted DB cluster.

AWS KMS key management

Amazon Aurora automatically integrates with AWS Key Management Service (AWS KMS) for key
management. Amazon Aurora uses envelope encryption. For more information about envelope
encryption, see Envelope encryption in the AWS Key Management Service Developer Guide.

You can use two types of AWS KMS keys to encrypt your DB clusters.

• If you want full control over a KMS key, you must create a customer managed key. For more
information about customer managed keys, see Customer managed keys in the AWS Key
Management Service Developer Guide.

You can't share a snapshot that has been encrypted using the AWS managed key of the AWS
account that shared the snapshot.

• AWS managed keys are KMS keys in your account that are created, managed, and used on your
behalf by an AWS service that is integrated with AWS KMS. By default, the RDS AWS managed
key (aws/rds) is used for encryption. You can't manage, rotate, or delete the RDS AWS managed
key. For more information about AWS managed keys, see AWS managed keys in the AWS Key
Management Service Developer Guide.

Data encryption 3861

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#enveloping
https://docs.aws.amazon.com/kms/latest/developerguide/
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#enveloping
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#customer-cmk
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#aws-managed-cmk

Amazon Aurora User Guide for Aurora

To manage KMS keys used for Amazon Aurora encrypted DB clusters, use the AWS Key
Management Service (AWS KMS) in the AWS KMS console, the AWS CLI, or the AWS KMS API. To
view audit logs of every action taken with an AWS managed or customer managed key, use AWS
CloudTrail. For more information about key rotation, see Rotating AWS KMS keys.

Important

If you turn off or revoke permissions to a KMS key used by an RDS database, RDS puts your
database into a terminal state when access to the KMS key is required. This change could be
immediate, or deferred, depending on the use case that required access to the KMS key. In
this state, the DB cluster is no longer available, and the current state of the database can't
be recovered. To restore the DB cluster, you must re-enable access to the KMS key for RDS,
and then restore the DB cluster from the latest available backup.

Authorizing use of a customer managed key

When Aurora uses a customer managed key in cryptographic operations, it acts on behalf of the
user who is creating or changing the Aurora resource.

To create an Aurora resource using a customer managed key, a user must have permissions to call
the following operations on the customer managed key:

• kms:CreateGrant

• kms:DescribeKey

You can specify these required permissions in a key policy, or in an IAM policy if the key policy
allows it.

Tip

To follow the principle of least privilege, do not allow full access to kms:CreateGrant.
Instead, use the kms:ViaService condition key to allow the user to create grants on the KMS
key only when the grant is created on the user's behalf by an AWS service.

You can make the IAM policy stricter in various ways. For example, if you want to allow
the customer managed key to be used only for requests that originate in Aurora, use the

Data encryption 3862

https://docs.aws.amazon.com/kms/latest/developerguide/
https://docs.aws.amazon.com/kms/latest/developerguide/
https://console.aws.amazon.com/kms
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/
https://docs.aws.amazon.com/kms/latest/developerguide/rotate-keys.html
https://docs.aws.amazon.com/kms/latest/developerguide/policy-conditions.html#conditions-kms-via-service
https://docs.aws.amazon.com/kms/latest/developerguide/policy-conditions.html#conditions-kms-via-service

Amazon Aurora User Guide for Aurora

kms:ViaService condition key with the rds.<region>.amazonaws.com value. Also, you can use
the keys or values in the Amazon RDS encryption context as a condition for using the customer
managed key for encryption.

For more information, see Allowing users in other accounts to use a KMS key in the AWS Key
Management Service Developer Guide and Key policies in AWS KMS.

Amazon RDS encryption context

When Aurora uses your KMS key, or when Amazon EBS uses the KMS key on behalf of Aurora, the
service specifies an encryption context. The encryption context is additional authenticated data
(AAD) that AWS KMS uses to ensure data integrity. When an encryption context is specified for an
encryption operation, the service must specify the same encryption context for the decryption
operation. Otherwise, decryption fails. The encryption context is also written to your AWS
CloudTrail logs to help you understand why a given KMS key was used. Your CloudTrail logs might
contain many entries describing the use of a KMS key, but the encryption context in each log entry
can help you determine the reason for that particular use.

At minimum, Aurora always uses the DB instance ID for the encryption context, as in the following
JSON-formatted example:

{ "aws:rds:db-id": "db-CQYSMDPBRZ7BPMH7Y3RTDG5QY" }

This encryption context can help you identify the DB instance for which your KMS key was used.

When your KMS key is used for a specific DB instance and a specific Amazon EBS volume, both
the DB instance ID and the Amazon EBS volume ID are used for the encryption context, as in the
following JSON-formatted example:

{
 "aws:rds:dbc-id": "db-BRG7VYS3SVIFQW7234EJQOM5RQ",
 "aws:ebs:id": "vol-ad8c6542"
}

Using SSL/TLS to encrypt a connection to a DB cluster

You can use Secure Socket Layer (SSL) or Transport Layer Security (TLS) from your application to
encrypt a connection to a DB cluster running Aurora MySQL or Aurora PostgreSQL.

SSL/TLS connections provide a layer of security by encrypting data that moves between your client
and DB cluster. Optionally, your SSL/TLS connection can perform server identity verification by

Data encryption 3863

https://docs.aws.amazon.com/kms/latest/developerguide/policy-conditions.html#conditions-kms-via-service
https://docs.aws.amazon.com/kms/latest/developerguide/key-policy-modifying-external-accounts.html
https://docs.aws.amazon.com/kms/latest/developerguide/key-policies
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#encrypt_context
https://docs.aws.amazon.com/crypto/latest/userguide/cryptography-concepts.html#term-aad
https://aws.amazon.com/cloudtrail/
https://aws.amazon.com/cloudtrail/

Amazon Aurora User Guide for Aurora

validating the server certificate installed on your database. To require server identity verification,
follow this general process:

1. Choose the certificate authority (CA) that signs the DB server certificate, for your database. For
more information about certificate authorities, see Certificate authorities.

2. Download a certificate bundle to use when you are connecting to the database. To download a
certificate bundle, see Certificate bundles by AWS Region.

Note

All certificates are only available for download using SSL/TLS connections.

3. Connect to the database using your DB engine's process for implementing SSL/TLS connections.
Each DB engine has its own process for implementing SSL/TLS. To learn how to implement SSL/
TLS for your database, follow the link that corresponds to your DB engine:

• Security with Amazon Aurora MySQL

• Security with Amazon Aurora PostgreSQL

Certificate authorities

The certificate authority (CA) is the certificate that identifies the root CA at the top of the
certificate chain. The CA signs the DB server certificate, which is installed on each DB instance. The
DB server certificate identifies the DB instance as a trusted server.

Data encryption 3864

Amazon Aurora User Guide for Aurora

Amazon RDS provides the following CAs to sign the DB server certificate for a database.

Certificate authority (CA) Description Common name
(CN)

rds-ca-2019 Uses a certificate authority with RSA
2048 private key algorithm and SHA256
signing algorithm. This CA expires in
2024 and doesn't support automatic
server certificate rotation. If you are
using this CA and want to keep the same
standard, we recommend that you switch
to the rds-ca-rsa2048-g1 CA.

Amazon RDS
region-id
entifier CA
2019

rds-ca-rsa2048-g1 Uses a certificate authority with RSA
2048 private key algorithm and SHA256
signing algorithm in most AWS Regions.

In the AWS GovCloud (US) Regions, this
CA uses a certificate authority with RSA

Amazon RDS
region-id
entifier
RSA2048 G1

Data encryption 3865

Amazon Aurora User Guide for Aurora

Certificate authority (CA) Description Common name
(CN)

2048 private key algorithm and SHA384
signing algorithm.

This CA remains valid for longer than
the rds-ca-2019 CA. This CA supports
automatic server certificate rotation.

rds-ca-rsa4096-g1 Uses a certificate authority with RSA
4096 private key algorithm and SHA384
signing algorithm. This CA supports
automatic server certificate rotation.

Amazon RDS
region-id
entifier
RSA4096 G1

rds-ca-ecc384-g1 Uses a certificate authority with ECC
384 private key algorithm and SHA384
signing algorithm. This CA supports
automatic server certificate rotation.

Amazon RDS
region-id
entifier
ECC384 G1

Note

If you are using the AWS CLI, you can see the validities of the certificate authorities listed
above by using describe-certificates.

These CA certificates are included in the regional and global certificate bundle. When you use the
rds-ca-rsa2048-g1, rds-ca-rsa4096-g1, or rds-ca-ecc384-g1 CA with a database, RDS manages the
DB server certificate on the database. RDS rotates the DB server certificate automatically before it
expires.

Setting the CA for your database

You can set the CA for a database when you perform the following tasks:

• Create an Aurora DB cluster – You can set the CA for a DB instance in an Aurora cluster when you
create the first DB instance in the DB cluster using the AWS CLI or RDS API. Currently, you can't

Data encryption 3866

https://docs.aws.amazon.com/cli/latest/reference/rds/describe-certificates.html

Amazon Aurora User Guide for Aurora

set the CA for the DB instances in a DB cluster when you create the DB cluster using the RDS
console. For instructions, see Creating an Amazon Aurora DB cluster.

• Modify a DB instance – You can set the CA for a DB instance in a DB cluster by modifying it. For
instructions, see Modifying a DB instance in a DB cluster.

Note

The default CA is set to rds-ca-rsa2048-g1. You can override the default CA for your AWS
account by using the modify-certificates command.

The available CAs depend on the DB engine and DB engine version. When you use the AWS
Management Console, you can choose the CA using the Certificate authority setting, as shown in
the following image.

The console only shows the CAs that are available for the DB engine and DB engine version. If
you're using the AWS CLI, you can set the CA for a DB instance using the create-db-instance or
modify-db-instance command.

If you're using the AWS CLI, you can see the available CAs for your account by using the describe-
certificates command. This command also shows the expiration date for each CA in ValidTill in
the output. You can find the CAs that are available for a specific DB engine and DB engine version
using the describe-db-engine-versions command.

The following example shows the CAs available for the default RDS for PostgreSQL DB engine
version.

aws rds describe-db-engine-versions --default-only --engine postgres

Your output is similar to the following. The available CAs are listed in
SupportedCACertificateIdentifiers. The output also shows whether

Data encryption 3867

https://docs.aws.amazon.com/cli/latest/reference/rds/modify-certificates.html
https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-instance.html
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-instance.html
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-certificates.html
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-certificates.html
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-engine-versions.html

Amazon Aurora User Guide for Aurora

the DB engine version supports rotating the certificate without restart in
SupportsCertificateRotationWithoutRestart.

{
 "DBEngineVersions": [
 {
 "Engine": "postgres",
 "MajorEngineVersion": "13",
 "EngineVersion": "13.4",
 "DBParameterGroupFamily": "postgres13",
 "DBEngineDescription": "PostgreSQL",
 "DBEngineVersionDescription": "PostgreSQL 13.4-R1",
 "ValidUpgradeTarget": [],
 "SupportsLogExportsToCloudwatchLogs": false,
 "SupportsReadReplica": true,
 "SupportedFeatureNames": [
 "Lambda"
],
 "Status": "available",
 "SupportsParallelQuery": false,
 "SupportsGlobalDatabases": false,
 "SupportsBabelfish": false,
 "SupportsCertificateRotationWithoutRestart": true,
 "SupportedCACertificateIdentifiers": [
 "rds-ca-2019",
 "rds-ca-rsa2048-g1",
 "rds-ca-ecc384-g1",
 "rds-ca-rsa4096-g1"
]
 }
]
}

DB server certificate validities

The validity of DB server certificate depends on the DB engine and DB engine version. If the DB
engine version supports rotating the certificate without restart, the validity of the DB server
certificate is 1 year. Otherwise the validity is 3 years.

For more information about DB server certificate rotation, see Automatic server certificate rotation.

Data encryption 3868

Amazon Aurora User Guide for Aurora

Viewing the CA for your DB instance

You can view the details about the CA for a database by viewing the Connectivity & security tab in
the console, as in the following image.

If you're using the AWS CLI, you can view the details about the CA for a DB instance by using the
describe-db-instances command.

Download certificate bundles for Aurora

When you connect to your database with SSL or TLS, the database instance requires a trust
certificate from Amazon RDS. Select the appropriate link in the following table to download the
bundle that corresponds with the AWS Region where you host your database.

Certificate bundles by AWS Region

The certificate bundles for all AWS Regions and GovCloud (US) Regions contain the following
certificates:

• rds-ca-2019 intermediate and root certificates.

• rds-ca-rsa2048-g1, rds-ca-rsa4096-g1, and rds-ca-ecc384-g1 root CA certificates.
Your application trust store only needs to register the root CA certificate.

Data encryption 3869

https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-instances.html

Amazon Aurora User Guide for Aurora

Note

Amazon RDS Proxy and Aurora Serverless v1 use certificates from the AWS Certificate
Manager (ACM). If you're using RDS Proxy, you don't need to download Amazon RDS
certificates or update applications that use RDS Proxy connections. For more information,
see Using TLS/SSL with RDS Proxy.
If you're using Aurora Serverless v1, downloading Amazon RDS certificates isn't required.
For more information, see Using TLS/SSL with Aurora Serverless v1.

To download a certificate bundle for an AWS Region, select the link for the AWS Region that hosts
your database in the following table.

AWS Region Certificate bundle (PEM) Certificate bundle (PKCS7)

Any commercial AWS Region global-bundle.pem global-bundle.p7b

US East (N. Virginia) us-east-1-bundle.pem us-east-1-bundle.p7b

US East (Ohio) us-east-2-bundle.pem us-east-2-bundle.p7b

US West (N. California) us-west-1-bundle.pem us-west-1-bundle.p7b

US West (Oregon) us-west-2-bundle.pem us-west-2-bundle.p7b

Africa (Cape Town) af-south-1-bundle.pem af-south-1-bundle.p7b

Asia Pacific (Hong Kong) ap-east-1-bundle.pem ap-east-1-bundle.p7b

Asia Pacific (Hyderabad) ap-south-2-bundle.pem ap-south-2-bundle.p7b

Asia Pacific (Jakarta) ap-southeast-3-bundle.pem ap-southeast-3-bundle.p7b

Asia Pacific (Melbourne) ap-southeast-4-bundle.pem ap-southeast-4-bundle.p7b

Asia Pacific (Mumbai) ap-south-1-bundle.pem ap-south-1-bundle.p7b

Asia Pacific (Osaka) ap-northeast-3-bundle.pem ap-northeast-3-bundle.p7b

Asia Pacific (Tokyo) ap-northeast-1-bundle.pem ap-northeast-1-bundle.p7b

Data encryption 3870

https://truststore.pki.rds.amazonaws.com/global/global-bundle.pem
https://truststore.pki.rds.amazonaws.com/global/global-bundle.p7b
https://truststore.pki.rds.amazonaws.com/us-east-1/us-east-1-bundle.pem
https://truststore.pki.rds.amazonaws.com/us-east-1/us-east-1-bundle.p7b
https://truststore.pki.rds.amazonaws.com/us-east-2/us-east-2-bundle.pem
https://truststore.pki.rds.amazonaws.com/us-east-2/us-east-2-bundle.p7b
https://truststore.pki.rds.amazonaws.com/us-west-1/us-west-1-bundle.pem
https://truststore.pki.rds.amazonaws.com/us-west-1/us-west-1-bundle.p7b
https://truststore.pki.rds.amazonaws.com/us-west-2/us-west-2-bundle.pem
https://truststore.pki.rds.amazonaws.com/us-west-2/us-west-2-bundle.p7b
https://truststore.pki.rds.amazonaws.com/af-south-1/af-south-1-bundle.pem
https://truststore.pki.rds.amazonaws.com/af-south-1/af-south-1-bundle.p7b
https://truststore.pki.rds.amazonaws.com/ap-east-1/ap-east-1-bundle.pem
https://truststore.pki.rds.amazonaws.com/ap-east-1/ap-east-1-bundle.p7b
https://truststore.pki.rds.amazonaws.com/ap-south-2/ap-south-2-bundle.pem
https://truststore.pki.rds.amazonaws.com/ap-south-2/ap-south-2-bundle.p7b
https://truststore.pki.rds.amazonaws.com/ap-southeast-3/ap-southeast-3-bundle.pem
https://truststore.pki.rds.amazonaws.com/ap-southeast-3/ap-southeast-3-bundle.p7b
https://truststore.pki.rds.amazonaws.com/ap-southeast-4/ap-southeast-4-bundle.pem
https://truststore.pki.rds.amazonaws.com/ap-southeast-4/ap-southeast-4-bundle.p7b
https://truststore.pki.rds.amazonaws.com/ap-south-1/ap-south-1-bundle.pem
https://truststore.pki.rds.amazonaws.com/ap-south-1/ap-south-1-bundle.p7b
https://truststore.pki.rds.amazonaws.com/ap-northeast-3/ap-northeast-3-bundle.pem
https://truststore.pki.rds.amazonaws.com/ap-northeast-3/ap-northeast-3-bundle.p7b
https://truststore.pki.rds.amazonaws.com/ap-northeast-1/ap-northeast-1-bundle.pem
https://truststore.pki.rds.amazonaws.com/ap-northeast-1/ap-northeast-1-bundle.p7b

Amazon Aurora User Guide for Aurora

AWS Region Certificate bundle (PEM) Certificate bundle (PKCS7)

Asia Pacific (Seoul) ap-northeast-2-bundle.pem ap-northeast-2-bundle.p7b

Asia Pacific (Singapore) ap-southeast-1-bundle.pem ap-southeast-1-bundle.p7b

Asia Pacific (Sydney) ap-southeast-2-bundle.pem ap-southeast-2-bundle.p7b

Canada (Central) ca-central-1-bundle.pem ca-central-1-bundle.p7b

Canada West (Calgary) ca-west-1-bundle.pem ca-west-1-bundle.p7b

Europe (Frankfurt) eu-central-1-bundle.pem eu-central-1-bundle.p7b

Europe (Ireland) eu-west-1-bundle.pem eu-west-1-bundle.p7b

Europe (London) eu-west-2-bundle.pem eu-west-2-bundle.p7b

Europe (Milan) eu-south-1-bundle.pem eu-south-1-bundle.p7b

Europe (Paris) eu-west-3-bundle.pem eu-west-3-bundle.p7b

Europe (Spain) eu-south-2-bundle.pem eu-south-2-bundle.p7b

Europe (Stockholm) eu-north-1-bundle.pem eu-north-1-bundle.p7b

Europe (Zurich) eu-central-2-bundle.pem eu-central-2-bundle.p7b

Israel (Tel Aviv) il-central-1-bundle.pem il-central-1-bundle.p7b

Middle East (Bahrain) me-south-1-bundle.pem me-south-1-bundle.p7b

Middle East (UAE) me-central-1-bundle.pem me-central-1-bundle.p7b

South America (São Paulo) sa-east-1-bundle.pem sa-east-1-bundle.p7b

Any AWS GovCloud (US)
Regions

global-bundle.pem global-bundle.p7b

AWS GovCloud (US-East) us-gov-east-1-bundle.pem us-gov-east-1-bundle.p7b

AWS GovCloud (US-West) us-gov-west-1-bundle.pem us-gov-west-1-bundle.p7b

Data encryption 3871

https://truststore.pki.rds.amazonaws.com/ap-northeast-2/ap-northeast-2-bundle.pem
https://truststore.pki.rds.amazonaws.com/ap-northeast-2/ap-northeast-2-bundle.p7b
https://truststore.pki.rds.amazonaws.com/ap-southeast-1/ap-southeast-1-bundle.pem
https://truststore.pki.rds.amazonaws.com/ap-southeast-1/ap-southeast-1-bundle.p7b
https://truststore.pki.rds.amazonaws.com/ap-southeast-2/ap-southeast-2-bundle.pem
https://truststore.pki.rds.amazonaws.com/ap-southeast-2/ap-southeast-2-bundle.p7b
https://truststore.pki.rds.amazonaws.com/ca-central-1/ca-central-1-bundle.pem
https://truststore.pki.rds.amazonaws.com/ca-central-1/ca-central-1-bundle.p7b
https://truststore.pki.rds.amazonaws.com/ca-west-1/ca-west-1-bundle.pem
https://truststore.pki.rds.amazonaws.com/ca-west-1/ca-west-1-bundle.p7b
https://truststore.pki.rds.amazonaws.com/eu-central-1/eu-central-1-bundle.pem
https://truststore.pki.rds.amazonaws.com/eu-central-1/eu-central-1-bundle.p7b
https://truststore.pki.rds.amazonaws.com/eu-west-1/eu-west-1-bundle.pem
https://truststore.pki.rds.amazonaws.com/eu-west-1/eu-west-1-bundle.p7b
https://truststore.pki.rds.amazonaws.com/eu-west-2/eu-west-2-bundle.pem
https://truststore.pki.rds.amazonaws.com/eu-west-2/eu-west-2-bundle.p7b
https://truststore.pki.rds.amazonaws.com/eu-south-1/eu-south-1-bundle.pem
https://truststore.pki.rds.amazonaws.com/eu-south-1/eu-south-1-bundle.p7b
https://truststore.pki.rds.amazonaws.com/eu-west-3/eu-west-3-bundle.pem
https://truststore.pki.rds.amazonaws.com/eu-west-3/eu-west-3-bundle.p7b
https://truststore.pki.rds.amazonaws.com/eu-south-2/eu-south-2-bundle.pem
https://truststore.pki.rds.amazonaws.com/eu-south-2/eu-south-2-bundle.p7b
https://truststore.pki.rds.amazonaws.com/eu-north-1/eu-north-1-bundle.pem
https://truststore.pki.rds.amazonaws.com/eu-north-1/eu-north-1-bundle.p7b
https://truststore.pki.rds.amazonaws.com/eu-central-2/eu-central-2-bundle.pem
https://truststore.pki.rds.amazonaws.com/eu-central-2/eu-central-2-bundle.p7b
https://truststore.pki.rds.amazonaws.com/il-central-1/il-central-1-bundle.pem
https://truststore.pki.rds.amazonaws.com/il-central-1/il-central-1-bundle.p7b
https://truststore.pki.rds.amazonaws.com/me-south-1/me-south-1-bundle.pem
https://truststore.pki.rds.amazonaws.com/me-south-1/me-south-1-bundle.p7b
https://truststore.pki.rds.amazonaws.com/me-central-1/me-central-1-bundle.pem
https://truststore.pki.rds.amazonaws.com/me-central-1/me-central-1-bundle.p7b
https://truststore.pki.rds.amazonaws.com/sa-east-1/sa-east-1-bundle.pem
https://truststore.pki.rds.amazonaws.com/sa-east-1/sa-east-1-bundle.p7b
https://truststore.pki.us-gov-west-1.rds.amazonaws.com/global/global-bundle.pem
https://rds-truststore.s3.cn-north-1.amazonaws.com.cn/global/global-bundle.p7b
https://truststore.pki.us-gov-west-1.rds.amazonaws.com/us-gov-east-1/us-gov-east-1-bundle.pem
https://truststore.pki.us-gov-west-1.rds.amazonaws.com/us-gov-east-1/us-gov-east-1-bundle.p7b
https://truststore.pki.us-gov-west-1.rds.amazonaws.com/us-gov-west-1/us-gov-west-1-bundle.pem
https://truststore.pki.us-gov-west-1.rds.amazonaws.com/us-gov-west-1/us-gov-west-1-bundle.p7b

Amazon Aurora User Guide for Aurora

Viewing the contents of your CA certificate

To check the contents of your CA certificate bundle, use the following command:

keytool -printcert -v -file global-bundle.pem

Rotating your SSL/TLS certificate

Amazon RDS Certificate Authority certificates rds-ca-2019 are set to expire in August, 2024. If you
use or plan to use Secure Sockets Layer (SSL) or Transport Layer Security (TLS) with certificate
verification to connect to your RDS DB instances , consider using one of the new CA certificates rds-
ca-rsa2048-g1, rds-ca-rsa4096-g1 or rds-ca-ecc384-g1. If you currently do not use SSL/TLS with
certificate verification, you might still have an expired CA certificate and must update them to a
new CA certificate if you plan to use SSL/TLS with certificate verification to connect to your RDS
databases.

Amazon RDS provides new CA certificates as an AWS security best practice. For information about
the new certificates and the supported AWS Regions, see Using SSL/TLS to encrypt a connection to
a DB cluster.

To update the CA certificate for your database, use the following methods:

• Updating your CA certificate by modifying your DB instance

• Updating your CA certificate by applying maintenance

Before you update your DB instances to use the new CA certificate, make sure that you update your
clients or applications connecting to your RDS databases.

Considerations for rotating certificates

Consider the following situations before rotating your certificate:

• Amazon RDS Proxy and Aurora Serverless v1 use certificates from the AWS Certificate Manager
(ACM). If you're using RDS Proxy, when you rotate your SSL/TLS certificate, you don't need to
update applications that use RDS Proxy connections. For more information, see Using TLS/SSL
with RDS Proxy.

• If you're using Aurora Serverless v1, downloading Amazon RDS certificates isn't required. For
more information, see Using TLS/SSL with Aurora Serverless v1.

Data encryption 3872

Amazon Aurora User Guide for Aurora

• If you're using a Go version 1.15 application with a DB instance that was created or updated to
the rds-ca-2019 certificate prior to July 28, 2020, you must update the certificate again. Update
the certificate to rds-ca-rsa2048-g1, rds-ca-rsa4096-g1, or rds-ca-ecc384-g1 depending on your
engine.

Use the modify-db-instance command , using the new CA certificate identifier. You can find
the CAs that are available for a specific DB engine and DB engine version using the describe-
db-engine-versions command.

If you created your database or updated its certificate after July 28, 2020, no action is required.
For more information, see Go GitHub issue #39568.

Updating your CA certificate by modifying your DB instance

The following example updates your CA certificate from rds-ca-2019 to rds-ca-rsa2048-g1. You can
choose a different certificate. For more information, see Certificate authorities.

Update your application trust store to reduce any down time associated with updating your
CA certificate. For more information about restarts associated with CA certificate rotation, see
Automatic server certificate rotation.

To update your CA certificate by modifying your DB instance

1. Download the new SSL/TLS certificate as described in Using SSL/TLS to encrypt a connection
to a DB cluster.

2. Update your applications to use the new SSL/TLS certificate.

The methods for updating applications for new SSL/TLS certificates depend on your specific
applications. Work with your application developers to update the SSL/TLS certificates for
your applications.

For information about checking for SSL/TLS connections and updating applications for each
DB engine, see the following topics:

• Updating applications to connect to Aurora MySQL DB clusters using new TLS certificates

• Updating applications to connect to Aurora PostgreSQL DB clusters using new SSL/TLS
certificates

Data encryption 3873

https://github.com/golang/go/issues/39568

Amazon Aurora User Guide for Aurora

For a sample script that updates a trust store for a Linux operating system, see Sample script
for importing certificates into your trust store.

Note

The certificate bundle contains certificates for both the old and new CA, so you can
upgrade your application safely and maintain connectivity during the transition period.
If you are using the AWS Database Migration Service to migrate a database to a DB
cluster, we recommend using the certificate bundle to ensure connectivity during the
migration.

3. Modify the DB instance to change the CA from rds-ca-2019 to rds-ca-rsa2048-g1. To check
if your database requires a restart to update the CA certificates, use the describe-db-engine-
versions command and check the SupportsCertificateRotationWithoutRestart flag.

Note

Reboot your Babelfish cluster after modifying to update the CA certificate.

Important

If you are experiencing connectivity issues after certificate expiry, use the apply
immediately option by specifying Apply immediately in the console or by specifying
the --apply-immediately option using the AWS CLI. By default, this operation is
scheduled to run during your next maintenance window.
To set an override for your cluster CA that's different from the default RDS CA, use the
modify-certificates CLI command.

You can use the AWS Management Console or the AWS CLI to change the CA certificate from rds-
ca-2019 to rds-ca-rsa2048-g1 for a DB instance .

Console

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

Data encryption 3874

https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-engine-versions.html
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-engine-versions.html
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-certificates.html
https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Aurora User Guide for Aurora

2. In the navigation pane, choose Databases, and then choose the DB instance that you want
to modify.

3. Choose Modify.

4. In the Connectivity section, choose rds-ca-rsa2048-g1.

5. Choose Continue and check the summary of modifications.

6. To apply the changes immediately, choose Apply immediately.

7. On the confirmation page, review your changes. If they are correct, choose Modify DB
Instance to save your changes.

Important

When you schedule this operation, make sure that you have updated your client-
side trust store beforehand.

Data encryption 3875

Amazon Aurora User Guide for Aurora

Or choose Back to edit your changes or Cancel to cancel your changes.

AWS CLI

To use the AWS CLI to change the CA from rds-ca-2019 to rds-ca-rsa2048-g1 for a DB
instance , call the modify-db-instance or modify-db-cluster command. Specify the DB instance
identifier and the --ca-certificate-identifier option.

Use the --apply-immediately parameter to apply the update immediately. By default, this
operation is scheduled to run during your next maintenance window.

Important

When you schedule this operation, make sure that you have updated your client-side
trust store beforehand.

Example

The following example modifies mydbinstance by setting the CA certificate to rds-ca-
rsa2048-g1.

For Linux, macOS, or Unix:

aws rds modify-db-instance \
 --db-instance-identifier mydbinstance \
 --ca-certificate-identifier rds-ca-rsa2048-g1

For Windows:

aws rds modify-db-instance ^
 --db-instance-identifier mydbinstance ^
 --ca-certificate-identifier rds-ca-rsa2048-g1

Note

If your instance requires reboot, you can use the modify-db-instance CLI command and
specify the --no-certificate-rotation-restart option.

Data encryption 3876

https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-instance.html
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-cluster.html
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-instance.html

Amazon Aurora User Guide for Aurora

Updating your CA certificate by applying maintenance

Perform the following steps to update your CA certificate by applying maintenance.

Console

To update your CA certificate by applying maintenance

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Certificate update.

Data encryption 3877

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Aurora User Guide for Aurora

The Databases requiring certificate update page appears.

Note

This page only shows the DB instances for the current AWS Region. If you have
databases in more than one AWS Region, check this page in each AWS Region to
see all DB instances with old SSL/TLS certificates.

3. Choose the DB instance that you want to update.

You can schedule the certificate rotation for your next maintenance window by choosing
Schedule. Apply the rotation immediately by choosing Apply now.

Important

If you experience connectivity issues after certificate expiry, use the Apply now
option.

4. a. If you choose Schedule, you are prompted to confirm the CA certificate rotation. This
prompt also states the scheduled window for your update.

Data encryption 3878

Amazon Aurora User Guide for Aurora

b. If you choose Apply now, you are prompted to confirm the CA certificate rotation.

Data encryption 3879

Amazon Aurora User Guide for Aurora

Important

Before scheduling the CA certificate rotation on your database, update any client
applications that use SSL/TLS and the server certificate to connect. These updates
are specific to your DB engine. After you have updated these client applications,
you can confirm the CA certificate rotation.

To continue, choose the check box, and then choose Confirm.

5. Repeat steps 3 and 4 for each DB instance that you want to update.

Data encryption 3880

Amazon Aurora User Guide for Aurora

Automatic server certificate rotation

If your root CA supports automatic server certificate rotation, RDS automatically handles the
rotation of the DB server certificate. RDS uses the same root CA for this automatic rotation, so you
don't need to download a new CA bundle. See Certificate authorities.

The rotation and validity of your DB server certificate depend on your DB engine:

• If your DB engine supports rotation without restart, RDS automatically rotates the DB server
certificate without requiring any action from you. RDS attempts to rotate your DB server
certificate in your preferred maintenance window at the DB server certificate half life. The new
DB server certificate is valid for 12 months.

• If your DB engine doesn't support rotation without restart, RDS notifies you about a maintenance
event at least 6 months before the DB server certificate expires. The new DB server certificate is
valid for 36 months.

Use the describe-db-engine-versions command and inspect the
SupportsCertificateRotationWithoutRestart flag to identify whether the DB engine
version supports rotating the certificate without restart. For more information, see Setting the CA
for your database.

Sample script for importing certificates into your trust store

The following are sample shell scripts that import the certificate bundle into a trust store.

Each sample shell script uses keytool, which is part of the Java Development Kit (JDK). For
information about installing the JDK, see JDK Installation Guide.

Linux

The following is a sample shell script that imports the certificate bundle into a trust store on a
Linux operating system.

mydir=tmp/certs
if [! -e "${mydir}"]
then
mkdir -p "${mydir}"
fi

Data encryption 3881

https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-engine-versions.html
https://docs.oracle.com/en/java/javase/17/install/overview-jdk-installation.html

Amazon Aurora User Guide for Aurora

truststore=${mydir}/rds-truststore.jks
storepassword=changeit

curl -sS "https://truststore.pki.rds.amazonaws.com/global/global-bundle.pem" >
 ${mydir}/global-bundle.pem
awk 'split_after == 1 {n++;split_after=0} /-----END CERTIFICATE-----/
 {split_after=1}{print > "rds-ca-" n+1 ".pem"}' < ${mydir}/global-bundle.pem

for CERT in rds-ca-*; do
 alias=$(openssl x509 -noout -text -in $CERT | perl -ne 'next unless /Subject:/;
 s/.*(CN=|CN =)//; print')
 echo "Importing $alias"
 keytool -import -file ${CERT} -alias "${alias}" -storepass ${storepassword} -
keystore ${truststore} -noprompt
 rm $CERT
done

rm ${mydir}/global-bundle.pem

echo "Trust store content is: "

keytool -list -v -keystore "$truststore" -storepass ${storepassword} | grep Alias |
 cut -d " " -f3- | while read alias
do
 expiry=`keytool -list -v -keystore "$truststore" -storepass ${storepassword} -
alias "${alias}" | grep Valid | perl -ne 'if(/until: (.*?)\n/) { print "$1\n"; }'`
 echo " Certificate ${alias} expires in '$expiry'"
done

macOS

The following is a sample shell script that imports the certificate bundle into a trust store on
macOS.

mydir=tmp/certs
if [! -e "${mydir}"]
then
mkdir -p "${mydir}"
fi

truststore=${mydir}/rds-truststore.jks

Data encryption 3882

Amazon Aurora User Guide for Aurora

storepassword=changeit

curl -sS "https://truststore.pki.rds.amazonaws.com/global/global-bundle.pem" >
 ${mydir}/global-bundle.pem
split -p "-----BEGIN CERTIFICATE-----" ${mydir}/global-bundle.pem rds-ca-

for CERT in rds-ca-*; do
 alias=$(openssl x509 -noout -text -in $CERT | perl -ne 'next unless /Subject:/;
 s/.*(CN=|CN =)//; print')
 echo "Importing $alias"
 keytool -import -file ${CERT} -alias "${alias}" -storepass ${storepassword} -
keystore ${truststore} -noprompt
 rm $CERT
done

rm ${mydir}/global-bundle.pem

echo "Trust store content is: "

keytool -list -v -keystore "$truststore" -storepass ${storepassword} | grep Alias |
 cut -d " " -f3- | while read alias
do
 expiry=`keytool -list -v -keystore "$truststore" -storepass ${storepassword} -
alias "${alias}" | grep Valid | perl -ne 'if(/until: (.*?)\n/) { print "$1\n"; }'`
 echo " Certificate ${alias} expires in '$expiry'"
done

Internetwork traffic privacy

Connections are protected both between Amazon Aurora and on-premises applications and
between Amazon Aurora and other AWS resources within the same AWS Region.

Traffic between service and on-premises clients and applications

You have two connectivity options between your private network and AWS:

• An AWS Site-to-Site VPN connection. For more information, see What is AWS Site-to-Site VPN?

• An AWS Direct Connect connection. For more information, see What is AWS Direct Connect?

Internetwork traffic privacy 3883

https://docs.aws.amazon.com/vpn/latest/s2svpn/VPC_VPN.html
https://docs.aws.amazon.com/directconnect/latest/UserGuide/Welcome.html

Amazon Aurora User Guide for Aurora

You get access to Amazon Aurora through the network by using AWS-published API operations.
Clients must support the following:

• Transport Layer Security (TLS). We require TLS 1.2 and recommend TLS 1.3.

• Cipher suites with perfect forward secrecy (PFS) such as DHE (Ephemeral Diffie-Hellman) or
ECDHE (Elliptic Curve Ephemeral Diffie-Hellman). Most modern systems such as Java 7 and later
support these modes.

Additionally, requests must be signed by using an access key ID and a secret access key that is
associated with an IAM principal. Or you can use the AWS Security Token Service (AWS STS) to
generate temporary security credentials to sign requests.

Internetwork traffic privacy 3884

https://docs.aws.amazon.com/STS/latest/APIReference/Welcome.html

Amazon Aurora User Guide for Aurora

Identity and access management for Amazon Aurora

AWS Identity and Access Management (IAM) is an AWS service that helps an administrator securely
control access to AWS resources. IAM administrators control who can be authenticated (signed in)
and authorized (have permissions) to use Amazon RDS resources. IAM is an AWS service that you
can use with no additional charge.

Topics

• Audience

• Authenticating with identities

• Managing access using policies

• How Amazon Aurora works with IAM

• Identity-based policy examples for Amazon Aurora

• AWS managed policies for Amazon RDS

• Amazon RDS updates to AWS managed policies

• Preventing cross-service confused deputy problems

• IAM database authentication

• Troubleshooting Amazon Aurora identity and access

Audience

How you use AWS Identity and Access Management (IAM) differs, depending on the work you do in
Amazon Aurora.

Service user – If you use the Aurora service to do your job, then your administrator provides you
with the credentials and permissions that you need. As you use more Aurora features to do your
work, you might need additional permissions. Understanding how access is managed can help you
request the right permissions from your administrator. If you cannot access a feature in Aurora, see
Troubleshooting Amazon Aurora identity and access.

Service administrator – If you're in charge of Aurora resources at your company, you probably
have full access to Aurora. It's your job to determine which Aurora features and resources your
employees should access. You must then submit requests to your administrator to change the
permissions of your service users. Review the information on this page to understand the basic

Identity and access management 3885

Amazon Aurora User Guide for Aurora

concepts of IAM. To learn more about how your company can use IAM with Aurora, see How
Amazon Aurora works with IAM.

Administrator – If you're an administrator, you might want to learn details about how you can
write policies to manage access to Aurora. To view example Aurora identity-based policies that you
can use in IAM, see Identity-based policy examples for Amazon Aurora.

Authenticating with identities

Authentication is how you sign in to AWS using your identity credentials. You must be
authenticated (signed in to AWS) as the AWS account root user, as an IAM user, or by assuming an
IAM role.

You can sign in to AWS as a federated identity by using credentials provided through an identity
source. AWS IAM Identity Center (IAM Identity Center) users, your company's single sign-on
authentication, and your Google or Facebook credentials are examples of federated identities.
When you sign in as a federated identity, your administrator previously set up identity federation
using IAM roles. When you access AWS by using federation, you are indirectly assuming a role.

Depending on the type of user you are, you can sign in to the AWS Management Console or the
AWS access portal. For more information about signing in to AWS, see How to sign in to your AWS
account in the AWS Sign-In User Guide.

If you access AWS programmatically, AWS provides a software development kit (SDK) and a
command line interface (CLI) to cryptographically sign your requests by using your credentials. If
you don't use AWS tools, you must sign requests yourself. For more information about using the
recommended method to sign requests yourself, see Signing AWS API requests in the IAM User
Guide.

Regardless of the authentication method that you use, you might be required to provide additional
security information. For example, AWS recommends that you use multi-factor authentication
(MFA) to increase the security of your account. To learn more, see Multi-factor authentication in the
AWS IAM Identity Center User Guide and Using multi-factor authentication (MFA) in AWS in the IAM
User Guide.

AWS account root user

When you create an AWS account, you begin with one sign-in identity that has complete access to
all AWS services and resources in the account. This identity is called the AWS account root user and
is accessed by signing in with the email address and password that you used to create the account.

Authenticating with identities 3886

https://docs.aws.amazon.com/signin/latest/userguide/how-to-sign-in.html
https://docs.aws.amazon.com/signin/latest/userguide/how-to-sign-in.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-signing.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/enable-mfa.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa.html

Amazon Aurora User Guide for Aurora

We strongly recommend that you don't use the root user for your everyday tasks. Safeguard your
root user credentials and use them to perform the tasks that only the root user can perform. For
the complete list of tasks that require you to sign in as the root user, see Tasks that require root
user credentials in the IAM User Guide.

Federated identity

As a best practice, require human users, including users that require administrator access, to use
federation with an identity provider to access AWS services by using temporary credentials.

A federated identity is a user from your enterprise user directory, a web identity provider, the AWS
Directory Service, the Identity Center directory, or any user that accesses AWS services by using
credentials provided through an identity source. When federated identities access AWS accounts,
they assume roles, and the roles provide temporary credentials.

For centralized access management, we recommend that you use AWS IAM Identity Center. You can
create users and groups in IAM Identity Center, or you can connect and synchronize to a set of users
and groups in your own identity source for use across all your AWS accounts and applications. For
information about IAM Identity Center, see What is IAM Identity Center? in the AWS IAM Identity
Center User Guide.

IAM users and groups

An IAM user is an identity within your AWS account that has specific permissions for a single person
or application. Where possible, we recommend relying on temporary credentials instead of creating
IAM users who have long-term credentials such as passwords and access keys. However, if you have
specific use cases that require long-term credentials with IAM users, we recommend that you rotate
access keys. For more information, see Rotate access keys regularly for use cases that require long-
term credentials in the IAM User Guide.

An IAM group is an identity that specifies a collection of IAM users. You can't sign in as a group. You
can use groups to specify permissions for multiple users at a time. Groups make permissions easier
to manage for large sets of users. For example, you could have a group named IAMAdmins and give
that group permissions to administer IAM resources.

Users are different from roles. A user is uniquely associated with one person or application, but
a role is intended to be assumable by anyone who needs it. Users have permanent long-term
credentials, but roles provide temporary credentials. To learn more, see When to create an IAM user
(instead of a role) in the IAM User Guide.

Authenticating with identities 3887

https://docs.aws.amazon.com/IAM/latest/UserGuide/root-user-tasks.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/root-user-tasks.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/what-is.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#rotate-credentials
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#rotate-credentials
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_groups.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id.html#id_which-to-choose
https://docs.aws.amazon.com/IAM/latest/UserGuide/id.html#id_which-to-choose

Amazon Aurora User Guide for Aurora

You can authenticate to your DB cluster using IAM database authentication.

IAM database authentication works with Aurora. For more information about authenticating to
your DB cluster using IAM, see IAM database authentication.

IAM roles

An IAM role is an identity within your AWS account that has specific permissions. It is similar to a
user, but is not associated with a specific person. You can temporarily assume an IAM role in the
AWS Management Console by switching roles. You can assume a role by calling an AWS CLI or AWS
API operation or by using a custom URL. For more information about methods for using roles, see
Using IAM roles in the IAM User Guide.

IAM roles with temporary credentials are useful in the following situations:

• Temporary user permissions – A user can assume an IAM role to temporarily take on different
permissions for a specific task.

• Federated user access – To assign permissions to a federated identity, you create a role
and define permissions for the role. When a federated identity authenticates, the identity
is associated with the role and is granted the permissions that are defined by the role. For
information about roles for federation, see Creating a role for a third-party Identity Provider
in the IAM User Guide. If you use IAM Identity Center, you configure a permission set. To control
what your identities can access after they authenticate, IAM Identity Center correlates the
permission set to a role in IAM. For information about permissions sets, see Permission sets in
the AWS IAM Identity Center User Guide.

• Cross-account access – You can use an IAM role to allow someone (a trusted principal) in a
different account to access resources in your account. Roles are the primary way to grant cross-
account access. However, with some AWS services, you can attach a policy directly to a resource
(instead of using a role as a proxy). To learn the difference between roles and resource-based
policies for cross-account access, see How IAM roles differ from resource-based policies in the
IAM User Guide.

• Cross-service access – Some AWS services use features in other AWS services. For example, when
you make a call in a service, it's common for that service to run applications in Amazon EC2 or
store objects in Amazon S3. A service might do this using the calling principal's permissions,
using a service role, or using a service-linked role.

• Forward access sessions – When you use an IAM user or role to perform actions in AWS,
you are considered a principal. When you use some services, you might perform an action
that then initiates another action in a different service. FAS uses the permissions of the

Authenticating with identities 3888

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-console.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-idp.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/permissionsetsconcept.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_compare-resource-policies.html

Amazon Aurora User Guide for Aurora

principal calling an AWS service, combined with the requesting AWS service to make requests
to downstream services. FAS requests are only made when a service receives a request that
requires interactions with other AWS services or resources to complete. In this case, you must
have permissions to perform both actions. For policy details when making FAS requests, see
Forward access sessions.

• Service role – A service role is an IAM role that a service assumes to perform actions on your
behalf. An IAM administrator can create, modify, and delete a service role from within IAM. For
more information, see Creating a role to delegate permissions to an AWS service in the IAM
User Guide.

• Service-linked role – A service-linked role is a type of service role that is linked to an AWS
service. The service can assume the role to perform an action on your behalf. Service-linked
roles appear in your AWS account and are owned by the service. An IAM administrator can
view, but not edit the permissions for service-linked roles.

• Applications running on Amazon EC2 – You can use an IAM role to manage temporary
credentials for applications that are running on an EC2 instance and making AWS CLI or AWS API
requests. This is preferable to storing access keys within the EC2 instance. To assign an AWS role
to an EC2 instance and make it available to all of its applications, you create an instance profile
that is attached to the instance. An instance profile contains the role and enables programs that
are running on the EC2 instance to get temporary credentials. For more information, see Using
an IAM role to grant permissions to applications running on Amazon EC2 instances in the IAM
User Guide.

To learn whether to use IAM roles, see When to create an IAM role (instead of a user) in the IAM
User Guide.

Managing access using policies

You control access in AWS by creating policies and attaching them to IAM identities or AWS
resources. A policy is an object in AWS that, when associated with an identity or resource, defines
their permissions. AWS evaluates these policies when an entity (root user, user, or IAM role) makes
a request. Permissions in the policies determine whether the request is allowed or denied. Most
policies are stored in AWS as JSON documents. For more information about the structure and
contents of JSON policy documents, see Overview of JSON policies in the IAM User Guide.

An administrator can use policies to specify who has access to AWS resources, and what actions
they can perform on those resources. Every IAM entity (permission set or role) starts with no
permissions. In other words, by default, users can do nothing, not even change their own password.

Managing access using policies 3889

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_forward_access_sessions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-ec2.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-ec2.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id.html#id_which-to-choose_role
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html#access_policies-json

Amazon Aurora User Guide for Aurora

To give a user permission to do something, an administrator must attach a permissions policy to a
user. Or the administrator can add the user to a group that has the intended permissions. When an
administrator gives permissions to a group, all users in that group are granted those permissions.

IAM policies define permissions for an action regardless of the method that you use to perform the
operation. For example, suppose that you have a policy that allows the iam:GetRole action. A
user with that policy can get role information from the AWS Management Console, the AWS CLI, or
the AWS API.

Identity-based policies

Identity-based policies are JSON permissions policy documents that you can attach to an identity,
such as a permission set or role. These policies control what actions that identity can perform, on
which resources, and under what conditions. To learn how to create an identity-based policy, see
Creating IAM policies in the IAM User Guide.

Identity-based policies can be further categorized as inline policies or managed policies. Inline
policies are embedded directly into a single permission set or role. Managed policies are standalone
policies that you can attach to multiple permission sets and roles in your AWS account. Managed
policies include AWS managed policies and customer managed policies. To learn how to choose
between a managed policy or an inline policy, see Choosing between managed policies and inline
policies in the IAM User Guide.

For information about AWS managed policies that are specific to Amazon Aurora, see AWS
managed policies for Amazon RDS.

Other policy types

AWS supports additional, less-common policy types. These policy types can set the maximum
permissions granted to you by the more common policy types.

• Permissions boundaries – A permissions boundary is an advanced feature in which you set the
maximum permissions that an identity-based policy can grant to an IAM entity (permission set
or role). You can set a permissions boundary for an entity. The resulting permissions are the
intersection of entity's identity-based policies and its permissions boundaries. Resource-based
policies that specify the permission set or role in the Principal field are not limited by the
permissions boundary. An explicit deny in any of these policies overrides the allow. For more
information about permissions boundaries, see Permissions boundaries for IAM entities in the
IAM User Guide.

Managing access using policies 3890

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#choosing-managed-or-inline
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#choosing-managed-or-inline
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_boundaries.html

Amazon Aurora User Guide for Aurora

• Service control policies (SCPs) – SCPs are JSON policies that specify the maximum permissions
for an organization or organizational unit (OU) in AWS Organizations. AWS Organizations is a
service for grouping and centrally managing multiple AWS accounts that your business owns. If
you enable all features in an organization, then you can apply service control policies (SCPs) to
any or all of your accounts. The SCP limits permissions for entities in member accounts, including
each AWS account root user. For more information about Organizations and SCPs, see How SCPs
work in the AWS Organizations User Guide.

• Session policies – Session policies are advanced policies that you pass as a parameter when you
programmatically create a temporary session for a role or federated user. The resulting session's
permissions are the intersection of the permission sets or role's identity-based policies and the
session policies. Permissions can also come from a resource-based policy. An explicit deny in any
of these policies overrides the allow. For more information, see Session policies in the IAM User
Guide.

Multiple policy types

When multiple types of policies apply to a request, the resulting permissions are more complicated
to understand. To learn how AWS determines whether to allow a request when multiple policy
types are involved, see Policy evaluation logic in the IAM User Guide.

How Amazon Aurora works with IAM

Before you use IAM to manage access to Amazon Aurora, you should understand what IAM features
are available to use with Aurora.

The following table lists IAM features you can use with Amazon Aurora:

IAM feature Amazon Aurora support

Identity-based policies Yes

Resource-based policies No

Policy actions Yes

Policy resources Yes

Policy condition keys (service-specific) Yes

How Amazon Aurora works with IAM 3891

https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_about-scps.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_about-scps.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html#policies_session
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_evaluation-logic.html

Amazon Aurora User Guide for Aurora

IAM feature Amazon Aurora support

ACLs No

Attribute-based access control (ABAC) (tags in
policies)

Yes

Temporary credentials Yes

Forward access sessions Yes

Service roles Yes

Service-linked roles Yes

To get a high-level view of how Amazon Aurora and other AWS services work with IAM, see AWS
services that work with IAM in the IAM User Guide.

Topics

• Aurora identity-based policies

• Resource-based policies within Aurora

• Policy actions for Aurora

• Policy resources for Aurora

• Policy condition keys for Aurora

• Access control lists (ACLs) in Aurora

• Attribute-based access control (ABAC) in policies with Aurora tags

• Using temporary credentials with Aurora

• Forward access sessions for Aurora

• Service roles for Aurora

• Service-linked roles for Aurora

Aurora identity-based policies

Supports identity-based policies: Yes.

How Amazon Aurora works with IAM 3892

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html

Amazon Aurora User Guide for Aurora

Identity-based policies are JSON permissions policy documents that you can attach to an identity,
such as an IAM user, group of users, or role. These policies control what actions users and roles can
perform, on which resources, and under what conditions. To learn how to create an identity-based
policy, see Creating IAM policies in the IAM User Guide.

With IAM identity-based policies, you can specify allowed or denied actions and resources as well
as the conditions under which actions are allowed or denied. You can't specify the principal in an
identity-based policy because it applies to the user or role to which it is attached. To learn about all
of the elements that you can use in a JSON policy, see IAM JSON policy elements reference in the
IAM User Guide.

Identity-based policy examples for Aurora

To view examples of Aurora identity-based policies, see Identity-based policy examples for Amazon
Aurora.

Resource-based policies within Aurora

Supports resource-based policies: No.

Resource-based policies are JSON policy documents that you attach to a resource. Examples of
resource-based policies are IAM role trust policies and Amazon S3 bucket policies. In services that
support resource-based policies, service administrators can use them to control access to a specific
resource. For the resource where the policy is attached, the policy defines what actions a specified
principal can perform on that resource and under what conditions. You must specify a principal
in a resource-based policy. Principals can include accounts, users, roles, federated users, or AWS
services.

To enable cross-account access, you can specify an entire account or IAM entities in another
account as the principal in a resource-based policy. Adding a cross-account principal to a resource-
based policy is only half of establishing the trust relationship. When the principal and the resource
are in different AWS accounts, an IAM administrator in the trusted account must also grant
the principal entity (user or role) permission to access the resource. They grant permission by
attaching an identity-based policy to the entity. However, if a resource-based policy grants access
to a principal in the same account, no additional identity-based policy is required. For more
information, see Cross account resource access in IAM in the IAM User Guide.

Policy actions for Aurora

Supports policy actions: Yes.

How Amazon Aurora works with IAM 3893

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_principal.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies-cross-account-resource-access.html

Amazon Aurora User Guide for Aurora

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

The Action element of a JSON policy describes the actions that you can use to allow or deny
access in a policy. Policy actions usually have the same name as the associated AWS API operation.
There are some exceptions, such as permission-only actions that don't have a matching API
operation. There are also some operations that require multiple actions in a policy. These
additional actions are called dependent actions.

Include actions in a policy to grant permissions to perform the associated operation.

Policy actions in Aurora use the following prefix before the action: rds:. For example, to grant
someone permission to describe DB instances with the Amazon RDS DescribeDBInstances API
operation, you include the rds:DescribeDBInstances action in their policy. Policy statements
must include either an Action or NotAction element. Aurora defines its own set of actions that
describe tasks that you can perform with this service.

To specify multiple actions in a single statement, separate them with commas as follows.

"Action": [
 "rds:action1",
 "rds:action2"

You can specify multiple actions using wildcards (*). For example, to specify all actions that begin
with the word Describe, include the following action.

"Action": "rds:Describe*"

To see a list of Aurora actions, see Actions Defined by Amazon RDS in the Service Authorization
Reference.

Policy resources for Aurora

Supports policy resources: Yes.

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

The Resource JSON policy element specifies the object or objects to which the action applies.
Statements must include either a Resource or a NotResource element. As a best practice,

How Amazon Aurora works with IAM 3894

https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonrds.html#amazonrds-actions-as-permissions

Amazon Aurora User Guide for Aurora

specify a resource using its Amazon Resource Name (ARN). You can do this for actions that support
a specific resource type, known as resource-level permissions.

For actions that don't support resource-level permissions, such as listing operations, use a wildcard
(*) to indicate that the statement applies to all resources.

"Resource": "*"

The DB instance resource has the following Amazon Resource Name (ARN).

arn:${Partition}:rds:${Region}:${Account}:{ResourceType}/${Resource}

For more information about the format of ARNs, see Amazon Resource Names (ARNs) and AWS
service namespaces.

For example, to specify the dbtest DB instance in your statement, use the following ARN.

"Resource": "arn:aws:rds:us-west-2:123456789012:db:dbtest"

To specify all DB instances that belong to a specific account, use the wildcard (*).

"Resource": "arn:aws:rds:us-east-1:123456789012:db:*"

Some RDS API operations, such as those for creating resources, can't be performed on a specific
resource. In those cases, use the wildcard (*).

"Resource": "*"

Many Amazon RDS API operations involve multiple resources. For example, CreateDBInstance
creates a DB instance. You can specify that an user must use a specific security group and
parameter group when creating a DB instance. To specify multiple resources in a single statement,
separate the ARNs with commas.

"Resource": [
 "resource1",
 "resource2"

How Amazon Aurora works with IAM 3895

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference-arns.html
https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html
https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html

Amazon Aurora User Guide for Aurora

To see a list of Aurora resource types and their ARNs, see Resources Defined by Amazon RDS in
the Service Authorization Reference. To learn with which actions you can specify the ARN of each
resource, see Actions Defined by Amazon RDS.

Policy condition keys for Aurora

Supports service-specific policy condition keys: Yes.

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

The Condition element (or Condition block) lets you specify conditions in which a statement
is in effect. The Condition element is optional. You can create conditional expressions that use
condition operators, such as equals or less than, to match the condition in the policy with values in
the request.

If you specify multiple Condition elements in a statement, or multiple keys in a single
Condition element, AWS evaluates them using a logical AND operation. If you specify multiple
values for a single condition key, AWS evaluates the condition using a logical OR operation. All of
the conditions must be met before the statement's permissions are granted.

You can also use placeholder variables when you specify conditions. For example, you can grant
an IAM user permission to access a resource only if it is tagged with their IAM user name. For more
information, see IAM policy elements: variables and tags in the IAM User Guide.

AWS supports global condition keys and service-specific condition keys. To see all AWS global
condition keys, see AWS global condition context keys in the IAM User Guide.

Aurora defines its own set of condition keys and also supports using some global condition keys. To
see all AWS global condition keys, see AWS global condition context keys in the IAM User Guide.

All RDS API operations support the aws:RequestedRegion condition key.

To see a list of Aurora condition keys, see Condition Keys for Amazon RDS in the Service
Authorization Reference. To learn with which actions and resources you can use a condition key, see
Actions Defined by Amazon RDS.

Access control lists (ACLs) in Aurora

Supports access control lists (ACLs): No

How Amazon Aurora works with IAM 3896

https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonrds.html#amazonrds-resources-for-iam-policies
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonrds.html#amazonrds-actions-as-permissions
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition_operators.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_variables.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonrds.html#amazonrds-policy-keys
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonrds.html#amazonrds-actions-as-permissions

Amazon Aurora User Guide for Aurora

Access control lists (ACLs) control which principals (account members, users, or roles) have
permissions to access a resource. ACLs are similar to resource-based policies, although they do not
use the JSON policy document format.

Attribute-based access control (ABAC) in policies with Aurora tags

Supports attribute-based access control (ABAC) tags in policies: Yes

Attribute-based access control (ABAC) is an authorization strategy that defines permissions based
on attributes. In AWS, these attributes are called tags. You can attach tags to IAM entities (users or
roles) and to many AWS resources. Tagging entities and resources is the first step of ABAC. Then
you design ABAC policies to allow operations when the principal's tag matches the tag on the
resource that they are trying to access.

ABAC is helpful in environments that are growing rapidly and helps with situations where policy
management becomes cumbersome.

To control access based on tags, you provide tag information in the condition element of a policy
using the aws:ResourceTag/key-name, aws:RequestTag/key-name, or aws:TagKeys
condition keys.

If a service supports all three condition keys for every resource type, then the value is Yes for the
service. If a service supports all three condition keys for only some resource types, then the value is
Partial.

For more information about ABAC, see What is ABAC? in the IAM User Guide. To view a tutorial with
steps for setting up ABAC, see Use attribute-based access control (ABAC) in the IAM User Guide.

For more information about tagging Aurora resources, see Specifying conditions: Using custom
tags. To view an example identity-based policy for limiting access to a resource based on the
tags on that resource, see Grant permission for actions on a resource with a specific tag with two
different values.

Using temporary credentials with Aurora

Supports temporary credentials: Yes.

Some AWS services don't work when you sign in using temporary credentials. For additional
information, including which AWS services work with temporary credentials, see AWS services that
work with IAM in the IAM User Guide.

How Amazon Aurora works with IAM 3897

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction_attribute-based-access-control.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/tutorial_attribute-based-access-control.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html

Amazon Aurora User Guide for Aurora

You are using temporary credentials if you sign in to the AWS Management Console using
any method except a user name and password. For example, when you access AWS using your
company's single sign-on (SSO) link, that process automatically creates temporary credentials. You
also automatically create temporary credentials when you sign in to the console as a user and then
switch roles. For more information about switching roles, see Switching to a role (console) in the
IAM User Guide.

You can manually create temporary credentials using the AWS CLI or AWS API. You can then use
those temporary credentials to access AWS. AWS recommends that you dynamically generate
temporary credentials instead of using long-term access keys. For more information, see
Temporary security credentials in IAM.

Forward access sessions for Aurora

Supports forward access sessions: Yes.

When you use an IAM user or role to perform actions in AWS, you are considered a principal.
When you use some services, you might perform an action that then initiates another action in a
different service. FAS uses the permissions of the principal calling an AWS service, combined with
the requesting AWS service to make requests to downstream services. FAS requests are only made
when a service receives a request that requires interactions with other AWS services or resources to
complete. In this case, you must have permissions to perform both actions. For policy details when
making FAS requests, see Forward access sessions.

Service roles for Aurora

Supports service roles: Yes.

A service role is an IAM role that a service assumes to perform actions on your behalf. An IAM
administrator can create, modify, and delete a service role from within IAM. For more information,
see Creating a role to delegate permissions to an AWS service in the IAM User Guide.

Warning

Changing the permissions for a service role might break Aurora functionality. Edit service
roles only when Aurora provides guidance to do so.

How Amazon Aurora works with IAM 3898

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-console.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_forward_access_sessions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html

Amazon Aurora User Guide for Aurora

Service-linked roles for Aurora

Supports service-linked roles: Yes.

A service-linked role is a type of service role that is linked to an AWS service. The service can
assume the role to perform an action on your behalf. Service-linked roles appear in your AWS
account and are owned by the service. An IAM administrator can view, but not edit the permissions
for service-linked roles.

For details about using Aurora service-linked roles, see Using service-linked roles for Amazon
Aurora.

Identity-based policy examples for Amazon Aurora

By default, permission sets and roles don't have permission to create or modify Aurora resources.
They also can't perform tasks using the AWS Management Console, AWS CLI, or AWS API. An
administrator must create IAM policies that grant permission sets and roles permission to perform
specific API operations on the specified resources they need. The administrator must then attach
those policies to the permission sets or roles that require those permissions.

To learn how to create an IAM identity-based policy using these example JSON policy documents,
see Creating policies on the JSON tab in the IAM User Guide.

Topics

• Policy best practices

• Using the Aurora console

• Allow users to view their own permissions

• Allow a user to create DB instances in an AWS account

• Permissions required to use the console

• Allow a user to perform any describe action on any RDS resource

• Allow a user to create a DB instance that uses the specified DB parameter group and subnet
group

• Grant permission for actions on a resource with a specific tag with two different values

• Prevent a user from deleting a DB instance

• Deny all access to a resource

Identity-based policy examples 3899

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html#access_policies_create-json-editor

Amazon Aurora User Guide for Aurora

• Example policies: Using condition keys

• Specifying conditions: Using custom tags

Policy best practices

Identity-based policies determine whether someone can create, access, or delete Amazon RDS
resources in your account. These actions can incur costs for your AWS account. When you create or
edit identity-based policies, follow these guidelines and recommendations:

• Get started with AWS managed policies and move toward least-privilege permissions – To
get started granting permissions to your users and workloads, use the AWS managed policies
that grant permissions for many common use cases. They are available in your AWS account. We
recommend that you reduce permissions further by defining AWS customer managed policies
that are specific to your use cases. For more information, see AWS managed policies or AWS
managed policies for job functions in the IAM User Guide.

• Apply least-privilege permissions – When you set permissions with IAM policies, grant only the
permissions required to perform a task. You do this by defining the actions that can be taken on
specific resources under specific conditions, also known as least-privilege permissions. For more
information about using IAM to apply permissions, see Policies and permissions in IAM in the
IAM User Guide.

• Use conditions in IAM policies to further restrict access – You can add a condition to your
policies to limit access to actions and resources. For example, you can write a policy condition to
specify that all requests must be sent using SSL. You can also use conditions to grant access to
service actions if they are used through a specific AWS service, such as AWS CloudFormation. For
more information, see IAM JSON policy elements: Condition in the IAM User Guide.

• Use IAM Access Analyzer to validate your IAM policies to ensure secure and functional
permissions – IAM Access Analyzer validates new and existing policies so that the policies
adhere to the IAM policy language (JSON) and IAM best practices. IAM Access Analyzer provides
more than 100 policy checks and actionable recommendations to help you author secure and
functional policies. For more information, see IAM Access Analyzer policy validation in the IAM
User Guide.

• Require multi-factor authentication (MFA) – If you have a scenario that requires IAM users
or a root user in your AWS account, turn on MFA for additional security. To require MFA when
API operations are called, add MFA conditions to your policies. For more information, see
Configuring MFA-protected API access in the IAM User Guide.

Identity-based policy examples 3900

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#aws-managed-policies
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_job-functions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_job-functions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access-analyzer-policy-validation.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa_configure-api-require.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa_configure-api-require.html

Amazon Aurora User Guide for Aurora

For more information about best practices in IAM, see Security best practices in IAM in the IAM User
Guide.

Using the Aurora console

To access the Amazon Aurora console, you must have a minimum set of permissions. These
permissions must allow you to list and view details about the Amazon Aurora resources in your
AWS account. If you create an identity-based policy that is more restrictive than the minimum
required permissions, the console won't function as intended for entities (users or roles) with that
policy.

You don't need to allow minimum console permissions for users that are making calls only to the
AWS CLI or the AWS API. Instead, allow access to only the actions that match the API operation
that you're trying to perform.

To ensure that those entities can still use the Aurora console, also attach the following AWS
managed policy to the entities.

AmazonRDSReadOnlyAccess

For more information, see Adding permissions to a user in the IAM User Guide.

Allow users to view their own permissions

This example shows how you might create a policy that allows IAM users to view the inline and
managed policies that are attached to their user identity. This policy includes permissions to
complete this action on the console or programmatically using the AWS CLI or AWS API.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "ViewOwnUserInfo",
 "Effect": "Allow",
 "Action": [
 "iam:GetUserPolicy",
 "iam:ListGroupsForUser",
 "iam:ListAttachedUserPolicies",
 "iam:ListUserPolicies",
 "iam:GetUser"
],

Identity-based policy examples 3901

https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_change-permissions.html#users_change_permissions-add-console

Amazon Aurora User Guide for Aurora

 "Resource": ["arn:aws:iam::*:user/${aws:username}"]
 },
 {
 "Sid": "NavigateInConsole",
 "Effect": "Allow",
 "Action": [
 "iam:GetGroupPolicy",
 "iam:GetPolicyVersion",
 "iam:GetPolicy",
 "iam:ListAttachedGroupPolicies",
 "iam:ListGroupPolicies",
 "iam:ListPolicyVersions",
 "iam:ListPolicies",
 "iam:ListUsers"
],
 "Resource": "*"
 }
]
}

Allow a user to create DB instances in an AWS account

The following is an example policy that allows the account with the ID 123456789012 to create
DB instances for your AWS account. The policy requires that the name of the new DB instance
begin with test. The new DB instance must also use the MySQL database engine and the
db.t2.micro DB instance class. In addition, the new DB instance must use an option group and a
DB parameter group that starts with default, and it must use the default subnet group.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "AllowCreateDBInstanceOnly",
 "Effect": "Allow",
 "Action": [
 "rds:CreateDBInstance"
],
 "Resource": [
 "arn:aws:rds:*:123456789012:db:test*",
 "arn:aws:rds:*:123456789012:og:default*",
 "arn:aws:rds:*:123456789012:pg:default*",
 "arn:aws:rds:*:123456789012:subgrp:default"

Identity-based policy examples 3902

Amazon Aurora User Guide for Aurora

],
 "Condition": {
 "StringEquals": {
 "rds:DatabaseEngine": "mysql",
 "rds:DatabaseClass": "db.t2.micro"
 }
 }
 }
]
}

The policy includes a single statement that specifies the following permissions for the user:

• The policy allows the account to create a DB instance using the CreateDBInstance API operation
(this also applies to the create-db-instance AWS CLI command and the AWS Management
Console).

• The Resource element specifies that the user can perform actions on or with resources. You
specify resources using an Amazon Resources Name (ARN). This ARN includes the name of
the service that the resource belongs to (rds), the AWS Region (* indicates any region in this
example), the AWS account number (123456789012 is the account number in this example),
and the type of resource. For more information about creating ARNs, see Working with Amazon
Resource Names (ARNs) in Amazon RDS.

