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Abstract

MATLAB is a popular dynamic array-based language used by en-
gineers, scientists and students worldwide. The built-in function
feval is an important MATLAB feature for certain classes of
numerical programs and solvers which benefit from having func-
tions as parameters. Programmers may pass a function name or
function handle to the solver and then the solver uses feval to
indirectly call the function. In this paper, we show that there are
significant performance overheads for function calls via feval, in
both MATLAB interpreters and JITs. The paper then proposes, im-
plements and compares two on-the-fly mechanisms for specializa-
tion of feval calls. The first approach uses on-stack replacement
technology, as supported by McVM/McOSR. The second approach
specializes calls of functions with feval using a combination of
runtime input argument types and values. Experimental results on
seven numerical solvers show that the techniques provide good per-
formance improvements.
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D.3.4 [Processors]: Compil-
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1.

MATLARB is a dynamic array-based language used by scientists, en-
gineers and students in many disciplines. MATLAB’s high-level ma-
trix operators and dynamic typing makes the language suitable for
a wide variety of numerical computations. An additional important
feature of MATLAB is its support of higher-order functions through
the feval construct which is widely used in many classes of nu-
merical computations, including fitting functions, estimating Ordi-
nary Differential Equations, machine learning algorithms such as
simulated annealing, and general plotting functions. All of these
applications share a similar pattern, the main computation function
has a function parameter that can accept either a function handle,
or a function name as the actual argument. The body of the com-
putation function then repeatedly evaluates the function passed in
using feval.
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Historically, MATLAB has been mainly an interpreted language,
with an emphasis on efficient libraries, but no particular focus on
efficient execution. More recently, there have been several efforts to
provide more efficient execution engines such as Mathworks’ pro-
prietary MATLAB JIT Accelerator, first introduced in MATLAB
6.5 [22], and research efforts such as MaJIC [2] and the McLAB
group’s open source VM/JIT, McVM [5, 16].

Efficient JIT-based execution means that MATLAB can be used
for more than just prototyping or calling library routines - it can
now be used for a wide variety of user-defined applications. How-
ever, there remain many challenges to enable efficient execution,
and this paper focuses on the feval challenge.

To determine potential overheads of feval, we identified a
set of seven benchmarks that use algorithms that naturally use
feval, and performed initial experiments on three interpreters
(Octave, Mathworks MATLAB 7 in interpreter mode, and McVM
in interpreter mode), plus two JITs (Mathworks MATLAB with the
JIT enabled, and McVM with the JIT enabled).' These experiments
showed, in both the interpreter and JIT situations, that there are
significant overheads for calls via feval, as compared to direct
function calls and inlined function calls.

To reduce the overheads of feval, we then designed and im-
plemented two alternative dynamic mechanisms. The first mech-
anism is the more general of the two approaches. It can handle
a wider variety of uses of feval, and is based on on-the-fly
code generation and on-stack replacement (OSR) techniques im-
plemented in McVM [14]. The OSR-based technique identifies po-
tentially important feval calls, and then uses McVM’s OSR tech-
nology to specialize the feval calls to specific direct calls, and to
provide correct backup to the general case when the specialized
calls do not match the calling context. The second mechanism ex-
tends the McVM JIT on-the-fly code specialization mechanism to
specialize on the value of function parameters in those cases where
the parameter is used inside the body of the function as the first
argument to feval.

The main contributions of this paper are:

Measuring the cost of feval: We evaluated the overheads of
feval and show significant overheads for calls via feval
for important classes of benchmarks.

OSR-based specialization of feval: We developed a technique
to detect and instrument important feval sites with OSR
points, and we designed an OSR-based transformation which
can be done at the LLVM IR-level, without requiring access
to the generated assembly code. We also designed appropriate
JIT-time tests to optimize the guards required to determine if

!Octave is an open source interpreter-only implementation which does
not have a JIT.



the specialized call could be made or if the general backup path
should be taken.

JIT value-based specialization: We designed an extension to the
McVM JIT specialization mechanism. Previously specializa-
tion was performed based only on the dynamic types of func-
tion arguments. In the new approach, we also specialize on the
value of a function argument, for the case where that argument
is used as the first argument to a call to feval inside the body
of the function to be compiled.

Implementation in McVM: We implemented both proposed ap-
proaches in McVM. Our implementation is open source.

Experimental Results: We evaluated both approaches, comparing
them both to the original feval implementation, as well as to
hand-specialized versions of the program.

The remainder of the paper is structured as follows. In Section 2,
we present a complete MATLAB example, and we show our initial
experiments that demonstrate the large overheads for feval. In
Section 3, we give an overview of McVM and the OSR library
used in our implementation. Section 4 gives the background to the
standard feval implementation in McVM, and then shows how to
improve it using OSR. Section 5 provides the details of our second
approach based on specializing on the values of key function pa-
rameters. Section 6 reports on our experiments. For a set of seven
benchmark programs, we first discuss the overheads of feval;
then we assess the impact of our OSR-based function specializa-
tion under three different optimization settings; we conclude this
section by comparing the OSR-based specialization with the JIT
value-based specialization. We end the paper with a discussion of
related work in Section 7 and conclusions in Section 8.

2. Motivation and Problem

In order to provide some intuition about MATLAB and the feval
challenges, consider the example MATLAB function newton in List-
ing 1. As shown on line 1, the function takes four input arguments,
with the first argument fun corresponding to either the name of a
function or a function handle. Note that MATLAB has no declared
types, although the programmer certainly has some expected types
in mind, as indicated by the comments on lines 3 to 13. Indeed, not
only does the programmer expect the first argument to be a string
containing the name of a function, but she also expects the named
function to take one input argument and produce two outputs. This
is also clear from line 22, where feval is used to call the func-
tion provided by the argument fun. Listing 2 shows the definition
of fx3n, which is one possible function that could be provided to
newton.

The MATLAB function feval is a built-in function, that is used
in MATLAB to indirectly evaluate a function at run time. feval is
overloaded, with two versions available:

[yl, y2, ..] = feval(fhandle, x1, .., xn)

[yl, y2, ..] = feval(fname, x1, .., xn)

where fhandle is a first class type in MATLAB which can be bound
to a MATLAB built-in function or a user-defined function using the
‘@’ operator. If the second version is used, then fname must be a
string containing a single function name and cannot contain a path
to a function or a directory.’

For our example program in Listing 1, a typical call would be
one of the following:
newton(@fx3n, 3, 5e—16, 5e—16)
newton(’fx3n’, 3, 5e—16, 5e—16)

2See  http://www.mathworks.com/help/matlab/ref/
feval.html.
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function r = newton(fun,x0, xtol , ftol )

% newton Newton’s method to find a root of the scalar
% equation f(x) =0
% Synopsis:  r = newton(fun, x0, xtol , ftol )

% Input:  fun = ( string ) name of mfile that
% returns f(x) and f’(x).
% x0 = initial guess

% xtol = absolute tolerance on x.

% Smallest :  xtol =5xeps

% frol = absolute tolerance on f(x).
% Smallest :  ftol =5xeps

% Output: r = the root of the function

xeps = max(xtol,5xeps);
feps = max(ftol,5xeps);
x =x0; k=0;
maxit = 15; % Initial guess, current and max iterations
while k <= maxit

k=k+1;

% Returns f( x(k—1) ) and f’(x(k—1))

[f,dfdx] = feval (fun,x);

9% Smallest tols are Sxeps

dx = f/dfdx;
X =x —dx;
if ( abs(f) <feps ), r =x; return; end
if ( abs(dx) <=xeps ), r =x; return; end
end
end

Listing 1. Newton’s method to find a root of the scalar equation
f(x) =0, adapted from [19, 20]. Function fx3n is shown in Listing 2.

function [f, dfdx] = fx3n(x)
% fx3n Evaluate f(x) =x —x7(1/3) — 2 and
% dfdx for Newton algorithm
f=x —x.°(1/3) —2;
dfdx =1 —(1/3)*x."(—2/3);
end

Listing 2. Function fx3n from [19, 20].

where the first case passes a function handle and the second case
passes a string containing the name of the function.

