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Abstract

We consider the infinite families of sequences that arise from a scenario involving

the expected number of children born to a married couple when certain conditions are

placed on the minimum number of each gender. We obtain both exact and asymp-

totic formulas for these expectations, and go on to consider the long-term behavior of

sequences derived from them. For the situations studied here, it is shown that the long-

term behavior of each of the resulting sequences always falls into one of two distinct

categories.

1 Introduction

Suppose that a married couple plan to keep having children until the first instance at which
they have at least one boy and one girl. Assuming that boys and girls are equally likely to be
born, and excluding the possibility of multiple births, it is a straightforward calculation to
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show that that the expected number of children in such a family is 3. In [2] we considered a
generalization of this scenario, and derived an expression for the expected number of children
our couple would need to have in order that their family contains at least n boys and n girls.

In this article we generalize things yet further by studying the considerably more com-
plicated scenario in which the parents keep having children until the first instance at which
they have at least m boys and n girls. It is assumed throughout that only one child is
born at a time (no twins, triplets, and so on) and that on the birth of each child we have
P[boy] = P[girl] = 1

2
. Under these conditions, we obtain expressions for the expected number

of children that would result.
Our expressions give rise to infinite families of integer sequences, and we consider here the

contrasting long-term behavior of these sequences under various different scenarios. Indeed,
the following definitions enable us to categorize these behaviors:

Definition 1. A sequence of integers (xn)n≥1 is termed linear if there exists a, b ∈ Z such
that xn = an+ b for all n ∈ N.

Definition 2. A sequence of integers (yn)n≥1 is termed eventually-linear if there exists some
N ∈ N and a, b ∈ Z such that yn = an+ b for all n ≥ N .

Definition 3. An increasing sequence of integers (zn)n≥1 is termed quasi-linear if it is not
eventually-linear but, for any n ∈ N, it is the case that either zn+1−zn = a or zn+1−zn = a+1
for some fixed a ∈ N.

It is worth noting here that the quasi-linear sequences we shall encounter do in fact satisfy
slightly more stringent conditions than those given in Definition 3. This will be highlighted
and explained in Section 6. In evaluating the expectations we obtain both exact and asymp-
totic formulas.

2 The expectation as a finite sum

Let the random variable Xm,n denote the number of children born such that at least m boys
and n girls result. Observe that over the first m + n− 1 children, it is not possible to have
m boys and n girls, so Xm,n > m+ n− 1. Let the random variable Y represent the number
of boys born out of the first m+ n− 1 children. It is clear that

P[Y = k] =
1

2m+n−1

(

m+ n− 1

k

)

. (1)

We obtain an expression for the expectation of Xm,n, denoted E [Xm,n], by conditioning
on Y . To this end, consider the random variable E [Xm,n | Y = k]. if there are k boys, the
remaining l = (m + n − 1) − k children are girls. Now, for k < m, we have l ≥ n, and the
couple have all the girls they desire. Otherwise, k ≥ m and the couple have all the boys
they desire.

An inductive argument on the expectation shows that the couple must expect 2t children
for t to be of a specified gender. In the first case t = m−k for the remaining boys, giving an
expectation of (m+n−1)+2(m−k). In the second case t = n− (m+n−1−k) = k−m+1
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for the remaining girls, giving an expectation of (m + n − 1) + 2(k −m + 1). This may be
summarized as follows:

E[Xm,n | Y = k] = m+ n− 1 +

{

2(m− k), if k < m;

2(k −m+ 1), if k ≥ m.

The above result, in conjunction with (1) and the formula for conditional expectation [3],
leads to

E [Xm,n] =
m+n−1
∑

k=0

E [Xm,n | Y = k] P[Y = k]

=
1

2m+n−1

(

m−1
∑

k=0

(n+ 3m− 2k − 1)

(

m+ n− 1

k

)

+
m+n−1
∑

k=m

(n−m+ 2k + 1)

(

m+ n− 1

k

)

)

.