The Resource element in the example specifies the following policy constraints on resources for
the user:

• The DB instance identifier for the new DB instance must begin with test (for example,
testCustomerData1, test-region2-data).

• The option group for the new DB instance must begin with default.

• The DB parameter group for the new DB instance must begin with default.

• The subnet group for the new DB instance must be the default subnet group.

• The Condition element specifies that the DB engine must be MySQL and the DB instance
class must be db.t2.micro. The Condition element specifies the conditions when a policy
should take effect. You can add additional permissions or restrictions by using the Condition
element. For more information about specifying conditions, see Policy condition keys for Aurora.
This example specifies the rds:DatabaseEngine and rds:DatabaseClass conditions. For
information about the valid condition values for rds:DatabaseEngine, see the list under the

Identity-based policy examples 3903

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateDBInstance.html
https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-instance.html

Amazon Aurora User Guide for Aurora

Engine parameter in CreateDBInstance. For information about the valid condition values for
rds:DatabaseClass, see Supported DB engines for DB instance classes.

The policy doesn't specify the Principal element because in an identity-based policy you don't
specify the principal who gets the permission. When you attach policy to a user, the user is the
implicit principal. When you attach a permission policy to an IAM role, the principal identified in
the role's trust policy gets the permissions.

To see a list of Aurora actions, see Actions Defined by Amazon RDS in the Service Authorization
Reference.

Permissions required to use the console

For a user to work with the console, that user must have a minimum set of permissions. These
permissions allow the user to describe the Amazon Aurora resources for their AWS account and to
provide other related information, including Amazon EC2 security and network information.

If you create an IAM policy that is more restrictive than the minimum required permissions, the
console doesn't function as intended for users with that IAM policy. To ensure that those users can
still use the console, also attach the AmazonRDSReadOnlyAccess managed policy to the user, as
described in Managing access using policies.

You don't need to allow minimum console permissions for users that are making calls only to the
AWS CLI or the Amazon RDS API.

The following policy grants full access to all Amazon Aurora resources for the root AWS account:

AmazonRDSFullAccess

Allow a user to perform any describe action on any RDS resource

The following permissions policy grants permissions to a user to run all of the actions that begin
with Describe. These actions show information about an RDS resource, such as a DB instance.
The wildcard character (*) in the Resource element indicates that the actions are allowed for all
Amazon Aurora resources owned by the account.

{

Identity-based policy examples 3904

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateDBInstance.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonrds.html#amazonrds-actions-as-permissions

Amazon Aurora User Guide for Aurora

 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "AllowRDSDescribe",
 "Effect": "Allow",
 "Action": "rds:Describe*",
 "Resource": "*"
 }
]
}

Allow a user to create a DB instance that uses the specified DB parameter group
and subnet group

The following permissions policy grants permissions to allow a user to only create a DB instance
that must use the mydbpg DB parameter group and the mydbsubnetgroup DB subnet group.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "VisualEditor0",
 "Effect": "Allow",
 "Action": "rds:CreateDBInstance",
 "Resource": [
 "arn:aws:rds:*:*:pg:mydbpg",
 "arn:aws:rds:*:*:subgrp:mydbsubnetgroup"
]
 }
]
}

Grant permission for actions on a resource with a specific tag with two different
values

You can use conditions in your identity-based policy to control access to Aurora resources based on
tags. The following policy allows permission to perform the CreateDBSnapshot API operation on
DB instances with either the stage tag set to development or test.

{
 "Version":"2012-10-17",

Identity-based policy examples 3905

Amazon Aurora User Guide for Aurora

 "Statement":[
 {
 "Sid":"AllowAnySnapshotName",
 "Effect":"Allow",
 "Action":[
 "rds:CreateDBSnapshot"
],
 "Resource":"arn:aws:rds:*:123456789012:snapshot:*"
 },
 {
 "Sid":"AllowDevTestToCreateSnapshot",
 "Effect":"Allow",
 "Action":[
 "rds:CreateDBSnapshot"
],
 "Resource":"arn:aws:rds:*:123456789012:db:*",
 "Condition":{
 "StringEquals":{
 "rds:db-tag/stage":[
 "development",
 "test"
]
 }
 }
 }
]
}

The following policy allows permission to perform the ModifyDBInstance API operation on DB
instances with either the stage tag set to development or test.

{
 "Version":"2012-10-17",
 "Statement":[
 {
 "Sid":"AllowChangingParameterOptionSecurityGroups",
 "Effect":"Allow",
 "Action":[
 "rds:ModifyDBInstance"
],
 "Resource": [
 "arn:aws:rds:*:123456789012:pg:*",
 "arn:aws:rds:*:123456789012:secgrp:*",

Identity-based policy examples 3906

Amazon Aurora User Guide for Aurora

 "arn:aws:rds:*:123456789012:og:*"
]
 },
 {
 "Sid":"AllowDevTestToModifyInstance",
 "Effect":"Allow",
 "Action":[
 "rds:ModifyDBInstance"
],
 "Resource":"arn:aws:rds:*:123456789012:db:*",
 "Condition":{
 "StringEquals":{
 "rds:db-tag/stage":[
 "development",
 "test"
]
 }
 }
 }
]
}

Prevent a user from deleting a DB instance

The following permissions policy grants permissions to prevent a user from deleting a specific DB
instance. For example, you might want to deny the ability to delete your production DB instances
to any user that is not an administrator.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "DenyDelete1",
 "Effect": "Deny",
 "Action": "rds:DeleteDBInstance",
 "Resource": "arn:aws:rds:us-west-2:123456789012:db:my-mysql-instance"
 }
]
}

Identity-based policy examples 3907

Amazon Aurora User Guide for Aurora

Deny all access to a resource

You can explicitly deny access to a resource. Deny policies take precedence over allow policies. The
following policy explicitly denies a user the ability to manage a resource:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Deny",
 "Action": "rds:*",
 "Resource": "arn:aws:rds:us-east-1:123456789012:db:mydb"
 }
]
}

Example policies: Using condition keys

Following are examples of how you can use condition keys in Amazon Aurora IAM permissions
policies.

Example 1: Grant permission to create a DB instance that uses a specific DB engine and isn't
MultiAZ

The following policy uses an RDS condition key and allows a user to create only DB instances that
use the MySQL database engine and don't use MultiAZ. The Condition element indicates the
requirement that the database engine is MySQL.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "AllowMySQLCreate",
 "Effect": "Allow",
 "Action": "rds:CreateDBInstance",
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "rds:DatabaseEngine": "mysql"
 },
 "Bool": {

Identity-based policy examples 3908

Amazon Aurora User Guide for Aurora

 "rds:MultiAz": false
 }
 }
 }
]
}

Example 2: Explicitly deny permission to create DB instances for certain DB instance classes and
create DB instances that use Provisioned IOPS

The following policy explicitly denies permission to create DB instances that use the DB instance
classes r3.8xlarge and m4.10xlarge, which are the largest and most expensive DB instance
classes. This policy also prevents users from creating DB instances that use Provisioned IOPS, which
incurs an additional cost.

Explicitly denying permission supersedes any other permissions granted. This ensures that
identities to not accidentally get permission that you never want to grant.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "DenyLargeCreate",
 "Effect": "Deny",
 "Action": "rds:CreateDBInstance",
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "rds:DatabaseClass": [
 "db.r3.8xlarge",
 "db.m4.10xlarge"
]
 }
 }
 },
 {
 "Sid": "DenyPIOPSCreate",
 "Effect": "Deny",
 "Action": "rds:CreateDBInstance",
 "Resource": "*",
 "Condition": {
 "NumericNotEquals": {

Identity-based policy examples 3909

Amazon Aurora User Guide for Aurora

 "rds:Piops": "0"
 }
 }
 }
]
}

Example 3: Limit the set of tag keys and values that can be used to tag a resource

The following policy uses an RDS condition key and allows the addition of a tag with the key stage
to be added to a resource with the values test, qa, and production.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "rds:AddTagsToResource",
 "rds:RemoveTagsFromResource"
],
 "Resource": "*",
 "Condition": {
 "streq": {
 "rds:req-tag/stage": [
 "test",
 "qa",
 "production"
]
 }
 }
 }
]
}

Specifying conditions: Using custom tags

Amazon Aurora supports specifying conditions in an IAM policy using custom tags.

For example, suppose that you add a tag named environment to your DB instances with values
such as beta, staging, production, and so on. If you do, you can create a policy that restricts
certain users to DB instances based on the environment tag value.

Identity-based policy examples 3910

Amazon Aurora User Guide for Aurora

Note

Custom tag identifiers are case-sensitive.

The following table lists the RDS tag identifiers that you can use in a Condition element.

RDS tag identifier Applies to

db-tag DB instances, including read replicas

snapshot-tag DB snapshots

ri-tag Reserved DB instances

og-tag DB option groups

pg-tag DB parameter groups

subgrp-tag DB subnet groups

es-tag Event subscriptions

cluster-tag DB clusters

cluster-pg-tag DB cluster parameter groups

cluster-snapshot-tag DB cluster snapshots

The syntax for a custom tag condition is as follows:

"Condition":{"StringEquals":{"rds:rds-tag-identifier/tag-name":
["value"]} }

For example, the following Condition element applies to DB instances with a tag named
environment and a tag value of production.

"Condition":{"StringEquals":{"rds:db-tag/environment": ["production"]} }

For information about creating tags, see Tagging Amazon Aurora and Amazon RDS resources.

Identity-based policy examples 3911

Amazon Aurora User Guide for Aurora

Important

If you manage access to your RDS resources using tagging, we recommend that you
secure access to the tags for your RDS resources. You can manage access to tags by
creating policies for the AddTagsToResource and RemoveTagsFromResource actions.
For example, the following policy denies users the ability to add or remove tags for all
resources. You can then create policies to allow specific users to add or remove tags.

{
 "Version":"2012-10-17",
 "Statement":[
 {
 "Sid":"DenyTagUpdates",
 "Effect":"Deny",
 "Action":[
 "rds:AddTagsToResource",
 "rds:RemoveTagsFromResource"
],
 "Resource":"*"
 }
]
}

To see a list of Aurora actions, see Actions Defined by Amazon RDS in the Service Authorization
Reference.

Example policies: Using custom tags

Following are examples of how you can use custom tags in Amazon Aurora IAM permissions
policies. For more information about adding tags to an Amazon Aurora resource, see Working with
Amazon Resource Names (ARNs) in Amazon RDS.

Note

All examples use the us-west-2 region and contain fictitious account IDs.

Identity-based policy examples 3912

https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonrds.html#amazonrds-actions-as-permissions

Amazon Aurora User Guide for Aurora

Example 1: Grant permission for actions on a resource with a specific tag with two different
values

The following policy allows permission to perform the CreateDBSnapshot API operation on DB
instances with either the stage tag set to development or test.

{
 "Version":"2012-10-17",
 "Statement":[
 {
 "Sid":"AllowAnySnapshotName",
 "Effect":"Allow",
 "Action":[
 "rds:CreateDBSnapshot"
],
 "Resource":"arn:aws:rds:*:123456789012:snapshot:*"
 },
 {
 "Sid":"AllowDevTestToCreateSnapshot",
 "Effect":"Allow",
 "Action":[
 "rds:CreateDBSnapshot"
],
 "Resource":"arn:aws:rds:*:123456789012:db:*",
 "Condition":{
 "StringEquals":{
 "rds:db-tag/stage":[
 "development",
 "test"
]
 }
 }
 }
]
}

The following policy allows permission to perform the ModifyDBInstance API operation on DB
instances with either the stage tag set to development or test.

{
 "Version":"2012-10-17",
 "Statement":[

Identity-based policy examples 3913

Amazon Aurora User Guide for Aurora

 {
 "Sid":"AllowChangingParameterOptionSecurityGroups",
 "Effect":"Allow",
 "Action":[
 "rds:ModifyDBInstance"
],
 "Resource":" [
 "arn:aws:rds:*:123456789012:pg:*",
 "arn:aws:rds:*:123456789012:secgrp:*",
 "arn:aws:rds:*:123456789012:og:*"
]
 },
 {
 "Sid":"AllowDevTestToModifyInstance",
 "Effect":"Allow",
 "Action":[
 "rds:ModifyDBInstance"
],
 "Resource":"arn:aws:rds:*:123456789012:db:*",
 "Condition":{
 "StringEquals":{
 "rds:db-tag/stage":[
 "development",
 "test"
]
 }
 }
 }
]
}

Example 2: Explicitly deny permission to create a DB instance that uses specified DB parameter
groups

The following policy explicitly denies permission to create a DB instance that uses DB parameter
groups with specific tag values. You might apply this policy if you require that a specific customer-
created DB parameter group always be used when creating DB instances. Policies that use Deny are
most often used to restrict access that was granted by a broader policy.

Explicitly denying permission supersedes any other permissions granted. This ensures that
identities to not accidentally get permission that you never want to grant.

Identity-based policy examples 3914

Amazon Aurora User Guide for Aurora

{
 "Version":"2012-10-17",
 "Statement":[
 {
 "Sid":"DenyProductionCreate",
 "Effect":"Deny",
 "Action":"rds:CreateDBInstance",
 "Resource":"arn:aws:rds:*:123456789012:pg:*",
 "Condition":{
 "StringEquals":{
 "rds:pg-tag/usage":"prod"
 }
 }
 }
]
}

Example 3: Grant permission for actions on a DB instance with an instance name that is
prefixed with a user name

The following policy allows permission to call any API (except to AddTagsToResource or
RemoveTagsFromResource) on a DB instance that has a DB instance name that is prefixed with
the user's name and that has a tag called stage equal to devo or that has no tag called stage.

The Resource line in the policy identifies a resource by its Amazon Resource Name (ARN). For
more information about using ARNs with Amazon Aurora resources, see Working with Amazon
Resource Names (ARNs) in Amazon RDS.

{
 "Version":"2012-10-17",
 "Statement":[
 {
 "Sid":"AllowFullDevAccessNoTags",
 "Effect":"Allow",
 "NotAction":[
 "rds:AddTagsToResource",
 "rds:RemoveTagsFromResource"
],
 "Resource":"arn:aws:rds:*:123456789012:db:${aws:username}*",
 "Condition":{
 "StringEqualsIfExists":{
 "rds:db-tag/stage":"devo"

Identity-based policy examples 3915

Amazon Aurora User Guide for Aurora

 }
 }
 }
]
}

Identity-based policy examples 3916

Amazon Aurora User Guide for Aurora

AWS managed policies for Amazon RDS

To add permissions to permission sets and roles, it's easier to use AWS managed policies than to
write policies yourself. It takes time and expertise to create IAM customer managed policies that
provide your team with only the permissions they need. To get started quickly, you can use our
AWS managed policies. These policies cover common use cases and are available in your AWS
account. For more information about AWS managed policies, see AWS managed policies in the IAM
User Guide.

AWS services maintain and update AWS managed policies. You can't change the permissions in
AWS managed policies. Services occasionally add additional permissions to an AWS managed
policy to support new features. This type of update affects all identities (permission sets and
roles) where the policy is attached. Services are most likely to update an AWS managed policy
when a new feature is launched or when new operations become available. Services don't remove
permissions from an AWS managed policy, so policy updates don't break your existing permissions.

Additionally, AWS supports managed policies for job functions that span multiple services. For
example, the ReadOnlyAccess AWS managed policy provides read-only access to all AWS services
and resources. When a service launches a new feature, AWS adds read-only permissions for new
operations and resources. For a list and descriptions of job function policies, see AWS managed
policies for job functions in the IAM User Guide.

Topics

• AWS managed policy: AmazonRDSReadOnlyAccess

• AWS managed policy: AmazonRDSFullAccess

• AWS managed policy: AmazonRDSDataFullAccess

• AWS managed policy: AmazonRDSEnhancedMonitoringRole

• AWS managed policy: AmazonRDSPerformanceInsightsReadOnly

• AWS managed policy: AmazonRDSPerformanceInsightsFullAccess

• AWS managed policy: AmazonRDSDirectoryServiceAccess

• AWS managed policy: AmazonRDSServiceRolePolicy

AWS managed policy: AmazonRDSReadOnlyAccess

This policy allows read-only access to Amazon RDS through the AWS Management Console.

AWS managed policies 3917

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create-console.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#aws-managed-policies
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_job-functions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_job-functions.html

Amazon Aurora User Guide for Aurora

Permissions details

This policy includes the following permissions:

• rds – Allows principals to describe Amazon RDS resources and list the tags for Amazon RDS
resources.

• cloudwatch – Allows principals to get Amazon CloudWatch metric statistics.

• ec2 – Allows principals to describe Availability Zones and networking resources.

• logs – Allows principals to describe CloudWatch Logs log streams of log groups, and get
CloudWatch Logs log events.

• devops-guru – Allows principals to describe resources that have Amazon DevOps Guru
coverage, which is specified either by CloudFormation stack names or resource tags.

For more information about this policy, including the JSON policy document, see
AmazonRDSReadOnlyAccess in the AWS Managed Policy Reference Guide.

AWS managed policy: AmazonRDSFullAccess

This policy provides full access to Amazon RDS through the AWS Management Console.

Permissions details

This policy includes the following permissions:

• rds – Allows principals full access to Amazon RDS.

• application-autoscaling – Allows principals describe and manage Application Auto Scaling
scaling targets and policies.

• cloudwatch – Allows principals get CloudWatch metric statics and manage CloudWatch alarms.

• ec2 – Allows principals to describe Availability Zones and networking resources.

• logs – Allows principals to describe CloudWatch Logs log streams of log groups, and get
CloudWatch Logs log events.

• outposts – Allows principals to get AWS Outposts instance types.

• pi – Allows principals to get Performance Insights metrics.

• sns – Allows principals to Amazon Simple Notification Service (Amazon SNS) subscriptions and
topics, and to publish Amazon SNS messages.

AWS managed policies 3918

https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AmazonRDSReadOnlyAccess.html

Amazon Aurora User Guide for Aurora

• devops-guru – Allows principals to describe resources that have Amazon DevOps Guru
coverage, which is specified either by CloudFormation stack names or resource tags.

For more information about this policy, including the JSON policy document, see
AmazonRDSFullAccess in the AWS Managed Policy Reference Guide.

AWS managed policy: AmazonRDSDataFullAccess

This policy allows full access to use the Data API and the query editor on Aurora Serverless clusters
in a specific AWS account. This policy allows the AWS account to get the value of a secret from
AWS Secrets Manager.

You can attach the AmazonRDSDataFullAccess policy to your IAM identities.

Permissions details

This policy includes the following permissions:

• dbqms – Allows principals to access, create, delete, describe, and update queries. The Database
Query Metadata Service (dbqms) is an internal-only service. It provides your recent and saved
queries for the query editor on the AWS Management Console for multiple AWS services,
including Amazon RDS.

• rds-data – Allows principals to run SQL statements on Aurora Serverless databases.

• secretsmanager – Allows principals to get the value of a secret from AWS Secrets Manager.

For more information about this policy, including the JSON policy document, see
AmazonRDSDataFullAccess in the AWS Managed Policy Reference Guide.

AWS managed policy: AmazonRDSEnhancedMonitoringRole

This policy provides access to Amazon CloudWatch Logs for Amazon RDS Enhanced Monitoring.

Permissions details

This policy includes the following permissions:

• logs – Allows principals to create CloudWatch Logs log groups and retention policies, and to
create and describe CloudWatch Logs log streams of log groups. It also allows principals to put
and get CloudWatch Logs log events.

AWS managed policies 3919

https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AmazonRDSFullAccess.html
https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AmazonRDSDataFullAccess.html

Amazon Aurora User Guide for Aurora

For more information about this policy, including the JSON policy document, see
AmazonRDSEnhancedMonitoringRole in the AWS Managed Policy Reference Guide.

AWS managed policy: AmazonRDSPerformanceInsightsReadOnly

This policy provides read-only access to Amazon RDS Performance Insights for Amazon RDS DB
instances and Amazon Aurora DB clusters.

This policy now includes Sid (statement ID) as an identifier for the policy statement.

Permissions details

This policy includes the following permissions:

• rds – Allows principals to describe Amazon RDS DB instances and Amazon Aurora DB clusters.

• pi – Allows principals make calls to the Amazon RDS Performance Insights API and access
Performance Insights metrics.

For more information about this policy, including the JSON policy document, see
AmazonRDSPerformanceInsightsReadOnly in the AWS Managed Policy Reference Guide.

AWS managed policy: AmazonRDSPerformanceInsightsFullAccess

This policy provides full access to Amazon RDS Performance Insights for Amazon RDS DB instances
and Amazon Aurora DB clusters.

This policy now includes Sid (statement ID) as an identifier for the policy statement.

Permissions details

This policy includes the following permissions:

• rds – Allows principals to describe Amazon RDS DB instances and Amazon Aurora DB clusters.

• pi – Allows principals make calls to the Amazon RDS Performance Insights API, and create, view,
and delete performance analysis reports.

• cloudwatch – Allows principals to list all the Amazon CloudWatch metrics, and get metric data
and statistics.

For more information about this policy, including the JSON policy document, see
AmazonRDSPerformanceInsightsFullAccess in the AWS Managed Policy Reference Guide.

AWS managed policies 3920

https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AmazonRDSEnhancedMonitoringRole.html
https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AmazonRDSPerformanceInsightsReadOnly.html
https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AmazonRDSPerformanceInsightsFullAccess.html

Amazon Aurora User Guide for Aurora

AWS managed policy: AmazonRDSDirectoryServiceAccess

This policy allows Amazon RDS to make calls to the AWS Directory Service.

Permissions details

This policy includes the following permission:

• ds – Allows principals to describe AWS Directory Service directories and control authorization to
AWS Directory Service directories.

For more information about this policy, including the JSON policy document, see
AmazonRDSDirectoryServiceAccess in the AWS Managed Policy Reference Guide.

AWS managed policy: AmazonRDSServiceRolePolicy

You can't attach the AmazonRDSServiceRolePolicy policy to your IAM entities. This policy is
attached to a service-linked role that allows Amazon RDS to perform actions on your behalf. For
more information, see Service-linked role permissions for Amazon Aurora.

AWS managed policies 3921

https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AmazonRDSDirectoryServiceAccess.html

Amazon Aurora User Guide for Aurora

Amazon RDS updates to AWS managed policies

View details about updates to AWS managed policies for Amazon RDS since this service began
tracking these changes. For automatic alerts about changes to this page, subscribe to the RSS feed
on the Amazon RDS Document history page.

Change Description Date

AWS managed policy:
AmazonRDSServiceRolePolicy
– Update to existing policy

Amazon RDS removed
sns:Publish permissio
n from the AmazonRDS
ServiceRolePolicy
of the AWSServic
eRoleForRDS service-l
inked role. For more informati
on, see AWS managed
policy: AmazonRDSServiceRo
lePolicy.

July 2, 2024

AWS managed policies for
Amazon RDS – Update to
existing policy

Amazon RDS added a new
permission to the AmazonRDS
CustomServiceRoleP
olicy of the AWSServic
eRoleForRDSCustom
service-linked role to allow
RDS Custom for SQL Server
to modify the underlyin
g database host instance
type. RDS also added the
ec2:DescribeInstan
ceTypes permission to
get instance type informati
on for database host. For
more information, see AWS
managed policies for Amazon
RDS.

April 8, 2024

Policy updates 3922

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/WhatsNew.html

Amazon Aurora User Guide for Aurora

Change Description Date

AWS managed policies for
Amazon RDS – New policy

Amazon RDS added a
new managed policy
named AmazonRDS
Custom InstanceProfileRo
lePolicy to allow RDS
Custom to perform automatio
n actions and database
management tasks through
an EC2 instance profile. For
more information, see AWS
managed policies for Amazon
RDS.

February 27, 2024

Service-linked role permissio
ns for Amazon Aurora –
Update to an existing policy

Amazon RDS added new
statement IDs to the
AmazonRDSServiceRo
lePolicy of the
AWSServiceRoleForRDS
service-linked role.

For more information, see
Service-linked role permissio
ns for Amazon Aurora.

January 19, 2024

Policy updates 3923

Amazon Aurora User Guide for Aurora

Change Description Date

AWS managed policies for
Amazon RDS – Update to
existing policies

The AmazonRDSPerforman
ceInsightsReadOnly
and AmazonRDSPerforman
ceInsightsFullAcce
ss managed policies now
includes Sid (statement ID)
as an identifier in the policy
statement.

For more information,
see AWS managed policy:
AmazonRDSPerforman
ceInsightsReadOnly and AWS
managed policy: AmazonRDS
PerformanceInsightsFullAcce
ss

October 23, 2023

AWS managed policies for
Amazon RDS – Update to
existing policy

Amazon RDS added new
permissions to AmazonRDS
FullAccess managed
policy. The permissions allow
you to generate, view, and
delete the performance
analysis report for a time
period.

For more information about
configuring access policies
for Performance Insights, see
Configuring access policies for
Performance Insights

August 17, 2023

Policy updates 3924

Amazon Aurora User Guide for Aurora

Change Description Date

AWS managed policies for
Amazon RDS – New policy
and update to existing policy

Amazon RDS added new
permissions to AmazonRDS
PerformanceInsight
sReadOnly managed
policy and a new managed
policy named AmazonRDS
PerformanceInsight
sFullAccess . These
permissions allow you to
analyse the Performance
Insights for a time period,
view the analysis results
along with the recommend
ations, and delete the reports.

For more information about
configuring access policies
for Performance Insights, see
Configuring access policies for
Performance Insights

August 16, 2023

Policy updates 3925

Amazon Aurora User Guide for Aurora

Change Description Date

AWS managed policies for
Amazon RDS – Update to an
existing policy

Amazon RDS added a
new Amazon CloudWatch
namespace ListMetrics
to AmazonRDSFullAcces
s and AmazonRDS
ReadOnlyAccess .

This namespace is required
for Amazon RDS to list
specific resource usage
metrics.

For more information, see
Overview of managing
access permissions to your
CloudWatch resources in the
Amazon CloudWatch User
Guide.

April 4, 2023

Policy updates 3926

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/iam-access-control-overview-cw.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/iam-access-control-overview-cw.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/iam-access-control-overview-cw.html

Amazon Aurora User Guide for Aurora

Change Description Date

Service-linked role permissio
ns for Amazon Aurora –
Update to an existing policy

Amazon RDS added
new permissions to the
AmazonRDSServiceRo
lePolicy of the
AWSServiceRoleForR
DS service-linked role for
integration with AWS Secrets
Manager. RDS requires
integration with Secrets
Manager for managing
master user passwords in
Secrets Manager. The secret
uses a reserved naming
convention and restricts
customer updates.

For more information, see
Password management with
Amazon Aurora and AWS
Secrets Manager.

December 22, 2022

Policy updates 3927

Amazon Aurora User Guide for Aurora

Change Description Date

AWS managed policies for
Amazon RDS – Update to
existing policies

Amazon RDS added a
new permission to the
AmazonRDSFullAccess
and AmazonRDSReadOnlyA
ccess managed policies to
allow you to turn on Amazon
DevOps Guru in the RDS
console. This permission is
required to check whether
DevOps Guru is turned on.

For more information, see
Configuring IAM access
policies for DevOps Guru for
RDS.

December 19, 2022

Service-linked role permissio
ns for Amazon Aurora –
Update to an existing policy

Amazon RDS added a
new Amazon CloudWatch
namespace to AmazonRDS
PreviewServiceRole
Policy for PutMetric
Data .

This namespace is required
for Amazon RDS to publish
resource usage metrics.

For more information, see
Using condition keys to
limit access to CloudWatch
namespaces in the Amazon
CloudWatch User Guide.

June 7, 2022

Policy updates 3928

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/iam-cw-condition-keys-namespace.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/iam-cw-condition-keys-namespace.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/iam-cw-condition-keys-namespace.html

Amazon Aurora User Guide for Aurora

Change Description Date

Service-linked role permissio
ns for Amazon Aurora –
Update to an existing policy

Amazon RDS added a
new Amazon CloudWatch
namespace to AmazonRDS
BetaServiceRolePol
icy for PutMetricData .

This namespace is required
for Amazon RDS to publish
resource usage metrics.

For more information, see
Using condition keys to
limit access to CloudWatch
namespaces in the Amazon
CloudWatch User Guide.

June 7, 2022

Service-linked role permissio
ns for Amazon Aurora –
Update to an existing policy

Amazon RDS added a
new Amazon CloudWatch
namespace to AWSServic
eRoleForRDS for
PutMetricData .

This namespace is required
for Amazon RDS to publish
resource usage metrics.

For more information, see
Using condition keys to
limit access to CloudWatch
namespaces in the Amazon
CloudWatch User Guide.

April 22, 2022

Policy updates 3929

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/iam-cw-condition-keys-namespace.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/iam-cw-condition-keys-namespace.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/iam-cw-condition-keys-namespace.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/iam-cw-condition-keys-namespace.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/iam-cw-condition-keys-namespace.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/iam-cw-condition-keys-namespace.html

Amazon Aurora User Guide for Aurora

Change Description Date

AWS managed policies for
Amazon RDS – New policy

Amazon RDS added a new
managed policy named
AmazonRDSPerforman
ceInsightsReadOnly
to allow Amazon RDS to call
AWS services on behalf of
your DB instances.

For more information about
configuring access policies
for Performance Insights, see
Configuring access policies for
Performance Insights

March 10, 2022

Service-linked role permissio
ns for Amazon Aurora –
Update to an existing policy

Amazon RDS added new
Amazon CloudWatch
namespaces to AWSServic
eRoleForRDS for
PutMetricData .

These namespaces are
required for Amazon
DocumentDB (with MongoDB
compatibility) and Amazon
Neptune to publish
CloudWatch metrics.

For more information, see
Using condition keys to
limit access to CloudWatch
namespaces in the Amazon
CloudWatch User Guide.

March 4, 2022

Amazon RDS started tracking
changes

Amazon RDS started tracking
changes for its AWS managed
policies.

October 26, 2021

Policy updates 3930

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/iam-cw-condition-keys-namespace.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/iam-cw-condition-keys-namespace.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/iam-cw-condition-keys-namespace.html

Amazon Aurora User Guide for Aurora

Policy updates 3931

Amazon Aurora User Guide for Aurora

Preventing cross-service confused deputy problems

The confused deputy problem is a security issue where an entity that doesn't have permission to
perform an action can coerce a more-privileged entity to perform the action. In AWS, cross-service
impersonation can result in the confused deputy problem.

Cross-service impersonation can occur when one service (the calling service) calls another service
(the called service). The calling service can be manipulated to use its permissions to act on another
customer's resources in a way that it shouldn't have permission to access. To prevent this, AWS
provides tools that can help you protect your data for all services with service principals that have
been given access to resources in your account. For more information, see The confused deputy
problem in the IAM User Guide.

To limit the permissions that Amazon RDS gives another service for a specific resource, we
recommend using the aws:SourceArn and aws:SourceAccount global condition context keys in
resource policies.

In some cases, the aws:SourceArn value doesn't contain the account ID, for example when
you use the Amazon Resource Name (ARN) for an Amazon S3 bucket. In these cases, make sure
to use both global condition context keys to limit permissions. In some cases, you use both
global condition context keys and the aws:SourceArn value contains the account ID. In these
cases, make sure that the aws:SourceAccount value and the account in the aws:SourceArn
use the same account ID when they're used in the same policy statement. If you want only one
resource to be associated with the cross-service access, use aws:SourceArn. If you want to
allow any resource in the specified AWS account to be associated with the cross-service use, use
aws:SourceAccount.

Make sure that the value of aws:SourceArn is an ARN for an Amazon RDS resource type. For
more information, see Working with Amazon Resource Names (ARNs) in Amazon RDS.

The most effective way to protect against the confused deputy problem is to use the
aws:SourceArn global condition context key with the full ARN of the resource. In some cases,
you might not know the full ARN of the resource or you might be specifying multiple resources.
In these cases, use the aws:SourceArn global context condition key with wildcards (*) for the
unknown portions of the ARN. An example is arn:aws:rds:*:123456789012:*.

The following example shows how you can use the aws:SourceArn and aws:SourceAccount
global condition context keys in Amazon RDS to prevent the confused deputy problem.

Cross-service confused deputy prevention 3932

https://docs.aws.amazon.com/IAM/latest/UserGuide/confused-deputy.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/confused-deputy.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-sourcearn
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-sourceaccount

Amazon Aurora User Guide for Aurora

{
 "Version": "2012-10-17",
 "Statement": {
 "Sid": "ConfusedDeputyPreventionExamplePolicy",
 "Effect": "Allow",
 "Principal": {
 "Service": "rds.amazonaws.com"
 },
 "Action": "sts:AssumeRole",
 "Condition": {
 "ArnLike": {
 "aws:SourceArn": "arn:aws:rds:us-east-1:123456789012:db:mydbinstance"
 },
 "StringEquals": {
 "aws:SourceAccount": "123456789012"
 }
 }
 }
}

For more examples of policies that use the aws:SourceArn and aws:SourceAccount global
condition context keys, see the following sections:

• Granting permissions to publish notifications to an Amazon SNS topic

• Setting up access to an Amazon S3 bucket (PostgreSQL import)

• Setting up access to an Amazon S3 bucket (PostgreSQL export)

Cross-service confused deputy prevention 3933

Amazon Aurora User Guide for Aurora

IAM database authentication

You can authenticate to your DB cluster using AWS Identity and Access Management (IAM)
database authentication. IAM database authentication works with Aurora MySQL, and Aurora
PostgreSQL. With this authentication method, you don't need to use a password when you connect
to a DB cluster. Instead, you use an authentication token.

An authentication token is a unique string of characters that Amazon Aurora generates on request.
Authentication tokens are generated using AWS Signature Version 4. Each token has a lifetime of
15 minutes. You don't need to store user credentials in the database, because authentication is
managed externally using IAM. You can also still use standard database authentication. The token
is only used for authentication and doesn't affect the session after it is established.

IAM database authentication provides the following benefits:

• Network traffic to and from the database is encrypted using Secure Socket Layer (SSL) or
Transport Layer Security (TLS). For more information about using SSL/TLS with Amazon Aurora,
see Using SSL/TLS to encrypt a connection to a DB cluster.

• You can use IAM to centrally manage access to your database resources, instead of managing
access individually on each DB cluster.

• For applications running on Amazon EC2, you can use profile credentials specific to your EC2
instance to access your database instead of a password, for greater security.

In general, consider using IAM database authentication when your applications create fewer than
200 connections per second, and you don't want to manage usernames and passwords directly in
your application code.

The Amazon Web Services (AWS) JDBC Driver supports IAM database authentication. For more
information, see AWS IAM Authentication Plugin in the Amazon Web Services (AWS) JDBC Driver
GitHub repository.

The Amazon Web Services (AWS) Python Driver supports IAM database authentication. For more
information, see AWS IAM Authentication Plugin in the Amazon Web Services (AWS) Python Driver
GitHub repository.

Topics

• Region and version availability

IAM database authentication 3934

https://github.com/aws/aws-advanced-jdbc-wrapper/blob/main/docs/using-the-jdbc-driver/using-plugins/UsingTheIamAuthenticationPlugin.md
https://github.com/aws/aws-advanced-jdbc-wrapper
https://github.com/aws/aws-advanced-jdbc-wrapper
https://github.com/aws/aws-advanced-python-wrapper/blob/main/docs/using-the-python-driver/using-plugins/UsingTheIamAuthenticationPlugin.md
https://github.com/aws/aws-advanced-python-wrapper
https://github.com/aws/aws-advanced-python-wrapper

Amazon Aurora User Guide for Aurora

• CLI and SDK support

• Limitations for IAM database authentication

• Recommendations for IAM database authentication

• Unsupported AWS global condition context keys

• Enabling and disabling IAM database authentication

• Creating and using an IAM policy for IAM database access

• Creating a database account using IAM authentication

• Connecting to your DB cluster using IAM authentication

Region and version availability

Feature availability and support varies across specific versions of each Aurora database engine,
and across AWS Regions. For more information on version and Region availability with Aurora and
IAM database authentication, see Supported Regions and Aurora DB engines for IAM database
authentication.

For Aurora MySQL, all supported DB instance classes support IAM database authentication, except
for db.t2.small and db.t3.small. For information about the supported DB instance classes, see
Supported DB engines for DB instance classes.

CLI and SDK support

IAM database authentication is available for the AWS CLI and for the following language-specific
AWS SDKs:

• AWS SDK for .NET

• AWS SDK for C++

• AWS SDK for Go

• AWS SDK for Java

• AWS SDK for JavaScript

• AWS SDK for PHP

• AWS SDK for Python (Boto3)

• AWS SDK for Ruby

IAM database authentication 3935

https://docs.aws.amazon.com/cli/latest/reference/rds/generate-db-auth-token.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/RDS/TRDSAuthTokenGenerator.html
https://sdk.amazonaws.com/cpp/api/LATEST/class_aws_1_1_r_d_s_1_1_r_d_s_client.html#ae134ffffed5d7672f6156d324e7bd392
https://docs.aws.amazon.com/sdk-for-go/api/service/rds/#pkg-overview
https://docs.aws.amazon.com/sdk-for-java/latest/reference/software/amazon/awssdk/services/rds/RdsUtilities.html
https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/modules/_aws_sdk_rds_signer.html
https://docs.aws.amazon.com/aws-sdk-php/v3/api/class-Aws.Rds.AuthTokenGenerator.html
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/rds.html#RDS.Client.generate_db_auth_token
https://docs.aws.amazon.com/sdk-for-ruby/v3/api/Aws/RDS/AuthTokenGenerator.html

Amazon Aurora User Guide for Aurora

Limitations for IAM database authentication

When using IAM database authentication, the following limitations apply:

• IAM database authentication throttles connections in the following scenarios:

• You exceed 20 connections per second using authentication tokens each signed by a different
IAM identity.

• You exceed 200 connections per second using different authentication tokens.

Connections that use the same authentication token are not throttled. We recommend that you
reuse authentication tokens when possible.

• Currently, IAM database authentication doesn't support all global condition context keys.

For more information about global condition context keys, see AWS global condition context
keys in the IAM User Guide.

• For PostgreSQL, if the IAM role (rds_iam) is added to a user (including the RDS master user),
IAM authentication takes precedence over password authentication, so the user must log in as an
IAM user.

• For Aurora PostgreSQL, you cannot use IAM authentication to establish a replication connection.

• You cannot use a custom Route 53 DNS record instead of the DB cluster endpoint to generate
the authentication token.

• CloudWatch and CloudTrail don't log IAM authentication. These services do not track generate-
db-auth-token API calls that authorize the IAM role to enable database connection.

Recommendations for IAM database authentication

We recommend the following when using IAM database authentication:

• Use IAM database authentication when your application requires fewer than 200 new IAM
database authentication connections per second.

The database engines that work with Amazon Aurora don't impose any limits on authentication
attempts per second. However, when you use IAM database authentication, your application
must generate an authentication token. Your application then uses that token to connect to
the DB cluster. If you exceed the limit of maximum new connections per second, then the extra
overhead of IAM database authentication can cause connection throttling.

IAM database authentication 3936

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html

Amazon Aurora User Guide for Aurora

Consider using connection pooling in your applications to mitigate constant connection creation.
This can reduce the overhead from IAM DB authentication and allow your applications to reuse
existing connections. Alternatively, consider using RDS Proxy for these use cases. RDS Proxy has
additional costs. See RDS Proxy pricing.

• The size of an IAM database authentication token depends on many things including the number
of IAM tags, IAM service policies, ARN lengths, as well as other IAM and database properties. The
minimum size of this token is generally about 1 KB but can be larger. Since this token is used
as the password in the connection string to the database using IAM authentication, you should
ensure that your database driver (e.g., ODBC) and/or any tools do not limit or otherwise truncate
this token due to its size. A truncated token will cause the authentication validation done by the
database and IAM to fail.

• If you are using temporary credentials when creating an IAM database authentication token, the
temporary credentials must still be valid when using the IAM database authentication token to
make a connection request.

Unsupported AWS global condition context keys

IAM database authentication does not support the following subset of AWS global condition
context keys.

• aws:Referer

• aws:SourceIp

• aws:SourceVpc

• aws:SourceVpce

• aws:UserAgent

• aws:VpcSourceIp

For more information, see AWS global condition context keys in the IAM User Guide.

Enabling and disabling IAM database authentication

By default, IAM database authentication is disabled on DB clusters. You can enable or disable IAM
database authentication using the AWS Management Console, AWS CLI, or the API.

You can enable IAM database authentication when you perform one of the following actions:

IAM database authentication 3937

https://aws.amazon.com/rds/proxy/pricing/
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html

Amazon Aurora User Guide for Aurora

• To create a new DB cluster with IAM database authentication enabled, see Creating an Amazon
Aurora DB cluster.

• To modify a DB cluster to enable IAM database authentication, see Modifying an Amazon Aurora
DB cluster.

• To restore a DB cluster from a snapshot with IAM database authentication enabled, see Restoring
from a DB cluster snapshot.

• To restore a DB cluster to a point in time with IAM database authentication enabled, see
Restoring a DB cluster to a specified time.

Console

Each creation or modification workflow has a Database authentication section, where you
can enable or disable IAM database authentication. In that section, choose Password and IAM
database authentication to enable IAM database authentication.

To enable or disable IAM database authentication for an existing DB cluster

1. Open the Amazon RDS console at https://console.aws.amazon.com/rds/.

2. In the navigation pane, choose Databases.

3. Choose the DB cluster that you want to modify.

Note

You can only enable IAM authentication if all DB instances in the DB cluster are
compatible with IAM. Check the compatibility requirements in Region and version
availability.

4. Choose Modify.

5. In the Database authentication section, choose Password and IAM database authentication
to enable IAM database authentication. Choose Password authentication or Password and
Kerberos authentication to disable IAM authentication.

6. Choose Continue.

7. To apply the changes immediately, choose Immediately in the Scheduling of modifications
section.

8. Choose Modify cluster.

IAM database authentication 3938

https://console.aws.amazon.com/rds/

Amazon Aurora User Guide for Aurora

AWS CLI

To create a new DB cluster with IAM authentication by using the AWS CLI, use the create-db-
cluster command. Specify the --enable-iam-database-authentication option.

To update an existing DB cluster to have or not have IAM authentication, use the AWS
CLI command modify-db-cluster. Specify either the --enable-iam-database-
authentication or --no-enable-iam-database-authentication option, as appropriate.

Note

You can only enable IAM authentication if all DB instances in the DB cluster are compatible
with IAM. Check the compatibility requirements in Region and version availability.

By default, Aurora performs the modification during the next maintenance window. If you
want to override this and enable IAM DB authentication as soon as possible, use the --apply-
immediately parameter.

If you are restoring a DB cluster, use one of the following AWS CLI commands:

• restore-db-cluster-to-point-in-time

• restore-db-cluster-from-db-snapshot

The IAM database authentication setting defaults to that of the source snapshot. To change
this setting, set the --enable-iam-database-authentication or --no-enable-iam-
database-authentication option, as appropriate.

RDS API

To create a new DB instance with IAM authentication by using the API, use the API operation
CreateDBCluster. Set the EnableIAMDatabaseAuthentication parameter to true.

To update an existing DB cluster to have IAM authentication, use the API operation
ModifyDBCluster. Set the EnableIAMDatabaseAuthentication parameter to true to
enable IAM authentication, or false to disable it.

IAM database authentication 3939

https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-cluster.html
https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-cluster.html
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-cluster.html
https://docs.aws.amazon.com/cli/latest/reference/rds/restore-db-cluster-to-point-in-time.html
https://docs.aws.amazon.com/cli/latest/reference/rds/restore-db-instance-from-db-snapshot.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateDBCluster.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBCluster.html

Amazon Aurora User Guide for Aurora

Note

You can only enable IAM authentication if all DB instances in the DB cluster are compatible
with IAM. Check the compatibility requirements in Region and version availability.

If you are restoring a DB cluster, use one of the following API operations:

• RestoreDBClusterFromSnapshot

• RestoreDBClusterToPointInTime

The IAM database authentication setting defaults to that of the source snapshot. To change
this setting, set the EnableIAMDatabaseAuthentication parameter to true to enable IAM
authentication, or false to disable it.

Creating and using an IAM policy for IAM database access

To allow a user or role to connect to your DB cluster, you must create an IAM policy. After that, you
attach the policy to a permissions set or role.

Note

To learn more about IAM policies, see Identity and access management for Amazon Aurora.

The following example policy allows a user to connect to a DB cluster using IAM database
authentication.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "rds-db:connect"
],
 "Resource": [
 "arn:aws:rds-db:us-east-2:1234567890:dbuser:cluster-ABCDEFGHIJKL01234/
db_user"

IAM database authentication 3940

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_RestoreDBClusterFromSnapshot.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_RestoreDBClusterToPointInTime.html

Amazon Aurora User Guide for Aurora

]
 }
]
}

Important

A user with administrator permissions can access DB clusters without explicit permissions
in an IAM policy. If you want to restrict administrator access to DB clusters, you can
create an IAM role with the appropriate, lesser privileged permissions and assign it to the
administrator.

Note

Don't confuse the rds-db: prefix with other RDS API operation prefixes that begin with
rds:. You use the rds-db: prefix and the rds-db:connect action only for IAM database
authentication. They aren't valid in any other context.

The example policy includes a single statement with the following elements:

• Effect – Specify Allow to grant access to the DB cluster. If you don't explicitly allow access,
then access is denied by default.

• Action – Specify rds-db:connect to allow connections to the DB cluster.

• Resource – Specify an Amazon Resource Name (ARN) that describes one database account in
one DB cluster. The ARN format is as follows.

arn:aws:rds-db:region:account-id:dbuser:DbClusterResourceId/db-user-name

In this format, replace the following:

• region is the AWS Region for the DB cluster. In the example policy, the AWS Region is us-
east-2.

IAM database authentication 3941

Amazon Aurora User Guide for Aurora

• account-id is the AWS account number for the DB cluster. In the example policy, the account
number is 1234567890. The user must be in the same account as the account for the DB
cluster.

To perform cross-account access, create an IAM role with the policy shown above in the
account for the DB cluster and allow your other account to assume the role.

• DbClusterResourceId is the identifier for the DB cluster. This identifier is unique to
an AWS Region and never changes. In the example policy, the identifier is cluster-
ABCDEFGHIJKL01234.

To find a DB cluster resource ID in the AWS Management Console for Amazon Aurora, choose
the DB cluster to see its details. Then choose the Configuration tab. The Resource ID is shown
in the Configuration section.

Alternatively, you can use the AWS CLI command to list the identifiers and resource IDs for all
of your DB cluster in the current AWS Region, as shown following.

aws rds describe-db-clusters --query "DBClusters[*].
[DBClusterIdentifier,DbClusterResourceId]"

Note

If you are connecting to a database through RDS Proxy, specify the proxy resource
ID, such as prx-ABCDEFGHIJKL01234. For information about using IAM database
authentication with RDS Proxy, see Connecting to a proxy using IAM authentication.

• db-user-name is the name of the database account to associate with IAM authentication. In
the example policy, the database account is db_user.

You can construct other ARNs to support various access patterns. The following policy allows
access to two different database accounts in a DB cluster.

{
 "Version": "2012-10-17",
 "Statement": [

IAM database authentication 3942

Amazon Aurora User Guide for Aurora

 {
 "Effect": "Allow",
 "Action": [
 "rds-db:connect"
],
 "Resource": [
 "arn:aws:rds-db:us-east-2:123456789012:dbuser:cluster-ABCDEFGHIJKL01234/
jane_doe",
 "arn:aws:rds-db:us-east-2:123456789012:dbuser:cluster-ABCDEFGHIJKL01234/
mary_roe"
]
 }
]
}

The following policy uses the "*" character to match all DB clusters and database accounts for a
particular AWS account and AWS Region.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "rds-db:connect"
],
 "Resource": [
 "arn:aws:rds-db:us-east-2:1234567890:dbuser:*/*"
]
 }
]
}

The following policy matches all of the DB clusters for a particular AWS account and AWS Region.
However, the policy only grants access to DB clusters that have a jane_doe database account.

{
 "Version": "2012-10-17",

IAM database authentication 3943

Amazon Aurora User Guide for Aurora

 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "rds-db:connect"
],
 "Resource": [
 "arn:aws:rds-db:us-east-2:123456789012:dbuser:*/jane_doe"
]
 }
]
}

The user or role has access to only those databases that the database user does. For example,
suppose that your DB cluster has a database named dev, and another database named test. If
the database user jane_doe has access only to dev, any users or roles that access that DB cluster
with the jane_doe user also have access only to dev. This access restriction is also true for other
database objects, such as tables, views, and so on.

An administrator must create IAM policies that grant entities permission to perform specific
API operations on the specified resources they need. The administrator must then attach those
policies to the permission sets or roles that require those permissions. For examples of policies, see
Identity-based policy examples for Amazon Aurora.

Attaching an IAM policy to a permission set or role

After you create an IAM policy to allow database authentication, you need to attach the policy
to a permission set or role. For a tutorial on this topic, see Create and attach your first customer
managed policy in the IAM User Guide.

As you work through the tutorial, you can use one of the policy examples shown in this section as a
starting point and tailor it to your needs. At the end of the tutorial, you have a permission set with
an attached policy that can make use of the rds-db:connect action.

Note

You can map multiple permission sets or roles to the same database user account. For
example, suppose that your IAM policy specified the following resource ARN.

IAM database authentication 3944

https://docs.aws.amazon.com/IAM/latest/UserGuide/tutorial_managed-policies.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/tutorial_managed-policies.html

Amazon Aurora User Guide for Aurora

arn:aws:rds-db:us-east-2:123456789012:dbuser:cluster-12ABC34DEFG5HIJ6KLMNOP78QR/
jane_doe

If you attach the policy to Jane, Bob, and Diego, then each of those users can connect to the
specified DB cluster using the jane_doe database account.

Creating a database account using IAM authentication

With IAM database authentication, you don't need to assign database passwords to the user
accounts you create. If you remove a user that is mapped to a database account, you should also
remove the database account with the DROP USER statement.

Note

The user name used for IAM authentication must match the case of the user name in the
database.

Topics

• Using IAM authentication with Aurora MySQL

• Using IAM authentication with Aurora PostgreSQL

Using IAM authentication with Aurora MySQL

With Aurora MySQL, authentication is handled by AWSAuthenticationPlugin—an AWS-
provided plugin that works seamlessly with IAM to authenticate your users. Connect to the DB
cluster as the master user or a different user who can create users and grant privileges. After
connecting, issue the CREATE USER statement, as shown in the following example.

CREATE USER 'jane_doe' IDENTIFIED WITH AWSAuthenticationPlugin AS 'RDS';

The IDENTIFIED WITH clause allows Aurora MySQL to use the AWSAuthenticationPlugin to
authenticate the database account (jane_doe). The AS 'RDS' clause refers to the authentication
method. Make sure the specified database user name is the same as a resource in the IAM policy for

IAM database authentication 3945

Amazon Aurora User Guide for Aurora

IAM database access. For more information, see Creating and using an IAM policy for IAM database
access.

Note

If you see the following message, it means that the AWS-provided plugin is not available
for the current DB cluster.
ERROR 1524 (HY000): Plugin 'AWSAuthenticationPlugin' is not loaded
To troubleshoot this error, verify that you are using a supported configuration and that you
have enabled IAM database authentication on your DB cluster. For more information, see
Region and version availability and Enabling and disabling IAM database authentication.

After you create an account using AWSAuthenticationPlugin, you manage it in the same way as
other database accounts. For example, you can modify account privileges with GRANT and REVOKE
statements, or modify various account attributes with the ALTER USER statement.

Database network traffic is encrypted using SSL/TLS when using IAM. To allow SSL connections,
modify the user account with the following command.

ALTER USER 'jane_doe'@'%' REQUIRE SSL;

Using IAM authentication with Aurora PostgreSQL

To use IAM authentication with Aurora PostgreSQL, connect to the DB cluster as the master user or
a different user who can create users and grant privileges. After connecting, create database users
and then grant them the rds_iam role as shown in the following example.

CREATE USER db_userx;
GRANT rds_iam TO db_userx;

Make sure the specified database user name is the same as a resource in the IAM policy for
IAM database access. For more information, see Creating and using an IAM policy for IAM
database access. You must grant the rds_iam role to use IAM authentication. You can use nested
memberships or indirect grants of the role as well.

Note that a PostgreSQL database user can use either IAM or Kerberos authentication but not both,
so this user can't also have the rds_ad role. This also applies to nested memberships. For more
information, see Step 7: Create PostgreSQL users for your Kerberos principals .

IAM database authentication 3946

Amazon Aurora User Guide for Aurora

Connecting to your DB cluster using IAM authentication

With IAM database authentication, you use an authentication token when you connect to your
DB cluster. An authentication token is a string of characters that you use instead of a password.
After you generate an authentication token, it's valid for 15 minutes before it expires. If you try to
connect using an expired token, the connection request is denied.

Every authentication token must be accompanied by a valid signature, using AWS signature version
4. (For more information, see Signature Version 4 signing process in the AWS General Reference.)
The AWS CLI and an AWS SDK, such as the AWS SDK for Java or AWS SDK for Python (Boto3), can
automatically sign each token you create.

You can use an authentication token when you connect to Amazon Aurora from another AWS
service, such as AWS Lambda. By using a token, you can avoid placing a password in your code.
Alternatively, you can use an AWS SDK to programmatically create and programmatically sign an
authentication token.

After you have a signed IAM authentication token, you can connect to an Aurora DB cluster.
Following, you can find out how to do this using either a command line tool or an AWS SDK, such
as the AWS SDK for Java or AWS SDK for Python (Boto3).

For more information, see the following blog posts:

• Use IAM authentication to connect with SQL Workbench/J to Aurora MySQL or Amazon RDS for
MySQL

• Using IAM authentication to connect with pgAdmin Amazon Aurora PostgreSQL or Amazon RDS
for PostgreSQL

Prerequisites

The following are prerequisites for connecting to your DB cluster using IAM authentication:

• Enabling and disabling IAM database authentication

• Creating and using an IAM policy for IAM database access

• Creating a database account using IAM authentication

Topics

IAM database authentication 3947

https://docs.aws.amazon.com/general/latest/gr/signature-version-4.html
https://aws.amazon.com/blogs/database/use-iam-authentication-to-connect-with-sql-workbenchj-to-amazon-aurora-mysql-or-amazon-rds-for-mysql/
https://aws.amazon.com/blogs/database/use-iam-authentication-to-connect-with-sql-workbenchj-to-amazon-aurora-mysql-or-amazon-rds-for-mysql/
https://aws.amazon.com/blogs/database/using-iam-authentication-to-connect-with-pgadmin-amazon-aurora-postgresql-or-amazon-rds-for-postgresql/
https://aws.amazon.com/blogs/database/using-iam-authentication-to-connect-with-pgadmin-amazon-aurora-postgresql-or-amazon-rds-for-postgresql/

Amazon Aurora User Guide for Aurora

• Connecting to your DB cluster using IAM authentication with the AWS drivers

• Connecting to your DB cluster using IAM authentication from the command line: AWS CLI and
mysql client

• Connecting to your DB cluster using IAM authentication from the command line: AWS CLI and
psql client

• Connecting to your DB cluster using IAM authentication and the AWS SDK for .NET

• Connecting to your DB cluster using IAM authentication and the AWS SDK for Go

• Connecting to your DB cluster using IAM authentication and the AWS SDK for Java

• Connecting to your DB cluster using IAM authentication and the AWS SDK for Python (Boto3)

Connecting to your DB cluster using IAM authentication with the AWS drivers

The AWS suite of drivers has been designed to provide support for faster switchover and failover
times, and authentication with AWS Secrets Manager, AWS Identity and Access Management (IAM),
and Federated Identity. The AWS drivers rely on monitoring DB cluster status and being aware of
the cluster topology to determine the new writer. This approach reduces switchover and failover
times to single-digit seconds, compared to tens of seconds for open-source drivers.

For more information on the AWS drivers, see the corresponding language driver for your Aurora
MySQL or Aurora PostgreSQL DB cluster.

Connecting to your DB cluster using IAM authentication from the command line: AWS CLI and
mysql client

You can connect from the command line to an Aurora DB cluster with the AWS CLI and mysql
command line tool as described following.

Prerequisites

The following are prerequisites for connecting to your DB cluster using IAM authentication:

• Enabling and disabling IAM database authentication

• Creating and using an IAM policy for IAM database access

• Creating a database account using IAM authentication

IAM database authentication 3948

Amazon Aurora User Guide for Aurora

Note

For information about connecting to your database using SQL Workbench/J with IAM
authentication, see the blog post Use IAM authentication to connect with SQL Workbench/
J to Aurora MySQL or Amazon RDS for MySQL.

Topics

• Generating an IAM authentication token

• Connecting to a DB cluster

Generating an IAM authentication token

The following example shows how to get a signed authentication token using the AWS CLI.

aws rds generate-db-auth-token \
 --hostname rdsmysql.123456789012.us-west-2.rds.amazonaws.com \
 --port 3306 \
 --region us-west-2 \
 --username jane_doe

In the example, the parameters are as follows:

• --hostname – The host name of the DB cluster that you want to access

• --port – The port number used for connecting to your DB cluster

• --region – The AWS Region where the DB cluster is running

• --username – The database account that you want to access

The first several characters of the token look like the following.

rdsmysql.123456789012.us-west-2.rds.amazonaws.com:3306/?
Action=connect&DBUser=jane_doe&X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Expires=900...

IAM database authentication 3949

https://aws.amazon.com/blogs/database/use-iam-authentication-to-connect-with-sql-workbenchj-to-amazon-aurora-mysql-or-amazon-rds-for-mysql/
https://aws.amazon.com/blogs/database/use-iam-authentication-to-connect-with-sql-workbenchj-to-amazon-aurora-mysql-or-amazon-rds-for-mysql/

Amazon Aurora User Guide for Aurora

Note

You cannot use a custom Route 53 DNS record or an Aurora custom endpoint instead of the
DB cluster endpoint to generate the authentication token.

Connecting to a DB cluster

The general format for connecting is shown following.

mysql --host=hostName --port=portNumber --ssl-ca=full_path_to_ssl_certificate --enable-
cleartext-plugin --user=userName --password=authToken

The parameters are as follows:

• --host – The host name of the DB cluster that you want to access

• --port – The port number used for connecting to your DB cluster

• --ssl-ca – The full path to the SSL certificate file that contains the public key

For more information, see Using TLS with Aurora MySQL DB clusters.

To download an SSL certificate, see Using SSL/TLS to encrypt a connection to a DB cluster.

• --enable-cleartext-plugin – A value that specifies that AWSAuthenticationPlugin
must be used for this connection

If you are using a MariaDB client, the --enable-cleartext-plugin option isn't required.

• --user – The database account that you want to access

• --password – A signed IAM authentication token

The authentication token consists of several hundred characters. It can be unwieldy on the
command line. One way to work around this is to save the token to an environment variable, and
then use that variable when you connect. The following example shows one way to perform this
workaround. In the example, /sample_dir/ is the full path to the SSL certificate file that contains
the public key.

RDSHOST="mysqlcluster.cluster-123456789012.us-east-1.rds.amazonaws.com"

IAM database authentication 3950

Amazon Aurora User Guide for Aurora

TOKEN="$(aws rds generate-db-auth-token --hostname $RDSHOST --port 3306 --region us-
west-2 --username jane_doe)"

mysql --host=$RDSHOST --port=3306 --ssl-ca=/sample_dir/global-bundle.pem --enable-
cleartext-plugin --user=jane_doe --password=$TOKEN

When you connect using AWSAuthenticationPlugin, the connection is secured using SSL. To
verify this, type the following at the mysql> command prompt.

show status like 'Ssl%';

The following lines in the output show more details.

+---------------+-------------+
| Variable_name | Value

 |
+---------------+-------------+
| ... | ...
| Ssl_cipher | AES256-SHA

 |
| ... | ...
| Ssl_version | TLSv1.1

 |
| ... | ...
+-----------------------------+

If you want to connect to a DB cluster through a proxy, see Connecting to a proxy using IAM
authentication.

Connecting to your DB cluster using IAM authentication from the command line: AWS CLI and
psql client

You can connect from the command line to an Aurora PostgreSQL DB cluster with the AWS CLI and
psql command line tool as described following.

Prerequisites

The following are prerequisites for connecting to your DB cluster using IAM authentication:

IAM database authentication 3951

Amazon Aurora User Guide for Aurora

• Enabling and disabling IAM database authentication

• Creating and using an IAM policy for IAM database access

• Creating a database account using IAM authentication

Note

For information about connecting to your database using pgAdmin with IAM
authentication, see the blog post Using IAM authentication to connect with pgAdmin
Amazon Aurora PostgreSQL or Amazon RDS for PostgreSQL.

Topics

• Generating an IAM authentication token

• Connecting to an Aurora PostgreSQL cluster

Generating an IAM authentication token

The authentication token consists of several hundred characters so it can be unwieldy on the
command line. One way to work around this is to save the token to an environment variable, and
then use that variable when you connect. The following example shows how to use the AWS CLI to
get a signed authentication token using the generate-db-auth-token command, and store it in
a PGPASSWORD environment variable.

export RDSHOST="mypostgres-cluster.cluster-123456789012.us-west-2.rds.amazonaws.com"
export PGPASSWORD="$(aws rds generate-db-auth-token --hostname $RDSHOST --port 5432 --
region us-west-2 --username jane_doe)"

In the example, the parameters to the generate-db-auth-token command are as follows:

• --hostname – The host name of the DB cluster (cluster endpoint) that you want to access

• --port – The port number used for connecting to your DB cluster

• --region – The AWS Region where the DB cluster is running

• --username – The database account that you want to access

The first several characters of the generated token look like the following.

IAM database authentication 3952

https://aws.amazon.com/blogs/database/using-iam-authentication-to-connect-with-pgadmin-amazon-aurora-postgresql-or-amazon-rds-for-postgresql/
https://aws.amazon.com/blogs/database/using-iam-authentication-to-connect-with-pgadmin-amazon-aurora-postgresql-or-amazon-rds-for-postgresql/

Amazon Aurora User Guide for Aurora

mypostgres-cluster.cluster-123456789012.us-west-2.rds.amazonaws.com:5432/?
Action=connect&DBUser=jane_doe&X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Expires=900...

Note

You cannot use a custom Route 53 DNS record or an Aurora custom endpoint instead of the
DB cluster endpoint to generate the authentication token.

Connecting to an Aurora PostgreSQL cluster

The general format for using psql to connect is shown following.

psql "host=hostName port=portNumber sslmode=verify-full
 sslrootcert=full_path_to_ssl_certificate dbname=DBName user=userName
 password=authToken"

The parameters are as follows:

• host – The host name of the DB cluster (cluster endpoint) that you want to access

• port – The port number used for connecting to your DB cluster

• sslmode – The SSL mode to use

When you use sslmode=verify-full, the SSL connection verifies the DB cluster endpoint
against the endpoint in the SSL certificate.

• sslrootcert – The full path to the SSL certificate file that contains the public key

For more information, see Securing Aurora PostgreSQL data with SSL/TLS.

To download an SSL certificate, see Using SSL/TLS to encrypt a connection to a DB cluster.

• dbname – The database that you want to access

• user – The database account that you want to access

• password – A signed IAM authentication token

IAM database authentication 3953

Amazon Aurora User Guide for Aurora

Note

You cannot use a custom Route 53 DNS record or an Aurora custom endpoint instead of the
DB cluster endpoint to generate the authentication token.

The following example shows using psql to connect. In the example, psql uses the environment
variable RDSHOST for the host and the environment variable PGPASSWORD for the generated token.
Also, /sample_dir/ is the full path to the SSL certificate file that contains the public key.

export RDSHOST="mypostgres-cluster.cluster-123456789012.us-west-2.rds.amazonaws.com"
export PGPASSWORD="$(aws rds generate-db-auth-token --hostname $RDSHOST --port 5432 --
region us-west-2 --username jane_doe)"

psql "host=$RDSHOST port=5432 sslmode=verify-full sslrootcert=/sample_dir/global-
bundle.pem dbname=DBName user=jane_doe password=$PGPASSWORD"

If you want to connect to a DB cluster through a proxy, see Connecting to a proxy using IAM
authentication.

Connecting to your DB cluster using IAM authentication and the AWS SDK for .NET

You can connect to an Aurora MySQL or Aurora PostgreSQL DB cluster with the AWS SDK for .NET
as described following.

Prerequisites

The following are prerequisites for connecting to your DB cluster using IAM authentication:

• Enabling and disabling IAM database authentication

• Creating and using an IAM policy for IAM database access

• Creating a database account using IAM authentication

Examples

The following code examples show how to generate an authentication token, and then use it to
connect to a DB cluster.

To run this code example, you need the AWS SDK for .NET, found on the AWS site. The
AWSSDK.CORE and the AWSSDK.RDS packages are required. To connect to a DB cluster, use

IAM database authentication 3954

http://aws.amazon.com/sdk-for-net/

Amazon Aurora User Guide for Aurora

the .NET database connector for the DB engine, such as MySqlConnector for MariaDB or MySQL, or
Npgsql for PostgreSQL.

This code connects to an Aurora MySQL DB cluster. Modify the values of the following variables as
needed:

• server – The endpoint of the DB cluster that you want to access

• user – The database account that you want to access

• database – The database that you want to access

• port – The port number used for connecting to your DB cluster

• SslMode – The SSL mode to use

When you use SslMode=Required, the SSL connection verifies the DB cluster endpoint against
the endpoint in the SSL certificate.

• SslCa – The full path to the SSL certificate for Amazon Aurora

To download a certificate, see Using SSL/TLS to encrypt a connection to a DB cluster.

Note

You cannot use a custom Route 53 DNS record or an Aurora custom endpoint instead of the
DB cluster endpoint to generate the authentication token.

using System;
using System.Data;
using MySql.Data;
using MySql.Data.MySqlClient;
using Amazon;

namespace ubuntu
{
 class Program
 {
 static void Main(string[] args)
 {
 var pwd =
 Amazon.RDS.Util.RDSAuthTokenGenerator.GenerateAuthToken(RegionEndpoint.USEast1,
 "mysqlcluster.cluster-123456789012.us-east-1.rds.amazonaws.com", 3306, "jane_doe");

IAM database authentication 3955

Amazon Aurora User Guide for Aurora

 // for debug only Console.Write("{0}\n", pwd); //this verifies the token is
 generated

 MySqlConnection conn = new
 MySqlConnection($"server=mysqlcluster.cluster-123456789012.us-
east-1.rds.amazonaws.com;user=jane_doe;database=mydB;port=3306;password={pwd};SslMode=Required;SslCa=full_path_to_ssl_certificate");
 conn.Open();

 // Define a query
 MySqlCommand sampleCommand = new MySqlCommand("SHOW DATABASES;", conn);

 // Execute a query
 MySqlDataReader mysqlDataRdr = sampleCommand.ExecuteReader();

 // Read all rows and output the first column in each row
 while (mysqlDataRdr.Read())
 Console.WriteLine(mysqlDataRdr[0]);

 mysqlDataRdr.Close();
 // Close connection
 conn.Close();
 }
 }
}

This code connects to an Aurora PostgreSQL DB cluster.

Modify the values of the following variables as needed:

• Server – The endpoint of the DB cluster that you want to access

• User ID – The database account that you want to access

• Database – The database that you want to access

• Port – The port number used for connecting to your DB cluster

• SSL Mode – The SSL mode to use

When you use SSL Mode=Required, the SSL connection verifies the DB cluster endpoint
against the endpoint in the SSL certificate.

