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Machine learning discovery 
of cost‑efficient dry cooler designs 
for concentrated solar power plants
Hansley Narasiah 1,9, Ouail Kitouni 2,9, Andrea Scorsoglio 3,9, Bernd K. Sturdza 4,9*, 
Shawn Hatcher 5, Kelsi Katcher 6, Javad Khalesi 7, Dolores Garcia 8 & Matt J. Kusner 1*

Concentrated solar power (CSP) is one of the few sustainable energy technologies that offers day‑
to‑night energy storage. Recent development of the supercritical carbon dioxide (sCO2) Brayton 
cycle has made CSP a potentially cost‑competitive energy source. However, as CSP plants are most 
efficient in desert regions, where there is high solar irradiance and low land cost, careful design of a 
dry cooling system is crucial to make CSP practical. In this work, we present a machine learning system 
to optimize the factory design and configuration of a dry cooling system for an sCO2 Brayton cycle 
CSP plant. For this, we develop a physics‑based simulation of the cooling properties of an air‑cooled 
heat exchanger. The simulator is able to construct a dry cooling system satisfying a wide variety of 
power cycle requirements (e.g., 10–100 MW) for any surface air temperature. Using this simulator, 
we leverage recent results in high‑dimensional Bayesian optimization to optimize dry cooler designs 
that minimize lifetime cost for a given location, reducing this cost by 67% compared to recently 
proposed designs. Our simulation and optimization framework can increase the development pace of 
economically‑viable sustainable energy generation systems.
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There is scientific consensus that increasing greenhouse gas concentrations in the atmosphere lead to warmer 
average temperatures across the  globe1. These higher temperatures have increased extreme weather  events1, and 
the United Nations have issued a statement claiming that 90% of all disasters are related to this  increase2. The 
majority source of these greenhouse gases is fossil fuels for energy (for example, roughly 80% of all emissions 
for the USA and for the European Union)3. As such, decarbonizing energy production is critical to reducing 
the extreme effects of global  warming1. Sustainable energy needs to generate greater than 60% of all energy by 
2050 to meet the warming target set by the Paris  Agreement1. Reducing the cost of current sustainable energy 
generation technologies will increase the chances of meeting such targets. One renewable energy technology 
that has recently experienced dramatic reductions in cost is concentrated solar power (CSP): a 68% reduction in 
levelized cost of electricity (LCOE) from 2010 to  20204. A number of factors have contributed to this decrease, 
including reduced installation costs and increased energy storage times. CSP is one of the few sustainable energy 
generation technologies equipped with reliable, low-cost energy storage, via stores of heated working  fluid5. 
Recently, preliminary results on a new Brayton power cycle for CSP based on supercritical carbon dioxide (sCO2 ) 
have promised the ability to further reduce material costs and improve reliability at extreme  temperatures6,7. 
However, the design of sCO2 Brayton cycle CSP plants is still preliminary, see (Fig. 1 Fig. 28).

One crucial aspect of sCO2 CSP plant design is the cooling system. This is due to CSP plants having the 
highest energy potential in desert  regions9,10 which makes traditional water-based coolers not economically 
 feasible11. To address this, recent work has investigated dry cooling as a possible  solution12. However, because the 
use of sCO2 recompression Brayton cycles for CSP is still in its infancy, there has only been limited investigation 
into  this12–14. Specifically, prior work focuses mainly on the effect of varying power cycle set points and ambient 
 conditions13,14, and largely omit varying the sCO2 CSP dry cooler design. In fact, only one study by Ehsan et al.,15 
varies individual dry cooler design parameters, see Table 1 for more details .
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Figure 1.  Schematic of a dry cooled sCO2 CSP plant. The high temperature and low temperature recuperators 
are labeled with HTR and LTR, respectively.
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Figure 2.  The optimization process. In each optimization step our algorithm starts by selecting a dry cooler 
design (shown in circles). If the initial design does not satisfy constraints on temperature and pressure, it 
lengthens the cooler tubes until the constraints are satisfied. This can be seen as a projection step onto the 
feasible region of valid dry coolers. Given this, we obtain a design cost (shown by the colored contour lines). 
We use this cost to update a Gaussian process estimate of the global cost, and then use Bayesian optimization to 
select a new design to minimize the overall cost. This processes is repeated, continually reducing design cost.

