Return Value Prediction in a Java Virtual Machine

Christopher J.F. Pickett

Clark Verbrugge

School of Computer Science, McGill University
Montréal, Québec, Canada H3A 2A7
{cpicke,clump}@sable.mcgill.ca

Abstract

We present the design and implementation
of return value prediction in SableVM, a Java
Virtual Machine. We give detailed results for
the full SPEC JVM98 benchmark suite, and
compare our results with previous, more lim-
ited data. At the performance limit of exist-
ing last value, stride, 2-delta stride, parameter
stride, and context (FCM) sub-predictors in a
hybrid, we achieve an average accuracy of 72%.
We describe and characterize a new table-based
memoization predictor that complements these
predictors nicely, yielding an increased average
hybrid accuracy of 81%. VM level information
about data widths provides a 35% reduction in
space, and dynamic allocation and expansion
of per-callsite hashtables allows for highly accu-
rate prediction with an average per-benchmark
requirement of 119 MB for the context predic-
tor and 43 MB for the memoization predictor.
As far as we know, the is the first implementa-
tion of non-trace-based return value prediction
within a JVM.

1 Introduction

Speculative multithreading (SpMT), otherwise known
as thread-level speculation, is a dynamic parallelisa-
tion technique that splits sequential code into multiple
threads, using out of order execution and buffering of
main memory accesses to achieve speedup on multipro-
cessors. Although typically considered at a hardware
level [3, 12, 17, 25], SpMT has shown potential to be
effective in pure Java source code [14] and other soft-
ware models [5, 18] as well.

More recently, speculative method-level parallelism
(SMLP), an SpMT variant in which speculative threads
are forked at method callsites (Figure 1), was shown to
benefit significantly at the hardware level from accu-
rate return value prediction for Java programs by Hu
et al. [12]. Specifically, they ran six benchmarks from
SPEC JVM98 on an 8-way multiprocessor in a realistic
SMLP system, and reported the effect of return value
prediction on speedups obtained (Table 1).

INVOKE<X> INVOKE<X> ||

™ fory __ T2

<X>RETURN <X>RETURN

(b)

— jOin

I:l pre-method instructions

|:| method body

(@) - post-method instructions

Figure 1: (a) Sequential execution of Java bytecode. The
target method of an INVOKE<X> instruction executes before
the instructions following the return point. (b) Speculative
execution of Java bytecode under SMLP. Upon reaching a
method callsite, the non-speculative parent thread T1 forks
a speculative child thread T2. If the method is non-void, a
predicted return value is pushed on T2’s Java stack. T2 then
continues past the return point in parallel with the execu-
tion of the method body, buffering main memory accesses.
When T1 returns from the call, it joins T2. If the actual re-
turn value matches the predicted return value, and there are
no dependence violations, T2’s buffered writes are commit-
ted and non-speculative execution jumps ahead to where T2
left off, yielding speedup. If there are dependence violations
or the prediction is incorrect, T2 is simply aborted.

return value prediction strategy | average speedup

none 1.52
best hybrid 1.92
perfect 2.76

Table 1: Effect of RVP on speedup under SMLP [12].

On the basis of these data, we concluded that improve-
ments beyond Hu et al.’s best hybrid were highly desir-
able, and set out to achieve high return value predic-
tion accuracy in SableVM [10, 19], a Java Virtual Ma-~
chine (JVM). Inspired by existing context and param-
eter stride predictors, we designed a new memoization-

based predictor. Its resource requirements and perfor-
mance are comparable to a context predictor, and a hy-
brid including memoization achieves excellent results.

By implementing our work directly within a mature
JVM, we are able to analyse the complete language and
complex benchmarks, taking exceptions, garbage col-
lection, and native method calls into consideration. We
provide detailed data for the full SPEC JVM98 bench-
mark suite, and expand on previous return value pre-
diction results over SPEC in several ways.

In [12], the S1 (size 1) benchmark parameter set-
ting that specifies minimal execution time was used.
This results in the benchmarks spending most of their
time in JVM startup code, and relatively little in ap-
plication code [9], distorting conclusions about dynamic
behaviour [8]. Our data were collected using S100, the
value SPEC insists on for reportable results [23].

