

Article 07.5.7 **²** Journal of Integer Sequences, Vol. 10 (2007),

Some Remarks On the Equation $F_n = kF_m$ In Fibonacci Numbers

M. Farrokhi D. G. Faculty of Mathematical Sciences Ferdowski University of Mashhad Iran [m.farrokhi.d.g@gmail.com](mailto:m.farrokhi.d.g@gmail.com.)

Abstract

Let ${F_n}_{n=1}^{\infty} = {1, 1, 2, 3, \ldots}$ be the sequence of Fibonacci numbers. In this paper we give some sufficient conditions on a natural number k such that the equation $F_n =$ kF_m is solvable with respect to the unknowns n and m. We also show that for $k > 1$ the equation $F_n = kF_m$ has at most one solution (n, m) .

1 Preliminaries

Let F_n be the *n*th Fibonacci number, i.e.,

$$
F_1 = F_2 = 1
$$
, $F_{n+2} = F_n + F_{n+1}$, $\forall n \in \mathbb{N}$.

It is known that these numbers have the following properties :

- (1) $F_{m+n} = F_{m-1}F_n + F_m F_{n+1};$
- (2) $gcd(F_m, F_n) = F_{gcd(m,n)};$
- (3) if $m|n$, then $F_m|F_n$;
- (4) if $F_m|F_n$ and $m > 2$, then $m|n$.

Now, put

$$
\mathcal{P} = \{k \in \mathbb{N} : \exists m, n \in \mathbb{N}, F_n = kF_m\},\
$$

$$
\mathcal{Q} = \{k \in \mathbb{N} : \nexists m, n \in \mathbb{N}, F_n = kF_m\}.
$$

A simple computations show that the natural numbers which satisfy in P , less than 100, are as follows:

1, 2, 3, 4, 5, 7, 8, 11, 13, 17, 18, 21, 29, 34, 47, 48, 55, 72, 76, 89.

By definition of P and the properties (3) and (4), for each $k \in \mathcal{P}$ there exist $m, n \in \mathbb{N}$ such that $k = \frac{F_{mn}}{F_m}$ $F_{F_n}^{m}$. However, it seems that the elements of Q do not have any special form.

Using a theorem of R. D. Carmichael [\[2\]](#page-8-0), it can be shown that the product of Fibonacci numbers and their quotients belong to Q except for some cases (see Theorem [3.10\)](#page-7-0).

In this paper, we use elementary methods to prove our claim. In section [3,](#page-4-0) we obtain some more properties of P. For example, we show that for every element $k(> 1)$ of P, the equation $F_n = kF_m$ has a unique solution (n, m) . Moreover, we give a necessary and sufficient condition for which the product of two elements of P is again in P .

2 The Main Theorem

In this section, we introduce some elements k in \mathcal{Q} , so that for each fixed $n \in \mathbb{N}$,

$$
k = F_{a_1} F_{a_2} \cdots F_{a_n}
$$

belongs to Q , for all natural numbers a_1, \ldots, a_n but a finite number.

In order to prove the above claim, we need the following elementary properties of Fibonacci numbers.

Lemma 2.1. *For all* $a, b, c, a_1, a_2, \ldots, a_n \in \mathbb{N}$, the following conditions hold

 $a)$ $F_{a+b-1} = F_a F_b + F_{a-1} F_{b-1}$; *b)* $F_{a+b-2} = F_a F_b - F_{a-2} F_{b-2}$; $c)$ $F_{a+b+c-3} = F_a F_b F_c + F_{a-1} F_{b-1} F_{c-1} - F_{a-2} F_{b-2} F_{c-2}$; *d)* if $n \geq 3$, then $F_{a_1 + \dots + a_n - n} \geq F_{a_1} F_{a_2} \cdots F_{a_n}$.

Proof. Parts (a) and (b) are easily verified.

