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Have you ever ...

As an application developer

@ Rewritten the code for
better performance

@ But, obtained no speedup
as expected?

VEE 2006

3/60



Have you ever ...

As a compller developer Application

@ Built a new optimization
based on a neat analysis

@ But, got no improvement
or even slow down
benchmark programs?
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Have you ever ...

As a VM developer

@ Applied a new technique
iInside a VM

@ But, achieved no positive
result, or only had a
positive result by chance?

v
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Have you ever ...

As a garbage collection (GC)

developer

@ Built a theoretically
efficient GC algorithm

@ But, the collector refused
to run any faster or gave
random results?
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Have you ever ...

When measuring a set of Application
benchmarks

@ Found naughty
benchmarks

@ Disagreed with others,
gave very strange or
random results?

Benchmarks
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Have you ever ...

Application
@ Failed in reproducing the |

iImprovement of a
published work

@ Got a 10% improvement

on a platform, but it _

disappeared after you got

2 new machine GC
J

Benchmarks
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@ Lots of us may have such
kind of experiences

Application

@ How to understand these
situations?

@ Performance measurement
analysis

Benchmarks
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Performance measurement is difficult
@ Computers are getting increasingly complex

@ Many factors can affect measurement results,
which are important?

@ Virtual execution environments bring an extra layer
and become even more challenging

@ Study the relative factors in performance analysis

v
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Motivating Example

We developed a GC-related technique and observed
surprising behaviors

@ What factors can impact performance?
@ How large can the impact be?

@ How can we explain the observed behaviors?
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Motivating Example
Original Object Layout

I Header
I [ ] Reference Refe rences are
[ lother field located
separately

New: Reference Section (RS)

Group all
I references In a
contiguous
section
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Motivating Example

Original Reference Tracing

B Header Get the the
I |:|Reference addresses Of
|:|Otherfield
tt 11 references one
by one

RS Reference Tracing

Get the first
reference’s
! address
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Motivating Example

Original Reference Tracing

I Header Get the
I |:|Reference addresses Of
|:|Otherfield
tt 11 references one
by one

RS Reference Tracing

Scan the
whole section
immediately

T—»

v
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Motivating Example

Original Reference Tracing

I Header Get the
I |:|Reference addresses Of
|:|Otherfield
tt 11 references one
by one

RS Reference Tracing

Jump to the
t— next section
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Implementation
RS Tracing Technique

@ Useful for all
tracing GCs

@ Implemented In
two JVMs

An interpreter A compliler-based VM

VEE 2006

16/60



GC Time Reduction: Semi-space
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Average saving 16.3% Average saving 7.1%

@ Both JVMS obviously benefited on all benchmarks
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GC Time Reduction: GenMS

@ GenMS: Generational-copying and mark-sweep
@ Less regular results, some are unexpected
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Mutator Time Reduction

Mutator Time = Whole Execution Time - GC Time
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Mysterious result Quite random results
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Mutator Time Reduction

Mutator Time = Whole Execution Time - GC Time
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Mysterious result Quite random results

Variation > GC time?!
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© Relative Factors
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Relative Factors

All Factors

General Factors

System-wide Effects

Benchmark-specific
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Relative Factors

All Factors

General Factors

Benchmark-specific

System-wide Effects

Avail. Physical Memoryg

Fragmentation E

Other Processes ]

Disk Usage
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Reduce System-wide Effect

@ Goal: Figure out the important reasons
@ Reduce unnecessary noise

@ Test on a newly restarted, isolated, minimized
workload system, as most people do

@ Make the System-wide Effect as small as possible
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Make System-wide Effect Small

General Factors Benchmark-specific
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Relative Factors

General Factors

Benchmark-specific
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Relative Factors

General Factors Benchmark-specific

Code Related Data Related
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Relative Factors

General Factors

Code Related Data Related

Benchmark-specific

Inst. Workload

Scan Order
(Heap Layout)

Hashcode
Position

Field Offset
Code Position
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Relative Factors

General Factors

Benchmark-specific

Code Related Data Related

Inst. Workload

Scan Order
(Heap Layout)

Hashcode
Position

Field Offset
Code Position
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Relative Factors

General Factors Benchmark-specific

Code Related Data Related

Inst. Workload| | | ' | Reference
. i | Scan Order | | | Structure
Heap Layout !
Hashcode Lo ( Py : , .
Position L | . | GC Frequency
- .+ | Field Offset : !
Code Position 5 5 GC Workload
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Relative Factors

General Factors Benchmark-specific

Code Related Data Related

Inst. Workload| | | ' | Reference
. i | Scan Order | | | Structure
Heap Layout !
Hashcode Lo ( Py : , .
Position L | . | GC Frequency
. .+ | Field Offset : !
Code Position 5 5 GC Workload
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Selected Factors

Instruction
Code Position
Scan Order

Benchmark-
specific

GC Frequency

4 <

o ¢

\|
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@ Performance Analysis
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m- Instruction Workload

Instruction @ The number of machine
o s Instruction executed
~oae Fostor < @ A fundamental factor of
Scan Order ) execution time
Sy — @ Measured using hardware
counters

Spec.

