AspectMatlab++: Annotations, Types, and Aspects for Scientists

Andrew Bodzay

School of Computer Science, McGill University,
Montreal, QC, Canada

andrew.bodzay@mail.mcgill.ca

Abstract

In this paper we present extensions to an aspect oriented compiler
developed for MATLAB. These extensions are intended to support
important functionality for scientists, and include pattern match-
ing on annotations, and types of variables, as well as new manners
of exposing context. We provide use-cases of these features in the
form of several general-use aspects which focus on solving issues
that arise from use of dynamically-typed languages. We also de-
tail performance enhancements to the ASPECTMATLAB compiler
which result in an order of magnitude in performance gains.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Language Constructs and Features; D.3.4 [Processors]:
Compilers

General Terms Languages

Keywords Aspect-oriented programming, MATLAB, ASPECT-
MATLAB compiler

1.

MATLAB [8-10] is a dynamic array-based programming language,
which has widespread use throughout the scientific community. Its
success stems from its convenience as a dynamic scripting lan-
guage - providing the programmer with high-level matrix opera-
tors, a large library of built-in functions, a flexible syntax which
requires no type declarations, as well as a quick and easy devel-
opment through the MATLAB IDE. These factors all make the lan-
guage very appealing to novice and expert programmers alike, as
development requires little training, and code can be rapidly proto-
typed.

Our work builds upon the ASPECTMATLAB project, which in-
troduced the idea of aspects in MATLAB [1, 2]. The original fo-
cus of ASPECTMATLAB was that prominent features in scientific
programming, such as loops and arrays could be easily matched
and operated upon. Our challenge was to further develop aspect-
oriented programming for MATLAB, in a way that is consistent with
the ease of use of the base language. We wanted to introduce lan-
guage mechanisms through which programmers could more easily
understand and control their code, with the goal of preventing er-

Introduction

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions @acm.org.

MODULARITY’15, March 16-19, 2015, Fort Collins, CO, USA
Copyright 2015 ACM 978-1-4503-3249-1/15/03...$15.00
http://dx.doi.org/10.1145/2724525.2724573

41

Laurie Hendren

School of Computer Science, McGill University,
Montreal, QC, Canada

hendren@cs.mcgill.ca

rors as well as improving performance. Simultaneously, we aim to
make ASPECTMATLAB more accessible to current MATLAB users.

Unlike more formal programming languages, MATLAB has nei-
ther static type declarations nor static type checking, with type in-
formation being determined at run-time. While this feature makes
prototyping quick, it can also result in type inconsistencies which
can propagate throughout a program. One of our aims is to accom-
modate scientists by creating language extensions and scientific as-
pects which help them to understand and deal with these sorts of
typing issues that arise in environments with no static types. In the
same vein, we also seek to help scientists reason about atypical
forms of types, such as units, that may occur throughout their com-
putations.

To achieve these goals, we implement several new language
features. These include a number of new patterns, such as the
annotate pattern, which allows pattern matching on specially for-
matted MATLAB comments. We also introduce type and dimension
patterns, which match join points corresponding to a particular
MATLAB base type or array size respectively. In addition, we now
allow for context exposure of the loop body in all patterns which
match loops. This enables ASPECTMATLAB programmers to im-
plement aspects which rewrite and modify the loop body.

Another important challenge was to improve the performance
of ASPECTMATLAB code. By inserting aspect code directly into
the base MATLAB code, as well as making local copies of aspect
properties we eliminate a significant amount of overhead.

The main contributions of this paper are:

Extensions to ASPECTMATLAB language: Building upon the AS-
PECTMATLAB language, we introduce a number of language
extensions which improve the ease of use. These include the
introduction of the annotate, type, and dimension patterns, as
well as context exposure of loop body in loop patterns.

Scientific aspects: We have developed a library of new aspects
which provide easy-to-use new functionality for ASPECTMAT-
LAB users such as on-the-fly type and unit checking.

Improvements to the ASPECTMATLAB compiler: Several func-
tions of the ASPECTMATLAB compiler have been reworked, in
order to support not only new language features, but to improve
general performance

Experimental evaluation: We have tested the ASPECTMATLAB
language on a set of benchmarks to demonstrate the feasibility
of woven code as well as the importance of our weaving op-
timizations. With the optimizations we have included, aspects
are shown to have an acceptable amount of overhead.

The remainder of this paper is organized as follows. In Sec-
tion 2 we provide the key background of MATLAB and ASPECT-
MATLAB. Section 3 describes the ASPECTMATLAB language ex-
tensions and Section 4 outlines the aspects we have included in our
library. In Section 5 we discuss key improvements we made to the

implementation of ASPECTMATLAB and in Section 6 we show the
performance of aspect woven code. We finish with related work in
Section 7 and conclusions and future work in Section 8.

2. Background
2.1

MATLAB, unlike more many more formal programming languages,
does not have any static type declarations or static type checking.
The default type for storing information in MATLAB is a matrix,
with even scalar variables being stored as a 1x1 array. Matrices
have two important characteristics, their dimensions, representing
the size of the matrix, and their base type, which represents the
variety of data the matrix is allowed to hold. The base data type of
a MATLAB variable can be one of several default types, such as the
numeric types double or int32, or they can be user-defined.

In MATLAB, type information is determined at run-time. Due to
the lack of type declarations, as the program progresses, the same
variable may contain values of different types. While the lack of
static type declarations makes for fast prototyping, MATLAB pro-
grammers often do have an idea as to what base types and dimen-
sions their variables are expected to have throughout their program.
Despite the fact that no formal type declarations exist, many MAT-
LAB functions have comments which specify the types expected of
its arguments. An example of this variety of informal declaration
is shown in Figure 1. While this information is not leveraged by
MATLAB itself, failure to meet these informal recommendations
can result not only in run-time errors, but also incorrect results.
Type errors of this variety can easily propagate throughout a pro-
gram, making it difficult to determine from where the error origi-
nated.

MATLAB Types Overview

function [F, V] = nbody3d(n, R, m, dT, T)

1
2
3
4
5
6
7
8
9

Figure 1. Header of MATLAB simulation of n-body problem [14]

2.2 ASPECTMATLAB

In ASPECTMATLAB, aspect definitions were developed as an
extension to MATLAB object-oriented class definitions. Object-
oriented MATLAB classes are allowed to contain a properties
block, where data that belongs to an instance of the class is defined.
These properties can be defined with default values or initialized in
the class constructor. Object-oriented MATLAB classes also allow
for a methods block, which can include class constructors, prop-
erty accessors, or ordinary MATLAB functions. ASPECTMATLAB
expands upon this by allowing for two additional blocks: patterns
and actions. Patterns, which are analogous to pointcuts in other
aspect-oriented languages, are used to pick out sets of join points in
program flow. Actions, which are analogous to advice, are blocks
of code that are intended to be joined to specific points of the

42

base program. Actions specify what should be done when code is
matched by patterns.

In Figure 2 we see an example which makes use of these four
features of aspects. The properties block defines a counter,
which is initialized at its declaration and can be used throughout
the aspect. The methods block defines a function called increment.
In the patterns block, we define a pattern, called callAdd, that
we want to match in the base code. In this case, we match calls
to the function add. Finally, the actions block defines an action
called actCall. This action specifies that we should call the method
increment after every join point in the base code which matches the
pattern callAdd. It then displays the name of the function.

aspect myAspect

1

> properties

3 counter = 0;

4 end

5

6 patterns

7 callAdd : call (add);

s end

9

10 methods

1 function increment(this)

12 this.counter = this.counter + 1;
13 end

14 end

15

16 actions

17 actCall : after callAdd : (name)
18 this.increment ();

19 disp ([' calling ', name]);
20 end

21 end

22

23 end

Figure 2. Simple ASPECTMATLAB example

ASPECTMATLAB was introduced with a variety of patterns to
match basic language constructs. An emphasis was made on pat-
terns which match array and loop constructs. It introduced sev-
eral function matching patterns, call, execution, and op which
match calls to a specified function, the execution of a specified
function, and calls to basic operations respectively. These patterns
all take as a parameter the name of the function or operation they
should match. For example, in Figure 2, we see that the call pat-
tern takes as a parameter ‘add’, meaning that it will match calls
to the function add. ASPECTMATLAB has two array-related pat-
terns get and set, which allow for matching accesses of and as-
signments to arrays respectively. Similarly to the function matching
patterns, the get and set patterns take as a parameter the identifier
of the variable they should match. ASPECTMATLAB also features
loop-related patterns 1oop, loophead, loopbody which allow for
matching on various portions of loops in MATLAB. Unlike func-
tions and array accesses, there is no easy way to identify specific
loop join points in the base code. Instead, loops are specified by
the name of the loop iterator variable. Finally, the within pattern
allows for limiting the context with which matches can be made
to join points within a specified construct, such as a function or a
loop.

