
(P)NFG: A LANGUAGE AND RUNTIME SYSTEM FOR
STRUCTURED COMPUTER NARRATIVES

Christopher J.F. Pickett Clark Verbrugge Félix Martineau
School of Computer Science, McGill University

Montréal, Canada, H3A 2A7
email: {cpicke,clump,fmarti10 }@cs.mcgill.ca

KEYWORDS
Computer Games, Narratives, Petri Nets, Interactive Fiction,
Formal Verification, Languages, Compilers, Interpreters

ABSTRACT

Complex computer game narratives can suffer from logical
consistency and playability problems if not carefully con-
structed, and current, state of the art design tools do little to
help analysis or ensure good narrative properties. A formally-
grounded system that allows for relatively easy design and
analysis is therefore desireable. We present a language and
an environment for expressing game narratives based on a
structured form of Petri Net, theNarrative Flow Graph. Our
“(P)NFG” system provides a simple, high level view of nar-
rative programming that maps onto a low level representa-
tion suitable for expressing and analysing game properties.
The (P)NFG framework is demonstrated experimentally by
modelling narratives based on non-trivial interactive fiction
games, and integrates with the NuSMV model checker. Our
system provides a necessary component for systematic anal-
ysis of computer game narratives, and lays the foundation for
all-around improvements to game quality.

INTRODUCTION

A large number of computer games have strong narrative
components. Most notably this includes adventure and role-
playing games, but many first person shooters and 3D games
also depend on a narrative backbone structure. Unfortunately,
as many gamers are aware, complex narratives often contain
either outright flaws or more subtly undesireable game prop-
erties [Adams, 2005]. Plot holes, non-sequiturs and narrative
dead-ends are not uncommon, and difficult to avoid com-
pletely when developing a large game. A formal narrative
analysis system that can help to determine these problems
and otherwise analyse narratives is clearly desireable.

We initially draw oninteractive fiction(IF) as a source of
well-defined, complex narratives; IF is one of the oldest com-
puter game genres, and provides for interactive storytelling
at the most basic, fundamental level: in its most common
form, the player enters text commands and receives text mes-
sages as output [Montfort, 2003]. This setting allows us to
focus on “pure” narrative issues, and to separate out user in-
terface and real time, non-deterministic gameplay concerns;
it also means we are able to specifycompleterepresentations
of many games.

We use theNarrative Flow Graph(NFG) as a formal
structure for representing IF games [Verbrugge, 2002], and
provide a new interactive NFG interpreter that allows for ac-
tual IF gameplay. NFGs are themselves a class of 1-safe
Petri Nets (PNs), and thus we can exploit a wealth of avail-
able analysis research. At runtime, we feed this low level

game format to the NuSMV formal model checking software
[Cimatti et al., 2002] to determine game properties.

NFGs are appropriate for formal analysis, but a higher
level expression is required for complex game design. We
thus introduce theProgrammable NFG(PNFG) language that
accepts a high level game specification. Our language al-
lows for easy expression of game narratives, and we have
been able to produce faithful implementations of real, com-
plex IF games relatively quickly, including the complete Scott
Adams game,The Count[Adams, 1981]. We have also de-
rived IF representations for the two initial chapters ofReturn
to Zork [Barnett, 1993], a graphical point-and-click adven-
ture. The PNFG compiler produces NFGs from these narra-
tives, and we are thus able to analyse non-trivial benchmarks.
Although we find that narrative complexity soon limits the
analysis available, this is early work and a good baseline sys-
tem for future experimentation.

Together the NFG interpreter and PNFG compiler form
the (P)NFG system, and our software is freely available under
the terms of the LGPL; the authors welcome feedback, bug
reports, and source code contributions.

Contributions

Specific contributions of this work include:

• A new and formally-backed language for narrative speci-
fication. We give precise rules and structure for compila-
tion of high level narrative source code to a corresponding
low level representation that allows for narrative analysis.

• A Petri Net-based, interactive narrative interpreter and
runtime system that integrates with the NuSMV model
checker. This permits finding paths to winning and losing
states, and verifying other game properties.

• Experimental data on the representation and analysis of
small, medium-sized, and large actual interactive fiction
narratives. Real data on non-trivial game narrative struc-
ture is of great benefit to further analysis.

In the next section, we discuss related work on narrative anal-
ysis. Subsequently, we provide a definition of our NFG for-
malism, slightly extended to allow for external input and out-
put. We then give an overview of our software framework,
and in the following two sections provide full details on the
NFG interpreter and the intricacies of formal verification,and
describe the PNFG compiler and its code generation strate-
gies. Afterwards we present implementations of several nar-
ratives, and provide experimental results obtained using var-
ious size and complexity metrics and from our attempts at
verification. Finally, we conclude and discuss future work.

RELATED WORK
Flaws in narrative construction and the corresponding need
for better processes have been identified in all manner of
commercial and non-commercial games [Adams, 2005]. Di-
rected acyclic graph (DAG) representations of plotlines have
been proposed as a solution to these problems several times,
on r.a.i-f [Arnold et al., 1995], by an online IF magazine
[Forman, 1997], and by the Oz group [Mateas, 1997]. IFM,
the Interactive Fiction Mapper [Hutchings, 2004], is a tool
that facilitates map generation and plot DAG creation by end
users, and includes a solver that derives a walkthrough from
task dependencies. However, DAGs most often cannot pro-
vide a complete representation as they cannot model arbitrary
cycles or resource consumption.

Higher level narrative development frameworks have been
explored [Brooks, 1996, Charles et al., 2002, Young, 2005],
and there has also been considerable work on using logic
for modelling and analysis. The languageE provides a thor-
ough logic-based approach to describing narratives using ac-
tions [Kakas and Miller, 1997], and narratives have also been
studied as pure logic programs [Reiter, 2000]. Constraint
logic programming can be used to analyse and detect flaws
in story chronologies [Burg et al., 2000], and causal normal-
isation has been examined as a mechanism for ensuring con-
sistency in games [Eladhari, 2002].

