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Abstract. Bytecode, Java’'s binary form, is relatively high-level aheérefore
susceptible to decompilation attacks. An obfuscator foams code such that
it becomes more complex and therefore harder to reversaeesgiWWe develop
bytecode obfuscations that are complex to reverse engingexiso do not sig-
nificantly degrade performance. We present three kindsabfnigues that: (1)
obscure intent at the operational level; (2) complicatetrmbrilow and object-
oriented design (i.e. program structure); and (3) explatdemantic gap between
what is legal in source code and what is legal in bytecodeusdattions are ap-
plied to a benchmark suite to examine their affect on runfp@dgormance, con-
trol flow graph complexity and decompilation. These resshi@w that most of the
obfuscations have only minor negative performance impattsmany increase
complexity. In almost all cases, tested decompilers faprimduce legal source
code or crash completely. Those obfuscations that are databte greatly re-
duce the readability of output source.

1 Introduction

Reverse engineering is the act of uncovering the underbjésign of a product through
analysis of its structure, features, functions and opematt has a long history, includ-
ing applications in military and pharmacology industribst it could be argued that
software has proven to be among the most susceptible totéskat Since software
is an easily and cheaply reproduced product it must rely treepassive protection
such as a patent or some form of active protection such asghatiftware on servers,
encryption, or obfuscation.

Obfuscation is the obscuring of intent in design. It is ong wéfoiling decom-
pilers. With software this means transforming code such ithr@mains semantically
equivalent to the original, but is more esoteric and comfyisA simple example is the
renaming of variable and method identifiers. By changing thotkfromget Nane to
a random sequence of characters suchdfshj i oew, information about the method
is hidden that a reverse engineer could otherwise have fasefill. A more complex
example is introducing unnecessary control flow that is @ddsing opaque predi-
cates, expressions that will always evaluate to the sanvesaufsue or false) but whose
value is not possible to estimate statically. Obfuscatarie of the more promising
forms of code protection because, while it may be obvioust@abcious attacker that a
program has been obfuscated, this fact will not necesdarjlyove their chances at de-
compilation. Also, obfuscation can severely complicatecgam such that even if it is
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decompilable it is very difficult to understand, making extion of tangible intellectual
property close to impossible, without serious time invesim

Java is particularly vulnerable to reverse engineeringbse its binary form, byte-
code, is relatively high-level and contains considerabfermation about types, and
field and method names. There are also many references imtleete known fields
and methods in publicly-available class libraries, inahgthe standard ones provided
with a Java implementation. Java decompilers exploit thesgknesses and there are
quite a few products that convert bytecode into Java sourde that very similar to the
original and is quite readable, particularly when the bgtezis in exactly the format
produced by knowp avac compilers [12-15,17, 20].

This paper presents and studies a wide range of techniquedfoescating Java
bytecode. However, a very important factor is that one wHr@obfuscations to make
reverse engineering difficult (the most pain), but at theestime not hurt performance
of the obfuscated application (the least gain). This tréfidemot obvious, since the
same obfuscations that make it hard for a decompiler may sdserely impact the
analysis and optimizations in JIT compilers found in modé&ama Virtual Machines
(JVMs).

This tradeoff is the main goal of our work. We developed anpl@mented a collec-
tion of obfuscations that hinder reverse engineering gitenwhile at the same time do
not affect performance too much. We examine some variatbpgeviously suggested
obfuscations and we also develop some new techniques, miadtiy those which ex-
ploit the semantic gap between what can be expressed in y#eode and what is
allowed in valid Java source.

The remainder of the the paper is organized as follows. Irti@e@ we give a
short summary of previous work. Section 3 gives a high-levelview of our software
obfuscator, the Java Bytecode Obfuscator (JBCO). Sedctitm®ugh 6 present our ob-
fuscations grouped by type: operator-level obfuscatiomgmam structure modification,
and semantic gap exploitation. Each section ends with a sgnaf the impact of the
obfuscations on three decompilers. Due to space limitatioa briefly describe each
obfuscation. However, detailed code examples and chaleages for decompilers can
be found atht t p: / / ww. sabl e. ntgi | | . ca/ JBCO. In Section 7 we introduce
a benchmark set and provide a summary of the impact of eactscdtion on runtime
performance and control flow complexity. Finally, Sectiogi®es conclusions and fu-
ture work.

