
Chapter 1

Logic Programming and Databases:
An Overview

This book deals with the integration of logic programming and databases to
generate new types of systems, which extend the frontiers of computer science in
an important direction and fulfil the needs of new applications. Several names
are used to describe these systems:

a) The term deductive database highlights the ability to use a logic programming
style for expressing deductions concerning the content of a database.

b) The term knowledge base management system (KBMS) highlights the ability
to manage (complex) knowledge instead of (simple) data.

c) The term expert database system highlights the ability to use expertise in a
particular application domain to solve classes of problems, but having access
over a large database.

The confluence between logic programming and databases is part of a general
trend in computer science, where different fields are explored in order to discover
and profit from their common concepts.

Logic programming and databases have evolved in parallel throughout the
seventies. Prolog, the most popular language for PROgramming in LOGic, was
born as a simplification of more general theorem proving techniques to provide
efficiency and programmability. Similarly, the relational data model was born
as a simplification of complex hierarchical and network models, to enable set
oriented, nonprocedural data manipulation. Throughout the seventies and early
eighties, the use of both Prolog and relational databases has become widespread,
not only in academic or scientific environments, but also in the commercial world.

Important studies on the relationships between logic programming and rela
tional databases have been conducted since the end of the seventies, mostly from
a theoretical viewpoint. The success of this confluence has been facilitated by the
fact that Prolog has been chosen as the programming language paradigm within
the Japanese Fifth Generation Project. This project aims at the development of
the so-called "computers of the next generation", which will be specialized in
the execution of Artificial Intelligence applications, hence capable of performing
an extremely high number of deductions per time unit. The project also includes
the use of the relational data model for storing large collections of data.

The reaction to the Japanese Fifth Generation Project was an incentive to
research in the interface area between logic programming and relational data
bases. This choice indicated that this area is not just the ground for theoretical
investigations, but also has great potential for future applications.

S. Ceri et al., Logic Programming and Databases
© Springer-Verlag Berlin Heidelberg 1990

2 Chapter 1 Logic Programming and Databases: An Overview

By looking closely at logic programming and at database management, we
discover several features in common:

a) DATABASES. Logic programming systems manage small, single-user, main
memory.databases, which consist of deduction rules and factual information.
Database systems deal instead with large, shared, mass-memory data collec
tions, and provide the technology to support efficient retrieval and reliable
update of persistent data.

b) QUERIES. A query denotes the process through which relevant information
is extracted from the database. In logic programming, a query (or goa0 is
answered by building chains of deductions, which combine rules and factual
information, in order to prove or refute the validity of an initial statement. In
database systems, a query (expressed through a special-purpose data manip
ulation language) is processed by determining the most efficient access path
in mass memory to large data collections, in order to extract relevant infor
mation.

c) CONSTRAINTS. Constraints specify correctness conditions for databases.
Constraint validation is the process through which the correctness of the data
base is preserved, by preventing incorrect data being stored in the database. In
logic programming, constraints are expressed through general-purpose rules,
which are activated whenever the database is modified. In database systems,
only a few constraints are typically expressed using the data definition lan
guage.

Logic programming offers a greater power for expressing queries and constraints
as compared to that offered by data definition and manipulation languages of
database systems. Furthermore, query and constraint representation is possible
in a homogeneous formalism and their evaluation requires the same inferencing
mechanisms, hence enabling more sophisticated reasoning about the database
content. On the other hand, logic programming systems do not provide the
technology for managing large, shared, persistent, and reliable data collections.

The natural extension of logic programming and of database management con
sists in building new classes of systems, placed at the intersection between the two
fields, based on the use of logic programming as a query language. These systems
combine a logic programming style for formulating queries and constraints with
database technology for efficiency and reliability of mass-memory data storage.

1.1 Logic Programming as Query Language

We give an informal presentation of how logic programming can be used as a
query language. We consider a relational database with two relations:

PARENT(PARENT,CHILD), and PERSON(NAME,AGE,SEX).