(c) Using (1), we obtain

$$
F_{a+b+c-3} = F_{a-1}F_{b+c-3} + F_aF_{b+c-2}
$$

= $F_{a-1}(F_{b-2}F_{c-2} + F_{b-1}F_{c-1}) + F_a(F_bF_c - F_{b-2}F_{c-2})$
= $F_aF_bF_c + F_{a-1}F_{b-1}F_{c-1} - (F_a - F_{a-1})F_{b-2}F_{c-2}$
= $F_aF_bF_c + F_{a-1}F_{b-1}F_{c-1} - F_{a-2}F_{b-2}F_{c-2}$.

(d) We use induction on n. By part (c), the result holds for $n = 3$. Now assume it is true for $n \geq 3$. Clearly

$$
F_{a_1 + \dots + a_{n+1} - (n+1)} = F_{a_{n+1} - 1} F_{a_1 + \dots + a_n - (n+1)} + F_{a_{n+1}} F_{a_1 + \dots + a_n - n}
$$

\n
$$
\geq F_{a_1 +} F_{a_1 + \dots + a_n - n}
$$

\n
$$
\geq F_{a_1} F_{a_2} \cdots F_{a_{n+1}},
$$

which gives the assertion.

Remark 1. *In Lemma [2.1\(](#page-1-0)d), if* $a_1 = \cdots = a_n = 1$, *then* $a_1 + \cdots + a_n - (n+1) = -1$ *and by generalizing the recursive relation for negative numbers, we get* $F_{-1} = F_1 - F_0 = 1$.

 \Box

Remark 2. *Note that all the formulas in Lemma [2.1](#page-1-0) can be also deduced from Binet's formula*

$$
F_n = \frac{\alpha^n - \beta^n}{\sqrt{5}},
$$

where

$$
\alpha = \frac{1 + \sqrt{5}}{2}, \ \beta = \frac{1 - \sqrt{5}}{2}.
$$

Lemma 2.2. *Suppose* m, n *and* k *are any natural numbers with* k|n*, then*

$$
\frac{F_{mn}}{F_n} \stackrel{F_k}{\equiv} m F_{n-1}^{m-1}.
$$

Proof. We proceed by induction on m. Clearly, the result is true for $m = 1$. Assume it is true for m . Now, using (1) and (3) , we have

$$
\frac{F_{(m+1)n}}{F_n} \stackrel{F_k}{\equiv} F_{n-1} \frac{F_{mn}}{F_n} + F_{mn+1}
$$
\n
$$
\stackrel{F_k}{\equiv} m F_{n-1}^m + F_{mn+1}
$$
\n
$$
\stackrel{F_k}{\equiv} m F_{n-1}^m + F_{n-1} F_{(m-1)n+1} + F_n F_{(m-1)n+2}
$$
\n
$$
\stackrel{F_k}{\equiv} m F_{n-1}^m + F_{n-1} F_{(m-1)n+1}
$$
\n
$$
\stackrel{\vdots}{\equiv} m F_{n-1}^m + F_{n-1}^m
$$
\n
$$
\stackrel{F_k}{\equiv} (m+1) F_{n-1}^m.
$$

Lemma 2.3. Let $a_1, ..., a_n, n \geq 3$ and $F_{a_1}F_{a_2} \cdots F_{a_n} = F_b$, then

$$
b+n\leq a_1+\cdots+a_n\leq b+2n-2.
$$

Proof. By Lemma [2.1,](#page-1-0) $F_b = F_{a_1} F_{a_2} \cdots F_{a_n} \leq F_{a_1 + a_2 + \cdots + a_n - n}$ and hence $b \leq a_1 + a_2 + \cdots + a_n$ $a_n - n$. This gives the left hand side of the inequality. By repeated application of Lemma [2.1](#page-1-0) we have

$$
F_b = F_{a_1} F_{a_2} \cdots F_{a_n}
$$

\n
$$
\geq F_{a_1 + a_2 - 2} F_{a_3} \cdots F_{a_n}
$$

\n
$$
\geq F_{a_1 + a_2 + a_3 - 4} F_{a_4} \cdots F_{a_n}
$$

\n
$$
\vdots
$$

\n
$$
\geq F_{a_1 + \cdots + a_n - 2(n-1)},
$$

and so $b \ge a_1 + \cdots + a_n - 2(n-1)$, which completes the proof.

