Automatic Vectorization for MATLAB

Hanfeng Chen®™) | Alexander Krolik, Erick Lavoie, and Laurie Hendren

School of Computer Science, McGill University, Montréal, Canada
{hanfeng. chen,alexander.krolik,erick. lavoie}@mail .mcgill.ca,
hendren@cs.mcgill.ca

Abstract. Dynamic array-based languages such as MATLAB provide a
wide range of built-in operations which can be efficiently applied to all
elements of an array. Historicallyy, MATLAB and Octave programmers
have been advised to manually transform loops to equivalent “vectorized”
computations in order to maximize performance. In this paper we present
the techniques and tools to perform automatic vectorization, including
handling for loops with calls to user-defined functions. We evaluate the
technique on 9 benchmarks using two interpreters and two JIT-based
platforms and show that automatic vectorization is extremely effective
for the interpreters on most benchmarks, and moderately effective on
some benchmarks in the JIT context.

Keywords: Vectorization + Promoted shape analysis - MATLAB -
Elementwise functions - Vectorizing user-defined functions

1 Introduction

Vectorization is a mature field which has been studied for decades. However,
there are new challenges and opportunities for using vectorization concepts to
speed up array-based programming languages such as MATLAB [8]. The key
insight is that many operations in MATLAB support both individual element
operations, such as op(a(i)), as well as elementwise (vectorized) versions that
apply op to all elements in an array using just one call, op(a). When a call is
made to a built-in operation over an entire array, the underlying implementa-
tion can then utilize highly tuned and parallelized libraries. For example, Math-
Works began supporting multithreading on elementwise functions in MATLAB
7.4 (R2007a).! Thus, it becomes beneficial to replace loops that apply operations
on individual elements with one or more vectorized statements, where the oper-
ations are now applied to entire vectors or arrays. Indeed, this is standard advice
given to MATLAB and Octave [12] programmers as a way of hand optimizing
their programs.?»3

! http://www.mathworks.com/matlabcentral /answers/95958-which-matlab-functions
-benefit-from-multithreaded-computation.
2 http://www.mathworks.com/help/matlab/matlab_prog/vectorization.html.
3 http://wiki.octave.org/FAQ#Porting_programs_from_Matlab_to_Octave.
© Springer International Publishing AG 2017

C. Ding et al. (Eds.): LCPC 2016, LNCS 10136, pp. 171-187, 2017.
DOI: 10.1007/978-3-319-52709-3_14

http://www.mathworks.com/matlabcentral/answers/95958-which-matlab-functions-benefit-from-multithreaded-computation
http://www.mathworks.com/matlabcentral/answers/95958-which-matlab-functions-benefit-from-multithreaded-computation
http://www.mathworks.com/help/matlab/matlab_prog/vectorization.html
http://wiki.octave.org/FAQ#Porting_programs_from_Matlab_to_Octave

172 H. Chen et al.

In this paper we present an approach and tool (Mc2Mc)? that automati-
cally detects loops that can be vectorized and automatically produces output
MATLAB code with vectorized instructions replacing the loops. In addition to
handling loops with built-in MATLAB operations, we also allow loops which call
user-defined functions by providing an analysis that determines if user-defined
functions have the appropriate elementwise behaviour. Furthermore, we support
if-conversion to allow even user-defined functions with conditionals.

We have implemented Mc2Mc based on the McLAB front-end and Tamer
infrastructure [4,9], and have used our implementation to study 9 benchmarks
on two interpreter-based systems and two JIT-based systems. In the interpreter
cases, the automatic vectorizer led to very large speedups on some benchmarks
and moderate speedups for others, with geometric mean speedups of 19.1x for
Octave 4.0 and 7.65x for MATLAB 2013 (JIT off). However, with systems sup-
porting JITs, such as MATLAB 2013a (1st gen JIT on) and MATLAB 2015b
(2nd gen JIT which is always on), the effect of vectorization is mixed with geo-
metric mean speedups of 1.02 and 0.77 respectively. There are still benchmarks
which benefit from over 10x speedup, however other benchmarks have loops
which are handled very effectively by the JIT, and vectorization can drastically
hurt performance. Thus, it no longer makes sense for a MATLAB programmer
to hand vectorize all of his/her code. However, our automatic vectorization sys-
tem would allow a programmer or execution engine to try various strategies and
identify those which benefit from vectorization.

The main contributions of this work are:

— We present a tool (Mc2Mc) that automatically transforms scalar MATLAB
programs to equivalent vector form;

— We propose an interprocedural promoted shape analysis to determine if scalar
code can be modified to vector form in loops and user-defined functions;

— We evaluate the performance of automatic vectorization on 9 benchmarks over
4 different execution engines.

In the rest of the paper we first provide more background about key features
of MATLAB in Sect. 2. We then provide a description of our techniques with an
overview of our approach in Sect. 3; a more detailed look at two key components,
promoted shape propogation in Sect.4 and our handling of user-defined func-
tions in Sect.5; and an outline the two final phases, data dependence analysis
in Sect. 6 and the actual vectorization in Sect. 7. Finally we provide our experi-
mental evaluation in Sect. 8, related work in Sect.9 and conclude in Sect. 10.

2 Motivation and Background

MATLAB provides many features which enable vectorization. In this section,
we provide an introduction to those features, and a motivating example for our
vectorization transformation.

