Refactoring MATLAB

Soroush Radpoti?, Laurie Hendref, and Max Schafér

! Google, Inc.
soroush@google.com
2 School of Computer Science, McGill University, Montreagr@da
hendren@cs.mcgill.ca
3 School of Computer Engineering, Nanyang Technologicalghsity, Singapore
schaefer@ntu.edu.sg

Abstract. MATLAB is a very popular dynamic “scripting” language for numeri-
cal computations used by scientists, engineers and ssdend-wide. MATLAB
programs are often developed incrementally using a mbatiMATLAB scripts

and functions, and frequently build upon existing code Whitay use outdated
features. This results in programs that could benefit fraiactering, especially

if the code will be reused and/or distributed. Despite thednfor refactoring,
there appear to be no MLAB refactoring tools available. Furthermore, correct
refactoring of MATLAB is quite challenging because of its non-standard rules for
binding identifiers. Even simple refactorings are nonidtiv

This paper presents the important challenges of refagdvaTLAB along with
automated techniques to handle a collection of refacterfog MATLAB func-
tions and scripts including: converting scripts to funoipextracting functions,
and converting dynamic function calls to static ones. Tlfi@cterings have been
implemented using the MalB compiler framework, and an evaluation is given
on a large set of MTLAB benchmarks which demonstrates the effectiveness of
our approach.

1 Introduction

Refactoring may be defined as the process of transforminggrgm in order to im-
prove its internal structure without changing its extermethavior. The goal can be to
improve readability, maintainability, performance or &aluce the complexity of code.
Refactoring has developed for the last 20 years, startinly the seminal theses by
Opdyke [1] and Griswold([2], and the well known book by Fow|&f. Many pro-
grammers have come to expect refactoring support, and g@ofiEs such as Eclipse,
Microsoft's Visual Studio, and Oracle’s NetBeans havedgnaged tool support for au-
tomating simple refactorings. However, the benefits ofatefiang tools have not yet
reached the millions of MrLAB programmers. Currently neither Mathworks’ propri-
etary MATLAB IDE, nor open-source tools provide refactoring support.

MATLAB is a popular dynamic (“scripting”) programming languagatthas been
in use since the late 1970s, and a commercial product of Maitk$\since 1984, with
millions of users in the scientific, engineering and resememmunitied There are

4 The most recent data from MathWorks shows one millionTMAB users in 2004, with
the number doubling every 1.5 to 2 years; ssaw.mathworks.com/company/-
newsletters/news _notes/clevescorner/jan06.pdf

currently over 1200 books based onaM.AB and its companion software, Simulink
(http://www.mathworks.com/support/books).

As we have collected and studied a large body effMaB programs, we have found
that the code could benefit from refactoring for severalorasFirst, the MTLAB lan-
guage has evolved over the years, incrementally introgutiany valuable high-level
features such as (nested) functions, packages and so oevEQWIATLAB program-
mers often build upon code available online or examples fvooks, which often do not
use the modern high-level features. Thus, although coderislan essential part of the
MATLAB eco-system, code cruft, obsolete syntax and new languaderés compli-
cates this reuse. SinceAVILAB does not currently have refactoring tools, programmers
either do not refactor, or they refactor code by hand, whréd¢hme-consuming and error-
prone. Secondly, the interactive nature of developingrMAB programs promotes an
incremental style of programming that often results intieddly unstructured and non-
modular code. When developing small one-off scripts thiy mat be important, but
when developing a complete application or library, refaothe code to be better
structured and more modular is key for reuse and maintenance

Refactoring MATLAB presents new research challenges in two areas: (1) ensur-
ing proper handling of MTLAB semantics; and (2) developing newaWLAB -specific
refactorings. The semantics of AVILAB is quite different from other languages, thus
even standard refactorings must be carefully defined. Iticoder, to ensure behav-
ior preservation, refactoring tools have to verify thatrtigéers maintain their cor-
rect kind [4] (variable or function), and that their bindirggnot accidentally changed.
MATLAB -specific refactorings include those which help progransneéminate unde-
sirable MATLAB features. For example, MLAB scripts are a hybrid of macros and
functions, and can lead to unstructured code that is harddlyze and optimize. Thus,
an automatic refactoring which can convert scripts to fiomst is a useful refactoring
transformation which helps improve the structure of theecddlynamic features like
feval also complicate programs and are often used inappropridtels, MATLAB -
specific refactorings, which convdeval to more static constructs are also useful.

In this paper we introduce a family of automated refactagiaigned at restructuring
functions and scripts, and calls to functions and scripts.stért with a refactoring for
converting scripts into functions, which improves theirsability and modularity. Then
we introduce the MTLAB version of the well-known ETRACT FUNCTION refactoring
that can be used to break up large functions into smalles gairtally, we briefly survey
several other useful refactorings for inlining scripts &madctions, and a refactoring to
replace spurious uses of the dynaffieial feature with direct function calls.

We have implemented our refactoring transformations in Mgt AB compiler
framework [5], and evaluated the refactorings on a colbectif 3023 MATLAB pro-
grams. We found that the vast majority of refactoring opyaittes could be handled
with few spurious warnings.

The main contributions of this paper are:

— ldentifying a need for refactoring tools for MLAB and the key static properties
that must be checked for such refactorings.

— Introducing a family of refactorings for MrLAB functions and scripts.

— An implementation of these refactorings in Met.

— An evaluation of the implementation on a large set of pupl@lailable MATLAB
programs.

The remainder of this paper is structured as follows. IniBe@ we provide some
motivating examples and background about determining itk ¢f identifiers and the
semantics of function lookup. Sectibh 3 describes a refamgydor converting scripts
to functions, Sectionl4 presentxERACT FUNCTION, and Sectiofl5 briefly introduces
several other refactorings. Sectldn 6 evaluates the mfagtimplementations on our
benchmark set, Sectidh 7 surveys related work, and Sddion@8udes.