• Root Certificate – The full path to the SSL certificate for Amazon Aurora

To download a certificate, see Using SSL/TLS to encrypt a connection to a DB cluster.

IAM database authentication 3956

Amazon Aurora User Guide for Aurora

Note

You cannot use a custom Route 53 DNS record or an Aurora custom endpoint instead of the
DB cluster endpoint to generate the authentication token.

using System;
using Npgsql;
using Amazon.RDS.Util;

namespace ConsoleApp1
{
 class Program
 {
 static void Main(string[] args)
 {
 var pwd =
 RDSAuthTokenGenerator.GenerateAuthToken("postgresmycluster.cluster-123456789012.us-
east-1.rds.amazonaws.com", 5432, "jane_doe");
// for debug only Console.Write("{0}\n", pwd); //this verifies the token is generated

 NpgsqlConnection conn = new
 NpgsqlConnection($"Server=postgresmycluster.cluster-123456789012.us-
east-1.rds.amazonaws.com;User Id=jane_doe;Password={pwd};Database=mydb;SSL
 Mode=Require;Root Certificate=full_path_to_ssl_certificate");
 conn.Open();

 // Define a query
 NpgsqlCommand cmd = new NpgsqlCommand("select count(*) FROM
 pg_user", conn);

 // Execute a query
 NpgsqlDataReader dr = cmd.ExecuteReader();

 // Read all rows and output the first column in each row
 while (dr.Read())
 Console.Write("{0}\n", dr[0]);

 // Close connection
 conn.Close();
 }
 }

IAM database authentication 3957

Amazon Aurora User Guide for Aurora

}

If you want to connect to a DB cluster through a proxy, see Connecting to a proxy using IAM
authentication.

Connecting to your DB cluster using IAM authentication and the AWS SDK for Go

You can connect to an Aurora MySQL or Aurora PostgreSQL DB cluster with the AWS SDK for Go as
described following.

Prerequisites

The following are prerequisites for connecting to your DB cluster using IAM authentication:

• Enabling and disabling IAM database authentication

• Creating and using an IAM policy for IAM database access

• Creating a database account using IAM authentication

Examples

To run these code examples, you need the AWS SDK for Go, found on the AWS site.

Modify the values of the following variables as needed:

• dbName – The database that you want to access

• dbUser – The database account that you want to access

• dbHost – The endpoint of the DB cluster that you want to access

Note

You cannot use a custom Route 53 DNS record or an Aurora custom endpoint instead of
the DB cluster endpoint to generate the authentication token.

• dbPort – The port number used for connecting to your DB cluster

• region – The AWS Region where the DB cluster is running

In addition, make sure the imported libraries in the sample code exist on your system.

IAM database authentication 3958

http://aws.amazon.com/sdk-for-go/

Amazon Aurora User Guide for Aurora

Important

The examples in this section use the following code to provide credentials that access a
database from a local environment:
creds := credentials.NewEnvCredentials()
If you are accessing a database from an AWS service, such as Amazon EC2 or Amazon ECS,
you can replace the code with the following code:
sess := session.Must(session.NewSession())
creds := sess.Config.Credentials
If you make this change, make sure you add the following import:
"github.com/aws/aws-sdk-go/aws/session"

Topics

• Connecting using IAM authentication and the AWS SDK for Go V2

• Connecting using IAM authentication and the AWS SDK for Go V1.

Connecting using IAM authentication and the AWS SDK for Go V2

You can connect to a DB cluster using IAM authentication and the AWS SDK for Go V2.

The following code examples show how to generate an authentication token, and then use it to
connect to a DB cluster.

This code connects to an Aurora MySQL DB cluster.

package main

import (
 "context"
 "database/sql"
 "fmt"

 "github.com/aws/aws-sdk-go-v2/config"
 "github.com/aws/aws-sdk-go-v2/feature/rds/auth"
 _ "github.com/go-sql-driver/mysql"
)

func main() {

IAM database authentication 3959

Amazon Aurora User Guide for Aurora

 var dbName string = "DatabaseName"
 var dbUser string = "DatabaseUser"
 var dbHost string = "mysqlcluster.cluster-123456789012.us-
east-1.rds.amazonaws.com"
 var dbPort int = 3306
 var dbEndpoint string = fmt.Sprintf("%s:%d", dbHost, dbPort)
 var region string = "us-east-1"

 cfg, err := config.LoadDefaultConfig(context.TODO())
 if err != nil {
 panic("configuration error: " + err.Error())
 }

 authenticationToken, err := auth.BuildAuthToken(
 context.TODO(), dbEndpoint, region, dbUser, cfg.Credentials)
 if err != nil {
 panic("failed to create authentication token: " + err.Error())
 }

 dsn := fmt.Sprintf("%s:%s@tcp(%s)/%s?tls=true&allowCleartextPasswords=true",
 dbUser, authenticationToken, dbEndpoint, dbName,
)

 db, err := sql.Open("mysql", dsn)
 if err != nil {
 panic(err)
 }

 err = db.Ping()
 if err != nil {
 panic(err)
 }
}

This code connects to an Aurora PostgreSQL DB cluster.

package main

import (
 "context"
 "database/sql"
 "fmt"

IAM database authentication 3960

Amazon Aurora User Guide for Aurora

 "github.com/aws/aws-sdk-go-v2/config"
 "github.com/aws/aws-sdk-go-v2/feature/rds/auth"
 _ "github.com/lib/pq"
)

func main() {

 var dbName string = "DatabaseName"
 var dbUser string = "DatabaseUser"
 var dbHost string = "postgresmycluster.cluster-123456789012.us-
east-1.rds.amazonaws.com"
 var dbPort int = 5432
 var dbEndpoint string = fmt.Sprintf("%s:%d", dbHost, dbPort)
 var region string = "us-east-1"

 cfg, err := config.LoadDefaultConfig(context.TODO())
 if err != nil {
 panic("configuration error: " + err.Error())
 }

 authenticationToken, err := auth.BuildAuthToken(
 context.TODO(), dbEndpoint, region, dbUser, cfg.Credentials)
 if err != nil {
 panic("failed to create authentication token: " + err.Error())
 }

 dsn := fmt.Sprintf("host=%s port=%d user=%s password=%s dbname=%s",
 dbHost, dbPort, dbUser, authenticationToken, dbName,
)

 db, err := sql.Open("postgres", dsn)
 if err != nil {
 panic(err)
 }

 err = db.Ping()
 if err != nil {
 panic(err)
 }
}

IAM database authentication 3961

Amazon Aurora User Guide for Aurora

If you want to connect to a DB cluster through a proxy, see Connecting to a proxy using IAM
authentication.

Connecting using IAM authentication and the AWS SDK for Go V1.

You can connect to a DB cluster using IAM authentication and the AWS SDK for Go V1

The following code examples show how to generate an authentication token, and then use it to
connect to a DB cluster.

This code connects to an Aurora MySQL DB cluster.

package main

import (
 "database/sql"
 "fmt"
 "log"

 "github.com/aws/aws-sdk-go/aws/credentials"
 "github.com/aws/aws-sdk-go/service/rds/rdsutils"
 _ "github.com/go-sql-driver/mysql"
)

func main() {
 dbName := "app"
 dbUser := "jane_doe"
 dbHost := "mysqlcluster.cluster-123456789012.us-east-1.rds.amazonaws.com"
 dbPort := 3306
 dbEndpoint := fmt.Sprintf("%s:%d", dbHost, dbPort)
 region := "us-east-1"

 creds := credentials.NewEnvCredentials()
 authToken, err := rdsutils.BuildAuthToken(dbEndpoint, region, dbUser, creds)
 if err != nil {
 panic(err)
 }

 dsn := fmt.Sprintf("%s:%s@tcp(%s)/%s?tls=true&allowCleartextPasswords=true",
 dbUser, authToken, dbEndpoint, dbName,
)

 db, err := sql.Open("mysql", dsn)
 if err != nil {

IAM database authentication 3962

Amazon Aurora User Guide for Aurora

 panic(err)
 }

 err = db.Ping()
 if err != nil {
 panic(err)
 }
}

This code connects to an Aurora PostgreSQL DB cluster.

package main

import (
 "database/sql"
 "fmt"

 "github.com/aws/aws-sdk-go/aws/credentials"
 "github.com/aws/aws-sdk-go/service/rds/rdsutils"
 _ "github.com/lib/pq"
)

func main() {
 dbName := "app"
 dbUser := "jane_doe"
 dbHost := "postgresmycluster.cluster-123456789012.us-east-1.rds.amazonaws.com"
 dbPort := 5432
 dbEndpoint := fmt.Sprintf("%s:%d", dbHost, dbPort)
 region := "us-east-1"

 creds := credentials.NewEnvCredentials()
 authToken, err := rdsutils.BuildAuthToken(dbEndpoint, region, dbUser, creds)
 if err != nil {
 panic(err)
 }

 dsn := fmt.Sprintf("host=%s port=%d user=%s password=%s dbname=%s",
 dbHost, dbPort, dbUser, authToken, dbName,
)

 db, err := sql.Open("postgres", dsn)
 if err != nil {
 panic(err)

IAM database authentication 3963

Amazon Aurora User Guide for Aurora

 }

 err = db.Ping()
 if err != nil {
 panic(err)
 }
}

If you want to connect to a DB cluster through a proxy, see Connecting to a proxy using IAM
authentication.

Connecting to your DB cluster using IAM authentication and the AWS SDK for Java

You can connect to an Aurora MySQL or Aurora PostgreSQL DB cluster with the AWS SDK for Java
as described following.

Prerequisites

The following are prerequisites for connecting to your DB cluster using IAM authentication:

• Enabling and disabling IAM database authentication

• Creating and using an IAM policy for IAM database access

• Creating a database account using IAM authentication

• Set up the AWS SDK for Java

For examples on how to use the SDK for Java 2.x, see Amazon RDS examples using SDK for Java
2.x.

Topics

• Generating an IAM authentication token

• Manually constructing an IAM authentication token

• Connecting to a DB cluster

Generating an IAM authentication token

If you are writing programs using the AWS SDK for Java, you can get a signed authentication token
using the RdsIamAuthTokenGenerator class. Using this class requires that you provide AWS
credentials. To do this, you create an instance of the DefaultAWSCredentialsProviderChain
class. DefaultAWSCredentialsProviderChain uses the first AWS access key and secret key

IAM database authentication 3964

https://docs.aws.amazon.com/sdk-for-java/v1/developer-guide/setup-install.html
https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/java_rds_code_examples.html
https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/java_rds_code_examples.html

Amazon Aurora User Guide for Aurora

that it finds in the default credential provider chain. For more information about AWS access keys,
see Managing access keys for users.

Note

You cannot use a custom Route 53 DNS record or an Aurora custom endpoint instead of the
DB cluster endpoint to generate the authentication token.

After you create an instance of RdsIamAuthTokenGenerator, you can call the getAuthToken
method to obtain a signed token. Provide the AWS Region, host name, port number, and user
name. The following code example illustrates how to do this.

package com.amazonaws.codesamples;

import com.amazonaws.auth.DefaultAWSCredentialsProviderChain;
import com.amazonaws.services.rds.auth.GetIamAuthTokenRequest;
import com.amazonaws.services.rds.auth.RdsIamAuthTokenGenerator;

public class GenerateRDSAuthToken {

 public static void main(String[] args) {

 String region = "us-west-2";
 String hostname = "rdsmysql.123456789012.us-west-2.rds.amazonaws.com";
 String port = "3306";
 String username = "jane_doe";

 System.out.println(generateAuthToken(region, hostname, port, username));
 }

 static String generateAuthToken(String region, String hostName, String port, String
 username) {

 RdsIamAuthTokenGenerator generator = RdsIamAuthTokenGenerator.builder()
 .credentials(new DefaultAWSCredentialsProviderChain())
 .region(region)
 .build();

 String authToken = generator.getAuthToken(
 GetIamAuthTokenRequest.builder()
 .hostname(hostName)

IAM database authentication 3965

https://docs.aws.amazon.com/sdk-for-java/v1/developer-guide/credentials.html#credentials-default
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html

Amazon Aurora User Guide for Aurora

 .port(Integer.parseInt(port))
 .userName(username)
 .build());

 return authToken;
 }

}

Manually constructing an IAM authentication token

In Java, the easiest way to generate an authentication token is to use
RdsIamAuthTokenGenerator. This class creates an authentication token for you, and then signs
it using AWS signature version 4. For more information, see Signature version 4 signing process in
the AWS General Reference.

However, you can also construct and sign an authentication token manually, as shown in the
following code example.

package com.amazonaws.codesamples;

import com.amazonaws.SdkClientException;
import com.amazonaws.auth.DefaultAWSCredentialsProviderChain;
import com.amazonaws.auth.SigningAlgorithm;
import com.amazonaws.util.BinaryUtils;
import org.apache.commons.lang3.StringUtils;

import javax.crypto.Mac;
import javax.crypto.spec.SecretKeySpec;
import java.nio.charset.Charset;
import java.security.MessageDigest;
import java.text.SimpleDateFormat;
import java.util.Date;
import java.util.SortedMap;
import java.util.TreeMap;

import static com.amazonaws.auth.internal.SignerConstants.AWS4_TERMINATOR;
import static com.amazonaws.util.StringUtils.UTF8;

public class CreateRDSAuthTokenManually {
 public static String httpMethod = "GET";
 public static String action = "connect";
 public static String canonicalURIParameter = "/";

IAM database authentication 3966

https://docs.aws.amazon.com/general/latest/gr/signature-version-4.html

Amazon Aurora User Guide for Aurora

 public static SortedMap<String, String> canonicalQueryParameters = new TreeMap();
 public static String payload = StringUtils.EMPTY;
 public static String signedHeader = "host";
 public static String algorithm = "AWS4-HMAC-SHA256";
 public static String serviceName = "rds-db";
 public static String requestWithoutSignature;

 public static void main(String[] args) throws Exception {

 String region = "us-west-2";
 String instanceName = "rdsmysql.123456789012.us-west-2.rds.amazonaws.com";
 String port = "3306";
 String username = "jane_doe";

 Date now = new Date();
 String date = new SimpleDateFormat("yyyyMMdd").format(now);
 String dateTimeStamp = new
 SimpleDateFormat("yyyyMMdd'T'HHmmss'Z'").format(now);
 DefaultAWSCredentialsProviderChain creds = new
 DefaultAWSCredentialsProviderChain();
 String awsAccessKey = creds.getCredentials().getAWSAccessKeyId();
 String awsSecretKey = creds.getCredentials().getAWSSecretKey();
 String expiryMinutes = "900";

 System.out.println("Step 1: Create a canonical request:");
 String canonicalString = createCanonicalString(username, awsAccessKey, date,
 dateTimeStamp, region, expiryMinutes, instanceName, port);
 System.out.println(canonicalString);
 System.out.println();

 System.out.println("Step 2: Create a string to sign:");
 String stringToSign = createStringToSign(dateTimeStamp, canonicalString,
 awsAccessKey, date, region);
 System.out.println(stringToSign);
 System.out.println();

 System.out.println("Step 3: Calculate the signature:");
 String signature = BinaryUtils.toHex(calculateSignature(stringToSign,
 newSigningKey(awsSecretKey, date, region, serviceName)));
 System.out.println(signature);
 System.out.println();

 System.out.println("Step 4: Add the signing info to the request");

IAM database authentication 3967

Amazon Aurora User Guide for Aurora

 System.out.println(appendSignature(signature));
 System.out.println();

 }

 //Step 1: Create a canonical request date should be in format YYYYMMDD and dateTime
 should be in format YYYYMMDDTHHMMSSZ
 public static String createCanonicalString(String user, String accessKey, String
 date, String dateTime, String region, String expiryPeriod, String hostName, String
 port) throws Exception {
 canonicalQueryParameters.put("Action", action);
 canonicalQueryParameters.put("DBUser", user);
 canonicalQueryParameters.put("X-Amz-Algorithm", "AWS4-HMAC-SHA256");
 canonicalQueryParameters.put("X-Amz-Credential", accessKey + "%2F" + date +
 "%2F" + region + "%2F" + serviceName + "%2Faws4_request");
 canonicalQueryParameters.put("X-Amz-Date", dateTime);
 canonicalQueryParameters.put("X-Amz-Expires", expiryPeriod);
 canonicalQueryParameters.put("X-Amz-SignedHeaders", signedHeader);
 String canonicalQueryString = "";
 while(!canonicalQueryParameters.isEmpty()) {
 String currentQueryParameter = canonicalQueryParameters.firstKey();
 String currentQueryParameterValue =
 canonicalQueryParameters.remove(currentQueryParameter);
 canonicalQueryString = canonicalQueryString + currentQueryParameter + "=" +
 currentQueryParameterValue;
 if (!currentQueryParameter.equals("X-Amz-SignedHeaders")) {
 canonicalQueryString += "&";
 }
 }
 String canonicalHeaders = "host:" + hostName + ":" + port + '\n';
 requestWithoutSignature = hostName + ":" + port + "/?" + canonicalQueryString;

 String hashedPayload = BinaryUtils.toHex(hash(payload));
 return httpMethod + '\n' + canonicalURIParameter + '\n' + canonicalQueryString
 + '\n' + canonicalHeaders + '\n' + signedHeader + '\n' + hashedPayload;

 }

 //Step 2: Create a string to sign using sig v4
 public static String createStringToSign(String dateTime, String canonicalRequest,
 String accessKey, String date, String region) throws Exception {
 String credentialScope = date + "/" + region + "/" + serviceName + "/
aws4_request";

IAM database authentication 3968

Amazon Aurora User Guide for Aurora

 return algorithm + '\n' + dateTime + '\n' + credentialScope + '\n' +
 BinaryUtils.toHex(hash(canonicalRequest));

 }

 //Step 3: Calculate signature
 /**
 * Step 3 of the &AWS; Signature version 4 calculation. It involves deriving
 * the signing key and computing the signature. Refer to
 * http://docs.aws.amazon
 * .com/general/latest/gr/sigv4-calculate-signature.html
 */
 public static byte[] calculateSignature(String stringToSign,
 byte[] signingKey) {
 return sign(stringToSign.getBytes(Charset.forName("UTF-8")), signingKey,
 SigningAlgorithm.HmacSHA256);
 }

 public static byte[] sign(byte[] data, byte[] key,
 SigningAlgorithm algorithm) throws SdkClientException {
 try {
 Mac mac = algorithm.getMac();
 mac.init(new SecretKeySpec(key, algorithm.toString()));
 return mac.doFinal(data);
 } catch (Exception e) {
 throw new SdkClientException(
 "Unable to calculate a request signature: "
 + e.getMessage(), e);
 }
 }

 public static byte[] newSigningKey(String secretKey,
 String dateStamp, String regionName, String
 serviceName) {
 byte[] kSecret = ("AWS4" + secretKey).getBytes(Charset.forName("UTF-8"));
 byte[] kDate = sign(dateStamp, kSecret, SigningAlgorithm.HmacSHA256);
 byte[] kRegion = sign(regionName, kDate, SigningAlgorithm.HmacSHA256);
 byte[] kService = sign(serviceName, kRegion,
 SigningAlgorithm.HmacSHA256);
 return sign(AWS4_TERMINATOR, kService, SigningAlgorithm.HmacSHA256);
 }

 public static byte[] sign(String stringData, byte[] key,
 SigningAlgorithm algorithm) throws SdkClientException {

IAM database authentication 3969

Amazon Aurora User Guide for Aurora

 try {
 byte[] data = stringData.getBytes(UTF8);
 return sign(data, key, algorithm);
 } catch (Exception e) {
 throw new SdkClientException(
 "Unable to calculate a request signature: "
 + e.getMessage(), e);
 }
 }

 //Step 4: append the signature
 public static String appendSignature(String signature) {
 return requestWithoutSignature + "&X-Amz-Signature=" + signature;
 }

 public static byte[] hash(String s) throws Exception {
 try {
 MessageDigest md = MessageDigest.getInstance("SHA-256");
 md.update(s.getBytes(UTF8));
 return md.digest();
 } catch (Exception e) {
 throw new SdkClientException(
 "Unable to compute hash while signing request: "
 + e.getMessage(), e);
 }
 }
}

Connecting to a DB cluster

The following code example shows how to generate an authentication token, and then use it to
connect to a cluster running Aurora MySQL.

To run this code example, you need the AWS SDK for Java, found on the AWS site. In addition, you
need the following:

• MySQL Connector/J. This code example was tested with mysql-connector-java-5.1.33-
bin.jar.

• An intermediate certificate for Amazon Aurora that is specific to an AWS Region. (For more
information, see Using SSL/TLS to encrypt a connection to a DB cluster.) At runtime, the class
loader looks for the certificate in the same directory as this Java code example, so that the class
loader can find it.

IAM database authentication 3970

http://aws.amazon.com/sdk-for-java/

Amazon Aurora User Guide for Aurora

• Modify the values of the following variables as needed:

• RDS_INSTANCE_HOSTNAME – The host name of the DB cluster that you want to access.

• RDS_INSTANCE_PORT – The port number used for connecting to your PostgreSQL DB cluster.

• REGION_NAME – The AWS Region where the DB cluster is running.

• DB_USER – The database account that you want to access.

• SSL_CERTIFICATE – An SSL certificate for Amazon Aurora that is specific to an AWS Region.

To download a certificate for your AWS Region, see Using SSL/TLS to encrypt a connection to
a DB cluster. Place the SSL certificate in the same directory as this Java program file, so that
the class loader can find the certificate at runtime.

This code example obtains AWS credentials from the default credential provider chain.

Note

Specify a password for DEFAULT_KEY_STORE_PASSWORD other than the prompt shown
here as a security best practice.

package com.amazonaws.samples;

import com.amazonaws.services.rds.auth.RdsIamAuthTokenGenerator;
import com.amazonaws.services.rds.auth.GetIamAuthTokenRequest;
import com.amazonaws.auth.BasicAWSCredentials;
import com.amazonaws.auth.DefaultAWSCredentialsProviderChain;
import com.amazonaws.auth.AWSStaticCredentialsProvider;

import java.io.File;
import java.io.FileOutputStream;
import java.io.InputStream;
import java.security.KeyStore;
import java.security.cert.CertificateFactory;
import java.security.cert.X509Certificate;

import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.ResultSet;
import java.sql.Statement;
import java.util.Properties;

IAM database authentication 3971

https://docs.aws.amazon.com/sdk-for-java/v1/developer-guide/credentials.html#credentials-default

Amazon Aurora User Guide for Aurora

import java.net.URL;

public class IAMDatabaseAuthenticationTester {
 //&AWS; Credentials of the IAM user with policy enabling IAM Database Authenticated
 access to the db by the db user.
 private static final DefaultAWSCredentialsProviderChain creds = new
 DefaultAWSCredentialsProviderChain();
 private static final String AWS_ACCESS_KEY =
 creds.getCredentials().getAWSAccessKeyId();
 private static final String AWS_SECRET_KEY =
 creds.getCredentials().getAWSSecretKey();

 //Configuration parameters for the generation of the IAM Database Authentication
 token
 private static final String RDS_INSTANCE_HOSTNAME = "rdsmysql.123456789012.us-
west-2.rds.amazonaws.com";
 private static final int RDS_INSTANCE_PORT = 3306;
 private static final String REGION_NAME = "us-west-2";
 private static final String DB_USER = "jane_doe";
 private static final String JDBC_URL = "jdbc:mysql://" + RDS_INSTANCE_HOSTNAME +
 ":" + RDS_INSTANCE_PORT;

 private static final String SSL_CERTIFICATE = "rds-ca-2019-us-west-2.pem";

 private static final String KEY_STORE_TYPE = "JKS";
 private static final String KEY_STORE_PROVIDER = "SUN";
 private static final String KEY_STORE_FILE_PREFIX = "sys-connect-via-ssl-test-
cacerts";
 private static final String KEY_STORE_FILE_SUFFIX = ".jks";
 private static final String DEFAULT_KEY_STORE_PASSWORD = "changeit";

 public static void main(String[] args) throws Exception {
 //get the connection
 Connection connection = getDBConnectionUsingIam();

 //verify the connection is successful
 Statement stmt= connection.createStatement();
 ResultSet rs=stmt.executeQuery("SELECT 'Success!' FROM DUAL;");
 while (rs.next()) {
 String id = rs.getString(1);
 System.out.println(id); //Should print "Success!"
 }

IAM database authentication 3972

Amazon Aurora User Guide for Aurora

 //close the connection
 stmt.close();
 connection.close();

 clearSslProperties();

 }

 /**
 * This method returns a connection to the db instance authenticated using IAM
 Database Authentication
 * @return
 * @throws Exception
 */
 private static Connection getDBConnectionUsingIam() throws Exception {
 setSslProperties();
 return DriverManager.getConnection(JDBC_URL, setMySqlConnectionProperties());
 }

 /**
 * This method sets the mysql connection properties which includes the IAM Database
 Authentication token
 * as the password. It also specifies that SSL verification is required.
 * @return
 */
 private static Properties setMySqlConnectionProperties() {
 Properties mysqlConnectionProperties = new Properties();
 mysqlConnectionProperties.setProperty("verifyServerCertificate","true");
 mysqlConnectionProperties.setProperty("useSSL", "true");
 mysqlConnectionProperties.setProperty("user",DB_USER);
 mysqlConnectionProperties.setProperty("password",generateAuthToken());
 return mysqlConnectionProperties;
 }

 /**
 * This method generates the IAM Auth Token.
 * An example IAM Auth Token would look like follows:
 * btusi123.cmz7kenwo2ye.rds.cn-north-1.amazonaws.com.cn:3306/?
Action=connect&DBUser=iamtestuser&X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-
Date=20171003T010726Z&X-Amz-SignedHeaders=host&X-Amz-Expires=899&X-Amz-
Credential=AKIAPFXHGVDI5RNFO4AQ%2F20171003%2Fcn-north-1%2Frds-db%2Faws4_request&X-Amz-
Signature=f9f45ef96c1f770cdad11a53e33ffa4c3730bc03fdee820cfdf1322eed15483b
 * @return
 */

IAM database authentication 3973

Amazon Aurora User Guide for Aurora

 private static String generateAuthToken() {
 BasicAWSCredentials awsCredentials = new BasicAWSCredentials(AWS_ACCESS_KEY,
 AWS_SECRET_KEY);

 RdsIamAuthTokenGenerator generator = RdsIamAuthTokenGenerator.builder()
 .credentials(new
 AWSStaticCredentialsProvider(awsCredentials)).region(REGION_NAME).build();
 return generator.getAuthToken(GetIamAuthTokenRequest.builder()

 .hostname(RDS_INSTANCE_HOSTNAME).port(RDS_INSTANCE_PORT).userName(DB_USER).build());
 }

 /**
 * This method sets the SSL properties which specify the key store file, its type
 and password:
 * @throws Exception
 */
 private static void setSslProperties() throws Exception {
 System.setProperty("javax.net.ssl.trustStore", createKeyStoreFile());
 System.setProperty("javax.net.ssl.trustStoreType", KEY_STORE_TYPE);
 System.setProperty("javax.net.ssl.trustStorePassword",
 DEFAULT_KEY_STORE_PASSWORD);
 }

 /**
 * This method returns the path of the Key Store File needed for the SSL
 verification during the IAM Database Authentication to
 * the db instance.
 * @return
 * @throws Exception
 */
 private static String createKeyStoreFile() throws Exception {
 return createKeyStoreFile(createCertificate()).getPath();
 }

 /**
 * This method generates the SSL certificate
 * @return
 * @throws Exception
 */
 private static X509Certificate createCertificate() throws Exception {
 CertificateFactory certFactory = CertificateFactory.getInstance("X.509");
 URL url = new File(SSL_CERTIFICATE).toURI().toURL();
 if (url == null) {

IAM database authentication 3974

Amazon Aurora User Guide for Aurora

 throw new Exception();
 }
 try (InputStream certInputStream = url.openStream()) {
 return (X509Certificate) certFactory.generateCertificate(certInputStream);
 }
 }

 /**
 * This method creates the Key Store File
 * @param rootX509Certificate - the SSL certificate to be stored in the KeyStore
 * @return
 * @throws Exception
 */
 private static File createKeyStoreFile(X509Certificate rootX509Certificate) throws
 Exception {
 File keyStoreFile = File.createTempFile(KEY_STORE_FILE_PREFIX,
 KEY_STORE_FILE_SUFFIX);
 try (FileOutputStream fos = new FileOutputStream(keyStoreFile.getPath())) {
 KeyStore ks = KeyStore.getInstance(KEY_STORE_TYPE, KEY_STORE_PROVIDER);
 ks.load(null);
 ks.setCertificateEntry("rootCaCertificate", rootX509Certificate);
 ks.store(fos, DEFAULT_KEY_STORE_PASSWORD.toCharArray());
 }
 return keyStoreFile;
 }

 /**
 * This method clears the SSL properties.
 * @throws Exception
 */
 private static void clearSslProperties() throws Exception {
 System.clearProperty("javax.net.ssl.trustStore");
 System.clearProperty("javax.net.ssl.trustStoreType");
 System.clearProperty("javax.net.ssl.trustStorePassword");
 }

}

If you want to connect to a DB cluster through a proxy, see Connecting to a proxy using IAM
authentication.

IAM database authentication 3975

Amazon Aurora User Guide for Aurora

Connecting to your DB cluster using IAM authentication and the AWS SDK for Python (Boto3)

You can connect to an Aurora MySQL or Aurora PostgreSQL DB cluster with the AWS SDK for
Python (Boto3) as described following.

Prerequisites

The following are prerequisites for connecting to your DB cluster using IAM authentication:

• Enabling and disabling IAM database authentication

• Creating and using an IAM policy for IAM database access

• Creating a database account using IAM authentication

In addition, make sure the imported libraries in the sample code exist on your system.

Examples

The code examples use profiles for shared credentials. For information about the specifying
credentials, see Credentials in the AWS SDK for Python (Boto3) documentation.

The following code examples show how to generate an authentication token, and then use it to
connect to a DB cluster.

To run this code example, you need the AWS SDK for Python (Boto3), found on the AWS site.

Modify the values of the following variables as needed:

• ENDPOINT – The endpoint of the DB cluster that you want to access

• PORT – The port number used for connecting to your DB cluster

• USER – The database account that you want to access

• REGION – The AWS Region where the DB cluster is running

• DBNAME – The database that you want to access

• SSLCERTIFICATE – The full path to the SSL certificate for Amazon Aurora

For ssl_ca, specify an SSL certificate. To download an SSL certificate, see Using SSL/TLS to
encrypt a connection to a DB cluster.

IAM database authentication 3976

https://boto3.amazonaws.com/v1/documentation/api/latest/guide/credentials.html
http://aws.amazon.com/sdk-for-python/

Amazon Aurora User Guide for Aurora

Note

You cannot use a custom Route 53 DNS record or an Aurora custom endpoint instead of the
DB cluster endpoint to generate the authentication token.

This code connects to an Aurora MySQL DB cluster.

Before running this code, install the PyMySQL driver by following the instructions in the Python
Package Index.

import pymysql
import sys
import boto3
import os

ENDPOINT="mysqlcluster.cluster-123456789012.us-east-1.rds.amazonaws.com"
PORT="3306"
USER="jane_doe"
REGION="us-east-1"
DBNAME="mydb"
os.environ['LIBMYSQL_ENABLE_CLEARTEXT_PLUGIN'] = '1'

#gets the credentials from .aws/credentials
session = boto3.Session(profile_name='default')
client = session.client('rds')

token = client.generate_db_auth_token(DBHostname=ENDPOINT, Port=PORT, DBUsername=USER,
 Region=REGION)

try:
 conn = pymysql.connect(host=ENDPOINT, user=USER, passwd=token, port=PORT,
 database=DBNAME, ssl_ca='SSLCERTIFICATE')
 cur = conn.cursor()
 cur.execute("""SELECT now()""")
 query_results = cur.fetchall()
 print(query_results)
except Exception as e:
 print("Database connection failed due to {}".format(e))

This code connects to an Aurora PostgreSQL DB cluster.

IAM database authentication 3977

https://pypi.org/project/PyMySQL/
https://pypi.org/project/PyMySQL/

Amazon Aurora User Guide for Aurora

Before running this code, install psycopg2 by following the instructions in Psycopg
documentation.

import psycopg2
import sys
import boto3
import os

ENDPOINT="postgresmycluster.cluster-123456789012.us-east-1.rds.amazonaws.com"
PORT="5432"
USER="jane_doe"
REGION="us-east-1"
DBNAME="mydb"

#gets the credentials from .aws/credentials
session = boto3.Session(profile_name='RDSCreds')
client = session.client('rds')

token = client.generate_db_auth_token(DBHostname=ENDPOINT, Port=PORT, DBUsername=USER,
 Region=REGION)

try:
 conn = psycopg2.connect(host=ENDPOINT, port=PORT, database=DBNAME, user=USER,
 password=token, sslrootcert="SSLCERTIFICATE")
 cur = conn.cursor()
 cur.execute("""SELECT now()""")
 query_results = cur.fetchall()
 print(query_results)
except Exception as e:
 print("Database connection failed due to {}".format(e))

If you want to connect to a DB cluster through a proxy, see Connecting to a proxy using IAM
authentication.

Troubleshooting Amazon Aurora identity and access

Use the following information to help you diagnose and fix common issues that you might
encounter when working with Aurora and IAM.

Topics

Troubleshooting 3978

https://pypi.org/project/psycopg2/
https://pypi.org/project/psycopg2/

Amazon Aurora User Guide for Aurora

• I'm not authorized to perform an action in Aurora

• I'm not authorized to perform iam:PassRole

• I want to allow people outside of my AWS account to access my Aurora resources

I'm not authorized to perform an action in Aurora

If the AWS Management Console tells you that you're not authorized to perform an action, then
you must contact your administrator for assistance. Your administrator is the person that provided
you with your sign-in credentials.

The following example error occurs when the mateojackson user tries to use the console to view
details about a widget but does not have rds:GetWidget permissions.

User: arn:aws:iam::123456789012:user/mateojackson is not authorized to perform:
 rds:GetWidget on resource: my-example-widget

In this case, Mateo asks his administrator to update his policies to allow him to access the my-
example-widget resource using the rds:GetWidget action.

I'm not authorized to perform iam:PassRole

If you receive an error that you're not authorized to perform the iam:PassRole action, then you
must contact your administrator for assistance. Your administrator is the person that provided you
with your sign-in credentials. Ask that person to update your policies to allow you to pass a role to
Aurora.

Some AWS services allow you to pass an existing role to that service, instead of creating a new
service role or service-linked role. To do this, you must have permissions to pass the role to the
service.

The following example error occurs when a user named marymajor tries to use the console to
perform an action in Aurora. However, the action requires the service to have permissions granted
by a service role. Mary does not have permissions to pass the role to the service.

User: arn:aws:iam::123456789012:user/marymajor is not authorized to perform:
 iam:PassRole

In this case, Mary asks her administrator to update her policies to allow her to perform the
iam:PassRole action.

Troubleshooting 3979

Amazon Aurora User Guide for Aurora

I want to allow people outside of my AWS account to access my Aurora resources

You can create a role that users in other accounts or people outside of your organization can use to
access your resources. You can specify who is trusted to assume the role. For services that support
resource-based policies or access control lists (ACLs), you can use those policies to grant people
access to your resources.

To learn more, consult the following:

• To learn whether Aurora supports these features, see How Amazon Aurora works with IAM.

• To learn how to provide access to your resources across AWS accounts that you own, see
Providing access to an IAM user in another AWS account that you own in the IAM User Guide.

• To learn how to provide access to your resources to third-party AWS accounts, see Providing
access to AWS accounts owned by third parties in the IAM User Guide.

• To learn how to provide access through identity federation, see Providing access to externally
authenticated users (identity federation) in the IAM User Guide.

• To learn the difference between using roles and resource-based policies for cross-account access,
see How IAM roles differ from resource-based policies in the IAM User Guide.

Logging and monitoring in Amazon Aurora

Monitoring is an important part of maintaining the reliability, availability, and performance of
Amazon Aurora and your AWS solutions. You should collect monitoring data from all of the parts
of your AWS solution so that you can more easily debug a multi-point failure if one occurs. AWS
provides several tools for monitoring your Amazon Aurora resources and responding to potential
incidents:

Amazon CloudWatch Alarms

Using Amazon CloudWatch alarms, you watch a single metric over a time period that you
specify. If the metric exceeds a given threshold, a notification is sent to an Amazon SNS topic
or AWS Auto Scaling policy. CloudWatch alarms do not invoke actions because they are in
a particular state. Rather the state must have changed and been maintained for a specified
number of periods.

Logging and monitoring 3980

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_aws-accounts.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_third-party.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_third-party.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_federated-users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_federated-users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_compare-resource-policies.html

Amazon Aurora User Guide for Aurora

AWS CloudTrail Logs

CloudTrail provides a record of actions taken by a user, role, or an AWS service in Amazon
Aurora. CloudTrail captures all API calls for Amazon Aurora as events, including calls from the
console and from code calls to Amazon RDS API operations. Using the information collected
by CloudTrail, you can determine the request that was made to Amazon Aurora, the IP address
from which the request was made, who made the request, when it was made, and additional
details. For more information, see Monitoring Amazon Aurora API calls in AWS CloudTrail.

Enhanced Monitoring

Amazon Aurora provides metrics in real time for the operating system (OS) that your DB
cluster runs on. You can view the metrics for your DB cluster using the console, or consume the
Enhanced Monitoring JSON output from Amazon CloudWatch Logs in a monitoring system of
your choice. For more information, see Monitoring OS metrics with Enhanced Monitoring.

Amazon RDS Performance Insights

Performance Insights expands on existing Amazon Aurora monitoring features to illustrate your
database's performance and help you analyze any issues that affect it. With the Performance
Insights dashboard, you can visualize the database load and filter the load by waits, SQL
statements, hosts, or users. For more information, see Monitoring DB load with Performance
Insights on Amazon Aurora.

Database Logs

You can view, download, and watch database logs using the AWS Management Console, AWS
CLI, or RDS API. For more information, see Monitoring Amazon Aurora log files.

Amazon Aurora Recommendations

Amazon Aurora provides automated recommendations for database resources. These
recommendations provide best practice guidance by analyzing DB cluster configuration, usage,
and performance data. For more information, see Viewing and responding to Amazon Aurora
recommendations.

Amazon Aurora Event Notification

Amazon Aurora uses the Amazon Simple Notification Service (Amazon SNS) to provide
notification when an Amazon Aurora event occurs. These notifications can be in any notification
form supported by Amazon SNS for an AWS Region, such as an email, a text message, or a call
to an HTTP endpoint. For more information, see Working with Amazon RDS event notification.

Logging and monitoring 3981

Amazon Aurora User Guide for Aurora

AWS Trusted Advisor

Trusted Advisor draws upon best practices learned from serving hundreds of thousands of AWS
customers. Trusted Advisor inspects your AWS environment and then makes recommendations
when opportunities exist to save money, improve system availability and performance, or help
close security gaps. All AWS customers have access to five Trusted Advisor checks. Customers
with a Business or Enterprise support plan can view all Trusted Advisor checks.

Trusted Advisor has the following Amazon Aurora-related checks:

• Amazon Aurora Idle DB Instances

• Amazon Aurora Security Group Access Risk

• Amazon Aurora Backups

• Amazon Aurora Multi-AZ

• Aurora DB Instance Accessibility

For more information on these checks, see Trusted Advisor best practices (checks).

Database activity streams

Database activity streams can protect your databases from internal threats by controlling
DBA access to the database activity streams. Thus, the collection, transmission, storage, and
subsequent processing of the database activity stream is beyond the access of the DBAs that
manage the database. Database activity streams can provide safeguards for your database and
meet compliance and regulatory requirements. For more information, see Monitoring Amazon
Aurora with Database Activity Streams.

For more information about monitoring Aurora see Monitoring metrics in an Amazon Aurora
cluster.

Logging and monitoring 3982

https://aws.amazon.com/premiumsupport/trustedadvisor/best-practices/

Amazon Aurora User Guide for Aurora

Compliance validation for Amazon Aurora

Third-party auditors assess the security and compliance of Amazon Aurora as part of multiple AWS
compliance programs. These include SOC, PCI, FedRAMP, HIPAA, and others.

For a list of AWS services in scope of specific compliance programs, see AWS services in scope by
compliance program. For general information, see AWS compliance programs.

You can download third-party audit reports using AWS Artifact. For more information, see
Downloading reports in AWS Artifact.

Your compliance responsibility when using Amazon Aurora is determined by the sensitivity of your
data, your organization's compliance objectives, and applicable laws and regulations. AWS provides
the following resources to help with compliance:

• Security and compliance quick start guides – These deployment guides discuss architectural
considerations and provide steps for deploying security- and compliance-focused baseline
environments on AWS.

• Architecting for HIPAA Security and Compliance on Amazon Web Services – This whitepaper
describes how companies can use AWS to create HIPAA-compliant applications.

• AWS compliance resources – This collection of workbooks and guides that might apply to your
industry and location.

• AWS Config – This AWS service assesses how well your resource configurations comply with
internal practices, industry guidelines, and regulations.

• AWS Security Hub – This AWS service provides a comprehensive view of your security state within
AWS. Security Hub uses security controls to evaluate your AWS resources and to check your
compliance against security industry standards and best practices. For a list of supported services
and controls, see Security Hub controls reference.

Compliance validation 3983

https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/programs/
https://docs.aws.amazon.com/artifact/latest/ug/downloading-documents.html
https://aws.amazon.com/quickstart/?awsf.quickstart-homepage-filter=categories%23security-identity-compliance
https://docs.aws.amazon.com/pdfs/whitepapers/latest/architecting-hipaa-security-and-compliance-on-aws/architecting-hipaa-security-and-compliance-on-aws.pdf
https://aws.amazon.com/compliance/resources/
https://docs.aws.amazon.com/config/latest/developerguide/evaluate-config.html
https://docs.aws.amazon.com/securityhub/latest/userguide/what-is-securityhub.html
https://docs.aws.amazon.com/securityhub/latest/userguide/securityhub-controls-reference.html

Amazon Aurora User Guide for Aurora

Resilience in Amazon Aurora

The AWS global infrastructure is built around AWS Regions and Availability Zones. AWS Regions
provide multiple physically separated and isolated Availability Zones, which are connected with
low-latency, high-throughput, and highly redundant networking. With Availability Zones, you can
design and operate applications and databases that automatically fail over between Availability
Zones without interruption. Availability Zones are more highly available, fault tolerant, and
scalable than traditional single or multiple data center infrastructures.

For more information about AWS Regions and Availability Zones, see AWS global infrastructure.

In addition to the AWS global infrastructure, Aurora offers features to help support your data
resiliency and backup needs.

Backup and restore

Aurora backs up your cluster volume automatically and retains restore data for the length of
the backup retention period. Aurora backups are continuous and incremental so you can quickly
restore to any point within the backup retention period. No performance impact or interruption of
database service occurs as backup data is being written. You can specify a backup retention period,
from 1 to 35 days, when you create or modify a DB cluster.

If you want to retain a backup beyond the backup retention period, you can also take a snapshot
of the data in your cluster volume. Aurora retains incremental restore data for the entire backup
retention period. Thus, you need to create a snapshot only for data that you want to retain beyond
the backup retention period. You can create a new DB cluster from the snapshot.

You can recover your data by creating a new Aurora DB cluster from the backup data that Aurora
retains, or from a DB cluster snapshot that you have saved. You can quickly create a new copy
of a DB cluster from backup data to any point in time during your backup retention period. The
continuous and incremental nature of Aurora backups during the backup retention period means
you don't need to take frequent snapshots of your data to improve restore times.

For more information, see Backing up and restoring an Amazon Aurora DB cluster.

Replication

Aurora Replicas are independent endpoints in an Aurora DB cluster, best used for scaling read
operations and increasing availability. Up to 15 Aurora Replicas can be distributed across the

Resilience 3984

https://aws.amazon.com/about-aws/global-infrastructure/

Amazon Aurora User Guide for Aurora

Availability Zones that a DB cluster spans within an AWS Region. The DB cluster volume is made
up of multiple copies of the data for the DB cluster. However, the data in the cluster volume is
represented as a single, logical volume to the primary DB instance and to Aurora Replicas in the
DB cluster. If the primary DB instance fails, an Aurora Replica is promoted to be the primary DB
instance.

Aurora also supports replication options that are specific to Aurora MySQL and Aurora PostgreSQL.

For more information, see Replication with Amazon Aurora.

Failover

Aurora stores copies of the data in a DB cluster across multiple Availability Zones in a single AWS
Region. This storage occurs regardless of whether the DB instances in the DB cluster span multiple
Availability Zones. When you create Aurora Replicas across Availability Zones, Aurora automatically
provisions and maintains them synchronously. The primary DB instance is synchronously replicated
across Availability Zones to Aurora Replicas to provide data redundancy, eliminate I/O freezes, and
minimize latency spikes during system backups. Running a DB cluster with high availability can
enhance availability during planned system maintenance, and help protect your databases against
failure and Availability Zone disruption.

For more information, see High availability for Amazon Aurora.

Failover 3985

Amazon Aurora User Guide for Aurora

Infrastructure security in Amazon Aurora

As a managed service, Amazon Relational Database Service is protected by AWS global network
security. For information about AWS security services and how AWS protects infrastructure, see
AWS Cloud Security. To design your AWS environment using the best practices for infrastructure
security, see Infrastructure Protection in Security Pillar AWS Well‐Architected Framework.

You use AWS published API calls to access Amazon RDS through the network. Clients must support
the following:

• Transport Layer Security (TLS). We require TLS 1.2 and recommend TLS 1.3.

• Cipher suites with perfect forward secrecy (PFS) such as DHE (Ephemeral Diffie-Hellman) or
ECDHE (Elliptic Curve Ephemeral Diffie-Hellman). Most modern systems such as Java 7 and later
support these modes.

Additionally, requests must be signed by using an access key ID and a secret access key that is
associated with an IAM principal. Or you can use the AWS Security Token Service (AWS STS) to
generate temporary security credentials to sign requests.

In addition, Aurora offers features to help support infrastructure security.

Security groups

Security groups control the access that traffic has in and out of a DB cluster. By default, network
access is turned off to a DB cluster. You can specify rules in a security group that allow access from
an IP address range, port, or security group. After ingress rules are configured, the same rules apply
to all DB clusters that are associated with that security group.

For more information, see Controlling access with security groups.

Public accessibility

When you launch a DB instance inside a virtual private cloud (VPC) based on the Amazon VPC
service, you can turn on or off public accessibility for that DB instance. To designate whether the
DB instance that you create has a DNS name that resolves to a public IP address, you use the Public
accessibility parameter. By using this parameter, you can designate whether there is public access
to the DB instance. You can modify a DB instance to turn on or off public accessibility by modifying
the Public accessibility parameter.

Infrastructure security 3986

https://aws.amazon.com/security/
https://docs.aws.amazon.com/wellarchitected/latest/security-pillar/infrastructure-protection.html
https://docs.aws.amazon.com/STS/latest/APIReference/welcome.html

Amazon Aurora User Guide for Aurora

For more information, see Hiding a DB cluster in a VPC from the internet.

Note

If your DB instance is in a VPC but isn't publicly accessible, you can also use an AWS Site-
to-Site VPN connection or an AWS Direct Connect connection to access it from a private
network. For more information, see Internetwork traffic privacy.

Public accessibility 3987

Amazon Aurora User Guide for Aurora

Amazon RDS API and interface VPC endpoints (AWS
PrivateLink)

You can establish a private connection between your VPC and Amazon RDS API endpoints by
creating an interface VPC endpoint. Interface endpoints are powered by AWS PrivateLink.

AWS PrivateLink enables you to privately access Amazon RDS API operations without an internet
gateway, NAT device, VPN connection, or AWS Direct Connect connection. DB instances in your VPC
don't need public IP addresses to communicate with Amazon RDS API endpoints to launch, modify,
or terminate DB instances and DB clusters. Your DB instances also don't need public IP addresses
to use any of the available RDS API operations. Traffic between your VPC and Amazon RDS doesn't
leave the Amazon network.

Each interface endpoint is represented by one or more elastic network interfaces in your subnets.
For more information on elastic network interfaces, see Elastic network interfaces in the Amazon
EC2 User Guide.

For more information about VPC endpoints, see Interface VPC endpoints (AWS PrivateLink) in the
Amazon VPC User Guide. For more information about RDS API operations, see Amazon RDS API
Reference.

You don't need an interface VPC endpoint to connect to a DB cluster. For more information, see
Scenarios for accessing a DB cluster in a VPC.

Considerations for VPC endpoints

Before you set up an interface VPC endpoint for Amazon RDS API endpoints, ensure that you
review Interface endpoint properties and limitations in the Amazon VPC User Guide.

All RDS API operations relevant to managing Amazon Aurora resources are available from your VPC
using AWS PrivateLink.

VPC endpoint policies are supported for RDS API endpoints. By default, full access to RDS API
operations is allowed through the endpoint. For more information, see Controlling access to
services with VPC endpoints in the Amazon VPC User Guide.

Availability

Amazon RDS API currently supports VPC endpoints in the following AWS Regions:

VPC endpoints (AWS PrivateLink) 3988

https://aws.amazon.com/privatelink
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-eni.html
https://docs.aws.amazon.com/vpc/latest/userguide/vpce-interface.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/
https://docs.aws.amazon.com/vpc/latest/userguide/vpce-interface.html#vpce-interface-limitations
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-endpoints-access.html
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-endpoints-access.html

Amazon Aurora User Guide for Aurora

• US East (Ohio)

• US East (N. Virginia)

• US West (N. California)

• US West (Oregon)

• Africa (Cape Town)

• Asia Pacific (Hong Kong)

• Asia Pacific (Mumbai)

• Asia Pacific (Osaka)

• Asia Pacific (Seoul)

• Asia Pacific (Singapore)

• Asia Pacific (Sydney)

• Asia Pacific (Tokyo)

• Canada (Central)

• Canada West (Calgary)

• China (Beijing)

• China (Ningxia)

• Europe (Frankfurt)

• Europe (Zurich)

• Europe (Ireland)

• Europe (London)

• Europe (Paris)

• Europe (Stockholm)

• Europe (Milan)

• Israel (Tel Aviv)

• Middle East (Bahrain)

• South America (São Paulo)

• AWS GovCloud (US-East)

• AWS GovCloud (US-West)

Availability 3989

Amazon Aurora User Guide for Aurora

Creating an interface VPC endpoint for Amazon RDS API

You can create a VPC endpoint for the Amazon RDS API using either the Amazon VPC console
or the AWS Command Line Interface (AWS CLI). For more information, see Creating an interface
endpoint in the Amazon VPC User Guide.

Create a VPC endpoint for Amazon RDS API using the service name
com.amazonaws.region.rds.

Excluding AWS Regions in China, if you enable private DNS for the endpoint, you can make
API requests to Amazon RDS with the VPC endpoint using its default DNS name for the AWS
Region, for example rds.us-east-1.amazonaws.com. For the China (Beijing) and China
(Ningxia) AWS Regions, you can make API requests with the VPC endpoint using rds-api.cn-
north-1.amazonaws.com.cn and rds-api.cn-northwest-1.amazonaws.com.cn,
respectively.

For more information, see Accessing a service through an interface endpoint in the Amazon VPC
User Guide.

Creating a VPC endpoint policy for Amazon RDS API

You can attach an endpoint policy to your VPC endpoint that controls access to Amazon RDS API.
The policy specifies the following information:

• The principal that can perform actions.

• The actions that can be performed.

• The resources on which actions can be performed.

For more information, see Controlling access to services with VPC endpoints in the Amazon VPC
User Guide.

Example: VPC endpoint policy for Amazon RDS API actions

The following is an example of an endpoint policy for Amazon RDS API. When attached to an
endpoint, this policy grants access to the listed Amazon RDS API actions for all principals on all
resources.

{
 "Statement":[

Creating an interface VPC endpoint 3990

https://docs.aws.amazon.com/vpc/latest/userguide/vpce-interface.html#create-interface-endpoint
https://docs.aws.amazon.com/vpc/latest/userguide/vpce-interface.html#create-interface-endpoint
https://docs.aws.amazon.com/vpc/latest/userguide/vpce-interface.html#access-service-though-endpoint
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-endpoints-access.html

Amazon Aurora User Guide for Aurora

 {
 "Principal":"*",
 "Effect":"Allow",
 "Action":[
 "rds:CreateDBInstance",
 "rds:ModifyDBInstance",
 "rds:CreateDBSnapshot"
],
 "Resource":"*"
 }
]
}

Example: VPC endpoint policy that denies all access from a specified AWS account

The following VPC endpoint policy denies AWS account 123456789012 all access to resources
using the endpoint. The policy allows all actions from other accounts.

{
 "Statement": [
 {
 "Action": "*",
 "Effect": "Allow",
 "Resource": "*",
 "Principal": "*"
 },
 {
 "Action": "*",
 "Effect": "Deny",
 "Resource": "*",
 "Principal": { "AWS": ["123456789012"] }
 }
]
}

Security best practices for Amazon Aurora

Use AWS Identity and Access Management (IAM) accounts to control access to Amazon RDS API
operations, especially operations that create, modify, or delete Amazon Aurora resources. Such
resources include DB clusters, security groups, and parameter groups. Also use IAM to control
actions that perform common administrative actions such as backing up and restoring DB clusters.

Security best practices 3991

Amazon Aurora User Guide for Aurora

• Create an individual user for each person who manages Amazon Aurora resources, including
yourself. Don't use AWS root credentials to manage Amazon Aurora resources.

• Grant each user the minimum set of permissions required to perform his or her duties.

• Use IAM groups to effectively manage permissions for multiple users.

• Rotate your IAM credentials regularly.

• Configure AWS Secrets Manager to automatically rotate the secrets for Amazon Aurora. For more
information, see Rotating your AWS Secrets Manager secrets in the AWS Secrets Manager User
Guide. You can also retrieve the credential from AWS Secrets Manager programmatically. For
more information, see Retrieving the secret value in the AWS Secrets Manager User Guide.

For more information about Amazon Aurora security, see Security in Amazon Aurora. For more
information about IAM, see AWS Identity and Access Management. For information on IAM best
practices, see IAM best practices.

AWS Security Hub uses security controls to evaluate resource configurations and security standards
to help you comply with various compliance frameworks. For more information about using
Security Hub to evaluate RDS resources, see Amazon Relational Database Service controls in the
AWS Security Hub User Guide.

You can monitor your usage of RDS as it relates to security best practices by using Security Hub.
For more information, see What is AWS Security Hub?.

Use the AWS Management Console, the AWS CLI, or the RDS API to change the password for your
master user. If you use another tool, such as a SQL client, to change the master user password, it
might result in privileges being revoked for the user unintentionally.

Amazon GuardDuty is a continuous security monitoring service that analyzes and processes various
data sources, including Amazon RDS login activity. It uses threat intelligence feeds and machine
learning to identify unexpected, potentially unauthorized, suspicious login behavior, and malicious
activity within your AWS environment.

When Amazon GuardDuty RDS Protection detects a potentially suspicious or anomalous login
attempt that indicates a threat to your database, GuardDuty generates a new finding with details
about the potentially compromised database. For more information, see Monitoring threats with
Amazon GuardDuty RDS Protection.

Security best practices 3992

https://docs.aws.amazon.com/secretsmanager/latest/userguide/rotating-secrets.html
https://docs.aws.amazon.com/secretsmanager/latest/userguide/manage_retrieve-secret.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/Welcome.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/IAMBestPractices.html
https://docs.aws.amazon.com/securityhub/latest/userguide/rds-controls.html
https://docs.aws.amazon.com/securityhub/latest/userguide/what-is-securityhub.html

Amazon Aurora User Guide for Aurora

Controlling access with security groups

VPC security groups control the access that traffic has in and out of a DB cluster. By default,
network access is turned off for a DB cluster. You can specify rules in a security group that allow
access from an IP address range, port, or security group. After ingress rules are configured, the
same rules apply to all DB clusters that are associated with that security group. You can specify up
to 20 rules in a security group.

Overview of VPC security groups

Each VPC security group rule makes it possible for a specific source to access a DB cluster in a
VPC that is associated with that VPC security group. The source can be a range of addresses (for
example, 203.0.113.0/24), or another VPC security group. By specifying a VPC security group
as the source, you allow incoming traffic from all instances (typically application servers) that
use the source VPC security group. VPC security groups can have rules that govern both inbound
and outbound traffic. However, the outbound traffic rules typically don't apply to DB clusters.
Outbound traffic rules apply only if the DB cluster acts as a client. You must use the Amazon EC2
API or the Security Group option on the VPC console to create VPC security groups.

When you create rules for your VPC security group that allow access to the clusters in your VPC,
you must specify a port for each range of addresses that the rule allows access for. For example, if
you want to turn on Secure Shell (SSH) access for instances in the VPC, create a rule allowing access
to TCP port 22 for the specified range of addresses.

You can configure multiple VPC security groups that allow access to different ports for different
instances in your VPC. For example, you can create a VPC security group that allows access to TCP
port 80 for web servers in your VPC. You can then create another VPC security group that allows
access to TCP port 3306 for Aurora MySQL DB instances in your VPC.

Note

In an Aurora DB cluster, the VPC security group associated with the DB cluster is also
associated with all of the DB instances in the DB cluster. If you change the VPC security
group for the DB cluster or for a DB instance, the change is applied automatically to all of
the DB instances in the DB cluster.

For more information on VPC security groups, see Security groups in the Amazon Virtual Private
Cloud User Guide.

Controlling access with security groups 3993

https://docs.aws.amazon.com/AWSEC2/latest/APIReference/Welcome.html
https://docs.aws.amazon.com/AWSEC2/latest/APIReference/Welcome.html
https://docs.aws.amazon.com/vpc/latest/userguide/VPC_SecurityGroups.html

Amazon Aurora User Guide for Aurora

Note

If your DB cluster is in a VPC but isn't publicly accessible, you can also use an AWS Site-
to-Site VPN connection or an AWS Direct Connect connection to access it from a private
network. For more information, see Internetwork traffic privacy.

Security group scenario

A common use of a DB cluster in a VPC is to share data with an application server running in an
Amazon EC2 instance in the same VPC, which is accessed by a client application outside the VPC.
For this scenario, you use the RDS and VPC pages on the AWS Management Console or the RDS and
EC2 API operations to create the necessary instances and security groups:

1. Create a VPC security group (for example, sg-0123ec2example) and define inbound rules that
use the IP addresses of the client application as the source. This security group allows your client
application to connect to EC2 instances in a VPC that uses this security group.

2. Create an EC2 instance for the application and add the EC2 instance to the VPC security group
(sg-0123ec2example) that you created in the previous step.

3. Create a second VPC security group (for example, sg-6789rdsexample) and create a new rule
by specifying the VPC security group that you created in step 1 (sg-0123ec2example) as the
source.

4. Create a new DB cluster and add the DB cluster to the VPC security group
(sg-6789rdsexample) that you created in the previous step. When you create the
DB cluster, use the same port number as the one specified for the VPC security group
(sg-6789rdsexample) rule that you created in step 3.

The following diagram shows this scenario.

Security group scenario 3994

Amazon Aurora User Guide for Aurora

For detailed instructions about configuring a VPC for this scenario, see Tutorial: Create a VPC for
use with a DB cluster (IPv4 only). For more information about using a VPC, see Amazon VPC and
Amazon Aurora.

Creating a VPC security group

You can create a VPC security group for a DB instance by using the VPC console. For information
about creating a security group, see Provide access to the DB cluster in the VPC by creating a
security group and Security groups in the Amazon Virtual Private Cloud User Guide.

Creating a VPC security group 3995

https://docs.aws.amazon.com/vpc/latest/userguide/VPC_SecurityGroups.html

Amazon Aurora User Guide for Aurora

Associating a security group with a DB cluster

You can associate a security group with a DB cluster by using Modify cluster on the RDS console,
the ModifyDBCluster Amazon RDS API, or the modify-db-cluster AWS CLI command.

The following CLI example associates a specific VPC group and removes DB security groups from
the DB cluster

aws rds modify-db-cluster --db-cluster-identifier dbName --vpc-security-group-ids sg-ID

For information about modifying a DB cluster, see Modifying an Amazon Aurora DB cluster.

Master user account privileges

When you create a new DB cluster, the default master user that you use gets certain privileges for
that DB cluster. You can't change the master user name after the DB cluster is created.

Important

We strongly recommend that you do not use the master user directly in your applications.
Instead, adhere to the best practice of using a database user created with the minimal
privileges required for your application.

Note

If you accidentally delete the permissions for the master user, you can restore them by
modifying the DB cluster and setting a new master user password. For more information
about modifying a DB cluster, see Modifying an Amazon Aurora DB cluster.

The following table shows the privileges and database roles the master user gets for each of the
database engines.

Associating with a DB cluster 3996

Amazon Aurora User Guide for Aurora

Database
engine

System privilege Database role

Version 2:

ALTER, ALTER ROUTINE, CREATE, CREATE
ROUTINE, CREATE TEMPORARY TABLES, CREATE
USER, CREATE VIEW, DELETE, DROP, EVENT,
EXECUTE, GRANT OPTION, INDEX, INSERT, LOAD
FROM S3, LOCK TABLES, PROCESS, REFERENCE
S , RELOAD, REPLICATION CLIENT , REPLICATI
ON SLAVE , SELECT, SELECT INTO S3, SHOW
DATABASES , SHOW VIEW, TRIGGER, UPDATE

—Aurora
MySQL

Version 3:

ALTER, APPLICATION_PASSWORD_ADMIN ,
ALTER ROUTINE, CONNECTION_ADMIN ,
CREATE, CREATE ROLE, CREATE ROUTINE,
CREATE TEMPORARY TABLES, CREATE USER,
CREATE VIEW, DELETE, DROP, DROP ROLE,
EVENT, EXECUTE, INDEX, INSERT, LOCK TABLES,
PROCESS, REFERENCES , RELOAD, REPLICATI
ON CLIENT , REPLICATION SLAVE , ROLE_ADMI
N , SET_USER_ID , SELECT, SHOW DATABASES

, SHOW_ROUTINE (Aurora MySQL version 3.04
and higher), SHOW VIEW, TRIGGER, UPDATE,
XA_RECOVER_ADMIN

rds_superuser_role

For more information about
rds_superuser_role, see Role-
based privilege model.

Aurora
PostgreSQ
L

LOGIN, NOSUPERUSER , INHERIT, CREATEDB,
CREATEROLE , NOREPLICATION , VALID UNTIL
'infinity'

RDS_SUPERUSER

For more information about
RDS_SUPERUSER, see
Understanding PostgreSQL
roles and permissions.

Master user account privileges 3997

Amazon Aurora User Guide for Aurora

Using service-linked roles for Amazon Aurora

Amazon Aurora uses AWS Identity and Access Management (IAM) service-linked roles. A service-
linked role is a unique type of IAM role that is linked directly to Amazon Aurora. Service-linked
roles are predefined by Amazon Aurora and include all the permissions that the service requires to
call other AWS services on your behalf.

A service-linked role makes using Amazon Aurora easier because you don't have to manually add
the necessary permissions. Amazon Aurora defines the permissions of its service-linked roles,
and unless defined otherwise, only Amazon Aurora can assume its roles. The defined permissions
include the trust policy and the permissions policy, and that permissions policy cannot be attached
to any other IAM entity.

You can delete the roles only after first deleting their related resources. This protects your Amazon
Aurora resources because you can't inadvertently remove permission to access the resources.

For information about other services that support service-linked roles, see AWS services that work
with IAM and look for the services that have Yes in the Service-Linked Role column. Choose a Yes
with a link to view the service-linked role documentation for that service.

Service-linked role permissions for Amazon Aurora

Amazon Aurora uses the service-linked role named AWSServiceRoleForRDS to allow Amazon RDS
to call AWS services on behalf of your DB clusters.

The AWSServiceRoleForRDS service-linked role trusts the following services to assume the role:

• rds.amazonaws.com

This service-linked role has a permissions policy attached to it called
AmazonRDSServiceRolePolicy that grants it permissions to operate in your account.

For more information about this policy, including the JSON policy document, see
AmazonRDSServiceRolePolicy in the AWS Managed Policy Reference Guide.

Note

You must configure permissions to allow an IAM entity (such as a user, group, or role) to
create, edit, or delete a service-linked role. If you encounter the following error message:

Service-linked roles 3998

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_terms-and-concepts.html#iam-term-service-linked-role
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AmazonRDSServiceRolePolicy.html

Amazon Aurora User Guide for Aurora

Unable to create the resource. Verify that you have permission to create service linked
role. Otherwise wait and try again later.
Make sure you have the following permissions enabled:

{
 "Action": "iam:CreateServiceLinkedRole",
 "Effect": "Allow",
 "Resource": "arn:aws:iam::*:role/aws-service-role/rds.amazonaws.com/
AWSServiceRoleForRDS",
 "Condition": {
 "StringLike": {
 "iam:AWSServiceName":"rds.amazonaws.com"
 }
 }
}

For more information, see Service-linked role permissions in the IAM User Guide.

Creating a service-linked role for Amazon Aurora

You don't need to manually create a service-linked role. When you create a DB cluster, Amazon
Aurora creates the service-linked role for you.

Important

If you were using the Amazon Aurora service before December 1, 2017, when it began
supporting service-linked roles, then Amazon Aurora created the AWSServiceRoleForRDS
role in your account. To learn more, see A new role appeared in my AWS account.

If you delete this service-linked role, and then need to create it again, you can use the same process
to recreate the role in your account. When you create a DB cluster, Amazon Aurora creates the
service-linked role for you again.

Editing a service-linked role for Amazon Aurora

Amazon Aurora does not allow you to edit the AWSServiceRoleForRDS service-linked role. After
you create a service-linked role, you cannot change the name of the role because various entities

Service-linked role permissions for Amazon Aurora 3999

https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html#service-linked-role-permissions
https://docs.aws.amazon.com/IAM/latest/UserGuide/troubleshoot_roles.html#troubleshoot_roles_new-role-appeared

Amazon Aurora User Guide for Aurora

might reference the role. However, you can edit the description of the role using IAM. For more
information, see Editing a service-linked role in the IAM User Guide.

Deleting a service-linked role for Amazon Aurora

If you no longer need to use a feature or service that requires a service-linked role, we recommend
that you delete that role. That way you don't have an unused entity that is not actively monitored
or maintained. However, you must delete all of your DB clusters before you can delete the service-
linked role.

Cleaning up a service-linked role

Before you can use IAM to delete a service-linked role, you must first confirm that the role has no
active sessions and remove any resources used by the role.

To check whether the service-linked role has an active session in the IAM console

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the navigation pane of the IAM console, choose Roles. Then choose the name (not the check
box) of the AWSServiceRoleForRDS role.

3. On the Summary page for the chosen role, choose the Access Advisor tab.

4. On the Access Advisor tab, review recent activity for the service-linked role.

Note

If you are unsure whether Amazon Aurora is using the AWSServiceRoleForRDS role, you
can try to delete the role. If the service is using the role, then the deletion fails and you
can view the AWS Regions where the role is being used. If the role is being used, then
you must wait for the session to end before you can delete the role. You cannot revoke
the session for a service-linked role.

If you want to remove the AWSServiceRoleForRDS role, you must first delete all of your DB clusters.

Deleting all of your clusters

Use one of the following procedures to delete a single cluster. Repeat the procedure for each of
your clusters.

Service-linked role permissions for Amazon Aurora 4000

https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html#edit-service-linked-role
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

Amazon Aurora User Guide for Aurora

To delete a cluster (console)

1. Open the Amazon RDS console at https://console.aws.amazon.com/rds/.

2. In the Databases list, choose the cluster that you want to delete.

3. For Cluster Actions, choose Delete.

4. Choose Delete.

To delete a cluster (CLI)

See delete-db-cluster in the AWS CLI Command Reference.

