
Numerical Computing on theWeb: Benchmarking for
the Future

David Herrera

McGill University

Canada

david.herrera@mail.mcgill.ca

Hanfeng Chen

McGill University

Canada

hanfeng.chen@mail.mcgill.ca

Erick Lavoie

McGill University

Canada

erick.lavoie@mail.mcgill.ca

Laurie Hendren

McGill University

Canada

hendren@cs.mcgill.ca

Abstract
Recent advances in execution environments for JavaScript

andWebAssembly that run on a broad range of devices, from

workstations and mobile phones to IoT devices, provide new

opportunities for portable and web-based numerical comput-

ing. Indeed, numerous numerical libraries and applications

are emerging on the web, including Tensorflow.js, JSMapRe-

duce, and the NLG Protein Viewer. This paper evaluates the

current performance of numerical computing on the web, in-

cluding both JavaScript andWebAssembly, over a wide range

of devices from workstations to IoT devices. We developed

a new benchmarking approach, which allowed us to perform

centralized benchmarking, including benchmarking on mo-

bile and IoT devices. Using this approach we performed four

performance studies using the Ostrich benchmark suite, a

collection of numerical programs representing the numerical

dwarf categories identified by Colella. We studied the perfor-

mance evolution of JavaScript, the relative performance of

WebAssembly, the performance of server-side Node.js, and

a comprehensive performance showdown for a wide range

of devices.

CCSConcepts •Generalandreference→Empirical stud-
ies; Performance;

Keywords performance, web-based scientific computation,

scientific web benchmarking, JavaScript, WebAssembly, Os-

trich benchmarks

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page. Copyrights for components

of this work owned by others than ACMmust be honored. Abstracting with

credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee. Request

permissions from permissions@acm.org.

DLS ’18, November 6, 2018, Boston, MA, USA
© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-6030-2/18/11. . . $15.00

https://doi.org/10.1145/3276945.3276968

ACMReference Format:
David Herrera, Hanfeng Chen, Erick Lavoie, and Laurie Hendren.

2018. Numerical Computing on the Web: Benchmarking for the

Future. In Proceedings of the 14th ACM SIGPLAN International Sym-
posium on Dynamic Languages (DLS ’18), November 6, 2018, Boston,
MA, USA. ACM, New York, NY, USA, 13 pages. https://doi.org/10.
1145/3276945.3276968

1 Introduction
Computation via web-browsers is becoming increasingly

moreattractive, andcomputation-heavynumericalweb-based

applications and libraries are becoming more prevalent. Re-

cently, the introductionofWebAssembly toallmajorbrowsers

has provided even more potential for efficient web-based nu-

merical computing [22]. Further, the proliferation of browser-

enabled devices provides enormous computation capacity

including devices of all sizes, fromworkstations and laptops

to mobile phones and Internet-of-Things (IoT) devices. This

paper presents a benchmarking approach and framework

that can evaluate the performance of both JavaScript andWe-

bAssembly over a wide variety of browsers and devices. We

use this benchmarking approach to evaluate the performance

of numerical programs.

Our previous 2014 study, focused only on laptops/worksta-

tions, showed that browser-based execution engines, when

executing JavaScript and using the best technologies of the

time, had execution times within a factor of 1.5 to 2 of the

performance of native C [26]. Further, at that time, two no-

table performance enablers were demonstrated: (1) the use

of JavaScript typed arrays [32]; and (2) the use of asm.js [10].

The 2014 study demonstrated that web-based numerical

computingwasbecomingveryattractive,which subsequently

inspiredweb-basednumericalprojects including: (1)MatJuice:

a translator fromMATLAB to JavaScript [18], (2) MLitB: ma-

chine learning in the browser [30], (3) Pando: a web-based

volunteer computing platform [29], (4) SOCRAT: a web ar-

chitecture for visual analytics [25], and (5) CHIPS: a system

for cloud-based medical data [33]. Recently, there are also

many other web-based applications which perform core sci-

entific computations including those in the areas of machine

88

https://doi.org/10.1145/3276945.3276968
https://doi.org/10.1145/3276945.3276968
https://doi.org/10.1145/3276945.3276968

DLS ’18, November 6, 2018, Boston, MA, USA David Herrera, Hanfeng Chen, Erick Lavoie, and Laurie Hendren

learning, data visualization, big data analytics, simulation,

and muchmore. An important example is the emerging trend

ofmoving expensive computations from cloud-based comput-

ing platforms to the edge of the network [13, 38], especially

those involving machine learning tasks with newer toolkits

such as TensorFlow.js [8]. Applications such as these require

more performance for numerical computation tasks than was

typical of general web applications as studied in 2010 [36].

Since 2014 there have been many important advances in

both web-based execution engines and a substantial increase

in the computational power ofmobile and IoT devices, provid-

ingevenmoreopportunities forefficientweb-basednumerical

computing. On the software side, the Just-In-Time (JIT) com-

pilers in Chrome and Firefox continue to evolve, with major

changes and redesign of the compilation engines; and new

browsers with JITs, such as Samsung’s Internet Browser, and

Microsoft’s Edge have appeared. Furthermore, the invention

and adoption ofWebAssembly have provided a new common

program representation well suited to optimized numerical

computing. On the hardware side, tablets and phones have

become increasingly powerful computing devices, even IoT

devices now have non-trivial computational power. Given

the increasing use of the web for numerical computing, the

major changes in browser technologies, and the increasing

power of mobile devices, we feel that this is an ideal time to

perform a broad study of numerical computing on the web.

Wemake the following contributions:

Benchmarking approach: We designed and implemented

a generalized and centralized benchmarking approach to

simplify the tasks required to track the relative evolution

of multiple language technologies on a growing number of

software and hardware configurations. Our approach con-

tributes: (1) theWu-Wei Benchmarking Toolkit [28] which

comprises both reusable file system conventions to organize

artifacts aswell as tools to automate common tasks of bench-

marking, which can run from a laptop or workstation; and

(2) a new execution environment compatiblewith the toolkit

that enables the remote execution of benchmarks on a wide

range of devices, including mobile and IoT devices. We use

the toolkit and environment for the four studies done for

this paper.

Old versus new JavaScript engines: Our first study exam-

ines how the numerical performance of JavaScript engines

in Chrome and Firefox has changed (for better or worse)

since the 2014 study, using workstations and laptop archi-

tectures similar to those used in 2014. In addition to showing

the performance evolution, it also provides a new baseline

to which we can compare new browsers, new technologies

such asWebAssembly, and more devices, including mobile

and IoT devices.

WebAssembly versus C and JavaScript: Despite the best
efforts of compiler researchers and developers to provide

good performance for JavaScript, the dynamic nature of

JavaScript makes it inherently difficult to achieve the same

performance as in a statically-typed language such as C.

WebAssembly, a new typed intermediate representation for

programs executing on web browsers, provides many more

opportunities for optimizations [22]. Thus, in this study

we measure the relative performance of JavaScript andWe-

bAssembly, and examine whetherWebAssembly can come

close to the performance of native C. We perform this study

across the complete spectrum of devices from laptops/work-

stations to an IoT device.

Server-sideNode.js performance: Node.js provides a con-
venient mechanism to execute JavaScript andWebAssembly

directly on a server, rather than via a web browser. This

study determines if numerical server-side Node.js perfor-

mance comes close to native C performance, and if there are

any significant performance differences between sequen-

tial server-side Node.js and the equivalent browser-based

JavaScript/WebAssembly engines.