2 Background and Motivating Example

In this section we introduce some key features offMAB, and we give a motivating
example to demonstrate both a usefuhMAB refactoring and the sorts of MLAB -
specific issues that must be considered.

2.1 MATLAB scripts and functions

A MATLAB program consists of a collection of scripts and functionsc#ipt is sim-

ply a sequence of MrLAB statements. For example, Figlte 1(a) defines a script called
sumcos which computes the sum of the cosine values of the nunib&ra. Although
using scripts is not a good programming practice, they angeasy for MATLAB pro-
grammers to create. Typically, a programmer will experitweith a sequence of state-
ments in the read-eval-print loop of the IDE and then copy paste them into a file,
which becomes the script.

A script is executed in the workspace from which it was calkeither the main
workspace, or the workspace of the calling funcfidror example, Figuriel 1(b) shows
functionexl calling scriptsumcos. Whensumcos executes it reads the values of
variables andn from the workspace of functioex1 , and writes the value of into
that same workspace. Clearly, scripts are highly non-nadahd do not have a well-
defined interface. A programmer cannot easily determineripets and outputs of a
script. Thus, a better programming practice would be to usetfons.

Figure[1(d) shows the scrigumcos refactored into an equivalent function. The
body of the function is the same as the script, but now theudygprametes and the
input parameters andn are explicitly declared. As shown in Figure 1(c) and (f), in
this case the refactored function produces the same resthlieariginal script.

In general, MaTLAB functions may have multiple output and input arguments.
However, not all input arguments need to be provided at a aal not all returned

5 Workspaces are MrLAB’s version of lexical environments. There is an initial “mi
workspace which is acted upon by commands entered into threrered-eval-print loop. There
is a also a stack of workspaces corresponding to the functadirstack. A call to a function
creates and pushes a new workspace, which becomes theteuor&epace.

5 These results are snippets taken from an interactive sessithe MATLAB read-eval-print
loop. The >>" prompt is followed by the expression to be evaluated. IruFéfl(c) this is a
call to functionex1 . The line after the prompt prints the result of the evaluatio

s = 0; function ex1() >> exl
while i <= n i=1; s = -1.2358
s = s + cos(i); n =5;
=i+ 1; sSumcos;
end S
end
(a) scriptsumcos.m (b) callingsumcos (c) result of call
function s = sumcosFN(i, n) function ex1FN() >> ex1FN
s = 0; s = sumcosFN(1, 5) s = -1.2358
while i <= n end
s = s + cos(i);
i=i+ 1
end
end
(d) functionsumcosFN.m (e) callingsumcosFN () result of call

Fig. 1. Example script and function

values need to be used. Parameters obey call-by-value sesmahere semantically a
copy of each input and output parameter is nfhade.

2.2 ldentifier kinds

MATLAB does not explicitly declare local variables, nor explicideclare the types of
any variables. Input and output arguments are explicitblated as variables, whereas
other variables are implicitly declared upon their first digfon. For example, the as-
signment tcs in the first line of Figuré&Il(d) implicitly also declarssto be a variable,
and allocates space for that variable in the workspace atimmsumcosFN.

It is important to note that it is not possible to syntaclicaistinguish between
referencesto array elements and calls to functions. Fonpleg so far we have assumed
that the expressiooos(i) is a call to functiorcos . However, it could equally well
be an array reference referring to thie element of arragos .

To illustrate, consider Figufé 2(a), wheres is defined to be a five-element vector.
The call tosumcos in this context actually just sums the elements of the veotturn-
ing 15. This is because the MLAB semantics give &ind of 1D (identifier) to most
identifiers in scripts. The rule for looking up identifierstivkind ID at runtime is to
first look in the current workspace to see if a variable of tr@he exists, and if so the
identifier denotes that variable. If no such variable extsts the identifier is looked up
as a function. Since the scriptimcos is being executed in the workspace of function
ex2, and there does exist a variable caléed in that workspace, the referencecios
refers to that variable, and not the library function for garting the cosine.

The identifier lookup semantics within functions is diffeteln the case of func-
tions, each identifier is given a static kind at JIT compiattime; for details of this

7 Actual implementations of MTLAB optimize this using either lazy copying using reference
counts, or static analyses to insert copies only where sacef].

function ex2() >> ex2

cos = [1,2,3,4,5]; s = 15
i=1;
n =25;
SUMCos;
S
end
(a) calling scriptsumcos (b) result of call
function ex2FN() >> ex2FN
cos = [1,2,3,4,5]; s = -1.2358
s = sumcosFN(1, 5)
end
(c) calling functionsumcosFN (d) result of call

Fig. 2. Callingsumcos in a context whereos is a variable

process we refer to the literatufe [4]. In the case of thectefad functiorsumcosFN,
identifiersi , n ands would be determined to have kindh¥ (variables), and identifier
cos would be given the kind ¥ (function). Thus, the reference tos will always be
to the function, and our transformed functeunmcosFN may have a different meaning
than the original scrigumcos, as demonstrated by the different results in Figuire 2(b)
and (d).

From this example, it is clear that anyAvIiLAB refactoring of scripts must take
care not to change the meaning of identifiers, and in ordeotthid all of the calling
contexts of the script must be taken into consideration.