We also report prediction accuracy according to all
nine primitive Java data types, which include floating
point and 64-bit values. Previously, only boolean, int,
and reference types were considered. Additionally, by
explicitly accounting for exceptional control flow, we
are able to analyse the jack benchmark, which was
omitted from [12] due to its use of exceptions.

Lastly, our data include all runtime method calls,
without inlining, whereas Hu et al.’s trace data were
gathered with method inlining enabled. It can be ar-
gued that inlining is critical to efficient Java execution,
and therefore an essential upstream property. However,
inlining changes the set of methods available to pre-
dict, and unfortunately inlining decisions are not uni-
form across virtual machines. This makes it difficult to
compare accuracy results between studies, and we give
an example in Section 6 on the effect inlining has on
apparent predictor accuracy. It may also be that the
set of non-inlined callsites is not ideal as a set of poten-
tial fork points in SMLP, although Hu et al. did obtain
good prediction accuracy and speedup in SMLP sim-
ulations over their subset of callsites, and noted that
return value prediction in the absence of inlining ap-
pears to have little benefit [25].

In this respect, we pursue accuracy for its own sake,
not simply as a means to an end, and hope to facili-
tate direct comparisons with our work. It seems likely
that our improvements over the entire set of callsites
will translate to most reasonable subsets, and that if
our techniques were applied to Hu’s simulation frame-
work that improved accuracy and speedup would be
obtained. We defer the treatment of a full SpMT im-
plementation in SableVM to future work, and focus on
exploiting the higher level techniques, resources, and
information available to first push the performance lim-
its of return value prediction, and then reduce memory
requirements without sacrificing accuracy. We believe
that our methodology provides a good basis for evalua-
tion of return value prediction, and that an all-software
SpMT implementation will ultimately benefit.

1.1 Contributions

1. An implementation of return value prediction in a
JVM that includes previously reported last value,
stride, 2-delta stride, context (FCM), parame-
ter stride, and hybrid predictors. Predictions are
made at runtime without reliance on trace data.

2. A comprehensive set of prediction data that in-
cludes every method invocation, for all of SPEC
JVM 98, run with non-trivial settings. This sig-
nificantly improves upon existing return value
prediction data [12] for these benchmarks for the
reasons stated above.

3. A new table-based memoization return value pre-
dictor, suitable for a JVM, and an investigation of
its performance. Unlike context predictors, which
compute lookup table indices from a recent his-
tory of return values, a memoization predictor
computes an index from the method parameters.
We find that it works well by itself, and comple-
ments existing predictors nicely in a hybrid.

4. An exploration of the performance limits of con-
text, memoization, and hybrid predictors. In soft-
ware, we can allocate predictor storage to the
point where accuracy no longer improves, and
reduce memory requirements by (a) expanding
hashtables dynamically per callsite, and (b) ex-
ploiting VM level information about value widths.

2 Design

We implement a handful of previously described pre-
dictors. A last value predictor (L) simply predicts the
last returned value. A stride predictor (S) computes
the differential or stride between the last two values,
and applies this differential to the last returned value
to make a prediction. A 2-delta stride (2) predictor
computes strides as per the stride predictor, but only
updates when the last two strides are equal. A param-
eter stride (P) predictor captures return values that
have a constant stride against one of the parameters
[12]. Finally, an order-5 context predictor (C) com-
putes an index into a hashtable using the previous 5
returned values [20, 21] (Figure 2a). We also present
a new memoization (M) predictor that computes an
index into a hashtable like the context predictor, but
uses method parameters as hash function inputs instead
(Figure 2b). All parameters are available as a sequence
of 32-bit values on the Java stack [15], and we include
the this parameter for non-static methods; zero is re-
turned for static methods with no parameters. Finally,
hybrid LS2PC and LS2PCM predictors keep a success
history for each component sub-predictor over the last
32 return values and select the most accurate, choosing
simpler strategies in the event of a tie.

Java
stack
L]
Tl .
objectref
pl
return value
history (context) — p2

rlr2r3r4r5
INVOKE<X>

L]
e

hash ‘ hash
32-bit | | 32-bit
hash value hash value
context memoization
table lookup table lookup
prediction | | | | prediction

(a) Context Predictor (b) Memoization Predictor

Figure 2: Context and memoization predictor models. rl1
through r5 are the most through least recent return values,
and pI through pN are method parameters.

