
“main”
2004/12/1
page 1

1

CODE LAYOUT AS A SOURCE OF NOISE IN JVM
PERFORMANCE

DAYONG GU AND CLARK VERBRUGGE AND ETIENNE GAGNON

Abstract. We describe the effect of a particular form of “noise” in benchmarking. We investigate
the source of anomalous measurement data in a series of optimization strategies that attempt to
improve runtime performance in the garbage collector of a Java virtual machine. The results of our
experiments can be explained in terms of the difference in code layout, and hence instruction and
data cache behaviour. We show that unintended changes in code layout due to code modifications
as trivial as symbol renaming can contribute up to 2.7% of measured machine cycle cost, 20% in
data cache misses, and 37% in instruction cache misses.

Keywords: java virtual machine, performance counter, benchmarking,middleware design, object
layout, code layout, garbage collection

1. Introduction

Although large performance improvements in compiler and runtime optimiza-
tion are highly desirable, many optimizations will produceonly small effects
for a large selection of benchmarks. When assessing optimizations in such
a context the impact of external factors is thus important tominimize, if the
optimization changes are to be properly identified through the “noise.”

In this paper we describe the effect of a particular form of “noise” in bench-
marking. We investigate the source of anomalous measurement data in a series
of optimization strategies that attempt to improve runtimeperformance in the
garbage collector of the SableVM Java virtual machine [Gag02a]. Through a
number of validating experiments the counter-intuitive results of our experi-
ments can be explained in terms of the difference in code layout, and hence
instruction and data cache behaviour. We show that unintended changes in
code layout due to code modifications as trivial as symbol or file renaming can
contribute up to 2.7% of measured machine cycle cost, up to 20% in data cache
misses, and up to 37% in instruction cache misses.

Date: 11/30/2004.

Studia Informatica Universalis

“main”
2004/12/1
page 2

2 Dayong Gu and Clark Verbrugge and Etienne Gagnon

1.1. Contributions

Our main contribution is an experimental analysis and investigation of the im-
pact of unexpected changes in code layout. We demonstrate this through anal-
ysis of several novel variations in object layouts and garbage collection algo-
rithms. Our data is gathered in the context of an actual, realistic Java virtual
machine, SableVM. Contributions thus include:

• We designed and analyzed a set of algorithmic changes and variations in
object layouts for a Java virtual machine, and tested them ina non-trivial,
realistic setting.

• We experimentally demonstrate that a significant source of noise in bench-
mark measurement is due to code layout.

• We have measured actual performance changes due to minor code layout
differences, and thus provide guidance on the impact of thisfactor on
benchmarks, and hence optimization assessment.

• Our work suggests that small, but measurable and significantimprove-
ments (or reductions) can be achieved by straightforward padding of
symbols. A simple experimental validation can then indicate a locally
optimal code shifting.

2. Related work

Our investigation into object layout changes was part of an effort to improve
garbage collector performance in Java. Garbage collectiontechniques are well
established, and an excellent reference on appropriate algorithms is Jones and
Lin’s well-known book [JL96]. Optimization approaches to GC are of course
many; in [SHB+02, SMM99, BJMM02], the researchers treat objects differ-
ently based on theage of the object, and thus reduce the overall execution time
of GC. Other researchers try to decrease thepause time in the GC cycle [PD00].
Most of the latter is based on the basic idea of splitting the workload of GC into
multiple concurrent processes, an idea which first appearedin Boehm’s 1991
paper [BDS91]. Similar ideas are also used in implementing GC in multipro-
cessor environments [FDSZ01, OBYG+02]. Our work includes a studying of
the interaction between GC performance and the data cache behavior, as well
as hardware in general, which is discussed firstly by Boehm [Boe00].

Hardware components such as data caches, instruction caches, branch pre-
diction, etc, can have a significant effect on program performance, and are
known optimization (and measurement) targets.

In [WL91] a large class of loop transformations is provided to improve data
locality and reduce data cache misses. Unfortunately, it isdifficult to get an

Studia Informatica Universalis

“main”
2004/12/1
page 3

Code Layout as a Source of Noise in JVM Performance 3

optimal arrangement of data. Another way to improve cache performance is
by usingprefetching techniques to eliminate the miss penalty. Lots of work
has been done to improve prefetch effects and reduce the overhead in different
situations [CSCT02, WH04]. That instruction location can cause a significant
effect on hardware performance, especially instruction cache, has been noticed
by researchers in various contexts. In [QHV02], Feng et al. describe one
outlying experimental result where removal of unnecessarycode slowed down
execution, and attributed the anomaly to the instruction cache. Optimizations
that focus on instruction cache behaviour are of course known; eg, in [PH90]
it is suggested to align code of routines to the boundaries ofcache blocks.

