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Abstract. Parallelization and optimization of the AdLAB programming lan-
guage presents several challenges due to the dynamic wédtMraTLAB . Since
MATLAB does not have static type declarations, neither the shapesiae of
arrays, nor the loop bounds are known at compile-time. Tréama that many
standard array dependence tests and associated transdmscannot be applied
straight-forwardly. On the other hand, manyyM.AB programs operate on arrays
using loops and thus are ideal candidates for loop transftiorms and possibly
loop vectorization/parallelization.

This paper presents a new framework, MafF, which uses profile-based training
runs to determine likely loop-bounds ranges for which spleagd versions of the
loops may be generated. The main idea is to collect infoomabout observed
loop bounds and hot loops using training data which is thexd s heuristically
decide upon which loops and which ranges are worth speiciglising a variety
of loop transformations.

Our McFLAT framework has been implemented as part of the Mglextensible
compiler toolkit. Currently, McEAT, is used to automatically transform ordi-
nary MATLAB code into specialized MrLAB code with transformations applied
to it. This specialized code can be executed on amyIMB system, and we re-
port results for four execution engines, Mathwork’s prefary MATLAB system,
the GNU Octave open-source interpreter, M@l’s McVM interpreter and the
McVM JIT. For several benchmarks, we observed significaeedpps for the
specialized versions, and noted that loop transformatiasdifferent impacts
depending on the loop range and execution engine.

1 Introduction

MATLAB is an important programming language for scientists anéhesegs [17]. Al-
though the dynamic nature and lack of static type declaratimakes it easy to de-
fine programs, MTLAB programs are often difficult to optimize and parallelizeeTh
McLAB system [2] is being defined to provide an open and extensjitien@ing and
parallelizing compiler and virtual machine forAviLAB and extensions of MrLAB
such as APECTMATLAB [7]. As an important part of Mchs, we are developing a
framework for loop dependence tests and loop transformgtidcH AT, which is the
topic of this paper.

* This work was supported, in part, by NSERC.



Due to the dynamic nature of MLAB, there is very little static information about
array dimensions and loop bounds. Furthermore, many otikatic codes written in
MATLAB can be applied to very different sized data sets. Thus, cigd®f McH AT
is based on a profiling phase which collects information abmap bounds over many
different runs. We then have a heuristic engine which idiestimportant loop bound
ranges and then a specializer which produces specializkgfooeach important range.
The specializer applies loop dependence tests and loogfdramations specific to the
input range. Currently, for each important range, we extialg generate all legal
specializations, but the ultimate goal is to combine th@éfework with a machine
learning approach which will automatically generate a geppetialization for the given
range.

This paper describes our initial design and implementatfdicFLAT and provides
some exploratory experimental data obtained by using IMtRo generate different
versions of code which we execute on four different systavtethworks’ MATLAB
implementation (which includes a JIT), the GNU Octave opeurce interpreter [1],
our McVM interpreter and our McVM JIT [13]. Interestinglis shows that different
optimizations are beneficial for different ranges and ofed#int MATLAB execution en-
gines. This implies that specialization for both the ranggiatended execution engine
is a good approach in the context ofAVLAB .

The remainder of this paper is organized as follows. In 8ac we give a high-
level view of MCH.AT, and in Section 3 we provide more details of each important
component. We apply our framework to a selection of benchsand report on the
experimental results in Section 4. Finally, we discussteelavork in Section 5 and
conclude in Section 6.

2 Overview of Our Approach

The overall structure of the MaAT framework is outlined in Figure 1. Our ultimate
goal is to embed this framework in our McJIT system, howewerantly it is a stand-
alone source-to-source framework which uses the Mcfront-end. The user provides
both the MAaTLAB program which they wish to optimize and a collection of regre
tative inputs (top of Figure 1). The output of the system iobection of specialized
programs (bottom of Figure 1), where each specialized pragras a different set of
transformations applied. The system also outputs a deperdeimmary for each loop,
which is useful for compiler developers.