Other value prediction studies typically use global
data structures for predictor storage, as the authors
tend to be working under real-world hardware con-
straints. At the VM level we can afford to be more
liberal with memory, and dynamically allocate and free
arbitrary structures in general purpose RAM instead of
expensive dedicated circuits. Predictor storage is allo-
cated on a per-callsite basis, which has three important
advantages: 1) if we need to synchronize predictor ac-
cess, either to increase accuracy or to allow our data to
move in memory, it means we do not need to acquire
an expensive global lock; 2) it eliminates any chance
of aliasing in a global table; 3) it allows us to allocate
memory according the needs of individual callsites. We
considered a per-method allocation strategy, and its ad-
vantages and disadvantages over a per-callsite strategy,
but decided to defer an in-depth study to future work.

The L, S, 2, and P predictors require negligible
amounts of memory per callsite. We use open address-
ing tables to store predictions for both C and M predic-
tors [6]. These tables map easily to the hardware tables
described in other value prediction designs, albeit under
more stringent space requirements.

We initially experimented with Sazeides’ standard
context table index function [20]. A similar or identi-
cal function was used by Hu et al. when they studied
return value prediction. We found an uneven distribu-
tion of hash values, and began looking for a better hash.
Although an improvement to Sazeides’ hash based on
rotation was reported a few years later [1], we opted to
use Jenkins’ fast hash [13], on the basis of his detailed
analysis and review. This hash has the nice property
that every bit of the input affects every bit of the out-
put, meaning that a single 32-bit or 64-bit hash value
can be used reliably for multiple table sizes.

index

hash value
31 29 28 k k-1 0
entry info table
L J L]
discard tag 312928 0
0
rehash on
tag collisions . . .
eSS
e —
visited age tag
expand if look up
necessary prediction
w-1 0
0
L] L]
2]
value table

Figure 3: Hashtable lookup and expansion model. k is the
table index width, and w is the actual value width. Data
are aligned by separating values from entry info.

We find that for non-trivial programs, allocating
large fixed size hashtables per callsite quickly exhausts
available memory in the system. We overcome this lim-
itation and realize the benefits of large tables by allo-
cating initial minimum size 3-bit hashtables per callsite,
and expanding them by 1 bit when the load exceeds
75%, up to a fixed maximum.

Each table entry has a 32-bit tag (Figure 3). Bits
0-28 hold a truncated Jenkins’ hash value. They detect
collisions, and allow us to rehash and expand up to a
maximum size of 29 bits. Note that as the table size
increases the ability to detect collisions decreases. Bits
29-30 are a two-bit saturating age counter that resets to
zero upon returning an entry, and increments when an
entry is skipped by rehashing. We find this is a better
use of these bits than the standard two-bit saturating
update counter. Bit 31 is a visited bit, and we use
it to detect new entries, calculate load, and eliminate
unnecessary rehashing during expansion.

Double hashing allows us to cycle through all table
entries [6], and essentially eliminate collisions at non-
maximum table sizes. These secondary hashes can be
computed in a few cycles from an existing hash value:

hl = hash_value & (size - 1);
h2 = hl | 1;
rehash = (hl + i * h2) & (size - 1);

where i is the rehash iteration, and size is the number
of entries in the table. In order to avoid using modulo
operations, size must be a power of two.

At the maximum size, upon detecting a collision,
we rehash up to four times, at which point we replace
the first-encountered oldest entry using the two-bit age
counter. This yields up to a 5% increase in predictor
accuracy depending on benchmark and maximum size.

3 Benchmark Properties

We present absolute numbers on the runtime properties
of our benchmarks relevant to return value prediction
in Table 2. These can be used to suggest specific areas
of interest, convert percentages reported in future sec-
tions back to absolute numbers, and provide a general
feel for dynamic behaviour and characteristics.

db jack mtrt
3.60K
59.4M

608K
24.4M
34.4M

9.38M

javac
5.12K

127TM
41.8K
45.3M

jess
3.04K
125M
290
23.3M

property
callsites|| 1.72K | 1.89K
forked || 226M | 170M
aborted 36 18
93.4M | 54.4M
133M | 115M
boolean Z| 3.75K |11.1M
byte B 0 0] 580K
char C 935| 1.73K | 1.55M
short S 0 0 0
int I| 133M [48.0M |[11.56M
long J 477| 152K |1.23M
float F 0 0 0
double D 0 0 0
15.8K|56.2M [10.2M

comp mpeg
2.17K | 2.90K
111M | 288M

114 62
34.1M | 20.5M
81.5M| 102M |76.9M | 267TM
17.5M |35.8M | 24.3M | 3.06M
39.3K 0 0 0
3.70M| 6.65K | 2.11K | 9.84K
73.3K 0]18.0M 0
36.5M |20.8M | 34.6M |4.54M
845K | 101K | 15.8K | 2.13K