Hardware simulators or analysis frameworks, such as ATOM [SE94], Sim-
Point [SE02] and Simic [MCE+02], are popular tools for investigating per-
formance at a low level. We make use ofperformance counters to monitor
hardware performance. Most modern processors provide aperformance mon-
itoring unit (PMU), with which hardware related events can be measured. In
general, the PMU is composed of several counter registers (eg, two for Pentium
series, four for AMD Athlon), and a set of control registers to set the counted
events, start/stop the counting, and collect the result in the counter registers.
DCPI [ABD+03] is a software system that uses the hardware counters in the
Alpha processors. IBM provides a librarypmapi as an extension of the AIX
kernel to access counters. Sweeney et al. use this library todevelop a frame-
work which can be used to explain the behavior of Java applications from the
view of hardware events [SHC+03]. For Intel/AMD processors, PMC [Hel]
and PCL [BZM] are libraries supporting hardware event counting. PCL also
supports other platforms, including PowerPC, Alpha, R12000 and UltraSPARC
I/II/III. Lieven et al [EGD03] measure the hardware events on Athlon Duron
processors as part of an analysis of how Java programs can interact with Vir-
tual Machines at the micro-architectural level. In Intel’s64 bit machine Ita-
nium II [Int], the PMU is enhanced by adding many new features, such as an
Event Address Register (EAR) and Branch Trace Buffer. Youngsoo Choi et
al. [CKVW02] take advantages of these new features to make improvements in
cache prefetching. We have used PCL for our experimentation, largely for its
portability.

3. Object Layouts and Performance

The original motivation for this work was to investigate algorithms and ob-
ject layouts that will improve performance of the copying garbage collector
in SableVM [Gag02c]. Since a copying collector moves the entire live heap
each collection cycle, data cache performance is obviouslycritical. Below we

Studia Informatica Universalis

“main”
2004/12/1
page 4

4 Dayong Gu and Clark Verbrugge and Etienne Gagnon

describe the basic SableVM object layout, how the layout is used in garbage
collection, and the potential optimizations we investigated.

3.1. Traditional SableVM Object Layout

The current, or “traditional” object layout is quite straightforward. Each object
has a header composed of alockword, which include information that can be
used to obtain offsets of each object field, the size of the object, and a pointer
to its virtual function table. After the header, we put the fields defined in each
class, in order of inheritance from superclass to subclass.Within the fields
defined in one class, we group the reference fields together and put them before
the non-reference fields. Figure 1 shows the traditional layout in detail.

The GC algorithm for traditional layout is also simple. An initial root set of
known live objects is copied from the existing heap into the new heap, and the
reference fields of each live object are then scanned. The object header is used
to find the offset of each reference field. Live references arecopied to the end
of the new heap, and thus themselves are eventually scanned.We refer the GC
algorithm of Traditional layout asTr from now on.

3.2. Alternative Object Layouts

A number of variations are possible in the SableVM object layout. As potential
improved designs for GC, we implemented two other layouts, a“bi-directional
layout” and a hybrid “mixed layout”.

Figure 2 shows the bi-directional layout. This approach groups all the ref-
erences in a negative direction from the header and non-reference fields in the
positive direction. Since all the references are grouped, during reference field
scanning, we can just scan the references one by one copying targets until we
meet the header of the object (identified by a special bit pattern). Once the
header is reached, we can calculate the size of the object from the information
saved in the header, and skip to the next one. This is the original algorithm for
bi-directional layout, which we refer asBi.

One problem withBi is that we need to compare each value we load during
the scan and verify whether it is a pointer (0 in the lowest bit) or a header (1
in the lowest bit). In order to eliminate these checks and save work further, we
designed a new algorithm for the same layout, the Backward Pointer algorithm
(BP).

The key idea ofBP is to reuse the space in the copy of the current object in
the old heap. Full details are beyond the scope of this paper,but this approach
provides a number of improvements overBi, at the cost of extra instructions.

Studia Informatica Universalis

“main”
2004/12/1
page 5

Code Layout as a Source of Noise in JVM Performance 5

Lockword

VTB Ptr

Reference

Reference

non-Ref fields

Reference

Reference

Reference

non-Ref fields

Reference

Reference

Reference

Reference

non-Ref fields

header

fields of

class A

fields of

class B

fields of

class C

Instance

Ptr

Increasing

Memory

Adress

Instance of class C extends

B extend A

Class Info

Ptr

NULL

Super Class

Info Ptr

(number of

offsets) 3

(offset) 8

(number) 2

(offset) 28

(number) 3

(offset) 48

(number) 4

...

number and offset

of references in

class A

number and offset

of references in

class B

number and offset

of references in

class C

Figure 1: Traditional Object Layout

The third, “mixed” object layout, as its name suggests, is a hybrid of the first
two layouts. Mixed layout is almost the same as bi-directional layout, except
for reference arrays. For reference arrays mixed layout puts the header before
the array items, as in traditional layout. The basic scan algorithm of mixed
layout (Mixed) is thus the same asBi except when scanning a reference array.
For arrays this saves some pointer checks, and so should be animprovement
overBi .