4 https://github.com/sable/mc2mc.

https://github.com/sable/mc2mc

Automatic Vectorization for MATLAB 173

Matriz Indexing: Matrix indexing provides a way to retrieve a collection of array
elements with one operation. Figure 1(a) shows a for loop which accesses items
of array m one at a time, and Fig. 1(b) shows the equivalent matrix indexing
version, which accesses all the items at indices stored in v. Also note that in
Fig. 1(b), the pre-allocation of array r is not needed.

m = rand(1,n);
r = zeros(1,4);

m = rand(1,n);
v = [3,7,6,4];
for i[=1'4] v=13,7.6.4%;
(i) = m(v(i)); rEms
end
(a) One element at a time (b) All elements using matrix indexing

Fig. 1. A for loop and equivalent using matrix indexing

Colon Operator: The colon operator is mainly used to create vectors, subscript
arrays and specify for iterations.’

Creating Vectors: The expression j:k generates a vector from j to k if j is
less than k. With an additional parameter i, the expression j:i:k produces
a vector from j to k with the stride i.

Subscripting Arrays: Matrix indexing can be introduced with the colon oper-
ator, such as m(1:n) where n < length(m). Moreover, m(:) denotes all ele-
ments of m.

Iterating a for-loop: A simple for-loop header is for i=1:n, which indicates
that the for body should be executed once for every value of i in [1,n].

For Loop Vectorization: The main topic of this paper is automatic for loop
vectorization. To motivate this, we provide a small example in Fig. 2. Function
foovec is a vectorized version of foo. Both the original and vectorized versions
call the same user-defined function bar. This may seem strange, since foovec is
passing bar a vector, whereas the original foo was passing bar a scalar. However,

function foo(n)

A=rand(1,n);

B=zeros(1,n); function foovec(n) .

C=zeros(1,n): A=rand(1,n); runmction [z] = bar(x)

for i=1:n B=bar (A) ; t=x+l;
B(i)=bar(A(i)): C=sqrt(lin); z=sin (x);
C(i)=sqrt(i); end

end

end

Fig. 2. Example vectorization

5 http://www.mathworks.com/help/matlab/ref/colon.html?searchHighlight=colon.

http://www.mathworks.com/help/matlab/ref/colon.html?searchHighlight=colon

174 H. Chen et al.

because all of the statements in bar work on both scalars and vectors in the
right way, bar can be called from the vector code, and bar will return a vector
of values. One important part of our work is automaticially identifying such
vectorizable user-defined functions.

To automatically vectorize the loop there are several things to check. Firstly,
we must apply some standard dependence tests. Secondly, for each built-in func-
tion called from the loop body, such as sqrt, we must ensure that it has appropri-
ate elementwise behaviour. Finally, for each user-defined function called from the
body of the loop, such as bar, we must ensure that the body of the called function
contains only vectorizable statements. Finally, the resulting vectorized program
can be cleaned up, in this case the unneeded initialization of B is removed.

3 Overall Structure of the Vectorizer

We have implemented our approach in a tool, Mc2Mc, which given a MATLAB
program, automatically identifies vectorizable sections and transforms scalar
code to the equivalent vector form. An overview of the workflow of Mc2Mc
can be found in Fig. 3.

MATLAB | | Tamer Propagate | Vectorize

Programs ["|valueAnalysis > Promoted ForStmt H

! l Shape ¢ H

: : ¢ Generate :
Find Perform If- >

Innermost Conversion in

Loops Called UDFs

v

Build Data
Dependence
Graph

Optimize i | MATLAB
: Code : Programs

A

Code

Has Control
Statements?

A

Fig. 3. The workflow of Mc2Mec.

The workflow begins by parsing input MATLAB programs into TamelR,
a low-level representation used for analysis of MATLAB programs. The Tamer
framework provides a set of interprocedural value analyses for shape information
[6], as well as use-define and define-use chains that are used in later sections of
the vectorizer. Once the initial analyses have been completed, the inner loops
of the input program are collected for input to the vectorization algorithm. The
vectorization algorithm thus uses an inside-out approach for handling loop nests
[11]. Since the control flow of loops with nested if statements is not well suited for
vectorization, only loops without such control statements are considered further.

Automatic Vectorization for MATLAB 175

Next, our new interprocedural promoted shape analysis is performed,
determining whether scalar code can be correctly modified to an equivalent
vector form. By propagating shapes through user-defined functions we expose
additional areas for vectorization beyond built-in functions. While a user-defined
function may not contain loops, nested if statements are permitted. A function
is only considered vectorizable if all conditions and branches can be expressed
in equivalent vector form. Promoted shape propagation is discussed in greater
detail in Sect.4 while user-defined functions and if-conversion are covered in
Sect. 5.

Candidate statements for vectorization are then checked for dependencies
that prevent vectorization. If no dependencies are found for a particular state-
ment, the vectorized code can then be generated. Since the vectorization algo-
rithm uses an inside-out approach, the pipeline may need to be rerun to handle
nested loops and if statements in user-defined functions. Once a fixed point is
reached, the newly vectorized code is statically optimized to remove unnecessary
colon operators. In addition, dynamic checks are inserted to further reduce the
performance impact of using the colon operators.