As a general rule of thumb, all of the interesting ques-
tions about the behaviour of 1-safe Petri Nets are PSPACE-
hard [Esparza, 1998]. In order to limit the practical com-
plexity of PN analysis we use the symbolic model verifier
NuSMV [Cimatti et al., 2002], which supports a Binary De-
cision Diagram (BDD)-based backend [Bryant, 1992]. BDDs
help to collapse the state space, making feasibile the de-
termination of properties such as reachability for larger
problem instances. NuSMV has been used to model PNs
in the past [Bobbio and Horváth, 2001], techniques for en-
coding PNs efficiently using BDDs have been reported
[Pastor et al., 2001], and recently it was suggested that clever
application of brute force algorithms can be just as if not more
efficient [Ciardo, 2004].

The PNFG language we will describe allows for high-
level narrative descriptions to be compiled for use by our
PN-based NFG interpreter. Previous work in other do-
mains has also yielded methods for translation of languages
to a PN model: a formal PN semantics has been de-
fined for the Programmable Logic Controller (PLC) instruc-
tion list [Heiner and Menzel, 1998], and SynchNet compiles
distributed object coordination specifications down to PNs
[Ziaei and Agha, 2003].

This paper builds on our own previous theoretical work
defining the Narrative Flow Graph (NFG) as a formal
structure for computer narratives [Verbrugge, 2002]. Oth-
ers have also sought to represent computer narratives us-
ing Petri Nets [Natkin and Vega, 2004], introducing several
higher level control flow constructs. That work is extended
in [Vega et al., 2004] to model spatiotemporal relationships
in narratives usingconnectionsthat replace edges dynam-
ically based on transition firing patterns. Coloured PNs
have also been used to model narratives in multi-agent in-
teraction scenarios, as demonstrated through an implemen-
tation of the card trading gamePit [Purvis, 2004]. Finally,
although not considered in the specific context of com-
puter narratives, closely related work has seen PNs used to
model relationships between tasks in workflow management

[van der Aalst, 2002] and to provide a verifiable mechanism
for browsing hypertext [Stotts and Furuta, 1989].

Interactive fiction authoring kits themselves have been
a favourite of hobbyist programmers and many systems
are available. Inform [Nelson, 2001] is one of the most
popular, along with TADS [Roberts, 2005, Eve, 2005], Hugo
[Tessman, 2004], ALAN [Nilsson and Forslund, 2005],
ADRIFT [Wild, 2003], and Quest [Warren, 2004]. AIFT
is a new Prolog-based toolkit [Merritt, 2004] inspired by
previous work in using IF to teach Prolog [Merritt, 1996],
and bears relation to our work in that its rule-based syntax is
also amenable to formal verification.

FORMALISM
Narrative Flow Graphs (NFGs) are a class of 1-safe Peri
Nets (PNs) that specify some simple abbreviations and ad-
ditional markings to enforce the narrative flow, and back-
wards translation is straightforward. For the original Nar-
rative Flow Graph (NFG) formalism and its derivation from
1-safe Petri Nets (PNs) and directed hypergraphs, refer to
[Verbrugge, 2002]. Here we introduce a slightly revised but
equivalent definition of an NFG in order to build our execu-
tion model.

Definition 1 A Narrative Flow Graph(NFG) is a 6-tuple:
(S, T,M, a,w, l), whereS is a set of unconnected places and
T is a set of transitions such that eacht = (Ss, Sc, Sd) ∈ T
is connected toSs ⊆ S source places,Sc ⊆ S context places,
andSd ⊆ S destination places.M is the set of markings or
reachable states where eachm ∈ M is a unique distribution
of tokens overS, one per places. a is an identified axiom
place that connects to transitionsTinitial ⊆ T via source
edgesa→Tinitial only, andw and l are identified win and
lose places that connect to transitionsTfinal ⊆ T via des-
tination edgesTfinal→(w|l) only. The graph is initialized
to an axiom state or markingma by filling the axiom place
with a token. Transitions areenabledwhen all connected
s ∈ (Ss ∪ Sc) for a givent contain tokens, and can thus
fire, emptying eachs ∈ Ss and filling eachs ∈ Sd; tokens
are not removed from anys ∈ Sc. Firing is mutually exclu-
sive: although multiple transitions may be enabled, only one
fires at a time. The narrative thus flows fromma to either
the winning statemw or the losing stateml, via the firing of
transitions, and through some intermediate set of markings
Mi ⊆ (M \ {ma,ml,mw}).

Although NFGs as defined allow for the full semantics of
goal-oriented storytelling, the details of interactivityare un-
clear. We now extend the original definition to include input
and output connections to transitions, for use in real computer
narratives or games.

Definition 2 An Interactive NFG (NFG’) is an 8-tuple:
(S, T,M, a,w, l, I, O), whereS,T ,M ,a,w,l are defined as
before, andI and O are sets of input commands and out-
put messages respectively, such that eachi ∈ I is attached
to a single transitiont ∈ T and eacho ∈ O is attached
to any number of transitionst ∈ T . An internal transition
ti ∈ Tinternal has zero input commands and can fire as soon
as enabled, and anaction transitionta ∈ Tactions has one
or more equivalent input commands, and fires iff the system
receives a matching input string and there is no enabledti.
Both internal and action transitions may optionally have an
output messageo attached.

Thus in an NFG’, the narrative flows from axiom to win
or lose states as before, but now alternates between waiting
for input commands and firing series of transitions based on
those commands. Output messages may be produced for the
initial command or for any transition that fires as a result, as
well as for the transitions that occur betweenma and the first
idle state, i.e. during the narrative’s prologue. We now rede-
fine NFG to NFG’.

Previously, we also discussed several properties of narra-
tives that can be analysed given the formal structure of an
NFG. Among them are 1)winnabilityandlosabilityat a given
state, or the reachability ofmw andml; 2) thedistancebe-
tween two markings, or the shortest path between them; 3)
theseparationbetween two markings, or the longest acyclic
path between them; 4)pointlessness, the separation between
unwinnability and actually losing; and 5)progress, the dis-
tance between the current marking andmw. In light of Defi-
nition 2, we now redefine these terms to exclude internal tran-
sitions. In this initial attempt at verification we concern our-
selves only with winnability and losability and the paths to
these goals.

