
Optimizing Matlab through Just-In-Time

Specialization ⋆

Maxime Chevalier-Boisvert, Laurie Hendren, and Clark Verbrugge

School of Computer Science, McGill University, Montreal, QC, Canada
{mcheva,hendren,clump}@cs.mcgill.ca

Abstract. Scientists are increasingly using dynamic programming lan-
guages like Matlab for prototyping and implementation. Effectively
compiling Matlab raises many challenges due to the dynamic and com-
plex nature of Matlab types. This paper presents a new JIT-based ap-
proach which specializes and optimizes functions on-the-fly based on the
current types of function arguments.

A key component of our approach is a new type inference algorithm which
uses the run-time argument types to infer further type and shape infor-
mation, which in turn provides new optimization opportunities. These
techniques are implemented in McVM, our open implementation of a
Matlab virtual machine. As this is the first paper reporting on McVM,
a brief introduction to McVM is also given.

We have experimented with our implementation and compared it to sev-
eral other Matlab implementations, including the Mathworks propri-
etary system, McVM without specialization, the Octave open-source in-
terpreter and the McFor static compiler. The results are quite encourag-
ing and indicate that specialization is an effective optimization—McVM
with specialization outperforms Octave by a large margin and also some-
times outperforms the Mathworks implementation.

1 Introduction

Scientists are increasingly using dynamic languages to prototype and implement
their applications. Matlab is particularly appealing because it has an interactive
development environment, a rich set of libraries, and highly expressive semantics
due to its dynamic nature. However, even though the dynamic nature of Matlab

may be convenient for scientists, it provides many challenges for effective and
efficient compilation and execution. Furthermore, scientists would like to have
reasonable performance as many scientific applications are computation-heavy
and execute for a long time. Ideally this performance should be achieved without
requiring a rewrite of Matlab code to a more static language such as Fortran.

For good performance, we require an optimizing compiler that works di-
rectly on Matlab programs. However, Matlab poses several challenges. Firstly,
Matlab programs are normally developed incrementally, using an interactive
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development loop and mixing Matlab scripts (a sequence of commands like
those typed into the interactive loop prompt) with functions that are defined
in separate source files. This means that code is dynamically-loaded and not all
code is known ahead-of-time. Secondly, Matlab’s type system is both dynamic
and intricate. The types of variables are not declared, but rather change as the
computation proceeds. For example, it is not even straightforward to determine
which values are scalars and which are arrays since a scalar assignment, such
as x = 1, is assumed to define x as an 1 × 1 array. Furthermore, the size of an
array dynamically increases as new values are written outside the current array
bounds, and the effective base type of an array can change when an element of
a more general type is written into it.

All of these challenges suggest that Matlab is best optimized on-the-fly
using a JIT compiler within a Matlab Virtual Machine. We have developed
a new open Matlab VM called McVM which includes a JIT compiler built
upon LLVM [1] which we briefly introduce in this paper. The main feature of
the McVM JIT is a new on-the-fly specialization algorithm which specializes
functions based on the run-time types of their arguments. This relies on a type
and shape inference analysis which is specifically tailored to abstract the key
features of the types in the function body. This type and shape analysis must be
simple enough to work in the JIT context, but at the same time it must abstract
the key features needed for optimization. Our approach is to combine 8 different
simple abstractions, consisting of a variable’s overall type, whether or not it is
a scalar or a 2D matrix, its shape, and so on. The results of this type and shape
inference analysis are then used to compile a specialized and optimized version
of the function.

In order to determine the effectiveness of this argument-type-based special-
ization approach, we have implemented it and compared it against both McVM
without specialization and three other existing Matlab implementations: the
Mathworks proprietary implementation, Octave1 which is an open-source Mat-

lab interpreter, and McFor which is our group’s static Matlab-to-Fortran com-
piler. Initial results are quite encouraging and show that specialization works,
provides good performance and that a reasonable number of specialized versions
of functions are created.

The main contributions of this paper are:

McVM: an introduction of McVM giving our design criteria and an overview
of the architecture of the system (Section 3);

Specialization: an introduction our approach for specializing functions on-the-
fly based on the run-time types of function arguments (Section 4);

Type and Shape Inference: a new type and shape inference algorithm which
approximates type and shape information based on argument types (Section
5); and

Experimental Validation: an experimental validation showing the overall ef-
fectiveness of McVM and the the effectiveness of specialization and type
inference, in particular (Section 6).

1 www.gnu.org/software/octave/
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In the remainder of this paper we first describe the challenges of compiling
Matlab in Section 2, then we address each of our main contributions in Sections
3 through 6. We then discuss related work in Section 7 and give conclusions and
future work in Section 8.

2 Optimization Challenges

Matlab presents many challenges to an optimizing compiler. Traditional static
optimization techniques do not work because of the highly dynamic nature and
the complex semantics of the language. Dynamic loading of functions and scripts
prevents us from assuming the entire program is known ahead of time, for ex-
ample. One of the main challenges, however, is dealing with types, since the
language is dynamically typed and follows intricate type rules.