In order to match more complex patterns, ASPECTMATLAB al-
lows for compound patterns to be created using logical combina-
tions of primitive patterns. An example of this is shown in Fig-
ure 3. pCallTest will match all calls to the function test that occur
within a loop, pGetOrSet will match array access and assignments
occurring within a function add, and pCallExec matches the pre-

viously defined pattern pCallTest as well as the execution of the
test function itself.

patterns
pCallTest : call (test) & within(loops, =);
pGetOrSet : (get(+) | set(+)) & within(function, add);
pCallExec : pCallTest| execution(test);

end

Figure 3. Compound ASPECTMATLAB patterns

There are three types of actions in ASPECTMATLAB, before,
around, and after, which specify when, in relation to a matched
join point, a piece of code should should be executed. As one might
expect, before actions are woven directly before a join point, and
after actions are woven directly after a join point. around actions
are different, in that they replace the join point completely. In order
to execute the join point itself when using an around action, a
special proceed call exists. This call can be used in the action code
to execute the original join point. Omitting this call from action
code results in the original join point never being executed.

ASPECTMATLAB allows for extraction of context-specific in-
formation about join points via the use of predefined context selec-
tors. These selectors are specified along with an action definition,
and allow for context-specific information to be used in action code.
An example of context exposure is shown in Figure 2 on line 17,
where we use the name selector, to expose the name of the func-
tion matched by the pattern. This information is then used on line
19 to display the name of the function being called. The applicable
selectors depend upon the type of join point being matched.

3. Language Extensions

We have defined and implemented a variety of new patterns to
match additional language constructs. Given that our target audi-
ence includes novice programmers, we wanted to include a pattern
in ASPECTMATLAB that allows MATLAB programmers who may
not be familiar with aspect oriented programming to exert more
control as to where aspect code would be woven. To this end, we
introduce the annotate pattern, which allows for pattern matching
on special MATLAB comments. This pattern makes a useful tool for
our own aspects, as it allows for general solutions to problems to
be written as aspects, while making it possible the specifics to be
written into the base code as part of annotations.

To address the difficulties that MATLAB’s dynamic typing we
introduced patterns for matching based on the size of arrays with
the dimension pattern, as well as the type of data that arrays store,
with the type pattern.

Another important extension was to allow for context exposure
of the loop body in loop patterns through use of a special body
call. This is essential for around advice on a loop pattern, which
themselves are of the utmost importance when targeting scientific
languages, as it makes it possible for us to alter the loop body while
still executing the base code correctly.

3.1 Annotation Pattern

The annotation pattern differs from other patterns in ASPECTMAT-
LAB in that it does not match on MATLAB code itself. Instead, we
allow for programmers to write annotations which take the form
of structured comments in their base code. The annotate pattern
then matches these specially formatted comments. This makes it
possible to provide information to the aspect program at any point
in the execution, and allows for code to be woven easily into arbi-
trary points of a program, all without requiring any alteration to the
execution of the base code. This new functionality makes it easy
to write code with aspects in mind, by allowing for easy communi-

43

cation of relevant information from the program being cross-cut to
the aspect.

Due to the fact these annotations will not be executed by a
MATLAB runtime, this approach has the benefit of ensuring that the
program will execute normally without having to weave aspects.
The syntax for an annotation is shown in Figure 4. To specify that
a particular comment should be recognized as an annotation, it is
marked using the ‘@’ symbol, and is followed by an identifier that
gives the name of the annotation. Following the identifier is a list
of arguments, whose values can be exposed as context in an action
definition.

<annotation> ::=
'% @' <annotation_name> <annotation_arguments>
<annotation_arguments> ::=
IDENTIFIER | STRING_LITERAL | CONSTANT
| '['" <array-argument> ']’
<array_argument>::=
<annotation_argument>

| <array_argument>'." <annotation_argument>

Figure 4. Syntax of MATLAB Annotation

There are four types of arguments that can be exposed as con-
text, var (IDENTIFIER), str (STRING_LITERAL), num (CON-
STANT), and arrays of other arguments. Exposure of a var pro-
vides the value of that variable as context to the aspect code. If a
variable is undefined, it will instead be exposed as a value of class
AMundef, an empty Matlab class. str exposes a string, and num
a numeric value as a double. Arrays of arguments will expose a
cell array containing the context exposed by those arguments.' All
arguments adhere to standard Matlab syntax.

The syntax for the annotation pattern is shown in Figure 5. It
takes the name of the annotation it should match, as well as a list
of arguments that are expected to be present in the annotation. In
the event that a pattern matches the identifier and arguments, but
has arguments in excess of those specified, the pattern will still
match, and the excess arguments will not be exposed as context.
This allows a MATLAB programmer to easily integrate annotations
into their comments, without having to omit information to fit the
annotation formatting. The allowed arguments are those described
above and an insufficient number of arguments will result in no
match.

< annotation_pattern > ::=
"annotate ' ' (' <annotation_name>
'(' < annotation_pattern_selector > ')"'")"
< annotation_pattern_selector > ::=
"var' | "str' | 'num'
| "[' < annotation_pattern_selector > ']’

Figure 5. Syntax of Annotation Pattern

An example of use of the annotation pattern is shown in Fig-
ure 6. In this case, the pattern will match all annotation comments
that begin with the name ‘type’ and have at least three arguments:
the first a variable name, the second a string, and the third an array
of numbers.

3.2 Type Pattern

The type pattern, introduces matching on the base type of arrays
to ASPECTMATLAB. For this pattern, a base type can be one of

! Cell arrays in MATLAB allow for different elements in the array to have
different types, and so can be used to represent heterogeneous collections.

patterns

typepat :
end

annotate (type(var, char, [num]) ;

Figure 6. Example of Annotation Pattern

several MATLAB defaults, such as double, char, int32, or it
can be a user defined class type. The type pattern captures all
variable accesses and assignments in which the variable matches
a specified MATLAB base type. The syntax for invoking the type
pattern is type (<basetype>), where basetype is the name of
the MATLAB base type to be matched. Accesses and assignments
are captured in the order of evaluation of an expression, with sub-
expressions being matched before their containing expression. For
assignments, the MATLAB type considered is the one which would
be held after assignment occurs.

To match accesses or assignments of specific arrays, but only
when they are of a particular type, one can use a compound pattern
of the type and get or set patterns. Examples of type patterns
are given in Figure 7. Pattern isint32pat matches all join points
where an array access or assignment is being performed involving
an array of type int32. Pattern isxsinglepat demonstrates a
compound pattern using type, get, and set to match all accesses
and assignments to array x, when x is of type single.

patterns

isint32pat : type(int32) ;

isxsinglepat : (get(x)| set(x))&type(single) ;
end

Figure 7. Example of Class Pattern

In addition to the standard MATLAB base types, we have defined
one further base type called realint to capture the special issue
in MATLAB with its use of positive real integers. As the default
data type in MATLAB is a double, all arrays can be indexed using
double values. However, in the event that this double value does
not correspond to a positive integer, this will return an error. To
determine if double x is a real integer or not, it is necessary to check
that the x = round(x). The inclusion of this base type makes it
easy to determine whether the value in a matched array can be used
as an index.

3.3 Dimension Pattern

Due to the fact that arrays are the default data type in MATLAB, it
can be helpful to identify arrays by their size. To this end we intro-
duce the dimension pattern. The dimension pattern is similar to
the type pattern, but instead of matching join points based on type,
it instead matches by the dimensions of the associated vector.

The dimension pattern takes as arguments the size of the di-
mensions of the matrix it should match. Similarly to the type
pattern, the dimension pattern matches variable accesses and as-
signments when the array is of the shape specified by the pat-
tern’s arguments. The syntax for invoking the dimension pattern
is dimension(<dimensions>), where dimensions is a comma
separated list of the expected dimensions of the array. For each di-
mension, an integer value corresponding to the expected size of the
dimension may be specified, or the wild-card symbol, ‘*’ may be
used to indicate that a dimension can be any size. As with the class
pattern, accesses of specific arrays can be accomplished by using a
compound pattern of the dimension, get and set patterns.