To delete a cluster (API)

See DeleteDBCluster in the Amazon RDS API Reference.

You can use the IAM console, the IAM CLI, or the IAM API to delete the AWSServiceRoleForRDS
service-linked role. For more information, see Deleting a service-linked role in the IAM User Guide.

Service-linked role permissions for Amazon Aurora 4001

https://console.aws.amazon.com/rds/
https://docs.aws.amazon.com/cli/latest/reference/rds/delete-db-cluster.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DeleteDBCluster.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html#delete-service-linked-role

Amazon Aurora User Guide for Aurora

Amazon VPC and Amazon Aurora

Amazon Virtual Private Cloud (Amazon VPC) makes it possible for you to launch AWS resources,
such as Aurora DB clusters, into a virtual private cloud (VPC).

When you use a VPC, you have control over your virtual networking environment. You can choose
your own IP address range, create subnets, and configure routing and access control lists. There is
no additional cost to run your DB cluster in a VPC.

Accounts have a default VPC. All new DB clusters are created in the default VPC unless you specify
otherwise.

Topics

• Working with a DB cluster in a VPC

• Scenarios for accessing a DB cluster in a VPC

• Tutorial: Create a VPC for use with a DB cluster (IPv4 only)

• Tutorial: Create a VPC for use with a DB cluster (dual-stack mode)

Following, you can find a discussion about VPC functionality relevant to Amazon Aurora DB
clusters. For more information about Amazon VPC, see Amazon VPC Getting Started Guide and
Amazon VPC User Guide.

Working with a DB cluster in a VPC

Your DB cluster is in a virtual private cloud (VPC). A VPC is a virtual network that is logically
isolated from other virtual networks in the AWS Cloud. Amazon VPC makes it possible for you to
launch AWS resources, such as an Amazon Aurora DB cluster or Amazon EC2 instance, into a VPC.
The VPC can either be a default VPC that comes with your account or one that you create. All VPCs
are associated with your AWS account.

Your default VPC has three subnets that you can use to isolate resources inside the VPC. The
default VPC also has an internet gateway that can be used to provide access to resources inside the
VPC from outside the VPC.

For a list of scenarios involving Amazon Aurora DB clusters in a VPC , see Scenarios for accessing a
DB cluster in a VPC.

Topics

Using Amazon Aurora with Amazon VPC 4002

https://docs.aws.amazon.com/AmazonVPC/latest/GettingStartedGuide/
https://docs.aws.amazon.com/vpc/latest/userguide/

Amazon Aurora User Guide for Aurora

• Working with a DB cluster in a VPC

• Working with DB subnet groups

• Shared subnets

• Amazon Aurora IP addressing

• Hiding a DB cluster in a VPC from the internet

• Creating a DB cluster in a VPC

In the following tutorials, you can learn to create a VPC that you can use for a common Amazon
Aurora scenario:

• Tutorial: Create a VPC for use with a DB cluster (IPv4 only)

• Tutorial: Create a VPC for use with a DB cluster (dual-stack mode)

Working with a DB cluster in a VPC

Here are some tips on working with a DB cluster in a VPC:

• Your VPC must have at least two subnets. These subnets must be in two different Availability
Zones in the AWS Region where you want to deploy your DB cluster. A subnet is a segment of a
VPC's IP address range that you can specify and that you can use to group DB clusters based on
your security and operational needs.

• If you want your DB cluster in the VPC to be publicly accessible, make sure to turn on the VPC
attributes DNS hostnames and DNS resolution.

• Your VPC must have a DB subnet group that you create. You create a DB subnet group by
specifying the subnets you created. Amazon Aurora chooses a subnet and an IP address within
that subnet to associate with the primary DB instance in your DB cluster. The primary DB
instance uses the Availability Zone that contains the subnet.

• Your VPC must have a VPC security group that allows access to the DB cluster.

For more information, see Scenarios for accessing a DB cluster in a VPC.

• The CIDR blocks in each of your subnets must be large enough to accommodate spare IP
addresses for Amazon Aurora to use during maintenance activities, including failover and
compute scaling. For example, a range such as 10.0.0.0/24 and 10.0.1.0/24 is typically large
enough.

Working with a DB cluster in a VPC 4003

Amazon Aurora User Guide for Aurora

• A VPC can have an instance tenancy attribute of either default or dedicated. All default VPCs have
the instance tenancy attribute set to default, and a default VPC can support any DB instance
class.

If you choose to have your DB cluster in a dedicated VPC where the instance tenancy attribute is
set to dedicated, the DB instance class of your DB cluster must be one of the approved Amazon
EC2 dedicated instance types. For example, the r5.large EC2 dedicated instance corresponds to
the db.r5.large DB instance class. For information about instance tenancy in a VPC, see Dedicated
instances in the Amazon Elastic Compute Cloud User Guide.

For more information about the instance types that can be in a dedicated instance, see Amazon
EC2 dedicated instances on the EC2 pricing page.

Note

When you set the instance tenancy attribute to dedicated for a DB cluster, it doesn't
guarantee that the DB cluster will run on a dedicated host.

Working with DB subnet groups

Subnets are segments of a VPC's IP address range that you designate to group your resources based
on security and operational needs. A DB subnet group is a collection of subnets (typically private)
that you create in a VPC and that you then designate for your DB clusters. By using a DB subnet
group, you can specify a particular VPC when creating DB clusters using the AWS CLI or RDS API. If
you use the console, you can choose the VPC and subnet groups you want to use.

Each DB subnet group should have subnets in at least two Availability Zones in a given AWS
Region. When creating a DB cluster in a VPC, you choose a DB subnet group for it. From the DB
subnet group, Amazon Aurora chooses a subnet and an IP address within that subnet to associate
with the primary DB instance in your DB cluster. The DB uses the Availability Zone that contains the
subnet.

The subnets in a DB subnet group are either public or private. The subnets are public or private,
depending on the configuration that you set for their network access control lists (network ACLs)
and routing tables. For a DB cluster to be publicly accessible, all of the subnets in its DB subnet
group must be public. If a subnet that's associated with a publicly accessible DB cluster changes
from public to private, it can affect DB cluster availability.

Working with a DB cluster in a VPC 4004

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/dedicated-instance.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/dedicated-instance.html
https://aws.amazon.com/ec2/purchasing-options/dedicated-instances/
https://aws.amazon.com/ec2/purchasing-options/dedicated-instances/

Amazon Aurora User Guide for Aurora

To create a DB subnet group that supports dual-stack mode, make sure that each subnet that you
add to the DB subnet group has an Internet Protocol version 6 (IPv6) CIDR block associated with it.
For more information, see Amazon Aurora IP addressing and Migrating to IPv6 in the Amazon VPC
User Guide.

When Amazon Aurora creates a DB cluster in a VPC, it assigns a network interface to your DB
cluster by using an IP address from your DB subnet group. However, we strongly recommend that
you use the Domain Name System (DNS) name to connect to your DB cluster. We recommend this
because the underlying IP address changes during failover.

Note

For each DB cluster that you run in a VPC, make sure to reserve at least one address in each
subnet in the DB subnet group for use by Amazon Aurora for recovery actions.

Shared subnets

You can create a DB cluster in a shared VPC.

Some considerations to keep in mind while using shared VPCs:

• You can move a DB cluster from a shared VPC subnet to a non-shared VPC subnet and vice-versa.

• Participants in a shared VPC must create a security group in the VPC to allow them to create a
DB cluster.

• Owners and participants in a shared VPC can access the database by using SQL queries. However,
only the creator of a resource can make any API calls on the resource.

Amazon Aurora IP addressing

IP addresses enable resources in your VPC to communicate with each other, and with resources
over the internet. Amazon Aurora supports both IPv4 and IPv6 addressing protocols. By default,
Amazon Aurora and Amazon VPC use the IPv4 addressing protocol. You can't turn off this
behavior. When you create a VPC, make sure to specify an IPv4 CIDR block (a range of private IPv4
addresses). You can optionally assign an IPv6 CIDR block to your VPC and subnets, and assign IPv6
addresses from that block to DB clusters in your subnet.

Working with a DB cluster in a VPC 4005

https://docs.aws.amazon.com/vpc/latest/userguide/vpc-migrate-ipv6.html

Amazon Aurora User Guide for Aurora

Support for the IPv6 protocol expands the number of supported IP addresses. By using the
IPv6 protocol, you ensure that you have sufficient available addresses for the future growth of
the internet. New and existing RDS resources can use IPv4 and IPv6 addresses within your VPC.
Configuring, securing, and translating network traffic between the two protocols used in different
parts of an application can cause operational overhead. You can standardize on the IPv6 protocol
for Amazon RDS resources to simplify your network configuration.

Topics

• IPv4 addresses

• IPv6 addresses

• Dual-stack mode

IPv4 addresses

When you create a VPC, you must specify a range of IPv4 addresses for the VPC in the form of a
CIDR block, such as 10.0.0.0/16. A DB subnet group defines the range of IP addresses in this
CIDR block that a DB cluster can use. These IP addresses can be private or public.

A private IPv4 address is an IP address that's not reachable over the internet. You can use private
IPv4 addresses for communication between your DB cluster and other resources, such as Amazon
EC2 instances, in the same VPC. Each DB cluster has a private IP address for communication in the
VPC.

A public IP address is an IPv4 address that's reachable from the internet. You can use public
addresses for communication between your DB cluster and resources on the internet, such as a SQL
client. You control whether your DB cluster receives a public IP address.

For a tutorial that shows you how to create a VPC with only private IPv4 addresses that you can use
for a common Amazon Aurora scenario, see Tutorial: Create a VPC for use with a DB cluster (IPv4
only).

IPv6 addresses

You can optionally associate an IPv6 CIDR block with your VPC and subnets, and assign IPv6
addresses from that block to the resources in your VPC. Each IPv6 address is globally unique.

The IPv6 CIDR block for your VPC is automatically assigned from Amazon's pool of IPv6 addresses.
You can't choose the range yourself.

Working with a DB cluster in a VPC 4006

Amazon Aurora User Guide for Aurora

When connecting to an IPv6 address, make sure that the following conditions are met:

• The client is configured so that client to database traffic over IPv6 is allowed.

• RDS security groups used by the DB instance are configured correctly so that client to database
traffic over IPv6 is allowed.

• The client operating system stack allows traffic on the IPv6 address, and operating system
drivers and libraries are configured to choose the correct default DB instance endpoint (either
IPv4 or IPv6).

For more information about IPv6, see IP Addressing in the Amazon VPC User Guide.

Dual-stack mode

When a DB cluster can communicate over both the IPv4 and IPv6 addressing protocols, it's running
in dual-stack mode. So, resources can communicate with the DB cluster over IPv4, IPv6, or both.
RDS disables Internet Gateway access for IPv6 endpoints of private dual-stack mode DB instances.
RDS does this to ensure that your IPv6 endpoints are private and can only be accessed from within
your VPC.

Topics

• Dual-stack mode and DB subnet groups

• Working with dual-stack mode DB instances

• Modifying IPv4-only DB clusters to use dual-stack mode

• Availability of dual-stack network DB clusters

• Limitations for dual-stack network DB clusters

For a tutorial that shows you how to create a VPC with both IPv4 and IPv6 addresses that you can
use for a common Amazon Aurora scenario, see Tutorial: Create a VPC for use with a DB cluster
(dual-stack mode).

Dual-stack mode and DB subnet groups

To use dual-stack mode, make sure that each subnet in the DB subnet group that you associate
with the DB cluster has an IPv6 CIDR block associated with it. You can create a new DB subnet
group or modify an existing DB subnet group to meet this requirement. After a DB cluster is in
dual-stack mode, clients can connect to it normally. Make sure that client security firewalls and RDS
DB instance security groups are accurately configured to allow traffic over IPv6. To connect, clients

Working with a DB cluster in a VPC 4007

https://docs.aws.amazon.com/vpc/latest/userguide/vpc-ip-addressing.html

Amazon Aurora User Guide for Aurora

use the DB cluster primary instance's endpoint. Client applications can specify which protocol is
preferred when connecting to a database. In dual-stack mode, the DB cluster detects the client's
preferred network protocol, either IPv4 or IPv6, and uses that protocol for the connection.

If a DB subnet group stops supporting dual-stack mode because of subnet deletion or CIDR
disassociation, there's a risk of an incompatible network state for DB instances that are associated
with the DB subnet group. Also, you can't use the DB subnet group when you create a new dual-
stack mode DB cluster.

To determine whether a DB subnet group supports dual-stack mode by using the AWS
Management Console, view the Network type on the details page of the DB subnet group. To
determine whether a DB subnet group supports dual-stack mode by using the AWS CLI, run the
describe-db-subnet-groups command and view SupportedNetworkTypes in the output.

Read replicas are treated as independent DB instances and can have a network type that's different
from the primary DB instance. If you change the network type of a read replica's primary DB
instance, the read replica isn't affected. When you are restoring a DB instance, you can restore it to
any network type that's supported.

Working with dual-stack mode DB instances

When you create or modify a DB cluster, you can specify dual-stack mode to allow your resources
to communicate with your DB cluster over IPv4, IPv6, or both.

When you use the AWS Management Console to create or modify a DB instance, you can specify
dual-stack mode in the Network type section. The following image shows the Network type
section in the console.

When you use the AWS CLI to create or modify a DB cluster, set the --network-type option to
DUAL to use dual-stack mode. When you use the RDS API to create or modify a DB cluster, set the
NetworkType parameter to DUAL to use dual-stack mode. When you are modifying the network
type of a DB instance, downtime is possible. If dual-stack mode isn't supported by the specified DB
engine version or DB subnet group, the NetworkTypeNotSupported error is returned.

Working with a DB cluster in a VPC 4008

https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-subnet-groups.html

Amazon Aurora User Guide for Aurora

For more information about creating a DB cluster, see Creating an Amazon Aurora DB cluster. For
more information about modifying a DB cluster, see Modifying an Amazon Aurora DB cluster.

To determine whether a DB cluster is in dual-stack mode by using the console, view the Network
type on the Connectivity & security tab for the DB cluster.

Modifying IPv4-only DB clusters to use dual-stack mode

You can modify an IPv4-only DB cluster to use dual-stack mode. To do so, change the network type
of the DB cluster. The modification might result in downtime.

It is recommended that you change the network type of your Amazon Aurora DB clusters during a
maintenance window. Currently, setting the network type of new instances to dual-stack mode isn't
supported. You can set network type manually by using the modify-db-cluster command.

Before modifying a DB cluster to use dual-stack mode, make sure that its DB subnet group
supports dual-stack mode. If the DB subnet group associated with the DB cluster doesn't support
dual-stack mode, specify a different DB subnet group that supports it when you modify the DB
cluster. Modifying the DB subnet group of a DB cluster can cause downtime.

If you modify the DB subnet group of a DB cluster before you change the DB cluster to use dual-
stack mode, make sure that the DB subnet group is valid for the DB cluster before and after the
change.

We recommend that you run the modify-db-cluster API with only the --network-type parameter
with value DUAL to change the network of an Amazon Aurora cluster to dual-stack mode. Adding
other parameters along with the --network-type parameter in the same API call could result in
downtime.

If you can't connect to the DB cluster after the change, make sure that the client and database
security firewalls and route tables are accurately configured to allow traffic to the database on the
selected network (either IPv4 or IPv6). You might also need to modify operating system parameter,
libraries, or drivers to connect using an IPv6 address.

To modify an IPv4-only DB cluster to use dual-stack mode

1. Modify a DB subnet group to support dual-stack mode, or create a DB subnet group that
supports dual-stack mode:

a. Associate an IPv6 CIDR block with your VPC.

Working with a DB cluster in a VPC 4009

https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-cluster.html

Amazon Aurora User Guide for Aurora

For instructions, see Add an IPv6 CIDR block to your VPC in the Amazon VPC User Guide.

b. Attach the IPv6 CIDR block to all of the subnets in your the DB subnet group.

For instructions, see Add an IPv6 CIDR block to your subnet in the Amazon VPC User
Guide.

c. Confirm that the DB subnet group supports dual-stack mode.

If you are using the AWS Management Console, select the DB subnet group, and make
sure that the Supported network types value is Dual, IPv4.

If you are using the AWS CLI, run the describe-db-subnet-groups command, and make sure
that the SupportedNetworkType value for the DB instance is Dual, IPv4.

2. Modify the security group associated with the DB cluster to allow IPv6 connections to the
database, or create a new security group that allows IPv6 connections.

For instructions, see Security group rules in the Amazon VPC User Guide.

3. Modify the DB cluster to support dual-stack mode. To do so, set the Network type to Dual-
stack mode.

If you are using the console, make sure that the following settings are correct:

• Network type – Dual-stack mode

• DB subnet group – The DB subnet group that you configured in a previous step

• Security group – The security that you configured in a previous step

If you are using the AWS CLI, make sure that the following settings are correct:

• --network-type – dual

• --db-subnet-group-name – The DB subnet group that you configured in a previous step

Working with a DB cluster in a VPC 4010

https://docs.aws.amazon.com/vpc/latest/userguide/modify-vpcs.html#vpc-associate-ipv6-cidr
https://docs.aws.amazon.com/vpc/latest/userguide/modify-subnets.html#subnet-associate-ipv6-cidr
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-subnet-groups.html
https://docs.aws.amazon.com/vpc/latest/userguide/security-group-rules.html

Amazon Aurora User Guide for Aurora

• --vpc-security-group-ids – The VPC security group that you configured in a previous
step

For example:

aws rds modify-db-cluster --db-cluster-identifier my-cluster --network-type "DUAL"

4. Confirm that the DB cluster supports dual-stack mode.

If you are using the console, choose the Configuration tab for the DB cluster. On that tab,
make sure that the Network type value is Dual-stack mode.

If you are using the AWS CLI, run the describe-db-clusters command, and make sure that the
NetworkType value for the DB cluster is dual.

Run the dig command on the writer DB instance endpoint to identify the IPv6 address
associated with it.

dig db-instance-endpoint AAAA

Use the writer DB instance endpoint, not the IPv6 address, to connect to the DB cluster.

Availability of dual-stack network DB clusters

The following DB engine versions support dual-stack network DB clusters, except in the Asia Pacific
(Hyderabad), Asia Pacific (Melbourne), Canada West (Calgary), Europe (Spain), Europe (Zurich),
Israel (Tel Aviv), and Middle East (UAE) Regions:

• Aurora MySQL versions:

• 3.02 and higher 3 versions

• 2.09.1 and higher 2 versions

For more information about Aurora MySQL versions, see the Release Notes for Aurora MySQL.

• Aurora PostgreSQL versions:

• 14.3 and higher 14 versions

• 13.7 and higher 13 versions

Working with a DB cluster in a VPC 4011

https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-clusters.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraMySQLReleaseNotes/Welcome.html

Amazon Aurora User Guide for Aurora

For more information about Aurora PostgreSQL versions, see the Release Notes for Aurora
PostgreSQL.

Limitations for dual-stack network DB clusters

The following limitations apply to dual-stack network DB clusters:

• DB clusters can't use the IPv6 protocol exclusively. They can use IPv4 exclusively, or they can use
the IPv4 and IPv6 protocol (dual-stack mode).

• Amazon RDS doesn't support native IPv6 subnets.

• DB clusters that use dual-stack mode must be private. They can't be publicly accessible.

• Dual-stack mode doesn't support the db.r3 DB instance classes.

• You can't use RDS Proxy with dual-stack mode DB clusters.

Hiding a DB cluster in a VPC from the internet

One common Amazon Aurora scenario is to have a VPC in which you have an EC2 instance with
a public-facing web application and a DB cluster with a database that isn't publicly accessible.
For example, you can create a VPC that has a public subnet and a private subnet. Amazon EC2
instances that function as web servers can be deployed in the public subnet. The DB clusters are
deployed in the private subnet. In such a deployment, only the web servers have access to the DB
clusters. For an illustration of this scenario, see A DB cluster in a VPC accessed by an EC2 instance in
the same VPC.

When you launch a DB cluster inside a VPC, the DB cluster has a private IP address for traffic
inside the VPC. This private IP address isn't publicly accessible. You can use the Public access
option to designate whether the DB cluster also has a public IP address in addition to the private
IP address. If the DB cluster is designated as publicly accessible, its DNS endpoint resolves to the
private IP address from within the VPC. It resolves to the public IP address from outside of the VPC.
Access to the DB cluster is ultimately controlled by the security group it uses. That public access
is not permitted if the security group assigned to the DB cluster doesn't include inbound rules
that permit it. In addition, for a DB cluster to be publicly accessible, the subnets in its DB subnet
group must have an internet gateway. For more information, see Can't connect to Amazon RDS DB
instance

Working with a DB cluster in a VPC 4012

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/Welcome.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/Welcome.html

Amazon Aurora User Guide for Aurora

You can modify a DB cluster to turn on or off public accessibility by modifying the Public access
option. The following illustration shows the Public access option in the Additional connectivity
configuration section. To set the option, open the Additional connectivity configuration section
in the Connectivity section.

For information about modifying a DB instance to set the Public access option, see Modifying a DB
instance in a DB cluster.

Working with a DB cluster in a VPC 4013

Amazon Aurora User Guide for Aurora

Creating a DB cluster in a VPC

The following procedures help you create a DB cluster in a VPC. To use the default VPC, you can
begin with step 2, and use the VPC and DB subnet group have already been created for you. If you
want to create an additional VPC, you can create a new VPC.

Note

If you want your DB cluster in the VPC to be publicly accessible, you must update the DNS
information for the VPC by enabling the VPC attributes DNS hostnames and DNS resolution.
For information about updating the DNS information for a VPC instance, see Updating DNS
support for your VPC.

Follow these steps to create a DB instance in a VPC:

• Step 1: Create a VPC

• Step 2: Create a DB subnet group

• Step 3: Create a VPC security group

• Step 4: Create a DB instance in the VPC

Step 1: Create a VPC

Create a VPC with subnets in at least two Availability Zones. You use these subnets when you
create a DB subnet group. If you have a default VPC, a subnet is automatically created for you in
each Availability Zone in the AWS Region.

For more information, see Create a VPC with private and public subnets, or see Create a VPC in the
Amazon VPC User Guide.

Step 2: Create a DB subnet group

A DB subnet group is a collection of subnets (typically private) that you create for a VPC and that
you then designate for your DB clusters. A DB subnet group allows you to specify a particular VPC
when you create DB clusters using the AWS CLI or RDS API. If you use the console, you can just
choose the VPC and subnets you want to use. Each DB subnet group must have at least one subnet
in at least two Availability Zones in the AWS Region. As a best practice, each DB subnet group
should have at least one subnet for every Availability Zone in the AWS Region.

Working with a DB cluster in a VPC 4014

https://docs.aws.amazon.com/vpc/latest/userguide/vpc-dns.html
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-dns.html
https://docs.aws.amazon.com/vpc/latest/userguide/working-with-vpcs.html#Create-VPC

Amazon Aurora User Guide for Aurora

For a DB cluster to be publicly accessible, the subnets in the DB subnet group must have an
internet gateway. For more information about internet gateways for subnets, see Connect to the
internet using an internet gateway in the Amazon VPC User Guide.

When you create a DB cluster in a VPC, you can choose a DB subnet group. Amazon Aurora chooses
a subnet and an IP address within that subnet to associate with your DB cluster. If no DB subnet
groups exist, Amazon Aurora creates a default subnet group when you create a DB cluster. Amazon
Aurora creates and associates an Elastic Network Interface to your DB cluster with that IP address.
The DB cluster uses the Availability Zone that contains the subnet.

In this step, you create a DB subnet group and add the subnets that you created for your VPC.

To create a DB subnet group

1. Open the Amazon RDS console at https://console.aws.amazon.com/rds/.

2. In the navigation pane, choose Subnet groups.

3. Choose Create DB Subnet Group.

4. For Name, type the name of your DB subnet group.

5. For Description, type a description for your DB subnet group.

6. For VPC, choose the default VPC or the VPC that you created.

7. In the Add subnets section, choose the Availability Zones that include the subnets from
Availability Zones, and then choose the subnets from Subnets.

Working with a DB cluster in a VPC 4015

https://docs.aws.amazon.com/vpc/latest/userguide/VPC_Internet_Gateway.html
https://docs.aws.amazon.com/vpc/latest/userguide/VPC_Internet_Gateway.html
https://console.aws.amazon.com/rds/

Amazon Aurora User Guide for Aurora

Working with a DB cluster in a VPC 4016

Amazon Aurora User Guide for Aurora

8. Choose Create.

Your new DB subnet group appears in the DB subnet groups list on the RDS console. You can
choose the DB subnet group to see details, including all of the subnets associated with the
group, in the details pane at the bottom of the window.

Step 3: Create a VPC security group

Before you create your DB cluster, you can create a VPC security group to associate with your DB
cluster. If you don't create a VPC security group, you can use the default security group when
you create a DB cluster. For instructions on how to create a security group for your DB cluster,
see Create a VPC security group for a private DB cluster, or see Control traffic to resources using
security groups in the Amazon VPC User Guide.

Step 4: Create a DB instance in the VPC

In this step, you create a DB cluster and use the VPC name, the DB subnet group, and the VPC
security group you created in the previous steps.

Note

If you want your DB cluster in the VPC to be publicly accessible, you must enable the VPC
attributes DNS hostnames and DNS resolution. For more information, see DNS attributes for
your VPC in the Amazon VPC User Guide.

For details on how to create a DB cluster, see Creating an Amazon Aurora DB cluster.

When prompted in the Connectivity section, enter the VPC name, the DB subnet group, and the
VPC security group.

Note

Updating VPCs isn't currently supported for Aurora DB clusters.

Scenarios for accessing a DB cluster in a VPC

Amazon Aurora supports the following scenarios for accessing a DB cluster in a VPC:

Scenarios for accessing a DB cluster in a VPC 4017

https://docs.aws.amazon.com/vpc/latest/userguide/VPC_SecurityGroups.html
https://docs.aws.amazon.com/vpc/latest/userguide/VPC_SecurityGroups.html
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-dns.html
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-dns.html

Amazon Aurora User Guide for Aurora

• An EC2 instance in the same VPC

• An EC2 instance in a different VPC

• A client application through the internet

• A private network

A DB cluster in a VPC accessed by an EC2 instance in the same VPC

A common use of a DB cluster in a VPC is to share data with an application server that is running in
an EC2 instance in the same VPC.

The following diagram shows this scenario.

Scenarios for accessing a DB cluster in a VPC 4018

Amazon Aurora User Guide for Aurora

The simplest way to manage access between EC2 instances and DB clusters in the same VPC is to
do the following:

• Create a VPC security group for your DB clusters to be in. This security group can be used to
restrict access to the DB clusters. For example, you can create a custom rule for this security
group. This might allow TCP access using the port that you assigned to the DB cluster when you
created it and an IP address you use to access the DB cluster for development or other purposes.

• Create a VPC security group for your EC2 instances (web servers and clients) to be in. This
security group can, if needed, allow access to the EC2 instance from the internet by using the
VPC's routing table. For example, you can set rules on this security group to allow TCP access to
the EC2 instance over port 22.

• Create custom rules in the security group for your DB clusters that allow connections from the
security group you created for your EC2 instances. These rules might allow any member of the
security group to access the DB clusters.

There is an additional public and private subnet in a separate Availability Zone. An RDS DB subnet
group requires a subnet in at least two Availability Zones. The additional subnet makes it easy to
switch to a Multi-AZ DB instance deployment in the future.

For a tutorial that shows you how to create a VPC with both public and private subnets for this
scenario, see Tutorial: Create a VPC for use with a DB cluster (IPv4 only).

Tip

You can set up network connectivity between an Amazon EC2 instance and a DB cluster
automatically when you create the DB cluster. For more information, see Configure
automatic network connectivity with an EC2 instance .

To create a rule in a VPC security group that allows connections from another security group,
do the following:

1. Sign in to the AWS Management Console and open the Amazon VPC console at https://
console.aws.amazon.com/vpc.

2. In the navigation pane, choose Security groups.

Scenarios for accessing a DB cluster in a VPC 4019

https://console.aws.amazon.com/vpc
https://console.aws.amazon.com/vpc

Amazon Aurora User Guide for Aurora

3. Choose or create a security group for which you want to allow access to members of another
security group. In the preceding scenario, this is the security group that you use for your DB
clusters. Choose the Inbound rules tab, and then choose Edit inbound rules.

4. On the Edit inbound rules page, choose Add rule.

5. For Type, choose the entry that corresponds to the port you used when you created your DB
cluster, such as MYSQL/Aurora.

6. In the Source box, start typing the ID of the security group, which lists the matching security
groups. Choose the security group with members that you want to have access to the resources
protected by this security group. In the scenario preceding, this is the security group that you
use for your EC2 instance.

7. If required, repeat the steps for the TCP protocol by creating a rule with All TCP as the Type
and your security group in the Source box. If you intend to use the UDP protocol, create a rule
with All UDP as the Type and your security group in Source.

8. Choose Save rules.

The following screen shows an inbound rule with a security group for its source.

For more information about connecting to the DB cluster from your EC2 instance, see Connecting
to an Amazon Aurora DB cluster.

A DB cluster in a VPC accessed by an EC2 instance in a different VPC

When your DB clusters is in a different VPC from the EC2 instance you are using to access it, you
can use VPC peering to access the DB cluster.

The following diagram shows this scenario.

Scenarios for accessing a DB cluster in a VPC 4020

Amazon Aurora User Guide for Aurora

A VPC peering connection is a networking connection between two VPCs that enables you to
route traffic between them using private IP addresses. Resources in either VPC can communicate
with each other as if they are within the same network. You can create a VPC peering connection
between your own VPCs, with a VPC in another AWS account, or with a VPC in a different AWS
Region. To learn more about VPC peering, see VPC peering in the Amazon Virtual Private Cloud User
Guide.

A DB cluster in a VPC accessed by a client application through the internet

To access a DB clusters in a VPC from a client application through the internet, you configure a VPC
with a single public subnet, and an internet gateway to enable communication over the internet.

The following diagram shows this scenario.

Scenarios for accessing a DB cluster in a VPC 4021

https://docs.aws.amazon.com/vpc/latest/userguide/vpc-peering.html

Amazon Aurora User Guide for Aurora

We recommend the following configuration:

• A VPC of size /16 (for example CIDR: 10.0.0.0/16). This size provides 65,536 private IP addresses.

• A subnet of size /24 (for example CIDR: 10.0.0.0/24). This size provides 256 private IP addresses.

• An Amazon Aurora DB cluster that is associated with the VPC and the subnet. Amazon RDS
assigns an IP address within the subnet to your DB cluster.

• An internet gateway which connects the VPC to the internet and to other AWS products.

• A security group associated with the DB cluster. The security group's inbound rules allow your
client application to access to your DB cluster.

For information about creating a DB clusters in a VPC, see Creating a DB cluster in a VPC.

A DB cluster in a VPC accessed by a private network

If your DB cluster isn't publicly accessible, you have the following options for accessing it from a
private network:

• An AWS Site-to-Site VPN connection. For more information, see What is AWS Site-to-Site VPN?

• An AWS Direct Connect connection. For more information, see What is AWS Direct Connect?

• An AWS Client VPN connection. For more information, see What is AWS Client VPN?

The following diagram shows a scenario with an AWS Site-to-Site VPN connection.

Scenarios for accessing a DB cluster in a VPC 4022

https://docs.aws.amazon.com/vpn/latest/s2svpn/VPC_VPN.html
https://docs.aws.amazon.com/directconnect/latest/UserGuide/Welcome.html
https://docs.aws.amazon.com//vpn/latest/clientvpn-admin/what-is.html

Amazon Aurora User Guide for Aurora

For more information, see Internetwork traffic privacy.

Scenarios for accessing a DB cluster in a VPC 4023

Amazon Aurora User Guide for Aurora

Tutorial: Create a VPC for use with a DB cluster (IPv4 only)

A common scenario includes a DB cluster in a virtual private cloud (VPC) based on the Amazon VPC
service. This VPC shares data with a web server that is running in the same VPC. In this tutorial, you
create the VPC for this scenario.

The following diagram shows this scenario. For information about other scenarios, see Scenarios
for accessing a DB cluster in a VPC.

Your DB cluster needs to be available only to your web server, and not to the public internet. Thus,
you create a VPC with both public and private subnets. The web server is hosted in the public
subnet, so that it can reach the public internet. The DB cluster is hosted in a private subnet. The
web server can connect to the DB cluster because it is hosted within the same VPC. But the DB
cluster isn't available to the public internet, providing greater security.

Tutorial: Create a VPC for use with a DB cluster (IPv4 only) 4024

Amazon Aurora User Guide for Aurora

This tutorial configures an additional public and private subnet in a separate Availability Zone.
These subnets aren't used by the tutorial. An RDS DB subnet group requires a subnet in at least two
Availability Zones. The additional subnet makes it easier to configure more than one Aurora DB
instance.

This tutorial describes configuring a VPC for Amazon Aurora DB clusters. For a tutorial that shows
you how to create a web server for this VPC scenario, see Tutorial: Create a web server and an
Amazon Aurora DB cluster. For more information about Amazon VPC, see Amazon VPC Getting
Started Guide and Amazon VPC User Guide.

Tip

You can set up network connectivity between an Amazon EC2 instance and a DB cluster
automatically when you create the DB cluster. The network configuration is similar to the
one described in this tutorial. For more information, see Configure automatic network
connectivity with an EC2 instance.

Create a VPC with private and public subnets

Use the following procedure to create a VPC with both public and private subnets.

To create a VPC and subnets

1. Open the Amazon VPC console at https://console.aws.amazon.com/vpc/.

2. In the top-right corner of the AWS Management Console, choose the Region to create your
VPC in. This example uses the US West (Oregon) Region.

3. In the upper-left corner, choose VPC dashboard. To begin creating a VPC, choose Create VPC.

4. For Resources to create under VPC settings, choose VPC and more.

5. For the VPC settings, set these values:

• Name tag auto-generation – tutorial

• IPv4 CIDR block – 10.0.0.0/16

• IPv6 CIDR block – No IPv6 CIDR block

• Tenancy – Default

• Number of Availability Zones (AZs) – 2

• Customize AZs – Keep the default values.

Tutorial: Create a VPC for use with a DB cluster (IPv4 only) 4025

https://docs.aws.amazon.com/AmazonVPC/latest/GettingStartedGuide/
https://docs.aws.amazon.com/AmazonVPC/latest/GettingStartedGuide/
https://docs.aws.amazon.com/vpc/latest/userguide/
https://console.aws.amazon.com/vpc/

Amazon Aurora User Guide for Aurora

• Number of public subnet – 2

• Number of private subnets – 2

• Customize subnets CIDR blocks – Keep the default values.

• NAT gateways ($) – None

• VPC endpoints – None

• DNS options – Keep the default values.

6. Choose Create VPC.

Create a VPC security group for a public web server

Next, you create a security group for public access. To connect to public EC2 instances in your VPC,
you add inbound rules to your VPC security group. These allow traffic to connect from the internet.

To create a VPC security group

1. Open the Amazon VPC console at https://console.aws.amazon.com/vpc/.

2. Choose VPC Dashboard, choose Security Groups, and then choose Create security group.

3. On the Create security group page, set these values:

• Security group name: tutorial-securitygroup

• Description: Tutorial Security Group

• VPC: Choose the VPC that you created earlier, for example: vpc-identifier (tutorial-vpc)

4. Add inbound rules to the security group.

a. Determine the IP address to use to connect to EC2 instances in your VPC using Secure
Shell (SSH). To determine your public IP address, in a different browser window or tab,
you can use the service at https://checkip.amazonaws.com. An example of an IP address is
203.0.113.25/32.

In many cases, you might connect through an internet service provider (ISP) or from
behind your firewall without a static IP address. If so, find the range of IP addresses used
by client computers.

Tutorial: Create a VPC for use with a DB cluster (IPv4 only) 4026

https://console.aws.amazon.com/vpc/
https://checkip.amazonaws.com

Amazon Aurora User Guide for Aurora

Warning

If you use 0.0.0.0/0 for SSH access, you make it possible for all IP addresses
to access your public instances using SSH. This approach is acceptable for a
short time in a test environment, but it's unsafe for production environments. In
production, authorize only a specific IP address or range of addresses to access
your instances using SSH.

b. In the Inbound rules section, choose Add rule.

c. Set the following values for your new inbound rule to allow SSH access to your Amazon
EC2 instance. If you do this, you can connect to your Amazon EC2 instance to install the
web server and other utilities. You also connect to your EC2 instance to upload content for
your web server.

• Type: SSH

• Source: The IP address or range from Step a, for example: 203.0.113.25/32.

d. Choose Add rule.

e. Set the following values for your new inbound rule to allow HTTP access to your web
server:

• Type: HTTP

• Source: 0.0.0.0/0

5. Choose Create security group to create the security group.

Note the security group ID because you need it later in this tutorial.

Create a VPC security group for a private DB cluster

To keep your DB cluster private, create a second security group for private access. To connect to
private DB clustersin your VPC, you add inbound rules to your VPC security group that allow traffic
from your web server only.

To create a VPC security group

1. Open the Amazon VPC console at https://console.aws.amazon.com/vpc/.

2. Choose VPC Dashboard, choose Security Groups, and then choose Create security group.

Tutorial: Create a VPC for use with a DB cluster (IPv4 only) 4027

https://console.aws.amazon.com/vpc/

Amazon Aurora User Guide for Aurora

3. On the Create security group page, set these values:

• Security group name: tutorial-db-securitygroup

• Description: Tutorial DB Instance Security Group

• VPC: Choose the VPC that you created earlier, for example: vpc-identifier (tutorial-vpc)

4. Add inbound rules to the security group.

a. In the Inbound rules section, choose Add rule.

b. Set the following values for your new inbound rule to allow MySQL traffic on port 3306
from your Amazon EC2 instance. If you do this, you can connect from your web server to
your DB cluster. By doing so, you can store and retrieve data from your web application to
your database.

• Type: MySQL/Aurora

• Source: The identifier of the tutorial-securitygroup security group that you created
previously in this tutorial, for example: sg-9edd5cfb.

5. Choose Create security group to create the security group.

Create a DB subnet group

A DB subnet group is a collection of subnets that you create in a VPC and that you then designate
for your DB clusters. A DB subnet group makes it possible for you to specify a particular VPC when
creating DB clusters.

To create a DB subnet group

1. Identify the private subnets for your database in the VPC.

a. Open the Amazon VPC console at https://console.aws.amazon.com/vpc/.

b. Choose VPC Dashboard, and then choose Subnets.

c. Note the subnet IDs of the subnets named tutorial-subnet-private1-us-west-2a and
tutorial-subnet-private2-us-west-2b.

You need the subnet IDs when you create your DB subnet group.

2. Open the Amazon RDS console at https://console.aws.amazon.com/rds/.

Make sure that you connect to the Amazon RDS console, not to the Amazon VPC console.
Tutorial: Create a VPC for use with a DB cluster (IPv4 only) 4028

https://console.aws.amazon.com/vpc/
https://console.aws.amazon.com/rds/

Amazon Aurora User Guide for Aurora

3. In the navigation pane, choose Subnet groups.

4. Choose Create DB subnet group.

5. On the Create DB subnet group page, set these values in Subnet group details:

• Name: tutorial-db-subnet-group

• Description: Tutorial DB Subnet Group

• VPC: tutorial-vpc (vpc-identifier)

6. In the Add subnets section, choose the Availability Zones and Subnets.

For this tutorial, choose us-west-2a and us-west-2b for the Availability Zones. For Subnets,
choose the private subnets you identified in the previous step.

7. Choose Create.

Your new DB subnet group appears in the DB subnet groups list on the RDS console. You can
choose the DB subnet group to see details in the details pane at the bottom of the window.
These details include all of the subnets associated with the group.

Note

If you created this VPC to complete Tutorial: Create a web server and an Amazon Aurora DB
cluster, create the DB cluster by following the instructions in Create an Amazon Aurora DB
cluster.

Deleting the VPC

After you create the VPC and other resources for this tutorial, you can delete them if they are no
longer needed.

Note

If you added resources in the VPC that you created for this tutorial, you might need to
delete these before you can delete the VPC. For example, these resources might include
Amazon EC2 instances or Amazon RDS DB clusters. For more information, see Delete your
VPC in the Amazon VPC User Guide.

Tutorial: Create a VPC for use with a DB cluster (IPv4 only) 4029

https://docs.aws.amazon.com/vpc/latest/userguide/working-with-vpcs.html#VPC_Deleting
https://docs.aws.amazon.com/vpc/latest/userguide/working-with-vpcs.html#VPC_Deleting

Amazon Aurora User Guide for Aurora

To delete a VPC and related resources

1. Delete the DB subnet group.

a. Open the Amazon RDS console at https://console.aws.amazon.com/rds/.

b. In the navigation pane, choose Subnet groups.

c. Select the DB subnet group you want to delete, such as tutorial-db-subnet-group.

d. Choose Delete, and then choose Delete in the confirmation window.

2. Note the VPC ID.

a. Open the Amazon VPC console at https://console.aws.amazon.com/vpc/.

b. Choose VPC Dashboard, and then choose VPCs.

c. In the list, identify the VPC that you created, such as tutorial-vpc.

d. Note the VPC ID of the VPC that you created. You need the VPC ID in later steps.

3. Delete the security groups.

a. Open the Amazon VPC console at https://console.aws.amazon.com/vpc/.

b. Choose VPC Dashboard, and then choose Security Groups.

c. Select the security group for the Amazon RDS DB instance, such as tutorial-db-
securitygroup.

d. For Actions, choose Delete security groups, and then choose Delete on the confirmation
page.

e. On the Security Groups page, select the security group for the Amazon EC2 instance, such
as tutorial-securitygroup.

f. For Actions, choose Delete security groups, and then choose Delete on the confirmation
page.

4. Delete the VPC.

a. Open the Amazon VPC console at https://console.aws.amazon.com/vpc/.

b. Choose VPC Dashboard, and then choose VPCs.

c. Select the VPC you want to delete, such as tutorial-vpc.

d. For Actions, choose Delete VPC.

The confirmation page shows other resources that are associated with the VPC that will
also be deleted, including the subnets associated with it.Tutorial: Create a VPC for use with a DB cluster (IPv4 only) 4030

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/vpc/
https://console.aws.amazon.com/vpc/
https://console.aws.amazon.com/vpc/

Amazon Aurora User Guide for Aurora

e. On the confirmation page, enter delete, and then choose Delete.

Tutorial: Create a VPC for use with a DB cluster (IPv4 only) 4031

Amazon Aurora User Guide for Aurora

Tutorial: Create a VPC for use with a DB cluster (dual-stack mode)

A common scenario includes a DB cluster in a virtual private cloud (VPC) based on the Amazon VPC
service. This VPC shares data with a public Amazon EC2 instance that is running in the same VPC.

In this tutorial, you create the VPC for this scenario that works with a database running in dual-
stack mode. Dual-stack mode to enable connection over the IPv6 addressing protocol. For more
information about IP addressing, see Amazon Aurora IP addressing.

Dual-stack network clusters are supported in most regions. For more information see Availability of
dual-stack network DB clusters. To see the limitations of dual-stack mode, see Limitations for dual-
stack network DB clusters.

The following diagram shows this scenario.

Tutorial: Create a VPC for use with a DB cluster (dual-stack mode) 4032

Amazon Aurora User Guide for Aurora

For information about other scenarios, see Scenarios for accessing a DB cluster in a VPC.

Your DB cluster needs to be available only to your Amazon EC2 instance, and not to the public
internet. Thus, you create a VPC with both public and private subnets. The Amazon EC2 instance
is hosted in the public subnet, so that it can reach the public internet. The DB cluster is hosted in a
private subnet. The Amazon EC2 instance can connect to the DB cluster because it's hosted within
the same VPC. However, the DB cluster is not available to the public internet, providing greater
security.

This tutorial configures an additional public and private subnet in a separate Availability Zone.
These subnets aren't used by the tutorial. An RDS DB subnet group requires a subnet in at least
two Availability Zones. The additional subnet makes it easy to configure more than one Aurora DB
instance.

Tutorial: Create a VPC for use with a DB cluster (dual-stack mode) 4033

Amazon Aurora User Guide for Aurora

To create a DB cluster that uses dual-stack mode, specify Dual-stack mode for the Network type
setting. You can also modify a DB cluster with the same setting. For more information about
creating a DB cluster, see Creating an Amazon Aurora DB cluster. For more information about
modifying a DB cluster, see Modifying an Amazon Aurora DB cluster.

This tutorial describes configuring a VPC for Amazon Aurora DB clusters. For more information
about Amazon VPC, see Amazon VPC User Guide.

Create a VPC with private and public subnets

Use the following procedure to create a VPC with both public and private subnets.

To create a VPC and subnets

1. Open the Amazon VPC console at https://console.aws.amazon.com/vpc/.

2. In the upper-right corner of the AWS Management Console, choose the Region to create your
VPC in. This example uses the US East (Ohio) Region.

3. In the upper-left corner, choose VPC dashboard. To begin creating a VPC, choose Create VPC.

4. For Resources to create under VPC settings, choose VPC and more.

5. For the remaining VPC settings, set these values:

• Name tag auto-generation – tutorial-dual-stack

• IPv4 CIDR block – 10.0.0.0/16

• IPv6 CIDR block – Amazon-provided IPv6 CIDR block

• Tenancy – Default

• Number of Availability Zones (AZs) – 2

• Customize AZs – Keep the default values.

• Number of public subnet – 2

• Number of private subnets – 2

• Customize subnets CIDR blocks – Keep the default values.

• NAT gateways ($) – None

• Egress only internet gateway – No

• VPC endpoints – None

• DNS options – Keep the default values.
Tutorial: Create a VPC for use with a DB cluster (dual-stack mode) 4034

https://docs.aws.amazon.com/vpc/latest/userguide/
https://console.aws.amazon.com/vpc/

Amazon Aurora User Guide for Aurora

Note

Amazon RDS requires at least two subnets in two different Availability Zones
to support Multi-AZ DB instance deployments. This tutorial creates a Single-AZ
deployment, but the requirement makes it easy to convert to a Multi-AZ DB instance
deployment in the future.

6. Choose Create VPC.

Create a VPC security group for a public Amazon EC2 instance

Next, you create a security group for public access. To connect to public EC2 instances in your VPC,
add inbound rules to your VPC security group that allow traffic to connect from the internet.

To create a VPC security group

1. Open the Amazon VPC console at https://console.aws.amazon.com/vpc/.

2. Choose VPC Dashboard, choose Security Groups, and then choose Create security group.

3. On the Create security group page, set these values:

• Security group name: tutorial-dual-stack-securitygroup

• Description: Tutorial Dual-Stack Security Group

• VPC: Choose the VPC that you created earlier, for example: vpc-identifier (tutorial-dual-
stack-vpc)

4. Add inbound rules to the security group.

a. Determine the IP address to use to connect to EC2 instances in your VPC using Secure
Shell (SSH).

An example of an Internet Protocol version 4 (IPv4) address is 203.0.113.25/32.
An example of an Internet Protocol version 6 (IPv6) address range is
2001:db8:1234:1a00::/64.

In many cases, you might connect through an internet service provider (ISP) or from
behind your firewall without a static IP address. If so, find the range of IP addresses used
by client computers.

Tutorial: Create a VPC for use with a DB cluster (dual-stack mode) 4035

https://console.aws.amazon.com/vpc/

Amazon Aurora User Guide for Aurora

Warning

If you use 0.0.0.0/0 for IPv4 or ::0 for IPv6, you make it possible for all IP
addresses to access your public instances using SSH. This approach is acceptable
for a short time in a test environment, but it's unsafe for production environments.
In production, authorize only a specific IP address or range of addresses to access
your instances.

b. In the Inbound rules section, choose Add rule.

c. Set the following values for your new inbound rule to allow Secure Shell (SSH) access
to your Amazon EC2 instance. If you do this, you can connect to your EC2 instance to
install SQL clients and other applications. Specify an IP address so you can access your EC2
instance:

• Type: SSH

• Source: The IP address or range from step a. An example of an IPv4 IP address is
203.0.113.25/32. An example of an IPv6 IP address is 2001:DB8::/32.

5. Choose Create security group to create the security group.

Note the security group ID because you need it later in this tutorial.

Create a VPC security group for a private DB cluster

To keep your DB cluster private, create a second security group for private access. To connect to
private DB clusters in your VPC, add inbound rules to your VPC security group. These allow traffic
from your Amazon EC2 instance only.

To create a VPC security group

1. Open the Amazon VPC console at https://console.aws.amazon.com/vpc/.

2. Choose VPC Dashboard, choose Security Groups, and then choose Create security group.

3. On the Create security group page, set these values:

• Security group name: tutorial-dual-stack-db-securitygroup

• Description: Tutorial Dual-Stack DB Instance Security Group

Tutorial: Create a VPC for use with a DB cluster (dual-stack mode) 4036

https://console.aws.amazon.com/vpc/

Amazon Aurora User Guide for Aurora

• VPC: Choose the VPC that you created earlier, for example: vpc-identifier (tutorial-dual-
stack-vpc)

4. Add inbound rules to the security group:

a. In the Inbound rules section, choose Add rule.

b. Set the following values for your new inbound rule to allow MySQL traffic on port 3306
from your Amazon EC2 instance. If you do, you can connect from your EC2 instance to
your DB cluster. Doing this means that you can send data from your EC2 instance to your
database.

• Type: MySQL/Aurora

• Source: The identifier of the tutorial-dual-stack-securitygroup security group that you
created previously in this tutorial, for example sg-9edd5cfb.

5. To create the security group, choose Create security group.

Create a DB subnet group

A DB subnet group is a collection of subnets that you create in a VPC and that you then designate
for your DB clusters. By using a DB subnet group, you can specify a particular VPC when creating
DB clusters. To create a DB subnet group that is DUAL compatible, all subnets must be DUAL
compatible. To be DUAL compatible, a subnet must have an IPv6 CIDR associated with it.

To create a DB subnet group

1. Identify the private subnets for your database in the VPC.

a. Open the Amazon VPC console at https://console.aws.amazon.com/vpc/.

b. Choose VPC Dashboard, and then choose Subnets.

c. Note the subnet IDs of the subnets named tutorial-dual-stack-subnet-private1-us-
west-2a and tutorial-dual-stack-subnet-private2-us-west-2b.

You will need the subnet IDs when you create your DB subnet group.

2. Open the Amazon RDS console at https://console.aws.amazon.com/rds/.

Make sure that you connect to the Amazon RDS console, not to the Amazon VPC console.

3. In the navigation pane, choose Subnet groups.

4. Choose Create DB subnet group.

Tutorial: Create a VPC for use with a DB cluster (dual-stack mode) 4037

https://console.aws.amazon.com/vpc/
https://console.aws.amazon.com/rds/

Amazon Aurora User Guide for Aurora

5. On the Create DB subnet group page, set these values in Subnet group details:

• Name: tutorial-dual-stack-db-subnet-group

• Description: Tutorial Dual-Stack DB Subnet Group

• VPC: tutorial-dual-stack-vpc (vpc-identifier)

6. In the Add subnets section, choose values for the Availability Zones and Subnets options.

For this tutorial, choose us-east-2a and us-east-2b for the Availability Zones. For Subnets,
choose the private subnets you identified in the previous step.

7. Choose Create.

Your new DB subnet group appears in the DB subnet groups list on the RDS console. You can
choose the DB subnet group to see its details. These include the supported addressing protocols
and all of the subnets associated with the group and the network type supported by the DB subnet
group.

Create an Amazon EC2 instance in dual-stack mode

To create an Amazon EC2 instance, follow the instructions in Launch an instance using the new
launch instance wizard in the Amazon EC2 User Guide.

On the Configure Instance Details page, set these values and keep the other values as their
defaults:

• Network – Choose an existing VPC with both public and private subnets, such as tutorial-dual-
stack-vpc (vpc-identifier) created in Create a VPC with private and public subnets.

• Subnet – Choose an existing public subnet, such as subnet-identifier | tutorial-dual-stack-
subnet-public1-us-east-2a | us-east-2a created in Create a VPC security group for a public
Amazon EC2 instance.

• Auto-assign Public IP – Choose Enable.

• Auto-assign IPv6 IP – Choose Enable.

• Firewall (security groups) – Choose Select an existing security group.

• Common security groups – Choose an existing security group, such as the tutorial-
securitygroup created in Create a VPC security group for a public Amazon EC2 instance. Make
sure that the security group that you choose includes inbound rules for Secure Shell (SSH) and
HTTP access.

Tutorial: Create a VPC for use with a DB cluster (dual-stack mode) 4038

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-launch-instance-wizard.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-launch-instance-wizard.html

Amazon Aurora User Guide for Aurora

Create a DB cluster in dual-stack mode

In this step, you create a DB cluster that runs in dual-stack mode.

To create a DB instance

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the upper-right corner of the console, choose the AWS Region where you want to create the
DB cluster. This example uses the US East (Ohio) Region.

3. In the navigation pane, choose Databases.

4. Choose Create database.

5. On the Create database page, make sure that the Standard create option is chosen, and then
choose the Aurora MySQL DB engine type.

6. In the Connectivity section, set these values:

• Network type – Choose Dual-stack mode.

• Virtual private cloud (VPC) – Choose an existing VPC with both public and private subnets,
such as tutorial-dual-stack-vpc (vpc-identifier) created in Create a VPC with private and
public subnets.

The VPC must have subnets in different Availability Zones.

• DB subnet group – Choose a DB subnet group for the VPC, such as tutorial-dual-stack-db-
subnet-group created in Create a DB subnet group.

• Public access – Choose No.

• VPC security group (firewall) – Select Choose existing.

• Existing VPC security groups – Choose an existing VPC security group that is configured
for private access, such as tutorial-dual-stack-db-securitygroup created in Create a VPC
security group for a private DB cluster.

Tutorial: Create a VPC for use with a DB cluster (dual-stack mode) 4039

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Aurora User Guide for Aurora

Remove other security groups, such as the default security group, by choosing the X
associated with each.

• Availability Zone – Choose us-west-2a.

To avoid cross-AZ traffic, make sure the DB instance and the EC2 instance are in the same
Availability Zone.

7. For the remaining sections, specify your DB cluster settings. For information about each
setting, see Settings for Aurora DB clusters.

Connect to your Amazon EC2 instance and DB cluster

After you create your Amazon EC2 instance and DB cluster in dual-stack mode, you can connect to
each one using the IPv6 protocol. To connect to an Amazon EC2 instance using the IPv6 protocol,
follow the instructions in Connect to your Linux instance in the Amazon EC2 User Guide.

To connect to your Aurora MySQL DB cluster from the Amazon EC2 instance, follow the
instructions in Connect to an Aurora MySQL DB cluster.

Deleting the VPC

After you create the VPC and other resources for this tutorial, you can delete them if they are no
longer needed.

If you added resources in the VPC that you created for this tutorial, you might need to delete these
before you can delete the VPC. Examples of resources are Amazon EC2 instances or DB clusters. For
more information, see Delete your VPC in the Amazon VPC User Guide.

To delete a VPC and related resources

1. Delete the DB subnet group:

a. Open the Amazon RDS console at https://console.aws.amazon.com/rds/.

b. In the navigation pane, choose Subnet groups.

c. Select the DB subnet group to delete, such as tutorial-db-subnet-group.

d. Choose Delete, and then choose Delete in the confirmation window.

2. Note the VPC ID:

a. Open the Amazon VPC console at https://console.aws.amazon.com/vpc/.

Tutorial: Create a VPC for use with a DB cluster (dual-stack mode) 4040

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AccessingInstances.html
https://docs.aws.amazon.com/vpc/latest/userguide/working-with-vpcs.html#VPC_Deleting
https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/vpc/

Amazon Aurora User Guide for Aurora

b. Choose VPC Dashboard, and then choose VPCs.

c. In the list, identify the VPC you created, such as tutorial-dual-stack-vpc.

d. Note the VPC ID value of the VPC that you created. You need this VPC ID in subsequent
steps.

3. Delete the security groups:

a. Open the Amazon VPC console at https://console.aws.amazon.com/vpc/.

b. Choose VPC Dashboard, and then choose Security Groups.

c. Select the security group for the Amazon RDS DB instance, such as tutorial-dual-stack-
db-securitygroup.

d. For Actions, choose Delete security groups, and then choose Delete on the confirmation
page.

e. On the Security Groups page, select the security group for the Amazon EC2 instance, such
as tutorial-dual-stack-securitygroup.

f. For Actions, choose Delete security groups, and then choose Delete on the confirmation
page.

4. Delete the NAT gateway:

a. Open the Amazon VPC console at https://console.aws.amazon.com/vpc/.

b. Choose VPC Dashboard, and then choose NAT Gateways.

c. Select the NAT gateway of the VPC that you created. Use the VPC ID to identify the correct
NAT gateway.

d. For Actions, choose Delete NAT gateway.

e. On the confirmation page, enter delete, and then choose Delete.

5. Delete the VPC:

a. Open the Amazon VPC console at https://console.aws.amazon.com/vpc/.

b. Choose VPC Dashboard, and then choose VPCs.

c. Select the VPC that you want to delete, such as tutorial-dual-stack-vpc.

d. For Actions, choose Delete VPC.

The confirmation page shows other resources that are associated with the VPC that will
also be deleted, including the subnets associated with it.

e. On the confirmation page, enter delete, and then choose Delete.Tutorial: Create a VPC for use with a DB cluster (dual-stack mode) 4041

https://console.aws.amazon.com/vpc/
https://console.aws.amazon.com/vpc/
https://console.aws.amazon.com/vpc/

Amazon Aurora User Guide for Aurora

6. Release the Elastic IP addresses:

a. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.

b. Choose EC2 Dashboard, and then choose Elastic IPs.

c. Select the Elastic IP address that you want to release.

d. For Actions, choose Release Elastic IP addresses.

e. On the confirmation page, choose Release.

Tutorial: Create a VPC for use with a DB cluster (dual-stack mode) 4042

https://console.aws.amazon.com/ec2/

Amazon Aurora User Guide for Aurora

Quotas and constraints for Amazon Aurora

Following, you can find a description of the resource quotas and naming constraints for Amazon
Aurora.

Topics

• Quotas in Amazon Aurora

• Naming constraints in Amazon Aurora

• Amazon Aurora size limits

Quotas in Amazon Aurora

Each AWS account has quotas, for each AWS Region, on the number of Amazon Aurora resources
that can be created. After a quota for a resource has been reached, additional calls to create that
resource fail with an exception.

The following table lists the resources and their quotas per AWS Region.

Name Default Adjustabl
e

Description

Authorizations per DB security group Each supported
Region: 20

No Number of security
group authorizations per
DB security group

Custom engine versions Each supported
Region: 40

Yes The maximum number of
custom engine versions
allowed in this account in
the current Region

DB cluster parameter groups Each supported
Region: 50

No The maximum number
of DB cluster parameter
groups

DB clusters Each supported
Region: 40

Yes The maximum number of
Aurora clusters allowed

Quotas in Amazon Aurora 4043

https://console.aws.amazon.com/servicequotas/home/services/rds/quotas/L-A399AC0B
https://console.aws.amazon.com/servicequotas/home/services/rds/quotas/L-952B80B8

Amazon Aurora User Guide for Aurora

Name Default Adjustabl
e

Description

in this account in the
current Region

DB instances Each supported
Region: 40

Yes The maximum number
of DB instances allowed
in this account in the
current Region

DB subnet groups Each supported
Region: 50

Yes The maximum number of
DB subnet groups

Data API HTTP request body size Each supported
Region: 4
Megabytes

No The maximum size
allowed for the HTTP
request body.

Data API maximum concurrent cluster-s
ecret pairs

Each supported
Region: 30

No The maximum number
of unique pairs of Aurora
Serverless v1 DB clusters
and secrets in concurrent
Data API requests for this
account in the current
AWS Region.

Data API maximum concurrent requests Each supported
Region: 500

No The maximum number
of Data API requests to
an Aurora Serverless
v1 DB cluster that use
the same secret and
can be processed at the
same time. Additional
requests are queued and
processed as in-process
requests complete.

Quotas in Amazon Aurora 4044

https://console.aws.amazon.com/servicequotas/home/services/rds/quotas/L-7B6409FD
https://console.aws.amazon.com/servicequotas/home/services/rds/quotas/L-48C6BF61

Amazon Aurora User Guide for Aurora

Name Default Adjustabl
e

Description

Data API maximum result set size Each supported
Region: 1
Megabytes

No The maximum size of the
database result set that
can be returned by the
Data API.

Data API maximum size of JSON
response string

Each supported
Region: 10
Megabytes

No The maximum size of the
simplified JSON response
string returned by the
RDS Data API.

Data API requests per second Each supported
Region: 1,000 per
second

No The maximum number
of requests to the Data
API per second allowed
for this account in the
current AWS Region. This
quota only applies to
Amazon Aurora Serverles
s v1 clusters.

Event subscriptions Each supported
Region: 20

Yes The maximum number of
event subscriptions

IAM roles per DB cluster Each supported
Region: 5

Yes The maximum number of
IAM roles associated with
a DB cluster

IAM roles per DB instance Each supported
Region: 5

Yes The maximum number of
IAM roles associated with
a DB instance

Manual DB cluster snapshots Each supported
Region: 100

Yes The maximum number
of manual DB cluster
snapshots

Quotas in Amazon Aurora 4045

https://console.aws.amazon.com/servicequotas/home/services/rds/quotas/L-A59F4C87
https://console.aws.amazon.com/servicequotas/home/services/rds/quotas/L-E094F43D
https://console.aws.amazon.com/servicequotas/home/services/rds/quotas/L-DD2301CA
https://console.aws.amazon.com/servicequotas/home/services/rds/quotas/L-9B510759

Amazon Aurora User Guide for Aurora

Name Default Adjustabl
e

Description

Manual DB instance snapshots Each supported
Region: 100

Yes The maximum number
of manual DB instance
snapshots

Option groups Each supported
Region: 20

Yes The maximum number of
option groups

Parameter groups Each supported
Region: 50

Yes The maximum number of
parameter groups

Proxies Each supported
Region: 20

Yes The maximum number
of proxies allowed in this
account in the current
AWS Region

Read replicas per primary Each supported
Region: 15

Yes The maximum number of
read replicas per primary
DB instance. This quota
cant be adjusted for
Amazon Aurora.

Reserved DB instances Each supported
Region: 40

Yes The maximum number
of reserved DB instances
allowed in this account in
the current AWS Region

Rules per security group Each supported
Region: 20

No The maximum number
of rules per DB security
group

Security groups Each supported
Region: 25

Yes The maximum number of
DB security groups

Security groups (VPC) Each supported
Region: 5

No The maximum number
of DB security groups per
Amazon VPC

Quotas in Amazon Aurora 4046

https://console.aws.amazon.com/servicequotas/home/services/rds/quotas/L-272F1212
https://console.aws.amazon.com/servicequotas/home/services/rds/quotas/L-9FA33840
https://console.aws.amazon.com/servicequotas/home/services/rds/quotas/L-DE55804A
https://console.aws.amazon.com/servicequotas/home/services/rds/quotas/L-D94C7EA3
https://console.aws.amazon.com/servicequotas/home/services/rds/quotas/L-5BC124EF
https://console.aws.amazon.com/servicequotas/home/services/rds/quotas/L-78E853F4
https://console.aws.amazon.com/servicequotas/home/services/rds/quotas/L-732153D0

Amazon Aurora User Guide for Aurora

Name Default Adjustabl
e

Description

Subnets per DB subnet group Each supported
Region: 20

No The maximum number
of subnets per DB subnet
group

Tags per resource Each supported
Region: 50

No The maximum number
of tags per Amazon RDS
resource

Total storage for all DB instances Each supported
Region: 100,000
Gigabytes

Yes The maximum total
storage (in GB) on EBS
volumes for all Amazon
RDS DB instances added
together. This quota does
not apply to Amazon
Aurora, which has a
maximum cluster volume
of 128 TiB for each DB
cluster.

Note

By default, you can have up to a total of 40 DB instances. RDS DB instances, Aurora DB
instances, Amazon Neptune instances, and Amazon DocumentDB instances apply to this
quota.
If your application requires more DB instances, you can request additional DB instances
by opening the Service Quotas console. In the navigation pane, choose AWS services.
Choose Amazon Relational Database Service (Amazon RDS), choose a quota, and follow
the directions to request a quota increase. For more information, see Requesting a quota
increase in the Service Quotas User Guide.
Backups managed by AWS Backup are considered manual DB clustersnapshots, but don't
count toward the manual cluster snapshot quota. For information about AWS Backup, see
the AWS Backup Developer Guide.

Quotas in Amazon Aurora 4047

https://console.aws.amazon.com/servicequotas/home/services/rds/quotas/L-7ADDB58A
https://console.aws.amazon.com/servicequotas/home?region=us-east-1#!/dashboard
https://docs.aws.amazon.com/servicequotas/latest/userguide/request-increase.html
https://docs.aws.amazon.com/servicequotas/latest/userguide/request-increase.html
https://docs.aws.amazon.com/aws-backup/latest/devguide

Amazon Aurora User Guide for Aurora

If you use any RDS API operations and exceed the default quota for the number of calls per second,
the Amazon RDS API issues an error like the following one.

ClientError: An error occurred (ThrottlingException) when calling the API_name operation: Rate
exceeded.

Here, reduce the number of calls per second. The quota is meant to cover most use cases. If higher
quotas are needed, you can request a quota increase by using one of the following options:

• From the console, open the Service Quotas console.

• From the AWS CLI, use the request-service-quota-increase AWS CLI command.

For more information, see the Service Quotas User Guide.

Naming constraints in Amazon Aurora

The naming constraints in Amazon Aurora are as follows:

• DB cluster identifier:

• Must contain 1–63 alphanumeric characters or hyphens.

• First character must be a letter.

• Can't end with a hyphen or contain two consecutive hyphens.

• Must be unique for all DB instances per AWS account, per AWS Region.

• Initial database name – Database name constraints differ between Aurora MySQL and Aurora
PostgreSQL. For more information, see the available settings when creating each DB cluster.

• Master username – Master username constraints differ for each database engine. For more
information, see the available settings when creating the DB cluster.

• Master password:

• The password for the database master user can include any printable ASCII character except /,
', ", @, or a space.

• The password can contain the following number of printable ASCII characters depending on
the DB engine:

• Aurora MySQL: 8–41

• Aurora PostgreSQL: 8–99

• DB parameter group:

Naming constraints in Amazon Aurora 4048

https://us-east-1.console.aws.amazon.com/servicequotas/home/
https://docs.aws.amazon.com/cli/latest/reference/service-quotas/request-service-quota-increase.html
https://docs.aws.amazon.com/servicequotas/latest/userguide/request-quota-increase.html

Amazon Aurora User Guide for Aurora

• Must contain 1–255 alphanumeric characters.

• First character must be a letter.

• Hyphens are allowed, but the name cannot end with a hyphen or contain two consecutive
hyphens.

• DB subnet group:

• Must contain 1–255 characters.

• Alphanumeric characters, spaces, hyphens, underscores, and periods are allowed.

Amazon Aurora size limits

Storage size limits

An Aurora cluster volume can grow to a maximum size of 128 tebibytes (TiB) for the following
engine versions:

• All available Aurora MySQL version 3 versions; Aurora MySQL version 2, versions 2.09 and
higher

• All available Aurora PostgreSQL versions

For lower engine versions, the maximum size of an Aurora cluster volume is 64 TiB. For more
information, see How Aurora storage automatically resizes.

