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In this note we shall be concerned with families of monic polynomials P,(x) where P,(z) is

X\  Journal of Integer Sequences, Vol. 15 (2012),

OIS Article12.4.2
92 a0

Four-term Recurrences, Orthogonal
Polynomials and Riordan Arrays

Paul Barry
School of Science
Waterford Institute of Technology
Ireland
pbarry@wit.ie

Aoife Hennessy
Department of Computing, Mathematics and Physics
Waterford Institute of Technology
Ireland
aoife.hennessyOgmail.com

Abstract

We study constant coefficient four term recurrences for polynomials, in analogy to
the three-term recurrences that are associated with orthogonal polynomials. We show
that for a family of polynomials obeying such a four-term recurrence, the coefficient
array is an ordinary Riordan array of a special type, and vice versa. In certain cases,
it is possible to transform these polynomials into related orthogonal polynomials. We
characterize the form of the production matrices of the inverse coefficient arrays.

Introduction

of degree n. Thus we will have

n
P,(x) = Zanykxk, Anp = 1.
k=0

The matrix of elements a,,  is then a lower-triangular matrix with 1’s on the diagonal, and
hence invertible. We shall call this matrix the coefficient array of the polynomial family. The
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inverse of this matrix will be called the inverse coefficient array. In the case of orthogonal
polynomials, the elements of the first column of the inverse coefficient array are the moments
of the family [20]. We shall refer to the elements of the first column of a general inverse
coefficient array as being generalized (formal) moments.

We recall that an ordinary Riordan array [15, 18] is defined by a pair (g, f) of power
series, where g(z) = 1+ g1x + gox® + -+, f(x) = . + for? + -+, and is associated to the
matrix (f,1)o<nk<oo Where t,x = [2]"g(x)f(z)¥. (These are proper Riordan arrays). The
multiplication law for these pairs, which form a group, is given by

(g,f)'(h,l):<g(h0f),l0f).

The identity for this law is I = (1,2) and the inverse of (g, f) is (g, f)™' = (1/(g o f), f)
where f(r) = Rev, f(z) is the compositional inverse of f. For an invertible matrix L, we
define the production matrix P to be the matrix P, = Lillz, where L is the matrix L
with its first row removed [5, 6]. When L is a Riordan array (g, f), the first column of Py, is

generated by Z(z) = ﬁ (1 — m>, while the k-th column of Py, is generated by ¥ 71 A(x)

(taking the first column to be indexed by 0), where A(z) = O
sequence of determinants h, = |a;4;|o<ij<n is called the Hankel transform [11, 12, 13] of
a,. Sequences will be referred to by their OEIS [16, 17] numbers. For instance, the Catalan
numbers C,, = n%l(z:) = [x"]@ are sequence A000108.

It is a classical result that a family of monic polynomials P,(x) is a family of orthogonal

polynomials [4, 7, 19] if and only if they satisfy a three-term recurrence of the form

For a sequence a,, the

P(x) = (x — o) Ph1 — B Pra,

with appropriate initial conditions. A more recent result [1, 2] is that a Riordan array A is the
coefficient array of a family of orthogonal polynomials if and only if the production matrix of
A~1 is tridiagonal (a result based on previous work [14, 21]). In the case of ordinary Riordan
arrays, the coefficients «,, and (3, are necessarily independent of n. The most general form
of ordinary Riordan array that coincides with the coefficient array of a family of orthogonal
polynomials is then given by

1 —cx — da? x

1+ar+bx?" 1+ax+bx?)’
for appropriate values of a, b, c,d. In this note, we ask ourselves the question: what can be
said about families of polynomials P,(x), that satisfy a four-term recurrence of the form:

Pn(a:) = (l’ - O‘)Pn—l(x) - (.T - ﬂ)Pn—Q(x) - PYPn—?)(x)‘

Note that in this note we are considering the simplest case of constant coefficients.

