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Abstract

For positive integers n congruent to 0 or 3 (mod 4), let S(n) be the coefficient
of xn(n+1)/4 in the expansion of (1 + x)(1 + x2) · · · (1 + xn) We prove a conjecture of

Andrica and Tomescu that S(n) is asymptotically equal to
√

6
π · 2n · n−3/2.

1 Introduction

For positive integers n congruent to 0 or 3 (mod 4), let S(n) denote the coefficient of the
middle term of the expansion of the polynomial (1 + x)(1 + x2) · · · (1 + xn). (In the case
n ≡ 1, 2 (mod 4), the quantity n(n + 1)/4 is not an integer, and the expansion has no
middle term.) This number also represents the number of partitions of Tn/2 = n(n + 1)/4
into distinct parts less than or equal to n, where Tn is the nth triangular number. Andrica
and Tomescu conjectured that as n approaches infinity, S(n) behaves asymptotically like
√

6
π
· 2n · n−3/2. More formally, writing f(n) ∼ g(n) as usual to denote

lim
n→∞

f(n)

g(n)
= 1,

we have
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Conjecture 1. [Andrica, Tomescu [1]] S(n) ∼
√

6
π
· 2n · n−3/2 for n ≡ 0 or 3 (mod 4).

From [1], one can write S(n) in integral form via Cauchy’s formula as

S(n) =
2n−1

π

∫ 2π

0

cos(t) cos(2t) · · · cos(nt) dt.

We will use the Laplace method to estimate this integral [2]. Rewriting, we have S(n) =
2n−1

π

∫ 2π

0
fn(t) dt where fn(t) =

∏n
k=1 cos(kt). In Section 2, we analyze the behavior of fn(t)

and note a technical lemma needed for the main proof of Conjecture 1, which is presented
in Section 3. We note that a similar approach was suggested in a review of [1] by Hwang [3]
published in Mathematical Reviews.

2 Behavior of fn(t)

Lemma 2. Let 0 < ε < 1/4, and fn(t) =
∏n

k=1 cos(kt). Then
∫

n−(3/2−ε)<|t|<π/2
|fn(t)| dt =

o(n−3/2) as n → ∞.

Proof. We break the integral into three pieces based on the value of |t|.

Case 1. n−( 3
2
−ε) ≤ |t| ≤ 1

n
:

Since cos(x) = cos(−x), and cos is a monotone decreasing function on [0, π], fn(t) =
fn(−t) is also monotone decreasing for t ∈ [0, 1/n], and it suffices to give an appropriate
upper bound on fn(n

−(3/2−ε)).
Since we need

∫

n−(3/2−ε)<|t|<π/2
fn(t) dt = o(n−3/2), given that 0 < ε < 1/4, it suffices to

show that for a constant c > 0,

fn(n
−(3/2−ε)) ≤ exp(−cn2ε(1 + o(1))).

Using the Taylor series expansion, we know cos(kt) ≤ 1− (kt)2

2!
+ (kt)4

4!
. Substitution then

yields

fn(t) =
n
∏

k=1

cos(kt) ≤
n
∏

k=1

(

1− (kt)2

2!
+

(kt)4

4!

)

,

since k ≤ n and |t| ≤ 1/n implies kt ≤ 1. When t = n−(3/2−ε), we have

fn(t) ≤
n
∏

k=1

(

1− k2n−(3−2ε)

2
+

k4n−(6−4ε)

24

)

.

To evaluate, we note the terms of this product are all in [0, 1], and apply log(1− x) ≤ −x:

log
n
∏

k=1

(

1−
(

k2n−(3−2ε)

2
− k4n−(6−4ε)

24

))

≤
n
∑

k=1

(

−k2n−(3−2ε)

2
+

k4n−(6−4ε)

24

)

.
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Writing
∑n

k=1 k
2 = (1/3 + o(1))n3 and

∑n
k=1 k

4 = (1/5 + o(1))n5, we have

log fn = −
(

1

6
+ o(1)

)

n3n−(3−2ε) +

(

1

120
+ o(1)

)

n5n−(6−4ε).

Letting c = 1/6, fn ≤ exp(−c(1 + o(1))n2ε + c(1 + o(1))n−1+4ε), and recalling ε < 1/4,
fn ≤ exp(−c(1 + o(1))n2ε) as desired.

Case 2. 1
n
≤ |t| ≤ π

n
:

Here we use will the monotonicity of fn(t) in n. It follows directly from fn(t) =
∏n

k=1 cos(kt) and 0 ≤ cos(x) ≤ 1 that |fn(t)| ≤ |fm(t)| for n ≥ m. Let hn = ⌊n/4⌋ be the
greatest integer in n/4. Then |fn(t)| ≤ |fhn(t)|. From Case 1, fhn(t) ≤ exp(−ch2ε

n (1 + o(1)))

for h
−( 3

2
−ε)

n ≤ |t| ≤ 1/hn. Since 1/n > h
−5/4
n ≥ h

−( 3
2
−ε)

n for n > 1050 and hn ≤ n/4 ≤ n/π
implies π/n ≤ 1/hn, we get |fn(t)| ≤ exp(−ch2ε

n (1 + o(1))) for t ≤ π/n as n → ∞.

