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Abstract

If A is a set of natural numbers containing 0, then there is a unique nonempty
“reciprocal” set B of natural numbers (containing 0) such that every positive integer
can be written in the form a 4+ b, where a € A and b € B, in an even number of ways.
Furthermore, the generating functions for A and B over [y are reciprocals in Fa[[q]].
We consider the reciprocal set B for the set A containing 0 and all integers such that
o(n) is odd, where o(n) is the sum of all the positive divisors of n. This problem
is motivated by Euler’s pentagonal number theorem, a corollary of which is that the
set of natural numbers n so that the number p(n) of partitions of an integer n is odd
is the reciprocal of the set of generalized pentagonal numbers (integers of the form
k(3k £1)/2, where k is a natural number). An old (1967) conjecture of Parkin and
Shanks is that the density of integers n so that p(n) is odd (equivalently, even) is %
Euler also found that o(n) satisfies an almost identical recurrence as that given by the
pentagonal number theorem, so we hope to shed light on the Parkin-Shanks conjecture
by computing the density of the reciprocal of the set containing the natural numbers
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with o(n) odd ((0) = 1 by convention). We conjecture this particular density is 55
and prove that it lies between 0 and %6. We finish with a few surprising connections
between certain Beatty sequences and the sequence of integers n for which o(n) is odd.

1 Introduction

For any sets containing nonnegative integers A and B, the asymmetric additive representa-
tion function is defined by

R(n) = |{(a,b) € AX B|n=a-+ b}

Alternatively, we can define R(n) with

(S (Te) - 3w
acA beB n=0
We are interested in the case where R(n) = 0 (mod 2) for n > 1 and R(0) = 1 which is

illustrated in the power series ring Fy[[¢q]]. Here, A and B are called reciprocals. For a set
A, we write its reciprocal as A. Given A, we focus on the relative density of A,

_ AN|o,n]
O

and natural density ¢ (E) = lim,,_,o0 0 (Z, n) Consider the following statement of Euler’s
pentagonal number theorem:

( > (—1)”qn(331)> (Zp(n)qn) =1, (1)

n=—oo

where p(n) is the partition function of n, i.e., the number of ways to write n as an unordered
sum of positive integers. If we rewrite (1) mod 2, the result is

( i qn(?’g_l)) (ip(n)q”> =1,

n=—oo

where the power series are now elements of the ring Fs[[¢]]. In this sense, P, the set of integers
with an odd number of partitions (including 0), is the reciprocal of the set of generalized
pentagonal numbers G, i.e., G = P. A well-known and difficult conjecture of Parkin and
Shanks states that 6(P) = . The current best lower bounds on the density of P still tend
towards 0 [1, 7].

The paper which precedes this attempts to shed light on the question by studying recip-
rocals mod 2 in general. In particular, the authors found that a loosely-defined “typical”
reciprocal set has density % [4]. With this in mind, we continue the line of work by studying
the analogous reciprocal for the function o(n), the sum-of-divisors function defined as

o(n) = Z d.
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The motivating connection between p(n) and o(n) is the fact that they satisfy almost iden-
tical recurrences [2]

pi) = 3 (1 (- )
= 5 Core - K220)

with the only difference being that o(n—mn) is interpreted to mean n (since o(0) is undefined,

whereas p(0) = 1). The reciprocal sets G and P = G have densities 0 and, assuming the

Parkin-Shanks conjecture, %, respectively. Then letting ¥ denote the set containing 0 and

all positive integers n such that o(n) = 1 (mod 2), we ask: what are §(X) and 6(X)?
Throughout this sequel, we use the following notation.

Definition 1. For any set containing nonnegative integers F', we write F'(q) for the ordinary
generating function over Fy of (the indicator function of) F. In other words,

Flg)=) 4

fer

Furthermore, for a set of nonnegative integers F, we write F* for the set of indices of
nonvanishing monomials in F'(q)*.

Definition 2. For any set ' C N with 0 € F, let F be the unique set obtained from F(q)

by defining F(q)F(q) = 1.

Definition 3. For any set F' C N, let the set of even elements of F' be denoted F,. and the
odd elements F,, so that F'(q) = F.(q) + F,(q).

We repeatedly employ the following result, sometimes known as the “children’s binomial
theorem”.

Theorem 4. For any f, g € Fy[q]], (f +9)* = f* + ¢*.

2 The Sum of Divisors Function

Definition 5. Let X(g) be the binary generating function for o(n) for nonnegative integers
n. By definition, ¥ is the set containing nonnegative integers n with o(n) odd.