We also developed a further variation on the mixed layout,mixedRS (or RS).
This version improves onMixed by further focusing on sections of grouped

Studia Informatica Universalis

“main”
2004/12/1
page 6

6 Dayong Gu and Clark Verbrugge and Etienne Gagnon

references as the source of GC work rather than objectsper se. Pointers to
reference sections to be copied in the old heap are stored at the end of the new
heap, and these sections are used as a work-list for the scanning procedure.RS
has the advantage that it can skip scanning objects without references. It may,
however, have different cache behaviour due to its use of theend of the new
heap as a working area.

Lockword

VTB Ptr

Reference

Reference

non-Ref fields

Reference

Reference

Reference

non-Ref fields

Reference

Reference

Reference

Reference

non-Ref fields

header

references

of class A

Instance

Ptr

Increasing

Memory

Adress

Instance of class C extends

B extend A

non-

reference

fields of

class A

references

of class B

references

of class C

non-

reference

fields of

class B

non-

reference

fields of

class C

Reference

Reference

...

Reference

Lockword

VTB Ptr

Size

header

Instance

Ptr

0

1

size -1

Reference array

Lockword

VTB Ptr

Size

header

elements

0

1

...

size -1

Instance

Ptr

Array of primitive type

Figure 2: Bi-directional Object Layout

Studia Informatica Universalis

“main”
2004/12/1
page 7

Code Layout as a Source of Noise in JVM Performance 7

3.3. Performance Analysis

We analyzed the relative performance of the proposed objectlayout and garbage
collection schemes on the SpecJVM98 benchmark suite [SPE98], and one large
internal benchmark,sablecc (a Java parser generator) [Gag02b]. Since GC
accounts for a relatively minor portion of execution time inmost of the bench-
marks, we separated GC data from data collected from the restof the program
(the mutator) in order to more accurately see the effects. Weexamined the
benchmark behavior under an instrumented SableVM using hardware counter
data collected using the Performance Counter Library PCL [BZM]. This in-
cludes CPU cycle counts, instruction and data cache misses,instruction counts,
and a number of other hardware events. Note that here we present only CPU
cycle counts and cache miss data; other data events were examined, but were
not more illustrative and so are not presented here for spacereasons.

Figure 3 shows the relative change in CPU cycle counts for theGC compo-
nent of the execution of the benchmarks as compared with the cycle counts of
the original design, under our different layouts and strategies. Figure 4 shows
the results for GC data cache misses. Data for thempegaudio benchmark is
not reported since it does not have a GC phase under our default configuration
of heap size.

GC PCL-Cycle

-10.00%

-8.00%

-6.00%

-4.00%

-2.00%

0.00%

2.00%

4.00%

6.00%

8.00%

10.00%

12.00%

c
o

m
p

re
s
s

d
b

ja
c
k

ja
v
a
c

je
s
s

m
p

e
g

a
u

d
io

s
a
b

le
c
c

Bechmarks

(Bi-Tr)/Tr (BP-Tr)/Tr (Mixed-Tr)/Tr (MixedRS-Tr)/Tr

Figure 3: Cycle count changes in GC

Unfortunately, performance changes do not match expectations. In a general
sense all the algorithms perform poorly;RS provides a marginal improvement
on average, largely due to the relatively large improvementin db, but all others
actually increase cycle counts.

Studia Informatica Universalis

“main”
2004/12/1
page 8

8 Dayong Gu and Clark Verbrugge and Etienne Gagnon

GC D-Cache

-8.00%
-6.00%
-4.00%

-2.00%
0.00%
2.00%
4.00%

6.00%
8.00%

10.00%
12.00%
14.00%
16.00%
18.00%
20.00%
22.00%

24.00%
26.00%
28.00%

c
o

m
p

re
s
s

d
b

ja
c
k

ja
v
a
c

je
s
s

m
p

e
g

a
u

d
io

s
a
b

le
c
c

Bechmarks

(Bi-Tr)/Tr (BP-Tr)/Tr (Mixed-Tr)/Tr (MixedRS-Tr)/Tr

Figure 4: Data cache changes in GC

Because we use a copying GC, the number of data cache misses varies from
0.4% to 0.7% of the number of machine cycles. Considering theheavy cache
miss penalty in advanced processors this is large enough to have an obvious
impact on the performance. However, in these benchmarks, the data cache
behaviour itself fails to fully explain the effects. In Figure 4, cache misses in-
crease in general, but are not proportional, or even consistent with the relative
changes in cycle counts for the same object layout strategy on the same bench-
mark. Other processor behaviour must necessarily be havinga larger effect on
overall performance.