JavaScript/WebAssembly/Device showdown: Our final
study is a showdown between all devices for both JavaScript

andWebAssembly. The intent is tomeasure the performance

of each language/device combination, so that we can com-

pare all of them easily. In this way, we can see the perfor-

mance gap between workstations/laptops and other devices

suchas tablets,mobilephonesand IoTdevices.This allowsus

to answer questions such as: “Is the numerical performance

of modern mobile devices close to that of workstations and

laptops?".

Overall, our benchmarking approach should be of inter-

est to those who wish to evaluate performance of JavaScript

and/orWebAssembly on a variety of devices. We believe that

many different languages may start to targetWebAssembly,

and so this can be very useful in their performance evaluation.

Further, our performance studies of numerical computation

on the web should be of interest to: (1) end-users who wish

to execute numerically-intensive web-based applications on

personal devices; (2) scientific programmers who wish to dis-

tribute and execute their code on the web; (3) VM developers

who wish to evaluate their execution engines for numerical

computing; and (4) to those who have a general interest in

the current state of numerical computing on the web. Our

complete results, benchmarks and experimental platform are

publicly available. The experimental set-up and approach are

available at https://github.com/Sable/ostrich-suite. The data
and main results are available at https://github.com/Sable/
dls18-ostrich.

2 Background and RelatedWork
The web began as a simple document exchange network

mainly meant to share static files. By historical accident, Java-

Script was the only natively supported language on the web

and from its inception, JavaScript wasmeant as a simple inter-

preted language designed for non- professional programmers.

89

https://github.com/Sable/ostrich-suite
https://github.com/Sable/dls18-ostrich
https://github.com/Sable/dls18-ostrich

Numerical Computing on theWeb DLS ’18, November 6, 2018, Boston, MA, USA

The introduction of the AJAX technology provided the web

with dynamic content increasing the demand for improved

JavaScript performance.

2.1 JavaScript
Since the standardizationof JavaScript and the introductionof

dynamic loading to the web, the developer community took

on the challenge to make JavaScript and web applications

both scalable and efficient. Efficiency was achieved through

the introduction of the JavaScript Engines and their JIT com-

pilers [11, 19]. Moreover, the ECMAScript standard [6], along

with the W3C standards [42], have come together to bring

standardization to the web. Over the past few years, we have

observed the growing dominance of web applications with

an increasing number of devices supporting web technolo-

gies, ranging from smartphones and desktops to IoT devices.

In 2014, the sequential numerical performance of the best

JavaScript engines was recorded to be within a factor of 1.5

to 2 of native C [26].

The maturation of web platforms has given rise to increas-

ingly more intensive computations. JavaScript as the only

built-in language of the web has presented challenges in pro-

viding support to some of these applications. Further efforts

to improve JavaScript performance [12, 24, 46] have led to,

WebAssembly, a new binary code format.

2.2 WebAssembly
WebAssembly [22] is a new portable binary code format, that

in addition to maintaining the secured, isolated, model the

web provides, brings near-native speeds to theweb and serves
as a more appropriate compilation target for typed languages

such as C and C++. It thus opens the doors to a variety of dif-

ferent languages and closes the gap in performance allowing

applications that were previously hard to port to the web.

The competitive performance ofWebAssembly compared

with native code over micro-benchmarks has been addressed

by Haas et al. [22]. In our study we compareWebAssembly

versionsofprograms tobothCandJavaScriptversions, tomea-

sure the relative performance ofWebAssembly versus both

nativeCcodeand JavaScript. Further,weexplorea rangeofnu-

merical benchmarks from the Ostrich Benchmark Suite [26]

compiled from C to WebAssembly for a variety of environ-

ments representative of the web ecosystem. Currently, the

Emscripten toolkit [46], based on the c-lang-llvm pipeline to

generateWebAssembly code, provides a framework for com-

piling C and C++ toWebAssembly along with an embedded

execution environment forWebAssembly in JavaScriptwhich

exposes the C and C++ functions to the JavaScript run-time.

WebAssemblywasbuilt as anabstractionon topof themain

hardware architectures, providing a formatwhich is language,

hardware, and platform independent [44]. The low-level na-

ture of the language should offer many opportunities for opti-

mizations that would benefit numerical computations. At the

time of writing, a fixed-width SIMD feature, and parallelism

via threads are in the in-progress stage for WebAssembly [43].

Furthermore, WebAssembly supports different integer types

and single precision floating-points, which are not currently

supported by JavaScript.

2.3 JavaScript Performance
Therehavebeenmanybenchmarksuitesproposed for JavaScript

by both researchers [35] and browser vendors [2–4]. Some

are not maintained anymore [3], while others are not repre-

sentative of numerical computing typically used by scientists

and engineers [35].

In terms of other performance studies of JavaScript, in 2016,

Selekovic et al. [37] explored 16 popular JavaScript reposito-

ries. Their goal was to find themain inefficiencies in code that

were common in the repositories, and they identified the in-

correct use of APIs as themost prominent cause. JSBench [34]

explored the distinction between JavaScript performance of

real websites compared to a benchmark suite, pointing out

that using a benchmark suite as an optimizing objective may

lead to a false sense of performance in terms of real-world use

of JavaScript.

For our purposes, we are specifically looking at the web

technologies potential for numerical performance. All the

benchmarks suites mentioned fail to fill our target goals in

two aspects. First, they are not benchmarks representative

of the typical kernels seen in numerical computations, and

secondly, they have no equivalentWebAssembly implementa-

tion. Instead, tomeasure numerical performance of JavaScript

andWebAssembly, we have used the most recent version of

Ostrich Benchmark Suite [26]. These benchmarks have both

JavaScript and C implementations that can be used to: (1)

compare C and and JavaScript performance; and (2) compare

both to WebAssembly by translating the C versions with a

suitable compiler.

As a last point, there does not exist an open source bench-

marking toolkit to cohesively, and centrally measure perfor-

mance across a variety of devices on theWeb.

2.4 Mobile and IoT Devices
The increasing power of mobile devices provides a platform

for sophisticated numerical computing. Indeed, this comput-

ing power can be used to ensure the privacy of personal data

through efficient and effective encryption and to provide the

power to support numerically-intense security-check algo-

rithms such as the 3D face recognition recently introduced

on the iPhone [23]. In general, the need for the privacy pro-

tection of personal data and the rising importance of machine

learning models, numerical web computations hosted at the

host environment are becoming increasingly important [39].

The Internet of Things provides yet another challenge for

numerical computing. As these small devices becomemore

powerful and ubiquitous, there are many challenges for their

effective and secure use [45].

90

DLS ’18, November 6, 2018, Boston, MA, USA David Herrera, Hanfeng Chen, Erick Lavoie, and Laurie Hendren

Both mobile devices and IoT devices also provide internet-

connected computing power that can be used for big data

computations, and thus provide a potential platform for dis-

tributed computations using cloud/fog computing [15], as

well as providing potential devices to be used in volunteer

computing platforms [16, 29].

3 Benchmarking with theWu-Wei Toolkit
Over the last years, our research and this study in particular

highlighted the need to develop reusable solutions to assess

the performance of language implementations. We success-

fully addressed: (1) the combinatorial explosion of hardware

and software configurations that need to be compared, which

was manifest in the significant redundancy of the Makefile

infrastructure of our previous study [26]; (2) the tediousness

of performing experiments and organizing results; and (3)

the difficulty in running benchmarks remotely on mobile and

embedded devices.

Our solution was to develop: (1) file system conventions to
organize the various artifacts, the experiment parameters,

the measurements and reports, and the expected results from

a valid execution; (2) command-line tools to automate the

tedious experimental parts; and (3) a strategy for remote ex-
ecution of benchmarks. We provide a high-level sketch of

the solutions here, more detail can be found in the wu-wei-
handbook [28].