The design of the system is centered around the idea thata. A8 program is
likely to be used on very different sized inputs, and henaaiitime loops will have
very different loop bounds. Thus, our objective is to find ortant ranges for each
loop nest, and to specialize the code for those ranges. Kupthie ranges for each
specialization also enables us to use very fast and simplendience testers.

The important phases of MeRT, as illustrated in Figure 1, are thestrumenter
which injects the profiling code, theange Estimatowhich decides which ranges are
important, and théependence Analyzer and Loop Transformer Enginghe next
section we look at each of these components in more detail.
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Fig. 1. Structure of the McFLAT Framework.

3 Important Components of MCFLAT

In this section we provide an overview of the key componehtsuo McFLAT frame-
work, and we briefly discuss parallel loop detection and soameent limitations of the
framework.

3.1 Instrumenter

As illustrated in the phase label&tstrument and Profile in Figure 1, thénstrumenter
component is used to automatically inject instrumentasiod profiling code into a
MATLAB source file. This injection is done on the high-level stroetulR produced
by the McLaB front-end. In particular, we inject instrumentation to@sate a unique
loop number to each loop, and we inject instrumentation thegafor each loop, the



lower bound of the iteration, the loop increment, the uppmrra of the iteration, the
nesting level of the loop, the time spent executing the l@mgl, a list of variables that
are written to in the loop body.

The MATLAB program resulting from this instrumentation is functidpaquiva-
lent to the original code, but emits additional informattbat generates training data
required for the next phase.

When the instrumented program is executed usingdaIMB virtual machine, the
profile information is written to an .xml file. This .xml file {gersistent, and so multiple
runs can be made, and each run will add new information toxime file. The loop
profiling information .xml file is then used as an input to tlexincomponent.

3.2 Range Estimator

The Range Estimators the first important component of the main part of MeF,

the Analysis and Transformations phase in Figure 1. The Range Estimator reads the
loop profiling information and determines which are the imant ranges for each loop.
The important ranges are identified using Algorithm 1. Thguirto this algorithm is a
hash table containing all the observed values for all thpdamnd the output is a list of
important ranges. The basic idea is that for each loop, waeixthe observed values
for that loop, partition the value space into regions andewgibns, and then identify
subregions which contain more values than a threshold.

Algorithm 1 Algorithm for range estimation

Data ltems
H (K,V) : Hash table with loop numbers as keys and list of obsdivalues
Procedure processLoopData(LoopID)
| < lookup(LoopID, H)// get all observed values for loop with LoopID
sort(l)
importantRanges— empty
R < computeRegions(min(l), max(l))
/I for each large region
forall rinR do
/I for each subregion (divide R into 10 equal parts)
for all sRin Rdo
if numinRegion(l,sR)> thresholdthen
PredVal<— maxval(sR)
add PredVal to importantRanges
end if
end for
end for
return(importantRanges)

We determine the regions and subregions as illustratecgur&i2. The regions are
powers of 10, starting with the largest power of 10 that is than the smallest observed
value, and ending with the smallest power of 10 that is greéhgan the highest observed



value. For example, if the observed upper bounds were iratihger 120 to 80000, then
we would choose regions of size 100, 1000, 10000 and 100G&h Egion is further
subdivided into 10 subregions. A subregion is considergubitant if the number of
observed values are above a threshold, which can be set bgehd-or our experiments
we used a threshold of 30 % . When an important region is ifiedtithe maximum
observed value from the region is added to the list of impuantanges.

Region Observed values arranged in sub-regions
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Fig. 2. Pictorial Example of Ranges and Subranges

3.3 Dependence Analysis

During this phase, MCFLAT calculates dependences betwi#neastatements in the
loop body against all the predicted important ranges farlth@p. It maintains various
data structures supporting dependence analysis. Thisniatmn is used in subsequent
loop transformation phases.