Interestingly, as shown in Figure 5, the mutator’s behaviour under all the
layouts shows some small increases in cycles, but overall represents a reduc-
tion. Although changing object layouts necessarily perturbs runtime cache be-
haviour, the effect on the mutator should have been relatively neutral, and for
several optimizations, object layout is at least initiallyidentical. Formpegaudio,
there is not even the effect of GC algorithms moving data to different places,
but still measurable performance differences. This further suggests the effect
of external influences.

Note that our measurements are both accurate and repeatable. In Figure 6
we show standard deviation divided by average for the measurements we use
in this paper, collected using the original SableVM object and GC design (this
accuracy is in fact consistent across all our implementations). Even the most
varied measurement, cycles, differ by no more than 0.08%. This is an unrepre-
sentable difference in most of our charts.

Studia Informatica Universalis

“main”
2004/12/1
page 9

Code Layout as a Source of Noise in JVM Performance 9

Mutator PCL-Cycle

-4.00%

-3.00%

-2.00%

-1.00%

0.00%

1.00%

2.00%

3.00%

4.00%

c
o

m
p

re
s
s

d
b

ja
c
k

ja
v
a
c

je
s
s

m
p

e
g

a
u

d
io

s
a
b

le
c
c

Bechmarks

(Bi-Tr)/Tr (BP-Tr)/Tr (Mixed-Tr)/Tr (MixedRS-Tr)/Tr

Figure 5: PCL-Cycle result of Mutator

STDEV/AVG : Tr, all events for whole program

0.00%

0.02%

0.04%

0.06%

0.08%

0.10%

All Inst All D-Cache All I-Cache. All PCL_CYCLES

compress

db

jack

javac

jess

mpegaudio

sablecc

Figure 6: Standard deviation is very small

We thus designed a series of experiments to investigate the reason for the
performance difference in the mutator, and to progressively eliminate sources
of “noise.” These are described in the next section.

Studia Informatica Universalis

“main”
2004/12/1
page 10

10 Dayong Gu and Clark Verbrugge and Etienne Gagnon

4. Eliminating Noise

Since object layout changes have an obvious potential impact on heap usage
and thus performance we first conducted a series of experiments to try and
determine if the performance changes, particularly in the mutator, were related
to the specific differences in heap usage. The main mechanismby which heap
changes can affect the mutator is through changing the location of objects in
the heap, or their associated field data. Differences in performance can thus
arise from the following specific behaviours:

1. Hash code usage differences may exist. In SableVM, hash codes for
objects are assigned lazily, upon first call toObject.hashcode(),
and are built from the object’s current location in the heap.Computed
hash codes are then preserved during the copying phase of collection.
Thus the hash code value may be different under our various strategies
if the object header is not located in the same memory location when the
hash code is first computed.

2. Cache effects due to field access patterns may change, since some of our
optimization approaches place object fields in different relative locations
to the object header.

3. The heap layout itself of course may have a large impact. After GC,
the order of objects in the heap may be different due to the different
scanning orders that correspond to how object fields are laidout. The
traditional object layout and GC algorithm in SableVM corresponds to
scanning object fields looking at (and hence copying) super class fields
first, and subclass fields in hierarchical order. Other strategies we used
such as bi-directional result in fields being examined in an inverse order
to the inheritance hierarchy, inspecting fields and copyingobjects from
subclasses up to superclasses.

Table 1 summarizes various permutations on our optimization design that
we used to investigate the aforementioned problems. The second and third
columns of the table give the object layout style and GC algorithm, as dis-
cussed in Section 3.2. The fourth column indicates how hash codes were com-
puted, either from the location of the beginning of the object (which can vary
according to how the object fields are organized), or from thelocation of the
lockword, a uniform location in the object header that does not vary by layout.
The last column indicates the scan order of fields, whether welook at reference
fields from subclass fields to superclass fields orvice versa.

Hash codes turn out to be used quite rarely in most of our benchmarks. By
tracing through virtual machine activity we found that mostbenchmarks only
ever query the hash code of just one object. Thejavac benchmark is the only

Studia Informatica Universalis

“main”
2004/12/1
page 11

Code Layout as a Source of Noise in JVM Performance 11

Name Object Layout Algorithm Hash code Heap Order

Tr Traditional Traditional(Tr) beginning super to sub
Tro Traditional Traditional(Tr) beginning sub to super
Bi Bi-Directional Bi-Directional(Bi) lockword sub to super
BiSHC Bi-Directional Bi-Directional(Bi) beginning sub to super
BP Bi-Directional Backward pointer(BP) lockword sub to super
BPR Bi-Directional Backward pointer(BP) lockword super to sub
Mixed Mixed Layout Hybird of Bi and Tr lockword sub to super
MixedSHC Mixed Layout Hybird of Bi and Tr beginning sub to super
RS Mixed Layout Reference Section(RS)lockword sub to super
RSR Mixed Layout Reference Section(RS)lockword super to sub

Table 1: Different optimization variations in SableVM

significant exception; though even for it, out of 4,786,236 runtime objects only
11039 had their hash code computed (under 0.3%). More importantly, using
variations on our approaches that preserve the same hash code as traditional
do not eliminate the apparent inconsistencies in data, nor does the extent of
variation in hash code usage or calculation correspond in any obvious way
with the measured performance.