Examples of the dimension pattern are shown in Figure 8. Pat-
tern dimp will match all array accesses and assignments involving

44

arrays that have 3 dimensions, and whose first dimensions is of size
2. Pattern dimx2by2 will match array accesses or assignments to x
when x is a 2 by 2 matrix.

patterns

dimp : dimension(2,:,%) ;

dimx2by?2 : (get(x)| set(x))&dimension(2,2);
end

Figure 8. Example of Dimension Pattern

3.4 Loop Body Context Exposure

Loops are a critical structure to target when writing an aspect lan-
guage targeting scientific programming. To ensure these constructs
could be handled meaningfully, the original ASPECTMATLAB in-
troduced several patterns which matched on loops. While it did suc-
cessfully introduce means of handling loops themselves, one sig-
nificant shortcoming is that it did not introduce any means of han-
dling or restructuring the bodies of loops. To allow ASPECTMAT-
LAB programmers to deal with the body of loops more precisely,
we introduce the body call.

ASPECTMATLAB features a special proceed call which can be
used in around advice to execute the original join point. While
useful in most scenarios, with loop patterns it would be useful
to be able to execute simply the body of the loop, as opposed
to the entire join point. The body call is similar to the proceed
call, however, instead of executing the entire join point, it simply
executes a portion of it - that portion which corresponds to a single
execution of the body of a loop. To interact with the contents of the
body, we also introduce the loopiterator keyword, which can
be assigned a value to replace or modify the value held by the loop
iterator variable.

The example in Figure 9 showcases the use of these keywords,
with an aspect that replaces loops which iterate over i with a loop
which iterates over the square root of the base MATLAB loop’s
arguments. The args exposed as context are the loop iteration
space, which is then square rooted and passed in as a loop iterator
for another for loop, which makes a call to body to execute the
body of the original loop.

actions
sqrtiter : around loop(i) : (args)
for loopiterator = sqrt (args)
body()
end
end

Figure 9. Example of Loop Body Context Exposure

4. Scientific Aspects

Using the language extensions outlined in the previous section, we
designed and implemented a number of scientific aspects to help
programmers to better understand and work with their MATLAB
code. In order to ensure programs meet expected type requirements,
we introduce a type checking aspect, which allows for programmers
to specify stricter types using type annotations which are matched
by the annotate pattern. The unit checking aspect uses unit an-
notations to allow programmers to ensure that their units match,
following basic rules of dimensional analysis. This allows for type
checking of a scientific variety. In order to better deal with pecu-
liarities of MATLAB, we also introduce two type profiling aspects,

which employ the class and dimension patterns to detect dy-
namic type information. To help programmers get the most out of
MATLAB code, we also use aspects to automate loop transforma-
tions which use the newly introduced body context exposure for
loops, improving the ability of ASPECTMATLAB to help program-
mers increase the efficiency programs by making loop unrolling
and loop reversal optimizations quickly and easily.

4.1 Stricter Type Checking

In MATLAB, variable types are not declared, and are instead deter-
mined dynamically. This is beneficial for fast prototyping, as it al-
lows programmers to focus on the task at hand. Despite MATLAB’s
lack of static type checking, programmers will often have some as-
sumptions about the types being used in their programs, as shown
previously in Figure 1. Using mechanisms provided by MATLAB
in order to ensure that the types of variables are correct after every
assignment would require the programmer to insert checks manu-
ally, a tedious job which opens up room for errors. The significant
number of superfluous checks would negatively impact the perfor-
mance.

Our solution to this problem is to leverage the power of the
newly introduced annotate pattern to allow programmers to for-
mat their comments in such a way that the type information they
contain can be confirmed by an aspect. Figure 10 shows an example
of what annotated code looks like. It is very similar to the original
comments, but by formatting the comments into type annotations,
the information in the comments can be used by the ASPECTMAT-
LAB compiler.

function [F, V] = nbody3d(n, R, m, dT, T)

1
2
3
4
5
6
7
8
9

Figure 10. Header of MATLAB simulation of n-body problem with
type annotations

The formatting of these annotations are specified by the annotate

pattern in our type checking aspect and operates as shown in Fig-
ure 11. As with all ASPECTMATLAB annotations, the first piece of
information is annotation name, “type” which is followed by three
other arguments. These are the identifier for the variable it should
be checking, a string which declares the base type the variable is
expected to have, and an array that lists the expected size of each
dimension.

As an example, the annotation %@type n ’double’ [1,1]is
checking that the variable n is of type double, and is a scalar (or 1
by 1 matrix). For the base type, the user may require that the vari-
able be of any base MATLAB datatype, as well as any user defined
datatypes. The dimensions can be expressed in one of three ways,
which capture the variety of possible requirements a programmer
may have of their program. The simplest method of communicating
the dimensions is by simply specifying the expected size numeri-
cally in the annotation. In this case, the aspect will ensure that the

45

(type annotation) ::=-

'%@' 'type' (variable) '(type)' '[' (dimensions)'] (comment):

(type) =
(base matlab datatype)
| (user defined datatype)

(dimensions) ::=>
(dimension) ',
| (dimension)

(dimension) ::=>
IDENTIFIER | DOUBLE | CHAR

(dimensions)

Figure 11. Definition of a type annotation

size of the variable’s dimension matches the one specified by the
programmer. This is demonstrated on line 1 of Figure 12. The sec-
ond method for specifying dimension size is by using an identifier
which corresponds to a variable in the base MATLAB code, which
contains the size it should match. This is shown on line 2 of Fig-
ure 12, where variable b is required to be a matrix of size n by
m, where n and m will have been previously initialized in the base
MATLAB code. Alternatively, a string can be used to specify the
dimension sizes, as shown on lines 3,4 and 5 of Figure 12. When
a string is used, the aspect checks that the size of the dimension
matches any other dimensions which use the same string. For ex-
ample, variable c is required to have 2 dimensions, and because
both are specified by the same string, both dimensions must have
the same size. Similarly, the annotations on lines 3 and 4 specify
that the first dimension of d must be the same size as the second
dimension of e, and vice versa.

L S

Figure 12. Example of type annotations

Once the aspect has been woven, the aspect code will check
whether or not the types hold at the program point where the
annotation is present. In addition, any time a variable is assigned to
after the annotation, the aspect code will check again to ensure that
it obeys the specified restrictions. Not only are these annotations
simple and straightforward, able to be easily inserted anywhere in
a program where a programmer is uncertain, but they correspond
closely to comments that are typically found in MATLAB programs.

The type checking aspect, outlined in Figure 13, takes advan-
tage of the annotation pattern and weaves type checking code
around these annotations. There are only two patterns required for
this aspect. The pattern typeAnn matches the type annotations. It
matches annotations with the annotation name type, and takes three
arguments, an identifier corresponding to the variable in question,
a string constant corresponding to its type, and an array which
can contain any combination of numerical constants, identifiers,
or string constants, corresponding to its dimensions as described
above. This demonstrates that while the annotation pattern is sim-
ple to use, it can be very powerful, allowing for easy introduction
of language features that don’t otherwise exist in MATLAB.

From here, the code which carries out type checking is straight-
forward. The action actAnn, given in Figure 14, uses the infor-
mation provided by the annotation. This information is extracted
using the args context selector, which yields a cell array of the
arguments’ values, as well as the rep context selector, which pro-
vides a cell array of string representations of the arguments’ val-
ues. Before we type check, we confirm that the variable in ques-
tion has been assigned a value. If it does not, the content of the
variable will be of type AMundef, signifying that no definition has

aspect typechecking

patterns
typeAnn : annotate (type(var, char, [x]));
arraySet : set (x);

end

actions

actAnn : before typeAnn: (args, rep, line)
value = args{1};
varname = rep{1};
expectedclass = args{2};
expecteddims = args{3};

actArraySet : after arraySet : (newval, name, line)

end
end

Figure 13. Outline of type checking aspect

been provided and that we can proceed to storing type informa-
tion. If the variable in question has been defined, we check that
its value has the expected number of dimensions, the correct type,
and the correct size for each dimension as specified by the an-
notation. In the event that there is a conflict, an error is emitted.
If a string has been used to specify the size of a dimension, we
check to see if any previous annotations used the same string -
comparing size with the previous use if it has, and associating the
current value for our variable if it hasn’t. Regardless of whether
type checking is performed, the information from the annotation
is stored in container.Map objects, so future array assignments
can be checked. The action actArraySet , which is woven around
assignments to arrays, checks whether or not the variable being as-
signed to has an existing mapping from a previous type annotation.
If it does, type checking is performed using similar checks to those
made in the actAnn pattern, and throwing an error if the checks
fail.