4 Promoted Shape Analysis

The promoted shape analysis is an interprocedural analysis that identifies the
expressions in the body of a for loop that (1) have a scalar value that is derived
directly or transitively from the loop index and that (2) can safely be promoted
from a scalar form to a wector form, derived directly or transitively from the
entire range of the loop index.

An expression (in a statement) can be promoted safely to a vector form
if it performs the same operations on the values represented by variables that
compose the expression over the entire range of the loop index.

In order to determine which expressions can be promoted safely, we perform
a fixpoint analysis on the shape of variables. Initially, the loop index is first
promoted from a scalar shape to a promoted shape, of the same shape as the
entire loop index range. The promoted shape therefore represents a tentative
replacement of the loop index variable scalar value with a vector that contains
its entire range. All other variables shapes are initialized to scalar, non-scalar, or
unknown (L) with the precise shape coming from the Tamer ValueAnalysis. The
shape information is then propagated through every statement of the loop body
and modified according to the effect of a statement’s operation. The previous
scalar shape of the output variables of a statement might be replaced with a
promoted shape if the operation of a statement is compatible with the promoted
shape of its input variable(s). If the operation is incompatible, the shape of the
output variable will become T.

Once the fixpoint is reached, all the statements that use a variable with a
shape of T cannot be safely converted to vector form and therefore need to stay
in the body of the for loop. All the others can potentially be moved outside of
the loop body and the expressions that use variables with a promoted shape can

176 H. Chen et al.

be promoted to their vector form, as long as no dependency exist between the
different statements (see Sect.6).

In the remainder of this section, we first provide an explanation of the shape
abstraction we use. We then explain which operations are compatible with a
shape promotion. We finally provide the key parts of our promoted shape analysis
in pseudocode.

4.1 Shape Abstractions

There are five abstractions summarized in Table 1. The initial variable with an
unknown shape is denoted by L. The scalar shape S is considered because it
can be extended in the context of elementwise operations. For the non-scalar N,
it means the shape is neither a promoted shape nor a scalar. It is fine to have
N in array indexing when the index is a scalar since the output of the array
indexing is a scalar. For a promoted shape P, it is initialized by loop iterators
and then propagated to variables. The T means there is no safe promoted shape
for vectorization.

Table 1. Definitions of abstractions

Type | Description

1 An unknown shape

S A scalar which is not promoted

N A non-scalar which is not promoted
P A promoted shape

T A shape cannot be vectorized

Note that a promoted shape represents a promotion from a scalar to a one-
dimensional array. However some operations such as multidimensional array
indexing (e.g. A(%,4)) may return a two-dimensional array when the ¢ index
variable is promoted (e.g. A(1:n,1:n)) rather than the diagonal of the matrix in
the original loop. The expression is therefore not compatible with a promoted
shape because it returns different values after the promotion. However, promo-
tion along a single dimension (e.g. A(%,j) to A(1:n,j)) is possible if the shape of
the array is compatible.

4.2 Compatible Operations

A unary function F satisfies the property of elementwise operations when it holds
R= ?(/Al), where the F' is a vectorizable function, the A denotes the promoted
input parameter and the R denotes the promoted return value. A promoted
operation is introduced in A — A when a dimension in A is expanded to ko,
where ko > 1. That means A and A have the same number of dimensions, but
|A| = kox|A|, where the | A| is its cardinality. Let p(A) denote the new dimension

Automatic Vectorization for MATLAB 177

(i.e. ko). Let A = {4, Ay,..., Ay} and R = {Ry, Ry,..., Ry}, where p(A) =
p(R) = n, so that R = F(A) & [{R1, Ra, ..., Ra}] = F({A1, Aa, ..., An}).

A built-in function (BIF), which satisfies the property of elementwise oper-
ation, is vectorizable. For a unary built-in function F,, it can be described as
R= F_)U(A) However, a binary function Fj has three possible cases in vectoriza-
tion. They are 1) R = Fy(A, B); 2) R = Fy(A, B); and 3) R = Fy(A, B), where
the A and B denote input arguments. It should be noted that the lengths of the
argument A and B must agree in the third case.

User-defined functions are also compatible with input arguments in vec-
tor form under some conditions. An interprocedural sub-analysis, described in
Sect. 5, is performed when a user-defined function is called from the body of a
for loop to determine if the input arguments can indeed be promoted.

4.3 Key Parts of the Analysis

Initialization. The analysis starts from the innermost for loops. The variables in
the body of the innermost for loops are initialized with one of the abstractions
in Table 1. The loop index variables of all statements in the body of for loops are
initialized to the promoted shape. All other variables are initialized to the scalar
or non-scalar shape obtained from the Tamer ValueAnalysis. The pseudocode is
provided in Algorithm 1.

Algorithm 1. Initialization

Data: a statement

Result: each variable with a promoted shape

1 foreach wariable var in the statement do

2 if var.promotedShape has not been initialized then

3 if the statement is from a for-loop then

4 if var is the loop iterator then

5 L var.promotedShape «from a scalar to a vector (i.e. loop’s range);

6 else

7 if the shape of var is a scalar then

8 ‘ var.promotedShape «—Scalar;

9 else

10 L var.promotedShape < Non-scalar;

Promoted Shape Propagation in Statements. There are three important major
cases for the propagation of the flow information, with the first case further
sub-divided in three cases, as listed in Algorithm 2.