2.3 MATLAB programs and function lookup

MATLAB programs are defined as directories of files. Eachffibe contains either:
(a) a script, which is simply a sequence oM.AB statements; or (b) a sequence of
function definitions. If the fildé.m defines functions, then the first function defined in
the file should be callet (although even if it is not callefl it is known by that name in
MATLAB). The first function is known as tharimary function Subsequent functions
are subfunctionsThe primary and subfunctions withitm are visible to each other,
but only the primary function is visible to functions definadther.m files. Functions
may be nested, following the usual static scoping semaafiegsted functions. That
is, given some nested functiéin, all enclosing functions, and all functions declared in
the same nested scope are visible within the body of

Figure[3(a) shows an example of a file containing two funatidie primary func-
tion isex3 and will be visible to all functions and scripts defined inatfiles. This file
also has a secondary functionos , which is an implementation of the cosine function
using a Taylor’'s approximation. The important questionhis example is whicltos
will be called from the scripsumcos: the library implementation ofos or the Tay-
lor's version ofcos defined as a subfunction fex3 ? The answer is that the lookup
of a function call from within a script is done with respecthe calling function’s en-
vironment. In this case the call tos in scriptsumcos refers to the environment of

functionex3, which was the last called function. Thums binds to the subfunction
inex3.

The transformed functiosumcosFN, however, will not call the Taylor’s version of
cos since subfunctions are not visible to functions definedidatsf the file. Thus, the
results of running the original script and the transformetttion are different. Clearly
any MATLAB refactoring must take care that it does not change the grafifunctions.

function ex3() >> ex3
i=1; s = -1.2359
n =25;
sSumcos;
S

end

function r = cos(x)

r =0
XSgQ = X *X;
term = 1;

for i = 1:1:10
r=r + term;
term = -term *xsg/((2 *i-1) *(2 *i));

end
end
(a) ex3.m with primary and subfunction (b) result of call
function ex3FN() >> ex3FN
s = sumcosfn(1,5) s = -1.2358
end

function r = cos(x)
% same as above

end
(c) refactorecex3.m (d) result of call

Fig. 3. Callingsumcos in a context whereos is defined as a subfunction.

In addition to subfunctions, WrLAB also uses the directory structure to organize
functions, and this directory structure also impacts orcfiom binding.

MATLAB directories may contain special private, package and speeialized di-
rectories, which are distinguished by the name of the dirgcPrivate directories must
be namedrivate/ , Package directories start with a ‘+’, for examplaypkg/ . The
primary function in each filé.m defined inside a package directory corresponds
to a function namedg.f . To refer to this function one must use the fully qualified
name, or an equivalent import declaration. Package diriestonay be nested. Type-
specialized directories have names of the fa@xtypename>, for example@int32/ .

The primary function in a filém contained in a directorg@typename/ matches calls
tof(al,...) , where the run-time type of the primary argumenyjgename .

Overall, the MATLAB lookup of a script/function is performed relative :the
current function/script being executeshurcefile the file in whichf is defined;fdir,
the directory containing the last called non-private fiorctcalling scripts or private
functions does not chandedir); dir, the current directory; angath, a list of other di-
rectories. When looking up function/script names, firi searched for a nested func-
tion, thensourcefileis searched for a subfunction, then the private directorfdinfis
searched, thedir is searched, followed by the directories path In the case where
there is both a non-specialized and type-specialized immabatching a call, the non-
specialized version will be selected if it is defined as aegistubfunction or private
function, otherwise the specialized function takes preoed.

In summary, a refactoring needs to ensure that identifietskdo not change unex-
pectedly, and that function lookup remains the same.

3 Converting Scripts to Functions

In the previous section we have motivated the need for atifag that can convert
scripts, which are non-modular, into equivalent functiadsch will help improve the
overall structure of MTLAB programs. We also demonstrated that this refactoring is
not as straightforward as one might think due taaB’s intricate kind assignment
and function lookup rules.

In this section we provide an algorithm to refactor a scrpt ia semantically equiv-
alent function. The programmer provides a complete progeard also identifies the
script to be converted to a function. If the refactoring candone in a semantics-
preserving manner, thec®IPT TOFUNCTION refactoring converts the script to a func-
tion and replaces all calls to the script with calls to the rfiemction.

This refactoring requires the use of two additional analyReaching Definitions
andLivenessThese are standard analyses which we have implemented ay #hat
enables our refactoring.

In our implementation of the reaching definition analysi&rg identifier is initial-
ized to be have a special reaching definition efdef ”. This means that if tindef ”
is not in the reaching definition set for an identifier at somagpam pointp, then this
identifier is definitely assigned on all the pathgtd-urther, if the reaching definition
of an identifier only containsuhdef ”, the variable is not assigned to on any paths.
Calls to scripts can change reaching definition and liveresgts so we look into the
called scripts’ body during the analyses. Global and pinsisvariables may be de-
fined by function calls, so our analysis handles these cuaseely by associating a
special global _def " or “persistent _def ” with each variable declared as global or
persistent. These definitions are never killed.

Our liveness analysis is intra-procedural, but also fofl@alls to scripts. The live-
ness analysis safely approximates global variables agalbeing live, and persistent
variables as live at the end of the function they are asstiaith. Variables that are
used in nested functions are also kept alive for simplicity.

Recall that the main difference between a script and a fanégithat a function has
its own workspace and communicates with its caller via immd output arguments,
while a script executes directly within the caller’s worksp. Thus, to convert a script
s to functionf we need to: (1) determine input and output arguments thatwoik for
all calls tos, and (2) ensure that name binding will stay the same afterarsion.

To determine arguments, the basic idea is that a variabldsrtedoe made an input
argument if it is live within the script and assigned at eveal} site; conversely, it needs
to be an output argument if it is assigned within the scrit lare at some call site.

Notation |Meaning

DA, variables definitely assigned on every path throsigh

PA, variables possibly assigned on some path thraugh

Les variables live immediately before

L, variables live immediately after

RD,(x) reaching definitions fog: immediately before

Ky (z) kind assigned ta: inside script or functiory; K;(z) = 4 for inconsistent kind
Lookup ;(z)|look up identifierz in function f (subscript omitted where clear from context)

Fig. 4. Notation for auxiliary analysis results;may be a sequence of statements, or the body of
a function or script.