The tuples of the PARENT relation contain pairs of individuals in parent-child
relationships; the tuples of the PERSON relation contain triples whose first,

1.1 Logic Programming as Query Language 3

PARENT PERSON

PARENT CHILD NAME AGE SEX

john jeff paul 7 male

jeff margaret john 78 male

margaret annze jeff 55 male

john anthony margaret 32 female

anthony bill ann~e 4 female

anthony janet anthony 58 male

mary jeff bill 24 male

claire bill janet 27 female

janet paul mary 75 female

claire 45 female

Fig. 1.1. Example of relational database

second, and third elements are the person's name, age, and sex, respectively. We
assume that each individual in our database has a different name. The content
of the database is shown in Fig.l.l.

We express simple queries to the database using a logic programming language.
We use Prolog for the time being; we assume the reader has some familiarity
with Prolog. We use two special database predicates, parent and person with the
understanding that the ground clauses (facts) for these predicates are stored
in the database. We use standard Prolog conventions on upper and lower case
letters to denote variables and constants. For instance, the tuple <john, jeff> of
the database relation PARENT corresponds to the ground clause:

parent(john,jeff) .

The query: Who are the children of John? is expressed by the following Prolog
goal:

? - parent(john, X).

The answer expected from applying this query to the database is:

X = {jeff, anthony}.

Let us consider now which answer would be given by a Prolog interpreter, op
erating on facts for the two predicates parent and person corresponding to the
database tuples; we assume facts to be asserted in main memory in the order
shown above.

4 Chapter 1 Logic Programming and Databases: An Overview

The answer is as follows: After executing the goal, the variable X is first set
equal to jeff; if the user asks for more answers, then the variable X is set equal
to anthony; if the user asks again for more answers, then the search fails, and
the interpreter prompts no. Note that Prolog returns the result one tuple at a
time, instead of returning the set of all result tuples.

The query: Who are the parents of Jeff? is expressed as follows:

? - parent(X,jeff)·

The set of all answers is:

X = {john, mary}.

Once again, let us consider the Prolog answer: After executing this goal, the
variable X is set equal to john; if the user asks for more answers, then the
variable X is set equal to mary; if the user asks again for more answers, then
the search fails.

We can also express queries where all arguments of the query predicate are
constants. For instance:

? - parent(john,jeff)·

In this case, we expect a positive answer if the tuple <john, jeff> belongs to the
database, and a negative answer otherwise. In the above case, a Prolog system
would produce the answer yes.

Rules can be used to build an Intensional Database (IDB) from the Extensional
Database (EDB). The EDB is simply a relational database; in our example it
includes the relations PARENT and PERSON. The IDB is built from the EDB
by applying rules which define its content, rather than by explicitly storing its
tuples. In the following, we build an IDB which includes the relations FATHER,
MOTHER, GRANDPARENT, SIBLING, UNCLE, AUNT, ANCESTOR, and
COUSIN. Intuitively, all these relationships among persons can be built from
the two EDB relations PARENT and PERSON.

We start by defining the r.elations FATHER and MOTHER, by indicating
simply that a father is a male parent and a mother is a female parent:

father(X, Y) : - person(X, _, male), parent(X, Y).
mother(X, Y) : - person(X, _, female), parent(X, Y).

As a result of this definition, we can deduce from our sample EDB the IDB
shown in Fig. 1.2.

Note that here we are presenting the tuples of the IDB relations as if they
actually existed; in fact, tuples of the IDB are not stored. One can regard the
two rules father and mother above as view definitions, i.e., programs stored in the
database which enable us to build the tuples of father starting from the tuples
of parent and person.

The IDB can be queried as well; we can, for instance, formulate the query:
Who is the mother of Jeff?, as follows:

? - mother(X,jeff).

1.1 Logic Programming as Query Language 5

FATHER MOTHER

FATHER CHILD MOTHER CHILD

john jeff margaret annie

jeff margaret mary jeff

john anthony claire bill

anthony bill janet paul

anthony janet

Fig. 1.2. The IDB relations FATHER and MOTHER

With a Prolog interpreter, after the execution of this query X is set equal
to mary. Notice that the interpreter does not evaluate the entire IDB relation
MOTHER in order to answer the query, but rather it finds just the tuple which
contributes to the answer.