This may be simplified by rearranging and using the well-known results
∑r

k=0

(

r

k

)

= 2r and
∑r

k=0 k
(

r

k

)

= r2r−1 to give

E [Xm,n] =
1

2m+n−1

(

m+n−1
∑

k=0

(n−m+ 2k + 1)

(

m+ n− 1

k

)

+
m−1
∑

k=0

(

(n+ 3m− 2k − 1)− (n−m+ 2k + 1)
)

(

m+ n− 1

k

)

)

=
1

2m+n−1

(

2
m+n−1
∑

k=0

k

(

m+ n− 1

k

)

+ (n−m+ 1)
m+n−1
∑

k=0

(

m+ n− 1

k

)

+ 2
m−1
∑

k=0

(

2(m− k)− 1
)

(

m+ n− 1

k

)

)

=
1

2m+n−1

(

2 · 2m+n−2(m+ n− 1) + 2m+n−1(n−m+ 1)

+ 2
m−1
∑

k=0

(

2(m− k)− 1
)

(

m+ n− 1

k

)

)

= 2n+
1

2m+n−2

m−1
∑

k=0

(

2(m− k)− 1
)

(

m+ n− 1

k

)

. (2)
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3 Scenario 1

We first consider the behavior of E [Xm,n] as n increases without limit whilst keeping m fixed.
To this end, let us set

f(m,n) =
1

2m+n−2

m−1
∑

k=0

(

2(m− k)− 1
)

(

m+ n− 1

k

)

,

and examine what happens to f(m,n) as n tends to infinity for any fixed m ∈ N. First,
1 ≤ 2(m−k)−1 < 2m when 0 ≤ k ≤ m−1. Next, consider the binomial coefficient

(

m+n−1
k

)

for fixed m and some fixed value of k such that 0 ≤ k ≤ m − 1. This is a polynomial in
n of degree k, which we denote by gk,m(n). Note that there exists some N ∈ N such that
gm−1,m(n) ≥ gk,m(n) for each k, 0 ≤ k ≤ m− 1, and for all n > N . Therefore, when n > N ,
it is the case that

f(m,n) <
2m

2m+n−2

m−1
∑

k=0

gk,m(n)

≤ 2m2gm−1,m(n)

2m+n−2

=
m2

2m−3
· gm−1,m(n)

2n
.

Since the numerator and denominator of the fraction on the right exhibit polynomial and
exponential growth, respectively, it follows that f(m,n) → 0 as n → ∞.

Thus, for any fixed m ∈ N, 2n is an asymptotic formula for E [Xm,n] in a particularly
strong sense. Not only is it true that

E [Xm,n]

2n
→ 1 as n → ∞,

but also E [Xm,n] − 2n → 0. With 〈x〉 denoting the nearest integer to x, we are able to
deduce from this that

(

〈E [Xm,n]〉
)

n≥1
is an eventually-linear sequence, a result that may in

fact be argued heuristically. As an example, the first 14 terms of
(

〈E[X5,n]〉
)

n≥1
are given

by
10, 10, 11, 11, 12, 14, 15, 17, 19, 20, 22, 24, 26, 28, . . . ,

and is linear from the 10th term onwards.
Furthermore, by considering the expression f(m,n), it may be shown that, for fixed m,

E [Xm,n] = 2n+
h(n)

2n+m−2(m− 1)!
,

where h(n) is a monic polynomial of degree m− 1. By way of an example,

E [X5,n] = 2n+
n4 + 22n3 + 203n2 + 950n+ 1920

2n+34!
.
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4 Scenario 2

Now let a and b be fixed positive integers such that, without loss of generality, a < b.
We consider the behavior, as r tends to infinity, of E [Xm,n] for the situation in which
(m,n) = (ra, rb); in other words, we look at what happens in the limit as m and n remain
in fixed proportion. From (2) we have

E[Xra,rb] = 2rb+
1

2r(a+b)−2

ra−1
∑

k=0

(

2(ra− k)− 1
)

(

r(a+ b)− 1

k

)

< 2rb+
2ra

2r(a+b)−2

ra−1
∑

k=0

(

r(a+ b)− 1

k

)

= 2rb+ 4ra

(

1

2r(a+b)−1

ra−1
∑

k=0

(

r(a+ b)− 1

k

)

)

. (3)

Hoeffding’s inequality [4, 7] gives us information concerning the cumulative size of the
tails of probability distributions. For the case of a binomial distribution S ∼ B(n, p) and
ǫ > 0 we have the following result [7]:

P[S ≤ n(p− ǫ)] ≤ exp
(

−2ǫ2n
)

. (4)

On setting p = 1
2
, n(p− ǫ) = ra− 1 and n = r(a+ b)− 1, we obtain

ǫ =
r(b− a) + 1

2
(

r(a+ b)− 1
)

(noting that b > a, so that ǫ is indeed positive). Thus, from (4),

P[S ≤ ra− 1] ≤ exp



−2

(

r(b− a) + 1

2
(

r(a+ b)− 1
)

)2
(

r(a+ b)− 1
)





= exp

(

−
(

r(b− a) + 1
)2

2
(

r(a+ b)− 1
)

)

.