2 Related Work

Obfuscation is a form a$ecurity through obscurityhile Barak argues that there are
seemingly few truly irreversible obfuscations [2] and,heory, “deobfuscation” under
certain general assumptions has been shown by Appel to beas?{1], obfuscation
is nevertheless a valid and viable solution for general rnog.

Early attempts involved machine-level instruction reimgt Cohen used a tech-
nique he called “program evolution” to protect operatingtsyns that included the re-
placement of instructions, or small sequences of inswuastiwith ones that perform



semantically equal functions. Transformations includesriiction reordering, adding
or removing arbitrary jumps, and even de-inlining methdss [

Much later, a theoretical approach was presented by Cgltdexl. [6]. They outline
obfuscations as program transformations and develop netogy to describe them in
terms of performance effect and quality. They rely on a nundfevell-known soft-
ware metrics [4, 11, 16] to measure quality. Later, in [7§ytieconsider lexical obfus-
cations (name changing) and data transformatierts, (splitting boolean values into
two discrete numerics that are combined only at evaluatine)t However, their chief
contributions are in control-flow modifications. They malse of opaque predicates to
introduce dead code, specifically engineering the deacthesto have buggy versions
of the live branches.

Sakabeet al. concentrate their efforts on the object-oriented natdirgaga — the
high-level information in a program. Using polymorphisimey invent a unique return
type class which encapsulates all return types and thenfynedéry method to return
an object of this type [18]. Method parameters are encafesliia a similar way and
method names are cloned across different classes. In tlyishearue return types of
methods and the number and types of a method’s parametehsdaien. They fur-
ther obfuscate typing by introducing opaque predicateshttench around new object
instantiations which confuses the true type of the object thiey use exceptions as
explicit control flow. Unfortunately, their empirical ressi show significantly slower
execution speeds — an average slowdown of 30% — and a 300%uplimaclass file
size.

Sonsonkinet al. present more high-level obfuscations which attempt tofucsm
program structure [19]. They suggest the coalescing ofipleltlass files into one —
combining the logic of two or more functionally-separatetams of the program —
and its reverse, splitting a single class file into multiples

The obfuscations presented in this paper build upon botkithple operation-level
obfuscations as well as control flow and program structufasmations. We have also
developed a new set of obfuscations, which exploit the séogap between Java byte-
code and Java source. Many of these were inspired by ourierpes in building Java
bytecode optimizers and and decompilers. The cases thdifficalt for those tools are
exactly the cases that should be created by obfuscators.

3 JBCO Structure

JBCO - our Java ByteCode Obfuscator — is built on top of Sddt Root is a Java byte-
code transformation and annotation framework providingdtiple intermediate repre-
sentations and infrastructure for dataflow analysis antsfoamations. JBCO uses two
intermediate representations: Jimple, a typed 3-addnéssnediate form; and Baf, a
typed abstraction of bytecode.

JBCO is a collection of Jimple and Baf transformations andlyses. Whenever
possible, we analyze and transform Jimple, since it is agjladriabstraction and easier
to work with. However, some low-level obfuscations are iempénted in Baf since they
require modifying actual bytecode instructions. Therethree categories of analyses
and transformations:



Information Aggregators: collect data about the program for the transformationsi,
such as constant usage and local variable-to-type pairings

Code Analyses:collect information about the code such as control flow gsapype
data, and use-def chains, which help identify where in tlgmm transformations
can be applied (e.g. in order to produce verifiable bytecoglenst ensure proper
matchings between allocations of objects and their ifdigions).

Instrumenters: are the actual obfuscations, ransforming the code to obsnaaning.

JBCO can be used as a command-line tool or via a graphicaintseface Each
obfuscation can be activated independently and, deperdirtge severity of the ob-
fuscation desired, a weight of 0-9 can be given where 0 turof completely and 9
corresponds to applying it everywhere possible. We alswigeca mechanism to limit
the obfuscations to specific regions of a program by usinglaeg@xpressions to spec-
ify certain classes, fields or methods. This is useful if a wants certain parts to be
heavily obfuscated or when a specific hot method should nobliescated because of
performance considerations.

4 Operator-level Obfuscation

Our first group of obfuscations works at the operator levahtTis, we convert a local
operation into a semantically equivalent computation thdtarder for a reverse en-
gineer to understand. These obfuscations should be delaigibut the decompiled
code is expected to be harder to underst&nd.

