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Taxonomy

Virtual Machine

Interpreter Compiler

code-copying
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threaded
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Just-In-Time

Code-copying technique

Interpreter and also a JIT.
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Speed Comparison

runt ime
speed

Interpreters

naive
compilers

code-
copying

switch
direct

opt imizing
compilers

costs

Code-copying technique

Bridges the performance gap while keeping costs low.
1.2–3.0 times faster than direct-threading.
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Direct-threading vs. Code-copying
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. . .

. . .

. . .

ILOAD_1

ILOAD_0

IADD

ISTORE_2

in terpre ter  main  loop
(d i rec t - th readed)
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(code-copying)
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ILOAD1_ILOAD0_IADD_ISTORE2

Code-copying technique

Reduces number of dispatches and improves branch prediction.
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Code-copying Disaster Example

BCODE_START:

   if (...)

      {

          // then part

      }

   else

      {

          // else part

      }

How it happens?

Direct-threading - one label
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Code-copying Disaster Example

BCODE_START:

   if (...)

      {

          // then part

      }

   else

      {

          // else part

      }

BCODE_END:

How it happens?

Direct-threading - one label

Code-copying - two bracketing
labels
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Code-copying Disaster Example

BCODE_START:

   if (...)

      {

          // then part

      }

BCODE_END:

   . . .

      {

          // else part

      }

How it happens?

Direct-threading - one label

Code-copying - two bracketing
labels

Optimizations move basic
blocks
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Code-copying Disaster Example

BCODE_START:

   if (...)

      {

          // then part

      }

BCODE_END:

   . . .

 

          // else ???

 

How it happens?

Direct-threading - one label

Code-copying - two bracketing
labels

Optimizations move basic
blocks

Incomplete copied code
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Code-copying Disaster Example

BCODE_START:

   if (...)

      {

          // then part

      }

BCODE_END:

   . . .

 

          // else ???

 

How it happens?

Direct-threading - one label

Code-copying - two bracketing
labels

Optimizations move basic
blocks

Incomplete copied code

CRASH!!!

Problems always arise when a compiler uses relative addressing to
reach outside a bytecode.
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Motivation

Code-copying

Easy, cheap to implement

Great performance

Not reliable (with modern compilers) - current approaches:

Ignore the problem.

Hand-check the assembly.

Trial and error testing.

Approximate runtime checks.
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Outline

1 Background and Motivation
Interpreters vs. Compilers Gap
Code-copying and Its (Lack of) Safety

2 Our Design and Implementation
Copied Code Tracking
Verification

3 Results and Conclusions
Performance
Compiler Maintainability Impact
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Copyable Code - What Is It?

Copyable Code ”Chunk” Requirements

Contiguous in memory between two labels

Control flow ”top” to ”bottom”

Jumps to outside and calls are absolute

Jumps within chunk are relative

Consistent registers use at entry and exit
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Solution overview

Optimizing compiler (GCC) enhancement

Programmer-friendly #pragma

Track copyable code ”chunks”

Dozens of passes — Do not touch!

Selective restore of code properties

Final code verification
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Solution overview

Inserted new passes

Identify basic blocks of copyable code chunks

Enforce absolute jumps and calls

⇒ Run existing optimizations

Basic block order fixup

⇒ Legacy existing optimizations

Copyable code verification
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Pragma Handling

   . . .

   BCODE_START:

      if (...) {

         . . .

      } else   {

         . . .

      }

   BCODE_END:

   . . .
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Pragma Handling

   . . .

#pragma copyable start

   BCODE_START:

      if (...) {

         . . .

      } else   {

         . . .

      }

#pragma copyable end

   BCODE_END:

   . . .
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Pragma Handling

a r e a  =  5
f lags = START

a r e a  =  5

area = 0

a r e a  =  5

a r e a  =  5
flags = TARGET

area = 0

Basic blocksSta tements  s t ream

   . . .

#pragma copyable start

   BCODE_START:

      if (...) {

         . . .

