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CODE LAYOUT AS A SOURCE OF NOISE IN JVM
PERFORMANCE

DAYONG GU AND CLARK VERBRUGGE AND ETIENNE GAGNON

Abstract. We describe the effect of a particular form of “noise” in bemarking. We investigate
the source of anomalous measurement data in a series ofizgiion strategies that attempt to
improve runtime performance in the garbage collector ota ¥atual machine. The results of our
experiments can be explained in terms of the difference de ¢ayout, and hence instruction and
data cache behaviour. We show that unintended changes énlayalit due to code modifications
as trivial as symbol renaming can contribute up to 2.7% ofsuesd machine cycle cost, 20% in
data cache misses, and 37% in instruction cache misses.

Keywords: java virtual machine, performance counter, benchmarkirigdleware design, object
layout, code layout, garbage collection

1. Introduction

Although large performance improvements in compiler andinge optimiza-
tion are highly desirable, many optimizations will prodwrdy small effects
for a large selection of benchmarks. When assessing opgtiioizs in such
a context the impact of external factors is thus importarrtoimize, if the
optimization changes are to be properly identified throlngt‘'hoise.”

In this paper we describe the effect of a particular form afi%e” in bench-
marking. We investigate the source of anomalous measutatatmin a series
of optimization strategies that attempt to improve runtipeeformance in the
garbage collector of the SableVM Java virtual machine [@a§0Through a
number of validating experiments the counter-intuitiveules of our experi-
ments can be explained in terms of the difference in codeutayand hence
instruction and data cache behaviour. We show that uniettrtianges in
code layout due to code modifications as trivial as symbol®rdénaming can
contribute up to 2.7% of measured machine cycle cost, up¥if@ata cache
misses, and up to 37% in instruction cache misses.

Date: 11/30/2004.
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1.1. Contributions

Our main contribution is an experimental analysis and itigaton of the im-
pact of unexpected changes in code layout. We demonstiatitbugh anal-
ysis of several novel variations in object layouts and ggebeollection algo-
rithms. Our data is gathered in the context of an actualist&alava virtual
machine, SableVM. Contributions thus include:

e We designed and analyzed a set of algorithmic changes aiadioas in
object layouts for a Java virtual machine, and tested theamion-trivial,
realistic setting.

¢ We experimentally demonstrate that a significant sourceisrin bench-
mark measurement is due to code layout.

¢ We have measured actual performance changes due to mir®lagmiit
differences, and thus provide guidance on the impact off#tsor on
benchmarks, and hence optimization assessment.

e Our work suggests that small, but measurable and signifioguove-
ments (or reductions) can be achieved by straightforwaritlipg of
symbols. A simple experimental validation can then indicatocally
optimal code shifting.

2. Related work

Our investigation into object layout changes was part of feorteto improve
garbage collector performance in Java. Garbage colletgiimiques are well
established, and an excellent reference on appropriatethligs is Jones and
Lin’s well-known book [JL96]. Optimization approaches t&€@re of course
many; in [SHB 02, SMM99, BJMMO02], the researchers treat objects differ-
ently based on thage of the object, and thus reduce the overall execution time
of GC. Other researchers try to decreasedesetimein the GC cycle [PDOQ].
Most of the latter is based on the basic idea of splitting tbekiead of GC into
multiple concurrent processes, an idea which first appearBdehm’s 1991
paper [BDS91]. Similar ideas are also used in implementi@giiGmultipro-
cessor environments [FDSZ01, OBY@G2]. Our work includes a studying of
the interaction between GC performance and the data cadtavioe as well

as hardware in general, which is discussed firstly by Boehoe(B].

Hardware components such as data caches, instructions;dwrhech pre-
diction, etc, can have a significant effect on program perforce, and are
known optimization (and measurement) targets.