We can proceed with the definition of the IDB relations GRANDPARENT,
SIBLING, UNCLE, and AUNT, with obvious meanings:

grandparent(X, Z) : - parent(X, Y), parent(Y, Z).
sibling(X, Y) : - parent(Z, X), parent(Z, Y), not(X = Y).
uncle(X, Y) : - person(X, _, male), sibling(X, Z), parent(Z, Y).
aunt(X, Y) : - person(X, _, female), sibling(X, Z), parent(Z, Y).

Complex queries to the EDB and IDB can be formulated by building new
rules which combine EDB and IDB predicates, and then presenting goals for
those rules; for instance, Who is the uncle of a male nephew? can be formulated
as follows:

query(X) : - uncle(X, Y), person(Y, _, male).
? - query(X).

More complex IDB relations are built from recursive rules, i.e., rules whose
head predicate occurs in the rule body (we will define recursive rules more
precisely below). Well-known examples of recursive rules are the ANCESTOR
relation and the COUSIN relation.

The ANCESTOR relation includes as tuples all ancestor-descendent pairs,
starting from parents.

ancestor(X, Y) : - parent(X, Y).
ancestor(X, Y) : - parent(X, Z), ancestor(Z, Y).

The COUSIN relation includes as tuples either two children of two siblings,
or, recursively, two children of two previously determined cousins.

6 Chapter 1 Logic Programming and Databases: An Overview

cousin(X, Y) : - parent(Xl,X), parent(Yl, Y), sibling(Xl, Yl).
cousin(X, Y) : - parent(Xl, X), parent(Yl, Y), cousin(Xl, Yl).

The IDB resulting from the two definitions above is shown in Fig. 1.3.

ANCESTOR COUSIN

ANCESTOR DESCENDENT PERSONl PERSON2

john jeff margaret bill

jeff margaret margaret janet

margaret annie anme paul

john anthony

anthony bill

anthony janet

mary jeff

claire bill

janet paul

john margaret

mary margaret

jeff annie

john bill

john janet

anthony paul

john anme

mary annze

john paul

Fig. 1.3. The IDB relations ANCESTOR and COUSIN

This example shows that recursive rules can generate rather large IDB rela
tions. Furthermore, the process of generating IDB tuples is quite complex; for
instance, a Prolog interpreter operating on the query ancestor(X, Y) would gener
ate some of the IDB tuples more than once. Therefore, the efficient computation
of recursive rules is quite critical. On the other hand, recursive rules are very

1.1 Logic Programming as Query Language 7

important because they enable us to derive useful IDB relations that cannot be
expressed otherwise.

Rules can also express integrity constraints. Let us consider the EDB relation
PARENT; we w~uld like to express the following constraint:

a) Self Parent constraint: a person cannot be his (her) own parent.

The formulation of this constraint in Prolog is as follows:

a) incorrectdb: -parent(X, X).

This constraint formulation enables us to inquire about the correctness of the
database. For instance, consider the Prolog goal:

? - incorrectdb.

If no individual X exists satisfying the body of the rule then the answer to this
query is no. In this case, the database is correct. If, instead, such an individual
does exist, then the answer is yes.

Let us consider a few more examples of constraints. For instance:

b) On eM other: Each person has just one mother.
c) PersonParent: Each parent is a person.
d) PersonChild: Each child is a person.
e) AcyclicAncestor: A person cannot be his(her) own ancestor.

These constraints are formulated as follows:

b) incorreddb: - mother(X, Z), mother(Y, Z), not(X = Y).
c) incorrectdb: - parent(X, _), not(person(X, _, _)).
d) incorreddb: - parent(_, Y), not(person(Y, _, _)).
e) incorrectdb: '- ancestor(X, X).

Note that constraints b) and e) also use in their formulation some IDB re
lations, while contraints a), c), and d) refer just to EDB relations. The two
cases, however, are not structurally different. Moreover, note that constraint b)
is a classic functional dependency, while constraints c) and d) express inclusion
dependencies (also called referential integrity).

Let us consider a collection of constraints of this nature. Constraint evaluation
can be used either to preserve the integrity of an initially correct database, or to
determine (and then eliminate) all sources of inconsistency.