Changing the layout of object fields is of course part of our optimization
strategy, and differences should be expected based on that.There should though
be some amount of correlation between approaches with identical object lay-
outs. In Figure 7, however, it is apparent that even with identical layouts there is
little connection between measured performance and strategies that employ the
same layout. This is especially evident formpegaudio, which does not have
opportunity to produce different heap arrangements after garbage collection,
yet still shows significant variation between strategies with the same layout.

The remaining factor is scan order. Once GC has occurred, objects that are
scanned in a different order may be located at different locations in the new,
copied heap. We show a comparison between our different algorithms when
the scan order is reversed in Figure 8. Again, there is littlecorrelation between
this factor and performance; different algorithms do not consistently improve
or degrade when scan order is switched.

Our measurements thus do not support that scan order, objectlayout, or hash
codes have a direct or consistent effect on performance. Thepresence of exter-
nal factors with greater, or at least complicating influenceis therefore a strong
possibility. A likely cause is suggested by the behaviour ofmpegaudio under
our different strategies. Since differences can be measured based on changes
to garbage collection code despite the fact that it is not actually exercised at

Studia Informatica Universalis

“main”
2004/12/1
page 12

12 Dayong Gu and Clark Verbrugge and Etienne Gagnon

Mutator PCL-Cycle, Different implementations

-3.00%

-2.00%

-1.00%

0.00%

1.00%

2.00%

3.00%

4.00%

c
o
m

p
re

s
s

d
b

ja
c
k

ja
v
a
c

je
s
s

m
p
e
g
a
u
d
io

s
a
b
le

c
c

(TRO-TR)/TR

(BP-BI)/BI
(BPR-BI)/BI

(RS-Mixed)/Mixed
(RSR-Mixed)/Mixed

Figure 7: Performance differences among implementations for
each object layout

Mutator PCL-Cycle

-4.00%

-2.00%

0.00%

2.00%

4.00%

6.00%

c
o
m

p
re

s
s

d
b

ja
c
k

ja
v
a
c

je
s
s

m
p
e
g
a
u
d
io

s
a
b
le

c
c

Bechmarks

(Tro-Tr) / Tr (BP-BPR)/BPR (RS-RSR)/RSR

Figure 8: Comparison between heap layouts achieved by different
scan orders

runtime, the mere existence of code changes must be the contributing factor. In
the next section we explore the impact of code layout changesintroduced by
unused code changes on the instruction cache and performance.

5. Code Layout Effects

In order to determine the impact of (unused) code changes, wemeasured the
instruction cache behaviour of our implementations. Figure 9 presents mutator

Studia Informatica Universalis

“main”
2004/12/1
page 13

Code Layout as a Source of Noise in JVM Performance 13

instruction cache misses in the same way as Figure 8 presentscycles. Unfor-
tunately, again, the correlation with performance is weak.While instruction
cache misses fordb are dramatically higher for theBP strategy, and this cor-
responds nicely todb’s relative performance underBP, other benchmarks and
other strategies do not show good correlations in general.

Mutator I -Cache

-10.00%

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%
c
o
m

p
re

s
s

d
b

ja
c
k

ja
v
a
c

je
s
s

m
p
e
g
a
u
d
io

s
a
b
le

c
c

Bechmarks

(Tro-Tr) / Tr (BP-BPR)/BPR (RS-RSR)/RSR

Figure 9: I-Cache performance of the mutator for different scan orders.

The reversed scanning order variations on our benchmarks are only slightly
different from the original designs in terms of code. UsingRS and RSR as
a test case, we thus developed a series of implementations that progressively
includes code making the transition from theRS to the RSR design. These
new implementations are described in Table 2; note that although the code is
incomplete inRSR1 throughRSR4 all implementations are able to run since the
code is never executed at runtime.

Version Description

RSR0 the same code as RS
RSR1 switch two lines, perserve the code size
RSR2 change the code for scanning reference fields
RSR3 the same as RSR2, but add local variables
RSR4 the same as RSR3, initialize the newly added local variables
RSR5 the same code as RSR

Table 2: From RS to RSR, step by step

Studia Informatica Universalis

“main”
2004/12/1
page 14

14 Dayong Gu and Clark Verbrugge and Etienne Gagnon

Figure 10 shows the corresponding experiment results in relation to the tra-
ditional performance.RSR0 andRSR1 are similar, as would be expected; nei-
ther code size nor executed code changed. The introduction of new code in
RSR2, however, causes a significant decrease in instruction cache misses. Fur-
ther code changes to add local variables and initialize themhave no apparent
effect. This is unsurprising; since this code is still incomplete, there are no uses
for the introduced variables, and standard code optimization techniques elimi-
nate unused variables during compilation. Once the complete implementation
is included inRSR5 performance changes again, as code size and placement is
altered by the code difference.