In [WL91] a large class of loop transformations is providedtprove data
locality and reduce data cache misses. Unfortunately,difiult to get an
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optimal arrangement of data. Another way to improve cachifopeance is
by usingprefetching techniques to eliminate the miss penalty. Lots of work
has been done to improve prefetch effects and reduce theeaetm different
situations [CSCT02, WHO04]. That instruction location cauge a significant
effect on hardware performance, especially instructianeahas been noticed
by researchers in various contexts. In [QHV02], Feng et aéscdbe one
outlying experimental result where removal of unnecessadg slowed down
execution, and attributed the anomaly to the instructiarhea Optimizations
that focus on instruction cache behaviour are of course kneg, in [PH90]
it is suggested to align code of routines to the boundarieadiie blocks.
Hardware simulators or analysis frameworks, such as ATOEBE, Sim-
Point [SE02] and Simic [MCEQ2], are popular tools for investigating per-
formance at a low level. We make use jmErformance counters to monitor
hardware performance. Most modern processors provisefarmance mon-
itoring unit (PMU), with which hardware related events can be measurred. |
general, the PMU is composed of several counter registgrsie for Pentium
series, four for AMD Athlon), and a set of control registerset the counted
events, start/stop the counting, and collect the resulbéncobunter registers.
DCPI [ABD'03] is a software system that uses the hardware countergin th
Alpha processors. IBM provides a librapmapi as an extension of the AIX
kernel to access counters. Sweeney et al. use this libratguelop a frame-
work which can be used to explain the behavior of Java agpitsifrom the
view of hardware events [SH®3]. For Intel/AMD processors, PMC [Hel]
and PCL [BZM] are libraries supporting hardware event count PCL also
supports other platforms, including PowerPC, Alpha, RIP&id UltraSPARC
I/lI/NN. Lieven et al [EGD03] measure the hardware eventsAthlon Duron
processors as part of an analysis of how Java programs eadéntvith Vir-
tual Machines at the micro-architectural level. In Inté4 bit machine Ita-
nium Il [Int], the PMU is enhanced by adding many new featuseish as an
Event Address Register (EAR) and Branch Trace Buffer. YesoongChoi et
al. [CKVWO02] take advantages of these new features to magedwements in
cache prefetching. We have used PCL for our experimentdtagely for its
portability.

3. Object Layouts and Performance

The original motivation for this work was to investigate aghms and ob-
ject layouts that will improve performance of the copyinglgaye collector
in SableVM [Gag02c]. Since a copying collector moves thererive heap
each collection cycle, data cache performance is obviaugigal. Below we
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describe the basic SableVM object layout, how the layousedun garbage
collection, and the potential optimizations we investight

3.1. Traditional SableVM Obiject Layout

The current, or “traditional” object layout is quite stratéprward. Each object
has a header composed ofogkword, which include information that can be
used to obtain offsets of each object field, the size of theaband a pointer
to its virtual function table. After the header, we put thédéedefined in each
class, in order of inheritance from superclass to subcl&gghin the fields
defined in one class, we group the reference fields togetkgrarihem before
the non-reference fields. Figure 1 shows the traditionaluain detail.

The GC algorithm for traditional layout is also simple. Aitial root set of
known live objects is copied from the existing heap into teevieap, and the
reference fields of each live object are then scanned. Tieeoibgader is used
to find the offset of each reference field. Live referencesapged to the end
of the new heap, and thus themselves are eventually scavmegkfer the GC
algorithm of Traditional layout a$r from now on.

3.2. Alternative Object Layouts

A number of variations are possible in the SableVM objecbidy As potential
improved designs for GC, we implemented two other layoutsi-directional
layout” and a hybrid “mixed layout”.

Figure 2 shows the bi-directional layout. This approactugeoall the ref-
erences in a negative direction from the header and nomergfe fields in the
positive direction. Since all the references are groupednd reference field
scanning, we can just scan the references one by one copygefs until we
meet the header of the object (identified by a special biepatt Once the
header is reached, we can calculate the size of the objeuttfre information
saved in the header, and skip to the next one. This is thenatiglgorithm for
bi-directional layout, which we refer &.

One problem wittBi is that we need to compare each value we load during
the scan and verify whether it is a pointer (0 in the lowest dita header (1
in the lowest bit). In order to eliminate these checks an@ sawk further, we
designed a new algorithm for the same layout, the Backwair&algorithm
(BP).

