
Programmer-friendly Decompiled Java∗

Nomair A. Naeem Laurie Hendren
School of Computer Science, McGill University, Montreal, Canada

{nnaeem, hendren}@cs.mcgill.ca

Abstract

Java decompilers convert Java class files to Java source.
Java class files may be created by a number of differ-
ent tools including standard Java compilers, compilers for
other languages such as AspectJ, or other tools such as op-
timizers or obfuscators. There are two kinds of Java de-
compilers, javac-specific decompilers that assume that the
class file was created by a standard javac compiler and
tool-independent decompilers that can decompile arbitrary
class files, independent of the tool that created the class
files. Typically javac-specific decompilers produce more
readable code, but they fail to decompile many class files
produced by other tools.

This paper tackles the problem of how to make a tool-
independent decompiler, Dava, produce Java source code
that is programmer-friendly. In past work it has been shown
that Dava can decompile arbitrary class files, but often the
output, although correct, is very different from what a pro-
grammer would write and is hard to understand. Further-
more, tools like obfuscators intentionally confuse the class
files and this also leads to confusing decompiled source
files.

Given that Dava already produces correct Java abstract
syntax trees (ASTs) for arbitrary class files, we provide a
new back-end for Dava. The back-end rewrites the ASTs to
semantically equivalent ASTs that correspond to code that
is easier for programmers to understand. Our new back-
end includes a new AST traversal framework, a set of sim-
ple pattern-based transformations, a structure-based data
flow analysis framework and a collection of more advanced
AST transformations that use flow analysis information. We
include several illustrative examples including the use of
advanced transformations to clean up obfuscated code.

1 Introduction

Java compilers, such as the standard javac compiler, pro-
duce Java class files and these are the binary form of the
program which can be distributed or made available via the
Internet for execution by Java Virtual Machines (JVMs).
Although the javac compiler is the most usual way of pro-

∗This work was supported, in part, by NSERC and FQRNT.

ducing class files, there are an increasing number of other
tools that also produce Java class files, including: compilers
for other languages including AspectJ [1, 3, 4, 9] and C [2]
that produce class files; bytecode optimizers which produce
faster and/or smaller class files; and obfuscators which pro-
duce class files that are hard to decompile and understand.

Since Java class files contain Java bytecode, which is
fairly high-level intermediate representation, there has been
considerable interest and success in developing decompilers
which convert class files back to Java source. Such decom-
pilers are useful for programmers to understand code for
which they don’t have Java source code and to help under-
stand the effect of tools such as optimizers, aspect weavers
and obfuscators.

1.1 Javac-specific Decompilers

The original decompilers, such as Mocha [13], Jad [7],
Jasmin [8], Wingdis [20] and SourceAgain [18], are javac-
specific decompilers in that they work by reversing the spe-
cific compilation patterns used by the standard javac com-
piler. When given class files produced by a javac compiler
they can produce very readable source files that correspond
closely to the original program. For example, consider the
original Java program in Figure 1(a). When this program
is compiled using javac from jdk1.4 to produce a class file
and then decompiled with SourceAgain and Jad, one gets
the very respectable results in Figure 1 (b) and (c).

These javac-specific decompilers work by assuming that
the bytecode was produced with a specific javac compiler
and then they look for code generation patterns which are
then reversed to form the source code. Sometimes these
patterns are very specific. For example, compare the results
for Jad between the case when the original program was
compiled with jdk1.4 (Figure 1(c)) and with jdk1.3 (Fig-
ure 1(d)). Clearly the Jad decompiler was implemented to
understand the code generation patterns from javac from
jdk1.3 and it does not produce as nice an output when used
on class files produced using javac from jdk1.4.

1.2 Tool-independent decompilers

Dava [11,12] is a tool-independent decompiler built us-
ing the Soot [17, 19] Java optimizing framework. Dava
makes no assumptions regarding the source of the Java byte-

1

Proceedings of the 14th IEEE International Conference on Program Comprehension (ICPC’06)
0-7695-2601-2/06 $20.00 © 2006 IEEE

(a) Original Code

while(done && alsoDone){
if((a<3 && b==1) || b+a<1)

System.out.println(b-a);
}

(b) SourceAgain (jdk1.4)

while(bool && bool1){
if((i >= 3 || j != 1) && j + i >= 1)

continue;
System.out.println(j-i);

}

(c) Jad (jdk1.4)

do{
if(!flag || !flag1)

break;
if(i < 3 && j == 1 || j + i < 1)

System.out.println(j-i);
} while(true);

(d) Jad (jdk1.3)

while(flag && flag1){
if(i < 3 && j == 1 || j + i < 1)

System.out.println(j - i);
}

(e) Dava (jdk1.4)

1 label_2:{
2 label_1:
3 while(z0 != false){
4 if z1 == false){
5 break label_2;
6 }
7 else{
8 label_0:{
9 if(i0 < 3){
10 if(i1 == 1){
11 break label_0;
12 }
13 }
14 if(i1 + i0 >= 1){
15 continue label_1;
16 }
17 } / / end l a b e l 0 :
18 System.out.println(r1);
19 }
20 }
21 } / / end l a b e l 2 :

Figure 1. Comparing decompiler outputs

code and is therefore able to decompile arbitrary verifiable
bytecode. However, this generality comes with a price.
Since the Dava decompiler relies on complex analyses to
find control-flow structure in arbitrary bytecode, the decom-

piled code is often not programmer-friendly. For example,
in Figure 1(e), the output from Dava is correct, but not very
intuitive for a programmer. One of the goals of this paper is
to provide tools that can convert the correct, but unintuitive,
output of Dava to a more programmer-friendly output.