Clearly algorithms such as newton are naturally parameterized
over the evaluation function, and MATLAB’s feval provides a
mechanism for this abstraction. However, one might wonder if the
use of feval causes any significant slow down. To determine this,
we studied the cost of feval implementations in three implemen-
tations of MATLAB: (1) Mathworks’ implementation for the MAT-
LAB programming language; (2) Octave, a GNU? open-source im-
plementation of the MATLAB language; and (3) McVM, our open
source MATLAB framework.

The Mathworks’ MATLAB system (called MATLAB in the ta-
bles) provides an interpreter for the language and also an accel-
erator (a JIT compiler). Octave is an interpreter for the MATLAB
language. It does not have a JIT compiler. Like Mathworks’ MAT-
LAB, McVM has an interpreter and an optimizing JIT compiler.
The precise machine and software configurations used for our ex-
periments is given in Figure 1(a). We conducted our experiments
on these systems over a set of MATLAB programs from numerical
computing domains. These benchmarks include programs for find-
ing the roots of polynomials and to integrate first order ordinary
differential equations. All but one (sim_anl 4) of our benchmarks
were collected from [20]. We give a short description, together

3http://www.http://www.gnu.org/software/octave/

4http://www.mathworks.com/matlabcentral/
fileexchange



with a static count of the total number of feval calls in the pro-
gram in Figure 1(a). The table also shows the number of feval
calls in a loop in each benchmark.

In Figure 1(c) and Figure 1(d), for each benchmark, we show
the execution times for the three systems: Octave, MATLAB and
McVM. For all our experiments, the execution times do not include
the start-up cost of the VM/interpreter. under the JITs, the execution
time of a benchmark is the average of 10 runs of the benchmark.
In addition, only the execution time of the first run includes the
compilation time. By taking the average of the execution times of
10 runs, we spread the compilation cost over the 10 runs. For the
interpreters, the execution time is the average of 5 runs.

Figure 1(c) gives the execution times measured in seconds when
the benchmarks were interpreted under the three systems. Simi-
larly, Figure 1(d) gives the execution times, also measured in sec-
onds, when the benchmarks were run with MATLAB and McVM
JITs enabled. As we mentioned earlier, Octave does not have a JIT
compiler. In each table, the column labelled (F) gives the time for
the original benchmark, with the feval call. The column labelled
(D) gives the time when we the feval is replaced (by hand) with a
direct call to the input function used to run the benchmark, and the
(I) column gives the time when the function is inlined (by hand).
The rightmost columns give the speedups of the (D) and (F) ver-
sions as compared to the original feval version.

These results are very interesting because they show that even
for the interpreted cases there are substantial overheads for feval.
When the feval is replaced by a direct call the speedups range
from 1.05 — 1.23 for Octave, 1.00 — 1.15 for MATLAB, and 1.00
— 1.30 for McVM. When the direct call is inlined the speedups
increase even more, ranging from 1.11 — 3.38.

The feval overhead for the JIT-based system are proportion-
ally even higher. For the MATLAB JIT replacing the feval with a
direct call results in speedups of 1.00 — 1.23, and for the McVM JIT
the results are 1.31 — 18.88. Inlining the direct call results in large
speedups for the MATLAB JIT of 1.11 — 10.65 and for the McVM
JIT the results are 1.32 — 19.22.

One might be surprised that the overheads for both feval
calls and ordinary calls appear to be so high for MATLAB. There
are two reasons for this. First, the lookup semantics for function
calls in MATLAB are quite complex, and without optimization
they require a heavy-weight dynamic lookup based on the current
directory, the current path, and the type of the dominant argument.
Secondly, the presence of feval can disrupt the intra- and inter-
procedural analyses needed to accurately approximate dynamic
types and array shapes, which is a key factor in generating efficient
code.

Focusing on the JIT results, it appears that the McVM JIT
can achieve more benefit than the MATLAB JIT by just replacing
an feval call with a direct call, even without inlining. This is
because McVM does on-the-fly interprocedural shape analysis and
function specialization, which is enabled as soon as the feval
is converted to a direct call. Although we do not have access
to the implementation of Mathworks’ MATLAB JIT, these results
would seem to indicate that the MATLAB JIT is not doing a similar
interprocedural analysis and that it requires inlining to get a similar
benefit.

Since we see potential speedups for all systems, for both in-
terpreters and JITs, there does seem to be an important optimiza-
tion opportunity for dynamically specializing feval calls to direct
calls, and then potentially inlining those direct calls. We present our
approaches to this problem in Sections 4 and 5.

3. Background

In this section, we provide key background and overview of the in-
frastructure on which we are building, namely McVM and McOSR.

87

3.1 McVM and McJIT

The Mathworks implementation of MATLAB is a closed-source
proprietary product, so we are not able to experiment its implemen-
tation. In contrast, McVM is an open source implementation of a
VM with an LLVM-based JIT, which also has support for OSR, and
is thus suitable for this research.

McVM composed of a JIT compiler known as McJIT and an
interpreter. The JIT compiler can switch to the interpretation mode
for the evaluation of some complex expressions, or for function-
ality unsupported by the JIT. The interactions between these two
components is facilitated via a symbol environment. McJIT is built
upon the LLVM framework [1, 15], and as such it generates LLVM
IR. The LLVM system performs the low-level optimization and
code generation to produce target machine code. The techniques
presented in this paper operate entirely on the McJIT and LLVM
IRs, and do not require any modification of machine code. Thus,
the techniques are portable across different target architectures.

3.2 OSR Background

McVM has support of OSR [13, 14] which works completely at
the LLVM IR level. The main idea is that LLVM IR instructions
can be tagged as interesting, and OSR points can be inserted on
any loop that encloses the tagged instructions. Each OSR point is
associated with an LLVM-IR transformer, which is applied when
the OSR point triggers. The OSR library takes care of saving
the appropriate state, and restarting the transformed code at the
appropriate location and state. In the next section, we provide the
details of how we leverage the OSR machinery to optimize feval.

4. OSR-based feval Specialization

We have developed our techniques for optimizing feval calls
in the open source MATLAB JIT, McJIT. Although the details of
our approach are specific to McVM/MCcJIT, the ideas should be
applicable to other similar systems. Developing our solutions in
an open system allows other researchers to examine our solution,
and to build upon it. We start this section with a discussion of
the existing approach to implementing feval. We then propose
a general OSR-based specialization, and show how that can be
implemented with McJITs OSR library. In the following section,
we develop an alternative specialization approach that does not
depend on OSR, but can be easily integrated into systems which
perform on-the-fly function specialization based on the values in
input arguments.

4.1 Existing McJIT approach for feval

When McJIT encounters a MATLAB statement involving a call to
feval, it generates LLVM code to call to a dynamic dispatcher.
For example, for the feval statement at line 22 of Listing 1, it
generates the code in Listing 3. Let us examine this code snippet.
The compiler generates the code to save the arguments to the
feval call into an array of objects. This is shown in lines 1-5.
Then, it generates the call to the dynamic function dispatcher, that
is, the call to Interpreter :: callFunction in line 6.