The key idea 0BP is to reuse the space in the copy of the current object in
the old heap. Full details are beyond the scope of this papethis approach
provides a number of improvements oBér at the cost of extra instructions.

Studia Informatica Universalis



“main”
2004/12/1
page 5

—F

Code Layout as a Source of Noise in JVM Performance 5

non-Ref fields
fields of
class C
Reference number and offset
(number) 4 |\ of references in
A Reference class C
(offset) 48
Reference
(number) 3 umber and offset
Reference f references in
(offset) 28 class B
non-Ref fields (number) 2
npmber and offset
Increasing fields of (offset) 8 of references in
Memory Reference class B (nmber of class A
Adr}
™ Reference offsets) 3 /
Super Class ol
Info Ptr 7
Reference Se__ -7
NULL
non-Ref fields J—
fields of
class A
Reference
Reference Clai’sirlnfo
VTB Ptr
header
Lockword
Instance

Ptr
Instance of class C extends

B extend A

Figure 1: Traditional Object Layout

The third, “mixed” object layout, as its name suggests, iglaid of the first
two layouts. Mixed layout is almost the same as bi-directidayout, except
for reference arrays. For reference arrays mixed layo ihat header before
the array items, as in traditional layout. The basic scaorélgm of mixed
layout (Mixed) is thus the same &i except when scanning a reference array.
For arrays this saves some pointer checks, and so should ingpaovement
overBi .

We also developed a further variation on the mixed layoixedRS ( or RS).
This version improves oMixed by further focusing on sections of grouped
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references as the source of GC work rather than objaxtse. Pointers to
reference sections to be copied in the old heap are storbd ahd of the new
heap, and these sections are used as a work-list for theisggmoecedureRS

has the advantage that it can skip scanning objects witkedertences. It may,
however, have different cache behaviour due to its use oétigeof the new
heap as a working area.
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Figure 2: Bi-directional Object Layout
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3.3. Performance Analysis

We analyzed the relative performance of the proposed olajgatit and garbage
collection schemes on the SpecJVM98 benchmark suite [SP&@8Bone large
internal benchmarlsabl ecc (a Java parser generator) [Gag02b]. Since GC
accounts for a relatively minor portion of execution timenost of the bench-
marks, we separated GC data from data collected from thef#s program
(the mutator) in order to more accurately see the effects. exénined the
benchmark behavior under an instrumented SableVM usindweae counter
data collected using the Performance Counter Library PGZMB This in-
cludes CPU cycle counts, instruction and data cache miss#s)ction counts,
and a number of other hardware events. Note that here werpraesly CPU
cycle counts and cache miss data; other data events wereredrhut were
not more illustrative and so are not presented here for sp@s®ns.

Figure 3 shows the relative change in CPU cycle counts foGiieompo-
nent of the execution of the benchmarks as compared withyitle counts of
the original design, under our different layouts and stiigt® Figure 4 shows
the results for GC data cache misses. Data fonihegaudi o benchmark is
not reported since it does not have a GC phase under our tefenfiguration
of heap size.

GC PCL-Cycle
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Figure 3: Cycle count changes in GC

Unfortunately, performance changes do not match expeotatin a general
sense all the algorithms perform poorBS provides a marginal improvement
on average, largely due to the relatively large improverredb, but all others
actually increase cycle counts.
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GC D-Cache
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Figure 4: Data cache changesin GC

Because we use a copying GC, the number of data cache missesfuam
0.4% to 0.7% of the number of machine cycles. Consideringnday cache
miss penalty in advanced processors this is large enoughv® én obvious
impact on the performance. However, in these benchmarksdalta cache
behaviour itself fails to fully explain the effects. In Figu4, cache misses in-
crease in general, but are not proportional, or even camdistith the relative
changes in cycle counts for the same object layout strateglyeorsame bench-
mark. Other processor behaviour must necessarily be havenger effect on
overall performance.

