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Abstract

Dynamic program optimization is becoming increasingly important for achieving
good runtime performance. One of the key issues in such systems is how it selects
which code to optimize. One approach is to dynamically detect traces, long sequences
of instructions which are likely to execute to completion. Such traces can be stored in
a trace cache and dispatched one trace at a time (rather than one instruction or one
basic block at a time). Furthermore, traces have been shown to be a good unit for
optimization.

This paper reports on a new approach for dynamically detecting, creating and
storing traces in a Java virtual machine. We first elucidate four important design
criteria for a successful trace strategy: good instruction stream coverage, low dispatch
rate, cache stability and optimizability of traces. We then present our approach which is
based on branch correlation graphs. Branch correlation graphs store information about
the correlation between pairs of branches, as well as additional state information.

We present the complete design for an efficient implementation of the system, in-
cluding a detailed discussion of the trace cache and profiling mechanisms. We have
implemented an experimental framework to measure the traces generated by our ap-
proach in a direct-threaded-inlining Java VM (SableVM) and we present experimental
results to show that the traces we generate meet the design criteria.

1 Introduction

Although program optimization has traditionally been performed by static compiler opti-
mizers, recent work has shown the power and effectiveness of dynamic optimizers which find
and optimize important or “hot” pieces of code during execution of the program. Critical
to the effectiveness of a dynamic optimizer is how it selects which code to optimize. It
must quickly find a relatively small set of instructions that cover a maximal amount of the
stream of executed instructions. This paper suggests a refined trace-based strategy appli-
cable to any bytecode virtual machine. Like the successful Dynamo optimizer [3] we run
entirely in software; however, our technique produces trace sequences similar to those found
in the rePLay [9] hardware architecture. Specifically, we describe a light-weight, dynamic
trace cache and profiling implementation for an interpreting Java Virtual Machine which
finds, constructs, and updates a set of traces extracted from profiling data. We present
experimental results supporting that the trace cache contains the set of appropriate traces
for optimization and that the profiling and trace generating mechanisms have a reasonable
overhead cost.

Our approach combines some successful ideas from previous dynamic optimizers. Like
rePLay, we search for traces which tend to execute to completion, and like Dynamo we focus
on minimizing program profiling overhead. The main differences between our technique
and theirs are: 1) instead of using simple counters or extensive 32-bit branch histories we
maintain recent branch/branch correlation statistics and use them to calculate where to
delimit traces, 2) we use a dynamic profiler placement strategy to minimize the overhead of
our profiling, and 3) we target a Java Virtual Machine while they target a particular native
instruction set.
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Our approach is based on a JVM interpreter, and is different from a standard JIT com-
pilation approach. In a standard JIT approach, frequently executed methods (or parts of
methods) are compiled and optimized on-the-fly. This method-by-method approach fits very
nicely into traditional static optimization techniques, where most optimizations and transfor-
mations are applied at the basic block or procedure level. Thus, JITs can leverage traditional
static optimizer technology. Our approach is different in that we use a modified JVM inter-
preter to find and construct highly optimizable traces. Traces do not correspond to basic
blocks or method bodies, but rather correspond to long, frequently executed, sequences of
instructions. These traces seamlessly cross basic block and method boundaries and have an
ideal unit shape for dynamic optimization. Unlike static optimization which must consider
all possible control flow paths, the traces provide instructions along a specific dynamic path,
thus potentially provide better opportunities for optimization.

The contributions of the paper include:

• We discuss four design considerations which must be taken into account when designing
a trace construction algorithm which targets a dynamic trace cache.

• We provide the specification for, and simulation of, a new hybrid trace generation
algorithm/statistical branch correlation profiling mechanism. This approach has three
novel aspects:

– we model program behaviour with a branch correlation graph;

– we control trace completion rate by calculating its expected rate during trace
construction; and

– we minimize profiling overhead with a dynamic profiler placement scheme.

• We experimentally measure the behaviour of our approach by modifying a JVM.

The rest of this paper is organized as follows. In Section 2 we give a discussion of
related work. Section 3 provides a discussion of constraints imposed on a trace construction
algorithm targeting a dynamic software trace cache and we introduce the basic ideas behind
our approach. In Section 4 we provide details about our new profiler and trace construction
algorithm. In Section 5 we discuss experimental results: in Section 5.3 we show that the
algorithm effectively finds reasonable traces and in Section 5.4 we demonstrate that the
algorithm is practical, providing evidence that the overhead is low. Finally, Section 6 gives
conclusions and future work.