Using this aspect, it is possible to leverage the types specified
by the programmer, and throw meaningful errors when they are not
met. Due to the fact that types are stored as annotations, it is pos-
sible for a programmer to simply run their program without weav-
ing type checking code once they are certain that their program
will execute correctly. This allows for programmers to enable type
checking at a small cost in performance to ensure their MATLAB
code executes as expected, and later dispense with the type check-
ing to ensure optimal performance. Given that these annotations
require no significant knowledge of ASPECTMATLAB to introduce
into a program, this aspect provides incentive for those who are
not interested in learning the ASPECTMATLAB language to use its
functionality.

4.2 Units of Measurement as Types

In the previous section we explored an aspect for handling tradi-
tional type checking, however, for scientific programmers there ex-
ists more type information presented in Figure 1 aside from the
dimensions of variables. Many inputs may have associated units
of measurement, corresponding to physical qualities such as times,
distances, and masses. Even in a programming language such as
MATLAB, which targets scientific programmers, these units of mea-

46

actAnn : before typeAnn : (args, rep, line);

value = args{1};
varname = rep{1};

o expectedclass = args{2};
10 expecteddims = args{3};
11

1
2
3
4
5
6
7
8

14 if (—isa(value, ' AMundef"))

15 dimensions = dims(value);

16 if ((ndims(value) » size (expecteddims,1)))

17

18 end

19 if (—isa(value, expectedclass))

20

21 end

2

23 for dim = 1: size (expecteddims,1)

24 if (isa (expecteddims{dim},' char")

25

26 if (ismember(expecteddims{dim}, keys(chardims)))
27 if (size (value,dim)» chardims(expecteddims{dim}))
28

29 else

30

31

32 chardims(expecteddims{dim}) = size (value,dim);
33 end

34 elseif (size (value,dim) » dimensions{dim})

35

36 end

37 end

38

39 end

40

41

2 varclass (varname) = expectedclass ;
43 vardims(varname) = expecteddims;
44 end

Figure 14. actAnn action of typechecking aspect in detail

surement will be lost, as it is most easy and efficient to store data
as doubles instead of having a separate class for every piece of
data. This is unfortunate, as these units of measurement have mean-
ing within the context of a program, particularly programs with a
large number of arithmetic operations. For example, we know that
it makes sense to add a distance to a distance, and the result of such
a computation would be a distance itself. However, it is not mean-
ingful to add a distance to a mass, as the result of the computation
would be meaningless. Similarly, assigning a value that is known
to be a mass to a variable which should contain a distance would
also be incorrect. By keeping track of the units that variables are in-
tended to have, it is possible to prevent programmers from making
mistakes by throwing errors when incorrect units are used. In this
sense, units can be thought of as types unto themselves. By provid-
ing programmers with a means to incorporate units into their pro-
grams, it can be ensured that their programs only use them safely.
In order to take advantage of unit information, we introduce the
the idea of unit annotations. Figure 15 shows how unit annotations
can be used to take advantage of the information programmers
provide. Similarly to the type aspect, our unit aspect defines a
formatting which unit annotations must follow, and this is shown
in Figure 16. Following the annotation name, two arguments are

required. The first is the string corresponding to the variable whose
units we are keeping track of. The second is an array of strings
containing the SI units of the variable. For example, the annotation
%Qunit ’dT’ [’s’] specifies that the variable dT is a measure of
time, in seconds. We support several common derived units, and for
those unsupported, combinations of the 7 base SI units can be used.
For example, a newton which could be conveyed in an annotation as
[’N’1, may also be expressed as kg - m,/s> which could be written
in an annotation as [’kg’,’m’,’s~-2’]. Exponents can be used
in unit annotations, and units may be provided in any order.

function [F, V] = nbody3d(n, R, m, dT, T)

1
2
3
4
5
6
7
8
9

Figure 15. Header of MATLAB simulation of n-body problem with
unit annotations

(unit annotation) ::=>
'%@' 'unit' '(variable)' '[' (units) '] (comment):
(units) ::=
(unit) ', (units)
| (unit)
(unit) ::=
| '< si_unit >'
| '<siunit> " INTEGER'
(<si_unit>) =
m|kg|s|A|K|mol|cd|N|JT]..

Figure 16. Definition of a unit annotation

The unit checking aspect works similarly to the type checking
aspect, taking advantage of these annotations the programmer can
use in their code. We have a usage of the annotate pattern which
matches all unit annotations, as they have been specified. Around
these annotations, we weave code which stores the type information
and ensures that there is no conflict with the current units held in the
variable and the ones the annotation specified. We apply these units
as specified by the annotation when they are accessed by using the
get pattern, and store these units in a struct which contains both
the units as well as the original value. The original value is stored
in a val field, and the units are stored in a unit field as an array con-
taining the exponents of each of the 7 base SI units. For example, a
value of 3 newtons would be converted to base SI units, kg - m/ $2,
and stored as struct(’val’,3,’units’,[1,1,-2,0,0,0,0]).
Wrapping all units in such a structure would result in disruption of
the normal program execution. To handle this, we perform a unit
removal whenever we cannot be certain that such a struct would be
handled appropriately, for example when it is used as a parameter
in function calls, or used as an index for an array. We also match
all arithmetic operations, and, using separate actions for each op-
eration, determine what the units will be after a line of code is ex-
ecuted. In the case of addition, subtraction and exponentiation, we
also ensure that there is no conflict in the units of the operands.

47

From the point of a unit annotation onward, any addition or sub-
traction operations between a specified variable and another vari-
able that has not been annotated with the same units will result in an
error, and the programmer will be informed of the mismatch. Simi-
larly, exponentiation performed with an exponent that has units will
also result in an error. Using the set pattern, we check on each as-
signment whether a unit annotation has been violated, throwing an
error when an assignment is made to that variable that has units
other than those specified.

As with the type checking aspect, the use of annotations allows
a programmer to run the program with the unit check on, ensure
no unit violations take place, and then run the program without
the aspect afterwards to avoid the overhead associated with unit
checking.

4.3 Profiling Real Positive Integers

The default numeric data type in all MATLAB programs is a double-
precision floating point. This has some advantages for scientific
programmers, as doubles are more likely to be used in most sci-
entific computations. Not having to worry about conversions be-
tween reals and integers allows scientific programmers to focus on
the functionality of their program. One negative side effect of this,
however, is that all arrays in MATLAB can be indexed using real
numbers. Given that indexing with a non-integer value is not mean-
ingful, MATLAB only allows certain classes of real numbers to be
used for indexing, “real positive integers”.

A real positive integer is a floating point number which corre-
sponds to an integer value. Checking whether or not a particular
variable is a real positive integer at all program points is a tedious
task for a programmer. However, making a mistake in using a value
that is not a real positive integer when one is required will result in
unexpected runtime errors. In addition, it presents some difficulty
for those interested in translating MATLAB programs to other lan-
guages, as it cannot necessarily be checked statically. To aid these
two groups, an aspect was created to determine which variables
cannot be safely used for indexing.

This aspect, outlined in Figure 17 takes advantage of the type
pattern, matching on all array accesses which do not contain real
integers. By taking note of the variables which are not real integers,
we can know which variables would be unsafe to use for array
access operations. The pattern realint matches all array accesses
which are not real positive integers. The action actRealInt uses
the name and line context selectors to store the name of the
variable being accessed, as well as the line number at which it
was accessed. At the end of the execution of the program, the
actReallInt action prints the result of the profiling, and informs
the programmer as to which variables were unsafe, and the lines
where they were found to be unsafe.

4.4 Profiling 1 Dimensional Arrays

Another area where profiling MATLAB is useful is array dimen-
sions. As MATLAB is a matrix-based programming language, a one
dimensional array can refer to either a matrix with only 1 column
and several rows or a matrix with only 1 row and several columns.
This differs from other more conventional programming languages,
where information stored in a one dimensional array does not have
an orientation. While the data contained in a one dimensional ar-
ray may seem the same to a programmer regardless of orientation,
the orientation can change the functionality of a program. An im-
properly oriented array could lead to program terminating runtime
errors, or to data being improperly handled, causing incorrect re-
sults.

To aid programmers in understanding their code, we provide an
aspect which profiles one dimensional arrays was written, as out-
lined in Figure 18. We match on all assignments of one dimensional

aspect safeindex

properties

nonrealint = container.Map;

end

patterns
realint : get(x)&class(— realinteger);
exec : mainexecution ();

end

actions
actReallnt : after realint : (name,line)

unrealintlines = nonrealint [name]

if (—ismember(unrealintlines , line))
nonrealint [name] = [unrealintlines
end

line |
. after exec

results

end
end

Figure 17. Outline of real integer profiling aspect

arrays, and store information about the orientation and size of the
array. At the end of execution, of the program, the programmer is
informed of the orientation of the arrays. Weaving and running this
aspect provides the programmer with certainty that their arrays are
handled correctly.