Since, for fixed a and b,

ra exp

(

−
(

r(b− a) + 1
)2

2
(

r(a+ b)− 1
)

)

→ 0 as r → ∞,

it may be seen, from (3), that when m and n remain in proportion we have both

E[Xra,rb]

2rb
→ 1 and E[Xra,rb]− 2rb → 0 as r → ∞,

emphasizing here that the assumption a < b is indeed necessary for this result to hold. Thus
(

〈E[Xra,rb]〉
)

n≥1
is an eventually-linear sequence, exhibiting qualitatively similar behavior

to the case in which m was kept fixed. To give an example,
(

〈E[X20r,21r]〉
)

n≥1
is linear from

the 242nd term onwards.
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5 The expectation as an infinite sum

We use the standard definition for expectation:

E[X] =
∑

x

xP[X = x]

in order to obtain an expression for E[Xm,n] comprising an infinite series. Note that Xm,n can
take any integer value greater than or equal tom+n. To calculate the probability P[Xm,n = k]
we first count the number of possible strings of length k in an alphabet comprising two
symbols that satisfy our requirements. This number is then multiplied by 1

2k
, as each outcome

occurs with this probability. To this end, consider the last child born. If this was a boy, we
require precisely m− 1 boys in the first k − 1, and if a girl, we require precisely n− 1 girls
in the first k − 1. Thus the number we seek is

(

k−1
m−1

)

+
(

k−1
n−1

)

and the expectation can be
expressed as:

E[Xm,n] =
∞
∑

k=m+n

k

2k

(

(

k − 1

m− 1

)

+

(

k − 1

n− 1

)

)

.

Applying the identity
(

k−1
m−1

)

= m
k

(

k

m

)

provides us with the alternative form:

E[Xm,n] =
∞
∑

k=m+n

1

2k

(

m

(

k

m

)

+ n

(

k

n

)

)

. (5)

In Section 6 we go on to consider the case for which n = m+ j for some fixed j ∈ N. The
formulation for E[Xm,n] as an infinite sum given above is more convenient for studying the
expectation’s behavior when m and n are kept a fixed distance apart. We shall also make
use of a result from [2]:

∞
∑

k=2r

1

2k

(

k

r

)

= r

(

1 +
1

22r

(

2r

r

)

)

, (6)

a consequence of Stirling’s formula [1, 5]:

(

2m

m

)

∼ 22m√
mπ

, (7)

and a result which follows from Stirling’s formula:

1

22m

(

2m

m

)

→ 0 as m → ∞. (8)

6 Scenario 3

In this final section we set n = m+ j, where j is a fixed non-negative integer, and consider
what happens to the expectation as m increases without limit, noting that a formula for the
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special case j = 0 is derived in [2], leading to sequence A159061 in the On-line Encyclopedia

of Integer Sequences [6]. From (5) we have

E [Xm,m+j ] =
∞
∑

k=2m+j

1

2k

(

m

(

k

m

)

+ (m+ j)

(

k

m+ j

)

)

=
∞
∑

k=2m

m

2k

(

k

m

)

−
2m+j−1
∑

k=2m

m

2k

(

k

m

)

+
∞
∑

k=2(m+j)

m+ j

2k

(

k

m+ j

)

+

2m+2j−1
∑

k=2m+j

m+ j

2k

(

k

m+ j

)

. (9)

On considering just the finite sums above, we obtain

−
2m+j−1
∑

k=2m

m

2k

(

k

m

)

+

2m+2j−1
∑

k=2m+j

m+ j

2k

(

k

m+ j

)

= − 1

22m

j−1
∑

k=0

m(2m+ 1)k
2k(m+ 1)k

(

2m

m

)

+
1

22m

2j−1
∑

k=j

m(2m+ 1)k
2k(m+ 1)k

(

2m

m

)

+
j

22m

2m+2j−1
∑

k=2m+j

(2m+ 1)k
2k(m+ 1)k

(

2m

m

)

=
m

22m

(

2m

m

)

(

2j−1
∑

k=j

(2m+ 1)k
2k(m+ 1)k

−
j−1
∑

k=0

(2m+ 1)k
2k(m+ 1)k

)

+
j

22m

(

2m

m

) 2m+2j−1
∑

k=2m+j

(2m+ 1)k
2k(m+ 1)k

, (10)

where the Pochhammer symbol (t)n is defined by t(t+1) · · · (t+ n− 1), which is also known
as the rising factorial. Note that (t)0 = 1 by definition.

Since
(2m+ 1)k
2k(m+ 1)k

≤ 1 (11)

for all non-negative integers k, it is the case that

j

2m+2j−1
∑

k=2m+j

(2m+ 1)k
2k(m+ 1)k

≤ j2.