This intuition is made more precise in Algorittith 1, which sifee notations defined
in Figure[4. To convert scriptinto a function, we first compute the setof identifiers
that are used before being definedjrmand that may refer to a variable (as opposed to a
function); these are candidates for becoming input argtisnen

Now we examine every call to s. If the call occurs in a script’, we abort the
refactoring: the lack of structure in scripts makes it all inpossible to determine ap-
propriate sets of input and output arguments; the user arefinvert’ into a function,
and then attempt the refactoring again.

If ¢ is in a function, we consider the s&X4 .. of variables definitely assigned at
c. As far as call site: is concerned, the sdt of input arguments should simply be the
intersection of this set witll, the set of live variables at the beginningsofSimilarly,
the setO,.. of output arguments should contain all variables that assipty assigned
in s and that are live immediately after We also need to ensure that every output ar-
gument is definitely assigned somewhere in the script; wtiserthe refactoring cannot
go ahead. Finally, we compute a Setkup, capturing name binding information for
functions atc, whose purpose will be explained below.

Next, we need to check that the set of input arguméngsconsistent between call
sites: if different call sites provide different input argants, the refactoring cannot go
ahead (lin€113). For output arguments, on the other handjetomecaution is required:
if an output argument is unused at a particular call siteaiit loe ignored by binding it
to the dummy ~.” identifier. Thus the set of output parametérss simply the union
of output arguments at every call site.

We are now ready to build the functigrusing input arguments output arguments
0, and the body o§.

Algorithm 1 SCRIPT TOFUNCTION
Require: scripts
Ensure: s converted to function; all calls tereplaced with function calls

L+ {x|x€Lcs NKs(x) € {VAR,ID}}
1 Cs + callstos

if cis in another script’ then
abort refactoring
I.+ DA..NL
i Oc+ PAsN L.
10: if Oc € DA, then
11: abort refactoring
12: lookup. < {(n, Lookup(n)) | n occurs ins, Ks(n) € {ID, FN}}
13: if Ve, ¢’ € Cs.1. = I/ then
14: abort refactoring
15: else
16: I« I.for some calk € C,
17: O < U.cc. Oc

1
2
3
4.
5: forall callsc € Cs do
6
7
8
9

19: construct new functiogf with input argumentd and output argument?

21: lookup ; < {{(n, Lookup(n)) | n is identifier inf of kind 1D or FN}
22: if =Ve € Cs.lookup,, = lookup ; then

23: abort refactoring

24: for all identifiersz in f do

25: if Ky(z) =IDthen

26: abort refactoring

27 elseifKs(z) = IDandK(xz) = FN then
28: emit warning

29: elseifK(z) = VAR andK(x) = 4 then
30: abort refactoring

31: replace calls te with calls to f

As a final step, we need to check that name resolution and lesigranents have
not changed.

The former is easy to do: we simply compute pairsLookup(n)) determining the
binding of every identifiem with kind ID or FN in f, and check that these bindings
agree with the binding®okup, observed at the call sites.

To check kind preservation, we compare the kikig{=) an identifierz had ins,
with its kind K ¢ (z) in the new functiory. In general, identifiers of kindd can remain
so or turn into I, and identifiers with kind ¥R can cause a kind conflict.

If K¢(z) = ID, x may originally have been referring to a variable createchayin
cally in the calling function. Since functions do not shdreit caller’'s workspace, this
cannot be achieved in a function, and the refactoring hae tbbrted.

© ® N o 0 A W N e

10

11

12

13

14

If z's kind changed fromd to FN, we emit a warning informing the user that the
refactoring assumesrefers to a function, which is always the case unless a Varatb
the same name is created dynamicallyebyl or code loading.

Finally, if z was originally of kind VAR, but provokes a kind conflict irf, we need
to abort the refactoring, since it is not clear which usesefitientifier were meant to
refer to a function, and which to a variable.

If all checks pass, calls to can be rewritten to function calls, passing in all input
arguments i and extracting output arguments from the result, discgrdimy output
arguments not needed at a particular call site.

4 Extracting Functions

The EXTRACT FUNCTION refactoring makes it possible to split large functions into
smaller ones to improve understandability and reusabiisross all our MATLAB
benchmarks, we found that the average number of lines of pedéunction is 22.7;
for comparison, this number is 5.4 for Java and 10.5 for C4;+fhhich suggests that
MATLAB functions tend to be fairly long and could benefit from extiGat

We first introduce the refactoring on an example before girprecise specifica-
tion of the extraction algorithm.

function printBest(names,
grades)

bestGrade=-1; bestldx=-1;

for i=1l: | engt h(grades)

i f grades(i) > bestGrade
bestGrade=grades(i);
bestldx=i;

end

end

i f bestGrade
return

end

disp(names{bestldx})
end

1
2
3
4
5
6
7
8
9

- - 10
11
12
13
14
15
16
17

(a) Original Function; extract ling¢s 3312

function printBest(hames,
grades)
RET=false;
bestGrade=-1; bestldx=-1;
for i=1l: | engt h(grades)
i f grades(i) > bestGrade
bestGrade=grades(i);
bestldx=i;
end
end
i f bestGrade
RET=true;
end
i f (CRET)
disp(names{bestldx})
end
end

(b) After Returimiination

Fig. 5. An example for KTRACT FUNCTION

Figure[B(a) shows an example function that takes an araayes containing the
names of students, and an argiades containing their grades. On ling$[3312, it
searches througfrades to find the best grade, storing its index in local variable

10

bestldx . If no best grade was found (becaupades was empty or contained in-
valid data), the function returns to its caller; otherwitbe name of the student with the
best grade is printed.