SYSTEM OVERVIEW

Figure 1:System overview.

In Figure 1, an overview of the (P)NFG system can seen.
Source narratives in.pnfg format are fed to the PNFG com-
piler and can be used to produce various outputs, including a
graphical map of game locations and their connectivity, and
low level .nfg source files. Generated or handwritten.nfg
files are then passed to the NFG interpreter which parses the
.nfg file and creates a dynamic NFG initialized to the ax-
iom state, and then accepts commands from the player until
either the winning or losing state is reached, thus forming a
playable IF game. The player can also query the interpreter
as to the possibility of winning or losing, which causes the
interpreter to construct a model of the NFG for the NuSMV
model checker. NuSMV in turn depends on a Binary Deci-
sion Diagram (BDD) solver backend to find reachability, and
ultimately a response is produced for the player.

NFG INTERPRETER

Figure 2:Example NFG transition.

An example NFG transition is shown in Figure 2. The player
is wearing the cloak (source connection) and is in the cloak-

room (context connection). The transition is enabled, since
there are tokens in all source and context places. If the
player inputs the command, “hang cloak on hook,” the tran-
sition will fire. This removes the token from “player wearing
cloak,” keeps the token in “player in cloakroom,” and creates
new tokens for the “cloak on hook” and “increment score”
destination places. Additionally, it causes the message, “You
take off the velvet cloak and hang it on the small brass hook,”
to be printed. This is anaction transition, as it requires user
input to fire. The “increment score” place connects to a sepa-
rateinternal transitionthat fires as soon as enabled and with-
out any user input.

transition {
sources = player_wearing_cloak;
contexts = player_in_cloakroom;
dests = cloak_on_hook, increment_score;
inputs = "hang cloak on hook";
output = "You take off the velvet cloak and

hang it on the small brass hook.";
}

Figure 3:Example NFG source code.

The .nfg source code for this transition is shown in Figure
3. The game specification is simple and consists of one ax-
iom state, one win state, an optional lose state, and a series
of transitions. Transitions are nameless, and new places are
defined by using a symbol for the first time. A transition may
or may not contain sources, contexts, destinations, inputs, or
an output, and invalid combinations are weeded at runtime;
for example, a transition with no sources or contexts must
specify at least one input, for otherwise it would continually
fire.

main() {

build AST from .nfg input file;
build NFG from AST;
initialize NFG to axiom state;

while (!won && !lost) {

while (some ti ∈ Tinternal enabled) {
fire ti;

}

wait for user input;

switch (input) {
case "query win":

ask NuSMV to find winning state;

case "query lose":
ask NuSMV to find losing state;

case "query moves":
print each enabled ta ∈ Tactions;

case (some enabled ta ∈ Tactions):
fire ta;

default:
"Sorry, try something else.";

}
}

}

Figure 4:NFG interpreter main().

Pseudocode for the NFG interpretermain() is shown in Fig-
ure 4. The game input file is parsed and an abstract syntax
tree (AST) constructed. A traversal over the AST is used to
build the NFG, and it is initialized to its axiom state. Then an

event loop is entered, which iterates until either the game is
won or lost. Inside the loop, first all enabledti ∈ Tinternal

are fired, and this continues until an idle state is reached;
the firing of one internal transition will commonly lead to
the enabling of another. Once idle, a prompt is displayed,
and the player can input a command. Entering “query win”
will build a model for NuSMV with the invariant specifica-
tion being that a winning state is not reachable; if NuSMV
can find a counterexample it prints a trace, and a sequence
of firing action transitions is extracted. The corresponding
input commands are enumerated, thus presenting the player
with a minimal winning solution. If no counterexample ex-
ists, the player is informed that winning is impossible. Sim-
ilarly, “query lose” will either produce a losing solution,or
inform the player that losing is impossible. Entering “query
moves” does not invoke the verifier, and simply prints out
input strings for each enabledta ∈ Tactions. If the player
does not enter a query but an actual command, it is matched
against an enabledta if possible and the transition is fired,
otherwise a default “unrecognized command” error message
is printed.

The key cost in creating the model for NuSMV, and in-
deed for any BDD-based verifier, is the number of boolean
variables. Näıvely, places require one boolean each, but
we use a token-based encoding in which we identify mul-
tiple disjoint Smutex ⊆ S where eachSmutex has a max-
imum of one token. Thus the cost for aSmutex becomes
dlog

2
(|Smutex| + 1)e or dlog

2
|Smutex|e BDD booleans, de-

pending on whether or not the set can have zero tokens. This
token-based encoding becomes tedious and error-prone to do
manually for large models, and we exploit the high level in-
formation available in the PNFG compiler to derive it auto-
matically.

PNFG LANGUAGE AND COMPILER

For complex narratives, directly programming NFGs is im-
practical. The low level nature of NFGs can result in a large,
intricate graph structure, and there is often significant code
redundancy that becomes tiresome to manage, e.g. allowing
multiple objects to be picked up and dropped in multiple lo-
cations. The size and unstructured complexity of the NFG
graph can also be a challenge for efficient narrative analysis,
and in general benefits from a higher level organisation.

The Programmable NFG(PNFG) format is a high level
language designed to allow for easy narrative expression
while maintaining a direct, efficient, and structured transla-
tion to an underlying NFG. Its syntax is close to those of
standard IF toolkits, albeit with less features. A basic PNFG
program structures the narrative intoobjectandroomdecla-
rations forming the core game data, and variousactiondecla-
rations implementing the game logic. Objects and rooms can
contain state, counter, and timer variables, and action execu-
tions themselves are composed of sequences of commands
that test, set, and act on game data. Below we discuss how
data components are formed and mapped onto NFG struc-
tures, followed by the execution semantics and syntax.

Game Data

The PNFG language provides a simple, static structure for
narrative game data. Concepts we now present, such as ob-
jects, rooms, state and counters are core to interactive fiction
and, as we will show later, accommodate even quite complex
game narratives.