2 Related Work

This section describes several recent projects which have focused on the problems of dynamic
hot code selection. The three works which are most closely related to the approach presented
in this paper were: Dynamo [3], rePLay [9], and Whaley’s work on online instrumentation
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and feedback-directed optimization of Java [13]. These three papers provide independent
confirmation of the effectiveness of several of the techniques discussed in the paper.

While our technique finds sequences which can contain code from many methods, Wha-
ley’s technique [13] finds the not-rare basic blocks within hot methods. His dynamic opti-
mizer identifies hot code in two phases: first discovering hot methods and then flagging the
executed blocks in those methods. First, counters are placed at the method entrance points
and back edges. When the counter passes a threshold the entire method is compiled using a
baseline compiler. Second, the baseline compiler resets the counter and instruments all the
method’s basic blocks so that they are flagged when executed. When the counter passes a
second threshold all code which was at some point executed are considered not-rare and is
compiled by the optimizing compiler.

The Dynamo optimization system is a software HP PA-8000 instruction set interpreter
running on a HP PA-8000 [3]. Like Whaley’s approach it finds initially finds hot code by
placing counters on back edges and other potential hot points; however, instead of methods
and basic blocks, Dynamo focuses on the construction of traces, long frequently executed
sequences of instructions extracted from the instruction stream which terminate on program
back edges. Their intuition is that after a counter indicates that a point has become hot the
instructions executed immediately afterwards often define a frequently executed sequence.
These unoptimized traces are placed into a trace cache of such traces which are optimized
and relinked to jump to other traces as appropriate. The interpreter, on reaching the hot
point, dispatches the recorded trace. The resulting trace cache tends to cover most of the
instruction stream; however, often the tail of a trace remains unexecuted. Due to their
efficient use of counters Dynamo runs an average overhead of only 1.5%, dominated entirely
by the trace generation mechanism.

While Dynamo’s treatment of branch behaviour is lightweight, our use of a branch corre-
lation graph allows us to verify that a sequence is in fact frequently executed. We end trace
construction when adding another bytecode will likely cause the resulting trace to execute
incompletely.

The proposed rePLay system also prefers the construction of completely executing traces
and it simulates a powerful hardware framework to construct completely executing traces
which they call frames. Frames are constructed by finding heavily biased branches, and
replacing them with assertions. Trace construction is very similar to the Dynamo approach
except that trace construction stops on reaching a branch which has not been promoted to
an assertion. Branch bias is determined by considering its branch history. A branch which
takes the same edge 32 times in a row when correlated with its 6 preceding branches is
treated as heavily biased and is replaced with an assertion. Sequences of these assertion
are then recorded by the framework from which it constructs frames. Frames are excellent
targets for very aggressive optimizations because no calculations of values for branches which
leave the frame are needed. The framework handles assertion failures with a rollback buffer
which, on an assertion failure, restores the system state to what it was before the frame
began executing and continues execution with unoptimized safe code. The resulting frame
cache covers the instruction stream very effectively; furthermore frames can be aggressively
optimized because they tend to execute to completion.
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RePLay has few efficiency concerns because in the proposed framework profiling, frame
construction, and frame rollback all happen in hardware, running parallel to the process.
Like rePLay we model the program by examining branch history; however, we work entirely
in software and thus are limited in the branch history depth available to us. We model
program behaviour with a branch correlation graph which provides less branch history, but
more detail per branch.

Other related work, which is less directly related, includes the following. Mojo [5], Mi-
crosoft’s dynamic optimization engine, claims to use different stop conditions than Dynamo.
DyC suggests a technique for dynamic code specialization which uses programmer anno-
tations to provide specialization points and techniques [8]. The problem of limiting the
instrumentation overhead is often handled with sampling. For example Traub et. al. sug-
gest an ephemeral technique for sampling using self modifying code which periodically inserts
and removes profiler hooks [12]. Arnold et. al. suggest instead that code versioning be used
to control the execution of profiled code [1, 2]. Significant work has gone into examining
the specific problem of path profiling including the classic work by Ball and Larus [4]. Path
Based Compilation suggests techniques for profiling fixed length paths [14]. Duesterwald
and Burening studied different optimization units and concluded that traces that inline
small methods provide an optimal dynamic unit of optimization [6].

3 Generating Good Traces for Cached Dispatch

The purpose of this section is to motivate our choice of trace construction algorithm. We
describe the effect of a trace cache on a Virtual Machine and present four design considera-
tions that should be taken into account when designing an effective trace cache. We discuss
the impact of the constraints on our design and introduce our approach which is based on
branch correlation graphs.