Case 3. π
n
≤ |t| ≤ π

2
:

Note that it suffices to show that |fn(t)| ≤ cn for a constant c < 1, since then
∫

π/n≤|t|<π/2

|fn(t)| dt ≤ π · cn = o(n−3/2).

To accomplish this, we first transform fn(t) from a product to a sum using the arithmetic-
geometric mean inequality:

(f 2
n(t))

1/n =

(

n
∏

k=1

cos2(kt)

)1/n

≤ 1

n

n
∑

k=1

cos2(kt). (1)

The sum on the right-hand side can be simplified as

n
∑

k=1

cos2(kt) =
n

2
+

1

2

n
∑

k=1

cos(2kt) =
n

2
+

cos((n+ 1)t)

2

sin(nt)

sin(t)
. (2)

Combining equations 1 and 2, we can write

|fn(t)| ≤
(

1

2
+

1

2n

1

sin(t)

)n/2

. (3)

We will now apply the Jordan-style concavity inequality | sin(t)| ≥ 2|t|
π

for 0 ≤ |t| ≤ π/2. For
π/n ≤ |t| ≤ π/2, substitution in equation 3 gives

|fn(t)| ≤
(

1

2
+

1

2n

π

2|t|

)n/2

=

(

1

2
+

π

4n|t|

)n/2

.

Observing that the right-hand side is monotonically decreasing in |t|, we have |fn(t)| ≤
fn(π/n). Evaluating, we see

|fn(t)| ≤
(

1

2
− 1

2n

)n/2

proving |fn(t)| ≤ (
√

7/16)n (since we may assume 2n ≥ 16 as n → ∞).
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We will also need the following straightforward lemma from analysis.

Lemma 3. Let c ∈ R and a(c), b(c) be real-valued functions such that

lim
c→∞

−a(c)
√
c = lim

c→∞
b(c)

√
c = ∞.

Then
∫ b(c)

a(c)

e−ct2 dt ∼
∫ ∞

−∞

e−ct2 dt

as c → ∞.

3 Main Result

We now prove Conjecture 1.

Theorem 4. For n ≡ 0 or 3 (mod 4), we have S(n) ∼
√

6
π
· 2n · n−3/2.

Proof. When n ≡ 0 or 3 (mod 4), fn(t+mπ) = fn(t) for any integer m, so

S(n) =
2 · 2n−1

π

∫ π
2

−π
2

fn(t) dt, (4)

and we may assume |t| ≤ π/2 when evaluating fn(t).
By Lemma 2,

∫

n−(3/2−ε)<|t|<π/2
|fn(t)| dt = o(n−3/2), so it suffices to consider |t| < n−(3/2−ε)

when estimating fn(t) around t = 0. Recalling

fn(t) =
n
∏

k=1

eln(cos(kt)),

we first use Taylor series to approximate gk(t) = ln(cos(kt)) at t = 0. We have gk(t) =
−k2t2/2+R2, where R2 is the Lagrange remainder. Then R2 is bounded by a constant times

t3g
(3)
k (t0) for some t0 near 0. Since g

(3)
k (t) = −2k3 sin(kt)/ cos3(kt), and t0 is small (since

|t| < n−(3/2−ε)), we have that R2 ≤ ak3t3 where a is constant. The absolute error for gk(t) is
thus bounded by ak3n−(9/2−3ε).

Around t = 0, fn(t) can be approximated as δ
∏n

k=1 e
− k2t2

2 with error δ ≤∏n
k=1 e

ak3n−(9/2−3ε)
.

This simplifies to
fn(t) ≈ e−t2/2

∑n
k=1 k

2

= e−t2n(n+1)(2n+1)/12. (5)

Our error bound simultaneously simplifies to

δ ≤ ean
−(9/2−3ε)

∑n
k=1 k

3

= ean
−(9/2−3ε)n2(n+1)2/4.

This proves that the error goes to one as n approaches infinity whenever ε < 1
6
.

Substituting (5) for fn(t) in equation 4, and applying Lemma 2, we find that
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πS(n)

2n
= (1 + o(1))

∫ n−(3/2−ε)

−n−(3/2−ε)

e−n(n+1)(2n+1)t2/12 dt+ o(n−3/2).

By Lemma 3, this implies

πS(n)

2n
= (1 + o(1))

∫ ∞

−∞

e−n(n+1)(2n+1)t2/12 dt+ o(n−3/2).

Using
∫ ∞

−∞

e−Ct2 dt =

√

π

C

for any constant C > 0 and n(n+ 1)(2n+ 1) ∼ 2n3, we have

S(n) ∼ 2n

π

√

12π

2n3
=

√

6

π
· 2n · n−3/2,

as desired.
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