Interestingly, as shown in Figure 5, the mutator’s behavimder all the
layouts shows some small increases in cycles, but ovegaisents a reduc-
tion. Although changing object layouts necessarily péduuntime cache be-
haviour, the effect on the mutator should have been relgtiveutral, and for
several optimizations, object layout is at least initigdlgntical. Fompegaudi o,
there is not even the effect of GC algorithms moving data tieidint places,
but still measurable performance differences. This furtuggests the effect
of external influences.

Note that our measurements are both accurate and repeatalsligure 6
we show standard deviation divided by average for the measemts we use
in this paper, collected using the original SableVM objet &C design (this
accuracy is in fact consistent across all our implememniajioEven the most
varied measurement, cycles, differ by no more than 0.08%. i$tan unrepre-
sentable difference in most of our charts.
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Figure 6: Standard deviation is very small

We thus designed a series of experiments to investigateetison for the
performance difference in the mutator, and to progresgekninate sources
of “noise.” These are described in the next section.
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4. Eliminating Noise

Since object layout changes have an obvious potential inpabeap usage
and thus performance we first conducted a series of expetsneriry and

determine if the performance changes, particularly in théator, were related
to the specific differences in heap usage. The main mechdnjisatnich heap

changes can affect the mutator is through changing theitwcaf objects in

the heap, or their associated field data. Differences imopmdnce can thus
arise from the following specific behaviours:

1. Hash code usage differences may exist. In SableVM, hadbasctor
objects are assigned lazily, upon first call@bj ect . hashcode(),
and are built from the object’s current location in the he@omputed
hash codes are then preserved during the copying phaseleftamt.
Thus the hash code value may be different under our varioategtes
if the object header is not located in the same memory logatieen the
hash code is first computed.

2. Cache effects due to field access patterns may change ssinte of our
optimization approaches place object fields in differelattiee locations
to the object header.

3. The heap layout itself of course may have a large impacterAsC,
the order of objects in the heap may be different due to thiereifit
scanning orders that correspond to how object fields areolaid The
traditional object layout and GC algorithm in SableVM capends to
scanning object fields looking at (and hence copying) sulgessdields
first, and subclass fields in hierarchical order. Otheretyias we used
such as bi-directional result in fields being examined inraelise order
to the inheritance hierarchy, inspecting fields and copgibgcts from
subclasses up to superclasses.

Table 1 summarizes various permutations on our optimigatiesign that
we used to investigate the aforementioned problems. Thendeand third
columns of the table give the object layout style and GC dtigar, as dis-
cussed in Section 3.2. The fourth column indicates how hadbswere com-
puted, either from the location of the beginning of the ob{adich can vary
according to how the object fields are organized), or fromldcation of the
lockword, a uniform location in the object header that doatsvary by layout.
The last column indicates the scan order of fields, whethdowaleat reference
fields from subclass fields to superclass fieldsiog versa.

Hash codes turn out to be used quite rarely in most of our beadks. By
tracing through virtual machine activity we found that mbshchmarks only
ever query the hash code of just one object. jTagac benchmark is the only
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| Name | Object Layout| Algorithm | Hash codd Heap Order]|
Tr Traditional Traditional(Tr) beginning | super to sub
Tro Traditional Traditional(Tr) beginning | sub to supe
Bi Bi-Directional | Bi-Directional(Bi) lockword | sub to supe
BiSHC Bi-Directional | Bi-Directional(Bi) beginning | sub to supe
BP Bi-Directional | Backward pointer(BP) lockword | sub to supe
BPR Bi-Directional | Backward pointer(BP) lockword | super to suh
Mixed Mixed Layout | Hybird of Bi and Tr lockword | sub to supe
MixedSHC || Mixed Layout | Hybird of Bi and Tr beginning | sub to supe
RS Mixed Layout | Reference Section(R$)lockword | sub to supe
RSR Mixed Layout | Reference Section(R$)lockword | super to sub

Table 1: Different optimization variations in SableVM

significant exception; though even for it, out of 4,786,236time objects only
11039 had their hash code computed (under 0.3%). More i@pibyt using
variations on our approaches that preserve the same hashasadaditional
do not eliminate the apparent inconsistencies in data, oes the extent of
variation in hash code usage or calculation correspond ynaéwious way
with the measured performance.

