
Background and Motivation Our Design and Implementation Results and Conclusions

Compiler-guaranteed Safety in Code-copying
Virtual Machines

Gregory B. Prokopski Clark Verbrugge

School of Computer Science
Sable Research Group

McGill University
Montreal, Canada

International Conference on Compiler Construction, 2008

1 / 19

Compiler-guaranteed Safety in Code-copying, Virtual Machines

Background and Motivation Our Design and Implementation Results and Conclusions

Taxonomy

Virtual Machine

Interpreter Compiler

code-copying

direct-threaded

switch-
threaded

Ahead-
Of-Time

Just-In-Time

Code-copying technique

Interpreter and also a JIT.

2 / 19

Compiler-guaranteed Safety in Code-copying, Virtual Machines

Background and Motivation Our Design and Implementation Results and Conclusions

Speed Comparison

runt ime
speed

Interpreters

naive
compilers

code-
copying

switch
direct

opt imizing
compilers

costs

Code-copying technique

Bridges the performance gap while keeping costs low.
1.2–3.0 times faster than direct-threading.

3 / 19

Compiler-guaranteed Safety in Code-copying, Virtual Machines

Background and Motivation Our Design and Implementation Results and Conclusions

Direct-threading vs. Code-copying

ILOAD_0:

ILOAD_1:

IADD:

ISTORE_2:

ILOAD_0

ILOAD_1

IADD

ISTORE_2

. . .

. . .

. . .

ILOAD_1

ILOAD_0

IADD

ISTORE_2

in terpre ter main loop
(d i rec t - th readed)

single superinstruct ion
(code-copying)

super instruct ion
ILOAD1_ILOAD0_IADD_ISTORE2

Code-copying technique

Reduces number of dispatches and improves branch prediction.

4 / 19

Compiler-guaranteed Safety in Code-copying, Virtual Machines

Background and Motivation Our Design and Implementation Results and Conclusions

Code-copying Disaster Example

BCODE_START:

 if (...)

 {

 // then part

 }

 else

 {

 // else part

 }

How it happens?

Direct-threading - one label

5 / 19

Compiler-guaranteed Safety in Code-copying, Virtual Machines

Background and Motivation Our Design and Implementation Results and Conclusions

Code-copying Disaster Example

BCODE_START:

 if (...)

 {

 // then part

 }

 else

 {

 // else part

 }

BCODE_END:

How it happens?

Direct-threading - one label

Code-copying - two bracketing
labels

5 / 19

Compiler-guaranteed Safety in Code-copying, Virtual Machines

Background and Motivation Our Design and Implementation Results and Conclusions

Code-copying Disaster Example

BCODE_START:

 if (...)

 {

 // then part

 }

BCODE_END:

 . . .

 {

 // else part

 }

How it happens?

Direct-threading - one label

Code-copying - two bracketing
labels

Optimizations move basic
blocks

5 / 19

Compiler-guaranteed Safety in Code-copying, Virtual Machines

Background and Motivation Our Design and Implementation Results and Conclusions

Code-copying Disaster Example

BCODE_START:

 if (...)

 {

 // then part

 }

BCODE_END:

 . . .

 // else ???

How it happens?

Direct-threading - one label

Code-copying - two bracketing
labels

Optimizations move basic
blocks

Incomplete copied code

5 / 19

Compiler-guaranteed Safety in Code-copying, Virtual Machines

Background and Motivation Our Design and Implementation Results and Conclusions

Code-copying Disaster Example

BCODE_START:

 if (...)

 {

 // then part

 }

BCODE_END:

 . . .

 // else ???

How it happens?

Direct-threading - one label

Code-copying - two bracketing
labels

Optimizations move basic
blocks

Incomplete copied code

CRASH!!!

5 / 19

Compiler-guaranteed Safety in Code-copying, Virtual Machines

Background and Motivation Our Design and Implementation Results and Conclusions

Code-copying Disaster Example

BCODE_START:

 if (...)

 {

 // then part

 }

BCODE_END:

 . . .

 // else ???

How it happens?

Direct-threading - one label

Code-copying - two bracketing
labels

Optimizations move basic
blocks

Incomplete copied code

CRASH!!!

Problems always arise when a compiler uses relative addressing to
reach outside a bytecode.

5 / 19

Compiler-guaranteed Safety in Code-copying, Virtual Machines

Background and Motivation Our Design and Implementation Results and Conclusions

Motivation

Code-copying

Easy, cheap to implement

Great performance

Not reliable (with modern compilers) - current approaches:

Ignore the problem.