96 280| 7.81K| 162M

156 |1.77TM 56| 188K
22.9M |43.5M | 32.7K |97.5M

void
verified

reference R

Table 2: SPEC JVM98 dynamic properties. raytrace is
omitted as mtrt is an equivalent multithreaded version. call-
sites: unique reached callsites at which one might fork a new
speculative thread; forked: total number of method calls
made over callsites; aborted: calls that never return to the
callsite due to an uncaught exception in the callee; void:
void calls that do return to the callsite; verified: non-void
calls that return to the callsite, and at which we are able
to verify whether our prediction is correct; this is forked —
(void + aborted); boolean through reference: per-type veri-
fiable predictions. Future prediction accuracies are always
reported against total verifiable predictions.

Immediately, we note that our dataset is roughly 3
orders of magnitude larger than that presented in the
study by Hu et al., because we analyse S100 instead of
S1 for SPEC JVM98, and because we do not inline any
method calls. Second, we observe that by considering
the complete set of data types, we expose the full di-
versity and relative proportions of method return types,
and that this has the potential to significantly affect our
assessment of prediction accuracy. For example, mtrt
relies heavily on float methods, mpeg uses a surprising
number of methods returning shorts, comp returns al-
most exclusively ints, and the remainder use more or
less equal mixes of int, boolean, and reference calls.
Third, there are large numbers of void calls in all cases,
as previously reported, and if evenly distributed and
also desirable as SMLP fork points, they might make
our entire analysis moot. However, void methods are
impure and completely side effect based by nature, and
thus likely not the best candidates. Finally, the upper
bound of 5.12K on the number of callsites translates
to an upper bound on the memory required by context
and memoization predictors at a given table size.

accuracy (%)

accuracy (%)

accuracy (%)

100

4 6 8 10 12 14 16 18 20
maximum per-callsite table size (bits)
Figure 4: Context size variation.

100
90
4 6 8 10 12 14 16 18 20 22 24 26
maximum per-callsite table size (bits)
Figure 5: Memoization size variation.
100
0 1 1 1 1 1 1 1 mtlrt‘|mp”7<>'”

4 6 8 10 12 14 16 18 20 22 24 26
maximum per-callsite table size (bits)
Figure 6: Hybrid size variation.

4 Size Variation

The performance of context (C), memoization (M), and
hybrid LS2PCM predictors is graphed against varying
maximum table size in Figures 4-6. C and M have the
same maximum size in the hybrid graph. jess and
jack perform better with C, whereas db, mtrt, and
mpeg perform better with M. comp and javac perform
better with M at small table sizes and C at large sizes.
The mathematical compositions of these functions are
neatly shown by the hybrid data. We discuss the poor
performance of mpeg in Section 6.

mtrt_up and mtrt_mp refer to mtrt running on a
uniprocessor and a multiprocessor respectively. There
is a significant 15% performance hit when moving from
up to mp for C, as the recent history of return values,
or context, becomes rather volatile. This effect is not
observed to the same extent for up because context-
switching between threads is relatively infrequent. In-
terestingly, M is not history-based, and suffers few
losses for mp. Furthermore, M is able to capture almost
all of the mp predictions that C missed in the hybrid. As
reported by Hu et al., context prediction accuracy suf-
fers badly in an SMLP environment, and these limited
data suggest that memoization is able to compensate.

For jack, javac, and jess in M, we actually ob-
serve prediction accuracy start to decrease past a cer-
tain maximum. Based on tag information about colli-
sions and visited entries, we attribute the peaks of these
curves to different sets of parameters mapping to the
same return value. We discuss future work to address
this in Section 8.

We choose maximum table sizes per benchmark near
to or at the performance peak for both C and M, indi-
cated with an open circle around the point, and listed
in Table 3. Note that a non-optimal size of 12 is chosen
for mpeg in C as performance increases in the hybrid
are negligible after 12 bits. We can afford to choose
large table sizes for comp and db as only a handful of
callsites ever need to expand that far. These sizes are
used in all hybrid experiments following this section.