To monitor the remaining storage space, you can use the AuroraVolumeBytesLeftTotal
metric. For more information, see Cluster-level metrics for Amazon Aurora.

SQL table size limits

For an Aurora MySQL DB cluster, the maximum table size is 64 tebibytes (TiB). For an Aurora
PostgreSQL DB cluster, the maximum table size is 32 tebibytes (TiB). We recommend that you
follow table design best practices, such as partitioning of large tables.

Table space ID limits

The maximum table space ID for Aurora MySQL is 2147483647. If you frequently create and
drop tables, make sure to be aware of your table space IDs and plan to use logical dumps.
For more information, see Logical migration from MySQL to Amazon Aurora MySQL by using
mysqldump.

Amazon Aurora size limits 4049

Amazon Aurora User Guide for Aurora

Troubleshooting for Amazon Aurora

Use the following sections to help troubleshoot problems you have with DB instances in Amazon
RDS and Amazon Aurora.

Topics

• Can't connect to Amazon RDS DB instance

• Amazon RDS security issues

• Resetting the DB instance owner password

• Amazon RDS DB instance outage or reboot

• Amazon RDS DB parameter changes not taking effect

• Freeable memory issues in Amazon Aurora

• Amazon Aurora MySQL replication issues

For information about debugging problems using the Amazon RDS API, see Troubleshooting
applications on Aurora.

Can't connect to Amazon RDS DB instance

When you can't connect to a DB instance, the following are common causes:

• Inbound rules – The access rules enforced by your local firewall and the IP addresses authorized
to access your DB instance might not match. The problem is most likely the inbound rules in your
security group.

By default, DB instances don't allow access. Access is granted through a security group associated
with the VPC that allows traffic into and out of the DB instance. If necessary, add inbound and
outbound rules for your particular situation to the security group. You can specify an IP address,
a range of IP addresses, or another VPC security group.

Note

When adding a new inbound rule, you can choose My IP for Source to allow access to the
DB instance from the IP address detected in your browser.

Can't connect to DB instance 4050

Amazon Aurora User Guide for Aurora

For more information about setting up security groups, see Provide access to the DB cluster in
the VPC by creating a security group.

Note

Client connections from IP addresses within the range 169.254.0.0/16 aren't permitted.
This is the Automatic Private IP Addressing Range (APIPA), which is used for local-link
addressing.

• Public accessibility – To connect to your DB instance from outside of the VPC, such as by using a
client application, the instance must have a public IP address assigned to it.

To make the instance publicly accessible, modify it and choose Yes under Public accessibility.
For more information, see Hiding a DB cluster in a VPC from the internet.

• Port – The port that you specified when you created the DB instance can't be used to send or
receive communications due to your local firewall restrictions. To determine if your network
allows the specified port to be used for inbound and outbound communication, check with your
network administrator.

• Availability – For a newly created DB instance, the DB instance has a status of creating until
the DB instance is ready to use. When the state changes to available, you can connect to the
DB instance. Depending on the size of your DB instance, it can take up to 20 minutes before an
instance is available.

• Internet gateway – For a DB instance to be publicly accessible, the subnets in its DB subnet
group must have an internet gateway.

To configure an internet gateway for a subnet

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Databases, and then choose the name of the DB instance.

3. In the Connectivity & security tab, write down the values of the VPC ID under VPC and the
subnet ID under Subnets.

4. Open the Amazon VPC console at https://console.aws.amazon.com/vpc/.

5. In the navigation pane, choose Internet Gateways. Verify that there is an internet gateway
attached to your VPC. Otherwise, choose Create Internet Gateway to create an internet

Can't connect to DB instance 4051

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/vpc/

Amazon Aurora User Guide for Aurora

gateway. Select the internet gateway, and then choose Attach to VPC and follow the
directions to attach it to your VPC.

6. In the navigation pane, choose Subnets, and then select your subnet.

7. On the Route Table tab, verify that there is a route with 0.0.0.0/0 as the destination and
the internet gateway for your VPC as the target.

If you're connecting to your instance using its IPv6 address, verify that there is a route for all
IPv6 traffic (::/0) that points to the internet gateway. Otherwise, do the following:

a. Choose the ID of the route table (rtb-xxxxxxxx) to navigate to the route table.

b. On the Routes tab, choose Edit routes. Choose Add route, use 0.0.0.0/0 as the
destination and the internet gateway as the target.

For IPv6, choose Add route, use ::/0 as the destination and the internet gateway as
the target.

c. Choose Save routes.

Also, if you are trying to connect to IPv6 endpoint, make sure that client IPv6 address range
is authorized to connect to the DB instance.

For more information, see Working with a DB cluster in a VPC.

Testing a connection to a DB instance

You can test your connection to a DB instance using common Linux or Microsoft Windows tools.

From a Linux or Unix terminal, you can test the connection by entering the following. Replace DB-
instance-endpoint with the endpoint and port with the port of your DB instance.

nc -zv DB-instance-endpoint port

For example, the following shows a sample command and the return value.

nc -zv postgresql1.c6c8mn7fake0.us-west-2.rds.amazonaws.com 8299

 Connection to postgresql1.c6c8mn7fake0.us-west-2.rds.amazonaws.com 8299 port [tcp/
vvr-data] succeeded!

Testing the DB instance connection 4052

Amazon Aurora User Guide for Aurora

Windows users can use Telnet to test the connection to a DB instance. Telnet actions aren't
supported other than for testing the connection. If a connection is successful, the action returns no
message. If a connection isn't successful, you receive an error message such as the following.

C:\>telnet sg-postgresql1.c6c8mntfake0.us-west-2.rds.amazonaws.com 819

 Connecting To sg-postgresql1.c6c8mntfake0.us-west-2.rds.amazonaws.com...Could not
 open
 connection to the host, on port 819: Connect failed

If Telnet actions return success, your security group is properly configured.

Note

Amazon RDS doesn't accept internet control message protocol (ICMP) traffic, including
ping.

Troubleshooting connection authentication

In some cases, you can connect to your DB instance but you get authentication errors. In these
cases, you might want to reset the master user password for the DB instance. You can do this by
modifying the RDS instance.

Amazon RDS security issues

To avoid security issues, never use your AWS account root user email address and password for
a user account. Best practice is to use your root user to create users and assign those to DB user
accounts. You can also use your root user to create other user accounts, if necessary.

For information about creating users, see Creating an IAM user in your AWS account. For
information about creating users in AWS IAM Identity Center, see Manage identities in IAM Identity
Center.

Error message "failed to retrieve account attributes, certain console
functions may be impaired."

You can get this error for several reasons. It might be because your account is missing permissions,
or your account hasn't been properly set up. If your account is new, you might not have waited

Troubleshooting connection authentication 4053

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_create.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/manage-your-identity-source-sso.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/manage-your-identity-source-sso.html

Amazon Aurora User Guide for Aurora

for the account to be ready. If this is an existing account, you might lack permissions in your
access policies to perform certain actions such as creating a DB instance. To fix the issue, your
administrator needs to provide the necessary roles to your account. For more information, see the
IAM documentation.

Resetting the DB instance owner password

If you get locked out of your DB cluster, you can log in as the master user. Then you can reset the
credentials for other administrative users or roles. If you can't log in as the master user, the AWS
account owner can reset the master user password. For details of which administrative accounts or
roles you might need to reset, see Master user account privileges.

You can change the DB instance password by using the Amazon RDS console, the AWS CLI
command modify-db-instance, or by using the ModifyDBInstance API operation. For more
information about modifying a DB instance in a DB cluster, see Modifying a DB instance in a DB
cluster.

Amazon RDS DB instance outage or reboot

A DB instance outage can occur when a DB instance is rebooted. It can also occur when the DB
instance is put into a state that prevents access to it, and when the database is restarted. A reboot
can occur when you manually reboot your DB instance. A reboot can also occur when you change a
DB instance setting that requires a reboot before it can take effect.

A DB instance reboot occurs when you change a setting that requires a reboot, or when you
manually cause a reboot. A reboot can occur immediately if you change a setting and request that
the change take effect immediately. Or it can occur during the DB instance's maintenance window.

A DB instance reboot occurs immediately when one of the following occurs:

• You change the backup retention period for a DB instance from 0 to a nonzero value or from a
nonzero value to 0. You then set Apply Immediately to true.

• You change the DB instance class, and Apply Immediately is set to true.

A DB instance reboot occurs during the maintenance window when one of the following occurs:

• You change the backup retention period for a DB instance from 0 to a nonzero value or from a
nonzero value to 0, and Apply Immediately is set to false.

Resetting the DB instance owner password 4054

https://docs.aws.amazon.com/IAM/latest/UserGuide/
https://docs.aws.amazon.com/IAM/latest/UserGuide/
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-instance.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBInstance.html

Amazon Aurora User Guide for Aurora

• You change the DB instance class, and Apply Immediately is set to false.

When you change a static parameter in a DB parameter group, the change doesn't take effect until
the DB instance associated with the parameter group is rebooted. The change requires a manual
reboot. The DB instance isn't automatically rebooted during the maintenance window.

Amazon RDS DB parameter changes not taking effect

In some cases, you might change a parameter in a DB parameter group but don't see the changes
take effect. If so, you likely need to reboot the DB instance associated with the DB parameter
group. When you change a dynamic parameter, the change takes effect immediately. When
you change a static parameter, the change doesn't take effect until you reboot the DB instance
associated with the parameter group.

You can reboot a DB instance using the RDS console. Or you can explicitly call the
RebootDBInstance API operation. You can reboot without failover if the DB instance is in a Multi-
AZ deployment. The requirement to reboot the associated DB instance after a static parameter
change helps mitigate the risk of a parameter misconfiguration affecting an API call. An example
of this is calling ModifyDBInstance to change the DB instance class. For more information, see
Modifying parameters in a DB parameter group.

Freeable memory issues in Amazon Aurora

Freeable memory is the total random access memory (RAM) on a DB instance that can be made
available to the database engine. It's the sum of the free operating-system (OS) memory and the
available buffer and page cache memory. The database engine uses most of the memory on the
host, but OS processes also use some RAM. Memory currently allocated to the database engine or
used by OS processes isn't included in freeable memory. When the database engine is running out
of memory, the DB instance can use the temporary space that is normally used for buffering and
caching. As previously mentioned, this temporary space is included in freeable memory.

You use the FreeableMemory metric in Amazon CloudWatch to monitor the freeable memory. For
more information, see Overview of monitoring metrics in Amazon Aurora.

If your DB instance consistently runs low on freeable memory or uses swap space, consider scaling
up to a larger DB instance class. For more information, see Aurora DB instance classes.

Parameter changes not taking effect 4055

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_RebootDBInstance.html

Amazon Aurora User Guide for Aurora

You can also change the memory settings. For example, on Aurora MySQL , you might adjust
the size of the innodb_buffer_pool_size parameter. This parameter is set by default to 75
percent of physical memory. For more MySQL troubleshooting tips, see How can I troubleshoot low
freeable memory in an Amazon RDS for MySQL database?

For Aurora Serverless v2, FreeableMemory represents the amount of unused memory that's
available when the Aurora Serverless v2 DB instance is scaled to its maximum capacity. You
might have the instance scaled down to relatively low capacity, but it still reports a high value for
FreeableMemory, because the instance can scale up. That memory isn't available right now, but
you can get it if you need it.

For every Aurora capacity unit (ACU) that the current capacity is below the maximum capacity,
FreeableMemory increases by approximately 2 GiB. Thus, this metric doesn't approach zero until
the DB instance is scaled up as high as it can.

If this metric approaches a value of 0, the DB instance has scaled up as much as it can. It's nearing
the limit of its available memory. Consider increasing the maximum ACU setting for the cluster. If
this metric approaches a value of 0 on a reader DB instance, consider adding additional reader DB
instances to the cluster. That way, the read-only part of the workload can be spread across more
DB instances, reducing the memory usage on each reader DB instance. For more information, see
Important Amazon CloudWatch metrics for Aurora Serverless v2.

For Aurora Serverless v1, you can change the capacity range to use more ACUs. For more
information, see Modifying an Aurora Serverless v1 DB cluster.

Amazon Aurora MySQL replication issues

Some MySQL replication issues also apply to Aurora MySQL. You can diagnose and correct these.

Topics

• Diagnosing and resolving lag between read replicas

• Diagnosing and resolving a MySQL read replication failure

• Replication stopped error

Diagnosing and resolving lag between read replicas

After you create a MySQL read replica and the replica is available, Amazon RDS first replicates the
changes made to the source DB instance from the time the read replica create operation started.

Aurora MySQL replication issues 4056

https://aws.amazon.com/premiumsupport/knowledge-center/low-freeable-memory-rds-mysql-mariadb/
https://aws.amazon.com/premiumsupport/knowledge-center/low-freeable-memory-rds-mysql-mariadb/

Amazon Aurora User Guide for Aurora

During this phase, the replication lag time for the read replica is greater than 0. You can monitor
this lag time in Amazon CloudWatch by viewing the Amazon RDS AuroraBinlogReplicaLag
metric.

The AuroraBinlogReplicaLag metric reports the value of the Seconds_Behind_Master field
of the MySQL SHOW REPLICA STATUS command. For more information, see SHOW REPLICA
STATUS Statement in the MySQL documentation.

When the AuroraBinlogReplicaLag metric reaches 0, the replica has caught up to the source
DB instance. If the AuroraBinlogReplicaLag metric returns -1, replication might not be active.
To troubleshoot a replication error, see Diagnosing and resolving a MySQL read replication failure.
A AuroraBinlogReplicaLag value of -1 can also mean that the Seconds_Behind_Master
value can't be determined or is NULL.

Note

Previous versions of Aurora MySQL used SHOW SLAVE STATUS instead of SHOW REPLICA
STATUS. If you are using Aurora MySQL version 1 or 2, then use SHOW SLAVE STATUS. Use
SHOW REPLICA STATUS for Aurora MySQL version 3 and higher.

The AuroraBinlogReplicaLag metric returns -1 during a network outage or when a patch is
applied during the maintenance window. In this case, wait for network connectivity to be restored
or for the maintenance window to end before you check the AuroraBinlogReplicaLag metric
again.

The MySQL read replication technology is asynchronous. Thus, you can expect occasional
increases for the BinLogDiskUsage metric on the source DB instance and for the
AuroraBinlogReplicaLag metric on the read replica. For example, consider a situation where a
high volume of write operations to the source DB instance occur in parallel. At the same time, write
operations to the read replica are serialized using a single I/O thread. Such a situation can lead to a
lag between the source instance and read replica.

For more information about read replicas and MySQL, see Replication implementation details in
the MySQL documentation.

You can reduce the lag between updates to a source DB instance and the subsequent updates to
the read replica by doing the following:

Diagnosing and resolving lag between read replicas 4057

https://dev.mysql.com/doc/refman/8.0/en/show-replica-status.html
https://dev.mysql.com/doc/refman/8.0/en/show-replica-status.html
https://dev.mysql.com/doc/refman/8.0/en/replication-implementation-details.html

Amazon Aurora User Guide for Aurora

• Set the DB instance class of the read replica to have a storage size comparable to that of the
source DB instance.

• Make sure that parameter settings in the DB parameter groups used by the source DB instance
and the read replica are compatible. For more information and an example, see the discussion of
the max_allowed_packet parameter in the next section.

• Disable the query cache. For tables that are modified often, using the query cache can increase
replica lag because the cache is locked and refreshed often. If this is the case, you might see
less replica lag if you disable the query cache. You can disable the query cache by setting the
query_cache_type parameter to 0 in the DB parameter group for the DB instance. For more
information on the query cache, see Query cache configuration.

• Warm the buffer pool on the read replica for InnoDB for MySQL. For example, suppose that you
have a small set of tables that are being updated often and you're using the InnoDB or XtraDB
table schema. In this case, dump those tables on the read replica. Doing this causes the database
engine to scan through the rows of those tables from the disk and then cache them in the buffer
pool. This approach can reduce replica lag. The following shows an example.

For Linux, macOS, or Unix:

PROMPT> mysqldump \
 -h <endpoint> \
 --port=<port> \
 -u=<username> \
 -p <password> \
 database_name table1 table2 > /dev/null

For Windows:

PROMPT> mysqldump ^
 -h <endpoint> ^
 --port=<port> ^
 -u=<username> ^
 -p <password> ^
 database_name table1 table2 > /dev/null

Diagnosing and resolving lag between read replicas 4058

https://dev.mysql.com/doc/refman/5.7/en/query-cache-configuration.html

Amazon Aurora User Guide for Aurora

Diagnosing and resolving a MySQL read replication failure

Amazon RDS monitors the replication status of your read replicas. RDS updates the Replication
State field of the read replica instance to Error if replication stops for any reason. You can review
the details of the associated error thrown by the MySQL engines by viewing the Replication
Error field. Events that indicate the status of the read replica are also generated, including RDS-
EVENT-0045, RDS-EVENT-0046, and RDS-EVENT-0057. For more information about events and
subscribing to events, see Working with Amazon RDS event notification. If a MySQL error message
is returned, check the error in the MySQL error message documentation.

Common situations that can cause replication errors include the following:

• The value for the max_allowed_packet parameter for a read replica is less than the
max_allowed_packet parameter for the source DB instance.

The max_allowed_packet parameter is a custom parameter that you can set in a DB
parameter group. The max_allowed_packet parameter is used to specify the maximum
size of data manipulation language (DML) that can be run on the database. In some
cases, the max_allowed_packet value for the source DB instance might be larger than
the max_allowed_packet value for the read replica. If so, the replication process can
throw an error and stop replication. The most common error is packet bigger than
'max_allowed_packet' bytes. You can fix the error by having the source and read replica
use DB parameter groups with the same max_allowed_packet parameter values.

• Writing to tables on a read replica. If you're creating indexes on a read replica, you need to have
the read_only parameter set to 0 to create the indexes. If you're writing to tables on the read
replica, it can break replication.

• Using a nontransactional storage engine such as MyISAM. Read replicas require a transactional
storage engine. Replication is only supported for the following storage engines: InnoDB for
MySQL or MariaDB.

You can convert a MyISAM table to InnoDB with the following command:

alter table <schema>.<table_name> engine=innodb;

• Using unsafe nondeterministic queries such as SYSDATE(). For more information, see
Determination of safe and unsafe statements in binary logging in the MySQL documentation.

The following steps can help resolve your replication error:

Diagnosing and resolving a MySQL read replication failure 4059

https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html
https://dev.mysql.com/doc/refman/8.0/en/replication-rbr-safe-unsafe.html

Amazon Aurora User Guide for Aurora

• If you encounter a logical error and you can safely skip the error, follow the steps described
in Skipping the current replication error. Your Aurora MySQL DB instance must be running a
version that includes the mysql_rds_skip_repl_error procedure. For more information, see
mysql_rds_skip_repl_error.

• If you encounter a binary log (binlog) position issue, you can change the replica replay
position. You do so with the mysql.rds_next_master_log command for Aurora MySQL
version 1 and 2. You do so with the mysql.rds_next_source_log command for Aurora
MySQL version 3 and higher. Your Aurora MySQL DB instance must be running a version that
supports this command to change the replica replay position. For version information, see
mysql_rds_next_master_log.

• If you encounter a temporary performance issue due to high DML load, you can set the
innodb_flush_log_at_trx_commit parameter to 2 in the DB parameter group on the read
replica. Doing this can help the read replica catch up, though it temporarily reduces atomicity,
consistency, isolation, and durability (ACID).

• You can delete the read replica and create an instance using the same DB instance identifier. This
way, the endpoint remains the same as that of your old read replica.

If a replication error is fixed, the Replication State changes to replicating. For more information,
see Troubleshooting a MySQL read replica problem.

Replication stopped error

When you call the mysql.rds_skip_repl_error command, you might receive an error message
stating that replication is down or disabled.

This error message appears because replication is stopped and can't be restarted.

If you need to skip a large number of errors, the replication lag can increase beyond the default
retention period for binary log files. In this case, you might encounter a fatal error due to binary
log files being purged before they have been replayed on the replica. This purge causes replication
to stop, and you can no longer call the mysql.rds_skip_repl_error command to skip
replication errors.

You can mitigate this issue by increasing the number of hours that binary log files are retained
on your replication source. After you have increased the binlog retention time, you can restart
replication and call the mysql.rds_skip_repl_error command as needed.

Replication stopped error 4060

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Appendix.MySQL.CommonDBATasks.SkipError.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/mysql_rds_skip_repl_error.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/mysql_rds_next_master_log.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_ReadRepl.Troubleshooting.html

Amazon Aurora User Guide for Aurora

To set the binlog retention time, use the mysql_rds_set_configuration procedure. Specify a
configuration parameter of 'binlog retention hours' along with the number of hours to retain
binlog files on the DB cluster, up to 2160 (90 days). The default for Aurora MySQL is 24 (1 day). The
following example sets the retention period for binlog files to 48 hours.

CALL mysql.rds_set_configuration('binlog retention hours', 48);

Replication stopped error 4061

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_ReadRepl.Troubleshooting.html

Amazon Aurora User Guide for Aurora

Amazon RDS API reference

In addition to the AWS Management Console and the AWS Command Line Interface (AWS CLI),
Amazon RDS also provides an API. You can use the API to automate tasks for managing your DB
instances and other objects in Amazon RDS.

• For an alphabetical list of API operations, see Actions.

• For an alphabetical list of data types, see Data types.

• For a list of common query parameters, see Common parameters.

• For descriptions of the error codes, see Common errors.

For more information about the AWS CLI, see AWS Command Line Interface reference for Amazon
RDS.

Topics

• Using the Query API

• Troubleshooting applications on Aurora

Using the Query API

The following sections briefly discuss the parameters and request authentication used with the
Query API.

For general information about how the Query API works, see Query requests in the Amazon EC2
API Reference.

Query parameters

HTTP Query-based requests are HTTP requests that use the HTTP verb GET or POST and a Query
parameter named Action.

Each Query request must include some common parameters to handle authentication and
selection of an action.

Some operations take lists of parameters. These lists are specified using the param.n notation.
Values of n are integers starting from 1.

Using the Query API 4062

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_Operations.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_Types.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/CommonParameters.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/CommonErrors.html
https://docs.aws.amazon.com/cli/latest/reference/rds/index.html
https://docs.aws.amazon.com/cli/latest/reference/rds/index.html
https://docs.aws.amazon.com/AWSEC2/latest/APIReference/Query-Requests.html

Amazon Aurora User Guide for Aurora

For information about Amazon RDS Regions and endpoints, go to Amazon Relational Database
Service (RDS) in the Regions and Endpoints section of the Amazon Web Services General Reference.

Query request authentication

You can only send Query requests over HTTPS, and you must include a signature in every Query
request. You must use either AWS signature version 4 or signature version 2. For more information,
see Signature Version 4 signing process and Signature version 2 signing process.

Troubleshooting applications on Aurora

Amazon RDS provides specific and descriptive errors to help you troubleshoot problems while
interacting with the Amazon RDS API.

Topics

• Retrieving errors

• Troubleshooting tips

For information about troubleshooting for Amazon RDS DB instances, see Troubleshooting for
Amazon Aurora.

Retrieving errors

Typically, you want your application to check whether a request generated an error before you
spend any time processing results. The easiest way to find out if an error occurred is to look for an
Error node in the response from the Amazon RDS API.

XPath syntax provides a simple way to search for the presence of an Error node. It also provides
a relatively easy way to retrieve the error code and message. The following code snippet uses Perl
and the XML::XPath module to determine if an error occurred during a request. If an error occurred,
the code prints the first error code and message in the response.

use XML::XPath;
 my $xp = XML::XPath->new(xml =>$response);
 if ($xp->find("//Error"))
 {print "There was an error processing your request:\n", " Error code: ",
 $xp->findvalue("//Error[1]/Code"), "\n", " ",
 $xp->findvalue("//Error[1]/Message"), "\n\n"; }

Query request authentication 4063

https://docs.aws.amazon.com/general/latest/gr/rande.html#rds_region
https://docs.aws.amazon.com/general/latest/gr/rande.html#rds_region
https://docs.aws.amazon.com/general/latest/gr/signature-version-4.html
https://docs.aws.amazon.com/general/latest/gr/signature-version-2.html

Amazon Aurora User Guide for Aurora

Troubleshooting tips

We recommend the following processes to diagnose and resolve problems with the Amazon RDS
API:

• Verify that Amazon RDS is operating normally in the AWS Region that you're targeting by
checking http://status.aws.amazon.com.

• Check the structure of your request.

Each Amazon RDS operation has a reference page in the Amazon RDS API Reference. Double-
check that you are using parameters correctly. For ideas about what might be wrong, look at the
sample requests or user scenarios to see if those examples do similar operations.

• Check AWS re:Post.

Amazon RDS has a development community where you can search for solutions to problems
others have experienced along the way. To view the topics, go to AWS re:Post.

Troubleshooting tips 4064

http://status.aws.amazon.com/
https://repost.aws/

Amazon Aurora User Guide for Aurora

Document history

Current API version: 2014-10-31

The following table describes important changes to the Amazon Aurora User Guide. For notification
about updates to this documentation, you can subscribe to an RSS feed. For information about
Amazon Relational Database Service (Amazon RDS), see the Amazon Relational Database Service
User Guide.

Note

Before August 31, 2018, Amazon Aurora was documented in the Amazon Relational
Database Service User Guide. For earlier Aurora document history, see Document history in
the Amazon Relational Database Service User Guide.

You can filter new Amazon Aurora features on the What's New with Database? page. For Products,
choose Amazon Aurora. Then search using keywords such as global database or Serverless.

Change Description Date

AWS ODBC Driver for MySQL
generally available

The Amazon Web Services
(AWS) ODBC Driver for MySQL
is a client driver designed for
the high availability of Aurora
MySQL. For more informati
on, see Connecting to Aurora
MySQL with the Amazon Web
Services (AWS) ODBC Driver
for MySQL.

July 18, 2024

RDS Data API for Aurora
Serverless v2 is available in
more Regions

RDS Data API is now available
for Aurora PostgreSQL in
several additional AWS
Regions. For information
about Region support for RDS
Data API, see Data API with

July 9, 2024

4065

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Welcome.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Welcome.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/WhatsNew.html
https://aws.amazon.com/about-aws/whats-new/database/
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Aurora.Connecting.html#Aurora.Connecting.ODBCDriverMySQL
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Aurora.Connecting.html#Aurora.Connecting.ODBCDriverMySQL
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Aurora.Connecting.html#Aurora.Connecting.ODBCDriverMySQL
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Aurora.Connecting.html#Aurora.Connecting.ODBCDriverMySQL
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Concepts.Aurora_Fea_Regions_DB-eng.Feature.Data_API.html#Concepts.Aurora_Fea_Regions_DB-eng.Feature.Data_API.apg

Amazon Aurora User Guide for Aurora

Aurora PostgreSQL Serverless
v2 and provisioned.

AWS Python Driver generally
available

The Amazon Web Services
(AWS) Python Driver is
designed as an advanced
Python wrapper. This wrapper
is complementary to and
extends the functionality of
the open-source Psycopg
driver. For more information,
see Connecting to Aurora DB
clusters with the AWS drivers.

May 23, 2024

Zero-ETL integrations
available in China Regions

Zero-ETL integrations are now
available in the AWS Regions
China (Beijing) and China
(Ningxia). For more informati
on, see Zero-ETL integrations
with Amazon Redshift.

May 21, 2024

RDS Proxy is available in more
Regions

RDS Proxy is now available
in the Asia Pacific (Hyderaba
d), Asia Pacific (Melbourne),
Middle East (UAE), Israel (Tel
Aviv), Canada West (Calgary)
, and Europe (Zurich) regions.
For more information about
RDS Proxy, see Using Amazon
RDS Proxy.

May 21, 2024

4066

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Concepts.Aurora_Fea_Regions_DB-eng.Feature.Data_API.html#Concepts.Aurora_Fea_Regions_DB-eng.Feature.Data_API.apg
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Concepts.Aurora_Fea_Regions_DB-eng.Feature.Data_API.html#Concepts.Aurora_Fea_Regions_DB-eng.Feature.Data_API.apg
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Aurora.Connecting.html#Aurora.Connecting.Drivers
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Aurora.Connecting.html#Aurora.Connecting.Drivers
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Concepts.Aurora_Fea_Regions_DB-eng.Feature.Zero-ETL.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Concepts.Aurora_Fea_Regions_DB-eng.Feature.Zero-ETL.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/rds-proxy.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/rds-proxy.html

Amazon Aurora User Guide for Aurora

Amazon RDS Extended
Support

Creating or restoring an
Aurora MySQL version 2 or 3,
or Aurora PostgreSQL version
11 database now automatic
ally enrolls that database
into Amazon RDS Extended
Support so your existing
 applications continue to work
as they are. You can opt out
of RDS Extended Support to
avoid charges after the Aurora
end of standard support date
for your database engine.
For more information, see
Using Amazon RDS Extended
Support.

March 21, 2024

Data filtering for zero-ETL
integrations

Amazon RDS supports data
filtering at the database
and table level for zero-ETL
integrations with Amazon
Redshift. For more informati
on, see Data filtering for
Aurora zero-ETL integrations
with Amazon Redshift.

March 20, 2024

Aurora MySQL integrations
with Amazon Bedrock

You can now integrate
Amazon Aurora MySQL
databases with Amazon
Bedrock to power generativ
e AI applications. For more
information, see Using Ama
zon Aurora machine learning
with Aurora MySQL.

March 8, 2024

4067

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/extended-support.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/extended-support.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/zero-etl.filtering.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/zero-etl.filtering.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/zero-etl.filtering.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/mysql-ml.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/mysql-ml.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/mysql-ml.html

Amazon Aurora User Guide for Aurora

New AWS managed policy Amazon RDS added a
new managed policy
named AmazonRDS
Custom InstanceProfileRo
lePolicy to allow RDS
Custom to perform automatio
n actions and database
management tasks through
an EC2 instance profile.
For more information, see
Amazon RDS updates to AWS
managed policies.

February 27, 2024

Amazon RDS support for AWS
Secrets Manager in the Israel
(Tel Aviv) Region

Amazon RDS supports
Secrets Manager in the
Israel (Tel Aviv) Region.
For more information, see
Password management with
Amazon RDS and AWS Secrets
Manager.

February 21, 2024

Amazon RDS Extended
Support

Amazon RDS now automatic
ally enables Amazon RDS
Extended Support when
Aurora MySQL and Aurora
PostgreSQL major engine
versions in your DB clusters
and global clusters reach
the Aurora end of standard
support date. For more
information, see Using
Amazon RDS Extended
Support.

February 15, 2024

4068

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-manpol-updates.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-manpol-updates.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/rds-secrets-manager.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/rds-secrets-manager.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/rds-secrets-manager.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/extended-support.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/extended-support.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/extended-support.html

Amazon Aurora User Guide for Aurora

Aurora PostgreSQL 16.1
supports Babelfish for Aurora
PostgreSQL 4.0.0

Aurora PostgreSQL 16.1
supports Babelfish 4.0.0. For
a list of new features, see
16.1. For a list of features
supported in each Babelfish
release, see Supported
 functionality in Babelfish
by version. For usage
information, see Working
with Babelfish for Aurora
PostgreSQL.

January 31, 2024

Update to default CA Certifica
te

The default CA certificate is
set to rds-ca-rsa2048-
g1. For more information, see
Using SSL/TLS to encrypt a
connection to a DB cluster.

January 26, 2024

RDS Proxy is available in the
Europe (Spain) Region

RDS Proxy is now available in
the Europe (Spain) region. For
more information about RDS
Proxy, see Using Amazon RDS
Proxy.

January 8, 2024

RDS Data API with Aurora
PostgreSQL Serverless v2 and
provisioned

You can now use RDS Data
API with Aurora PostgreSQL
Serverless v2 and provision
ed DB clusters. With RDS
Data API, you can access your
Aurora clusters through a
secure HTTP endpoint and
run SQL statements without
using database drivers or
managing connections. For
more information, see Using
RDS Data API.

December 21, 2023

4069

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.161X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/babelfish-compatibility.supported-functionality-table.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/babelfish-compatibility.supported-functionality-table.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/babelfish-compatibility.supported-functionality-table.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/babelfish.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/babelfish.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/babelfish.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/UsingWithRDS.SSL.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/UsingWithRDS.SSL.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/rds-proxy.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/rds-proxy.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/data-api.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/data-api.html

Amazon Aurora User Guide for Aurora

Aurora PostgreSQL integrati
ons with Amazon Bedrock

You can now integrate
Amazon Aurora PostgreSQ
L databases with Amazon
Bedrock to power generativ
e AI applications. For more
information, see Using
Amazon Aurora machine
learning with Aurora
PostgreSQL.

December 21, 2023

Amazon Aurora is available
in the Canada West (Calgary)
Region

Amazon Aurora is now
available in the Canada West
(Calgary) Region. For more
information, see Regions and
Availability Zones.

December 20, 2023

Amazon RDS supports
viewing and responding to
recommendations

Amazon Aurora recommend
ations now includes threshold
based proactive and machine
learning based reactive
recommendations. For more
information, see Viewing and
responding to Amazon Aurora
recommendations.

December 19, 2023

4070

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/postgresql-ml.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/postgresql-ml.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/postgresql-ml.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/postgresql-ml.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Concepts.RegionsAndAvailabilityZones.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Concepts.RegionsAndAvailabilityZones.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/monitoring-recommendations.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/monitoring-recommendations.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/monitoring-recommendations.html

Amazon Aurora User Guide for Aurora

Aurora PostgreSQL zero-ETL
integrations with Amazon
Redshift (preview)

You can now create zero-ETL
integrations with Amazon
Redshift using an Aurora
PostgreSQL source DB cluster.
For the preview release, you
must create all integrations
in the Amazon RDS Database
Preview Environment, in
the US East (Ohio) (us-east-
2) AWS Region. For more
information, see Working with
Aurora zero-ETL integrations
with Amazon Redshift.

November 28, 2023

Amazon Aurora PostgreSQ
L supports global database
write forwarding

You can now enable write
forwarding on secondary
clusters in an Aurora
PostgreSQL-based global
database. For more informati
on, see Using write forwardin
g in an Aurora PostgreSQL
global database.

November 9, 2023

Aurora PostgreSQL support
for Optimized Reads

You can achieve faster
query processing for Aurora
PostgreSQL with Aurora
Optimized Reads. For more
information, see Improving
query performance for Aurora
PostgreSQL with Aurora
Optimized Reads.

November 8, 2023

4071

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/zero-etl.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/zero-etl.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/zero-etl.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-global-database-write-forwarding-apg.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-global-database-write-forwarding-apg.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-global-database-write-forwarding-apg.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraPostgreSQL.optimized.reads.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraPostgreSQL.optimized.reads.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraPostgreSQL.optimized.reads.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraPostgreSQL.optimized.reads.html

Amazon Aurora User Guide for Aurora

Amazon RDS exports
Performance Insights metrics
to Amazon CloudWatch

Performance Insights lets you
export the preconfigured or
custom metrics dashboard
s to Amazon CloudWatc
h. The exported metrics
dashboards are available
to view in the CloudWatch
console. You can also export
a selected Performance
Insights metric widget and
view the metrics data in the
CloudWatch console. For
more information, see Expor
ting Performance Insights
metrics to CloudWatch.

November 8, 2023

Aurora MySQL zero-ETL
integrations with Amazon
Redshift general availability

Zero-ETL integrations with
Amazon Redshift are now
generally available for Aurora
MySQL. For more informat
ion, see Working with Aurora
 zero-ETL integrations with
Amazon Redshift.

November 7, 2023

Aurora PostgreSQL support
for RDS Blue/Green
Deployments

You can now create a blue/
green deployment from an
Aurora PostgreSQL DB cluster.
For more information, see
Using Amazon RDS Blue/Gree
n Deployments for database
updates.

October 26, 2023

4072

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/PI_metrics_export_CW.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/PI_metrics_export_CW.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/PI_metrics_export_CW.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/zero-etl.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/zero-etl.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/zero-etl.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/blue-green-deployments.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/blue-green-deployments.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/blue-green-deployments.html

Amazon Aurora User Guide for Aurora

Aurora MySQL supports
server-side encryption with
AWS KMS keys (SSE-KMS)

In Aurora MySQL version
3.05 and higher, you can use
SSE-KMS, including AWS
managed keys and customer
managed keys, for server-side
encryption of data that you
load from or save to Amazon
S3. For more information,
see Loading data into an
Amazon Aurora MySQL DB
cluster from text files in an
Amazon S3 bucket and Saving
data from an Amazon Aurora
MySQL DB cluster from text
files in an Amazon S3 bucket.

October 25, 2023

Aurora MySQL optimizations
reduce database restart time

In Aurora MySQL version 3.05
and higher, we've introduce
d optimizations that reduce
the database restart time.
These optimizations provide
up to 65% less downtime
than without optimizations,
and fewer disruptions to your
database workloads, after a
restart. For more information,
see Optimizations to reduce
database restart time.

October 25, 2023

4073

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraMySQL.Integrating.LoadFromS3.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraMySQL.Integrating.LoadFromS3.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraMySQL.Integrating.LoadFromS3.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraMySQL.Integrating.LoadFromS3.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraMySQL.Integrating.SaveIntoS3.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraMySQL.Integrating.SaveIntoS3.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraMySQL.Integrating.SaveIntoS3.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraMySQL.Integrating.SaveIntoS3.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraMySQL.MySQL80.html#ReducedRestartTime
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraMySQL.MySQL80.html#ReducedRestartTime

Amazon Aurora User Guide for Aurora

Update to AWS managed
policies

The AmazonRDSPerforman
ceInsightsReadOnly
and AmazonRDSPerforman
ceInsightsFullAcce
ss managed policies now
includes Sid (statement ID)
as an identifier in the policy
statement. For more informati
on, see Amazon RDS updates
to AWS managed policies.

October 23, 2023

Amazon RDS publishes
Performance Insights counter
metrics to Amazon CloudWatc
h

The DB_PERF_INSIGHTS
metric math function in the
CloudWatch console allows
 you to query Amazon RDS for
Performance Insights counter
metrics. For more informati
on, see Creating CloudWatc
h alarms to monitor Amazon
Aurora.

September 20, 2023

Amazon Aurora supports
point-in-time recovery (PITR)
with AWS Backup

You can now manage Aurora
automated (continuous)
backups in AWS Backup
and restore to specified
times from them. For more
information, see Restoring a
DB cluster to a specified time
using AWS Backup.

September 7, 2023

4074

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/rds-manpol-updates.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/rds-manpol-updates.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/creating_alarms.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/creating_alarms.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/creating_alarms.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-pitr.html#aurora-pitr-bkp
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-pitr.html#aurora-pitr-bkp
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-pitr.html#aurora-pitr-bkp

Amazon Aurora User Guide for Aurora

Amazon RDS Extended
Support

Amazon Aurora announces
the upcoming ability to
continue running Aurora
MySQL and Aurora PostgreSQ
L major engine versions
in your DB instances past
the Aurora end of standard
support date. For more
information, see Using
Amazon RDS Extended
Support.

September 1, 2023

Amazon Aurora MySQL
extends support for Percona
XtraBackup

You can now perform physical
migrations of MySQL 8.0
databases to Aurora MySQL
version 3 DB clusters. For
more information, see
Physical migration from
MySQL by using Percona
XtraBackup and Amazon S3.

August 24, 2023

4075

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/extended-support.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/extended-support.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/extended-support.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraMySQL.Migrating.ExtMySQL.S3.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraMySQL.Migrating.ExtMySQL.S3.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraMySQL.Migrating.ExtMySQL.S3.html

Amazon Aurora User Guide for Aurora

Aurora global database
supports global database
failover

Aurora global database now
supports managed global
failover, allowing you to
more easily recover from
a true Regional disaster
or complete service-level
outage. To learn more about
this feature, see Performin
g managed failovers for
Aurora global databases.
The feature previously called
"managed planned failover" is
now called "switchover." For
information about switchove
rs, see Performing switchove
rs for Amazon Aurora global
databases.

August 21, 2023

Update to AWS managed
policy permissions

The AmazonRDSFullAcces
s managed policy has new
permissions that allows you
to generate, view, and delete
the performance analysis
report for a time period. For
more information, see Am
azon RDS updates to AWS
managed policies.

August 17, 2023

4076

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-global-database-disaster-recovery.html#aurora-global-database-failover.managed-unplanned
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-global-database-disaster-recovery.html#aurora-global-database-failover.managed-unplanned
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-global-database-disaster-recovery.html#aurora-global-database-failover.managed-unplanned
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-global-database-disaster-recovery.html#aurora-global-database-disaster-recovery.managed-failover
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-global-database-disaster-recovery.html#aurora-global-database-disaster-recovery.managed-failover
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-global-database-disaster-recovery.html#aurora-global-database-disaster-recovery.managed-failover
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/rds-manpol-updates.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/rds-manpol-updates.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/rds-manpol-updates.html

Amazon Aurora User Guide for Aurora

Update to AWS managed
policy permissions

The addition of new
permissions to AmazonRDS
PerformanceInsight
sReadOnly managed
policy and addition of new
managed policy AmazonRDS
PerformanceInsight
sFullAccess allows you
generate a DB load analysis
report for a time period. For
more information, see Am
azon RDS updates to AWS
managed policies.

August 16, 2023

Amazon RDS supports DB
load time period analysis with
Performance Insights

Performance Insights allows
you to create performance
analysis reports for a specific
period of time. The report
provides the insights iden
tified and recommendations
to resolve the performance
issues. For more information,
see Analyzing DB load for a
period of time.

August 16, 2023

Amazon Aurora supports
retaining automated backups
for DB clusters

You can now retain
automated backups for
deleted Aurora clusters and
restore them to a specified
point in time. For more
information, see Retaining
automated backups.

August 4, 2023

4077

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/rds-manpol-updates.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/rds-manpol-updates.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/rds-manpol-updates.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/USER_PerfInsights.UsingDashboard.AnalyzePerformanceTimePeriod.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/USER_PerfInsights.UsingDashboard.AnalyzePerformanceTimePeriod.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Aurora.Managing.Backups.html#Aurora.Managing.Backups.Retaining
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Aurora.Managing.Backups.html#Aurora.Managing.Backups.Retaining

Amazon Aurora User Guide for Aurora

Amazon Aurora is available in
the Israel (Tel Aviv) Region

Amazon Aurora is now
available in the Israel (Tel
Aviv) Region. For more
information, see Regions and
Availability Zones.

August 1, 2023

Amazon Aurora MySQL
supports local (in-cluster)
write forwarding

You can now forward write
operations from a reader
DB instance to a writer DB
instance within an Aurora
MySQL DB cluster. For more
information, see Using write
forwarding in an Amazon
Aurora MySQL DB cluster.

July 31, 2023

Amazon Aurora supports
Aurora Serverless v2 in an
additional AWS Region

You can now create Aurora
Serverless v2 DB clusters in
the Asia Pacific (Melbourne)
AWS Region. For information
about Aurora Serverless v2,
see Using Aurora Serverless
v2.

June 28, 2023

Amazon Aurora introduces
zero-ETL integrations with
Amazon Redshift (preview)

Zero-ETL integrations provide
a fully managed solution for
making transactional data
available in Amazon Redshift
within seconds of it being
written to an Aurora MySQL
DB cluster. For more informat
ion, see Working with Aurora
 zero-ETL integrations with
Amazon Redshift.

June 28, 2023

4078

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Concepts.RegionsAndAvailabilityZones.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Concepts.RegionsAndAvailabilityZones.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-mysql-write-forwarding.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-mysql-write-forwarding.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-mysql-write-forwarding.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-serverless-v2.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-serverless-v2.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/zero-etl.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/zero-etl.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/zero-etl.html

Amazon Aurora User Guide for Aurora

Amazon RDS provides
combined Performance
Insights and CloudWatch
metrics view in the Performan
ce Insights dashboard

Amazon RDS now provides
a consolidated view of
Performance Insights and
CloudWatch metrics in the
Performance Insights das
hboard. For more informati
on, see Viewing combined
metrics in the Amazon RDS
console.

May 24, 2023

Amazon Aurora supports the
db.r7g instance classes

You can now use the db.r7g
instance classes to create
Aurora DB clusters. For more
information, see Aurora DB
instance classes.

May 11, 2023

Amazon Aurora supports
a new DB cluster storage
configuration

With Aurora I/O-Optim
ized, you pay only for the
usage and storage of your DB
clusters, with no additiona
l charges for read and write
I/O operations. For more
information, see Storage
configurations for Amazon
Aurora DB clusters.

May 11, 2023

Amazon Aurora supports
Aurora Serverless v2 in
additional AWS Regions

You can now create Aurora
Serverless v2 DB clusters in
the following AWS Regions:
 Asia Pacific (Hyderaba
d), Europe (Spain) Europe
(Zurich), and Middle East
(UAE). For information about
Aurora Serverless v2, see
Using Aurora Serverless v2.

May 4, 2023

4079

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Viewing_Unifiedmetrics.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Viewing_Unifiedmetrics.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Viewing_Unifiedmetrics.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Concepts.DBInstanceClass.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Concepts.DBInstanceClass.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Aurora.Overview.StorageReliability.html#aurora-storage-type
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Aurora.Overview.StorageReliability.html#aurora-storage-type
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Aurora.Overview.StorageReliability.html#aurora-storage-type
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-serverless-v2.html

Amazon Aurora User Guide for Aurora

Aurora Serverless v1 supports
conversion to provisioned

You can convert an Aurora
Serverless v1 DB cluster
directly to a provisioned DB
cluster. For more informati
on, see Converting an Aurora
Serverless v1 DB cluster to
provisioned.

April 27, 2023

Aurora Serverless v1 supports
Amazon Aurora PostgreSQL
version 13

You can now create Aurora
Serverless v1 DB clusters
that run Aurora PostgreSQ
L version 13. For more
information, see Aurora
Serverless v1.

April 27, 2023

Amazon Aurora support for
AWS Secrets Manager in the
China Regions

Amazon Aurora supports
Secrets Manager in the China
(Beijing) and China (Ningxia)
Regions. For more informati
on, see Password managemen
t with Amazon Aurora and
AWS Secrets Manager.

April 20, 2023

Amazon Aurora supports
publishing events with tags to
topic subscribers

Amazon Aurora event
notifications sent to Amazon
Simple Notification Service
(Amazon SNS) or Amazon
EventBridge now contain
event tags in the message
body. These tags provide
the resource data that was
affected by the service event.
For more information, see
Amazon RDS event notificat
ion tags and attributes.

April 17, 2023

4080

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-serverless.modifying.html#aurora-serverless.modifying.convert
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-serverless.modifying.html#aurora-serverless.modifying.convert
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-serverless.modifying.html#aurora-serverless.modifying.convert
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Concepts.Aurora_Fea_Regions_DB-eng.Feature.ServerlessV1.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Concepts.Aurora_Fea_Regions_DB-eng.Feature.ServerlessV1.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/rds-secrets-manager.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/rds-secrets-manager.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/rds-secrets-manager.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/USER_Events.TagsAttributesForFiltering.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/USER_Events.TagsAttributesForFiltering.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/USER_Events.TagsAttributesForFiltering.html

Amazon Aurora User Guide for Aurora

Update to IAM service-linked
role permissions

The AmazonRDSFullAcces
s and AmazonRDS
ReadOnlyAccess policies
now grants additional pe
rmissions to allow the display
of Amazon DevOps Guru
findings in the RDS console.
For more information, see
Amazon RDS updates to AWS
managed policies.

March 30, 2023

Amazon Aurora supports
global databases in the Asia
Pacific (Melbourne) Region

You can now create Aurora
global databases in the Asia
Pacific (Melbourne) Region.
For information about Aurora
 global databases, see Using
 Amazon Aurora global
databases.

March 22, 2023

Update to AWS managed
policy permissions

The AmazonRDSFullAcces
s and AmazonRDS
ReadOnlyAccess policies
now grants additional
permissions to Amazon
CloudWatch. For more
information, see Amazon RDS
updates to AWS managed
policies.

March 16, 2023

RDS Proxy is available in the
China Regions

RDS Proxy is now available in
the China (Beijing) and China
(Ningxia) regions. For more
information about RDS Proxy,
see Using Amazon RDS Proxy.

March 15, 2023

4081

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-manpol-updates.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-manpol-updates.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-manpol-updates.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-global-database.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-global-database.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-global-database.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/rds-manpol-updates.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/rds-manpol-updates.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/rds-manpol-updates.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/rds-proxy.html

Amazon Aurora User Guide for Aurora

Amazon Aurora supports
Aurora Serverless v2 in the
China Regions

Aurora Serverless v2 is now
available in the China (Beijing)
and China (Ningxia) Regions.
For more information, see
Aurora Serverless v2.

March 15, 2023

RDS Proxy is available in the
Asia Pacific (Jakarta) Region

RDS Proxy is now available
in the Asia Pacific (Jakarta)
Region. For more information
about RDS Proxy, see Using
 Amazon RDS Proxy.

March 8, 2023

Amazon Aurora MySQL
supports Kerberos authentic
ation

You can now use Kerberos
authentication to authentic
ate users when they connect
to your Aurora MySQL DB
clusters. For more informati
on, see Using Kerberos
 authentication for Aurora
MySQL.

March 8, 2023

Amazon Aurora supports
global databases in additional
AWS Regions

You can now create Aurora
global databases in the
following Regions: Africa
(Cape Town), Asia Pacific
(Hong Kong), Asia Pacific
(Hyderabad), Asia Pacific
(Jakarta), Europe (Milan),
Europe (Spain) Europe
(Zurich), Middle East (Bahrain)
, and Middle East (UAE). For
information about Aurora
 global databases, see Using
 Amazon Aurora global
databases.

March 6, 2023

4082

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Concepts.Aurora_Fea_Regions_DB-eng.Feature.ServerlessV2.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/rds-proxy.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/rds-proxy.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-mysql-kerberos.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-mysql-kerberos.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-mysql-kerberos.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-global-database.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-global-database.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-global-database.html

Amazon Aurora User Guide for Aurora

Amazon Aurora supports
copying DB cluster snapshots
in additional AWS Regions

You can now copy DB cluster
snapshots in the following
Regions: Africa (Cape Town),
Asia Pacific (Hong Kong),
Asia Pacific (Hyderabad),
Asia Pacific (Jakarta), Asia
Pacific (Melbourne), Europe
(Milan), Europe (Spain)
 Europe (Zurich), Middle East
(Bahrain), and Middle East
(UAE). For information about
copying DB cluster snapshots
, see Copying a DB cluster
snapshot.

March 6, 2023

Amazon DevOps Guru for RDS
supports proactive insights

Amazon DevOps Guru for RDS
publishes proactive insights
with recommendations to
help you address issues in
your Aurora databases before
they are predicted to happen.
 For more information, see
How DevOps Guru for RDS
works.

February 28, 2023

Amazon Aurora MySQL
version 1 is deprecated

Aurora MySQL version 1
(compatible with MySQL 5.6)
has been deprecated. For
more information, see How
long Amazon Aurora major
versions remain available.

February 28, 2023

4083

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-copy-snapshot.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-copy-snapshot.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/devops-guru-for-rds.html#devops-guru-for-rds.how-it-works
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/devops-guru-for-rds.html#devops-guru-for-rds.how-it-works
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Aurora.VersionPolicy.html#Aurora.VersionPolicy.MajorVersionLifetime
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Aurora.VersionPolicy.html#Aurora.VersionPolicy.MajorVersionLifetime
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Aurora.VersionPolicy.html#Aurora.VersionPolicy.MajorVersionLifetime

Amazon Aurora User Guide for Aurora

Aurora Serverless v1 supports
setting the DB cluster
maintenance window

You can now set the
maintenance window
for Aurora Serverless v1
DB clusters. For more
information, see Adjusting
the preferred DB cluster
maintenance window.

February 27, 2023

Amazon Aurora supports
Database Activity Streams in
the Asia Pacific (Hyderabad),
Europe (Spain), and Middle
East (UAE) Regions.

For more information, see
Database Activity Streams.

January 27, 2023

Amazon Aurora is available in
the Asia Pacific (Melbourne)
Region

Amazon Aurora is now
available in the Asia Pacific
(Melbourne) Region. For more
information, see Regions and
Availability Zones.

January 23, 2023

Specify certificate authority
(CA) during DB cluster
creation

You can now specify which CA
to use for a DB cluster's server
certificate during DB cluster
creation. For more informati
on, see Certificate authoriti
es.

January 5, 2023

4084

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/USER_UpgradeDBInstance.Maintenance.html#AdjustingTheMaintenanceWindow.Aurora
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/USER_UpgradeDBInstance.Maintenance.html#AdjustingTheMaintenanceWindow.Aurora
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/USER_UpgradeDBInstance.Maintenance.html#AdjustingTheMaintenanceWindow.Aurora
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/DBActivityStreams.Overview.html#DBActivityStreams.Overview.requirements.Regions
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Concepts.RegionsAndAvailabilityZones.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Concepts.RegionsAndAvailabilityZones.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/UsingWithRDS.SSL.html#UsingWithRDS.SSL.RegionCertificateAuthorities
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/UsingWithRDS.SSL.html#UsingWithRDS.SSL.RegionCertificateAuthorities

Amazon Aurora User Guide for Aurora

Aurora MySQL 3.* support for
backtracking

Aurora MySQL 3.* versions
now offer a quick way to
recover from user errors, such
as dropping the wrong table
or deleting the wrong row.
Backtrack allows you to move
your database to a prior point
in time without needing to
restore from a backup, and
it completes within seconds,
even for large databases. For
details, see Backtracking an
Aurora DB cluster.

January 4, 2023

Use Amazon RDS Blue/Gree
n Deployments available in
additional AWS Regions

The Blue/Green Deploymen
ts feature is now available
in the China (Beijing) and
China (Ningxia) Regions. For
more information, see Us
ing Amazon RDS Blue/Gree
n Deployments for database
updates.

December 22, 2022

Update to IAM service-linked
role permissions

The AmazonRDSServiceRo
lePolicy policy now grants
additional permissions to
AWS Secrets Manager. For
more information, see Am
azon RDS updates to AWS
managed policies.

December 22, 2022

4085

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraMySQL.Managing.Backtrack.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraMySQL.Managing.Backtrack.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/blue-green-deployments.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/blue-green-deployments.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/blue-green-deployments.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/blue-green-deployments.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/rds-manpol-updates.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/rds-manpol-updates.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/rds-manpol-updates.html

Amazon Aurora User Guide for Aurora

Amazon Aurora integrates
with AWS Secrets Manager for
password management

Aurora can manage the
master user password for a
DB cluster in Secrets Manager.
For more information, see
Password management with
Amazon Aurora and AWS
Secrets Manager.

December 22, 2022

Amazon Aurora supports
Aurora Serverless v2 in
additional AWS Regions

Aurora Serverless v2 is now
available in the Africa (Cape
Town) and Europe (Milan)
Regions. For more informati
on, see Aurora Serverless v2.

December 21, 2022

Aurora PostgreSQL supports
RDS Proxy with PostgreSQL
14

You can now create an
RDS Proxy with an Aurora
PostgreSQL 14 DB cluster. For
more information about RDS
Proxy, see Using Amazon RDS
Proxy.

December 13, 2022

Amazon Aurora alerts you to
recent anomalies detected by
Amazon DevOps Guru

The database details page of
the console alerts you both to
current and anomalies that
 occurred in the past 24 hours.
For more information, see
How DevOps Guru for RDS
works.

December 13, 2022

Amazon RDS Proxy supports
global databases

You can now use RDS Proxy
with Aurora global databases
. For more information, see
Using RDS Proxy with Aurora
global databases.

December 7, 2022

4086

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/rds-secrets-manager.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/rds-secrets-manager.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/rds-secrets-manager.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/rds-secrets-manager.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Concepts.Aurora_Fea_Regions_DB-eng.Feature.ServerlessV2.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/rds-proxy.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/rds-proxy.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/devops-guru-for-rds.html#devops-guru-for-rds.how-it-works
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/devops-guru-for-rds.html#devops-guru-for-rds.how-it-works
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/rds-proxy-gdb.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/rds-proxy-gdb.html

Amazon Aurora User Guide for Aurora

Aurora PostgreSQL DB
clusters support Trusted
Language Extensions for
PostgreSQL

Trusted Language Extension
s for PostgreSQL is an open
source development kit that
allows you to build high
performance PostgreSQ
L extensions and safely
run them on your Aurora
PostgreSQL DB cluster.
For more information,
see Working with Trusted
Language Extensions for
PostgreSQL.

November 30, 2022

Amazon GuardDuty RDS
Protection monitors for
access threats

When you turn on GuardDuty
RDS Protection, GuardDuty
consumes RDS login events
from your Aurora databases
, monitors these events, and
profiles them for potential
insider threats or external
actors. When GuardDuty
RDS Protection detects a
potential threat, GuardDuty
generates a new finding with
details about the potential
ly compromised database.
For more information, see
Monitoring threats with
 GuardDuty RDS Protection.

November 30, 2022

4087

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/PostgreSQL_trusted_language_extension.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/PostgreSQL_trusted_language_extension.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/PostgreSQL_trusted_language_extension.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/guard-duty-rds-protection.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/guard-duty-rds-protection.html

Amazon Aurora User Guide for Aurora

Use Amazon RDS Blue/Gree
n Deployments for database
updates

You can make changes to
a DB cluster in a staging
environment and test the
changes without affecting
your production DB cluster.
When you are ready, you
can promote the staging
environment to be the new
production environment,
with minimal downtime. For
more information, see Us
ing Amazon RDS Blue/Gree
n Deployments for database
updates.

November 27, 2022

Amazon Aurora is available in
the Asia Pacific (Hyderabad)
Region

Amazon Aurora is now
available in the Asia Pacific
(Hyderabad) Region. For more
information, see Regions and
Availability Zones.

November 22, 2022

Amazon Aurora is available in
the Europe (Spain) Region

Amazon Aurora is now
available in the Europe
(Spain) Region. For more
information, see Regions and
Availability Zones.

November 16, 2022

Amazon Aurora is available in
the Europe (Zurich) Region

Amazon Aurora is now
available in the Europe
(Zurich) Region. For more
information, see Regions and
Availability Zones.

November 9, 2022

4088

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/blue-green-deployments.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/blue-green-deployments.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/blue-green-deployments.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/blue-green-deployments.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Concepts.RegionsAndAvailabilityZones.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Concepts.RegionsAndAvailabilityZones.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Concepts.RegionsAndAvailabilityZones.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Concepts.RegionsAndAvailabilityZones.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Concepts.RegionsAndAvailabilityZones.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Concepts.RegionsAndAvailabilityZones.html

Amazon Aurora User Guide for Aurora

Amazon Aurora supports
exporting data to Amazon S3
from DB clusters

You can now export Aurora
cluster data directly to S3,
without having to create
a snapshot first. For more
information, see Exporting DB
cluster data to Amazon S3.

October 27, 2022

Amazon Aurora MySQL
supports faster exports to
Amazon S3

You can now see up to 10x
faster performance for
exporting DB cluster snapshot
data to S3 for MySQL 5.7-
and 8.0-compatible Aurora
MySQL clusters. For more
information, see Exporting
DB cluster snapshot data to
Amazon S3.

October 20, 2022

Amazon Aurora supports
automatically setting up
connectivity between an
Aurora DB cluster and an EC2
instance

You can use the AWS
Management Console to set
up connectivity between an
existing Aurora DB cluster
and an EC2 instance. For
more information, see Co
nnecting an EC2 instance
and an Aurora DB cluster
automatically.

October 14, 2022

AWS JDBC Driver for
PostgreSQL generally
available

The AWS JDBC Driver for
PostgreSQL is a client
driver designed for Aurora
PostgreSQL. The AWS JDBC
Driver for PostgreSQL is now
generally available. For more
information, see Connecting
with the AWS JDBC Driver for
PostgreSQL.

October 6, 2022

4089

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/export-cluster-data.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/export-cluster-data.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-export-snapshot.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-export-snapshot.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-export-snapshot.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/ec2-rds-connect.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/ec2-rds-connect.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/ec2-rds-connect.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/ec2-rds-connect.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Aurora.Connecting.html#Aurora.Connecting.AuroraPostgreSQL.JDBCDriverPostgreSQL
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Aurora.Connecting.html#Aurora.Connecting.AuroraPostgreSQL.JDBCDriverPostgreSQL
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Aurora.Connecting.html#Aurora.Connecting.AuroraPostgreSQL.JDBCDriverPostgreSQL

Amazon Aurora User Guide for Aurora

Amazon Aurora supports in-
place upgrade for MySQL 5.7-
compatible Aurora MySQL

You can perform an in-place
upgrade to change an existing
MySQL 5.7-compatible Aurora
MySQL cluster into a MySQL
8.0-compatible Aurora MySQL
cluster. For more information,
see Upgrading from Aurora
MySQL 2.x to 3.x.

September 26, 2022

Performance Insights shows
the top 25 SQL queries

In the Performance Insights
dashboard, the Top SQL tab
shows the 25 SQL queries
that are contributing the
most to DB load. For more
information, see Overview of
the Top SQL tab.

September 13, 2022

Aurora MySQL supports a new
DB instance class

You can now use the db.r6i
DB instance class for Aurora
MySQL DB clusters. For more
information, see DB instance
classes.

September 13, 2022

Amazon Aurora is available in
the Middle East (UAE) Region

Amazon Aurora is now
available in the Middle East
(UAE) Region. For more
information, see Regions and
Availability Zones.

August 30, 2022

4090

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraMySQL.Updates.MajorVersionUpgrade.html#AuroraMySQL.Updates.MajorVersionUpgrade.2to3
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraMySQL.Updates.MajorVersionUpgrade.html#AuroraMySQL.Updates.MajorVersionUpgrade.2to3
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/USER_PerfInsights.UsingDashboard.Components.AvgActiveSessions.TopLoadItemsTable.TopSQL.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/USER_PerfInsights.UsingDashboard.Components.AvgActiveSessions.TopLoadItemsTable.TopSQL.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Concepts.DBInstanceClass.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Concepts.DBInstanceClass.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Concepts.RegionsAndAvailabilityZones.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Concepts.RegionsAndAvailabilityZones.html

Amazon Aurora User Guide for Aurora

Amazon Aurora supports
automatically setting up
connectivity with an EC2
instance

When you create an Aurora
DB cluster, you can use the
AWS Management Console to
set up connectivity between
an Amazon Elastic Compute
Cloud instance and the new
DB cluster. For more informati
on, see Configure automatic
network connectivity with an
EC2 instance.

August 22, 2022

Amazon Aurora supports
dual-stack mode

DB clusters can now run in
dual-stack mode. In dual-
stack mode, resources can
communicate with the DB
cluster over IPv4, IPv6, or
both. For more informati
on, see Amazon Aurora IP
addressing.

August 17, 2022

Amazon Aurora supports in-
place upgrade for PostgreSQ
L-compatible Aurora Serverles
s v1

You can perform an in-place
upgrade for a PostgreSQL 10-
compatible Aurora Serverles
s v1 cluster to change
an existing cluster into a
PostgreSQL 11-compatible
Aurora Serverless v1 cluster.
For the in-place upgrade
procedure, see Modifying
an Aurora Serverless v1 DB
cluster.

August 8, 2022

4091

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Aurora.CreateInstance.html#Aurora.CreateInstance.Prerequisites.VPC.Automatic
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Aurora.CreateInstance.html#Aurora.CreateInstance.Prerequisites.VPC.Automatic
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Aurora.CreateInstance.html#Aurora.CreateInstance.Prerequisites.VPC.Automatic
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/USER_VPC.WorkingWithRDSInstanceinaVPC.html#USER_VPC.IP_addressing
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/USER_VPC.WorkingWithRDSInstanceinaVPC.html#USER_VPC.IP_addressing
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-serverless.modifying.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-serverless.modifying.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-serverless.modifying.html

Amazon Aurora User Guide for Aurora

Performance Insights
supports the Asia Pacific
(Jakarta) Region

Formerly, you couldn't use
Performance Insights in the
Asia Pacific (Jakarta) Region.
This restriction has been
removed. For more informati
on, see AWS Region support
for Performance Insights.

July 21, 2022

Amazon Aurora supports a
new DB instance class

You can now use the db.r6i
DB instance class for Aurora
PostgreSQL DB clusters. For
more information, see DB
instance classes.

July 14, 2022

RDS Performance Insights
supports additional retention
periods

Previously, Performance
Insights offered only two
retention periods: 7 days
(default) or 2 years (731
days). Now, if you need to
retain your performance
data for longer than 7 days,
you can specify from 1–24
months. For more informati
on, see Pricing and data
retention for Performance
Insights.

July 1, 2022

Amazon Aurora supports in-
place upgrade for MySQL-
compatible Aurora Serverless
v1

You can perform an in-place
upgrade for a MySQL 5.6-
compatible Aurora Serverles
s v1 cluster to change an
existing cluster into a MySQL
5.7-compatible Aurora
Serverless v1 cluster. For the
in-place upgrade procedure
, see Modifying an Aurora
Serverless v1 DB cluster.

June 16, 2022

4092

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Concepts.Aurora_Fea_Regions_DB-eng.Feature.PerfInsights.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Concepts.Aurora_Fea_Regions_DB-eng.Feature.PerfInsights.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Concepts.DBInstanceClass.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Concepts.DBInstanceClass.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/USER_PerfInsights.Overview.cost.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/USER_PerfInsights.Overview.cost.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/USER_PerfInsights.Overview.cost.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-serverless.modifying.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-serverless.modifying.html

Amazon Aurora User Guide for Aurora

Aurora supports turning on
Amazon DevOps Guru in the
RDS console

You can turn on DevOps Guru
coverage for your Aurora
databases from within the
RDS console. For more
information, see Setting up
DevOps Guru for RDS.

June 9, 2022

Amazon Aurora supports
publishing events to
encrypted Amazon SNS topics

Amazon Aurora can now
publish events to Amazon
Simple Notification Service
(Amazon SNS) topics that
have server-side encryption
(SSE) enabled, for additiona
l protection of events that
carry sensitive data. For
more information, see Su
bscribing to Amazon RDS
event notification.

June 1, 2022

Amazon RDS publishes usage
metrics to Amazon CloudWatc
h

The AWS/Usage namespace
in Amazon CloudWatch
includes account-level usage
metrics for your Amazon
RDS service quotas. For more
information, see Amazon
CloudWatch usage metrics for
Amazon Aurora.

April 28, 2022

4093

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/devops-guru-for-rds.html#devops-guru-for-rds.configuring
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/devops-guru-for-rds.html#devops-guru-for-rds.configuring
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/USER_Events.Subscribing.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/USER_Events.Subscribing.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/USER_Events.Subscribing.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Aurora.AuroraMySQL.Monitoring.Metrics.html#rds-metrics-usage
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Aurora.AuroraMySQL.Monitoring.Metrics.html#rds-metrics-usage
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Aurora.AuroraMySQL.Monitoring.Metrics.html#rds-metrics-usage

Amazon Aurora User Guide for Aurora

Data API result sets in JSON
format

An optional parameter for
the ExecuteStatement
function causes the query
result set to be returned as
a string in JSON format. The
JSON result set is simple
and convenient to transform
into a data structure in your
application's language.
 For more information, see
Processing query results in
JSON format.

April 27, 2022

Amazon Aurora Serverless v2
is now generally available

Amazon Aurora Serverless v2
is generally available for all
users. For more information,
see Using Aurora Serverless
v2.

April 21, 2022

Aurora MySQL supports
configurable cipher suites

With Aurora MySQL, you
can now use configurable
cipher suites to control the
connection encryption that
your database server accepts.
 For more information, see
Configuring cipher suites for
connections to Aurora MySQL
DB clusters.