3.1 File SystemConventions
Ourfile systemconventions are organized around a repository,
that is a directory that containsmany artifacts required for the
study. Each artifact is itself contained in its own directory that

minimally contains a file, e.g. compiler.json, that describes
the artifact and how to perform actions with it, if applicable.

It may also contain other files, such as a licence.

Artifacts are organized in categories, stored in correspond-

ing directories, that follow the main dimensions of the com-

parative studies we made in the past. Benchmarks represent
general algorithms or applications, which are further divided

into Implementations in possibly different programming lan-

guages. The benchmark description file contains pre-defined

inputs as well as their expected output, which must be consis-

tent for all implementations.Compilers takebenchmark imple-

mentations as inputs and generate a new Build artifact. They

can be used to cross-compile benchmarks to other languages

or simply package them for execution. Environments execute
the Builds to produce metrics, stored in a Run. Runsmay then

be combined and analyzed to produce different reports. In

addition, Platforms are used to store the different hardware/-
operating system combinations analyzed. And finally, an Ex-
periment contains the parameters thatwere used for a specific

study and may refer to other artifacts as dependencies.

3.2 Command-line Tools
The description files of the previous artifacts are automati-

cally found and processed by tools to automate various tasks.

The tools are organized around a configuration, which repre-
sents a combination of various artifacts to measure, e.g. crc
benchmark, js implementation, chromium38 environment,

browserify compiler, andmbp2018 platform. By automating

the generation of configurations from generic description

files, we removed much of the boiler-plate code that was pre-

viously necessary.

Common tasks have dedicated tools, all invoked on the

commandline with the prefix wu. The command wu init
creates a repository for performing a study by creating the

sub-directories to store the different artifact categories. wu
platform produces a report on the hardware capabilities of
the current platform.wu install adds an artifact in the repos-
itory, either copying or downloading the necessary files and

adding its dependencies. wu build compiles a benchmark’s

implementation sources and creates a Build. wu run executes
a Build on an Environment and saves themeasuredmetrics in

a Run. The output of the execution is compared to its expected

result specified in the Benchmark description and returns an

error if they differ. wu report combines the results from

multiple Runs into a table and automatically computes the

average and standard deviation. It can also produce a table of

relative speeds, as speedups or slowdowns.

3.3 New Environment for Remote Execution
Our new Environment is illustrated in Fig. 1 and enables the

execution of benchmarks in a remote environment, such as

mobile phones, tablets, and Raspberry Pi boards. It works in

combination eitherwith a portablemobile application thatwe

developed for both iOS and Android using web technologies

and the Apache Cordova framework [9] or a command-line

script that can be run on the device. Both sides communi-

cate through Firebase [17], a cloud database that provides

real-time updates.

wu-wei

wu-wei hosted
environment

Firebase

Spawn Process

Browser Open
at Server IP

---- Initial set up
---- Request
---- Response

Server Device

New Bench.
Iteration

Benchmark.
Response

Spawn
Browser

Benchmark
Response Spawn

Browser

{IP, PORT}
{IP, PORT}

Figure 1. Environment architecture used by Wu-Wei to

record the data from each browser.

91

Numerical Computing on theWeb DLS ’18, November 6, 2018, Boston, MA, USA

For mobile devices, when executed bywu run, the Environ-
ment spawns a local server, which serves the benchmark files

and listens for results, and sends its address as well as the tar-

getedbrowser to Firebase, in the formof a request intended for

the remote platform. On the other side, themobile application

receives the request andopens the requested browserwith the

address, which downloads the files, executes the benchmarks,

and answers with the result and metrics. For other kinds of

remote devices, such as the Raspberry Pi board, the strategy

is similar but a listening script is used instead and the files are

sent through Firebase rather than from a local server.

Our new benchmarking infrastructure enabled us to reor-

ganize the artifacts of our previous study [26] as independent

components, removing much of the redundancy present in

the original infrastructure and making it easier to extend our

study to new compilers and environments. Further, our tools

made the execution of benchmarks and exploration of results

easier. The additionof anewstrategy for remote execution sig-

nificantly extended the number of devices that could be tested,

avoided code replication of the benchmark suite, and enabled

a centralized, and structured data collection. To the best of our

knowledge, we were the first to create such tools for compar-

ative performance studies on a comprehensive set of devices,

execution environments, and benchmark implementations.

4 Methodology
In this section,we explain our choice of benchmarks, improve-

ments made to them, as well as details about execution and

timing. Lastly, we give the specifications and justifications

for all the different environments and devices we used during

the performance studies.
1

4.1 Choice of Benchmarks
To measure the numerical performance of JavaScript and

WebAssembly, we have used the most recent version of the

Ostrich Benchmark Suite [26], representing the 7 Dwarf cate-

gories in numerical computing identified byColella [14]. Each

benchmark contains C and JavaScript equivalent implemen-

tations. This made it convenient to addWebAssembly, since

for theWebAssembly performance we simply used the C im-

plementation of each benchmark compiled using the 1.37.22

version of the Emscripten [46] compiler. This allowed us to

quantify the performance of both JavaScript/WebAssembly

against native C, with the consistency provided by having the

equivalent implementations across languages.

1
The data and plots for the study are available at: https://github.com/Sable/
dls18-ostrich

4.2 Improvements to Ostrich
The Ostrich benchmarks were improved in three different

ways. (1) we reorganized the benchmarks to abide to the con-

ventions of Wu-Wei in terms of folder structure and configu-

ration files; (2) we updated theOstrich benchmarks to use cur-

rent JavaScript idioms and libraries for arrays;
2
(3) we added

an output verification section to each benchmark, which ver-

ifies the correct output is given at the end of each run.
3

4.3 Execution and Timing
Eachbenchmarkwas executed a total of 30 times for each envi-

ronment as suggested byGeorges et al. [20], this allowed us to

approximate the distribution of measurements as a Gaussian

and obtain an appropriate standard deviation. Moreover, for

each benchmark run, a newbrowser tabwas spawned in order

toavoid thecached JIToptimizationsof the JavaScript engines.

We include the compilation time in the measurements since

this is representative of how numerical computations are ac-

tually performed in practice: a user is interested in obtaining

results with minimum latency the first time it is run rather

than maximizing throughput over long-lived computations.

The time for eachbenchmark represents themain loopcompu-

tation of amedium size input as defined by the Ostrich bench-
marks. The comparisons in the paper are done using speedups

of a given benchmark implementation relative to other imple-

mentation/environment of the same benchmark. The error

propagation for those speedups is given by Equation 1,

∆

(a
b

)
=

(a
b

)√(
∆a

a

)
2

+

(
∆b

b

)
2

(1)

Where a, b are the quantities we wish to compare and ∆a,
∆b are the errors of those quantities coming frommeasure-

ment. Moreover, for the speedup calculations, we calculated

the geometric mean for a specific environment and platform

across all the benchmarks, and we used that as a comparison

measure against other platforms.

4.4 Representative Devices
Table 1 contains the specifications of the devices used for our

experiments. We considered a wide range of devices cover-

ing four major categories: Desktops &Workstations, Tablets,

Smart Phones, and IoT. We have chosen the initial categories

based on the perspective of users.However, each category cor-

responds to different form factors, which determines cooling

and battery, and thus throttling and turbo behaviours of the

system and is thus interesting from that perspective as well.

For each of these categories, we aimed to have at least one

representative device. To evaluate desktop and laptop perfor-

mance we have executed our experiments on three machines,

2
The benchmarks now use the ndarray [5] library and array literals instead
of the new Array() construct
3
AWu-Wei compatible experiment is available under: https://github.com/
Sable/ostrich-suite

92

https://github.com/Sable/dls18-ostrich
https://github.com/Sable/dls18-ostrich
https://github.com/Sable/ostrich-suite
https://github.com/Sable/ostrich-suite

DLS ’18, November 6, 2018, Boston, MA, USA David Herrera, Hanfeng Chen, Erick Lavoie, and Laurie Hendren

Table 1.Devices with short names and basic configurations for the Ostrich experiments.