3.1 Trace Caches and Java Virtual Machines

A software trace cache acts as a specialized instruction cache which reorders blocks to mini-
mize the number of taken branches. An ordinary virtual machine interpreter dispatches one
instruction at a time. In Figure 1 we illustrate this, each node in the graph corresponds to
an instruction, and a dispatch happens for each edge in the graph.

Figure 1: An Interpreter Normally Dispatches one Instruction at a Time

A direct-threaded-inlining interpreter finds all the basic blocks in the program and ap-
pends dispatch code as illustrated in Figure 2 [10]. In this case there is only one dispatch
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for each edge between basic blocks. Each dispatch executes an entire basic block and each
basic block contains the code necessary to dispatch its successor.

B2

B0

B1 B2

B5

B3 B4

B3 B4

B1B0 B5

Figure 2: A Direct Threaded Inlining Interpreter Dispatches Basic Blocks

A virtual machine which implements direct threaded inlining can be readily modified to
dispatch cached traces instead of basic blocks. A trace cache is a natural extension to such
an interpreter because a trace can be thought of as an extended basic block; by placing the
code in sequence we eliminate the need for dispatch code between inlined basic blocks.

Dispatching traces instead of blocks can improve Virtual Machine performance in several
ways: it drastically decreases the number of dispatches by inlining sequences of frequently
executed blocks together. This improves the performance of the underlying processor by
improving code locality and increasing fetch bandwidth. In addition to these inherent im-
provements, traces can be excellent targets for dynamic optimization. However, a trace cache
is only as effective as the traces in it.

3.2 Design Constraints

There are four trace-cache design constraints which guide our trace construction algorithm.
Our most important concern is we want a small trace cache which contains traces covering as
much of the instruction stream as possible, i.e. good instruction stream coverage. Second,
we want a low dispatch rate; we want to execute many blocks without having to take a
branch. Third, we want the trace cache to be stable; we need to minimize the number of
times we replace traces because they no longer satisfy the previous two criteria. Fourth,
we want to select traces which we can optimize aggressively; to do so we need to be able
to predict the trace’s future behavior. In addition to all these constraints we need for our
technique to have a low overhead; our mechanism is implemented in software so we compete
directly with the process we are trying to optimize.
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3.3 Instruction Stream Coverage

Good instruction stream coverage is an extremely important factor for effective trace caches;
the impact of a trace cache is strictly bounded by the amount it is used (i.e. the proportion
of executed code that comes from the trace cache). Furthermore, practical concerns require
that the cache contain as little rarely executed code as possible; the handling this code wastes
both time and cache space.

In our approach, we profile our code to separate all the regions of code which are fre-
quently executed from those which will have little impact on the programs performance.
Both rePLay and Whaley’s profiler both handle this problem by profiling at the basic block
level. Whaley flags blocks as not rare while rePLay requirement of 32 consecutive branches
in the same direction correlated with a depth 6 branch history implicitly proves that the
branch is hot. We flag blocks which have not yet been executed more than the start state
delay number as newly created.

3.4 Dispatch Rate

A low dispatch rate is the key to an efficient optimization model; fewer dispatches lead to less
execution overhead. Dynamo and rePLay handle the problem of a obtaining a low dispatch
rate differently: Dynamo assumes that instructions executing after a hot node will probably
re-occur, while rePLay checks that the trace consists of extremely biased branches. The fact
that we are working software and the polymorphic nature of Java code [11] where we find a
virtual method call approximately every 9 bytecode instructions that suggests that neither
of these methods are directly appropriate. Dynamo’s technique is extremely lightweight;
however, polymorphic branches are traditionally harder to predict than direct branches.

RePLay’s use of powerful hardware solves the branch prediction problem; however, hard-
ware parallelism is not available to our software JVM. A compromise is needed; something
which strengthens Dynamo’s assumption at a lower cost than rePLay’s solution.

3.5 Branch Correlation Graphs

Our solution is maintain is a branch correlation graph (BCG), effectively a depth one per
address history table. Each new branch we encounter is added a new node in the graph; thus
for each pair of blocks (X,Y ) executed in sequence we include node NXY in the graph. Each
node has execution counter and a tag that summarizes its state. Successive branches are
recorded as directed edges; thus for each sequence of of blocks (X,Y, Z) we have a directed
edge EXY Z from NXY to NY Z in the graph. Each edge EXY Z has a counter used to store the
degree of correlation between branch XY and branch Y Z. We carefully represent blocks,
nodes, and edges to minimize memory overhead and maximize lookup speed.