YoargsPtr = call 18+ @”ArrayObj::create”(i64 2)
call void @”ArrayObj::addObject”(i8* %argsPtr,
i8* %argl)
call void @”ArrayObj::addObject”(i8* %argsPtr,
i8* %arg2)
%retVal = call i8* @ Interpreter :: callFunction”
(i8% Y%funcPtr,
i8% %argsPtr,
i64 %nargout)

e I SR R S

Listing 3. LLVM code generated for an feval call.



BM Description #feval | #feval’
(total) (loops)
bisect Uses bisection to find a root of 3 1
the scalar equation f(x) =0
newton Newton’s method to find a root of 1 1
Processor: Intel ®Core™i7-3930K CPU @3.20GHz the scalar equation f(x) = 0
RAM: 16 GB; odeEuler Euler’s method for integration of 1 1
Cache Memory: L1 32KB, L2 256KB, L3 12MB; a single, first order ODE
Operating System: Ubuntu 12.04 x86-64; odeMidpt Midpoint method for integration of 2 2
LLVM Compiler framework: version 3.0; a single, first order ODE
MCcJIT: version 1.1; McOSR: version 1.1; odeRK4 Fourth order Runge-Kutta method for 4 4
GNU Octave: 3.0.5; a single, first order ODE
MATLAB: Version 7.12.0.635 (R2011a) 32-bit (gInx86). gaussQuad Composite Gauss-Legendre quadrature 1 1
sim_anl Minimizes a function with the 2 1
method of simulated annealing

benchmark.

(a) Experimental Setting

Interpreter
feval direct inlined Speedup

(F) (D) )

t(s) t(s) t(s) F/D F/1
bisect
Octave 19.94  17.36 12.85 .15 1.55
MATLAB 543 4.85 2.40 .12 2.26
McVM 3.60 3.60 2.40 1.00  1.50
newton
Octave 19.04  16.60 11.02 1.15  1.73
MATLAB 6.23 5.64 3.13 1.10  1.99
McVM 6.20 4.80 3.73 1.30 1.66
odeEuler
Octave 32.86 28.56 18.41 .15 1.78
MATLAB 12.63  11.56 6.38 1.09 1.98
McVM 7.05 6.81 4.52 1.03  1.56
odeMidpt
Octave 5485  46.65 25.22 2.17
MATLAB 20.75 18.29 7.76 . 2.67
McVM 11.31  11.01 6.61 1.03  1.71
odeRK4
Octave 101.80  82.74 40.45 123 252
MATLAB 36.09 31.25 10.68 1.15  3.38
McVM 21.10  19.95 11.33 1.06  1.86
gaussQuad
Octave 20.12  17.97 14.22 .12 142
MATLAB 1329  12.90 9.89 1.03  1.34
McVM 3.77 3.71 2.90 1.02  1.30
sim_anl
Octave 2381 22.61 20.33 1.05 .
MATLAB 16.14  16.15 14.52 1.00  1.11
McVM 448 445 3.93 1.01

(b) Interpreter overheads

“This is the total number of feval calls that are located in all the loops of a

(b) Benchmarks

JIT
feval direct inlined Speedup

) (D) (0]

t(s) t(s) t(s) F/D F/1
bisect
Octave * * * * *
MATLAB 2.99 2.63 0.28 10.65
McVM 2.38 1.67 1.07 2.22
newton
Octave * * * * *
MATLAB 3.52 3.20 0.71 1.10 4.98
McVM 2.60 1.40 0.73 1.85 3.56
odeEuler
Octave * * * * *
MATLAB 2.65 2.40 2.11 1.11 1.26
McVM 4.61 0.58 0.73 7.97 6.29
odeMidpt
Octave * * * * *
MATLAB 3.21 291 2.17 1.10 1.48
McVM 7.10 0.67 0.65 10.56 1091
odeRK4
Octave * * * * *
MATLAB 4.07 3.31 2.22 1.23 1.84
McVM 12.79 0.68 0.66 18.88  19.22
gaussQuad
Octave * * * * *
MATLAB 3.92 3.69 242 1.06 1.62
McVM 1.27 0.97 0.96 1.31 1.32
sim_anl
Octave * * * * *
MATLAB 3.38 3.31 2.22 1.00 1.11
McVM 3.47 2.51 221 1.38 1.57

(c) JIT overheads

Figure 1. Benchmarks and feval overheads

When the dispatcher is called at run time, it examines its first
argument to determine that this is an feval call site. It then calls
the library function feval passing it its own second argument —
the array containing the arguments to the feval call. The feval
library examines its own first argument and resolves the right func-
tion to dispatch® and then prepares the input arguments needed by
this function and calls the function. The result of executing this
function is what the dispatcher eventually returns in line 6.

5Note that this resolution itself can be quite expensive as the function
lookup rules for MATLAB are quite complex and depend on the current
directory, the current path, and the run-time type of the dominant argument.
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The foregoing procedure can be slow, and furthermore it inhibits
function inlining and other flow analyses. However, since the value
of the function that feval built-in evaluates at run time cannot
be determined statically in general, this implementation represents
what is typically done to implement the feval library function.

Even though the function binding cannot be determined stati-
cally, it is often the case that the function binding and the argument
types of the function called by feval do not change through the
whole loop execution, or even through the whole method execution,
as is the case for the typical example in Listing 1. For this class of
MATLAB programs, we can improve the runtime performance if it



is possible to dynamically do on-the-fly code transformation and
function specialization and possibly inlining.

Listing 4 shows a code snippet with an feval call in a poten-
tially long-running loop. The idea of our OSR-based feval spe-
cialization is to transform a loop such as that shown in Listing 4
to that in Listing 5 at run time when the value of f is known. The
approach transforms the call via the feval into a direct call to the
compiled function given by the runtime value of f. This is shown in
Listing 5 as f_V. To maintain correctness we will need some safety
checks (guards) that will backup to the general case (i.e., the call
via the feval) if the current call does not match the last special-
ized version (the version may be incorrect if the function argument
(e.g., f) to feval changes, or the types of the other arguments
change). Thus, another key challenge is minimizing the overhead
for the checks.

1| n = 1000000;

2| for i=1:n
1| n = 1000000; 3
2| for i=l:n 4| if (guard)
3| s kl = f.V(x);
4|  k = feval (f,x); 6 else
5 7 k2 = feval (f,x);
6| end s| end

9| k = phi(kl, k2);

Listing 4. Normal 10| end

Listing 5. Specialized

4.2 Using McJIT OSR

MCcJIT has support for on-stack-replacement (OSR) [14]. This al-
lows us to develop an OSR-based optimization which will optimize
hot loops which contain feval calls on the fly.

Our solution strategy has three important steps, the first two
steps are done at JIT-compilation time (for example, when function
newton is first JIT-compiled), whereas the third step happens at run-
time (for example, when the while loop inside of newton executes).
The high-level description in this subsection provides an overview
of the approach, and the subsequent subsections provide details of
how it is implemented in McJIT/McOSR.

Dispatcher call annotation: During JIT-compilation of a function
body, all dispatcher calls that correspond to feval calls in a
loop must be identified and marked. This is discussed in detail
in Section 4.3.

OSR instrumentation: If the first phase identifies some feval
dispatcher calls, then the closest enclosing loop of each such
dispatcher call must be instrumented to include a conditional
OSR trigger, usually based on the number of loop iterations. In
addition, an OSR point must be inserted, where the OSR point
is associated with the feval optimizing transformation. We
discuss this further in Section 4.4.

