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Cosmological observations from Big Bang Nucleosynthesis and the Cosmic Microwave Background
(CMB) offer crucial insights into the Early Universe, enabling us to trace its evolution back to life-
times as short as 0.01 seconds. Upcoming CMB spectrum measurements, such as those underway
at the Simons Observatory, will achieve unprecedented precision, allowing for more accurate ex-
traction of information about the properties of the primordial plasma and, in particular, primordial
neutrinos. This provides an opportunity to test whether these properties align with the predictions
of the standard cosmological model or indicate the presence of new physics that influenced the
evolution of the MeV-temperature plasma. A key component in understanding how new physics
may have affected primordial neutrinos is solving the neutrino Boltzmann equation. In this paper,
we present a novel approach to solving this equation that offers model independence, transparency,
and computational efficiency – features that current state-of-the-art methods lack. We demonstrate
a proof-of-concept implementation and apply it to several toy scenarios, showcasing key aspects of
the primordial plasma’s evolution in the presence of new physics.

I. INTRODUCTION

Primordial neutrinos are an important messenger from
the Early Universe, bringing us information about the
state of the Universe at times as early as t ≪ 1 s. Their
direct detection is significantly more challenging than
that of primordial photons due to their tiny interaction
cross-section, which is governed by weak interactions.
However, numerously populating the primordial plasma,
they affected a number of cosmological observables. It
makes it possible to indirectly extract information about
their properties from precise cosmic measurements. In
particular, they contribute to the number of ultrarela-
tivistic (UR) degrees of freedom,

Neff =
8

7

(
11

4

) 4
3 ρUR − ργ

ργ
(1)

This quantity determines the characteristic features of
the Cosmic Microwave Background (CMB) and may be
extracted from its measurements.

It is not only the total neutrino energy density that
is important. Another essential property is the shape
of the neutrino energy distribution function. It handles
the neutron-to-proton conversion at MeV temperatures,
which determines the onset of Big Bang Nucleosynthesis
(BBN), as well as affects Baryon Acoustic Oscillations
(BAO) [1, 2]. The shape of the distribution may signifi-
cantly modify the cosmological neutrino mass bound [3].
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Assuming the standard cosmological history, based on
the ΛCDM model, Neff is fully represented by neutrino,
and its value is 3.043-3.044 [4–10]. The shape of the neu-
trino distribution is very close to the Fermi-Dirac dis-
tribution, with tiny distortions in the high-energy tail.
Finally, there is no asymmetry between neutrinos and
antineutrinos. Altogether, it serves as an input to the
Standard Big Bang Nucleosynthesis model, which pre-
dicts the helium abundance Yp = 0.247 ± 0.00017 (see,
e.g., [11, 12]). These numbers agree with the current
BBN and CMB observations. In particular, the mea-
surements performed by the Planck collaboration [13]
constrain Neff = 2.99+0.34

−0.33 at 95% CL, whereas the pri-
mordial Helium abundance measurements are in a range
0.233-0.2573, obtained by combining the observations
from the works [14–21].

However, the uncertainty window of these observations
leaves room for sizeable deviations from standard neu-
trino properties that may potentially originate from the
presence of new physics at temperatures T ≲ 5 MeV,
when neutrinos start decoupling. Examples of such sce-
narios include the presence of non-standard neutrino in-
teractions [22, 23], a lepton asymmetry in the neutrino
sector [24, 25], a change in the expansion dynamics of the
Universe, and the injection of non-thermal neutrinos by
hypothetical Long-Lived Particles, or LLPs [26–35]. The
accuracy of the CMB measurements will be significantly
improved with the future observations with Simons Ob-
servatory [36] (which has started collecting the data on
June 2024) and CMB-S4 mission [37]. They will be able
to measure Neff with a percent precision, thus providing
a unique potential to shed light on properties of the new
physics or constrain it in case of the absence of deviations
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from ΛCDM.
Under certain approximations of neutrino oscillations,

understanding the impact of the new physics effects on
the neutrino properties requires solving the Boltzmann
equation on the neutrino distribution function fνα

:

∂fνα

∂t
− pH

∂fνα

∂p
= Icoll,α[fνα

] (2)

Here, p is neutrinos’ momentum, H is the Hubble factor
accounting for the expansion of the Universe, and Icoll,α
is the collision integral that takes care of the microscopic
of the thermalization.

The main approach considered in literature is to re-
duce the integration inside Icoll analytically as much
as possible and convert the complex integrodifferential
equation (2) into a system of the ordinary differential
equations by discretizing the grid of the comoving mo-
menta (see the pioneering work [38] as well as later
realizations [7, 39, 40], and references therein). The
method has also been used to study some well-motivated
scenarios with LLPs such as Heavy Neutral Leptons
(HNLs) [26, 28, 32–35] and particles in late reheating
scenarios [27].

However, several problems exist with this approach.
First, it has a limited range of applicability, requir-
ing analytic matrix elements for the processes and high
reducibility of the dimensionality of the integration in
Icoll,α. Second, even within the case studies, its compu-
tational complexity quickly grows if high-energy neutri-
nos are present in the system. For instance, depending
on the grid density, solving the Boltzmann equation un-
der the presence of HNLs with masses just ≃ 200 MeV
(injecting neutrinos with energies up to 100 MeV) may
take days [32].

In addition, the method itself is very complex. The
analytic reduction of the collision integral is highly non-
trivial, the comoving grid density has to be adjusted to
the model’s parameters, and solver stability must be care-
fully verified. An indirect consequence of this is that
there is the existing discrepancy between the predictions
of various neutrino Boltzmann codes for the behavior of
Neff in the presence of the injection of high-energy neu-
trinos with energies well exceeding the plasma tempera-
ture. While some studies predict that injection of such
neutrinos would increase Neff, the other show the oppo-
site [26, 28, 33–35]).

In this paper, we address these issues by developing
proof-of-principle of a novel approach to solving the neu-
trino Boltzmann equation based on the so-called Direct
Simulation Monte Carlo (DSMC) [41–44]. Its basis is
the numerical particle representation of the Boltzmann
equation: one starts with a large number of particles
obeying some initial condition in momentum and spa-
tial spaces and then directly simulates their interactions
to study the equilibration. Due to the straightforward-
ness of the method, DSMC directly calculates the linear
functionals, e.g., the number and energy densities, veloc-
ities, etc., without any simplifications. The existing case

studies describe the implementations of DSMC that effi-
ciently simulate collisions of a number of particles as large
as 108 [45, 46]. The simplicity of the scheme describing
the interactions and absence of momentum discretization
automatically release the DSMC approach from most of
the problems described above.
This work also serves as the companion to the pa-

per [47], which presents a summary of the results.
The paper is organized as follows. In Sec. II, we re-

view the properties of the primordial plasma around the
neutrino decoupling, considering both the standard cos-
mological scenario and setups with new physics. Sec. III
is devoted to a discussion on the existing approaches to
solve the neutrino Boltzmann equation. In Sec. IV, we
describe the basics of the DSMC approach and, in par-
ticular, why it may be well-applicable to studying the
dynamics of primordial neutrinos. Sec. V discusses the
necessary modifications to the DSMC simulation required
to study the primordial MeV plasma, and how they can
be implemented. In Sec. VI, we present our proof-of-
principle realization of the approach and different cross-
checks we performed to validate it against well-defined
scenarios. In Sec. VII, we apply the developed approach
to a few case studies simplifying various physics setups,
highlighting the variety of the applicability of the neu-
trino DSMC and the importance of using full Boltzmann
equations. Finally, in Sec. VIII, we make conclusions.

II. PRIMORDIAL PLASMA AT MEV
TEMPERATURES

At cosmic times relevant for our discussion, primor-
dial SM plasma consists of light particles – neutrinos
ν, ν̄, electromagnetically (EM) interacting light particles
(electrons e−, positrons e+, and photons γ), as well as
baryons B = p, n.
The homogeneous and isotropic Universe expands with

the rate H(t) = ȧ(t)/a(t), where a(t) is the scale factor,
and H is the Hubble parameter. Assuming spatial flat-
ness and neglecting the dark energy contribution, we get

H(t) =
1

MPl

√
8π

3
ρUniverse (3)

where MPl is the Planck mass, and ρUniverse the total
energy density of the Universe.
To understand the scaling of ρUniverse, we need to dis-

cuss different components of the primordial plasma and,
in particular, their interactions.