S(g) =) o(n)q"

n=0



In order to find the density of X, we need a description of those integers that have an
odd divisor sum. Let n be a positive natural number. Then o(n) is defined to be the sum
of all (positive) divisors of n, including n itself, i.e.,

o(n) = Z d.

dln

We can write the prime factorization of n as

k
=11
=1

where the p; are distinct primes and e; is a positive integer. Clearly, d € N divides n if and
only if it can be written in the form

where 0 < f; < e; for each i. Therefore,

o(n)=> d
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This product is odd precisely when all of its factors > i p{ ‘are odd.
Lemma 6. For an odd prime p, the quantity Z;:o p! is odd precisely when e is even.
Proof. If e is even, we may write
Yo = +p) (4P +p + 0+
f=0

Since p is odd, 1 + p is even, so the first summand is even. The second summand, being a
nonnegative power of an odd integer, is odd. Therefore, the sum is odd. If e is odd, we may
write

D ori =4 +p +p ),
£=0

Again, 1+ p is even, so the sum is even. O

Lemma 7. The quantity Y ,_,2" is odd for any natural number r.



Proof. This follows immediately from the observation that

XT:QT —ortl 1.
k=0

]

Theorem 8. The quantity o(n) is odd if and only if the odd part of n is a square, i.e., if
n=2"-pi'---pi* is the prime factorization of n, then e; is even for each i, 1 <1i < k.

Proof. By (2), we may write
r ke
o (52) )
7=0 i=1 5=0

The left-hand factor is always odd, by Lemma 7. The right-hand factor is odd if and only if
all of the sums ; p] are odd. By Lemma 6, this occurs if and only if each of the e; is even.
Therefore, o(n) is even if and only if its odd part is a square. O]

Definition 9. Let S(q) be the power series with positive squares as the exponents of ¢:

S(g)=> ¢

Lemma 10. X(q) =1+ S(q) + S(q)?

Proof. The power series S(q) has a nonzero coefficient for ¢™ if and only if n is a positive
integer of the form k?. By the children’s binomial theorem, S(q)? has exactly the positive
integers of the form 2k? as exponents of ¢. By adding 1, S(q), and S(g)? together, we obtain
a power series whose nonzero monomials are all the nonnegative integer powers of ¢ of the
form k% or 2k%. By Theorem 8, ¥(g) has a nonzero coefficient of ¢" if and only if the odd
part of n is a square, i.e., n is any nonnegative integer of the form k? or 2k?. The claimed

equality follows immediately.
]

Corollary 11. §(3) = 0.

Proof. The relative density of ¥, §(3, n), is just the number of nonnegative integers less than
or equal to n that are either a square or twice a square, divided by n + 1, so

1+ [Vn] + { n/QJ

n+1

0(X,n) =
Taking the limit as n tends to infinity yields
(%) =0.



3 The Reciprocal

Definition 12. Let D denote the odd (positive) squares, i.e.,

_ S (2n+1)2
nzgq

Lemma 13. S(q) = >>2, D(q)*"

Proof. Consider the set of all odd squares, D. If we quadruple the members of D, we obtain
those even squares divisible by 4, but not divisible by 16. If we quadruple again, we obtain
the even squares divisible by 16, but not 64. Applying the children’s binomial theorem,

=> D'

Corollary 14. 3(q) =1+ > D(¢)*"

Proof. Substituting the equation in the statement of Lemma 13 into the expression in
Lemma 10 and applying the children’s binomial theorem once again, we obtain the desired
statement. 0

The next results will allow us to decompose ¥ into congruence classes, so that we are
able to analyze § (Z) “piecewise”.

Lemma 15. .
=> D(g*"!
n=0

Proof. We begin by squaring ¥(¢) and rewriting:

)? = (1 + i D(Qf”) =1+ i D(q)*

If we add D(q), we have
2(¢)* + D(q) = X(a),

or

D(q) = %(q) + X(q)*,
which we can divide by D(q)X(g) to obtain

() = ”Z ZD (3)

by Corollary 14. ]



Definition 16. Let Y, denote the subset of ¥ of integers congruent to k (mod 8), i.e.,
Yy =XN(8Z+k).

Lemma 17. Using the above definition, the following hold:

i. Yo(q) =1, ie., ¥y = {0}.
ii. S1(q) = D(q), i.e., 51 ={(2k+1) | ke N,k >0}.
ii. ¥3(q) = D(q)°.

. 37(q) = D(q)" + D(¢9)"® + D(¢)* + -

Proof. The proof proceeds as follows. For any F(q) € Fy[[q]], F(q)* is the power series
whose exponents are those integers that can be represented as a sum of k of F'(¢)’s monomial
exponents in an odd number of ways. Note that the exponents of ¢ accompanying nonzero
coefficients in D(q) are congruent to 1 (mod 8). Therefore, when D(q) is raised to a power
congruent to k (mod 8), the exponents of the resulting series are all congruent to k& (mod 8).
Proceeding from (3), we may write

Y=Y, U3, U3 UN,,

because the powers of D(q) on the right-hand side of (3) are congruent only to 0, 1, 3, and
7 (mod 8). Indeed, by examining those exponents which appear in the terms of (3), it is
straightforward to see that the above lemma holds. O]

Our next steps concern further classifications of X5 and ¥;. We put X5 aside until the
end of this section. Presently, we provide the following definition and lemma.