From RS->RSR

-6.00%

-4.00%

-2.00%

0.00%

2.00%

4.00%

6.00%

8.00%

10.00%

12.00%

14.00%

(RSR0-

TR)/TR

(RSR1-

TR)/TR

(RSR2-

TR)/TR

(RSR3-

TR)/TR

(RSR4-

TR)/TR

(RSR5-

TR)/TR

(RSR-TR)/TR

I-Cache D-Cache PCL_Cycle

Figure 10: Performance of RS to RSR

The behaviour of the originalRSR version is shown in the rightmost bars
of the same graph. Interestingly, it is different from the data for RSR5, which
contains exactly the same source code asRSR (executables were also stripped
prior to testing to remove debug symbols). We therefore examined the differ-
ences in the binary program using the Linuxobjectdump utility. The results
are presented in Table 3.

Code differences can show up in two main binaries constructed by the
SableVM build; the executable and the sableVM library. We indicate whether
code address changes were detected between the different versions in the two
binaries in columns 2 and 3 of Table 3. The presence and degreeof changes
corresponds perfectly to the behaviour shown in Figure 10; even in the case of
RSR5 compared withRSR changes are detected. This change turns out to be
caused by the path to the library being embedded in the executable, and hence
shifting subsequent code.

The layout of methods is clearly an important reason for the performance
differences. We provide further experiments that point to instruction cache

Studia Informatica Universalis

“main”
2004/12/1
page 15

Code Layout as a Source of Noise in JVM Performance 15

Version Pairs SableVM executable SableVM library

RSR0 Vs RSR1 the same code shifts exist, but only
for GC methods

RSR1 Vs RSR2 the same code shifts exist for many methods,
including non-GC methods

RSR2 Vs RSR3 the same the same
RSR3 Vs RSR4 the same the same
RSR4 Vs RSR5 the same code shifts exist for many methods,

including non-GC methods
RSR5 Vs RSR code shifts the same

Table 3: Method offset comparison between versions

behaviour, which is changed by the code layout, as a key factor in the next
section.

5.1. Validating Icache Influence

In order to demonstrate that change of method layout is influencing perfor-
mance through the instruction cache behaviour we examined the performance
of a series of binaries. We measured 64 versions of SableVM built with pro-
gressively longer names, from 2 to 128 bytes (by 2s) longer than the original
build name. This shifts the location of symbols in the executable by the same
amount. The resulting effect on instruction cache, cycle count, and data cache
are shown in Figures 12, 13, and 14 respectively. The graphs plot the differ-
ently named versions against absolute counts of hardware events.

The design of the Pentium III instruction cache is quite evident in these
results. For instruction cache misses (Figure 12), and to a slightly lesser extent
for CPU cycles (Figure 13), a cycle is apparent with a period of 64 in our
naming scheme. Since each cache line is 32 bytes, and two cache lines are
fetched at a time, a 64-byte cycle is quite consistent. The cycle is considerably
less evident in the data cache results, but data cache missesin general are also
less numerous and less expensive. A comparison is provided in Figure 11.

As previously seen in Figure 9, instruction cache misses do not correlate
well with the performance of our different object layout strategies. They do,
however, show a good correlation with code layout. These results are highly
suggestive if not conclusive, and this confounding factor is a likely contributing
cause to the original, counter-intuitive results of our experiments on object
layouts.

Studia Informatica Universalis

“main”
2004/12/1
page 16

16 Dayong Gu and Clark Verbrugge and Etienne Gagnon

Whole execution, D-Cache/I-Cache

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Tr Tro Bi BiBPR BiBP Mixed MixedRSR MixedRS

compress db jack javac jess mpegaudio sablecc

Figure 11: The number of instruction cache misses is larger in
most cases

Code Layout, I -Cache

400000000

420000000

440000000

460000000

480000000

500000000

520000000

540000000

560000000

580000000

V
0
0
2

V
0
0
6

V
0
1
0

V
0
1
4

V
0
1
8

V
0
2
2

V
0
2
6

V
0
3
0

V
0
3
4

V
0
3
8

V
0
4
2

V
0
4
6

V
0
5
0

V
0
5
4

V
0
5
8

V
0
6
2

V
0
6
6

V
0
7
0

V
0
7
4

V
0
7
8

V
0
8
2

V
0
8
6

V
0
9
0

V
0
9
4

V
0
9
8

V
1
0
2

V
1
0
6

V
1
1
0

V
1
1
4

V
1
1
8

V
1
2
2

V
1
2
6

I-cache

Figure 12: Effect of changing method layout on instruction cache misses

6. Conclusions and future work

Identifying external influences is critical to correctly assessing an optimization.
We have described the observed impact of unintended code placement effects
on industry standard benchmarks. These effects are non-trivial and can perturb
intended measurements, and so are important to take into account in order to
achieve accurate benchmarking.