Table 1.  Comparison of varied parameters for prior art and this work.

Varied Parameters Khatoon13 Wang14 Ehsan15 This work

Ambient conditions ✗ ✓ ✓ ✓

Power cycle set points ✓ ✓ ✓ ✓

Dry cooler parts (separately) ✗ ✗ ✓ ✓

Dry cooler parts (all, jointly) ✗ ✗ ✗ ✓
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This is because cooler design is complex: the thermal performance of the sCO2 recompression cycle is highly 
dependent on the main compressor inlet temperature, which is controlled by the  cooler15. However, many design 
factors contribute to the effect of the cooler on this temperature (tube and fin diameters, pitches, thicknesses, 
fan configurations, etc...), few of which have been changed. For this reason, current dry cooler designs are far 
from optimal. To bring the cost of renewable energy down, in this paper we propose a machine learning system 
to automate the cost-efficient design of dry cooling for CSP plants. Our system is composed of a high-fidelity 
simulator of a compact cross-flow finned-tube heat exchanger, combined with a powerful high-dimensional 
Bayesian optimization method. Specifically, we simulate the heat transfer between hot supercritical CO2 flowing 
through tubes and a colder air mass, which is forced across fins on the outside of the tubes via fans. An element-
wise calculation of the heat transfer between sCO2 and air for a given design is propagated through the entire 
heat exchanger via the logarithmic mean temperature difference (LMTD) method (see Methods for details). 
This calculation is used to automatically adjust the length of finned tubes until an output temperature is reached 
that ensures supercriticality is maintained. In this way, the simulator ensures all physical constraints on the heat 
exchanger are met. This enables us to integrate a recent trust region Bayesian optimization method,  TuRBO16 to 
minimize design cost. Specifically, the outputs of our heat exchanger simulator are processed by the optimizer, 
which suggests a new design configuration for the next iteration of the simulator. This process is repeated until 
a minimum cost design is found. The proposed pipeline is described in Fig. 1. This inverse-design approach 
improves upon prior  work12,13,15,17, by optimizing all tube and fin dry cooler parameters simultaneously, whereas 
prior work only investigates changing one design parameter at a  time15. Our approach is transferable from CSP 
plants to other applications of air cooling and thus holds tremendous potential to increase efficiency and reduce 
the cost of air cooling in any scenario.

Results
Simulating an sCO

2
‑based cross‑flow dry cooler

Here we propose a dry cooler simulator that calculates the heat transfer between sCO2 working fluid in finned 
tubes and cross-flowing air. To do so we use the well-established Logarithmic Mean Temperature Difference 
(LMTD)  method18–20 to element-wise propagate the heat transfer along the finned tubes. The simulator uses 
this to compute an overall Heat Transfer Coefficient (HTC) based on tube geometry, fluid properties, and flow 
conditions. It additionally calculates the pressure drop across each tube segment using correlations, such as 
the Darcy-Weisbach  equation21. The direct calculation of the outgoing thermodynamic properties in the heat 
exchanger is complicated due to the complex, non-linear, and non-differentiable factors involved in computing 
the overall heat transfer coefficient within each segment. Therefore, an iterative approach involving a binary 
search is used to solve for the outgoing sCO2 temperature. This strategy is based on the assumption that the 
overall heat transfer coefficient, Ohtc(i,j) , and by extension the heat transferred, is a monotonic function of outgoing 
sCO2  temperature13,22. It is possible that, for a set of design parameters, the simulation run does not achieve the 
required outlet sCO2 properties. To guarantee this, the length of the tubes is dynamically adjusted to ensure the 
required sCO2 properties are met. This design flexibility is visually represented in Fig. 3a, which showcases the 
relationship between tube length and output temperature of the sCO2 . This has the effect of producing designs 
for which the output sCO2 output temperature is always satisfied, i.e. the framework produces only valid designs 
as per our imposed requirements—in this case the output sCO2 temperature.

