
Refactoring MATLAB

Soroush Radpour1,2, Laurie Hendren2, and Max Schäfer3

1 Google, Inc.
soroush@google.com

2 School of Computer Science, McGill University, Montreal, Canada
hendren@cs.mcgill.ca

3 School of Computer Engineering, Nanyang Technological University, Singapore
schaefer@ntu.edu.sg

Abstract. MATLAB is a very popular dynamic “scripting” language for numeri-
cal computations used by scientists, engineers and students world-wide. MATLAB

programs are often developed incrementally using a mixtureof MATLAB scripts
and functions, and frequently build upon existing code which may use outdated
features. This results in programs that could benefit from refactoring, especially
if the code will be reused and/or distributed. Despite the need for refactoring,
there appear to be no MATLAB refactoring tools available. Furthermore, correct
refactoring of MATLAB is quite challenging because of its non-standard rules for
binding identifiers. Even simple refactorings are non-trivial.
This paper presents the important challenges of refactoring MATLAB along with
automated techniques to handle a collection of refactorings for MATLAB func-
tions and scripts including: converting scripts to functions, extracting functions,
and converting dynamic function calls to static ones. The refactorings have been
implemented using the McLAB compiler framework, and an evaluation is given
on a large set of MATLAB benchmarks which demonstrates the effectiveness of
our approach.

1 Introduction

Refactoring may be defined as the process of transforming a program in order to im-
prove its internal structure without changing its externalbehavior. The goal can be to
improve readability, maintainability, performance or to reduce the complexity of code.
Refactoring has developed for the last 20 years, starting with the seminal theses by
Opdyke [1] and Griswold [2], and the well known book by Fowler[3]. Many pro-
grammers have come to expect refactoring support, and popular IDEs such as Eclipse,
Microsoft’s Visual Studio, and Oracle’s NetBeans have integrated tool support for au-
tomating simple refactorings. However, the benefits of refactoring tools have not yet
reached the millions of MATLAB programmers. Currently neither Mathworks’ propri-
etary MATLAB IDE, nor open-source tools provide refactoring support.

MATLAB is a popular dynamic (“scripting”) programming language that has been
in use since the late 1970s, and a commercial product of MathWorks since 1984, with
millions of users in the scientific, engineering and research communities.4 There are

4 The most recent data from MathWorks shows one million MATLAB users in 2004, with
the number doubling every 1.5 to 2 years; seewww.mathworks.com/company/-
newsletters/news notes/clevescorner/jan06.pdf .

currently over 1200 books based on MATLAB and its companion software, Simulink
(http://www.mathworks.com/support/books).

As we have collected and studied a large body of MATLAB programs, we have found
that the code could benefit from refactoring for several reasons. First, the MATLAB lan-
guage has evolved over the years, incrementally introducing many valuable high-level
features such as (nested) functions, packages and so on. However, MATLAB program-
mers often build upon code available online or examples frombooks, which often do not
use the modern high-level features. Thus, although code reuse is an essential part of the
MATLAB eco-system, code cruft, obsolete syntax and new language features compli-
cates this reuse. Since MATLAB does not currently have refactoring tools, programmers
either do not refactor, or they refactor code by hand, which is time-consuming and error-
prone. Secondly, the interactive nature of developing MATLAB programs promotes an
incremental style of programming that often results in relatively unstructured and non-
modular code. When developing small one-off scripts this may not be important, but
when developing a complete application or library, refactoring the code to be better
structured and more modular is key for reuse and maintenance.

Refactoring MATLAB presents new research challenges in two areas: (1) ensur-
ing proper handling of MATLAB semantics; and (2) developing new MATLAB -specific
refactorings. The semantics of MATLAB is quite different from other languages, thus
even standard refactorings must be carefully defined. In particular, to ensure behav-
ior preservation, refactoring tools have to verify that identifiers maintain their cor-
rect kind [4] (variable or function), and that their bindingis not accidentally changed.
MATLAB -specific refactorings include those which help programmers eliminate unde-
sirable MATLAB features. For example, MATLAB scripts are a hybrid of macros and
functions, and can lead to unstructured code that is hard to analyze and optimize. Thus,
an automatic refactoring which can convert scripts to functions is a useful refactoring
transformation which helps improve the structure of the code. Dynamic features like
feval also complicate programs and are often used inappropriately. Thus, MATLAB -
specific refactorings, which convertfeval to more static constructs are also useful.

In this paper we introduce a family of automated refactorings aimed at restructuring
functions and scripts, and calls to functions and scripts. We start with a refactoring for
converting scripts into functions, which improves their reusability and modularity. Then
we introduce the MATLAB version of the well-known EXTRACT FUNCTION refactoring
that can be used to break up large functions into smaller parts. Finally, we briefly survey
several other useful refactorings for inlining scripts andfunctions, and a refactoring to
replace spurious uses of the dynamicfeval feature with direct function calls.

We have implemented our refactoring transformations in ourMcLAB compiler
framework [5], and evaluated the refactorings on a collection of 3023 MATLAB pro-
grams. We found that the vast majority of refactoring opportunities could be handled
with few spurious warnings.

The main contributions of this paper are:

– Identifying a need for refactoring tools for MATLAB and the key static properties
that must be checked for such refactorings.

– Introducing a family of refactorings for MATLAB functions and scripts.
– An implementation of these refactorings in McLAB.

2

– An evaluation of the implementation on a large set of publicly-available MATLAB

programs.

The remainder of this paper is structured as follows. In Section 2 we provide some
motivating examples and background about determining the kind of identifiers and the
semantics of function lookup. Section 3 describes a refactoring for converting scripts
to functions, Section 4 presents EXTRACT FUNCTION, and Section 5 briefly introduces
several other refactorings. Section 6 evaluates the refactoring implementations on our
benchmark set, Section 7 surveys related work, and Section 8concludes.