The data dependence testing problem is that of determininregher two references
to the same array within a nest of loops may reference to thee sslement of that
array [4, 21].

Since we have identified the upper loop bounds via our prdfiive have chosen
very simple and efficient dependence testers:Bheerjee’s Extended GCD(Greatest
Common Divisor) tesi8] and theSingle Variable Per Constraint Teft]. Currently,
we have found these sufficient for our small benchmarks, leutan easily add further
tests as needed.

3.4 Loop Transformations

In our framework programmers can either suggest the typenstormation that they
need to apply through optional loop annotations, or it willeanatically determine and
apply a transformation or a combination of transformatiwhgh are legal for a loop.
McFLAT implements following loop transformations that have beleova to be
useful for two important goals, parallelism and efficierg 96§ memory hierarchy [15]:
loop interchangeandloop reversal For automatic detection and application of above



mentioned loop transformations, we use the unimodularstoaimation model pre-
sented in [20]. Loop interchange and reversal are modeletkazentary matrix trans-
formations, combinations of these transformations caplyifve represented as product
of elementary transformation matrices. An elementarysfiamation or a compound
transformation is considered to be legal if the transforigisthnce vectors are lexico-
graphically positive.

Apart from automatically testing the legality of loop intbange and reversal, our
framework supports a larger set of transformations whichtmspecified by the user.
This allows us to use our system as a test bed for programmitirsuiich they can
suggest different transformations and observe the effatifferent transformations on
different loops. Programmers just have to annotate thelbooly with the type of trans-
formation that they need to apply on the loop. Our framewbeoks for the presence of
annotations, if a loop annotation is present it computesiépendence information us-
ing the predicted loop bounds for that loop and applies #restiormations if there is no
dependency between the loop statements. The current sahsfdrmations supported
by annotations idpop fissionloop fusion loop interchangendloop reversal

3.5 Parallelism Detection

Efficient parallelization of a sequential program is a amadling task. Currently our
McFLAT framework automatically detects whethefa loop can be automatically
converted to garfor loop or not. The framework performs parallelization tesigtee
loops based on the dependence information calculated idgpendence analysis and
instrumentation phase. A loop is classified as a parallgd lacording to MTLAB's
semantics [17], since the generated code is targeted fdvikie AB system. Thus, a
loop is classified as a parallel for-loop if it satisfies thikdiwing conditions.

— There should be no flow dependency between the same arrasawitiein the loop
body. i.e. distance vectors for all the same array accebsesdsbe zero.

— Within the list of indices for the arrays accessed in the Jomactly one index
involves the loop index variable.

— Other variables used to index an array should remain const&n the entire exe-
cution of the loop. The loop index variable cannot be comtbinih itself to form
an index expression.

— Loop index variables must have consecutively increasitegirs.

— The value of the loop index variable should not be modifie@timthe loop body.

3.6 Current Limitations of Mc FLAT

At present, our framework implements a limited set of logm&formations. It only
handles perfectly nested loops which have affine accesskstarse dependences can
be summarized by distance vectors. As we develop the frankem® will add further
dependence tests and transformations, as well as traretforma to enable more paral-
lelization. However, since we also wish to put this framewiato our JIT compiler, we
must be careful not to include overly expensive analyses.



4 Experimental Results

In this section we demonstrate the use of MaFthrough two exploratory performance
studies on a set of MrLAB benchmarks. Our ultimate goal is to integrate MaF with

a machine learning approach, however these example sfudieisle some interesting

initial data. The first study examines performance and ezdf transformed pro-

grams, applying our dependence testers and standard lxgidrmations for a variety

of input ranges. The second study looks at the performanbemthmarks when we

automatically introducearfor constructs.