 \Box

Remark 3. *Note that using Binet's formula, for* n > 2*, one obtains*

$$
(1 - \beta^8)\alpha^n \le \sqrt{5}F_n \le (1 + \beta^6)\alpha^n,
$$

which implies the following inequalities

$$
vn - u \le a_1 + \dots + a_n - b \le un - v,
$$

where

$$
u = -\frac{\log((1 - \beta^8)/\sqrt{5})}{\log \alpha} = 1.717...
$$

and

$$
v = -\frac{\log((1+\beta^6)/\sqrt{5})}{\log \alpha} = 1.559...
$$

One observes that the above inequalities are sharper than Lemma [2.3.](#page-2-0)

Definition. A solution of the equation $F_{a_1}F_{a_2}\cdots F_{a_n} = F_b$ is said to be nontrivial, whenever $a_1, \ldots, a_n \geq 3$ *or equivalently* $F_{a_1}, \ldots, F_{a_n} > 1$ *.*

Lemma 2.4. The equation $F_aF_b = F_c$ has no nontrivial solution, for any natural numbers a, b *and* c*.*

Proof. We may assume $a \leq b$ and the triple (a, b, c) is a nontrivial solution of the equation, i.e., $a, b \ge 3$. Clearly, $F_b|F_c$ and hence $b|c$. Now put $c = kb$ which gives $k \ge 2$ and therefore $F_aF_b = F_{kb} > F_{2b} = F_b(F_{b-1} + F_{b+1}) > F_b^2 > F_aF_b$, which is impossible. $F_a F_b = F_{kb} \ge F_{2b} = F_b (F_{b-1} + F_{b+1}) > F_b^2 \ge F_a F_b$, which is impossible.

We are now able to prove the main theorem of this section.

Theorem 2.5. For each fixed $n \geq 2$, the equation $F_{a_1}F_{a_2}\cdots F_{a_n} = F_b$ has at most finitely *many nontrivial solutions.*

Proof. By Lemma [2.4,](#page-3-0) the result follows for $n = 2$. Assume, $n \geq 3$ and let $(a_1, \ldots, a_n; b)$ be a nontrivial solution of the equation. Without loss of generality, we may assume $3 \leq$ $a_1 \le a_2 \le \cdots \le a_n$. Put $a_1 + \cdots + a_n = b + k$. Clearly, by Lemma [2.3](#page-2-0) there are only finitely many natural numbers k, which can satisfy the latter equation. As $F_{a_n}|F_b$ and $a_n \geq 3$, we have $a_n|b$ and so $b = k'a_n$ for some $k' \in \mathbb{N}$. Similarly, $F_{a_{n-1}}|F_b = F_{k'a_n}$ and $a_{n-1} \geq 3$, which implies that $a_{n-1}|k'a_n$ and so $a_{n-1} = k''k'''$ with $k''|k'$ and $k'''|a_n$. Now since $F_{k'''}|F_{a_{n-1}}| \frac{F_{k' a_n}}{F_{a_n}}$ $F_{F_{an}}^{V_{tan}}$, Lemma [2.2](#page-2-1) implies that $F_{k'''}|k'$. By Lemma [2.3,](#page-2-0) there are only finitely many k, k', k'', k'''' satisfying these equations. Thus there are only finitely many choices for a_{n-1} and consequently for a_1, \ldots, a_{n-2} . Finally, there are only finitely many choices for a_n and b satisfying the equation. \Box

Remark 4. The above theorem shows that except finitely many cases if $k = F_{a_1} \cdots F_{a_n}$, *where* $a_1, \ldots, a_n \geq 3$ *the equation* $F_t = kF_s$ *has no solution.*

3 Some More Results

In this section, we consider some more properties of the elements of P and Q . For instant, it is shown that every element $k > 1$ of P satisfies a unique equation of the form $F_n = kF_m$.

Theorem 3.1. The equation $F_aF_b = F_cF_d$ holds for natural numbers a, b, c, d if and only if $F_a = F_c$ and $F_b = F_d$, or $F_a = F_d$ and $F_b = F_c$.