5 Memory Usage

Figures 7 and 8 show the final distributions of C and
M tables when a maximum size of 26 bits is specified.
There are slightly fewer tables in M than C, as static
methods with zero parameters cannot be memoized.
On average, we find that 70% and 65% of C and M
tables respectively are never expanded past the initial
size of 3 bits, and that 87% for each are never expanded
beyond 8 bits. This indicates that a small number of
methods in these benchmarks are responsible for the
creation and processing of highly variable data, as ta-
ble expansion at a given callsite is directly proportional
to the variability of hash function inputs, namely return
value history for C and method parameters for M.

2000
1000
comp O
db =
jack o
javac e
. jess &
® o mpeg a
L]
e O Q 0... mtrt_up ©
& 100 e O '.
= o
i) o ‘ < o
K o © 0800 3 S
“— - O@AAQQO
S =, s [o fod 3 >
3 e s
£ B 4 a 2 a °
=]
z 10 S
Uy aoan 5a©° o s
O L3 (o]
O = O O e
[] <
[® & O L]
1 = * =)
0 L 1 1 1 e o e]

table size (bits)

Figure 7: Final context table distribution.
2000
1000
comp O
db =
jack ©
javac e
M . jess A&
o e . ¢ o mpeg
*y A . 1S mtrt_up ©
L}
$100 |5—52° 9 .
B A A o 9 RPN o
© 3 A
2 Q AN [A)
5] . " g © o
9] o] o< 4 o a .
E " . A o, A
S =) P .
g 10 . o o o
A e & A
[} a
o o o o
00 & o
[] - L] O e
1
ol——»~ 1l 1l Il megedhododel obebe

3 5 7 9 11 13 15 17 19 21 23 25
table size (bits)

Figure 8: Final memoization table distribution.

In some cases (comp, db), it is important to capture
this variability (as seen in Figures 4-6), which suggests
greater reuse of intermediate results. In other cases,
the variability is less important, and this allows us to
conserve memory; for example, mtrt requires 2 GB of
memory when fully expanded, yet shows no improve-
ment in accuracy after 14 bits. The data for mtrt_mp
are not shown, but differ only from mtrt_up by greater
expansion in C between 8 and 22 bits, corresponding
with mtrt_mp’s lower predictability (Figure 4).

Perhaps most importantly, these data indicate that
a fixed size global table will be dominated by a small
minority of callsites, evicting predictions belonging to
those that are less variable. As less variable calls are
by nature easier to predict, and furthermore appear in
abundance, at least in the form of boolean return val-
ues, this provides good justification for our per-callsite
allocation and expansion strategy.

100
90

80
70
60
50
40
30
20
10

accuracy (%)

AZCIJR AZCIJR AZBCIJR AZBCSIJFDR AZCIJFDR AZCSIJFDR AZCIJFDR AZBCSIJFDR

comp db jack javac

jess mpeg mtrt average

Figure 9: Hybrid predictor performance. The dark bars show the improvement of the LS2PCM hybrid over the LS2PC
hybrid. In the three cases where accuracy is slightly worse (jess(J), db(J), and mtrt(J)), a dashed line is drawn.
A: all verified predictions; Z-D: Java primitive types; R: object and array references. Types with zero calls are omitted for
individual benchmarks and also excluded from the final average (refer to Table 2).

bench- context memoization
mark | size | original | reduced || size | original | reduced
comp 24 313M | 208M | 18 | 9.60M | 6.38M
db 24 541M 361M || 24 345M 206M
jack 14 | 15.8M| 10.7TM | 8 1.79M | 1.11M
javac || 20 291M 195M || 14 103M | 64.5M
jess 14 | 13.5M | 9.59M || 12 | 8.83M | 5.62M
mpeg 12 | 3.72M | 249M | 12 | 1.46M 856K
mtrt 14 | 69.4M | 46.4M | 12 | 23.0M| 15.3M
average || 17 178M 119M || 14 70M 43M

Table 3: Context and memoization table memory. The
maximum table size in bits was chosen based on optimal
points shown in Figures 4 and 5.