2 Main results

Our results are encapsulated in the following theorem.
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Theorem 1. A family of monic polynomials P,(x) where P,(x) is of degree n, satisfies the
four-term recurrence

Px)=(x—a+1)P,_1(x) — (x + B)Pr—2(x) — vP,_3,
with P,(x) =0 forn <0, Py(x) =1 and Pi(x) = x — 0, if and only if the coefficient array
of the family P,(x) is given by the Riordan array
l+(a—0—1)x (1l —x)
I+ (a—1Dx+Bz2+y23" 1+ (a— V)x + fa? + a3 )
In addition, for such a family, if v =0 (but a + 3 # 0 and B+ 6 # 0), then the family of
polynomials

_ n—1
W) =) (=1)F p 1
nle) =3 (=) (12, )nt
1s a family of orthogonal polynomials that satisfies the three-term recurrence

Qn(z) = (. — )Qn-1(z) — (@ + B)Qn—2(x),
with Qo(x) =1, and Q1(z) =x — 6 + 1.

Proof. We let p,(x) be the family of polynomials whose coefficient array is given by the
Riordan array

l+(a—0—1)x (1l —x)
1+ (a=Dx+pr?+y23" 1+ (a— 1)x + fa? + a3 )
Since this array is lower triangular with 1’s on the diagonal, each polynomial p,(x) is monic
of degree n. We let

I I+ (a—d—1)x z(l—x) -
S \L+(a— 1)z + P2+ 923" 1+ (a — 1)z + S22 + ya3 ‘
Then standard Riordan array techniques show that the production matrix P, of L is given
by

) 1 0 0 0 0
B+ « 1 0 0 0
B+0+y a+p a 1 0 0
pp=| B+0+y a+B+y a+p « 1 0
B+0+y a+0+y a+0+y a+p Q 1
B+0+y a+B+y a+b8+y a+b+y a+f «
This implies that
o 1 0 0 0 0 .
B+9 a 1 0 0o 0 . po(x) xpo()
B+do+y a+p o 1 0 0. pi(z) api ()
B+o+y at+B+y  a+p a 10 . pa(z) | = | apa(z)
B+d+~y a+pB+y a+pB+y a+p Q 1 . ps(z) xp3(x)
B+od+y a+B+y a+B+y a+fB+y a+f8 a . : :




We deduce the following.
pi(x) + 0po(x) = xpo(x) = pi(z) =2 — 0.
p2() + api(z) + (B + 0)po(x) = ap1(z) = p2(x) = (v — a)pi(z) — (B +9)
which further implies that
p2(2) = (. —a+Dpi(z) —pi(x) = (B+6) = (z —a+ pi(x) — (x + B)po(x).

We have
p3(x) + apz(z) + (o + B)pi(z) + (B4 0 + 7)po(x) = zp2(x)

which implies that

p3(z) = a+ B)pi(x) = (B+0+7)
p (

( (
= (z—a+1)p(z) —pa(z) — (a+ B)pi(z) = (B++7)
= (v —a+pa(x) = (v — a)pi(x) + (B + ) — (a+ B)pi(x) — (B+0+7)
= (z—a+1)p(z) — (x+ B)pi(x) — vpo(2).

In similar fashion we can show that

pa(x) = (z — a4+ 1)ps(z) = (z + B)pa(x) — 7pa ().

Now assume that

pn—l(x) - (CL’ — o+t 1>pn—2('r) - (l’ + ﬂ)pn—ii(x) - ’an_4(93)-

We have

Pn = (2—a)pp_1—(+B)pn—o—(a+8+7)pn—s—(a+L+7)pp_a—- - - —(a+B+7)p1 — (B+5+7).