1 aspect profileoned

2 properties

3 columnvars = container.Map;

4 rowvars = container.Map;

5 end

6

7 patterns

8 onedcolumn : set(x)&dimension(1,x);
9 onedrow : set(x)&dimension(x,1);

10 exec : mainexecution ();

1 end

12

13 actions

14 actColumn : after onedcolumn : (name,line)
15

16

17 columnslines = columnvars[name]

18 if (mismember(columnslines,line))

19 columnvars[name] = [columnslines line]
20 end

21

2 actRow : after onedrow : (name,line)
23

24

25 rowslines = rowsvars|[name]

26 if (—ismember(rowslines, line))

27 rowvars[name] = [rowslines line |
28 end

29

30 results : after exec

31

32

33 end

34 end

Figure 18. Outline of one dimensional array profiling aspect

48

The aspect itself consists of two primary patterns, both of which
make use of the dimension pattern. onedcolumn catches all ar-
ray assignments which correspond to a 1-dimensional column,
and onedrow does the same for 1-dimensional rows. The actions
actColumn and actRow, are performed after the assignments to
the 1-dimensional array are made. The name and line context se-
lectors are used so we can store information about the variable
being assigned to, and the location in the code where the assign-
ment took place. The action results, called after the execution of
the program, prints out a list of assignments made to 1-dimensional
arrays over the course of the program, consisting of the name, the
line it occurred on, and the orientation.

4.5 Loop Transformations with Aspects

In addition to the aspects which help manage type information,
we have also contributed new aspects which the goal of helping
programmers improve the efficiency of their code. One such aspect
is the loop unrolling aspect. Loop unrolling is a fairly simple
transformation, in which the body of a loop is executed several
times per loop iteration. The result is that the loop condition needs
to be tested fewer times, and fewer jumps are required. The cost of
this transformation is that the program’s code size increases, and
may experience slowdown due to poor register usage. However,
unrolling loops by hand is tedious and time consuming, requiring
large amounts of code to be copied and repeated. In addition, if
loop unrolling decreases performance, additional effort must be
expended to repair the code to its original state. This additional
programming overhead decreases the appeal of this transformation.

In order to automate the process, and decrease the effort re-
quired to determine whether manual loop unrolling is a beneficial
transformation, we introduce an aspect which unrolls for loops.
This aspect takes advantage of newly introduced loop functional-
ity, as well as annotations. In order to unroll the desired number
of times, the unroll aspect takes information from an unroll anno-
tation, which the programmer may place in their code, and which
takes the form @unroll 10. It takes as an argument the number of
times the loop should be unrolled, and from the point of the anno-
tation onward, for loops will be unrolled the specified number of
times. Due to limitations of the ASPECTMATLAB engine, the only
accepted values for the unrolling parameter are 2,3,4,5, and 10. The
body () call is used to duplicate the loop body multiple times. The
result of weaving the aspect is that each loop will be unrolled to 5
extents (2,3,4,5, and 10), and at runtime, the loop which matches
the desired number of unrolls will be run.

aspect reversal

1

2

3 actions

4 reversal : around loopp : (looptype, obj)
5 if (strcemp(looptype, ' for "))
6 i = size (obj);

7 while(i>0)

8 loopiterator = obj(i)
9 body()

10 i=i-1;

1 end

12 end

13 end

14 end

Figure 19. Outline of loop reversal aspect

Another loop transformation that can be performed with aspects
is loop reversal. The transformation involves reversing the order
in which values are assigned to the index variable. For example,
instead of iterating over the set of values from 1 to 100, we iterate
from 100 to 1. Like loop unrolling, loop reversal is a fairly simple

optimization, but performing it by hand on each loop to determine
its value is time consuming. Again, we introduce an aspect which
automates the process of reversing loops. This aspect functions by
executing the body with a loop iterator that proceeds in reverse.
This aspect, given in Figure 19 and which involves only a few lines
of aspect code, demonstrates the ease with which transformations
can be executed.

5. Implementation

While the original implementation of ASPECTMATLAB provided a
clean means for weaving aspect-oriented code into MATLAB, the
implementation, making use of MATLAB classes, was particularly
slow. Aspect code was converted into MATLAB classes, with ac-
tion code being converted into MATLAB class methods. Properties,
as well as methods used by aspect code remain part of the MAT-
LAB class after compilation. These properties and methods are then
referenced from the appropriate join points in the base code. Un-
fortunately, object-oriented MATLAB classes require a significant
amount of overhead to access their methods and properties, enough
to cause woven code to run many times slower than the base code
on its own. In order to eliminate this slowdown of aspect code, we
inline the action code, and make local copies of aspect properties
to avoid unnecessary overhead.

To demonstrate our enhancements, we look at the weaving of a
simple aspect which counts flops, shown in Figure 20, and apply it
to a heat equation solver in Figure 21, the result of which is shown
in Figure 22.

aspect flopcount

1

2 properties

3 count = 0;

4 end

5

6 patterns

7 flopp : op(x);

8 end

9

10 actions

11 aflop: before flopp
12 count = count + 1;
13 end

14 end

15 end

Figure 20. Simple aspect to count all floating point operations

function solveHeatEquation(a, steps)

1
2 tN=3;

3 N=300;

4 h =2pi/(N-1);

5 X=[h:h:2%pi];

6 U0 =0xX;

7 UO(round(end/2.2):round(end/1.8)) = 1;
s D= (Dxx(N)/h"2);

9 function y = F(t,u)

10 y = axD=u;

1 end

12 W = RungeKuttad(@F,[0, tN],U0,steps ,1);
13 disp('computation finished ');

14 end

Figure 21. Matlab function which solves the heat equation

After weaving, the methods corresponding to action code would
be called from the join points which match the associated patterns.

49

1 classdef flopcount < handle
> properties
3 count = 0;
4 end

5 methods
6 function [] = flopcount_aflop (this)
7 count = (count + 1);

8 end

9 end

10 end

Figure 22. Generated code for the flopcount aspect for Figure 20

5.1 Inlining of Action Code

While the weaving shown in Figure 22 provides a functional so-
lution, calling a method from a MATLAB class entails a significant
amount more overhead than a typical MATLAB function call. Look-
ing at the woven code, shown in Figure 23, it can be noted that there
are many calls to the method flopcount . flopcount_aflop().

1 function [] = solveHeatEquation(a, steps)
2 global AM_GLOBAL;
3 if isempty(AM_GLOBAL)
4 AM_GLOBAL flopcount = flopcount;

5 AM_EntryPoint 0 = 1;

6 else

7 AM _EntryPoint_0 = 0;

s end

9 tN=3;

100 N=2300;

1 AMtmpBE 0=2

12 AM_GLOBAL.flopcount.flopcount_aflop();

13 AM_tmpBE_l = (AM_tmpBE_0 * pi)

14 AM_GLOBAL.flopcount.flopcount_aflop();

15 h = (AM_tmpBE_1/(N — 1));

16 AM_tmpBE2 =2

17 AM_GLOBAL.flopcount.flopcount_aflop();

18 AM_tmpBE_3 = (AM_tmpBE_2 * pi)

19 X=([(h: h: (AM_tmpBE_2 = pi))]);

20 AM_tmpBE 4 =0

21 AM_GLOBAL.flopcount.flopcount_aflop();

2 AM_tmpBE_S5 = (AM_tmpBE_4 * X)

23 U0 =AM_tmpBE_S;

24 AM_GLOBAL.flopcount.flopcount_aflop();

25 UO((round((end / 2.2)) : round((end / 1.8)))) = 1;
26 AM_GLOBAL.flopcount.flopcount_aflop();

27 D=(Dxx(N)/ (h "~ 2));

23 W = RungeKutta4(@F, [0, tN], UO, steps, 1);

29 disp('computation finished ");
3 if AM_EntryPoint_0

31 AM_GLOBAL = [];

2 end

33 end

Figure 23. Example of code woven before inlining of action code

To determine the impact of these calls to MATLAB classes,
we test the overhead of the call itself by making calls to empty
functions. In Figure 5.1, we show the time required for a call to
an ordinary MATLAB function empty (). This is compared with
calls to a class method, empty (obj), which can also be invoked
by calling obj .empty (). We also compare to calls to a static class
method test.empty(). These results demonstrate that calls to
object-oriented MATLAB code are more than 12 times slower than
ordinary function calls, and that static methods are slower still.