Changing the layout of object fields is of course part of outirojzation
strategy, and differences should be expected based oftierte should though
be some amount of correlation between approaches withitd¢object lay-
outs. In Figure 7, however, itis apparent that even withtidahlayouts there is
little connection between measured performance and gteatthat employ the
same layout. This is especially evident fggegaudi o, which does not have
opportunity to produce different heap arrangements atielbape collection,
yet still shows significant variation between strategiehhie same layout.

The remaining factor is scan order. Once GC has occurred¢tshihat are
scanned in a different order may be located at differenttiooa in the new,
copied heap. We show a comparison between our differentitiiges when
the scan order is reversed in Figure 8. Again, there is tittkeelation between
this factor and performance; different algorithms do natsistently improve
or degrade when scan order is switched.

Our measurements thus do not support that scan order, tdject, or hash
codes have a direct or consistent effect on performancepi@dsence of exter-
nal factors with greater, or at least complicating influeisaberefore a strong
possibility. A likely cause is suggested by the behaviourmégaudi o under

our different strategies. Since differences can be meddswased on changes

to garbage collection code despite the fact that it is natalst exercised at

Studia Informatica Universalis

“main”

2004/12/1
page 11

—F



“main”
2004/12/1
page 12

—F

12 Dayong Gu and Clark Verbrugge and Etienne Gagnon
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Figure 8: Comparison between heap layouts achieved byreliffe
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runtime, the mere existence of code changes must be thelmdintg factor. In

the next section we explore the impact of code layout chamjexiuced by
unused code changes on the instruction cache and perfoemanc

5. Code Layout Effects

In order to determine the impact of (unused) code changesneasured the
instruction cache behaviour of our implementations. Féupresents mutator
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instruction cache misses in the same way as Figure 8 presgies. Unfor-
tunately, again, the correlation with performance is wedkile instruction
cache misses fatb are dramatically higher for thBP strategy, and this cor-
responds nicely tdb’s relative performance und&P, other benchmarks and
other strategies do not show good correlations in general.

Mutator | -Cache
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O(Tro-Tr) / Trm (BP-BPR)/BPR [ (RS-RSR)/RSR

50.00%

40.00%

30.00%

20.00%

10.00%

0.00% -

jack
javac
ess

-10.00%

mpegaudio
sablecc

Bechmarks

Figure 9: I-Cache performance of the mutator for differeatrsorders.

The reversed scanning order variations on our benchmaelady slightly
different from the original designs in terms of code. UsRgandRSR as
a test case, we thus developed a series of implementatianprbgressively
includes code making the transition from tR8 to the RSR design. These
new implementations are described in Table 2; note thadadth the code is
incomplete inRSR1 throughRSR4 all implementations are able to run since the
code is never executed at runtime.

| Version || Description |
RSRO || the same code as RS

RSR1 || switch two lines, perserve the code size
RSR2 | change the code for scanning reference fields
RSR3 || the same as RSR2, but add local variables
RSR4 | the same as RSR3, initialize the newly added local variables
RSR5 || the same code as RSR

Table 2: From RS to RSR, step by step
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Figure 10 shows the corresponding experiment results atioel to the tra-
ditional performanceRSR0 andRSR1 are similar, as would be expected; nei-
ther code size nor executed code changed. The introductineve code in
RSR2, however, causes a significant decrease in instructiorecaisses. Fur-
ther code changes to add local variables and initialize thawe no apparent
effect. This is unsurprising; since this code is still inquete, there are no uses
for the introduced variables, and standard code optintimdagchniques elimi-
nate unused variables during compilation. Once the compigblementation
is included inRSR5 performance changes again, as code size and placement is
altered by the code difference.