April 15, 2022

Aurora PostgreSQL supports
RDS Proxy with PostgreSQL
13

You can now create an
RDS Proxy with an Aurora
PostgreSQL 13 DB cluster. For
more information about RDS
Proxy, see Using Amazon RDS
Proxy.

April 4, 2022

4094

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/data-api.html#data-api-json
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/data-api.html#data-api-json
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-serverless-v2.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-serverless-v2.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraMySQL.Security.html#AuroraMySQL.Security.SSL.ConfiguringCipherSuites
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraMySQL.Security.html#AuroraMySQL.Security.SSL.ConfiguringCipherSuites
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraMySQL.Security.html#AuroraMySQL.Security.SSL.ConfiguringCipherSuites
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/rds-proxy.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/rds-proxy.html

Amazon Aurora User Guide for Aurora

Release Notes for Aurora
PostgreSQL

There is now a separate
guide for the Amazon Aurora
PostgreSQL release notes. For
more information, see Release
Notes for Aurora PostgreSQL.

March 22, 2022

Release Notes for Aurora
MySQL

There is now a separate
guide for the Amazon Aurora
MySQL release notes. For
more information, see Release
Notes for Aurora MySQL.

March 22, 2022

Aurora PostgreSQL supports
multi-major version upgrades

You can now perform
version upgrades of Aurora
PostgreSQL DB clusters across
multiple major versions. For
more information, see How
to perform a major version
upgrade.

March 4, 2022

Aurora PostgreSQL supports
configurable cipher suites

With Aurora PostgreSQL
versions 11.8 and higher, you
can now use configurable
cipher suites to control the
connection encryption that
your database server accepts.
 For information about using
configurable cipher suites
with Aurora PostgreSQL, see
Configuring cipher suites
for connections to Aurora
PostgreSQL DB clusters.

March 4, 2022

4095

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/Welcome.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/Welcome.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraMySQLReleaseNotes/Welcome.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraMySQLReleaseNotes/Welcome.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/USER_UpgradeDBInstance.PostgreSQL.html#USER_UpgradeDBInstance.PostgreSQL.MajorVersion
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/USER_UpgradeDBInstance.PostgreSQL.html#USER_UpgradeDBInstance.PostgreSQL.MajorVersion
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/USER_UpgradeDBInstance.PostgreSQL.html#USER_UpgradeDBInstance.PostgreSQL.MajorVersion
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraPostgreSQL.Security.html#AuroraPostgreSQL.Security.SSL.ConfiguringCipherSuites
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraPostgreSQL.Security.html#AuroraPostgreSQL.Security.SSL.ConfiguringCipherSuites
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraPostgreSQL.Security.html#AuroraPostgreSQL.Security.SSL.ConfiguringCipherSuites
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraPostgreSQL.Security.html#AuroraPostgreSQL.Security.SSL.ConfiguringCipherSuites

Amazon Aurora User Guide for Aurora

AWS JDBC Driver for MySQL
generally available

The AWS JDBC Driver for
MySQL is a client driver
designed for the high availabil
ity of Aurora MySQL. The
AWS JDBC Driver for MySQL
is now generally available.
For more information, see
Connecting with the Amazon
Web Services JDBC Driver for
MySQL.

March 2, 2022

Aurora PostgreSQL 13.5
supports Babelfish for Aurora
PostgreSQL 1.1.0

Aurora PostgreSQL 13.5
supports Babelfish 1.1.0. For
a list of new features, see
13.5. For a list of features
supported in each Babelfish
release, see Supported fu
nctionality in Babelfish
by version. For usage
information, see Working
with Babelfish for Aurora
PostgreSQL.

February 28, 2022

Amazon Aurora supports
Database Activity Streams
in the Asia Pacific (Jakarta)
Region

For more information, see
Support for AWS Regions for
database activity streams.

February 16, 2022

4096

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Aurora.Connecting.html#Aurora.Connecting.JDBCDriverMySQL
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Aurora.Connecting.html#Aurora.Connecting.JDBCDriverMySQL
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Aurora.Connecting.html#Aurora.Connecting.JDBCDriverMySQL
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Aurora.Connecting.html#Aurora.Connecting.JDBCDriverMySQL
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraPostgreSQLReleaseNotes/AuroraPostgreSQL.Updates.html#AuroraPostgreSQL.Updates.20180305.135X
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/babelfish-compatibility.supported-functionality-table.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/babelfish-compatibility.supported-functionality-table.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/babelfish-compatibility.supported-functionality-table.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/babelfish.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/babelfish.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/babelfish.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/DBActivityStreams.Overview.html#DBActivityStreams.Overview.requirements.Regions
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/DBActivityStreams.Overview.html#DBActivityStreams.Overview.requirements.Regions

Amazon Aurora User Guide for Aurora

Performance Insights
supports new API operations

Performance Insights now
supports the following API
operations: GetResour
ceMetadata , ListAvail
ableResourceDimens
ions , and ListAvail
ableResourceMetric
s . For more information, see
Retrieving metrics with the
Performance Insights API in
this manual and the Amazon
RDS Performance Insights API
Reference.

January 12, 2022

Amazon RDS Proxy supports
events

RDS Proxy now generates
events that you can subscribe
to and view in CloudWatch
Events or configure to send
to Amazon EventBridge.
For more information, see
Working with RDS Proxy
events.

January 11, 2022

RDS Proxy available in
additional AWS Regions

RDS Proxy is now available
in the following Regions:
Africa (Cape Town), Asia
Pacific (Hong Kong), Asia
Pacific (Osaka), Europe
(Milan), Europe (Paris),
Europe (Stockholm), Middle
East (Bahrain), and South
America (São Paulo). For more
information about RDS Proxy,
see Using Amazon RDS Proxy.

January 5, 2022

4097

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/USER_PerfInsights.API.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/USER_PerfInsights.API.html
https://docs.aws.amazon.com/performance-insights/latest/APIReference/API_GetResourceMetadata.html
https://docs.aws.amazon.com/performance-insights/latest/APIReference/API_GetResourceMetadata.html
https://docs.aws.amazon.com/performance-insights/latest/APIReference/API_GetResourceMetadata.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/rds-proxy.events.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/rds-proxy.events.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/rds-proxy.html

Amazon Aurora User Guide for Aurora

Amazon Aurora is available
in the Asia Pacific (Jakarta)
Region

Amazon Aurora is now
available in the Asia Pacific
(Jakarta) Region. For more
information, see Regions and
Availability Zones.

December 13, 2021

DevOps Guru for Amazon RDS
provides detailed insights and
recommendations for Amazon
Aurora

DevOps Guru for RDS mines
Performance Insights for
performance-related data.
Using this data, the service
analyzes the performance
of your Amazon Aurora DB
instances and can help you
resolve performance issues.
To learn more, see Analyzing
performance anomalies with
DevOps Guru for RDS in this
 guide and see Overview of
DevOps Guru for RDS in the
Amazon DevOps Guru User
 Guide.

December 1, 2021

Aurora PostgreSQL supports
RDS Proxy with PostgreSQL
12

You can now create an
RDS Proxy with an Aurora
PostgreSQL 12 database
cluster. For more information
about RDS Proxy, see Using
Amazon RDS Proxy.

November 22, 2021

Aurora supports AWS
Graviton2 instance classes for
Database Activity Streams

You can use database activity
streams with the db.r6g
instance class for Aurora
MySQL and Aurora PostgreSQ
L. For more information,
see Supported DB instance
classes.

November 3, 2021

4098

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Concepts.RegionsAndAvailabilityZones.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Concepts.RegionsAndAvailabilityZones.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/devops-guru-for-rds.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/devops-guru-for-rds.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/devops-guru-for-rds.html
https://docs.aws.amazon.com/devops-guru/latest/userguide/working-with-rds.overview.html
https://docs.aws.amazon.com/devops-guru/latest/userguide/working-with-rds.overview.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/rds-proxy.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/rds-proxy.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/DBActivityStreams.Overview.html#DBActivityStreams.Overview.requirements.classes
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/DBActivityStreams.Overview.html#DBActivityStreams.Overview.requirements.classes

Amazon Aurora User Guide for Aurora

Amazon Aurora support for
cross-account AWS KMS keys

You can use a KMS key from
a different AWS account for
encryption when exporting
DB snapshots to Amazon S3.
For more information, see
Exporting DB snapshot data
to Amazon S3.

November 3, 2021

Amazon Aurora supports
Babelfish for Aurora
PostgreSQL

Babelfish for Aurora
PostgreSQL extends your
Amazon Aurora PostgreSQL-
Compatible Edition database
with the ability to accept
database connections from
Microsoft SQL Server clients.
For more information, see
Working with Babelfish for
Aurora PostgreSQL.

October 28, 2021

Aurora Serverless v1 can
require SSL for connections

The Aurora cluster parameters
force_ssl for PostgreSQL
and require_secure_tra
nsport for MySQL are
supported now for Aurora
Serverless v1. For more
information, see Using TLS/
SSL with Aurora Serverless v1.

October 26, 2021

Amazon Aurora supports
Performance Insights in
additional AWS Regions

Performance Insights is
available in the Middle East
(Bahrain), Africa (Cape Town),
Europe (Milan), and Asia
 Pacific (Osaka) Regions. For
more information, see AWS
Region support for Performan
ce Insights.

October 5, 2021

4099

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/USER_ExportSnapshot.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/USER_ExportSnapshot.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/babelfish.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/babelfish.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-serverless.html#aurora-serverless.tls
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-serverless.html#aurora-serverless.tls
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Concepts.Aurora_Fea_Regions_DB-eng.Feature.PerfInsights.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Concepts.Aurora_Fea_Regions_DB-eng.Feature.PerfInsights.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Concepts.Aurora_Fea_Regions_DB-eng.Feature.PerfInsights.html

Amazon Aurora User Guide for Aurora

Configurable autoscaling
timeout for Aurora Serverless
v1

You can choose how long
Aurora Serverless v1 waits to
find an autoscaling point. If
no autoscaling point is found
during that period, Aurora
Serverless v1 cancels the
scaling event or forces the
capacity change, depending
on the timeout action that
you selected. For more
information, see Autoscaling
for Aurora Serverless v1.

September 10, 2021

Aurora supports X2g and T4g
instance classes

Both Aurora MySQL and
Aurora PostgreSQL can now
use X2g and T4g instance
classes. The instance classes
that you can use depend
on the version of Aurora
MySQL or Aurora PostgreSQ
L. For information about
supported instance types, see
DB instance classes.

September 10, 2021

Amazon RDS supports RDS
Proxy in a shared VPC

You can now create an RDS
Proxy in a shared virtual
private cloud (VPC). For more
 information about RDS Proxy,
see "Managing Connections
with Amazon RDS Proxy" in
the Amazon RDS User Guide
or the Aurora User Guide.

August 6, 2021

4100

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-serverless.how-it-works.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-serverless.how-it-works.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Concepts.DBInstanceClass.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-proxy.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/rds-proxy.html

Amazon Aurora User Guide for Aurora

Aurora version policy page The Amazon Aurora User
Guide now includes a section
with general information
about Aurora versions and
associated policies. For
details, see Amazon Aurora
versions.

July 14, 2021

Exclude Data API events from
an AWS CloudTrail trail

You can exclude Data API
events from a CloudTrail trail.
For more information, see
Excluding Data API events
from an AWS CloudTrail trail.

July 2, 2021

Amazon Aurora PostgreSQL-
Compatible Edition supports
additional extensions

Newly supported extension
s include pg_bigm, pg_cron,
pg_partman, and pg_proctab.
For more information, see Ex
tension versions for Amazon
Aurora PostgreSQL-Compati
ble Edition.

June 17, 2021

Cloning for Aurora Serverless
clusters

You can now create cloned
clusters that are Aurora
Serverless. For information
about cloning, see Cloning
a volume for an Aurora DB
cluster.

June 16, 2021

Aurora global databases
available in China (Beijing)
and China (Ningxia) Regions

You can now create Aurora
global databases in the China
(Beijing) and China (Ningxia)
Regions. For informati
on about Aurora global
databases, see Working
with Amazon Aurora global
databases.

May 19, 2021

4101

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Aurora.VersionPolicy.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Aurora.VersionPolicy.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/logging-using-cloudtrail-data-api.html#logging-using-cloudtrail-data-api.excluding-cloudtrail-events
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/logging-using-cloudtrail-data-api.html#logging-using-cloudtrail-data-api.excluding-cloudtrail-events
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/logging-using-cloudtrail-data-api.html#logging-using-cloudtrail-data-api.excluding-cloudtrail-events
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraPostgreSQL.Extensions.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraPostgreSQL.Extensions.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraPostgreSQL.Extensions.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraPostgreSQL.Extensions.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Aurora.Managing.Clone.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Aurora.Managing.Clone.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Aurora.Managing.Clone.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-global-database.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-global-database.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-global-database.html

Amazon Aurora User Guide for Aurora

FIPS 140-2 support for Data
API

The Data API supports the
Federal Information Processin
g Standard Publication
140-2 (FIPS 140-2) for SSL/
TLS connections. For more
information, see Data API
availability.

May 14, 2021

AWS JDBC Driver for
PostgreSQL (preview)

The AWS JDBC Driver for
PostgreSQL, now available
in preview, is a client driver
designed for the high availabil
ity of Aurora PostgreSQL.
For more information, see
Connecting with the Amazon
Web Services JDBC Driver for
PostgreSQL (preview).

April 27, 2021

The Data API available in
additional AWS Regions

The Data API is now available
in the Asia Pacific (Seoul) and
Canada (Central) Regions.
For more information, see
Availability of the Data API.

April 9, 2021

Amazon Aurora supports the
Graviton2 DB instance classes

You can now use the
Graviton2 DB instance classes
db.r6g.x to create DB clusters
running MySQL or PostgreSQ
L. For more information, see
DB instance class types.

March 12, 2021

4102

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/data-api.html#data-api.regions
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/data-api.html#data-api.regions
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Aurora.Connecting.html#Aurora.Connecting.AuroraPostgreSQL.JDBCDriverPostgreSQL
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Aurora.Connecting.html#Aurora.Connecting.AuroraPostgreSQL.JDBCDriverPostgreSQL
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Aurora.Connecting.html#Aurora.Connecting.AuroraPostgreSQL.JDBCDriverPostgreSQL
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/data-api.html#data-api.regions
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Concepts.DBInstanceClass.html#Concepts.DBInstanceClass.Types

Amazon Aurora User Guide for Aurora

RDS Proxy endpoint
enhancements

You can create additional
endpoints associated with
each RDS proxy. Creating an
endpoint in a different VPC
enables cross-VPC access for
the proxy. Proxies for Aurora
MySQL clusters can also have
read-only endpoints. These
reader endpoints connect to
reader DB instances in the
clusters and can improve read
scalability and availability for
query-intensive applications.
 For more information about
RDS Proxy, see "Managing
Connections with Amazon
RDS Proxy" in the Amazon
RDS User Guide or the Aurora
user guide.

March 8, 2021

Amazon Aurora is available
in the Asia Pacific (Osaka)
Region

Amazon Aurora is now
available in the Asia Pacific
(Osaka) Region. For more
information, see Regions and
Availability Zones.

March 1, 2021

Aurora PostgreSQL supports
enabling both IAM and
Kerberos authentication on
the same DB cluster

Aurora PostgreSQL now
supports enabling both
IAM authentication and
Kerberos authentication on
the same DB cluster. For
more information, see Da
tabase authentication with
Amazon Aurora.

February 24, 2021

4103

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-proxy.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-proxy.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/rds-proxy.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/rds-proxy.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Concepts.RegionsAndAvailabilityZones.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Concepts.RegionsAndAvailabilityZones.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/database-authentication.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/database-authentication.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/database-authentication.html

Amazon Aurora User Guide for Aurora

Aurora global database now
supports managed planned
failover

Aurora global database now
supports managed planned
failover, allowing you to more
easily change the primary
AWS Region of your Aurora
global database. You can use
managed planned failover
with healthy Aurora global
databases only. To learn
more, see Disaster recovery
 and Amazon Aurora global
databases. For reference
information, see FailoverG
lobalCluster in the
Amazon RDS API Reference.

February 11, 2021

Data API for Aurora Serverles
s now supports more data
types

With the Data API for Aurora
Serverless, you can now use
UUID and JSON data types
as input to your database.
Also with the Data API for
Aurora Serverless, you can
now have a LONG type value
returned from your database
as a STRING value. To learn
more, see Calling the Data
API. For reference information
about supported data types,
see SqlParameter in the
Amazon RDS Data Service API
Reference.

February 2, 2021

4104

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-global-database-disaster-recovery.html#aurora-global-database-disaster-recovery.managed-failover
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-global-database-disaster-recovery.html#aurora-global-database-disaster-recovery.managed-failover
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-global-database-disaster-recovery.html#aurora-global-database-disaster-recovery.managed-failover
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_FailoverGlobalCluster.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_FailoverGlobalCluster.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/data-api.html#data-api.calling
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/data-api.html#data-api.calling
https://docs.aws.amazon.com/rdsdataservice/latest/APIReference/API_SqlParameter.html

Amazon Aurora User Guide for Aurora

Aurora PostgreSQL supports
major version upgrades to
PostgreSQL 12

With Aurora PostgreSQL,
you can now upgrade the DB
engine to major version 12.
For more information, see
Upgrading the PostgreSQL DB
engine for Aurora PostgreSQ
L.

January 28, 2021

Aurora MySQL supports in-
place upgrade

You can upgrade your Aurora
MySQL 1.x cluster to Aurora
MySQL 2.x, preserving the DB
instances, endpoints, and so
on of the original cluster. This
in-place upgrade technique
avoids the inconvenience
of setting up a whole
new cluster by restoring
a snapshot. It also avoids
the overhead of copying all
your table data into a new
cluster. For more informati
on, see Upgrading the major
version of an Aurora MySQL
DB cluster from 1.x to 2.x.

January 11, 2021

AWS JDBC Driver for MySQL
(preview)

The AWS JDBC Driver for
MySQL, now available in
preview, is a client driver
designed for the high availabil
ity of Aurora MySQL. For
more information, see
Connecting with the Amazon
Web Services JDBC Driver for
MySQL (preview).

January 7, 2021

4105

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/USER_UpgradeDBInstance.PostgreSQL.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/USER_UpgradeDBInstance.PostgreSQL.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/USER_UpgradeDBInstance.PostgreSQL.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraMySQL.Updates.MajorVersionUpgrade.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraMySQL.Updates.MajorVersionUpgrade.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraMySQL.Updates.MajorVersionUpgrade.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Aurora.Connecting.html#Aurora.Connecting.JDBCDriverMySQL
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Aurora.Connecting.html#Aurora.Connecting.JDBCDriverMySQL
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Aurora.Connecting.html#Aurora.Connecting.JDBCDriverMySQL
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Aurora.Connecting.html#Aurora.Connecting.JDBCDriverMySQL

Amazon Aurora User Guide for Aurora

Aurora supports database
activity streams on secondary
clusters of a global database

You can start a database a
database activity stream on a
primary or secondary cluster
of Aurora PostgreSQL or
Aurora MySQL. For supported
engine versions, see Limitatio
ns of Aurora global databases.

December 22, 2020

Multi-master clusters with 4
DB instances

The maximum number of DB
instances in an Aurora MySQL
multi-master cluster is now
four. Formerly, the maximum
was two DB instances. For
more information, see
Working with Aurora Multi-
Master Clusters.

December 17, 2020

Aurora PostgreSQL supports
AWS Lambda functions

You can now invoke AWS
Lambda function for your
Aurora PostgreSQL DB
clusters. For more informati
on, see Invoking a Lambda
function from an Aurora
PostgreSQL DB cluster.

December 11, 2020

Amazon Aurora supports the
Graviton2 DB instance classes
in preview

You can now use the
Graviton2 DB instance classes
db.r6g.x in preview to create
DB clusters running MySQL
or PostgreSQL. For more
information, see DB instance
class types.

December 11, 2020

4106

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-global-database.html#aurora-global-database.limitations
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-global-database.html#aurora-global-database.limitations
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-multi-master.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-multi-master.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/PostgreSQL-Lambda.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/PostgreSQL-Lambda.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/PostgreSQL-Lambda.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Concepts.DBInstanceClass.html#Concepts.DBInstanceClass.Types
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Concepts.DBInstanceClass.html#Concepts.DBInstanceClass.Types

Amazon Aurora User Guide for Aurora

Amazon Aurora Serverless v2
is now available in preview.

Amazon Aurora Serverless
v2 is available in preview. To
work with Amazon Aurora
Serverless v2, apply for
access. For more information,
see the Aurora Serverless v2
page.

December 1, 2020

4107

https://pages.awscloud.com/AmazonAuroraServerlessv2Preview.html
https://pages.awscloud.com/AmazonAuroraServerlessv2Preview.html

Amazon Aurora User Guide for Aurora

Aurora PostgreSQL is now
available for Aurora Serverles
s in more AWS Regions.

Aurora PostgreSQL is now
available for Aurora Serverles
s in more AWS Regions.
You can now choose to run
 Aurora PostgreSQL Serverles
s v1 in the same AWS Regions
that offer Aurora MySQL
 Serverless v1. Additional
AWS Regions with Aurora
Serverless support include
US West (N. California), Asia
Pacific (Singapore) Asia Pacific
(Sydney) Asia Pacific (Seoul)
Asia Pacific (Mumbai) Cana
da (Central) Europe (London)
and Europe (Paris). For a list
of all Regions and supported
 Aurora DB engines for Aurora
Serverless, see Supported
Regions and Aurora DB
engines for Aurora Serverles
s v1. Amazon RDS Data API
for Aurora Serverless is also
now available in these same
 AWS Regions. For a list of all
Regions with support for the
Data API for Aurora Serverles
s, see Data API with Aurora
MySQL Serverless v1

November 24, 2020

4108

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Concepts.Aurora_Fea_Regions_DB-eng.Feature.ServerlessV1.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Concepts.Aurora_Fea_Regions_DB-eng.Feature.ServerlessV1.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Concepts.Aurora_Fea_Regions_DB-eng.Feature.ServerlessV1.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Concepts.Aurora_Fea_Regions_DB-eng.Feature.ServerlessV1.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Concepts.Aurora_Fea_Regions_DB-eng.Feature.Data_API.html#Concepts.Aurora_Fea_Regions_DB-eng.Feature.Data_API.amy
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Concepts.Aurora_Fea_Regions_DB-eng.Feature.Data_API.html#Concepts.Aurora_Fea_Regions_DB-eng.Feature.Data_API.amy

Amazon Aurora User Guide for Aurora

Amazon RDS Performan
ce Insights introduces new
dimensions

You can group database load
according to the dimension
groups for database, applicati
on (PostgreSQL), and
session type (PostgreSQL).
Amazon RDS also supports
the dimensions db.name,
db.application.name (P
ostgreSQL), and db.sessio
n_type.name (PostgreSQL).
For more information, see Top
load table.

November 24, 2020

Aurora Serverless supports
Aurora PostgreSQL version
10.12

Aurora PostgreSQL for Aurora
Serverless has been upgraded
to Aurora PostgreSQL
version 10.12 throughou
t the AWS Regions where
Aurora PostgreSQL for Aurora
Serverless is supported.
For more information, see
Supported Regions and
Aurora DB engines for Aurora
Serverless v1.

November 4, 2020

The Data API now supports
tag-based authorization

The Data API supports tag-
based authorization. If you've
labeled your RDS cluster
resources with tags, you
can use these tags in your
policy statements to control
access through the Data API.
For more information, see
Authorizing access to the
Data API.

October 27, 2020

4109

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/USER_PerfInsights.UsingDashboard.html#USER_PerfInsights.UsingDashboard.Components.AvgActiveSessions.TopLoadItemsTable
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/USER_PerfInsights.UsingDashboard.html#USER_PerfInsights.UsingDashboard.Components.AvgActiveSessions.TopLoadItemsTable
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Concepts.Aurora_Fea_Regions_DB-eng.Feature.ServerlessV1.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Concepts.Aurora_Fea_Regions_DB-eng.Feature.ServerlessV1.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Concepts.Aurora_Fea_Regions_DB-eng.Feature.ServerlessV1.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/data-api.html#data-api.access
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/data-api.html#data-api.access

Amazon Aurora User Guide for Aurora

Amazon Aurora extends
support for exporting
snapshots to Amazon S3

You can now export DB
snapshot data to Amazon
S3 in all commercial AWS
Regions. For more informati
on, see Exporting DB
snapshot data to Amazon S3.

October 22, 2020

Aurora global database
supports cloning

You can now create clones of
the primary and secondary DB
clusters of your Aurora global
databases. You can do so by
using the AWS Managemen
t Console and choosing the
Create clone menu option.
You can also use the AWS CLI
and run the restore-db-
cluster-to-point-in-
time command with the --
restore-type copy-on-
write option. Using the
AWS Management Console
or the AWS CLI, you can also
 clone DB clusters from your
Aurora global databases
across AWS accounts. For
more information about
 cloning, see Cloning an
Aurora DB cluster volume.

October 19, 2020

4110

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/USER_ExportSnapshot.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/USER_ExportSnapshot.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Aurora.Managing.Clone.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Aurora.Managing.Clone.html

Amazon Aurora User Guide for Aurora

Amazon Aurora supports
dynamic resizing for the
cluster volume

Starting with Aurora MySQL
1.23 and 2.09, and Aurora
PostgreSQL 3.3.0 and Aurora
PostgreSQL 2.6.0, Aurora
reduces the size of the cluster
volume after you remove
data through operation
s such as DROP TABLE.
To take advantage of this
enhancement, upgrade to one
of the appropriate versions
depending on the database
engine that your cluster uses.
For information about this
feature and how to check
used and available storage
space for an Aurora cluster,
see Managing Performance
and Scaling for Aurora DB
Clusters.

October 13, 2020

Amazon Aurora supports
volume sizes up to 128 TiB

New and existing Aurora
cluster volumes can now
grow to a maximum size of
128 tebibytes (TiB). For more
information, see How Aurora
storage grows.

September 22, 2020

Aurora PostgreSQL supports
the db.r5 and db.t3 DB
instance classes in the China
(Ningxia) Region

You can now create Aurora
PostgreSQL DB clusters in the
China (Ningxia) Region that
use the db.r5 and db.t3 DB
instance classes. For more
information, see DB instance
classes.

September 3, 2020

4111

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Aurora.Managing.Performance.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Aurora.Managing.Performance.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Aurora.Managing.Performance.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Aurora.Overview.StorageReliability.html#aurora-storage-growth
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Aurora.Overview.StorageReliability.html#aurora-storage-growth
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Concepts.DBInstanceClass.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Concepts.DBInstanceClass.html

Amazon Aurora User Guide for Aurora

Aurora parallel query
enhancements

Starting with Aurora MySQL
2.09 and 1.23, you can take
advantage of enhancements
to the parallel query feature
. Creating a parallel query
cluster no longer requires a
special engine mode. You can
now turn parallel query on
and off using the aurora_pa
rallel_query configura
tion option for any provision
ed cluster that's running a
compatible Aurora MySQL
version. You can upgrade
an existing cluster to a
compatible Aurora MySQL
version and use parallel
query, instead of creating a
new cluster and importing
data into it. You can use
Performance Insights for
parallel query clusters. You
can stop and start parallel
query clusters. You can create
Aurora parallel query clusters
that are compatible with
 MySQL 5.7. Parallel query
works for tables that use
the DYNAMIC row format.
Parallel query clusters can
use AWS Identity and Access
Management (IAM) authentic
ation. Reader DB instances
in parallel query clusters
can take advantage of the
READ COMMITTED isolation

September 2, 2020

4112

Amazon Aurora User Guide for Aurora

level. You can also now create
parallel query clusters in
additional AWS Regions. For
more information about the
parallel query feature and
these enhancements, see
Working with parallel query
 for Aurora MySQL.

Changes to Aurora MySQL
parameter binlog_ro
ws_query_log_events

You can now change the
value of the Aurora MySQL
configuration parameter
 binlog_rows_query_
log_events . Formerly,
this parameter wasn't
modifiable.

August 26, 2020

4113

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-mysql-parallel-query.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-mysql-parallel-query.html

Amazon Aurora User Guide for Aurora

Support for automatic minor
version upgrades for Aurora
MySQL

With Aurora MySQL, the
setting Enable auto minor
version upgrade now takes
effect when you specify it for
an Aurora MySQL DB cluster.
When you enable auto minor
version upgrade, Aurora
automatically upgrades to
new minor versions as they
are released. The automatic
upgrades occur during the
maintenance window for
the database. For Aurora
MySQL, this feature applies
only to Aurora MySQL version
2, which is compatible with
MySQL 5.7. Initially, the
automatic upgrade procedure
brings Aurora MySQL DB
clusters to version 2.07.2.
For more information about
how this feature works with
Aurora MySQL, see Database
Upgrades and Patches for
Amazon Aurora MySQL.

August 3, 2020

Aurora PostgreSQL supports
major version upgrades to
PostgreSQL version 11

With Aurora PostgreSQL,
you can now upgrade the DB
engine to major version 11.
For more information, see
Upgrading the PostgreSQL DB
engine for Aurora PostgreSQ
L.

July 28, 2020

4114

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraMySQL.Updates.Patching.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraMySQL.Updates.Patching.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraMySQL.Updates.Patching.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/USER_UpgradeDBInstance.PostgreSQL.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/USER_UpgradeDBInstance.PostgreSQL.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/USER_UpgradeDBInstance.PostgreSQL.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/USER_UpgradeDBInstance.PostgreSQL.html

Amazon Aurora User Guide for Aurora

Amazon Aurora supports AWS
PrivateLink

Amazon Aurora now supports
creating Amazon VPC
endpoints for Amazon RDS
API calls to keep traffic
between applications and
Aurora in the AWS network.
For more information, see
Amazon Aurora and interface
VPC endpoints (AWS PrivateLi
nk).

July 9, 2020

RDS Proxy generally available RDS Proxy is now generally
available. You can use RDS
Proxy with RDS for MySQL,
 Aurora MySQL, RDS for
PostgreSQL, and Aurora
PostgreSQL for production
workloads. For more informat
ion about RDS Proxy, see
"Managing Connections with
Amazon RDS Proxy" in the
Amazon RDS User Guide or t
he Aurora user guide.

June 30, 2020

4115

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/vpc-interface-endpoints.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/vpc-interface-endpoints.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/vpc-interface-endpoints.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/vpc-interface-endpoints.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-proxy.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/rds-proxy.html

Amazon Aurora User Guide for Aurora

Aurora global database write
forwarding

You can now enable write
capability on secondary
clusters in a global database.
With write forwarding, you
issue DML statements on a
secondary cluster, Aurora
forwards the write to the
primary cluster, and the
updated data is replicated to
all the secondary clusters. For
more information, see Write
forwarding for secondary
AWS Regions with an Aurora
global database.

June 18, 2020

Aurora supports integration
with AWS Backup

You can use AWS Backup to
manage backups of Aurora DB
clusters. For more informati
on, see Overview of backing
up and restoring an Aurora DB
cluster.

June 10, 2020

Aurora PostgreSQL supports
db.t3.large DB instance
classes

You can now create Aurora
PostgreSQL DB clusters
that use the db.t3.large DB
instance classes. For more
 information, see DB instance
 classes.

June 5, 2020

4116

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-global-database-write-forwarding.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-global-database-write-forwarding.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-global-database-write-forwarding.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-global-database-write-forwarding.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Aurora.Managing.Backups.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Aurora.Managing.Backups.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Aurora.Managing.Backups.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Concepts.DBInstanceClass.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Concepts.DBInstanceClass.html

Amazon Aurora User Guide for Aurora

Aurora global database
supports PostgreSQL version
11.7 and managed recovery
point objective (RPO)

You can now create Aurora
global databases for the
PostgreSQL database engine
version 11.7. You can also
 manage how a PostgreSQL
global database recovers from
a failure using a recovery
point objective (RPO). For
more information, see Cross-
Region Disaster Recovery for
Aurora global databases.

June 4, 2020

Aurora MySQL supports
database monitoring with
database activity streams

Aurora MySQL now includes
database activity streams,
which provide a near-real
-time data stream of the
database activity in your
relational database. For
more information, see Using
database activity streams.

June 2, 2020

The query editor available in
additional AWS Regions

The query editor for Aurora
Serverless is now available
in additional AWS Regions.
For more information, see
Availability of the query
editor.

May 28, 2020

The Data API available in
additional AWS Regions

The Data API is now available
in additional AWS Regions.
For more information, see
Availability of the Data API.

May 28, 2020

4117

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-global-database.html#aurora-global-database-disaster-recovery
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-global-database.html#aurora-global-database-disaster-recovery
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-global-database.html#aurora-global-database-disaster-recovery
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/DBActivityStreams.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/DBActivityStreams.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/query-editor.html#query-editor.regions
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/query-editor.html#query-editor.regions
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/query-editor.html#query-editor.regions
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/data-api.html#data-api.regions
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/data-api.html#data-api.regions

Amazon Aurora User Guide for Aurora

RDS Proxy available in Canada
(Central) Region

You can now use the RDS
Proxy preview in the Canada
(Central) Region. For more
information about RDS Proxy,
 see Managing connections
with Amazon RDS proxy
(preview).

May 28, 2020

Aurora global database and
cross-Region read replicas

For an Aurora global
database, you can now create
an Aurora MySQL cross-Reg
ion read replica from the
primary cluster in the same
region as a secondary cluster.
For more information about
Aurora Global Database and
cross-Region read replicas,
see Working with Amazon
Aurora global database and
Replicating Amazon Aurora
MySQL DB.

May 18, 2020

RDS Proxy available in more
AWS Regions

You can now use the RDS
Proxy preview in the US West
(N. California) Region, the
Europe (London) Region, the
Europe (Frankfurt) Region, the
Asia Pacific (Seoul) Region,
the Asia Pacific (Mumbai)
Region, the Asia Pacific
(Singapore) Region, and the
Asia Pacific (Sydney) Region.
For more information about
RDS Proxy, see Managing
connections with Amazon
RDS proxy (preview).

May 13, 2020

4118

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/rds-proxy.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/rds-proxy.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/rds-proxy.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-global-database.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-global-database.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraMySQL.Replication.CrossRegion.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraMySQL.Replication.CrossRegion.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/rds-proxy.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/rds-proxy.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/rds-proxy.html

Amazon Aurora User Guide for Aurora

Aurora PostgreSQL-Compati
ble Edition supports on-
premises or self-hosted
Microsoft active directory

You can now use an on-
premises or self-hosted
Active Directory for Kerberos
authentication of users when
they connect to your Aurora
PostgreSQL DB clusters. For
more information, see Using
Kerberos authentication with
 Aurora PostgreSQL.

May 7, 2020

Aurora MySQL multi-master
clusters available in more
AWS Regions

You can now create Aurora
multi-master clusters in the
Asia Pacific (Seoul) Region,
the Asia Pacific (Tokyo)
Region, the Asia Pacific
(Mumbai) Region, and the
Europe (Frankfurt) Region.
For more information about
multi-master clusters, see
 Working with Aurora multi-
master clusters.

May 7, 2020

Performance Insights
supports analyzing statistic
s of running Aurora MySQL
queries

You can now analyze statistic
s of running queries with
Performance Insights for
Aurora MySQL DB instances.
For more information, see
Analyzing statistics of running
queries.

May 5, 2020

4119

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/postgresql-kerberos.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/postgresql-kerberos.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/postgresql-kerberos.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-multi-master.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-multi-master.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/USER_PerfInsights.UsingDashboard.html#USER_PerfInsights.UsingDashboard.AnalyzeDBLoad.AdditionalMetrics
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/USER_PerfInsights.UsingDashboard.html#USER_PerfInsights.UsingDashboard.AnalyzeDBLoad.AdditionalMetrics

Amazon Aurora User Guide for Aurora

Java client library for Data API
generally available

The Java client library for the
Data API is now generally
available. You can download
and use a Java client library
for Data API. It enables you to
map your client-side classes
to requests and responses
of the Data API. For more
information, see Using the
Java client library for Data
 API.

April 30, 2020

Amazon Aurora is available in
the Europe (Milan) Region

Amazon Aurora is now
available in the Europe (Milan)
Region. For more information,
see Regions and Availability
Zones.

April 28, 2020

Amazon Aurora is available in
the Europe (Milan) Region

Amazon Aurora is now
available in the Europe (Milan)
Region. For more information,
see Regions and Availability
Zones.

April 27, 2020

Amazon Aurora is available in
the Africa (Cape Town) Region

Amazon Aurora is now
available in the Africa (Cape
Town) Region. For more
information, see Regions and
Availability Zones.

April 22, 2020

4120

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/data-api.html#data-api.java-client-library
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/data-api.html#data-api.java-client-library
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/data-api.html#data-api.java-client-library
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Concepts.RegionsAndAvailabilityZones.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Concepts.RegionsAndAvailabilityZones.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Concepts.RegionsAndAvailabilityZones.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Concepts.RegionsAndAvailabilityZones.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Concepts.RegionsAndAvailabilityZones.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Concepts.RegionsAndAvailabilityZones.html

Amazon Aurora User Guide for Aurora

Aurora PostgreSQL now
supports db.r5.16xlarge and
db.r5.8xlarge DB instance
classes

You can now create Aurora
PostgreSQL DB clusters
running PostgreSQL that
use the db.r5.16xlarge and
db.r5.8xlarge DB instance
classes. For more informati
on, see Hardware specifica
tions for DB instance classes
for Aurora.

April 8, 2020

Amazon RDS proxy for
PostgreSQL

Amazon RDS Proxy is now
available for PostgreSQL. You
can use RDS Proxy to reduce
the overhead of connection
management on your cluster
and also the chance of "too
many connections" errors.
The RDS Proxy is currently in
public preview for PostgreSQ
L. For more information, see
Managing connections with
Amazon RDS proxy (preview).

April 8, 2020

Aurora global databases now
support Aurora PostgreSQL

You can now create Aurora
global databases for the
PostgreSQL database engine.
An Aurora global database
 spans multiple AWS Regions,
enabling low latency global
reads and disaster recovery
from region-wide outages.
For more information, see
Working with Amazon Aurora
global database.

March 10, 2020

4121

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Concepts.DBInstanceClass.html#Concepts.DBInstanceClass.Summary
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Concepts.DBInstanceClass.html#Concepts.DBInstanceClass.Summary
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Concepts.DBInstanceClass.html#Concepts.DBInstanceClass.Summary
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/rds-proxy.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/rds-proxy.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-global-database.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-global-database.html

Amazon Aurora User Guide for Aurora

Support for major version
upgrades for Aurora
PostgreSQL

With Aurora PostgreSQL,
you can now upgrade the DB
engine to a major version. By
doing so, you can skip ahead
to a newer major version
when you upgrade select
PostgreSQL engine versions.
For more information, see
Upgrading the PostgreSQL DB
engine for Aurora PostgreSQ
L.

March 4, 2020

Aurora PostgreSQL supports
Kerberos authentication

You can now use Kerberos
authentication to authentic
ate users when they connect
to your Aurora PostgreSQL DB
clusters. For more informati
on, see Using Kerberos aut
hentication with Aurora
PostgreSQL.

February 28, 2020

The Data API supports AWS
PrivateLink

The Data API now supports
creating Amazon VPC
endpoints for Data API calls
to keep traffic between appli
cations and the Data API in
the AWS network. For more
information, see Creating an
Amazon VPC endpoint (AWS
PrivateLink) for the Data API.

February 6, 2020

4122

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/USER_UpgradeDBInstance.PostgreSQL.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/USER_UpgradeDBInstance.PostgreSQL.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/USER_UpgradeDBInstance.PostgreSQL.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/USER_UpgradeDBInstance.PostgreSQL.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/postgresql-kerberos.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/postgresql-kerberos.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/postgresql-kerberos.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/data-api.html#data-api.vpc-endpoint
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/data-api.html#data-api.vpc-endpoint
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/data-api.html#data-api.vpc-endpoint

Amazon Aurora User Guide for Aurora

Aurora machine learning
support in Aurora PostgreSQL

The aws_ml Aurora
PostgreSQL extension
provides functions you use
in your database queries to
call Amazon Comprehend
for sentiment analysis and
SageMaker to run your own
machine learning models.
For more information, see
Using machine learning (ML)
capabilities with Aurora.

February 5, 2020

Aurora PostgreSQL supports
exporting data to Amazon S3

You can query data from an
Aurora PostgreSQL DB cluster
and export it directly into files
stored in an Amazon S3 b
ucket. For more information,
see Exporting data from an
Aurora PostgreSQL DB cluster
to Amazon S3.

February 5, 2020

Support for exporting DB
snapshot data to Amazon S3

Amazon Aurora supports
exporting DB snapshot data
to Amazon S3 for MySQL
and PostgreSQL. For more
information, see Exporting
DB snapshot data to Amazon
S3.

January 9, 2020

4123

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-ml.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-ml.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-ml.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/postgresql-s3-export.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/postgresql-s3-export.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/postgresql-s3-export.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/USER_ExportSnapshot.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/USER_ExportSnapshot.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/USER_ExportSnapshot.html

Amazon Aurora User Guide for Aurora

Aurora MySQL release notes
in document history

This section now includes
history entries for Aurora
MySQL-Compatible Edition
release notes for versions
released after August 31,
2018. For the full release
notes for a specific version,
choose the link in the first
column of the history entry.

December 13, 2019

Amazon RDS proxy You can reduce the overhead
of connection management
on your cluster, and reduce
the chance of "too many
connections" errors, by using
the Amazon RDS Proxy. You
associate each proxy with an
RDS DB instance or Aurora
DB cluster. Then you use
the proxy endpoint in the
connection string for your
 application. The Amazon RDS
Proxy is currently in a public
preview state. It supports
the Aurora MySQL databas
e engine. For more informati
on, see Managing connectio
ns with Amazon RDS proxy
(preview).

December 3, 2019

4124

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/rds-proxy.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/rds-proxy.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/rds-proxy.html

Amazon Aurora User Guide for Aurora

Data API for Aurora Serverles
s v1 supports data type
mapping hints

You can now use a hint to
instruct the Data API for
Aurora Serverless v1 to send a
String value to the database
as a different type. For more
information, see Calling the
data API.

November 26, 2019

Data API for Aurora Serverles
s v1 supports a Java client
library (preview)

You can download and use
a Java client library for Data
API. It enables you to map
your client-side classes to
requests and responses of the
Data API. For more informati
on, see Using the Java client
library for Data API.

November 26, 2019

Aurora PostgreSQL is
FedRAMP HIGH eligible

Aurora PostgreSQL is
FedRAMP HIGH eligible.
For details about AWS and
compliance efforts, see AWS
services in scope by complianc
e program.

November 26, 2019

4125

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/data-api.html#data-api.calling
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/data-api.html#data-api.calling
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/data-api.html#data-api.java-client-library
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/data-api.html#data-api.java-client-library
https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/services-in-scope/

Amazon Aurora User Guide for Aurora

READ COMMITTED isolation
level enabled for Amazon
Aurora MySQL replicas

You can now enable the
READ COMMITTED isolation
level on Aurora MySQL
Replicas. Doing so requires
enabling the aurora_re
ad_replica_read_co
mmitted_isolation_
enabled configuration
 setting at the session level.
Using the READ COMMITTED

 isolation level for long-runn
ing queries on OLTP clusters
can help address issues with
history list length. Before
enabling this setting, be
sure to understand how the
isolation behavior on Aurora
Replicas differs from the
usual MySQL implementation
of READ COMMITTED . For
more information, see Aurora
MySQL isolation levels.

November 25, 2019

Performance Insights
supports analyzing statistics
of running Aurora PostgreSQL
queries

You can now analyze statistic
s of running queries with
Performance Insights for
Aurora PostgreSQL DB i
nstances. For more informati
on, see Analyzing statistics of
running queries.

November 25, 2019

4126

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraMySQL.Reference.html#AuroraMySQL.Reference.IsolationLevels
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraMySQL.Reference.html#AuroraMySQL.Reference.IsolationLevels
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/USER_PerfInsights.UsingDashboard.html#USER_PerfInsights.UsingDashboard.AnalyzeDBLoad.AdditionalMetrics
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/USER_PerfInsights.UsingDashboard.html#USER_PerfInsights.UsingDashboard.AnalyzeDBLoad.AdditionalMetrics

Amazon Aurora User Guide for Aurora

More clusters in an Aurora
global database

You can now add multiple
secondary regions to an
Aurora global database. You
can take advantage of low
latency global reads and
disaster recovery across a
wider geographic area. For
more information about
 Aurora global databases, see
Working with Amazon Aurora
global databases.

November 25, 2019

Aurora machine learning
support in Aurora MySQL

In Aurora MySQL 2.07 and
higher, you can call Amazon
Comprehend for sentiment
analysis and SageMaker for
a wide variety of machine
learning algorithms. You
use the results directly in
your database application by
embedding calls to stored
functions in your queries.
For more information, see
Using machine learning (ML)
capabilities with Aurora.

November 25, 2019

4127

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-global-database.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-global-database.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-ml.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-ml.html

Amazon Aurora User Guide for Aurora

Aurora global database no
longer requires engine mode
setting

You no longer need to specify
--engine-mode=global
when creating a cluster that
is intended to be part of an
Aurora global database. All
Aurora clusters that meet the
compatibility requirements
are eligible to be part of a
global database. For example,
the cluster currently must
use Aurora MySQL version 1
with MySQL 5.6 compatibi
lity. For information about
Aurora global databases, see
 Working with Amazon Aurora
global databases.

November 25, 2019

Aurora global database is
available for Aurora MySQL
version 2

Starting in Aurora MySQL
2.07, you can create an
Aurora global database with
MySQL 5.7 compatibility.
You don't need to specify
the global engine mode
for the primary or secondary
clusters. You can add any
new provisioned cluster with
Aurora MySQL 2.07 or higher
to an Aurora Global Database.
For information about Aurora
Global Database, see Working
with Amazon Aurora global
database.

November 25, 2019

4128

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-global-database.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-global-database.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-global-database.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-global-database.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-global-database.html

Amazon Aurora User Guide for Aurora

Aurora MySQL hot row
contention optimization
available without lab mode

The hot row contention
optimization is now generally
available for Aurora MySQL
and does not require the
Aurora lab mode setting to
be ON. This feature substanti
ally improves throughput
for workloads with many
 transactions contending
for rows on the same page.
The improvement involves
changing the lock release
 algorithm used by Aurora
MySQL.

November 19, 2019

Aurora MySQL hash joins
available without lab mode

The hash join feature is now
generally available for Aurora
MySQL and does not require
the Aurora lab mode setting
to be ON. This feature can
improve query performance
when you need to join a large
amount of data by using an
equijoin. For more informati
on about using this feature,
see Working with hash joins
in Aurora MySQL.

November 19, 2019

Aurora MySQL 2.* support for
more db.r5 instance classes

Aurora MySQL clusters now
support the instance types
db.r5.8xlarge, db.r5.16xlarge,
and db.r5.24xlarge. For more
information about instance
types for Aurora MySQL
clusters, see Choosing the DB
instance class.

November 19, 2019

4129

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/USER_AuroraMySQL_BestPractices.html#Aurora.BestPractices.HashJoin
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/USER_AuroraMySQL_BestPractices.html#Aurora.BestPractices.HashJoin
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Concepts.DBInstanceClass.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Concepts.DBInstanceClass.html

Amazon Aurora User Guide for Aurora

Aurora MySQL 2.* support for
backtracking

Aurora MySQL 2.* versions
now offer a quick way to
recover from user errors, such
as dropping the wrong table
or deleting the wrong row.
Backtrack allows you to move
your database to a prior point
in time without needing to
restore from a backup, and
it completes within seconds,
even for large databases. Fo
r details, see Backtracking an
Aurora DB cluster.

November 19, 2019

Billing tag support for Aurora You can now use tags to keep
track of cost allocation for
resources such as Aurora
 clusters, DB instances within
Aurora clusters, I/O, backups,
snapshots, and so on. You
can see costs associated with
each tag using AWS Cost
Explorer. For more informat
ion about using tags with
Aurora, see Tagging Amazon
RDS resources. For general
information about tags and
ways to use them for cost
analysis, see Using cost
allocation tags and User-defi
ned cost allocation tags.

October 23, 2019

4130

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraMySQL.Managing.Backtrack.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraMySQL.Managing.Backtrack.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/USER_Tagging.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/USER_Tagging.html
https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/cost-alloc-tags.html
https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/cost-alloc-tags.html
https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/custom-tags.html
https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/custom-tags.html

Amazon Aurora User Guide for Aurora

Data API for Aurora
PostgreSQL

Aurora PostgreSQL now
supports using the Data API
with Amazon Aurora Serverles
s v1 DB clusters. For more
information, see Using the
Data API for Aurora Serv
erless v1.

September 23, 2019

Aurora PostgreSQL supports
uploading database logs to
CloudWatch logs

You can configure your Aurora
PostgreSQL DB cluster to
publish log data to a log
group in Amazon CloudWatc
h Logs. With CloudWatch
Logs, you can perform real-
time analysis of the log data,
and use CloudWatch to create
alarms and view metrics. You
can use CloudWatch Logs
to store your log records
in highly durable storage.
For more information, see
 Publishing Aurora PostgreSQ
L logs to Amazon CloudWatch
Logs.

August 9, 2019

Multi-master clusters for
Aurora MySQL

You can set up Aurora MySQL
multi-master clusters. In these
clusters, each DB instance
has read/write capability.
For more information, see
Working with Aurora multi-
master clusters.

August 8, 2019

4131

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/data-api.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/data-api.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/data-api.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraPostgreSQL.CloudWatch.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraPostgreSQL.CloudWatch.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraPostgreSQL.CloudWatch.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-multi-master.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-multi-master.html

Amazon Aurora User Guide for Aurora

Aurora PostgreSQL supports
Aurora Serverless v1

You can now use Amazon
Aurora Serverless v1 with
Aurora PostgreSQL. An Aurora
Serverless DB cluster autom
atically starts up, shuts down,
and scales up or down its
compute capacity based on
your application's needs. For
more information, see Using
 Amazon Aurora Serverless v1.

July 9, 2019

Cross-account cloning for
Aurora MySQL

You can now clone the cluster
volume for an Aurora MySQL
DB cluster between AWS
accounts. You authorize
 the sharing through AWS
Resource Access Manager
(AWS RAM). The cloned
cluster volume uses a copy-
on-write mechanism, which
only requires additional
storage for new or changed
data. For more information
about cloning for Aurora,
see Cloning databases in an
Aurora DB cluster.

July 2, 2019

Aurora PostgreSQL supports
db.t3 DB instance classes

You can now create Aurora
PostgreSQL DB clusters that
use the db.t3 DB instance
classes. For more informat
ion, see DB instance class.

June 20, 2019

4132

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-serverless.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-serverless.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Aurora.Managing.Clone.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Aurora.Managing.Clone.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Concepts.DBInstanceClass.html

Amazon Aurora User Guide for Aurora

Support for importing data
from Amazon S3 for Aurora
PostgreSQL

You can now import data
from an Amazon S3 file into a
table in an Aurora PostgreSQL
DB cluster. For more informat
ion, see Importing Amazon
S3 data into an Aurora
PostgreSQL DB cluster.

June 19, 2019

Aurora PostgreSQL now
provides fast failover
recovery with cluster cache
management

Aurora PostgreSQL now
provides cluster cache
management to ensure fast
recovery of the primary DB
instance in the event of a
failover. For more informati
on, see Fast recovery after
failover with cluster cache
management.

June 11, 2019

Data API for Aurora Serverless
v1 generally available

You can access Aurora
Serverless v1 clusters with
web services-based applicati
ons using the Data API. For
more information, see Using
the Data API for Aurora
Serverless v1.

May 30, 2019

Aurora PostgreSQL supports
database monitoring with
database activity streams

Aurora PostgreSQL now
includes database activity
streams, which provide a
near-real-time data stream
of the database activity in
your relational database. For
more information, see Using
database activity streams.

May 30, 2019

4133

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/AuroraPostgreSQL.Migrating.html#USER_PostgreSQL.S3Import
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/AuroraPostgreSQL.Migrating.html#USER_PostgreSQL.S3Import
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/AuroraPostgreSQL.Migrating.html#USER_PostgreSQL.S3Import
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraPostgreSQL.cluster-cache-mgmt.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraPostgreSQL.cluster-cache-mgmt.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraPostgreSQL.cluster-cache-mgmt.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/data-api.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/data-api.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/data-api.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/DBActivityStreams.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/DBActivityStreams.html

Amazon Aurora User Guide for Aurora

Amazon Aurora recommend
ations

Amazon Aurora now provides
automated recommendations
for Aurora resources. For
more information, see Using
Amazon Aurora recommend
ations.

May 22, 2019

Performance Insights support
for Aurora global database

You can now use Performan
ce Insights with Aurora Global
Database. For information
about Performance Insights
for Aurora, see Using Amazon
RDS performance insights.
For information about Aurora
global databases, see Working
with Aurora global database.

May 13, 2019

Performance Insights is
available for Aurora MySQL
5.7

Amazon RDS Performance
Insights is now available for
Aurora MySQL 2.x versions,
which are compatible with
 MySQL 5.7. For more
information, see Using
Amazon RDS performance
insights.

May 3, 2019

Aurora global databases
available in more AWS
Regions

You can now create Aurora
global databases in most
AWS Regions where Aurora
is available. For informati
on about Aurora global
databases, see Working
with Amazon Aurora global
databases.

April 30, 2019

4134

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/USER_Recommendations.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/USER_Recommendations.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/USER_Recommendations.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/USER_PerfInsights.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/USER_PerfInsights.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-global-database.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-global-database.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/USER_PerfInsights.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/USER_PerfInsights.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/USER_PerfInsights.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-global-database.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-global-database.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-global-database.html

Amazon Aurora User Guide for Aurora

Minimum capacity of 1 for
Aurora Serverless v1

The minimum capacity setting
you can use for an Aurora
Serverless v1 cluster is 1. F
ormerly, the minimum was
2. For information about
specifying Aurora Serverless
capacity values, see Setting
the capacity of an Aurora
Serverless v1 DB cluster.

April 29, 2019

Aurora Serverless v1 timeout
action

You can now specify the
action to take when an Aurora
Serverless v1 capacity change
times out. For more informati
on, see Timeout action for
capacity changes.

April 29, 2019

Per-second billing Amazon RDS is now billed
in 1-second increments in
all AWS Regions except AWS
GovCloud (US) for on-demand
 instances. For more informati
on, see DB instance billing
for Aurora.

April 25, 2019

Sharing Aurora Serverless
v1 snapshots across AWS
Regions

With Aurora Serverless
v1, snapshots are always
encrypted. If you encrypt the
snapshot with your own AWS
KMS key, you can now copy
or share the snapshot across
AWS Regions. For informati
on about snapshots of Aurora
Serverless v1 DB clusters, see
Aurora Serverless v1 and
snapshots.

April 17, 2019

4135

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-serverless.setting-capacity.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-serverless.setting-capacity.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-serverless.setting-capacity.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-serverless.how-it-works.html#aurora-serverless.how-it-works.timeout-action
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-serverless.how-it-works.html#aurora-serverless.how-it-works.timeout-action
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/User_DBInstanceBilling.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/User_DBInstanceBilling.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-serverless.how-it-works.html#aurora-serverless.snapshots
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-serverless.how-it-works.html#aurora-serverless.snapshots

Amazon Aurora User Guide for Aurora

Restore MySQL 5.7 backups
from Amazon S3

You can now create a backup
of your MySQL version 5.7
database, store it on Amazon
S3, and then restore the
backup file onto a new Aurora
MySQL DB cluster. For more
information, see Migrating
data from an external MySQL
database to an Aurora MySQL
DB cluster.

April 17, 2019

Sharing Aurora Serverless v1
snapshots across regions

With Aurora Serverless
v1, snapshots are always
encrypted. If you encrypt
the snapshot with your own
AWS KMS key, you can now
copy or share the snapshot
across regions. For informati
on about snapshots of Aurora
Serverless v1 DB clusters,
see Aurora Serverless and
snapshots.

April 16, 2019

Aurora proof-of-concept
tutorial

You can learn how to perform
a proof of concept to try your
application and workload
with Aurora. For the full
tutorial, see Performing an
Aurora proof of concept.

April 16, 2019

Aurora Serverless v1 supports
restoring from an Amazon S3
backup

You can now import backups
from Amazon S3 to an Aurora
Serverless cluster. For details
about that procedure, see
Migrating data from MySQL
by using an Amazon S3
bucket.

April 16, 2019

4136

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraMySQL.Migrating.ExtMySQL.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraMySQL.Migrating.ExtMySQL.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraMySQL.Migrating.ExtMySQL.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraMySQL.Migrating.ExtMySQL.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-serverless.how-it-works.html#aurora-serverless.snapshots
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-serverless.how-it-works.html#aurora-serverless.snapshots
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-poc.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-poc.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraMySQL.Migrating.ExtMySQL.S3.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraMySQL.Migrating.ExtMySQL.S3.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraMySQL.Migrating.ExtMySQL.S3.html

Amazon Aurora User Guide for Aurora

New modifiable parameters
for Aurora Serverless v1

You can now modify the
following DB parameter
s for an Aurora Serverles
s v1 cluster: innodb_fi
le_format , innodb_fi
le_per_table ,
innodb_large_prefi
x , innodb_lock_wait_t
imeout , innodb_mo
nitor_disable ,
innodb_monitor_ena
ble , innodb_mo
nitor_reset , innodb_mo
nitor_reset_all ,
innodb_print_all_d
eadlocks , log_warni
ngs , net_read_timeout ,
net_retry_count ,
net_write_timeout ,
sql_mode, and tx_isolat
ion . For more informati
on about configuration
parameters for Aurora
Serverless v1 clusters, see
Aurora Serverless v1 and
parameter groups.

April 4, 2019

Aurora PostgreSQL supports
db.r5 DB instance classes

You can now create Aurora
PostgreSQL DB clusters that
use the db.r5 DB instance
classes. For more informat
ion, see DB instance class.

April 4, 2019

4137

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-serverless.how-it-works.html#aurora-serverless.parameter-groups
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-serverless.how-it-works.html#aurora-serverless.parameter-groups
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Concepts.DBInstanceClass.html

Amazon Aurora User Guide for Aurora

Aurora PostgreSQL logical
replication

You can now use PostgreSQL
logical replication to replicate
parts of a database for an
Aurora PostgreSQL DB cluster.
For more information, see
Using PostgreSQL logical
replication.

March 28, 2019

GTID support for Aurora
MySQL 2.04

You can now use replicati
on with the global transacti
on ID (GTID) feature of
MySQL 5.7. This feature
 simplifies performing binary
log (binlog) replication
between Aurora MySQL and
an external MySQL 5.7-com
patible database. The replicati
on can use the Aurora MySQL
cluster as the source or the
destination. This feature is
available for Aurora MySQL
2.04 and higher. For more
information about GTID-
based replication and Aurora
MySQL, see Using GTID-based
replication for Aurora MySQL.

March 25, 2019

4138

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraPostgreSQL.Replication.Logical.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraPostgreSQL.Replication.Logical.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/mysql-replication-gtid.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/mysql-replication-gtid.html

Amazon Aurora User Guide for Aurora

Uploading Aurora Serverless
v1 logs to Amazon CloudWatc
h

You can now have Aurora
upload database logs to
CloudWatch for an Aurora
Serverless v1 cluster. For
more information, see
Viewing Aurora Serverless
DB clusters. As part of this
enhancement, you can now
define values for instance-
level parameters in a DB
cluster parameter group, and
those values apply to all DB
instances in the cluster unless
you override them in the DB
parameter group. For more
information, see Working with
DB parameter groups and DB
cluster parameter groups.

February 25, 2019

Aurora MySQL supports db.t3
DB instance classes

You can now create Aurora
MySQL DB clusters that use
the db.t3 DB instance classes.
For more information, see DB
instance class.

February 25, 2019

Aurora MySQL supports db.r5
DB instance classes

You can now create Aurora
MySQL DB clusters that use
the db.r5 DB instance classes.
For more information, see DB
instance class.

February 25, 2019

4139

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-serverless.viewing.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-serverless.viewing.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/USER_WorkingWithParamGroups.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/USER_WorkingWithParamGroups.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/USER_WorkingWithParamGroups.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Concepts.DBInstanceClass.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Concepts.DBInstanceClass.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Concepts.DBInstanceClass.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Concepts.DBInstanceClass.html

Amazon Aurora User Guide for Aurora

Performance Insights
counters for Aurora MySQL

You can now add performan
ce counters to your
Performance Insights charts
for Aurora MySQL DB
instances. For more informati
on, see Performance Insights
dashboard components.

February 19, 2019

Amazon RDS Performance
Insights supports viewing
more SQL text for Aurora
MySQL

Amazon RDS Performan
ce Insights now supports
viewing more SQL text in
the Performance Insights
dashboard for Aurora
MySQL DB instances. For
more information, see
Viewing more SQL text in
the Performance Insights
dashboard.

February 6, 2019

Amazon RDS Performance
Insights supports viewing
more SQL text for Aurora
PostgreSQL

Amazon RDS Performan
ce Insights now supports
viewing more SQL text in
the Performance Insights
dashboard for Aurora
PostgreSQL DB instances.
For more information, see
Viewing more SQL text in
the Performance Insights
dashboard.

January 24, 2019

4140

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/USER_PerfInsights.UsingDashboard.html#USER_PerfInsights.UsingDashboard.Components
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/USER_PerfInsights.UsingDashboard.html#USER_PerfInsights.UsingDashboard.Components
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/USER_PerfInsights.UsingDashboard.html#USER_PerfInsights.UsingDashboard.SQLTextSize
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/USER_PerfInsights.UsingDashboard.html#USER_PerfInsights.UsingDashboard.SQLTextSize
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/USER_PerfInsights.UsingDashboard.html#USER_PerfInsights.UsingDashboard.SQLTextSize
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/USER_PerfInsights.UsingDashboard.html#USER_PerfInsights.UsingDashboard.SQLTextSize
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/USER_PerfInsights.UsingDashboard.html#USER_PerfInsights.UsingDashboard.SQLTextSize
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/USER_PerfInsights.UsingDashboard.html#USER_PerfInsights.UsingDashboard.SQLTextSize

Amazon Aurora User Guide for Aurora

Aurora backup billing You can use the Amazon
CloudWatch metrics
TotalBackupStorage
Billed , SnapshotS
torageUsed , and
BackupRetentionPer
iodStorageUsed to
monitor the space usage of
your Aurora backups. For
more information about how
to use CloudWatch metrics,
see Overview of monitoring.
For more information about
how to manage storage for
backup data, see Understan
ding Aurora backup storage
usage.

January 3, 2019

Performance Insights
counters

You can now add performan
ce counters to your
Performance Insights charts.
For more information,
see Performance Insights
dashboard components.

December 6, 2018

Aurora global database You can now create Aurora
global databases. An Aurora
global database spans
multiple AWS Regions,
 enabling low latency global
reads and disaster recovery
from region-wide outages.
For more information, see
Working with Amazon Aurora
global database.

November 28, 2018

4141

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/MonitoringOverview.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-storage-backup.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-storage-backup.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-storage-backup.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/USER_PerfInsights.UsingDashboard.html#USER_PerfInsights.UsingDashboard.Components
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/USER_PerfInsights.UsingDashboard.html#USER_PerfInsights.UsingDashboard.Components
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-global-database.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-global-database.html

Amazon Aurora User Guide for Aurora

Query plan management in
Aurora PostgreSQL

Aurora PostgreSQL now
provides query plan
management that you can use
to manage PostgreSQL query
execution plans. For more
information, see Managing
query execution plans for
Aurora PostgreSQL.

November 20, 2018

Query editor for Aurora
Serverless v1 (beta)

You can run SQL statement
s in the Amazon RDS console
on Aurora Serverless v1
clusters. For more informat
ion, see Using the query
editor for Aurora Serverless
v1.

November 20, 2018

Data API for Aurora Serverless
v1 (beta)

You can access Aurora
Serverless v1 clusters with
web services-based applicati
ons using the Data API. For
more information, see Using
the Data API for Aurora
Serverless.

November 20, 2018

TLS support for Aurora
Serverless v1

Aurora Serverless v1 clusters
support TLS/SSL encryptio
n. For more information, see
TLS/SSL for Aurora Serve
rless.

November 19, 2018

4142

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraPostgreSQL.Optimize.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraPostgreSQL.Optimize.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraPostgreSQL.Optimize.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/query-editor.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/query-editor.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/query-editor.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/data-api.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/data-api.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/data-api.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-serverless.html#aurora-serverless.tls
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-serverless.html#aurora-serverless.tls

Amazon Aurora User Guide for Aurora

Custom endpoints You can now create endpoints
that are associated with an
arbitrary set of DB instances.
This feature helps with load
balancing and high availabil
ity for Aurora clusters where
some DB instances have
different capacity or configura
tion than others. You can use
custom endpoints instead of
connecting to a specific DB
instance through its instance
endpoint. For more informati
on, see Amazon Aurora
connection management.

November 12, 2018

IAM authentication support in
Aurora PostgreSQL

Aurora PostgreSQL now
supports IAM authentication.
For more information see IAM
database authentication.

November 8, 2018

Custom parameter groups
for restore and point in time
recovery

You can now specify a custom
parameter group when you
restore a snapshot or perform
a point in time recovery
operation. For more informati
on, see Restoring from a
DB cluster snapshot and
Restoring a DB cluster to a
specified time.

October 15, 2018

Deletion protection for
Aurora DB clusters

When you enable deletion
protection for a DB cluster,
the database cannot be d
eleted by any user. For more
information, see Deleting a
DB cluster.

September 26, 2018

4143

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Aurora.Overview.Endpoints.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Aurora.Overview.Endpoints.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/UsingWithRDS.IAMDBAuth.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/UsingWithRDS.IAMDBAuth.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-restore-snapshot.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-restore-snapshot.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Aurora_PIT.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Aurora_PIT.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Aurora_PIT.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/USER_DeleteCluster.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/USER_DeleteCluster.html

Amazon Aurora User Guide for Aurora

Stop/Start feature Aurora You can now stop or start an
entire Aurora cluster with a
single operation. For more
information, see Stopping
and starting an Aurora clust
er.

September 24, 2018

Parallel query feature for
Aurora MySQL

Aurora MySQL now offers an
option to parallelize I/O work
for queries across the Aurora
storage infrastructure. This
feature speeds up data-inte
nsive analytic queries, which
are often the most time-
consuming operations in a
workload. For more informati
on, see Working with parallel
query for Aurora MySQL.

September 20, 2018

New guide This is the first release of the
Amazon Aurora User Guide.

August 31, 2018

4144

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-cluster-stop-start.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-cluster-stop-start.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-cluster-stop-start.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-mysql-parallel-query.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-mysql-parallel-query.html

Amazon Aurora User Guide for Aurora

AWS Glossary

For the latest AWS terminology, see the AWS glossary in the AWS Glossary Reference.