To increase the performance of woven aspect code, it would be
ideal to do away with these method calls. One possible solution
would be to performing a simple inlining on the function calls

Table 1. Function call overhead for methods in object-oriented

MATLAB
Time (s) for Time (us)
1000000 calls per call
empty() 0.104 1.04
empty(obj) 1.294 12.94
obj.empty() 1.922 19.22
test.empty() 2473 24.73

woven into the base code. This would require further work to be
done in order to inline around actions, where we have to deal
with proceed calls that require passing of context information. A
simpler option is to weave the action code directly into the base
code without ever writing it into the aspect class as a method.

We do this by performing a renaming on the action code, to
ensure that operations local to the aspect do not interfere variables
in the base code, and then insert the action code can be inserted
directly into the AST. Assignments to set up context selectors used
by the action code are inserted before the action code itself in the
AST.

5.2 Considerations for Around Advice

Special consideration must be taken for the case of around advice.
Due to the fact that the original join point is replaced when using
around advice, the original join point must either be removed from
the AST, or placed at the location of a proceed call if one is made.
In addition, we also have to consider the fact that around actions
can return data, and the data returned should correspond to the
result of the execution of the original join point. To accomplish
these tasks, we replace proceed calls with the original join point,
and set the result aside, to be returned as a result at the end of the
around advice.

The body calls are handled similarly to proceed calls, with the
difference being that we replace the call to body with the entirety
of the body of the loop.

It is worth noting that the previous implementation’s handling
of around advice required passing of context information to action
code. In order to ensure that the join point is correctly executed
when a proceed call is made, it was necessary to store all necessary
context information within the action method, and use a switch
statement to refer to the context of specific join points. By writing
the action code directly into the AST of the base code, instead
of making a call to a class method, this overhead is unnecessary.
We can simply execute the join point with its original context
intact, resulting in further performance enhancements when several
context selectors are used.

5.3 Local Copies of Aspect Properties

With action code having been inlined, aspect properties referenced
in action code must still be accessed through the generated MAT-
LAB class. An example of this can be seen in 24, where calls to
a counter stored in the MATLAB class are performed before every
flop. While the inlining process does reduce a significant amount
of the overhead involved in woven code, the overhead from access-
ing these object properties may still be significant. We carried out
a study to determine the impact of property accesses and assign-
ments by performing each 1000000 times within a loop. The results
are shown in Figure 5.3. While not as significant as the overhead
for calls to object-oriented methods, property accesses and assign-
ments still take up more time than function calls to ordinary MAT-
LAB code, and are much slower than assignments to local variables.

In order to further reduce the overhead due to frequent accessing
of object properties it is helpful to make local copies of properties

50

1 function [] = solveHeatEquation(a, steps)
2 global AM_GLOBAL;

3 if isempty(AM_GLOBAL)

4 AM_GLOBAL flopcount = flopcount;

5 AM_EntryPoint_0 = 1;
6
7
8

else
AM _EntryPoint_0 = 0;
end
9 tN=3;
10 N=300;

1 AM_tmpBE. 0 =2

> AM_GLOBAL.flopcount.count = AM_GLOBAL.flopcount.count + 1;
13 AM_tmpBE_1 = (AM_tmpBE_0 * pi)

14 AM_GLOBAL .flopcount.count = AM_GLOBAL.flopcount.count + 1;
15 h = (AM_tmpBE_1/(N — 1));

16 AM_tmpBE2 =2

17 AM_GLOBAL.flopcount.count = AM_GLOBAL.flopcount.count + 1;
18 AM_tmpBE_3 = (AM_tmpBE_2 pi)

19 X=([(h:h: (AM_tmpBE_2 = pi))]);

20 AM_tmpBE 4 =0

21 AM_GLOBAL.flopcount.count = AM_GLOBAL.flopcount.count + 1;
2 AM_tmpBE_S5 = (AM_tmpBE 4 * X)

23 U0 =AM_tmpBE_S;

24 AM_GLOBAL.flopcount.count = AM_GLOBAL.flopcount.count + 1;
25 UO((round((end / 2.2)) : round((end/ 1.8)))) = I;

26 AM_GLOBAL.flopcount.count = AM_GLOBAL .flopcount.count + 1;
27 D=(Dxx(N)/ (h © 2));

28 W = RungeKutta4(@F, [0, tN], UO, steps, 1);

20 disp('computation finished ");
s if AM_EntryPoint 0

31 AM_GLOBAL = [];

2 end

33 end

Figure 24. Example of code woven after inlining of action code

Table 2. Property access and assignment overhead for object-
oriented MATLAB

Time (s) for | Time (us)

1000000 calls per call
property access 0.366 3.66
property assign 0.286 2.86

whenever possible. By doing this, base code has many matched join
points, or action code which makes reference to the same property
several times, can be rendered more efficient. One precaution we
must take when making local copies is ensuring that the properties
are updated before they are used or modified elsewhere in the
code. To ensure this, we must copy back to the object prior to any
function calls to code that is woven by the same aspect. Similarly,
we must be certain to copy the property back to the associated
object before the end of the woven function as well.

6. Performance

We provide the results of experiments performed on a set of MAT-
LAB benchmarks, which demonstrate the significance of the opti-
mization made to the ASPECTMATLAB compiler, as well as the
utility of the scientific aspects provided. The benchmarks used
are real-world programs, which have come from various projects
targeting MATLAB, such as FALCON [14] and OTTER [12] ,
Chalmers University of Technology? and “The MathWorks” Cen-

2 http://www.elmagn.chalmers.se/courses/CEM/

Table 3. Time in seconds for execution of benchmarks, and slowdowns with woven aspects

Time (sec) Slowdown
Original Type Unit Dimension Integer Loo Loo
Benchmark Proiram Che};iing Checking Profiling Proﬁ%ing Unrollri)ng Reverrs)al

beul 24.95 1.65 3.78 1.42 1.29 - -
crni 23.56 1.29 7.23 1.34 1.24 0.97 1.05
diff 23.82 3.20 3.75 1.39 1.28 1.18 1.11
fdtd 25.23 3.58 16.15 1.54 1.48 0.96 -
Sfiff 24.50 1.30 1.24 1.36 1.34 0.98 0.97
hnor 26.12 1.04 - 1.18 1.19 1.00 1.01
mils 25.05 1.17 - 1.55 1.52 - -
nbld 25.19 3.69 5.88 1.53 1.50 1.04 -
nb3d 24.67 3.53 6.60 1.53 1.42 1.08 -
capr 24.78 1.29 8.10 1.79 1.71 0.98 -
Geometric Mean 2.00 5.43 1.46 1.39 1.03 1.03

tral File Exchange™. To evaluate performance, we run each of the

original benchmarks in MATLAB without weaving any aspects. We
then weave code for each of the scientific aspects we have devel-
oped using the ASPECTMATLAB compiler, and run the woven code
in MATLAB. Our performance analysis compares the running time
of several benchmarks with each aspect. We then look at the im-
pact of the optimizations outlined in Section 6 by performing the
same experiment with them disabled. For our analysis, we ran all
programs on MATLAB version 2013a, and used an Intel Core i7-
3820 CPU @ 3.60GHz x 8 processor and 16 GB memory machine
running Ubuntu 12.04 LTS.

6.1 Experimental Results

In Table 3, we list the execution time and slowdown of several
benchmarks*.

Given that most of our aspects involve several additional op-
erations per operation in the base code, it is expected that we see
some significant reducing in performance after weaving. We can
note that both the type checking and unit checking aspects result in
notable increases in runtime, with the type checking aspect running
2 times slower than the original program, and the unit checking as-
pect running 5.43 times slower than the original program. These
slowdowns are the result of a large number of checks that must
be made at every assignment to ensure the program is behaving as
specified. In particular the fdtd benchmark runs 16.15 times slower
when woven with units. The reason behind this is that there are
many quantities which can be annotated with units, and as a result
most computations require several secondary computations to en-
sure unit consistency. This may seem cumbersome, but one must
consider that once a user has ensured their program is operating as
expected it is simple to cease usage of these aspects. The profiling
aspects also feature a notable slowdown, running at 1.46 and 1.39
times slower than original program. However, these slowdowns are
reasonable considering their application.