The first major case is a call to a function. A function call may target a
built-in function or a user-defined function. For the BIFs, we separate them into
two groups: elementwise built-in functions (eBIFs) and non-elementwise built-in

178 H. Chen et al.

functions (nBIFs). The eBIFs are compatible with a vector form under some
conditions while most nBIFs are not. We therefore do not consider nBIFS and
their return value is always T. The rules for unary and binary eBIFs are defined
in Tables2 and 3 separately. In the Table 3, the Ny returns N if both have the
same non-scalar promoted shape otherwise T and the P, returns P if both have
the same promoted shape otherwise T. User-defined functions are covered in
Sect. 5.

Table 2. The propagation rule for unary Table 3. The propagation rule for binary
eBIF's eBIFs

eBIF | L|S/N
Output| L|SIN|/P|T

[H

R
== ===

A Hzz =z
| [===

| 9|z |-

The second major case concerns array indexing statements. For both
ArrayGetStmt and ArraySetStmt, the promoted shape of the index variable needs
to be the same as the shape of the array. Or the ArraySetStmt accepts a promoted
shape P on the left-hand side and a promoted shape S on the right-hand side.
In the ArrayGetStmt case, if so, the returned value’s shape is set to promoted,
otherwise it is set to T.

The last major case, with the CopyStmt, trivially copies the shape of the
left-hand side variable to the right-hand side variable.

4.4 An Example of Promoted Shape Analysis

To illustrate the promoted shape analysis, consider the loop from the func-
tion needle in the NW benchmark, as given in Fig.4(a). In this example,
input_itemsets is a matrix and penalty is a scalar. We would like to use our
promoted shape analysis determine if the loop can be converted to vector form.

Our Mc2Mc tool first converts the code to a lower-level three-address style
TamelR, as shown in Fig. 4(b). This means that each statement will now have
at most one operation, which simplfies the subsequent analysis.

Figure 4(c) shows the result of the promoted shape analysis after each state-
ment in the loop body. The loop iterator is used to get initial promoted shape.
At program point 2, the minus is an eBIF which takes a promoted shape P
(i.e. 1) and a promoted shape S (i.e. 1). The output of the eBIF returns a pro-
moted shape P for the variable mc_t1. Variable mc_t1 and its promoted shape
are then included in the flow set. The next statement has a unary BIF, uminus,
which returns the same promoted shape as mc_tl. At program point 4, the
variable penalty has a promoted shape S so that the eBIF times returns a pro-
moted shape P. At program point 5, the array indexing on the left-hand side

Automatic Vectorization for MATLAB

179

Algorithm 2. Promoted shape propagation

1
2
3
4
5
6
7
8
9

10
11
12

13
14
15
16
17
18

19
20
21

22

PropagateStmt (assignStmt, inSet)

(Ihs, rhs) «—assignStmt;
ps < T
if the assignStmt is a CallStmt then
op «rhs.getFunctionName();
args <rhs.getArguments();
if op is a unary eBIF then
‘ ps «UnaryFunctionTable(op, args[1].ps);
else if op is a binary eBIF then
‘ ps «BlnaryFunctionTable(op, args[1].ps, args[2].ps);
else if op is a UDF then
L ps «—PropagateUDF (op, args, inSet);

else if the assignStmt is an ArrayGetStmt then
‘ ps «—GetArrayIndexShape(rhs, lhs);

else if the assignStmt is an ArraySetStmt then
‘ ps «GetArrayIndexShape(lhs, rhs) ;

else if the assignStmt is a CopyStmt then
L ps «—CopyPromotedShape(rhs.ps) ;

genSet(assignStmt) = {(lhs,ps)} ;

killSet (assignStmt) = {any tuple contains lhs};
outSet(assignStmt) = (inSet(assignStmt) - killSet(assignStmt)) U
genSet (assignStmt);

return outSet

. [I]for i = (2 : max_rows);
% penalty is a scalar (2] [me_t1] = minus(i. 1):
% input_itemsets is a matrix (3] [mc_t2] B uminus(;nc ti)'
f(?r ! =‘2:max_r0\.)vs . [4] [mc:t3] = times(mc_t_Z, penalty);
input_itemsets (i,1)=—(i—1)xpenalty; [5] input_itemsets (i 1) = me t3:
end [6]end

(a) Original loop (b) TamelR

[1] {(i.,P)}
[2] {(i,P),(mc_tl,P)}

[3]
[4]

[5]

{(i,P),(mc_t1,P),(mc_t2,P)}
{(i,P),(mc_tl,P),(mc_t2,P),
(mc_t3,P)}
{(i,P),(mc_tl,P) ,(mc_t2,P),
(mc_t3,P) ,(input_itemsets ,N)}
(c) Flow sets (d) Final vectorized code

1=2:max_rows;

Fig. 4. An example of promoted shape analysis

input_itemsets(i,1)=—(i—1).* penalty;

is a one-dimension promotion and the variable mc_t3 has the same promoted
shape. Therefore, the assignment is safe and the promoted shape of the variable
input_itemsets is set to N. Finally, the analysis returns the set of promoted
shape information. If a set of statements has no promoted shape T and there are

180 H. Chen et al.

no cyclic dependences, the statements can be vectorized safely. We then perform
a final aggegration step on the TamelR, to produce back a MATLAB vectorized
statement, as shown in Fig. 4(d).