Then

Pn = (x_a—l—l)pn—l_pn—l_(Oé_’_ﬁ)pn—Q_(a+ﬁ+’7)pn—3_(a+ﬁ+’y)pn—4_"'7

or
Pn = (l’ —a+ 1>pn—1 - (.73 —a+ 1)pn—2 + (I + ﬁ)pn—3 + YPp—a—
(a—i_ﬂ)pan_ <a+ﬁ+7)pn73_"' .
Thus
P = (—a+1Dp,g—(@+F+1)ppo2—(—z+a+7)ph—s— (@ + B)pp_ag— -
= (@—a+1)pp1—(2+B)pa2—Pn2— (=T +a+y)pos— (a+B)pya—--
= (r—a+1)pp1—(@+B)pn2—(z—a+Dpos+ (x+B)pua+yPus—
= (r—a+Dpp1— (x+ B)pn-2 — VPn-3 — Pn-3 + (. — Q)Pp—a + VPn-5 — - -



We must now show that

~Pn3+(@—a)ppg—(a+B)pns—(a+B+7)pns——(a+B8+7)p1— (B+0+7) =0.

Since
Png = (x —a+ 1)pp—s — (x + B)Pn—s — YPn—s

this reduces to showing that

—Pn-a+ (= a)pp—s — (@ + B)pp— — - —(a+B+v)pr — (B+0+7) =0.

[terating on decreasing n we get
0=0.

Thus the family of polynomials p,,(x) satisfy the four-term recurrence with the appropriate
initial conditions.

Conversely, if we start with a family of monic polynomials P, (z) of degree n that satisfy
the four-term recurrence

Pufe) = (@ — a+ 1)Pos(z) = (2 + B) Pas(z) = 1Pos,
with P,(x) =0 for n <0, Py(z) =1 and Py(z) = = — 0, then the Riordan array

(1+1+(a—5—1)x (1 — ) )

(a =Dz + a2 4+ y23" 1+ (o — 1)a + fa? + yad

will coincide with the coefficient array of P, (z), since clearly p,(z) = P,(x) for all n as they
have the same initial values and obey the same recurrence.
We now form the matrix

;2 1+ (a—d0—-1)x (1l —x) 1 x
( ’1—1—1:) ' <1—|—(a—1)x+ﬁx2+7x3’1+(o¢—1)x+ﬁx2+7x3) . (1—x’1—x)'

This evaluates to the Riordan array

( 1+ (a—¥8)z)(1+ x)? (1 +x) >
L+ (a4 Do+ Qo+ B2+ (a+ B+ )28 1+ (e + Do+ 2o+ f)a® + (a + B+ 7)2?

Letting v = 0, this simplifies to

((1+(a—5)w)(1+x) v )

l+azx+ (a+B)2? "1+ ax+ (a+ [)z?

But this is the coefficient array of a family of orthogonal polynomials ¢, (x) that satisfy

Qn(x) - (.T - 05>an1 - (Oé + ﬁ)qn*2'

Now the general term of the Riordan array (1, ﬁ) is (Z:i), while that of (ﬁ, 1+Lz) is (Z)

Noting that (z +1)" = Y, (7)«* (binomial theorem) completes the proof. O
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In general, the production matrix of the triple product

L@ 1+ (a—d—1)x x(1—x) 1 x
"M+z) \U+(a—Dr+622 473" 1+ (a— Dz +pBa2+~23) \1—2'1—=z

is equal to

0—1 1 0 0 0 0
B+5  « 1 0 0 0
v a+f « 1 0 0
—y v a+f  « 1 0
gl - Yy a+f a1
— gl - Y at+f o«

We note that the intermediate product

L 1+ (ao—0—1)x (1l —x)
( ’1—1—:15) . (1+(o¢—1)x+ﬁx2+7x3’1+(a—1)x+69&2+7x3>

is equal to
( 1+ (a—¥8)x)(1+ x)? z(1+ ) )
l+(a+2)c+ Qo+ B+ D22+ (a+8+7)23 1+ (a+2)z+ Lo+ B+ 122+ (a+B+7)23 )
The inverse of this array has production matrix given by
4] 1 0 0 0 0
B4+ a+1 1 0 0 0
v a+f a+l 1 0 0
— v a+p a+l 1 0
v — v a+p a+l 1
- v - Yo oa+f o a+l

Corollary 2. When v =0, the polynomials

form the family of orthogonal polynomials satisfying
Rofw) = (2 — (0 + 1) Rt — (0 + B)Ro_a(2),

with Ro(x) =1, Ry(z) = x — 0.