Initially we set the counter to the start state threshold and tag NXY ’s state as newly
created. We then wait for counter to reach 0 before declaring it “not rare”. This has a
similar effect to basic block flagging in Whaley’s optimizer; it filters out branches which are
rarely executed so we can focus our attention on branches likely to be executed again.
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After a branch node becomes hot we examine the edges to determine if there is a strong
branch correlation between it and its successors. We store the result of our examination in
the branch’s state tag. Our strong correlation tags serve a similar purpose to assertions in
rePLay; they indicate that if we have executed NXY it is reasonable to follow branch NY Z

in a trace. The branch correlation graph is a compromise, it uses less resources than rePLay
but provides more assurance of the regularity of the trace than Dynamo.

3.6 Cache stability

The branch correlation graph allows us to perform informed trace cache maintenance so we
can ensure its performance without changing the traces in it too often. The BCG allows
us to make refined choices about where to begin and end our traces, if we discover that
the behavior of a branch has changed we can quickly find all the code it might affect and
limit any changes to those traces. This is handled very differently in Dynamo and rePLay.
In rePLay it is handled in hardware. Dynamo has a mechanism which detects the rapid
creation of new traces and simply flushes the trace cache.

3.7 Optimizable Traces

The appropriate optimization for a trace depends on its runtime behavior; we wish to con-
struct traces whose runtime behavior maximizes the power of the optimizations available
for it. All traces are very optimizable because they only have one entry point. Both Dy-
namo and rePLay generate sequences whose branches are, on average unlikely to be taken.
However, by ensuring that all the branches are taken with a very high probability rePLay
allows for stronger optimizations. Traces which have a well bounded completion frequency
can be optimized under the assumption that improving the performance of the trace along
the main branch can be traded off against costs along branches which exit the trace. How-
ever, to ensure that these these speculative trade-offs are worth while, rePLay requires 32
consecutive branches with respect to the 6 branch history. While this precise mechanism is
not practical in software, the 16 bit counters in the branch correlation graph can be used to
very accurately estimate the probability that a trace will complete. This is the basis for our
trace construction algorithm; we limit the length of traces by ensuring that their probability
of completion is high. If a trace contains sequence of branches NX0X1

, NX1X2
, ..., NXk−1Xk

, we
can calculate the probability that a sequence which enters NX0X1

will execute completely by
taking the product of the correlations between nodes EX0X1X2

, EX1X2X3
, ..., EXk−2Xk−1Xk

ie.
multiplying all the edge weights together and dividing by the product of the node weights.

3.8 Summary of our Approach

Our approach to trace construction has three parts: we profile the branches and filter for
those which have executed a threshold number of times before declaring them “not rare”,
then when a branch behavior changes we traverse the graph to find all the highly correlated
branches related to the affected branch, and finally we regenerate the traces by partitioning
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the branches into sequences of blocks whose probability of completion above the trace com-
pletion threshold. We discuss the implementation and details of our approach in the next
section.

4 Implementing Trace Generation

Our trace cache technique relies on three mechanisms. The first is the use of direct-threaded-
inlining in the interpreter (we have based our implementation on SableVM [7]), the second
is a profiler and the third is the actual trace cache mechanism.

A direct-threaded-inlining interpreter dispatches code one basic block at a time by ap-
pending the dispatch code to the basic block. The profiler works by augmenting the dispatch
code to update profiling information and including lazy hooks into the profiling code. The
trace cache responds to a series of signals from the profiling mechanism. In this paper we
provide details of the profiler and our trace cache’s trace constructor, which are new ideas.
For details of direct threaded inlining see the work by Piumarta and Riccardi [10] and for
details of how this is implemented in SableVM see the thesis by Gagnon [7].

4.1 Profiling Mechanism

The profiling mechanism maintains a branch correlation graph, as introduced in Section 3.5,
and summarizes the important branch correlation state changes to the trace cache. One
can view the branch correlation graph as a description of the behaviour of the program’s
branches which are kept current through the use of decay.

4.1.1 Decay

Each branch context node NXY has a series of branch correlations edges EXY Z . Each branch
correlation EXY Z stores the probability of taking branch (Y, Z) given that last branch taken
was (X,Y ). The stored correlations and their states are not cumulative, but rather they are
weighted in favour of recent behaviour in the program. This is implemented via periodic
exponential decay. Every 256 executions of a branch, all the correlations associated with a
branch are shifted one bit to the right. This maintains the relative ratios of the distributions
while doubling the importance of current branches. During the decay process the correlation
state of the branch is rechecked; we verify that the cached branch correlation is the best
correlated one and that its state has not changed. Only the maximally correlated branches
are interesting to the trace cache; the branch correlations are summarized to the trace
generator with one of four states. In descending degree of correlation they are: unique,
strongly correlated, weakly correlated, and newly created. If either the maximally correlated
branch or its state changes the profiler signals the trace cache to update itself.
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4.1.2 Profiler hooks

Part of the profiler is executed with each trace dispatch. Thus, there is an interesting
connection between improving dispatch overhead and minimizing profiling overhead. As the
system finds better traces, the number of dispatches is reduced. This also eliminates profiling
points and thus profiling overhead.

