Relative Factors in Performance

Analysis of Java Virtual Machines

Dayong Gu Clark Verbrugge
School of Computer Science, McGill University
Montréal, Canada
{dgul,clump}@cs.mcgill.ca

Etienne M. Gagnon
Département d’'informatique, Université du Québec a Montréal
Montréal, Canada
egagnon@sablevm.org

June 15, 2006

VEE 2006 1/60

© Motivation

© A Motivating Example

© Relative Factors

@ Performance Analysis

© Conclusions

VEE 2006 2/60

Have you ever ...

As an application developer

@ Rewritten the code for
better performance

@ But, obtained no speedup
as expected?

VEE 2006

3/60

Have you ever ...

As a compller developer Application

@ Built a new optimization
based on a neat analysis

@ But, got no improvement
or even slow down
benchmark programs?

VEE 2006 4/60

Have you ever ...

As a VM developer

@ Applied a new technique
iInside a VM

@ But, achieved no positive
result, or only had a
positive result by chance?

v

VEE 2006

Application

Application
Compiler
D
[Eo—
Benchmaric]
Improvements

5/60

Have you ever ...

As a garbage collection (GC)

developer

@ Built a theoretically
efficient GC algorithm

@ But, the collector refused
to run any faster or gave
random results?

VEE 2006

Application

6/60

Have you ever ...

When measuring a set of Application
benchmarks

@ Found naughty
benchmarks

@ Disagreed with others,
gave very strange or
random results?

Benchmarks

VEE 2006 7/60

Have you ever ...

Application
@ Failed in reproducing the |

iImprovement of a
published work

@ Got a 10% improvement

on a platform, but it _

disappeared after you got

2 new machine GC
J

Benchmarks

VEE 2006 8/60

@ Lots of us may have such
kind of experiences

Application

@ How to understand these
situations?

@ Performance measurement
analysis

Benchmarks

VEE 2006 9/60

Performance measurement is difficult
@ Computers are getting increasingly complex

@ Many factors can affect measurement results,
which are important?

@ Virtual execution environments bring an extra layer
and become even more challenging

@ Study the relative factors in performance analysis

v

VEE 2006 10/60

Motivating Example

We developed a GC-related technique and observed
surprising behaviors

@ What factors can impact performance?
@ How large can the impact be?

@ How can we explain the observed behaviors?

VEE 2006 11/60

Motivating Example
Original Object Layout

I Header
I [] Reference Refe rences are
[lother field located
separately

New: Reference Section (RS)

Group all
I references In a
contiguous
section

VEE 2006 12/60

Motivating Example

Original Reference Tracing

B Header Get the the
I |:|Reference addresses Of
|:|Otherfield
tt 11 references one
by one

RS Reference Tracing

Get the first
reference’s
! address

VEE 2006 13/60

Motivating Example

Original Reference Tracing

I Header Get the
I |:|Reference addresses Of
|:|Otherfield
tt 11 references one
by one

RS Reference Tracing

Scan the
whole section
immediately

T—»

v

VEE 2006 1460

Motivating Example

Original Reference Tracing

I Header Get the
I |:|Reference addresses Of
|:|Otherfield
tt 11 references one
by one

RS Reference Tracing

Jump to the
t— next section

VEE 2006 1560

Implementation
RS Tracing Technique

@ Useful for all
tracing GCs

@ Implemented In
two JVMs

An interpreter A compliler-based VM

VEE 2006

16/60

GC Time Reduction: Semi-space

0.35 0.1
0 l~— SPECjvm98 _(Org-RS)/Org mmm= (Org-RS)/Org s
S ool W o mll ThCao—| 5 oo NEEEE m B BE
8 7 m 5 - _
; =
i el B oo el £ oo0atrf
- H = o002t ||
4 || [|
QxS vE«xL =SR2 2T O Qo0 x o0z =2 T 0
T O c B e T = © 5 a 2¥4¢Ec*xE = g 8]
% L85 E s2° 8 § Sz LE So°§

SableVM Jikes RVM
Average saving 16.3% Average saving 7.1%

@ Both JVMS obviously benefited on all benchmarks

VEE 2006 17/60

GC Time Reduction: GenMS

@ GenMS: Generational-copying and mark-sweep
@ Less regular results, some are unexpected