Then, for fixed j, it follows from (8) that

j

22m

(

2m

m

) 2m+2j−1
∑

k=2m+j

(2m+ 1)k
2k(m+ 1)k

→ 0 as m → ∞. (12)
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Next, for k such that 0 ≤ k ≤ j − 1,

(2m+ 1)j+k

2j+k(m+ 1)j+k

− (2m+ 1)k
2k(m+ 1)k

=
(2m+ 1)k
2k(m+ 1)k

(

(2m+ k + 1)j
2j(m+ k + 1)j

− 1

)

=
(2m+ 1)k
2k(m+ 1)k

(

−Gj,k(m)

Hj,k(m)

)

, (13)

where, for fixed j and k, Gj,k(m) and Hj,k(m) are polynomials in m of degrees j − 1 and
j, respectively, and, without loss of generality, Hj,k(m) is monic. The leading coefficient of
Gj,k(m) is in fact a function of j and k, and, out of all the values of k from 0 to j − 1, is
largest when k = j − 1 (as is easily shown to be true). The leading coefficient of Gj,j−1(m)

is given by j(3j−1)
4

. From this it follows that

m
Gj,j−1(m)

Hj,j−1(m)
→ j(3j − 1)

4
as m → ∞. (14)

Now, using (11) and (13), we have

m

22m

(

2m

m

)

∣

∣

∣

∣

∣

2j−1
∑

k=j

(2m+ 1)k
2k(m+ 1)k

−
j−1
∑

k=0

(2m+ 1)k
2k(m+ 1)k

∣

∣

∣

∣

∣

=
m

22m

(

2m

m

)

∣

∣

∣

∣

∣

j−1
∑

k=0

(2m+ 1)k
2k(m+ 1)k

(

−Gj,k(m)

Hj,k(m)

)

∣

∣

∣

∣

∣

≤ 1

22m

(

2m

m

)

∣

∣

∣

∣

∣

j−1
∑

k=0

m
Gj,k(m)

Hj,k(m)

∣

∣

∣

∣

∣

(15)

We know from (14) that
∣

∣

∣

∣

∣

j−1
∑

k=0

m
Gj,k(m)

Hj,k(m)

∣

∣

∣

∣

∣

→ c as m → ∞ (16)

for some some c ∈ R which depends on j. From (8), (15) and (16), it then follows that

m

22m

(

2m

m

)

(

2j−1
∑

k=j

(2m+ 1)k
2k(m+ 1)k

−
j−1
∑

k=0

(2m+ 1)k
2k(m+ 1)k

)

→ 0 as m → ∞. (17)

We may now combine results (6), (7), (9), (10), (12) and (17) to give

E [Xm,m+j ] ∼
∞
∑

k=2m

m

2k

(

k

m

)

+
∞
∑

k=2(m+j)

m+ j

2k

(

k

m+ j

)

= m

(

1 +
1

22m

(

2m

m

)

)

+ (m+ j)

(

1 +
1

22(m+j)

(

2(m+ j)

m+ j

)

)

∼ m

(

1 +
1√
mπ

)

+ (m+ j)

(

1 +
1

√

(m+ j)π

)

.
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Finally, on tidying up (remembering that j is fixed), we obtain the following asymptotic
formula:

E [Xm,m+j ] ∼ 2m

(

1 +
1√
mπ

)

.

Notice that from this result we may deduce, for fixed j, that (〈E [Xm,m+j ]〉)n≥1 is not an
eventually-linear sequence. These sequences do, however, turn out to be quasi-linear. By
way of an example we obtain, using the exact formula (5) with j = 3, the following first few
terms of (〈E [Xm,m+3]〉)n≥1:

8, 10, 12, 15, 17, 19, 21, 23, 25, 28, 30, 32, 34, 36, 38, 40, 42, 45, . . .

Such sequences are in fact quasi-linear in a particularly strong sense, as we now describe:

Definition 4. Let (xn)n≥1 be a sequence of positive integers, and suppose that the sequence
(dn)n≥1 has the following property. The first x1 terms of (dn)n≥1 comprise a finite linear
sequence with common difference a for some a ∈ N, then dx1+1 − dx1

= a+1, and the terms
of (dn)n≥1 numbered x1 + 1 to x2 form a finite linear sequence with common difference a,
and so on. Then we term (dn)n≥1 strongly quasi-linear if (xn)n≥1 is strictly increasing.

For example, the sequence (〈E [Xm,m+3]〉)n≥1 given above is strongly quasi-linear. We have
x1 = 3, x2 = 6, x3 = 8, and so on.
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