Assume that we want to extract the code for finding the bestegfitned BEIR) into
a new functionfindBest . Note that the extraction region contains the return state-
ment on lind1IL; if this statement were extracted fitdBest unchanged, program
semantics would change, since it would now only return ffoxdBest , not from
printBest any more. To avoid this, we first eliminate the return as showhig-
ure[B(b) by introducing a flaRET. In general, return elimination requires a slightly
more elaborate transformation than this, but it is stilllfestraightforward and will not
be described in detail here; the reader is referred to thafithor's thesis for details[[8].

Next, we need to determine which input and output argumkatsittracted function
should have. Reasoning similar to the previous section, eterdhine thagrades
should become an input argument, since it is live at the léginof the extracted
region and definitely assigned beforehand. Converselgtidx should become an
output argument, since it is assigned in the extracted neial live afterwards.

function [RET, bestldx] =

1 function [RET, bestldx] = 1
2 findBest(grades) 2 findBest(grades, RET)
3 bestGrade=-1; bestldx=-1; 3 bestGrade=-1; bestldx=-1;
4+ for i=1l: | engt h(grades) 4+ for i=1l: | engt h(grades)
s 1 f grades(i) > bestGrade s i f grades(i) > bestGrade
6 bestGrade=grades(i); 6 bestGrade=grades(i);
7 bestldx=i; 7 bestldx=i;
s end s end
s end s end
10 if bestGrade == - 10 if bestGrade == -
11 RET=true; 11 RET=true;
2 end 2 end
13 end 13 end
14 14
15 functi on printBest(names, 15 functi on printBest(hames,
16 grades) 16 grades)
17 RET=false; 17 RET=false;
18 [RET, bestldx] = ... 18 [RET, bestldx] = ...
19 findBest(grades); 19 findBest(grades, RET);
20 1 f (CRET) 20 1 f (CRET)
2 disp(names{bestldx}) 2z disp(names{bestldx})
2 end 2 end
23 end 23 end
(a) After extracting functionRETmay (b) Final version of the extracted function
be undefined after the call and the call

Fig. 6. Example for XTRACT FUNCTION, continued

11

Similarly, RETshould also become an output argument. Figlire 6(a) showsethe
function with these arguments. Note, however, tR&T is not assigned on all code
paths, so it may be undefined at the point where the extragtexdién returns, resulting
in a runtime error. To avoid this, we have to also &fTto the list of input arguments,
ensuring that it always has a value. This finally yields theraxt extraction result,
shown in FiguréB(b).

Algorithm 2 EXTRACT FUNCTION

Require: sequence of contiguous statements in functighnamen
Ensure: s extracted into new functiop with namen

. if s contains top-level break or uses vararg syriten
abort refactoring
. if s contains return statemettiten
eliminate return statements jn
I+ {x|z € Les N RDs(z) € {undef ,global }}
O + PAsN L
:forall z € O\ DA, do
if undef ¢ RD(z)then
I+ ITU{z}
else
11: abort refactoring
12: if function with namen exists in same folder agthen
13: abort refactoring
14: create new function with namen, input argumentg, output argument®
15: declare any globals useddras globals iry
16: for all identifierx in g do
17 if Ky4(z) # K¢(x) then

COXNDURWNE

18: abort refactoring

19: elseif Ky(x) = FN and Lookup ; (v) # Lookup ,(z) then
20: abort refactoring

21: elseifK,4(xz) = IDthen

22: abort refactoring

23: replaces by call tog

Algorithm[Z shows how to extract a sequenrocgf contiguous statements in a func-
tion f into a new function named, again using the notations from Figlide 4.

We first check whethes contains éreak statement that refers to a surrounding
loop that is not part of the extraction region; if so, the cédaing is aborted. Similarly,
if s refers to a variable argument list gfusing ‘varargin " or “varargout ", the
refactoring is also aborted. Both of these cases would requiite extensive transfor-
mations, which we do not believe to be justified.

After eliminating return statements if necessary, we cam@phe set/ of input ar-
guments, and the sél of output arguments for the new function: every variabld tha
is live immediately before the extraction regierand that has a non-trivial reaching

12

definition becomes an input argument; every variable thpbtentially assigned in
and is live afterwards becomes an output argument.

Additionally, any output arguments that are not definitedgigned ins but are def-
initely assigned before (likRETin our example above) also become input arguments.
We also check for the corner case of an output argument thregiflser definitely as-
signed ins nor befores, which results in the refactoring being aborted.

Having established the sets of input and output argumems,am now create the
extracted functiorg, but we need to ensure that no function of this name existadir
We also need to declare any global variables usedas global ing, as they would
otherwise become local variablesgf

Finally, we need to check that name binding and kind assigmsngork out. First,
we check that the kind of all identifiers inis the same as before the extraction. Ad-
ditionally, if there is any function reference that refevsatdifferent declaration in the
new functiong than it did before, we need to abort the refactoring. Lastly,ensure
that no identifier has kindd, as this may again lead to different name lookup results.

If all these checks pass, we can replad®y a call to the extracted function.

5 Other Refactorings

In addition to the 8RIPT TO FUNCTION and EXTRACT FUNCTION refactorings de-
scribed in the previous sections, we have implemented akwtirer refactorings that
we briefly outline in this section.

Corresponding to ETRACT FUNCTION, there are two inlining refactorings for in-
lining scripts and functions. While this does not usuallypiove code quality, inlining
refactorings can play an important role as intermediatesstelarger refactorings.

When inlining a call to script or functionin function f, return statements ipnfirst
have to be eliminated in the same way as f&rTRACT FUNCTION. If g is a function,
its local variables have to be renamed to avoid name clasttledike-named variables
in f. After copying the body of; into f, we then have to verify that name bindings
stay the same, and kind assignments either stay the saméasatio not affect name
lookup. For details we refer to the first author’s thesis [8].