The challenge of providing programmer-friendly output
for bytecode produced by non-javac tools is even more com-
plex. For example, consider the example in Figure 2. In this
example we compiled the Java program given in Figure 2(a)
with javac and then applied the Zelix KlassMaster obfusca-
tor [10] to the generated class file. Figures 2(b) and (c) show
the results of decompiling the obfuscated class file with Jad
and SourceAgain (only key snippets of the code are shown).
In both cases the decompilers failed to produce valid Java
code. However, as shown in Figure 2(d), Dava does create
a valid Java program, which exposes the extra code intro-
duced by the obfuscator. Even though correct, clearly this
code is not very programmer-friendly and thus another big
challenge addressed in this paper is how we can convert the
obfuscated code into something that is more readable.

1.3 Contributions

As we have shown, the previously existing Dava de-
compiler produces correct, but potentially complicated Java
code. The purpose of this paper is to use the existing
Dava decompiler as a front-end which delivers correct, but
overly complex abstract syntax trees (ASTs), and to develop
a completely new back-end which converts those ASTs
into semantically equivalent, but more programmer-friendly
ASTs. The new ASTs are then used to generate readable
Java source code. In order to build this new back-end we
have developed several new components.

• Since our new back-end works by rewriting the AST
we developed a visitor-based AST traversal frame-
work, as outlined in Section 2.

• Using the visitor-based framework we then developed
a large number of simple structural patterns that could
be used to perform structural rewrites of the AST.
These mostly correspond to common programming id-
ioms and representative examples are given in Section
3.

• Simple structural patterns can be used for many ba-
sic tasks, but in order to do many more complicated
rewrites we needed to have data flow information.
Thus, we have developed a structural data flow anal-
ysis framework, as outlined in Section 4.

• Given the flow analysis information computed using
the framework we have developed several more ad-
vanced patterns. In Section 5 we discuss our advanced
pattern for reconstructing for loops, and we show
how analysis information can be used to remove use-
less code from obfuscated bytecode.

Proceedings of the 14th IEEE International Conference on Program Comprehension (ICPC’06)
0-7695-2601-2/06 $20.00 © 2006 IEEE

(a) Original Code

class test {
private Vector buffer = new Vector();
int getStringPos(String string) {

for(int i=0;i<buffer.size();i++){
String curString =

(String)buffer.elementAt(i);
if (curString.equals(string)) {

buffer.remove(i);
return i;

}
}
return -1; } }

(b) Jad

<snip>
if(flag) /∗ Loop / s w i t c h i s n t c o m p l e t e d ∗ /

continue;
s1.equals(s);
if(flag) goto _L4; else goto _L3

_L3: JVM INSTR ifeq 59;
goto _L5 _L6

_L5: break MISSING_BLOCK_LABEL_48;
_L6: break MISSING_BLOCK_LABEL_59;

<snip>

(c) SourceAgain

<snip>
do{

String str = null;
if(i >= a.size()){

/ / t h e f o l l o w i n g go to c o u l d n o t be r e s o l v e d
goto 81

}
<snip>

}while(!bool);
<snip>

(d) Dava

1 class a{
2 private java.util.Vector a;
3 public static boolean b;
4 public static boolean c;

5 int a(java.lang.String r1){
6 boolean z0, $z2, z3;
7 int i0, $i2, i3;
8 java.lang.String r2;

9 z0 = c;
10 i0 = 0;
11 label_1:{
12 label_0:
13 while (i0 < a.size()){
14 r2 = (String) a.elementAt(i0);
15 if (! (z0)){
16 z3 = r2.equals(r1);
17 i3 = (int) z3;
18 $i2 = i3;
19 if (z0) break label_1;
20 if (i3 == 0)
21 i0++;
22 else{
23 a.remove(i0);
24 return i0;
25 }
26 }
27 if (z0){
28 if (! (b))
29 $z2 = true;
30 else
31 $z2 = false;
32 b = $z2;
33 break label_0;
34 }
35 }
36 $i2 = -1;
37 } / / end l a b e l 1 :
38 return $i2; } }

Figure 2. Decompiling Obfuscated Code

We have integrated all these techniques and tools into
Dava and as we demonstrate with the examples in the rest of
the paper, we can apply these to produce more programmer-
friendly code.

2 Visitor-based AST Traversal Framework

A first step to implementing analyses/transformations on
a tree structure is to have a good traversal mechanism. Anal-
yses to be performed on Dava’s AST require a traversal rou-
tine that provides hooks into the traversal allowing modifi-
cation to the AST structure or the traversal routine.