Listing 1.1 shows an example of a simple program that illustrates some of
the intricacies of the Matlab type system. In this example, the caller function
calls the sumvals function twice, with different argument types each time. The
sumvals function is designed to sum numbers within a range of values. However,
as this example illustrates, in Matlab, it can be applied to both scalar types
and arrays of values. Specifically, the variable a will be assigned the scalar integer
value 5 * 10e11, while b will be assigned the 1× 2 floating-point array 1.0e12

* [0.8533 1.7067]. These two values are then concatenated into c, a 1 × 3
array.

function s = sumvals(start , step , stop)
i = start;
s = i;

while i < stop
i = i + step;
s = s + i;

end
end

function caller()
a = sumvals(1, 1, 10^6);
b = sumvals ([1 2], [1.5 3], [20^5 , 20^5]);
c = [a b];

disp(c);
end

Listing 1.1. Implicit typing in Matlab programs

Since the sumvals function can apply to either scalars or arrays, and the val-
ues operated on could be either integer, real or complex, compiling this program
into efficient machine code can be challenging: type information is not explicit,
and can change dynamically. A naive compiler could always store the variables
inside the sumvals function as the widest available type (i.e.: complex matrices)
or even generate code based on the idea that the type of all variables in the
function are unknown, which is clearly very inefficient.

To generate efficient code, type inference is needed to extract implicit type
information in the source program. In the case where sumvals is called with only
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scalar integer inputs, it is possible to logically infer that all of the intermediate
variables will also be scalar integers, and generate efficient code for this case. As
for the case where sumvals is called with arrays as input, it should be possible
to at least infer that complex values will never occur in the computation. This
example motivates our approach of specialization based on the run-time types
of arguments. Our approach will compile two different versions of the function
based on the call signatures. This ensures that efficient code can be generated
for each case. More details of our specialization technique are given in Section 4
and our type inference analysis is described in Section 5.

3 Design Overview

Our approach to optimization requires the ability to both interpret and compile
multiple versions of code. The McVM virtual machine thus implements a mixed
mode design, consisting of both interpreter and JIT components. The design is
modular, making use of external front-end and low-level back-end components to
simplify implementation complexity; Figure 1 shows the overall structure, which
we now describe in more detail.

Fig. 1. Structure of the McVM Virtual Machine

The McLab front-end is used to parse interactive-mode commands and M-file
source code, producing a common Abstract Syntax Tree (AST) representation
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for both interpretation and compilation. The functionality of the interpreter is
divided into interpretation logic and state management (housekeeping), while
the JIT compiler manages the function specialization/versioning system, and
generates low-level intermediate code for the statements it can compile. Our
design allows for incremental and flexible development, with the JIT relying on
the interpreter as fallback to evaluate code for which there is not yet compiler
support.

At the core, McVM’s implementation of matrix types depends directly on
a set of mathematical libraries (ATLAS, BLAS and LAPACK) to perform fast
matrix and vector operations. We use the Boehm garbage collector library for
garbage collection [2], and our JIT compiler uses the LLVM framework to imple-
ment low-level JIT compilation and generate machine code [1]. The JIT compiler
also implements several analyses to gain additional information about source
programs being compiled, including basic analyses and optimizations such as
live variables, reaching definitions, bounds check alimination, as well as type
inference.

The McVM interpreter performs a straightforward, pre-order traversal of the
internal AST in order to execute the input code. This interpretation approach is
naive, but provides a correct, if low-performance execution that can serve both
as a reference and act as a fallback when JIT compilation cannot be performed.
The interpreter also serves housekeeping roles, providing essential run-time ser-
vices. These include taking care of loading Matlab files on-demand, execut-
ing interactive-mode commands, hosting library function bindings, maintaining
bindings to global variables, and so forth.

The JIT compiler improves performance by translating high-level source code
into a more efficient low-level form. A fundamental design goal in our VM was to
aim for a simple and easily extensible design—similar to the phc compiler [3], our
JIT compiler is built as an extension of the interpreter. The compiler can thus fall
back to interpreting sections of code it cannot compile, mixing sections of both
compiled and interpreted code in the execution of a given function. This allows
for incremental JIT development, and also for language modifications to be more
easily incorporated—new data types or statements can be added by modifying
only the interpreter, relying on the fallback mechanism for any new features. The
JIT compiler can later be modified, if necessary, to gain performance benefits
from any additional optimization opportunities.

The JIT compiler performs actual code generation in conjunction with LLVM.
During run-time, the input AST is first translated by our JIT compiler into a
low-level, RISC-like Static Single Assignment (SSA) representation. From this,
LLVM generates machine-specific executable code; LLVM also performs basic
optimization passes on the code, such as constant propagation, dead code elim-
ination and redundant operation elimination. As such, it greatly simplifies the
construction of a JIT compiler by completely hiding much of the platform-specific
details and providing low-level optimizations.

Our fallback mechanism requires a high-level strategy to coordinate the tran-
sition from compiled code to interpretation and vice-versa. In particular, at each
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step of the compilation process the JIT must track how and where each live
variable is stored in order to appropriately transfer execution context. When in-
terpreter fallback code is generated, instructions are issued to flush any register
variables into memory for interpreter consumption. Upon returning to compiled
execution, variables are copied back into their original registers. While spilling
variables in this way is expensive, it has the advantage that the interpreter fall-
back mechanism does not impose extra penalties on compiled code in the case
of functions which do not need to use it.

The McVM JIT compiler is able to compile and make use of specialized
versions of functions based on call signatures. This corresponds to the two shaded
boxes in Figure 1 labeled “Versioning Logic” and “Type Inference”. In the next
two sections we examine these two important components in more detail.

4 Just-In-Time Specialization

Exposing and using type information is central to most existing approaches to
Matlab optimization [4, 5]. McVM uses run-time type information to create
multiple specialized versions of Matlab functions. This allows for optimized
function dispatch and improved code generation for many common operations,
greatly reducing overhead costs necessary in a more generic design. Below we
describe our precise versioning strategy, followed by core optimizations so en-
abled.