Proof. Clearly, if one the numbers a, b, c or $d, (a, say)$, is less than 3 then $F_b = F_cF_d$ and Lemma [2.4](#page-3-0) implies that either $F_c = F_a = 1$ and $F_b = F_d$, or $F_d = F_a = 1$ and $F_b = F_c$. Therefore, we assume that $a, b, c, d \geq 3$ and by symmetry we may assume that $3 \leq a \leq b, c, d$. Using Lemma [2.1,](#page-1-0) we have

$$
F_{a+b-2} < F_a F_b = F_c F_d < F_{c+d-1},
$$

which implies that $a + b - 2 < c + d - 1$ and hence $a + b \leq c + d$. Similarly $c + d \leq a + b$ and so $a + b = c + d$. By repeated application of Lemma [2.1,](#page-1-0) we obtain

$$
F_a F_b = F_c F_d
$$

\n
$$
\Rightarrow F_{a-1} F_{b-1} = F_{c-1} F_{d-1}
$$

\n
$$
\Rightarrow F_2 F_{b-a+2} = F_{c-a+2} F_{d-a+2}
$$

\n
$$
\Rightarrow F_{b-a+2} = F_{c-a+2} F_{d-a+2}.
$$

Now by Lemma [2.4,](#page-3-0) $F_{c-a+2} = 1$ or $F_{d-a+2} = 1$, which implies that either $a = c$ and $b = d$, or $a = d$ and $b = c$. \Box

The following corollaries follow immediately.

Corollary 3.2. *Suppose* $\frac{F_a}{F_b} = \frac{F_c}{F_d}$ $\frac{F_c}{F_d} \neq 1$, then $F_a = F_c$ and $F_b = F_d$.

Corollary 3.3. *Every element* $k > 1$ *of* \mathcal{P} *satisfies a unique equation of the form* $F_n = kF_m$, *for some natural numbers* m *and* n*.*

Corollary 3.4. *The least common multiple of two Fibonacci numbers is again a Fibonacci number if and only if one divides the other.*

Proof. Suppose $\text{lcm}(F_m, F_n) = F_k$, for some natural numbers m and n. Then clearly

$$
F_m F_n = \gcd(F_m, F_n)\text{lcm}(F_m, F_n) = F_{\gcd(m,n)} F_k
$$

and so $gcd(F_m, F_n) = F_{gcd(m,n)}$ is either F_m or F_n . Hence either $F_m|F_n$ or $F_n|F_m$. \Box

Theorem 3.5. For any natural numbers a, b, c, d and e , the equation $F_a F_b F_c = F_d F_e$ has no *nontrivial solution.*

Proof. Assume (a, b, c, d, e) is a nontrivial solution of the equation $F_a F_b F_c = F_d F_e$. Hence $a, b, c, d, e \geq 3$. By Lemma [2.1,](#page-1-0) we have

$$
F_{a+b+c-4} < F_a F_b F_c = F_d F_e < F_{d+e-1}
$$

and

$$
F_{d+e-2} < F_d F_e = F_a F_b F_c \le F_{a+b+c-3},
$$

which imply that $a + b + c = d + e + 2$. Using Lemma [2.1](#page-1-0) once more and noting the identity $a + b + c - 3 = d + e - 1$, we obtain

$$
F_{d+e-4} \leq F_{d-1}F_{e-1}
$$

= $F_{a-1}F_{b-1}F_{c-1} - F_{a-2}F_{b-2}F_{c-2}$
< $F_{a-1}F_{b-1}F_{c-1}$
 $\leq F_{a+b+c-6}$.

Thus $d + e + 2 < a + b + c$, which is impossible.