We use lazy construction to keep the memory overhead low because during execution
many potential branches and branch correlations are never realized. The interpreter’s hook
into the profiler is the branch context pointer which reflects the last branch taken by the
program. Cached in the branch context is the address of the instruction currently believed
to be most likely to be executed and a reference to the corresponding branch correlation.

If the PC and the expected instruction do not match, the PC is checked against the list of
previously unpredicted, but previously encountered, branches for the branch context. If it is
not found in this list, then the branch has never been encountered before in this context, and
a new branch correlation is constructed and inserted into the branch context. The branch
context is then checked for decay and the appropriate branch correlation is updated. Then
the new context is loaded from the branch correlation.

These steps keep the expected per dispatch overhead low in three ways. First, the number
of function calls is limited to the number of distinct correlations discovered during that
execution plus those needed to implement periodic decay. Second, most of the branches
are immediately predicted by the branch context’s inline cache greatly limiting searching
required. Third, each branch correlation contains the address of its target branch context so
finding the correct correlation immediately allows us to find its respective branch context.

4.2 Trace Cache Mechanism

The trace cache ensures that its traces maintain a minimum threshold of probable completion
by reconstructing the appropriate traces when it receives a state change signal from the
profiler. When the profiler indicates that the state of a certain branch has changed eg. the
branch is no longer strongly correlated but now weakly correlated, the trace cache takes the
following three steps:

1. a list of all possible trace entry points which may be affected is generated;

2. a list of new traces to be created is generated; and

3. the new traces are compared to those in the cache and all newly discovered trace cache
entries are reconstructed.

In the first step we find the trace entry points by back tracking in the branch correlation
graph along all strongly correlated edges. In the terminal element list generally there is only
element; however, this technique ensures that everything that may be affected is examined.
This list now consists of all those branch contexts which are likely to eventually execute the
modified branch.
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For efficiency, the second and third step and interleaved. The path of maximum likelihood
is followed from each start point until it either discovers a branch already in the trace or
a weakly correlated branch. This path now contains the set of instructions which may
affect the trace cache starting from that entry point. If the path terminates in loop, that
loop is processed first; it is unrolled once and passed to the trace cache. The remaining
instructions are then cut into blocks whose cumulative completion probability is above the
trace completion threshold.

The block parsing mechanism works by linearly adding bytecodes to the block until,
by adding another block, the traces probability of completion would be lower than the
completion threshold. After a block is constructed it is passed into the trace cache, which
checks if the trace cache hash table already contains that sequence. If so, the trace is
retrieved and linked. Otherwise a new trace is constructed and linked into the code. Finally,
to prevent cascades of state changes, all the instructions found to be related to the process
have their state updated as their trace is currently up to date. Although technically this
algorithm could theoretically require the reconstruction of the entire trace cache at any one
step, we found that the number of traces generated per signal was rarely greater than five
and often less then one in ten.

By waiting for signals from the profiler the trace cache needs only construct that which
needs reconstruction as it knows that the remainder of the trace is relatively up to date. By
traversing the branch correlation graph it ensures that everything that may need updating
has, in fact, been examined.

5 Experimental Results

We tested our algorithm on six benchmarks and found that it generated long traces which
covered a large percentage of the execution stream with a low execution overhead. We
performed our tests using an implementation based on SableVM, a direct threaded inlining
Java interpreter designed for speed. The implementation added our trace cache dispatch
approach to SableVM and allowed us to examine the behaviour of the trace cache. The
benchmarks were all run on a HP Pavilion N5495 with 512MB of RAM running at 1.06GHz.