4.1 Benchmarks and Static Information

Table 1 summarizes our collection of 10 benchmarks, takam the McLab and Uni-
versity of Stuttgart benchmark suites. These benchmankes haery modest size, but
yet perform interesting calculations and demonstrate sotaeesting behaviours. For
each benchmark we give the name, description, source otthehimark, the number of
functions, number of loop nests, number of loops that canutenaatically converted

to parallel for loops.
BenchmarkSource of ||# Line§ # # |# Par{|Benchmark
Name Benchmark|| Code |Func|LoopgLoopg|Description
Crni McLab 65 2 4 1 ||Finds the
Benchmarky Crank-Nicholoson Sol.
Mbrt McLab 26 2 1 0 ||{Computes mandelbrot set.
Benchmarky
Fiff McLab 40 1 2 0 [|Finds the finite-difference solution
Benchmark§ to the wave equation.
Hnormal |McLab 30 1 1 1 ||Normalises array of homogeneous coordin
Benchmarky
Nbld McLab 73 1 1 0 |[Simulates the gravitational
Benchmark§ movement of a set of objects.
Interpol  |Uni of Stutt|| 187 | 5 5 0 |[Compares the stability
and complexity of Lagrange interpolation.
Lagrcheb |Uni of Stutt|| 70 1 2 2 ||Computes Lagrangian and Chebyshev
polynomial for comparison.
Fourier  |Uni of Stutt|| 81 3 3 2 ||Compute the Fourier transform
with the trapezoidal integration rule.
Linear Uni of Stutt|| 56 1 2 1 ||Computes the linear iterator.
50 2 1 0 ||Computes the eigenvalues

EigenVaIuTUni of Stutt

of the transition matrix.

Table 1.Benchmarks

tes.



4.2 Performance Study for Standard Loop Transformations

BenchmarkTrans Pred. Range 1 Pred. Range 2 Pred. Range 3
Name Applied|Time [% SpeedupTime [% SpeedufjTime [% Speedup
Crni N 60ms 3.41s
R 60ms |0.0 % 3.21s (5.8%
Mbrt N 1.91s 9.40s
I 1.98s [-3.6 % 9.55s [-1.6%
R 1.91s (0.0 % 9.25s [1.5%
(+R) ||1.97s |-3.4% 9.32s5 [0.8%
Fiff NN 400m 880msg
RN 405mg-1.25% 830mg5.6%
Hnormal ||N 1.85s 4.52s
R 1.84s [0.5% 4.48s |0.8%
Nbld N 40ms 2.53s
Interpol N 44.70s 60.355
Lagrcheb |[NN 140mg 280ms 450ms
RR 138m$ 1.4% 270ms3.5% 420m$ 6.6%
RN 143ms-2.1% 280mg0.0% 450ms0.0%
NR 143mg-2.1% 280mg0.0% 430mg4.4%
Fourier NNN  (|50ms 1.31s
FN 40ms |20.0% 1.49s |-13.7%
RRN ||50ms |0.0% 1.25s |4.5%
(F+R)N||60ms |-20.0% 1.31s |0.0%
RNN ||50ms |0.0% 1.21s |7.6%
NRN ||50ms |0.0% 1.25s |4.5%
Linear NN 336mg 640ms 2.60s
IN 566msg-68.4% 890ms-39.0% 3.67s |-38.4%
IR 610mg-81.5% 850ms-32.8% 3.42s [-31.5%
NR 320ms4. 7% 600ms6.2%6 2.51s |3.4%
EigenValug N 80ms 310mg 1.10s
I 100mg-25.0% 370mg-19.3% 1.18s |-7.27%
R 90ms [-12.5% 290mg6.4% 1.10s |0.0%
(I+R) [|90ms |-12.5% 280ms9.6% 1.08s [1.81%
Table 2. Mathworks’ MATLAB Execution Times and Speedups

For our initial study, we ran the benchmarks on an AMD Athlo62MX2 Dual Core
Processor 3800+, 4GB RAM computer running the Linux opegasiystem; GNU Oc-
tave, version 3.2.4; MTLAB, version 7.9.0.529 (R2009b) and McVM/McJIT, version
0.5.