Inspired by the traversal mechanism provided by
SableCC [5], tree walker classes were created using an ex-
tended version of the visitor design pattern. The Visitor-
based traversal allows for the implementation of actions at
any node of the AST separately from AST creation. This

allows for modular implementation of distinct concerns and
a mechanism which is easily adaptable to needs of different
analyses.

3 Simple Structural Patterns

Dava’s initial implementation focused on correct detec-
tion of Java constructs and did not address the complexity of
the output. To be useful as a program understanding tool it
is essential that Dava should produce higher quality output.

The cryptic control flow in the decompiled output is
complex largely due to the fact that Java bytecode only
allows binary comparison operations for deciding control
flow. However, this restriction does not exist in Java where
boolean expressions can be aggregated using the && and
‖ operators. Dava does not make use of this ability and
hence converts each comparison operation into a separate

Proceedings of the 14th IEEE International Conference on Program Comprehension (ICPC’06)
0-7695-2601-2/06 $20.00 © 2006 IEEE

conditional construct. This results in the creation of un-
necessary Java constructs and their complicated nesting fur-
ther increases code complexity. For instance, an If state-
ment evaluating two conditions using the && operator in
the source code gets decompiled into two If statements one
completely nested within the other. By statically checking
for such patterns, and merging the different conditions, the
number of Java constructs can be reduced, thereby reducing
the complexity of the output.

Abrupt control flow in the form of labelled blocks and
break/continue statements, created by Dava to handle
any goto statements not converted to Java constructs, also
complicate the output. Programmers rarely use such con-
structs, since it makes understanding code harder, and it is
therefore desirable to minimize their use.

AST rewriting in Dava’s back-end is done using multiple
traversals. As long as the AST is modified, because of a
matched pattern, the traversals are repeated until no further
patterns apply. This is necessary since application of one
transformation might enable subsequent transformations. In
Sections 3.1- 3.5 we discuss some of the important patterns
that we identified.

3.1 And Aggregation

And aggregation is used to aggregate two If statements
into one using the && symbol. Figure 3(a) shows the con-
trol flow of two If conditions one fully nested in the other.
From the control flow graph it can be seen that A is exe-
cuted only if both cond1 and cond2 evaluate to true. B
is executed no matter what. In Figure 3(b) we see the re-
duced form of this graph where the two If statements have
been merged into one by coalescing the conditions using the
&& operator. Statements 9 to 13 in Figure 1(e) match this
pattern. The matched pattern and the transformed code is
shown in Figure 4.

 T

F

T
F

A

B

if cond1

if cond2

(a) Unreduced

if cond1 && cond2

A

FT

B

if (cond1 && cond2) {
 A

}

B

(b) Reduced

 if (cond2) {

 A
 }

B

 }

if (cond1) {

Figure 3. Reducing using the && operator.

(a) Original Code

9 if(i0 < 3){
10 if(i1 == 1){
11 break label_0;
12 }
13 }

(b) Transformed Code

if(i0 <3 && i1 == 1){
break label_0;

}

Figure 4. Application of And Aggregation

3.2 Or Aggregation

Figure 5 shows the control flow of the Or Operator. The
unreduced version of the control flow shows that A is ex-
ecuted if cond1 evaluates to true. If, however, the false
branch is taken then cond2 is evaluated and A is executed
if this condition is false. B is executed no matter what.
In short, A is executed if the first condition is true or the
negated second condition is true, followed by the execution
of B in all cases. This graph can therefore be reduced to
that in Figure 5(b) where the If statement aggregates the
two conditions using the ‖ operator.

One of the patterns to which the control flow graph in
Figure 5(a) can map is shown Figure 5. The pattern looks
for a sequence of n If statements (n is 2 in Figure 5)
with the first n-1 statements breaking to a particular label
(label0 in Figure 5) and the nth statement targeting an
outer label (label1 in Figure 5). During execution this
results in the evaluation of a sequence of If conditions and
as soon as any of the n-1 conditions evaluates to true or the
nth condition evaluates to false a certain chunk of code (A
in Figure 5) is targeted. If the program gets to the nth con-
dition and this evaluates to true then in this case A is not ex-
ecuted. This code therefore corresponds to an If statement
with A as its body and the condition the n-1 conditions and
the negated nth condition combined using the || operator.

B

(a) Unreduced

F T

F

T

if cond2

if cond1

A

T

if cond1 || ! cond2

F

B

label_1: {
 if(cond1 ||

}
B

(b) Reduced

 label_0 : {
 if (cond1)

 break label_0
 if (cond2)

 break label_1
 } // end label_0

 A
 } // end label_1

label_1: {

B

 A
!cond2)

A

Figure 5. Reducing using the ‖ operator

The decompiled code in Figure 1(e) has one occurrence
of this pattern. Statement 2 is the outer label and Statement

Proceedings of the 14th IEEE International Conference on Program Comprehension (ICPC’06)
0-7695-2601-2/06 $20.00 © 2006 IEEE

8 the inner one. There are two If statements in the se-
quence: statement 9 breaking the inner label and statement
14 targeting the outer one. The transformation removes the
second If statement by moving its negated condition into
the first statement. The new body of this statement consists
of statement 18. Assuming that And Aggregation has al-
ready occurred the end result after OrAggregation is shown
in Figure 6.