Platform Device CPU RAM OS

MacBook Pro 2018

(mbp2018)

Intel Core i5 @ 2.3 GHz 8 GB MacOS 10.13.4

Laptops &

Workstations

UbuntuWorkstation

(ubuntu-deer)

Intel Core i7-3820@ 3.60

GHz

16 GB Ubuntu 16.04

WindowsWorkstation

(windows-bison)

Intel Core i7-3820@ 3.69

GHz

16 GB

Windows 10

Enterprise

Single Board

Computers

Raspberry Pi

(raspberry-pi-3)

ARMCortex A53@ 1.20

GHz

1 GB

Linux Raspberry Pi

4.9.35-v7

Tablets

Apple iPad Pro (ipad-pro)

Hexa-core Apple Fusion

@ 2.39 GHz

4 GB OSX 11.0.3

Samsung Tablet S3

(samsung-tab-s3)

Quad Core@ 1.6 - 2.15 GHz 4 GB Android 8.0.0

Samsung Galaxy S8

(samsung-s8)

Octa-core @ 1.70 - 2.30 GHz 4 GB Android 8.0.0

Smart Phones Google Pixel 2 (pixel2)

Qualcomm Snapdragon 835

@ 1.90 - 2.35 GHz

4 GB Android 8.0.0

Apple iPhone X (iphoneX)

Apple Fusion hexa-core

@ 2.39 GHz

4 GB OSX 11.0.3

Table 2. The list of environments for experiments on devices.

Environment Version Devices

Chrome63 63.0.3239.84

samsung-s8, pixel2, ipad-pro, samsung-tab-s3, mbp2018, ubuntu-deer,

windows-bison, iphoneX

Chromium38 38.0.2125.0 mbp2018, ubuntu-deer

Firefox57 57.0.2

samsung-s8, pixel2, ipad-pro, samsung-tab-s3, mbp2018, ubuntu-deer,

windows-bison, iphoneX

Chromium56 56.0.2923.84 raspberry-pi

Firefox39 39.0 mbp2018, ubuntu-deer

Safari11 11.0.1 iphoneX, ipad-pro, mbp2018

Microsoft-Edge 41.16299.15.0 windows-bison

Node.js 8.9.1 mbp2018, raspberry-pi,ubuntu-deer,windows-bison

Native GCC 5.4.0 mbp2018, raspberry-pi,ubuntu-deer,windows-bison

namely, a MacBook Pro 2018 laptop (mbp2018), an Ubuntu-

based desktop (ubuntu-deer), and a similarWindows-based

desktop (windows-bison).
4
These machines allowed us to

measure performance for the three major operating systems

and also include performance evaluations of the OS-specific

Apple Safari andMicrosoft Edge browsers. Formobile devices,

we considered state-of-the-art tablets and smartphones. On

the tablet front, or medium size devices, we have selected

two of the most popular and powerful tablets currently in

the market, i.e. the Samsung Tab S3 and the iPad Pro. On the

4
The machine names mbp2018, ubuntu-deer and windows-bison, are used in

our subsequent results, graphs, and tables.

mobile front, we have chosen three popular consumer smart-

phones that are top of the line for three major smartphone

providers, namely, the Samsung Galaxy S8, the Google Pixel

2, and the iPhone X. Finally, to represent IoT devices, we have

selected the Raspberry Pi 3 model B (raspberry-pi) due to its

popularity, as a representative of the single-board computers.

4.5 Browsers and Execution Engines
Foreachdevice,wehaveexperimentedwithmanydifferentex-

ecution engines, as summarized in Table 2. For our first study

we used versions of Firefox andChrome thatwere available in

2014, as well as the most recent versions (at the time of the ex-

periment). For the remaining three studies we used the most

93

Numerical Computing on theWeb DLS ’18, November 6, 2018, Boston, MA, USA

recent browser-based JavaScript andWebAssembly engines.

Note that portable browsers such as Firefox andChromewere

available for all the devices, whereas OS-specific browsers

such as the Samsung andMicrosoft browsers were available

only on some of the devices. Note also that for all of the desk-

tops, laptops and android devices, Chrome 63.0.3239.84, and

Firefox 57.0.2 use their respective JavaScript engineswhile for

the ipad-pro and iphoneX devices, Firefox 57.0.2 and Chrome

63.0.3239.84 use the JavaScriptCore Apple engine based on

WebKit [7].

5 Old versus New JavaScript Engines
In our first study, we compare the numerical performance

of the Firefox and Chrome JavaScript engine versions from

2014, against the modern version of the same engines. In the

study of numerical performance in 2014 [26], the reported

sequential JavaScript performance was within a factor of 1.5

to 2 of the native C version. Therefore, an interesting question

is whether similar results can be achieved with the modern

browsers, and more broadly, how have these engines evolved

in the context of numerical computing since 2014.

5.1 Experimental Set Up
We did not have access to the same machines used in the

2014 study so we repeated the same experiments on different

machines with similar configurations. Microsoft and Apple

are not making available the specific releases of Internet Ex-

plorer 11 and Safari that were used in the previous study. We

therefore focus on Chrome and Firefox only.

We provide the speedups of JavaScript against the native

C version of the Ostrich benchmarks for two architectures,

mbp2018 and ubuntu-deer in Fig. 2. In each case we exper-

imentedwith fourversionsof thebrowsers,namely,Chromium

38
5
and Firefox 39 from 2014; and Chrome 63 and Firefox 57

for the modern versions. In each graph, the right-most group

of bars exhibits the geometric mean and is meant to represent

the overall performance for each of these browsers.

5.2 Results
The first observation is that the best performing browser was

Firefox 57; the JavaScript performance of the browser sig-

nificantly improved over the Firefox 39 version for both the

MacBook Pro laptop and UbuntuWorkstation. Secondly, and

perhaps surprisingly, the numerical performance of the cur-

rentChromebrowserdecreased compared to theperformance

of the older version of the browser from 2014.We hypothesize

twopotential reasons for this. First, V8’s introduction of a new

compiler infrastructure, including a brand new interpreter,

named Ignition, and a new optimizing compiler named Turbo

Fan [40]. Second, the change of optimizing objectives for

JavaScript engines. Since 2015, browservendorshave changed

5
Due to the unavailability of the Chrome38 browser, the comparison was

done against the developer version of the browser.

their optimizing objectives from a set of benchmarks to real-

websites, resulting in the retirement of theOctaneBenchmark

Suite [41] fromtheGoogle team, and thedevelopmentof anew

methodology for measuring performance. This methodology

bases optimizations of the engines on real-world examples,

using real websites such as the Facebook orWikipedia [31].
6

To explore this, rather than taking only two end-points in

time, we decided to study the evolution of numeric perfor-

mance including several intermediate time points. For this

we ran the benchmarks on different major versions of the

engines, focusing on the introduction of the new engine for

V8, and taking evenly spread versions for Firefox as shown

in Fig. 3. For each browser version on the plot we show the

final geometricmean across thewhole benchmark suite using

C as a baseline and showing speedup against C. On the left

we have the Chromium versions starting from Chromium38,

where Chromium57 is the browser version right before the

switch of engines, and Chromium59 is the first Chromium

version using the new compiler architecture. We also veri-

fied that the versions not shown in the plots follow either

monotonically increasing or decreasing behavior from the

neighbour versions shown.