A. EM plasma and nucleons

Let us first consider the EM plasma. Examples of the
processes are Compton scattering and electron-positron
annihilation into a pair of photons. The correspond-
ing rate well exceeds the Hubble parameter for times
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t ≲ 104 s, which includes the period we are interested
in.1 This means that the population of the EM particles
can always be well described by just one quantity – the
temperature of the EM plasma TEM ≡ T .

The distribution function fe± of electrons and
positrons is Fermi-Dirac, while for photons it is Bose-
Einstein:2

fe±(p, T ) =
1

exp

[√
p2+m2

e

T

]
+ 1

, (4)

fγ(p, T ) =
1

exp
[
p
T

]
− 1

, (5)

with the electron’s mass me ≈ 0.511 MeV. The temper-
ature T is related to the total energy density of the EM
particles ρEM by the formula

ρEM(T ) = ρe±(T ) + ργ(T ) (6)

Here, the energy densities of e±, γ are

ρe±(T ) =ge±

∫
d3p

(2π)3

√
p2 +m2

e fe±(p, T ), (7)

ργ(T ) =gγ

∫
d3p

(2π)3
pfγ(p, T ), (8)

with the factors ge± = 4 and gγ = 2 staying for the spin
and charge degrees of freedom.

In terms of T , the Hubble factor (3) can be rewritten
as

H(T ) ≡ T 2

M∗
pl

, M∗
pl ≈

Mpl

1.66
√
g∗(T )

(9)

where g∗ the effective number of relativistic species: g∗ =

ρUniverse/
π2

30T
4, with gi being the number of spin and

charge degrees of freedom.3

Finally, the number density of baryons B in the Early
Universe, nB , may be expressed in terms of the baryon-
to-photon ratio ηB and the photon number density nB =
ηBnγ . The value of ηB at late times T ≃ 1 MeV may
be extracted from the CMB measurements, giving the
central value ηB,Planck = 6.09 · 10−10 [13].

1 The decoupling of EM particles happens much later, during
the recombination epoch, which corresponds to a much larger
timescale tCMB ∼ 105 years. The thermalization time is much
shorter than any relevant timescale for the electromagnetic tem-
peratures above T ≳ 1 keV. At lower temperatures, for exam-
ple, by injecting high-energy e±, γs, we have a chance for them
to photodisintegrate primordial nuclei before the EM particles
thermalize [48].

2 Due to electroneutrality of the Universe, the chemical potential
is vanishingly small, µe±/T ∼ ηB ≃ 10−9, where ηB is the
baryon-to-photon ratio.

3 Assuming the ΛCDM scenario and that all the species are in
perfect equilibrium, it is g∗ ≈ gγ + 7/8(ge + gν) = 10.75.

The relative ratio between protons and neutrons, im-
portant for BBN, is handled by their weak interactions
with neutrinos and e± particles, which drive the p ↔ n
conversion, so the baryons are coupled to the UR content
of the plasma. However, because of the tiny number den-
sity and the absence of other hadrons in the plasma in the
standard scenario, nucleons play a negligible role in the
thermodynamics of the Universe at MeV temperatures.

B. Neutrinos

Let us now discuss neutrinos. Generically, there may
be an asymmetry between neutrinos and antineutrinos,
but the minimal cosmological setup assumes zero asym-
metry.4 Neutrinos interact with themselves and e± par-
ticles via the weak force. The dimensional estimate for
the weak interaction rates gives

Γweak ≃ nν · ⟨σv⟩ ∼ G2
FT

5, (10)

where we assumed that the neutrinos have the thermal
equilibrium with the EM plasma. Namely, nν ∝ T 3 is
the neutrino number density, while ⟨σv⟩ is the thermally
averaged cross-section, which scales as

⟨σv⟩ ∼ G2
F ⟨s⟩ ∼ G2

FT
2, (11)

and GF ≈ 1.167 ·10−5 GeV−2 is the Fermi coupling. The
important feature is that the cross-section scales with the
energies of the interacting particles (we will return to it
in Sec. VII).
The rate becomes comparable to the Hubble expan-

sion rate of the Universe already at T ∼ 1 MeV. As a
result, at these temperatures, the weak reactions are no
longer able to maintain equilibrium in the neutrinos sec-
tor, and the latter gradually decouple [49]. The shape of
their spectrum in ΛCDM closely follows the Fermi-Dirac
one. Its temperature Tνα

remains equal to the EM tem-
perature until the annihilation of electron-positron pairs,
which happens around T ∼ me. Then, their relation
may be found from the entropy conservation law, giving
Tνα

≈ (4/11)1/3T . Extended neutrino decoupling intro-
duces a small correction to this relation, giving Eq. (1).
Neutrino interaction processes. Let us now dis-

cuss neutrino interactions in more detail. They include
elastic scatterings off neutrinos and e± and annihilations:

να + e± ↔να + e±, να + ν̄α ↔ e− + e+, (12)

να + νβ ↔να + νβ , να + ν̄α ↔ νβ + ν̄β , (13)

as well as charge-conjugated ones [32]. The other reac-
tions include the electroweak corrections, such as sub-
dominant e+e− → ναν̄αγ.
The MeV plasma is “flavor-asymmetric” in the sense

that electrons and positrons are present in plasma, while

4 Or at the level of baryon-to-photon ratio, which is negligible.
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µ and τ leptons are not. Given the structure of the
charged current of weak interactions, which includes the
lepton and the corresponding neutrino, the direct inter-
action rate of νe with e± is larger than the rate of the
corresponding scatterings but with νµ,τ . Because of this,
one can naively expect that νµ,τ s decouple earlier from
the EM plasma, while νes are kept longer in equilibrium.
However, besides the interactions (13), neutrinos also ex-
perience flavor transitions called oscillations. The oscil-
lations generically appear because the neutrino charge
eigenstates do not coincide with the mass eigenstates.

In the primordial plasma, the neutrino oscillation rate
is severely affected by the dense medium. Namely, neu-
trinos acquire a correction to the self-energy caused by
interactions with electrons and positrons [49]. It effec-

tively translates to a potential V(να)
eff in the Hamiltonian

describing the propagation of neutrinos να. The func-

tional form of the potential is V(να)
eff = CαG2

FT 4Eν

αEM
, where

Cα is neutrino-dependent constant.

If V(να)
eff is higher than the energy splitting for differ-

ent neutrino eigenstates ∆m2/2Eν , the mixing angle is
effectively suppressed, and oscillations can be ignored.
Therefore, the oscillations are absent at high tempera-
tures and/or for high-energy neutrinos. In ΛCDM, they
effectively turn on at T ≃ 3 MeV.
In total, because of oscillations, the decoupling of three

neutrino flavors occurs in a similar fashion.

C. How new physics may spoil properties of
primordial plasma

There is a variety of ways of introducing new physics
to the primordial plasma. They will change the dynam-
ics of the primordial plasma, in particular, departing
the neutrino properties from the ΛCDM ones. To be
specific, let us consider the scenario appearing in many
well-motivated extensions of the Standard Model, adding
LLPs (with mass m ≫ T ).

To significantly affect the Universe, such particles need
to be out-of-equilibrium relics. Before decaying, they
would increase the energy density of the Universe and
hence modify the Hubble factor. After decaying, their
influence gets split into many contributions. First, they
still modify the dynamics of the Universe by introduc-
ing the dilution to the scale factor a(t). It influences the
behavior and value of ηB at MeV temperatures.5 Sec-
ond, their decay products may either constitute addi-
tional species (“dark radiation”) or inject an energy into
the population of neutrinos and the EM particles. The
EM population gets immediately thermalized, which re-
sults in an increase of TEM, while the neutrino injections

5 Indeed, as its value at eV temperatures is fixed, the value at MeV
temperatures must be larger than the ΛCDM value to compen-
sate for the dilution.

cause the spectral distortions. Since neutrinos with dif-
ferent energies interact at different rates, much slower
than the EM particles, the distortions will not disappear,
affecting the total neutrino number and energy densities,
as well as the p ↔ n conversion rates.
Under such scenarios, the nucleons may also be in-

volved in the thermodynamics of the Universe in a non-
trivial way. Decaying LLPs may inject relatively long-
lived mesons such as π±,K±,KL. Before decaying, these
particles experience numerous interactions with the SM
plasma particles and themselves. Scattering off nucleons
surprisingly becomes very efficient – the smallness of ηB is
compensated by the largeness of the nucleon interaction
cross-section, driven by the strong force [31]. Because
of these scatterings, the mesons change the distribution
of their energy among the neutrino and EM sector [50],
which leads to the impact on the time-temperature rela-
tion t(T ) and neutrino properties.