An interesting side-effect of the transformation is the re-
moval of labelled blocks and break statements. The first
n-1 statements all break label0 whereas the nth statement
targets label1. After the transformation all n-1 break
statements have been removed which also allows the re-
moval of label0. Also, although we cannot directly re-
move label1, without checking that the If body does not
target it, we have reduced the number of abrupt edges tar-
geting it by one. The next subsection discusses an algorithm
that checks for spurious labels and subsequently removes
them.

1 label_2:{
2 label_1:
3 while(z0 != false){
4 if (z1 == false){
5 break label_2;
6 }
7 else{
8 if((i0 < 3 && i1 == 1)

|| i1 + i0 < 1){
9 System.out.println(r1);
10 }
11 }
12 }
13 } / / end l a b e l 2 :

Figure 6. Application of Or Aggregation

3.3 Useless Label Remover

The Or and And aggregation patterns provide new av-
enues for the reduction of labelled blocks and abrupt edges.
With the help of pattern detection and use of DeMorgan’s
Theorem the number of abrupt edges and labels can be re-
duced considerably.

Labels can occur in Java code in two forms: as labels on
Java constructs e.g. While loop or as labelled blocks. If
a label is shown to be spurious, by showing that there is no
abrupt edge targeting it, then in the case of a labelled con-
struct the label is simply omitted. However, in the case of a
labelled block, a transformation is required which removes
the labelled block from the AST. Algorithm 1 shows how
a spurious labelled block is removed by replacing it with
its body in the parent node. Using this pattern label1 in
Figure 6 can be removed since no abrupt edge targets it.

3.4 Loop strengthening

Similar to If and If-Else statements, loops can also
hold aggregated conditions to be evaluated before execu-
tion of the loop body. Therefore pattern matching can

Algorithm 1: Removing Spurious Labeled Blocks

Input: ASTNode node

body← GetBody(node)
while body has more ASTNodes do

node1← GetNextNode(body)
if node1 is a Labeled Block Node then

if IsUselessLabelBlock (node1) then

body1← GetBody(node1)

Replace node1 in body by body1
end

end
end

be used to strengthen the conditions within a loop. One
such pattern, for a While loop is shown on the left
of Figure 7 (Similar patterns exist for Do-While and
Unconditional-While loops).

Reasoning about the control flow shows that BodyA is
executed if both cond1 and cond2 evaluate to true. If
either of the conditions are false the loop exits. This fits in
with the notion of a conditional loop with two conditions as
seen in the reduced form of the code in Figure 7. Notice that
the label on the While loop is still present in the reduced
code. This is because there can be an abrupt edge in BodyA
targeting this label. After the reduction the algorithm in
Section 3.3 is invoked to remove the label from the loop, if
possible.

(Unreduced)

label_0:
while(cond1){

if(cond2){
BodyA

}
else{

break label_0
}

} / / end w h i l e

(Reduced)

label_0:
while(cond1 && cond2){

BodyA
}

Figure 7. Strengthening Conditional Loops

Looking at our working example (Figure 6) where And
and Or aggregation have already been applied we can see
that statements 3 to 12 make a While loop which has one
If-Else statement. Notice that in this case the If-Else
statement is reversed: the If branch contains the break out
of the loop and the else branch contains BodyA (state-
ments 8 and 9). In this case we can apply the While
strengthening pattern by adding the negated condition of the
If-Else statement into the While condition. The trans-
formed code is shown in Figure 8. Notice that label2
and label1 which were at statements 1 and 2 in Figure 6
have been removed by the UseLessLabelRemover of
Section 3.3.

Proceedings of the 14th IEEE International Conference on Program Comprehension (ICPC’06)
0-7695-2601-2/06 $20.00 © 2006 IEEE

1 while(z0 != false && z1 != false){
2 if((i0 < 3 && i1 == 1)

|| i1 + i0 < 1){
3 System.out.println(r1);
4 }
5 }

Figure 8. Application of While Strengthening

3.5 Other Patterns

There are a large number of other patterns that have been
implemented in Dava’s back-end [14,15]. Most of them im-
prove upon the quality of code by reducing Java constructs
or transforming the code to adhere to some programming
idiom. One such pattern converts expressions evaluating
to boolean types from binary comparisons to unary condi-
tions. An example of this would be the conversion of A !=
false to simply A. Applying this pattern on our working
example of Figure 8 results in the simplification of the two
boolean conditions in Statement 1. The resulting code is
given in Figure 9. Looking back at the original source code,
Figure 1(a), we see that Dava’s output matches the original
source code.

1 while(z0 && z1){
2 if((i0 < 3 && i1 == 1)

|| i1 + i0 < 1){
3 System.out.println(r1);
4 }
5 }

Figure 9. Boolean Simplification

Other programming idioms generated include shortcut
increments and decrements e.g., i = i + 1 gets converted
to i++ and converting a variable declaration followed by
an initialization statement to one declaration with initializa-
tion e.g., int a; a = 3; gets converted to int a =
3;. Similarly multiple variables of the same type can be
grouped into one declaration e.g., int a; int b; gets
converted to int a, b;

To enable a transformation to remove labelled blocks, it
is sometimes necessary to reduce the size of the block by
shifting code outside of the beginning or end of the block.
This is possible as long as it can be proven that the shifted
code does not target the labelled block. If a labelled block
cannot be removed, tightening its bounds still has the advan-
tage of improving code complexity since the programmer
now has to concentrate on a smaller chunk of code to figure
out the abrupt control flow targeting the labelled block.

