Compilers
CSCI 4020U

Strings and Languages

This course is about communication. In particular, we are

interested in the communication with machines and

communication between machines.

2 R =S R A

REHSGER N RE : ;
Wiu il DK R
BXREBUREHES .. o
DR R KR
T ¢ T B O E R
EYNANRIHRE
FE DK E KXY MY
L HINERK+ << KR Vi
ENBMERSEmDORKN .
KR R R & HIRIIRH
E<HdEFL KL Tt

>N<:0D§o -, un

Morse Code

Literate Chinese alphabet has over 4000

Morse code has two symbols
symbols.

b. The english alphabet has 26 symbols.

d.

® An alphabet is a collection of symbols.
d.

Symbols and Strings
e Some alphabets are small
e Some alphabets are quite large.

Symbols and Strings

e No matter how large an alphabet is, it must
be finite.

e We cannot encode all meaningful messages
using single symbols because there are at least
infinitely many meaning messages.

e We need strings.

Some Definitions

An alphabet ¥ is an finite set of
symbols.

A string sisa ﬁnite sequence of
symbols from some alphabet.

A language L is a set of strings.
Most useful languages are
infinite sets.

The set of all possible strings
from an alphabet X is denoted
>,

Fact

L is a language = L C X*

More Definitions

A string with zero symbols is written € (epsilon).

A string is valid with respect to a language L if s € L. Otherwise, we say that s is not

valid w.r.t. L.

Example: English vs French

Y. =1ab,c ... A B,C,...Z} U Puntunations Bonjour a tous € French, so it’s a valid

. French strin
ZFR={a,ﬁ,b,c,d,e,é,é,ﬂ...z,A,A,B,C,D,E,...Z} S

U Puntunations Bonjour a tous € English, so it’s not a valid

English string.

Communication

Common language

Sender

Understanding

Receiver

Challenges

Bootstrapping communication

e How do we have the sender and receiver
agree on using a common language?

e What is the language used to communicate
the language to be used?

Expressiveness of language

What type of messages are permitted by the
common language used between the sender
and the receiver?

Are there ideas that cannot be communicated

by the language?

Computation

Turing Machine

e Tape contains strings of symbols.

e Control logic is generating strings of a
specific language.

e The control logic itself is defined as a string
in the language understood by the Universal
Turing Machine.

Lambda Calculus

Expressions are strings of a language.

String rewriting rules generate more strings
in the language.

Programming

Sender = Programmer

e Idea is an algorithm to solve some problem.
e Message is the source code of a particular language that implements the algorithm.

Receiver = Computer

e The decoder turns the message (source code) into computational instructions
(also of some language)
e Understanding is the actual computation triggered by the programmer.

Some languages we care about

Python Language S
with open(filename, 'r') as baby_file:
lines = baby_file.readlines()
for line in lines:
if '<h3 align="center">Popularity' in line:

year = re.search('(\d{4})', line)
print(year.group(0))
continue

rank_info = re.search('<td>(\d+)</td><td>(\w+)</td><td>(\w+)</td>', line)
if rank_info is not None:
print(rank_info.group(0))
rank, boy, girl = rank_info.group(1l), rank_info.group(2), rank_info.group(3)
year_names.extend([boy + ' ' + rank,
girl + ' ' + rank])

extract_names = [year] + sorted(year_names)
print(extracted_names)

extract_names('baby1990.html'

Some languages we care about

Clojure (extend-type Adjacencylist
Graph

(out-degree [vtx graph]
(count (graph vtx)))
(in-degree [vtx graph]
(count (for [v graph :when (some #{(:end vtx)} v)] v)))
(bfs [G vtx Q visitf vals]
i+ Recursive implemtation of breadth-first search
(letfn [(bfs [G vtx Q visitf vals]
(let [adj ((:al G) vtx)]
(if (and (empty? adj)
(empty? Q))
(conj vals (visitf (:val vtx)))
(let [Q (into Q adj)]
(recur G (peek Q) (pop Q) visitf (conj vals (visitf (:val vtx))))))))]
(bfs G vtx Q visitf vals))))

Some languages we care about

C /2%E P IGHNE €% E N'D. BTG HIT %/
/* %¥Function:CpCheckEndRight %¥Owner:chic */
CP CpCheckendRight(cp, cpAnchor, pflss, psel, psty, fExtend)
CP cp;
CP cpAnchor;
struct FLSS *pflss;
struct SEL *psel;
int *psty;
BOOL fExtend;

{

E /* check for special case: insert point will not be placed to the right of
an end of paragraph */

int chBreak = pflss->chBreak;

if (cp == pflss->cpMac && (chBreak == chEop ||
((*hwwdCur) ->fPageView && chBreak == chSect) || chBreak == chTable
|| chBreak == chCRJ) &%
(psel->fSelAtPara || (*psty <= stySent &&
!fExtend || cp < cpAnchor/* backward extension */)))

> [

Some languages we care about

JVM Bytecode

W W o;me = 0o

12
15

17
z0
23
26
27
28
31
34
37
40
41
44
45
43
51
52
53
56
59
62

aload 0

new #3 <acceptanceTests/treeset_personOK/Maingi>

dup

new #8 <java/lang/Object>

dup

invokespecial #10 <java/lang/Object.<init>>
new #12 <java/lang/Integer>

dup
iconst_2

invokespecial #14 <java/lang/Integer.<init>>
invokespecial #17 <acceptanceTests/treeset_personOK/Maingd.<init>>
new #12 <java/lang/Integer>

dup
iconst_1

invokespecial #14 <java/lang/Integer.<init>>

invokespecial #17 <acceptanceTests/treeset_personOK/Maingl.<init>>
getstatic #20 <java/lang/3ystem.out>

new #3 <acceptanceTests/treeset_personlK/Maingi>

dup

new #8 <java/lang/Object>

dup

invokespecial #10 <java/lang/Object.<init>>
new #12 <java/lang/Integer>

dup

iconst_2
invokespecial
invokespecial
invokevirtual
return

#14
#17
#26

<java/lang/Integer.<init>>
<acceptanceTests/treeset personlK/Maingd.<init>>
<java/io/Printitrean.println>