Figure 3 shows that the supercritical CO2 conditions, temperature above 31◦ C and pressure above 7.38 MPa, 
are maintained across all design variations. Variations in temperature and pressure along the tube lengths and 
across the rows of the heat exchanger are carefully monitored to ensure operational efficiency and integrity.

Figure 3c shows a significant difference between the pressure drops between the reference and the optimized 
designs due to the difference in the inner diameter of the two designs. Indeed, the pressure drop has an inverse 
relationship with the inner tube diameter of the designs, as per equation 30 in Supplementary Text S4 (i.e. when 
the diameter of inner tube is decreased, the pressure drop increases and vice-versa). Moreover, the pressure 
drop gradually decreases along the length of the finned-tubes due to the decreasing temperature drop of the 

a b c

Figure 3.  Simulated parameter variations along the length of the tube and across the rows of the heat 
exchanger. (a) Temperature variation of sCO2 . (b) Outlet air temperature variation. (c) Mean pressure (dashed) 
and min-max pressure (shaded) variations of sCO2.
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sCO2 along the same length in turn explaining the “flattening” of the pressure drop towards the end of the 
finned-tubes. The simulation is based in classical energy conservation principles, used in prior  work13,15,17 and 
described in more detail in Supplementary Text S4. All the model parameters and design bounds are provided 
in Supplementary Text S6.

Given a design we calculate the cost of the resulting dry cooler, considering material, operational, and 
maintenance expenses, inspired by related  work12,23,24. By integrating real-world pricing data and operational 
metrics, we derive an estimate of the lifetime cost of the dry cooler. More details about the implementation of 
this is provided in the Methods and Supplementary Text S3.

Automating dry cooler design anywhere in the world
Given a simulator of the physical properties and the cost of a dry cooler used in a Brayton cycle sCO2 CSP plant, 
we show how to optimize its design to minimize its cost for any location in the world. Traditional optimization 
techniques based in mathematical programming or gradient descent cannot be directly applied: the simulator 
cannot be written in standard form as it relies on calls to external libraries including  CoolProp25, to fetch 
temperature and pressure data. Further, since the run time to simulate a physically-valid dry cooler design is 
substantial (see Supplementary Text S5 for timing details), we need an optimization method that carefully selects 
new designs to minimize the total number of designs searched.

To satisfy these constraints we leverage recent work in high-dimensional Bayesian  optimization16. Bayesian 
optimization is a global optimization method that allows for a principled trade-off between exploration and 
 exploitation26. It uses a surrogate model, often a Gaussian process (GP)27, to model the expensive objective 
function, taking into account uncertainty. Recent work has shown that for high-dimensional problems, sample 
efficiency and scalability improves when the surrogate models are split into local  models16. This enables us to 
automatically search a vast space of valid dry cooler designs to find a low-cost solution.

We use the National Renewable Energy Laboratory’s National Solar Radiation Database (NREL-NSRDB)28 
to obtain yearly mean temperature and Direct Normal Irradiance (DNI) data at single-degree intervals. We 
initially select the 800 locations with the highest mean yearly DNI. We filter these locations further by identifying 
all groups of points within contiguous geographic regions and selecting the location within each region that 
maximizes the DNI value. This results in the final 6 locations that we use in the experiment. Full details of the 
data curation process are described in Supplementary Text S2.

The selected locations span arid deserts and humid tropics, allowing us to test the versatility and adaptability 
of our proposed framework to different climates. For each location, we use our framework to automatically 
design a sCO2 CSP dry cooler that minimizes lifetime cost (reported in USD). The results are shown in Fig. 4.

As expected, designs found by our framework have the lowest cost in locations with higher mean DNIs and 
lower ambient temperatures, i.e., in Waucoba Mountain, California, USA (mean temperature: 3.2°C). and in 
Antofagasta, Chile (mean temperature: 5.7°C). In these locations the overall tube lengths can be shorter as the 
cooler air more effectively cools the sCO2 working fluid than in hotter environments.