2 Background and Motivating Example

In this section we introduce some key features of MATLAB , and we give a motivating
example to demonstrate both a useful MATLAB refactoring and the sorts of MATLAB -
specific issues that must be considered.

2.1 MATLAB scripts and functions

A M ATLAB program consists of a collection of scripts and functions. Ascript is sim-
ply a sequence of MATLAB statements. For example, Figure 1(a) defines a script called
sumcos which computes the sum of the cosine values of the numbersi to n. Although
using scripts is not a good programming practice, they are very easy for MATLAB pro-
grammers to create. Typically, a programmer will experiment with a sequence of state-
ments in the read-eval-print loop of the IDE and then copy andpaste them into a file,
which becomes the script.

A script is executed in the workspace from which it was called, either the main
workspace, or the workspace of the calling function.5 For example, Figure 1(b) shows
function ex1 calling scriptsumcos . Whensumcos executes it reads the values of
variablesi andn from the workspace of functionex1 , and writes the value ofs into
that same workspace. Clearly, scripts are highly non-modular, and do not have a well-
defined interface. A programmer cannot easily determine theinputs and outputs of a
script. Thus, a better programming practice would be to use functions.

Figure 1(d) shows the scriptsumcos refactored into an equivalent function. The
body of the function is the same as the script, but now the output parameters and the
input parametersi andn are explicitly declared. As shown in Figure 1(c) and (f), in
this case the refactored function produces the same result as the original script.6

In general, MATLAB functions may have multiple output and input arguments.
However, not all input arguments need to be provided at a call, and not all returned

5 Workspaces are MATLAB ’s version of lexical environments. There is an initial “main”
workspace which is acted upon by commands entered into the main read-eval-print loop. There
is a also a stack of workspaces corresponding to the functioncall stack. A call to a function
creates and pushes a new workspace, which becomes the current workspace.

6 These results are snippets taken from an interactive session in the MATLAB read-eval-print
loop. The “>>” prompt is followed by the expression to be evaluated. In Figure 1(c) this is a
call to functionex1 . The line after the prompt prints the result of the evaluation.

3

s = 0;
while i <= n

s = s + cos(i);
i = i + 1;

end

function ex1()
i = 1;
n = 5;
sumcos;
s

end

>> ex1
s = -1.2358

(a) scriptsumcos.m (b) callingsumcos (c) result of call

function s = sumcosFN(i, n)
s = 0;
while i <= n

s = s + cos(i);
i = i + 1;

end
end

function ex1FN()
s = sumcosFN(1, 5)

end

>> ex1FN
s = -1.2358

(d) functionsumcosFN.m (e) callingsumcosFN (f) result of call

Fig. 1. Example script and function

values need to be used. Parameters obey call-by-value semantics where semantically a
copy of each input and output parameter is made.7

2.2 Identifier kinds

MATLAB does not explicitly declare local variables, nor explicitly declare the types of
any variables. Input and output arguments are explicitly declared as variables, whereas
other variables are implicitly declared upon their first definition. For example, the as-
signment tos in the first line of Figure 1(d) implicitly also declaress to be a variable,
and allocates space for that variable in the workspace of functionsumcosFN.

It is important to note that it is not possible to syntactically distinguish between
references to array elements and calls to functions. For example, so far we have assumed
that the expressioncos(i) is a call to functioncos . However, it could equally well
be an array reference referring to theith element of arraycos .

To illustrate, consider Figure 2(a), wherecos is defined to be a five-element vector.
The call tosumcos in this context actually just sums the elements of the vector, return-
ing 15 . This is because the MATLAB semantics give akind of ID (identifier) to most
identifiers in scripts. The rule for looking up identifiers with kind ID at runtime is to
first look in the current workspace to see if a variable of thatname exists, and if so the
identifier denotes that variable. If no such variable existsthen the identifier is looked up
as a function. Since the scriptsumcos is being executed in the workspace of function
ex2 , and there does exist a variable calledcos in that workspace, the reference tocos
refers to that variable, and not the library function for computing the cosine.

The identifier lookup semantics within functions is different. In the case of func-
tions, each identifier is given a static kind at JIT compilation time; for details of this

7 Actual implementations of MATLAB optimize this using either lazy copying using reference
counts, or static analyses to insert copies only where necessary [6].

4

function ex2()
cos = [1,2,3,4,5];
i = 1;
n = 5;
sumcos;
s

end

>> ex2
s = 15

(a) calling scriptsumcos (b) result of call

function ex2FN()
cos = [1,2,3,4,5];
s = sumcosFN(1, 5)

end

>> ex2FN
s = -1.2358

(c) calling functionsumcosFN (d) result of call

Fig. 2. Callingsumcos in a context wherecos is a variable

process we refer to the literature [4]. In the case of the refactored functionsumcosFN,
identifiersi , n ands would be determined to have kind VAR (variables), and identifier
cos would be given the kind FN (function). Thus, the reference tocos will always be
to the function, and our transformed functionsumcosFN may have a different meaning
than the original scriptsumcos , as demonstrated by the different results in Figure 2(b)
and (d).

From this example, it is clear that any MATLAB refactoring of scripts must take
care not to change the meaning of identifiers, and in order to do this all of the calling
contexts of the script must be taken into consideration.

2.3 MATLAB programs and function lookup

MATLAB programs are defined as directories of files. Each filef.m contains either:
(a) a script, which is simply a sequence of MATLAB statements; or (b) a sequence of
function definitions. If the filef.m defines functions, then the first function defined in
the file should be calledf (although even if it is not calledf it is known by that name in
MATLAB). The first function is known as theprimary function. Subsequent functions
aresubfunctions. The primary and subfunctions withinf.m are visible to each other,
but only the primary function is visible to functions definedin other.m files. Functions
may be nested, following the usual static scoping semanticsof nested functions. That
is, given some nested functionf’ , all enclosing functions, and all functions declared in
the same nested scope are visible within the body off’ .