Let us consider the former application of constraints, namely, how to preserve
the integrity of a correct database. We recall that the content of a database
is changed by the effects of the execution of transactions. A transaction is
an atomic unit of execution, containing several operations which insert new
tuples, delete existing tuples, or change the content of some tuples. Atomicity
of transactions means that their execution can terminate either with an abort or
with a commit. An abort leaves the initial database state unchanged; a commit
leaves the database in a final state in which all operations of the transaction
are successfully performed. Thus, to preserve consistency, we should accept the

8 Chapter 1 Logic Programming and Databases: An Overview

commit of a transaction iff it produces a final database state that does not violate
any constraint. Efficient methods have been designed for testing the correctness
of the final state of a transaction. These methods assume the database to be
initially correct, and test integrity constraints on the part of the database that
has been modified by the transaction.

Let us consider, then, the application of constraints to restore a valid database
state. The above constraint formulation enables a yes/no answer, which is not
very helpful for such purposes. However, we might, for instance, restate the
constraints as follows:

a) incorrectdb(selfparent, [Xl) : - parent(X,X).
b) incorrectdb(onemother, [X, Y, Zl) :-

mother(X, Z), mother(Y, Z), not(X = Y).
c) incorrectdb(personparent, [Xl) : - parent(X, _), not(person(X, _, _)).
d) incorrectdb(personchild, [Yl) : - parent(_, Y), not(person(Y, _, _)).
e) incorrectdb(acyclicancestor, [Xl) : - ancestor(X,X).

In this formulation, the head of the rule has two arguments; the first argument
contains the constraint name, and the second argument contains the list of
variables which violate the constraint. This constraint formulation enables us to
inquire about the causes of incorrectness of the database. For instance, consider
the Prolog goal:

? - incorrectdb(X, Y).

If there exists no constraint X which is invalidated, then the answer to this
query is no. In this case, the database is correct. If instead one such constraint
exists, then variables X and Yare set equal to the constraint name and the list
of values of variables which cause constraint invalidity. For instance, the answer:

X = personparent, Y = [Karen]

reveals that Karen belongs to the relation PARENT but not to the relation
PERSON; this should be fixed by adding a tuple for Karen to the relation
PERSON.

However, the answer to the above query might not be sufficient to understand
the action required in order to restore the correctness of the database. This
happens with rules b) and e), which express a constraint on IDB relations. We
have already observed that IDB relations are generally not stored explicitly; they
are defined by rules, and their value depends on the EDB relations which appear
in these rules. Thus, violations to constraints b) and e) should be compensated
by actions applied to the underlying EDB relations.

We conclude this example by showing, in Table 1.1, the correspondence be
tween similar concepts in logic programming and in databases that we have seen
so far:

1.2 Prolog and Datalog 9

DATABASE CONCEPTS LOGIC PROGRAMMING CONCEPTS

Relation Predicate

Attribute Predicate argument

Tuple Ground clause (fact)

View Rule

Query Goal

Constraint Goal (returning an expected truth value)

Table 1.1. Correspondence between similar concepts in logic programming and in databases

1.2 Prolog and Datalog

In the previous section, we have shown how a Prolog interpreter operates on
a database of facts, and we have demonstrated that Prolog can act as a pow
erful database language. The choice of Prolog to illustrate the usage of logic
programming as a database language is almost mandatory, since Prolog is the
most popular logic programming language. On the other hand, the use of Prolog
in this context also has some drawbacks, which have been partially revealed by
our example:

1) Tuple-at-a-time processing. While we expect that the result of queries over a
database be a set of tuples, Prolog returns individual tuples, one at a time.

2) Order sensitivity and procedurality. Processing in Prolog is affected by the
order of rules or facts in the database and by the order of predicates within
the body of the rule. In fact, the Prolog programmer uses order sensitivity
to build efficient programs, thereby trading the so-called declarative nature
of logic programming for procedurality. Instead, database languages (such as
SQL or relational algebra) are nonprocedural: the execution of database queries
is insensitive to order of retrieval predicates or of database tuples.

3) Special predicates. Prolog programmers control the execution of programs
through special predicates (used, for instance, for input/output, for debug
ging, and for affecting backtracking). This is another important loss of the
declarative nature of the language, which has no counterpart in database lan
guages.