For each benchmark we ran a number of training runs throwgmgirumenter and
profiler. For these experiments instrumented code was &é@anly on Mathworks’
MATLAB to generate profile information. Then we used our dependanalyzer and
loop transformer to generate a set of output files, one odilpubr each combination
of possible transformations. For example, if the input fikl two loops, and loop re-



BenchmarkTrans Pred. Range 1|| Pred. Range 2|| Pred. Range 3
Name ﬁAppIied Time [% SpeedufiTime [% SpeedufpTime [% Speedup
Crni N 5.46s 11029
R 5.46s |0 % 110150.09%
Mbrt N 289.8s 20009
| 300s |-3.5% 2000s0%
R 289.8s0 % 2000s$0%
(I+R) ||300s |-3.5% 2000s0%
Fiff NN 6.44s 251s
RN 6.41s |0.48% 253s |-0.7%
Hnormal ||N 7.34s 13.4s
R 7.48s |-1.9% 13.6s|-1.4%
Nbld N 2.56s 7.89s
Interpol N 3524s 52383
Lagrcheb |[NN 630msg 1.28s 1.95s
RR 630ms0% 1.27s|0.™% 1.94s|0.51%
RN 630ms0% 1.27s|0.7% 1.94s|0.51%
NR 630ms0% 1.27s|0.7% 1.94s|0.51%
Fourier NNN  [|120mg 4.24s
FFN 120ms0% 4.28s[-0.9%
RRN {|120ms0% 4.31s|-1.6%
FRN ||120ms0% 4.19s|1.1%
RNN |/110ms8.3% 4.26s|-0.4%
NRN {|120ms0% 4.25s|-0.2%
Linear NN 6.58s 352s 14964
IN 6.65s |-1.0% 381s |-8.2% 1443%3.5%
IR 6.65s |-1.0% 382s |-8.5% 142254.9%
NR 6.56s |0.3% 369s |-4.8% 138957.1%
EigenValug/N 240msg 106s 460s
| 230ms4.1% 127s |-19.8% 502s [-9.1%
R 230ms4.1% 116s |-9.4% 486s |-5.6%
(I+R) ||230msg4.1% 126s |-18.8% 507s |-10.2%

Table 3.Octave Execution Times and Speedups

versal could be applied to both loops, then we would prodagedifferent output files
corresponding to: (1) no reversals, (2) reversing only lbo(8) reversing only loop 2,
and (4) reversing both loops. For our experiments, we usedhbimation of both the
modes that McEAT provides for applying loop transformations i&utomatic mode
andProgrammer annotated mode

Each output file has a specialized section for each predictpdrtant range, plus a
dynamic guard around each specialized section to ensurththeorrect version is run
for a given input.

We report the results for four different MLAB execution engines, the Mathworks’
MATLAB (which contains a JIT) (Table 2), the GNU Octave interpr€fable 3), the
McVM interepreter, and the McVM JIT (McJIT) (Table 4).



McVm(JIT) McVM(Interpreter)

BenchmarkTrans Pred. Range 1| Pred. Range 2 || Pred. Range 1| Pred. Range 2
Name Applied||Time [% SpeedufpTime |% SpeedupTime|%SpeedupTime |% Speedup
Crni N 4.00s 1074s 7.125 1386.2%

R 4.00s (0.0 % 820s |23.6% 6.35510.8% 1341.5|3.2%
Mbrt N 98.37s 675s 384s 2491s

| 101s |-3.3% 714s |-5.8% 344s|10.4 % ||2286s |8.2%

R 110s |-12.6 % ||781s |-15.6% 342s|10.9% 2370s |4.8%

(I+R) ||106s |-8.16% 738s |-9.35% 346s|9.8% 2375s |4.6%
Fiff NN 260m 500ms 7.38s 7.46s