      } else   {

         . . .

      }

#pragma copyable end

   BCODE_END:

   . . .

First and past-last basic blocks are marked as Start and Target.
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Enforcing Absolute Gotos and Calls

BCODE_START:

   . . .

   if (ptr==NULL) 

     goto NPE_handler;

   . . .

BCODE_END:

Need to correct relative addressing within ”chunks”.

External assembler decides on addressing mode — not GCC.

Needed an architecture-agnostic solution.
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Enforcing Absolute Gotos and Calls

BCODE_START:

   . . .

   if (ptr==NULL) 

     goto NPE_handler;

   . . .

BCODE_END:

{  void *target = &NPE_handler;

   __asm__ __volatile__ (

      ""            :

      "=r" (target) :

      "0"  (target) :

      "memory");

   goto *target;

}

Need to correct relative addressing within ”chunks”.

External assembler decides on addressing mode — not GCC.

Needed an architecture-agnostic solution.

Goto to the outside of chunk is forced into a computed goto.

Each call is forced into call via function pointer.
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Compiler Runs Largerly Unaffected

Once Start and Target basic blocks are marked and absolute
addressing enforced all optimizations are performed as usual.

A lot of work to modify several dozens of passes — don’t!

Start and Target block are never removed or duplicated.

Able to find all copyable code of each chunk via CFG.

Traverse CFG from Start until Target or computed goto is reached.

No heuristics.
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Ensuring Copyable Code Contiguity

area = 5
flags = TARGET

BB2

area = 0BB3

area = 5
flags = START

BB1

area = 0
BB4

area = 0BB5

area = 0BB6

1 .
1

4 6

3

5

2

1 Compiler moved basic blocks.
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Ensuring Copyable Code Contiguity
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1 Compiler moved basic blocks.

2 Follow CFG to find blocks of each chunk.
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Ensuring Copyable Code Contiguity

area = 5
flags = TARGETBB2

area = 0
BB3

area = 5
flags = START

BB1

area = 5
BB4

area = 0BB5

area = 5BB6

2 .
1
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area = 5
BB4

area = 5
BB6

area = 5
flags = START

BB1

area = 5
flags = TARGETBB2

area = 0BB3

area = 0BB5

3 .

1 Compiler moved basic blocks.

2 Follow CFG to find blocks of each chunk.

3 Reorder basic blocks, deoptimize to ensure chunk contiguity.
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Final Verification Pass

CFG is discarded at some point.

Some legacy optimization code is ran after.

Need to be sure of the final result.

Insert special RTL ”notes” to mark Start and Target.

When the code is final verify all properties.

This way ensure safety of the final result.
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Brief Design Summary

Enables safe code-copying.

Avoided modifying dozens of passes.

Very maintainable.

Easy to use.

Portable.

16 / 19

Compiler-guaranteed Safety in Code-copying, Virtual Machines



Background and Motivation Our Design and Implementation Results and Conclusions

Performance Comparison

Comparable or faster than unsafe code-copying of SableVM JVM
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Compiler Maintainability Impact

Metric #

Data structures modified 4
Fields added to data structures 6
Data structures added 3
Functions added to existing files 4
Function calls/hooks inserted 8
Code lines added or modified 139
Code lines in new files 1500

Minimal impact in terms of source modified.

Update GCC 3.4 to 4.2 (2 years of development) took only a few
hours.
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Conclusions and Future Work

Presented an industry compiler extension supporting copyable code
generation.

Easy to use by VM programmers.

Easy to maintain in the compiler.

Provides safety guarantees for copied code execution in a VM.

Provides comparable performance to unsafe copied code execution.

Expected future application to other VMs and other architectures.
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Conclusions and Future Work

Presented an industry compiler extension supporting copyable code
generation.

Easy to use by VM programmers.

Easy to maintain in the compiler.

Provides safety guarantees for copied code execution in a VM.

Provides comparable performance to unsafe copied code execution.

Expected future application to other VMs and other architectures.

Questions?
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