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Abstract

We consider a natural generalization of the well-studied Genocchi numbers. This
generalization proves useful in enumerating the class of deterministic finite automata
(DFA) which accept a finite language. We also link our generalization to the method
of Gandhi polynomials for generating Genocchi numbers.

1 Introduction and Motivation

The study of Genocchi numbers and their combinatorial interpretations has received much
attention (see [4, 5, 7,9, 11, 16]). In this paper, we give another combinatorial interpretation
of the Genocchi numbers, as well as suggest a generalization of the Genocchi numbers.

The Genocchi numbers may be defined in terms of the generating function

2n

= 1+Z nGZn )'

They may also be defined in the following way (cf. [11, 16]). Let the Gandhi polynomials
be defined by :

An+1,k) = E*A(n,k+1)— (k—1)%A(n, k)
AL k) = kK — (k—1)
Then |Gy, = A(n — 1,1). The first few values of |Ga,| are 1,1,3,17,155.
Our motivation comes from automata theory. We are interested in the number of finite

languages recognized by deterministic finite automata (DFAs) with n states. It is easy to see
that if a DFA M = (Q, X, 6, qo, F') accepts a finite language, then there exists an ordering of
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the elements of @, say @ = {0,1,2,...,n} with ¢op = 0 and such that §(z,a) > i for all 1 € Q
and a € ¥. Thus, we are interested in the number of labeled directed graphs with labeled
edges on n vertices in which all edges (u, v) satisfy u < v.

There have been previous generalizations of the Genocchi and Euler numbers (e.g. Du-
mont [6], Dumont and Randrianarivony [8], Horadam [13], Thakare [17] and Karande and
Thakare [14]) but apparently none deal with the extension we propose here. To our knowl-
edge, this generalization has not been suggested.

2 Definitions and Background

We first recall some definitions from automata theory and formal languages. For any terms
not covered here, the reader may consult Hopcroft and Ullman [12]. Let 3 denote a finite
alphabet. Then 3* is the set of all finite strings over X. The empty string is denoted by e.
A language L over X is a subset of ¥*. A deterministic finite automaton (DFA) is a 5-tuple
M = (@Q,%,0,q, F), where @ is a finite set of states, X is a finite alphabet of symbols,
go € @ is the initial state and F' C @ is the set of final states. The transition function ¢ is
a function ¢ : Q x ¥ — @. It is extended to () X X* — @ in the following manner. For any
w € X* and a € X, 0(wa,q) = §(6(w, q),a) for all states ¢ € Q (we set d(q,¢e) = ¢ for all
q € Q).

A string w € ¥* is accepted by M if 6(go,w) € F. The language accepted by a DFA M
is the set of all strings accepted by M, denoted by L(M):

L(M)={weX* : §q,w) € F}

We say that a DFA M accepts a language L C ¥* if L = L(M).
We now proceed with our generalization of the Genocchi numbers. An alternate definition
for the Genocchi numbers given by Dumont [4] is as follows: Define B,, ; by

2 4—]€1 6—]{J2 2(77,—1)—1%172
B — ..
=2 (k1> <k2 - k1> <k3 - kz) ( k1 — kin_s >

where the sum is taken over all ki,...,k,_1 such that 1 < k; < ks < --- < kp o <k, 1<
2n — k and k; < 2j for all j. Then Gy, = B, 5, or, in particular

- EEEE (1)

Consider the change of variables ¢; = k; and 4 = ky — ky 1 for 2 < ¢ < n — 3. Then the
following is an equivalent formula for Gy,:

S () () S (), R (-2 i

1 1 i Ip
=1 VY =1 2 iz=1 3 in_a=1 n—2
(2.1)

Given this representation, we may make the main definition of the paper, by replacing the
appearance of multiples of 2 by multiples of an arbitrary integer k£ > 2:
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Definition 2.1 Define the following sequence of integers Ggfl) for all k> 2 and n > 1:

k Ki=Xi1ie j—1 . k(n=2)=37 7 ir n-3 ;
(k) _ k kg =20t k(n—2) =31 i
() T e

i1=1 ij=1 ip—2=1

Call the sequence {Gg;)}nzl the k-th generalized Genocchi numbers.

tpn—2

n 1 2 3 4 5 6 7
G2 11 3 17 155 2073 38227
GP 11 7 145 6631 566641 81184327
G 1 1 15 1025 209135 100482849 97657699279
G 1 1 31 6721 5850271 15060446401 94396946822431

Figure 2.1: Small values of Gg’fl).