RN 260mg-1.95% 460mg8% 6.9535.8% 7.25s |2.8%
Hnormal [N 5.00s 8.93s 7.238 11.6s

R 4.96s (0.8% 8.05s |10.9% 7.1131.6% 12.24s|-5.5%
Nbi1d N 850ms 4.10s 1.415 4.24s

Table 4. McVM Execution Times and Speedups

In each table, the column label@dans. Appliedndicates which transformations
are applied to the loops in the benchmark, whgrnadicates that no transformation is
applied,R indicates Loop Reversal is applidel represents Loop fusion arids repre-
sentative of Loop InterchangsN indicates that there are two loops in the benchmark
and no transformation is applied on any of them. SimilaiR/shows there are two
loops, Interchange is applied on the first loop and revemsahe second loop+R
indicates one loop nest on which interchange is applied laewl teversal.

Depending on the benchmark we had two or three differentasitftat were identi-
fied by the range predictor. The ranges appear in the tablesrgasing value, sBred.
Range Icorresponds to the lowest range d@d Range Zorresponds to the highest
range. We chose one input for each identified range and titrfed éach loop trans-
formation version. In each table we give the speedup (pe3itir slowdown (negative)
achieved as compared to the version with no transformatidesindicate in bold the
version that gave the best performance for each range.

Let us consider first the execution time for MathworksAM AB, as given in Ta-
ble 2. Somewhat surprisingly to us, it turns out that loopersal alone always gives
performance speed-up on the higher ranges. Whereas, onrlanges there is either no
speed up or performance de-gradation in some of the benkkniaris implies that it
may be worth having a specialized version of the loops, withdrtant loops reversed
for higher data ranges.

MATLAB accesses arrays in column-major order, ansfMAB programmers nor-
mally write their loops in that fashion, so always applyiogp interchange degrades
the performance of the program. Performance degrades motedps which involve
array dependencies. However, the degradation impact erlathigher ranges perhaps
due to cache misses in both the cases, that is transformeariginial loop. Loop in-
terchange degradation impact is less for loops that involkenetion whose value is
written to an array, for example, Mbrt.

10



Loop fusion was only applied once (in Fourier) where it gisggerformance speed-
up on lower ranges. However, as the loop bounds and accessgd get bigger then
performance degrades.

Now consider the execution time for Octave, given in Tabl®B8tave is a pure
interpreter and you will note that the absolute executiares are often an order of
magnitude slower than Mathworks’ system, which has a JIElacator. The applied
transformations also seem to have very little impact onquerénce, particularly on the
lower ranges. For higher ranges, no fixed behavior is obdefee some benchmarks
there is a performance improvement whereas for otherspeaitce degrades.

We were also interested in how the transformations wouldichpur group’s McVM,
both in pure interpreter mode, and with the JIT. We couldmt all the benchmarks on
McVM because the benchmarks use some library functionstwaiie not currently
supported. However, Table 4 lists the results on the sulfseermchmarks currently
supported. Once again loop reversal can make a significgradhon the higher ranges
for the JIT, and actually also seems beneficial for the Mc\rit&(ipreter).

4.3 Performance study for Parallel For Loops

In Table 5 we report the execution time and speedups wittTiMB's par f or loop-
ing construct. We ran the benchmarks on an Intel ™Core(TMPridcessor (4 cores),
5.8GB RAM computer running a Linux operating systemaiMAB, version 7.9.0.529
(R2009b). For these experiments we initialized thetMaB worker pool to size 4.

The term pN indicates that there is one loop in the benchmdrich is parallelized
and no loop transformation is applied on it. (pF) means tvapoare fused and then
fused loop is parallelized. Note that it is not possible tmbie loop reversal and par-
allelization with the MaTLAB par f or construct as the MrLAB specifications require
that the loop index expression must increase.

We have reported execution times of various combinatiopaddllel and sequential
loops, to study the effect of parallelizing a loop in the @xtof MATLAB programming
language.