As was previously reported, taking value data
widths into consideration can yield significant savings
in table-based prediction strategies [16]. We allocate
tables conservatively according to the widths of Java
primitive types, which are 1, 8, 16, 16, 32, 64, 32,
64, and 32 bits for booleans, bytes, chars, shorts,
ints, longs, floats, doubles, and references respectively.
SableVM actually uses 8 bits to represent a boolean,
and we have not packed these in our implementation.
Data on the reduction achieved from data width con-
siderations are given in Table 3.

On average, 33% and 37% memory reductions were
achieved for context and memoization tables respec-
tively. Furthermore, the average memory required by
maximally-performing context predictors after reduc-
tion was 119 MB, whereas memoization required only
43 MB. This is seen in Figures 7 and 8, where the mem-
oization data is shifted left, towards smaller sizes. This
does not diminish the value of a context predictor, but
strongly suggests that memoization will be effective in
any environment where a context predictor is effective,
provided information about which bytes in memory cor-
respond to parameters is available.

Finally, we considered perfect hashing of booleans in
a context predictor. Although 256* entries are needed
for perfect hashing of bytes in an order-k context table,
if we treat all non-zero booleans as equivalent and only

zero booleans as false, as would seem logical and as per-
mitted by the JVM Specification [15], only 2* entries
are needed. This reduces memory usage if the initial ta-
ble size is greater than k bits, and also improves speed,
as the hash function is now trivial to compute. We
found that accuracy was not significantly altered, and
furthermore that space savings were marginal, as highly
expanded boolean context tables are rare. We did not
profile for speed.

6 Hybrid Performance

We construct an LS2PC hybrid out of previously re-
ported predictors (Section 2). This is compared against
an LS2PCM hybrid containing our new memoization
predictor in Figure 9. Both C and M predictors in these
hybrids benefit from benchmark-specific maximum ta-
ble size selections described in Section 4, as well as re-
hashing and table expansion. LS2PC achieves an av-
erage accuracy of 72%, and LS2PCM 81%. Thus it
appears that memoization complements existing pre-
dictors nicely. We evaluate the ability of our hybrid to
capture correct sub-predictions as a percentage of the
predictions that at least one sub-predictor got right, as
the hybrid will always fail if none of the sub-predictors
succeed, and find an average fitness of 96%.

Out of all the benchmarks, mpeg performs the worst
at only 46%. Looking into the method call distribution,
we observe that the majority of predictions are con-
fined to q.j(F)S and 1.read()I, and that these han-
dle reading and processing of essentially random mp3
data. However, Hu et al. found mpeg to be highly pre-
dictable at 80% overall accuracy. q.j(F)S is a short
leaf method, and was either excluded from their analy-
sis, which only explicitly mentions booleans, ints, and
references, or inlined by their JVM. 1l.read()I was
possibly not inlined because it eventually invokes a na-
tive I/O operation and is not a leaf method; if so, this
would explain their low int prediction accuracy of 42%,
comparable to ours at 40%.

This provides a striking example of how reported
prediction accuracies can differ depending on the sub-
set of methods considered. The full set of methods
needs to be analysed to allow meaningful comparisons,
and to present data that include all classes of functions,
even though a reduced set of fork-and-predict points is
probably necessary in an effective SMLP environment.

7 Related Work

That software approaches to SpMT may also be vi-
able was demonstrated by Kazi and Lilja on manually
transformed Java programs [14], and comparable stud-
ies have been performed using C benchmarks [5, 18].
JVMs have also been advocated by others for SpMT
related work; Chen and Olukotun, for example, give ar-
guments for the value of VM level information [3], and
have developed an extensive system in simulated hard-
ware for dynamically parallelising Java programs [4].

Hu et al. analyse data from Java traces, and use
simulated hardware to make a strong case for return
value prediction in SMLP [12]. They present a pa-
rameter stride predictor and give prediction results for
SPEC JVM98. Our work builds on their efforts by fur-
ther including memoization in the analysis effort, and
by extending the data collected.

Prediction strategies are of course numerous, and
appear in various contexts. For value prediction, last
value, context, and stride predictors of different forms
have been introduced and examined by several re-
searchers [1, 11, 17, 20, 21]. Limits on the possible
success of such strategies have also been analysed [25],
and many hybrid techniques have been proposed [2].