4.1 Function Versioning

Specialization requires creating type-specific versions of function bodies. This
process is performed at run-time, by “trapping” commands issued through the
interpreter (including calls made in the read-eval-print loop of the interactive
mode). If the command is a call to a function (and not a script), the inter-
preter will try and pass control to the JIT compiler. When this happens, the
JIT compiler builds an argument type string from the input arguments to the
function, and attempts to locate a previously compiled version of the function
with a matching argument type string. If none exists a new version will first be
compiled, appropriately specialized to the given argument types. This removes
significant dispatch overhead, allowing, for instance, scalar variables to be stored
on the stack instead of as objects allocated on the heap. While compiling spe-
cialized function versions, the JIT compiler also considers functions called by the
function being compiled, compiling them as direct calls to specialized versions
as well. Thus entire executions can be specialized in a “deep” fashion.

As an example of how our function versioning works, consider the sumvals

function shown earlier in Listing 1.1. This function is meant to sum numerical
values in the range from start to stop, inclusively. In the absence of type in-
formation and specialization a compiler must make conservative assumptions,
assuming iteration is potentially performed over arrays. Expensive heap storage
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function s <scalar int > = sumvals(start <scalar int >, step <scalar int >, stop
<scalar int >)

i <scalar int > = start;
s <scalar int > = i;

while i < stop
i <scalar int > = i + step;
s <scalar int > = s + i;

end

end

Listing 1.2. The type-annotated sumvals function

is thus required, as well as function calls to generically perform every operation
(addition, comparison, etc.).

At an actual invocation of the function, however, such as in Listing 1.1: a =

sumvals (1, 1, 10^6);, argument types are known to be scalar integers. This
information is flowed through the function by our type inference, producing a
type-annotated version as shown in Listing 1.2. From this, efficient code can be
generated: all variables are easily stored on the stack, and there is no need to
make expensive dispatches, because there are efficient machine instructions to
add and compare scalar integer values.

The obvious downside is that this scheme has the potential to generate many
specialized versions of a function, with each requiring additional compilation
time, and potentially impacting the performance of the instruction cache, should
multiple versions be executed. We will see that this is not the case in practice
(see Section 6). From our observations, Matlab programs tend to have few long
functions and fewer call sites than code written in other programming languages.

4.2 Additional Optimizations

Type-based specialization greatly simplifies basic arithmetic operations, allowing
many uses of scalars to be implemented in just a few machine instructions. The
type information, however, also facilitates the optimization of a number of other
common operations, in particular certain array access operations, and use of
library function calls. These optimizations improve performance by both taking
advantage of type information, and eliminating cases where interpreter fallback
is otherwise required.

Matlab possesses a sophisticated array indexing scheme that allows pro-
grammers to read or write to n-dimensional slices (sub-arrays) based on ranges
of indices, specified independently for each dimension. This behaviour is im-
plemented through the interpreter, using the fallback mechanism to evaluate
complex array reads and writes. When types are known, however, such as in x =

a(i); where i is a scalar, optimized code can be generated to read or write the
value directly. Type information includes array dimensions as well, eliminating
the need for many dynamic array bounds checks.

Library functions are implemented in our virtual machine as native C++
functions which take as input (and return as output) dynamically allocated
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arrays of pointers to data objects. This strategy is conservatively correct in the
presence of unknown types, but can be inefficient because each call to these
functions requires array allocation. Even for variables known to be scalar, the
use of a generic library routine requires boxing and unboxing arguments and
return values respectively, reducing the benefit from other optimizations.

To address these issues, we have devised a further simple specialization
scheme for some library functions. Multiple, type-specific versions of library func-
tions are first registered ahead-of-time in McVM. When a library function call is
encountered, the JIT compiler will attempt to locate an appropriately special-
ized version, matching function argument and return types. An obvious example
where this is beneficial is in the case of functions like abs or sin, where scalar
data allows the direct use of the native C++ versions of these library functions.

5 Type and Shape Inference System

The McVM JIT compiler uses data provided by our type inference analysis to
implement the just-in-time function specialization scheme described in Section 4.
The more information the analysis provides about the concrete types and shapes
of program variables, the more interpretive dispatching and storage overhead can
be eliminated, and the faster the resulting compiled code will be, as demonstrated
in Section 6.

Our type inference analysis works on a per-function basis, with the assump-
tion that the whole program is not necessarily known at run-time, and new
functions could be loaded at any time. The analysis assumes that the set of
possible types for each input argument of a given function are known, and infers
the set of possible types for every variable at every point (before and after every
statement) in the function, given those possible input argument types.

The analysis is an abstract interpretation style analysis, which implements a
compositional forward analysis directly on the structured AST representation.
The analysis computes an abstraction of the actual types and shapes of variables
at each program point. The actual abstraction is a carefully designed combina-
tion of simple abstractions, where each element of the abstraction captures a key
aspect of the variable’s type or shape. For example the isScalar flag indicates
when a variable is definitely a scalar variable. If this flag is true, then the JIT
compiler can allocate it to a register, which is much more efficient than storing
it as a matrix. Another key point of our analysis is that it is flow-sensitive, and
we thus have type and shape information for each program point.