Hand-check the assembly.

Trial and error testing.

Approximate runtime checks.

6 / 19

Compiler-guaranteed Safety in Code-copying, Virtual Machines

Background and Motivation Our Design and Implementation Results and Conclusions

Outline

1 Background and Motivation
Interpreters vs. Compilers Gap
Code-copying and Its (Lack of) Safety

2 Our Design and Implementation
Copied Code Tracking
Verification

3 Results and Conclusions
Performance
Compiler Maintainability Impact

7 / 19

Compiler-guaranteed Safety in Code-copying, Virtual Machines

Background and Motivation Our Design and Implementation Results and Conclusions

Copyable Code - What Is It?

Copyable Code ”Chunk” Requirements

Contiguous in memory between two labels

Control flow ”top” to ”bottom”

Jumps to outside and calls are absolute

Jumps within chunk are relative

Consistent registers use at entry and exit

8 / 19

Compiler-guaranteed Safety in Code-copying, Virtual Machines

Background and Motivation Our Design and Implementation Results and Conclusions

Solution overview

Optimizing compiler (GCC) enhancement

Programmer-friendly #pragma

Track copyable code ”chunks”

Dozens of passes — Do not touch!

Selective restore of code properties

Final code verification

9 / 19

Compiler-guaranteed Safety in Code-copying, Virtual Machines

Background and Motivation Our Design and Implementation Results and Conclusions

Solution overview

Inserted new passes

Identify basic blocks of copyable code chunks

Enforce absolute jumps and calls

⇒ Run existing optimizations

Basic block order fixup

⇒ Legacy existing optimizations

Copyable code verification

10 / 19

Compiler-guaranteed Safety in Code-copying, Virtual Machines

Background and Motivation Our Design and Implementation Results and Conclusions

Pragma Handling

 . . .

 BCODE_START:

 if (...) {

 . . .

 } else {

 . . .

 }

 BCODE_END:

 . . .

11 / 19

Compiler-guaranteed Safety in Code-copying, Virtual Machines

Background and Motivation Our Design and Implementation Results and Conclusions

Pragma Handling

 . . .

#pragma copyable start

 BCODE_START:

 if (...) {

 . . .

 } else {

 . . .

 }

#pragma copyable end

 BCODE_END:

 . . .

11 / 19

Compiler-guaranteed Safety in Code-copying, Virtual Machines

Background and Motivation Our Design and Implementation Results and Conclusions

Pragma Handling

a r e a = 5
f lags = START

a r e a = 5

area = 0

a r e a = 5

a r e a = 5
flags = TARGET

area = 0

Basic blocksSta tements s t ream

 . . .

#pragma copyable start

 BCODE_START:

 if (...) {

 . . .

 } else {

 . . .

 }

#pragma copyable end

 BCODE_END:

 . . .

First and past-last basic blocks are marked as Start and Target.

11 / 19

Compiler-guaranteed Safety in Code-copying, Virtual Machines

Background and Motivation Our Design and Implementation Results and Conclusions

Enforcing Absolute Gotos and Calls

BCODE_START:

 . . .

 if (ptr==NULL)

 goto NPE_handler;

 . . .

BCODE_END:

Need to correct relative addressing within ”chunks”.

External assembler decides on addressing mode — not GCC.

Needed an architecture-agnostic solution.

12 / 19

Compiler-guaranteed Safety in Code-copying, Virtual Machines

Background and Motivation Our Design and Implementation Results and Conclusions

Enforcing Absolute Gotos and Calls

BCODE_START:

 . . .

 if (ptr==NULL)

 goto NPE_handler;

 . . .

BCODE_END:

{ void *target = &NPE_handler;

 __asm__ __volatile__ (

 "" :

 "=r" (target) :

 "0" (target) :

 "memory");

 goto *target;

}

Need to correct relative addressing within ”chunks”.

External assembler decides on addressing mode — not GCC.

Needed an architecture-agnostic solution.

Goto to the outside of chunk is forced into a computed goto.

Each call is forced into call via function pointer.

12 / 19

Compiler-guaranteed Safety in Code-copying, Virtual Machines

Background and Motivation Our Design and Implementation Results and Conclusions

Compiler Runs Largerly Unaffected

Once Start and Target basic blocks are marked and absolute
addressing enforced all optimizations are performed as usual.

A lot of work to modify several dozens of passes — don’t!