5.1 Benchmarks

We chose four SPECjvm benchmarks (javac, compress, mpegaudio, and raytrace); one
large application, soot; and one scientific application, scimark. Compress and raytrace

are simple programs which exhibit predictable behaviour. Javac is traditionally one of the
more challenging SPECjvm benchmarks, selected to show the strength of the model. We
selected soot, a bytecode-to-bytecode analysis and optimization framework, as a an example
of a large real world application. Finally, we selected scimark to examine the effectiveness
of the technique on scientific calculations.
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5.2 Parameters and Dependent Values

The algorithm has two important parameters: start state delay, and threshold. The start
state delay determines how many times a branch must be taken before it can be included in
a trace, larger values filter rarely executed code while smaller values increase the responsive-
ness of the algorithm to phase changes. The threshold controls the minimum expected trace
completion rate. We say that a trace completes if it executes to completion, once started.
The threshold also controls how the profiler detects state changes. A low completion thresh-
old generates longer traces and many signals from the profiler, whereas a high completion
threshold produces fewer signals and more predictable traces.

For our experiments we ran the benchmarks with delays of 1, 64, and 4096 branches.
A delay of 1 indicates that branches immediately are declared “not rare”. We found that
a delay of 64 gave the best results, and so we then examined the results for a variety of
threshold values. For the threshold we tried values of 100%, 99%, 98%, 97%, 95%. With a
signal threshold of 100% the algorithm does not distinguish between the unique and strong
states.

We measured five dependent values:

average trace length: The average executed trace length is measured by finding the sum of
the lengths of the traces which execute to completion and dividing by the number of
traces. A high average executed trace length indicates that the algorithm is finding
traces appropriate for optimization.

instruction stream coverage: The instruction stream coverage is found by dividing the
total number of instructions executed by completed traces by the total number of
instructions executed in the program. Stream coverage indicates the portion of the
code being executed from the trace cache and bounds the performance gains available.

dynamic trace completion rate: The dynamic trace completion rate is calculated by dividing
the number of completed traces by the number of entered traces. A high completion
rate suggests that the optimizer can implement optimizations with a performance trade
off e.g. if a trace’s completion rate is over 99% then a optimization which doubles
performance along the completion path can degrade performance off the completion
path by a factor of ten and still improve performance by 40%.

state signal rate: The state signal rate is the frequency at which the profiler detects changes,
the lower the signal rate, the fewer times that the trace cache needs to check its
consistency.

trace event interval: The trace event interval is calculated by dividing the number of in-
structions executed over a programs life time by the number of traces constructed by
the trace cache plus the number of signals generated by the profiler. The greater this
interval, the lower net overhead of the trace cache.
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5.3 Effective Trace Generation

The purpose of the experiments in this section is to demonstrate that for suitably selected
values for the threshold, the traces in the trace cache are suitable units for optimization.
This analysis is done in two steps: first we verify that we can choose values which generate
long traces that effectively cover the execution stream, then we validate our preference for
completely executing traces by showing that the trace completion rate is very high.

Tables I and II examine the effect of the threshold on the average trace lengths and
instruction stream coverage respectively. The trace lengths are given in terms of the number
of Java basic blocks, which consist of a number of Java bytecode instructions. Note that
some bytecode instructions, such as invokevirtual, can correspond to a large number of
machine instructions. The data in these tables supports our assertion that we can find values
which make our algorithm effective.1

threshold compress javac raytrace mpegaudio soot scimark average
100% 5.0 2.9 2.9 3.1 3.2 10.8 4.7
99% 12.0 4.0 8.0 3.4 3.9 10.8 7.0
98% 12.0 4.1 8.1 3.4 4.3 10.8 7.1
97% 12.1 4.3 8.4 4.8 4.5 10.8 7.5
95% 11.7 5.9 8.5 5.3 4.8 10.8 7.8

Table I: Trace Length vs. Threshold

Table I shows that the threshold has a negligible effect on the average trace length except
when it is 100%. At 100% we see that the average trace length drops to less than 4.7 basic
blocks per trace, and if we exclude scimark the average falls to 3.4. This is because only
traces which branch over 20482 times in the same direction are considered inlinable. The
fact that 4.6 blocks can be inlined suggests that there are a large number of branches which
are never taken, eg exceptions. Thus any of the values between 99% and 95% seem to be
reasonable choices in terms of trace length; however, instruction stream coverage suggests
that 97% is best.

The most important values to notice in Table II is the benchmark average at a threshold
of 97%. At this point we find the completed traces cover over 87.1% of the instruction stream.
This value is quite pleasing as, for comparison, rePLay’s trace cache captures between 82%
and 90% of the instruction stream. Furthermore, because the trace cache also includes
partially executed traces, it covers even more of the instruction stream than completely
executing traces alone; the trace cache captures 90.7%..