5 Handling User Defined Functions

One of the key contributions of our approach is that we can vectorize loops
which contain calls to user-defined functions (UDFs). The key insight is that
if the body of the UDF contains only vectorizable statements, then the calling
code can use the UDF as a vectorized operation. Since some UDFs contain condi-
tional if statements, we have also developed a MATLAB-specific if-conversion to
convert control dependence expressed as if statements into equivalent vectorized
statements without control dependences.

5.1 Promoted Shape Analysis for UDF's

When the promoted shape analysis encounters a call to a UDF, the initial pro-
moted shapes are propogated from the arguments of the call to the parameters
of the called UDF. The promoted shape analysis is then used to propogate pro-
moted shapes to all statements in the body of the UDF. At the end of the
dataflow analysis, the return values are checked before they are copied back to
the caller site. If any return value is neither a scalar nor a promoted shape, then
the UDF is not vectorizable and all return values are set to T and then returned.

Since UDF's may include conditionals, we must extend the promoted shape
analysis to handle conditional control flow. The key addition is that we apply
the promoted shape analysis to each branch of the conditional, and then merge
the results. More precisely, let op2 be the function for binary eBIFs defined in
Table 3, ps; and psy are promoted shape from two different branches, and pscong
is the promoted shapes of the condition of the if. The merge operator gets a new
promoted shape with the following equation.

merge(pslap52vpscond) = Op2(0p2(pscond7p81)7 0p2(pscond7p52));

If a UDF is called multiple times from different caller sites, we follow a simple
rule to solve the possible conflicting results from the analysis. The rule is that a
UDF is kept the same no matter the changes in input arguments if the UDF is
still vectorizable with the new arguments. Otherwise, the UDF is not vectorizable
despite its prior result.

5.2 If-Conversion for UDF's

Some UDFs contain if statements, which would normally interfere with vector-
ization. However, there are some if statements which can be transformed into
vectorized statements, using primitive vector operations available in MATLAB
to combine results from the then and else branches.

Automatic Vectorization for MATLAB 181

Consider the example from the CNDF function of the Blackscholes (BS)
benchmark, given in Fig. 5(a). The original code, with explicit control flow cannot
be vectorized, because when InputX is promoted from a scalar to a vector, the if
condition will execute only once instead of once per item in the vector. However,
the computation can be converted to vector form as shown in Fig.5(b). The
trick is to create a boolean vector of 0’s and 1’s containing the results of the
condition, and then to use this to select the appropriate values by multiplying
by 1 for all values that should come from the then branch (and 0 otherwise).
The same trick, with the negative conditions are used for the else branch. Then
the two vectors are combined, giving all the results for both branches.

if InputX < 0

InputX = — InputX; thenCond = InputX < 0;
sign = 1; elseCond = not(thenCond);
else InputX = thenCond.*(—InputX) + elseCond.xInputX;
sign = 0; sign = thenCond.x1 + elseCond.x0;
end
(a) Original if-structure (b) After if-conversion

Fig. 5. If-conversion from the CNDF function of the BlackScholes (BS) benchmark

In general, if-conversion takes place when promoted shape can be safely prop-
agated through the if-structure. Equivalently, the promoted shape must success-
fully propagate the new code after if-conversion. TamelR provides a simple if-
structure with only then- and else-block. We first identify the variables which
will be used in both the then- and else-block. We then analyze both branches
using input flow. For variables which are used only in one block, there are two
cases: (1) only used within block; or (2) remain after the if-block. The variables
in (1) can be kept the same while the variables in (2) must multiply with its
corresponding mask (i.e. cond or ~cond).

6 Data Dependence Analysis

Besides promoted shape information, we consider the possible dependence
between statements. It is the key problem for program vectorization. We inves-
tigate the exact test, the GCD test [1], to tell whether data dependence exists.
If two statements cannot be decided by this test, we conservatively assume they
have data dependence. Furthermore, a dependence graph is built on the result
of the test. We split the graph into subgraphs in which each node connects but
there is no connection between subgraphs. A subgraph is a directed graph. The
Tarjan’s algorithm [13] for finding strong connected components is adopted to
identify possible acyclic subgraphs. Given an acyclic subgraph with no variable
having promoted shape T, we are able to get the topological order of each node in
the subgraph with a topological sort. When vectorizing, the topological ordering
is used to order the equivalent vector statements.

182 H. Chen et al.

7 Vectorization and Optimization

The statements in a loop are separated into two groups: (1) vectorizable state-
ments in a topological order and (2) non-vectorizable statements in a sequential
order. For the first group, the loop range is extracted and each statement is
vectorized and inserted above the loop. For the second group, the statements
are not vectorizable and thus remain as is. If all statements are vectorizable, the
resulting loop is empty and can be removed.

7.1 Special Cases

Function Replacement. MATLAB programs may contain many arithmetic oper-
ators, some of which can have different meanings depending on the operand
types. Multiplication (*) for instance can either be an arithmetic or matrix mul-
tiplication. In MATLAB, a built-in function mtimes provides matrix multipli-
cation while times performs an elementwise operation. With the Tamer Value-
Analysis, we can generate improved code by using the faster elementwise function
where possible. This replacement also applies to division (mrdivide vs. rdivide)
and power (mpower vs. power).

Idioms for Reductions. MATLAB programs also commonly use patterns within
loops, especially accumulation [2]. Using cycles from the dependence graph, com-
mon patterns can be replaced using the equivalent reduction operation. MAT-
LAB provides a built-in reduction function sum for accumulation. The Mc2Mc
tool is able to detect this idiom and generate vectorized code with the sum
function.