Although we have by no means covered all possible pat-
terns it has been seen that these transformations produce
code that is more readable and control flow that is easier to
follow [14, 15].

4 Structure-based Flow Analysis

Although AST rewriting based on pattern matching
greatly reduces the complexity of the decompiled output,
this alone allows only for a limited scope of transforma-
tions. Sophisticated transformations need additional infor-
mation which is available only through the use of static data
flow analyses.

An example of this can be seen in Dava’s output, Fig-
ure 2(d), for the obfuscated bytecode produced for the orig-
inal Java source shown in Figure 2(a). Although seman-
tically equivalent to the original code the output is hard
to understand. However, since obfuscators have to ensure
that their modifications do not change program semantics,
a simplification of the output, making it similar to the orig-
inal code, should be possible. This requires added infor-
mation about the data and control flow to answer questions
like: “What is the value of a particular variable at a program
point?”, ”Is a particular piece of code ever executed?” and
so on. This information cannot be obtained from pattern
matching and we need data flow analysis for it. We discuss
more about decompiling obfuscated code in Section 5.2.

To perform more sophisticated transformations an anal-
ysis framework was implemented that allows for simple im-
plementation of static data flow analyses. The analyses’ re-
sults are then leveraged to perform further transformations
on the AST. The framework removes the burden of cor-
rectly traversing the AST from the analysis writer and al-
lows him/her to concentrate on the analysis. With a frame-
work in hand, the process of writing analyses for Dava has
been streamlined making it easier for new developers to ex-
tend the system.

Since the analyses for the decompiler are performed on
the AST it is best to use a syntax-directed method of data
flow analysis such as structural analysis [6,16]. The advan-
tage of using this technique is that it gives, for each type
of high level control-flow construct in the language, a set
of formulas that perform data flow analysis. For instance
it allows the analysis of a While loop by analyzing only
its components: the conditional expression and the body.
Apart from supporting ordinary compositional constructs
such as conditionals and loops, the structural flow analy-
sis also supports break and continue statements (Sec-
tion 4.1). We find that structural flow analysis provides a
more efficient and intuitive implementation of analysis on
the tree representation than iteration.

4.1 Flow Analysis Framework

The Structural Flow analysis framework for Dava’s AST
has been written such that new flow analyses can be added
to Dava by implementing the abstract methods declared by
the framework. These deal with the initialization of the
analysis and then subsequently deal with the type of infor-
mation to be stored by different constructs.

The analysis begins by traversing the AST. As each Java
construct is encountered a specialized method responsible

Proceedings of the 14th IEEE International Conference on Program Comprehension (ICPC’06)
0-7695-2601-2/06 $20.00 © 2006 IEEE

for processing this construct is invoked. An input set con-
taining information gathered so far is sent as an argument.
Each construct is handled differently depending on the com-
ponents it contains and its semantics. The processing of
the construct might add, remove or modify the elements
of the input set. The result is returned in the form of
an output set which then becomes the input set for the
next construct. Figure 10 shows how the framework handles
a sequence of statements. The processing method iterates
through the statements in the sequence with the output
set of one statement becoming the input of the next state-
ment. The output set of the last statement is the output
set of the sequence of statements.

process_StatementsNode(
StatementSequenceNode node,Object input){
List stmts = node.getStatements()
out = clone(input)
for each stmt, s in stmts

out = process(s,out)
return out

}

Figure 10. Analyzing a statement sequence

An important construct in flow analyses is the merge
operation. Merge defines the semantics of combining the
information present in two flow-sets. Such a situa-
tion arises for instance when dealing with the flow-sets
obtained by processing the If and else branch of an
If-Else construct. Since the framework gathers sets of
information the programmer has the choice of choosing be-
tween union and intersection as the merge operation.

Before discussing how the framework handles compli-
cated constructs like conditionals and loops lets look at how
abrupt control flow statements are handled. Without going
into the details of break and continue we know that
when such a statement is encountered control passes to the
target of the abrupt statement. In the case of break this
is usually a loop, a switch or a labelled block whereas in
the case of continue the target is always a loop. In our
framework whenever a break or continue is encoun-
tered the targeted construct and the flow-set are stored
into a hash table. Processing then continues with a special
flow-set named BOTTOM sent onwards indicating that
this path is never realized (as the abrupt statement leads ex-
ecution to some other area of the code).

We use a hash table, jeyed by labels, to store flow-sets so
that when the target of an abrupt statement is processed the
stored flow-sets associated with this target are retrieved
and merged with the flow-set obtained through analysis
of the construct.