GC Frequency |
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Instruction Workload results

@ Reduced up to 12 %
@ = GC speedup

In Mutator

@ The variation is very small ( on average 0.03%)

@ Instruction workload did not cause the
performance changes in mutator
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General il Code Position

Instruction J @ How code Is arranged In
Code Positi | memory
OeE TOSIEON < @ Arrangement can affect

Scan Order ) cache performance

@ How large can the impact
Benchmark he? © P
Spec. | .

@ Test by modifying the
GC Frequency | code position

|
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Modify Code Position

Jikes RVM: Add an Extra Component, Never Executed

Executable Code @ Compare T, vs

Extra component, never executed Twith_extra

@ Try different

Executable Code . Executable Code
configurations

v

SableVM: Code Shifting

Executable Code
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Modify Code Position

Jikes RVM: Add Extra Component, Never Executed

Executable Code @ Compare Torg

Extra component, never executed and Twith_extra

S~

SableVM: Code Shifting

@ Add empty space
I Executable Code before the
executable code

@ Shift the code

@ Try different
configurations
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Modify Code Position

Jikes RVM: Add Extra Component, Never Executed

Executable Code @ Compare Torg

Extra component, never executed and Twith_extra

S~

Executable Code . Executable Code
SableVM: Code Shifting

Executable Code @ Increase the
space by 4 bytes

In each step

@ Try different
configurations
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Modify Code Position

Jikes RVM: Add Extra Component, Never Executed

Executable Code @ Compare Torg

Extra component, never executed and Twith_extra

S~

SableVM: Code Shifting

= table Cod '

IRETREE Offset: 0 - 2*|Cache line| shifted versions

@ Try different
configurations
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Code Position Results

12
SableVM: Code shifting mmmmm @ L.V.F. for
Jikes RVM: Extra comp. s

Largest Variation
Found

| @ As large as
9.46%

@ Could be even
| larger

Variation %

Avg L.V.F. Avg L.V.F.

@ The impact of Code position can be nearly 10%
@ Unexpectedly significant

VEE 2006 41/60



General gl Scan Order

@ Changing the scan order

Instruction _
= different heap layouts

Code Position

@ Impacts data cache
Scan Order performance

Benchmark
Spec.

GC Frequency

o ¢

@ \We measured two scan
orders

 —

|
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Two Scan Orders

I subclass — superclass ]

 ——

I superclass — subclass ]
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Scan Order results

0.2
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@ Data cache performance changed
@ No dominant winner
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Scan Order results

Data Cache Misses Variation

VEE 2006

0-2 (Order2- Orderl)/Order2 mmmmm
045 Cyc/Miss || Mutator | GC
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o R A DaCapo 254 167
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No dominant winner
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Scan Order results

0-2 (Order2- Order1)/Order2 mmmmm
c o015L ] Cyc/Miss Mutator | GC
2 ] SPECjvm98 396 137
s o1f W DaCapo 254 167
@ ] Average 337 150
2 005
IS :
g 0l — o 3 m ] @ Low data cache misses
= U D density in mutator
SN N E— e — — —
o | B | @ 10% in data cache
283845 £E8E4 miss # 1% in whole
9 -3 S 5 oS

execution time
@ Data cache performance changed

@ No dominant winner
@ Impact: scan order < code position
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General ____ WGC Frequeny ]

@ The number of GC cycles
can be different

p @ GenMS GC results on
Scan Order benchmark BLOAT

Instruction

4 <

Code Position

Benchmark
Spec.

l A5

GC Frequency

 —

|
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GC Frequency results
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GC Frequency results




GC Frequency results
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Org(80M) ——

8000 RS(SOM) """"""" GenMSGCOfBIOat """"""""""" """" """" ]

’U? Org(16OM) e :
% 7000 - RS(160M) A -
€ 6000 - e
Q 5000 R s .
O fi o -
g 400 :
&> 3000 ST :
S

S 2000 p 0 R :
< 1000 L T _

1000 |
0 L& ' ' ' ' '

Execution time (s)

VEE 2006 49/60



M Benchmark Cache Bias

@ More sensitive to the
s behavior of one type of
cache than the other

Instruction

Code Position

Scan Order ) @ Cache performance graphs
Benchmark X-AXIS Elapsed cycles
Spec. Y-AXIS Cache misses density
Red curves Data cache results
GC Frequency ] curves | Inst. cache results
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Cache Bias Graph Demo

D-Cache Miss Density (Misses per million cycles)

VEE 2006
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Cache Bias Graph Demo
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Cache Bias Graph Demo
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Cache Bias Graph Demo

D-Cache Miss Density (Misses per million cycles)
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Cache Bias
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Cache Bias
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Conclusions

@ Side-effects are significant enough to distort
judgement on techniques

@ Measured influences of up to nearly 10%!

@ It Is necessary to do deep analysis on measurement
results

@ Many potential factors affect performance,

@ We estimated the importance of the factors
@ Case study: a GC optimization

@ Present a general categorization of relative factors

@ Code/Data, Benchmark-specific, System-wide effects
@ Investigated relative impact of each factor
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@ Code layout

@ Reduce code related “noise’” = more accurate
performance measurement
@ Apply potential optimizations about code layout

@ Further use of hardware data

@ Online and offline analysis on hardware data
@ Optimizations based on hardware data
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T hank you!
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