Special Built-in Functions. Some built-in functions are excluded from the pro-
moted shape analysis since they are not elementwise functions. However, they
can be analyzed to expose further vectorization opportunities. We identify two
such functions below.

Colon: Since we adopt an iterative method to vectorize loops from innermost to
outermost, the generated code from a previous iteration may contain multiple
calls to the colon operator. Since the colon operator is not elementwise, it
is not included in the initial promoted shape analysis. To expose further
vectorization, we give the return variable of a colon operator promoted shape
N. This allows vectorization of outer loops which require full promoted shape
information.

Transpose: Since the promoted shape of the function argument may be either
a row or column vector and the vectorized function may require a particular
shape to be semantically equivalent, we use the transpose built-in function to
transform the inputs as needed.

7.2 Code Optimization with Dynamic Checks

Since indexing using a colon operator has an impact on the performance of
vectorization, we explore dynamic checks to reduce the overhead caused by the

Automatic Vectorization for MATLAB 183

redundant array indexing. If a colon indexing covers all elements in an array,
the colon indexing can be replaced with an array name to improve performance.
Only the left-hand side of an assignment statement is considered for the dynamic
checks.

8 Evaluation

To study the performance of our automatic vectorization we have performed
experiments on a diverse set of benchmarks on four different execution engines.

8.1 Experimental Setup

The experiments were done on a desktop with an i7-3820 3.60 GHz (eight cores)
CPU and 8 GB RAM running Ubuntu 14.04 TLS. We selected four execution
engines. We used two interpreters: Octave 4.0, which is an open-source inter-
preter and MATLAB 8.1 (R2013a) with the JIT turned off. We used two JIT-
based systems: MATLAB 8.1 (R2013a) which has a Ilst-generation JIT, and
MATLAB 8.6 (R2015b) which has a newer 2nd-generation JIT. Each bench-
mark was executed 5 times and the mean execution time is reported. We used
the Wu-Wei Benchmarking Toolkit to perform the experiments.® The source
code of these experimemts is available on GitHub.”

There are total nine benchmarks chosen for the experiments, taken from the
Ostrich benchmark set which provides multi-language versions of benchmarks
covering a wide range of numerical categories (Dwarfs).3

Back-Propagation (BP): a method of training artificial neural networks. It
provides an interactive algorithm to update the weights in the given network.

Black-Scholes (BS): a computationally intensive algorithm which is used to
calculate the price for a portfolio of European options analytically with the
Black-Scholes partial equation (PDE).

Capacitance (CAPR): computes the capacitance of a transmission line using
finite difference and Gauss-Seidel iteration.

Crank-Nicholson (CRNI): computes the Crank-Nicholson solution to the
one-dimensional heat equation.

Fast Fourier Transform (FFT): computes FFT on a random data set as
input.

Monte-Carlo simulation (MC): approximates the value of 7.

Needleman-Wunsch (NW): calculates optimal global alignment of two DNA
sequences.

Page-Rank (PR): link analysis algorithm.

Sparse Matrix-Vector Multiplication (SPMV): compressed sparse row
(CSR) format multiplication between a sparse matrix and a vector.

5 https://github.com/Sable/wu-wei-benchmarking-toolkit /.
" https://github.com/Sable/lcpcl6-analysis.
8 https://github.com/Sable/Ostrich.

https://github.com/Sable/wu-wei-benchmarking-toolkit/
https://github.com/Sable/lcpc16-analysis
https://github.com/Sable/Ostrich

184 H. Chen et al.

8.2 Experimental Results

To study the performance influence caused by the code vectorization, we
compared the original MATLAB code with the automatically vectorized code.
To produce the vectorized code we used our tool to identify and transform loops
which could be vectorized, and we replaced the original loops with the automat-
ically generated vector code.

QOwverall Performance. The results of our experiments are given in Table 4. There
are four multicolumns, one for each execution engine. For each of these there are
three columns: time for the original code, time for the automatically vectorized
code, and speedup which is the ratio of orig-time/vect_time. We also provide the
geometric mean speedup for each execution engine. A speedup of k means that
the vectorized version was k times faster than the original loop version. In Table 4
we have shown all speedups > 1 as bold blue numbers. For each benchmark (i.e.
each row in the table) we show the time of fastest version over all the execution
engines as bold italic red numbers.

Table 4. Times (in seconds) and Speedups (SU) (orig. time/vect. time)

Octave 4.0 MATLAB 2013a ||[MATLAB 2013a||MATLAB 2015b

(interpreter) (interpreter) (1st gen JIT) (2nd gen JIT)

orig. | vect. | vect. || orig. | vect. | vect. ||orig.|vect.| vect. ||orig.|vect.| vect.