For a single location we visualize a single optimization run in Fig. 5. The blue points show the cost of all 
designs that obtained higher cost than the best design found at the time, highlighting the difficulty of the design 

Figure 4.  Comparison of optimized air cooler cost at selected locations on Earth. The color scale indicates 
the mean direct normal irradiance (DNI) across the globe, as per NREL-NSRDB28. A high DNI was used as a 
precondition in CSP plant site selection (full details in Supplementary Text S2). The air cooler is optimized for a 
25 MW CSP plant.
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optimization problem. The red line highlights the cost of the lowest-cost design found so far. We observe that the 
optimizer is able to quickly reduce the cost in the first 100 iterations. After this point it fine tunes the design to 
continue to lower the cost. At the top of the figure we display the evolution of new lowest-cost designs during the 
optimization process. These designs are lower in cost than all previous designs, while maintaining supercriticality 
of the working fluid, and the desired output temperature.

One key aspect of dry cooler design is the ambient air temperature. In a sCO2 CSP plant, where the working 
fluid must be cooled to temperatures near its critical point at 31◦ C (our design has a set point of 40.3◦C), achieving 
adequate cooling becomes challenging as ambient temperatures rise. For effective cooling, either the surface area 
dedicated to heat exchange, or the airflow, or both, must be increased. Both adjustments affect the lifetime cost 
of the air cooler in a non-linear fashion, making the identification of an optimal solution challenging.

Our algorithm allows one to generate optimized air cooler designs for any given ambient air temperature. 
We evaluate the temperature sensitivity studies of our approach in two ways: 

1. �Tair = Tairout − Tairin , is kept constant: This is the less complex scenario of the two. The temperature 
difference between incoming and outgoing air, �Tair is kept constant regardless of the ambient air 
temperature. This implies that the airflow remains constant, and only the heat exchanger’s surface area 
changes with varying temperature, thereby restricting the heat exchanger’s effectiveness to predefined values. 
In this scenario, the algorithm optimizes the heat exchanger’s design and calculates the optimized lifetime 
cost (red data in Fig. 6b).

2. �Tair is a variable: in this scenario, both the surface area and the air flow are simultaneously adjusted. The 
results (blue data in Fig. 6b) demonstrate that this broader approach/scenario allows for an additional 
reduction in the lifetime cost of the air-cooler, as expected since this scenario, unlike the first one, does 
not force the design to be able to transfer a specific amount of energy from the sCO2 to the incoming 
air at ambient temperature. This additional cost reduction is reduced significantly at higher ambient air 
temperatures due to the parameter space getting smaller.

Figure 6 shows that both datasets follow an exponential fit in their minimum costs as temperature varies. 
The difference in “constant �Tair ” and “variable �Tair ” minimum optimized costs in the figure can be explained 
by the fact that the range of temperatures that the output air temperature can take and that are consistent with 
energy conservation principles gets bigger with decreasing ambient air temperatures. In other words, imposing 
a constant �Tair restricts the framework’s optimization capabilities in this parameter space, thereby limiting 
the potential savings in the lifetime cost of the optimized design, and since this space increases with decreasing 
temperatures, the difference in costs between the two scenarios also increases with decreasing temperatures. The 
components of the lifetime costs in the second scenario are shown in Fig. 6a. The results show that both the heat 
exchanger cost and the cost of the fans increase with temperature. The variations in fan power cost stem from 
the algorithm’s selection of different fan types based on varying ambient temperatures.

This underscores the significance of temperature sensitivity in air cooler design, emphasizing the need for 
adaptive and flexible design strategies to ensure consistent performance in fluctuating temperatures. We hope this 
work paves the way for harnessing solar energy potentials in a multitude of regions, accelerating the transition 
to sustainable energy solutions.

Improvements over prior work
We compare our approach to the recent work of Khatoon et al.13 who design a dry cooler for a specific ambient 
temperature for a 25 MW CSP plant. In contrast to our results, their design choices are based on previous work by 
Ehsan et al.17. Table 2 shows how our design ‘Optimized Value’ compares to the previous design ‘Reference Value’.
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Figure 5.  Optimization curve. Each blue dot represents one iteration of the simulator and corresponds to a 
valid design. The red line shows the current minimum cost found across all designs searched to that point. The 
green points illustrate the tube designs of minimum-cost designs at different stages in the optimization process.
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a b

Figure 6.  Comparison of optimized air cooler cost for a 25 MW CSP plant at different ambient temperatures. 
(a) Breakdown of the minimum optimized cost by air cooler components for variable �Tair (blue data on right) 
shown for different ambient temperatures. (b) Minimum total lifetime cost of the air cooler at different ambient 
temperatures. The lifetime cost follows exponential fits, the larger deviation from the fit in the blue data is a 
result of the larger parameter space.