The first observation is that even before the change of

browsers, the performance of Chrome had already decreased,

we conjecture thismight be due to the change ofmethodology

and optimizing objectives for the V8 engine, which started

around Chromium 49. Secondly, looking at Chromium59, we

can see from the plot that the change of compiler infrastruc-

ture came at a cost in performance for numeric benchmarks.

However, since that time they have slowly improved their en-

gine sonownumerical performance is close to thepointwhere

itwas before the change. In terms of Firefox, the JavaScript en-

gine seems to have increased its performance of the numerical

benchmarks steadily since the measurements in 2014.

5.3 Key Insights
The overall performance of JavaScript against native C ver-

sionsremainedwithina factorof2.ThecurrentFirefoxbrowser

has presented an overall improvement, compared to the older

Firefox version. The current Chrome browser, however, has

presented a decrease in overall performance compared to the

older Chrome version.

6 WebAssembly versus C and JavaScript
Althoughmodern browser engines for JavaScript can perform

within a factor of 2 of nativeC, closing the gap further appears

to be difficult due to the unusual semantics of JavaScript.How-

ever, browsers can now also executeWebAssembly that has

been built as an abstraction on top of all the major hardware

architectures,with a fairly directmapping to the architectures.

6
Webelieve thatnumericperformance is another importantmetric, especially

with the increase in web-based numeric libraries and applications.

94

DLS ’18, November 6, 2018, Boston, MA, USA David Herrera, Hanfeng Chen, Erick Lavoie, and Laurie Hendren

(a)mbp2018 (b) ubuntu-deer

Figure 2. JavaScript performance against native C using the old and new versions for Chrome and Firefox. The figures use the

same y-axis scale to enable easy comparison. The value of the bars for the lavamd benchmark on the right graph are out of range,

the values are 4.6(0.4), 2.0(0.5), and 2.8(0.3) for Chromium38-js, Chrome63-js and Firefox57-js respectively.

Figure 3. Browser progression since 2014 in terms of the

Ostrich Benchmark suite using the ubuntu-deer machine,

the values of the bars correspond to the geometric means

measured across thewhole benchmark suite for each browser.

This provides new opportunities for performance optimiza-

tions, and the potential ofmatching the performance of native

C.Our next study examines the performance ofWebAssembly

across a wide range of devices. We first compareWebAssem-

bly against native C, and then against JavaScript. To generate

theWebAssembly code we used the C version of the bench-

marks and compiled the C code using the Emscripten [46]

toolchain, based on the c-lang/llvm pipeline [27]. To generate

the native executable for the C benchmarks, we used the GCC

toolchain [1].

6.1 WebAssembly versus C
Scientists and engineers interested in running their numerical

computations usingC typically use desktops for executing the

resulting programs. We investigate howWebAssembly fares

against this historical choice. To do this, we measured the rel-

ative performance betweenWebAssembly and C. For this par-

ticular experiment, we use three devices supporting three op-

erating systems, mbp2018, ubuntu-deer and windows-bison.

Fig. 4 depicts the performance ofWebAssembly using the C

versionof the benchmarks as a baseline forChrome63, Firefox

57, and Safari 11 (for the MacBook Pro laptop only). For the

best performing browser, Firefox 57, 5 out of 12 benchmarks

(backprop, fft, hmm, lud, srad) are better or within the perfor-

mance of native C, in particular fft, where theWebAssembly

codehasoverwhelmingspeedupoverC for the threebrowsers.

In general, however, considering the geometric means (given

as the rightmost bars), the overall performance ofWebAssem-

bly is lower than that of native C. The values of the geometric

mean bars are 0.70, 0.84, 0.58 for Chrome 63, Firefox 57, and

Safari 11 respectively. Corresponding to slowdowns of x1.41,

x1.20, x1.76 over native C.

Fig. 5 provides the geometricmeans for experiments on our

laptop and two desktops. Again, values lower than 1 indicate

a slowdown compared to the native C performance on the

same laptop/desktop. We observed that:

• Most browsers execute WebAssembly at least 0.70x the

speed of native C (equivalent to a slowdown of 1.42), ex-

cept for Safari 11 on the mbp2018. Thus, the performance

is getting close to C.

95

Numerical Computing on theWeb DLS ’18, November 6, 2018, Boston, MA, USA

Figure 4. WebAssembly performance relative to C on the

MacBookPro 2018.

• Firefox57 wasm achieved the best performance over the

three platforms, however, no platformwas able to outper-

form the native C code.

Figure 5.Geometric mean speedups over all benchmarks for

WebAssembly relative to C on the different platforms.

6.2 WebAssembly versus JavaScript
It was shown in 2014 [26] that JavaScript was becoming fast

enough fornumerical computations and that the asm.js subset

had a measurable advantage in performance. As an evolution

of asm.js, WebAssembly offers the promise of better perfor-

mance with the same portability as JavaScript. We therefore

quantify the realization of that promise on major browsers

that currently support it.

To do so, we report on the relative performance of We-

bAssembly and JavaScriptwithin the samebrowser.As shown

in Fig. 6, this experiment considered all device/browser com-

binations where the browser is capable to executing both

JavaScript andWebAssembly. These platforms include:
7

• desktops with different OS: mbp2018, ubuntu-deer, and

windows-bison;

• mobile phones from different vendors: iphone10, samsung-

s8 and pixel2; and

• tabletswithAndroid and iOS: samsung-tab-s3 and ipad-pro

respectively.

Figure 6.WebAssembly performance relative to JavaScript

on the different platforms.

The baseline in this experiment is JavaScript, thus We-

bAssembly is fasterwhen its speedup is greater than1.Clearly,

WebAssembly outperforms JavaScript for all aforementioned

platforms, so it is clearly beneficial for numeric programs like

those in our benchmark set. Two interesting observations are:

• the benefit of WebAssembly on Android devices (samsung-

s8,pixel2, andsamsung-tab-s3) isquite important, approach-

ing a factor of 2x the speed of JavaScript.

• thebenefitofMicrosoft-EdgeWebAssemblyoverMicrosoft-

Edge JavaScript is the greatest, with a speedup of over 2.5x.

However, this ismoredue to the fact that theEdge JavaScript

engine is slower over our set of benchmarks.

6.3 Key Insights
All browsers demonstrate significant performance improve-

ments for WebAssembly, in the range of 1.5-2x speedups

over the same browser’s JavaScript engine. Furthermore, We-

bAssembly achieves an overall performance close to 1 against

native C.

7 Server-side Node.js Performance
Since its debut in 2010, Node.js, has grown in popularity as a

server side, event-driven language. This event-driven nature,

7
Note that all the browsers available to the ipad-pro and the iphoneX devices

use the JavaScriptCoreAppleenginebasedontheWebKit restriction imposed.

96

DLS ’18, November 6, 2018, Boston, MA, USA David Herrera, Hanfeng Chen, Erick Lavoie, and Laurie Hendren

coupled with having the same language at both client and

server sides, allowed Node.js to fit naturally with the client

and server interaction and become a sought-after language

for server backends with companies such as LinkedIn, Net-

flix, PayPal, and Uber implementing their backend in Node.js.

Moreover, Node.js has become increasingly popular as the

language for IoT and single board computers, for similar rea-

sons [21]. As a server-side language, is expected that the

language will be able to handle a large number of requests

from clients, andmoreover, differentworkloads from the ones

experienced in a web browser. Thus, it is interesting to see

how fast Node.js is, versus C.

A second interesting question is if the server side Node.js

engines have the same performance as their equivalent client-

side browser engines. The Google V8 team announced first-

class support for Node.js in 2016. As V8 is optimized for real

websites, it remains as an interesting question, whether the

V8 team exploits specific optimizations that would benefit the

Node.js loads.