5.1 Abstract Domain

In the real domain of Matlab programs, variables at different program points
are bound to actual values (data objects). In our abstract domain, variables in-
stead map to sets of possible abstract types. These sets contain zero or more type

abstractions summarizing all possible types and shapes the specific variable can
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have. Each type abstraction is actually an 8-tuple: 〈overallType, is2D, isScalar,

isInteger, sizeKnown, size, handle, cellTypes〉.
If an abstract type set contains multiple type abstractions, it means that the

variable whose potential types are represented by the set at that program point
could be one of the several types represented by each type abstraction in the
set. The empty set is the ⊥ element of the type lattice, representing situations
where no information has been computed yet. The set of all type objects is the
⊤ element of the lattice, representing the situation where the type of a variable
cannot be determined.

The core of the abstraction is the first item of the 8-tuple, the overallType,
which represents a specific Matlab language type, such as character array,
floating-point matrix, complex number matrix, etc. Figure 2 represents the hi-
erarchical type lattice of McVM overallType values.

Fig. 2. Hierarchical lattice of McVM types

The remaining elements of each 8-tuple provide abstractions of different fea-
tures of the type. Table 1 describes the fields stored in type objects. These fields
cannot hold arbitrary values. For example, if the isScalar flag is set to True,
then the sizeKnown flag must also be True. However, the is2D flag does not
necessarily indicate that the matrix size is known.

For each statement in a program, our analysis produces a mapping of symbols
to sets of type abstractions representing the type that each variable in the current
function may hold before the statement is executed. Formally, if O is the set of
all possible type abstractions and S is the set of all symbols, then our analysis
operates in the domain of subsets of M , where M is the set of all pairs of symbols
and subsets of O (mappings of symbols to type sets):

M = { (s, t)| s ∈ S, t ∈ P (O)}

5.2 Merge Operator

A merge operator is required to implement inference rules for control flow state-
ments. This is because when multiple control paths join at a given point in a
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Table 1. Description of type object fields

Field Meaning/Description Default

overallType An element of the set of possible McVM data types. Undefined

is2D Flag whose value applies to matrix types only. A True value indicates
that the matrix has at most two dimensions. False means it is not
known how many dimensions the matrix has.

False
(unknown)

isScalar Flag whose value applies to matrix types only. A True value indicates
that the matrix is a scalar. False means the matrix may not be scalar.

False
(unknown)

isInteger Flag whose value applies to matrix types only. A True value indicates
that the matrix contains only integer values. False means the matrix
may contain non-integer values.

False
(unknown)

sizeKnown Flag whose value applies to matrix types only. A True value indicates
the size of the matrix is known. False means the size is not known.

False
(unknown)

size Applies to matrix types only. A vector of integers storing the dimen-
sions of the matrix. This is only defined if the sizeKnown flag is set
to True.

Undefined

handle Applies to function handles types only. Stores a pointer to the func-
tion object the handle points to. This value can be null if the specific
function is not known at inference time.

null
(unknown)

cellTypes Applies to cell array types only. Set of type objects representing the
possible types the cell array stores.

⊥

(undefined)

program, our analysis needs to merge the mappings of symbols to type sets for
each of these control flow paths into one single mapping. In our analysis, the
merging of two type mappings is accomplished by performing, for each symbol,
the joining of the type sets for each type mapping:

merge(M1,M2) = { (s, t)| (s, t1) ∈ M1, (s, t2) ∈ M2, t = join(t1, t2)}

The joining of type sets is accomplished by using set union as a merge oper-
ator and then applying a filter operator to the result:

join(t1, t2) = filter (t1 ∪ t2)

The filter operator takes a type set as input and returns a new type set in
which all type objects having the same overallType value have been merged into
one. It does so in a pessimistic way, that is, if one of the type objects to be
merged has an unknown value for one of its flags, the merged type object will
have the unknown value for this flag. For example, if we are filtering a type set
containing multiple double matrix type objects, the resulting type object will
have the integer flag set to true only if all input type objects did.

5.3 Inference Rules

Our type inference analysis follows inference rules to determine the mapping of
possible variable types after a given statement based on the possible types before
that same statement. Each kind of statement has an associated type inference
rule that takes the mapping of possible input types as input and returns the
mapping of possible output types as output. Expression statements, such as
disp(3); use the identity type mapping, that is, the output types they produce
are the same as the input types.
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The statements that are at the core of our type inference analysis are assign-
ment statements. They are the only kind of statement that can define a variable,
and thus, change its type. In the case of an assignment statement of the form
v = op(a, b);, where op is an element of the set R of all possible binary oper-
ators, we have that the type of v is redefined as the set of possible output types
of the operator being applied to the possible types of a and b, according to its
own type rule:

typeRulev=op(a,b) (Min) = { (s, t) ∈ Min| s 6= v} ∪ typeRuleop(v,a,b) (Min)

typeRuleop(v,a,b) (Min) = { (v, t)| t = outtypeop ({(a, t) ∈ Min} , {(b, t) ∈ Min})}