Finally, we briefly discuss a very simple but surprisinglefus MATLAB -specific
refactoring, EIMINATE FEVAL. The MATLAB builtin functionfeval takes a refer-
ence to a function (a function handle or a string with the nafnthe function) as an
argument and calls the function. Replacfegal by direct function calls where pos-
sible leads to cleaner and more efficient code.

Somewhat to our surprise, we found numerous cases whereapnaters used a
constant function name ifeval . For example, the code in Listiig 1.1, which is ex-
tracted from one of our benchmarks, usegal for all invocations of user defined
functions (lines P b and) 6), even though there is no appaeason for doing so; alll
uses ofeval can be replaced by direct function calls.

Our refactoring tool looks for those calls teval which have a string constant
as the first argument, and then uses the results from kingsieaab determine if an
identifier with kind VAR with the same name exists. If there is no such identifier in
the function, the call tdeval is replaced with a direct call to the function named

13

© N o o~ W N R

%%% matrix of Fourier coefficients
epsl = feval (‘epsgg’,r,na,nb,bl,b2,N1,N2);

for j=1: | engt h(BZx)
[kGx, kGy] = feval(’kvect2’,BZx(j),BZy(j),b1,b2,N1,N2) ;
[P, beta]=feval('oblic_eigs’,omega,kGx,kGy,eps1,N);

end
Listing 1.1. Extracts from a script which usésval

inside the string literal. Of course, with more complexrgirand call graph analyses
one could support even more such refactorings. Howeves,iittéresting that such a
simple refactoring is useful.

6 Evaluation

We now evaluate our implementation on a large set @ffMhB programs. While it
would be desirable to evaluate correctness (i.e., behavaservation) of our imple-
mentation, this is infeasible to do by hand due to the largelyer of subject programs.
Automated testing of refactoring implementations is ftséll a topic of research [9]
and relies on automated test generation, which is not yéaaafor MATLAB . Instead,
we aim to assess the usefulness of our refactorings andrif@Ementation.

6.1 Evaluation Criteria

We evaluate every refactoring according to the followiritecia:

EC1 How many refactoring opportunities are there?

EC2 Among all opportunities, how often can MgB perform the refactoring without
warnings or errors? How often is the user warned of possieletior changes?
How often is McLaB unable to complete the refactoring?

EC3 How invasive are the code changes?

6.2 Experimental Setup and Benchmarks

In order to experiment with our analyses we gathered a latgeber of MATLAB
projectﬁ The benchmarks come from a wide variety of application aneelsiding
Computational Physics, Statistics, Computational Bigjdgeometry, Linear Algebra,
Signal Processing and Image Processing. We analyzed 3@g&cts composed of

8 Benchmarks were obtained from individual contributors spluprojects from
http://www.mathworks.com/matlabcentral/fileexchange |

http://people.sc.tsu.edu/ ~Jburkardt/m_src/m_src.html !
http://www.csse.uwa.edu.au/ ~ pk/Research/MatlabFns/ and
http://www.mathtools.net/ MATLAB/ . This is the same set of projects that are
used in[[4].

14

http://www.mathworks.com/matlabcentral/fileexchange
http://people.sc.fsu.edu/~jburkardt/m_src/m_src.html
http://www.csse.uwa.edu.au/~pk/Research/MatlabFns/
http://www.mathtools.net/MATLAB/

11698 function files, some with multiple functions, and 238fipts. The projects vary
in size between 283 files in one project, and a single file ireotdases. A summary
of the size distribution of the benchmarks is given in TdlleHich shows that the

benchmarks tend to be small to medium in size. However, we hbo found 9 large

and 2 very large benchmarks. The benchmarks presentedredgreanost downloaded
projects among the mentioned categories, which may meathénaverage code qual-
ity is higher than for less popular projects.

Benchmark Category [Number of Benchmarks
Single (1 file) 2051
Small (2-9 files) 848
Medium (10-49 files) 113
Large (5099 files) 9
Very Large ¢ 100 files 2
Total 3023

Table 1. Distribution of size of the benchmarks

6.3 Converting Scripts to Functions

We start by evaluating thecRIPT To FUNCTION refactoring presented in Sectioh 3.

We consider every script a candidate for the refactor#f@X), thus there are 2380
refactoring opportunities overall (note that some benaksanly define functions).
For criterionEC2, Table2 summarizes the result of using Ma@_to convert all these
scripts to functions: in 204 cases, the refactoring coregletithout warnings or errors;
in 1312 cases, the refactoring succeeds with a warning aloddéentifier changing from
kind ID to the more specialized kind\= This is only a problem if the program defines
a variable reflectively througéval or code loading, and the identifier in question is also
a function on the path. This is unlikely and should be easyHfeprogrammer to check.
Finally, for 864 scripts the refactoring aborted becausabm®r preservation could not
be guaranteed.

Further breaking down the causes of rejection, we see tihabgt cases the problem
is an identifier of kind b that cannot statically be resolved to a variable or a fumctio
In all these cases, the script is the only script in a singéefdibject; thus it arguably
is not a very good target for conversion anyway. In some ¢dklesscript was itself
called from a script, which also leads to rejection (as noewil in Sectiohl3, this could
be resolved by first converting the calling script to a fume}i Finally, in one case
different invocations of the script lead to different inpugument assignments.

To assess the invasiveness of the code charifeé3)(we measured the number of
input and output arguments of the newly created functiorlarge number of input and
output parameters can clutter up the code, so it is impottt@tthe refactoring creates
no spurious parameters. For those scripts that were cdlledst once, the number of
inputs range between 0 and 5 with an average of 1, and the nwhbetputs range

15

Refactoring Outcome Number of Scripts
Success 204
Success with Warning aboub khanged to Rs 1312
Unresolved bs 712
Call from script 151
Input arguments mismatch 1

Table 2. Results from converting scripts to functions

between 0 and 12 with the average of 1.1. This shows thatdioeitdm is fairly efficient
in choosing a minimal set of parameters.