Objects & Rooms
In a typical narrative game the player interacts with numer-
ous gameobjects.An example PNFG declaration of a game
object is given in Figure 5. This declaration results in a single
in-game object referred to at runtime and compile-time by the
name, “cloak .”

object cloak { }

Figure 5:A simple object declaration.

A further basic IF design idiom is provided byroomdeclara-
tions, and an example is shown in Figure 6. In a typical nar-
rative, rooms are the different, discrete locations where the
player and other objects can be located. In practice, rooms
are merely objects that also act as containers for other ob-
jects, and in fact a player with an inventory is also modeled
by a room declaration.

A strict containment hierarchy is implied by the use of
rooms. An object may only be in one room at a time, and
must also must be contained in some room. A special, prede-
finedoffscreen room with no parent container operates as
a base case and initial location for all game objects.

In order to model object containment, two NFG nodes are
generated for each object in each possible location. For an
object A and room B a node meaning “A is in B” and a node
“A is not in B” are created. Use of these nodes is subject to the
strict containment property, and all transformations guarantee
that when the node for “A is in B” is active all other nodes “A
in C”, “A in D” and so on are inactive. This allows us to
specify anSmutex for each (object, room) pair containing the
“object in room” and “object not in room” nodes.

Alternatively, at the expense of extra transitions, we can
generate NFGs without these “not nodes”, and then use the
strict containment hierarchy to identify much largerSmutex’s
such that the cost of each game object isdlog

2
|R|e instead of

|R| boolean variables, whereR is the set of rooms.

States
Rooms and objects already provide for a simple form of inter-
action in moving objects from one place to another, and test-
ing for containment.Statedeclarations within rooms and ob-
jects enable the user to define other, observable binary prop-
erties. Figure 6 shows a declaration for a closet which may
or may not be lit, and which may or may not be locked.

room closet {
state {lit,locked }

}

Figure 6:A room with 2 declared binary states.

In the NFG output graph, each state variable (for each defin-
ing object) is translated to two nodes, one for each possible
value (true or false) that each state variable can have. For
Figure 6, four nodes would be generated,-closet.lit ,
+closet.lit , -closet.locked , and+closet.locked .
Pairs of nodes for a particular object and state, like the con-
tainment relation, maintain a mutual exclusion property and
guarantee that exactly one will be active at any one time.

Special state nodes are used to represent winning and los-
ing a game. The built-in objectgame has stateswin and
lose , with the true (+) value of each of those states corre-
sponding to the required NFG win and lose nodes.

Counters and Timers
Countersare used to represent countable properties of rooms
or objects, and an example is shown in Figure 7. Counters
behave as state variables that can be set, incremented, and
decremented to any value in a defined range, and which can
also be tested against an arbitrary constant.

room you {
counter {lives 0 3 }

}

Figure 7:A counter definition for the inclusive range 0..3.

In principle, a finite bounded counter can be implemented us-
ing just object state declarations and operations. In our cur-
rent NFG output, we eliminate the “not nodes” needed in such
a solution by generating simple unary counters with a single
state node for each potential counter value. More efficient bi-
nary counter representations and operations are intended for
future work; however, as far as verification is concerned, here
the cost of a counter isdlog

2
|C|e rather than|C| boolean vari-

ables, whereC is the set of mutually exclusive counter places.
Counters require programmer code to modify their value.

Timersare merely special counters which get automatically
incremented after every user action is executed.

Execution and Actions

Execution of basic interactive fiction or turn-based adventure
narratives consists of first an initialisation or prologue,and
then a cycle of listening and responding to user commands,
and executing any automatic, internal actions, followed bya
finalisation or epilogue [Montfort, 2003]. An equivalent NFG
structure is produced by the PNFG compiler, and is shown in
Figure 8.

Figure 8: The general NFG structure for a PNFG program.The
entry points for the main phases of execution are initialisation, user
commands, user threads, timers, and finalisation.

A start node is the only initially active node; it leads to a
series of initialisation activities, terminating at the main idle
node. At this point user input is processed, activating one of
the corresponding stream of actions. This will either termi-
nate in a game win or loss, or eventually pass control to both
internal and user-definedthreads,or automatically executed
sequences of instructions. Threads pass control from one to
the other, and a special system thread is used to perform auto-
matic timer updates. Finally, control returns to the idle node
for another round of user input.

Actual actions consist of sequences of PNFG statements
following a conventional procedural language structure. Fig-
ure 9 shows a code fragment for a “take all” command in
one of the example narratives,The Count. Sets of rooms and

game items are first defined; the room containing the player
(you) is then determined, and all game items are considered.
If an item is in the same room asyou , then if you are not
overloaded it is moved intoyou (your inventory), and the
number of items you are carrying is increased by one. If you
have reached full carrying capacity, a message to that effect
is emitted instead of taking the object.

01 (you,take,all) {
02 places = {hall, kitchen, bedroom, ... }
03 stuff = {sheet, pillow, stake, ... }
04 places $p;
05 if ($p contains you) {
06 for (stuff $s) {
07 if ($p contains $s) {
08 if (you.overloaded) {
09 "You are carrying too much.";
10 } else {
11 move $s from $p to you;
12 you.carried++;
13 -?you.empty;
14 if (you.carried==7) {
15 +you.overloaded;
16 } } } } } }

Figure 9:A sequence of PNFG statements corresponding to a “take
all” command.Statements are referred to by number in the text.

Individual actions are sequenced in the NFG using a series
of contextnodes, schematically shown in Figure 10. Each
action requires a unique context node as input, and must pro-
duce a unique context node on output. Context node activa-
tion defines and follows the runtime control flow, and is used
to provide the PNFG execution semantics that is not other-
wise guaranteed by the underlying NFGs or Petri Nets. Note
that contextedgesbetween nodes and transitions are differ-
ent: they indicate that the token is not to be removed when
the transition fires.

Figure 10:NFG structure for a sequence of statements.