Figure 11 shows the control flow and pseudo-code for
handling a While loop. The solid back-edge indicates loop
iteration and dotted lines indicate abrupt control flow. Since
we are dealing with a loop, a fixed point computation is
necessary to compute the final output set. Firstly the

cond

input

out

initialInput

continue

continue

break

break

input

result

process_While(WhileNode node,Object input){
initialInput = clone(input)
input = processCondition(condition,

initialInput)
do{

lastin = clone(input)
out = processBody(node,input)
out = handleContinue(out,node)

/ / merge cond e v a l u a t i n g t o f a l s e
input = merge(initialInput,out)
input = processCondition(condition,input)

} while(lastin != input)
result = handleBreaks(input,node)
return result

}

Figure 11. Analyzing the While construct.

analysis processes the condition of the While construct.
The output set of this becomes the input set for the
fixed point computation. Within the fixed point computa-
tion the body of the While loop is processed followed by
the generation of the input set for the next iteration. This
is done by merging the output set of the current itera-
tion with the flow-sets stored in the continue hash
table, since continue statements could be targeting the
loop. This is followed by a merge with the initial input
to the While loop, hence taking care of all possible en-
try points of the loop. Once the fixed point is achieved then
any flow-sets stored in the break hash table are also
merged using the handleBreaks method. The output of
this method is the final output of processing the While con-
struct.

4.2 Implemented Flow Analyses
A number of typical compiler flow analyses have

been implemented using the structure-based flow analysis
framework. Some of them are briefly discussed below
along with their usage:

Reaching Defs: This analysis computes information regard-

Proceedings of the 14th IEEE International Conference on Program Comprehension (ICPC’06)
0-7695-2601-2/06 $20.00 © 2006 IEEE

ing which definition of a variable may reach a particular
program point. The results of this analysis are used to
compute uD-dU chains which are all possible definitions
for a particular use of a variable and conversely all possible
uses for a particular definition. This information is crucial
in deciding which variables and definitions are needed
for a particular chunk of code. We touch on this again in
Section 5.1.

Constant Propagation: This analysis stores information
about values a variable must have at a program point.
Although statically a lot cannot be said about the run-
time value of a variable, the results of this analysis have
surprisingly good results in simplifying obfuscated code
(Section 5.2).

Reaching Copies: A copy statement is defined as a state-
ment of the form a=b; i.e., a statement where the value of
one variable is being copied into another. Reaching copies
gathers information about copies that reach a particular pro-
gram point. This information in conjunction with the uD-
dU chains obtained from the reaching defs flow analysis can
be used to implement the copy elimination transformation.
An example of this is shown in Figure 12. The unreduced
form of the code shows a copy statement x=a; which gets
eliminated in the reduced version due to copy elimination.

(a) Unreduced

x = a; / / copy s t m t
if(b == 3)

foo(x);

(b) Reduced

if (b == 3)
foo(a);

Figure 12. Copy Elimination

5 Complex Patterns using Flow Analyses

With the structure-based flow analysis framework in
hand we now have the resources to gather any additional in-
formation required for more complex transformations. Sim-
ple analyses like reaching defs, constant propagation etc.
can provide enough information to considerably improve
the code. In the next two sections we discuss transforma-
tions which would not have been possible without the flow
analysis framework.

5.1 For Loop Construction

Certain conditional While loops can be represented
more compactly as For loops. Programmers generally pre-
fer to use For loops specially when the loop has a con-
sistent update. A For loop has four important compo-
nents: The Init, invoked once before the first iteration of
the loop, contains declaration and initialization of variables
used in the body. Then there is the condition which is
evaluated before each iteration of the loop. The loop only
executes if the condition evaluates to true. The update

construct is executed at the end of each iteration and per-
forms updates on variables. The last part of the For loop is
the Body which contains the loop code.

(a) Unreduced

Body A
Init Stmts
while (cond) {

Body B
Update C

} / / end w h i l e

(b) Reduced

Body A
for (Init Stmts;cond;Update C)
{

Body B
} / / end f o r

Figure 13. The While to For conversion

We define natural For loops as loops where all four
components of the loop contain at least one expression/s-
tatement. The While to For transformation looks for pat-
terns (Figure 13(a)) which can be converted into natural
For loops (Figure 13(b)).

Algorithm 2: The While to For conversion

Input: ASTNode node

body← GetBody(node)
Iterator it← body.iterator()
while it.hasNext () do

node1← it.Next()
node2← GetNextNode(node1)
if node1 is a series of statements and node2 is a
conditional while loop then

init← GetInit(node1)
update← GetUpdate(init,node2)
newStmts←removeInitStmts(node1,init)
stmtsNode←
ASTStatementSequenceNode(newStmts)

condition← GetCondition(node2)
whileBody← GetBody(node2)
forNode←
ASTForLoop(init,condition,update,whileBody)

Replace node1 and node2 by stmtsNode and
forNode in body

end
end

Algorithm 2 outlines the steps taken to transform a
While loop into a For loop. The body of an ASTN-
ode is searched for a sequence of statements followed by
a While loop. The statement sequence is the combination
of BodyA and Init Stmts in Figure 13(a). The GetInit
function goes through the sequence of statements and gath-
ers all statements that are initializing any variables. Once
all such statements have been gathered they are analyzed to
check whether the initialized variables are live only within
the While loop body. This information is retrieved from
the uD-dU chains created using the reaching defs flow anal-
ysis. If the variables are live only within the body, the ini-

Proceedings of the 14th IEEE International Conference on Program Comprehension (ICPC’06)
0-7695-2601-2/06 $20.00 © 2006 IEEE

tialization is converted into a loop-local declaration and ini-
tialization statement.