4) Function symbols. Prolog has function symbols, which are typically used for
building recursive functions and complex data structures; neither of these
applications are useful for operating over a flat relational database, although
they might be useful for operating over complex database objects. We will not
address this issue in this book.

These reasons motivate the search for an alternative to Prolog as a database and
logic programming language; such an alternative is the new language Datalog.

10 Chapter 1 Logic Programming and Databases: An Overview

Datalog is a logic programming language designed for use as a database lan
guage. It is nonprocedural, set-oriented, with no order sensitivity, no special
predicates, and no function symbols. Thus, Datalog achieves the objective of
eliminating all four drawbacks of Prolog defined above.

Syntacti'cally, Datalog is very similar to pure Prolog. All Prolog rules listed in
the previous section for expressing queries and constraints are also valid Datalog
rules. Their execution produces the set of all tuples in the result; for instance,
after executing the goal:

7 - parent (john , X).

We obtain:

X = { jeff, anthony }.

As an example of the difference between Prolog and Datalog in order sensitivity,
consider the following two programs:

Program Ancestor 1:

ancestor(X, Y) : - parent(X, Y).
ancestor(X, Y) : - parent(X, Z), ancestor(Z, Y).

Program Ancestor2:

ancestor(X, Y) : - ancestor(Z, Y), parent(X, Z).
ancestor(X, Y) : - parent(X, Y).

Input goal:

7 - ancestor(X, Y).

Both Ancestor! and Ancestor2 are syntactically correct programs either in Prolog
or in Datalog.Datalog is neither sensitive to the order of rules, nor to the order of
predicates within rules; hence it produces the correct expected answer (namely,
the set of all ancestor-descendent pairs) in either version. A Prolog interpreter,
instead, produces the expected behavior in version Ancestor! (namely, the first
ancestor-descendent pair); but it loops forever in version Ancestor2. In fact,
the Prolog programmer must avoid writing looping programs, while the Datalog
programmer need not worry about this possibility.

The process that has led to the definition of Datalog is described in Fig.1.4.
The picture was shown by Jeff Ullman at Sigmod 1984; it indicates that the
evolution from Prolog to Datalog consists in going from a procedural, record
oriented language to a nonprocedural, set-oriented language; that process was
also characteristic of the evolution of database languages, from hierarchic and
network databases to relational databases. Even though Datalog is a declara
tive language and its definition is independent of any particular search strategy,
Datalog goals are usually computed with the breadth-first search strategy, which
produces the set of all answers, rather than with the depth-first search strategy of
Prolog, which produces answers with a tuple-at-a-time approach. This is consis
tent with the set-oriented approach of relational query languages. Furthermore,

1.3 Alternative Architectures 11

in Datalog the programmer does not need to specify the procedure for accessing
data, which is left as system responsibility; this is again consistent with relational
query languages, which are nonprocedural.

procedural
record-oriented

languages

nonprocedural
set - oriented

languages

HIERARCHIC
AND NETWORK

DATABASES
I
I
I
L

RELATIONAL
DATABASES

Fig.lA. Datalog as an evolution of Prolog

PROLOG
I
I
I
I
I
L

DATALOG

On the other hand, these features limit the power of Datalog as a general
purpose programming language. In fact, Datalog is obtained by subtracting some
features from Prolog, but not, for the time being, by adding to it features which
belong to classical database languages. Therefore, Datalog is mostly considered
a good abstraction for illustrating the use of logic programming as a database
language, rather than a full-purpose language. We expect, however, that Datalog
will evolve to incorporate a few other features and will turn into a full-purpose
database language in the near future.

In Table 1.2, we summarize the features that characterize Datalog in contrast
to Prolog.

PROLOG DATALOG

Depth-first search (usually) Breadth-first search

Tuple-at-a-time Set-oriented

Order sensitive No order sensitivity

Special predicates No special predicates

Function symbols No function symbols

Table 1.2. Comparison of Prolog and Datalog

1.3 Alternative Architectures

Turning Prolog and Datalog into database languages requires the development
of new systems, which integrate the functionalities of logic programming and

12 Chapter 1 Logic Programming and Databases: An Overview

database systems. Several alternative architectures have been proposed for this
purpose; in this section, we present a first classification of the various approaches.