III. EXISTING APPROACHES TO SOLVE THE
ν BOLTZMANN EQUATION

In general, to study the thermalization of neutrinos,
one has to solve the quantum kinetic equations (QKEs)
for the neutrino density matrix [7, 40, 51]. However,
for our purposes, it may be reasonable to approximate
the oscillations by the temperature-dependent oscillation
probabilities, ⟨Pαβ⟩(Eν , T ), similarly to how this is done
in [28, 32]. Then, it may be possible to reduce the com-
plexity by converting the QKEs into the Boltzmann equa-
tions for the neutrino distribution function fνα

in the
momentum space:

∂fνα(Eν , t)

∂t
− pH

∂fνα
(Eν , t)

∂p
=

=
∑
β

⟨Pβα⟩Icoll,νβ
[fνα

, fνβ
, T ], (14)

supplemented with the Friedmann equation describing
the expansion of the Universe (and in particular H), the
equation for the evolution of the EM plasma temperature
T , and the equation governing the dynamics of LLPs in
case they are present. Here, p = Eνα

is the neutrino
physical momentum. Icoll,νβ

is the collision integral for
the neutrino of the flavor β, which in general contains
a source term from new physics particles, a neutrino-
neutrino interaction term, and a neutrino-EM interaction
term. It has the form [39]

Icoll,να
=

1

2Eνα

∑∫ ∏
i=2

d3pi
(2π)32Ei

∏
f=1

d3pf
(2π)32Ef

× |M|2F [f ](2π)4δ(4)

∑
i=1

pi −
∑
f=1

pf

 . (15)

The first summation encompasses all potential interac-
tion processes involving να, with i = 1 representing the
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neutrino itself. The integral extends over all possible
states of να characterized by momentum p1. Here, i and
j denote the initial and final states of a given process, re-
spectively. The term |M|2 represents the squared matrix
element of the process (see Table 3 in ref. [32] for the ex-
plicit expressions of |M|2 relevant to neutrino processes
at MeV-scale temperatures). The factor F [f ] accounts
for the statistical distribution within the medium and is
given by

F [f ] =
∏
i=1

(1∓ fi)
∏
f=1

ff −
∏
i=1

fi
∏
f=1

(1∓ ff ), (16)

where fi,f denote the momentum distributions for the
i-th and f -th particles. Finally, the factor (1− f) corre-
sponds to Pauli blocking for fermions, whereas (1+f) cor-
responds to Bose enhancement for bosons. Finally, the δ
function ensures the conservation of the 4-momentum in
the process.

Depending on the scenario studied, there are two dif-
ferent state-of-the-art approaches to solving the Boltz-
mann equation (14). If the neutrinos injected by decays
of new physics are close to thermal, Eν ≃ 3.15T , or if de-
cays are solely electromagnetic, then it may be possible
to approximate the neutrino distribution by

fνα(Eν , t) ≈ fFD(Eν , Tνα(t)) =
1

exp
[

Eν

Tνα (t)

]
+ 1

(17)

and consider an integrated version of the Boltzmann
equations on the three neutrino temperatures Tνα(t) [24,
52]. In the limit of negligible electron mass, it may be
possible to represent the energy transfer rates in the sys-
tem as an analytic expression. Another example includes
obtaining a correction to neutrino high-energy tail caused
by non-instant decoupling in the standard scenarios .6

In practice, once we add new physics, the assumption
of the perfect thermality of the neutrino distribution is
typically violated. The first reason is the energy depen-
dence of the equilibration of neutrinos, as discussed in
Sec. II. Neutrinos with different energies interact at very
different rates, which leads to neutrino spectral distor-
tions even if we simply heat the EM plasma.

To study the distortions, one needs to solve the Boltz-
mann equation (14) in the full generality. In the litera-
ture, this is done using the approach that we will call the
discretization method. The algorithm is to analytically
reduce the dimensionality of the integration in Icoll to
some integer k and then discretize the comoving momen-
tum space y = p · a(t).7 The integrodifferential Boltz-

6 It may be converted to the momentum-dependent correction to
the neutrino temperature Tν(p) that approaches T at p ≫ 3.15·T
and vanishes at small momenta.

7 In the Standard cosmological scenario case, the comoving grid
is convenient since it “freezes” the neutrino distribution: e.g.,
the peak of the energy distribution corresponds to the same y at
different times.

mann equation is then converted into a system of ordi-
nary differential equations (see [7, 38–40] and references
therein).
Given the number of points Ny in the momentum

grid, the complexity of the code (and hence its run-
ning time) scales as O(Nk+1

y ). One power of Ny comes
from the number of equations on the momentum model.
The power Nk

y is from the number of terms in the k-
dimensional collision integral. The value of k is bounded
from below by 2, which is just the scenario when we in-
clude weak 2 → 2 reactions with neutrinos and e± [38].
Next, if we assume the linear grid, then Ny ∼ Eν,max,
where Eν,max is the maximal neutrino physical energy
relevant for the evolution of the system.8 Therefore, the
complexity grows as

tcomputation = O(Ek+1
ν,max) (18)

While the approach has been successfully used in the
standard cosmological scenario (see, e.g., [7, 10, 39, 40]),
it has limitations when applying it to new physics sce-
narios. First, it requires simple analytic matrix elements
in the neutrino source terms. In practice, this is not
the case when we have hadronically decaying LLPs with
mass m ≫ ΛQCD. This is because quarks and hadrons
appearing in the decays undergo subsequent showering
and hadronization, which results in a complicated phase
space structure, which is hard to fit in the form of an
analytic matrix element.
Second, even if simple analytic matrix elements do ex-

ist, the computational complexity quickly increases if we
depart significantly from the standard cosmological case.
For example, simply increasing the integration dimen-
sionality from k = 2 to higher values may enormously
increase the time of calculations. This is the case of,
e.g., 2 → 3 scatterings with neutrinos such as the famous
e+e− → νν̄γ. Another example is when there are n-body
decays with n > 3, which are quite often for LLPs [53].
The computational time problem exists even in the

most optimistic case k = 2. Consider injections injec-
tions of high-energy neutrinos with energy Eν ≫ T . It
may appear in decays of LLPs. Considering the energies
Eν ∼ 1 GeV would enlarge the computational time of
the calculations compared to the standard cosmological
case (where we assume Eν,max = 20 MeV) by a factor
∼ 503 ∼ 105 (remind Eq. (18)), making any applications
impossible in practice. Finally, depending on the energy

8 In principle, one may consider a different grid structure, e.g.,
logarithmic. However, it may cause problems with the energy
conservation and stability of the solution throughout the evo-
lution. It is also heavily model-dependent: injected neutrinos
typically have a complicated spectrum, which requires adapting
the grid in a non-trivial way to achieve good accuracy. In fact,
even two-body decays into neutrinos would correspond to dif-
ferent comoving momenta y = pa (depending on the time when
they are injected), as the scale factor would be different. By
varying, e.g., the lifetime τ of the decaying X, one would change
the domain of y populated by the neutrino injections.

Dolgov:1997mb
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density of X, it may sizeably contribute to the Universe’s
energy density. For the same temperature range, the
scale factor would be larger than in the Standard model
case, which does not allow fixing the maximal comoving
momentum in the grid ymax.

To summarize, there is no adequate approach to study
the dynamics of primordial neutrinos in the presence of
new physics while maintaining model independence, effi-
ciency, and transparency.

IV. BASICS OF DSMC

Consider the Liouville equation for the N -particle
probability distribution density FN (R,V, t) with a short-
range potential Φi,j of binary interactions:

∂FN

∂t
+

N∑
i=1

vi
∂FN

∂ri
+

∑
1≤i<j≤N

Φi,jFN = 0 (19)

The DSMC approach approximately solves it using the
following scheme (see [44, 54, 55] and references therein):

1. Apply the N−1 space variable reduction FN → F̃N =∫
FN

∏N
s=2 drs.

2. Switch to the iteration scheme by considering the
equation on the time intervals (t; t+∆t).

2. Decompose the space domain D onto disconnected
sub-domains D = ∪M

l=1D(l) (“cells”), populated by
fixed amounts of particles during ∆t.