Table 2.  Comparison of parameters for the referenced design and optimized designs. All values are expressed 
in millimeters.

Design parameter Optimized Reference13

Tube inner diameter, din
tube

10.452 20.000

Tube outer diameter, dout
tube

11.497 25.000

Fin inner diameter, din
fin

11.673 28.000

Fin outer diameter, dout
fin

22.962 57.000

Tube transverse pitch, ST 37.558 58.000

Fin pitch, s 2.827 2.800

Fin thickness, tfin 0.286 0.500
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Figure 7.  Lifetime cost breakdown comparison between reference design and fully-optimized design. 
Parameter values as per Table 2. Note that the biggest savings come from finned-tube and labor costs, while the 
smallest reduction comes from fan-related costs.
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Figure 7 breaks down the cost categories for each of the designs. The largest reductions in cost come from 
finned-tube and labor costs, while the smallest reduction comes from fan-related costs. Note that the former are 
a result of the savings from material quantities (see Supplementary Text S3).

Figure 8 shows the change in cost and amount of material used in tube construction between the reference 
 design13 and our optimized design. Figure 8a shows that the optimized design lowers the cost tube inner diameter 
by more than 35% and the tube outer diameter by almost 20% . It does so by shrinking the overall size of the tube 
by 54% , and thinning the overall tube, as shown in Fig. 8b. Overall our optimized design is a 67.1% reduction in 
the lifetime cost of the dry cooler from the reference design (Fig. 8a).

Discussion
To reduce the damaging effects of climate change, an increase in sustainable energy generation is needed. This 
increase can be accelerated if the cost of sustainable energy technologies is reduced. One such technology that 
is especially promising is concentrated solar power (CSP), one of the few sustainable energy generation systems 
with cheap, reliable energy storage. Here, we present a system for automatically designing a key component of 
an sCO2 CSP plant, the dry cooler, in order to minimize construction and operation cost. Compared to existing 
design approaches, our system discovered a dry cooler that is 67% cheaper that still keeps the working fluid 
in the required supercritical state. This system can be used to find a low cost cooler design customized to any 
location on earth.

The system itself is modular, in the future one can customize the dry cooler simulator and the cost calculation 
as materials and production changes. One can also tailor the physical modeling to suit different working fluids 
and cooling systems (e.g., cooling towers). In principle, our approach can be extended to the design of the full 
CSP plant. This could be done by simulating other components of the plant, and their impact on power generation 
and lifetime cost. This work suggests that future work on physical simulation of sustainable energy generation, 
as well as black-box optimization techniques such as Bayesian optimization, can help reduce the cost of these 
technologies.

It is important to note that the current design of optimum parameters for the dry cooler does not account 
for uncertainties in various design parameters, such as solar irradiance, operating of sCO2 temperatures and 
pressures entering the cooling system. These uncertainties can impact system performance and output.

The code and the framework we have developed does allow for adjusting the design points of the cooling 
cycle output, such as the temperature and pressure of the sCO2 entering the cooling system. While we did not 

Figure 8.  Cost sensitivity of different parameters and summary of the differences between the reference and 
the fully optimized designs as per Table 2. (a) Cost sensitivity of each parameter in terms of percentage discount 
w.r.t. reference design. This is calculated by changing one parameter at a time to match the optimized value 
found by the optimization process while keeping the others fixed to their original reference values, as in Table 2. 
The difference in cost is then computed with respect to the reference design and presented in this figure. (b) 
Relative change between the optimized and reference design parameters.
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incorporate these adjustments in our current study for simplicity, we recognize that this is a useful direction 
for future work.