3 Examples and further results

Example 3. We take the Riordan array (1 —x,z(1—z)) which corresponds to o =1, 6 = 1,
[ =~ = 0. This is the coefficient array for the polynomials P,(z) =3 ,_, (if}c)(—l)"—kxk,
which satisfy

P.(x) =xP,_1(x) — xP,_o,
with Py(z) = 1, Pi(z) = x — 1. The inverse of the coefficient array (1 — z,z(1 — x)) is the
Catalan array (c(z), xc(x)) A033184 which has production matrix

0 0 0

— = e
—_ = e e
—_ = -0 O O

10
11
11
11
11

_— -0 O O

The first column of (¢(z), zc(z)) is given by the Catalan numbers A000108, and hence we can
regard the Catalan numbers as the generalized moments of the family P,(x). Now forming

the triple product
x 1 T
1 (11— 1— .
(1155 ) - a-aat-a) (12505

we obtain the orthogonal polynomial coefficient array given by

1+ =z T
l+z+22 1+ +22)

This is the coefficient array of the orthogonal polynomials @,,(x) for which

Qn(w) = (.I‘ - 1)@7171(1)) - anZ(x)a

with Qo(x) = 1, Q1(z) = . The moments of these polynomials are the so-called “Motzkin
sums”, A005043. These appear as the elements of the first column of the inverse coefficient
array, which has production matrix

01 00O0O
111000
011100
001110
000111
000O0T171

The inverse coefficient array is A089942. We note that the Catalan numbers and the Motzkin
sums have the same Hankel transform. This is because the Motzkin sums are the inverse
binomial transform of the Catalan numbers.
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Proposition 4. The moments of the orthogonal polynomials Q,(x) above are the inverse
binomial transforms of the generalized moments of the polynomials P, (z). In particular, both
sets of moments have the same Hankel transform.

Proof. Consider the triple product

LL A L’L 7
1+ l—z 1—2

where A is the coefficient array of P,(z). The (generalized) moments of P, (z) are the
elements of the first column of A7'. Now the moments of Q,(z) will be given by the
elements of the first column of

1 1 x - 1 x 4 x
,—|-A- , = , AT )
1+x l—2x 1—-2 1+2 142 1—z

Thus if A~! = (g, f), where g is the generating function of the moments of P,(z), then the
moments of @, (x) have a generating function given by

1 x () 1 x
. ) =
1+2’ 142 g 1+xg 14+2)’

since the first member of (1, ﬁ) is 1. This proves the first assertion. The Hankel transforms
are equal because one sequence is related to another by a binomial transform [10, 13]. [

Note that the above proof actually proves more, since the case of orthogonal @, (z) only
arises when v = 0.

Example 5. We look at the case of the Riordan array

l—x z(1—x) (1-z z(1-2x)
1+32+322+ 23 1+3z+322+23)  \(1+2)3 (1+2)3 )"
This is the coefficient array of the polynomials P, (x) that satisfy
Po(z) = (z = 3)Pa-i1(z) — (2 + 3) Pya(x) — Pas(w),

with Py(xz) = 1, Pi(x) = x — 4. The moments of this family are given by A007297, which
begins
1,4, 23,156, 1162, 9192, 75819, 644908, 5616182, . . .

They count the number of connected graphs on n nodes on a circle without crossing edges.
Their g.f. is equal to

We remark that f&;@ is the generating function of the signed squares

0,1,—4,9, 16,25, ...