Statements
Basic PNFG statements are designed to allow easy narra-
tive game expression while ensuring a well-defined, feasible
translation to NFGs. Figure 9 illustrates the most fundamen-
tal operations, which are surprisingly few. Below we briefly
describe each along with its translation to NFGs.

• Output.Standard text output is performed by declaring a
constant string, as shown in statement 09. The NFG for-
mulation then consists of a single edge from input to out-
put contexts, annotated to inform the NFG interpreter to
emit the specified string. These strings are sent verbatim

to the console, although they could also provide canonical
input to a more sophisticated output layer.

• Move. Basic object movement is shown in statement 11.
Here one of the game items in thestuff set declaration,
identified by the variable$s and found to be in the same
room ($p) asyou , is moved from$p to you . NFG code
for a move operation is shown schematically in Figure 11,
and consists of toggling the active object-location nodes
appropriately.

Figure 11:NFG structure for statement, “move x from y to z ”.

• Set.There are several ways to change state variables. In
statement 15 theyou.overloaded state is set to true;
this is a blind operation that assumes the state is now false,
and will cause control flow to stall if not. If the current
state is uncertain, asafeset operation changes the state
variable if it is not in the desired state already; an exam-
ple safely settingyou.empty to false is shown in state-
ment 13. Atoggleoperation flips the state; these three
variations are shown as NFG schemata in Figure 12.

• Counters. Operations on counters include increment-
ing and decrementing by a constant value; statement 12
shows a simple increment-by-1 of a counter, and state-
ment 14 shows the use of counters in conditional tests. A
schematic unary NFG representation for a counter update
is shown in Figure 13. In general, addition or subtrac-
tion of a constantc from a counter that can assumer val-
ues generatesr transitions, each trying to shift the active
value node byc. End nodes must contend with potential
over/underflow; here the decrement operator becomes the
identity operator at the minimum counter value. More ef-
ficient math operations are left to future work.

Figure 13: NFG structure for a counter decrement statement,
“ you.lives-- ”.

• If. Conditional tests are allowed on containment, state and
counter/timer values. Statement 05 for instance branches
on whether the player is contained in any of the rooms
in the places set. The NFG schema for simple if-
statements is shown in Figure 14. Note that if-statements
introduce distinct subsequences of statements on both the
true and false branches; control flow (context activation)

enters only one side, and merges with the other side to
form a common output context.

Figure 14:NFG structure for a statement, “if (x contains y)
{... } else {... }”. Negative containment tests (“x !contains
y”) and positive/negative state tests are structurally identical.

• Variables & Sets. Most operations accept object/room
specifiers to besetsas well as specific objects; this re-
duces PNFG source code redundancy. For example, state-
ment 02 declares a set calledplaces consisting of the
hall , kitchen , bedroom and so on. Statement 04 then
declares an element of that set, abstractly represented as
$p. This variable will induce replication of statements us-
ing $p; the if-statement of line 05, for instance, represents
a collection of conditional tests and bodies, one for each
object in theplaces set. The NFG schema for variable
usage is shown in Figure 15. The code of lines 06–16 is
replicated with the tests, each replica having$p bound to
a distinct specific room. This can be optimised to elim-
inate redundancy by redirecting control flow to common
subnet structures if replicas contain sequences of identical
actions.

Figure 15: Using variables.NFG structure for a statement, “if
($x contains y) ... ” where “$x ” is an element of the set
“{a,b }”. Branch bodies and the following merge are not shown.

• For. A further use of sets is demonstrated on line 06. In
contrast to an if-statement, which executes just one in-
stance of its body even in the presence of set variables, a
for-statement executes its body for all possible instantia-
tions of the set variable. A for-statement is trivially ex-
pressed as a sequence of body executions, each with the
set variable substituted by a different set element.

Actions and Threads
Commands and statements as described above can be exe-
cuted during initialisation, as a response to user input, ordue

Figure 12:NFG structure for the 3 main variations of the set statement.Similar operations are defined for-x.y and-?x,y .

to automatic processes calledthreads. Figure 8 shows the
general relationship between these three structures; herewe
describe how user actions and threads are defined.

User commands are specified assuming a simplified,
canonical language as input. Actions are prefaced by either
a (subject,verb) or (subject,verb,object) declaration; when in-
put matching the user command declaration is received, the
corresponding sequence of PNFG commands is executed.
Currently the subject is always assumed to be “you ” and
ignored during NFG generation. A further syntactic conve-
nience is provided by allowing action declarations to be de-
fined within a room declaration as opposed to globally: this
causes the action to be enabled only if the subject is in the en-
closing room. Using this feature it is easy to encode the game
map through room specific movement commands, as shown
in Figure 16.

room lighthousefront {
(you,go,north) {

"You are now on the mountain pass.";
move you from lighthousefront to

mountainpass;
}
(you,go,east) {

"You are now behind the lighthouse.";
move you from lighthousefront to

lighthouseback;
}
...

}

Figure 16: Room-specific actions.These actions shadow global
actions with the same user command specification, while the subject
(you) is in the declared room.

thread (bomb.active) {
if (bomb.ticksLeft==0) {

"bang!";
+game.lose;

}
bomb.ticksLeft--;

}

Figure 17:A conditional thread declaration.This thread only exe-
cutes when the statebomb.active is true.

Threads are meant to automate actions that must be done each
turn; these would otherwise have to be executed explicitly
and redundantly at the end of each action. In the PNFG lan-
guage threads can either execute unconditionally, or can be
predicated on a conditional test, and thus act as “triggered”
events. A thread modeling a timer countdown is shown in
Figure 17.

In the following section we describe our experience in
implementing and analysing several interactive fiction narra-
tives expressed in our system.

EXPERIMENTAL RESULTS

Experimentation with our system at this point is largely
focused on ensuring reasonable expressiveness, although
we also present some preliminary work on automatic ver-
ification. We have selected one simple narrative, two
medium-sized story chapters, and one complete and rel-
atively large narrative for our investigations. Below we
briefly present basic narrative properties and discuss rele-
vant expression and verification concerns. Maps were gen-
erated by using the PNFG compiler to find actions that
move you between rooms, and laid out using the tooldot
[Gansner and North, 1999].