From RS->RSR

14.00%

12.00% <‘ @!-Cache mD-Cache OPCL_Cycle ‘

10.00%

8.00%

6.00%
4.00%
2.00%
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(RSRO- (RSR1- (RSRe- (SR3- | (fSR4- (RSRS-  (RSR-TR)/TR
TRVTR TRVTR VTR TR VTR TRVTR

-2.00%

-4.00%

-6.00%

Figure 10: Performance of RS to RSR

The behaviour of the origindRSR version is shown in the rightmost bars
of the same graph. Interestingly, it is different from theadi@mr RSR5, which
contains exactly the same source cod®aR (executables were also stripped
prior to testing to remove debug symbols). We therefore éxadithe differ-
ences in the binary program using the Limb ect dunp utility. The results
are presented in Table 3.

Code differences can show up in two main binaries constiubte the
SableVM build; the executable and the sableVM library. Wiigate whether
code address changes were detected between the differsiongein the two
binaries in columns 2 and 3 of Table 3. The presence and defidenges
corresponds perfectly to the behaviour shown in Figure 1€n én the case of
RSR5 compared withRSR changes are detected. This change turns out to be
caused by the path to the library being embedded in the exiglelitand hence
shifting subsequent code.

The layout of methods is clearly an important reason for thiégomance
differences. We provide further experiments that pointnstruction cache
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| Version Pairs || SableVM executablé¢ SableVM library |

RSRO Vs RSR1| the same code shifts exist, but only
for GC methods

RSR1 Vs RSRZ| the same code shifts exist for many methods,
including non-GC methods

RSR2 Vs RSR3| the same the same

RSR3 Vs RSR4| the same the same

RSR4 Vs RSR5| the same code shifts exist for many methods,
including non-GC methods

RSR5 Vs RSR || code shifts the same

Table 3: Method offset comparison between versions

behaviour, which is changed by the code layout, as a keyrfattthe next
section.

5.1. Validating Icache Influence

In order to demonstrate that change of method layout is infing perfor-
mance through the instruction cache behaviour we examreedérformance
of a series of binaries. We measured 64 versions of SableMNviith pro-
gressively longer names, from 2 to 128 bytes (by 2s) longeam the original
build name. This shifts the location of symbols in the exablg by the same
amount. The resulting effect on instruction cache, cyclentoand data cache
are shown in Figures 12, 13, and 14 respectively. The grajoishe differ-
ently named versions against absolute counts of hardwardev

The design of the Pentium Il instruction cache is quite euidin these
results. For instruction cache misses (Figure 12), and liglatly lesser extent
for CPU cycles (Figure 13), a cycle is apparent with a peribésin our
naming scheme. Since each cache line is 32 bytes, and twe tiaels are
fetched at a time, a 64-byte cycle is quite consistent. Tietedg considerably
less evident in the data cache results, but data cache nrisgeseral are also
less numerous and less expensive. A comparison is provideidire 11.

As previously seen in Figure 9, instruction cache missesataarrelate
well with the performance of our different object layoutaségies. They do,
however, show a good correlation with code layout. Theselteare highly
suggestive if not conclusive, and this confounding factarlikely contributing
cause to the original, counter-intuitive results of our exments on object
layouts.
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Figure 11: The number of instruction cache misses is langer i
most cases
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Figure 12: Effect of changing method layout on instructianlte misses

6. Conclusions and future work

Identifying external influences is critical to correcthsassing an optimization.
We have described the observed impact of unintended codemint effects
on industry standard benchmarks. These effects are noatand can perturb
intended measurements, and so are important to take inbuatin order to
achieve accurate benchmarking.

Our examination is developed through a series of poteravedlével opti-

mizations, and their apparently anomalous results. We amemtly explor-
ing techniques to try and mitigate and/or exploit the impafctode layout
on performance measurement. Careful naming strategies@arde-grained
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Figure 13: Effect of changing method layout on cycle counts
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Figure 14: Effect of changing method layout on data cachsesis

code alignment techniques may help provide consistentpeoable data that
will generically apply to machines with different cache reted Compiler and

link-time optimization techniques that exploit code afigent, such as the well
known strategy of aligning methods and loops on cache baigslmay also

help in achieving a more consistent result. We are activeletbping a frame-
work for investigating these issues.
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