For most of the benchmarks we observed thatrtMaB 's par f or loop does not of-
ten give significant performance benefits, and in some caseses severe performance
degradation. This is likely due to the parallel executiordelsupported by MTLAB
which requires significant data copying to and from workee#as.

5 Related Work

Of course there is a rich body of research on the topics of i#grece analysis, loop
transformations and parallelization. In our related wogkattempt to cover a represen-
tative subset that, to the best of our knowledge, coverstiloe work in the area of our
paper.

Banerjee [9], Wolfe and Lam [20, 21] have modeled a subseb@pb kransforma-
tions like loop reversal, loop interchange and skewing asadular matrices and have
devised tests to figure out the legality of these transfdonat Our framework also

11



BenchmarkTrans Pred. Range 1| Pred. Range 2| Pred. Range 3
Name ﬂApplied Time [% SpeedufiTime [% SpeedufTime [% Speedup
Crni N 280m 13.415
pN 1.03s |-257% 14.208-5.9%
R 290mg-3.5 % 13.3050.8%
Hnormal ||N 800ms 1.70s
pN 70.5s |-8712 % |(|71.3s (-4094%
R 780ms2.5% 1.68s [1.1%
Lagrcheb |[NN 120msg 200ms 280ms
(PN)(pN) |{140mg-16.6% 180mg10.0% 250mj 10.%%
N(pN) 110mi 8.3% 180ms10.0% 250mg10.7%
(pPN)N 120ms0.0% 180ms10.0% 260mg7.1%
R(pN) 120mg0.0% 180mg10.0% 250ms10.7%
(PN)R 120ms0.0% 180ms10.0% 250mg10.7%
RR 120ms0.0% 200ms0.0% 270mg3.5%
RN 130mg-8.3% 200mg0.0% 270mg3.5%
NR 130ms-8.3% 200ms0.0% 270mg3.5%
Fourier NNN 170ms 680mMs
(pPN)NN  ||50ms |70% 720ms-5.8%
(PN)(pN)N|[200mg-17.6% 720ms-5.8%
N(pN)N ||50ms |70% 720s |-5.8%
(pF)N 50ms |70% 720ms-5.8%
R(pN)N  ||50ms |70% 710ms-4.4%
(PN)RN  |{50ms |70% 680ms0.0%
FN 20ms |88.2%6 690ms-1.4%
RRN 170ms0.0% 680ms0.0%
(F+R)N  {{170ms0.0% 680ms0.0%
RNN 170ms0.0% 680ms0.0%
NRN 170ms0.0% 680ms0.0%
Linear NN 150msg 7.40s 29.8s
N(pN) 150mg0.0% 7.20s |2.7% 30.2s |-1.3%
I(pN) 390mg0.0% 10.305-39.1% 40.2s (-34.8%
IN 370mg-146.6% {|10.308-39.1% 37.6s |-26.1%
IR 370mg-146.6% |[|10.3059-39.1% 37.6s |-26.1%
NR 160ms-6.6% 7.20s |2.7% 29.4s |1.3%%

Table 5.Mathworks’ MATLAB Execution Times and Speedups with Parallel Loops

uses unimodular transformations model to apply and tesketaity of a loop trans-
formation or a combination of loop transformations, but mtent is to specialize for
different predicted loop bounds.

Quantitative models based on memory cost analysis haveuseeito select optimal
loop transformations [18]. Memory cost analysis chooses@imal transformation
based on the number of distinct cache lines and the numbeéstofat pages accessed
by the iterations of a loop. Our framework is a preliminargpstowards building a
self-learning system that selects optimal transformatioased on loop bounds and

12



profiled program features that have been beneficial in thefpiaa transformation or a
combination of transformations.

A dimension abstraction approach for vectorization inTaB presented in [10]
discovers whether dimensions of an expression will be liégattorization occurs. The
dimensionality abstraction provides a representatiomefshape of an expression if a
loop containing the expression was vectorized. To impr@gtarization in cases which
have incompatible vectorized dimensionality, a loop pattiatabase is provided which
is capable of resolving obstructing dimensionality digggnents.