Unlike the other aspects, we hope that the loop unrolling and
loop reversal aspects may lead to some performance increase, as
their purpose is to perform some optimizations prior to running the
program. While on average neither of these aspects outperforms

3 http://www.mathworks.com/matlabcentral/fileexchange

4The time is listed in seconds, and the slowdown is expressed as a factor
of the original speed. The slowdown one can expect to experience with
a given benchmark is expressed by the geometric mean. Aspects whose
slowdowns are denoted by a ”-”” were not run with the particular benchmark.
The reasoning for this is that does not make sense to apply all aspects to all
benchmarks - for example, the unit checking aspect cannot reasonably be
used with a benchmark featuring no quantities to which units can be applied
units.

51

the base MATLAB code, we can note that the Loop Unrolling
aspect runs faster for three benchmarks, crni, fdtd, and fiff, and
that the Loop Reversal aspect runs faster on fiff. While the aspects
result in a slowdown on average, it is easy to weave a program
with these aspects, and if it performs better, continue using woven
code or use it as an indication that one could consider performing
the optimization manually. Otherwise, the aspects can simply be
abandoned.

6.2 Analysis of Engine Improvements

In this section, we demonstrate the value of the engine improve-
ments made to the ASPECTMATLAB compiler. First, we perform
the same experiments as in the previous section, but we disable the
function inlining and the local copy of aspect variable optimiza-
tions outlined in section Section 5. Of note, we do not perform
this comparison with the loop optimization aspects, as the body
keyword requires that these optimizations be in place in order to
function. The results of this experiment are shown in Table 4. From
these results, it’s clear that the two optimizations have a signifi-
cant impact. The unit checking aspect runs at 74.05 times slower
than the base MATLAB program, making its use impractical. The
type checking aspect, while not as bad, still performs 43.23 times
slower, which again is an unreasonably large slowdown that makes
it too cumbersome to use.

Table 4. Time in seconds for execution of benchmarks, and slow-
downs with aspects woven without function inlining and without
local copies of aspect variables

Time (Sec) Slowdown
Original Type Unit Dimension Integer
Benchmark Program Checking Checking Profiling Profiling

beul 24.95 25.71 50.51 14.85 13.73
crni 23.56 26.77 100.45 13.26 12.78
diff 23.82 24.18 39.51 13.04 12.41
fdid 25.23 81.78 116.18 9.67 9.45
Sfilf 24.50 32.25 35.12 14.34 13.97
hnor 26.12 31.69 - 13.51 13.83
mils 25.05 68.67 - 12.48 10.74
nbld 25.19 85.75 129.13 11.62 12.84
nb3d 24.67 64.33 115.58 9.89 11.66
capr 24.78 96.59 149.02 9.50 7.96
Geometric Mean 43.23 74.05 12.07 11.77

In Table 5, we show the results of the same experiment after
enabling function inlining, but without the local copies of aspect
variables. The significant decrease in runtimes that result from en-
abling function inlining demonstrate clearly the importance of that
optimization. Clearly, the function call overhead in object-oriented
MATLAB is important to consider for those who are concerned
about performance, as eliminating it has obtained a speedup of

Table 5. Time in seconds for execution of benchmarks and slow-
down with aspects woven with function inlining but without local
copies of aspect variables

Time (Sec) Slowdown

Original Type Unit Dimension Integer

Benchmark Proiram Che}g)(ing Checking Profiling Proﬁlging
beul 24.95 8.07 10.85 5.00 4.85
crni 23.56 8.07 14.34 5.25 4.67
diff 23.82 7.97 10.98 4.66 4.29
Jfdtd 25.23 9.94 2225 5.52 5.39
Sfiff 24.50 6.24 9.88 5.71 5.29
hnor 26.12 4.23 - 4.49 3.89
mils 25.05 8.17 - 3.70 3.50
nbld 25.19 5.63 16.68 5.74 5.65
nb3d 24.67 6.63 19.11 5.75 5.54
capr 24.78 4.99 16.00 6.13 5.99
Geometric Mean 7.02 14.26 5.14 4.84

about 5 times in the case of the unit checking aspect. As a lack
of function inlining implies that the program must make function
calls each time action code is to be executed, programs with a
large number of pattern matches experience a much greater slow-
down. Thus the type checking and unit checking aspects, which
will often perform several actions for a single line of code, experi-
ence the most significant slowdowns. Similarly, accesses to aspect
variables is time consuming, with all aspects performing about 3
times faster with the local copies being made. When using object-
oriented MATLAB code, the time required to access object prop-
erties is significant, and any program which makes heavy use of
object properties would likely see a notable performance increase
through local copies.

6.3 Code Size Increase

Another factor to consider is that using aspects also results in a
notable bloating of the program size after weaving. The results
of our code size evaluation can be seen in 6, which shows the
increase in lines of code for woven aspects over the base code of
the benchmarks the aspects are woven into. All aspects result in
a significant increase in code size, with the type aspect resulting
in woven code that is on average 4 times as long than the original
and the unit aspect resulting in woven code that is on average 14
times longer than the original. This may seem like a significant
increase, but it is to be expected. Due to the fact that all action
code is inlined, our aspects can end up weaving several lines of
code for each line of code in the original program. In addition,
simplifications which split the program into three-address code in
order to allow for precise weaving also greatly expand the program
size. For most applications, this significant increase in code size is
likely not too great a concern.

7. Related Work

In this paper, we presented the development of an aspect-oriented
compiler targeted at dynamically typed, array based scientific lan-
guages. In this section, we contrast our work with other approaches
to the problems we address.

There have been very few attempts at bringing aspect-oriented
techniques to scientific programming. Of note is the work by Car-
doso et Al. [3], who also target the MATLAB language, and bring
aspect-oriented features to it. Their approach focuses primarily
on the problems of monitoring variables and tracking behaviour
in embedded systems. The implementation they propose features
only static pointcuts, matching function calls, variables, functions,
tags, programs, and MATLAB reserved keywords. They introduce
the concept of “tags”, special comments that are acknowledged by
their compiler in a similar fashion to ASPECTMATLAB annotations.
These tags however, operate somewhat differently from our anno-

52

tations, in that while they allow code to be woven around them,
they cannot contain information which might be used by the woven
code.

Another approach to enriching scientific programming using
aspect-oriented techniques is demonstrated by Irwin et al. [5]. They
introduce an aspect-oriented approach to handling sparse matrix
code. Their approach allows for a user to write high level matrix
code, but annotate it with information regarding an efficient imple-
mentation. As a base language, they approximate the MATLAB lan-
guage, but allow additional information to be passed regarding the
data representation of matrices. This information is then interpreted
by an aspect weaver, which weaves the appropriate data structure
into the base code, which is then compiled into C/C++.

A similar approach for handling the dynamic types in MATLAB
using an aspect-orientation, which inspired our current approach,
has been documented in [4]. It proposes the use of “atype” state-
ments, which provide similar type information about variables as
we require in our type annotations. The “atype” approach was a
paper design and did not have an implementation. Another sig-
nificant difference between this proposed strategy and the one we
have adopted is the placement of annotations inside of MATLAB
comments. The tradeoff here is that by placing type information in
comments, it is possible to run annotated code without first using
the ASPECTMATLAB compiler, however by using atype statements
within MATLAB code, it would be possible to have an aspect which
matches these statements, as well as a MATLAB function which
executes the necessary type checking code even if aspect code is
not woven - at some performance cost. For our implementation,
we have decided that the best strategy would be to ensure that it is
possible to run code without checks or performance loss.

Other approaches to types in dynamically typed scripting lan-
guages have been demonstrated by Ren et al. [13] , who introduce
rtc, an annotation-based dynamic type checker for Ruby. Their de-
sign goals are similar to our own, in that they allow for checking
types only when required, to support rapid prototyping and provide
flexibility to the programmer. Their approach differs from our own
in that it exists a Ruby library with methods for type checking on
objects, as opposed to using a separate compilation process.

In Aspect], it is possible for patterns to match on constructs
based on the annotations they are annotated with. Note, this is dif-
ferent from MATLAB, where our annotations do not annotate con-
structs, and instead designate important areas in code. Noguera
et al. [11], introduce the idea of dynamic annotations to Aspect].
These achieve a similar goal to what we have done with ASPECT-
MATLAB annotations, though are presented in a very different con-
text. Their implementation allows for annotations to communicate
with the aspect compiler by associating them with conditions that
determine when they should be active. This is somewhat limiting,
as the communication is limited to whether the annotation is either
in an on or off state, but succeeds at providing additional flexibility
to users of Aspect].