Theorem 3.6. Let $(a, b, c; d, e, f)$ be a nontrivial solution of the equation $F_a F_b F_c = F_d F_e F_f$, *then* a, b, c *are equal to* d, e, f*, in some order.*

Proof. Without loss of generality, we may assume that $a \leq d$, $3 \leq a \leq b \leq c$ and $3 \leq d \leq$ $e \leq f$. If $a = d$, the result follows immediately by Theorem [3.1.](#page-4-1) Now assume that $a < d$. Using Lemma [2.1,](#page-1-0) we have

$$
F_{a+b+c-4} < F_a F_b F_c = F_d F_e F_f \le F_{d+e+f-3}
$$

and

$$
F_{d+e+f-4} < F_d F_e F_f = F_a F_b F_c \le F_{a+b+c-3}.
$$

Thus $a + b + c = d + e + f$, and so by Lemma [2.1](#page-1-0) we obtain

$$
F_{a-1}F_{b-1}F_{c-1} - F_{a-2}F_{b-2}F_{c-2} = F_{d-1}F_{e-1}F_{f-1} - F_{d-2}F_{e-2}F_{f-2}
$$

\n
$$
2F_{a-2}F_{b-2}F_{c-2} - F_{a-3}F_{b-3}F_{c-3} = 2F_{d-2}F_{e-2}F_{f-2} - F_{d-3}F_{e-3}F_{f-3}
$$

\n
$$
\vdots
$$

Hence for each $i \geq 1$

$$
F_{i+1}F_{a-i}F_{b-i}F_{c-i} - F_iF_{a-i-1}F_{b-i-1}F_{c-i-1} = F_{i+1}F_{d-i}F_{e-i}F_{f-i} - F_iF_{d-i-1}F_{e-i-1}F_{f-i-1}.
$$

By replacing i by a in the above equality, we obtain

$$
0 \geq -F_a F_{b-a-1} F_{c-a-1} = F_{a+1} F_{d-a} F_{e-a} F_{f-a} - F_a F_{d-a-1} F_{e-a-1} F_{f-a-1} \geq 0.
$$

Then

$$
F_{a+1}F_{d-a}F_{e-a}F_{f-a} - F_aF_{d-a-1}F_{e-a-1}F_{f-a-1} = 0,
$$

which is impossible, since otherwise we must have

$$
F_{d-a}F_{e-a}F_{f-a} = F_{d-a-1}F_{e-a-1}F_{f-a-1} = 0,
$$

which implies that $d = a$.

 \Box

The following corollary is an immediate consequence of the above theorem.

Corollary 3.7. Let $x = \frac{F_a}{F_b}$ $\frac{F_a}{F_b}, y = \frac{F_c}{F_d}$ $\frac{F_c}{F_d}$ be in P. Then $xy \in \mathcal{P}$ if and only if one of the following *occurs*

i) $x = 1$; *ii*) $y = 1$; *iii*) $x = y = 2$; *iv)* $F_a = F_d$ *, or v)* $F_b = F_c$.

Now we turn to the equation $F_{a_1}F_{a_2}\cdots F_{a_n} = F_b$. The special case when a_i 's are equal follows easily from the following theorem. We are not aware of its proof so we prove it here (see [\[3\]](#page-8-1)).

Theorem 3.8. Let p be a prime and let m and n be natural numbers such that $p \nmid m$ and p^{α} || F_n , for $\alpha > 0$. Then

i)
$$
p^{\alpha+1} || F_{nmp}, \text{ if } (p, \alpha) \neq (2, 1);
$$

ii) $p^{\alpha+2} || F_{nmp}, \text{ if } (p, \alpha) = (2, 1).$

Proof. By the assumption and Lemma [2.2,](#page-2-1)

$$
\frac{F_{nm}}{F_n} \stackrel{p}{\equiv} m F_{n-1}^{m-1}.
$$

Thus if $p \nmid m$ then $p^{\alpha} || F_{nm}$ and hence it is enough to show that $p^{\alpha+1} || F_{np}$. By repeated applications of (1), we have

$$
\frac{F_{pn}}{F_n} = F_{n-1} \frac{F_{(p-1)n}}{F_n} + F_{(p-1)n+1}
$$
\n
$$
= F_{n-1} \left(F_{n-1} \frac{F_{(p-2)n}}{F_n} + F_{(p-2)n+1} \right) + F_{(p-1)n+1}
$$
\n
$$
\vdots
$$
\n
$$
= F_{n-1}^{p-1} + F_{n-1}^{p-2} F_{n+1} + F_{n-1}^{p-3} F_{2n+1} + \dots + F_{n-1} F_{(p-2)n+1} + F_{(p-1)n+1}.
$$