Triggering an OSR event at run time: At run time, if an OSR is
triggered by a running function, the code transformer attached
to that OSR point will be executed. In our approach, this is
where the feval optimizing transformation is actually per-
formed. This transformation must rewrite the LLVM IR to re-
place the annotated feval call with the appropriate direct (or
inlined) call, and it must also insert appropriate guards to en-
sure that the specialized call is only executed for the correct
specialized function and argument types, and it must backup to
the general case otherwise. We give a detailed description of the
code transformer in Section 4.5.
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4.3 Dispatcher Call Site Annotation

To label the statements of interest for the OSR transformation,
feval call sites are annotated with the OSR ID of their closest
enclosing loop. For example, for the feval call in Figure 2(a), the
following would be generated:

YoretV = call i8% @ Interpreter :: callFunction ”(i8* %funcPtr,

i8* %argsPtr, i64 %nargout), 'FI !OSR1

where !FI and !OSR1 are the metadata used to annotate the call
sites with the call to the dispatcher for an feval call. The string
!0SR1 indicates that this call site will be considered for an feval
optimizing transformation if OSR is triggered in the loop identified
with OSRID 1.

We also assign a unique ID to each feval call site. This ID is
used to index a fixed memory area for caching the types that the
arguments to the dispatcher had just before OSR is triggered at run
time. To facilitate this process, a store instruction of the following
form is generated:
store 8% %argsPtr, i8%x addrOfCacheSlot, !FI

which stores the pointer to the array of objects passed to the dis-
patcher to a fixed cache slot associated with the current feval
call. Notice that this instruction is also annotated with the same
metadata as the call to the dispatcher.

The metadata !FI encapsulates some JIT-time information about
the arguments of the associated feval call. It is a 3-tuple. The
first operand or field is the unique ID assigned to this feval call;
the second and the third represent relevant JIT-time facts about
the feval call site. We defer the discussion on the information
collected at the JIT-time to Section 4.6.

The annotations attached to the call to the dispatcher are con-
sumed by the code transformer during an OSR event. We discuss
the transformer in more detail in Section 4.5.

4.4 OSR Instrumentation

AtJIT compilation time for a function, if a loop contains an feval
call, the loop must be instrumented with a test that determines
whether a loop counter has reached a given threshold. This is the
OSR condition. We experimented with a threshold value set at 2.
So, at run time, after the execution of the second iteration of the
loop, the OSR condition will be satisfied. The conditional execution
of the OSR point is achieved by generating the following LLVM
conditional instruction at end of the loop header.

br il %osrCond, label % OSR, label % LB

This instruction inspects the OSR condition (%osrCond) and
branches to the basic block named %OSR (which triggers the OSR)
if the test is successful. Otherwise, it branches to %LB where the
body of the loop will be executed as normal.

For our feval optimization, we use a closest-enclosing-loop
strategy for the placement of an OSR point. The McOSR library
requires that each OSR point is associated with a code transformer
- it is this transformer that will execute when the OSR triggers.
Thus, our feval optimizing transformation logic is implemented
by the code transformer that we attach to the inserted OSR point.

Figure 2(a) shows a code snippet from our running example,
and in Figure 2(b), we show in a simplified form the corresponding
control flow graph (CFG) in LLVM IR. LH] is the loop header
block and terminates with a conditional branch instruction. The
basic block branches to the loop body at LB or the loop exit block
at LE depending on the loop exit condition (%loopCond).

The CFG shown in Figure 2(b) is transformed into that shown in
Figure 2(c) after inserting an OSR point. As can be observed from
the figure, the loop header block now contains the instruction to
compute the OSR triggering condition (%osrCond) and terminates
with a conditional branch instruction as discussed earlier.



while k <= maxit

1
2
3 k=k+1;
4 [f, dfdx] = feval (fun,x);
5
6 end
7 end
(a) source while loop
ENTRY:
N
LH1:
br i1 %loopCond,
label %LB, label %LE
LE: LB:
br 1abe1“°).LH1
(b) original CFG

ENTRY:

|
L]

LHO:

br il %osrCond,
label %O0SR, label %LH1

OSR: LH1:
call void @_osrSignal(...)—
br label %LH1

br i1 %loopCond,
label %LB, label %LE

x////jﬁk;/// A

LE:

LB:

lbr label %LHO

(c) CFG with OSR point inserted

Figure 2. Inserting OSR points into CFG

4.5 OSR Triggering and Runtime Transformation

At the heart of our implementation is the code transformer that is
attached to an OSR point. When an OSR is triggered at run time,
the OSR runtime system passes control to the code transformer.
This is where our feval optimizing transformation is performed.

The code transformer first traverses its input function (i.e, the
LLVM IR of the running function) and collects all the calls to the
dispatcher that are associated with an feval call site in the source
program. It identifies these call sites using the OSR label attached
to such instructions at their creation times. It also finds and removes
all the store instructions that were inserted to cache the last-known
types for the arguments to the dispatcher.

The transformer then processes the call instructions as follows.
For each dispatcher call, the transformer retrieves the pointer to
the array of pointers to the last arguments passed to the dispatcher.
Using this pointer, the transformer determines the function being
dispatched — the fef. However, if the cache slot is unset, the code
transformer continues with the next annotated dispatcher call.

Having determined the fef at this call site, the transformer be-
gins a series of transformations at the basic block containing the
current call. We illustrate these transformations in Figure 3.
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OBB:

br label NBB

OBB: .
I
|
r_0BB = call dispatch OSR1 NBB:
br ... r NBB = call dispatch OSR1
(a) br ...
(b)
OBB:
if (guard)
‘////ftgg/////\\\\\IEET:\\\\\\‘
CBB: NBB:

r CBB = call f r_ NBB = call dispatch_OSR1
br label MBB br label MBB

\/

MBB:
r = phi i8* [r_CBB, CBB], [r_MBB, MBB]
br label CONTBB

CONTBB:

br ...

(c)

Figure 3. Actions of the code transformer. Basic block OBB in
(a) is split into two. The result of the splitting process is shown
in (b). In (c), NBB is split into NBB and CONTBB; two new basic
blocks have been inserted into the CFG: CBB contains a call to the
compiled function (f), and MBB merges the results from the call in
CBB and the original call to the dispatcher in NBB.

Figure 3(a) shows a basic block (OBB) with a call to the dis-
patcher, represented with dispatcher_.OSRI. The call is annotated
with OSR label OSRI.

The transformer first splits the original basic block (OBB in
Figure 3(a)) to obtain the basic blocks shown in Figure 3(b). In
Figure 3(b), the call to the dispatcher in OBB has been moved
into the beginning of a new basic block named NBB. Later, the
transformer calls the compiler to generate specialized code for the
fef that corresponds to the current set of argument types. Let us call
such a newly compiled function f. Note that the code transformer
may choose to inline f if it considers it as a good inlining candidate.
It can also perform further optimizations on the calling function.
After the compilation, the transformer creates a new basic block
and generates the instructions to call f. This new block is shown in
Figure 3(c) as CBB.

Now, we have two alternative paths to evaluating function f: (1)
via a direct call in CBB and (2) via the call to the dispatcher in NBB.
To link CBB, the code transformer splits NBB (of Figure 3(b)) after
the call to the dispatcher to obtain a new basic block CONTBB.
This is the continuation block for both NBB and CBB. Because
the code in OBB (Figure 3(b)) is always executed before the call
to the dispatcher in the original OBB (Figure 3(a)), it must follow
that the current OBB dominates both CBB and NBB. Thus, the code
transformer terminates OBB with a runtime guard. We discuss the
guard in the next section. The transformer also creates a new basic
block named MBB. As shown in Figure 3(c), MBB merges the



results from CBB and NBB via a phi instruction generated by the
code transformer. MBB terminates with a branch to the continuation
block, CONTBB, as shown in Figure 3(c).

The transformer essentially implements our OSR-based feval
optimization. To some degree, the runtime performance depends on
the cost of evaluating the guard that determines the execution path
taken at run time. We now discuss the functions of the guard.