4.1 Embedding Constant Values as Fields (ECVF)

Programmers often use constants, particularly stringtaotss to convey important in-
formation. For example, a statement of thef@gpst em err. printIn("111 egal
argunent, value must be positive."); provides some contextto the re-
verse engineer. The point of the ECVF obfuscation is to mbgebnstant into a static
field and then change references to the constant into refesdn the field. This could
lead to something lik8€yst em err. pri ntl n(Qbj ect A. fi el d1); ,whichcon-
veys significantly less meaning. An interprocedural camstaopagation could poten-
tially undo this obfuscation. However, if the initializati of the field is further obfus-
cated through the use of an opaque predicate, this is nolqogsible.

4.2 Packing Local Variables into Bitfields (PLVB)

In order to introduce a level of obfuscation on local vargblvith primitive types
(boolean, char, byte integer), it is possible to combineesw@ariables and pack them

1 JBCO will soon be released as a new component of Soot.

2 Our identifier renamer obfuscation was left out of the papert space limits. We developed
a unique approach to garbleing names, but the overall tqohrig quite common.

% For each obfuscation, we give the acronym we use for it. Thisrg/m is used both in the
experimental results and also as the flag used to enable fihgcakion in JBCO.



into one variable which has more bits. To provide maximumfasion we randomly
choose a range of bits to use for each local variable. For pbaran integer variable
may get packed into bits 9 through 43 of a 64-bit long. Eacl mrawnrite of the orig-
inal variable must be replaced by packing and unpackingatipers in the obfuscated
code and this might slow down the application. Thus, it isdusgaringly and applied
randomly to only some locals. Without further obfuscatidriree bitshifting and bit-
masking constants used for packing and unpacking, howeetzyer decompiler could
overcome this technique.

4.3 Converting Arithmetic Expressions to Bit-Shifting Operations (CAE2BO)

Optimizing compilers sometime convert a complex operatooch as multiplication
or division into a sequence of cheaper ones. This same taickbe used to obfuscate
the code. In particular, we look for instances of expressionthe form ofv *x C (a
similar technique is used fat/C), wherev is a variable and’ is a constant. We extract
from C the largest integei wherei < C and is also a power of 2, = 2°, where

s = floor(log2(v)). We then compute the remainder= v — i. If s is in the range of
—128...127, we can convert the original {@ << s)+ (v=*r) and the expressioms«r
can be further decomposed. In order to further obfuscateamé dse the shift value
s directly, but rather find an equivalent valyé To do this we take advantage of the
fact that shifting a 32-bit word by 32 (or a multiple of 32) alys returns the original
value. We choose a random multiple and compute a new but equivalent shift value,
s' = (byte)(s + (m = 32)).

As an example, an expression of the farm195 would be converted first tv <<
7)+ (v << 6) + (v << 1) + v and then the three shift values would be further
obfuscated to something like << 39) + (v << 38) + (v << —95) + v.

A decompiler that is aware of this calculation could potalhfireverse it, but if
one or more of the constants were hidden with an opaque @teditcould stymie the
attempt.

4.4 Impact of Operator-level Obfuscations on Decompilers

Although we fully expected all of these simple, operataeleobfuscations to be de-
compilable (i.e. correct and compilable source code woelginduced, even if less
readable than the original), we were surprised to find theltes Table 1. For these
and subsequent decompiler tests in this paper, we creamee small micro-tests for
each obfuscatiofh A score ofPassindicates that the decompiler produced correct Java
source that could be recompiled pgvac, Fail indicates that the produced code would
not recompile, an€rashis the result of a decompiler not terminating normally.

Why do decompilers fail on these simple obfuscations? Theetbbfuscations un-
wittingly exploit a semantic gap between bytecode and Jawece. Booleans, bytes and

4 We used micro-tests because some decompilers, most ngitidyn-based Jad, are very sen-
sitive to whether the bytecode looks exactly like it camarftaj avac compiler or not. Since
all of our tests have been run through Soot, which even witbbfuscations is sometimes
enough to confuse decompilers, we wanted to ensure thagsisrwere small enough to mea-
sure the impact of the obfuscation itself and not indirefstat$ due to processing with Soot.