Considering a range of ambient air temperatures at each CSP plant location, rather than using the mean 
temperature, could help produce lower-cost operating designs tailored to specific locations. This is because the 
optimum design parameters will ultimately depend on the environmental conditions and their variations at the 
proposed locations, and integrating these considerations would ensure more robust and adaptive performance 
across these varying conditions, thereby reducing cost while maintaining necessary conditions of the power 
cycle across time.

Methods
Optimization overview
In this section, we give an overview of the optimization problem and our approach. Note that the notations in this 
section are unique to this section of the report. The methodological approach is framed around a well-defined 
optimization goal:

Within this construct, x represents a design configuration of the dry cooler. The cost function c(x) calculates 
the cost associated with this design (also referred to as the cost calculator). Meanwhile, v(x) is a binary function 
designed to assess the viability of the design. When v(x) outputs a value of 1, it implies that the design meets the 
desired output temperature criteria while preserving the supercritical state of the CO2 throughout.

At its core, this optimization task is a complex non-linear mixed-integer programming problem, as the design 
vector x contains both continuous and integer variables, and both the cost function c(x) and the validity function 
v(x) have non-linear relationships with x . Solving such a problem using traditional mixed-integer programming 
techniques would be computationally daunting and most likely intractable. Instead, we propose to reformulate 
the problem into an equivalent one:

Here, p(x) refers to a projection function (also referred to as the simulator). Given a design vector x , it returns a 
modified design vector x′ such that v(x′) = 1 . This function ensures that the output design adheres to the critical 
criteria, namely, achieving the target temperature while maintaining the CO2 in its supercritical state.

Bayesian optimization
While much of modern machine learning uses gradient-based methods to solve optimization  problems29, there 
are many cases, such as Eq. (2), where gradients are intractable to compute and/or do not exist. In this case, one 
approach is to approximate the unknown objective function using a surrogate  function30. One class of highly-
successful surrogate-based optimization techniques is Bayesian  optimization31. Given this surrogate, the question 
we need to answer is how to select new designs x that will minimize Eq. (2). Crucially, this selection must balance 
exploration: designs that are very different from previously-seen designs may have very low cost values, and 
exploitation: slightly tweaking existing designs may give large reductions in cost. Bayesian optimization balances 
exploration and exploitation by using a surrogate function that includes an estimation of uncertainty (e.g., often 
this is via a Gaussian  process31).

TuRBO16 is a recently-proposed Bayesian optimization method that improves scalability to high-dimensional 
inputs, such as the complex collection of design parameters that make up a dry cooler in sCO2 CSP plants. It 
improves scalability by replacing the inefficient and imprecise global surrogate model of traditional Bayesian 
optimization with several independent local surrogate models. Each local surrogate model is a Gaussian process 
(GP) that is updated with its own set of samples, allocated by a multi-armed bandit algorithm. Each model is 
located within a trust region (TR), a hyperrectangle centered at the current best local solution. As new samples 
are seen not only might the location of the TR change, but also the shape, as each side is scaled according to the 
corresponding lengthscale in the GP model. Further, inspired by the Nelder-Mead  algorithm32, the overall size 
of the TR is expanded if there are too many consecutive points that improve upon the best point so far, and it 
is shrunk if there are too many points that do not improve the best solution. Given a set of m local TRs, with 
corresponding independent GP models, TuRBO balances the exploration/exploitation trade-off using Thompson 
 Sampling33. Specifically, to select the next design xi across all TRs TuRBO first draws a posterior function from 
each local GP in each TR: f (t)ℓ (x) ∼ GP

(t)
ℓ (µℓ(x), kℓ(x, x

′)) , where ℓ indexes the trust region, and t is the iteration 
of Bayesian optimization. Given these it then selects the design that is minimal across all of these functions:

 Optimizing across these sampled posterior functions f (t)ℓ  allows TuRBO to incorporate the uncertainties modeled 
by the Gaussian processes GP(t)

ℓ  : if a GP model has high variance, the sampled function will vary each iteration. 
If the sampled function has very small values, Bayesian optimization is more likely to explore the corresponding 
trust region, whereas if it has high values it is more likely to explore/exploit other trust regions.