Note that Horadam defines the generalized Genocchi numbers of order k [13] which do not
appear to be related to our definition in any meaningful way. Figure 2.1 shows the first few
values of Ggfl) for small values of k. The method of generating Genocchi numbers by Gandhi

polynomials [11, 16] may also be generalized to generate the sequences Gg;).

Lemma 2.2 Given the following Gandhi polynomials

Ar(n+1,7) = A (n,r+1) = (r — DFAg(n,7)
Ap(1,r) = rF—(r—1)*

then G = A(n — 1,1).

Proof. Define

sk—3272, ie

£ (8 (7 E (B

12

11=1 12=1 1s=1

For all » > 1 and s > 1. Then note that by Definition 2.1,
G¥) = py(n—1,1).

Also note that by the binomial theorem,

Py(1,r) = i (f)(r — 1)k

1)5k—2221 )

(2.2)

(2.3)



Now we consider the general case of Py(s,r). For convenience, denote J, = rk — S| is.

Then | )
Pyu(s,r) = i (’“) 2% (2’“ - “) = (‘Z) (r — 1)7=i (2.4)

: n) ; (%) ‘

i1=1 10=1 1s=1
Further, note that J, = k — i, 1+ J._1. We may consider the inner most sum of (2.4), again
using the binomial theorem:

5 (e

] :zso(i)(T RS

= 7l —(r - 1)’ |
— Tk (,sz—l—Zs—l) _ (7“ _ 1)k ((T _ 1)J3—1—zs—1)

Thus substituting this into our expression for Py(s,r) gives

B\ L 2k — LN B
Pk(S,T) = <) Z < Z2 1> _..Z( Z 1)(T_1)Js s
to=1 is=1 s
2k— 21 Js-1
2k — 21) (Jsl) k Js—1—ts—1
) in=1 ( 2 is;:l o1 el )

Il
HM?S‘ HM?" ||P1?r

2
(DZ )X () e emperny
= '“Pk(s - 1Z2r +1) = (r—1)* Z;:(; —1,7) 2.5)

From (2.3) and (2.5), we can conclude that Ag(n,r) = Pg(n,r). Thus, the result follows
from (2.2). =

2.1 Alternate Expressions for Gg,?

In this section, we consider exponential generating functions for ng). Recall that
Gy ==Y gl (2.6)
_et+1_n>0 " n! '

For this, we will consider a generalization of the Stirling numbers given by Comtet [2].

The equivalence of the generating function (2.6) and the expression for Genbocchi num-
bers in terms of Gandhi polynomials was proved by Riordan and Stein [16]. In particular,
let A; denote the Gandhi polynomials of Lemma 2.2. Then Riordan and Stein have shown
the following holds for all 1 < j < n:

-1
AQ(n, 1) = (—1)£$11?2 - Z‘j_gh4($1, Tty xj_g)Az(n — ],j + 1-— E)
0

<.
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where z; = 72 and h;(x1,...,z;) is the homogeneous product sum symmetric function (see
[15]). We may immediately conclude that

-1

Ak(n, 1) = (—1)£$1,k$27k ce .’L’j,g,kh}g(.’ﬂl,k, T ,J?j,[,k)Ak(n — ],_7 +1-— f) (27)
0

<.

~
Il

where z; ; = i/. Consider the following definition:

Definition 2.3 Define the following numbers Ty(n,i) for all k > 2, n > 1 and all i as
follows:
To(1,1) = 1
Tu(ni) =0 Vig L,
Ti(n,i) = *Ty(n — 1,4) + Tp(n — 1,i — 1) Vi € [1,7]

Call the numbers Ty (n, i) the k-th central factorial numbers.

Note that this definition is consistent with the central factorial numbers when k = 2 (see
(5, Eq. (3), p- 307]). Now the relation

he(Zi g, -5 Tjmok) = he(Tig, - Tjmo—1k) + Tj—epho—1(T1 s - - Tj—ek)

implies that if we take (2.7) with j = n then

n

Ag(n, 1) = (=) ()* Ty (n, €)

=1

By Lemma 2.2, this gives us a represtentation for the generalized Genocchi numbers in terms
of the generalized central factorial numbers which is of independent interest (compare with
(16, Eq. (2), p. 382]):

n

Gy =Y (1) () Ti(n, £) (2.8)
=1

Figure 2.2 gives the value of T3(n,i) for 1 <i<n < 7.

n\i 1 2 3 4 6 7
11
2 1 1
319 1
41 73 36 1
5 1 58 1045 100 1
6 1 4681 28800 7445 255 1
7 1 37449 782281 505280 35570 441 1

Figure 2.2: Small values of T3(n, 1)



2.1.1 Generalized Stirling Numbers

In our pursuit of a generating function for G , we may now turn to the generalization of
Stirling numbers given by Comtet [2]. This generalization of the Stirling numbers includes
the k-th central factorial numbers Ty (n, 7).