Figure 3(a) shows an example of a file containing two functions. The primary func-
tion isex3 and will be visible to all functions and scripts defined in other files. This file
also has a secondary functioncos , which is an implementation of the cosine function
using a Taylor’s approximation. The important question in this example is whichcos
will be called from the scriptsumcos : the library implementation ofcos or the Tay-
lor’s version ofcos defined as a subfunction forex3 ? The answer is that the lookup
of a function call from within a script is done with respect tothe calling function’s en-
vironment. In this case the call tocos in scriptsumcos refers to the environment of

5

functionex3 , which was the last called function. Thus,cos binds to the subfunction
in ex3 .

The transformed functionsumcosFN, however, will not call the Taylor’s version of
cos since subfunctions are not visible to functions defined outside of the file. Thus, the
results of running the original script and the transformed function are different. Clearly
any MATLAB refactoring must take care that it does not change the binding of functions.

function ex3()
i = 1;
n = 5;
sumcos;
s

end

function r = cos(x)
r = 0;
xsq = x * x;
term = 1;
for i = 1:1:10

r = r + term;
term = -term * xsq/((2 * i-1) * (2 * i));

end
end

>> ex3
s = -1.2359

(a) ex3.m with primary and subfunction (b) result of call

function ex3FN()
s = sumcosfn(1,5)

end

function r = cos(x)
% same as above
...

end

>> ex3FN
s = -1.2358

(c) refactoredex3.m (d) result of call

Fig. 3. Callingsumcos in a context wherecos is defined as a subfunction.

In addition to subfunctions, MATLAB also uses the directory structure to organize
functions, and this directory structure also impacts on function binding.

MATLAB directories may contain special private, package and type-specialized di-
rectories, which are distinguished by the name of the directory. Private directories must
be namedprivate/ , Package directories start with a ‘+’, for example+mypkg/ . The
primary function in each filef.m defined inside a package directory+p corresponds
to a function namedp.f . To refer to this function one must use the fully qualified
name, or an equivalent import declaration. Package directories may be nested. Type-
specialized directories have names of the form@<typename>, for example@int32/ .

6

The primary function in a filef.m contained in a directory@typename/ matches calls
to f(a1,...) , where the run-time type of the primary argument istypename .

Overall, the MATLAB lookup of a script/function is performed relative to:f, the
current function/script being executed;sourcefile, the file in whichf is defined;fdir,
the directory containing the last called non-private function (calling scripts or private
functions does not changefdir); dir, the current directory; andpath, a list of other di-
rectories. When looking up function/script names, firstf is searched for a nested func-
tion, thensourcefileis searched for a subfunction, then the private directory offdir is
searched, thendir is searched, followed by the directories onpath. In the case where
there is both a non-specialized and type-specialized function matching a call, the non-
specialized version will be selected if it is defined as a nested, subfunction or private
function, otherwise the specialized function takes precedence.

In summary, a refactoring needs to ensure that identifier kinds do not change unex-
pectedly, and that function lookup remains the same.

3 Converting Scripts to Functions

In the previous section we have motivated the need for a refactoring that can convert
scripts, which are non-modular, into equivalent functionswhich will help improve the
overall structure of MATLAB programs. We also demonstrated that this refactoring is
not as straightforward as one might think due to MATLAB ’s intricate kind assignment
and function lookup rules.

In this section we provide an algorithm to refactor a script into a semantically equiv-
alent function. The programmer provides a complete program, and also identifies the
script to be converted to a function. If the refactoring can be done in a semantics-
preserving manner, the SCRIPT TOFUNCTION refactoring converts the script to a func-
tion and replaces all calls to the script with calls to the newfunction.

This refactoring requires the use of two additional analyses, Reaching Definitions
andLiveness. These are standard analyses which we have implemented in a way that
enables our refactoring.

In our implementation of the reaching definition analysis, every identifier is initial-
ized to be have a special reaching definition of “undef ”. This means that if “undef ”
is not in the reaching definition set for an identifier at some program pointp, then this
identifier is definitely assigned on all the paths top. Further, if the reaching definition
of an identifier only contains “undef ”, the variable is not assigned to on any paths.
Calls to scripts can change reaching definition and livenessresults so we look into the
called scripts’ body during the analyses. Global and persistent variables may be de-
fined by function calls, so our analysis handles these conservatively by associating a
special “global def ” or “ persistent def ” with each variable declared as global or
persistent. These definitions are never killed.

Our liveness analysis is intra-procedural, but also follows calls to scripts. The live-
ness analysis safely approximates global variables as always being live, and persistent
variables as live at the end of the function they are associated with. Variables that are
used in nested functions are also kept alive for simplicity.

7

Recall that the main difference between a script and a function is that a function has
its own workspace and communicates with its caller via inputand output arguments,
while a script executes directly within the caller’s workspace. Thus, to convert a script
s to functionf we need to: (1) determine input and output arguments that will work for
all calls tos, and (2) ensure that name binding will stay the same after conversion.

To determine arguments, the basic idea is that a variable needs to be made an input
argument if it is live within the script and assigned at everycall site; conversely, it needs
to be an output argument if it is assigned within the script and live at some call site.

Notation Meaning
DAs variables definitely assigned on every path throughs

PAs variables possibly assigned on some path throughs

L<s variables live immediately befores
L>s variables live immediately afters
RDs(x) reaching definitions forx immediately befores
Kf (x) kind assigned tox inside script or functionf ; Kf (x) = for inconsistent kind
Lookupf (x) look up identifierx in functionf (subscript omitted where clear from context)

Fig. 4. Notation for auxiliary analysis results;s may be a sequence of statements, or the body of
a function or script.

This intuition is made more precise in Algorithm 1, which uses the notations defined
in Figure 4. To convert scripts into a function, we first compute the setL of identifiers
that are used before being defined ins, and that may refer to a variable (as opposed to a
function); these are candidates for becoming input arguments.