Although our work is the first to address memoiza-
tion in a value prediction setting, memoization is obvi-
ously a well known technique, and has even been used
to speed up speculative hardware simulations [22]. Ef-
fective memoization based compiler and runtime opti-
mizations have also been described [7]. Note that unlike
traditional memoization approaches, limitations due to
conservative correctness are not necessary in our spec-
ulative environment.

Our use of data type information for memory op-
timization follows other work on using types in value
prediction. Loh has demonstrated memory and power
savings by using data width information [16], although
in a hardware context, and with the additional need to
heuristically discover high level type knowledge.

8 Conclusions and Future Work

We achieve high return value prediction accuracy in a
JVM within reasonable software space constraints, im-
plement and examine many previously described tech-
niques for value prediction, and provide a powerful new
table-based memoization predictor.

It is straightforward to extend our value prediction
framework to include new kinds of predictors, for ex-
ample a differential context (DFCM) predictor [11], and
we encourage others to experiment with it. It would be
particularly interesting to study prediction of reference
types, as we have access to detailed object and heap
layout information in the VM, and can also account
explicitly for the effects of garbage collection. In an
SMLP environment, we might also be concerned with
predicting heap loads, and it should be possible to use
the same codebase to develop general purpose predic-
tors for GETSTATIC, GETFIELD, and <X>ALOAD instruc-
tions. Our work is available from the SableVM website
[19] under a permissive LGPL license.

We have also developed some ahead-of-time com-
piler analyses in Soot [24] that are designed to improve
the performance of return value prediction. A parame-
ter dependence analysis that determines which parame-
ters affect the return value can be used to minimize the
set of inputs to our memoization predictor, decreasing
table size while increasing sharing. A return value use
analysis can be used to determine which return values
are consumed, and eliminate the need to predict uncon-
sumed values. That not all return values are consumed
was previously reported, but the information was not
apparently used during execution [12]. We can also sub-
stitute incorrect predictions for return values used only
inside boolean and branch expressions, provided these
expressions evaluate identically.

In Section 4, we showed that multithreaded pro-
grams may be more predictable by memoization than
by a context predictor, as the history of return values
at certain callsites is subject to concurrent and non-
deterministic updates. Similar problems were observed
with context predictors in full SMLP systems [12]. We
would like to explore this phenomenon in greater detail
on a larger set of multithreaded benchmarks and pro-
grams actually running under SMLP, and determine the
extent to which memoization is able to compensate.

We have shown that a memoization predictor re-
quires less resources than a context predictor, while
offering a significant increase in accuracy, and believe
that a hardware implementation is feasible. Other con-
text predictors are implemented with a global predic-
tion table [12, 20], whereas we used per callsite tables
exclusively, and a comparison of the advantages and dis-
advantages of allocating tables at the global, method,
and callsite levels is in order. Finally, rather than pro-
file for optimum table sizes, we will implement dynamic
adjustment of expansion parameters per callsite, based
on prior prediction success and the importance of cor-
rectly predicting the return value in question.

We intend to finish our implementation of a work-
ing SMLP execution engine in SableVM, and hope to
achieve speedup on existing multiprocessors. It will be
interesting to examine the benefits and costs of return
value prediction in this system.

Acknowledgements

We kindly thank Etienne M. Gagnon for discussions
and implementation help with SableVM. This research
was funded by FQRNT, and C. Pickett was addition-
ally supported by a Richard H. Tomlinson Master’s in
Science Fellowship and an NSERC PGS A award.

References

1]

[2]

(6]

[7]

[10]

[11]

M. Burtscher. An improved index function for
(D)FCM predictors. Computer Architecture News,
30(3):19-24, June 2002.

M. Burtscher and B. G. Zorn. Hybrid load-value
predictors. IEEE Transactions on Computers,
51(7):759-774, July 2002.

M. K. Chen and K. Olukotun. Exploiting method-
level parallelism in single-threaded Java programs.
In Proceedings of the 1998 International Confer-
ence on Parallel Architectures and Compilation
Techniques (PACT), Oct. 1998.

M. K. Chen and K. Olukotun. The Jrpm system for
dynamically parallelizing Java programs. In 30th
International Symposium on Computer Architec-
ture (ISCA), pages 434-446. IEEE, June 2003.
M. Cintra and D. R. Llanos. Toward efficient
and robust software speculative parallelization on
multiprocessors. In Proceedings of the 9th ACM
SIGPLAN Symposium on Principles and Practice
of Parallel Programming (PPoPP), pages 13-24.
ACM Press, June 2003.