As an example, we can look at the assignment c = [a b]; in Listing 1.1.
This represents the horizontal concatenation of arrays a and b. In this case,
a holds the value 5 * 10e11, which is a scalar integer value, and b holds the
value 1.0e12 * [0.8533 1.7067], a 1 × 2 floating-point array. Thus, the type
abstractions for a and b are:

type(a) = {〈overallType = double, is2D = T, isScalar = T, isInteger = T,

sizeKnown = T, size = (1, 1), handle = null, cellTypes = ⊥〉}

type(b) = {〈overallType = double, is2D = T, isScalar = F, isInteger = F,

sizeKnown = T, size = (1, 2), handle = null, cellTypes = ⊥〉}

The type rule associated with the horizontal concatenation operation allows
us to infer that c will be a 1 × 3 floating-point array, that is:

outtypehcat(type(a), type(b)) = {〈overallType = double, is2D = T, isScalar = F,

isInteger = F, sizeKnown = T, size = (1, 3),

handle = null, cellTypes = ⊥〉}

In the case of if statements, the type inference process is handled differently.
The “true” and “false” branches of the statement are both treated as compound
statements, as if all statements on either branch were one statement. The output
type mappings are determined separately for both branches and then merged
together into one mapping of the possible types at the output of the if statement
itself:

typeRuleif (Min) = merge (typeRuletrueStmt (Min) , typeRulefalseStmt (Min))

Handling of loop statements is slightly more complex. Because types at the
input of the loop depend on types at the output, a fixed point must be iteratively
computed. Before we apply our type inference analysis, all loop statements are
converted to while loops. As is the case for if statements, statements in the
loop body are treated as one single compound statement. Special care is taken
to properly deal with both break and continue statements.
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5.4 Inference Process

In terms of abstract interpretation, we wish to compute, for a given function, the
least fixed point of the mapping of program statements and variables to sets of
possible types before that given program point. The type inference process for a
function begins with the type sets for the input parameters of the function being
given. Because of the Matlab semantics, the possible types of all other variables
are initialized to ⊤. This is because undeclared variables could be globals, and
thus, could potentially hold any type.

The body of the function is then analyzed. The function body itself is a
compound statement. When inferring the types in a compound statements, the
statements it contains are traversed in order, and the inferred output type of
each statement is stored in a global mapping (e.g.: hash map) of the types at
the output of each statement.

6 Evaluation

In order to assess the performance of our virtual machine we compare the actual
performance of McVM to that obtained by several related systems: Mathworks
Matlab, GNU Octave (the GNU Matlab environment) and McFor (a Mat-

lab to Fortran translator built by Jun Li, a member of the McLab team). The
Octave and Matlab performance numbers are intended to give us some idea
of how well our current solution performs against competing implementations.
The McFor numbers are provided as a rough “upper bound” on performance—
Fortran compilers are known to perform very well on numerical computations,
giving an indication of potential compiler performance for non-interactive code.

We have performed our tests on a total of 20 benchmark programs. These
benchmarks are gathered from previous work on optimizing Matlab

2, in the
FALCON [6] and OTTER projects, Mathworks’ CentralFile Exchange, Chalmers
University, and from individual course work and student projects at McGill. Sev-
eral of these are currently unsupported by the McFor Fortran translator as it
lacks support for cell arrays, closures and function handles at this time. The left
part of Table 2 provides characteristic numbers for each of the benchmarks sup-
ported by McVM. Number of functions and statements (3-address form) relate
to the overall (static) input load on our system, while number of call sites di-
rectly affects specialization. Maximum loop nesting depth affects the theoretical
efficiency of our dataflow analysis.

Not all benchmarks benefit equally from our optimizations of course, and
in the following sections we show further profiling numbers intended to ex-
plain where specific performance bottlenecks occur. Section 6.2 describes the
behaviour of the type inference system, while Section 6.3 gives data on the spe-
cialization system, including compiler overhead. All of our benchmarking metrics
were gathered on a system equipped with an Intel Core 2 Quad Q6600 processor
(quad core, 2.4GHz) and 4GB of dual channel DDR2 RAM, running Ubuntu 9.10

2 http://www.ece.northwestern.edu/cpdc/pjoisha/MAT2C/
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(linux kernel 2.6.31, 32-bit). We have gathered our Matlab performance num-
bers using Matlab R2009a, and our GNU Octave numbers on Octave version
3.0.5. The Fortran code produced by McFor was compiled using the GNU Fortran
compiler version 4.4.1. Because of significant variance when timing benchmarks,
attributable to i-cache effects and the garbage collector, all benchmark timing
measurements are based on an average over 10 runs.

6.1 Baseline Performance

The rightmost columns of Table 2 show a comparison of benchmark running
times under our four execution environments, as well as a version of McVM
with the JIT and specialization disabled, giving absolute time as well as times
normalized to the McVM JIT (values greater than 1 are running slower than
McVM with JIT). As we can see, McVM with JIT performs better than Matlab

in 8 out of 20 benchmarks, sometimes by a fair margin. In the cases where it
does worse than Matlab, the running times can be relatively close (as with
nnet), or, as exemplified by the crni benchmark, sometimes dramatically less;
we discuss reasons for this poor performance in Section 6.2.

GNU Octave, possessing no JIT compiler, does rather poorly in general.
It trails far behind Matlab and outperforms McVM with JIT on only a sin-
gle benchmark. Interestingly, McVM in interpreted mode, although it performs
much worse than the JIT on several benchmarks, actually performs better on
some (this will also be discussed further). The McFor running times are generally
well ahead of Matlab and McVM, with the exception of the clos benchmark.
This suggests that Matlab and McVM both are still far from the “optimal”
performance level.

6.2 Type Inference Efficiency

Our ability to optimize strongly depends on the behaviour of our type inference
system. The leftmost part of Table 3 thus shows relevant run-time profiling infor-
mation, dynamically weighted by the relative execution counts of the associated
statements. The first data column gives the percentage of type sets that are at
top, providing no type information, while column 3 shows the percentage of type
sets which contain only one type, and so give exact type data. The third column
shows the percentage of times where variables holding scalar values were known
ahead of time to be scalar, and the fourth column is the percentage of times
where the size of matrix variables was known by the type inference system.