4.6 Runtime Guards

The code transformer generates a runtime guard (shown in Fig-
ure 3(c)) that will determine the path taken by the program at run
time. It chooses from among several guards depending on the qual-
ity of the metadata it retrieved from the call instruction that calls
the dispatcher. In Section 4.3, we mentioned that we collect a va-
riety of JIT compilation-time facts on feval call sites in the /FI
metadata. The second component of the metadata is an unsigned
integer that encodes three bits of information, corresponding to the
following queries.

1. Is the first argument to an feval call a read-only variable in
the function? We shall denote this query with ROQ.

2. Is the first argument a loop constant variable? We shall use LCQ
to denote this query.

3. Do all the arguments to the feval call have a fixed runtime
type? We shall denote this with FTQ.

The first two pieces of information are computed at JIT com-
pilation time using standard flow analyses. The third is computed
using McJIT’s type inference [5], which starts with the actual run-
time types for all arguments to the function and infers a set possible
types for each variable at every program point. Therefore at the call
to an feval, the type-inference can determine the set of possi-
ble types for all the arguments to the feval call. If only one type
exists in the type set for each argument, then F7Q is true.

The combination of these queries guides the choice of the
guards generated by the transformer. If ROQ is true, we can move
the part of the computation of the guard (to determine whether or
not the runtime value of this argument corresponds to the function
that will be called at CBB shown in Figure 3(c)) to the function’s
entry block.

If LCQ is true, we can compute the guard outside the loop and
use the result to determine the path taken by the program after OBB.
If FTQ is true, it means that all the arguments are monomorphic and
we can eliminate the check that determines whether the type of any
argument changes at run time. We discuss this further below.

Let

f: denote the first argument to an feval call;

P: denote the set of the remaining arguments p2, p3, ..., Pn to the
feval call;

lastValue(f): denote the cached value of f;
newValue(f): denote the current value of f;
lastType(p): denote the cached type of variable p;
newType(p): denote the current type of variable p.

FEB: be the entry basic block of a function containing an feval
call; and

LEB: be the entry basic block of a loop with an feval call.
We enumerate in Table 1, the different possible guards (based on

the three queries) that the code transformer can generate together
with the optimal point to compute a guard.
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To simplify the table, we define

fcond =
acond =

lastValue(f) == newValue(f)
Y(p € P),lastType(p) == newType(p)

and write f_.cond (FEB) if f-cond should be computed at the entry
basic block of the function containing a corresponding feval call.

# | ROQO | LCO | FTQ Guard Compute Point

1 T T T f-cond Jf-cond (FEB)

2 T T F f-cond N\ | f-cond (FEB);
a_cond a_cond (OBB)

3 T F T * *

4 T F F * *

5 F T T f-cond Jf-cond (LEB)

6 F T F f-cond N\ | f-cond (LEB);
a_cond a_cond (OBB)

7 F F T f-cond f-cond (OBB);

8 F F F f-cond N\ | f-cond (OBB);
a_cond a_cond (OBB)

Table 1. Guard truth table (a “*” denotes an impossible result).

Let us examine Table 1. In the first case (i.e., table row 1),
ROQ, LCQ, and FTQ are true, in this case, only f_-cond should be
computed and can be done at FEB, that is, the calling function’s
entry basic block. FTQ is true. Thus, we know that the runtime
type of each argument at the feval call site is fixed so, there is no
need to include a_cond in the guard that is evaluated at OBB.

In Case 2 (i.e., table row 2), the required guard that the code
transformer must generate is: guard = f.cond N a_cond. This is
because the type of each argument to f may change at run time.
Further, if after transforming the code, the value of f changes
(i.e., in a subsequent call of the function with the feval call), the
backup path must be taken. The f_cond component of the guard can
be evaluated at the function’s entry basic block because f is read-
only in the calling function. It must be a parameter of the function.
However, because the types of the arguments may change before
the feval call site, the second element of the guard, a_cond, must
be evaluated just before the use of the guard in basic block OBB.

Cases 3 and 4 represent impossible cases because it cannot be
that f is a read-only variable in the calling function and at the same
time not be a loop constant in that function.

In Case 5, only f_cond should be computed and can be done at
LEB.

Case 6 is similar to Case 2 except that ROQ is false, meaning
that f is not a read-only variable but it is a loop constant. For this
reason, like Case 2, the required guard is guard = f_cond A a_cond.
Unlike Case 2, however, the optimal point to compute f_cond is
LEB. The second element (a_cond) must still be computed at OBB.

In Case 7, we know that the arguments have constant types at
the feval call site. But we also know that f is neither a read-
only nor a loop constant. So, the required guard is to evaluate only
f-cond at OBB before the use of the guard.

Case 8 requires that both f_cond and a_cond be computed at
OBB before the use of the guard in the block. This is because f is
neither a read-only nor a loop constant variable. Further, the types
of the arguments may change at run time as indicated by the value
of FTQ in row 8 of Table 1. Observe that this is the most expensive
guard computation the code transformer can generate.

The least expensive guard is in Case 1. This is the ideal case.
In the worst case (Case 8), the code transformer inserts a relatively
expensive guard at the end of OBB that tests whether the current
runtime value of fef (of an feval call) corresponds to the com-
piled function and that the remaining arguments have stable types.
This may have an impact on performance, although we believe this



seldom happens within the class of the applications that we have
considered.

4.7 Resuming Execution after an OSR is Triggered

You will note that we have only focused on defining the OSR points
and the transformation that occurs when an OSR triggers, but have
not defined how the newly transformed code is executed and how
the state is restored or how control flow is correctly resumed. These
important details are handled automatically by McOSR [14].

5. JIT Value-based Specialization

In the previous section we presented an OSR-based approach to
specializing an feval. This works by intercepting a running func-
tion when it evaluates an feval in a loop, specializing the code
for the feval call, inserting the correct guards, and then restarting
the execution with the specialized code. For example, in our moti-
vating example, newton from Listing 1, the execution of the loop
would be intercepted, the feval specialized to a direct call, and
the execution resumed.

This method is general in that the value of the first argument to
feval (the fef) can be defined anywhere, it could be an argument
of the enclosing function, it could have been stored in a data
structure, or it could have been computed.

The technique presented in this section concentrates on an alter-
native approach for the most common case, when the fef is a param-
eter of the enclosing function, as is the case in newton. McJIT al-
ready has a mechanism for compiling specialized versions of func-
tions based on the run-time type of the arguments [5]. We wanted
to go even further, and specialize code based on the run-time value
of arguments that correspond to an fef.

Unlike the OSR-approach which intercepted the function con-
taining the feval while it was running, the JIT-specialization ap-
proach specializes the function before it is called. For example, a
call of the form newton(’fn3n’, 3, 5e-16, 5e-16) would first check
to see if a version of newton matching the value 'fn3n’ for the first
arguments and matching the types of the other arguments had al-
ready been compiled. If so, it would call the previously compiled
version, and if not it would compile a specialized version, and call
this new version.

To further illustrate this idea, consider Listing 6 and Listing 7.
In Listing 6, function h calls function g passing it an argument
defined in function h as a reference to function myFunc. Function
g accepts a function as an argument and contains an feval call
that evaluates the argument at some value x.

function h() function h()

1

2 f = @myFunc; ... f = @myFunc; ...
3 g(f); dispatch (g,f);

4| end end

5

function g_myFunc(f)
n = 1000000;
for i=1:n

function g(f)
7| n = 1000000;
s| for i=1:n

o

10 k = feval (f,x); 10 k = myFunc(x);
1 1

2|  end 12| end

13| end 13| end

Listing 6. Normal Listing 7. Specialized
The main idea of the JIT value-based feval specialization is
to replace a call to a function containing an feval call in a long-
running loop with a call to a special dispatch function. When the
dispatch function (called the dispatcher for short) is called at run
time, it will evaluate the value of the parameter that corresponds to
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an fef. If not already compiled, it will then generate a new version
with all the feval calls replaced with direct calls to the fef.