The next step in the algorithm is to retrieve the up-
date statements for the For loop to be created. The
GetUpdate method checks whether the last statements in
the While body update a variable which is either initial-
ized in the init or part of the loop condition. If no such
statements are found the transformation fails since this is
not a natural For loop. If update statements are success-
fully located these are stripped away from the While body
and will consist of the update construct of the For loop.

If an init and update list are successfully re-
trieved then the For loop can be created. The
RemoveInitStmts function removes the init state-
ments leaving behind BodyA (Figure 13(a)). This is then
used to create a new statement sequence node. The For
loop is then created with the condition of the While loop
as its condition and the body of the While loop as its body
minus the update statements which becomes the update part
of the For loop. The new statement sequence node and the
For loop then replace the old statement sequence node and
While loop in the AST. An example of this transformation
is discussed in the next section.

1 class a{
2 private java.util.Vector a;

3 int a(java.lang.String r1){
4 boolean z3;
5 int i0, $i2, i3;
6 java.lang.String r2;

7 i0 = 0;
8 while (i0 < a.size()){
9 r2 = (String) a.elementAt(i0);
10 z3 = r2.equals(r1);
11 i3 = (int) z3;
12 $i2 = i3;
13 if (i3 == 0)
14 i0++;
15 else{
16 a.remove(i0);
17 return i0;
18 }
19 }
20 $i2 = -1;
21 return $i2; }

Figure 14. Constant Propagation

5.2 Program Obfuscation
In Section 4 we mentioned that without additional infor-

mation, provided by flow analyses, Dava is unable to sim-
plify the confusing output produced by decompiling obfus-
cated code. Figure 2(d) shows such an output. Program
transformations targeting decompiled obfuscated code and
using data flow analysis were implemented to simplify the
output. One such transformation uses the constant propaga-
tion analysis discussed in Section 4.2. In the case of our ex-
ample constant propagation is able to prove that z0 is false

at Statement 15 in Figure 2(d). This is so since z0 is only
assigned once from the boolean c, Statement 9, which is al-
ways false. The consequences of this additional information
are that we are able to statically predict that the If body is
always executed since the condition in Statement 15 always
evaluates to true. Hence the conditional is redundant and is
removed. Similarly at Statement 27, constant propagation
tells us that z0 is still false. Hence the If body, Statements
28 to 33, will never get executed and is effectively dead
code. This is also removed from the output. With just con-
stant propagation the output of Figure 2(d) changes to that
shown in Figure 14.

Once such code has been removed from the output
the simpler AST transformations (Section 3) get activated
which result in further simplification of the output. For in-
stance the While loop on Statement 8 in Figure 14 gets
converted to a For loop with Statement 7 as the init and
Statement 14 as the update.

Another interesting and very important transformation is
indicated on statement 11 in Figure 14. In this case the ob-
fuscator was in fact able to confuse Dava by assigning a
boolean to an integer variable. However, Dava now uses a
flow analysis to check for such instances and removes the
unnecessary assignment introduced. Also notice that dec-
larations of variables that are no longer used have been re-
moved by Dava. The final output from Dava for the obfus-
cated code is shown in Figure 15.

class a{
private java.util.Vector a;

int a(java.lang.String r1){
boolean z3;
java.lang.String r2;

for(int i0 = 0;i0 < a.size(); i0++){
r2 = (String) a.elementAt(i0);
z3 = r2.equals(r1);
if (z3){

a.remove(i0);
return i0;

}
}
return -1; }

Figure 15. Final result of decompiling obfus-
cated code of Figure 2

6 Related Work

There are numerous decompilers available for Java byte-
code. Two notable ones are Jad [7] and SourceAgain [18].
Jad is a javac-specific decompiler which is free for non-
commercial use. Its decompilation module has been inte-
grated into several graphical user interfaces including Fron-
tEnd Plus, Decafe Pro, DJ Java Decompiler and Cavaj. It is
relatively easy to break the decompiler by introducing non-
standard, though verifiable, bytecode.

Proceedings of the 14th IEEE International Conference on Program Comprehension (ICPC’06)
0-7695-2601-2/06 $20.00 © 2006 IEEE

SourceAgain is a commercial decompiler with an online
version available to test its capabilities. The decompiler cre-
ates a flow graph representation from which it detects Java
constructs. It does a better job at decompilation than Jad but
fails when given bytecode produced by non-java compilers,
e.g., AspectJ. Although SourceAgain claims to be able to
decompile obfuscated code our tests have shown that it is
only able to handle name obfuscation(by converting these
to indexed names) and fails when control flow obfuscation
has been carried out.

Structural Flow analysis initially presented by Sharir
[16] is ideal for data-flow analysis using a structured rep-
resentation of the program. This technique has been suc-
cessfully used in creating an optimizing compiler which
uses a hierarchy of structured intermediate representa-
tions [6]. Various compiler optimizing techniques e.g.,
inter-procedural analysis, forward or backward analysis can
all be implemented on the structured representation of the
program in a much more intuitive way than simple iteration.