Benchmark|| time | time | SU || time | time | SU |[time|time| SU |[time|time| SU
BP 1855 0.83 |2235|(138.4| 2.76 | 50.1 {|6.18|3.00| 2.06 ||2.18(3.09| 0.71
BS 97.1 [0.20 |485.5||28.84| 0.14 | 206 |[4.84|0.13| 37.2 ||1.35{0.09| 15.0
CAPR 207.6]203.7| 1.02 (|14.63| 14.4 | 1.02 ||0.43|0.51| 0.84 ||0.23]0.29| 0.79
CRNI 2452|1075 2.28 ||248.7(119.7| 2.08 ||7.67|40.9| 0.19 {|3.05|3.66| 0.83
FFT 80.88| 76.2 | 1.06 |[12.95| 13.0 | 1.00 (|3.83|7.05| 0.54 ||1.25|2.13| 0.59
NW 981.3| 733 | 1.34 ||57.09| 40.3 | 1.42 ||2.43|1.97| 1.23 ||1.12]1.17| 0.96
PR 511.3]5.00 |102.3({49.75| 1.95 | 25.5 ||1.28|1.16| 1.10 || 1.08|1.15| 0.94
MC 535.3] 0.35 | 1529 ||128.3| 0.59 |217.5||3.75|0.55| 6.82 ||0.93]0.46| 2.02
SPMV 117.6]197.3| 0.60 {|17.73| 33.8 | 0.52 {|0.26|12.8| 0.02 |[0.20|14.5/0.013
[Geo Mean || 19.1]] 7.65]] 1.02]] 0.77]

The results are very interesting and show the relative importance of vectoriza-
tion for different types of execution engines and show that although vectorization
can lead to huge speedups, it is not always beneficial.

For the two interpreters we see excellent speedups due to vectorization. In
the case of Octave we see speedups of 2235x for BP and 1529x for MC. In fact,
these vectorized versions are the fastest overall, beating even the 2nd-generation
JIT in MATLAB 2015b. The speedups for MATLAB 2013a (interpreter) are also
quite impressive. However, the results also show that even with interpreters it
is not always worth vectorizing, as illustrated by the slowdowns for SPMV. In
this case the vectorized loop is the inner loop of the main computation, and the

Automatic Vectorization for MATLAB 185

main compuation outer loop is not vectorizable. The inner loop executes on a
vector of size 2, and thus is not a good candidate for vectorization.

In the case of the JIT execution engines, the results are more nuanced. Some
benchmarks show only a small performance improvement, and others have small
performance degradations. However, there still exist benchmarks where vector-
ization can give good speedups, namely BS and MC. Vectorization of BS gives
37.2x speedup for MATLAB 2013a (1st gen JIT) and 15x for MATLAB 2015b
(2nd gen JIT). The reason is that the two benchmarks successfully achieve loop
vectorization and UDF vectorization. The called UDF's are fully vectorized. The
function invocations in BS are more complex than MC. Therefore, it is more
difficult for the JIT to exploit possible parallelsim while our vectorizer achieves
this. However, with the JITs there can be even more drastic performance degra-
dations due to vectorization, as can be seen by the slowdown of SPMV. It would
seem that vectorizing an inner loop that has very few iterations not only intro-
duces overheads to that inner loop, but also likely interferes with the JIT’s ability
to generate efficient code for the entire loop nest.

9 Related Work

While vectorization is a mature field, there is no universal method for transform-
ing scalar programs into vector form. Existing approaches either use user input,
automated analyses or a combination of the two.

User-Guided Vectorization. Tian et al. implemented vector extensions to C and
C++, allowing the Intel C4++ compiler to produce efficient SIMD instructions
without requiring low-level programming [14]. Using in-code directives, entire
user-defined functions can be vectorized in addition to for loops yielding signif-
icant performance improvements. In constrast, our implementation allows vec-
torization of user-defined functions without code annotations. Klemm et al. also
explored directive based vectorization by introducing non-vendor specific SIMD
constructs to OpenMP [5]. Since not all loops can be automatically vectorized,
experimental results show that using annotations improves performance over an
existing production auto-vectorizing compiler. While evaluating the effective-
ness of auto-vectorizing compilers, Maleki et al. also confirmed that production
compilers can handle many synthetic benchmarks but have difficulty automati-
cally vectorizing real world applications [7]. In our work, results show that auto-
vectorization can still provide significant performance increases to substantial
benchmarks, but that performance degredation is also possible, especially with
modern MATLAB JITs.

A mixed user-automatic approach to vectorization has been implemented
for MATLAB. Since vectorization of MATLAB code requires matrix sizes
and shapes, Birkbeck et al. allow user shape annotations to guide the auto-
vectorization techniques [2]. Additionally, a pattern based approach transforms
common code patterns to the equivalent MATLAB built-in. Our implementa-
tion uses the same principles for vectorization, but can automatically infer the
necessary shapes instead of using annotations.

186 H. Chen et al.

Array Programming Languages. Array programming languages such as R and
MATLAB are also important candidates for vectorization. Menon and Pingali
showed that source-to-source transformations of MATLAB, including vectoriza-
tion, can significantly improve program performance [10]. Vectorization allows
better exploitation of the underlying hardware and reduces the interpreter over-
head of repeatedly iterating the loop body. However, their exploration used
hand-optimized programs and did not consider function vectorization as in our
implementation. Chauhan and Kennedy introduced two optimizations: procedure
vectorization and procedure strength reduction, which improved the performance
of real digital signal processing applications [3]. The idea of procedure vectoriza-
tion is similar to our approach to UDFs, replacing a function call inside a loop by
a single function call with vectorized arguments. However, their transformation
is achieved by hand while we present an automatic method for handling UDF's.