Thus, the call of dispatch in line 3 of Listing 7, will cause the
dispatcher to generate a new version of g shown as g_myFunc.
Notice that the call to feval in g has been replaced with a direct
call to myFunc in g_-myFunc.

To enable this new form of specialization we added a pass to
McJIT so that when it builds the AST for a program, it analyzes all
the functions in the compilation unit and annotates those with an
feval call, whose fef is a read-only parameter of the enclosing
function. We then changed how McJIT compiles calls to such
annotated functions. Normally, after McJIT has compiled the right
version of a function at a call site, it inserts the corresponding
LLVM call instruction into the current basic block. However, to
support the runtime code specialization for feval, we modified
McJIT so that it does not insert the call instruction but, instead,
generates a new instruction of the form

call void @’ JITExt:: dispatchFunction >’ (i8* %baselRPtr,
i8* Y%fefValue,
i8* %inArgsPtr,
i8% YretValsPtr,
32 %csID)
that calls the dispatcher. The dispatcher, that is, function JI-
TExt: :dispatchFunction, accepts five arguments:

(1) the first is the pointer to the base IR (i.e., the original version of
the IR (AST)) that corresponds to the called function;

(2) the second is a pointer to the argument that corresponds to the
fef (i.e., the first parameter) of a marked feval call in the
called function;

(3) the third is a pointer to a structure containing the input argu-
ments to the called function;

(4) the fourth is a pointer to a structure containing the return values;

(5) the last argument is an integer that denotes the index of a cache
slot where a pointer to the descriptor of the AST can be located.

Each AST representing a function with an feval call has one
or more code cache descriptors. A code cache descriptor contains
information related to the code of the AST that corresponds to the
types of the arguments passed to the function at a call site.

A function that is called with different argument types at differ-
ent call sites has a code cache descriptor for each call site. A code
cache descriptor is a four-tuple.

descriptor = < entry_address, argument_types,

counter, feval_versions >

where entry_address is the address of the entry to the compiled
code corresponding to the AST of the called function. We shall
denote the called function at a call site with f. Field argument_types
denotes the types of the arguments at the call site. Due to McJIT’s
code specialization on argument types at call sites, the set of types
for the arguments at a call site is immutable. Field counter denotes
a compilation counter that counts the number of versions that are
generated at different consecutive executions of the call to the
dispatcher instruction. Field feval_versions is a map containing
(AST , entry_address) pairs. The first member of the pair is the
IR corresponding to the value of the parameter used as the first
argument to some feval calls in f. The second member of the
pair is the address of the entry point to the compiled code of f that
corresponds to an fef.

5.1 Functions of the Dispatcher

At run time, the dispatcher first uses a combination of its first
parameter (i.e., the AST) and its last parameter (i.e., the cache



slot index) to retrieve the code cache descriptor that matches the
argument types at the current call site. This is shown in line 1 of
Algorithm 1. Then, in line 2, the dispatcher performs a look-up
using its second parameter to determine whether a corresponding
code version had been generated.

If the look-up is successful, the dispatcher executes (in line 13
of Algorithm 1) the function at the address returned by the look-up.

Otherwise, the dispatcher compares the current value of the
counter in the code cache descriptor with a given threshold. If the
counter has exceeded the threshold, the dispatcher executes the
initial code generated for the AST at this call site. This is shown
in line 15 of Algorithm 1. If the counter is below the threshold,
however, the dispatcher clones the original AST and replaces all
the marked feval calls with direct calls to the evaluated function
given as its second parameter. After, the dispatcher retrieves the
types attached to this call site and calls the compiler to compile and
generate the correct code matching the argument types at this call
site. These actions are performed in lines 3 — 11 of Algorithm 1.

input : baselR, fef, inArgPtr, outArgPtr, cacheSlot
output: void
1 Ci < getCodeCachelInfo (baselR, cacheSlot);
2 entryPoint - 1lookupFunction (Ci, fef);
3 if entryPoint == NULL AND ci.counter <=

THRESHOLD then
4 newlR < clone (baselR);
5 replaceFevalCalls (newlR, fef);
6 llvmIR < compileFunction (newlR,

ci.argTypesStr);
7 entryPoint + compCallWrapper (lIlvmlIR,
newlR, ci.argTypesStr);

8 // insert an entry for a new version into the cache;

9 putNewVersion (Ci, getFunction (fef),
entryPoint);

10 ci.counter < Ci.counter + 1;

11 end

12 if entryPoint £ NULL then

13 | call entryPoint (inArgsPtr, outArgsPtr);
14 else
15|
16 end

call ci.entryPoint(inArgsPtr, outArgsPtr),

Algorithm 1: dispatch function

After the compilation of a new version, the dispatcher inserts an
entry — that is, a pair comprising of the AST corresponding to the
current value of the fef and the entry point address of the compiled
code — into a map in the code cache descriptor of the base IR. This
action is performed by the call of function putNew Version in line 9
of Algorithm 1. The dispatcher does this so that if the function is
called again with the same fef value, it can retrieve and execute the
correct code. Finally, the dispatcher updates the counter associated
with the cache slot descriptor.

Although the base AST and new versions of the AST have
the same number of input and output parameters, the types of
the values returned by the compiled code that corresponds to a
given fef may be different. This presents a problem in that the
rest of the code of the calling function was generated using the
information obtained from the base AST. We resolved this problem
by generating a wrapper (line 7 of Algorithm 1) that converts from
the types returned by a new version to the types used in generating
the code for the original version. Because of this problem, we
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always call the code that matches an fef via a wrapper.’ A wrapper
is a short function. It is composed of a call instruction and the
instructions that convert the return values to their expected types.

A code cache look-up miss causes a compilation of a new
version if the value of the counter in the code cache descriptor
has not exceeded the threshold. After the counter has exceeded
the given threshold, the dispatcher stops compiling new versions.
Thus, for a new fef value, the dispatcher then always executes the
original code generated for the base AST of the called function.
This scheme can prevent excessive compilation actions in cases
where too many different functions are being called. However, this
rarely happens in practice. So, we expect only a reasonable number
of new versions to be generated.

Again, we stress that this approach only works in cases where
the fef of an feval call in the called function is a read-only
function parameter. This covers most of the programs under study.

5.2 General Dispatcher

We could also extend Algorithm 1 to cover more cases of JIT value-
based specialization. We could generalize the input value fef from
Algorithm 1 to be a general value V/, and could generalize line 5 to
apply an arbitrary transformer, and line 9 to store a general key.
As an example of an application of the general dispatcher,
consider the MATLAB eval (many dynamic languages have a
similar feature as well). The MATLAB eval built-in evaluates
MATLAB code given as its input string expression. Like the feval
specialization, in some cases, we can also specialize a function with
an eval call whose input string is a parameter of the function by
developing a suitable IR transformer for the specialization.
Another example is the specialization of a function with a pa-
rameter that is an array. We can specialize the function using the
properties of the array, such as array bounds, to generate more effi-
cient code for loops that operate on such arrays in the function.

6. Experimental Results

In Section 2, we demonstrated that feval resulted in significant
overheads, and that replacing an feval by a direct call resulted
in substantial speedups, which could be further increased by in-
lining the direct call. In this section we examine the performance
improvements achieved through our two dynamic techniques: the
OSR-based specialization presented in Section 4, and the dynamic
value-based function specialization presented in Section 5. We ex-
amine both the benefits and limitations of each approach, and we
compare their performance with the upper bound speedups pro-
vided under the hand-coded direct call and inlined versions.