6.4 Extract Function

For function extraction, the number of refactoring oppoities is hard to measure,
since it is not clear how to identify blocks of code for whiemEtion extraction makes
sense.

In order to nevertheless be able to automatically evalukstiegya number of function
extraction refactorings, we employ a heuristic for ideyiti§ regions that are more or
less independent in terms of control and data flow from thieafes function.

We concentrate on regions starting at the beginning of atimmcand comprising
a sequence of top-level statements. We only consider fumtivith at least seven top-
level statements; smaller functions are unlikely to berfefitn extraction. Since we
want the region to contain some reasonable amount of codéncliede at least as
many statements as it takes for the region to contain 30 ASIEsi0Ne don’t want to
move all the body of the original function to the new funct@ther, so we never extract
the last 30 AST nodes in the function either. In between, we tfire choice that will
need the minimum number of input and output arguments, biytibthat minimum
number is less than 15. Figure 7 shows these constraints.

Out of 13438 functions overall, 6469 contain at least seegnleével statements
and thus are interesting for extractiddG1). Among these, we can successfully break
6214 functions (i.e., 96%) into smaller on&x32). The average number of arguments
to the newly created functions was 2BG3), with most extracted functions having
between one and three arguments. This means that the selalgorithm was effective
in selecting regions with minimal inter-dependency. Fa&8rshows the distribution of
the number of arguments among these 6214 functions.

In 48 cases the refactoring was rejected because a possidéfined input argu-
ment was detected, and in 21 cases a possibly undefined angpument prevented the
refactoring from going ahead.

6.5 Replacingf eval

Finally, we evaluated the IEMINATE FEVAL refactoring for converting trivial uses of
feval into direct function calls. Of the 200 callsfeval ,there were 23 uses of it with
a string literal argumen&C1), and all of them could be eliminated successfult).

16

Function body

m
x
=
N
o
o=
o
S
=
@
Q
o
5
o
o
S
=1
L
5
7]
o
®
)
Q
n
~—
w
o
>
n
_|
]
o
~—o
)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Number of functions
=

S &8 3 38 8
o & & & & o
[
I
|
|
I
[
[
[|
|
|

Number of Arguments

Fig. 8. Distribution of number of arguments for the new functions.

The transformation performed by this refactoring is vergalp and in fact makes the
code simplerEC3).

6.6 Threats to Validity

There are several threats to validity for our evaluation.

First, our collection of benchmarks is extensive, but it maybe representative of
other real-world MA\TLAB code. In particular, the percentage of rejected refaajsrin
may be higher on code that makes heavy use of language fedhatare hard to
analyze.

Second, our selection of refactoring opportunities is dame heuristics and may
not be representative of actual refactorings that prograramay attempt. This is a

17

general problem with automatically evaluating refactgrimplementations. Still, the
low number of rejections gives some confidence that the impigation should be able
to handle real-world use cases. A more realistic user stuliynave to wait until our
implementation has been integrated with an IDE.

Finally, we have not checked whether the refactorings peréd by our implemen-
tation are actually behavior preserving in every case; éingel number of successful
refactorings makes this impossible. We know of two edgesadeere behavior may
not be preserved: the kind and name analyses do not handdenilycalls tocd, and
eval is not handled by the liveness or reaching definition anglyEhis is similar to
how refactorings for Java do not handle reflection. One pdigiwould be for the
refactoring engine to emit a warning to the user if a use of ahthese features is
detected, but we have not implemented this yet.

7 Related Work

There is a wide variety of work on refactoring covering a éangimber of programming
languages. In particular, there is a considerable body okwa automated refactor-
ing for statically typed languages such as Java with quitédezeloped and rigorous
approaches for specifying correct refactorings[10,1[1,Hidwever, these approaches
intrinsically rely on the availability of rich compile-timminformation in the form of
static types and a static name binding structure; thus theyat easily applicable to
MATLAB, which provides neither.

Refactoring for dynamically typed languages has, in fadorg history: the first
ever refactoring tool, the Refactoring Browser|[13], taree the dynamically typed
object-oriented language Smalltalk. However, the RefamdBrowser mostly concen-
trated on automating program transformation and perfomslatively few static checks
to ensure behavior preservation.

More recently, Feldthaus et dl. |14] have presented a m@&facttool for JavaScript.
They employ a pointer analyis to infer static informatiomabthe refactored program,
thus making up for the lack of static types and declaratibtast of their refactorings
have the goal of improving encapsulation and modularitys ey are similar in scope
to our proposed refactorings for MLAB .

Even more closely related is recent work on refactoring supfor Erlang. Like
MATLAB, Erlang has evolved over time, adding new constructs foremoodular and
concise programming, and refactorings have been propbsgddn help with upgrad-
ing existing code to make use of these new features. Fomicstahe Wrangler refac-
toring tool provides assistance for data and process mfagt[15], clone detection and
elimination [16] and modularity maintenance [17].

Most recently, Wrangler has been extended with a scriptingliage that makes it
easy to implement domain specific refactorings [18]. Sudiptble refactorings could
be interesting for MTLAB as well, either to implement one-off refactorings to be used
for one particular code base, or to provide a refactoringudih specific information
about a program that enables otherwise unsafe transfamnsati

While Wrangler is an interactive tool, thiglier tool [19] performs fully automatic
cleanup operations on Erlang code. The standards for bmharéservation are obvi-

18

ously much higher for a fully automated tool than for an iattive one, sdidier only
performs small-scale refactorings, but a similar tool doedrtainly also be useful for
MATLAB.