Let & = (&,&1,--.) be an infinite sequence. The generalized Stirling numbers of the
second kind S¢(n, k), are given implicitly by

2" =Y Se(n k) (w —&)(w — &) (= &v).

The following identity is given by Comtet [2]:

Comtet also gives the following generating function:

Sg (TL, k)— =
where (&), is given by
k
Er=]] &-&.
1=0,1]
This equation was also known to Bach [1, Eq. (13) p. 215].
Thus, for the generalized central factorial numbers T (n, 1), we may choose ¢*) (§0 , 1 ). )

such that f;k) = j*. Then we get that

ZTk n,1) Z exp(t] )

n>i m Om;é](] _mk)

This yields the following expression using (2.8):

5ot Sr s
l—|—1 £|
2n+2 ' l .
n=0 s =0 7=0 Hm:O,m;ﬁj(]k - mk)

Unfortunately, we have not been able to extend this to a generating function for G§_ in
the manner of Riordan and Stein [16].

3 Combinatorial Interpretations

In this section, we go through several combinatorial interpretations of the generalized central
factorial numbers and the generalized Genocchi numbers.



3.1 Quasi-Permutations
Recall the following definition (cf. [5, p. 306]):
Definition 3.1 A set P C {1,...,n} x {1,...,n} is a quasi-permutation of {1,...,n} if

there exists a permutation p of {1,...,n} such that P is a subset of the following set
{Gp(@) = 1€{L,...,n},p() >}

Let |P| denote the cardinality of P as a set. For any subset P C {1,...,n} x {1,...,n},
let Y(P) = {i : i such that (¢,i) € P}, the projection of P on the second component.
Similarly, X (P) = {i : 3’ such that (4,7') € P}.

We can generalize a theorem of Dumont [5, Thm. 1, p. 309] (which is itself inspired by
a theorem of Foata and Schiitzenberger [10, Prop. 2.8., p. 38]) concerning combinatorial
interpretations of the central factorial numbers as follows:

Theorem 3.2 The quantity Ty(n, i) is equal to the number of k-tuples (Q1,Qs,...,Qk) of
quasi-permutations of {1,...,n} such that

o Qjl=n—1iforalljwithl<j<k

hd fO’I" all 1 < j7jl < k; Y(QJ) = Y(Q]')
Proof. The proof is a simple generalization of that of Dumont [5, Thm. 1, p. 309]. =

Note that a simple calculation will show that the result of Dumont concerning tuples of
permutations [5, Thm. 2, p. 310] does not generalize obviously to k-th generalized Genocchi
numbers.

3.2 Finite language DFAs over 2 letters

We start by defining a set of directed graphs which will be of interest:

Definition 3.3 Let G, define the set of digraphs satisfying the following conditions: For
all G=(V,E) € G,

e There are n vertices, labeled {1,...,n}.

e The edges of E are labeled with an integer from the set {1,2,...,k}. Thus an edge of
E is given by an element of V- x {1,2,...,k} x V.

o All the edges of E are directed and satisfy the following: if e = (u,a,v) € E and u #n
then e s directed from u to v and u < v. If u = n then necessarily v = n.

o (G is initially connected, that is, for each vertex v, there exists a directed path from 1
to v.

e The graph G is complete: For each vertex v and each integer i (1 < i < k), there exists
an edge with source v and label 1.

Given (2.1), we can prove the following:

Theorem 3.4 For alln > 1, |G, 2| = Goy.



Proof. The sum given in (2.1) represents the number of ways of connecting each of the
vertices 2,...,n with a lower numbered vertex. We can see this as follows. Consider vertex
2. In order for vertex 2 to be connected to vertex 1, at least one of the 2 edges leaving vertex
1 must enter vertex 2. We let 4; of them enter 2, and account for all possible combinations.

Now for vertex 3, at least 1 of the 4 — i; edges leaving vertex 1 and 2 which have yet to
be assigned must enter vertex 3, let 75 of them enter vertex 3.