Table 1. Measuring Decompiler Success against Operator-level €8hfions

Obfuscation JadSourceAgairDav:
Embedding Constant Values as Fields Fail Fail Fail
Packing Local Variables into Bitfields Fail Fail Fail
Converting Arithmetic Expressions to Bit-Shifting Qpail Fail Pasg

chars are expressed as integers in bytecode, whereas gegbese are given unique
types which must be used consistently and in a manner so a® thase precision.
The decompilers failed to properly type and cast for thesepdations and produced
output that was not recompilable.

5 Obfuscating Program Structure

Program structure can be thought of as the framework. Inldibgithis would be the
supporting beams, the floors, and the ceiling. It would nahleewvalls or the carpeting.
We define structure to include two facets: low-level methowitol flow and high-level
object-oriented design. Modern decompilers such as Sagaia and Dava should be
able to handle these techniques, in principle.

5.1 Adding Dead-Code Switch Statements (ADSS)

The switch construct in bytecode offers a useful control ftdfuscation tool. It is the
only organic way (other than the try-catch structure) to ufacture a control flow graph
that has a node whose successor count is greater than tweocdiiseverely increase
the complexity of a method.

This obfuscation adds edges to the control flow graph by fimgea dead switch. To
ensure that the switch itself is never executed it is wrappea opaque predicate. All
bytecode instructions with a stack height of zero are pa@ytsafe jump targets for
cases in the switch. We implemented an analysis to find theseleight locations and
we randomly select some as targets for the cases switchindnesases the connected-
ness and overall complexity of a method. A decompiler canerobve the dead switch
because it cannot statically determine the value of the wpacedicate.

5.2 Finding and Reusing Duplicate Sequences (RDS)

Because of the nature of bytecode, there is often a fair atedduplication even within
a single method. By finding these clones and replacing thetim avsingle switched
instance we can potentially reduce the size of the methodkveiso confusing the
control flow, creating patterns not naturally expresseciaJ

We determine when a duplicate sequentés a clone of the original sequence
using the following rules:

5 Clearly our research group would like to fix Soot/Dava to ryphandle this variation of the
typing problem - it is quite interesting to have one subgrbujiding a decompiler, while at
the same time another subgroup is trying to break it!



— D must be of the same length @sand for each index instructionD; must equal
0;.

— EachD; must be protected by the same (or no) try blocks as the otigina

— Every instruction in a sequence other than the first must hay@redecessors that
fall outsidethe sequenca.€. no branching into the middle of a sequence).

— EachD; must share the same stack height and types as the original

— EachD; must not have the same offset within the methodmginstructionO;.

The algorithm searches for duplicates of length 3 to 20. Wheaplicate sequence
is found, a new integer is created to act as a control flag. Hapficate is removed
and replaced with an assignment of the flag to a unique idvieltbby a goto directed
at the first instruction in the original sequence. The oagjisequence is prepended
with instructions which store 0 to the flag (the “first” uniqia@ and appended with a
switch. The default switch jump falls through to the nextinstion (the successor of
the original sequence). A jump to the successor of eachchiplsequence is added to
the switch based on its flag id.

5.3 Building API Buffer Methods (BAPIBM)

A lot of information is inherent in Java programs becausehefwidespread use of
the Java libraries. These libraries have clear and welkddftlocumentation. The very
existence of library objects and method calls can give shapaneaning to a method
based entirely on how they are being used. The method caliglifect execution into
the native Java libraries cannot be renamed because thscalbdu should not change
library codé. Therefore, the next best option is to hide library methoktsciVe do
this by indirecting library calls through intermediate mads that have nonsensical
identifiers.

Each program method is checked for library calls. A new methbis then created
for each library method referenced in the program/ is modified to invokel. M is
placed in a randomly chosen class in order to cause “claagttation” — an increase
in class interdependence. Therefore, this obfuscatiamdgiold. It confuses the object-
oriented design of the program and hides the library metlatid by indirecting them
through a different “physical” part of the program.

5.4 Building Library Buffer Classes (BLBC)

Having a class that extends a library class directly can laisd a certain amount of
clarity to a program. Parent class methods that are ovdenidn the child are more
obvious as well. Experienced Java programmers are abladklggrasp design intent
from this information.