4145

https://docs.aws.amazon.com/glossary/latest/reference/glos-chap.html

	Amazon Aurora
	Table of Contents
	What is Amazon Aurora?
	Amazon RDS shared responsibility model
	How Amazon Aurora works with Amazon RDS
	Amazon Aurora DB clusters
	Amazon Aurora versions
	Relational databases that are available on Aurora
	Differences in version numbers between community databases and Aurora
	Amazon Aurora major versions
	Amazon Aurora minor versions
	Amazon Aurora patch versions
	Learning what's new in each Amazon Aurora version
	Specifying the Amazon Aurora database version for your database cluster
	Default Amazon Aurora versions
	Automatic minor version upgrades
	How long Amazon Aurora major versions remain available
	How often Amazon Aurora minor versions are released
	How long Amazon Aurora minor versions remain available
	Long-term support for selected Amazon Aurora minor versions
	Amazon RDS Extended Support for selected Aurora versions
	Manually controlling if and when your database cluster is upgraded to new versions
	Required Amazon Aurora upgrades
	Testing your DB cluster with a new Aurora version before upgrading

	Regions and Availability Zones
	AWS Regions
	Region availability
	Aurora MySQL Region availability
	Aurora PostgreSQL Region availability

	Availability Zones
	Local time zone for Amazon Aurora DB clusters

	Supported features in Amazon Aurora by AWS Region and Aurora DB engine
	Table conventions
	Supported Regions and Aurora DB engines for Blue/Green Deployments
	Blue/Green Deployments with Aurora MySQL
	Blue/Green Deployments with Aurora PostgreSQL

	Supported Regions and Aurora DB engines for cluster storage configurations
	Aurora I/O-Optimized
	Aurora Standard

	Supported Regions and Aurora DB engines for database activity streams
	Database activity streams with Aurora MySQL
	Database activity streams with Aurora PostgreSQL

	Supported Regions and Aurora DB engines for exporting cluster data to Amazon S3
	Exporting cluster data to S3 with Aurora MySQL
	Exporting cluster data to S3 with Aurora PostgreSQL

	Supported Regions and Aurora DB engines for exporting snapshot data to Amazon S3
	Exporting snapshot data to S3 with Aurora MySQL
	Exporting snapshot data to S3 with Aurora PostgreSQL

	Supported Regions and DB engines for Aurora global databases
	Aurora global databases with Aurora MySQL
	Aurora global databases with Aurora PostgreSQL

	Supported Regions and Aurora DB engines for IAM database authentication
	IAM database authentication with Aurora MySQL
	IAM database authentication with Aurora PostgreSQL

	Supported Regions and Aurora DB engines for Kerberos authentication
	Kerberos authentication with Aurora MySQL
	Kerberos authentication with Aurora PostgreSQL

	Supported Regions and DB engines for Aurora machine learning
	Aurora machine learning with Aurora MySQL
	Aurora machine learning with Aurora PostgreSQL

	Supported Regions and Aurora DB engines for Performance Insights
	Performance Insights with Aurora MySQL
	Performance Insights with Aurora MySQL and parallel query turned off
	Performance Insights with Aurora MySQL and parallel query turned on

	Performance Insights with Aurora PostgreSQL
	Performance Insights with Aurora Serverless

	Supported Regions and Aurora DB engines for zero-ETL integrations with Amazon Redshift
	Aurora MySQL Zero-ETL integrations
	Aurora PostgreSQL Zero-ETL integrations

	Supported Regions and Aurora DB engines for Amazon RDS Proxy
	Amazon RDS Proxy with Aurora MySQL
	Amazon RDS Proxy with Aurora PostgreSQL

	Supported Regions and Aurora DB engines for Secrets Manager integration
	Supported Regions and Aurora DB engines for Aurora Serverless v2
	Aurora Serverless v2 with Aurora MySQL
	Aurora Serverless v2 with Aurora PostgreSQL

	Supported Regions and Aurora DB engines for Aurora Serverless v1
	Aurora Serverless v1 with Aurora MySQL
	Aurora Serverless v1 with Aurora PostgreSQL

	Supported Regions and Aurora DB engines for RDS Data API
	Data API with Aurora MySQL Serverless v1
	Data API with Aurora PostgreSQL Serverless v2 and provisioned
	Data API with Aurora PostgreSQL Serverless v1

	Supported Regions and Aurora DB engines for zero-downtime patching (ZDP)
	Supported Regions and DB engines for Aurora engine-native features
	Engine-native features for Aurora MySQL
	Engine-native features for Aurora PostgreSQL

	Amazon Aurora connection management
	Types of Aurora endpoints
	Viewing the endpoints for an Aurora cluster
	Using the cluster endpoint
	Using the reader endpoint
	Using custom endpoints
	Specifying properties for custom endpoints
	Membership rules for custom endpoints
	Managing custom endpoints

	Creating a custom endpoint
	Console
	AWS CLI
	RDS API

	Viewing custom endpoints
	Console
	AWS CLI
	RDS API

	Editing a custom endpoint
	Console
	AWS CLI
	RDS API

	Deleting a custom endpoint
	Console
	AWS CLI
	RDS API

	End-to-end AWS CLI example for custom endpoints
	Using the instance endpoints
	How Aurora endpoints work with high availability

	Aurora DB instance classes
	DB instance class types
	Aurora Serverless v2 instance class type
	Memory-optimized instance class type
	Burstable-performance instance class types
	Optimized Reads instance class type

	Supported DB engines for DB instance classes
	Determining DB instance class support in AWS Regions
	Using the Amazon RDS pricing page to determine DB instance class support in AWS Regions
	Using the AWS CLI to determine DB instance class support in AWS Regions
	Listing the DB instance classes that are supported by a specific DB engine version in an AWS Region
	Listing the DB engine versions that support a specific DB instance class in an AWS Region

	Hardware specifications for DB instance classes for Aurora
	Hardware terminology for DB instance classes for Aurora

	Amazon Aurora storage and reliability
	Overview of Amazon Aurora storage
	What the cluster volume contains
	Storage configurations for Amazon Aurora DB clusters
	How Aurora storage automatically resizes
	How Aurora data storage is billed
	Amazon Aurora reliability
	Storage auto-repair
	Survivable page cache
	Recovery from unplanned restarts

	Amazon Aurora security
	Using SSL with Aurora DB clusters

	High availability for Amazon Aurora
	High availability for Aurora data
	High availability for Aurora DB instances
	High availability across AWS Regions with Aurora global databases
	Fault tolerance for an Aurora DB cluster
	High availability with Amazon RDS Proxy

	Replication with Amazon Aurora
	Aurora Replicas
	Replication with Aurora MySQL
	Replication with Aurora PostgreSQL

	DB instance billing for Aurora
	On-Demand DB instances for Aurora
	Stopped DB instances
	Multi-AZ DB instances

	Reserved DB instances for Aurora
	Overview of reserved DB instances
	Offering types
	Aurora DB cluster configuration flexibility
	Size-flexible reserved DB instances
	Aurora reserved DB instance billing examples
	Example using Aurora Standard
	Example using an Aurora Standard DB cluster with two reader instances
	Example using Aurora I/O-Optimized
	Example using an Aurora I/O-Optimized DB cluster with two reader instances

	Deleting a reserved DB instance

	Working with reserved DB instances
	Console
	AWS CLI
	RDS API

	Viewing the billing for your reserved DB instances

	Setting up your environment for Amazon Aurora
	Sign up for an AWS account
	Create a user with administrative access
	Grant programmatic access
	Determine requirements
	Provide access to the DB cluster in the VPC by creating a security group

	Getting started with Amazon Aurora
	Creating and connecting to an Aurora MySQL DB cluster
	Prerequisites
	Step 1: Create an EC2 instance
	Step 2: Create an Aurora MySQL DB cluster
	(Optional) Create VPC, EC2 instance, and Aurora MySQL cluster using AWS CloudFormation
	Download the CloudFormation template
	Configure your resources using CloudFormation

	Step 3: Connect to an Aurora MySQL DB cluster
	Step 4: Delete the EC2 instance and DB cluster
	(Optional) Delete the EC2 instance and DB cluster created with CloudFormation
	(Optional) Connect your DB cluster to a Lambda function

	Creating and connecting to an Aurora PostgreSQL DB cluster
	Prerequisites
	Step 1: Create an EC2 instance
	Step 2: Create an Aurora PostgreSQL DB cluster
	(Optional) Create VPC, EC2 instance, and Aurora PostgreSQL cluster using AWS CloudFormation
	Download the CloudFormation template
	Configure your resources using CloudFormation

	Step 3: Connect to an Aurora PostgreSQL DB cluster
	Step 4: Delete the EC2 instance and DB cluster
	(Optional) Delete the EC2 instance and DB cluster created with CloudFormation
	(Optional) Connect your DB cluster to a Lambda function

	Tutorial: Create a web server and an Amazon Aurora DB cluster
	Launch an EC2 instance
	Create an Amazon Aurora DB cluster
	Install a web server on your EC2 instance
	Install an Apache web server with PHP and MariaDB
	Connect your Apache web server to your DB cluster

	Amazon Aurora tutorials and sample code
	Tutorials in this guide
	Tutorials in other AWS guides
	AWS workshop and lab content portal for Amazon Aurora PostgreSQL
	AWS workshop and lab content portal for Amazon Aurora MySQL
	Tutorials and sample code in GitHub
	Using this service with an AWS SDK

	Configuring your Amazon Aurora DB cluster
	Creating an Amazon Aurora DB cluster
	DB cluster prerequisites
	Configure the network for the DB cluster
	Configure automatic network connectivity with an EC2 instance
	Configure the network manually

	Additional prerequisites

	Creating a DB cluster
	Console
	AWS CLI
	RDS API
	Creating a primary (writer) DB instance

	Settings for Aurora DB clusters
	Settings that don't apply to Amazon Aurora for DB clusters
	Settings that don't apply to Amazon Aurora DB instances

	Creating Amazon Aurora resources with AWS CloudFormation
	Aurora and AWS CloudFormation templates
	Learn more about AWS CloudFormation

	Connecting to an Amazon Aurora DB cluster
	Connecting to Aurora DB clusters with the AWS drivers
	Connecting to an Amazon Aurora MySQL DB cluster
	Connection utilities for Aurora MySQL
	Connecting to Aurora MySQL with the MySQL utility
	Connecting to Aurora MySQL with the Amazon Web Services (AWS) JDBC Driver
	Connecting to Aurora MySQL with the Amazon Web Services (AWS) Python Driver
	Connecting to Aurora MySQL with the Amazon Web Services (AWS) ODBC Driver for MySQL
	Connecting to Aurora MySQL using SSL

	Connecting to an Amazon Aurora PostgreSQL DB cluster
	Connection utilities for Aurora PostgreSQL
	Connecting to Aurora PostgreSQL with the Amazon Web Services (AWS) JDBC Driver
	Connecting to Aurora PostgreSQL with the Amazon Web Services (AWS) Python Driver

	Troubleshooting Aurora connection failures

	Working with parameter groups
	Overview of parameter groups
	Default and custom parameter groups
	Static and dynamic DB cluster parameters
	Static and dynamic DB instance parameters
	Character set parameters
	Supported parameters and parameter values

	Working with DB cluster parameter groups
	Amazon Aurora DB cluster and DB instance parameters
	Creating a DB cluster parameter group
	Console
	AWS CLI
	RDS API

	Associating a DB cluster parameter group with a DB cluster
	Console
	AWS CLI
	RDS API

	Modifying parameters in a DB cluster parameter group
	Console
	AWS CLI
	RDS API

	Resetting parameters in a DB cluster parameter group
	Console
	AWS CLI
	RDS API

	Copying a DB cluster parameter group
	Console
	AWS CLI
	RDS API

	Listing DB cluster parameter groups
	Console
	AWS CLI
	RDS API

	Viewing parameter values for a DB cluster parameter group
	Console
	AWS CLI
	RDS API

	Deleting a DB cluster parameter group
	Console
	AWS CLI
	RDS API

	Working with DB parameter groups in a DB instance
	Creating a DB parameter group
	Console
	AWS CLI
	RDS API

	Associating a DB parameter group with a DB instance
	Console
	AWS CLI
	RDS API

	Modifying parameters in a DB parameter group
	Console
	AWS CLI
	RDS API

	Resetting parameters in a DB parameter group to their default values
	Console
	AWS CLI
	RDS API

	Copying a DB parameter group
	Console
	AWS CLI
	RDS API

	Listing DB parameter groups
	Console
	AWS CLI
	RDS API

	Viewing parameter values for a DB parameter group
	Console
	AWS CLI
	RDS API

	Deleting a DB parameter group
	Console
	AWS CLI
	RDS API

	Comparing DB parameter groups
	Specifying DB parameters
	DB parameter formulas
	DB parameter formula variables
	DB parameter formula operators

	DB parameter functions
	DB parameter log expressions
	DB parameter value examples

	Migrating data to an Amazon Aurora DB cluster
	Migrating data to an Amazon Aurora MySQL DB cluster
	Migrating data to an Amazon Aurora PostgreSQL DB cluster

	Creating an Amazon ElastiCache cache using Aurora DB cluster settings
	Overview of ElastiCache cache creation with Aurora DB cluster settings
	Setting up ElastiCache in your applications

	Creating an ElastiCache cache with settings from an Aurora DB cluster

	Managing an Amazon Aurora DB cluster
	Stopping and starting an Amazon Aurora DB cluster
	Overview of stopping and starting an Aurora DB cluster
	Limitations for stopping and starting Aurora DB clusters
	Stopping an Aurora DB cluster
	Console
	AWS CLI
	RDS API

	Possible operations while an Aurora DB cluster is stopped
	Starting an Aurora DB cluster
	Console
	AWS CLI
	RDS API

	Automatically connecting an AWS compute resource and an Aurora DB cluster
	Automatically connecting an EC2 instance and an Aurora DB cluster
	Overview of automatic connectivity with an EC2 instance
	Automatically connecting an EC2 instance and an Aurora DB cluster
	Viewing connected compute resources
	Connecting to a DB instance that is running a specific DB engine

	Automatically connecting a Lambda function and an Aurora DB cluster
	Overview of automatic connectivity with a Lambda function
	Automatically connecting a Lambda function and an Aurora DB cluster
	Viewing connected compute resources

	Modifying an Amazon Aurora DB cluster
	Modifying the DB cluster by using the console, CLI, and API
	Console
	AWS CLI
	RDS API

	Modifying a DB instance in a DB cluster
	Console
	AWS CLI
	RDS API

	Changing the password for the database master user
	Console
	CLI

	Settings for Amazon Aurora
	Settings that don't apply to Amazon Aurora DB clusters
	Settings that don't apply to Amazon Aurora DB instances

	Adding Aurora Replicas to a DB cluster
	Console
	AWS CLI
	RDS API
	Using Amazon Aurora Auto Scaling with Aurora Replicas
	Before you begin
	Aurora Auto Scaling policies
	Service linked role
	Target metric
	Minimum and maximum capacity
	Cooldown period
	Enable or disable scale-in activities

	Adding a scaling policy to an Aurora DB cluster
	Console
	AWS CLI or Application Auto Scaling API
	Registering an Aurora DB cluster
	AWS CLI
	Application Auto Scaling API

	Defining a scaling policy for an Aurora DB cluster
	Using a predefined metric
	Using a custom metric
	Using cooldown periods
	Disabling scale-in activity

	Applying a scaling policy to an Aurora DB cluster
	AWS CLI
	Application Auto Scaling API

	Editing a scaling policy
	Console
	AWS CLI or Application Auto Scaling API

	Deleting a scaling policy
	Console
	AWS CLI
	Application Auto Scaling API

	DB instance IDs and tagging
	Aurora Auto Scaling and Performance Insights

	Managing performance and scaling for Aurora DB clusters
	Storage scaling
	Instance scaling
	Read scaling
	Managing connections
	Managing query execution plans

	Cloning a volume for an Amazon Aurora DB cluster
	Overview of Aurora cloning
	Limitations of Aurora cloning
	How Aurora cloning works
	Understanding the copy-on-write protocol
	Deleting a source cluster volume

	Creating an Amazon Aurora clone
	Console
	AWS CLI
	Creating the clone
	Checking the status and getting clone details
	Creating the Aurora DB instance for your clone
	Parameters to use for cloning

	Cross-VPC cloning with Amazon Aurora
	Before you begin
	Gathering information about the network environment
	Step 1: Check the Availability Zones of the original cluster
	Step 2: Check the DB subnet group of the original cluster
	Step 3: Check the subnets of the original cluster
	Step 4: Check the Availability Zones of the DB instances in the original cluster
	Step 5: Check the VPCs you can use for the clone

	Creating network resources for the clone
	Step 1: Create the subnets for the clone
	Step 2: Create the DB subnet group for the clone

	Creating an Aurora clone with new network settings
	Step 1: Specify the DB subnet group for the clone
	Step 2: Specify network settings for instances in the clone
	Step 3: Establishing connectivity from a client system to a clone

	Moving a cluster from public subnets to private ones
	End-to-end example of creating a cross-VPC clone

	Cross-account cloning with AWS RAM and Amazon Aurora
	Limitations of cross-account cloning
	Allowing other AWS accounts to clone your cluster
	Granting permission to other AWS accounts to clone your cluster
	Console
	AWS CLI
	AWS RAM API
	Recreating a cluster that uses the default RDS key

	Checking if a cluster that you own is shared with other AWS accounts
	AWS CLI
	AWS RAM API

	Cloning a cluster that is owned by another AWS account
	Viewing invitations to clone clusters that are owned by other AWS accounts
	AWS CLI
	AWS RAM API

	Accepting invitations to share clusters owned by other AWS accounts
	AWS CLI
	AWS RAM and RDS API

	Cloning an Aurora cluster that is owned by another AWS account
	Console
	AWS CLI
	RDS API

	Checking if a DB cluster is a cross-account clone
	AWS CLI
	RDS API

	Integrating Aurora with other AWS services
	Integrating AWS services with Amazon Aurora MySQL
	Integrating AWS services with Amazon Aurora PostgreSQL

	Maintaining an Amazon Aurora DB cluster
	Overview of DB cluster maintenance updates
	Offline resources during maintenance updates
	Deferred DB instance and DB cluster modifications
	Eventual consistency for the DescribePendingMaintenanceActions API

	Viewing pending maintenance updates
	Applying updates for a DB cluster
	Console
	AWS CLI
	RDS API

	The Amazon RDS maintenance window
	Adjusting the preferred DB cluster maintenance window
	Console
	AWS CLI
	RDS API

	Automatic minor version upgrades for Aurora DB clusters
	Enabling automatic minor version upgrades for an Aurora DB cluster
	Enabling automatic minor version upgrades for individual DB instances in an Aurora DB cluster

	Choosing the frequency of Aurora MySQL maintenance updates
	Working with operating system updates
	Console
	AWS CLI
	Availability of operating system updates

	Rebooting an Amazon Aurora DB cluster or Amazon Aurora DB instance
	Rebooting a DB instance within an Aurora cluster
	Console
	AWS CLI
	RDS API

	Rebooting an Aurora cluster with read availability
	Rebooting an Aurora cluster without read availability
	Checking uptime for Aurora clusters and instances
	Examples of Aurora reboot operations
	Finding the writer and reader instances for an Aurora cluster
	Rebooting a single reader instance
	Rebooting the writer instance
	Rebooting the writer and readers independently
	Applying a cluster parameter change to an Aurora MySQL version 2.10 cluster

	Deleting Aurora DB clusters and DB instances
	Deleting an Aurora DB cluster
	Deleting an empty Aurora cluster
	Console
	CLI
	RDS API

	Deleting an Aurora cluster with a single DB instance
	Deleting an Aurora cluster with multiple DB instances

	Deletion protection for Aurora clusters
	Deleting a stopped Aurora cluster
	Deleting Aurora MySQL clusters that are read replicas
	The final snapshot when deleting a cluster
	Deleting a DB instance from an Aurora DB cluster
	Console
	AWS CLI
	RDS API

	Tagging Amazon Aurora and Amazon RDS resources
	Why use Amazon RDS resource tags?
	How Amazon RDS resource tags work
	Tag sets in Amazon RDS
	Tag structure in Amazon RDS
	Amazon RDS resources eligible for tagging
	How AWS billing works with tags in Amazon RDS
	How cost allocation tags work with DB cluster snapshots

	Best practices for tagging Amazon RDS resources
	Managing tags in Amazon RDS
	Console
	AWS CLI
	RDS API

	Copying tags to DB cluster snapshots
	Tutorial: Use tags to specify which Aurora DB clusters to stop

	Working with Amazon Resource Names (ARNs) in Amazon RDS
	Constructing an ARN for Amazon RDS
	Getting an existing ARN
	Console
	AWS CLI
	RDS API

	Amazon Aurora updates
	Identifying your Amazon Aurora version

	Using Amazon RDS Extended Support
	Overview of Amazon RDS Extended Support
	Amazon RDS Extended Support charges
	Avoiding charges for Amazon RDS Extended Support

	Versions with Amazon RDS Extended Support
	Amazon Aurora and customer responsibilities with Amazon RDS Extended Support
	Amazon Aurora responsibilities
	Your responsibilities

	Creating an Aurora DB cluster or a global cluster with Amazon RDS Extended Support
	RDS Extended Support behavior
	Considerations for RDS Extended Support
	Create an Aurora DB cluster or a global cluster with RDS Extended Support
	Console
	AWS CLI
	RDS API

	Viewing the enrollment of your Aurora DB clusters or global clusters in Amazon RDS Extended Support
	Console
	AWS CLI
	RDS API

	Restoring an Aurora DB cluster or a global cluster with Amazon RDS Extended Support
	RDS Extended Support behavior
	Considerations for RDS Extended Support
	Restore an Aurora DB cluster DB cluster or a global cluster with RDS Extended Support
	Console
	AWS CLI
	RDS API

	Using Amazon RDS Blue/Green Deployments for database updates
	Overview of Amazon RDS Blue/Green Deployments for Aurora
	Region and version availability
	Benefits of using Amazon RDS Blue/Green Deployments
	Workflow of a blue/green deployment
	Authorizing access to blue/green deployment operations
	Considerations for blue/green deployments
	Best practices for blue/green deployments
	General best practices
	Aurora PostgreSQL best practices

	Limitations for blue/green deployments
	General limitations for blue/green deployments
	Aurora MySQL limitations for blue/green deployments
	Aurora PostgreSQL limitations for blue/green deployments
	PostgreSQL logical replication limitations for blue/green deployments

	Creating a blue/green deployment
	Preparing for a blue/green deployment
	Preparing an Aurora MySQL DB cluster for a blue/green deployment
	Preparing an Aurora PostgreSQL DB cluster for a blue/green deployment

	Specifying changes when creating a blue/green deployment
	Specify a higher engine version
	Specify a different DB parameter group

	Creating a blue/green deployment
	Console
	AWS CLI
	RDS API

	Settings for creating blue/green deployments

	Viewing a blue/green deployment
	Console
	AWS CLI
	RDS API

	Switching a blue/green deployment
	Switchover timeout
	Switchover guardrails
	Switchover actions
	Switchover best practices
	Verifying CloudWatch metrics before switchover
	Monitoring replica lag prior to switchover
	Switching over a blue/green deployment
	Console
	AWS CLI
	RDS API

	After switchover
	Updating the parent node for consumers

	Deleting a blue/green deployment
	Console
	AWS CLI
	RDS API

	Backing up and restoring an Amazon Aurora DB cluster
	Overview of backing up and restoring an Aurora DB cluster
	Backups
	Using AWS Backup

	Backup window
	Retaining automated backups
	Retention period
	Viewing retained backups
	Retention costs
	Limitations
	Deleting retained automated backups
	Console
	AWS CLI
	RDS API

	Restoring data
	Database cloning for Aurora
	Backtrack

	Understanding Amazon Aurora backup storage usage
	Automated backup storage
	Snapshot storage
	Amazon CloudWatch metrics for Aurora backup storage
	Calculating backup storage usage
	FAQs

	Creating a DB cluster snapshot
	Console
	AWS CLI
	RDS API
	Determining whether the DB cluster snapshot is available

	Restoring from a DB cluster snapshot
	Parameter group considerations
	Security group considerations
	Amazon Aurora considerations
	Restoring from a snapshot
	Console
	AWS CLI
	RDS API

	Copying a DB cluster snapshot
	Limitations
	Snapshot retention
	Copying shared snapshots
	Handling encryption
	Incremental snapshot copying
	Cross-Region snapshot copying
	Parameter group considerations
	Copying a DB cluster snapshot
	Console
	Copying an unencrypted DB cluster snapshot by using the AWS CLI or Amazon RDS API
	AWS CLI
	RDS API

	Copying an encrypted DB cluster snapshot by using the AWS CLI or Amazon RDS API
	AWS CLI
	RDS API

	Copying a DB cluster snapshot across accounts
	Copying an unencrypted DB cluster snapshot to another account
	Copying an encrypted DB cluster snapshot to another account

	Sharing a DB cluster snapshot
	Sharing a snapshot
	Console
	AWS CLI
	RDS API

	Sharing public snapshots
	Viewing public snapshots owned by other AWS accounts
	Viewing your own public snapshots
	Sharing public snapshots from deprecated DB engine versions

	Sharing encrypted snapshots
	Create a customer managed key and give access to it
	Copy and share the snapshot from the source account
	Copy the shared snapshot in the target account

	Stopping snapshot sharing
	Console
	CLI
	RDS API

	Exporting DB cluster data to Amazon S3
	Limitations
	Overview of exporting DB cluster data
	Setting up access to an Amazon S3 bucket
	Identifying the Amazon S3 bucket for export
	Providing access to an Amazon S3 bucket using an IAM role
	Using a cross-account Amazon S3 bucket

	Exporting DB cluster data to an Amazon S3 bucket
	Console
	AWS CLI
	RDS API

	Monitoring DB cluster export tasks
	Console
	AWS CLI
	RDS API

	Canceling a DB cluster export task
	Console
	AWS CLI
	RDS API

	Failure messages for Amazon S3 export tasks
	Troubleshooting PostgreSQL permissions errors
	File naming convention
	Data conversion and storage format

	Exporting DB cluster snapshot data to Amazon S3
	Limitations
	Overview of exporting snapshot data
	Setting up access to an Amazon S3 bucket
	Identifying the Amazon S3 bucket for export
	Providing access to an Amazon S3 bucket using an IAM role
	Using a cross-account Amazon S3 bucket
	Using a cross-account AWS KMS key

	Exporting a snapshot to an Amazon S3 bucket
	Console
	AWS CLI
	RDS API

	Export performance in Aurora MySQL
	Monitoring snapshot exports
	Console
	AWS CLI
	RDS API

	Canceling a snapshot export task
	Console
	AWS CLI
	RDS API

	Failure messages for Amazon S3 export tasks
	Troubleshooting PostgreSQL permissions errors
	File naming convention
	Data conversion when exporting to an Amazon S3 bucket
	MySQL data type mapping to Parquet
	PostgreSQL data type mapping to Parquet

	Restoring a DB cluster to a specified time
	Console
	AWS CLI
	RDS API
	Restoring a DB cluster to a specified time from a retained automated backup
	Console
	AWS CLI
	RDS API

	Restoring a DB cluster to a specified time using AWS Backup
	Enabling continuous backups in AWS Backup
	Restoring from a continuous backup in AWS Backup
	Console
	CLI

	Deleting a DB cluster snapshot
	Deleting a DB cluster snapshot
	Console
	AWS CLI
	RDS API

	Tutorial: Restore an Amazon Aurora DB cluster from a DB cluster snapshot
	Restoring a DB cluster from a DB cluster snapshot using the Amazon RDS console
	Restoring a DB cluster from a DB cluster snapshot using the AWS CLI
	Restoring the DB cluster
	Creating the primary (writer) DB instance

	Monitoring metrics in an Amazon Aurora cluster
	Overview of monitoring metrics in Amazon Aurora
	Monitoring plan
	Performance baseline
	Performance guidelines
	Monitoring tools
	Automated monitoring tools
	Amazon Aurora cluster status and recommendations
	Amazon CloudWatch metrics for Amazon Aurora
	Amazon RDS Performance Insights and operating-system monitoring
	Integrated services

	Manual monitoring tools

	Viewing cluster status
	Viewing an Amazon Aurora DB cluster
	Console
	AWS CLI
	RDS API

	Viewing DB cluster status
	Console
	CLI

	Viewing DB instance status in an Aurora cluster
	Console
	CLI
	API

	Viewing and responding to Amazon Aurora recommendations
	Viewing Amazon Aurora recommendations
	Console
	CLI
	RDS API

	Responding to Amazon Aurora recommendations
	Applying an Amazon Aurora recommendation
	Console
	RDS API

	Dismissing the Amazon Aurora recommendations
	Console
	CLI
	RDS API

	Modifying the dismissed Amazon Aurora recommendations to active recommendations
	Console
	CLI
	RDS API

	Viewing metrics in the Amazon RDS console
	Viewing combined metrics in the Amazon RDS console
	Choosing the new monitoring view in the Monitoring tab
	Choosing the new monitoring view with Performance Insights in the navigation pane
	Choosing the legacy view with Performance Insights in the navigation pane
	Creating a custom dashboard with Performance Insights in the navigation pane
	Choosing the preconfigured dashboard with Performance Insights in the navigation pane

	Monitoring Amazon Aurora metrics with Amazon CloudWatch
	Overview of Amazon Aurora and Amazon CloudWatch
	Viewing DB cluster metrics in the CloudWatch console and AWS CLI
	Console
	AWS CLI

	Exporting Performance Insights metrics to CloudWatch
	Exporting Performance Insights metrics as a new dashboard to CloudWatch
	Adding Performance Insights metrics to an existing CloudWatch dashboard
	Viewing a Performance Insights metric widget in CloudWatch

	Creating CloudWatch alarms to monitor Amazon Aurora

	Monitoring DB load with Performance Insights on Amazon Aurora
	Overview of Performance Insights on Amazon Aurora
	Database load
	Active sessions
	Average active sessions
	Average active executions
	Dimensions
	Wait events
	Top SQL

	Maximum CPU
	Amazon Aurora DB engine, Region, and instance class support for Performance Insights
	Amazon Aurora DB engine, Region, and instance class support for Performance Insights features

	Pricing and data retention for Performance Insights

	Turning Performance Insights on and off for Aurora
	Console
	Turning Performance Insights on or off when creating a DB cluster
	Turning Performance Insights on or off when modifying a DB instance in your DB cluster

	AWS CLI
	RDS API

	Turning on the Performance Schema for Performance Insights on Aurora MySQL
	Overview of the Performance Schema
	Performance Insights and the Performance Schema
	Automatic management of the Performance Schema by Performance Insights
	Effect of a reboot on the Performance Schema
	Determining whether Performance Insights is managing the Performance Schema
	Configuring the Performance Schema for automatic management

	Configuring access policies for Performance Insights
	Attaching the AmazonRDSPerformanceInsightsReadOnly policy to an IAM principal
	Attaching the AmazonRDSPerformanceInsightsFullAccess policy to an IAM principal
	Creating a custom IAM policy for Performance Insights
	Configuring an AWS KMS policy for Performance Insights
	How Performance Insights uses AWS KMS customer managed key
	How Performance Insights IAM works with AWS KMS

	Granting fine-grained access for Performance Insights

	Analyzing metrics with the Performance Insights dashboard
	Overview of the Performance Insights dashboard
	Time range filter
	Counter metrics chart
	Database load chart
	DB load sliced by dimensions
	DB load details for a dimension item

	Top dimensions table

	Accessing the Performance Insights dashboard
	Analyzing DB load by wait events
	Analyzing database performance for a period of time
	Creating a performance analysis report
	Viewing a performance analysis report
	Adding tags to a performance analysis report
	Deleting a performance analysis report

	Analyzing queries in the Performance Insights dashboard
	Overview of the Top SQL tab
	SQL text
	SQL statistics
	Load by waits (AAS)
	SQL information
	Preferences

	Accessing more SQL text in the Performance Insights dashboard
	Text size limits for Aurora MySQL
	Setting the SQL text limit for Aurora PostgreSQL DB instances
	Viewing and downloading SQL text in the Performance Insights dashboard

	Viewing SQL statistics in the Performance Insights dashboard

	Viewing Performance Insights proactive recommendations
	Retrieving metrics with the Performance Insights API for Aurora
	AWS CLI for Performance Insights
	Retrieving time-series metrics
	AWS CLI examples for Performance Insights
	Retrieving counter metrics
	Retrieving the DB load average for top wait events
	Retrieving the DB load average for top SQL
	Retrieving the DB load average filtered by SQL
	Retrieving the full text of a SQL statement
	Creating a performance analysis report for a time period
	Retrieving a performance analysis report
	Listing all the performance analysis reports for the DB instance
	Deleting a performance analysis report
	Adding tag to a performance analysis report
	Listing all the tags for a performance analysis report
	Deleting tags from a performance analysis report

	Logging Performance Insights calls using AWS CloudTrail
	Working with Performance Insights information in CloudTrail
	Performance Insights log file entries

	Performance Insights API and interface VPC endpoints (AWS PrivateLink)
	Considerations for Performance Insights
	Availability
	Create an interface endpoint for Performance Insights
	Creating a VPC endpoint policy for Performance Insights API
	IP addressing for Performance Insights

	Analyzing Aurora performance anomalies with Amazon DevOps Guru for Amazon RDS
	Benefits of DevOps Guru for RDS
	How DevOps Guru for RDS works
	Proactive insights
	Reactive insights
	Causal anomalies
	Contextual anomalies

	Setting up DevOps Guru for RDS
	Configuring IAM access policies for DevOps Guru for RDS
	Turning on Performance Insights for your Aurora DB instances
	Turning on DevOps Guru and specifying resource coverage
	Turning on DevOps Guru in the RDS console
	Turning on DevOps Guru when you create an Aurora database
	Turning on DevOps Guru from the notification banner
	Responding to a permissions error when you turn on DevOps Guru

	Adding Aurora resources in the DevOps Guru console
	Adding Aurora resources using AWS CloudFormation

	Monitoring OS metrics with Enhanced Monitoring
	Overview of Enhanced Monitoring
	Differences between CloudWatch and Enhanced Monitoring metrics
	Retention of Enhanced Monitoring metrics
	Cost of Enhanced Monitoring

	Setting up and enabling Enhanced Monitoring
	Creating an IAM role for Enhanced Monitoring
	Creating the IAM role when you enable Enhanced Monitoring
	Creating the IAM role before you enable Enhanced Monitoring

	Turning Enhanced Monitoring on and off
	Console
	AWS CLI
	RDS API

	Protecting against the confused deputy problem

	Viewing OS metrics in the RDS console
	Viewing OS metrics using CloudWatch Logs

	Metrics reference for Amazon Aurora
	Amazon CloudWatch metrics for Amazon Aurora
	Cluster-level metrics for Amazon Aurora
	Instance-level metrics for Amazon Aurora
	Amazon CloudWatch usage metrics for Amazon Aurora

	Amazon CloudWatch dimensions for Aurora
	Availability of Aurora metrics in the Amazon RDS console
	Aurora metrics available in the Last Hour view
	Aurora metrics available in specific cases
	Aurora metrics that aren't available in the console

	Amazon CloudWatch metrics for Amazon RDS Performance Insights
	Querying other Performance Insights counter metrics in CloudWatch

	Performance Insights counter metrics
	Performance Insights operating system counters
	Performance Insights counters for Aurora MySQL
	Native counters for Aurora MySQL
	Non-native counters for Aurora MySQL

	Performance Insights counters for Aurora PostgreSQL
	Native counters for Aurora PostgreSQL
	Non-native counters for Aurora PostgreSQL

	SQL statistics for Performance Insights
	SQL statistics for Aurora MySQL
	Digest statistics for Aurora MySQL
	Per-second statistics for Aurora MySQL
	Per-call statistics for Aurora MySQL

	SQL statistics for Aurora PostgreSQL
	Digest statistics for Aurora PostgreSQL
	Per-second digest statistics for Aurora PostgreSQL
	Per-call digest statistics for Aurora PostgreSQL

	OS metrics in Enhanced Monitoring
	OS metrics for Aurora

	Monitoring events, logs, and streams in an Amazon Aurora DB cluster
	Viewing logs, events, and streams in the Amazon RDS console
	Monitoring Amazon Aurora events
	Overview of events for Aurora
	Viewing Amazon RDS events
	Console
	AWS CLI
	API

	Working with Amazon RDS event notification
	Overview of Amazon RDS event notification
	RDS resources eligible for event subscription
	Basic process for subscribing to Amazon RDS event notifications
	Delivery of RDS event notifications
	Billing for Amazon RDS event notifications
	Examples of Aurora events using Amazon EventBridge
	Example of a DB cluster event
	Example of a DB parameter group event
	Example of a DB cluster snapshot event

	Granting permissions to publish notifications to an Amazon SNS topic
	Subscribing to Amazon RDS event notification
	Console
	AWS CLI
	API

	Amazon RDS event notification tags and attributes
	Listing Amazon RDS event notification subscriptions
	Console
	AWS CLI
	API

	Modifying an Amazon RDS event notification subscription
	Console
	AWS CLI
	API

	Adding a source identifier to an Amazon RDS event notification subscription
	Console
	AWS CLI
	API

	Removing a source identifier from an Amazon RDS event notification subscription
	Console
	AWS CLI
	API

	Listing the Amazon RDS event notification categories
	Console
	AWS CLI
	API

	Deleting an Amazon RDS event notification subscription
	Console
	AWS CLI
	API

	Creating a rule that triggers on an Amazon Aurora event
	Tutorial: Log DB instance state changes using Amazon EventBridge
	Step 1: Create an AWS Lambda function
	Step 2: Create a rule
	Step 3: Test the rule

	Amazon RDS event categories and event messages for Aurora
	DB cluster events
	DB instance events
	DB parameter group events
	DB security group events
	DB cluster snapshot events
	RDS Proxy events
	Blue/green deployment events

	Monitoring Amazon Aurora log files
	Viewing and listing database log files
	Console
	AWS CLI
	RDS API

	Downloading a database log file
	Console
	AWS CLI
	RDS API

	Watching a database log file
	

	Publishing database logs to Amazon CloudWatch Logs
	Overview of RDS integration with CloudWatch Logs
	Deciding which logs to publish to CloudWatch Logs
	Specifying the logs to publish to CloudWatch Logs
	Searching and filtering your logs in CloudWatch Logs

	Reading log file contents using REST
	Aurora MySQL database log files
	Overview of Aurora MySQL database logs
	Aurora MySQL error logs
	Aurora MySQL slow query and general logs
	Aurora MySQL audit log
	Log rotation and retention for Aurora MySQL

	Publishing Aurora MySQL logs to Amazon CloudWatch Logs
	Managing table-based Aurora MySQL logs
	Configuring Aurora MySQL binary logging
	Accessing MySQL binary logs

	Aurora PostgreSQL database log files
	Parameters that affect logging behavior
	Setting the log retention period
	Setting log file rotation
	Setting the log destination (stderr, csvlog)
	Understanding the log_line_prefix parameter

	Turning on query logging for your Aurora PostgreSQL DB cluster
	Using logging to find slow performing queries
	Mitigating risk of password exposure when using query logging

	Monitoring Amazon Aurora API calls in AWS CloudTrail
	CloudTrail integration with Amazon Aurora
	CloudTrail events
	CloudTrail trails

	Amazon Aurora log file entries

	Monitoring Amazon Aurora with Database Activity Streams
	Overview of Database Activity Streams
	How database activity streams work
	Asynchronous and synchronous mode for database activity streams
	Requirements and limitations for database activity streams
	Region and version availability
	Supported DB instance classes for database activity streams

	Network prerequisites for Aurora MySQL database activity streams
	Prerequisites for AWS KMS endpoints
	Prerequisites for public availability
	Prerequisites for private availability

	Starting a database activity stream
	Console
	AWS CLI
	RDS API

	Getting the status of a database activity stream
	Console
	AWS CLI
	RDS API

	Stopping a database activity stream
	Console
	AWS CLI
	RDS API

	Monitoring database activity streams
	Accessing an activity stream from Kinesis
	Audit log contents and examples
	Examples of an audit log for an activity stream
	DatabaseActivityMonitoringRecords JSON object
	databaseActivityEvents JSON Object
	Top-level fields in JSON record

	databaseActivityEventList JSON array
	databaseActivityEventList fields for Aurora PostgreSQL
	databaseActivityEventList fields for Aurora MySQL

	Processing a database activity stream using the AWS SDK

	Managing access to database activity streams

	Monitoring threats with Amazon GuardDuty RDS Protection

	Working with Amazon Aurora MySQL
	Overview of Amazon Aurora MySQL
	Amazon Aurora MySQL performance enhancements
	Fast insert

	Amazon Aurora MySQL and spatial data
	CREATE TABLE
	ALTER TABLE
	CREATE INDEX

	Aurora MySQL version 3 compatible with MySQL 8.0
	Features from MySQL 8.0 Community Edition
	Aurora MySQL version 3 prerequisite for Aurora MySQL Serverless v2
	Release notes for Aurora MySQL version 3
	New parallel query optimizations
	Optimizations to reduce database restart time
	New temporary table behavior in Aurora MySQL version 3
	Storage engine for internal (implicit) temporary tables
	Limiting the size of internal, in-memory temporary tables
	Mitigating fullness issues for internal temporary tables on Aurora Replicas
	User-created (explicit) temporary tables on reader DB instances
	Temporary table creation errors and mitigation

	Comparing Aurora MySQL version 2 and Aurora MySQL version 3
	Feature differences between Aurora MySQL version 2 and 3
	Instance class support
	Parameter changes for Aurora MySQL version 3
	Status variables
	Inclusive language changes for Aurora MySQL version 3
	AUTO_INCREMENT values
	Binary log replication
	Transaction compression for binary log replication

	Comparing Aurora MySQL version 3 and MySQL 8.0 Community Edition
	MySQL 8.0 features not available in Aurora MySQL version 3
	Role-based privilege model
	rds_superuser_role
	Privilege checks user for binary log replication
	Roles for accessing other AWS services

	Authentication

	Upgrading to Aurora MySQL version 3

	Aurora MySQL version 2 compatible with MySQL 5.7
	Features not supported in Aurora MySQL version 2
	Temporary tablespace behavior in Aurora MySQL version 2
	Storage engine for on-disk temporary tables

	Security with Amazon Aurora MySQL
	Master user privileges with Amazon Aurora MySQL
	Using TLS with Aurora MySQL DB clusters
	Requiring a TLS connection to an Aurora MySQL DB cluster
	TLS versions for Aurora MySQL
	Configuring cipher suites for connections to Aurora MySQL DB clusters
	Encrypting connections to an Aurora MySQL DB cluster

	Updating applications to connect to Aurora MySQL DB clusters using new TLS certificates
	Determining whether any applications are connecting to your Aurora MySQL DB cluster using TLS
	Determining whether a client requires certificate verification to connect
	JDBC
	MySQL

	Updating your application trust store
	Updating your application trust store for JDBC

	Example Java code for establishing TLS connections

	Using Kerberos authentication for Aurora MySQL
	Overview of Kerberos authentication for Aurora MySQL DB clusters
	Limitations of Kerberos authentication for Aurora MySQL
	Setting up Kerberos authentication for Aurora MySQL DB clusters
	Step 1: Create a directory using AWS Managed Microsoft AD
	Step 2: (Optional) Create a trust for an on-premises Active Directory
	Step 3: Create an IAM role for use by Amazon Aurora
	Step 4: Create and configure users
	Step 5: Create or modify an Aurora MySQL DB cluster
	Console
	AWS CLI

	Step 6: Create Aurora MySQL users that use Kerberos authentication
	Modifying an existing Aurora MySQL login

	Step 7: Configure a MySQL client
	Step 8: (Optional) Configure case-insensitive username comparison

	Connecting to Aurora MySQL with Kerberos authentication
	Using the Aurora MySQL Kerberos login to connect to the DB cluster
	Unix
	Windows

	Kerberos authentication with Aurora global databases
	Migrating from RDS for MySQL to Aurora MySQL
	Preventing ticket caching
	Logging for Kerberos authentication

	Managing a DB cluster in a domain
	Understanding domain membership

	Migrating data to an Amazon Aurora MySQL DB cluster
	Migrating data from an external MySQL database to an Amazon Aurora MySQL DB cluster
	Physical migration from MySQL by using Percona XtraBackup and Amazon S3
	Limitations and considerations
	Before you begin
	Installing Percona XtraBackup
	Required permissions
	Creating the IAM service role

	Backing up files to be restored as an Amazon Aurora MySQL DB cluster
	Creating a full backup with Percona XtraBackup
	Using incremental backups with Percona XtraBackup
	Backup considerations

	Restoring an Amazon Aurora MySQL DB cluster from an Amazon S3 bucket
	Synchronizing the Amazon Aurora MySQL DB cluster with the MySQL database using replication
	Configuring your external MySQL database and your Aurora MySQL DB cluster for encrypted replication
	Synchronizing the Amazon Aurora MySQL DB cluster with the external MySQL database

	Reducing the time for physical migration to Amazon Aurora MySQL
	Unsupported table types
	User accounts with unsupported privileges
	Dynamic privileges in Aurora MySQL version 3
	Stored objects with 'rdsadmin'@'localhost' as the definer

	Logical migration from MySQL to Amazon Aurora MySQL by using mysqldump

	Migrating data from an RDS for MySQL DB instance to an Amazon Aurora MySQL DB cluster
	Migrating an RDS for MySQL snapshot to Aurora
	How much space do I need?
	Reducing the amount of space required to migrate data into Amazon Aurora MySQL
	Migrating an RDS for MySQL DB snapshot to an Aurora MySQL DB cluster
	Console
	AWS CLI

	Migrating data from an RDS for MySQL DB instance to an Amazon Aurora MySQL DB cluster by using an Aurora read replica
	Creating an Aurora read replica
	Console
	AWS CLI
	RDS API

	Viewing an Aurora read replica
	Console
	AWS CLI

	Promoting an Aurora read replica
	Console
	AWS CLI

	Managing Amazon Aurora MySQL
	Managing performance and scaling for Amazon Aurora MySQL
	Scaling Aurora MySQL DB instances
	Maximum connections to an Aurora MySQL DB instance
	Temporary storage limits for Aurora MySQL

	Backtracking an Aurora DB cluster
	Overview of backtracking
	Backtrack window
	Backtracking time
	Backtracking limitations

	Region and version availability
	Upgrade considerations for backtrack-enabled clusters
	Configuring backtracking
	Console
	Configuring backtracking with the console when creating a DB cluster
	Configuring backtrack with the console when modifying a DB cluster

	AWS CLI
	RDS API

	Performing a backtrack
	Console
	AWS CLI
	RDS API

	Monitoring backtracking
	Console
	AWS CLI
	RDS API

	Subscribing to a backtrack event with the console
	Retrieving existing backtracks
	AWS CLI
	RDS API

	Disabling backtracking for a DB cluster
	Console
	AWS CLI
	RDS API

	Testing Amazon Aurora MySQL using fault injection queries
	Testing an instance crash
	Syntax
	Options

	Testing an Aurora replica failure
	Syntax
	Options

	Testing a disk failure
	Syntax
	Options

	Testing disk congestion
	Syntax
	Options

	Altering tables in Amazon Aurora using Fast DDL
	Instant DDL (Aurora MySQL version 3)
	Fast DDL (Aurora MySQL version 2)
	Fast DDL limitations
	Fast DDL syntax
	Fast DDL examples

	Displaying volume status for an Aurora MySQL DB cluster
	Syntax
	Example

	Tuning Aurora MySQL
	Essential concepts for Aurora MySQL tuning
	Aurora MySQL wait events
	Aurora MySQL thread states
	Aurora MySQL memory
	Buffer pool

	Aurora MySQL processes
	MySQL server (mysqld)
	Threads
	Thread pool

	Tuning Aurora MySQL with wait events
	cpu
	Supported engine versions
	Context
	Likely causes of increased waits
	Actions
	Identify the sessions or queries that are causing the problem
	Analyze and optimize the high CPU workload
	Follow the guidelines for optimizing queries
	Follow the guidelines for improving CPU usage
	Check for connection storms

	io/aurora_redo_log_flush
	Supported engine versions
	Context
	Likely causes of increased waits
	Actions
	Identify the problematic sessions and queries
	Group your write operations
	Turn off autocommit
	Use transactions
	Use batches

	io/aurora_respond_to_client
	Supported engine versions
	Context
	Likely causes of increased waits
	Actions
	Identify the sessions and queries causing the events
	Scale the DB instance class
	Check workload for unexpected results
	Distribute workload with reader instances
	Use the SQL_BUFFER_RESULT modifier

	io/redo_log_flush
	Supported engine versions
	Context
	Likely causes of increased waits
	Actions
	Identify the problematic sessions and queries
	Group your write operations
	Turn off autocommit
	Use transactions
	Use batches

	io/socket/sql/client_connection
	Supported engine versions
	Context
	Likely causes of increased waits
	Actions
	Identify the problematic sessions and queries
	Follow best practices for connection management
	Scale up your instance if resources are being throttled
	Check the top hosts and top users
	Query the performance_schema tables
	Check the thread states of your queries
	Audit your requests and queries
	Pool your database connections

	io/table/sql/handler
	Supported engine versions
	Context
	Likely causes of increased waits
	Actions
	Identify the sessions and queries causing the events
	Check for a correlation with Performance Insights counter metrics
	Check for other correlated wait events

	synch/cond/innodb/row_lock_wait
	Supported engine versions
	Likely causes of increased waits
	Actions
	Find and respond to the SQL statements responsible for this wait event
	Find and respond to the blocking session

	synch/cond/innodb/row_lock_wait_cond
	Supported engine versions
	Likely causes of increased waits
	Actions
	Find and respond to the SQL statements responsible for this wait event
	Find and respond to the blocking session

	synch/cond/sql/MDL_context::COND_wait_status
	Supported engine versions
	Context
	Likely causes of increased waits
	Actions
	Identify the sessions and queries causing the events
	Check for past events
	Run queries on Aurora MySQL version 2
	Respond to the blocking session

	synch/mutex/innodb/aurora_lock_thread_slot_futex
	Supported engine versions
	Likely causes of increased waits
	Actions
	Find and respond to the SQL statements responsible for this wait event
	Find and respond to the blocking session

	synch/mutex/innodb/buf_pool_mutex
	Relevant engine versions
	Context
	Likely causes of increased waits
	Actions
	Identify the sessions and queries causing the events
	Use Performance Insights
	Create Aurora Replicas
	Examine the buffer pool size
	Monitor the global status history

	synch/mutex/innodb/fil_system_mutex
	Supported engine versions
	Context
	Likely causes of increased waits
	Actions
	Identify the sessions and queries causing the events
	Reorganize large tables during off-peak hours

	synch/mutex/innodb/trx_sys_mutex
	Relevant engine versions
	Context
	Likely causes of increased waits
	Actions
	Identify the sessions and queries causing the events
	Examine other wait events

	synch/sxlock/innodb/hash_table_locks
	Supported engine versions
	Context
	Likely causes of increased waits
	Actions
	Increase the size of the buffer pool
	Improve data access patterns
	Reduce or avoid full-table scans
	Check the error logs for page corruption

	Tuning Aurora MySQL with thread states
	creating sort index
	Supported engine versions
	Context
	Likely causes of increased waits
	Actions
	Turn on the Performance Schema if it isn't turned on
	Identify the problem queries
	Examine the explain plans for filesort usage
	Increase the sort buffer size

	sending data
	Supported engine versions
	Context
	Likely causes of increased waits
	Inefficient query
	Suboptimal server configuration

	Actions
	Turn on the Performance Schema if it isn't turned on
	Examine memory settings
	Examine the explain plans for index usage
	Check the volume of data returned
	Check for concurrency issues
	Check the structure of your queries

	Tuning Aurora MySQL with Amazon DevOps Guru proactive insights
	The InnoDB history list length increased significantly
	Supported engine versions
	Context
	Likely causes for this issue
	Actions
	Don't begin any operation involving a database shutdown until the InnoDB history list decreases
	Identify and end long-running transactions
	Identify the top hosts and top users by using Performance Insights.

	Relevant metrics

	Database is creating temporary tables on disk
	Supported engine versions
	Context
	Likely causes for this issue
	Actions
	Relevant metrics

	Working with parallel query for Amazon Aurora MySQL
	Overview of parallel query for Aurora MySQL
	Benefits
	Architecture
	Prerequisites
	Limitations
	I/O costs with parallel query

	Planning for a parallel query cluster
	Checking Aurora MySQL version compatibility for parallel query

	Creating a DB cluster that works with parallel query
	Creating a parallel query cluster using the console
	Creating a parallel query cluster using the CLI

	Turning parallel query on and off
	Turning on hash join for parallel query clusters
	Turning on and turning off parallel query using the console
	Turning on and turning off parallel query using the CLI
	Overriding the parallel query optimizer

	Upgrade considerations for parallel query
	Upgrading parallel query clusters to Aurora MySQL version 3
	Upgrading to Aurora MySQL 2.09 and higher

	Performance tuning for parallel query
	Creating schema objects to take advantage of parallel query
	Verifying which statements use parallel query
	Monitoring parallel query
	How parallel query works with SQL constructs
	EXPLAIN statement
	WHERE clause
	Data definition language (DDL)
	Column data types
	Partitioned tables
	Aggregate functions, GROUP BY clauses, and HAVING clauses
	Function calls in WHERE clause
	LIMIT clause
	Comparison operators
	Joins
	Subqueries
	UNION
	Views
	Data manipulation language (DML) statements
	Transactions and locking
	B-tree indexes
	Full-text search (FTS) indexes
	Virtual columns
	Built-in caching mechanisms
	Optimizer hints
	MyISAM temporary tables

	Using Advanced Auditing with an Amazon Aurora MySQL DB cluster
	Enabling Advanced Auditing
	server_audit_logging
	server_audit_events
	server_audit_incl_users
	server_audit_excl_users

	Viewing audit logs
	Audit log details

	Replication with Amazon Aurora MySQL
	Using Aurora Replicas
	Replication options for Amazon Aurora MySQL
	Performance considerations for Amazon Aurora MySQL replication
	Zero-downtime restart (ZDR) for Amazon Aurora MySQL
	Configuring replication filters with Aurora MySQL
	Setting replication filtering parameters for Aurora MySQL
	Replication filtering limitations for Aurora MySQL
	Replication filtering examples for Aurora MySQL
	Viewing the replication filters for a read replica

	Monitoring Amazon Aurora MySQL replication
	Using local write forwarding in an Amazon Aurora MySQL DB cluster
	Enabling local write forwarding
	Console
	AWS CLI
	RDS API
	Enabling write forwarding for database sessions

	Checking if a DB cluster has write forwarding enabled
	Application and SQL compatibility with write forwarding
	Isolation levels for write forwarding
	Read consistency for write forwarding
	Examples of using write forwarding

	Running multipart statements with write forwarding
	Transactions with write forwarding
	Configuration parameters for write forwarding
	Amazon CloudWatch metrics and Aurora MySQL status variables for write forwarding
	Identifying forwarded transactions and queries

	Replicating Amazon Aurora MySQL DB clusters across AWS Regions
	Before you begin
	Creating an Amazon Aurora MySQL DB cluster that is a cross-Region read replica
	Console
	AWS CLI
	RDS API

	Viewing Amazon Aurora MySQL cross-Region replicas
	Promoting a read replica to be a DB cluster
	Console
	AWS CLI
	RDS API

	Troubleshooting Amazon Aurora MySQL cross Region replicas
	Source cluster [DB cluster ARN] doesn't have binlogs enabled
	Source cluster [DB cluster ARN] doesn't have cluster parameter group in sync on writer
	Source cluster [DB cluster ARN] already has a read replica in this region
	DB cluster [DB cluster ARN] requires a database engine upgrade for cross-Region replication support

	Replication between Aurora and MySQL or between Aurora and another Aurora DB cluster (binary log replication)
	Setting up replication with MySQL or another Aurora DB cluster
	1. Turn on binary logging on the replication source
	2. Retain binary logs on the replication source until no longer needed
	3. Create a copy or dump of your replication source
	4. Load the dump into your replica target (if needed)
	5. Create a replication user on your replication source
	6. Turn on replication on your replica target
	Setting a location to stop replication to a read replica

	7. Monitor your replica

	Synchronizing passwords between replication source and target
	Stopping replication between Aurora and MySQL or between Aurora and another Aurora DB cluster
	1. Stop binary log replication on the replica target
	2. Turn off binary logging on the replication source

	Using Amazon Aurora to scale reads for your MySQL database
	Start replication between an external source instance and an Aurora MySQL DB cluster

	Optimizing binary log replication
	Multithreaded binary log replication
	Optimizing binlog replication (Aurora MySQL 2.10 and higher)
	Optimizing binlog replication (Aurora MySQL version 2 through 2.09)
	Overview of the large read buffer and max-yield optimizations
	Related parameters
	Enabling the max-yield mechanism for binary log replication
	Turning off the binary log replication max-yield optimization
	Turning off the large read buffer

	Setting up enhanced binlog
	Configuring enhanced binlog parameters
	Other related parameters
	Differences between enhanced binlog and community MySQL binlog
	Amazon CloudWatch metrics for enhanced binlog
	Enhanced binlog limitations

	Using GTID-based replication
	Overview of global transaction identifiers (GTIDs)
	Parameters for GTID-based replication
	Configuring GTID-based replication for an Aurora MySQL cluster
	Disabling GTID-based replication for an Aurora MySQL DB cluster

	Integrating Amazon Aurora MySQL with other AWS services
	Authorizing Amazon Aurora MySQL to access other AWS services on your behalf
	Setting up IAM roles to access AWS services
	Creating an IAM policy to access Amazon S3 resources
	Creating an IAM policy to access AWS Lambda resources
	Creating an IAM policy to access CloudWatch Logs resources
	Creating an IAM policy to access AWS KMS resources
	Creating an IAM role to allow Amazon Aurora to access AWS services
	Associating an IAM role with an Amazon Aurora MySQL DB cluster
	Console
	CLI

	Enabling network communication from Amazon Aurora MySQL to other AWS services
	Related topics

	Loading data into an Amazon Aurora MySQL DB cluster from text files in an Amazon S3 bucket
	Giving Aurora access to Amazon S3
	Granting privileges to load data in Amazon Aurora MySQL
	Specifying the path (URI) to an Amazon S3 bucket
	LOAD DATA FROM S3
	Syntax
	Parameters
	Using a manifest to specify data files to load
	Verifying loaded files using the aurora_s3_load_history table

	Examples

	LOAD XML FROM S3
	Syntax
	Parameters

	Saving data from an Amazon Aurora MySQL DB cluster into text files in an Amazon S3 bucket
	Giving Aurora MySQL access to Amazon S3
	Granting privileges to save data in Aurora MySQL
	Specifying a path to an Amazon S3 bucket
	Creating a manifest to list data files
	SELECT INTO OUTFILE S3
	Syntax
	Parameters
	Considerations
	Examples

	Invoking a Lambda function from an Amazon Aurora MySQL DB cluster
	Giving Aurora access to Lambda
	Invoking a Lambda function with an Aurora MySQL native function
	Working with native functions to invoke a Lambda function
	Granting the role in Aurora MySQL version 3
	Granting the privilege in Aurora MySQL version 2
	Syntax for the lambda_sync function
	Parameters for the lambda_sync function
	Example for the lambda_sync function
	Syntax for the lambda_async function
	Parameters for the lambda_async function
	Example for the lambda_async function
	Invoking a Lambda function within a trigger

	Invoking a Lambda function with an Aurora MySQL stored procedure (deprecated)
	Aurora MySQL version considerations
	Working with the mysql.lambda_async procedure to invoke a Lambda function (deprecated)
	Syntax
	Parameters
	Examples

	Publishing Amazon Aurora MySQL logs to Amazon CloudWatch Logs
	Console
	AWS CLI
	RDS API
	Monitoring log events in Amazon CloudWatch

	Amazon Aurora MySQL lab mode
	Aurora lab mode features

	Best practices with Amazon Aurora MySQL
	Determining which DB instance you are connected to
	Best practices for Aurora MySQL performance and scaling
	Using T instance classes for development and testing
	Optimizing Aurora MySQL indexed join queries with asynchronous key prefetch
	Enabling asynchronous key prefetch
	Optimizing queries for asynchronous key prefetch

	Optimizing large Aurora MySQL join queries with hash joins
	Enabling hash joins
	Optimizing queries for hash joins

	Using Amazon Aurora to scale reads for your MySQL database
	Optimizing timestamp operations

	Best practices for Aurora MySQL high availability
	Using Amazon Aurora for Disaster Recovery with your MySQL databases
	Migrating from MySQL to Amazon Aurora MySQL with reduced downtime
	Avoiding slow performance, automatic restart, and failover for Aurora MySQL DB instances

	Recommendations for Aurora MySQL
	Using multithreaded replication in Aurora MySQL
	Invoking AWS Lambda functions using native MySQL functions
	Avoiding XA transactions with Amazon Aurora MySQL
	Keeping foreign keys turned on during DML statements
	Configuring how frequently the log buffer is flushed
	Minimizing and troubleshooting Aurora MySQL deadlocks
	Minimizing InnoDB deadlocks
	Monitoring InnoDB deadlocks

	Troubleshooting Amazon Aurora MySQL database performance
	AWS monitoring options
	Most common reasons for Aurora MySQL database performance issues
	Troubleshooting workload issues for Aurora MySQL databases
	Instance host metrics
	CPU usage
	Memory usage
	Network throughput

	Database metrics
	Troubleshooting memory usage issues for Aurora MySQL databases
	Example 1: Continuous high memory usage
	Example 2: Transient memory spikes

	Troubleshooting out-of-memory issues for Aurora MySQL databases

	Logging for Aurora MySQL databases
	Troubleshooting query performance for Aurora MySQL databases
	Understanding the time spent by queries
	Reviewing query optimizer settings

	Amazon Aurora MySQL reference
	Aurora MySQL configuration parameters
	Cluster-level parameters
	Instance-level parameters
	MySQL parameters that don't apply to Aurora MySQL

	Aurora MySQL global status variables
	MySQL status variables that don't apply to Aurora MySQL

	Aurora MySQL wait events
	Aurora MySQL thread states
	Aurora MySQL isolation levels
	Available isolation levels for writer instances
	REPEATABLE READ isolation level for reader instances
	READ COMMITTED isolation level for reader instances
	Using READ COMMITTED for readers
	Differences in READ COMMITTED behavior on Aurora replicas

	Aurora MySQL hints
	Aurora MySQL stored procedures
	Configuring
	mysql.rds_set_configuration
	Syntax
	Parameters
	Usage notes
	binlog retention hours

	mysql.rds_show_configuration
	Syntax
	Usage notes
	Examples

	Ending a session or query
	mysql.rds_kill
	Syntax
	Parameters
	Usage notes
	Examples

	mysql.rds_kill_query
	Syntax
	Parameters
	Usage notes
	Examples

	Logging
	mysql.rds_rotate_general_log
	Syntax
	Usage notes

	mysql.rds_rotate_slow_log
	Syntax
	Usage notes

	Managing the Global Status History
	mysql.rds_collect_global_status_history
	Syntax

	mysql.rds_disable_gsh_collector
	Syntax

	mysql.rds_disable_gsh_rotation
	Syntax

	mysql.rds_enable_gsh_collector
	Syntax

	mysql.rds_enable_gsh_rotation
	Syntax

	mysql.rds_rotate_global_status_history
	Syntax

	mysql.rds_set_gsh_collector
	Syntax
	Parameters

	mysql.rds_set_gsh_rotation
	Syntax
	Parameters

	Replicating
	mysql.rds_assign_gtids_to_anonymous_transactions (Aurora MySQL version 3)
	Syntax
	Parameters
	Usage notes
	Examples

	mysql.rds_disable_session_binlog (Aurora MySQL version 2)
	Syntax
	Parameters
	Usage notes

	mysql.rds_enable_session_binlog (Aurora MySQL version 2)
	Syntax
	Parameters
	Usage notes

	mysql.rds_gtid_purged (Aurora MySQL version 3)
	Syntax
	Parameters
	Usage notes
	Examples

	mysql.rds_import_binlog_ssl_material
	Syntax
	Parameters
	Usage notes
	Examples

	mysql.rds_next_master_log (Aurora MySQL version 2)
	Syntax
	Parameters
	Usage notes
	Examples

	mysql.rds_next_source_log (Aurora MySQL version 3)
	Syntax
	Parameters
	Usage notes
	Examples

	mysql.rds_remove_binlog_ssl_material
	Syntax

	mysql.rds_reset_external_master (Aurora MySQL version 2)
	Syntax
	Usage notes

	mysql.rds_reset_external_source (Aurora MySQL version 3)
	Syntax
	Usage notes

	mysql.rds_set_binlog_source_ssl (Aurora MySQL version 3)
	Syntax
	Parameters
	Usage notes

	mysql.rds_set_external_master (Aurora MySQL version 2)
	Syntax
	Parameters
	Usage notes
	Examples

	mysql.rds_set_external_master_with_auto_position (Aurora MySQL version 2)
	Syntax
	Parameters
	Usage notes
	Examples

	mysql.rds_set_external_source (Aurora MySQL version 3)
	Syntax
	Parameters
	Usage notes
	Examples

	mysql.rds_set_external_source_with_auto_position (Aurora MySQL version 3)
	Syntax
	Parameters
	Usage notes
	Examples

	mysql.rds_set_master_auto_position (Aurora MySQL version 2)
	Syntax
	Parameters
	Usage notes

	mysql.rds_set_read_only (Aurora MySQL version 3)
	Syntax
	Parameters
	Usage notes

	mysql.rds_set_session_binlog_format (Aurora MySQL version 2)
	Syntax
	Parameters
	Usage notes

	mysql.rds_set_source_auto_position (Aurora MySQL version 3)
	Syntax
	Parameters
	Usage notes

	mysql.rds_skip_transaction_with_gtid (Aurora MySQL version 2 and 3)
	Syntax
	Parameters
	Usage notes
	Examples

	mysql.rds_skip_repl_error
	Syntax
	Usage notes
	Replication stopped error

	mysql.rds_start_replication
	Syntax
	Usage notes

	mysql.rds_start_replication_until (Aurora MySQL version 3)
	Syntax
	Parameters
	Usage notes
	Examples

	mysql.rds_start_replication_until_gtid (Aurora MySQL version 3)
	Syntax
	Parameters
	Usage notes
	Examples

	mysql.rds_stop_replication
	Syntax
	Usage notes

	Aurora MySQL–specific information_schema tables
	information_schema.aurora_global_db_instance_status
	information_schema.aurora_global_db_status
	information_schema.replica_host_status
	information_schema.aurora_forwarding_processlist

	Database engine updates for Amazon Aurora MySQL
	Aurora MySQL version numbers and special versions
	Checking or specifying Aurora MySQL engine versions through AWS
	Checking Aurora MySQL versions using SQL
	Aurora MySQL long-term support (LTS) releases
	Aurora MySQL beta releases

	Preparing for Amazon Aurora MySQL-Compatible Edition version 2 end of standard support
	End of standard support timeline
	Finding clusters affected by this end-of-life process
	Console
	AWS CLI
	RDS API

	Amazon RDS Extended Support
	Performing an upgrade
	Upgrade path for Aurora Serverless v1 DB clusters

	Preparing for Amazon Aurora MySQL-Compatible Edition version 1 end of life
	Finding clusters affected by this end-of-life process
	Console
	AWS CLI
	RDS API

	Upgrading Amazon Aurora MySQL DB clusters
	Upgrading the minor version or patch level of an Aurora MySQL DB cluster
	Before performing a minor version upgrade
	Minor version upgrade prechecks for Aurora MySQL
	Upgrading Aurora MySQL by modifying the engine version
	Enabling automatic upgrades between minor Aurora MySQL versions
	Using zero-downtime patching
	Alternative blue/green upgrade technique

	Upgrading the major version of an Amazon Aurora MySQL DB cluster
	Upgrading from Aurora MySQL version 2 to version 3
	Planning a major version upgrade for an Aurora MySQL cluster
	Simulating the upgrade by cloning your DB cluster
	Using the blue-green upgrade technique

	Major version upgrade prechecks for Aurora MySQL
	Community MySQL upgrade prechecks
	Aurora MySQL upgrade prechecks