VEE 2006

Time Reduction Rate

0.1

0.08
0.06
0.04

0.02

-0.02

-0.04

(Org-RS)/Org mmmm

mtrt

I

18/60

Mutator Time Reduction

Mutator Time = Whole Execution Time - GC Time

0.08 0.1
(Org-RS)/Org s (Org-RS)/Org mmmmm

0.06 [oos b
oo L

0.04

0.02 | H - D : D] 0.02 |
ol ml__ o g— D —
D 0.02 [l O e

0.02 fro [PO T —

_0.04 1 1 1 1 1 1 1 1 1 1 1 1 _0.06

Time Reduction Rate
Time Reduction Rate

rt

k L
javac r

re r

Q2
o

comp
db
jack
jess
mtrt
jess r
mtrt H
antlr
bloat
fop
pmd
psS

javac
antlr
bloat
fop
pmd
pS
comp
jac

SableVM Jikes RVM

Mysterious result Quite random results

VEE 2006 19/60

Mutator Time Reduction

Mutator Time = Whole Execution Time - GC Time

0.08 0.1
(Org-RS)/Org s (Org-RS)/Org
006 b 0LOB |
Q Q
g g 0061 -
0.04 ol
5 s o004 B
S 002 R d Q02 e e]
e e
& LA ... D D .. l:[&) 0 i ’—‘ L o - .
g ... g _002 I [e [
- o002} q "
| 0.04 f
_0.04 1 1 1 1 1 1 1 1 1 1 1 1 _0.06 1 1 [R 1
2835895 tEgRe 2835845 3824
S SZOE =& S°SZSE 2= 8§
SableVM Jikes RVM
Mysterious result Quite random results

Variation > GC time?!

VEE 2006 20/60

© Relative Factors

21/60
VEE 2006 /

Relative Factors

All Factors

General Factors

System-wide Effects

Benchmark-specific

VEE 2006 22/60

Relative Factors

All Factors

General Factors

Benchmark-specific

System-wide Effects

Avail. Physical Memoryg

Fragmentation E

Other Processes]

Disk Usage

VEE 2006 23/60

Reduce System-wide Effect

@ Goal: Figure out the important reasons
@ Reduce unnecessary noise

@ Test on a newly restarted, isolated, minimized
workload system, as most people do

@ Make the System-wide Effect as small as possible

VEE 2006 24/60

Make System-wide Effect Small

General Factors Benchmark-specific

25/60
VEE 2006 5/

Relative Factors

General Factors

Benchmark-specific

VEE 2006 26/60

Relative Factors

General Factors Benchmark-specific

Code Related Data Related

27/60
VEE 2006 /

Relative Factors

General Factors

Code Related Data Related

Benchmark-specific

Inst. Workload

Scan Order
(Heap Layout)

Hashcode
Position

Field Offset
Code Position

VEE 2006 28/60

Relative Factors

General Factors

Benchmark-specific

Code Related Data Related

Inst. Workload

Scan Order
(Heap Layout)

Hashcode
Position

Field Offset
Code Position

VEE 2006 29/60

Relative Factors

General Factors Benchmark-specific

Code Related Data Related

Inst. Workload| | | ' | Reference
. i | Scan Order | | | Structure
Heap Layout !
Hashcode Lo (Py : , .
Position L | . | GC Frequency
- .+ | Field Offset : !
Code Position 5 5 GC Workload

VEE 2006 30/60

Relative Factors

General Factors Benchmark-specific

Code Related Data Related

Inst. Workload| | | ' | Reference
. i | Scan Order | | | Structure
Heap Layout !
Hashcode Lo (Py : , .
Position L | . | GC Frequency
. .+ | Field Offset : !
Code Position 5 5 GC Workload

VEE 2006 31/60

Selected Factors

Instruction
Code Position
Scan Order

Benchmark-
specific

GC Frequency

4 <

o ¢

\|

VEE 2006 32/60

@ Performance Analysis

VEE 2006 33/60

m- Instruction Workload

Instruction @ The number of machine
o s Instruction executed
~oae Fostor < @ A fundamental factor of
Scan Order) execution time
Sy — @ Measured using hardware
counters

Spec.

GC Frequency |

VEE 2006 34/60

Instruction Workload results

@ Reduced up to 12 %
@ = GC speedup

In Mutator

@ The variation is very small (on average 0.03%)

@ Instruction workload did not cause the
performance changes in mutator

VEE 2006 35/60

General il Code Position

Instruction J @ How code Is arranged In
Code Positi | memory
OeE TOSIEON < @ Arrangement can affect

Scan Order) cache performance

@ How large can the impact
Benchmark he? © P
Spec. | .