This obfuscation attempts to cloud this particular destgmcsure of Java. For each
classC, which directly extends a library clads we create a new buffer clags It is

5 While it is not impossible, it is not reasonable. Obfusagtibrary code would mean that those
modified libraries would have to be distributed with the peog, causing both licensing issues
and an unreasonable increase in the program’s distribsizen



inserted as a child of and a parent of’. Since no part of the program itself ever uses
B directly, methods over-ridden iff can be defined as nonsense methods,ifurther
adding confusion. This complicates and confuses the deditre program by adding
extra layers. Ultimately, it spreads the single-intensslatructure over multiple files
making it difficult for a reverse engineer to understand.

5.5 The impact of program structure obfuscations on decomgeérs

The results are shown in Table 2. Jad fairs badly when dedmgmiur structure ob-
fuscations, most likely due to its lack of control flow anadydt resorts to leaving pure
bytecode in its output where it is unable to produce correatce. More surprisingly,
SourceAgain also has difficulty with the heavier control flobfuscations. RDS causes
it to crash completely.

Table 2. Measuring Decompiler Success against Structure Obfustsati

Obfuscation JadSourceAgairDav:
Adding Dead-Code Switch Statements||Fail Fail Pass
Finding and Reusing Duplicate Sequeﬁ demll Crash |Pass
Building API Buffer Methods Fail Fail Fail
Building Library Buffer Classes Fail Pass |Pasg

None of the decompilers were able to properly mark which waghmight throw
exceptions, which is a requirement of Java source. Becaame methods indirected
by BAPIBM might throw exceptions the new methods that cadinthare required to as
well.

6 Exploiting the Design Gap

Certain gaps between what is representable in Java soudeearwl what is repre-
sentable in bytecode exist. The classic example is the gstaictioni that has no direct
counterpart in sourde

The obfuscations detailed in this section were designedittoi these bytecode-
to-source gaps. Smart decompilers can sometimes trangifiermbfuscated bytecode
into a semantically equivalent form of source code yet itsgally unreadable. Often,
however, the result is incorrect decompiled code or no dedemoutput whatsoever.
Sometimes a decompiler crashes altogether.

6.1 Converting Branches tg sr Instructions (CB2JI)

Thej sr bytecodé&, short for Java subroutine, is analogous todgbe o other than the
fact that it pushes a return address on the stack. Normlaéyrdturn address is stored

" Abrupt jumps in source must be performed through tiheak or cont i nue statements
which force a certain level of structure since they must géMae directly associated with
well-defined statement blocks

8 Thej sr was originally introduced to handle finally blocks — sectiaf code that are ensured
to run after a try block whether an exception is thrown or itas a historical anomaly that is
no longer used by modefjravac compilers.



to a register after asr jump and when the subroutine is complete tled bytecode
is used to return.

Thej sr -r et constructis very difficult to handle when dealing with typissues
because each subroutine can be called from multiple plaegsiring that type infor-
mation be merged which gives a more conservative estimdse, Alecompilers will
usually expect to find a specifiect for everyj sr.

This obfuscation replacéd andgot o targets withj sr instructions. The old jump
targets are each prepended byap in order to throw away the return address which is
pushed onto the stack. If the jump target’s predecessoeimgtruction sequence falls
through then got o is inserted after it which jumps directly to the old targdéfsing
over thepop).

6.2 Reorderingl oad Instructions Abovei f Instructions (RLAII)

Patterns in bytecode produced pgvac can be examined for areas of possible ob-
fuscation. This simple obfuscation looks for situationsewéha local variable is used
directly following both paths of anf . That is, along both branches the first instruction
loads the variable on to the stack. This is a somewhat commocurance.

The obfuscation then moves thead instruction above thief , removingits clones
along both branches. While a modern decompiler like Davachvis based on a 3-
address intermediate representation, will be able to oweecthis change, any decom-
piler relying on pattern matching (such as Jad) will becoery confused.

6.3 Disobeying Constructor Conventions (DCC)

The Java language specification [8] stipulates that classtrnactors — those methods
used to instantiate a new object of that class type — mustyaleal either an alternate
constructor of the same class or their parent class’ coetstras thefirst directive In
the event that neither is specified in sourea ac explicitly adds a call to the parent at
the beginning of the method.

While this super call, as a rule, must be the first statemetitenlavasourceit is,
in fact, not required to be the first within the bytecode. Bpleiting this fact it is pos-
sible to create constructors with no valid source code sgmtation. This obfuscation
randomly chooses among four different approaches in oodesrifuse decompilers:

Wrapping the super call within a try block: This ensures that any decompiled source
will be requiredto wrap the call in a try as well to conform to the rules of Jaa.
properly allow the exception to propagate, the handler-unét hr owinstruction
— is appended to the end of the method.