1) Cloak of Darkness(CoD), is a tiny game that was origi-
nally designed to demonstrate the syntax of various IF toolk-
its to new authors [Firth, 1999]. At the same time it pro-
vides a simple sanity check for the most ubiquitous features
of IF. While there are only three rooms and three game ob-
jects, it includes basic object and room interaction, multiple
commands, non-local effects, object state, and (small, finite)
counting; an overview map of the game is shown in Figure
18. Expression in our system is straightforward, and data on
three variations of it are given in columns 1–3 of Table 1.

Figure 18:Map for Cloak of Darkness.

In Cloak of Darkness, the player moves between the foyer,
cloakroom, and bar by issuing standard movement com-
mands such as “go east” and “go south”. The player starts off
wearing a cloak, and as long as it is worn, the bar is obscured
by darkness; the player can hang up his cloak on the brass
hook in the cloakroom to bring light to the bar and score one
point. If the player attempts any non-movement action or an
invalid movement action whilst in the darkened bar, a warn-
ing message is printed and a counter is incremented. Once
the player has lit the bar, it is possible to read a message in
the dust on the floor. If the counter has been incremented past
some predefined limit, it reads, “You have lost!”, otherwiseit
reads, “You have won!” and the player’s score goes up by
another point. In either case the game ends immediately.

We first implementedCloak of Darknessas an NFG, and
in the absence of a parser mapped multiple variations of a
command to a single action transition. We chained sequences
of output messages and internal transitions together by hav-
ing a destination of the first transition be a source of the sec-
ond, much as context nodes order statements in NFGs gen-
erated by the PNFG compiler. We found it was necessary to
duplicate a fair amount of code, and that accounting for all

possibilities was error-prone. Even after extensive playtest-
ing, NuSMV was still able to detect a subtle flaw in our im-
plementation: the player could win simply by entering “read
message” twice in the foyer at the beginning of the game.
The advantage of writing IF at such a low level is that the
author has direct control over the evolution of the game state;
however, it is somewhat like writing in an assembly language
and this soons becomes tedious. These usability factors moti-
vated us to develop the higher-level PNFG representation. In
Table 1, “CoD (full)” is more robust and “CoD (tiny)” is very
minimal, retaining only the essential semantics.

Table 1: Basic data on example narratives.The number of BDD
booleans is

P

dlog
2
|Smutex(i)|e, or the sum of the logarithms of

disjoint place sets that maintain a mutual exclusion property, such
that there is a maximum of one token in the set at any time. The cost
of verification derives from the number of BDD booleans and tran-
sitions. All .pnfg narratives were compiled without “not nodes”.
property CoD CoD CoD RTZ-1 RTZ-1 RTZ-2 Count Count

(tiny) (full) (full) (tiny) (full) (full) (tiny) (full)
source .nfg .nfg .pnfg .pnfg .pnfg .pnfg .pnfg .pnfg
rooms 3 3 4 8 10 21 4 22
objects 3 3 1 7 19 36 3 29
PNFG lines – – 544 347 596 1133 244 2162
places 21 69 303 366 1275 1876 272 15378
transitions 45 167 462 850 3341 8030 459 82371
BDD booleans 21 69 27 42 98 117 30 212
verifiable yes yes yes yes no no yes no
steps to win 5 6 6 5 6 22 5 180

The PNFG version is structured somewhat differently
from the hand coded NFG versions. Here only the cloak is
defined as a PNFG object, and the other two immobile objects
are encoded through state variables and messages. An extra
room is also used to encode the player’s inventory (“you ”).
The resulting NFG is about three to four times as large as
the hand coded version, illustrating the relative cost of a high
level structure and our current, quite naı̈ve code generation
strategies. However, due to high level knowledge about mu-
tually exclusive places, we were actually able to generate a
moreefficient model for verification that used fewer boolean
variables.

Figure 19:Map for Return to Zork, chapter 1.

2) Return to Zork(RTZ) [Barnett, 1993] is a large and com-
plex graphical adventure, set in the same world as its pio-
neering IF ancestorZork [Lebling et al., 1979]. We chose to
translate this game to PNFG source code for two reasons.
First, we wanted to demonstrate the ability of our system to
model narratives that are not strictly text-based, and second,
the representation of RTZ is greatly aided by the fact that it
can be divided into specific chapters [Spear, 1994].

In columns 4–6 of Table 1 we show data on the first two
chapters of RTZ, and in Figures 19 and 20 we show the cor-

Figure 20:Map for Return to Zork, chapter 2.

responding maps. We also include a tiny variant of Chapter
1 that lacks many interactions, but that will verify due to the
fewer BDD booleans and transitions. The full versions of
the chapters still exceed the current capacity of our analyser;
however, chapter sizes are in general within an order of mag-
nitude of the size of a small, analysable narrative like CoD.
A chapter-based division may thus be sufficient, as well as
perhaps necessary for practical narrative analysis.

Figure 21:Map for the full version of The Count.Not shown is that
the sleep command, as well as an automatic timeout at nightfall
will return you to the bed from any room.

3) The Count[Adams, 1981] is one of the original Scott
Adams adventure games, a great source of classic IF narra-
tives. This game is smaller than the sum of the RTZ chapters,
but at least as complex in terms of narrative structure. Here
we have implemented both a partial test of the initial 4 game
rooms and 3 objects (column 7), and the full version with 22
rooms and 29 objects, which includes multiple timers, coun-
ters, and user threads (column 8). The map for the full ver-
sion is shown in Figure 21. The minimal solution depth for
the full version is 1–2 orders of magnitude longer than those
of our other narratives, giving a further indication of relative
complexity.

The Countpossesses a number of properties of interest to
verification. At several points progress can becomepointless,
owing to loss of an essential item (e.g., the stake, cigarette)
or expiration of different time limits. There are also a num-
ber of subtle story logic flaws, such as a locked closet that
can be used to prevents the antagonist’s access to some ob-
jects (the stake) but not others (the sheet). The latter problem
is highly game specific, but in general, custom verification
queries could be used within our system to check important
aspects of narrative consistency.