Now we examine every callc to s. If the call occurs in a scripts′, we abort the
refactoring: the lack of structure in scripts makes it all but impossible to determine ap-
propriate sets of input and output arguments; the user can first converts′ into a function,
and then attempt the refactoring again.

If c is in a function, we consider the setDA<c of variables definitely assigned at
c. As far as call sitec is concerned, the setIc of input arguments should simply be the
intersection of this set withL, the set of live variables at the beginning ofs. Similarly,
the setOc of output arguments should contain all variables that are possibly assigned
in s and that are live immediately afterc. We also need to ensure that every output ar-
gument is definitely assigned somewhere in the script; otherwise the refactoring cannot
go ahead. Finally, we compute a setlookupc capturing name binding information for
functions atc, whose purpose will be explained below.

Next, we need to check that the set of input argumentsI is consistent between call
sites: if different call sites provide different input arguments, the refactoring cannot go
ahead (line 13). For output arguments, on the other hand, no such precaution is required:
if an output argument is unused at a particular call site, it can be ignored by binding it
to the dummy “∼” identifier. Thus the set of output parametersO is simply the union
of output arguments at every call site.

We are now ready to build the functionf using input argumentsI, output arguments
O, and the body ofs.

8

Algorithm 1 SCRIPT TOFUNCTION

Require: scripts
Ensure: s converted to function; all calls tos replaced with function calls

1: // preliminary definitions
2: L← {x | x ∈ L<s ∧Ks(x) ∈ {VAR, ID}}
3: Cs ← calls tos

4: // compute input and output arguments
5: for all callsc ∈ Cs do
6: if c is in another scripts′ then
7: abort refactoring
8: Ic ← DA<c ∩ L // input arguments
9: Oc ← PAs ∩ L>c // output arguments

10: if Oc 6⊆ DAs then
11: abort refactoring
12: lookupc ← {〈n,Lookup(n)〉 | n occurs ins,Ks(n) ∈ {ID, FN}} // binding information
13: if ¬∀c, c′ ∈ Cs.Ic = Ic′ then
14: abort refactoring
15: else
16: I ← Ic for some callc ∈ Cs

17: O ←
⋃

c∈Cs

Oc

18: // construct new function
19: construct new functionf with input argumentsI and output argumentsO

20: // check name binding and kinds
21: lookupf ← {〈n,Lookup(n)〉 | n is identifier inf of kind ID or FN}
22: if ¬∀c ∈ Cs.lookupc = lookupf then
23: abort refactoring
24: for all identifiersx in f do
25: if Kf (x) = ID then
26: abort refactoring
27: else ifKs(x) = ID andKf (x) = FN then
28: emit warning
29: else ifKs(x) = VAR andKf (x) = then
30: abort refactoring
31: replace calls tos with calls tof

As a final step, we need to check that name resolution and kind assignments have
not changed.

The former is easy to do: we simply compute pairs〈n,Lookup(n)〉 determining the
binding of every identifiern with kind ID or FN in f , and check that these bindings
agree with the bindingslookupc observed at the call sites.

To check kind preservation, we compare the kindKs(x) an identifierx had ins,
with its kindKf(x) in the new functionf . In general, identifiers of kind ID can remain
so or turn into FN, and identifiers with kind VAR can cause a kind conflict.

If Kf(x) = ID, x may originally have been referring to a variable created dynami-
cally in the calling function. Since functions do not share their caller’s workspace, this
cannot be achieved in a function, and the refactoring has to be aborted.

9

If x’s kind changed from ID to FN, we emit a warning informing the user that the
refactoring assumesx refers to a function, which is always the case unless a variable of
the same name is created dynamically byeval or code loading.

Finally, if x was originally of kind VAR, but provokes a kind conflict inf , we need
to abort the refactoring, since it is not clear which uses of the identifier were meant to
refer to a function, and which to a variable.

If all checks pass, calls tos can be rewritten to function calls, passing in all input
arguments inI and extracting output arguments from the result, discarding any output
arguments not needed at a particular call site.

4 Extracting Functions

The EXTRACT FUNCTION refactoring makes it possible to split large functions into
smaller ones to improve understandability and reusability. Across all our MATLAB

benchmarks, we found that the average number of lines of codeper function is 22.7;
for comparison, this number is 5.4 for Java and 10.5 for C++ [7], which suggests that
MATLAB functions tend to be fairly long and could benefit from extraction.

We first introduce the refactoring on an example before giving a precise specifica-
tion of the extraction algorithm.

1 function printBest(names,
2 grades)
3 bestGrade=-1; bestIdx=-1;
4 for i=1: length(grades)
5 if grades(i) > bestGrade
6 bestGrade=grades(i);
7 bestIdx=i;
8 end
9 end

10 if bestGrade == -1
11 return
12 end
13 disp(names{bestIdx})
14 end

1 function printBest(names,
2 grades)
3 RET=false;
4 bestGrade=-1; bestIdx=-1;
5 for i=1: length(grades)
6 if grades(i) > bestGrade
7 bestGrade=grades(i);
8 bestIdx=i;
9 end

10 end
11 if bestGrade == -1
12 RET=true;
13 end
14 if (˜RET)
15 disp(names{bestIdx})
16 end
17 end

(a) Original Function; extract lines 3–12 (b) After Return Elimination

Fig. 5. An example for EXTRACT FUNCTION

Figure 5(a) shows an example function that takes an arraynames containing the
names of students, and an arraygrades containing their grades. On lines 3–12, it
searches throughgrades to find the best grade, storing its index in local variable

10

bestIdx . If no best grade was found (becausegrades was empty or contained in-
valid data), the function returns to its caller; otherwise,the name of the student with the
best grade is printed.