To answer these two questions, we evaluate the perfor-

manceof server-sideNode.js standardV8version, first against

native C, and lastly against client-side browsers of the same

platform.

7.1 Node.js versus C
The Node.js versions, platforms, and GCC versions used for

each platform are stated in Table 2. Fig. 7 displays the geomet-

ric means for speedup of serverWebAssembly and JavaScript

relative to C for each corresponding platform. As usual, a bar

below 1means the JavaScript/WebAssembly code is slower

than the C version.

In all cases, the Node.js(WebAssembly) version is more per-

formant than the Node.js(JavaScript) version. Furthermore,

Node.js(WebAssembly) is approaching the performance of

native C for all the platforms except for Ubuntu-deer. Explo-

ration of this issue is given at the end of the section. The

best Node.js(WebAssembly) version achieved a speedup of

0.9 performance against native C. On the other hand, for

Node.js(JavaScript) the best overall geometric mean obtained

was of 0.5 versus native C.

We performed further profiling of the ubuntu-deer issue,

usingmachineswith different operating systems but the same

hardware specifications.We found that this issuewas specific

to the Ubuntu operating system on the Sandy Bridge E proces-

sor. The issue arises in the Node.js implementation of Float32

arrays after the introduction of the new V8 engine infrastruc-

ture in v8.0.0 of Node.js, and is still present in >v10.0.0.
8

7.2 Node.js versus Browsers
The second part of this performance study studies the numer-

ical performance of server-sideNode.js against the client-side

8
For more information visit: https://github.com/nodejs/node/issues/22467

Figure 7. Geometric mean speedup of Node.js in different

workstations relative to C.

browsers for each platform. Specifically, we take the perfor-

mance of Node.js V8 version, and take a ratio against the

performance of the browsers for the same platform. Table 3

contains the results of Node.js speedups relative to the cor-

responding device browser’s. e.g. The ratio of Safari11-JS per-

formance, is taken against the Node.js standard V8 JavaScript

performance. Note that this comparison is using the Node.js

v8 version, against all the browsers supported by that partic-

ular platform.

Table 3.WebAssembly and JavaScript Node.js speedup per-

formance relative to the browsers for each device.

Device m
b
p
2
0
1
8

w
i
n
d
o
w
s
-
b
i
s
o
n

u
b
u
n
t
u
-
d
e
e
r

r
a
s
p
b
e
r
r
y
-
p
i

Chrome63-JS 1.5 1 0.6 -

Chrome63-wasm 1.1 1.1 0.5 -

Firefox57-JS 0.8 0.9 0.4 -

Firefox57-wasm 0.9 1 0.4 -

Safari11-JS 2 - - -

Safari11-wasm 1.4 - - -

Microsoft-Edge-JS - 1.5 - -

Microsoft-Edge-wasm - 1.1 - -

Chromium56-JS - - - 1.1

We first observe that Node.js performance was better than

the Safari 11 browser, in terms of both the wasm and JS per-

formance, while the Microsoft Edge browser had a similar

performance for wasm and a much lower performance for

JavaScript. Given the best performing browsers, Firefox 57,

and Chrome 63, we can see that the results of the speedups

are fairly close for bothWebAssembly and JavaScript, with

the exception of Chrome63-JS where we get a speed-up of

1.5, and the ubuntu-deer machine, where the performance of

97

https://github.com/nodejs/node/issues/22467

Numerical Computing on theWeb DLS ’18, November 6, 2018, Boston, MA, USA

the browsers is better by more than a factor of 2, due to the

performance bug found with ubuntu-deer.

7.3 Key Insights
Node.jswasoverall slower thannativeCcode forboth JavaScript

and WebAssembly, although the best WebAssembly result

gave a reasonable performance of 0.9 the speed of native C.

Server-sideNode.jsmatched thebestbrowserperformance for

both JavaScript andWebAssembly for all the devices, except

for the ubuntu-deer workstation. This demonstrates two im-

portantpoints, first, that extensiveperformance studies of this

magnitude are required to make general conclusions about

engine performance and secondly, numeric benchmarks can

help identify performance issues in the new versions of en-

gines.

8 JavaScript/WebAssembly/Device
Showdown

We finalize the results by making a comparison of all devices,

against a common baseline. As the baseline, we have chosen

the Raspberry Pi native C performance, as it is the lowest per-

forming device and it allows to look at speedup factors over 1.

A number greater than 1 is the speedup relative to Raspberry

Pi native C. Table 4 displays the results of this study. The last

row of the table, shows the overall arithmetic mean of all de-

vices for both the Firefox57 and Chrome63 browsers. The last

twocolumnson the table, present themeanWebAssemblyand

JavaScript performance of each device, and the overall web

performance for the device along all browsers explored for it.

8.1 Key Insights
The best overall browser performance was by the Firefox 57

browser. WebAssembly is significantly faster than JavaScript,

over all devices. Finally, the order of device performance has

the MacBook Pro, followed by the two workstations, surpris-

ingly followed by the iPhone X, the rest of the order is: iPad

Pro, Samsung S8, Pixel 2, Samsung Tab S3 and lastly, Rasp-

berry Pi Model B.

9 Conclusions and FutureWork
In this paper, we have studied numerical computing perfor-

mance on the web, for a wide range of devices and for both

JavaScript (and Node.js) and WebAssembly. Due to a large

number of experimental dimensions, benchmarking in this

context is very challenging, particularly if one wants to have

a centralized and automated benchmarking system that can

benchmark across a wide range of devices including tablets,

mobile phones, and IoT devices.

Our first contribution was to design the Wu-Wei bench-

marking toolkit. Wu-Wei allowed us to explore performance

consistently across benchmarks, implementations, compilers,

environments, and platforms. It also allowed to have repro-

ducible experiments and a consistent way to benchmark for

C, JavaScript, andWebAssembly across a variety of environ-

ments and devices. For the performance studies in this paper,

we developed aWu-Wei enabled version of the Ostrich bench-

mark set towhichwe added aWu-Wei compatible compiler to

transform C code toWebAssembly. Moreover, to handle the

mobile devices, we extendedWu-Wei with a hybrid mobile

app and a Firebase listener, which allowed us to perform cen-

tralized benchmarking across all of our devices. We expect

that this benchmarking framework will be of general use to

researchers/developers interested in performing additional

numerical experiments, as well as to researchers who would

like to use the approach for other benchmarking. For example,

programming language researchers may develop new com-

pilers targetingWebAssembly, and this approach could help

them evaluate performance, including performance impacts

of different code generation and optimization strategies.

Using our benchmarking approach we performed four per-

formance studies on theWu-Wei version of theOstrich bench-

marksuite.Wefirst showed thehistorical evolutionofChrome

and Firefox, starting with the versions available in the previ-

ous 2014 study. This showed regular performance improve-

ments for Firefox, but a dip in numerical performance for

Chrome, followed by some improvement, corresponding to

major changes in the architecture of the Chrome JavaScript

engines. In general, the performance of numerical JavaScript

remains within a factor of two of native C code. We believe

that it would be interesting for browser developers to use our

approach to evaluate numerical performance at each release,

as one measure of browser performance.

Our second study showed that WebAssembly outperforms

JavaScript, and isapproaching theperformanceofnativeC, for

our numerical benchmark set. This is very encouraging, and

these results should be of interest to scientific programmers

and developers of numeric/computation-intensive libraries,

since it shows thatWebAssembly is a very attractive target.

The performance of WebAssembly should only improve as

it matures, and as it includes further features such as support

for data and task parallelism [43].

Our third study showed that the performanceof server-side

Node.js is similar to the equivalent browser-based versions,

for both JavaScript andWebAssembly. There was a notable

exception,where the ubuntumachine had significantlyworse

Node.js performance. By analyzingprevious versionswe iden-

tified when this performance issue had first been introduced.