Refactoring legacy Fortran code has also been the subjescinoé research. Over-
bey et. al.[[20),21] point out the benefits of refactoring famduages that have evolved
over time. Although the specific refactorings are quiteedt#ht, the motivation and the
applicability of our approaches is very similar. LikeAvlL.AB, Fortran is often used for
computationally expensive tasks, hence there has beenistamest in refactorings for
improving program performance [22]23].

In a similar vein, Menon and Pingali have investigated sedewel transformations
for improving MATLAB performancel[24]. The transformations they propose go be-
yond the typical loop transformations performed by compiland capture MrLAB -
specific optimizations such as converting entire loopsttiaty calls, and restructuring
loops to avoid incremental array growth. Automating theaegformations would be
an interesting next step, and our foundational analysegefadtorings should aid in
that process.

8 Conclusion

In this paper we have identified an important domain for refdcg, MATLAB pro-
grams. Millions of scientists, engineers and researche¥sMATLAB to develop their
applications, but no tools are available to support refawgdheir programs. This means
that it is difficult for the programmers to improve upon oldleavhich use out-of-date
language constructs or to restructure their initial pigtetcode to a state in which it
can be distributed.

To address this new refactoring domain we have developedéregactoring trans-
formations for functions and scripts, including functiamdascript inlining, converting
scripts to functions, and eliminating simple casefeeél . For each refactoring we es-
tablished a procedure which defined both the transformatiahthe conditions which
must be verified to ensure that the refactoring is semaptieserving. In particular, we
emphasized that both the kinds of identifiers and the fundtiokup semantics must be
considered when deciding if a refactoring can be safelyiagr not.

We have implemented all of the refactorings presented inptdgger using our
McLAB compiler toolkit, and we applied the refactorings to a langenber of MAT-
LAB applications. Our results show that, on this benchmarkiset,efactorings can be
effectively applied. We plan to continue our work, addingrencefactorings, including
performance enhancing refactorings and refactorings ablera more effective trans-
lation of MATLAB to Fortran.

Acknowledgments
This work has been supported by NSERC (Canada) and the LdweghTrust (UK).

We would also like to give special acknowledgment to Frankfor helping to define
the direction of this work.

19

References

10.
11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

. Opdyke, W.F.: Refactoring Object-Oriented FramewoBsD. thesis, University of lllinois

at Urbana-Champaign (1992)

. Griswold, W.G.: Program Restructuring as an Aid to SofeMslaintenance. Ph.D. thesis,

University of Washington (1991)

. Fowler, M.: Refactoring: Improving the Design of Exigli@ode. Addison-Wesley (1999)
. Doherty, J., Hendren, L., Radpour, S.: Kind analysis fé&XTMAB. In: In Proceedings of

OOPSLA 2011. (2011)

. McLab.|nttp://www.sable.mcqill.ca/mclab/
. Lameed, N., Hendren, L.J.: Staged Static Techniquesfttiétitly Implement Array Copy

Semantics in a MATLAB JIT Compiler. In: CC. (2011) 22-41

. English, M., McCreanor, P.: Exploring the Differing Usagof Programming Language

Features in Systems Developed in C++ and Java. In: PPIG9)200

. Radpour, S.: Understanding and Refactoring thedAB Language. M.Sc. thesis, McGill

University (2012)

. Soares, G., Gheyi, R., Serey, D., Massoni, T.: Making RrogRefactoring Safer. |IEEE

Software27(4) (2010) 52-57

Schafer, M., de Moor, O.: Specifying and ImplementirggaRtorings. In: OOPSLA. (2010)
Tip, F., Fuhrer, R.M., Kiezun, A., Ernst, M.D., Balaban Sutter, B.D.: Refactoring Using
Type Constraints. TOPLAS3 (May 2011) 9:1-9:47

Schafer, M., Thies, A., Steimann, F., Tip, F.: A Compmrive Approach to Naming and
Accessibility in Refactoring Java Programs. TSE (2012) Jjoezr.

Roberts, D., Brant, J., Johnson, R.E.: A Refactorind fmd&Smalltalk. TAPOS3(4) (1997)
253-263

Feldthaus, A., Millstein, T., Mgller, A., Schafer, Mip, F.: Tool-supported Refactoring for
JavaScript. In: OOPSLA. (2011)

Li, H., Thompson, S.J., Orbsz, G., Toth, M.: Refactgrivith Wrangler, updated: Data and
process refactorings, and integration with Eclipse. Itatfg Workshop. (2008) 61-72

Li, H., Thompson, S.J.: Clone Detection and Removal ftartg/OTP within a Refactoring
Environment. In: PEPM. (2009) 169-178

Li, H., Thompson, S.J.: Refactoring Support for ModityaMaintenance in Erlang. In:
SCAM. (2010) 157-166

Li, H., Thompson, S.J.: A Domain-Specific Language faif#ieig Refactorings in Erlang.
In: FASE. (2012) 501-515

Sagonas, K., Avgerinos, T.: Automatic Refactoring da&g Programs. In: PPDP. (2009)
13-24

Overbey, J.L., Negara, S., Johnson, R.E.: Refactonigtiae Evolution of Fortran. In:
SECSE. (2009) 28-34

Overbey, J.L., Johnson, R.E.: Regrowing a Languageadi®ing Tools Allow Program-
ming Languages to Evolve. In: OOPSLA. (2009)

Overbey, J., Xanthos, S., Johnson, R., Foote, B.: Refags for Fortran and High-
performance Computing. In: SE-HPCS. (2005) 37-39

Boniati, B.B., Charao, A.S., Stein, B.D.O., Risse#i, Piveta, E.K.: Automated Refactor-
ings for High Performance Fortran Programmes. [JHRB&4X3) (2011) 98-109

Menon, V., Pingali, K.: A Case for Source-level Transfations in MATLAB. In: DSL.
(1999) 53-65

20

http://www.sable.mcgill.ca/mclab/

	Refactoring MATLAB