Assume that we want to extract the code for finding the best grade (lines 3–12) into
a new functionfindBest . Note that the extraction region contains the return state-
ment on line 11; if this statement were extracted intofindBest unchanged, program
semantics would change, since it would now only return fromfindBest , not from
printBest any more. To avoid this, we first eliminate the return as shownin Fig-
ure 5(b) by introducing a flagRET. In general, return elimination requires a slightly
more elaborate transformation than this, but it is still fairly straightforward and will not
be described in detail here; the reader is referred to the first author’s thesis for details [8].

Next, we need to determine which input and output arguments the extracted function
should have. Reasoning similar to the previous section, we determine thatgrades
should become an input argument, since it is live at the beginning of the extracted
region and definitely assigned beforehand. Conversely,bestIdx should become an
output argument, since it is assigned in the extracted region and live afterwards.

1 function [RET, bestIdx] =
2 findBest(grades)
3 bestGrade=-1; bestIdx=-1;
4 for i=1: length(grades)
5 if grades(i) > bestGrade
6 bestGrade=grades(i);
7 bestIdx=i;
8 end
9 end

10 if bestGrade == -1
11 RET=true;
12 end
13 end
14

15 function printBest(names,
16 grades)
17 RET=false;
18 [RET, bestIdx] = ...
19 findBest(grades);
20 if (˜RET)
21 disp(names{bestIdx})
22 end
23 end

1 function [RET, bestIdx] =
2 findBest(grades, RET)
3 bestGrade=-1; bestIdx=-1;
4 for i=1: length(grades)
5 if grades(i) > bestGrade
6 bestGrade=grades(i);
7 bestIdx=i;
8 end
9 end

10 if bestGrade == -1
11 RET=true;
12 end
13 end
14

15 function printBest(names,
16 grades)
17 RET=false;
18 [RET, bestIdx] = ...
19 findBest(grades, RET);
20 if (˜RET)
21 disp(names{bestIdx})
22 end
23 end

(a) After extracting function,RETmay (b) Final version of the extracted function
be undefined after the call and the call

Fig. 6. Example for EXTRACT FUNCTION, continued

11

Similarly, RETshould also become an output argument. Figure 6(a) shows thenew
function with these arguments. Note, however, thatRET is not assigned on all code
paths, so it may be undefined at the point where the extracted function returns, resulting
in a runtime error. To avoid this, we have to also addRETto the list of input arguments,
ensuring that it always has a value. This finally yields the correct extraction result,
shown in Figure 6(b).

Algorithm 2 EXTRACT FUNCTION

Require: sequences of contiguous statements in functionf , namen
Ensure: s extracted into new functiong with namen

1: if s contains top-level break or uses vararg syntaxthen
2: abort refactoring
3: if s contains return statementthen
4: eliminate return statements inf
5: I ← {x | x ∈ L<s ∧ RDs(x) 6⊆ {undef , global }}
6: O ← PAs ∩ L>s

7: for all x ∈ O \DAs do
8: if undef 6∈ RDs(x) then
9: I ← I ∪ {x}

10: else
11: abort refactoring
12: if function with namen exists in same folder asf then
13: abort refactoring
14: create new functiong with namen, input argumentsI , output argumentsO
15: declare any globals used ins as globals ing
16: for all identifierx in g do
17: if Kg(x) 6= Kf (x) then
18: abort refactoring
19: else ifKg(x) = FN andLookupf (x) 6= Lookupg(x) then
20: abort refactoring
21: else ifKg(x) = ID then
22: abort refactoring
23: replaces by call tog

Algorithm 2 shows how to extract a sequences of contiguous statements in a func-
tion f into a new function namedn, again using the notations from Figure 4.

We first check whethers contains abreak statement that refers to a surrounding
loop that is not part of the extraction region; if so, the refactoring is aborted. Similarly,
if s refers to a variable argument list off using “varargin ” or “ varargout ”, the
refactoring is also aborted. Both of these cases would require quite extensive transfor-
mations, which we do not believe to be justified.

After eliminating return statements if necessary, we compute the setI of input ar-
guments, and the setO of output arguments for the new function: every variable that
is live immediately before the extraction regions and that has a non-trivial reaching

12

definition becomes an input argument; every variable that ispotentially assigned ins
and is live afterwards becomes an output argument.

Additionally, any output arguments that are not definitely assigned ins but are def-
initely assigned before (likeRETin our example above) also become input arguments.
We also check for the corner case of an output argument that isneither definitely as-
signed ins nor befores, which results in the refactoring being aborted.

Having established the sets of input and output arguments, we can now create the
extracted functiong, but we need to ensure that no function of this name exists already.
We also need to declare any global variables used ins as global ing, as they would
otherwise become local variables ofg.

Finally, we need to check that name binding and kind assignments work out. First,
we check that the kind of all identifiers ing is the same as before the extraction. Ad-
ditionally, if there is any function reference that refers to a different declaration in the
new functiong than it did before, we need to abort the refactoring. Lastly,we ensure
that no identifier has kind ID, as this may again lead to different name lookup results.

If all these checks pass, we can replaces by a call to the extracted function.

5 Other Refactorings

In addition to the SCRIPT TO FUNCTION and EXTRACT FUNCTION refactorings de-
scribed in the previous sections, we have implemented several other refactorings that
we briefly outline in this section.

Corresponding to EXTRACT FUNCTION, there are two inlining refactorings for in-
lining scripts and functions. While this does not usually improve code quality, inlining
refactorings can play an important role as intermediate steps in larger refactorings.

When inlining a call to script or functiong in functionf , return statements ing first
have to be eliminated in the same way as for EXTRACT FUNCTION. If g is a function,
its local variables have to be renamed to avoid name clashes with like-named variables
in f . After copying the body ofg into f , we then have to verify that name bindings
stay the same, and kind assignments either stay the same or atleast do not affect name
lookup. For details we refer to the first author’s thesis [8].