As a complete and non-trivial gameThe Countprovides a
good benchmark goal for our system. At this stage it is much
too large to analyse formally; however it gives a good indica-
tion as to the scale of a realistic problem space. Segmenting
the narrative into separately analyseable portions may reduce
the complexity, and an automatic system for doing so is part
of our future work.

CONCLUSIONS & FUTURE WORK

The complexity of the structures generated for our larger nar-
ratives implies a need to significantly improve the process of
verification. Use of chapters and other narrative decompo-
sitions can certainly help, as seen forReturn to Zork, and
exploring different verification strategies and Petri Net en-
codings can greatly affect the analysis cost. For example, the
elimination of “not nodes” from our original design reduced
the number of BDD booleans required forThe Countfrom
890 to 212, although the number of transitions roughly dou-
bled. Another strategy that appears quite promising is iden-
tification of individual puzzles, or groups of strongly related
tasks and state variables, followed by construction of more
modular, hierarchical Petri Net models.

An advantage of our system is that we can exploit the high-
level PNFG structure during verification, and in general the
complete PNFG→NFG→NuSMV path provides many op-
portunities for optimisation. It will also be interesting to anal-
yse other properties besides winnability and losability, such
as pointlessness, and to be able to provide the player with
answers to questions such as, “How do I get this door un-
locked?”

As far as usability of the system is concerned, we have not
conducted any kind of user study outside of our own narra-
tive development. Our system is a prototype design, and does
not support many advanced programming features provided
by other IF toolkits, such as object orientation, inline VM
assembly, and animated graphics, or their robust standard li-
braries that enable parser customization, multiple world mod-
els, and NPC interaction. However, in terms of the features
that (P)NFG does currently support, we find it to be compa-
rably usable.

Furthermore, interoperability with other IF toolkits is an
important goal. In this study we have translated narratives
by hand to get them into our input format; a direct, auto-
matic translation of game specifications, however, would al-
low us to more efficiently examine a much larger body of
works [Kinder et al., 2005]. Of course, the complex syntax
and details of different language specifications make this a
non-trivial technical challenge.

Our system is playable as interactive fiction, but quite min-
imal. Adding natural language processing, a staple of most
IF environments, would certainly make game play more true
to the genre. This would be conceptually straightforward to
add as a component that generates and reacts to our canonical
input and output. Arbitrary forms of I/O could be connected
similarly, allowing many multimedia effects, and expansion
into other turn-based genres.

Narratives are a basic and ubiquitous component of com-
puter games, and writing complex and error-free computer
narratives is a difficult task that affects many genres, not only
interactive fiction. Modern games are large, intricate soft-
ware programs, and formal approaches and analyses stand to
benefit both developers and players. The (P)NFG language,
compiler, and runtime system provides a formal structure for

narrative analysis, and helps move the burden of narrative de-
bugging away from the play tester and into software tools.

ACKNOWLEDGEMENTS

We would like to thank Alessandro Cimatti for his help with
NuSMV. This research was funded by NSERC and FQRNT.

REFERENCES

[Adams, 2005] Adams, E. (1998–2005). The designer’s
notebook: Bad game designer, no twinkie! parts I–VI.
http://www.gamasutra.com .

[Adams, 1981] Adams, S. (1981). The Count. Adventure
International.http://www.msadams.com .

[Arnold et al., 1995] Arnold, J., Baggett, D., Clements, M.,
Russoto, M. T., Newland, J., Plotkin, A. C., and Shiovitz,
D. (1995). Game design in general. Discussion thread in
rec.arts.int-fiction archives.

[Barnett, 1993] Barnett, D. (1993). Return to Zork. Activi-
sion Publishing, Inc.

[Bobbio and Horv́ath, 2001] Bobbio, A. and Horváth, A.
(2001). Model checking time petri nets using NuSMV.
In Proceedings of the 5th International Workshop on Per-
formability Modeling of Computer and Communication
System (PMCC’05), Erlangen, Germany. Extended ab-
stract.

[Brooks, 1996] Brooks, K. M. (1996). Do story agents use
rocking chairs? The theory and implementation of one
model for computational narrative. InProceedings of
the fourth ACM International Conference on Multimedia,
pages 317–328, Boston, Massachusetts.

[Bryant, 1992] Bryant, R. E. (1992). Symbolic boolean ma-
nipulation with ordered binary-decision diagrams.ACM
Comput. Surv., 24(3):293–318.

[Burg et al., 2000] Burg, J., Boyle, A., and Lang, S.-D.
(2000). Using constraint logic programming to analyze
the chronology in “A rose for Emily”.Computers and the
Humanities, 34(4):377–392.

[Charles et al., 2002] Charles, F., Mead, S. J., and Cavazza,
M. (2002). Generating dynamic storylines through char-
acters’ interactions.International Journal of Intelligent
Games & Simulation, 1(1):5–11.

[Ciardo, 2004] Ciardo, G. (2004). Reachability set genera-
tion for petri nets: Can brute force be smart? InProceed-
ings of Applications and Theory of Petri Nets 2004: 25th
International Conference (ICATPN’04), volume 3099 of
LNCS, pages 17–34, Bologna, Italy. Springer-Verlag.

[Cimatti et al., 2002] Cimatti, A., Clarke, E., Giunchiglia,
E., Giunchiglia, F., Pistore, M., Roveri, M., Sebastiani,
R., and Tacchella, A. (2002). NuSMV version 2: An
opensource tool for symbolic model checking. InProc.
International Conference on Computer-Aided Verification
(CAV 2002), volume 2404 ofLNCS, pages 359–364,
Copenhagen, Denmark. Springer-Verlag.

[Eladhari, 2002] Eladhari, M. (2002). Object oriented story
construction in story driven computer games. Master’s
thesis, Stockholm University.

[Esparza, 1998] Esparza, J. (1998). Decidability and com-
plexity of petri net problems—an introduction. InLec-
tures on Petri Nets I: Basic Models, volume 1491 ofLNCS,
pages 374–428. Springer-Verlag.