8


http://oeis.org/A007297

The production matrix of the inverse coefficient array is

410000
741000
8 74100
8 8 7410
8 8 8 7 41
8 8 8 8 7 4

Passing to the triple product we obtain the Riordan array

( (1+x)? z(1+ x) )

1452+ 1122 + 823" 1 + 5x + 1122 + 83

The production matrix of the inverse coefficient array in this case is given by

31 0 000
7 4 1 000
1 7 4 100
-1 1 7 410
1 -1 1 7 41
-1 1 -1 174

The moments for this coefficient array begin
1,3,16,98,661,4731, 35299, .. .,

which are the inverse binomial transform of A007297.
It is instructive to look at the Riordan array

l—=z (1l —x) B -z (1l —x)
1+32+322"1+324+322) \(1+z)3—23 (1+z)3—23)"

In this case, v = 0. The triple product is then equal to

1+ x
1+ 4o+ 722" 14+ 4o+ 722 )’
whose inverse has production matrix

3

oo oo
B e N I e S (NS
N IS
N S = e R
S I N i R
AN e Y = R R
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Thus the triple product is the coefficient array of the orthogonal polynomials @, (z) that
satisfy
Qn(x) = (33 - 4)@1171('1') - 7Qn72>
with Qo(z) = 1, @1(x) = x — 3. The moments of this family of orthogonal polynomials,
which begin
1,3,16,97, 648, 4590, 33888, 257925, 2009464, . . .

then have g.f. given by

Tx?

1—3x—
Tx?

Tx?

1—dz— -

1 —4x —

1 —4x —

The polynomials P, (x) whose coefficient array is

l—x z(1—x)
1+ 3z + 322" 1+ 3z + 322
can now be recovered through the formula

_&QQZEZ(Z:;y%@—l)

k=0
The moments of the family P,(z), which begin
1,4,23,155, 1145, 8976, 73347, . . .,

and which are the binomial transform of the moments of @),,, have g.f. given by

1
Ta?
1 -4z —
Ta?
1—5x—
| _5 Ta?
ST
Note that the production matrix of the inverse coefficient array to (1 +§;f3127 1f§;§)ﬁ> is
given by
41 00 00
74 1000
77T 4 100
T 7T 7T 410
T T 7T 41
TT T T 7T A4
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Example 6. The case of v =0 and 3 + § = 0 is illustrated by the Riordan array

1 z(l—x)
l—x+221—2+22)’
where a = 0 too. The moments of the polynomials defined by this array are given by (—1)",
with corresponding production matrix

-1 10 0 0 0
0 01000
0 1 0100
0 1 1010
0 1 1101
0O 1 1 110

The triple product
;2 1 (1l —x) 1 x
142 l—z+422"1—z+ 22 l—z'1—2z
then evaluates to
1+x)?* =
1422 "1+22)°

The moments of the polynomials defined by this array are given by (—2)
sponding production matrix is given by

" and the corre-

-2 1 00 00
0 01 000
0 1 0100
0 01010
0 00101
0 00010

The zero in the (2, 1) position shows that this family is not orthogonal.

Example 7. We illustrate the exceptional case v = 0 and a + § = 0 by taking o = —1,
0 =1and 6 = —1. We obtain the Riordan array

1—x r(l—x) \ 1 x
1-2z4+2>"1-22+22) \l1-2'1-2)’
which is the Binomial matrix (Pascal’s triangle, A007318). The polynomials P, (z) are given
by P,(x) = (1 + z)", and the moments are (—1)". The production matrix of the inverse
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coefficient array (which is the inverse binomial matrix) is given by

-1 1 0 0 0 0
o -1 1 0 0 0
o 0 -1 1 0 0
o 0 0 -1 1 0
o 0 0 0 -1 1
o 0 0 0 0 -1

Forming the triple product we get the Riordan array

1+ =
l—2'1—2)

The moments of the corresponding polynomials @Q,(x) are then (—2)", and the associated
production array is

-2 1 0 0 0 0
o -1 1 0 0 O
o 0 -1 1 0 O
o 0 0 -1 1 0
o o o0 0 -1 1
o o0 0 0 0 -1

Clearly the polynomials @, (z) are not orthogonal. We have @, (z) = (1 + z)" ! (x + 2) for
n >0, and Qo(z) = 1.