Finally, we briefly discuss a very simple but surprisingly useful MATLAB -specific
refactoring, ELIMINATE FEVAL . The MATLAB builtin function feval takes a refer-
ence to a function (a function handle or a string with the nameof the function) as an
argument and calls the function. Replacingfeval by direct function calls where pos-
sible leads to cleaner and more efficient code.

Somewhat to our surprise, we found numerous cases where programmers used a
constant function name infeval . For example, the code in Listing 1.1, which is ex-
tracted from one of our benchmarks, usesfeval for all invocations of user defined
functions (lines 2, 5 and 6), even though there is no apparentreason for doing so; all
uses offeval can be replaced by direct function calls.

Our refactoring tool looks for those calls tofeval which have a string constant
as the first argument, and then uses the results from kind analysis to determine if an
identifier with kind VAR with the same name exists. If there is no such identifier in
the function, the call tofeval is replaced with a direct call to the function named

13

1 %%% matrix of Fourier coefficients
2 eps1 = feval (’epsgg’,r,na,nb,b1,b2,N1,N2);
3 ...
4 for j=1: length(BZx)
5 [kGx, kGy] = feval(’kvect2’,BZx(j),BZy(j),b1,b2,N1,N2) ;
6 [P, beta]=feval(’oblic_eigs’,omega,kGx,kGy,eps1,N);
7 ...
8 end

Listing 1.1. Extracts from a script which usesfeval

inside the string literal. Of course, with more complex string and call graph analyses
one could support even more such refactorings. However, it is interesting that such a
simple refactoring is useful.

6 Evaluation

We now evaluate our implementation on a large set of MATLAB programs. While it
would be desirable to evaluate correctness (i.e., behaviorpreservation) of our imple-
mentation, this is infeasible to do by hand due to the large number of subject programs.
Automated testing of refactoring implementations is itself still a topic of research [9]
and relies on automated test generation, which is not yet available for MATLAB . Instead,
we aim to assess the usefulness of our refactorings and theirimplementation.

6.1 Evaluation Criteria

We evaluate every refactoring according to the following criteria:

EC1 How many refactoring opportunities are there?
EC2 Among all opportunities, how often can McLAB perform the refactoring without

warnings or errors? How often is the user warned of possible behavior changes?
How often is McLAB unable to complete the refactoring?

EC3 How invasive are the code changes?

6.2 Experimental Setup and Benchmarks

In order to experiment with our analyses we gathered a large number of MATLAB

projects.8 The benchmarks come from a wide variety of application areasincluding
Computational Physics, Statistics, Computational Biology, Geometry, Linear Algebra,
Signal Processing and Image Processing. We analyzed 3023 projects composed of

8 Benchmarks were obtained from individual contributors plus projects from
http://www.mathworks.com/matlabcentral/fileexchange ,
http://people.sc.fsu.edu/ ˜ jburkardt/m_src/m_src.html ,
http://www.csse.uwa.edu.au/ ˜ pk/Research/MatlabFns/ and
http://www.mathtools.net/MATLAB/ . This is the same set of projects that are
used in [4].

14

http://www.mathworks.com/matlabcentral/fileexchange
http://people.sc.fsu.edu/~jburkardt/m_src/m_src.html
http://www.csse.uwa.edu.au/~pk/Research/MatlabFns/
http://www.mathtools.net/MATLAB/

11698 function files, some with multiple functions, and 2380scripts. The projects vary
in size between 283 files in one project, and a single file in other cases. A summary
of the size distribution of the benchmarks is given in Table 1which shows that the
benchmarks tend to be small to medium in size. However, we have also found 9 large
and 2 very large benchmarks. The benchmarks presented here are the most downloaded
projects among the mentioned categories, which may mean that the average code qual-
ity is higher than for less popular projects.

Benchmark Category Number of Benchmarks
Single (1 file) 2051
Small (2–9 files) 848
Medium (10–49 files) 113
Large (50–99 files) 9
Very Large (≥ 100 files) 2
Total 3023

Table 1.Distribution of size of the benchmarks

6.3 Converting Scripts to Functions

We start by evaluating the SCRIPT TOFUNCTION refactoring presented in Section 3.
We consider every script a candidate for the refactoring (EC1), thus there are 2380

refactoring opportunities overall (note that some benchmarks only define functions).
For criterionEC2, Table 2 summarizes the result of using McLAB to convert all these
scripts to functions: in 204 cases, the refactoring completed without warnings or errors;
in 1312 cases, the refactoring succeeds with a warning aboutan identifier changing from
kind ID to the more specialized kind FN. This is only a problem if the program defines
a variable reflectively througheval or code loading, and the identifier in question is also
a function on the path. This is unlikely and should be easy forthe programmer to check.
Finally, for 864 scripts the refactoring aborted because behavior preservation could not
be guaranteed.

Further breaking down the causes of rejection, we see that inmost cases the problem
is an identifier of kind ID that cannot statically be resolved to a variable or a function.
In all these cases, the script is the only script in a single file project; thus it arguably
is not a very good target for conversion anyway. In some cases, the script was itself
called from a script, which also leads to rejection (as mentioned in Section 3, this could
be resolved by first converting the calling script to a function). Finally, in one case
different invocations of the script lead to different inputargument assignments.

To assess the invasiveness of the code changes (EC3), we measured the number of
input and output arguments of the newly created functions. Alarge number of input and
output parameters can clutter up the code, so it is importantthat the refactoring creates
no spurious parameters. For those scripts that were called at least once, the number of
inputs range between 0 and 5 with an average of 1, and the number of outputs range

15

Refactoring Outcome Number of Scripts
Success 204
Success with Warning about ID changed to FNs 1312
Unresolved IDs 712
Call from script 151
Input arguments mismatch 1

Table 2.Results from converting scripts to functions

between 0 and 12 with the average of 1.1. This shows that the algorithm is fairly efficient
in choosing a minimal set of parameters.