Start and Target block are never removed or duplicated.

Able to find all copyable code of each chunk via CFG.

Traverse CFG from Start until Target or computed goto is reached.

No heuristics.

13 / 19

Compiler-guaranteed Safety in Code-copying, Virtual Machines

Background and Motivation Our Design and Implementation Results and Conclusions

Ensuring Copyable Code Contiguity

area = 5
flags = TARGET

BB2

area = 0BB3

area = 5
flags = START

BB1

area = 0
BB4

area = 0BB5

area = 0BB6

1 .
1

4 6

3

5

2

1 Compiler moved basic blocks.

14 / 19

Compiler-guaranteed Safety in Code-copying, Virtual Machines

Background and Motivation Our Design and Implementation Results and Conclusions

Ensuring Copyable Code Contiguity

area = 5
flags = TARGETBB2

area = 0
BB3

area = 5
flags = START

BB1

area = 5
BB4

area = 0BB5

area = 5BB6

2 .
1

4 6

3

5

2

1 Compiler moved basic blocks.

2 Follow CFG to find blocks of each chunk.

14 / 19

Compiler-guaranteed Safety in Code-copying, Virtual Machines

Background and Motivation Our Design and Implementation Results and Conclusions

Ensuring Copyable Code Contiguity

area = 5
flags = TARGETBB2

area = 0
BB3

area = 5
flags = START

BB1

area = 5
BB4

area = 0BB5

area = 5BB6

2 .
1

4 6

3

5

2

area = 5
BB4

area = 5
BB6

area = 5
flags = START

BB1

area = 5
flags = TARGETBB2

area = 0BB3

area = 0BB5

3 .

1 Compiler moved basic blocks.

2 Follow CFG to find blocks of each chunk.

3 Reorder basic blocks, deoptimize to ensure chunk contiguity.

14 / 19

Compiler-guaranteed Safety in Code-copying, Virtual Machines

Background and Motivation Our Design and Implementation Results and Conclusions

Final Verification Pass

CFG is discarded at some point.

Some legacy optimization code is ran after.

Need to be sure of the final result.

Insert special RTL ”notes” to mark Start and Target.

When the code is final verify all properties.

This way ensure safety of the final result.

15 / 19

Compiler-guaranteed Safety in Code-copying, Virtual Machines

Background and Motivation Our Design and Implementation Results and Conclusions

Brief Design Summary

Enables safe code-copying.

Avoided modifying dozens of passes.

Very maintainable.

Easy to use.

Portable.

16 / 19

Compiler-guaranteed Safety in Code-copying, Virtual Machines

Background and Motivation Our Design and Implementation Results and Conclusions

Performance Comparison

Comparable or faster than unsafe code-copying of SableVM JVM

17 / 19

Compiler-guaranteed Safety in Code-copying, Virtual Machines

Background and Motivation Our Design and Implementation Results and Conclusions

Compiler Maintainability Impact

Metric #

Data structures modified 4
Fields added to data structures 6
Data structures added 3
Functions added to existing files 4
Function calls/hooks inserted 8
Code lines added or modified 139
Code lines in new files 1500

Minimal impact in terms of source modified.

Update GCC 3.4 to 4.2 (2 years of development) took only a few
hours.

18 / 19

Compiler-guaranteed Safety in Code-copying, Virtual Machines

Background and Motivation Our Design and Implementation Results and Conclusions

Conclusions and Future Work

Presented an industry compiler extension supporting copyable code
generation.

Easy to use by VM programmers.

Easy to maintain in the compiler.

Provides safety guarantees for copied code execution in a VM.

Provides comparable performance to unsafe copied code execution.

Expected future application to other VMs and other architectures.

19 / 19

Compiler-guaranteed Safety in Code-copying, Virtual Machines

Background and Motivation Our Design and Implementation Results and Conclusions

Conclusions and Future Work

Presented an industry compiler extension supporting copyable code
generation.

Easy to use by VM programmers.

Easy to maintain in the compiler.

Provides safety guarantees for copied code execution in a VM.

Provides comparable performance to unsafe copied code execution.

Expected future application to other VMs and other architectures.

Questions?

19 / 19

Compiler-guaranteed Safety in Code-copying, Virtual Machines

	Background and Motivation
	Interpreters vs. Compilers Gap
	Code-copying and Its (Lack of) Safety

	Our Design and Implementation
	Copied Code Tracking
	Verification

	Results and Conclusions
	Performance
	Compiler Maintainability Impact