@ Test by modifying the
GC Frequency | code position

|

VEE 2006 36/60

Modify Code Position

Jikes RVM: Add an Extra Component, Never Executed

Executable Code @ Compare T, vs

Extra component, never executed Twith_extra

@ Try different

Executable Code . Executable Code
configurations

v

SableVM: Code Shifting

Executable Code

VEE 2006 37/60

Modify Code Position

Jikes RVM: Add Extra Component, Never Executed

Executable Code @ Compare Torg

Extra component, never executed and Twith_extra

S~

SableVM: Code Shifting

@ Add empty space
I Executable Code before the
executable code

@ Shift the code

@ Try different
configurations

VEE 2006 38/60

Modify Code Position

Jikes RVM: Add Extra Component, Never Executed

Executable Code @ Compare Torg

Extra component, never executed and Twith_extra

S~

Executable Code . Executable Code
SableVM: Code Shifting

Executable Code @ Increase the
space by 4 bytes

In each step

@ Try different
configurations

VEE 2006 39/60

Modify Code Position

Jikes RVM: Add Extra Component, Never Executed

Executable Code @ Compare Torg

Extra component, never executed and Twith_extra

S~

SableVM: Code Shifting

= table Cod '

IRETREE Offset: 0 - 2*|Cache line| shifted versions

@ Try different
configurations

VEE 2006 40/60

Code Position Results

12
SableVM: Code shifting mmmmm @ L.V.F. for
Jikes RVM: Extra comp. s

Largest Variation
Found

| @ As large as
9.46%

@ Could be even
| larger

Variation %

Avg L.V.F. Avg L.V.F.

@ The impact of Code position can be nearly 10%
@ Unexpectedly significant

VEE 2006 41/60

General gl Scan Order

@ Changing the scan order

Instruction _
= different heap layouts

Code Position

@ Impacts data cache
Scan Order performance

Benchmark
Spec.

GC Frequency

o ¢

@ \We measured two scan
orders

 —

|

VEE 2006 42/60

Two Scan Orders

I subclass — superclass]

 ——

I superclass — subclass]

VEE 2006 43/60

Scan Order results

0.2
(Order2- Orderl)/Order2 mmmmm
Q -
ks o
8 o1f
0 N
(O]
3
s 005
2
O
g o — L I N _ B
©
: 11}
O 0.05 | [l B S S]
_01 ||||||| | L
285845 £E8%T4
g “&g&E ss” =

@ Data cache performance changed
@ No dominant winner

VEE 2006 44/60

Scan Order results

Data Cache Misses Variation

VEE 2006

0-2 (Order2- Orderl)/Order2 mmmmm
045 Cyc/Miss || Mutator | GC
n SPECjvm98 396 137
o R A DaCapo 254 167
] Average 337 150
0.05 fo
() — - 5 ™| @ Low data cache misses
U D density in mutator
005 F o= B
o B] @ 10% in data cache
2858458 £88%4 miss 2 1% in whole
8 - g = C a o

execution time
Data cache performance changed

No dominant winner

45/60

Scan Order results

0-2 (Order2- Order1)/Order2 mmmmm
c o015L] Cyc/Miss Mutator | GC
2] SPECjvm98 396 137
s o1f W DaCapo 254 167
@] Average 337 150
2 005
IS :
g 0l — o 3 m] @ Low data cache misses
= U D density in mutator
SN N E— e — — —
o | B | @ 10% in data cache
283845 £E8E4 miss # 1% in whole
9 -3 S 5 oS

execution time
@ Data cache performance changed

@ No dominant winner
@ Impact: scan order < code position

VEE 2006 46/60

General ____ WGC Frequeny]

@ The number of GC cycles
can be different

p @ GenMS GC results on
Scan Order benchmark BLOAT

Instruction

4 <

Code Position

Benchmark
Spec.

l A5

GC Frequency

 —

|

VEE 2006 47/60

GC Frequency results

9000 . . .
Org(80M) ——

8000 B RS(BOM) """"""" GenMSGCOfBl()aI """""""""" """" """" i
FOOQ o e

6000 = -

5000 F : =

a0t o -

3000 B =

L N e .