Now, for each $k \in \mathbb{N}$

$$
F_{kn+1} = F_n F_{(k-1)n} + F_{n+1} F_{(k-1)n+1}
$$

\n
$$
\stackrel{p^{2\alpha}}{\equiv} F_{n+1} F_{(k-1)n+1}
$$

\n:
\n:
\n
$$
\stackrel{p^{2\alpha}}{\equiv} F_{n+1}^k
$$

\n
$$
\stackrel{p^{2\alpha}}{\equiv} (F_n + F_{n-1})^k
$$

\n
$$
\stackrel{p^{2\alpha}}{\equiv} kF_n F_{n-1}^{k-1} + F_{n-1}^k.
$$

Hence

$$
\frac{F_{pn}}{F_n} \stackrel{p^{2\alpha}}{\equiv} F_{n-1}^{p-1} + F_{n-1}^{p-2} F_{n+1} + \dots + F_{n-1} F_{(p-2)n+1} + F_{(p-1)n+1}
$$
\n
$$
\stackrel{p^{2\alpha}}{\equiv} F_{n-1}^{p-1} + F_{n-1}^{p-2} (F_n + F_{n-1}) + \dots + F_{n-1} ((p-2) F_n F_{n-1}^{p-3} + F_{n-1}^{p-1})
$$
\n
$$
+ ((p-1) F_n F_{n-1}^{p-2} + F_{n-1}^{p-1})
$$
\n
$$
\stackrel{p^{2\alpha}}{\equiv} \frac{p(p-1)}{2} F_n F_{n-1}^{p-2} + p F_{n-1}^{p-1},
$$

which implies that $p^{\alpha+1}||F_{np}$ whenever $(p, \alpha) \neq (2, 1)$. This proves (i).

Now, if $(p, \alpha) = (2, 1)$ then F_n is even, $3|n$ and $\frac{n}{3}$ is odd. On the other hand, $8||F_6$ and by the proof of part (i), $8||F_{2n}$ which completes the proof of part (ii).

Theorem 3.9. For all $k > 1$, the equation $F_n = F_m^k$ has only the solutions $F_m = F_n = 1$, or $k = 3, m = 3$ *and* $n = 6$ *.*

Proof. Let $k > 1$, $n \ge m \ge 3$ and $F_n = F_m^k$. As $F_m | F_n$, we have $m|n$ and so $n = dm$, for some $d \in \mathbb{N}$. Also, by Lemma [2.2,](#page-2-1) $F_m | d$. Now, if p is a prime divisor of F_m such that $p^a || F_m$, where $(p, a) \neq (2, 1)$, then p is also a divisor of d and by Theorem [3.8,](#page-6-0) $p^{a+b} || F_n$, where $p^b || d$. On the other hand, $p^{ka}||F_n$ and so $a + b = ka$, i.e., $b = (k - 1)a$. Now, we have

$$
k - 1 \ge d = p^b d' \ge p^b = p^{(k-1)a} \ge p^{k-1} \ge k,
$$

which is impossible and hence $F_m = 2$. If $p > 3$ and p divides n, then $F_p|2^k$, which is also impossible. Hence $n = 2^s 3^t$ and as $F_4, F_9 \nmid 2^k$, we must have $n = 6$. \Box

R. D. Carmichael [\[2\]](#page-8-0) showed that if $n > 2$ and $n \neq 6, 12$ then F_n has a prime divisor p, which does not divide the Fibonacci numbers F_m , for all $1 \leq m < n$. Applying this result one can obtain the general solutions of the equation $F_{a_1} \cdots F_{a_m} = F_b$ and more generally the solutions of the equation $F_{a_1} \cdots F_{a_m} = F_{b_1} \cdots F_{b_n}$. For some applications of this beautiful theorem, see $|1|$.