We continue this process for the first n — 1 vertices. The result is the sum (2.1). The
vertex n is initially connected since by definition all edges leaving vertex n — 1 must enter
vertex n. W

We can also give a direct proof of Theorem 3.4. Recall [7] that a surjective step function
(SSF) of size 2n is a function f :{1,2,...,2n} — {1,2,...,2n} such that

e f is increasing function, ie f(i) > i.
e the image of f is exactly {2,4,6,...,2n}.

Theorem 3.5 (Dumont, [5, 7]): The number of surjective step functions of size 2n is
Ga(nt1)-

We show a bijection between all SSFs of size 2(n — 1) and G, ».
Let f: {1,2,...,2n — 2} — {2,4,6,...,2n — 2} be a surjective step function of size
2(n —1). Then define the graph Gy = (V, Ey) as follows: V; = {1,...,n} and

Ef = {(n,a,n) : a€{0,1}}

U {(i,o,@ﬁ%) 1 <i<n}
U {(¢,1,@+1) c1<i<n}

Lemma 3.6 Let f be a SSF of size 2(n— 1) and G the resulting graph. If (u,v) € E; with
u # n then u < v and further Gy is initially connected.

Proof. Let ¢ be any integer such that 7 # n. Then the two edges with source ¢ are
(4,0, 20 4 1) and (3,1, L% 1 1). Then

f(21)
2

f2i-1)
2

i
+12§+1:z‘+1>z’

21 —1
+1>

1
l=14+=-—>1
+ z+2 )

by the fact that f is increasing.

Now we show G is initially connected. We proceed by induction on . Assume that all
vertices with label less than ¢ are connected to vertex 1. Now consider vertex ¢ < n. Since f
is surjective on {2,4,6,...,2(n—1)}, there exists some j such that f(j) = 2(i —1). Consider
the parity of j.



case 1: j is even: Let j' be an integer such that 25’ = j. Then j' > 1 and f(2j') = 2i — 2
implies 7 = f(QTJ’) + 1 and thus (5',0,i) € Ef. By above, j' < 4, and thus by induction i is
connected to vertex 1.

case 2: j is odd: Let j' be an integer such that 25’ —1 = j. Then 5/ > 1 and f(25'— 1) =
2(i — 1), so again i = f(%l_l) + 1 and thus (5/,0,1) € E;. Once again j' < ¢ and thus by
induction 7 is connected to vertex 1. ®

Lemma 3.7 Let G = (V,E) € Gn2. Then there exists a SSF f of size 2(n — 2) such that
G = Gy.
Proof. Obvious. =

Thus, we have a direct bijection demonstrating Theorem 3.4. We now return to our
motivation, DFAs which recognize finite languages. Adding final states in all possible ways,
we have the following corollary:

Corollary 3.8 The number of finite languages over a two letter alphabet accepted by a DFA
with n states is at most 2 'G5,

Unfortunately, this bound is asymptotically worse than that given by Domaratzki et al. [3].
This is due to the fact that many of the languages recognized by distinct DFAs will be the
same, due to relabeling of states. However, the upper bound 2"‘16’%) is better than the
bound given by Domaratzki et al. for the values n < 50.

3.3 Finite language DFAs over k letters

The argument of Theorem 3.4 can be easily extended to graphs over a k letter alphabet. In
fact, if we repeat the same argument to get the following result:

Theorem 3.9 |G, x| = Gg;).

Corollary 3.10 The number of finite languages over a k letter alphabet accepted by a DFA
with n states is at most 2""'G.

3.4 k-th Surjective step functions

We may adapt the combinatorial interpretation of Dumont [5] to generalized Genocchi num-
bers:

Definition 3.11 A k-th surjective step function (k-SSF) of size kn is a increasing surjective
function f:{1,2,--- kn} — {k,2k,3k,... kn}

Lemma 3.12 There are ngth) k-th surjective step functions of size kn.



4 Conclusions and Further Work

In this paper, we have considered a new generalization of the Genocchi numbers. This
generalization has proved useful in our attempts to enumerate the number of finite languages
recognized by DFAs with n states. However, this work is only a slight progress towards this
goal, and any effective enumeraion must be an unlabelled enumeration of DFAs, which
appears to be very difficult, even in the case of recognition of finite languages.

Our introduction of these new classes of Genocchi numbers is also not complete, as we
have not given an expontential generating function for the sequences Gg;).
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