1000 I =
;]

Aggregated GC time (ms)

Execution time (s)

VEE 2006 48/60

GC Frequency results

GC Frequency results

9000 . l . . .
Org(80M) ——

8000 RS(SOM) """"""" GenMSGCOfBIOat """"""""""" """" """"]

’U? Org(16OM) e :
% 7000 - RS(160M) A -
€ 6000 - e
Q 5000 R s .
O fi o -
g 400 :
&> 3000 ST :
S

S 2000 p 0 R :
< 1000 L T _

1000 |
0 L& ' ' ' ' '

Execution time (s)

VEE 2006 49/60

M Benchmark Cache Bias

@ More sensitive to the
s behavior of one type of
cache than the other

Instruction

Code Position

Scan Order) @ Cache performance graphs
Benchmark X-AXIS Elapsed cycles
Spec. Y-AXIS Cache misses density
Red curves Data cache results
GC Frequency] curves | Inst. cache results

VEE 2006 50/60

0.008

NI L1DCM/C
o, COMPress Data dominated e —
0.006 |
0.005 |
0.004
0.003 H
0.002
0.001 | 14 !
0 i 1”&WW | Mw I LW‘ L " \
0 1e+10 2e+10 3e+10
0.005
L1DCM/Cyc
LLICM/Cyc

0.004 |
0.003 |
0.002 |

0.001 [|

4e+10

0.005

8e+10

0.004 r

0.003

0.002

0.001

0

|

ey

L1DCMI/Cyc
L1ICM/Cyc

1.5e+10

VEE 2006

2.5e+10

3e+10

3.5e+10

51/60

Cache Bias Graph Demo

D-Cache Miss Density (Misses per million cycles)

VEE 2006

5000

4000

3000

2000

1000

Cache Bias Demo

Benchmark

1000

2000 3000 4000 5000 6000
|-Cache Miss Density (Misses per million cycles)

7000 8000

52/60

Cache Bias Graph Demo

5000 | | | | | | |
? Cache Bias Demo
O
S 4000 | -
c
S
£
g
»n 3000 .
Q
)]
52
3 . .
> Center point: average cache density
2 2000 t+ .
CD .
&)
g \ (XY
>
Q
S 1000 -
©
Q
(o)
O | | | | | | |
0 1000 2000 3000 4000 5000 6000 7000 8000

|-Cache Miss Density (Misses per million cycles)

VEE 2006 53/60

Cache Bias Graph Demo

5000 | | | | | | |
? Cache Bias Demo
O
& 4000 | 1
c
S
£
g
»n 3000 -
Q
)]
2
3 . .
> Center point: average cache density
2 2000 .
CD .
a
7)) \
@ s
= ’I
Q
S 1000 d _
S Average cache variation
(o)
O | | | | | | |
0 1000 2000 3000 4000 5000 6000 7000 8000

|-Cache Miss Density (Misses per million cycles)

VEE 2006 54/60

Cache Bias Graph Demo

D-Cache Miss Density (Misses per million cycles)

VEE 2006

5000

4000

3000

2000

1000

Cache Bias Demo
Center point: average cache density
i - i|=—------Top cache variation |
I \.JT A /"‘/’/
K | |
= / - - —
Average cache variation
0 1000 2000 3000 4000 5000 6000 7000
|-Cache Miss Density (Misses per million cycles)

8000

55/60

Cache Bias

5000 | | | | | | |

)
k]
Sy
© 4000 f =
c
S
=
o]
n 3000 -
(b}
(7))
§2)
=3 fcompress
>
2 2000 db -
(b}
D REEE EERREREREENE LY
(7))
R2)
=
()
S 1000 .
S
LI) -0~
a) jack

O | | | | | | |

0 1000 2000 3000 4000 5000 6000 7000 8000

|-Cache Miss Density (Misses per million cycles)

VEE 2006 56 /60

Cache Bias

5000 | | | | | | |

D
@
4
O 4000 F .
(e
S
IS
g
»n 3000 -
(D]
(7))
§e2)
é ‘.p_p([npress
>
2 2000 .
()]
(A
(7))
§2)
=
(b
S 1000 | .
®©
Q
(A

O | | | | | | |

0 1000 2000 3000 4000 5000 6000 7000 8000

|-Cache Miss Density (Misses per million cycles)

VEE 2006 57/60

Conclusions

@ Side-effects are significant enough to distort
judgement on techniques

@ Measured influences of up to nearly 10%!

@ It Is necessary to do deep analysis on measurement
results

@ Many potential factors affect performance,

@ We estimated the importance of the factors
@ Case study: a GC optimization

@ Present a general categorization of relative factors

@ Code/Data, Benchmark-specific, System-wide effects
@ Investigated relative impact of each factor

VEE 2006 58/60

@ Code layout

@ Reduce code related “noise’” = more accurate
performance measurement
@ Apply potential optimizations about code layout

@ Further use of hardware data

@ Online and offline analysis on hardware data
@ Optimizations based on hardware data

VEE 2006 59/60

T hank you!

VEE 2006 60,60

	Outline
	Motivation
	A Motivating Example
	Relative Factors
	Performance Analysis
	Conclusions