The first, broader distinction concerns the relationship between logic program
ming and relational systems.

a) We describe the development of an interface between two separate subsys
tems, a logic programming system and a database system, as coupling. With
this approach, we start from two currently available systems, and we couple
them so as to provide a single-system image. Both subsystems preserve their
individuality; an interface between them provides the procedures required for
bringing data from the persistent database system into the main-memory logic
programming execution environment in order to evaluate queries or to validate
constraints.

b) We describe the development of a single system which provides logic program
ming on top of a mass-memory database system as integration. This approach
corresponds to the development of an entirely new class of data structures
and algorithms, specifically designed to use logic programming as a database
language.

Given the above alternatives, it is reasonable to expect that Prolog-based systems
will mostly use the coupling approach, and Datalog-based systems will mostly use
the integration approach. This is due to the present availability of many efficient
Prolog systems that can be coupled with existing database systems with various
degrees of sophistication. In fact, several research prototypes and even a few
commercial products that belong to this class are already available. On the other
hand, Datalog is an evolution of Prolog specifically designed to act as a database
language; hence it seems convenient to use this new language in the development
of radically new integrated systems. This mapping of Prolog to coupling and of
Datalog to integration should not be considered mandatory. Indeed, we should
recall that the Fifth Generation Project will produce an integrated system based
on a parallel version of Prolog.

The coupling approach is easier to achieve but also potentially much less effi
cient than the integration approach. In fact, we cannot expect the same efficiency
from the interface required by the coupling approach as from a specifically de
signed system. Furthermore, the degree of complexity of the interfaces can be
very different. At one extreme, the simplest interface between a Prolog system
and a relational system consists in generating a distinct SQL-like query in cor
respondence to every attempt at unification of each database predicate. This
approach is very simple, but also potentially highly inefficient.

Hence, we expect that coupling will be sufficient for dealing with some applica
tions, while other applications will require integration; further, coupling may be
made increasingly efficient by superimposing ad-hoc techniques to the standard
interfaces, thus achieving the ability of dealing with several special applications.

Within coupling, we further distinguish two alternative approaches:

a) Loose coupling. With this approach, the interaction between the logic program
ming and database systems takes place independently of the actual inference

1.3 Alternative Architectures 13

process. Typically, coupling is performed at compile time (or at program load
time, with interpreters), by extracting from the database all the facts that
might be required by the program; sometimes, coupling is performed on a
rule-by-rule basis, prior to the activation of that rule. Loose coupling is also
called static coupling because coupling actions are performed independently
of the actual pattern of execution of each rule.

b) Tight coupling. With this approach, the interaction between the logic pro
gramming and database systems is driven by the inference process, by ex
tracting the specific facts required to answer the current goal or subgoal. In
this way, coupling is performed whenever the logic programming system needs
more data from the database system in order to proceed with its inference.
Tight coupling is also called dynamic coupling because coupling actions are
performed in the frame of the execution of each rule.

It follows from this presentation that loose and tight coupling are very different
in complexity, selectivity, memory required, and performance. With loose cou
pling, we execute fewer queries of the database, because each predicate or rule
is separately considered once and for all; while with tight coupling each rule or
predicate can be considered several times. However, queries in loosely coupled
systems are less selective than queries in tightly coupled systems, because vari
ables are not instantiated (bound to constants) when queries are executed. If
coupling is performed at compile or load time, queries are presented a priori,
disregarding the actual pattern of execution of the logic program. In fact, it is
even possible to load data at compile or load time concerning a rule or predicate
that will not be used during the work session.

From these considerations, we deduce that the amount of main memory re
quired for storing data which is to be retrieved by a loosely coupled system is
higher than that required by a tightly coupled system. On the other hand, this
consideration does not allow us to conclude that the performance of tightly cou
pled systems is always better; in general, tight coupling requires more frequent
interactions with the database, and this means major overhead for the interface,
with frequent context switching between the two systems. Thus, a comparison
between the two approaches is difficult, and includes a trade-off analysis between
memory used and execution time.