6.4 Extract Function

For function extraction, the number of refactoring opportunities is hard to measure,
since it is not clear how to identify blocks of code for which function extraction makes
sense.

In order to nevertheless be able to automatically evaluate alarge number of function
extraction refactorings, we employ a heuristic for identifying regions that are more or
less independent in terms of control and data flow from the rest of a function.

We concentrate on regions starting at the beginning of a function, and comprising
a sequence of top-level statements. We only consider functions with at least seven top-
level statements; smaller functions are unlikely to benefitfrom extraction. Since we
want the region to contain some reasonable amount of code, weinclude at least as
many statements as it takes for the region to contain 30 AST nodes. We don’t want to
move all the body of the original function to the new functioneither, so we never extract
the last 30 AST nodes in the function either. In between, we find the choice that will
need the minimum number of input and output arguments, but only if that minimum
number is less than 15. Figure 7 shows these constraints.

Out of 13438 functions overall, 6469 contain at least seven top-level statements
and thus are interesting for extraction (EC1). Among these, we can successfully break
6214 functions (i.e., 96%) into smaller ones (EC2). The average number of arguments
to the newly created functions was 2.8 (EC3), with most extracted functions having
between one and three arguments. This means that the selection algorithm was effective
in selecting regions with minimal inter-dependency. Figure 8 shows the distribution of
the number of arguments among these 6214 functions.

In 48 cases the refactoring was rejected because a possibly undefined input argu-
ment was detected, and in 21 cases a possibly undefined outputargument prevented the
refactoring from going ahead.

6.5 Replacingfeval

Finally, we evaluated the ELIMINATE FEVAL refactoring for converting trivial uses of
feval into direct function calls. Of the 200 calls tofeval , there were 23 uses of it with
a string literal argument (EC1), and all of them could be eliminated successfully (EC2).

16

Function body

Extraction region contains at least 30 AST nodes







−−−−−−−−−−−−
−−−−−−−−−−−−
−−−−−−−−−−−−

Add statements, find minimum number of arguments























−−−−−−−−−−−−
−−−−−−−−−−−−
−−−−−−−−−−−−
−−−−−−−−−−−−
−−−−−−−−−−−−

At least 30 AST nodes are not extracted







−−−−−−−−−−−−
−−−−−−−−−−−−
−−−−−−−−−−−−

Fig. 7.An example showing constraints used to select refactoring region

� � � � � � � � � 	 �� �� �� �� �� ��

�

���

���

���

���

����

����

����

����

����

����

Fig. 8.Distribution of number of arguments for the new functions.

The transformation performed by this refactoring is very local, and in fact makes the
code simpler (EC3).

6.6 Threats to Validity

There are several threats to validity for our evaluation.
First, our collection of benchmarks is extensive, but it maynot be representative of

other real-world MATLAB code. In particular, the percentage of rejected refactorings
may be higher on code that makes heavy use of language features that are hard to
analyze.

Second, our selection of refactoring opportunities is based on heuristics and may
not be representative of actual refactorings that programmers may attempt. This is a

17

general problem with automatically evaluating refactoring implementations. Still, the
low number of rejections gives some confidence that the implementation should be able
to handle real-world use cases. A more realistic user study will have to wait until our
implementation has been integrated with an IDE.

Finally, we have not checked whether the refactorings performed by our implemen-
tation are actually behavior preserving in every case; the large number of successful
refactorings makes this impossible. We know of two edge cases where behavior may
not be preserved: the kind and name analyses do not handle dynamic calls tocd , and
eval is not handled by the liveness or reaching definition analysis. This is similar to
how refactorings for Java do not handle reflection. One possibility would be for the
refactoring engine to emit a warning to the user if a use of oneof these features is
detected, but we have not implemented this yet.

7 Related Work

There is a wide variety of work on refactoring covering a large number of programming
languages. In particular, there is a considerable body of work on automated refactor-
ing for statically typed languages such as Java with quite well developed and rigorous
approaches for specifying correct refactorings[10,11,12]. However, these approaches
intrinsically rely on the availability of rich compile-time information in the form of
static types and a static name binding structure; thus they are not easily applicable to
MATLAB , which provides neither.

Refactoring for dynamically typed languages has, in fact, along history: the first
ever refactoring tool, the Refactoring Browser [13], targetted the dynamically typed
object-oriented language Smalltalk. However, the Refactoring Browser mostly concen-
trated on automating program transformation and performedrelatively few static checks
to ensure behavior preservation.

More recently, Feldthaus et al. [14] have presented a refactoring tool for JavaScript.
They employ a pointer analyis to infer static information about the refactored program,
thus making up for the lack of static types and declarations.Most of their refactorings
have the goal of improving encapsulation and modularity, thus they are similar in scope
to our proposed refactorings for MATLAB .

Even more closely related is recent work on refactoring support for Erlang. Like
MATLAB , Erlang has evolved over time, adding new constructs for more modular and
concise programming, and refactorings have been proposed that can help with upgrad-
ing existing code to make use of these new features. For instance, the Wrangler refac-
toring tool provides assistance for data and process refactoring [15], clone detection and
elimination [16] and modularity maintenance [17].

Most recently, Wrangler has been extended with a scripting language that makes it
easy to implement domain specific refactorings [18]. Such scriptable refactorings could
be interesting for MATLAB as well, either to implement one-off refactorings to be used
for one particular code base, or to provide a refactoring tool with specific information
about a program that enables otherwise unsafe transformations.

While Wrangler is an interactive tool, thetidier tool [19] performs fully automatic
cleanup operations on Erlang code. The standards for behavior preservation are obvi-

18

ously much higher for a fully automated tool than for an interactive one, sotidier only
performs small-scale refactorings, but a similar tool could certainly also be useful for
MATLAB .

