
SableSpMT: A Software Framework for Analysing
Speculative Multithreading in Java

Christopher J.F. Pickett and Clark Verbrugge
School of Computer Science, McGill University

Montréal, Québec, Canada H3A 2A7
{cpicke,clump}@sable.mcgill.ca

September 6th, 2005



Outline

1 Introduction

2 Framework

3 Experimental Analysis

4 Conclusions & Future Work



Motivation

Speculative Multithreading (SpMT) is a dynamic parallelisation
technique that shows good potential speedup.

Current status: SpMT hardware does not exist, and software
SpMT has focused on loops in numeric programs.

How do we know what features to incorporate?
Can generic SpMT be done entirely in software?
Is it really worth building this hardware?

Many different studies, with many variables:

Source language, thread partitioning scheme, compiler framework,
hardware simulator, simulation parameters, software architecture.

Difficult to analyse and compare proposals.



Contributions

SableSpMT: software SpMT implementation in JVM

Runs on real multiprocessors
Suitable as an analysis framework
First complete such work, handles SPECjvm98 at S100

Provide several debugging and analysis features.

Demonstrate exploitation of static and dynamic info.

Runtime evaluation:

Overhead costs
Two parallelism metrics
Performance



Outline

1 Introduction

2 Framework

3 Experimental Analysis

4 Conclusions & Future Work



Speculative Method Level Parallelism (SMLP)



SableSpMT Execution Environment



SpMT Execution Components

Numerous software SpMT components needed:

Dependence buffer
Stack buffer
Return value predictors
Helper threads
Priority queue
Modified bytecodes

Interaction with existing VM services:

Class loading
Object allocation
Garbage collection
Exception handling
Native methods
Synchronization
Java memory model



Multithreaded Mode



Single-threaded Simulation Mode



Outline

1 Introduction

2 Framework

3 Experimental Analysis

4 Conclusions & Future Work



Example Component Analysis: RVP

Framework components:

Analyse individually and in detail
Instrument and extend to accomodate new analyses

Return value prediction (RVP) is critical for SMLP.

We implemented software versions of many hardware predictors.

Existing stride, context predictors in hybrid: 72% accuracy
New memoization predictor added to hybrid: 81% accuracy

Many RVP configuration properties can be varied: e.g. per-callsite
(min, max) hashtable sizes, load factors, enabled predictors.

Easy to introduce new predictors.



Example Component Analysis: RVP

Two neat analysis results:

1 Context and memoization predictors behave quite differently, but
hybrid allows them to complement each other.

2 Memory requirements of table-based predictors:

Large context table: callsite produces highly variable data
Large memoization table: callsite consumes highly variable data

Finally, runtime profiling is used to improve accuracy and reduce
memory requirements.

C.J.F. Pickett and C. Verbrugge. Return value prediction in a Java virtual machine. Second

Value-Prediction and Value-Based Optimization Workshop (VPW2) at ASPLOS XI, Boston,

MA, Oct. 2004.



Static Analysis Integration



Static Analysis Integration

Return Value Use (RVU):

unconsumed inaccurate

static 10% 21%

dynamic 3% 14%

predictor accuracy: gain up to 7%
predictor memory: save 3%

Parameter Dependence (PD):

zero dependences partial dependences

static 25% 23%

dynamic 7% 3%

memoization accuracy: gain up to 13%
predictor memory: save 2%



Overall System Behaviour

Speculation overhead:



Non-speculative Thread Overhead

parent execution comp db jack javac jess mpeg mtrt rt

USEFUL WORK 39% 24% 29% 30% 21% 59% 49% 58%

initialize child 2% 5% 3% 4% 4% 2% 1% 2%

enqueue child 4% 10% 10% 9% 7% 3% 2% 2%

TOTAL FORK 6% 15% 13% 13% 11% 5% 3% 4%

update predictor 7% 13% 12% 11% 12% 6% 7% 7%

delete child 5% 5% 5% 4% 5% 2% 2% 2%

signal and wait 15% 14% 11% 11% 19% 8% 26% 11%

validate prediction 4% 4% 4% 5% 7% 3% 2% 3%

validate buffer 4% 6% 6% 5% 5% 3% 1% 2%

commit child 5% 5% 7% 6% 6% 3% 2% 3%

abort child <1% <1% <1% <1% <1% <1% <1% <1%

clean up child <1% <1% <1% <1% <1% <1% <1% <1%

profiling 11% 10% 10% 12% 11% 7% 5% 6%

TOTAL JOIN 53% 59% 57% 56% 67% 34% 47% 36%

PROFILING 2% 2% 1% 1% 1% 2% 1% 2%



Non-speculative Thread Overhead

parent execution comp db jack javac jess mpeg mtrt rt

USEFUL WORK 39% 24% 29% 30% 21% 59% 49% 58%

initialize child 2% 5% 3% 4% 4% 2% 1% 2%

enqueue child 4% 10% 10% 9% 7% 3% 2% 2%

TOTAL FORK 6% 15% 13% 13% 11% 5% 3% 4%

update predictor 7% 13% 12% 11% 12% 6% 7% 7%

delete child 5% 5% 5% 4% 5% 2% 2% 2%

signal and wait 15% 14% 11% 11% 19% 8% 26% 11%

validate prediction 4% 4% 4% 5% 7% 3% 2% 3%

validate buffer 4% 6% 6% 5% 5% 3% 1% 2%

commit child 5% 5% 7% 6% 6% 3% 2% 3%

abort child <1% <1% <1% <1% <1% <1% <1% <1%

clean up child <1% <1% <1% <1% <1% <1% <1% <1%

profiling 11% 10% 10% 12% 11% 7% 5% 6%

TOTAL JOIN 53% 59% 57% 56% 67% 34% 47% 36%

PROFILING 2% 2% 1% 1% 1% 2% 1% 2%



Non-speculative Thread Overhead

parent execution comp db jack javac jess mpeg mtrt rt

USEFUL WORK 39% 24% 29% 30% 21% 59% 49% 58%

initialize child 2% 5% 3% 4% 4% 2% 1% 2%

enqueue child 4% 10% 10% 9% 7% 3% 2% 2%

TOTAL FORK 6% 15% 13% 13% 11% 5% 3% 4%

update predictor 7% 13% 12% 11% 12% 6% 7% 7%

delete child 5% 5% 5% 4% 5% 2% 2% 2%

signal and wait 15% 14% 11% 11% 19% 8% 26% 11%

validate prediction 4% 4% 4% 5% 7% 3% 2% 3%

validate buffer 4% 6% 6% 5% 5% 3% 1% 2%

commit child 5% 5% 7% 6% 6% 3% 2% 3%

abort child <1% <1% <1% <1% <1% <1% <1% <1%

clean up child <1% <1% <1% <1% <1% <1% <1% <1%

profiling 11% 10% 10% 12% 11% 7% 5% 6%

TOTAL JOIN 53% 59% 57% 56% 67% 34% 47% 36%

PROFILING 2% 2% 1% 1% 1% 2% 1% 2%



Speculative Thread Overhead

helper execution comp db jack javac jess mpeg mtrt rt

IDLE 86% 82% 78% 78% 78% 55% 53% 71%

INITIALIZE CHILD 3% 4% 4% 4% 4% 2% 5% 4%

startup <1% <1% <1% <1% <1% <1% 1% <1%

query predictor 3% 5% 4% 4% 6% 5% 15% 8%

useful work 5% 6% 10% 10% 10% 34% 20% 13%

shutdown <1% <1% <1% <1% <1% <1% <1% <1%

profiling <1% <1% <1% <1% <1% 1% 2% 1%

EXECUTE CHILD 9% 12% 16% 16% 17% 41% 40% 24%

CLEAN UP CHILD <1% <1% <1% <1% <1% < 1% <1% <1%

PROFILING 1% 1% 1% 1% <1% 1% 1% <1%



Speculative Thread Overhead

helper execution comp db jack javac jess mpeg mtrt rt

IDLE 86% 82% 78% 78% 78% 55% 53% 71%

INITIALIZE CHILD 3% 4% 4% 4% 4% 2% 5% 4%

startup <1% <1% <1% <1% <1% <1% 1% <1%

query predictor 3% 5% 4% 4% 6% 5% 15% 8%

useful work 5% 6% 10% 10% 10% 34% 20% 13%

shutdown <1% <1% <1% <1% <1% <1% <1% <1%

profiling <1% <1% <1% <1% <1% 1% 2% 1%

EXECUTE CHILD 9% 12% 16% 16% 17% 41% 40% 24%

CLEAN UP CHILD <1% <1% <1% <1% <1% < 1% <1% <1%

PROFILING 1% 1% 1% 1% <1% 1% 1% <1%



Parallelism Metrics

Speculative thread lengths:

In hardware simulations, max 40 machine instructions is great

In software, we can get 100s of bytecode instructions

< 10 bytecodes > 90 bytecodes
committed committed

ST mode children 30% 15%

MT mode children 80% 2%

Speculative coverage:

Percentage of entire program executed successfully in parallel.

4 processors, MT mode, −RVP: 19%

4 processors, MT mode, +RVP: 33%



Execution Times and Relative Speedup

experiment comp db jack javac jess mpeg mtrt rt mean

SpMT must fail 1297s 931s 293s 641s 665s 669s 1017s 1530s 722s

SpMT may pass 1224s 733s 211s 468s 405s 662s 559s 736s 539s

relative speedup 1.06x 1.27x 1.39x 1.37x 1.64x 1.01x 1.82x 2.08x 1.34x

vanilla SableVM 368s 144s 43s 108s 77s 347s 55s 67s 120s

actual slowdown 3.33x 5.09x 4.91x 4.33x 5.26x 1.91x 10.16x 10.99x 4.49x



Execution Times and Relative Speedup

experiment comp db jack javac jess mpeg mtrt rt mean

SpMT must fail 1297s 931s 293s 641s 665s 669s 1017s 1530s 722s

SpMT may pass 1224s 733s 211s 468s 405s 662s 559s 736s 539s

relative speedup 1.06x 1.27x 1.39x 1.37x 1.64x 1.01x 1.82x 2.08x 1.34x

vanilla SableVM 368s 144s 43s 108s 77s 347s 55s 67s 120s

actual slowdown 3.33x 5.09x 4.91x 4.33x 5.26x 1.91x 10.16x 10.99x 4.49x



Outline

1 Introduction

2 Framework

3 Experimental Analysis

4 Conclusions & Future Work



Conclusions & Future Work

Conclusions:

New software SpMT framework for Java

Facilitates experimental analysis, profiling, and development of new
techniques

Future Work:

Different speculation modes: loop, lock, basic block

Move speculation components into language-independent library

Performance improvements, actual speedup

IBM Testarossa JIT and J9 VM integration