Taking advantage of classes which are children of java.langhrowable: This approach
inserts & hr owbefore the super call and creates a new try block that tragp$Hja
newt hr ow. The handler unit is designated to be the super call itsélis Takes
advantage of the fact that the class is throwable and can $leegwonto the stack
through the throw mechanism instead of the standard load.



Inserting aj sr jump and a pop directly before the super constructor call: Thej sr'’s
targetis theop, which removes the subsequent return address that is pastted
stack by thg sr . This confuses the majority of decompilers which have protd
dealing withj sr instructions.

Adding new instructions before the super call: This approach insertstup followed
by ani f nul | before the super call. THef nul | target is the super call. The
branch instruction will always b&al se since the object it is comparing is the
object being instantiated in the current constructopush nul | isinserted, fol-
lowed by at hr ow, along the false branch of the . A try block is created span-
ning from thei f nul | up to the super call. The catch block is appended to the
end of the method as a sequencgop, | oad o, goto sc (o is the object
being instantiated anslc is the super call). This confuses decompilers because it
is more difficult to deduce which local will be on the stack whie super call site
is reached.

6.4 Partially Trapping Switch Statements (PTSS)

There is a big gap between high-level structured use ofdtgkcblocks in Java source
and their low-level byte implementation. The Java constiliows only well-nested and
structured uses, but the bytecode implementation is at erlabstraction. A bytecode
trap specifies a bytecode range. . b, a handler unit,, and an exception typg. If an
exceptionl” is raised within the method at bytecodthen the JVM searches for a trap
in the list matching either the type @f or a parent type of’ whose bytecode range
a...bcontainse. If a trap is found then the stack is emptiddjs pushed on top, and
the program counter is set to the handleiThere are no rules that enforce nesting of
these ranges. They may overlap or even share code with haodle.

Thus, one way of confusing decompilers is to trap sequesgietions of bytecode
that are not necessarily sequential in Java source codexange of this is the switch
construct. In source, the switch encapsulates differetisl of code asargetsof the
switch. However, in bytecode there is nothing explicithintytheswi t ch instruction
to the different code blocks.€.there is no explicit encapsulation).

If the swi t ch is placed within a trap range along with odgirt of the code blocks
which are associated as its targets then there will be no @raanfautomatic decompiler
to output semantically equivalent code that looks anytlikeythe original source. It
mustreproduce the trap in the output, potentially by duplicattiode.

This transformation is conservatively limited to thosetswiconstructs which are
notalready trapped, which alleviates some analysis work. ifpdies that theswi t ch
instruction itself and any additional instructions that aelected for trapping were not
previously trapped in any way.

6.5 Combining Try Blocks with their Catch Blocks (CTBCB)

Java source code can only represent try-catch blocks in ayewith a try block di-
rectly followed by one or more catch blocks associated withibytecode, however,
try blocks can protect the same code that is used to handkxtteptions it throws or
one of its catch blocks can appear “above” it in the instarciequence.
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This obfuscation combines a try-catch block such that Hwtbeginning of the try
block and the beginning of the catch block are the same ictstru This is accom-
plished by prepending the first unit of the try block withiaih that branches to either
the try code or the catch code based on an integer control fmw@nce the try section
has been officially entered, the flag is set to indicate thaeaecution of thé f in the
future should direct control to the catch section. The iatdtag is reset to its original
value when the try section is completed.

6.6 Indirecting i f Instructions ()

While j avac always produces predictable try blocks it is possible tosabilhem
in other ways. This obfuscation takes advantage of this direatingi f branching
throughgot o instructions which are within a special try block. Normaityodern com-
pilers would remove thgot o and modify thel f to jump directly to its final target.
However, since a try block protects all these gotos it is @adithto remove them unless
the code can be statically shown to never raise an exce8inne there is no explicit
got o allowed in Java source, it is difficult for decompilers to #esize equivalent
source code.

6.7 Got o Instruction Augmentation (GIA)

Explicit got o statements are not allowed in Java sofr@ne must use abrupt state-
ments instead. However, tigot o exists in bytecode. It is possible to insert an explicit
got o in bytecode. While reversible using control flow graph asalysome simple
decompilers will still struggle with this.