This shows another example of where using numeric bench-

marking at each release could identify performance issues, as

they arise.

Our final study showed the overall numeric performance of

all devices andWebAssembly/JavaScript. The results showed

that: (1) the performance of the mobile phones was very

impressive, (2) WebAssembly performed significantly bet-

ter than JavaScript across all devices, and (3) that Firefox

was slightly faster than Chrome for both JavaScript andWe-

bAssembly.

98

DLS ’18, November 6, 2018, Boston, MA, USA David Herrera, Hanfeng Chen, Erick Lavoie, and Laurie Hendren

Table 4.Device performance across environments using the native C raspberry pi implementation as baseline.

Device ch
ro
m
e6
3-
w
as
m
-c

ch
ro
m
e6
3-
js

ch
ro
m
iu
m
56
-j
s

fi
re
fo
x5
7-
w
as
m
-c

fi
re
fo
x5
7-
js

sa
fa
ri
11
-w
as
m
-c

sa
fa
ri
11
-j
s

m
ic
ro
so
ft
-e
dg
e-
w
as
m
-c

m
ic
ro
so
ft
-e
dg
e-
js

mean
-wa

sm

mean
-js

iphoneX 8.1 5.3 - 8.1 5.4 8.1 5.3 - - 8.1 5.3

samsung-s8 3.3 2 - 3.6 1.9 - - - - 3.4 1.9

pixel2 3.4 2.1 - 3.7 2 - - - - 3.6 2

ipad-pro 5.1 3.5 - 5.1 3.7 5.1 3.5 - - 5.1 3.6

samsung-tab-s3 2.1 1.4 - 2.3 1.3 - - - - 2.2 1.3

mbp2018 10.2 4 - 12.2 7.6 8.4 3 - - 10.3 4.9

ubuntu-deer 8.9 4.4 - 10.8 6.4 - - - - 9.9 5.4

windows-bison 8.5 5 - 9.4 5.9 - - 8.7 3.3 8.9 4.7

raspberry-pi - - 0.4 - - - - - - - 0.4

mean 6.2 3.5 - 6.9 4.3 - - - - - -

Wehope thatotherswill adoptourbenchmarkingapproach,

and that numeric benchmarking will become one of the stan-

dard performance metrics to track for web-based languages.

We are planning to further extend our experiments in two

ways. First, we would like to experiment with other types

of parameters such as: (a) comparing cold start versus warm

start, and (b) comparing speedups for different input sizes,

including the small and large inputs available in the Ostrich

benchmark set. All of the experiments in this paper are avail-

able, and further experiments should be possible using our ex-

perimental framework. Second, we plan to further extend our

benchmarks to include more machine learning benchmarks,

and we welcome other contributions which can help to form

the next versions of theWu-Wei Benchmarking Toolkit and

the Ostrich benchmark set.

References
[1] 1988. Gnu compiler collection (gcc) internals. Retrieved September

4th, 2018 from http://gcc.gnu.org/onlinedocs/gccint/
[2] 2010. Kraken JavaScript Benchmark (Version 1.1). Retrieved April

14, 2018 from http://krakenbenchmark.mozilla.org/
[3] 2012. Octane Benchmark Suite. Retrieved April 14, 2018 from

https://developers.google.com/octane/
[4] 2014. Speedometer. Retrieved April 14, 2018 from

http://browserbench.org/Speedometer/
[5] 2015. Ndarray - Multidimensional arrays for JavaScript. Retrieved

June 29, 2018 from https://github.com/scijs/ndarray
[6] 2017. Standard ECMA-262 ECMAScript Language Specification

8th Edition (June 2017). Retrieved April 14, 2018 from http://www.
ecma-international.org/publications/standards/Ecma-262.htm

[7] 2018. Framework - JavaScriptCore. Retrieved April 14, 2018 from

https://developer.apple.com/documentation/javascriptcore
[8] 2018. TensorFlow.js. Retrieved April 14, 2018 from

https://js.tensorflow.org/
[9] Apache Cordova. 2011. A hybrid mobile app. Retrieved April 14, 2018

from https://cordova.apache.org/
[10] asm.js. 2014. The specification of asm.js. Retrieved April 14, 2018 from

http://asmjs.org/spec/latest/

[11] Lars Bak. 2018. WebAssembly Core Specification, W3C First Public

Working Draft, 15 February 2018. Retrieved June 30, 2018 from

https://www.w3.org/TR/wasm-core-1/l
[12] Benjamin Bouvier. 2013. Efficient float32 Arithmetic in JavaScript.

Retrieved January 19, 2018 from https://blog.mozilla.org/javascript/
2013/11/07/efficient-float32-arithmetic-in-javascript/

[13] Antoine Boutet, Davide Frey, Rachid Guerraoui, Anne-Marie Kermar-

rec, and Rhicheek Patra. 2014. HyRec: Leveraging Browsers for Scalable

Recommenders. In International Middleware Conference. ACM, 85–96.

[14] Phillip Colella. 2004. Defining software requirements for

scientific computing. Retrieved April 14, 2018 from

https://www.krellinst.org/doecsgf/conf/2013/pres/pcolella.pdf
[15] Laouratou Diallo, Aisha Hashim, Momoh Jimoh Eyiomika Salami, Sara

Babiker Omer Elagib, and Abdullah Ahmad Zarir. 2017. The Rise of

Internet of Things and Big Data on the Cloud: Challenges and Future

Trends. International Journal of Future Generation Communication and
Networking 10 (03 2017), 49–56.

[16] Tomasz Fabisiak and Arkadiusz Danilecki. 2017. Browser-based

Harnessing of Voluntary Computational Power. Foundations of
Computing and Decision Sciences 42, 1 (2017), 3–42.

[17] Firebase. 2011. A Real-time Database on Cloud. Retrieved April 14,

2018 from https://firebase.google.com/
[18] Vincent Foley-Bourgon and Laurie Hendren. 2016. Efficiently

Implementing the Copy Semantics of MATLAB’s Arrays in JavaScript.

In Symposium on Dynamic Languages. 72–83.
[19] Andreas Gal, Brendan Eich, Mike Shaver, David Anderson, David

Mandelin, Mohammad R. Haghighat, Blake Kaplan, Graydon Hoare,

Boris Zbarsky, Jason Orendorff, Jesse Ruderman, EdwinW. Smith, Rick

Reitmaier, Michael Bebenita, Mason Chang, andMichael Franz. 2009.

Trace-based Just-in-time Type Specialization for Dynamic Languages.

In Conference on Programming Language Design and Implementation.
ACM, 465–478.

[20] Andy Georges, Dries Buytaert, and Lieven Eeckhout. 2007. Statistically

Rigorous Java Performance Evaluation. InConference onObject-oriented
Programming Systems and Applications. 57–76.

[21] Dominique Guinard and Vlad Trifa. 2016. Building theWeb of Things:
With Examples in Node.js and Raspberry Pi. Manning Publications Co.

[22] Andreas Haas, Andreas Rossberg, Derek L Schuff, Ben L Titzer, Michael

Holman, Dan Gohman, LukeWagner, Alon Zakai, and JF Bastien. 2017.

Bringing the Web up to Speed with WebAssembly. In Conference on
Programming Language Design and Implementation. 185–200.