	Aurora MySQL major version upgrade paths
	How the Aurora MySQL in-place major version upgrade works
	Blue/Green Deployments
	How to perform an in-place upgrade
	Console
	AWS CLI
	RDS API

	How in-place upgrades affect the parameter groups for a cluster
	Changes to cluster properties between Aurora MySQL versions
	In-place major upgrades for global databases
	Backtrack considerations
	Aurora MySQL in-place upgrade tutorial
	Finding the reasons for upgrade failures
	Troubleshooting for Aurora MySQL in-place upgrade
	Post-upgrade cleanup for Aurora MySQL version 3
	Spatial indexes

	Database engine updates and fixes for Amazon Aurora MySQL

	Working with Amazon Aurora PostgreSQL
	Working with the database preview environment
	Supported DB instance class types
	Unsupported features in the preview environment
	Creating a new DB cluster in the preview environment
	PostgreSQL version 16 in the Database Preview environment

	Security with Amazon Aurora PostgreSQL
	Understanding PostgreSQL roles and permissions
	Understanding the rds_superuser role
	Controlling user access to the PostgreSQL database
	Delegating and controlling user password management
	Using SCRAM for PostgreSQL password encryption
	Setting up Aurora PostgreSQL DB cluster to require SCRAM
	Getting ready to require SCRAM for your Aurora PostgreSQL DB cluster
	Creating a custom DB cluster parameter group
	Configuring password encryption to use SCRAM
	Migrating passwords for user roles to SCRAM
	Changing parameter to require SCRAM

	Securing Aurora PostgreSQL data with SSL/TLS
	Requiring an SSL/TLS connection to an Aurora PostgreSQL DB cluster
	Determining the SSL/TLS connection status
	Configuring cipher suites for connections to Aurora PostgreSQL DB clusters

	Updating applications to connect to Aurora PostgreSQL DB clusters using new SSL/TLS certificates
	Determining whether applications are connecting to Aurora PostgreSQL DB clusters using SSL
	Determining whether a client requires certificate verification in order to connect
	Updating your application trust store
	Updating your application trust store for JDBC

	Using SSL/TLS connections for different types of applications

	Using Kerberos authentication with Aurora PostgreSQL
	Region and version availability
	Overview of Kerberos authentication for PostgreSQL DB clusters
	Setting up Kerberos authentication for PostgreSQL DB clusters
	Step 1: Create a directory using AWS Managed Microsoft AD
	Step 2: (Optional) Create a trust relationship between your on-premises Active Directory and AWS Directory Service
	Step 3: Create an IAM role for Amazon Aurora to access the AWS Directory Service
	Step 4: Create and configure users
	Step 5: Enable cross-VPC traffic between the directory and the DB instance
	Step 6: Create or modify a PostgreSQL DB cluster
	Console
	AWS CLI

	Step 7: Create PostgreSQL users for your Kerberos principals
	Configuring your Aurora PostgreSQL DB cluster for case-insensitive user names

	Step 8: Configure a PostgreSQL client

	Managing a DB cluster in a Domain
	Understanding Domain membership

	Connecting to PostgreSQL with Kerberos authentication
	pgAdmin
	Psql

	Using AD security groups for Aurora PostgreSQL access control
	Prerequisites
	Setting up the pg_ad_mapping extension
	Console
	AWS CLI

	Retrieving Active Directory Group SID in PowerShell
	Mapping DB role with AD security group
	AD user identity logging/auditing
	Limitations
	Using functions from the pg_ad_mapping extension
	pgadmap_set_mapping
	Syntax
	Arguments
	Return type
	Usage notes
	Examples

	pgadmap_read_mapping
	Syntax
	Arguments
	Return type
	Usage notes
	Examples

	pgadmap_reset_mapping
	Syntax
	Arguments
	Return type
	Usage notes
	Examples

	Migrating data to Amazon Aurora with PostgreSQL compatibility
	Migrating a snapshot of an RDS for PostgreSQL DB instance to an Aurora PostgreSQL DB cluster
	Console
	AWS CLI

	Migrating data from an RDS for PostgreSQL DB instance to an Aurora PostgreSQL DB cluster using an Aurora read replica
	Overview of migrating data by using an Aurora read replica
	Preparing to migrate data by using an Aurora read replica
	Creating an Aurora read replica
	Console
	AWS CLI
	RDS API

	Promoting an Aurora read replica
	Console
	AWS CLI
	RDS API

	Improving query performance for Aurora PostgreSQL with Aurora Optimized Reads
	Overview of Aurora Optimized Reads in PostgreSQL
	Using Aurora Optimized Reads
	Use cases for Aurora Optimized Reads
	Monitoring DB instances that use Aurora Optimized Reads
	Best practices for Aurora Optimized Reads

	Using Babelfish for Aurora PostgreSQL
	Babelfish limitations
	Understanding Babelfish architecture and configuration
	Babelfish architecture
	Using Babelfish with a single database or multiple databases
	Choosing a migration mode

	DB cluster parameter group settings for Babelfish
	Babelfish SSL settings and client connections

	Collations supported by Babelfish
	DB cluster parameters that control collation and locale
	Deterministic and nondeterministic collations and Babelfish
	Collations supported by Babelfish
	Default Collation in Babelfish
	Managing collations
	Collation limitations and behavior differences

	Managing Babelfish error handling with escape hatches
	Modifying Babelfish escape hatch settings

	Creating a Babelfish for Aurora PostgreSQL DB cluster
	Console
	AWS CLI

	Migrating a SQL Server database to Babelfish for Aurora PostgreSQL
	Overview of the migration process
	Evaluating and handling differences between SQL Server and Babelfish
	Import/export tools for migrating from SQL Server to Babelfish
	Using SQL Server Management Studio (SSMS) to migrate to Babelfish

	Database authentication with Babelfish for Aurora PostgreSQL
	Password authentication with Babelfish
	Kerberos authentication with Babelfish
	Setting up Kerberos Authentication
	Login and user provisioning in Babelfish
	Managing NetBIOS domain name to DNS domain name mapping
	Managing Logins
	Connecting to Babelfish for Aurora PostgreSQL with Kerberos authentication
	Connecting to Babelfish for Aurora PostgreSQL on the PostgreSQL port with Kerberos authentication
	Frequently occurring errors

	Connecting to a Babelfish DB cluster
	Finding the writer endpoint and port number
	Creating C# or JDBC client connections to Babelfish
	Using a SQL Server client to connect to your DB cluster
	Using sqlcmd to connect to the DB cluster
	Using SSMS to connect to the DB cluster

	Using a PostgreSQL client to connect to your DB cluster
	Using psql to connect to the DB cluster
	Using pgAdmin to connect to the DB cluster

	Working with Babelfish
	Getting information from the Babelfish system catalog
	SQL Server system catalogs available in Babelfish
	DDL exports supported by Babelfish
	Limitations with the exported DDLs

	Differences between Babelfish for Aurora PostgreSQL and SQL Server
	Babelfish dump and restore
	T-SQL differences in Babelfish
	Transaction Isolation Levels in Babelfish
	Overview of the Transaction Isolation Levels
	Setting up the Transaction Isolation Levels
	Enabling or disabling Transaction Isolation Levels
	Differences between Babelfish and SQL Server Isolation Levels
	BABELFISH READ UNCOMMITTED VS SQL SERVER READ UNCOMMITTED ISOLATION LEVEL
	BABELFISH READ COMMITTED VS SQL SERVER READ COMMITTED ISOLATION LEVEL
	BABELFISH READ COMMITTED VS SQL SERVER READ COMMITTED SNAPSHOT ISOLATION LEVEL
	BABELFISH REPEATABLE READ VS SQL SERVER REPEATABLE READ ISOLATION LEVEL
	BABELFISH SERIALIZABLE VS SQL SERVER SERIALIZABLE ISOLATION LEVEL

	Using Babelfish features with limited implementation
	Improving Babelfish query performance
	Using explain plan to improve Babelfish query performance
	Parameters that control Babelfish explain options

	Using T-SQL query hints to improve Babelfish query performance
	Turning on T-SQL query hints in Babelfish
	Limitations

	Using Aurora PostgreSQL extensions with Babelfish
	Enabling Aurora PostgreSQL extensions in your Babelfish DB cluster
	Using Babelfish with Amazon S3
	Using Babelfish with AWS Lambda
	Using pg_stat_statements in Babelfish
	Creating pg_stat_statements extension
	Authorizing the extension
	Resetting query statistics
	Limitations

	Using pgvector in Babelfish
	Prerequisites
	Supported Functionality
	Limitations

	Using Amazon Aurora machine learning with Babelfish
	Prerequisites
	Handling T-SQL syntax and semantics with aws_ml functions
	Limitations

	Babelfish supports linked servers
	Installing the tds_fdw extension
	Supported functionality
	Using encryption in transit for the connection
	Adding Babelfish as a linked server from SQL Server
	Limitations
	Example
	Troubleshooting

	Using Full Text Search in Babelfish
	Understanding Babelfish Full Text Search supported features
	Limitations in Babelfish Full Text Search

	Babelfish supports Geospatial data types
	Understanding the Geospatial data types in Babelfish
	Geometry data type functions supported in Babelfish
	Geography data type functions supported in Babelfish

	Limitations in Babelfish for Geospatial data types

	Troubleshooting Babelfish
	Connection failure

	Turning off Babelfish
	Babelfish version updates
	Identifying your version of Babelfish
	Upgrading your Babelfish cluster to a new version
	Upgrading Babelfish to a new minor version
	Upgrading Babelfish to a new major version
	Before upgrading Babelfish to a new major version
	Performing major version upgrade
	After upgrading to a new major version
	Example: Upgrading the Babelfish DB cluster to a major release

	Using Babelfish product version parameter
	Configuring Babelfish product version parameter
	Affected queries and parameter
	Interface with babelfishpg_tsql.version parameter

	Babelfish for Aurora PostgreSQL reference
	Unsupported functionality in Babelfish
	Functionality that isn't currently supported
	Settings that aren't supported
	Commands that aren't supported
	Column names or attributes that aren't supported
	Data types that aren't supported
	Object types that aren't supported
	Functions that aren't supported
	Syntax that isn't supported

	Supported functionality in Babelfish by version
	Babelfish for Aurora PostgreSQL procedure reference
	Overview
	sp_babelfish_volatility
	Syntax
	Arguments
	Result set
	Usage notes
	Examples

	sp_execute_postgresql
	Syntax
	Arguments
	Usage notes
	CREATE EXTENSION

	ALTER EXTENSION
	DROP EXTENSION

	Managing Amazon Aurora PostgreSQL
	Scaling Aurora PostgreSQL DB instances
	Maximum connections to an Aurora PostgreSQL DB instance
	Temporary storage limits for Aurora PostgreSQL
	Huge pages for Aurora PostgreSQL
	Testing Amazon Aurora PostgreSQL by using fault injection queries
	Testing an instance crash
	Testing an Aurora Replica failure
	Testing a disk failure
	Testing disk congestion

	Displaying volume status for an Aurora PostgreSQL DB cluster
	Specifying the RAM disk for the stats_temp_directory
	Managing temporary files with PostgreSQL

	Tuning with wait events for Aurora PostgreSQL
	Essential concepts for Aurora PostgreSQL tuning
	Aurora PostgreSQL wait events
	Aurora PostgreSQL memory
	Shared memory in Aurora PostgreSQL
	Shared buffers
	Write ahead log (WAL) buffers

	Local memory in Aurora PostgreSQL
	Work memory area
	Maintenance work memory area
	Temporary buffer area

	Aurora PostgreSQL processes
	Postmaster process
	Backend processes
	Background processes

	Aurora PostgreSQL wait events
	Client:ClientRead
	Supported engine versions
	Context
	Likely causes of increased waits
	Actions
	Place the clients in the same Availability Zone and VPC subnet as the cluster
	Scale your client
	Use current generation instances
	Increase network bandwidth
	Monitor maximums for network performance
	Monitor for transactions in the "idle in transaction" state

	Client:ClientWrite
	Supported engine versions
	Context
	Likely causes of increased waits
	Actions
	Place the clients in the same Availability Zone and VPC subnet as the cluster
	Use current generation instances
	Reduce the amount of data sent to the client
	Scale your client

	CPU
	Supported engine versions
	Context
	How to tell when this wait occurs
	DBLoadCPU metric
	os.cpuUtilization metrics
	Likely cause of CPU scheduling

	Likely causes of increased waits
	Likely causes of sudden spikes
	Likely causes of long-term high frequency
	Corner cases

	Actions
	Investigate whether the database is causing the CPU increase
	Determine whether the number of connections increased
	The connections increased
	The connections didn't increase

	Respond to workload changes

	IO:BufFileRead and IO:BufFileWrite
	Supported engine versions
	Context
	Likely causes of increased waits
	Actions
	Identify the problem
	Examine your join queries
	Examine your ORDER BY and GROUP BY queries
	Avoid using the DISTINCT operation
	Consider using window functions instead of GROUP BY functions
	Investigate materialized views and CTAS statements
	Use pg_repack when you create indexes
	Increase maintenance_work_mem when you cluster tables
	Tune memory to prevent IO:BufFileRead and IO:BufFileWrite
	Increase the size of the work memory area
	Reserve sufficient memory for the shared buffer pool
	Manage the number of connections

	IO:DataFileRead
	Supported engine versions
	Context
	Likely causes of increased waits
	Actions
	Check predicate filters for queries that generate waits
	Minimize the effect of maintenance operations
	Find tables consuming space unnecessarily
	Find indexes consuming unnecessary space
	Find tables that are eligible to be autovacuumed

	Respond to high numbers of connections

	IO:XactSync
	Supported engine versions
	Context
	Likely causes of increased waits
	Actions
	Monitor your resources
	Scale up the CPU
	Increase network bandwidth
	Reduce the number of commits

	IPC:DamRecordTxAck
	Relevant engine versions
	Context
	Causes
	Actions

	Lock:advisory
	Relevant engine versions
	Context
	Causes
	Actions

	Lock:extend
	Supported engine versions
	Context
	Likely causes of increased waits
	Actions
	Reduce concurrent inserts and updates to the same relation
	Increase network bandwidth

	Lock:Relation
	Supported engine versions
	Context
	Likely causes of increased waits
	Actions
	Reduce the impact of blocking SQL statements
	Minimize the effect of maintenance operations
	Check for reader locks

	Lock:transactionid
	Supported engine versions
	Context
	Likely causes of increased waits
	High concurrency
	Idle in transaction
	Long-running transactions

	Actions
	Respond to high concurrency
	Respond to idle transactions
	Respond to long-running transactions

	Lock:tuple
	Supported engine versions
	Context
	Likely causes of increased waits
	Actions
	Investigate your application logic
	Find the blocker session
	Reduce concurrency when it is high
	Troubleshoot bottlenecks

	LWLock:buffer_content (BufferContent)
	Supported engine versions
	Context
	Likely causes of increased waits
	Actions
	Improve in-memory efficiency
	Reduce usage of foreign key constraints
	Remove unused indexes

	LWLock:buffer_mapping
	Supported engine versions
	Context
	Causes
	Actions
	Monitor buffer-related metrics
	Assess your indexing strategy
	Reduce the number of buffers that must be allocated quickly

	LWLock:BufferIO (IPC:BufferIO)
	Relevant engine versions
	Context
	Causes
	Actions

	LWLock:lock_manager
	Supported engine versions
	Context
	Fast path locking
	Example of a scaling problem for the lock manager

	Likely causes of increased waits
	Actions
	Use partition pruning
	Remove unnecessary indexes
	Tune your queries for fast path locking
	Tune for other wait events
	Reduce hardware bottlenecks
	Use a connection pooler
	Upgrade your Aurora PostgreSQL version

	LWLock:MultiXact
	Supported engine versions
	Context
	Likely causes of increased waits
	Actions
	Perform vacuum freeze on tables with this wait event
	Increase autovacuum frequency on tables with this wait event
	Increase memory parameters
	Reduce long-running transactions
	Long term actions

	Timeout:PgSleep
	Supported engine versions
	Likely causes of increased waits
	Actions

	Tuning Aurora PostgreSQL with Amazon DevOps Guru proactive insights
	Database has long running idle in transaction connection
	Supported engine versions
	Context
	Likely causes for this issue
	Actions
	
	
	End transaction
	Terminate the connection
	Configure the idle_in_transaction_session_timeout parameter
	Check the AUTOCOMMIT status
	Check the transaction logic in your application code

	Relevant metrics

	Best practices with Amazon Aurora PostgreSQL
	Avoiding slow performance, automatic restart, and failover for Aurora PostgreSQL DB instances
	Diagnosing table and index bloat
	Observing bloat without interrupting your application
	Avoiding bloat in temporary tables
	Avoiding bloat in indexes

	Improved memory management in Aurora PostgreSQL
	Configuring memory management parameters

	Fast failover with Amazon Aurora PostgreSQL
	Setting TCP keepalives parameters
	Configuring your application for fast failover
	Reducing DNS cache timeouts
	Setting an Aurora PostgreSQL connection string for fast failover
	Other options for obtaining the host string
	Listing instances using the DescribeDBClusters API operation, example in Java

	Testing failover
	Fast failover example in Java

	Fast recovery after failover with cluster cache management for Aurora PostgreSQL
	Configuring cluster cache management
	Enabling cluster cache management
	Console
	AWS CLI

	Setting the promotion tier priority for the writer DB instance
	Console
	AWS CLI

	Setting the promotion tier priority for a reader DB instance
	Console
	AWS CLI

	Monitoring the buffer cache
	Troubleshooting CCM configuration

	Managing Aurora PostgreSQL connection churn with pooling
	Logging connections and disconnections
	Detecting connection churn with Performance Insights
	Demonstrating the benefits of connection pooling

	Tuning memory parameters for Aurora PostgreSQL
	Checking and setting parameter values
	Understanding the working memory parameter
	Identifying temporary file use

	Using indexes for faster response time
	Adjusting working memory for logical decoding

	Using Amazon CloudWatch metrics to analyze resource usage for Aurora PostgreSQL
	Evaluating network throughput with CloudWatch
	
	Evaluating DB instance usage with CloudWatch metrics

	Using logical replication to perform a major version upgrade for Aurora PostgreSQL
	Requirements
	Limitations
	Setting and checking parameter values
	Upgrading Aurora PostgreSQL to a new major version
	Performing post-upgrade tasks

	Troubleshooting storage issues

	Replication with Amazon Aurora PostgreSQL
	Using Aurora Replicas
	Improving the read availability of Aurora Replicas
	Monitoring Aurora Replicas
	Limitations

	Monitoring Aurora PostgreSQL replication
	Using PostgreSQL logical replication with Aurora
	Setting up logical replication for your Aurora PostgreSQL DB cluster
	Turning off logical replication
	Managing the Aurora PostgreSQL logical replication write-through cache
	Managing logical slots for Aurora PostgreSQL
	Example: Using logical replication with Aurora PostgreSQL DB clusters
	Example: Logical replication using Aurora PostgreSQL and AWS Database Migration Service

	Using Aurora PostgreSQL as a knowledge base for Amazon Bedrock
	Prerequisites
	Preparing Aurora PostgreSQL to be used as a knowledge base for Amazon Bedrock
	Creating and configuring Aurora PostgreSQL
	Connecting to a database and installing pgvector
	Setting up database objects and privileges
	Create a secret in Secrets Manager

	Creating a knowledge base in the Bedrock console

	Integrating Amazon Aurora PostgreSQL with other AWS services
	Importing data from Amazon S3 into an Aurora PostgreSQL DB cluster
	Installing the aws_s3 extension
	Overview of importing data from Amazon S3 data
	Setting up access to an Amazon S3 bucket
	Using an IAM role to access an Amazon S3 bucket
	Console
	AWS CLI
	RDS API

	Using security credentials to access an Amazon S3 bucket
	Troubleshooting access to Amazon S3

	Importing data from Amazon S3 to your Aurora PostgreSQL DB cluster
	Importing an Amazon S3 file that uses a custom delimiter
	Importing an Amazon S3 compressed (gzip) file
	Importing an encoded Amazon S3 file

	Function reference
	aws_s3.table_import_from_s3
	Syntax
	Parameters
	Alternate syntax
	Alternate parameters

	aws_commons.create_s3_uri
	Syntax
	Parameters

	aws_commons.create_aws_credentials
	Syntax
	Parameters

	Exporting data from an Aurora PostgreSQL DB cluster to Amazon S3
	Installing the aws_s3 extension
	Verify that your Aurora PostgreSQL version supports exports to Amazon S3

	Overview of exporting data to Amazon S3
	Specifying the Amazon S3 file path to export to
	Setting up access to an Amazon S3 bucket
	Console
	AWS CLI

	Exporting query data using the aws_s3.query_export_to_s3 function
	Prerequisites
	Calling aws_s3.query_export_to_s3
	Exporting to a CSV file that uses a custom delimiter
	Exporting to a binary file with encoding

	Troubleshooting access to Amazon S3
	Function reference
	aws_s3.query_export_to_s3
	Alternate input parameters
	Output parameters
	Examples

	aws_commons.create_s3_uri

	Invoking an AWS Lambda function from an Aurora PostgreSQL DB cluster
	Step 1: Configure your Aurora PostgreSQL DB cluster for outbound connections to AWS Lambda
	Step 2: Configure IAM for your Aurora PostgreSQL DB cluster and AWS Lambda
	Step 3: Install the aws_lambda extension for an Aurora PostgreSQL DB cluster
	Step 4: Use Lambda helper functions with your Aurora PostgreSQL DB cluster (Optional)
	Step 5: Invoke a Lambda function from your Aurora PostgreSQL DB cluster
	Step 6: Grant other users permission to invoke Lambda functions
	Examples: Invoking Lambda functions from your Aurora PostgreSQL DB cluster
	Example: Synchronous (RequestResponse) invocation of Lambda functions
	Example: Asynchronous (Event) invocation of Lambda functions
	Example: Capturing the Lambda execution log in a function response
	Example: Including client context in a Lambda function
	Example: Invoking a specific version of a Lambda function

	Lambda function error messages
	AWS Lambda function and parameter reference
	aws_lambda.invoke
	aws_commons.create_lambda_function_arn
	aws_lambda parameters

	Publishing Aurora PostgreSQL logs to Amazon CloudWatch Logs
	Turning on the option to publish logs to Amazon CloudWatch
	Console
	AWS CLI
	RDS API

	Monitoring log events in Amazon CloudWatch
	Analyzing PostgreSQL logs using CloudWatch Logs Insights

	Monitoring query execution plans for Aurora PostgreSQL
	Accessing query execution plans using Aurora functions
	Parameter reference for Aurora PostgreSQL query execution plans
	aurora_compute_plan_id
	aurora_stat_plans.minutes_until_recapture
	aurora_stat_plans.calls_until_recapture
	aurora_stat_plans.with_costs
	aurora_stat_plans.with_analyze
	aurora_stat_plans.with_timing
	aurora_stat_plans.with_buffers
	aurora_stat_plans.with_wal
	aurora_stat_plans.with_triggers

	Managing query execution plans for Aurora PostgreSQL
	Overview of Aurora PostgreSQL query plan management
	Supported SQL statements
	Query plan management limitations
	Query plan management terminology
	Aurora PostgreSQL query plan management versions
	Turning on Aurora PostgreSQL query plan management
	Upgrading Aurora PostgreSQL query plan management
	Turning off Aurora PostgreSQL query plan management

	Best practices for Aurora PostgreSQL query plan management
	Proactive plan management to help prevent performance regression
	Ensuring plan stability after a major version upgrade

	Reactive plan management to detect and repair performance regressions

	Understanding Aurora PostgreSQL query plan management
	Normalization and the SQL hash

	Capturing Aurora PostgreSQL execution plans
	Manually capturing plans for specific SQL statements
	Automatically capturing plans

	Using Aurora PostgreSQL managed plans
	Analyzing the optimizer's chosen plan
	How the optimizer chooses which plan to run

	Examining Aurora PostgreSQL query plans in the dba_plans view
	Listing managed plans

	Maintaining Aurora PostgreSQL execution plans
	Evaluating plan performance
	Approving better plans
	Rejecting or disabling slower plans

	Validating plans
	Fixing plans using pg_hint_plan
	Deleting plans
	Exporting and importing plans

	Reference for Aurora PostgreSQL query plan management
	Parameter reference for Aurora PostgreSQL query plan management
	apg_plan_mgmt.capture_plan_baselines
	apg_plan_mgmt.plan_capture_threshold
	apg_plan_mgmt.explain_hashes
	apg_plan_mgmt.log_plan_enforcement_result
	apg_plan_mgmt.max_databases
	apg_plan_mgmt.max_plans
	apg_plan_mgmt.plan_hash_version
	apg_plan_mgmt.plan_retention_period
	apg_plan_mgmt.unapproved_plan_execution_threshold
	apg_plan_mgmt.use_plan_baselines
	auto_explain.hashes

	Function reference for Aurora PostgreSQL query plan management
	apg_plan_mgmt.copy_outline
	apg_plan_mgmt.delete_plan
	apg_plan_mgmt.evolve_plan_baselines
	apg_plan_mgmt.get_explain_plan
	apg_plan_mgmt.plan_last_used
	apg_plan_mgmt.reload
	apg_plan_mgmt.set_plan_enabled
	apg_plan_mgmt.set_plan_status
	apg_plan_mgmt.update_plans_last_used
	apg_plan_mgmt.validate_plans

	Reference for the apg_plan_mgmt.dba_plans view

	Advanced features in Query Plan Management
	Capturing Aurora PostgreSQL execution plans in Replicas
	Prerequisites
	Managing plan capture for Aurora Replicas
	Troubleshooting

	Supporting table partition
	Setting up table partition
	Capturing plans for table partition
	Enforcing a table partition plan
	Naming Convention

	Working with extensions and foreign data wrappers
	Using Amazon Aurora delegated extension support for PostgreSQL
	Turning on delegate extension support to a user
	Configuration used in Aurora delegated extension support for PostgreSQL
	Turning off the support for the delegated extension
	Benefits of using Amazon Aurora delegated extension support
	Limitation of Aurora delegated extension support for PostgreSQL
	Permissions required for certain extensions
	Security Considerations
	Drop extension cascade disabled
	Example extensions that can be added using delegated extension support

	Managing large objects with the lo module
	Installing the lo extension
	Using the lo_manage trigger function to delete objects
	Using the vacuumlo utility

	Managing spatial data with the PostGIS extension
	Step 1: Create a user (role) to manage the PostGIS extension
	Step 2: Load the PostGIS extensions
	Step 3: Transfer ownership of the extensions
	Step 4: Transfer ownership of the PostGIS objects
	Step 5: Test the extensions
	Step 6: Upgrade the PostGIS extension
	PostGIS extension versions
	Upgrading PostGIS 2 to PostGIS 3

	Managing PostgreSQL partitions with the pg_partman extension
	Overview of the PostgreSQL pg_partman extension
	Enabling the pg_partman extension
	Configuring partitions using the create_parent function
	Configuring partition maintenance using the run_maintenance_proc function

	Scheduling maintenance with the PostgreSQL pg_cron extension
	Setting up the pg_cron extension
	Granting database users permissions to use pg_cron
	Scheduling pg_cron jobs
	Vacuuming a table
	Purging the pg_cron history table
	Logging errors to the postgresql.log file only
	Scheduling a cron job for a database other than the default database

	Reference for the pg_cron extension
	Parameters for managing the pg_cron extension
	Function reference: cron.schedule
	Function reference: cron.unschedule
	Tables for scheduling jobs and capturing status

	Using pgAudit to log database activity
	Setting up the pgAudit extension
	Console
	AWS CLI

	Auditing database objects
	Excluding users or databases from audit logging
	Reference for the pgAudit extension
	Controlling pgAudit behavior
	List of allowable settings for the pgaudit.log parameter

	Using pglogical to synchronize data across instances
	Requirements and limitations for the pglogical extension
	Setting up the pglogical extension
	Console
	AWS CLI

	Setting up logical replication for Aurora PostgreSQL DB cluster
	Reestablishing logical replication after a major upgrade
	Determining that logical replication has been disrupted

	Managing logical replication slots for Aurora PostgreSQL
	Parameter reference for the pglogical extension

	Working with the supported foreign data wrappers for Amazon Aurora PostgreSQL
	Using the log_fdw extension to access the DB log using SQL
	Using the postgres_fdw extension to access external data
	Working with MySQL databases by using the mysql_fdw extension
	Setting up your Aurora PostgreSQL DB to use the mysql_fdw extension
	Example: Working with an Aurora MySQL database from Aurora PostgreSQL
	Using encryption in transit with the extension

	Working with Oracle databases by using the oracle_fdw extension
	Turning on the oracle_fdw extension
	Example: Using a foreign server linked to an Amazon RDS for Oracle database
	Working with encryption in transit
	Understanding the pg_user_mappings view and permissions

	Working with SQL Server databases by using the tds_fdw extension
	Setting up your Aurora PostgreSQL DB to use the tds_fdw extension
	Using encryption in transit for the connection

	Working with Trusted Language Extensions for PostgreSQL
	Terminology
	Requirements for using Trusted Language Extensions for PostgreSQL
	Creating and applying a custom DB parameter group
	Console
	AWS CLI

	Setting up Trusted Language Extensions in your Aurora PostgreSQL DB cluster
	Console
	AWS CLI

	Overview of Trusted Language Extensions for PostgreSQL
	Creating TLE extensions for Aurora PostgreSQL
	Example: Creating a trusted language extension using SQL
	Modifying your TLE extension

	Dropping your TLE extensions from a database
	Uninstalling Trusted Language Extensions for PostgreSQL
	Using PostgreSQL hooks with your TLE extensions
	Example: Creating an extension that uses a PostgreSQL hook
	Password-check hook code listing

	Functions reference for Trusted Language Extensions for PostgreSQL
	pgtle.available_extensions
	Function prototype
	Role
	Arguments
	Output
	Usage example

	pgtle.available_extension_versions
	Function prototype
	Role
	Arguments
	Output
	Usage example

	pgtle.extension_update_paths
	Function prototype
	Role
	Arguments
	Output
	Usage example

	pgtle.install_extension
	Function prototype
	Role
	Arguments
	Output
	Usage example

	pgtle.install_update_path
	Function prototype
	Role
	Arguments
	Output
	Usage example

	pgtle.register_feature
	Function prototype
	Role
	Arguments
	Output
	Usage example

	pgtle.register_feature_if_not_exists
	Function prototype
	Role
	Arguments
	Output
	Usage example

	pgtle.set_default_version
	Function prototype
	Role
	Arguments
	Output
	Usage example

	pgtle.uninstall_extension(name)
	Function prototype
	Role
	Arguments
	Output
	Usage example

	pgtle.uninstall_extension(name, version)
	Function prototype
	Role
	Arguments
	Output
	Usage example

	pgtle.uninstall_extension_if_exists
	Function prototype
	Role
	Arguments
	Output
	Usage example

	pgtle.uninstall_update_path
	Function prototype
	Role
	Arguments
	Output
	Usage example

	pgtle.uninstall_update_path_if_exists
	Function prototype
	Role
	Arguments
	Output
	Usage example

	pgtle.unregister_feature
	Function prototype
	Role
	Arguments
	Output
	Usage example

	pgtle.unregister_feature_if_exists
	Function prototype
	Role
	Arguments
	Output
	Usage example

	Hooks reference for Trusted Language Extensions for PostgreSQL
	Password-check hook (passcheck)
	Function prototype
	Arguments
	Configuration
	Usage notes

	Amazon Aurora PostgreSQL reference
	Aurora PostgreSQL collations for EBCDIC and other mainframe migrations
	Collations supported in Aurora PostgreSQL
	Aurora PostgreSQL functions reference
	Overview
	aurora_db_instance_identifier
	Syntax
	Arguments
	Return type
	Usage notes
	Examples

	aurora_ccm_status
	Syntax
	Arguments
	Return type
	Usage notes
	Examples

	aurora_global_db_instance_status
	Syntax
	Arguments
	Return type
	Usage notes
	Examples

	aurora_global_db_status
	Syntax
	Arguments
	Return type
	Usage notes
	Examples

	aurora_list_builtins
	Syntax
	Arguments
	Return type
	Examples

	aurora_replica_status
	Syntax
	Arguments
	Return type
	Usage notes
	Examples

	aurora_stat_activity
	Syntax
	Arguments
	Return type
	Usage notes
	Examples

	aurora_stat_backend_waits
	Syntax
	Arguments
	Return type
	Usage notes
	Examples

	aurora_stat_bgwriter
	Syntax
	Arguments
	Return type
	Usage notes
	Examples

	aurora_stat_database
	Syntax
	Arguments
	Return type
	Usage notes
	Examples

	aurora_stat_dml_activity
	Syntax
	Arguments
	Return type
	Usage notes
	Examples

	aurora_stat_get_db_commit_latency
	Syntax
	Arguments
	Return type
	Usage notes
	Examples

	aurora_stat_logical_wal_cache
	Syntax
	Arguments
	Return type
	Usage notes
	Examples

	aurora_stat_memctx_usage
	Syntax
	Arguments
	Return type
	Usage notes
	Examples

	aurora_stat_optimized_reads_cache
	Syntax
	Arguments
	Return type
	Usage notes
	Examples

	aurora_stat_plans
	Syntax
	Arguments
	Return type
	Usage notes
	Examples

	aurora_stat_reset_wal_cache
	Syntax
	Arguments
	Return type
	Usage notes
	Examples

	aurora_stat_statements
	Syntax
	Arguments
	Return type
	Usage notes
	Examples

	aurora_stat_system_waits
	Syntax
	Arguments
	Return type
	Usage notes
	Examples

	aurora_stat_wait_event
	Syntax
	Arguments
	Return type
	Usage notes
	Examples

	aurora_stat_wait_type
	Syntax
	Arguments
	Return type
	Usage notes
	Examples

	aurora_version
	Syntax
	Arguments
	Return type
	Usage notes
	Examples

	aurora_volume_logical_start_lsn
	Syntax
	Arguments
	Return type
	Usage notes
	Examples

	aurora_wait_report
	Syntax
	Arguments
	Return type
	Usage notes
	Examples

	Amazon Aurora PostgreSQL parameters
	Viewing Aurora PostgreSQL DB cluster and DB parameters
	Aurora PostgreSQL cluster-level parameters
	Aurora PostgreSQL instance-level parameters

	Amazon Aurora PostgreSQL wait events

	Amazon Aurora PostgreSQL updates
	Identifying versions of Amazon Aurora PostgreSQL
	Aurora version number
	PostgreSQL engine version numbers

	Amazon Aurora PostgreSQL releases and engine versions
	Extension versions for Amazon Aurora PostgreSQL
	Upgrading Amazon Aurora PostgreSQL DB clusters
	Overview of the Aurora PostgreSQL upgrade processes
	Getting a list of available versions in your AWS Region
	How to perform a major version upgrade
	Testing an upgrade of your production DB cluster to a new major version
	Post-upgrade recommendations
	Upgrading the Aurora PostgreSQL engine to a new major version
	Console
	AWS CLI
	RDS API
	Major upgrades for global databases

	Before performing a minor version upgrade
	How to perform minor version upgrades and apply patches
	Minor release upgrades and zero-downtime patching
	Upgrading the Aurora PostgreSQL engine to a new minor version
	Console
	AWS CLI
	RDS API

	Upgrading PostgreSQL extensions
	Alternative blue/green upgrade technique

	Aurora PostgreSQL long-term support (LTS) releases

	Using Amazon Aurora global databases
	Overview of Amazon Aurora global databases
	Advantages of Amazon Aurora global databases
	Region and version availability
	Limitations of Amazon Aurora global databases
	Getting started with Amazon Aurora global databases
	Configuration requirements of an Amazon Aurora global database
	Creating an Amazon Aurora global database
	Console
	Creating a global database using Aurora MySQL
	Creating a global database using Aurora PostgreSQL

	AWS CLI
	Creating a global database using Aurora MySQL
	Creating a global database using Aurora PostgreSQL

	RDS API

	Adding an AWS Region to an Amazon Aurora global database
	Console
	AWS CLI
	RDS API

	Creating a headless Aurora DB cluster in a secondary Region
	Using a snapshot for your Amazon Aurora global database

	Managing an Amazon Aurora global database
	Modifying an Amazon Aurora global database
	Modifying parameters for an Aurora global database
	Removing a cluster from an Amazon Aurora global database
	Console
	AWS CLI
	RDS API

	Deleting an Amazon Aurora global database
	Console
	AWS CLI
	RDS API

	Connecting to an Amazon Aurora global database
	Using write forwarding in an Amazon Aurora global database
	Using write forwarding in an Aurora MySQL global database
	Region and version availability of write forwarding in Aurora MySQL
	Enabling write forwarding in Aurora MySQL
	Checking if a secondary cluster has write forwarding enabled in Aurora MySQL
	Application and SQL compatibility with write forwarding in Aurora MySQL
	Isolation and consistency for write forwarding in Aurora MySQL
	Examples of using write forwarding

	Running multipart statements with write forwarding in Aurora MySQL
	Transactions with write forwarding in Aurora MySQL
	Configuration parameters for write forwarding in Aurora MySQL
	Amazon CloudWatch metrics for write forwarding in Aurora MySQL

	Using write forwarding in an Aurora PostgreSQL global database
	Region and version availability of write forwarding in Aurora PostgreSQL
	Enabling write forwarding in Aurora PostgreSQL
	Console
	Enabling or disabling write forwarding when creating a secondary DB cluster
	Enabling or disabling write forwarding when modifying a secondary DB cluster

	AWS CLI
	RDS API

	Checking if a secondary cluster has write forwarding enabled in Aurora PostgreSQL
	Application and SQL compatibility with write forwarding in Aurora PostgreSQL
	Isolation and consistency for write forwarding in Aurora PostgreSQL
	Running multipart statements with write forwarding in Aurora PostgreSQL
	Configuration parameters for write forwarding in Aurora PostgreSQL
	Amazon CloudWatch metrics for write forwarding in Aurora PostgreSQL
	Wait events for write forwarding in Aurora PostgreSQL
	IPC:AuroraWriteForwardConnect
	IPC:AuroraWriteForwardConsistencyPoint
	IPC:AuroraWriteForwardExecute
	IPC:AuroraWriteForwardGetGlobalConsistencyPoint
	IPC:AuroraWriteForwardXactAbort
	IPC:AuroraWriteForwardXactCommit
	IPC:AuroraWriteForwardXactStart

	Using switchover or failover in an Amazon Aurora global database
	Recovering an Amazon Aurora global database from an unplanned outage
	Performing managed failovers for Aurora global databases
	Console
	AWS CLI
	RDS API

	Performing manual failovers for Aurora global databases

	Performing switchovers for Amazon Aurora global databases
	Console
	AWS CLI
	RDS API

	Managing RPOs for Aurora PostgreSQL–based global databases
	Setting the recovery point objective
	Console
	AWS CLI
	RDS API

	Viewing the recovery point objective
	Disabling the recovery point objective
	Console
	AWS CLI
	RDS API

	Monitoring an Amazon Aurora global database
	Monitoring an Amazon Aurora global database with Amazon RDS Performance Insights
	Monitoring Aurora global databases with Database Activity Streams
	Monitoring Aurora MySQL-based global databases
	Monitoring Aurora PostgreSQL-based global databases

	Using Amazon Aurora global databases with other AWS services
	Upgrading an Amazon Aurora global database
	Major version upgrades
	Minor version upgrades
	Patch level compatibility for managed cross-Region switchovers and failovers

	Using Amazon RDS Proxy for Aurora
	Region and version availability
	Quotas and limitations for RDS Proxy
	Additional limitations for Aurora MySQL
	Additional limitations for Aurora PostgreSQL

	Planning where to use RDS Proxy
	RDS Proxy concepts and terminology
	Overview of RDS Proxy concepts
	Connection pooling
	RDS Proxy security
	Using TLS/SSL with RDS Proxy

	Failover
	Transactions

	Getting started with RDS Proxy
	Setting up network prerequisites
	Getting information about your subnets
	Planning for IP address capacity

	Setting up database credentials in AWS Secrets Manager
	Setting up AWS Identity and Access Management (IAM) policies
	Creating an RDS Proxy
	AWS Management Console
	AWS CLI
	RDS API

	Viewing an RDS Proxy
	AWS Management Console
	CLI
	RDS API

	Connecting to a database through RDS Proxy
	Connecting to a proxy using native authentication
	Connecting to a proxy using IAM authentication
	Considerations for connecting to a proxy with PostgreSQL

	Managing an RDS Proxy
	Modifying an RDS Proxy
	AWS Management Console
	AWS CLI
	RDS API

	Adding a new database user
	Adding a new database user to a PostgreSQL database

	Changing the password for a database user
	Client and database connections
	Configuring connection settings
	IdleClientTimeout
	MaxConnectionsPercent
	MaxIdleConnectionsPercent
	ConnectionBorrowTimeout

	Avoiding pinning
	What RDS Proxy tracks for Aurora MySQL databases
	Minimizing pinning
	Conditions that cause pinning for all engine families
	Conditions that cause pinning for Aurora MySQL
	Conditions that cause pinning for Aurora PostgreSQL

	Deleting an RDS Proxy
	AWS Management Console
	AWS CLI
	RDS API

	Working with Amazon RDS Proxy endpoints
	Overview of proxy endpoints
	Using reader endpoints with Aurora clusters
	How reader endpoints help application availability
	How reader endpoints help query scalability
	Examples of using reader endpoints

	Accessing Aurora databases across VPCs
	Creating a proxy endpoint
	Console
	AWS CLI
	RDS API

	Viewing proxy endpoints
	Console
	AWS CLI
	RDS API

	Modifying a proxy endpoint
	Console
	AWS CLI
	RDS API

	Deleting a proxy endpoint
	Console
	AWS CLI
	RDS API

	Limitations for proxy endpoints

	Monitoring RDS Proxy metrics with Amazon CloudWatch
	Working with RDS Proxy events
	RDS Proxy events

	RDS Proxy command-line examples
	Troubleshooting for RDS Proxy
	Verifying connectivity for a proxy
	Common issues and solutions

	Using RDS Proxy with AWS CloudFormation
	Using RDS Proxy with Aurora global databases
	Limitations for RDS Proxy with global databases
	How RDS Proxy endpoints work with global databases

	Working with Aurora zero-ETL integrations with Amazon Redshift
	Benefits
	Key concepts
	Limitations
	General limitations
	Aurora MySQL limitations
	Aurora PostgreSQL preview limitations
	Amazon Redshift limitations

	Quotas
	Supported Regions
	Getting started with Aurora zero-ETL integrations with Amazon Redshift
	Step 1: Create a custom DB cluster parameter group
	Step 2: Select or create a source DB cluster
	Step 3: Create a target Amazon Redshift data warehouse
	Enable case sensitivity on the data warehouse
	Configure authorization for the data warehouse

	Set up an integration using the AWS SDKs (Aurora MySQL only)
	Python code example

	Next steps

	Creating Aurora zero-ETL integrations with Amazon Redshift
	Prerequisites
	Required permissions
	Sample policy
	Choosing a target data warehouse in a different account
	Required permissions and trust policy

	Creating zero-ETL integrations
	RDS console
	AWS CLI
	RDS API

	Next steps

	Data filtering for Aurora zero-ETL integrations with Amazon Redshift
	Format of a data filter
	Data filters in the AWS CLI

	Filter logic
	Filter precedence
	Examples
	Adding data filters to an integration
	RDS console
	AWS CLI
	RDS API

	Removing data filters from an integration

	Adding data to a source Aurora DB cluster and querying it in Amazon Redshift
	Creating a destination database in Amazon Redshift
	Adding data to the source DB cluster
	Querying your Aurora data in Amazon Redshift
	Data type differences between Aurora and Amazon Redshift databases
	Aurora MySQL
	Aurora PostgreSQL

	Viewing and monitoring Aurora zero-ETL integrations with Amazon Redshift
	Viewing integrations
	Console
	AWS CLI
	RDS API

	Monitoring integrations using system tables
	Monitoring integrations with Amazon EventBridge

	Modifying Aurora zero-ETL integrations with Amazon Redshift
	RDS console
	AWS CLI
	RDS API

	Deleting Aurora zero-ETL integrations with Amazon Redshift
	Console
	AWS CLI
	RDS API

	Troubleshooting Aurora zero-ETL integrations with Amazon Redshift
	I can't create a zero-ETL integration
	My integration is stuck in a state of Syncing
	My tables aren't replicating to Amazon Redshift
	One or more of my Amazon Redshift tables requires a resync

	Using Aurora Serverless v2
	Aurora Serverless v2 use cases
	Using Aurora Serverless v2 for existing provisioned workloads

	Advantages of Aurora Serverless v2
	How Aurora Serverless v2 works
	Aurora Serverless v2 overview
	Configurations for Aurora DB clusters
	Aurora Serverless v2 capacity
	Aurora Serverless v2 scaling
	Aurora Serverless v2 and high availability
	Aurora Serverless v2 and storage
	Configuration parameters for Aurora clusters

	Requirements and limitations for Aurora Serverless v2
	Region and version availability
	Clusters that use Aurora Serverless v2 must have a capacity range specified
	Some provisioned features aren't supported in Aurora Serverless v2
	Some Aurora Serverless v2 aspects are different from Aurora Serverless v1

	Creating a DB cluster that uses Aurora Serverless v2
	Settings for Aurora Serverless v2 DB clusters
	Creating an Aurora Serverless v2 DB cluster
	Console
	CLI
	API

	Creating an Aurora Serverless v2 writer DB instance
	Console
	CLI

	Managing Aurora Serverless v2 DB clusters
	Setting the Aurora Serverless v2 capacity range for a cluster
	Console
	AWS CLI
	RDS API

	Checking the capacity range for Aurora Serverless v2
	Checking the current capacity range for an Aurora cluster

	Adding an Aurora Serverless v2 reader
	Converting a provisioned writer or reader to Aurora Serverless v2
	Converting an Aurora Serverless v2 writer or reader to provisioned
	Choosing the promotion tier for an Aurora Serverless v2 reader
	Using TLS/SSL with Aurora Serverless v2
	Supported cipher suites for connections to Aurora Serverless v2 DB clusters

	Viewing Aurora Serverless v2 writers and readers
	Logging for Aurora Serverless v2
	Logging with Amazon CloudWatch
	Viewing Aurora Serverless v2 logs in Amazon CloudWatch
	Monitoring capacity with Amazon CloudWatch

	Performance and scaling for Aurora Serverless v2
	Choosing the Aurora Serverless v2 capacity range for an Aurora cluster
	Choosing the minimum Aurora Serverless v2 capacity setting for a cluster
	Choosing the maximum Aurora Serverless v2 capacity setting for a cluster
	Example: Change the Aurora Serverless v2 capacity range of an Aurora MySQL cluster
	Example: Change the Aurora Serverless v2 capacity range of an Aurora PostgreSQL cluster

	Working with parameter groups for Aurora Serverless v2
	Default parameter values
	Maximum connections for Aurora Serverless v2
	Parameters that Aurora adjusts as Aurora Serverless v2 scales up and down
	Parameters that Aurora computes based on Aurora Serverless v2 maximum capacity

	Avoiding out-of-memory errors
	Important Amazon CloudWatch metrics for Aurora Serverless v2
	How Aurora Serverless v2 metrics apply to your AWS bill
	Examples of CloudWatch commands for Aurora Serverless v2 metrics

	Monitoring Aurora Serverless v2 performance with Performance Insights
	Troubleshooting Aurora Serverless v2 capacity issues

	Migrating to Aurora Serverless v2
	Upgrading or switching existing clusters to use Aurora Serverless v2
	Upgrade paths for MySQL-compatible clusters to use Aurora Serverless v2
	Upgrade paths for PostgreSQL-compatible clusters to use Aurora Serverless v2

	Switching from a provisioned cluster to Aurora Serverless v2
	Comparison of Aurora Serverless v2 and Aurora Serverless v1
	Comparison of Aurora Serverless v2 and Aurora Serverless v1 requirements
	Comparison of Aurora Serverless v2 and Aurora Serverless v1 scaling and availability
	Comparison of Aurora Serverless v2 and Aurora Serverless v1 feature support
	Adapting Aurora Serverless v1 use cases to Aurora Serverless v2

	Upgrading from an Aurora Serverless v1 cluster to Aurora Serverless v2
	Aurora MySQL–compatible DB clusters
	Aurora PostgreSQL–compatible DB clusters

	Migrating from an on-premises database to Aurora Serverless v2

	Using Amazon Aurora Serverless v1
	Region and version availability for Aurora Serverless v1
	Advantages of Aurora Serverless v1
	Use cases for Aurora Serverless v1
	Limitations of Aurora Serverless v1
	Configuration requirements for Aurora Serverless v1
	Using TLS/SSL with Aurora Serverless v1
	Supported cipher suites for connections to Aurora Serverless v1 DB clusters

	How Aurora Serverless v1 works
	Aurora Serverless v1 architecture
	Autoscaling for Aurora Serverless v1
	Timeout action for capacity changes
	Pause and resume for Aurora Serverless v1
	Determining the maximum number of database connections for Aurora Serverless v1
	Parameter groups for Aurora Serverless v1
	Modifying parameter values for Aurora Serverless v1

	Logging for Aurora Serverless v1
	Viewing Aurora Serverless v1 logs with Amazon CloudWatch

	Aurora Serverless v1 and maintenance
	Aurora Serverless v1 and failover
	Aurora Serverless v1 and snapshots

	Creating an Aurora Serverless v1 DB cluster
	Console
	Example for Aurora MySQL
	Example for Aurora PostgreSQL

	AWS CLI
	Example for Aurora MySQL
	Example for Aurora PostgreSQL

	RDS API

	Restoring an Aurora Serverless v1 DB cluster
	Console
	AWS CLI
	RDS API

	Modifying an Aurora Serverless v1 DB cluster
	Modifying the scaling configuration of an Aurora Serverless v1 DB cluster
	Console
	AWS CLI
	RDS API

	Upgrading the major version of an Aurora Serverless v1 DB cluster
	Console
	AWS CLI
	RDS API

	Converting an Aurora Serverless v1 DB cluster to provisioned
	AWS CLI
	RDS API

	Scaling Aurora Serverless v1 DB cluster capacity manually
	Console
	AWS CLI
	RDS API

	Viewing Aurora Serverless v1 DB clusters
	Monitoring capacity and scaling events for your Aurora Serverless v1 DB cluster

	Deleting an Aurora Serverless v1 DB cluster
	Console
	AWS CLI

	Aurora Serverless v1 and Aurora database engine versions
	Aurora MySQL Serverless
	Aurora PostgreSQL Serverless

	Using RDS Data API
	Region and version availability
	Limitations with RDS Data API
	Comparison of RDS Data API with Serverless v2 and provisioned, and Aurora Serverless v1
	Authorizing access to RDS Data API
	Working with tag-based authorization
	Storing database credentials in AWS Secrets Manager

	Enabling RDS Data API
	Enabling RDS Data API when you create a database
	Console
	AWS CLI
	RDS API

	Enabling RDS Data API on an existing database
	Enabling or disabling Data API (Aurora PostgreSQL Serverless v2 and provisioned)
	Console
	AWS CLI
	RDS API

	Enabling or disabling Data API (Aurora Serverless v1 only)
	Console
	AWS CLI
	RDS API

	Creating an Amazon VPC endpoint for RDS Data API (AWS PrivateLink)
	Calling RDS Data API
	Data API operations reference
	Calling RDS Data API with the AWS CLI
	Starting a SQL transaction
	Running a SQL statement
	Running a batch SQL statement over an array of data
	Committing a SQL transaction
	Rolling back a SQL transaction

	Calling RDS Data API from a Python application
	Running a SQL query
	Running a DML SQL statement
	Running a SQL transaction

	Calling RDS Data API from a Java application
	Running a SQL query
	Running a SQL transaction
	Running a batch SQL operation

	Controlling Data API timeout behavior

	Using the Java client library for RDS Data API
	Downloading the Java client library for Data API
	Java client library examples

	Processing RDS Data API query results in JSON format
	Retrieving query results in JSON format
	Data Type Mapping
	Troubleshooting
	Examples

	Troubleshooting RDS Data API issues
	Transaction <transaction_ID> is not found
	Packet for query is too large
	Database response exceeded size limit
	HttpEndpoint is not enabled for cluster <cluster_ID>

	Logging RDS Data API calls with AWS CloudTrail
	Working with Data API information in CloudTrail
	Including and excluding Data API events from an AWS CloudTrail trail
	Including Data API events in an AWS CloudTrail trail
	Excluding Data API events from an AWS CloudTrail trail (Aurora Serverless v1 only)

	Understanding Data API log file entries

	Using the Aurora query editor
	Availability of the query editor
	Authorizing access to the query editor
	Running queries in the query editor
	Database Query Metadata Service (DBQMS) API reference
	CreateFavoriteQuery
	CreateQueryHistory
	CreateTab
	DeleteFavoriteQueries
	DeleteQueryHistory
	DeleteTab
	DescribeFavoriteQueries
	DescribeQueryHistory
	DescribeTabs
	GetQueryString
	UpdateFavoriteQuery
	UpdateQueryHistory
	UpdateTab

	Using Amazon Aurora machine learning
	Using Amazon Aurora machine learning with Aurora MySQL
	Requirements for using Aurora machine learning with Aurora MySQL
	Region and version availability
	Supported features and limitations of Aurora machine learning with Aurora MySQL
	Setting up your Aurora MySQL DB cluster to use Aurora machine learning
	Setting up your Aurora MySQL DB cluster to use Amazon Bedrock
	Setting up your Aurora MySQL DB cluster to use Amazon Comprehend
	Setting up your Aurora MySQL DB cluster to use SageMaker
	Setting up your Aurora MySQL DB cluster to use Amazon S3 for SageMaker (Optional)

	Granting database users access to Aurora machine learning
	Granting access to Amazon Bedrock functions
	Granting access to Amazon Comprehend functions
	Granting access to SageMaker functions

	Using Amazon Bedrock with your Aurora MySQL DB cluster
	Using Amazon Comprehend with your Aurora MySQL DB cluster
	Using SageMaker with your Aurora MySQL DB cluster
	Character set requirement for SageMaker functions that return strings
	Exporting data to Amazon S3 for SageMaker model training (Advanced)

	Performance considerations for using Aurora machine learning with Aurora MySQL
	Model and prompt
	Query cache
	Batch optimization for Aurora machine learning function calls

	Monitoring Aurora machine learning

	Using Amazon Aurora machine learning with Aurora PostgreSQL
	Requirements for using Aurora machine learning with Aurora PostgreSQL
	Supported features and limitations of Aurora machine learning with Aurora PostgreSQL
	Setting up your Aurora PostgreSQL DB cluster to use Aurora machine learning
	Setting up Aurora PostgreSQL to use Amazon Bedrock
	Setting up Aurora PostgreSQL to use Amazon Comprehend
	Setting up Aurora PostgreSQL to use Amazon SageMaker
	Setting up Aurora PostgreSQL to use Amazon S3 for SageMaker (Advanced)

	Installing the Aurora machine learning extension

	Using Amazon Bedrock with your Aurora PostgreSQL DB cluster
	Using Amazon Comprehend with your Aurora PostgreSQL DB cluster
	Using SageMaker with your Aurora PostgreSQL DB cluster
	Creating a user-defined function to invoke a SageMaker model
	Passing an array as input to a SageMaker model
	Specifying batch size when invoking a SageMaker model
	Invoking a SageMaker model that has multiple outputs

	Exporting data to Amazon S3 for SageMaker model training (Advanced)
	Performance considerations for using Aurora machine learning with Aurora PostgreSQL
	Understanding batch mode and Aurora machine learning functions
	Function migration from the SELECT statement to the FROM clause
	Using the max_rows_per_batch parameter
	Verifying batch-mode execution

	Improving response times with parallel query processing
	Using materialized views and materialized columns

	Monitoring Aurora machine learning

	Code examples for Aurora using AWS SDKs
	Hello Aurora
	Actions for Aurora using AWS SDKs
	Use CreateDBCluster with an AWS SDK or CLI
	Use CreateDBClusterParameterGroup with an AWS SDK or CLI
	Use CreateDBClusterSnapshot with an AWS SDK or CLI
	Use CreateDBInstance with an AWS SDK or CLI
	Use DeleteDBCluster with an AWS SDK or CLI
	Use DeleteDBClusterParameterGroup with an AWS SDK or CLI
	Use DeleteDBInstance with an AWS SDK or CLI
	Use DescribeDBClusterParameterGroups with an AWS SDK or CLI
	Use DescribeDBClusterParameters with an AWS SDK or CLI
	Use DescribeDBClusterSnapshots with an AWS SDK or CLI
	Use DescribeDBClusters with an AWS SDK or CLI
	Use DescribeDBEngineVersions with an AWS SDK or CLI
	Use DescribeDBInstances with an AWS SDK or CLI
	Use DescribeOrderableDBInstanceOptions with an AWS SDK or CLI
	Use ModifyDBClusterParameterGroup with an AWS SDK or CLI

	Scenarios for Aurora using AWS SDKs
	Get started with Aurora DB clusters using an AWS SDK

	Cross-service examples for Aurora using AWS SDKs
	Create a lending library REST API
	Create an Aurora Serverless work item tracker

	Best practices with Amazon Aurora
	Basic operational guidelines for Amazon Aurora
	DB instance RAM recommendations
	AWS database drivers
	Monitoring Amazon Aurora
	Working with DB parameter groups and DB cluster parameter groups
	Amazon Aurora best practices video

	Performing a proof of concept with Amazon Aurora
	Overview of an Aurora proof of concept
	1. Identify your objectives
	2. Understand your workload characteristics
	3. Practice with the AWS Management Console or AWS CLI
	Practice with the AWS Management Console
	Practice with the AWS CLI

	4. Create your Aurora cluster
	5. Set up your schema
	6. Import your data
	7. Port your SQL code
	8. Specify configuration settings
	9. Connect to Aurora
	10. Run your workload
	11. Measure performance
	12. Exercise Aurora high availability
	13. What to do next

	Security in Amazon Aurora
	Database authentication with Amazon Aurora
	Password authentication
	IAM database authentication
	Kerberos authentication

	Password management with Amazon Aurora and AWS Secrets Manager
	Region and version availability
	Limitations for Secrets Manager integration with Amazon Aurora
	Overview of managing master user passwords with AWS Secrets Manager
	Benefits of managing master user passwords with Secrets Manager
	Permissions required for Secrets Manager integration
	Enforcing Aurora management of the master user password in AWS Secrets Manager
	Managing the master user password for a DB cluster with Secrets Manager
	Console
	AWS CLI
	RDS API

	Rotating the master user password secret for a DB cluster
	Console
	AWS CLI
	RDS API

	Viewing the details about a secret for a DB cluster
	Console
	AWS CLI
	RDS API

	Data protection in Amazon RDS
	Protecting data using encryption
	Encrypting Amazon Aurora resources
	Overview of encrypting Amazon Aurora resources
	Encrypting an Amazon Aurora DB cluster
	Determining whether encryption is turned on for a DB cluster
	Console
	AWS CLI
	RDS API

	Availability of Amazon Aurora encryption
	Encryption in transit
	Limitations of Amazon Aurora encrypted DB clusters

	AWS KMS key management
	Authorizing use of a customer managed key
	Amazon RDS encryption context

	Using SSL/TLS to encrypt a connection to a DB cluster
	Certificate authorities
	Setting the CA for your database
	DB server certificate validities
	Viewing the CA for your DB instance

	Download certificate bundles for Aurora
	Certificate bundles by AWS Region
	Viewing the contents of your CA certificate

	Rotating your SSL/TLS certificate
	Considerations for rotating certificates
	Updating your CA certificate by modifying your DB instance
	Updating your CA certificate by applying maintenance
	Automatic server certificate rotation
	Sample script for importing certificates into your trust store

	Internetwork traffic privacy
	Traffic between service and on-premises clients and applications

	Identity and access management for Amazon Aurora
	Audience
	Authenticating with identities
	AWS account root user
	Federated identity
	IAM users and groups
	IAM roles

	Managing access using policies
	Identity-based policies
	Other policy types
	Multiple policy types

	How Amazon Aurora works with IAM
	Aurora identity-based policies
	Identity-based policy examples for Aurora

	Resource-based policies within Aurora
	Policy actions for Aurora
	Policy resources for Aurora
	Policy condition keys for Aurora
	Access control lists (ACLs) in Aurora
	Attribute-based access control (ABAC) in policies with Aurora tags
	Using temporary credentials with Aurora
	Forward access sessions for Aurora
	Service roles for Aurora
	Service-linked roles for Aurora

	Identity-based policy examples for Amazon Aurora
	Policy best practices
	Using the Aurora console
	Allow users to view their own permissions
	Allow a user to create DB instances in an AWS account
	Permissions required to use the console
	Allow a user to perform any describe action on any RDS resource
	Allow a user to create a DB instance that uses the specified DB parameter group and subnet group
	Grant permission for actions on a resource with a specific tag with two different values
	Prevent a user from deleting a DB instance
	Deny all access to a resource
	Example policies: Using condition keys
	Example 1: Grant permission to create a DB instance that uses a specific DB engine and isn't MultiAZ
	Example 2: Explicitly deny permission to create DB instances for certain DB instance classes and create DB instances that use Provisioned IOPS
	Example 3: Limit the set of tag keys and values that can be used to tag a resource

	Specifying conditions: Using custom tags
	Example policies: Using custom tags
	Example 1: Grant permission for actions on a resource with a specific tag with two different values
	Example 2: Explicitly deny permission to create a DB instance that uses specified DB parameter groups
	Example 3: Grant permission for actions on a DB instance with an instance name that is prefixed with a user name

	AWS managed policies for Amazon RDS
	AWS managed policy: AmazonRDSReadOnlyAccess
	AWS managed policy: AmazonRDSFullAccess
	AWS managed policy: AmazonRDSDataFullAccess
	AWS managed policy: AmazonRDSEnhancedMonitoringRole
	AWS managed policy: AmazonRDSPerformanceInsightsReadOnly
	AWS managed policy: AmazonRDSPerformanceInsightsFullAccess
	AWS managed policy: AmazonRDSDirectoryServiceAccess
	AWS managed policy: AmazonRDSServiceRolePolicy

	Amazon RDS updates to AWS managed policies
	Preventing cross-service confused deputy problems
	IAM database authentication
	Region and version availability
	CLI and SDK support
	Limitations for IAM database authentication
	Recommendations for IAM database authentication
	Unsupported AWS global condition context keys
	Enabling and disabling IAM database authentication
	Console
	AWS CLI
	RDS API

	Creating and using an IAM policy for IAM database access
	Attaching an IAM policy to a permission set or role

	Creating a database account using IAM authentication
	Using IAM authentication with Aurora MySQL
	Using IAM authentication with Aurora PostgreSQL

	Connecting to your DB cluster using IAM authentication
	Connecting to your DB cluster using IAM authentication with the AWS drivers
	Connecting to your DB cluster using IAM authentication from the command line: AWS CLI and mysql client
	Generating an IAM authentication token
	Connecting to a DB cluster

	Connecting to your DB cluster using IAM authentication from the command line: AWS CLI and psql client
	Generating an IAM authentication token
	Connecting to an Aurora PostgreSQL cluster

	Connecting to your DB cluster using IAM authentication and the AWS SDK for .NET
	Connecting to your DB cluster using IAM authentication and the AWS SDK for Go
	Connecting using IAM authentication and the AWS SDK for Go V2
	Connecting using IAM authentication and the AWS SDK for Go V1.

	Connecting to your DB cluster using IAM authentication and the AWS SDK for Java
	Generating an IAM authentication token
	Manually constructing an IAM authentication token
	Connecting to a DB cluster

	Connecting to your DB cluster using IAM authentication and the AWS SDK for Python (Boto3)

	Troubleshooting Amazon Aurora identity and access
	I'm not authorized to perform an action in Aurora
	I'm not authorized to perform iam:PassRole
	I want to allow people outside of my AWS account to access my Aurora resources

	Logging and monitoring in Amazon Aurora
	Compliance validation for Amazon Aurora
	Resilience in Amazon Aurora
	Backup and restore
	Replication
	Failover

	Infrastructure security in Amazon Aurora
	Security groups
	Public accessibility

	Amazon RDS API and interface VPC endpoints (AWS PrivateLink)
	Considerations for VPC endpoints
	Availability
	Creating an interface VPC endpoint for Amazon RDS API
	Creating a VPC endpoint policy for Amazon RDS API

	Security best practices for Amazon Aurora
	Controlling access with security groups
	Overview of VPC security groups
	Security group scenario
	Creating a VPC security group
	Associating a security group with a DB cluster

	Master user account privileges
	Using service-linked roles for Amazon Aurora
	Service-linked role permissions for Amazon Aurora
	Creating a service-linked role for Amazon Aurora
	Editing a service-linked role for Amazon Aurora
	Deleting a service-linked role for Amazon Aurora
	Cleaning up a service-linked role
	Deleting all of your clusters

	Amazon VPC and Amazon Aurora
	Working with a DB cluster in a VPC
	Working with a DB cluster in a VPC
	Working with DB subnet groups
	Shared subnets
	Amazon Aurora IP addressing
	IPv4 addresses
	IPv6 addresses
	Dual-stack mode
	Dual-stack mode and DB subnet groups
	Working with dual-stack mode DB instances
	Modifying IPv4-only DB clusters to use dual-stack mode
	Availability of dual-stack network DB clusters
	Limitations for dual-stack network DB clusters

	Hiding a DB cluster in a VPC from the internet
	Creating a DB cluster in a VPC
	Step 1: Create a VPC
	Step 2: Create a DB subnet group
	Step 3: Create a VPC security group
	Step 4: Create a DB instance in the VPC

	Scenarios for accessing a DB cluster in a VPC
	A DB cluster in a VPC accessed by an EC2 instance in the same VPC
	A DB cluster in a VPC accessed by an EC2 instance in a different VPC
	A DB cluster in a VPC accessed by a client application through the internet
	A DB cluster in a VPC accessed by a private network

	Tutorial: Create a VPC for use with a DB cluster (IPv4 only)
	Create a VPC with private and public subnets
	Create a VPC security group for a public web server
	Create a VPC security group for a private DB cluster
	Create a DB subnet group
	Deleting the VPC

	Tutorial: Create a VPC for use with a DB cluster (dual-stack mode)
	Create a VPC with private and public subnets
	Create a VPC security group for a public Amazon EC2 instance
	Create a VPC security group for a private DB cluster
	Create a DB subnet group
	Create an Amazon EC2 instance in dual-stack mode
	Create a DB cluster in dual-stack mode
	Connect to your Amazon EC2 instance and DB cluster
	Deleting the VPC

	Quotas and constraints for Amazon Aurora
	Quotas in Amazon Aurora
	Naming constraints in Amazon Aurora
	Amazon Aurora size limits

	Troubleshooting for Amazon Aurora
	Can't connect to Amazon RDS DB instance
	Testing a connection to a DB instance
	Troubleshooting connection authentication

	Amazon RDS security issues
	Error message "failed to retrieve account attributes, certain console functions may be impaired."

	Resetting the DB instance owner password
	Amazon RDS DB instance outage or reboot
	Amazon RDS DB parameter changes not taking effect
	Freeable memory issues in Amazon Aurora
	Amazon Aurora MySQL replication issues
	Diagnosing and resolving lag between read replicas
	Diagnosing and resolving a MySQL read replication failure
	Replication stopped error

	Amazon RDS API reference
	Using the Query API
	Query parameters
	Query request authentication

	Troubleshooting applications on Aurora
	Retrieving errors
	Troubleshooting tips

	Document history
	AWS Glossary