Definition 18. Let A denote the set of triangular numbers, i.e.,

Al =Yg
n=0

Lemma 19. The following identities hold:
i. X(q) — 1= D(q) — D(q)* = D(q)"%(q)*

ii. qA(q)* = D(q)
Proof. By Corollary 14,

S(q) =) D@

Therefore,

S(q) —1—D(q) = D(¢)* =Y  D(g)"""

= D(¢)" > D(g)*"""

= D(q)"%(q)®,



which is claim (i). Now, observe that multiplying a triangular number n(n + 1)/2, n > 0,
by 8 and adding 1 yields an odd positive square, and in fact, every odd positive square can
be uniquely obtained in this manner. Therefore,

) =q (Z qn(ngl)) = D(q),

yielding claim (ii). O
The following result is [6, Theorem 357], reduced modulo 2.

Theorem 20.
Alg) =1 +4¢)?

n>1

We believe the following theorem, though strictly speaking is not needed in its full gen-
erality for our main result, holds some independent interest.

Theorem 21. Let k € Z and G(q) = [[,>,(1 +¢"). If k is odd, then

2(q)G*(q) = GE(q).

In particular, since G*(q) = A(q) and G™*(q) = P(q), we have that A(q)X(q) = Ac(q) and
P(9)%(q) = Fe(q)-

Proof. Over FFy, the derivative with respect to ¢ of ¢" is 0 if n is even and ¢" ! if n is odd.
Taking the derivative of the expression G*(¢) = [],~,(1 + ¢")* where k is odd, we see that

d ng"*
(@@ =6 @Y

n>1 1—{—q"

which simplifies to

Glg(q) _ Gk(q) Z q2n

2n+1"
n>0 1 + q

This may be rewritten as
Gola) _ ¢

Gk(q) o o 1+ q2n+1'

If we add G*(q)/G*(q) to the left and 1 to the right, we arrive at

2n+1

CZ
=1+ 4
5(q) ;1+q2n+1 (4)

The right-hand side of (4) has monomial terms 1 and ¢" for all positive integers n which
are divisible by exactly an odd number of odd numbers. Note that, if r is the largest integer



so that 2"|n, then

o(n) = (2" — Z d
2td|n
— Z 1

2td|n
B {1, if n has an odd number of odd divisors;

0, otherwise.

The desired conclusion is then the reciprocal of (4). O
Corollary 22. X(q) = A(q)/A(q).
Definition 23. Let V(g) be the power series such that ¥7(q) = ¢"V (q)®.

This definition is meaningful because ¥;(¢q) has only monomial terms of the form ¢*
where k =7 (mod 8).

Definition 24. Let T(q) = %.
elq

The square root and the fraction make sense because A.(q) has only even exponents and
VAc(q) has a 1 term since A.(¢q) has a 1 term (0 is an even triangular number).

Theorem 25. Y;(q) = ¢"T(q)"S.

Proof. We begin by combining Lemma 15 and Lemma 17 (iv):

2(q) = 1+ D(q) + D(q)’ + Zq(q)- (5)
Applying part (i) of Lemma 19 to Definition 23,

D(q)"S(q)* = ¢"V(9)®,

which, using part (ii) of Lemma 19, becomes

(4A(9)*) =(g)* = ¢V ()*.

Finally, a bit of simplification reveals that

If we substitute Lemma 22 into (6),

A(g)®

Vg 7

@ Ac(q)
which is exactly T'(¢)? on the right-hand side. Substituting into Definition 23, we have our
proof. O



Finally, we handle the case of exponents which are 3 (mod 8). It is straightforward to
see that these terms make a vanishing contribution to the density of X..

Proposition 26. §(33) = 0.

The interested reader can also arrive at this conclusion by demonstrating that Y3 =
{p°k? | p prime, p =3 (mod 8), e =1 (mod 4), k odd, and ptk}.

Proof. By Lemma 17, ¥3(q) = D(q)D(q)% Using the children’s binomial theorem, we see
that n € 33 if and only if the number of representations of n as a® + 2b%, with a and b
positive is odd. The proposition then follows from the well-known fact that the theta series
of a binary quadratic form is lacunary. (See, for example, [5].) [

Theorem 27. §(%) = §(%;)
Proof. To show that §(3) = 6(37), we recall that

Y=YyUX, US; UX,.