7 Conclusions and Future Work

We have introduced the challenges involved in producing
programmer-friendly Java source with a tool-independent
decompiler. A tool-independent decompiler must deal with
arbitrary verifiable bytecode as produced by a wide variety
of tools including compilers for other languages such as As-
pectJ and C, bytecode optimizers and obfuscators.

The previously developed Dava decompiler dealt with
the problem of producing correct Java output, but often this
output was hard to understand for the programmer. In this
paper we demonstrated a variety of techniques that we have
used to develop a new back-end for Dava that converts the
complex AST structures produced by Dava into semanti-
cally equivalent ASTs that are more programmer-friendly.

Our approach is based on AST rewriting. This rewrit-
ing is supported by a visitor-based AST framework. We
first demonstrated a variety of simple structure-based pat-
terns that handle many program idioms and demonstrated
these with a variety of examples. We then described the
development of a structure-based flow analysis framework
that we have used for implementing a variety of flow anal-
yses. Using the results from these analyses we presented
several more complex AST rewriting rules including for
loop structuring and the elimination of redundant computa-
tion and control flow introduced by an obfuscator.

We continue to actively develop more rewriting patterns
and analyses, including those that allow us to decompile
code produced by AspectJ compilers. All of the techniques
presented in this paper have been implemented in the Soot
framework.

References
[1] abc. The AspectBench Compiler. Home page with down-

loads, FAQ, documentation, support mailing lists, and bug
database. http://aspectbench.org.

[2] Axiomatic Multi-Platform C compiler suite.
http://www.axiomsol.com.

[3] AspectJ Eclipse Home. The AspectJ home page.
http://eclipse.org/aspectj/, 2003.

[4] P. Avgustinov, A. S. Christensen, L. Hendren, S. Kuzins,
J. Lhoták, O. Lhoták, D. Sereni, G. Sittampalam, and J. Tib-
ble. abc: An extensible AspectJ compiler. In AOSD 2005,
pages 87–98, March 2005.

[5] E. M. Gagnon and L. J. Hendren. SableCC, an object-
oriented compiler framework. In TOOLS ’98: Proceedings
of the Technology of Object-Oriented Languages and Sys-
tems, page 140, Washington, DC, USA, 1998. IEEE Com-
puter Society.

[6] L. J. Hendren, C. Donawa, M. Emami, G. R. Gao, Jus-
tiani, and B. Sridharan. Designing the McCAT Compiler
Based on a Family of Structured Intermediate Representa-
tions. In Proceedings of the 5th International Workshop
on Languages and Compilers for Parallel Computing, pages
406–420. Springer-Verlag, 1993.

[7] Jad - The fast Java Decompiler. http://www.-

geocities.com/SiliconValley/Bridge/8617/-

jad.html.
[8] SourceTec Java Decompiler. http://www.srctec.com/.
[9] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm,

and W. G. Griswold. An overview of AspectJ. In J. L.
Knudsen, editor, European Conference on Object-oriented
Programming, volume 2072 of Lecture Notes in Computer
Science, pages 327–353. Springer, 2001.

[10] Zelix KlassMaster - The second generation Java Obfuscator.
http://www.zelix.com/klassmaster.

[11] J. Miecnikowski and L. J. Hendren. Decompiling Java byte-
code: problems, traps and pitfalls. In R. N. Horspool, editor,
Compiler Construction, volume 2304 of Lecture Notes in
Computer Science, pages 111–127. Springer Verlag, 2002.

[12] J. Miecznikowski and L. Hendren. Decompiling Java using
staged encapsulation. In Proceedings of the Working Con-
ference on Reverse Engineering, pages 368–374, October
2001.

[13] Mocha, the Java Decompiler. http://www.brouhaha.-

com/˜eric/computers/mocha.html.
[14] N. A. Naeem. Programmer Friendly Decompiled Java. Mas-

ter’s thesis, School of Computer Science, McGill University,
August 2006.

[15] N. A. Naeem and L. Hendren. Programmer Friendly De-
compiled Java. Technical report, School of Computer Sci-
ence, McGill University, March 2006.

[16] M. Sharir. Structural analysis: A new approch to flow anal-
ysis in optimizing compilers. Computer Languages, 5:141–
153, 1980.

[17] Soot - a Java Optimization Framework.
http://www.sable.mcgill.ca/soot/.

[18] SourceAgain - A Java Decompiler. http://www.ahpah.-
com/.

[19] R. Vallée-Rai, E. Gagnon, L. Hendren, P. Lam, P. Pom-
inville, and V. Sundaresan. Optimizing Java bytecode us-
ing the Soot framework: Is it feasible? In D. A. Watt, ed-
itor, Compiler Construction, 9th International Conference,
volume 1781 of Lecture Notes in Computer Science, pages
18–34, Berlin, Germany, March 2000. Springer.

[20] WingDis - A Java Decompiler. http://www.wingsoft.-
com/wingdis.html.

Proceedings of the 14th IEEE International Conference on Program Comprehension (ICPC’06)
0-7695-2601-2/06 $20.00 © 2006 IEEE

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