[23] Apple Inc. 2017. About Face ID Advanced Technology. Retrieved

April 14, 2018 from https://support.apple.com/en-ca/HT208108

99

http://gcc.gnu.org/onlinedocs/gccint/
http://krakenbenchmark.mozilla.org/
https://developers.google.com/octane/
http://browserbench.org/Speedometer/
https://github.com/scijs/ndarray
http://www.ecma-international.org/publications/standards/Ecma-262.htm
http://www.ecma-international.org/publications/standards/Ecma-262.htm
https://developer.apple.com/documentation/javascriptcore
https://js.tensorflow.org/
https://cordova.apache.org/
http://asmjs.org/spec/latest/
https://www.w3.org/TR/wasm-core-1/l
https://blog.mozilla.org/javascript/2013/11/07/efficient-float32-arithmetic-in-javascript/
https://blog.mozilla.org/javascript/2013/11/07/efficient-float32-arithmetic-in-javascript/
https://www.krellinst.org/doecsgf/conf/2013/pres/pcolella.pdf
https://firebase.google.com/
https://support.apple.com/en-ca/HT208108

Numerical Computing on theWeb DLS ’18, November 6, 2018, Boston, MA, USA

[24] Peter Jensen, Ivan Jibaja, Ningxin Hu, Dan Gohman, and John

McCutchan. 2015. SIMD in Javascript via C++ and Emscripten. In

Workshop on Programming Models for SIMD/Vector Processing.
[25] Alexandr A. Kalinin, Selvam Palanimalai, and Ivo D. Dinov. 2017.

SOCRAT Platform Design: AWeb Architecture for Interactive Visual

Analytics Applications. In Workshop on Human-In-the-Loop Data
Analytics. Article 8, 6 pages.

[26] Faiz Khan, Vincent Foley-Bourgon, Sujay Kathrotia, Erick Lavoie, and

Laurie J. Hendren. 2014. Using JavaScript andWebCL for Numerical

Computations: A Comparative Study of Native andWeb Technologies.

In Symposium on Dynamic Languages. 91–102.
[27] Chris Lattner and Vikram Adve. 2004. LLVM: A Compilation

Framework for Lifelong Program Analysis & Transformation. In

Symposium on Code Generation and Optimization: Feedback-directed
and Runtime Optimization. IEEE, 75.

[28] Erick Lavoie. 2016. Wu-Wei Handbook. Retrieved August 24, 2018

from https://github.com/Sable/wu-wei-handbook
[29] Erick Lavoie, Laurie Hendren, and Frédéric Desprez. 2017. Pando:

A Volunteer Computing Platform for the Web. In Foundations and
Applications of Self* Systems (FAS*W). IEEE, 387–388.

[30] Edward Meeds, Remco Hendriks, Said Al Faraby, Magiel Bruntink, and

Max Welling. 2015. MLitB: Machine Learning in the Browser. PeerJ
Computer Science 1 (2015), e11.

[31] Franziska Hinkelmann Michael Hablich. 2016. How V8 Mea-

sures Real-world Performance. Retrieved April 14, 2018 from

https://v8project.blogspot.ca/2016/
[32] Mozilla JavaScript. 2018. JavaScript Typed Arrays. Retrieved April 14,

2018 from https://developer.mozilla.org/en-US/docs/Web/JavaScript/
Typed_arrays

[33] Rudolph Pienaar, Ata Turk, Jorge Bernal-Rusiel, Nicolas Rannou,

Daniel Haehn, P. Ellen Grant, and Orran Krieger. 2017. CHIPS – A
Service for Collecting, Organizing, Processing, and Sharing Medical
Image Data in the Cloud. Springer International Publishing, 29–35.

[34] Paruj Ratanaworabhan, Benjamin Livshits, and Benjamin G Zorn. 2010.

JSMeter: Comparing the Behavior of JavaScript Benchmarks with Real

Web Applications. USENIX Conference onWeb Application Development
10 (2010), 3–3.

[35] Gregor Richards. 2013. JSBench Benchmark Suite. Retrieved April

14, 2018 from https://plg.uwaterloo.ca/~dynjs/jsbench/
[36] Gregor Richards, Sylvain Lebresne, Brian Burg, and Jan Vitek. 2010. An

Analysis of theDynamicBehavior of JavaScript Programs. InConference
on Programming Language Design and Implementation. ACM, 1–12.

[37] Marija Selakovic and Michael Pradel. 2016. Performance Issues and

Optimizations in Javascript: An Empirical Study. In International
Conference on Software Engineering. ACM, 61–72.

[38] Weisong Shi, Jie Cao, Quan Zhang, Youhuizi Li, and Lanyu Xu. 2016.

Edge Computing: Vision and Challenges. Internet of Things Journal
3, 5 (2016), 637–646.

[39] KatieShilton. 2009. FourBillionLittleBrothers?:Privacy,MobilePhones,

and Ubiquitous Data Collection. Commun. ACM 52, 11 (2009), 48–53.

[40] V8 Team. 2017. Launching Ignition and TurboFan. Re-

trieved April 14, 2018 from https://v8project.blogspot.ca/2017/
05/launching-ignition-and-turbofan.html

[41] V8 Team. 2017. Retiring Octane. Retrieved April 14, 2018 from

https://v8project.blogspot.ca/2017/04/retiring-octane.html
[42] W3C. 2018. Google Chrome’s Need for Speed. Re-

trieved April 14, 2018 from http://blog.chromium.org/2008/09/
google-chromes-need-for-speed_02.html

[43] WebAssembly. 2015. Features to Add after the MVP. Retrieved April

14, 2018 from http://webassembly.org/docs/future-features/
[44] WebAssembly. 2016. Non-Web Embeddings. Retrieved April 14, 2018

from http://webassembly.org/docs/non-web/
[45] I. Yaqoob, E. Ahmed, I. A. T. Hashem, A. I. A. Ahmed, A. Gani, M.

Imran, andM. Guizani. 2017. Internet of Things Architecture: Recent

Advances, Taxonomy, Requirements, and Open Challenges. IEEE
Wireless Communications 24, 3 (June 2017), 10–16.

[46] Alon Zakai. 2011. Emscripten: An LLVM-to-JavaScript Compiler. In

ACM International Conference Companion on Object-oriented Program-
ming Systems Languages and Applications Companion. 301–312.

100

https://github.com/Sable/wu-wei-handbook
https://v8project.blogspot.ca/2016/
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Typed_arrays
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Typed_arrays
https://plg.uwaterloo.ca/~dynjs/jsbench/
https://v8project.blogspot.ca/2017/05/launching-ignition-and-turbofan.html
https://v8project.blogspot.ca/2017/05/launching-ignition-and-turbofan.html
https://v8project.blogspot.ca/2017/04/retiring-octane.html
http://blog.chromium.org/2008/09/google-chromes-need-for-speed_02.html
http://blog.chromium.org/2008/09/google-chromes-need-for-speed_02.html
http://webassembly.org/docs/future-features/
http://webassembly.org/docs/non-web/

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 JavaScript
	2.2 WebAssembly
	2.3 JavaScript Performance
	2.4 Mobile and IoT Devices

	3 Benchmarking with the Wu-Wei Toolkit
	3.1 File System Conventions
	3.2 Command-line Tools
	3.3 New Environment for Remote Execution

	4 Methodology
	4.1 Choice of Benchmarks
	4.2 Improvements to Ostrich
	4.3 Execution and Timing
	4.4 Representative Devices
	4.5 Browsers and Execution Engines

	5 Old versus New JavaScript Engines
	5.1 Experimental Set Up
	5.2 Results
	5.3 Key Insights

	6 WebAssembly versus C and JavaScript
	6.1 WebAssembly versus C
	6.2 WebAssembly versus JavaScript
	6.3 Key Insights

	7 Server-side Node.js Performance
	7.1 Node.js versus C
	7.2 Node.js versus Browsers
	7.3 Key Insights

	8 JavaScript/WebAssembly/Device Showdown
	8.1 Key Insights

	9 Conclusions and Future Work
	References