3. Split the evolution into three successive proce-
dures within each time step: ballistic motion (free-
streaming in the absence of collisions), binary colli-
sions within each D(l), and then interchanging parti-
cles between cells as a result of the first two steps.

Under an assumption that the system obeys ergodic con-
ditions, the DSMC approach may be converted to an
analog of the Bogoliubov–Born–Green–Kirkwood–Yvon
hierarchy for 3 + 3N phase space, which reduces to the
Boltzmann equation in the limit N → ∞ and assuming
the molecular chaos (i.e., that the velocities of colliding
particles are statistically independent).

A. No-Time-Counter scheme

The central part of the DSMC approach is to simu-
late the evolution of particles within an individual cell.
There are various methods [44, 56–60]. Some of which
have O(Ncell) computational complexity, where Ncell is
the number of particles per cell. Examples of the lat-
ter are No-Time-Counter (NTC), Majorant collision fre-
quency, Simplified Bernoulli Trial, and others [60]. Here,
we will discuss the NTC method, proposed in [59], which
we will adapt for our purposes.

First, one defines the timestep of the simulation ∆t.
It must be sufficiently small to resolve the characteristic
interaction time in the system. It may be calculated as

∆t =

(
(χparticle · σv)max ·N

Vsystem

)−1

(20)

Here, χparticle is the particles’ weight – how many phys-
ical particles are represented by each particle; N is the
total number of interacting particles; Vsystem is the sys-
tem’s volume; σ is the interaction cross-section; v is the
relative velocity. The subscript “max” denotes finding
the maximal value among the system.
Next, consider splitting the system’s volume into cells.

Let us assume that there are ncells cells, each having the
volume Vcell = Vsystem/ncells. In the standard DSMC
application cases, particular cells contain Ncell particles
as low as O(10− 20) and even lower, which is enough for
simulating the evolution properly. Within a particular
cell, one samples randomly

Nsampled =
Ncell(Ncell − 1)

2

ωcell,max∆t

Vcell
(21)

pairs of particles to interact. Here, ωcell,max =
(χparticleσv)cell,max is the estimate of the maximum in-
teraction cross-section within the cell.
For each sampled pair, one accepts its interaction with

the probability

Pacc =
ω

ωcell,max
, ω = (χparticleσv)pair (22)

If the interaction is accepted, one simulates the possible
final states for the given pair and its scattering kinemat-
ics.
The complexity of the NTC scheme grows as

O(Ncell) [46]. This is achieved by the fact that
ωcell,max∆t/Vcell in the number of sampled events is typi-
cally≪ 1. The systems with the total number of particles
N ≫ 106 may be simulated within minutes, even on or-
dinary laptops. Such large values are already enough to
reach the precision required in our studies.
The NTC method has been tested for various systems,

including relativistic ones [61–65], which demonstrates
its flexibility and coverage of the wide range of scenarios.

V. DSMC FOR NEUTRINOS

Let us now discuss how to apply the DSMC approach
to study the evolution of primordial neutrinos.
As in the case of the state-of-the-art methods, we will

first utilize the simplification coming from the properties
of the Early Universe at the times of interest – its homo-
geneity and isotropy. Because of this, we may drop the
spatial degrees of freedom and view the system as effec-
tively zero-dimensional, with all interactions occurring at
one point. Splitting the system into cells is then a formal
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step to maintain the performance. We will also neglect
any cells’ boundary interactions.

To accurately trace the thermalization of neutrinos, we
represent their population by a set of individual particles
characterized by the 4-momentum, flavor, and particle-
antiparticle type. Every interaction involving neutrino
(remind Eq. (13)) would modify its properties. Namely,
it may change its 4-momentum (if the interaction is elas-
tic) and/or flavor (if it is the annihilation of the type
ναν̄α → νβ ν̄β). Finally, there are annihilation processes
ναν̄α ↔ e+e−, which may lead to a change in the number
of neutrinos.

Randomly select pair to interact

Intermediate interaction acceptance
             Based on                

      Determining pair's kinematics
    Sample   kinematics from                , 

extract neutrino's kinematics from particles' data

   Update local properties of the plasma
            Update         and           via         

               Perform oscillations of final neutrinos

Repeat         times

   Simulate pair's collision
   Select specific scattering channel, 
generate final state kinematics       

                   

        Final interaction acceptance
Based on quantum statistical weight               

     Recalculate         and neutrino particle data            

Cell with                   and neutrinos

Yes

No

Yes

No

Sunday, September 22, 2024 3:17 PM

   Quick Notes Page 1    

FIG. 1. The modification of the No-Time-Counter scheme,
used to simulate the interactions within the system’s cells
within the Direct Simulation Monte Carlo approach, for de-
scribing interactions in the MeV primordial plasma. First,
we sample Nsampled pairs to interact, Eq. (21). For each pair,
we compute its interaction weight and make an intermediate
decision on whether it will interact using the criterion (22).
Then, we sample the kinematics of the interacting particles,
generate the final states resulting from the collision, and make
the final decision of whether the interaction takes place from
the Pauli principle (25). Finally, we update the local prop-
erties of the plasma: the EM plasma temperature and the
number of EM particles, as well as neutrino flavor distribu-
tions by the oscillation probabilities, Eq. (26).

Proceeding with the DSMC method in its current form
is impossible, as it does not incorporate fundamental fea-
tures of the Early Universe’s plasma. These include the
expansion of the Universe, the hierarchy between the

equilibration rates in the neutrino and EM sectors, the
Pauli principle, neutrino oscillations, and the presence of
decaying particles. Below, we discuss these features and
how we address them in detail (see also Fig. 1, showing
the modification of the NTC scheme).

1. Expansion of the Universe. From the DSMC’s point
of view, it simply represents an external force act-
ing on the particles of the system, with an additional
modification that it also increases the system’s (and
cells’) volume. These two effects may be simply ac-
counted for by redshifting the total volume of the sys-
tem Vsystem (and hence the cell’s volume) as well as
the individual energies Ei of the particles {i}, applied
at each step of the simulation. Namely, at the be-
ginning of the timestep ∆t, we calculate the Hubble
factor H using Eq. (3), and then make use of the re-
lation

Vsystem → Vsystem(1 + 3H∆t), Ei →
Ei

1 +H∆t
(23)

provided that H∆t ≪ 1. To account for this require-
ment, we modify the definition (20):

∆t = min

[
0.01H−1,

(
(χparticle · σv)max ·N

Vsystem

)−1
]

(24)

Here, 0.01 is the arbitrary small factor.

2. Properties of the EM plasma. As we discussed pre-
viously in Sec. II, the reactions involving solely EM
particles are orders of magnitude faster than those
where neutrinos participate. As we have chosen the
timestep ∆t comparable to the neutrino interaction
rates, the EM particles may be viewed as a part of per-
fectly thermal plasma characterized by one parameter
– temperature T . However, we then need to imple-
ment the response of any single interaction involving
the EM particles on T .

To reach this, at the beginning of the iteration, we
characterize the EM plasma with the energy density
ρEM, both globally (for the whole system) and locally
(at the level of the individual cell). The global and
cells’ temperature T is related to ρEM by Eq. (6).

During the NTC routine, the local number of elec-
trons and positrons Ne±,cell per cell is calculated from
the relation between TEM and the number density.
The kinematics of any e± selected within the NTC al-
gorithm is sampled from the Fermi-Dirac distribution
fFD(p, TEM). The change ρEM,cell resulting from the
accepted interaction leads to the update in TEM,cell

and Ne±,cell.

At the global level, once the simulations for all cells
are performed, ρEM,cells are merged into the total en-
ergy density ρEM,system, which allows obtaining the
global temperature of the EM plasma.
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3. Quantum statistics. It enters the binary part of the
collision integral (14) with fermionic final states F1, F2

having energies EF1,2
via multiplicative Pauli blocking

factors

Pblock = (1− fF1(EF1))× (1− fF2(EF2)), (25)

where f is the energy distribution of the given final
state. Thus, it suppresses interactions where the fi-
nal states would occupy the high-populated part of
the energy distribution (e.g., E ≲ T for the equi-
librium shape distribution with the temperature T ).
To implement this, one should consider the local en-
ergy distributions for both EM particles and neutri-
nos and calculate Pblock. A possible simplification
is, when calculating the blocking factor, to describe
neutrino’s distribution by the Fermi-Dirac function
fFD(Tνα), where Tνα is the local effective neutrino
temperature obtained in a way similar as we do for
the EM plasma.9

4. Neutrino oscillations. We incorporate them at the
end of the iteration timestep by changing each of the
neutrino flavors according to the formula

να(Eν) →
∑
β

⟨Pαβ⟩(Eν , T )νβ(Eν), (26)

where ⟨Pαβ⟩(Eν , T ) are averaged neutrino oscillation
probabilities (remind also Eq. (2)).