In our experiments, we use 5 trust regions in all the experiments presented in this paper. We note that the 
overall setup of Bayesian optimization is different than standard machine learning: there is no initial training 
dataset, but data is instead collected over time by sampling designs x every optimization iteration, as in Fig. 5. The 
set of design parameters x that are optimized are detailed in Table 2. We run optimization until 3000 iterations 
which appears to be large enough as the minimum cost stabilizes as shown by the red line in Fig. 5. Overfitting 

(1)minimize c(x) such that v(x) = 1

(2)minimize c(p(x))

xi ∈ argmin
ℓ

argmin
x∈TRℓ

f
(t)
ℓ (x), where f

(t)
ℓ (x) ∼ GP

(t)
ℓ (µℓ(x), kℓ(x, x

′)).
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is luckily not an issue for Bayesian optimization as, in general, we would like to fit the true objective as well as 
possible.

TuRBO16 was compared with multiple state-of-the-art (SOTA) methods for high-dimensional black-box 
optimization including other Bayesian optimization methods:  BOHAMIANN34 which replaces the usual Gaussian 
process surrogate with a neural network and uses Hamiltonian Monte Carlo to calculate uncertainties,  BOCK35 
which transforms the search space using a cylindrical mapping to improve scalability,  EBO36 that is an ensemble 
of additive GPs, and  HeSBO37 the uses a novel subspace embedding to overcome limitations of previous Gaussian 
projections. The comparison also included non-Bayesian optimization methods:  BOBYQA38, a trust-region 
approach that uses a quadratic approximation of the objective, the Nelder-Mead  algorithm32, which creates a 
simplex that adaptively moves along the surface of the true objective function, and  BFGS39, a quasi-Newton 
method that approximates gradients using finite differences. The comparison included a diverse range of complex 
and multi-modal problems, which are challenging for many global optimization algorithms. These problems 
included a 14-dimensional (14D) robot pushing problem, a 60-dimensional (60D) rover trajectory planning 
problem, a 12-dimensional (12D) cosmological constant estimation problem, a 12-dimensional (12D) lunar 
landing reinforcement learning problem, and a 200-dimensional (200D) synthetic  problem16. The comprehensive 
experimental evaluation demonstrated that  TuRBO16 outperforms these state-of-the-art Bayesian optimization 
and non-Bayesian optimization methods across various real-world complex tasks, underscoring its robustness 
and effectiveness in tackling high-dimensional optimization challenges, such as the one presented in this paper.

Simulator implementation
The heat exchanger simulator is designed to model and analyze the performance of air-cooled sCO2 coolers, 
taking into account various design parameters such as tube dimensions, fin properties, and flow conditions. The 
implementation employs a combination of energy conservation and empirical correlations to simulate the heat 
transfer process between CO2 and air streams.

Several assumptions are made in the simulator to simplify the analysis and we provide a detailed account of 
how this was implemented in Supplementary Text S4. These include steady-state operation with constant mass 
flow rates for both CO2 and air, constant thermophysical properties within each segment, uniform air distribution 
across tubes, negligible pressure drop for air, and a segmented approach where tubes are divided into multiple 
segments treated as individual heat exchanger units.

Because sCO2 CSP heat exchanger development is still in its infancy, we do not have access to physical 
measurements and are unaware of any that are publicly available. However, our simulator equations are based 
in prior  works17 which have been validated against well-studied textbook  models23. For additional details see 
Supplementary Text S4.

Cost calculator implementation
Accurately modeling the manufacturing and operational costs is crucial for optimization. We implement a 
cost calculator based on prior  work12,23,24 but refine and modularize it for this application. The model has three 
main components: (1) Heat exchanger cost: Accounts for materials, labor, overheads, and other factors. (2) Fan 
purchase cost: Initial outlay based on required air flow rates. (3) Fan operation cost: Electricity usage over lifetime 
from power ratings. (see Supplementary Text S3 for details).

Data availability
The simulation results used and analysed during this study are available from the corresponding author on 
reasonable request. The entire simulator code for this project is on gitlab, see Supplementary Text S1.

Code availability
See Supplementary Text S1.
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