6.1 OSR-based approach

In Table 2, the column labelled Baseline shows the results of ex-
ecuting the benchmarks with McVM JIT in the normal mode.
The columns labelled OSR-based Optimization give the execu-
tion times for three variations of the OSR approach. Opt0 gives
the results when the benchmarks were run with our basic OSR-
based feval optimization enabled. We also experimented with
two further improvements. The column labelled OptI shows the
benchmarks with the OSR-based feval optimization plus a dy-
namic function inlining optimization that is performed when the
OSR point triggers. Opt2 is a further improvement where we first
apply the dynamic inlining, and then apply a further optimization
of the symbol table environment, which is sometimes enabled by
the inlining. We describe this optimization in more detail in our
discussion of the performance of this optimization.

®Instead of using a wrapper, our future implementations will use a spe-
cialized compiler that directly performs the type conversion in the generated
specialized version.



Baseline OSR-based Optimization Hand-coded
t(s) t(s) Speedup Speedup
[ Benchmark Baseline(F) || Opt0 Optl Opt2 || F/Opt0 F/Optl  F/Opt2 F/D F/1
bisect 2.38 193 192 193 1.23 1.24 1.23 1.41 222
newton 2.60 223 223 155 1.17 1.17 1.68 1.85 3.56
odeEuler 4.61 271 282 264 1.71 1.63 1.75 7.97 6.29
odeMidpt 7.10 || 422 418 4.15 1.68 1.70 1.71 || 10.56 1091
odeRK4 12.79 735 746 7.36 1.74 1.72 1.74 || 18.88 19.22
gaussQuad 1.27 1.03  1.04 1.05 1.23 1.22 1.21 1.31 1.32
sim 3.47 340 336 298 1.02 1.03 1.16 1.38 1.57
[ Geometric Mean || [ 137 1.36 147 [ 358 416 ]
Table 2. Overall results for OSR-based optimization in McVM JIT
From the results, we found that our feval optimization was Benchmark | # feval | Types of
effective. McJ1T with the feval optimization consistently outper- (in loop) | Guards
forms the standard McVM JIT on our benchmark set. The geo- bisect Case 1°
metric mean of speedups at Opr0 is 1.37. The dynamic inlining newton 1 Case 2°
optimization enabled by OptI does not improve performance on odeEuler 1 Case 2
its own, but in combination with the subsequent symbol table op- odeMidpt 2 Case 2
timization enabled for Opt2, there is an improvement, with a geo- odeRK4 4 Case 2
metric mean speedup of 1.47. gaussQuad 1 Case 1
At optimization level 2 (Opt2), we recorded the highest per- sim_anl 1 Case 1

formance improvements with the newfon and sim benchmarks. In
McVM, the interaction between the compiled code and the inter-
preter is often facilitated through a symbol look-up environment. A
symbol environment is a table that associates a value to a symbol.
It is used to bind a value to a variable, and to look-up the value
of a variable at run time. When needed, McJIT inserts the instruc-
tions to set up a symbol look-up environment for a function at the
function’s prologue. This can be a major source of overhead. Af-
ter dynamic inlining, we perform an optimization that eliminates
redundant set-up code. We found that this optimization was partic-
ularly effective in two of the benchmarks: newron and sim, which
contained significant redundant setup code after inlining.

Although speedups of 1.47 are good, it is also important to
examine if our dynamic optimization is approaching the upper
bound speedups that we measured by hand-coding the direct call
and hand-lining that call. The last two columns show the speedups
we had measured for the hand-coded versions, and we see that the
geometric mean speedups were 3.58 for the direct call and 4.16 for
the inlined call. Thus, there is still a significant gap between what
the dynamic technique achieves and the upper bound.

To see why this is the case, we examined the kinds of the
runtime guards and the LLVM code generated for our benchmarks.
We show the kinds for each benchmark in Table 3, with column #
feval (in loop) showing the number of feval calls in the loops of a
benchmark. We show the kinds of the runtime guards generated for
the feval calls in a benchmark under column Types of Guards.

We can see from Table 3 that a somewhat expensive guard —
one that checks the value of the fef passed in at the entry basic
block and the types of all the arguments to an feval call in a
loop — is generated for each feval call in the ode benchmarks.
This is the case because the type inference engine infers that the
type of at least one of the arguments is variable or unknown. This
can be a source of runtime overhead. In addition, because the type-
inference infers that the type of an argument to the target function
of each feval call in the ode benchmarks is variable, the LLVM
code generated for the ode benchmarks is less efficient. This is the
main reason for the relatively lower performance recorded for the
OSR-based version running the actual ode benchmarks.
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“According to Table 1, Case 1 means that only the value of
the fef is checked at the function’s entry basic block. The types
of the arguments to the feval call are stable.

b According to Table 1, Case 2 means that the value of the

fef is checked at the function’s entry; while the types of all the
arguments are checked in the loop containing the feval call.

Table 3. Types of the runtime guards used by each benchmark.

6.2 JIT value-based-specialization approach

The OSR-based approach is general-purpose, and can operate on
any feval within a loop. However, our results show that there is
still a gap between the performance of the OSR-approach and the
upper bound. The value-specialization approach applies to a com-
mon case where the fef of the feval call is a read-only parame-
ter of the enclosing function. In these cases the value-specialization
can generate a completely specialized version of the function, with-
out the need for run-time guards, and in which the JIT-time type and
shape analysis can operate more accurately.

In Table 4, we show the results of the value-based specialization
in a context where we can compare it to both the hand-coded, and
OSR-based results. The column labelled VB-specialization gives
the time and the speedup relative to the baseline. We note that this
gives excellent results, with speedups approaching the hand-coded
upper bound for all the benchmarks. The value-based results gave a
geometric mean speedup of 3.22, which is substantially better than
the 1.37 for the OSR-based approach, and almost as good as the
upper bound of 3.58.

Under the JIT value-based specialization approach, the special-
ized versions of the functions with feval calls may no longer con-
tain feval calls. Thus, allowing McJIT to generate much more ef-
ficient code. The odeRK4 benchmark has four feval calls within
a long-running loop. These calls are replaced with direct calls in
the specialized version generated at run time. Because the feval
target function (fef) is now known, the type inference engine can
analyze the function more precisely, and McJIT can then generate
more efficient code for both the target and the calling functions.



Benchmark Baseline | OSR-based (OPT0) | VB-Specialization | Hand-coded (D)

t(s) t(s) speedup t(s) speedup t(s) speedup
bisect 2.38 | 1.93 1.23 | 1.66 1.43 | 1.68 1.42
newton 2.60 | 2.23 1.16 | 1.61 1.61 | 1.40 1.85
odeEuler 4.61 | 2.70 1.71 | 0.67 6.86 | 0.58 7.97
odeMidpt 7.10 | 4.22 1.68 | 0.83 8.53 | 0.67 10.56
odeRK4 12.79 | 7.35 1.74 | 0.89 14.30 | 0.68 18.88
gaussQuad 1.27 | 1.03 1.23 ] 0.90 1.41 | 097 1.31
sim 347 | 3.40 1.02 | 2.60 1.33 | 2.51 1.38

[ Geometric Mean | [ 1.37 ] 322 ] 3.58 ]

Table 4. Comparing Value-based specialization to OSR-based and hand-coded

6.3 Comparing the approaches

To understand in more detail why the value-based approach pro-
vides better performance, we need to examine the quality of the
LLVM code generated for each benchmark, and the sources of over-
heads under the two approaches.