T. H. Cormen, C. E. Leiserson, R. L. Rivest, and
C. Stein. Introduction to Algorithms. MIT Press,
2nd edition, 2001.

Y. Ding and Z. Li. A compiler scheme for reusing
intermediate computation results. In Proceedings
of the International Symposium on Code Gener-
ation and Optimization (CGO), page 279. IEEE
Computer Society, Mar. 2004.

B. Dufour, K. Driesen, L. Hendren, and C. Ver-
brugge. Dynamic metrics for Java. In Pro-
ceedings of the ACM SIGPLAN 2003 Conference
on Object-Oriented Programming, Systems, Lan-
guages, and Applications (OOPSLA), pages 149—
168. ACM Press, Oct. 2003.

L. Eeckhout, A. Georges, and K. de Bosschere.
How Java programs interact with virtual ma-
chines at the microarchitectural level. In Pro-
ceedings of the ACM SIGPLAN 20038 Conference
on Object-Oriented Programming, Systems, Lan-
guages, and Applications (OOPSLA), pages 169—
186. ACM Press, Oct. 2003.

E. M. Gagnon. A Portable Research Framework
for the Ezecution of Java Bytecode. PhD thesis,
McGill University, Montréal, Québec, Dec. 2002.
B. Goeman, H. Vandierendonck, and K. de Boss-
chere. Differential FCM: Increasing value predic-

[16]

[17]

[21]

[22]

tion accuracy by improving table usage efficiency.
In Proceedings of the 7th International Sympo-
sium on High-Performance Computer Architecture
(HPCA), pages 207-216. IEEE Computer Society,
Jan. 2001.

S. Hu, R. Bhargava, and L. K. John. The role
of return value prediction in exploiting speculative
method-level parallelism. Journal of Instruction-
Level Parallelism, 5:1-21, Nov. 2003.

B. Jenkins. A hash function for hash table lookup.
Dr. Dobb’s Journal, Sept. 1997.

I. H. Kazi and D. J. Lilja. JavaSpMT: A spec-
ulative thread pipelining parallelization model for
Java programs. In Proceedings of the 14th Interna-
tional Parallel and Distributed Processing Sympo-
stum (IPDPS), pages 559-564. IEEE, May 2000.
T. Lindholm and F. Yellin. The Java Virtual Ma-
chine Specification. Sun Microsystems, 2nd edi-
tion, 1999.

G. H. Loh. Width-partitioned load value predic-
tors. Journal of Instruction-Level Parallelism, 5:1—
23, Nov. 2003.

J. T. Oplinger, D. L. Heine, and M. S. Lam. In
search of speculative thread-level parallelism. In
Proceedings of the 1999 International Conference
on Parallel Architectures and Compilation Tech-
niques (PACT). IEEE, Oct. 1999.

P. Rundberg and P. Stenstrom. An all-software
thread-level data dependence speculation system
for multiprocessors. Journal of Instruction-Level
Parallelism, 3:1-28, Oct. 2001.

SableVM. http://www.sablevm.org/.

Y. Sazeides and J. E. Smith. Implementations of
context-based value predictors. Technical Report
TR ECE-97-8, University of Wisconsin—Madison,
Dec. 1997.

Y. Sazeides and J. E. Smith. The predictability
of data values. In Proceedings of the 30th Interna-
tional Symposium on Microarchitecture (MICRO),
pages 248-258, Dec. 1997.

E. Schnarr and J. R. Larus. Fast out-of-order
processor simulation using memoization. In Pro-
ceedings of the 8th International Conference on
Architectural Support for Programming Languages
and Operating Systems (ASPLOS), pages 283—-294.
ACM Press, Oct. 1998.

The SPEC JVM Client98 benchmark
http://www.spec.org/jvm98/jvm98/.

R. Vallée-Rai. Soot: A Java bytecode optimiza-
tion framework. Master’s thesis, McGill Univer-
sity, Montréal, Québec, July 2000.

F. Warg and P. Stenstréom. Limits on speculative
module-level parallelism in imperative and object-
oriented programs on CMP platforms. In Pro-
ceedings of the 2001 International Conference on
Parallel Architectures and Compilation Techniques
(PACT), pages 221-230. IEEE, Sept. 2001.

suite.