We say a solution of the equation $F_{a_1} \cdots F_{a_m} = F_{b_1} \cdots F_{b_n}$ is nontrivial, whenever $a_i, b_j \geq$ 3 and $a_i \neq b_j$, for all $i = 1, \ldots, m$ and $j = 1, \ldots, n$.

Theorem 3.10. *i)* The only nontrivial solutions of the equation $F_{a_1}F_{a_2}\cdots F_{a_n} = F_b$ with $n > 1$ *and* $a_1 \leq \cdots \leq a_n$ *are*

 $(3, 3, 3; 6)$, $(3, 4, 4, 6; 12)$, $(3, 3, 3, 3, 4, 4; 12)$

ii) The only nontrivial solutions of the equation $F_{a_1} \cdots F_{a_m} = F_{b_1} \cdots F_{b_n}$ are

$$
(3, \ldots, 3; 6, \ldots, 6) , m = 3n
$$

\n
$$
(3, \ldots, 3; 6, \ldots, 6, 4, \ldots, 4; 12, \ldots, 12) , a + 3b = 4n
$$

\n
$$
(3, \ldots, 3; 4, \ldots, 4; \overbrace{6, \ldots, 6}^{b}, 12, \ldots, 12) , a = 3b + 4n
$$

\n
$$
(6, \ldots, 6; 4, \ldots, 4; \overbrace{3, \ldots, 3}^{b}, 12, \ldots, 12) , 3a = b + 4n
$$

Proof. The proofs of both parts follow easily from Carmichael's theorem.

The following theorem is another consequence of Carmichael's theorem.

Theorem 3.11. *Suppose* p_1, p_2, \ldots, p_n *are arbitrary distinct prime numbers. Then there are only finitely many n*-tuples (a_1, \ldots, a_n) *of nonnegative integers such that* $p_1^{a_1}$ $i_1^{a_1}\cdots p_n^{a_n}\in\mathcal{P}.$

Proof. Assume $\{(a_{i_1},...,a_{i_n})\}_{i=1}^{\infty}$ is an infinite sequence of distinct *n*-tuples such that for each *i* the number $k_i = p_1^{i_1}$ $p_1^{i_1} \cdots p_n^{i_n}$ belongs to P . Then there exist some natural numbers m_i and n_i such that $F_{n_i} = k_i F_{m_i}$. Without loss of generality, we may assume that $n_i \neq m_i$ and n_i' s_i are all distinct and greater than 12. Since there are infinitely many *n*-tuples, we may ignore the prime factors of the equations $F_{n_i} = k_i F_{m_i}$ so that we obtain an equation of type as in Theorem [3.10,](#page-7-0) which contradicts Theorem [3.10.](#page-7-0) \Box

Although we were able to obtain the general solutions of the equation $F_{a_1} \cdots F_{a_n} = F_b$ using Carmichael's theorem, an elementary proof may nevertheless be of interest.

4 Acknowledgment

The author would like to thank the referee for some useful suggestions and corrections.

References

- [1] Y. Bugeaud, F. Luca, M. Mignotte and S. Siksek, On Fibonacci numbers with few prime divisors, *Proc. Japan Acad. Ser. A* 81 (2005), 17–20.
- [2] R. D. Carmichael, On the numerical factors of the arithmetic forms $\alpha^n \pm \beta^n$, Ann. Math. (2) 15 $(1913/14)$, 30-48.
- [3] S. Vajda, *Fibonacci & Lucas Numbers, and the Golden Section*, Ellis Horwood Limited, Chichester, England, 1989.

2000 *Mathematics Subject Classification*: Primary 11B39; Secondary 11B50, 11D99. *Keywords:* Fibonacci numbers.

(Concerned with sequence [A000045.](http://oeis.org/A000045))

Received March 28 2007; revised version received May 22 2007. Published in *Journal of Integer Sequences*, June 4 2007.

Return to [Journal of Integer Sequences home page.](http://www.cs.uwaterloo.ca/journals/JIS/)