In general the more type information our system has the better it will be able
to optimize code generation. Knowledge of which variables are scalars is even
more critical, however, as it lets the JIT compiler know which variables can be
stored on the stack. As we can see, this matches our results: benchmarks with
speedups of over 99% all have 100% of scalar variables known. The behaviour
of the crni benchmark can also be explained by this data. As can be seen in
Table 3, scalars are known in only 68.7% of cases, one of the lowest such ratios.
An examination of the code reveals this benchmark uses matrix “creation on
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Table 2. Benchmark characteristics and comparison of running times. Columns 6–
10 give absolute running times, while columns 11–14 are performance normalized to
McVM JIT. The geometric mean was used for relative values (columns 11–14).
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adpt 2 196 2 6 13.4 2.66 12.6 45.9 0.72 0.20 0.94 3.42 0.05
beul 10 511 1 38 3.07 3.09 1.56 7.62 N/A 1.01 0.51 2.49 N/A
capr 5 214 2 10 3.51 8.10 1674 5256 1.26 2.31 478 1499 0.36
clos 2 58 2 3 6.84 0.75 13.6 17.5 7.87 0.11 1.99 2.56 1.15
crni 3 142 2 7 1321 6.95 1788 5591 3.56 0.01 1.35 4.23 0.00
dich 2 144 3 7 2.80 4.71 1149 4254 1.88 1.68 410 1517 0.67
diff 2 253 3 6 30.0 5.26 41.9 120 0.65 0.17 1.39 3.98 0.02
edit 2 130 2 6 54.9 11.0 81.4 394 0.13 0.20 1.48 7.17 0.00
fdtd 2 157 1 3 20.1 3.32 8.56 172 0.29 0.17 0.43 8.55 0.01
fft 2 159 3 8 12.8 16.2 2470 8794 9.13 1.27 193 689 0.72
fiff 2 120 2 4 5.37 6.97 1528 4808 0.99 1.30 285 895 0.18

mbrt 3 78 2 11 34.6 4.53 98.6 295 0.96 0.13 2.84 8.51 0.03
nb1d 3 194 2 11 4.10 9.85 4.24 43.9 0.74 2.40 1.03 10.7 0.18
nb3d 3 164 2 12 3.88 1.54 2.51 40.8 0.89 0.40 0.65 10.5 0.23
nfrc 5 151 2 11 15.7 4.94 26.0 80.3 N/A 0.32 1.66 5.13 N/A
nnet 4 186 3 16 6.95 6.35 7.32 26.5 N/A 0.91 1.05 3.81 N/A
play 6 364 2 29 3.37 8.68 4.24 29.0 N/A 2.57 1.26 8.60 N/A
schr 8 203 1 32 2.48 2.07 3.03 2.31 N/A 0.84 1.22 0.93 N/A
sdku 9 363 2 49 1.23 9.74 16.0 112 N/A 7.93 13.1 90.9 N/A
svd 11 308 3 42 8.24 2.38 7.02 10.9 N/A 0.29 0.85 1.33 N/A

mean 4.3 205 2.1 15.6 77.7 5.96 447 1505 2.24 0.49 3.91 15.4 0.08

assignment” to initialize its input data, resulting in several unknown types being
propagated through the entire program. We examine ways to fix this weakness
of our type inference system as part of future work.

While our JIT compiler is able to speed up most benchmarks, sometimes
by very significant margins, some still show slowdowns over interpreted perfor-
mance. These do not necessarily have poor type information. The nb3d bench-
mark, for example, has 100% scalar variables known and 96.9% singleton type
sets. Most of these benchmarks makes heavy use of complex slice read opera-
tions operating on entire columns or rows of a matrix at a time, and these are
currently implemented through our (expensive) interpreter fallback mechanism.

6.3 JIT Specialization

The benefit of JIT specialization depends on how well it improves the code as
well as any introduced overhead. The rightmost three columns of Table 3 show
the effect of JIT compilation on three profile measures, the number of matrices
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Table 3. Profiled performance. All values are percentages.
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adpt 4.18 95.8 100 90.0 -6.82 24.8 16.8 39.2
beul 55.2 44.8 71.3 29.5 -96.3 85.5 49.8 114
capr 0.01 100 100 82.8 99.8 0.00 0.00 0.00
clos 0.00 100 100 99.9 49.7 0.00 100 0.00
crni 19.1 71.4 68.7 54.8 26.1 66.7 69.2 55.2
dich 2.09 97.9 100 85.1 99.8 0.00 0.00 0.00
diff 14.3 82.1 66.7 66.7 28.2 68.3 100 2.45
edit 5.14 94.9 96.8 81.5 32.5 65.0 40.0 81.6
fdtd 0.01 100 100 49.8 -135 88.1 90.0 90.5
fft 0.00 100 100 80.3 99.5 0.00 0.00 0.00
fiff 0.01 100 100 86.1 99.6 0.01 0.00 0.00

mbrt 9.09 90.9 100 100 64.9 33.3 100 0.00
nb1d 5.84 94.2 88.1 34.5 3.33 75.6 0.00 14.9
nb3d 3.13 96.9 100 16.5 -54.6 94.0 98.3 76.2
nfrc 16.4 82.7 100 98.9 39.8 42.5 100 19.8
nnet 52.6 47.4 98.7 55.1 5.08 86.9 100 82.8
play 23.3 66.6 77.5 52.1 20.6 72.5 100 45.9
schr 31.8 55.3 99.5 41.7 18.3 65.5 54.0 84.6
sdku 14.8 85.2 83.8 49.7 92.3 7.55 5.69 4.65
svd 16.4 73.8 94.2 59.7 -17.4 84.7 100 60.2

mean 13.7 84.0 92.3 65.7 23.5 48.0 56.2 38.6

created, the number of slice reads, and the number of environment lookups, in
each case presented as a percentage of the original, interpreted quantity. These
are all expensive operations, and so large reductions should map to large im-
provements from JIT compilation. The fft benchmark, for instance, has 100%
of its 789 million interpreter slice reads eliminated, and runs over 190 times
faster with the JIT compiler enabled.