5. Presence of LLPs X and new interactions. Let us
start with discussing LLPs. Decaying either into the
EM plasma particles or neutrinos, they would heat
the EM plasma temperature or distort the properties
of the neutrino sea. Having the initial condition for
the X’s abundance, on the language of DSMC, we
introduce the equivalent amount n of X particles to
the system. Further, we assume that LLPs are non-
relativistic and decoupled, which ideally matches the
scope of this study. Per each timestep ∆t, provided
that it is much smaller than the LLP’s lifetime τ , their
population is evolved by decaying the fraction

∆n = n(t+∆t)− n(t) ≈ ∆t

τ
n(t) (27)

For each decay, it is possible to obtain the energies of
resulting neutrinos and calculate the amount of the
EM energy using Monte-Carlo simulations – the base-
line approach for particle physics. This is a natural
choice if one wants to maintain the model indepen-
dence, as it is maximally general and may describe

9 The actual neutrino distribution is, of course, non-thermal, and
we use this approximation only when calculating Pblock. Since
the deviations from the thermality we study are not very large
without loss of generality, we believe that the approximation is
accurate.

any process. In particular, exclusive decays (where we
have well-defined “fixed” final states, e.g., X → 3π)
may be simulated on-flight by sampling the phase
space of decay products using the analytic matrix el-
ement of the process. The phase space of hadronic
decays in the LLP mass range m ≫ ΛQCD (such as
X → qq̄ν, where q is a quark) may be obtained by
simulating them in PYTHIA8 [66] for a grid of masses
and subsequently using the output particle’s data in
the form of events inside the DSMC code.

The Monte Carlo sampler must incorporate the in-
teractions of the decay products with the primordial
plasma, which may substantially redistribute their
energy between the neutrino and EM sectors com-
pared to the vacuum case. Namely, all electrically
charged particles with lifetimes τ ≳ 10−10 s, such as
muons, charged pions, and kaons, appearing in the
MeV plasma may undergo kinetic energy loss via EM
interactions, annihilation, interactions with nucleons
before decaying [50]. This evolution may again be
implemented probabilistically, in the spirit of Monte
Carlo simulations.

Absolutely similarly, it is possible to sample the en-
ergies for non-standard scattering processes, e.g., for
the 2 → 3 scatterings e+e− → ναν̄αγ.

In order to finish the discussion of the approach, let us
address the question of the number of particles per cell,
Ncell, entering Eq. (21). In our system, it is

Ncell = Ne± + 2
∑
α

Nνα (28)

Since statistical quantities, such as temperatures, are
involved in simulating the interactions, it is not possi-
ble to use small Ncell ∼ 10, as it is typically done in
the DSMC simulations. Instead, the values as large as
Ncell = O(100) should be considered. As a bonus, such a
large number also allows for avoiding various stochastic
problems of the NTC method, including repeated inter-
action of the same pair [43].

VI. CURRENT IMPLEMENTATION

We have implemented a simplified version of the
DSMC method described above, which serves as proof-
of-principle.10

The first approximation is that we have neglected the
electron mass when describing the population of the EM
particles; this is done in order to simplify the sampling of
electron and positron particles. The second simplification
concerns the absence of implemented continuous decays
of LLPs – only instant injections of decay products are
included.

10 The code may be provided upon request.



9

None of these limitations are fundamental; they will be
added with the development of the approach. Namely, by
neglecting the electron mass, we restrict the temperature
range covered in the study by T ≳ me, but this is already
enough to study interesting scenarios, as temperatures of
interest are those when neutrinos start decoupling, which
occurs at T ≲ 5 MeV. As for the instant decays, al-
though being an artificial scenario, they already provide
insights about both the performance of the DSMC ap-
proach and physics case studies, such as the impact on
Neff.

The implementation is written in Mathematica. It al-
lows combining moderate performance11 with symbolic
calculations, which are needed when dealing with describ-
ing kinematics and deriving the matrix elements of var-
ious processes. Also, it makes it possible to use existing
realizations of Monte-Carlo sampling of decays of LLPs,
such as SensCalc [67].

The typical number of particles per neutrino flavor we
consider in the setup is (1− 5) · 105, which results in the
total number of particles at the level of a N = few ×106.
The standard number of particles per cell we have cho-
sen is 400, meaning that the cell number is O(103). The
running time required to produce most of the plots be-
low was < 30 minutes; it varied only mildly depending
on the setup, including the energies of the neutrinos in-
cluded in the system. In particular, in order to produce
the neutrino distributions shown in Fig. 5, we spent only
≃ 5 minutes. We expect significant improvement, possi-
bly by an order of magnitude, in the running time after
optimizing the code and/or rewriting some of its mod-
ules in native C++. Finally, with the implementation,
we maintain the approximate linear scaling of the com-
putational time with N , as expected from the basics of
the NTC approach.

To validate the developed neutrino DSMC, we have
studied its predictions in the case of well-established sce-
narios, including:

1. Approaching thermal equilibrium. In the absence
of Universe expansion, independently of the initial
conditions, neutrinos have to reach thermal equi-
librium with the EM particles. In particular, their
differential distribution in the number and energy
densities, which we will plot throughout the paper,
must be

dnν

dEν
=

gν
2π2

fFD(Eν , Tν)× E2
ν , (29)

dρν
dEν

=
gν
2π2

fFD(Eν , Tν)× E3
ν , (30)

where Tν = T is the neutrino temperature, two
powers of Eν come from the phase space, and one

11 Low-level routines, such as simulations of interactions and ma-
nipulations with cells, are compiled in C++.

in Eq. (30) from the definition of ρν . Finally, fFD
is the Fermi-Dirac distribution (remind Eq. (5)),
with gν being the lepton charge degree of freedom
(remind Eq. (9)).

Eq. (30) automatically implies that in equilibrium,
the ratio of the energy densities of the neutrino and
EM plasmas is(

ρν
ρEM

)
eq

=
7/8 · gν

7/8 · ge + gγ
=

21

22
, (31)

where we have used Eq. (6) and assumed T ≫ me.

2. Energy transition rates. Consider the initial setup
where the distribution function of neutrinos is fixed
by fFD, parametrized with the temperature Tνα ̸=
T . During the equilibration and in the absence
of expansion, the energy transition rates between
the neutrino and EM sectors must match the well-
known analytic result from [24] (where we turn off
the expansion as well).

3. Expansion and decoupling. If including the ex-
pansion of the Universe in the previous setup, we
should consistently recover the decoupling of neu-
trinos, which prevents their population from full
thermalization, as well as reproduce the results
of [24].

Details may be found in Appendix A. In addition, we
have performed tests that are not present in the paper.
Those include the evolution of neutrinos and antineu-
trinos (the evolution must preserve the lepton symmetry
up to Monte Carlo fluctuations) and independence on the
exact simulation setup (e.g. Number of simulation cells,
the total number of particles, etc.). We believe that it
proves that our approach fulfills the requirements to be
accepted as a valid method for treating the evolution of
neutrinos.

VII. CASE STUDIES

To demonstrate the potential of various implications
of the DSMC method, we will consider several toy case
studies specified by the initial conditions on the neutrino
distribution functions. These setups have two applica-
tions. On the one hand, they mimic distinct scenarios
with new physics and thus provide useful insights into
the dynamics of the primordial plasma. On the other
hand, they will comprehensively demonstrate the perfor-
mance and flexibility of the neutrino DSMC approach.
Firstly, we investigate the evolution of a system where

neutrinos initially possess an equilibrium energy distri-
bution with a temperature Tνα

̸= T (see Sec. VIIA).
This setup encompasses two distinct scenarios. The first
scenario arises when energy is injected exclusively into
the electromagnetic (EM) sector, resulting in T > Tνα

.
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The second scenario occurs when nearly thermal neutri-
nos are introduced into the neutrino sector, as explored
in [24]. These cases can be analyzed using the integrated
Boltzmann equation developed in [24, 52]. Nevertheless,
we will demonstrate that even within these simplified se-
tups, deviations from the thermal shape of the neutrino
distribution emerge, leading to discrepancies between the
solutions of the unintegrated and integrated approaches
to the neutrino Boltzmann equation, particularly in the
determination of Neff.