Under the OSR-based approach, McJIT generates less efficient
code. This is so because McJIT generates a call to the interpreter
for an feval call after boxing the arguments to make them more
generic. In addition, because the called function (fef) at the call
site is unknown during the compilation time, the type inference
engine is unable to infer precise types for the values returned by
the feval call, thus forcing the compiler to generate more generic
instructions that are suitable for handling different types. This is a
major source of inefficiency in the OSR-based approach.

Runtime guard computation can be expensive. The OSR-based
approach generates runtime guards, which, as discussed in Sec-
tion 4.6, depend on whether or not the arguments to an feval
call have a fixed type. As mentioned in Section 6.1, for the three
ode benchmarks, the type inference engine infers that the types to
all the feval calls are variable, forcing the code transformer to
generate an expensive guard for each feval call specialization.

We examined odeRK4. The code snippet for the only loop of the
benchmark is shown in Listing 8.

1 for j=2:n

2 k1l = feval (diffeq, t(j—1), y(G—1) );
3 k2 = feval (diffeq, t(j—1)+h2, y(j—1)+h2xkl );
4 k3 = feval (diffeq, t(j—1)+h2, y(j—1)+h2xk2 );
5 k4 = feval (diffeq, t(j—1)+h, y(j—1)+hxk3 );
6 y(j) =y(j—1) + h6ox(kl+k4) + h3+(k2+k3);

7 end

Listing 8. The odeRK4 benchmark (from [19, 20]).

In the first feval call (line 2), the type inference engine infers
that t(j—1) is a scalar floating point value. It, however, infers that
y(j—1) can either be a scalar floating point value or a scalar complex
value. In all the remaining three feval calls (lines 3 —5), the type
inference engine infers that the second parameter is a floating point
value, but infers unknown for the third parameter.

Thus, in specializing the four feval calls in odeRK4, the code
transformer inserts an expensive guard for each call specialization.
The guards generated correspond to Row 2 of Table 1, that is,
f-cond is evaluated at the function’s entry basic block and a_cond
is evaluated in the loop.

The JIT value-based approach is less affected by the foregoing
issues. If all the feval calls in a function have the same fef and
the fef is a read-only parameter of the function, then the specialized
code generated to match the fef at run time will not contain any
feval call implementation. Each feval call in the AST of the
function would have been replaced with a direct call to the fef.
This allows the type inference engine to analyze the called function,
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which, in turn, allows McJIT to further specialize the call site and
generate efficient code. The feval calls in all the benchmarks
have their fefs passed in as a parameter, thus contributing to the
generation of the more efficient code for the specialized versions.

It is, however, true that the JIT value-based approach incurs
some runtime overheads, including that of the code cache look-
up. But this is small given the expected gains. Further, unlike the
OSR-based approach that is limited to specialization of feval
calls within a long-running loop, the JIT value-based approach can
specialize a function with an feval call that occurs anywhere
within the body of the function.

6.4 Summary

We conclude that although the JIT value-based approach is less
powerful than the OSR-based approach, it is more effective on
our benchmark set. The JIT approach only works where the fef is
passed as a read-only parameter to a function. The OSR-based ap-
proach works in all cases but incurs much larger runtime overhead.
It is possible to combine the two approaches in a JIT compiler by
first analyzing a function with an feval call to determine whether
a call of the function can benefit from the JIT value-based special-
ization approach. With speedups of up to 14 times faster, it would
seem that such techniques are well worth incorporating into JIT
compilers for MATLAB and other dynamic languages which have
compute-intensive solvers which are abstracted over the computa-
tion function (fef).

7. Related Work

Historically, function dispatch in dynamic languages was imple-
mented with a dispatch look-up table. This was found to be slow.
More efficient approaches have emerged; they often employ a vari-
ety of caching techniques to speed up table look up. Smalltalk-80
[8, 12] uses a global cache to improve look up performance.

Our OSR-based approach is more related to the inline caching
[6] approach used in another Smalltalk implementation. Interest-
ingly, the implementation was based on several studies of Smalltalk
programs that revealed that 95% of the time, the type of a Smalltalk
message receiver is constant [6, 23, 24]. Our approaches to feval
optimization are also based on the observation that feval calls in
most MATLAB loops have unchanging first argument.

The inline caching technique used in the Smalltalk compiler
involves caching the address of a looked-up method at the call site
by modifying the compiled target code on-the-fly — by overwriting
the call instruction. This allows the method to be called directly in
a subsequent execution, avoiding the need for a look up. It also
involves generating additional code (often called prologue) in the
method that tests that the receiver type is correct before executing
the body of the method. However, if the test does not succeed, it
calls the look-up code.



Holzle et al. extended the inline caching technique to handle
polymorphic call sites by including more than one cached look-up
result per call site. This technique is known as polymorphic inline
caching (PIC) [9]. The PIC approach caches all the receiver types
at a call site in a stub that is generated on-the-fly and rebinds the
call to the stub routine.

In contrast to these approaches, our implementation is done
completely at the LLVM-IR level, and not at target code level.
Without on-stack replacement support [3, 7, 10, 13, 14, 18, 21],
it is hard to cache previous function look-up result “inline”(i.e., at
the call site). We also do not need additional code in the called
function. We insert runtime guards so that execution can continue
with the original call to the dispatcher if the guard fails. Also our
backup path obviates the need to cache look-up results in a stub as
in PIC case used in the implementations of SELF [4, 11].

Although multi-paradigm programming languages such as
Python, JavaScript, and functional languages, including Lisp,
Haskell, Scheme support higher-order functions, the function ar-
guments are directly evaluated at run time and often lead to run-
time code generation that is typically supported by polymorphic
type inference, and sometimes, binding time analysis [17]. The
MATLAB feval is an overloaded built-in that accepts a function
name as a string or function handle and indirectly evaluates, at
run time, the function argument. Our approaches are supported by
a type-inference analysis, although it is explicit that the feval
built-in evaluates functions only. Our approaches are aimed at im-
proving JIT compiled code, and facilitating efficient compilation of
the MATLAB feval, which can be extended to handle similar fea-
tures in other dynamic languages, where it would have otherwise
appeared impossible.

8. Conclusion

We proposed a general on-the-fly mechanism for specializing
feval calls in hot loops using the OSR mechanism available in
McVM, an open source research virtual machine for MATLAB. We
demonstrated good performance improvements using the approach.

We introduced an effective JIT value-based specialization tech-
nique for optimizing feval calls, whose first argument is a func-
tion parameter. We showed how the JIT value-based feval spe-
cialization can be extended to handle more cases of JIT value-based
specialization in a MATLAB JIT compiler. The approach can also
be used for JIT value-based specialization in other similar dynamic
languages. Indeed, the OSR-based approach can be so extended.

We collected a set of seven typical benchmarks that use feval,
and demonstrated that our specialization approaches provide sig-
nificant speedups over the base feval implementation for this
benchmark set. In some cases the performance is near to the op-
timal performance of a hand-inlined function, but in other cases a
gap remains. We would like to continue to develop new optimiza-
tions to further close that gap, and to apply the same sort of trans-
formations to other dynamic features in MATLAB.

A somewhat surprising discovery in this work was the complex
interplay between the JIT-time interprocedural type analysis and
the on-the-fly transformations. The JIT value-based specialization
can replace feval calls with direct calls in a function body, before
doing the type analysis of that function body, thus leading to much
better specialized code (because the interprocedural analysis can
handle the direct calls much more precisely). On the other hand,
this specialization can only happen at the function level, and only
when the feval target function corresponds to a read-only param-
eter. The OSR-based method is more general, and can be applied
at the level of loops, but suffers from less precise type informa-
tion. It would be interesting to look at future work that combine the
strengths of both approaches.
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