Our obfuscation randomly splits a method into two sequépéds: The first, con-
taining the start of the method; and a second, containing the end of the metlid,
It then reorders these two parts and insertsgwb o instructions. One is made the first
instruction in the method and points to the staripf The other is appended & and
targetsP. The new layout is now{ got o P;, P», P;, got o P»}. A try block is then
created, spaning from the end Bf to the beginning of?;, thereby “gluing” the two
together. This makes it difficult to shuffle them back to tlegiginal order.

6.8 The impact of exploiting the semantic gap on decompilers

All of the decompilers have difficulty with the obfuscatidinem this section. Table 3
shows that both Jad and SourceAgain fail all tests and Damalyssuccessful once. Jad
generates source with much bytecode left in it, making falift to identify anything
specific as the cause. SourceAgain was unable to analyzedpe sf local variables.
It would declare a local within a nested block even when theemqablock used that
local. Both SourceAgain and Dava had difficulties markinghnds which might throw
exceptions. They also could not recognize the super caststrmethod calls in DCC

9 Studies have shown this to be a good design decision [3].
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either, leaving the bytecode nargeni t > which is not legal. Dava crashed on DCC
due to its inability to handle explicitly null exceptiofS.
Table 3. Measuring Decompiler Success against Semantic Gap Obifussa

Obfuscation Jad SourceAgainDaval
Converting Branches to jsr Instructions Fail Fail Crash
Reordering loads Above if Instructions Fail Fail Pass
Disobeying Constructor Conventions Fail Fail Crash
Partially Trapping Switch Statements Fail Fail Fail
Combining Try Blocks with their Catch Block§&ail Fail Fail
Indirecting if Instructions Fail Fail Fail
Goto Instruction Augmentation Fail Fail Fail

7 Empirical Evaluation

An important aspect of our work is the evaluation of the infpdobfuscations on per-
formance. To test this we have gathered a set of computatitensive benchmarks.
They represent a wide array of programs each with their oviguencoding style, re-
source usage, and ultimate task. Below is a list of brief digsons of the programs.

Asac: compares the performance of the Bubble Sort, Selection &adt Quick Sort
algorithms. It creates a thread for each algorithm.

Chromo: runs a genetic algorithm; a technique using randomizatistead of a de-
terministic search strategy. It instantiates many chramesobjects and performs
many 64-bit array comparisions for each generation it shtegl

Decode: implements Shamir’s Secret Sharing algorithm for decodimgrypted mes-
sages.

FFT: performs fast fourier transformations on double precisiata.

Fractal: generates a fractal image. It performs many trigonometmections and is
deeply recursive.

LU: implements Lower/Upper Triangular Decomposition for rafactorization.

Matrix: performs the inversion function on matrices.

Probe: uses the Poisson distribution to compute a theoreticaleqipation of pi.

Triphase: contains three programs: (1) a Linpack linear system sqgbegforming
heavy floating-point math; (2) a multithreaded matrix npliér; and (3) a mul-
tithreaded Sieve prime-finder algorithm.

7.1 Impact of Obfuscations on Performance

Figure 1(a) summarizes the ratio of the execution times efoifuscated benchmark
to the original benchmark A ratio of 1 indicates no effect on performance, a ratio of

10500t is unable to read in classfiles that incljide instructions with no matchinget . This
is not a limitation of Dava itself but we marked it as havinggred on the CB2JI obfuscation
because of this.

11 To time the original benchmark, we first processed it via Sdtht no obfuscations turned on.
This is to factor out any differences due to Soot processing.
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less than 1 indicates that the obfuscated benchmark was,fast a ratio greater than

1 indicates that it was slowéf.Each bar corresponds to one obfuscation, the diamond
on the bar indicates the average over all the benchmarksbaditseeshow the range of
ratios with the bottom of the bar indicating the benchmartkhe lowest ratio and the
top of the bar corresponds to the benchmarks with the hightet

17 238

164 261

151 24+

22+
21

B |
o

14 +
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Fig. 1. Comparing obfuscated programs to their original forms:Raj)formance Ratio — (av-
erage execution time of obfuscated program)/(averageugrectime of original program); (b)

Complexity Ratio — (sum of edges and nodes in obfuscated G&@) of edges and nodes in
original CFG).