Second, we will consider injections of high-energy
monochromatic neutrinos (Sec. VIIB). This scenario rep-
resents the case of two-body decays of heavy LLPs, such
as neutrinophilic scalars [68], majorons [69], B−Lα medi-
ators [70], and relics in late reheating scenarios [27]. We
will consider high injection temperatures, T ≳ 1 MeV.
We will show that in the case of sufficiently large neu-
trino energy, such that Eν ≫ T , these injections would
result in a decrease in the neutrino-to-EM energy densi-
ties ratio compared to the standard cosmological scenar-
ios. This setup will also serve to demonstrate that the
performance of the DSMC does not depend on the neu-
trino energy (supporting the initial expectations) and to
cross-check it by comparing the neutrino evolution with
the predictions of the discretization codes.

Finally, we will study injections of neutrinos from de-
cays of different long-lived SM particles, such as muons,
charged pions, and kaons (Sec. VIIC). This case corre-
sponds to a common scenario of LLPs with complex de-
cay chains, which may not decay into neutrinos directly
but instead decay into such heavy states. Examples are,
e.g., a decay of the Higgs-like scalars into π+π−/K+K−,
the dark photon decay into 2π/3π/4π, and decays of
HNLs into πµ [71]. Another illustrative case is the decay
into quarks, where we have a high multiplicity of meson
states. We will show that independently of the decaying
particle (or the fraction of their energy placed to the neu-
trino plasma right after decay), the ratio (32) decreases
below the equilibrium value. This case also study demon-
strates the flexibility of our approach, which may handle
any decay chain with complicated kinematics.

To make the illustrative analysis for this and other
studies performed in this paper, we introduce the quan-
tity

δρν =

(
ρν
ρEM

)−1

eq

ρν
ρEM

− 1 (32)

A. From equilibrium spectral shapes to distortions

Let us consider a system with neutrinos having an equi-
librium shape of energy distributions, but the tempera-
tures of these distributions differ from the EM plasma
temperature.

We will study how the equilibration of this initial con-
dition evolves in time, to identify the possible deviations
from the description dynamics of the equilibration fol-

lowing Ref. [24], where we turn off the electron mass in
order to compare apples with apples. These deviations
genuinely appear from the non-thermal distortions in the
neutrino sector (invisible within the method of [24]). It is
because the interaction rates of different parts of the neu-
trino spectrum are energy-dependent (remind Sec. II).
We will consider the particular initial condition where

neutrinos have the same temperature Tνα
= 3.2 MeV,

and the EM plasma has a lower temperature T = 3 MeV.
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FIG. 2. The evolution of the neutrino-to-EM energy densities
ratio δρν , given by Eq. (32), under the scenario where the neu-
trino distribution shape is thermal (Eq. (17)), but has tem-
perature Tν different from the EM plasma TEM. For the ini-
tial setup, we consider Tν = 3.2 MeV and TEM = 3 MeV. The
blue line shows the result of our DSMC approach, whereas the
red line is obtained using the method of integrated neutrino
Boltzmann equations from [24], which assumes that the shape
of the neutrino distribution is perfectly thermal throughout
the whole evolution.

The resulting evolution of δρν , as predicted by the
DSMC approach and the method from [24], is shown in
Fig. 2. From the figure, we see that the two descriptions
match at the initial stages, while the deviations appear
once the system develops. They get frozen throughout
the evolution because of the decoupling of neutrinos. The
same conclusion holds in the opposite case of the initial
condition T > Tν .
Therefore, we conclude that the integrated Boltzmann

approach may provide insufficient accuracy even in cases
where there are no direct distortions of the neutrino spec-
trum (see further discussion of this point in Ref. [50]).

B. Instant neutrino injection

Let us now proceed to a more generic case in which
there are injections of non-thermal neutrinos with Eν ≫
T . For this setup, the integrated Boltzmann approach is
completely inapplicable, as high-energy neutrinos have a
much larger rate of interactions than their thermal coun-
terparts, and severely influence the dynamics of the ther-
malization even if their amount is low.
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Equal injection of 20 MeV neutrinos, ρν,inj/ρν = 5%

FIG. 3. The behavior of the ratio (32) under the injection
of 20 MeV neutrinos equally to all neutrino flavors at the
temperature T = 3 MeV. The total injected energy density
is ρν,inj/ρν,total = 5%. The blue line shows the prediction of
the DSMC method, whereas the green one corresponds to the
integrated Boltzmann approach from [24].

Let us assume, without loss of generality, the injec-
tion of monochromatic neutrinos with energy Eν,inj at
temperature T = 3 MeV, and consider three different
values Eν,inj = 20, 70, 500 MeV. We will analyze both
the evolution of δρν and the neutrino spectrum shape.
The option Eν,inj = 20 MeV primarily serves to demon-
strate the necessity of using the unintegrated Boltzmann
approach in case of non-thermal distortions. The second
setup is central – it will show the qualitative impact of
large neutrino energies on Neff. We will use it to compare
with the discretization codes from [7, 33, 34], which pre-
dict contradictive behavior of the sign of Neff −NΛCDM

eff
in presence of high-energy neutrinos. Finally, the last
choice highlights the performance of our setup – the run-
ning time and precision are almost independent of the
neutrino energy.

1. Injection of 20 MeV neutrinos

Consider the injection of 20 MeV neutrinos. With-
out loss of generality, we assume equal injection among
the three neutrino flavors, with the total injected energy
density ρν,inj/ρν,total = 5%. Here and below, we include
the Hubble expansion of the Universe, but turn off the
neutrino oscillations.

The evolution of the resulting δρν is shown in Fig. 3,
where we, as usual, also include the prediction of the in-
tegrated Boltzmann approach. Both approaches predict
a monotonic decrease of δρν . In particular, at late tem-
peratures, when the expansion prevents equilibrating, we
end up with the value of δρν close to 0. However, the
rate of decrease of δρν predicted the neutrino DSMC is
much faster. This is explained by the fact that, compared
to thermal particles, the injected high-energy neutrinos
have a larger probability of interacting with the EM sec-

tor and, hence, transporting their energy.

2. Injection of 70 MeV neutrinos

Let us now proceed with the 70 MeV injection. We
will consider several setups here. The first one is with
equal injection among the neutrino flavors and a large
ρν,inj/ρν,total = 30%. It serves as a very illustrative
demonstration of the qualitative features of the evolution
of δρν . The two others are with the smaller injected en-
ergy ρν,inj/ρν,total = 5% and two different injection pat-
terns: equal energy distribution among the flavors, and
the injection solely into the sector of electron neutrinos.
We will use them to compare with the predictions of dif-
ferent discretization codes from the literature.

DSMC
2001.04466

2.2 2.4 2.6 2.8 3.0

-5

0

5

10

15

20

25

30

TEM [MeV]

δ
ρ
ν
,%

Equal injection of 70 MeV neutrinos, ρν,inj/ρν = 30%
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FIG. 4. The evolution of the primordial plasma after the
injection of neutrinos with energies Eν = 70 MeV with the
amount ρν,inj/ρν,total = 30%. The other parameters of the
setup are similar to the one considered in Fig. 3. Top panel :
the behavior of δρν with temperature. The DSMC curve twice
intersects the value T = 3 MeV, which is because of the re-
heating of the EM plasma by neutrinos immediately after the
injection. The bottom panel : comparison of the shape of the
neutrino energy distribution at the moment when δρν = 0
during the equilibration, as obtained with the DSMC simula-
tion (the blue curve) and assuming the equilibrium neutrino
spectrum (the green curve).

Fig. 4, upper panel, shows the evolution of δρν for the
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FIG. 5. Comparison of the DSMC approach with the discretization codes for the setup of injection of 70 MeV neutrinos at
T = 3 MeV. Two configurations are considered: equal injection among the flavors (the top panels) and the injection solely into
νe (the bottom panels). In both cases, the injected energy fraction is ρν,inj/ρν,total = 5%. The left plots show the evolution of
δρν , given by Eq. (32), whereas the right plots are snapshots of the electron neutrino distribution spectrum at the temperature
when δρν = 0. The blue lines are the DSMC predictions, the green lines denote the calculation by the discretization approach
from [7] (see also [50]), whereas the red line is the result obtained in [33].