Table III shows how frame completion rate varies with the threshold. From this data

1The current implementation does not handle virtual method call linkages as well as it should, and thus
the values for javac, mpegaudio and soot are lower than they should be. We are currently modifying our
implementation to fix this problem and the updated numbers will be released in our technical report at
http://www.sable.mcgill.ca/publications/#reports, and will be in the final version of the paper.

2it takes up to 2048 = 256log2256 iterations to completely clear a history. log2256 shifts are needed and
a shift occurs every 256 dispatches
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Threshold compress javac raytrace mpegaudio soot scimark average
100% 78% 72% 79% 90% 76% 98% 82.1%
99% 90% 73% 82% 90% 80% 98% 85.5%
98% 90% 76% 79% 92% 81% 98% 86.0%
97% 91% 79% 80% 92% 83% 98% 87.1%
95% 90% 77% 80% 90% 83% 98% 86.3%

Table II: Instruction Stream Coverage vs. Threshold

we can infer that for threshold values above 97%, the completion rate is sufficiently high to
justify the more complex algorithm needed to search out completely executing traces.3

threshold compress javac raytrace mpegaudio soot scimark average
100% 80% 89% 90% 99%+ 95% 99% 92%
99% 99% 91% 91% 99%+ 95% 99%+ 96%
98% 99%+ 93% 91% 99%+ 95% 99%+ 96%
97% 99%+ 92% 92% 99%+ 94% 99%+ 96%
95% 99%+ 91% 91% 99%+ 92% 99%+ 95%

Table III: Frame completion rate vs. Threshold

Our technique generates traces suitable for optimization. We found that we get best
performance with a threshold of 97%; however, the algorithm is consistently effective is
between 97% and 99%. It is interesting to note that 97% is also the threshold value implicitly
used by rePLay, ie their choice of 32 consecutive branches as the assertion threshold.

5.4 Algorithmic Efficiency

In the previous section we showed that the trace cache behaves well. In this section we argue
that the cost of the algorithm is acceptably low. The overhead induced by the algorithm
is partitioned into three parts: the first is the cost of the trace construction mechanism,
the second is the cost of the periodic checks induced by the profiler, the third is the cost
of the augmented dispatch statement which provides the hooks into the trace generation
mechanism. Of these three, we show that the dispatch statement dominates by a large
margin. As the overhead induced by dispatch statements dominates, we then find the per
dispatch overhead induced by the profiler dispatch code.

The cost of code dispatch dominates both periodic checks and trace construction, this is
not surprising as over 95% of the overhead in Dynamo is profiling. The expected behaviour of
the code dispatch is two comparisons, two pointer evaluations, and one assignment. This is
fortunate because this code is executed after every block dispatched by the interpreter, which
in the case of a direct threaded inlining interpreter means after every basic block executed

399%+ indicates value over 99.9%
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by the program. Similarly a trace dispatch executes a single profiling statement, all of the
inlined ones are removed. The periodic check function is significantly more expensive than
profiler hook; however it is only called approximately every 256 dispatches. During the
check function the branches are decayed and the state of the maximally predicted branch
is evaluated. Since most branches in a program are direct there are, on average, only 2
branches to check and so the average execution time is well bounded. Even is we assume
that average periodic check time is 25 times longer than a the dispatch code we still spend
less than a tenth of our overhead here compared to the dispatch.

The trace construction mechanism can be significantly more costly than the periodic
checks however it is only invoked when a branch changes state which occurs very rarely
compared to the periodic checks. As Table IV shows at a 97% threshold we guarantee
less than one signal per 11100 dispatches and on average less than one signal every 114700
dispatches.

Threshold compress javac raytrace mpegaudio soot scimark average
100% 37.3 10.4 39.4 30.0 11.5 11.9 23.4
99% 39.8 11.0 41.7 31.6 10.5 369.3 83.9
98% 40.5 11.1 43.3 33.4 10.5 415.5 92.3
97% 38.0 11.1 43.3 31.6 10.5 554.0 114.6
95% 40.5 10.9 43.3 34.3 10.7 415.5 92.5

Table IV: Thousands of Dispatches per State Change Signal

Signals and trace generation are independent events. Most important is the total number
of these events as any number of traces can be generated from a signal. As multiple (or no)
traces can be generated from a signal the overhead can be dominated by either, so we must
attempt to limit the rate of trace events of any kind. We can increase the time between
events by adjusting the start state delay, the lag between the discovery of a new branch and
its potential inclusion in a trace. As Table V shows as we increase the delay from 1 to 4096
the trace event interval falls off dramatically.

important than Although signals are lightweight, the costly procedure is trace construction.