Since all matrices above are invertible, it is possible to reverse the above triple product
process. A case of particular interest is the following.

Proposition 8. Let Q,(x) be a family of monic orthogonal polynomials given by
Qn<x> = (LE' - Q)anl - ﬁan2(CE)a
with Qo(z) =1, Q1(z) = v — a+ 1. Then the polynomials

P =3 (17 )eua -

k=0

satisfy the recurrence
P (z)=(r—a+1)P,1(x) — (z+ [ — a)P,_2,

with Py(x) =1, Pi(x) =z — a.
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The coefficient array of the polynomials @, (x) in the above proposition is given by the
Riordan array

1+ T
1+ar+ P22 1+ ar+ B2 )
Forming the triple product

T 1+ T 1 T
17 : ; : )
1—x 14+ ax+ B2’ 1+ ax + [a? 1+2’1+x

we obtain the coefficient array of the polynomials P,(z). This is the Riordan array

( l—x (1l —x) )
I+(a—Dzr+(B—-—a)zr’ 1+ (a—Dax+ (8—a)z?)

The production matrix of the inverse of this array is given by

O RO OO

0
0
0
1
(67
s

T @ o
@ e
T @ L o
T @ mr oo

The production matrix for the inverse of the coefficient array of the orthogonal polynomials
@, (z) in the proposition is given by

a—1

oo oo @ |
oo o @R
oo @R ~ o
oWl R oo
TR RO OO
R N o NeNeNo)

Corollary 9. The (generalized) moments associated to the polynomials P,(x) whose coeffi-
cient array is given by

( l—x (1 —x) )
I+ (a—1Dax+ (B —a)z?’ 1+ (a—1)z+ (8 — a)a?

have generating function expressible as

1—ax —

Ba?

1—(a+1)x—1_(a+1)x_”.
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Proof. They are the inverse binomial transform of the moments of @,(x), which have g.f.
given by
1

pa’
P’

l—ar—---

l1—(a—1)z—

l—ax—
The result follows since the inverse binomial transform increases the  coefficient by 1 [3]. [

In fact, we could have proved this result independently of the foregoing.

Proposition 10. The (generalized) moments of the Riordan array

1—x z(1—x)
14+rz+sx2’ 1+rs+ sx?

have g.f.
1—rz — /1 —2x(r +2) +22(r2 — 4s)
9(x) = 22(1 + sz) ’
which can be expressed as
1
9le) = (r+s+1)a?
1—(r+1)x— 5
(12— (r+s+1z
1—(r+2)x—---
The production matriz of the inverse array is given by
r+1 1 0 0 0 0
r+s+1 r+1 1 0 0 0
r+s+1 r+s+1 r+1 1 0 0
r+s+1 r4+s+1 r+s+1 r+1 1 0
r+s+1 r4+s+1 r4+s+1 r+s+1 r+1 1
r+s+1 r+s+1 r+s+1 r+s+1 r+s+1 r+1

n+1)

The Hankel transform of the moments is h, = (r + s + 1)( 2
Proof. We have

1 r(l—x 1 —rz—/1—=2x(r+2)+2%(r2—4s
9(x) = ERGVI 1 —|-(T‘ZE + -3£B2 - Y 2:70(1(~|— sx)) ( )
If we let g1(x) represent the continued fraction, then we have
1 1
9(7) = 1—(r+1)x—(r+s+1)z2u where - u = 1—(r+2)x—(r+s+1)z2u