Our examination is developed through a series of potential low-level opti-
mizations, and their apparently anomalous results. We are currently explor-
ing techniques to try and mitigate and/or exploit the impactof code layout
on performance measurement. Careful naming strategies andcoarse-grained

Studia Informatica Universalis

“main”
2004/12/1
page 17

Code Layout as a Source of Noise in JVM Performance 17

Code Layout , PCL_Cycle

1.75E+11

1.76E+11

1.77E+11

1.78E+11

1.79E+11

1.8E+11

1.81E+11

1.82E+11

1.83E+11

1.84E+11

1.85E+11

1.86E+11

V
0

0
2

V
0

1
0

V
0

1
8

V
0

2
6

V
0

3
4

V
0

4
2

V
0

5
0

V
0

5
8

V
0

6
6

V
0

7
4

V
0

8
2

V
0

9
0

V
0

9
8

V
1

0
6

V
1

1
4

V
1

2
2

V
1

3
0

V
1

3
8

V
1

4
6

V
1

5
4

V
1

6
2

V
1

7
0

V
1

7
8

V
1

8
6

V
1

9
4

V
2

0
2

V
2

1
0

V
2

1
8

V
2

2
6

V
2

3
4

V
2

4
2

PCL_ CYCLE

Figure 13: Effect of changing method layout on cycle counts

Code Layout, D-Cache

130000000

135000000

140000000

145000000

150000000

155000000

160000000

165000000

170000000

V
0
0
2

V
0
0
6

V
0
1
0

V
0
1
4

V
0
1
8

V
0
2
2

V
0
2
6

V
0
3
0

V
0
3
4

V
0
3
8

V
0
4
2

V
0
4
6

V
0
5
0

V
0
5
4

V
0
5
8

V
0
6
2

V
0
6
6

V
0
7
0

V
0
7
4

V
0
7
8

V
0
8
2

V
0
8
6

V
0
9
0

V
0
9
4

V
0
9
8

V
1
0
2

V
1
0
6

V
1
1
0

V
1
1
4

V
1
1
8

V
1
2
2

V
1
2
6

D-Cache

Figure 14: Effect of changing method layout on data cache misses

code alignment techniques may help provide consistent, comparable data that
will generically apply to machines with different cache models. Compiler and
link-time optimization techniques that exploit code alignment, such as the well
known strategy of aligning methods and loops on cache boundaries may also
help in achieving a more consistent result. We are actively developing a frame-
work for investigating these issues.

7. Acknowledgments

This work has been supported by Le Fonds Québécois de la Recherche sur
la Nature et les Technologies and the National Sciences and Engineering Re-
search Council of Canada.

Studia Informatica Universalis

“main”
2004/12/1
page 18

18 Dayong Gu and Clark Verbrugge and Etienne Gagnon

References

[ABD+03] J. Anderson, L. Berc, J. Dean, S. Ghemawat, M. Henzinger,S. Leung, R. Sites,
M. Vandevoorde, C. Waldspurger, and W. Weihl. Cache memory behavior of ad-
vanced pde solvers. InProcessing of Parallel Computing 2003 (ParCo2003), Dres-
den, Germany, September 2003.

[BDS91] H-J. Boehm, A. J. Demers, and S. Shenker. Mostly parallel garbage collection. In
Proceedings of the ACM SIGPLAN ’91 Conference on Programming Language De-
sign and Implementation (PLDI), pages 157–164, 1991.

[BJMM02] Stephen M. Blackburn, Richard Jones, Kathryn S. McKinley, and J. Eliot B. Moss.
Beltway: Getting around garbage collection gridlock. InProceedings of PLDI’02
Programming Language Design and Implementation. ACM Press, June 2002.

[Boe00] Hans-J. Boehm. Reducing garbage collector cache misses. InISMM, pages 59–64,
2000.

[BZM] Rudolf Berrendorf, Heinz Ziegler, and Bernd Mohr. Theperformance counter li-
brary. http://www.fz-juelich.de/zam/PCL/.

[CKVW02] Youngsoo Choi, Allan Knies, Geetha Vedaraman, andJeremiah Williamson. Design
and experience: Using the Intel Itanium2 processor performance monitoring unit to
implement feedback optimizations. InEPIC 2, November 2002.

[CSCT02] Jamison Collins, Suleyman Sair, Brad Calder, and Dean M. Tullsen. Pointer cache
assisted prefetching. InProceedings of the 35th annual ACM/IEEE international
symposium on Microarchitecture, pages 62–73. IEEE Computer Society Press,
2002.