[Eve, 2005] Eve, E. (2005).Getting Started in TADS 3: A
Beginner’s Guide, version 3.0.8. http://tads.org .

[Firth, 1999] Firth, R. (1999). Cloak of darkness.http:
//www.firthworks.com/roger/cloak/ .

[Forman, 1997] Forman, C. E. (1997). Game design at the
drawing board.XYZZY News, 4:5–11.

[Gansner and North, 1999] Gansner, E. R. and North, S. C.
(1999). An open graph visualization system and its appli-
cations to software engineering.Software—Practice and
Experience, 30(11):1203–1233.

[Heiner and Menzel, 1998] Heiner, M. and Menzel, T.
(1998). A petri net semantics for the PLC language in-
struction list. In Proceedings of the Fourth Workshop
on Discrete Event Systems (WoDES ‘98), pages 161–172,
Cagliari, Italy.

[Hutchings, 2004] Hutchings, G. (2004).IFM: Interactive
Fiction Mapper, version 5.1 manual. http://www.
sentex.net/˜dchapes/ifm/ .

[Kakas and Miller, 1997] Kakas, A. C. and Miller, R.
(1997). A simple declarative language for describing nar-
ratives with actions.Journal of Logic Programming, 31(1-
3):157–200.

[Kinder et al., 2005] Kinder, D., Granade, S., Blasius, V.,
and Baggett, D. M. (2005). The interactive fiction archive.
http://www.ifarchive.org .

[Lebling et al., 1979] Lebling, P. D., Blank, M. S., and An-
derson, T. A. (1979). Zork: A computerized fantasy sim-
ulation game.IEEE Computer, 12(4):51–59.

[Mateas, 1997] Mateas, M. (1997). An Oz-centric review of
interactive drama and believable agents. Technical Report
CMU-CS-97-156, School of Computer Science, Carnegie
Mellon University.

[Merritt, 1996] Merritt, D. (1996). Adventure in Prolog.
Amzi! Inc., 5861 Greentree Road, Lebanon, Ohio 45036
USA.

[Merritt, 2004] Merritt, D. (2004). AIFT: Amzi! Interac-
tive Fiction Toolkit. http://www.ainewsletter.
com/downloads/if_docs/ .

[Montfort, 2003] Montfort, N. (2003). Twisty Little Pas-
sages. The MIT Press.

[Natkin and Vega, 2004] Natkin, S. and Vega, L. (2004).
A petri net model for computer games analysis.In-
ternational Journal of Intelligent Games & Simulation,
3(1):37–44.

[Nelson, 2001] Nelson, G. (2001).The Inform Designer’s
Manual. The Interactive Fiction Library, PO Box 3304, St
Charles, Illinois 60174, USA, 4th edition.

[Nilsson and Forslund, 2005] Nilsson, T. and Forslund, G.
(2005).The ALAN Adventure Language, version 3.0dev36
manual. http://www.alanif.se .

[Pastor et al., 2001] Pastor, E., Cortadella, J., and Roig, O.

(2001). Symbolic analysis of bounded petri nets.IEEE
Transactions on Computers, 50(5):432–448.

[Purvis, 2004] Purvis, M. K. (2004). Narrative structures for
multi-agent interaction. In2004 IEEE/WIC/ACM Inter-
national Conference on Intelligent Agent Technology (IAT
2004), pages 232–238, Beijing, China. IEEE Computer
Society.

[Reiter, 2000] Reiter, R. (2000). Narratives as programs. In
Cohn, A. G., Giunchiglia, F., and Selman, B., editors,
KR2000: Principles of Knowledge Representation and
Reasoning, pages 99–108, San Francisco. Morgan Kauf-
mann.

[Roberts, 2005] Roberts, M. J. (1987–2005). TADS: The
Text Adventure Development System.http://tads.
org .

[Spear, 1994] Spear, P. (1994).Return to Zork - The Official
Guide to the Great Underground Empire. BradyGames.

[Stotts and Furuta, 1989] Stotts, P. D. and Furuta, R. (1989).
Petri-net-based hypertext: document structure with brows-
ing semantics.ACM Transactions on Information Systems
(TOIS), 7(1):3–29.

[Tessman, 2004] Tessman, K. (2004).The Hugo Book—
Hugo: An Interactive Fiction Design System. The General
Coffee Company Film Productions, Toronto, Canada, 1st
edition. http://www.generalcoffee.com .

[van der Aalst, 2002] van der Aalst, W. (2002).Workflow
Management: Models, Methods, and Systems (Coopera-
tive Information Systems). The MIT Press.

[Vega et al., 2004] Vega, L., Grünvogel, S. M., and Natkin,
S. (2004). A new methodology for spatiotemporal game
design. InProceedings of the CGAIDE’2004, Fifth Game-
On International Conference on Computer Games: Artifi-
cial Intelligence, Design and Education, pages 109–113.

[Verbrugge, 2002] Verbrugge, C. (2002). A structure for
modern computer narratives. InCG’2002: International
Conference on Computers and Games, volume 2883 of
LNCS, pages 308–325.

[Warren, 2004] Warren, A. (2004).Quest Documentation,
version 3.51. Axe Software. http://www.axeuk.
com/quest/ .

[Wild, 2003] Wild, C. (2003).ADRIFT: Adventure Develop-
ment & Runner—Interactive Fiction Toolkit, version 4.0
manual. http://www.adrift.org.uk .

[Young, 2005] Young, R. M. (2005). Cognitive and compu-
tational models in interactive narrative. In Forsythe, C.,
Bernard, M. L., and Goldsmith, T. E., editors,Cognitive
Systems: Human Cognitive Models in Systems Design.
Lawrence Erlbaum. To appear.

[Ziaei and Agha, 2003] Ziaei, R. and Agha, G. (2003).
SynchNet: A petri net based coordination language for
distributed objects. InGPCE ’03: Proceedings of the sec-
ond international conference on Generative programming
and component engineering, volume 2830 ofLNCS, pages
324–343.