Another framework, presented in [22] predicts the impactpifmizations for some
objective (e.g., performance, code size or energy). Thadreork consists of three
types of models: optimization models, code models and resanodels. By integrating
these models, a benefit value is produced that representsetiedit of applying an
optimization in a code context for the objective represgigthe resources. MeAT
is the first step towards developing a self-learning systdmnthvwould use its past
experience in selecting optimal loop transformations.

5.1 Automatic Parallelization

Static automatic parallelism extraction have been acHiéwehe past [11, 16]. Un-
fortunately, many parallelization opportunities couldl stot be discovered by static
analysis approach due to lack of information at the sourde ¢evel. Tournavitis et. al.
have used a profiling-based parallelism detection methaidethhances static data de-
pendence analysis with dynamic information, resultingngér amounts of parallelism
uncovered from sequential programs [19]. Our approachss bhsed on profiling-
based parallelism detection but in the context ofiMaB programming language and
within the constraints of MTLAB parallel loops.

5.2 Adaptive Compilation

Heuristics and statistical methods have already been nsgetérmining compiler op-
timization sequences. For example, Cooper et. al. [14]ldpee a technique using
genetic algorithms to find "good” compiler optimization seqces for code size reduc-
tion. Profile-based techniques have also been used in théopasggest recompilation
with additional optimizations. The Jalopefio JVM uses gidasystem that can invoke
a compiler when profiling data suggests that recompiling thotewith additional op-
timization will be more beneficial [6]. Our work is a first stepvards developing an
adaptive system that applies loop transformations baspdaaticted data from previous
execution runs and profiled information about the programs.

Previously work has been done on JIT compilation foxtdas . MaJIC [5], com-
bines JIT-compilation with an offline code cache maintaitiedugh speculative compi-
lation of Matlab code into C/Fortran. It derives the mostddférirom optimizations such
as array bounds check removals and register allocatiorhwiaks introduced MT-
LAB JIT-Accelerator [3], in MATLAB 6.5, that has accelerated the execution aftM
LAB code. McVM [12,13]is also an effort towards JIT compilationMATLAB, it uses
function specializations based on run-time type of thejuarents. The McVM(JIT) has
shown performance speed-ups againsttMAB for some of our benchmarks. McET,
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the framework presented in this paper uses profiled progeatufes and heuristically
determines loop bounds ranges to generate specializednveos loops in the program.

6 Conclusions and Future Work

In this paper, we have described a new framework, MaF which uses profile-based
training runs to collect information about loop bounds aadges, and then applies a
range estimator to estimate which ranges are most impoSaetialized versions of
the loops are then generated for each predicated range.€feeaged MTLAB code
can be run on any MrLAB virtual machine or interpreter.

Results obtained on four execution enginesafidaB, GNU Octave, McVM(JIT)
and McVM(interpreter) suggest that the impact of differemp transformations on
different loop bounds is different and also depends on teew@ion engine. We were
somewhat surprised that loop reversal was fairly usefusémeral execution engines,
especially on large ranges. Although the tool detectececuitew parallel loops and
transformed them to MrLAB’s par f or construct, the execution benefit was very lim-
ited and sometimes very detrimental. Thus, our McJIT coenpilill likely support a
different parallel implementation which has lower overdea

Although McH.AT is already a useful stand-alone tool, in our overall plas iai
preliminary step towards developing a self-learning systieat will be part of McJIT
and which will decide on whether to apply a loop transformar not depending on
the benefits that the system has seen in the past. Our inifddratory experiments
validate that different loop transformations are bendfiadifferent ranges. Future
work will focus on extracting more information about the gram features from profil-
ing, maintaining a mapping between loop bounds, programufes and effective loop
transformations and making use of past experience to makeefdecisions on whether
to apply transformations or not.
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