For a better understanding of the cost/benefit of different components of
our system, we also evaluate the performance of McVM with specific JIT opti-
mizations disabled. Relative to the McVM JIT compiler with all optimizations
enabled, the five leftmost columns in Table 4 show the ratio of run-times of
McVM with optimizations to arithmetic operations, array operations, function
calls, specialized library functions, and the entire JIT selectively disabled (a
number greater than one signifies a slowdown). Clearly, arithmetic operation
and array access optimizations have a tremendous impact as they speed up sev-
eral benchmarks by two orders of magnitude. In certain cases, such as dich,
optimizing library functions also has a large impact.

The direct call mechanism has much less impressive benefits. It improves
benchmarks that perform many function calls, but can also yield lower perfor-
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Table 4. Relative JIT performance with specific optimizations disabled (columns 2–
6), and overhead of the optimization system (columns 7–10). The geometric mean was
used for relative values (columns 2–6).
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adpt 1.43 1.12 0.97 1.07 0.94 2 2 0.86 0.79
beul 1.03 1.00 1.00 1.00 0.51 9 16 1.20 0.90
capr 590 428 1.73 1.05 478 5 5 0.50 0.43
clos 3.40 1.01 1.00 1.00 1.99 2 2 0.14 0.12
crni 1.63 1.27 0.75 0.99 1.35 3 3 0.32 0.26
dich 459 282 1.00 29.7 410 2 2 0.38 0.32
diff 2.20 1.03 1.01 0.96 1.39 2 2 1.19 1.10
edit 1.90 1.46 0.61 0.98 1.48 2 2 0.22 0.17
fdtd 1.25 1.10 1.01 0.87 0.43 2 2 0.48 0.38
fft 144 143 1.02 1.01 193 2 2 0.58 0.54
fiff 280 204 1.01 1.05 285 2 2 0.24 0.20

mbrt 3.57 1.05 1.05 0.99 2.84 3 3 0.14 0.11
nb1d 0.90 1.22 1.06 0.97 1.03 3 3 0.51 0.42
nb3d 0.66 1.07 1.08 0.97 0.65 3 3 0.57 0.46
nfrc 1.33 1.04 1.77 0.98 1.66 5 5 0.22 0.15
nnet 1.20 1.01 1.02 0.98 1.05 4 4 0.36 0.29
play 1.21 1.03 1.11 0.98 1.26 6 10 0.58 0.42
schr 1.47 1.00 1.02 1.00 1.22 8 9 0.55 0.45
sdku 1.42 1.67 1.13 0.97 13.1 9 11 1.08 0.85
svd 3.92 0.98 1.05 0.98 0.85 11 15 0.79 0.61

mean 4.56 3.28 1.04 1.17 3.91 4.2 5.2 0.55 0.45

mance in cases where the types of input parameters to a function are unknown.
A version of the function then gets compiled with insufficient type information,
whereas the interpreter can extract exact type information on-the-fly when a
call is performed with direct calls disabled.

Given our specialization strategy, compilation overhead is a concern—if types
are highly variable, many function versions will be compiled, adding CPU and
memory overhead. We thus measured the number of functions compiled, as well
as the total number of specialized versions for each of our benchmarks. Columns
7 and 8 in Table 4 show that excessive specialization is not a problem in practice.
In most cases functions are always called with the same argument types, and
there are never more than twice as many versions as compiled functions.

The last two columns of Table 4 give the absolute compile-time overhead
and its analysis-time constituent. As we can see, most of the compilation time is
spent performing analyses on the functions to be compiled, as opposed to code
generation. The slowest compilation time is associated with the diff benchmark.
We attribute this to the large quantity of code contained in a triple nested
loop in this benchmark, for which our analyses take longer to compute a fixed
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point. In most cases these costs are not excessive and are easily overcome by the
performance improvement, especially for longer running benchmarks.

7 Related Work

Our approach to optimizing Matlab has concentrated on dynamic features of
the language that interfere with more traditional optimization. This brings to-
gether more traditional work on compiling scientific, array-intensive languages
and techniques for optimizing dynamic languages, and specifically dynamic spe-
cialization and type inference.

Previous compiler approaches to Matlab have mainly focused on numerical
performance, primarily in the context of static language subsets or contexts. As
well as more traditional loop and array optimizations, code restructuring can be
performed to ensure programs take good advantage of optimized instrinics [7].
Good performance can also be achieved by translating Matlab code to other
static languages, such as C [8] or Fortran 90 [6, 9], where further aggressive opti-
mization or parallelization can be performed. A major source of complexity for
almost all Matlab optimizations, as in our case, is analyzing and understand-
ing array properties, such as shape and size [10]. Elphick et al. identify similar
typing and dynamic language concerns in their partial evaluation approach to
optimizing Matlab programs [5]. They develop MPE, an online system to par-
tially evaluate Matlab source functions into more efficient Matlab code. Their
design is intra-procedural and does not handle polyvariant types, but as such
may provide an additional and orthogonal benefit to our approach.