In our paper, we provide an aspect-oriented approach to dimen-
sional analysis in MATLAB. Using units of measurement as types
has also been implemented in other languages, such as F# [7]. Their
implementation allows for measure constructors, which can be used
to parameterize other types. The end result is similar to what we
have achieved, with units being automatically updated and checked
after each calculation. Other approaches to handling dimensional
analysis have been done in with the Osprey project [6] by Jiang et
al. They introduce a constraint based approach which models units
as types. They use annotations on variables, which contain similar
information to our unit annotations, and use these annotations to
statically detect and report errors.

Table 6. Size in lines of code of benchmarks and increase after weaving aspects

LOC Increase in LOC
Original Type Unit Dimension Integer Loo Loo
Benchmark Proiram Che}gl)(ing Checking Profiling Proﬁ%ing Unrollri)ng Reverrs)al

beul 23 4.30 10.82 2.10 2.08 - -
crni 194 3.89 12.15 2.24 2.26 42.12 3.49
diff 115 4.76 9.12 2.13 2.05 46.22 421
fdtd 77 5.20 43.19 1.98 2.13 37.28 -
Siff 105 3.42 16.84 2.38 2.34 31.81 4.12
hnor 22 3.13 - 2.27 2.00 44.63 2.45
mils 31 2.18 - 1.87 1.94 - -
nbld 166 4.95 12.36 2.34 2.37 57.16 -
nb3d 141 5.79 13.54 2.62 2.51 28.12 -
capr 206 4.30 12.07 2.56 2.24 15.23 -
Geometric Mean 4.03 14.66 2.24 2.19 40.06 3.49

8. Conclusions and Future Work

In this paper, we have provided several valuable extensions to the
ASPECTMATLAB language. We have carried out various optimiza-
tions to improve the performance of aspect-woven code, and in-
troduced several new aspects with the intent of helping MATLAB
programmers better understand and use their programs.

The introduction of the annotation pattern allows for program-
mers to communicate with aspect code through annotations, en-
abling an exchange of relevant information. The type and dimen-
sion patterns allow programmers to further specify conditions un-
der which they expect their action code to be woven. The new body
keyword for around advice on loops allows more flexibility for pro-
grammers who wish to take advantage of loop patterns.

The introduction of new aspects makes it easy for programmers
to get started using ASPECTMATLAB. By introducing a variety of
new aspects, it is possible for novice programmers to gain immedi-
ate benefits from using ASPECTMATLAB, even without a full un-
derstanding of the language itself. Our type and unit checking as-
pects allow for MATLAB users to better communicate the intentions
of their code, and provide them with tools to verify that their code
operates as expected. Our profiling aspects also extend program-
mers’ ability to understand their code. The loop transformation as-
pects we have included make it easier for programmers to find ways
in which they can optimize their code.

By implementing several optimizations to the woven ASPECT-
MATLAB code, we significantly improve performance of aspect-
oriented code. These optimizations have been demonstrated to have
a significant impact, and expected performance gains have been
shown to easily amount to an order of magnitude.

Our future work extends in several directions. The language
itself holds great potential for extension, and new patterns can
be created to target MATLAB language constructs that we do not
currently handle.

Of utmost importance is the development of more general-
purpose aspects which would also contribute to the utility of As-
PECTMATLAB. By packaging the compiler with a greater num-
ber of aspects that easily allow scientists to gain advantages with
their MATLAB programming, there will be an enhanced incentive to
use the compiler. Performance improvement is another area of our
future work. While our experience with inlining action code has
shown it to be beneficial in most cases, it is possible that a more
selective heuristic for determining when function inlining should
be performed could lead to further performance increases. Finally,
knowledge obtained from type annotations as we have described
could also be used by a MATLAB JIT compiler to produce more
efficient code.

53

The ASPECTMATLAB compiler and example aspects described
in this paper can be found at http://www.sable.mcgill.ca/
mclab/projects/aspectmatlab/.

References

[1] T. Aslam. AspectMatlab: An Aspect-Oriented Scientific Programming
Language. Master’s thesis, McGill University, 2010. URL http:
//www.sable.mcgill.ca/mclab/aspectmatlab/index.html.

[2] T. Aslam, J. Doherty, A. Dubrau, and L. Hendren. AspectMatlab: An
Aspect-Oriented Scientific Programming Language. In Proceedings
of the 9th International Conference on Aspect-Oriented Software De-
velopment, pages 181-192, March 2010.

[3] J. a. M. P. Cardoso, J. a. M. Fernandes, M. P. Monteiro, T. Carvalho,
and R. Nobre. Enriching MATLAB with aspect-oriented features for
developing embedded systems. J. Syst. Archit., 59(7):412-428, Aug.
2013. ISSN 1383-7621. . URL http://dx.doi.org/10.1016/j.
sysarc.2013.04.003.

[4] L. Hendren. Typing aspects for MATLAB. In Proceedings of the Sixth
Annual Workshop on Domain-specific Aspect Languages, DSAL 11,
pages 13-18, New York, NY, USA, 2011. ACM. ISBN 978-1-4503-
0648-5. . URL http://doi.acm.org.proxyl.library.mcgill.
ca/10.1145/1960496.1960501.

[5] J. Irwin, J.-M. Loingtier, J. Gilbert, G. Kiczales, J. Lamping, A. Mend-
hekar, and T. Shpeisman. Aspect-oriented programming of sparse ma-
trix code. In Y. Ishikawa, R. Oldehoeft, J. Reynders, and M. Thol-
burn, editors, Scientific Computing in Object-Oriented Parallel Envi-
ronments, volume 1343 of Lecture Notes in Computer Science, pages
249-256. Springer Berlin Heidelberg, 1997. ISBN 978-3-540-63827-
8.. URL http://dx.doi.org/10.1007/3-540-63827-X_68.

L. Jiang and Z. Su. Osprey: A practical type system for validating
dimensional unit correctness of C programs. In Proceedings of the
28th International Conference on Software Engineering, ICSE 06,
pages 262-271, New York, NY, USA, 2006. ACM. ISBN 1-59593-
375-1. . URL http://doi.acm.org.proxyl.library.mcgill.
ca/10.1145/1134285.1134323.

A. Kennedy. Types for units-of-measure: Theory and practice. In Pro-
ceedings of the Third Summer School Conference on Central European
Functional Programming School, CEFP’09, pages 268-305, Berlin,
Heidelberg, 2010. Springer-Verlag. ISBN 3-642-17684-4, 978-3-642-
17684-5. URL http://dl.acm.org.proxy2.library.mcgill.
ca/citation.cfm?id=1939128.1939136.

[8] MathWorks. MATLAB Programming Fundamentals. The MathWorks,
Inc., 2009.

[9] C. Moler. The Growth of MATLAB and The MathWorks
over Two Decades, . http://www.mathworks.com/company/
newsletters/news_notes/clevescorner/jan06.pdf.

[10] C. Moler. The Origins of MATLAB, . http://www.mathworks.
com/company/newsletters/news_notes/clevescorner/
dec04.html.

[6

—_

[7

—

[11]

[12]

C. Noguera, A. Kellens, D. Deridder, and T. D’Hondt. Tackling
pointcut fragility with dynamic annotations. In Proceedings of the 7th
Workshop on Reflection, AOP and Meta-Data for Software Evolution,
RAM-SE ’10, pages 1:1-1:6, New York, NY, USA, 2010. ACM.
ISBN 978-1-4503-0536-5. . URL http://doi.acm.org.proxyl.
library.mcgill.ca/10.1145/1890683.1890684.

M. J. Quinn, A. Malishevsky, and N. Seelam. Otter: Bridg-
ing the gap between MATLAB and ScaLAPACK. In Proceed-
ings of the 7th IEEE International Symposium on High Perfor-
mance Distributed Computing, HPDC °98, pages 114—, Washing-
ton, DC, USA, 1998. IEEE Computer Society. ISBN 0-8186-

54

[13]

[14]

8579-4. URL http://dl.acm.org.proxyl.library.mcgill.
ca/citation.cfm?id=822083.823199.

B. M. Ren, J. Toman, T. S. Strickland, and J. S. Foster. The Ruby Type
Checker. In Proceedings of the 28th Annual ACM Symposium on Ap-
plied Computing, SAC *13, pages 1565-1572, New York, NY, USA,
2013. ACM. ISBN 978-1-4503-1656-9. . URL http://doi.acm.
org.proxyl.library.mcgill.ca/10.1145/2480362.2480655.

L. D. Rose and D. Padua. Techniques for the translation of MATLAB
programs into Fortran 90. ACM Trans. Program. Lang. Syst., 21(2):
286-323, 1999. ISSN 0164-0925. .