The R programming language provides a popular built-in function lapply
which runs a given function on a list of input. By replacing the looping exe-
cution of lapply with a vectorized version of the supplied function, Wang et
al. achieved meaningful speedups [15]. However, their implementation is both
limited to lapply and can also generate inequivalent vector code from if state-
ments due to the semantics of the R ifelse built-in function. Our work accepts
more general input, and generates equivalent vector code when vectorizing if
statements.

10 Conclusions and Future Work

We have presented an automated technique to detect and transform loops to
vectorized code in MATLAB. Our approach introduces a new promoted shape
propogation analysis which is used to identify vectorizable statements and user-
defined functions.

We have implemented our approach as the Mc2Mc tool and used it to exper-
iment with 9 diverse benchmarks over 4 different execution engines. From our
experimental results we conclude that our automatic vectorizer can find and
transform loops in a wide range of benchmarks. The vectorized code is usually
faster, and sometimes three orders of magnitude faster, on interpreted engines.
There is less benefit for vectorizing on JIT systems, but there still exist bench-
marks where excellent speedups can be achieved by vectorizing. Our results also
show that the general advice of “vectorize to improve performance” is not always
true, especially in the JIT settings where vectorizing can interfere with the JIT.

In our future work we would like to integrate our automatic vectorizer into a
MATLAB or Octave IDE, so programmers could selectively vectorize loops. We
would also like investigate automatic and profile-driven techniques for deciding
when vectorization is beneficial, and perhaps also develop some “unvectorizing”
techniques for converting vectorized code to loops when vector code is deemed
to be less efficient.

Acknowledgments. We would like to thank the McLAB group for providing the
analysis framework, Tamer. This work was supported, in part, by NSERC.

Automatic Vectorization for MATLAB 187

References

10.

11.

12.

13.

14.

15.

Allen, R., Kennedy, K.: Automatic translation of Fortran programs to vector form.
ACM Trans. Program. Lang. Syst. 9(4), 491-542 (1987)

Birkbeck, N., Levesque, J., Amaral, J.N.: A dimension abstraction approach to
vectorization in Matlab. In: CGO, pp. 115-130 (2007)

Chauhan, A., Kennedy, K.: Reducing and vectorizing procedures for telescoping
languages. Int. J. Parallel Prog. 30(4), 291-315 (2002)

Dubrau, A.W., Hendren, L.J.: Taming MATLAB. In: OOPSLA, pp. 503-522 (2012)
Klemm, M., Duran, A., Tian, X., Saito, H., Caballero, D., Martorell, X.: Extend-
ing OpenMP* with vector constructs for modern multicore SIMD architectures.
In: Chapman, B.M., Massaioli, F., Miiler, M.S., Rorro, M. (eds.) IWOMP
2012. LNCS, vol. 7312, pp. 59-72. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-30961-8_5

Li, X., Hendren, L.J.: Mc2FOR: A tool for automatically translating MATLAB to
FORTRAN 95. In: CSMR-WCRE, pp. 234-243 (2014)

Maleki, S., Gao, Y., Garzardn, M.J., Wong, T., Padua, D.A.: An evaluation of
vectorizing compilers. In: PACT, pp. 372-382 (2011)

MathWorks: MATLAB. http://www.mathworks.com/

McLAB: The McLAB tools for compiling MATLAB (2016). http://www.sable.
mcgill.ca/mclab/

Menon, V., Pingali, K.: A case for source-level transformations in MATLAB. In:
DSL, pp. 53-65 (1999)

Muraoka, Y.: Parallelism exposure and exploitation in programs. Ph.D. thesis,
Univ. of Ill. at Urbana-Champaign, Dept. of Comp. Sci. UMI(71-21189), February
1971

Octave: GNU Octave. https://www.gnu.org/software/octave/

Tarjan, R.E.: Depth-first search and linear graph algorithms. SIAM J. Comput.
1(2), 146-160 (1972)

Tian, X., Saito, H., Girkar, M., Preis, S., Kozhukhov, S., Cherkasov, A.G., Nelson, C.,
Panchenko, N., Geva, R.: Compiling C/C++ SIMD extensions for function and loop
vectorizaion on multicore-simd processors. In: IPDPS, pp. 2349-2358 (2012)

Wang, H., Padua, D.A., Wu, P.: Vectorization of apply to reduce interpretation
overhead of R. In: OOPSLA, pp. 400-415 (2015)

http://dx.doi.org/10.1007/978-3-642-30961-8_5
http://dx.doi.org/10.1007/978-3-642-30961-8_5
http://www.mathworks.com/
http://www.sable.mcgill.ca/mclab/
http://www.sable.mcgill.ca/mclab/
https://www.gnu.org/software/octave/

	Automatic Vectorization for MATLAB
	1 Introduction
	2 Motivation and Background
	3 Overall Structure of the Vectorizer
	4 Promoted Shape Analysis
	4.1 Shape Abstractions
	4.2 Compatible Operations
	4.3 Key Parts of the Analysis
	4.4 An Example of Promoted Shape Analysis

	5 Handling User Defined Functions
	5.1 Promoted Shape Analysis for UDFs
	5.2 If-Conversion for UDFs

	6 Data Dependence Analysis
	7 Vectorization and Optimization
	7.1 Special Cases
	7.2 Code Optimization with Dynamic Checks

	8 Evaluation
	8.1 Experimental Setup
	8.2 Experimental Results

	9 Related Work
	10 Conclusions and Future Work
	References