[EGD03] Lieven Eeckhout, Andy Georges, and Koen De Bosschere. How Java programs inter-
act with virtual machines at the microarchitectural level.In Proceedings of the 18th
ACM SIGPLAN conference on Object-oriented programing, systems, languages,
and applications, pages 169–186. ACM Press, 2003.

[FDSZ01] Christine Flood, Dave Detlefs, Nir Shavit, and Catherine Zhang. Parallel garbage
collection for shared memory multiprocessors. InUsenix Java Virtual Machine Re-
search and Technology Symposium (JVM ’01), Monterey, CA, 2001.

[Gag02a] Etienne Gagnon.A Portable Research Framework for the Execution of Java Byte-
code. PhD thesis, McGill University, 2002.

[Gag02b] Etienne Gagnon. Sablecc. URL:http://www.sablecc.org/, 2002.
[Gag02c] Etienne Gagnon. Sablevm. URL:http://www.sablevm.org/, 2002.
[Hel] Don Heller. Performance monitoring counter.

http://www.scl.ameslab.gov/Projects/Rabbit/.
[Int] Intel. Intel Itanium2 Processor Reference Manual. Intel Corp.
[JL96] Richard Jones and Rafael Lins.Garbage Collection: Algorithms for Automatic Dy-

namic Memory Management. John Wiley and Sons, 1996.
[MCE+02] P. S. Magnusson, M. Christensson, J. Eskilson, D. Forsgren, G. Hallberg, J. Hog-

berg, F. Larsson, A. Moestedt, and B. Werner. Simics: A full system simulation
platform. InIEEE Computer, 35(2), pages 50–58, February 2002.

[OBYG+02] Yoav Ossia, Ori Ben-Yitzhak, Irit Goft, Elliot K. Kolodner, and Avi Owshanko. A
parallel, incremental and concurrent GC for servers. InProceedings of the ACM SIG-
PLAN: Conference on Programming language design and implementation, pages
129–140, 2002.

[PD00] Tony Printezis and David Detlefs. A generational mostly-concurrent garbage collec-
tor. In ISMM, pages 143–154, 2000.

Studia Informatica Universalis

“main”
2004/12/1
page 19

Code Layout as a Source of Noise in JVM Performance 19

[PH90] K. Pettis and R. C. Hansen. Profile-guided code positioning. InProceedings of the
SIGPLAN ’90 Conference on Programming Language Design and Implementation,
pages 16–27, June 1990.

[QHV02] Feng Qian, Laurie Hendren, and Clark Verbrugge. A comprehensive approach to
array bounds check elimination for Java. InInternational Conference on Compiler
Construction, April 2002.

[SE94] A. Srivastava and A. Eustace. Atom: A system for building customized program
analysis tools. InConference on Programming Language Design and Implementa-
tion, pages 196–205, 1994.

[SE02] A. Srivastava and A. Eustace. Automatically characterizing large scale program be-
havior. In Tenth International Conference on Architectural Support for Program-
ming Languages and Operating Systems, October 2002.

[SHB+02] Darko Stefanović, Matthew Hertz, Stephen M. Blackburn, Kathryn S. McKinley,
and J. Eliot B. Moss. Older-first garbage collection in practice: Evaluation in a Java
virtual machine. InWorkshop on Memory System Performance (MSP), 2002.

[SHC+03] Peter F. Sweeney, Matthias Hauswirth, Brendon Cahoon, Perry Cheng, Amer Di-
wan, David Grove1, and Michael Hind. Using hardware performance monitors to
understand the behavior of Java applications. InVM’04, 2003.

[SMM99] Darko Stefanović, Kathryn S. McKinley, and J. Eliot B. Moss. Age-based garbage
collection. InProceedings of the Conference on Object-Oriented Programing, sys-
tems, languages, and applications, pages 370–381, 1999.

[SPE98] SPEC. SPEC JVM98 benchmarks. URL:http://www.spec.org/osg/jvm98, 1998.
[WH04] Dan Wallin and Erik Hagersten. Bundling: Reducing the over-

head of multiprocessor prefetchers. URL:http://b6.hpsc.csiro.au/hpc-
conferences/IPDPS2004/DATA/1902 IPDPS.PDF, 2004.

[WL91] M. E. Wolf and M. S. Lam. A loop transformation theory and an algorithm to max-
imize parallelism.IEEE Transactions on Parallel and Distributed Systems, October
1991.

Studia Informatica Universalis

“main”
2004/12/1
page 20

20 Dayong Gu and Clark Verbrugge and Etienne Gagnon

Authors addresses:
Dayong Gu, Clark Verbrugge
School of Computer Science
McGill University
Montréal, Canada
{dgu1,clump}@cs.mcgill.ca

Etienne Gagnon
Département d’informatique
Université du Québec à Montréal
Montréal, Canada
egagnon@sablevm.org

Studia Informatica Universalis