—

G |
,

All experiments were run on an AMD AthldM64 X2 3800+ machine with 4GB
of RAM running Ubuntu 6.06 Linux. Sun Microsystem’s Java Sjpoi ™64-Bit Server
VM (build 1.5.0 06 b05) was used with the initial and maximuawal heap sizes set to
128MB and 1024MB, respectively.

As shown by recent empirical studies by &ual. [9, 10], small variations in code
layout can lead to relatively large performance differeniceJava (on the order of 5-
10%). Thus, we can expect some performance differencebatthe original and ob-
fuscated code just because the obfuscated code leadsdarediftode layouts. Notable
performance differences are those less than .95 or grésatelt05.

Average performance of the obfuscated code is very reat®anl quite a few are,
in fact, faster. The most expensive is CB2JI, which conmdaches to jsr instructions,
with an average slowdown of 1.16 and a maximum slowdown obatrt.6'2 Only 6
obfuscations lead to a maximum slowdown 1.2. These should be used carefully,
avoiding hot methods if possible.

In some cases the obfuscations actually seem to slightlyoweppeformance. The
RLAII obfuscation that moves loads above ifs is one such.&ase

12 The execution time is computed by timing 10 runs, droppirgsliowest and fastest and aver-
aging the remaining 8. The largest standard error we saw V684 and most measurements
were well below that.

13 The maximum slowdown was in the LU benchmark and we found theeslowdown was
caused by one deeply nested loop which had very complexatdiutw after obfuscation. The
JIT compiler struggled to analyze this, causing a 5-foldvsl@vn in compilation time.

1 This makes sense since it is moving a load that is known to edatkeon both branches earlier
in the computation.
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7.2 Impact of obfuscations on control-flow complexity

Figure 1(b) shows the increase in code complexity due tosuafiions (the pain). We
have opted for a simple measure of complexity based on taertotber of nodes and
edges in the control flow graphs of the program. Each node @si Iblock and each
edge is a control flow edge. Obfuscations which change toetstie of the code may
introduce new edges and/or redirect existing edges to Isaéitc blocks. Figure 1(b)
displays the ratio of the sum of nodes and edges of the oktkascade over the sum of
the original. This count captures the impact of control fldviuscations welt>

Some structure obfuscations show a signficant increasenplexity.1®

As we have shown in Table 3, the third group of obfuscatiomsthose that are
most effective in breaking decompilers. Some of these diswsignificant increases
in complexity. Based on our experiences with Dava, whichganially handle many
of these cases, we expect that a complete decompilatioteadlto source code with a
lot of code duplication and heavy use of labeled blocks.

8 Conclusions and Future Work

Fourteen obfuscations have been presented. The intenbwiéisder reverse engineer-
ing while maintaining performance. The operator-levelhtéques are intended to make
the code less readable. We didn’t expect these to break gelevs) yet several de-
compilers failed to properly type the obfuscated code. Thetire obfuscations were
meant to confuse control flow and object-oriented desigre décompilers also had
trouble with some of these techniques, although they shayddinciple be decompil-
able. These failures were mostly due to obfuscations crgatistructured control flow
which is more difficult to handle than structured control flokihe gap obfuscations
were new techniques and were aimed at exploiting the diffeze between bytecode
and Java source. These were very successful in increagrgpthplexity of the code
and breaking the decompilers.

The effect on performance varied. The average performaiceaf obfuscated/original
ranged from .96 to 1.16. The maximum ratio reached almodiut.6nly 6 of 14 obfus-
cations were over 1.2. These 6 should not be used heavilytiméthods of a program.
More detailed analysis of specific instances showed thédeance slowdowns were
often due to the increased time needed by the JIT compilensalyze the complex con-
trol flow created by our modifications. Hence the obfuscateme not just more difficult
for reverse engineers to understand, they also cause prslite tools like compilers
and decompilers.

We presented obfuscations we developed and this paper bas $tow they work
individually. The next step is to develop techniques to matically determine opti-
mized obfuscation sites and how to best select a combinafiobfuscations so that

15 As expected, the operation-level obfuscations have no éinpa control flow complexity.
Complexity for these obfuscations is better demonstratedrbincrease in the number of
operations. We have collected these kinds of metrics, wihiclemonstrate an increase.

16 The two obfuscations that confuse the object-orientedgdesBAPIBM and BLBC, do not
increase complexity, but would affect other metrics whiakasure coupling.
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the best overall protection is acheived. We have also stéotdevelop metrics to quan-
tify the effect of obfuscators and decompilers.
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