30% injection setup. Now, there is a qualitative differ-
ence in its behavior between the integrated and DSMC
approaches. The former results in the naively expected
monotonic decrease of δρν , whereas according to the lat-
ter, it first rapidly drops below zero, where it then freezes
out. Without the expansion of the Universe, it would
have been a decrease of δρν to negative values, and then
a slow monotonic reaching δρν → 0 from below.
To understand this counter-intuitive result, let us re-

mind Sec. II and highlight two important properties of
the plasma: (i) EM particles instantly equilibrate be-
tween themselves, and (ii) weak interaction rates grow
with the invariant mass of colliding particles. Because of
this, the injected non-thermal neutrinos quickly “knock
out” thermal neutrinos by the interactions

νinjνthermal → e+e−, νinjνthermal → ν+ν̄− (33)

The first process pumps the injected energy and a frac-
tion of the energy of the thermal population to the EM
sector. The rate of these processes is much higher than
the rate of the same processes when only thermal parti-
cles are involved. Knocking out thermal neutrinos deter-
mines the shape of the neutrino spectrum during these
interactions: compared to the equilibrium spectrum fFD,

it is underabundant in small energies and overabundant
in large energies.

The snapshot of the neutrino spectrum at the moment
when δρν = 0 is shown in the lower panel of Fig. 4. Then,
we have equilibrium amounts of energies in the EM and
neutrino sectors. However, while the EM plasma has a
perfect thermal spectrum, the neutrino spectrum has a
shift to higher energies.

The further dynamics of δρν depends on the balance
between the energy transfer rates ν → EM and EM → ν.
Because of the energy dependence of the weak processes’
rate, the overabundance of the high-energy neutrino leads
to the faster transfer ν → EM than EM → ν, where
we have thermal electrons. As a result, δρν continues
falling below zero until neutrino-induced heating of the
EM plasma temperature and/or the expansion of the
Universe turn the negative energy transfer from the neu-
trino sector to zero.

Since the sign of δρν is associated with the sign of the
correction ∆Neff, we conclude that the injection of such
high-energy neutrinos is associated with a decrease in
Neff below its ΛCDM value. This conclusion holds in the
case when the EM plasma temperature is high enough
during the neutrino injection, such that the interactions
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FIG. 6. The same setup as in Fig. 3 but under an injection
of 500 MeV neutrinos.

between the neutrinos and the EM plasma are possible.
A similar result has been obtained in our previous

work [33], which considered a setup with the injection
of 70 MeV neutrinos but with a smaller amount within
the discretization approach. The same behavior has
been observed when considering the cosmological im-
pact of HNLs decaying mainly into neutrinos (see also
Refs. [28, 35]). These results, however, contradicted
Ref. [34] (see also [26]), which studied the same setup
with HNLs with masses below the pion mass and found
that Neff may only increase. Given that all these studies
are based on the discretization method, the discrepancy
became an open question. Our approach is completely
independent and, therefore, resolves it.

We finish this discussion by directly comparing our
method with the discretization codes. Let us consider the
setup when we inject 70 MeV neutrinos with the amount
ρν,inj/ρν,tot = 5%. Fig. 5 shows the evolution of δρν
and neutrino spectra snapshot according to DSMC and
the discretization codes from [7, 33], where for the latter
we take the results shown in Fig. 7 from Appendix A.
In the discretization codes, the electron mass effects are
included.

We see a very similar behavior of the evolution pre-
dicted by DSMC and [7], both in terms of δρν and the
spectrum. The tiny discrepancy may be explained by
the fact that we have neglected the electron mass in the
DSMC calculations. On the other hand, the discrepancy
between DSMC and Ref. [33] is somewhat larger. This
may be explained by the fact that the caption of Fig. 7
in [33] does not correspond to the setup used to obtain
the evolution.

3. Injection of 500 MeV neutrinos

Let us finalize this case study by considering the injec-
tion of 500 MeV neutrinos. The behavior of δρν is shown
in Fig. 6; it resembles the features shown in the case of
the injection of 70 MeV neutrinos.

The more important point is the performance of the
DSMC setup. The running time required to simulate
this setup was roughly the same as the running time for
simulating 20 MeV and 70 MeV neutrinos. The 500 MeV
case is already unrealistic to consider with the discretiza-
tion codes, as the running time would grow by a factor
of > (500/70)3 ≃ 400.

C. Decays of long-lived SM particles

Let us now proceed with a more complicated case,
when neutrinos are not injected directly in the decay
chain but emerge via the evolution of heavy primary
decay products Y , which may be muons or long-lived
mesons such as π±,K±,KL.
In the primordial plasma, Y s experience a non-trivial

evolution once being injected. The interactions they
are involved in include kinetic energy loss, interactions
with nucleons, annihilation with themselves, and decays,
see [50] for more details. The decay products generically
involve neutrinos. This evolution influences their energy
distribution among the neutrino and EM sectors.
Our approach for simulating this redistribution is the

following. We first inject these particles into the plasma
and then decay them using Monte Carlo techniques. For
the case of charged decay products, we transfer all the
kinetic energy to the EM plasma and then decay them at
rest. This is because the energy loss rate is much faster
than any other relevant process in the MeV plasma. This
simplified description follows the state-of-the-art stud-
ies [29, 32]; the rest of the interactions discussed above
will be added in the future. To simulate the phase space
of the decay chain, we use SensCalc [67], a tool calcu-
lating the event rate with the decaying LLPs at various
laboratory experiments. It contains a module handling
LLP decay chains and, in particular, the decays of differ-
ent SM particles. We have modified it to incorporate the
evolution of mesons and muons in the primordial plasma.
In absolutely the same way, it may be used to simulate
decays of the LLPs, with these mesons appearing among
the final states.
The neutrinos from Y s decays have a non-trivial spec-

trum. For instance, the neutrino distribution from decays
of neutral kaons KL +KS is shown in Fig. 7. They have
the following main decay modes:

KS →2π0, KS → π+π−, (34)

KL →3π0, KL → π+π−π0, KL → π±l∓νl (35)

The neutral pions instantly decay into photons, just heat-
ing the EM plasma, whereas π±, µ± particles lose kinetic
energy before decaying:

π+ → µ+ + νµ, µ+ → e+ + νe + ν̄µ (36)

The spectrum of neutrinos from all these particles has
the high-energy part with Eν ≫ T = O(1 MeV), and we
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FIG. 7. Impact of injection of heavy SM particles in the
primordial plasma. Top panel : the distribution of electron
and muon neutrinos produced by decays of KL + KS parti-
cles. When simulating their decay, we used the module of
SensCalc tool [67]. For the chain of the decay products, we
account for instant kinetic energy loss by charged particles.
The continuous extension of the spectrum to ≃ 200 MeV is
caused by the direct decay of kaons into neutrinos. The in-
crease at Eν = 50 MeV is caused by decays of secondary
muons stopped in the plasma, whereas the sharp increase at
Eν ≈ 34 MeV follows from decays of secondary pions. Bottom
panel : The evolution of the quantity δρν under the injection
of µ+ + µ− (the blue curve) and KL +KS (the green curve)
in the primordial plasma at temperature T = 3 MeV.

expect the same behavior of δρν as in the case of the injec-
tions of high-energy neutrinos. Clarifying this question is
important since the past studies [25, 29, 30] treated these
injections using the semi-analytic integrated Boltzmann
approach.

The evolution of δρν under the injection of µ+ + µ−

and KL + KS is shown in Fig. 7. Let us start with the
case of the muons. They inject 1/3 of their energy into
the EM plasma, with the rest going to the non-thermal
neutrino population. Completely similar to the instant
neutrino injection case, δρν , being initially positive, in-
stantly decreases below the ΛCDM value. This finding
contradicts the studies [29, 30], which considered the sce-
nario of decays of Higgs-like scalars into two muons and
found that it increases Neff even in the regime of small

scalar lifetimes O(0.1 s).
The KL +KS case is also interesting. Decaying, they

put most of their energy into the EM plasma sector, so
we start with a negative δρν . However, the presence of
very high-energy neutrinos with Eν = 100 − 200 MeV
leads to a further slight drop of δρν , and then it tries to
approach the equilibrium.