Refactoring legacy Fortran code has also been the subject ofsome research. Over-
bey et. al. [20,21] point out the benefits of refactoring for languages that have evolved
over time. Although the specific refactorings are quite different, the motivation and the
applicability of our approaches is very similar. Like MATLAB , Fortran is often used for
computationally expensive tasks, hence there has been someinterest in refactorings for
improving program performance [22,23].

In a similar vein, Menon and Pingali have investigated source-level transformations
for improving MATLAB performance [24]. The transformations they propose go be-
yond the typical loop transformations performed by compilers, and capture MATLAB -
specific optimizations such as converting entire loops to library calls, and restructuring
loops to avoid incremental array growth. Automating these transformations would be
an interesting next step, and our foundational analyses andrefactorings should aid in
that process.

8 Conclusion

In this paper we have identified an important domain for refactoring, MATLAB pro-
grams. Millions of scientists, engineers and researchers use MATLAB to develop their
applications, but no tools are available to support refactoring their programs. This means
that it is difficult for the programmers to improve upon old code which use out-of-date
language constructs or to restructure their initial prototype code to a state in which it
can be distributed.

To address this new refactoring domain we have developed a set of refactoring trans-
formations for functions and scripts, including function and script inlining, converting
scripts to functions, and eliminating simple cases offeval . For each refactoring we es-
tablished a procedure which defined both the transformationand the conditions which
must be verified to ensure that the refactoring is semantics-preserving. In particular, we
emphasized that both the kinds of identifiers and the function lookup semantics must be
considered when deciding if a refactoring can be safely applied or not.

We have implemented all of the refactorings presented in thepaper using our
McLAB compiler toolkit, and we applied the refactorings to a largenumber of MAT-
LAB applications. Our results show that, on this benchmark set,the refactorings can be
effectively applied. We plan to continue our work, adding more refactorings, including
performance enhancing refactorings and refactorings to enable a more effective trans-
lation of MATLAB to Fortran.

Acknowledgments

This work has been supported by NSERC (Canada) and the Leverhulme Trust (UK).
We would also like to give special acknowledgment to Frank Tip for helping to define
the direction of this work.

19

References

1. Opdyke, W.F.: Refactoring Object-Oriented Frameworks.Ph.D. thesis, University of Illinois
at Urbana-Champaign (1992)

2. Griswold, W.G.: Program Restructuring as an Aid to Software Maintenance. Ph.D. thesis,
University of Washington (1991)

3. Fowler, M.: Refactoring: Improving the Design of Existing Code. Addison-Wesley (1999)
4. Doherty, J., Hendren, L., Radpour, S.: Kind analysis for MATLAB. In: In Proceedings of

OOPSLA 2011. (2011)
5. : McLab. http://www.sable.mcgill.ca/mclab/
6. Lameed, N., Hendren, L.J.: Staged Static Techniques to Efficiently Implement Array Copy

Semantics in a MATLAB JIT Compiler. In: CC. (2011) 22–41
7. English, M., McCreanor, P.: Exploring the Differing Usages of Programming Language

Features in Systems Developed in C++ and Java. In: PPIG. (2009)
8. Radpour, S.: Understanding and Refactoring the MATLAB Language. M.Sc. thesis, McGill

University (2012)
9. Soares, G., Gheyi, R., Serey, D., Massoni, T.: Making Program Refactoring Safer. IEEE

Software27(4) (2010) 52–57
10. Schäfer, M., de Moor, O.: Specifying and Implementing Refactorings. In: OOPSLA. (2010)
11. Tip, F., Fuhrer, R.M., Kieżun, A., Ernst, M.D., Balaban, I., Sutter, B.D.: Refactoring Using

Type Constraints. TOPLAS33 (May 2011) 9:1–9:47
12. Schäfer, M., Thies, A., Steimann, F., Tip, F.: A Comprehensive Approach to Naming and

Accessibility in Refactoring Java Programs. TSE (2012) To appear.
13. Roberts, D., Brant, J., Johnson, R.E.: A Refactoring Tool for Smalltalk. TAPOS3(4) (1997)

253–263
14. Feldthaus, A., Millstein, T., Møller, A., Schäfer, M.,Tip, F.: Tool-supported Refactoring for

JavaScript. In: OOPSLA. (2011)
15. Li, H., Thompson, S.J., Orösz, G., Tóth, M.: Refactoring with Wrangler, updated: Data and

process refactorings, and integration with Eclipse. In: Erlang Workshop. (2008) 61–72
16. Li, H., Thompson, S.J.: Clone Detection and Removal for Erlang/OTP within a Refactoring

Environment. In: PEPM. (2009) 169–178
17. Li, H., Thompson, S.J.: Refactoring Support for Modularity Maintenance in Erlang. In:

SCAM. (2010) 157–166
18. Li, H., Thompson, S.J.: A Domain-Specific Language for Scripting Refactorings in Erlang.

In: FASE. (2012) 501–515
19. Sagonas, K., Avgerinos, T.: Automatic Refactoring of Erlang Programs. In: PPDP. (2009)

13–24
20. Overbey, J.L., Negara, S., Johnson, R.E.: Refactoring and the Evolution of Fortran. In:

SECSE. (2009) 28–34
21. Overbey, J.L., Johnson, R.E.: Regrowing a Language: Refactoring Tools Allow Program-

ming Languages to Evolve. In: OOPSLA. (2009)
22. Overbey, J., Xanthos, S., Johnson, R., Foote, B.: Refactorings for Fortran and High-

performance Computing. In: SE-HPCS. (2005) 37–39
23. Boniati, B.B., Charão, A.S., Stein, B.D.O., Rissetti,G., Piveta, E.K.: Automated Refactor-

ings for High Performance Fortran Programmes. IJHPSA3(2/3) (2011) 98–109
24. Menon, V., Pingali, K.: A Case for Source-level Transformations in MATLAB. In: DSL.

(1999) 53–65

20

http://www.sable.mcgill.ca/mclab/

	Refactoring MATLAB