Full VM approaches have also been applied, including JIT-based solutions.
MaJIC combines JIT-compilation with an offline code cache maintained through
speculative compilation of Matlab code into C/Fortran [4]. They derive the
most benefit from optimizations such as array bounds check removals and register
allocation. The Match VM project translates Matlab programs to a lower-
level intermediate form which is then analyzed for dependencies and used to
automatically parallelize computation [11]. The result is invisible to the user,
and by relying on run-time estimates for scheduling avoids static array analysis
requirements.

Program Specialization We use program specialization [12] in order to opti-
mize effectively in the presence of imprecise type information. More specifically,
we apply procedure cloning [13] to create specialized copies of function bodies in
which we can make stronger typing assumptions. Such specialization techniques
have previously been used offline to translate Matlab code into optimized C
or Fortran code [14]. Our design extends on run-time specialization techniques
used by languages such as SELF [15] and is similar to the approach used to
optimize the JIT compilation of generics for the C# language [16]. More gen-
eral specialization designs have also been applied [17]. In practice this can yield
very significant performance gains—Schultz and Consel report speedups of up
to 300% for their specializing JSpec Java compiler [18].
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Run-time specialization accommodates Matlab’s dynamic nature, and is a
technique that has been applied in many other dynamic optimization contexts.
The Psyco python virtual machine, for instance, implements specialization “by
need” [19], a process similar to the online partial evaluation approaches applied
to Matlab [5] and Maple [20]. This specialization technique involves interleav-
ing program specialization and execution; the specializer can request facts such
as the type of variables while a procedure is executing, and depending on the
result, potentially modify the compiled code to be more efficient. The design
goal was to eliminate much of the interpretative overhead through the use of
JIT compilation, without sacrificing the dynamic features of the language. Ap-
proaches such as Psyco differ from our system by working on fine-grain code
fragments rather than functions, trading simpler code-generation and analysis
requirements for smaller specialized sequences.

Similar to the Psyco effort, the TraceMonkey VM for the JavaScript language
has focused on just-in-time specialization based on type information in order to
increase performance [21]. The design is based on a bytecode interpreter that
can identify frequently executed bytecode sequences (traces) going through loops
and compile them to efficient native code based on collected type information. A
crucial assumption of their system is that programs will spend most of their time
in loops, and that the types of variables will remain mostly stable throughout
the execution of loops. They have achieved speedups of up to 25 times on some
benchmarks. However, their current VM does poorly on benchmarks making
extensive use of recursion.

Type Inference Our specialization approach is facilitated by a type inference
analysis [22], where we use a straightforward, if non-trivial dataflow analysis
to determine type information. The problem, of course, has been examined in
many contexts, and poses an efficiency and accuracy trade-off even in the case of
statically typed languages, such as C++ [23] or Java [24]. In these cases relatively
cheap flow-insensitive approaches to type analysis have been shown effective. In
a more general and flow-sensitive sense the type inference problem can also be
seen as a bidirectional dataflow analysis, propagating type information both
along and against the direction of control flow [25]. In most such analyses types
are considered static, although dynamic types may be reduced to static types
through the use of a Static Single Assignment (SSA) representation.

Type inference on dynamic languages brings additional complexity. Con-
structs like eval, Matlab’s cd, as well as dynamic loading and reflection features,
make it difficult or impossible to know the entire call graph of a program ahead
of time. Despite this, there have been efforts to statically perform type inference
on dynamic languages such as Matlab [26] and Ruby [27]. These approaches
show potential to detect type errors ahead of time, but they do not address
the aforementioned problems. Our approach, on the other hand, can operate on
programs whose call graphs are not fully known ahead of time.
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8 Conclusions and Future Work

Our experience with McVM demonstrates that online specialization is an ef-
fective and viable technique for optimizing Matlab programs. Although other
specialization and partial evaluation approaches have been applied to Mat-

lab [4, 5] and similar dynamic language contexts [19, 21], we provide an efficient
and full JIT solution. Our approach focuses on optimizing code generation, uses
a coarse-grained strategy that minimizes specialization overhead, and is specifi-
cally designed to accommodate complex dynamic language properties. Combined
with an effective type and shape inference strategy, McVM is able to achieve
performance up to three orders of magnitude faster than competing Matlab

implementations such as GNU Octave, and in several cases faster than the com-
mercial product.

Further improvements to performance are possible in a number of ways. The
need to be conservative in our type inference analysis means that unknown types
dominate in merges. The result is that once “unknown” types are introduced,
they often propagate and undermine the type inference efforts. Our code gen-
eration strategy is then left with very little information to operate on. In many
cases, however, even if the type of a variable cannot be determined with 100%
certainty, it may be possible to mitigate the impact of unknown types by pre-
dicting the most likely outcome.

A speculative design enables heuristic judgements. It is likely, for example,
that if a variable is repeatedly added to integer matrices, that it is also an integer
matrix. Our code generation system could use these “best guesses” to generate an
optimized code path. The types of variables can then be tested during execution
and either an optimized path or default code chosen as appropriate. Speculative
approaches have been successful based on external compilation [4], and a JIT-
based solution has potential to yield further significant speed gains.
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