Some languages we care about

_ATLTRY

OP Code for CPU .)
odae 101 1952D206|C7 45 FC 00 00 00 00 |mov dword ptr [ebp-4],0
if(IsSingleThreadgdApartment())
C}h.OSZDZGD E8 8C 38 B4 FF call IsSingleThreadedApartment (18070A9Eh)
1852D212|85 (@ test eax,eax
1052D214|0F 84 BF 00 00 00 je CPlaybackEx: :FinalConstruct+119h (1852D2D%h)
__E(m_EventWingdow.Create());

1052D21A|6A @0 push @

1052D21C| 51 push ecx

1852D21D|8B CC mov ecx,esp

1852D21F|89 A5 AC FE FF FF mov dword ptr [ebp-154h],esp

18652D225|6A @@ push a

1052D227|E8 DB ED B3 FF call ATL::_U_MENUorID::_U_MENUorID (1006C@d7h)

1952D22C|89 85 A4 FE FF FF mov dword ptr [ebp-15Ch],eax

1052D232|6A @9 push @

1052D234|6A @0 push @

1052D236|6A @0 push @

1052D238|51 push ecx

1852D239|8B CC mov ecx,esp

1852D23B|89 A5 B8 FE FF FF mov dword ptr [ebp-148h],esp

1952D241\6A @2 Jpush (2

The journey of source code

Graph adjacency list

(extend-type AdjacencylList
Graph
(out-degree [vtx graph]
(count (graph vtx)))
(in-degree [vtx graph]
(count (for [v graph :when (some #{(:end vtx)} v)] v)))
(bfs [G vtx Q visitf vals]
i+ Recursive implemtation of breadth-first search
(letfn [(bfs [6G vtx Q visitf vals]
(let [adj ((:al G) vtx)]
(if (and (empty? adj)
(empty? Q))
(conj vals (visitf (:val vtx)))
(let [Q (into Q adj)]

(bfs G vtx Q visitf vals))))

Clojure

(recur G (peek Q) (pop Q) visitf (conj vals (visitf (:val vtx))))))))]

The journey of source code

(extend-type AdjacencylList
Graph
(out-degree [vtx graph]
(count (graph vtx)))
(in-degree [vtx graph]

Clojure

l Tokenization

Tokens

Parsing

Abstract

syntax tree
(AST)

(|| extend-type

AdjacencyList

Graph

out-degree [

VX eoe

The journey of source code

Abstract
syntax tree
(AST)
Compilation
0 aload O
1 new #3 <acceptanceTests/treeset_personOK/Main$i> JVM Bytecode
4 dup
5 new #8 <java/lang/0Object>
S dup
9 invokespecial #10 <java/lang/0Object.<init>>
12 mew #12 <jawva/lang/Integer>
15 dup

2

|

The journey of source code

0 aload O

1 new #3 <acceptanceTests/treeset_personlOK/Maingd>
4 dup

5 new #8 <java/lang/0Object>

S dup

9 invokespecial #10 <java/lang/0Object.<init>>
12 new #12 <java/lang/Integer>

15 dup
HE diconst 2

JVM Bytecode

Code Generation

el " CPU Specific Instructions
1852D206|C7 45 FC 00 00 00 09 |mov dword ptr [ebp-4],0
if(IsSingleThreadgdApartment())
© hes20200|E8 8C 38 B4 FF call IsSingleThreadedApartment (19070A9Eh)
1052D212)385 (@ test eax,eax
1852D214|0F 84 BF @0 00 00 je CPlaybackEx: :FinalConstruct+119h (1@52D2D%h)
__E(m_EventWigdow.Create());
1852D21A| 6A @0 push @
1652D21C|51 push ecx
1852D21D|8B CC mov ecx,esp

1852D21F|89 A5 AC FE FF FF mov dword ptr [ebp-154h],esp

Languages everywhere

(extend-type AdjacencylList
Graph
(out-degree [vtx graph]
(count (graph vtx)))
(in-degree [vtx graph]

l e How many types of tokens
Tokens should we have?

e What are the tokens?

Regular Languages

Languages everywhere

(extend-type AdjacencylList
Graph
(out-degree [vtx graph]
(count (graph vtx)))
(in-degree [vtx graph]

e What are the valid
sequences of tokens?

e How should we organize

type-def

tokens into semantic
groups?

Context Free Languages

fn—dlecl

type interface

fr-call

vector tn-call

(extend-type AdjacencylList Graph (out-degree [vtx graph] (count (graph vtx)))

About this course

Languages and Parsing

SRR

Regular Languages

Regular Expression and Automata
Context Free Languages

Parse Trees

Parsing Algorithms

Programming

1. Computation by programming in
interpreted languages

2. Interpreter construction

3. Computation by programming in compiled
languages

4. Three address bytecode

5. Compiler construction

About this course

1. We use Antlr, a parser generator library for Java.
2. We program in Java.
3. We program in Kotlin.

4. We provide cloud-based computing environment.