Start Delay compress javac raytrace mpegaudio soot scimark

1 36.0 4.6 17.8 18.6 1.6 317.5
64 37.6 6.6 20.0 13.5 5.2 512.0

4096 32.1 12.4 25.5 30.6 6.0 468.1

Table V: Thousands of Dispatches per Trace Event at 97% threshold

From table V we find that a delay of 4096 seems to have the greatest event interval.
At a delay of 4096 the interval between periodic checks, 256 dispatches, is 25 to over 1500
times smaller than the trace construction interval. The profiling overhead dominates the
algorithm’s execution time.

16



In order to calculate the profiling overhead, we modified SableVM to include the profiler
code at the end of each basic block, and then we timed the unmodified interpreter vs. the
profiling version. These results are given in Table VI. The result is that profiling appears to
cost between 0.018 and 0.075 seconds per million dispatches. We then counted how many
threaded dispatches would be made if the trace dispatching was used (traces include many
basic blocks), and preliminary results indicate an overhead between 2% and 7%.

Across all benchmarks, as shown in Table VI, the per dispatch overhead is about 0.044s
per million dispatches, while the per instruction overhead is around 0.154s per million dis-
patches. Thus roughly the cost of executing the profiling code 28.6% of the cost of executing
a basic block.

Benchmark No Profiler #dispatches Profiler Overhead per
(sec) (millions) (sec) 106 dispatches

compress 248 1906 303 0.029s
javac 123 621 158 0.058s

raytrace 204 866 269 0.075s
mpegaudio 240 2404 312 0.030s

soot 96 513 124 0.055s
scimark 261 3324 321 0.018s

Table VI: Profiler overhead per basic block dispatch in modified SableVM

In Table VII we substitute the per dispatch overhead values into the trace dispatch model
to find the expected overhead induced by the trace dispatching model. From table VI we have
an estimate of the per million dispatch overhead of the profiler. We calculate the overhead
of a pure trace dispatching model taking the number of trace dispatches and multiplying it
by the per dispatch cost. We find that the across all benchmarks the predicted overhead is
quite acceptable, everywhere less than 7% and averaging 4.5%.

Benchmark Trace Dispatches Overhead per Expected % Overhead
in Millions Million Dispatches Overhead

compress 142 0.029 4.12s 1.7%
javac 144 0.058s 8.35s 6.8%

raytrace 103 0.075s 7.73s 3.8%
mpegaudio 500 0.03s 15.00s 6.2%

soot 114 0.055s 6.27s 6.5%
scimark 308 0.018s 5.54s 2.1%

Table VII: Profiler dispatch overhead

Because trace events and periodic decay checks happen several orders of magnitude less
frequently than profiling statements, profiler dispatches dominate overhead. Across a million
dispatches we found the overhead of profiling the program to be 28.6%. By moving to
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trace dispatch we eliminate many of the dispatches, and significantly decreased the profiling
overhead to between 1.7% and 6.5%.

5.5 Summary

Our algorithm produces generates long traces 7.5 basic blocks long on average, and it has
good instruction stream coverage: 87.1% of the instruction stream is covered by traces which
execute to completion and 91% of the instruction stream is executed within the trace cache.
Furthermore, the overhead for our algorithm is acceptably low for use in a dynamic optimizer;
the expected profiler trace dispatch overhead is low, 4.5% on average.

6 Conclusions and Future Work

In this paper we have presented a new approach for dynamically detecting, creating and
maintaining an instruction trace cache. Central to our approach is the use of branch cor-
relation graphs to locate highly correlated blocks that should be placed in the same trace.
Our profiling mechanism uses a decay function to allow the system to adapt to more recent
program behaviour, and the profiling code itself is attached to the dispatch code for each
thread. Thus, as the trace cache builds better traces, the overhead for dispatch and profiling
decreases.

We have implemented the mechanism in a direct-threaded-inlining JVM, and measured
the behaviour of the trace cache. We found that with a delay of 64 and a threshold of 97%,
we could find reasonably long traces with good instruction stream coverage and good trace
completion rates. Furthermore, the trace cache was very stable, with very infrequent changes
to the traces. Finally, we showed that the biggest overhead is from dispatch and profiling,
but that by finding good traces this overhead could be kept to around 5%.

We are very pleased with our initial results, which shows that a software solution can
lead to good traces and have reasonable overhead. Our next step will be to fully integrate
the mechanism into SableVM, by enabling the VM to execute the traces we can find. We will
first investigate performance improvements over the direct-threaded-inlined interpreter, and
then we will measure what further improvement can be achieved by applying optimizations
to the traces.
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