Solving for u and then g¢;(z) we find that g;(x) = g(x). The production matrix is calculated
using standard Riordan array techniques. The expression for the Hankel transform follows
directly from [11]. O
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Example 11. We consider the generalized Chebyshev polynomials with coefficient array

1+ T
1+22" 1422/

This is the family of orthogonal polynomials @, (x) which satisfy

Qn<x> = x@nfl - Qn72>

with Qo(x) =1, Q1(x) = x + 1. The moments of this family of orthogonal polynomials are
given by u, = (—1)”(LZ J)’ the alternating sign version of the central binomial coefficients
2

A001405. We form the polynomials

n

_&@QZEZ(Zizy%@—l)

k=0

We find that the coefficient array of these transformed polynomials is given by

1—x z(1—x)
l—z+4+a2"1—ax+4+22)’

whose inverse array has production matrix

010000
101000
110100
111010
111101
111110

The first column of the inverse array (generalized moments) is given by the so-called “Motzkin
sums”, A005043. Again, both moment sequences have the same Hankel transform. This is
because both are related by a binomial transform. In this case the polynomials P, () satisfy
the recurrence

P (z)=(x+1)P,_qy — (x +1)P,_s,
with Py(z) =1, Pi(z) = .

Example 12. We consider the Riordan array

1+ x
14204322’ 14204322 )
The moments u,, of the orthogonal polynomials @,,(x) generated by this array A129147 begin

1,1,4,13,52,214,928, . ..
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They can be expressed in closed form as
= k
n — 2n—kc )
w2y

and have Hankel transform 3(n;1). The generating function of this sequence can be expressed

as the continued fraction
1

32
3z
The corresponding family of polynomials P, (z) will have coefficient array

1—x z(1—x)
l+z+a?14+x+22)
The moments of this family of polynomials is the sequence A064641, which counts certain
Lukasiewicz paths [9]. This sequence has a generating function that can be expressed as

1l—x—
1—2x—

1
32
1—2x —
1_3 3a2
S
The production matrix of the inverse coefficient array is given by
210000
321000
332100
333210
333 3 21
333 3 3 2

Reverting to the initial four-term recurrence, we see that the case of

a+B+y=0
is worthy of attention. In this case, # + v = —a, and the original production matrix Pp,
simplifies to
) 1 0 0 0 0
B+0 « 1 0 0 0
—a+90 a+f « 1 0 0
pp=| —a+d 0 a+8 « 1 0
—a+d 0 0 a+p « 1
—a+6 0 0 0 a+f3 «
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Thus in this case we obtain a family of polynomials that are “almost orthogonal”. They are
defined by
Py(z)=(x —a)P,1(x) — (a+ B)Pra+ (a = 9),

with Py(z) = 1, and Pj(x) = x — d. In the special case a + + v =0 and o = 0, we have

1+ (a—0—1)z 1—x 1

1+ (=)o + 822 +vy23 1+ (a— 1Dz + p2— (a+ B)a3 - 1+ ax+ (a+ B)z?

Hence we obtain the family of orthogonal polynomials
Po(z) = (z — a)Poa(z) — (a+ B) s,

with Py(x) =1, and Pi(x) = 2 — o. The transformed polynomials

n

Qu(x) =Y (~1)"*P(e+ 1)

k=0

then correspond to the Riordan array
1+x x
l+ar’1+ax)’

Qn(2) = (z = a)@nr (@),
with Qo(z) =1, Q1(x) = x — a+ 1. The production matrix of the inverse to the coefficient

and can be expressed as

array (fjjx, : fam) is given by
a—1 1 0 0 0 0
0 a1 0 0 O
0 0O a1 00
Py = 0 00 a1 0
0 00 0 a1
0 0 0 0 0 «

We can express @, (z) in closed form as

CED (n ! j) (;) (Caytat

k=0 j=0
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