VIII. CONCLUSIONS

Upcoming CMB observations will reach unprecedented
precision, which may be used to discover or constrain
new physics that was present in the primordial plasma
at temperatures as large as a few MeV. To reach this
goal, we have to understand the dynamics of the Early
Universe in the presence of new physics. It requires solv-
ing the neutrino Boltzmann equation across a variety of
scenarios, including long-lived relics, non-standard neu-
trino interactions, and lepton asymmetry in the neutrino
sector.
Current state-of-the-art methods are limited in scope

and face computational challenges when neutrino evo-
lution deviates significantly from the standard scenario.
These limitations arise from the complex phase space of
interactions, the presence of high-energy neutrinos, and
the lack of analytic matrix elements – features that are
common in systems with new physics. Furthermore, the
complexity of implementing these methods makes it diffi-
cult to extend them to include various new physics mod-
els, even within the range of applicability.
In this paper, we have presented an approach that is

potentially free from all these limitations. It is based on
the Direct Simulation Monte Carlo method to solve the
Boltzmann equation, see Sec. IV. The DSMC approach
has been previously applied to rarefied gases and, in its
existing form, cannot be applied to studying the Early
Universe. Fundamental modifications are required, such
as including the Universe expansion, the hierarchy be-
tween weak and electromagnetic interaction rates, the
Pauli principle, neutrino oscillations, and the presence of
decaying particles. We have discussed these features and
how to include them in the DSMC in Sec. V.
In Sec. VI, we have described our current proof-of-

principle implementation of the DSMC approach for
neutrinos that incorporates these modifications. We
have validated it by conducting cross-checks within well-
understood physics scenarios (see also Appendix A). In
Sec. VII, we have applied the prototype to several toy
scenarios that mimic real case studies: the equilibration
of the neutrinos and EM plasma initially having differ-
ent temperatures (Sec. VIIA), injection of high-energy
neutrinos (Sec. VIIB), and decays of particles Y with
complicated decay chain, including muons, pions, and
kaons (Sec. VIIC). In particular, we have studied the
evolution of the plasma in the presence of neutrinos with
energies Eν ≫ T ≃ 1 MeV. We have found that they
decrease the neutrino-to-electromagnetic energy density
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ratio, which leads to a negative change in Neff compared
to the Standard cosmological scenario (Fig. 5). This find-
ing resolves the previously existing discrepancy between
different state-of-the-art approaches in predictions about
the dynamics of Neff in the presence of high-energy neu-
trinos. The same conclusion was the case for metastable
muons and mesons appearing among the decay products
of various classes of long-lived particles (Sec. VIIC).

Our current neutrino DSMC code is rather proof-of-
principle, limited by the efficiency of the implementation
and some approximations. Once these problems are over-
come, it will result in a powerful independent method of
solving neutrino Boltzmann equations. We leave this for

future work.
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Silva, and Kyrylo Bondarenko for discussions at the early
stages of this project. MO received support from the
European Union’s Horizon 2020 research and innovation
program under the Marie Sklodowska-Curie grant agree-
ment No. 860881-HIDDeN.

Appendix A: Cross-checks

1. Approaching thermal equilibrium

To test whether the DSMC simulation brings the system of neutrinos and EM particles to the dynamical equilibrium
defined by Eqs. (30) and (31), we will use the following setup:

– The Universe content is neutrinos and anti-neutrinos of all flavors together with electrons, positrons, and photons.

– The expansion of the Universe is not taken into account. Therefore, the total energy density of the system is
constant, and the energy/momenta of particles are subject only to their interactions.

– The initial distribution function of neutrinos consists of two components that are the same for all flavors:

1. The equilibrium component, which has Fermi-Dirac distribution with the temperature T ini
ν = 3MeV.

2. The non-equilibrium component - neutrinos with an arbitrary energy distribution, with the energy density
constituting some fraction ≪ 1 of the equilibrium energy density.

The first sub-scenario we consider is where there are no non-equilibrium neutrinos, so the system is initially in the
fully equilibrium state. If at least one component of the DSMC simulation is implemented incorrectly, the system
will escape the equilibrium, tending to the false ground state. A prominent example is when the cross-sections
are taken to be velocity-independent; then, the distribution of the system tends to the fake-equilibrium spectrum
dρν/dEν ∼ E2

ν ×fFD instead of the correct E3
νfFD (see a discussion for relativistic particles with Boltzmann statistics

has been made in [65]). Another issue may be if the maximal interaction weight ωmax in the acceptance criterion of
the pair’s interaction (22) is not actually the maximal one. Then, the system falls into the state with δρν < 0.

Our DSMC implementation passes this test, see Fig. 8.
Next, we include the non-equilibrium neutrinos. An example of such a simulation is shown in Fig.9. Its results are

in perfect agreement with the theoretical expectations.

2. Energy transition rates

In this scenario, we will reproduce the semi-analytical result of [24, 52], where the evolution of neutrinos in the
Early Universe was studied under an assumption that every moment of time, the shape of their energy distribution is
thermal. The energy transition rates were calculated analytically in terms of the temperatures of neutrinos and EM
plasma Tνα

, T . The Boltzmann equations are reduced to the simple system of differential equations on Tνα
, T . For

our simulation, the following setup will be used:

– The Universe’s content is neutrinos and anti-neutrinos of all flavors together with electrons, positrons, and photons.

– The simulation is altered such that neutrino distributions always have the shape (30) at each simulation step.
Basically, we treat neutrinos in exactly the same way as the EM particles in the full DSMC simulation.

– The expansion of the Universe is not included, to concentrate on the energy exchange rates.
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FIG. 8. The evolution of the neutrino distribution dρν/dEν under the assumption of fully equilibrium initial conditions (30)
and (31). No significant changes are developed throughout the simulation. The minor changes are related to the quality of the
sampler of the kinematics of the electrons via the Fermi-Dirac distribution.
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FIG. 9. Evolution of the neutrino distribution function under the initial setup with equilibrium neutrinos and EM plasma
at temperature T = 3 MeV and non-equilibrium neutrinos with energies uniformly distributed in the range 300MeV < Eν <
450MeV. Their total energy density is related to the total energy of equilibrium part as ρnon-eqνα /ρeqνα = 0.15. The non-equilibrium
part of the spectra rapidly loses its energy in the first steps of simulation, leading to the distortions of the spectra at high
energies which are eventually equilibrated. Left plot : snapshots of the binned neutrino distribution function as obtained at
different iterations of the DSMC simulation. The iteration 0 corresponds to the initial setup, while the iteration 200 is the final
state. Right plot : the comparison of the neutrino distribution function between the initial (the blue line) and final (the green
line) iterations. The final distribution approaches the analytic Fermi-Dirac neutrino distribution with the temperature equal
to the temperature of the electromagnetic plasma TEM, which we shown by the dashed green line.

The example of the resulting evolution of the energy density of the neutrino plasma is presented in Fig.10, where the
almost perfect correspondence between theoretical predictions and simulation can be seen. Such reproduction of the
energy evolution behavior confirms that averaged energy transition rates are computed correctly.

3. Expansion and decoupling

In the third cross-check, we will follow the previous setup, but with the expansion of the Universe included. Due
to initial difference between temperatures of neutrino and EM plasma, we expect some remaining inequality between
them, since the start of the simulation occurs close to the temperature of the neutrino decoupling. In similar terms,
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FIG. 10. The evolution of the ratio of the neutrino energy density to the EM energy density in DSMC simulation compared to
the theoretical prediction from [24], under an assumption that the shape of the neutrino distribution function is always thermal
at each step of the simulation. The initial conditions for the setup are Tνi = 3.2 MeV for every flavor and the temperature of
the EM plasma is TEM = 3 MeV. Left panel : not including the expansion of the Universe. Due to the absence of expansion,
the ratio approaches to the exact SM value. Right panel : expansion included.

we present the example of such comparison in Fig. 10.

[1] S. Bashinsky and U. Seljak, “Neutrino perturbations in CMB anisotropy and matter clustering,” Phys. Rev. D 69 (2004)
083002, arXiv:astro-ph/0310198.

[2] D. Baumann, F. Beutler, R. Flauger, D. Green, A. Slosar, M. Vargas-Magaña, B. Wallisch, and C. Yèche, “First
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