Since each Y is disjoint, §(%) = _(f
0}, 6(3)

(31) 4+ 6(23) + 0(X7). Because ¥y = {0} and
Y= {(2k+1)°|keNk> ) =

)+ 6
+ (%) = 0. By Proposition 26, §(33) = 0. O
Corollary 28. 0 < §(3) < 1.

Proof. By Theorem 25, Y7(q) = ¢"T(q)'S. Applying the children’s binomial theorem yet
again, if n is a monomial exponent of ¢ on the right-hand side of the preceding equation,
then n = 7 (mod 16). (Equivalently, for n = 15 (mod 16), n ¢ ¥7.) Thus, 0 < 6 (37) < &
and by Theorem 27, 0 < § (i) < 1—16. O

Numerical evidence strongly suggests the following conjecture.

Conjecture 29. §(%) = &

4 Appendix

We conclude the paper with a few observations about the indices of elements of > corre-
sponding to certain well-studied integer sequences.

Definition 30. Let ¢(n) = |v/n] + |\/n/2], the number of positive integers of the form k?
or 2k? less than or equal to n.

Definition 31. Let {s,}>2; be the monotone increasing sequence comprised of all positive
elements of .

Proposition 32. For alln > 1, ¢(s,) =n

Proof. For any n > 1, n is the number of elements of {¢,}2°, less than or equal to g,.
Since {c,}°°, is each positive integer of the form k? or 2k* in monotone increasing order,

c(s,) = n. O

10



Definition 33. Below, we define six (non-homogeneous) Beatty sequences for k& > 1:

i. Let wy be the k-th winning positions in the 2-Wythoff game (OEIS A001954).
ii. Let oy = |k(2+ v/2)] (OEIS A001952).
iii. Let Bx = [k(2+v/2)/2] (OEIS A003152).
iv. Let . = [ (k — 3)(2+2v/2)] (OEIS A215247).
v. Let 6, = | k(2 +2v/2)| (OEIS A197878).
vi. Let e, = [k(1 +v/2)]| (OEIS A003151).

The following is a result in the 2-Wythoff winning positions [3].

Theorem 34. w, = [(k— 3)(2+v2)].

Proposition 35. Lets,, B, n, 0,, and 7y, be defined as above. Then we have the following.
i. If n = (2k —1)? for some positive integer k, then n is the wy-th term in {,}°,.
. If n = 4k* for some positive integer k, then n is the ay-th term in {q,}°2,.

ii. If n = k?* for some positive integer k, then n is the By-th term in {,}°,.
w. If n=2(2k — 1)? for some positive integer k, then n is the y-th term in {5, }°2,.
v. If n = 8k? for some positive integer k, then n is the d-th term in {c,}°°,
vi. If n = 2k? for some positive integer k, then n is the ex-th term in {s,}°2,.

Proof. Let n = (2k — 1)? be the k-th odd square. By Definition 30,

V2k =12 4 [V(2k — 1)2/2]

2% — 1+ (2k — 1)/v/2]
2% —1)(1+1/v?2)]

k—%)(2+\/§)J.

]
=
L(
L(

Theorem 34 and Proposition 32 complete the proof of (i). Now, let n = 4k* be the k-th
positive even square. By Definition 30,

c(n) = |V4k?] + |\/4k2 /2]
|2k + 2k//2)]
= [k(2+V2)].

11
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Proposition 32 completes the proof of (ii). Let n = k* be the k-th positive square. By
Definition 30,

c(n) = [VF?] + [Vk?/2]
= [k +k/V2)]
= [k(2+V2)/2].

Again, Proposition 32 completes the proof of (iii). Let n = 2(2k — 1)? be the k-th positive
twice odd square. By Definition 30,

c(n) = [V/2(2k — 1)2] + |\/2(2k — 1)2/2]
= [V2(2k — 1) + 2k — 1]
— |2k — 1)(1 +V?2)]
= (k- )2 +2V3)].

Proposition 32 completes the proof of (iv). Let n = 8k? be the k-th positive twice even
square. By Definition 30,

c¢(n) = | V82| + [ /8k2/2]
= |2V2k + 2k |
= |k(2+2V2)].

Proposition 32 completes the proof of (v). Finally, let n = 2k* be the k-th positive twice-
square. By Definition 30,

c(n) = | V2k2]| + [\/2k%/2]
= |kV2 + k]
= |k(1+V2)].

Proposition 32 completes the proof of (vi). ]

Proposition 35(i) may be interpreted in the following somewhat surprising way. Let W
denote the positive natural numbers, i.e., the “whole numbers”. Define a function £ : W% —
WW as follows: given a function f € WY which takes on infinitely many odd values, let £(f)
be the function g € WY so that g(k) is the k-th smallest integer n so that f(n) is odd, i.e.,
for k > 1,

g(k) =min{n : f(n) =1 (mod 2) and n > g(k — 1)},

where we take g(0) = —oo by convention. Then L(L(0)) = c.
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