In Table 1.3, we summarize the comparison between loose and tight coupling.

LOOSE COUPLING TIGHT COUPLING

fewer queries more queries

less instantiated queries more instantiated queries

all queries applied relevant queries applied

more memory required less memory required

Table 1.3. Comparison between loose and tight coupling

14 Chapter 1 Logic Programming and Databases: An Overview

1.4 Applications

There are a number of new applications needing integrated systems at the con
fluence between databases and logic programming; the following is a list of the
features of these applications.

a) Database need. The application must need to access data stored in a database.
This means access to persistent, shared data that are resilent to failures
and that can be accessed and updated concurrently by other applications.
If we consider most expert systems or knowledge bases presently available, we
observe that these systems have access to persistent data files, but that these
are locally owned and controlled, with no sharing, concurrency, or reliability
requirement with other applications.

b) Selective access. We cannot postulate that the entire database will be exam
ined by the application during a work session, or else we should deal with
data retrieval loads which exceed those of traditional database applications.
Instead, we can postulate that during the work session the application will
retrieve only a limited portion of the database, due to its selective access to
data.

c) Limited working set. As a result of the previous assumption, the working set
of data, namely the data required in main memory at a given time, is limited.
This requirement is particularly important for loosely coupled systems, as
loose coupling does not profit from the access selectivity, which is not expressed
at compile time.

d) Demanding database activity. It is quite important to understand that systems
which perform millions oj deductions per second, as stated in the requirements
of the Fifth Generation Project, are likely to put quite a heavy demand on
the database. For instance, the computation of recursive rules requires a
high number of interactions with the database. This feature contrasts with
the typical database transactions, which serve thousands oj transactions per
second, each one responsible for a small amount of input/output operations.

Dealing with the above features extends the current spectrum of applicability
of expert systems and other artificial intelligence applications; it also solves
classical database problems, such as the bill-oj-materials or the anti-trust control
problems. These problems will be described in Chap. 3.

1.5 Bibliographic Notes

The relationship between logic programming and databases has been investigated
since November 1977, when the conference on Logic and Databases took place
in Toulouse; this event was followed by other two conferences on Advances in
Database Theory, held in 1979 and 1982, again centered on this subject. The
proceedings of the conferences, edited by Gallaire and Minker [Gall 78] and by
Gallaire, Minker, and Nicolas [Gall 81, Gall 84a], contain fundamental papers

1.5 Bibliographic Notes 15

for the systematization of this field. Perhaps the best synthesis of the results
in Logic and Databases achieved before 1984 is contained in a paper, again by
Gallaire, Minker, and Nicolas, which appeared in ACM Computing Surveys [Gall
84b].

Two events characterize the growth of interest in this field: the selection, by
the Japanese Fifth Generation Project, of an architecture based on Prolog as
main programming language and of the relational model for data representation
[Itoh 86]; and the growth of interest in the database theory community in logic
queries and recursive query processing, marked by the seminal paper of Ullman
[Ullm 85a]. Ullman has also presented, at the ACM-SIGMOD conference in 1984,
the picture shown in Sect. 1.2 indicating the relationship between Prolog and
Datalog. All recent database conferences (ACM-SIGMOD, ACM-PODS, VLDB,
Data Engineering, ICDT, EDBT) have presented one or more sessions on logic
programming and databases.

Parallel interest in Expert Database Systems, characterized by a more prag
matic, application-oriented approach, has in turn been presented through the new
series of Expert Database Systems (EDS) conferences, organized by L. Kersch
berg [Kers 84], [Kers 86], and [Kers 88]. The reading of the conference proceedings
makes it possible to follow the growth, systematization, and spread of this area.

Specialized workshops on knowledge base management systems and on de
ductive databases were held in Islamorada [Brod 86], Washington [Mink 88], and
Venice [Epsi 86]. Good overview papers describing methods for recursive query
processing have been presented by Bancilhon and Ramakrishnan [Banc 86b], by
Gardarin and Simon [Gard 87], and by Roelants [Roe187]. A comparison of ongo
ing research projects for integrating databases and logic is provided by a special
issue of IEEE-Database Engineering, edited by Zaniolo [Zani 87].

